

East Tip, Haulbowline Island, Cork

Foreshore Waste Assessment Addendum to Detailed Quantitative Risk Assessment

Oct 2013

Detailed Quantitative Risk Assessment Addendum Foreshore

Document Control

Foreshore Waste Assessment

Project:	Haulbowline East Tip Site Investigation & DQRA	
Client:	Cork County Council	
Job Number:	A075294	
File Origin:	G:\A075294\issued documents	

Revision:	Final - V3.8			
Date:	17-10-13			
	Prepared by	Checked by	Approved By	
	Yvonne Buchanan	Yvonne Buchanan	Yvonne Buchanan	
Signed:	VENCE	YEARD	YAID	
Description of Revision:	Final For Issue			

DETAILED QUANTITATIVE RISK ASSESSMENT PEER REVIEW

In February 2012 SKM Enviros (SKME) were appointed by Cork County Council from their Multi-Disciplinary Environmental Advisory Services in relation to the waste licensing and land remediation/reclamation project at Haulbowline Island, Co Cork. Under the scope of services relating to this framework agreement is the requirement to undertake peer review of a number of technical reports and studies carried out by other consultancy providers appointed by Cork CC under a parallel framework agreement.

In May 2012 Cork CC requested that SKME provide on-going technical peer review related services to assist in the delivery of a Detailed Quantitative Risk Assessment (DQRA) and supporting investigations at the East Tip in order to progress towards assessment of potential remedial options to support remediation and reclamation of the site.

WYG Environmental Planning and Transport Ltd (WYG EPT Ltd) have undertaken detailed site investigations and a quantitative risk assessment of the East Tip, details of which are contained within the attached report.

SKM Enviros have undertaken an independent technical review of the investigations and subsequent report, which has included a review of the overall approach adopted and a review of work and methodologies employed against current relevant national and international best practice and guidance. Having completed our review we are in agreement with the methodologies applied, the report findings, and the conclusions and recommendations contained therein. It should be noted that in completing our review, factual information presented within the report such as geological data, testing and analysis data compiled by WYG EPT Ltd. has been taken at face value by SKM Enviros as being factually correct.

For and on behalf of SKM Enviros

h h wood

Mike McDonald Project Manager 18th October 2013

Executive Summary

Instruction	MMC were employed by Control or the Council or Other Council or Co
Instruction and outline	WYG were appointed by Cork County Council, on 27 th January 2012, for the provision of
	multi-disciplinary environmental consultancy services for the site investigation and
	Detailed Quantitative Risk Assessment (DQRA) of the East Tip, on Haulbowline Island in
	Cork Harbour. This project relates to geo-environmental services required under Phase
	IV of the project programme, consultant contract requirements of the Council's
	regularisation programme for the East Tip which involves the completion of intrusive site
	investigations and a Detailed Quantitative Risk Assessment (DQRA).
	WYG were further instructed to assess the contamination potential and potential risks to
	receptors of the waste which is present and buried in the area of the foreshore as an
addendum to the DQRA in order to determine whether the waste materia	
	present outside the proposed line of the perimeter engineered structure can remain.
Aims	The overall aim of the works completed at the East Tip was to undertake an assessment
	of the significance of the risks to human health and the environment receptors, in order
	to assist in identifying risks which may require mitigation as part of the licensing process.
	Specifically, this report aims to provide a Generic Quantitative Risk Assessment for the
	East Tip foreshore using relevant data gathered during a trial pit investigation on the
	foreshore to characterise the contamination associated with this waste material and
	determine whether it would be capable of causing significant risks to the health of site
Cite Investigati	users, Cork Harbour waters and/or ecology.
Site Investigation	A foreshore trial pit site investigation was completed between 14 th and 16 th January 2013
Scope	to provide information on the type and extent of waste present in the area of the
	foreshore and allow collection of samples for subsequent laboratory chemical analysis for
	contamination characterisation and assessment purposes. The site investigation works
	included completion of 29 No. trial pits to maximum depth of 4.5m below ground level
	(bgl) and chemical and NRA leachability testing of solid samples. The site investigation identified that the waste in the foreshore area typically comprised
	of slag with inclusions of metal pieces and was consistent with the findings of the DQRA.
	Approximately one third of the trial pits had other waste types present, predominantly
	demolition and construction waste.
Generic	The laboratory analysis results were assessed against relevant GACs. In regard to human
Quantitative Risk	health, these were compared to commercial land use GACs. With the exception of nickel,
Assessment	contaminant concentrations did not exceed applicable GACs. One isolated measured
	nickel concentrations exceeded the commercial GACs at FTP26 at 2.2-2.5mbgl, the
	source of which was considered to be due to a buried battery. Nickel is not a volatile
	contaminant and therefore human health exposure can only occur through direct
	contact, ingestion and inhalation of dust pathways. However these pathways are not
	viable for contaminants at depths greater than 1mbgl. As a result this nickel
	concentration is not considered to be capable of causing significant risks to the health of
	current or future site users. Additionally, the proposed remediation will effectively cover
	most of the foreshore area with rock armour preventing people from coming into contact
	with the waste, it will also not form part of the future proposed park and therefore future
	access will be restricted and additionally the waste in the foreshore area will be
	constantly wet lowering the potential for exposure via dust inhalation pathways.
Water DQRA	The aim was to consider whether the measured average conservative leachable
Context	concentrations relating to foreshore waste would cause a WQS to be exceeded after
	discharge into Cork Harbour. As per the DQRA (WYG, 2013) basic flux calculations were
	completed to consider a tidal theoretical daily flux of water from the foreshore waste into
	the Cork Harbour. The flux was estimated based on a difference in tidal water levels
	within the waste of the foreshore of 0.5m depth. Following calculated dilution by Cork
	Harbour waters the predicted concentrations were added to those that were predicted
	during the completion of the DQRA (WYG, 2013) for the same permeability as the
	proposed perimeter engineered structure and with reduced infiltration to account for a
	low permeable capping layer. As the cumulative predicted concentrations did not exceed
	the applicable WQSs, significant risks of pollution to Cork Harbour waters have not been
	during the completion of the DQRA (WYG, 2013) for the same permeability as the proposed perimeter engineered structure and with reduced infiltration to account for a low permeable capping layer. As the cumulative predicted concentrations did not exceed

Г

	identified (WYG, 2013).
Conclusions	This conservative assessment has not identified significant risks to human health or Cork
	Harbour waters considered in a post remediation context for waste in the foreshore area
	of the East Tip. Trace levels of asbestos have been identified in waste material, however
	the current proposed remedial solution incorporating the construction of a perimeter
	engineered structure faced with rock armour allied with the fact that there is limited
	potential for dust generation or asbestos fibre release from waste material in the
	foreshore environment given that it is in a constant state of saturation will effectively
	mitigate any risk by breaking the human health pathways. Furthermore access to the
	foreshore will not be facilitated as part of the future proposal for a park on the East Tip.
	The conservative leachability analysis results were compared to relevant WQSs to
	consider risks to Cork Harbour water and have identified leachable chromium VI, copper,
	manganese and mercury. However their concentrations are not considered to be
	sufficiently high enough to cause a WQS to be exceeded even when considered
	cumulatively in the context of predicted potential groundwater contaminant discharge
	from the main East Tip waste in Cork Harbour following remediation. This is further
	supported by the results of marine water sampling and analysis which did not identify
	contaminant concentrations in excess of relevant WQSs (WYG, 2013).

_

Contents

1		Introduction	7
	1.1	Instruction	
	1.2	Legal Context and Assessment Framework	
	1.3	Limitations of the Report	
	1.4	Aims and Objectives	
	1.5	Initial Conceptual Site Model	10
	1.6	Report Content	10
2		Foreshore Site Investigation	11
	2.1	Ground Conditions	11
	2.2	Potential Contaminants of Concern	
	2.3	Methodology Assessment Criteria	13
	2.4	Analysis Results – Foreshore Solid Waste Quality	16
	2.5	Solid Leachability Analysis Results – Foreshore Waste	17
3		Generic Quantitative Risk Assessment (GQRA)	20
	3.1	Human Health GQRA	
	3.2	Generic Waters Assessment	21
	3.3	Updated Conceptual Model (Post Generic)	
	3.4	Water and Ecology	23
4		Water DQRA Context	25
	4.1	Flux modelling	25
5		Conclusions	

Tables

10
10
12
15
17
18
22
23
25
27
28

Figures

Figure 1	Site Location	Plan
----------	---------------	------

- Figure 2 Aerial Photograph
- Figure 3 Foreshore Trial Pit Location Plan

Appendices

- Appendix A WYG Report Conditions
- Appendix B Trial Pit Logs
- Appendix C Proposed Perimeter Engineered Structure
- Appendix D Human Health Generic Assessment Criteria (GAC)
- Appendix E Waste Solid Analysis Results
- Appendix F Leachability Analysis Results
- Appendix G Asbestos Analysis Results
- Appendix H Laboratory Certificates

1 Introduction

1.1 Instruction

WYG Environment, Transport and Planning (WYG EPT) were appointed by Cork County Council (CCC) on 27th January 2012, for the provision of multi-disciplinary environmental consultancy services for the site investigation and Detailed Quantitative Risk Assessment (DQRA) of the East Tip, on Haulbowline Island in Cork Harbour, (Figure 1 and Figure 2). This project relates to geo-environmental services required under Phase IV of the Council's regularisation programme of the waste in the East Tip (<u>http://www.corkcoco.ie/haulbowline</u>) which involved the completion of intrusive site investigations and a Detailed Quantitative Risk Assessment (DQRA) (WYG, 2013).

WYG were further instructed to assess the contamination potential and potential risks to receptors from the waste which is currently present a outside the line of the proposed Perimeter Engineered Structure (PES) and determine whether it can remain in-situ post remediation. The findings of that assessment is contained in this addendum.

1.2 Legal Context and Assessment Framework

The European Court of Justice ruling in case C494/01 requires that the East Tip is regularised in accordance with the Waste Framework Directive (WFD) (licensing requirements) and in particular an application will be made to the Environmental Protection Agency (EPA) for a waste licence.

The Environmental Risk Assessment for the East Tip, including site investigations and monitoring, completion of DQRA and design of an appropriate outline remediation plan, are required to support this waste licensing process. The work, as presented in this report, has been completed in accordance with best practice guidance documents including "Framework Approach for the Management of Contaminated Land and Groundwater at EPA Licensed Facilities" (EPA, 2012); the "Code of Practice: Environmental Risk Assessment for Unregulated Disposal Sites" (EPA, 2007) and the "Model Procedures for the Management of Land Contamination – Contaminated Land Report" (EA, 2004). This latter piece of guidance is specifically relevant to land contamination in the United Kingdom (UK), however it is relevant as the EPA's framework has been broadly based on it.

The framework approach identifies three stages as outlined below:

- Stage 1 Site Investigation and Assessment including
 - o Preliminary Site Assessment
 - o Detailed Site Investigation
 - o Quantitative Risk Assessment
- Stage 2 Corrective Action Feasibility and Design
 - o Outline Corrective Action Strategy (Objectives)
 - o Feasibility study and outline design
 - o Detailed design
 - o Final Strategy and implementation plan
- Stage 3 Corrective Action Implementation and Aftercare
 - o Enabling works
 - o Corrective Action Implementation and Verification
 - o Aftercare

This assessment presented in this report presents the results of a trial pit site investigation in the foreshore area of the East Tip and quantitative risk assessment in accordance with Stage 1 above.

The risk assessment process is underpinned by the establishment and continual refinement of a Conceptual Site Model (CSM). A CSM describes the potential sources of contamination at a site, the contaminant migration pathways it may follow and the receptors that could be or are being impacted. When all three are present i.e. source, pathway and receptor, then a potential pollutant linkage is considered to be present, requiring characterisation and assessment in order to determine whether remedial works are needed to adequately address any potentially unacceptable risks.

1.3 Limitations of the Report

Attention is drawn to the report conditions, included in Appendix A. It should be noted that WYG has undertaken this risk assessment using the results of the analysis of samples collected by RPS who undertook the investigation.

1.4 Aims and Objectives

The overall aim of the work completed at the East Tip and this report is to present the results of an assessment of the significance of the risks to human and the environment receptors, in order to assist in identifying risks which may require mitigation as part of the waste licensing process.

Specifically, this report aims to provide a Generic Quantitative Risk Assessment for the East Tip foreshore using relevant data gathered during a trial pit investigation on the foreshore to characterise the contamination associated with this waste material and determine whether it would be capable of causing significant risks to the health of site users, Cork Harbour waters and ecology.

The scope of work included:

- Providing data to characterise the chemical and physical nature of waste material in the foreshore area;
- Providing a detailed interpretation of testing results from the 2013 foreshore trial pit investigation in respect to sources, pathways and receptors;
- Assessment of contaminants of concern to assess their significance through comparison of chemical analysis results (solid and leachability analysis) with relevant standards and thresholds;
- Development and presentation of a revised conceptual site model; and
- Providing recommendations for managing any unacceptable risks identified.

It should be noted that the term "waste" utilised within this report refers to non-natural materials which have been deposited in the East Tip above alluvium or natural sediments. Any use of the term "soil" within this report refers to natural materials, soils or sediments, including alluvium, sands, silts, clays and gravel.

1.5 Initial Conceptual Site Model

In regard to the foreshore area, waste was observed to be present on the surface of the foreshore and for the purposes of the DQRA it was assumed to extend below the surface with an unknown lateral and vertical extent. For the purposes of the foreshore investigation undertaken by RPS the following initial conceptual model (Table 1 and Table 2) was developed based on the results of the East Tip DQRA (WYG, 2013).

Table 1 - Initial Conceptual Site Model – Water

Source	Pathway Receptor	
	Leaching from unsaturated zone	Cork Harbour waters
Heavy metallic contamination / organic contamination associated	Leaching within tidal zone through wetting and drying	Cork Harbour waters
with waste material on and below the surface of the East Tip foreshore.	Lateral and vertical water movement	Cork Harbour waters
	Uptake by flora and fauna	Flora and fauna in Cork Harbour particularly on foreshore

Table 2 - Initial Conceptual Site Model – Human Health

Source	Pathway	Receptor
Shallow metal, organic and asbestos contamination associated with waste material on and below the surface of the East Tip foreshore.	Direct dermal contact Ingestion dust and soil Inhalation of dust/fibres	Current & future site users

1.6 Report Content

This report sets forth the findings of this study in the following chapters:

- Chapter 2 Foreshore Site Investigation
- Chapter 3 Generic Quantitative Risk Assessment (GQRA) for human health and waters
- Chapter 4 Water DQRA Context
- Chapter 5 Conclusions

2 Foreshore Site Investigation

A foreshore intrusive trial pit site investigation was completed between 14th January 2013 to 16th January 2013 to provide information on the type and extent of waste present in the area of the foreshore and allow collection of samples for subsequent laboratory chemical analysis for contamination characterisation and assessment purposes.

The intrusive investigation undertaken by RPS included the excavation of 29 No. trial pits at low tide. Trial pits were spaced at lateral 20-50m intervals along the foreshore surrounding the East Tip and were typically excavated to a depth of 2-3 mbgl. The maximum depth was 4.5mbgl. It is considered that this trial pit investigation is sufficiently dense to allow for broad characterisation of the waste along with identification and sampling of waste with the greatest contamination potential. A trial pit location plan is presented as Figure 3 and trial pit investigation logs with recorded observed ground conditions presented in Appendix B.

All site investigation works were supervised on a full time basis by a suitably qualified Environmental Consultant who logged the observed ground conditions in accordance with Eurocode 7. This person also supervised the main East Tip site investigation (WYG, 2013) and therefore provides consistency between the two investigations. Waste types were defined in accordance with the procedures used in previous investigations of the East Tip. Solid waste samples were obtained for subsequent laboratory chemical and leachability testing.

2.1 Ground Conditions

During the excavation of the trial pits and as summarised in Table 3, waste was observed in the foreshore area to an average depth of 1.5m and a maximum depth of 4.5m at FTP21. The waste typically comprised of granular slag with inclusions of metal pieces and refractory bricks and was consistent with the waste observed during the main East Tip investigation (WYG, 2013). Near surface waste in approximately half the trial pit locations was either consolidated, fused or comprised of coarse slag cobbles and boulders. At 10 No. out of the 29 No. trial pits other waste types were observed, however typically these were not observed to be near the ground surface of the foreshore. For example at FTP13 abundant construction and demolition waste mixed with slag was observed underlying consolidated slag at 1.5-2.1mbgl, similarly at FTP21 from 1.8-4.5mbgl and at FTP24 from 0.8-2.7mbgl. There were a few locations where other waste types were present near the ground surface including FTP17 and FTP18 comprising of slag mixed with construction and demolition waste, however this is not typical with the near surface deposits predominantly comprising of granular slag with inclusion of refractory brick and metal pieces.

Foreshore Area			
Stratum Title	Strata Description	Thickness Range (m)	Average / Median (m)
Waste	Comprised predominantly slag (granular) with metal pieces and refractory bricks and to a lesser extent construction and demolition type waste	0.1-4.5m	1.44 / 1.5
Alluvium	Grey silt	Not proven	N/A

Table 3 - Summary of Ground Conditions Encountered During 2012 Site Investigation in Foreshore Area

2.2 Potential Contaminants of Concern

To identify contaminants of concern in respect of waste present within the foreshore area, reference has been made to the contaminants of concern included within the East Tip DQRA report (WYG, 2013), particularly those that have been measured at concentrations in excess of human health Generic Assessment Criteria (GACs) and Water Quality Standard (WQSs). Based on the trial pit log information, the waste within the foreshore area is typically comprised of the same material within the main body of the East Tip, mainly slag and to a lesser extent construction and demolition waste. The DQRA considered that the contaminants of concern were predominantly metals including chromium and chromium VI, copper, zinc, lead, manganese, nickel and mercury. Consequently the following contaminants of concern have been identified:

Solid waste;

- Metals including arsenic, cadmium, lead, mercury, nickel, zinc, manganese and vanadium. However for the purposes of this assessment chromium (total), hexavalent chromium (or chromium VI) will also be considered to be a contaminant of concern along with other heavy metals even though the measured concentrations were less that the applicable GACs.
- Organic compounds including benzo(a)pyrene. However additionally, other organic compounds including: phenols total and speciated, mineral oil, speciated total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, xylene (BTEX), methyl tertiary butly ether (MTBE), polyaromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) have also been considered to be contaminants of concern where visual or olfactory evidence of hydrocarbon contamination was observed during the intrusive investigations; and
- Inorganics including asbestos.

Groundwater, surface water and leachate from leachability tests;

Metals including arsenic, cadmium, chromium (total), hexavalent chromium (or chromium VI), copper, zinc, lead, manganese, mercury and nickel as the predominant contaminants which have been measured in excess of WQSs either in groundwater or in leachate from leachability tests.

2.3 Methodology Assessment Criteria

For a risk of harm to human health or the environment to occur as a result of ground contamination, all of the following elements must be present:

- A source, i.e. a substance that is capable of causing pollution or harm;
- A receptor (or target), i.e. something which could be adversely affected by the contaminant; and
- A pathway, i.e. a route by which the contaminant can reach the receptor.

If one of these elements is missing there can be no risk. If all are present then the magnitude of the risk is a function of the magnitude and mobility of the source, the sensitivity of the receptor and the nature of the migration pathway.

In order to assess the human health and environmental risks posed by potential contaminants within the waste material and underlying groundwater an initial screen of the laboratory results was undertaken using Generic Assessment Criteria (GACs). GACs are generic screening values used for comparison purposes to assess the risk associated with contaminant concentrations found on site and are derived using non-site-specific information. Where contaminant concentrations fall below relevant GACs, they are not considered to be capable of causing a risk to the receptor being considered and as a result do not warrant further consideration.

2.3.1 Human Health – Chemical Analysis of Solid Samples

In order to assess the solid laboratory analyses results for waste material observed in the foreshore area, WYG have utilised the same human health receptor GACs as outlined in the DQRA report (WYG, 2013) which comply with current Irish Framework Guidance (EPA, 2012). These include appropriate commercially available GACs which are regularly used in Ireland and the UK for generic human health risk assessments. GACs are contaminant specific and have been derived for various land use types including commercial / industrial, low density and high density housing and park / playgrounds and allotments.

The foreshore area, post remediation, will not be utilised for recreational purposes as for the main East Tip. Access routes will not be provided onto the foreshore. The 'Priests Stairs' (Section 15.33 of the EIS; RPS, 2013) currently located in the seawall adjacent to the south western corner of the East Tip will be removed during the remediation and the foreshore will almost entirely be covered with the proposed perimeter engineered structure including rock armour as shown in drawings in Appendix C. Pathways along the edge of the East Tip and foreshore are avoided in the Landscape Design Plan to prevent access the foreshore area which not only reduces impacts to wildlife but avoids potential impacts from a health and safety aspect with respect to the public from accessing water and the foreshore areas (Section 4.6.1.1 of the EIS; RPS, 2013)

Consequently the GACs relevant to assessing contamination within the foreshore area are the commercial and industrial land use GACs, which have been recently derived in the UK by the Chartered Institute of Environmental Health (CIEH) and the Land Quality Management Team at the University of Nottingham. These were developed through collaboration of a number of UK contaminated land specialist practitioners and published jointly by CLAIRE and CIEH, (CIEH, 2009). These screening criteria can be considered to be appropriate in assessing risks to the health of users of the site. They assume that buildings are present, normally for office use on site and that indoor pathways are therefore applicable. Outdoor contact pathways are restricted to lunchtimes or break times. These lower exposure durations are still considered to be conservative when considering should persons access the foreshore area, they can only be present in this area for a limited time during low tides.

A full list of the GACs is provided in Appendix D. Solid sampling laboratory analysis results compared to relevant GACs are presented in Appendix E.

2.3.2 Methods for Water Assessment

The analytical data from solid leachability tests (National Rivers Authority (NRA) leachability tests) has been assessed by direct comparison with water quality standards (WQS) as presented in Table 4. Where a specific Irish Surface Water Standard is not available, then other standards such as drinking water standards (Irish standards if available) or environmental quality standards (EQS) from the UK were utilised. These are mainly national statutory standards sourced from, in order of preference, European Communities Environmental Objectives (Surface Waters) Regulations 2009 (Annual Average) for surface waters other than inland waters e.g. coastal and transitional waters; European Communities Environmental Objectives (Surface Waters) Regulations 2009 (Annual Average) for inland surface waters; and other international water quality standards namely UK Environmental Quality Standards (EQS) and UK Drinking Water Standards (DWS). These are used as screening standards in the first instance to determine which of the potential contaminants of concern (PCOC) should be further assessed for significance of the risk posed.

In order to assess COCs, compliance point standards are required which should be appropriate for the receptor being considered. For the East Tip site, the Cork Harbour waters are considered to be the primary receptor. As a result the preferred quality standards adopted are those as in Table 4 and are WQS values for "other surface waters".

Contaminant	Water Quality Standard (WQS) (µg/I)
Arsenic	20
Chromium III	4.6 (inland water – no other surface water)
Chromium VI	0.6
Copper	5
Zinc	40
Lead	7.2
Nickel	20
Phenol	8
Mercury	0.05
Cadmium	0.2
Total Ammonia (mg/l N/l)(good status)	60
Ammoniacal Nitrogen (by calculation from ammonia)	50
Benzene	8
Xylene	10
Toluene	10
Anthracene	0.1
Benzo(a)pyrene	0.05
Benzo(b & k)fluoranthene (sum)	0.03
Benzo(g,h,i)perylene & indeno (1,23-cd)pyrene (sum)	0.02
Fluoranthene	0.1
Naphthalene	1.2

Table 4 - Water Quality Standards from European Communities Environmental Objectives (Surface Waters)
Regulations 2009 (Annual Average) (DoEHLG, 2009)

Other standards:

Aluminium – Drinking Water Standard – 0.2mg/I Water Soluble Boron – UK Marine Water EQS - 7mg/I Manganese – UK freshwater EQS – 0.03mg/I

NRA leachability test results in summary screening sheets are presented in Appendix F. These sheets summarise the laboratory analysis results and compare them to a contaminant specific GAC (appropriate water quality standard), with concentrations in excess of WQS highlighted.

2.4 Analysis Results – Foreshore Solid Waste Quality

2.4.1 Asbestos Tests on the Solid Matrix

In total 4 No. samples were analysed by IOM Consulting Laboratory to identify asbestos fibres. Out of the 4 No. samples submitted for analysis, all tested positive for asbestos. 2 No. comprised of bound chrysotile fibres, 1 No. of bound amosite and 1 No. of loose amosite fibres. However quantification analysis has shown that asbestos is present in very low quantities in the 0.003%-0.01% range. Further examination of the fibres by the laboratory has identified that the asbestos fibres had not been subjected to heat treatment and as a result are not considered to originate from the slag or raw scrap metal that was used by the steelworks. The laboratory results are presented in Appendix G.

2.4.2 Chemical Analysis Results – Foreshore Solid Waste Quality

In undertaking this assessment, to consider solid waste quality as present in the foreshore area, data for samples collected from the 2013 trial pit investigation were compared to the commercial GACs as presented in Appendix E, with summary data for contaminants with concentrations that exceed the GAC in Table 5. The analysed samples all comprised of waste slag typically with scrap metal and refractory bricks. Other waste types including construction and demolition type waste, cables and batteries were also encountered and analysed.

The selection of samples for analysis was determined based on a review of the trial pit investigation logs in light of the DQRA investigation and assessment findings and was as follows;

- Samples from FTP2 0-0.2mbgl, FTP6 0.6-1mbgl and FTP10 0.1-0.4mbgl were selected as "slag samples" being representative of the predominant waste type of the East Tip and foreshore area, based on investigation logs and the DQRA report (WYG, 2013). Shallow samples from FTP2 and FTP10 were also selected for analysis to provide data on surface or near surface likely contaminant concentrations;
- Samples from FTP17 1.7-1.9mbgl, FTP19 1.2-1.5mbgl, FTP21 2-2.5 and FTP26 2.2-2.5 were selected as samples with the greatest potential to contain the highest contaminant concentrations, due to inclusions of other waste types including construction and demolition waste, metal pieces, bricks, cables, plastic and batteries and as considered in the DQRA report (WYG, 2013). Samples were also selected for analysis due to visual and olfactory evidence of contamination noted on the site investigation logs specifically hydrocarbon odours in FTP17 1.7-1.9mbgl and FTP19 1.2-1.5mbgl and black staining observed in FTP17 at 1.7-1.9mbgl.

		Maximum	aximum No. of Samples		mmercial Land Us	se GAC
Contaminant	No. of Samples	Conc. (mg/kg)	below Detection Limit	GAC (mg/kg)	No. of Samples Exceeding GAC	Location and Depth (mbgl)
Nickel	7	2160	0	4,640	1	FTP26 2.2- 2.5mbgl

Table 5 - Summary Analysis Results from Solid Samples in 2013 where Concentrations of Contaminants of Concern exceed GACs

Heavy Metals

The waste samples were analysed for a number of metal contaminants in accordance with testing undertaken previously on East Tip materials. Concentrations of heavy metals, including chromium and chromium VI were not measured in excess of the commercial land use GACs (Appendix E). Consequently they are not considered to be capable of causing significant risks to human health.

This is with the exception of one measured nickel concentration 5,770mg/kg, out of 7 No. analysed, which exceeded the commercial land use GAC of 1,800mg/kg (Table 5). This was in the sample obtained from FTP26 at 2.2-2.5mbgl which comprised of slag with frequent metal pieces, cable and a battery. It is considered that the battery at this location is a potential source of the elevated and isolated nickel concentration.

Organic Compounds

The waste samples were analysed for a number of organic parameters which included speciated polyaromatic hydrocarbons (PAHs), phenol, speciated total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylene (BTEX), volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). Comparison with commercial land use GACs did not identify measured concentrations in excess of the GAC and consequently they are not considered to be capable of causing significant risks to human health.

2.5 Solid Leachability Analysis Results – Foreshore Waste

Leachability testing was undertaken using NRA leachability tests in order to determine the potential for contaminants to leach from the waste to water and pose a risk to Cork Harbour waters. It should be noted that the use of NRA leachability tests provides a very conservative assessment due to its procedure of grinding down the sample. This increases the sample's specific surface which will be in contact with pore water thus increasing the potential for contaminants to leach versus reality which is that leachable metal concentration will only be generated through available fused and coarse slag surface area in contact with seawater. Haulbowline Island is also in a relatively low energy setting and would not be subject to the same grinding wave action that is present at other coastal locations.

The NRA contaminant leachability data were compared to respective Water Quality Standards (WQS) for each of the potential contaminants of concern (COCs) and the results for those COCs which exceed applicable WQS are presented in Table 6. The leachability test results for all samples tested as compared to relevant WQSs are presented in Appendix F.

Contaminant	Water Quality Standard (WQS) (µg/l)	Total No. of Samples	Range (µg/l)	No. Samples Exceeding WQS	WQS Exceedance Locations and Depth (mbgl)
Chromium VI	0.6	7	2-3	7	FTP2 (0-0.2), FTP6 (0.6-1.0), FTP10 (0.1- 0.4), FTP17 (1.7-1.9), FTP 19 (1.2-1.5), FTP21 (2-2.5), FTP26 (2.2-2.5)
Copper	5	7	<3-66	1	FTP2 (0-0.2)
Manganese	30	7	<1.5-54.3	1	FTP17 (1.7-1.9)
Mercury	0.05	7	0.02-0.11	2	FTP 19 (1.2-1.5), FTP21 (2-2.5)

Table 6 - Summary Foreshore Waste	e Leachability Test Analysis Results 2013
-----------------------------------	---

The leachable concentrations of metals including arsenic, barium, beryllium, boron, cadmium, chromium, lead, nickel, selenium, vanadium and zinc were measured at concentrations below the relevant WQSs and are therefore not of concern in respect to their potential to leach from solid to liquid phase.

Leachable concentrations of chromium VI, copper, manganese and mercury exceeded the relevant WQS. The greatest number of exceedances was observed in respect of chromium VI which exceeded the applicable WQS of $0.6\mu g/I$, with leachable concentrations ranging from 2- $3\mu g/I$ which is just at the laboratory limit of detection of $2\mu g/I$. These leachable concentrations are considered to be very small being only just detectable. It has been noted that the laboratory limit detection $2\mu g/I$ is above the WQS, however this was the lowest detection limit being achieved by commercial laboratories in Ireland and the UK.

One leachable copper concentration of 66µg/l exceeded the WQS of 5µg/l in a sample from FTP2 at 0-0.2mbgl comprised of slag with metal debris. All other measured concentrations of copper were less than the laboratory detection limit of 3µg/l. The solid analysis result for copper at this location was 1,344mg/kg and does not appear to be elevated by comparison to the other copper results which ranged from 308mg/kg to 1,675mg/kg and for which leachability analysis did not identify leachable concentrations above laboratory detection limits. To consider the potential source of this leachable copper, reference has been made to the trial pit logs. The trial pit log entry for this sample does not identify material that is significantly different from the other sampled locations that could give rise to higher leachable concentrations. Consequently the leachable copper concentration of 66 µg/l is not considered to be representative of the entire slag waste in the foreshore area further supported by the fact that other samples measured leachable copper concentrations at less than laboratory detection limits.

One sample had a leachable manganese concentration of 54.3 μ g/l which exceeded the WQS of 30 μ g/l. This sample was from FTP17 at 1.7-1.9mbgl and comprised of slag with occasional construction and demolition type waste. All other leachable manganese concentrations were measured at less than the laboratory detection limit of 1.5 μ g/l. The solid analysis result for manganese at this location was 12,310mg/kg and does not appear to be significantly elevated by comparison to the other manganese analysis results which ranged from 10,520mg/kg to 28,460mg/kg and for which leachability analysis did not identify leachable concentrations above laboratory detection limits.

Two samples assessed for leachable mercury had measured concentrations in excess of the WQS of 0.05 μ g/l with concentrations of 0.06 μ g/l marginally above the WQS measured at FTP19 1.2-1.5mbgl and 0.11 μ g/l measured in the sample from FTP21 at 2-2.5mbgl. The solid mercury analysis results for these two samples measured mercury concentrations at less than laboratory detection limits of 0.5mg/kg.

3 Generic Quantitative Risk Assessment (GQRA)

3.1 Human Health GQRA

The results of the chemical laboratory analysis of the samples collected from waste present on the foreshore area of the East Tip were assessed against GACs for a commercial landuse. In regards to human health and GACs, where contamination is present with concentrations that exceed GAC at depths greater than 1m, the probability of human exposure via the direct contact pathways is significantly reduced, leaving inhalation of volatile compounds as the dominant pathway with regard to human health risks. Typically, volatile compounds only significantly affect the indoor inhalation pathway.

The results of the comparison of the measured concentrations of the Contaminants of Concern, with the exception of nickel has not identified contaminant concentrations in excess of relevant Human Health GACs for waste material in the foreshore area.

Table 6 shows that a measured nickel concentration from FTP26 at 2.2-2.5mbgl was in excess of the commercial land use GAC, the source of which is considered to be due to a buried battery. Nickel is not a volatile contaminant and therefore human health exposure can only occur through direct contact, ingestion and inhalation of dust pathways. However these pathways are not viable for contaminants at depths greater than 1mbgl. As a result this nickel concentration is not considered to be capable of causing significant risks to the health of current or future site users.

In considering the above it should also be noted that post remediation, the foreshore area will be almost entirely covered by the proposed perimeter engineered structure which effectively will remove any direct contact human health exposure pathways. Exposure through dust generation pathways will also be highly unlikely due to the damp nature of the waste material which is in the tidal zone, is constantly wet and is mostly submerged by seawater. Access to the foreshore will also not be provided post remediation and will be limited by the proposed perimeter engineered structure and rock armour.

Consequently potential significant risks to human health from contaminant concentrations in waste in the foreshore area have not been identified.

3.2 Generic Waters Assessment

Section 2.5 described the leachability analysis results with respect to locations where contaminant concentrations were measured in excess of applicable WQSs. The laboratory analysis results compared to relevant WQSs are presented in Appendix F. Laboratory certificates are included in Appendix H.

In all samples analysed concentrations of chromium VI ranging from 2-3µg/l were in excess of the WQS of 0.6µg/l. However this does not consider the dilution factor offered by Cork Harbour waters, that sampling and analysis of the Cork Harbour waters has not measured contaminant concentrations in excess of applicable WQSs including chromium and chromium VI (WYG, 2013) and the fact that the NRA leachability analysis test is conservative as noted in Section 2.5. It should also be noted that the leachable concentrations appear to be lower than those actually measured and reported in the DQRA report (WYG, 2013) where a maximum leachable concentration of 457µg/l was measured.

One copper and one manganese sample had a leachable concentration that was measured in excess of their respective WQS. These are considered to be isolated occurrences and as a result do not represent the leachable potential of all the waste within the foreshore area. This is further supported by the median contaminant concentrations of $<3\mu g/l$ copper and $<1.5\mu g/l$ manganese being less than laboratory detection limits, less than their respective WQSs of $5\mu g/l$ and $30\mu g/l$ and the fact that analysis of the Cork Harbour waters has not measured contaminant concentrations in excess of applicable WQSs (WYG, 2013). The DQRA report (WYG, 2013) also measured leachable copper in excess of the WQS in 44% of waste samples analysed with a maximum of 266 $\mu g/l$ and as a result this concentration is within the range of that measured during the main East Tip site investigation.

Two leachable mercury concentrations were in excess of the WQS, however they are considered to be marginal being less than an order of magnitude above. As for copper and manganese the median value of 0.04µg/l does not exceed the WQS and analysis of the Cork Harbour waters has not measured contaminant concentrations in excess of applicable WQSs (WYG, 2013). Consequently leachable mercury is not considered to pose a risk of pollution to Cork Harbour waters.

3.3 Updated Conceptual Model (Post Generic)

3.3.1 Human Health

On the basis of comparison of solid analysis results with appropriate GACs and consideration of leachability analysis results, significant pollutant linkages have typically not been identified in regard to waste in the foreshore area of the East Tip as shown in Table 7 which is presented for the site in its current condition without remediation.

3.3.2 Sources

Only one nickel concentration exceeded the applicable commercial land use GACs out of 7 No. analysed. However this was not encountered in near surface material (<1mbgl) and as a result is at a depth where human contact is not possible (i.e. a potential pollutant pathway does not exist) and therefore it is not considered to be capable of causing significant human health risks. All other contaminant concentrations were less than the commercial GACs.

Asbestos

All samples screened were identified as containing very low quantities of asbestos fibres, typically 0.003%-0.01% comprising of the lower risk chrysotile and also amosite. Further examination identified that the asbestos fibres had not been subjected to a heat treatment and as a result are not considered to originate from the slag or raw scrap metal that was used by the steelworks. It is considered that the most likely source is construction and demolition type waste deposited both at depth and present at the surface. More detailed results are presented in Appendix G. Asbestos is considered to have the potential to cause risks to the health of current and future site users through inhalation pathways however the risks are minimised as the waste is within the tidal area and is always wet reducing the potential for fibre release to air.

Table 7 – Updated Foreshore Conceptual Site Model – Human Health Under Current Site Conditions

Source	Pathway	Receptor
Asbestos in waste material	Inhalation of fibres	Current commercial users, future park users and construction workers

3.4 Water and Ecology

On the basis of comparison of solid and leachability analysis results with appropriate GACs, a number of pollutant linkages have been identified in respect of potential contaminants in pore water in the foreshore area, which are summarised in Table 8.

3.4.1 Sources

Leachable concentrations of chromium VI and to a lesser extent copper, manganese and mercury have been measured above applicable WQSs. Elevated concentrations of these contaminants have also been identified in groundwater sampled from the waste material within the larger East Tip and therefore at the generic stage pollutant linkages are considered to be present with respect to leaching to water and will be considered further in respect of their potential to pollute Cork Harbour waters in Section 4.

Table 8 - Updated Conceptual Site Model –Water and Ecology

Source	Pathway	Receptor
	Leaching from unsaturated zone	Cork Harbour waters
	Leaching within tidal zone through wetting and drying	Cork Harbour waters
Leachable chromium VI, copper,	Lateral and vertical water migration waste	Cork Harbour waters
manganese and mercury in waste	Uptake by flora and fauna	Flora and fauna in Cork Harbour particularly on foreshore
	Erosion and leaching	Cork harbour waters and flora and fauna in Cork Harbour particularly on foreshore

3.4.2 Pathways

Based on the results of the DQRA (WYG, 2013) and foreshore trial pit investigation, the following pathways have been identified with respect to water receptors:

- Leaching of mobile compounds through rainwater infiltration in the unsaturated zone, i.e. leaching of
 materials from slag waste and other waste (construction and demolition) in the foreshore area. It should
 be noted that this pathway is considered to be limited as an unsaturated zone will only be present during
 low tide and is considered to be of a shallow depth. The majority of the waste material in the foreshore
 area is submerged even at low tide;
- Leaching of compounds within tidally influenced waste material and saturated waste materials from tidal flows i.e. leaching of materials from slag material to Cork Harbour waters; and
- Vertical and lateral contaminant migration in porewater in waste.

However it should be noted that as identified in the DQRA report (WYG, 2013), sampling of the harbour waters has not identified contaminant concentrations in excess of relevant WQSs for all measured contaminants showing that the actual pollutant linkages are not present and the Harbour Waters are not being significantly impacts by elevated contaminant concentrations in waste in the foreshore area or from waste within the larger East Tip.

3.4.3 Receptors

The primary receptor in regard to water is considered to be Cork Harbour. In considering this as the primary receptor it is also considered to be protective of ecology, flora and fauna in the Cork Harbour.

4 Water DQRA Context

The DQRA report (WYG, 2013) presented the results of a conservative bespoke assessment (Mass Transport model) of theoretical impact to the Cork Harbour waters, specifically from dissolved phase contaminants within the saturated parts of the entire East Tip site. This approach determined a conservative estimate of the mass of dissolved phase contaminant flux potentially leaving the site as part of the local tidal regime.

There were two key component parts to the Mass Transport model. The first was a flux model which quantified the volume of water flux from the site and the second was a dilution model based on the calculation and application of dilution factors which were applied to representative concentrations of identified contaminants in the groundwater being discharged into the receptor, in this instance, the tidal waters of Cork Harbour. The models considered the site in its current condition.

The foreshore area was included within these calculations as the East Tip waste was assumed to extend to the low tide water mark and consequently the DQRA CSM and Mass Transport model completed are relevant for considering the observed COC concentrations measured during the foreshore trial pit investigation.

4.1 Flux modelling

The flux model was developed to estimate contaminant discharge through the East Tip from each tidal cycle and was based primarily on Darcy's Law using site specific conservative hydraulic gradients, hydraulic conductivities and average contaminant concentrations as presented in Table 9. Table 9 also presents average leachable metal concentrations as measured in samples collected from the foreshore area as part of this investigation.

		East Tip Waste Groundwater	Foreshore Waste Leachability			
Determinant	WQS (µg/l)	Average Concentration (µg/l)	Average Concentration (µg/l)	Minimum (µg/l)	Maximum (µg/l)	
Chromium VI	0.6	22	2	2	3	
Chromium	4.6	11	0.5	<0.2	2.3	
Copper	5	12	12	<3	66	
Zinc	40	9	1.5	<1.5	<1.5	
Lead	7.2	2.4	0.5	<0.4	1	
Manganese	30	535	9	<1.5	54.3	
Nickel	20	6.4	0.9	<0.2	4.8	
Mercury	0.05	0.2	0.05	0.02	0.11	

Table 9 – Contaminants of Concern	(COC_{s})	
	(UUUS)	

Note: LOD values have been used in the calculation of averages where concentrations were measured as less than the LOD.

As can be seen from Table 9, the averages and maximum measured leachable metal concentrations were less than the groundwater concentrations measured in the waste material of the East Tip, with the exception of copper where a single sample had a leachate concentration of 66ug/l as identified in Section 2.5.

To consider whether the above average leachable concentrations would cause a WQS to be exceeded after discharge into the Cork Harbour, as per the DQRA (WYG, 2013), flux calculations have been completed.

It has been estimated, from an average of measurements of lateral distance between the perimeter engineered structure and low tide water mark, that approximately 7m of the foreshore will remain outside the perimeter structure. The length of the foreshore is 865m so this equates to an area of 6,055m².

The tidal daily flux takes the difference in observed tidal water levels within the waste of the foreshore of 0.5m depth. It is known that most of the depth of the waste material in the foreshore is always submerged by the Cork Harbour waters with an observed difference in water levels of less than 0.5m on average, i.e. the depth to water level in trial pits at low tide as presented in Appendix B. The tidal daily flux has been conservatively calculated as $6,055m^2 \times 0.5m$ (tidal range in foreshore waste) $\times 0.34$ (porosity) = $1029m^3 \times 2$ cycles per day = $2059m^3$. However, this considers the cross-sectional area of the waste on the foreshore as a rectangle when it is more akin to a triangle and in doing so over estimates the flux by a potential order of 2. This has been used to calculate the dilution factors as in Table 10 which have then been applied to the average leachable concentrations from Table 9.

The DQRA dilution model (WYG, 2013) described a process whereby the daily mixing of a given volume of water (defined by the flux model) containing a given concentration of a particular contaminant is diluted by varying volumes of water in the receptor representing increasing distances away from the site within the wider harbour. Similarly the dilution factors for flux calculated above were determined using the same method as the DQRA report, (WYG, 2013) by applying a series of arbitrary radial 'zones' adopted with increasing distance/radii from the site. These were summarised as follows:

- Zone 1: 0-10m (volume of water for dilution 2.65x10⁴m³ per tidal cycle)
- Zone 2: 0-15m (volume of water for dilution 4.0x10⁴m³ per tidal cycle)
- Zone 3: 0-25m (volume of water for dilution 6.79x10⁴m³ per tidal cycle)
- Zone 4: 0- 50m (volume of water for dilution 1.416x10⁵m³ per tidal cycle)
- Zone 5: 0-100m (volume of water for dilution 2.595x10⁵m³ per tidal cycle)

		Average	Predicted Concentrations (µg/l)				
	WQS (µg/l)	Foreshore Waste (µg/I)	Zone 1 (Shoreline perimeter to 10m)	Zone 2 (Shoreline perimeter to 15m)	Zone 3 (Shoreline perimeter to 25m)	Zone 4 (Shoreline perimeter to 50m)	Zone 5 (Shoreline perimeter to 100m)
Dilution Factor			3.89.E-02	2.57.E-02	1.52.E-02	7.27.E-03	3.97.E-03
Chromium VI	0.6	2	0.08	0.05	0.03	0.01	0.01
Chromium	4.6	0.5	0.02	0.01	0.01	0.00	0.00
Copper	5	12	0.47	0.31	0.18	0.09	0.05
Zinc	40	1.5	0.06	0.04	0.02	0.01	0.01
Lead	7.2	0.5	0.02	0.01	0.01	0.00	0.00
Manganese	30	9	0.35	0.23	0.14	0.07	0.04
Nickel	20	0.9	0.04	0.02	0.01	0.01	0.00
Mercury	0.05	0.00	0.00	0.00	0.00	0.00	0.00

Table 10 – Daily Tidal Theoretical Flux Dilution Calculation Outputs
--

Table 10 in consideration of a tidal daily theoretical flux, does not show predicted leachable contaminant concentrations in excess of WQS when dilution factors calculated are applied. However, it does not include the potential cumulative impact from groundwater that will discharge from the main East Tip through the perimeter engineered structure. To consider the potential cumulative impact the above predicted concentrations have been added to the predicted concentrations calculated during the DQRA (WYG, 2013) for a permeability of 1 x 10⁻⁵m/s such as that proposed for the perimeter engineered structure and with 10% infiltration to account for a reduced permeability capping layer. This is presented in Table 11.

As expected, Table 11 does not show cumulative concentrations in Cork Harbour Zone 1 in excess of WQSs following application of daily tidal flux data.

	WQS (µg/l)	Average Foreshore Waste (µg/l)	Tidal Daily Predicted Concentrations from Foreshore Waste in Cork Harbour Zone 1 (Shoreline perimeter to 10m) (μg/l)	Predicted Concentrations from main East Tip (post remediation) in Cork Harbour Zone 1 (Shoreline perimeter to 10m) (μg/l)	Maximum Predicted cumulative concentrations Cork Harbour Zone 1 (Shoreline perimeter to 10m) (µg/l)
Dilution Factor			4.E-02	8.E-4	
Chromium VI	0.6	2	0.08	0.018	0.098
Chromium	4.6	0.5	0.02	0.009	0.029
Copper	5	12	0.47	0.01	0.48
Zinc	40	1.5	0.06	0.008	0.068
Lead	7.2	0.5	0.02	0.002	0.022
Manganese	30	9	0.35	0.449	0.8
Nickel	20	0.9	0.04	0.005	0.045
Mercury	0.05	0.00	0.00	0.00	0.00

Table 11 – Cumulative Concentrations Using Theoretical Tidal Flux	entrations Using Theoretical Tidal Fluxes
---	---

Consequently, Table 11 has indicated that there are no theoretical impacts post remediation to the waters of Cork Harbour from leachable metal concentrations in waste material in the foreshore area, as also supported by the fact that analysis of Cork Harbour waters has not identified concentrations in excess of applicable WQSs (WYG, 2013).

5 Conclusions

The following conclusions have been determined from the preceding sections:

- Results of a foreshore trial pit investigation deemed to be appropriate for the foreshore area providing a lateral density of an investigation location every 20-50m, have been presented through sampling and analysis of the waste material including solid and leachability analysis results for a large suite of COCs. The results are considered to be consistent with that which has been presented in the main East Tip DQRA report (WYG, 2013)
- The approach conducted in this assessment is purposely conservative, which includes the use of average contaminant concentrations likely to be higher than actual averages due to inclusion of laboratory detection limits; and, NRA leachability testing which increases the surface area from which contaminants can leach therefore resulting in higher leachable concentrations compared to actual leaching from massive consolidated slag waste which is found along the foreshore. The assessment assumes instantaneous and complete discharge of foreshore waste water contaminants through flushing whereas in reality discharge is likely to be over a much slower timescale. It also assumes in the calculations of flux that the cross-sectional area of the waste on the foreshore is a rectangle when it is more akin to a triangle and in doing so over estimates the flux by a potential order of two.
- The analytical results were compared to relevant GACs to consider risks to human health and did not identify contaminant concentrations in excess of commercial land use GACs. This is with the exception of one nickel concentration which is at a depth through which persons cannot come into contact, mitigating any potential human health risk. Trace levels of asbestos fibres have also been identified as being present within the waste material. However, in terms of remediation, the installation of rock armour along the majority of the foreshore will break the pathways by preventing end users from coming into contact with waste material in the foreshore area. Additionally this area is constantly wet being washed by the tides which will minimise any dust generation.
- The leachability analysis results from solid foreshore waste samples were compared to relevant WQSs to consider risks to the Cork Harbour including ecology and have identified leachable chromium VI, copper, manganese and mercury. However their concentrations are not considered to be sufficiently high enough to cause a WQS to be exceeded in the Cork Harbour. This is further supported by the results of marine water sampling and analysis completed as part of the DQRA (WYG, 2013) which did not identify contaminant concentrations in excess of relevant WQSs.
- Cumulative impacts have also been considered for potential metal contaminant leaving the main East Tip waste material post remediation through the perimeter engineered structure. The post remediation flux model and dilution model concentrations for metals in harbour waters from the DQRA (WYG, 2013) when added to predicted groundwater concentrations from foreshore waste using leachability test

results have not shown predicted concentrations to exceed applicable WQSs. Consequently significant pollution risks to Cork Harbour waters have not been identified.

• In conclusion, the conservative risk assessment presented in this report has not identified any significant risk to human health or the Cork Harbour waters should the foreshore waste, currently present outside the proposed line of the perimeter engineered structure, remain in situ.

Abbreviations

BH	Borehole
BS	British Standard
CCC.	Cork County Council
CIEH	Chartered Institute of Environmental Health
CIRIA	Construction Industry Research and Information Association
CLAIRE	Contaminated Land Applications in the Real Environment
CLEA	Contaminated Land Exposure Assessment
COC	Contaminants of Concern
Conc.	Concentration
CV-AF	Cold Vapour Atomic Fluorescence
Doehlo	G Department of the Environment, Heritage and Local Government
DQRA	Detailed Quantitative Risk Assessment
EA	Environment Agency
EPA	Environmental Protection Agency
EQS	Environmental Quality Standards
FOC	Fractional Organic Content
GSV	Gas Screening Value
	BS CCC. CIEH CIRIA CLAIRE CLEA COC CORC. CV-AF DOEHLO DOEHLO DQRA EA EA EQS FOC

ICP-MS Inductively Coupled Plasma Mass Spectrometry

ICP-OES Inductively Coupled Plasma Optical Emission Spectrometry

IGVs Interim Guideline Values

Kd Partician Co-efficient

LOD Laboratory Detection Limit

mAOD Metres Above Ordnance Datum

mbgl Metres Below Ground Level

NRA National Rivers Authority

OD Ordnance Datum

PAHs Polycyclic aromatic hydrocarbons

PCBs Polychlorinated biphenyls

- PCOC Preliminary Contaminants of Concern
- PGL Priority Geotechnical Limited
- ppm Parts per Million
- PSD Particle size distribution
- QRA Quantitative Risk Assessment
- RTM Remedial Targets Methodology (developed by the UK's Environment Agency)
- SGV Soil Guideline Values
- SI Site Investigation
- SSTL Site Specific Target Level
- SVOC Semi-Volatile Organic Compounds
- TOC Total Organic Carbon
- TP Trial Pit
- TPH Total Petroleum Hydrocarbons
- UCL Upper Confidence Limit
- UK United Kingdom
- UK EA EQS United Kingdom (UK) Environment Agency (EA) Environmental Quality Standard (EQS).
- US EPA United States Environmental Protection Agency
- VOCs Volatile organic compounds
- WQS Water Quality Standard
- WFD Waste Framework Directive
- WFD Water Framework Directive

GLOSSARY

Aquifer A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water.

Carboniferous The Carboniferous is a geologic period and system that extends from the end of the Devonian period, about 359.2 ± 2.5 Ma (million years ago), to the beginning of the Permian period, about 299.0 ± 0.8 Ma.

Conceptual Site Model A conceptual model represents the characteristics of a site in diagrammatic or written form that shows the possible relationships between contaminants, pathways and receptors (pollutant linkages).

Contaminant a substance that is in, on or under the land and has the potential to cause harm or to cause pollution of the surrounding environment.

Contaminants of concern refer to contaminants which should be considered within future investigations and risk assessments due to the expectation that they are likely to be present in elevated concentrations. and therefore this determination indicates that further consideration should be given with respect to future investigations and risk assessments. It has not yet been determined that they are capable of causing risks to receptors that would require remedial action.

Composite Sampling – the formation of a composite sample which is obtained by blending or mixing two or more individual samples.

Cyanide Cyanide is any chemical compound that contains the cyano group (C≡N), which consists of a carbon atom triple-bonded to a nitrogen atom.

Dataloggers Instruments placed in boreholes that can record frequent measurements of water levels/

Dioxins and Furans 'Dioxins' is a collective term for the category of 75 polychlorinated dibenzo-para-dioxin compounds (PCDDs) and 135 polychlorinated dibenzofuran compounds (PCDFs). Seventeen PCDD and PCDF compounds are likely to be of toxicological significance. The most toxic of these is 2,3,7,8-tetrachlorodibenzo-pdioxin (2,3,7,8-TCDD). The toxicity of each compound depends on the number and position of the chlorine atoms within the molecules.

EPA Environmental Protection Agency. The agency protects the environment through its licensing, enforcement and monitoring activities in Ireland.

EPA EQS AA Environmental Protection Agency Environmental Quality Standard Annual Average. This means that for each representative monitoring point within the water body, the arithmetic mean of the concentrations measured over a 12 month monitoring period does not exceed the standard.

EPA EQS MAC Environmental Protection Agency Environmental Quality Standard Maximum Allowable Concentration. This means for each representative monitoring point within the water body no measured concentration exceeds the standard.

Foreshore Also known as the intertidal zone, the foreshore is the area that is exposed to the air at low tide and submerged at high tide.

Generic Assessment Criteria (GACs) Contaminant concentrations values used for comparison purposes to assess risk associated with contaminant concentrations found on site and are derived using non-site-specific information.

Groundwater Groundwater is water located beneath the ground surface in soil pore spaces and in the fractures of lithologic formations.

Groundwater abstraction is the process of taking water from a ground source, either temporarily or permanently.

Hexavalent Chromium Chromium a transition metal exists in the environment in a number of oxidation states ranging from -2 to +6. The Cr (III) or trivalent state is the most stable form. Cr(VI) hexavalent chromium is the form primarily used in the manufacture of steel. Both forms are present as cations in solution as well as forming several different oxyanions and oxide or hydroxyl compounds. In natural groundwaters, trivalent Cr is the prevalent form as hexavalent Cr is readily reduced to the trivalent form. Hexavalent chromium is considered toxic to human health through the inhalation pathway.

ICP Inductively Coupled Plasma spectrometry is a technique for elemental analysis which is applicable to most elements over a wide range of concentrations.

Leachate A solution resulting from leaching, as of soluble constituents from soil, landfill, etc., by downward percolating ground water.

Millscale Mill scale is a milling waste generated while rolling the metal in metal extrusion industries.

NRA Leachability Tests A laboratory test derived from the UK's Environment Agency Recommended Test (R&D note 301). The leaching fluid used in this method is intended to represent materials coming into contact with acid rain. Leaching is carried out by adding to the required sample weight, a volume of water left overnight to attain carbonate equilibrium (pH \sim 5.6) to give a 10:1 ratio of water to soil. The bottle is tumbled at a rate of ~0.5 revolutions per minute at room temperature for 24 hours. The resultant leachant can then be analysed for any parameters desired.

PAHs Polycyclic aromatic hydrocarbons are chemical compounds that consist of fused aromatic rings and do not contain heteroatoms or carry substituents. They are a group of over 100 different chemicals that are formed during the incomplete burning of coal, oil and gas, garbage, or other organic substances like tobacco

Partician Coefficent (Kd) The Kd parameter is a factor related to the partitioning of a contaminant between the solid and aqueous phases.

Pathway a route or means by which a receptor can be exposed to, or affected by, a contaminant.

PCBs Polychlorinated Biphenyls are a class of organic compounds with 1 to 10 chlorine atoms attached to biphenyl which is a molecule composed of two benzene rings each containing six carbon atoms. The chemical formula for all PCBs is C12H10-xClx.

Phenol Phenol is both a manufactured chemical and a natural substance. It is a toxic, colourless crystalline solid with a sweet tarry odour.

Pollutant linkage The relationship between a contaminant, pathway and receptor.

Receptor is something that could be adversely affected by a contaminant, such as people, an ecological system, property or a water body.

Refractory A refractory is a material that retains its strength at high temperatures.

Seepages where groundwater exits the waste during low tide onto the foreshore.

SGV Soil Guideline Values are a series of measurements and values used by the United Kingdom's Department for Environment, Food and Rural Affairs (DEFRA) to measure contamination of the soil.

Slag Slag is the by-product of smelting ore to purify metals.

Source A substance that is capable of causing harm

TPH Total Petroleum Hydrocarbons is a term used to describe a large family of several hundred chemical compounds that originally come from crude oil.

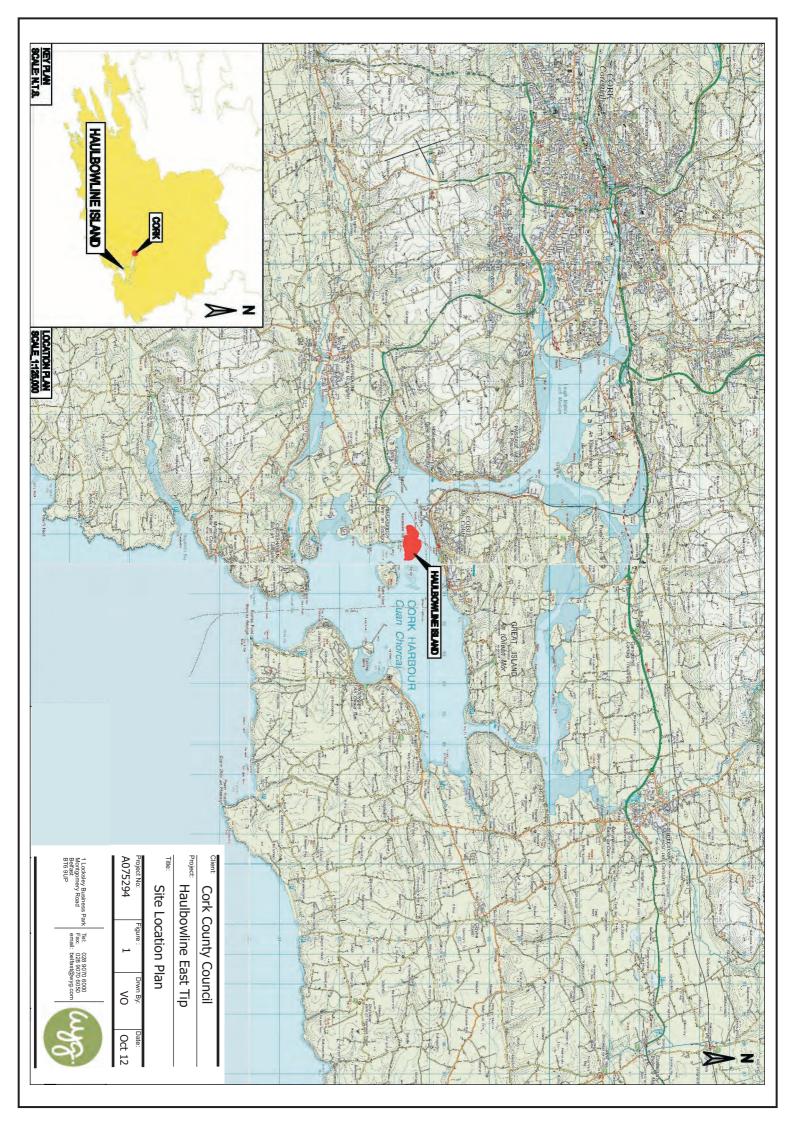
VOCs Volatile Organic Compound(s) are organic chemical compounds that have high enough vapour pressures under normal conditions to significantly vaporize and enter the atmosphere.

Waulsortian Limestone Formation Waulsortian Limestone consists of poorly bedded, dense, pale grey mudstone-wackestone and fine-grained packstonegrainstone.

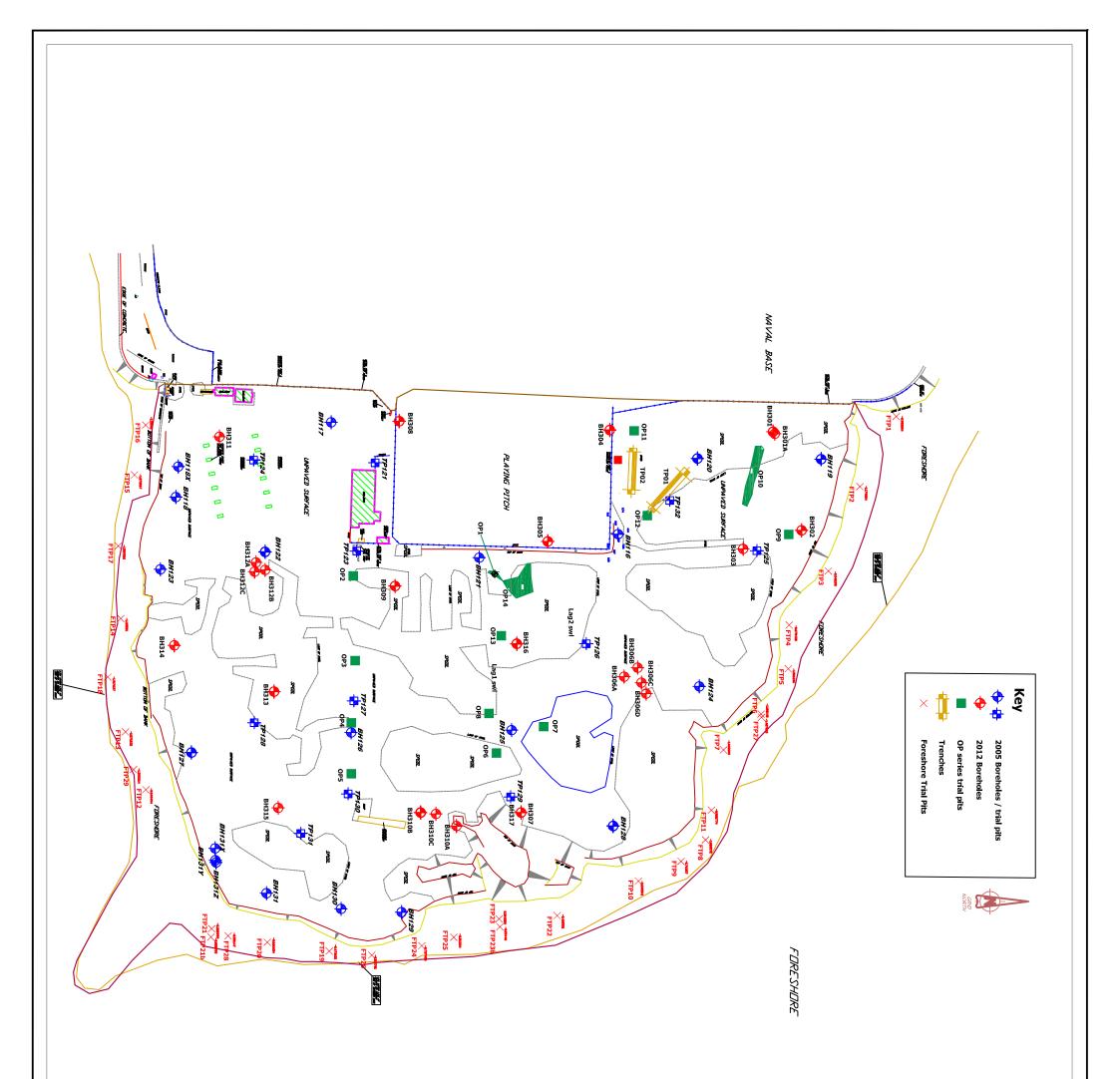
REFERENCES

CIEH, 2009 The LQM/CIEH *Generic Risk Assessment Criteria for Human Health Risk Assessment* 2nd Edition, CIEH 2009.

CIEH, CLAIRE, 2008 Guidance on Comparing Soil Contamination Data with a Critical Concentration, 2008


DoEHLG, 2009 European Communities Environmental Objectives (Surface Waters) Regulations 2009. DoEHLG

EA, 2004. *Model Procedures for the Management of Land Contamination* - Contaminated Land Report 11. Environment Agency, 2004


RPS, 2013. Environmental Impact Assessment

WYG, 2012. *East Tip Haulbowline Island, Detailed Quantitative Risk Assessment (DQRA)*, Cork County Council, March 2012

Figures

Scale A3 Drawn Date Check @ 1:2000 V0 Mar 13 YB Project No. Office Type I A075294 46	Haulbowline East Tip Drawing Title: Foreshore Trial Pit Location Plan	1 LOCKSLEY BUSINESS PARK MONTGOMERY ROAD BELFAST BTE 940 TEL: +44 (0)28 9070 6000 FAX: +44 (0)28 9070 6050 e-mall: belfast@wyg.com Project:	REV DESCRIPTION CLIENT Cork County Council		DO NOT SCALE: CONTRACTOR TO CHECK ALL DIMEN REPORT ANY OMISSIONS OR ERRORS
Checked Date YB Mar 13 Mar 13 Drawing No. Revision Fig.3 Final		See.	BY CHK APP DATE		OR ERRORS

Appendices

East Tip, Haulbowline Island, Waste Licensing Project

Appendix A – Report Conditions

WYG Environmental (EPT) Ltd

Report Conditions

East Tip, Haulbowline

This report is produced solely for the benefit of Cork County Council and no liability is accepted for any reliance placed on it by any other party unless specifically agreed in writing otherwise.

This report is prepared for the proposed uses stated in the report and should not be used in a different context without reference to WYGE. In time improved practices, fresh information or amended legislation may necessitate a re-assessment. Opinions and information provided in this report are on the basis of WYGE using due skill and care in the preparation of the report.

This report refers, within the limitations stated, to the environment of the site in the context of the surrounding area at the time of the inspections. Environmental conditions can vary and no warranty is given as to the possibility of changes in the environment of the site and surrounding area at differing times.

This report is limited to those aspects reported on, within the scope and limits agreed with the client under our appointment. It is necessarily restricted and no liability is accepted for any other aspect. It is based on the information sources indicated in the report. Some of the opinions are based on unconfirmed data and information and are presented as the best obtained within the scope for this report.

Reliance has been placed on the documents and information supplied to WYGE by others but no independent verification of these has been made and no warranty is given on them. No liability is accepted or warranty given in relation to the performance, reliability, standing etc of any products, services, organisations or companies referred to in this report.

Whilst skill and care have been used, no investigative method can eliminate the possibility of obtaining partially imprecise, incomplete or not fully representative information. Any monitoring or survey work undertaken as part of the commission will have been subject to limitations, including for example timescale, seasonal and weather related conditions.

Although care is taken to select monitoring and survey periods that are typical of the environmental conditions being measured, within the overall reporting programme constraints, measured conditions may not be fully representative of the actual conditions. Any predictive or modelling work, undertaken as part of the commission will be subject to limitations including the representativeness of data used by the model and the assumptions inherent within the approach used. Actual environmental conditions are typically more complex and variable than the investigative, predictive and modelling approaches indicate in practice, and the output of such approaches cannot be relied upon as a comprehensive or accurate indicator of future conditions. The potential influence of our assessment and report on other aspects of any development or future planning requires evaluation by other involved parties.

The performance of environmental protection measures and of buildings and other structures in relation to acoustics, vibration, noise mitigation and other environmental issues is influenced to a large extent by the degree to which the relevant environmental considerations are incorporated into the final design and specifications and the quality of workmanship and compliance with the specifications on site during construction. WYGE accept no liability for issues with performance arising from such factors.

Appendix B Trial Pit Logs

East Tip, Haulbowline Island, Waste Licensing Project

RPS East Tip Foreshore Investigation		
Trial Pit No: TP1		
Date:	14/01/2013	
Survey Poi	nt ID.: h1	
Depth (m)	Strata Encountered	
0 - 0.1	Waste concrete and occasional fill debris (metal bands and plastic tubing)	
0.1 - 0.7	Angular - subangular Cobbles and Boulders with sand, silt and shells	
0.7 - 1.10	Grey very silty SAND with shells and occasional angular cobbles	
1.1	End of Pit	
Samples taken from: 0.7 - 0.9m		
Notes / Comments: Trial Pit located close to base of Revetment from Naval Base in NW corner of East Tip site		

RPS East Tip Foreshore Investigation		
Trial Pit No: TP2		
Date:	14/01/2013	
Survey Poi	nt ID.: h2	
Depth (m)	Strata Encountered	
0 - 0.2	Very sandy SLAG with metal debris with abundant seashells	
0.2 - 1.5	Grey SLAG with metal pieces	
1.5 - 2.0	Grey very silty SAND with shells	
2	End of Pit	
Samples tak	ken from: 0 - 0.2m	
	1.6 - 1.8m	
Notes / Comments:		
Excavated using a 13.5t tracked excavator		

RPS East Tip Foreshore Investigation		
Trial Pit No: TP3		
Date:	14/01/2013	
Survey Poi	nt ID.: h3	
Depth (m)	Strata Encountered	
0 - 0.3	Consolidated SLAG with metal pieces	
0.3 - 1.8	Grey SLAG with concrete, refractory bricks and metal pieces	
1.8 - 2.0	Grey silty SAND with shells	
2	End of Pit	
Samples taken from: 0.5 - 1.0, 1.8 - 2.0		
<u>Notes / Comments:</u>		

RPS East Tip Foreshore Investigation		
Trial Pit No: TP4		
Date:	14/01/2013	
Survey Poi	nt ID.: h4	
Depth (m)	Strata Encountered	
0 - 0.10	Boulders of SLAG with metal, tyres and abundant shells	
0.10 - 1.50	Consolidated SLAG with some refractory bricks	
1.50 - 2.0	Grey SILT with occasional seashells	
Samples taken from: 0.5 - 1.0 1.8 - 2.0		
Notes / Comments: Excavated using a 13.5t tracked excavator		

RPS East Tip Foreshore Investigation		
Trial Pit No: TP5		
Date:	14/01/2013	
Survey Po	int ID.: h5	
Depth (m)	Strata Encountered	
0 - 1.2	Consolidated SLAG with rebar, metal pieces, refractory bricks	
1.2 - 1.8	Sandy black silty SLAG	
1.8 - 2.0	Grey SILT	
Samples taken from: 0.3 - 0.5 1.8 - 2.0		
Notes / Comments:		

RPS East Tip Foreshore Investigation		
Trial Pit No: TP6		
Date:	14/01/2013	
Survey Poi	nt ID.: h6	
Depth (m)	Strata Encountered	
0 - 0.5	Brown sandy SLAG in Cobble and Boulder form with rebar and metal scrap debris	
0.5 - 2.3	Grey slightly consolidated fine grained SLAG with abundant waste material including steel barrels and refractory bricks	
2.3 - 2.5	Grey SILT	
Samples tak	ken from: 0.6 - 1.0	
	2.3 - 2.5	
Notes / Comments:		
Excavated using a 13.5t tracked excavator		

RPS East Tip Foreshore Investigation		
Trial Pit	No: TP7	
Date:	14/01/2013	
Survey Poi	int ID.: h7	
Depth (m)	Strata Encountered	
0-0.4	Brown sandy shelly gravel sized SLAG with some refractory brick.	
0.4 - 0.7	Grey sandy shelly gravel sized SLAG with occasional metal and plastic waste	
0.7 - 1.0	Abundant shells with occasional plastic and refractory bricks	
1.0 - 1.2	Grey SILT	
Samples tak	0.2 - 0.4	
	1 - 1.2	
Notes / Comments:		

RPS East Tip Foreshore Investigation		
Trial Pit I	No: TP8	
Date:	14/01/2013	
Survey Poi	int ID.: h8	
Depth (m)	Strata Encountered	
0-0.1	Large SLAG boulders on surface	
0.1 - 0.7	Grey SILT	
Samples taken from: None		
Notes / Com	iments:	
Excavated using a 13.5t tracked excavator		

RPS East Tip Foreshore Investigation				
Trial Pit I	No: TP9			
Date:	14/01/2013			
Survey Poi	int ID.: h9			
Depth (m)	Strata Encountered			
0-0.1	Grey SLAG cobbles & boulders on surface			
0.1 - 0.3	Grey SILT			
Samples tak				
	0.1 - 0.2			
Notes / Comments:				
Excavated using a 13.5t tracked excavator				

RPS East Tip Foreshore Investigation		
Trial Pit I	No: TP10	
Date:	14/01/2013	
Survey Poi	int ID.: h10	
Depth (m)	Strata Encountered	
0 - 0.6	Brown gravelly SLAG with occasional refractory brick	
0.6 - 1.0	Grey SILT	
Samples taken from: 0.1 - 0.4		
Notes / Comments:		
Excavated u	sing a 13.5t tracked excavator	

RPS East Tip Foreshore Investigation		
Trial Pit	No: TP11	
Date:	14/01/2013	
Survey Poi	int ID.: h11	
Depth (m)	Strata Encountered	
0 - 0.8	Brown Gravel sized SLAG with metal pieces	
0.8 - 1.0	Grey SILT	
Samples tal	ken from: 0.4 - 0.6	
	0.8 - 1.0	
Notes / Comments:		
Excavated using a 13.5t tracked excavator		

RPS East Tip Foreshore Investigation Trial Pit No: TP12 15/01/2013 Date: Survey Point ID.: h15 Depth (m) Strata Encountered Very consolidated SLAG 0 - 0.5 Consolidated SLAG with scrap metal, refractory brick 0.5 - 2.3 and possible millscale (~20%) 2.3 - 2.5 Black SILT 0.3 - 0.5 Samples taken from: 2.3 - 2.5 Notes / Comments: Track Machine scaping surface for 40 minutes to break through from 0 -0.50m Excavated using a 13.5t tracked excavator

RPS East Tip Foreshore Investigation	
Trial Pit No: TP13	
Date:	15/01/2013
Survey Poi	int ID.: h13
Depth (m)	Strata Encountered
0 - 0.3	Very Consolidated SLAG
0.3 - 1.5	Consolidated SLAG and occasional refractory bricks & scrap metal (<5%)
1.5 - 2.1	Dark brown / grey gravel sized consolidated SLAG with abundant C&D waste - plastic, glass, metal & timber
2.1 - 2.3	Dark grey SILT
Samples tak	ken from: 1.8 - 2.0
	2.1 - 2.3
Notes / Comments:	
Track Machine scaping surface for 20 minutes to break through from	

0 - 0.30m

RPS East Tip Foreshore Investigation		
Trial Pit No: TP14		
Date:	15/01/2013	
Survey Po	int ID.:	h14
Depth (m)		Strata Encountered
0 - 1	Consolidated g refractory brick	ravel sized SLAG with occasional
1 - 1.2	Grey SILT	
Samples tal	ken from:	0.5 - 1.0
Notes / Con	nments:	
Excavated u	sing a 13.5t trad	cked excavator

RPS East Tip Foreshore Investigation		
Trial Pit I	No: TP15	
Date:	15/01/2013	
Survey Poi	nt ID.: h15	
Depth (m)	Strata Encountered	
0 - 0.3	Loose gravel sized SLAG (highly fused slab at inland end of trial pit - no progress through it with excavator)	
0.3 - 0.9	Unprocessed SLAG with abundant refractory bricks and occasional C&D waste	
0.9 - 1.1	Grey SILT	
Samples tak	Samples taken from: 0.6 - 0.8	
<u>Notes / Comments:</u>		

RPS East Tip Foreshore Investigation		
Trial Pit I	No: TP16	
Date:	15/01/2013	
Survey Poi	int ID.: h16	
Depth (m)	Strata Encountered	
0 - 0.3	Loose gravel sized SLAG	
0.3 - 1.4	Loose gravel sized SLAG with abundant refractory bricks and waste metal (rebar and steel)	
1.4 - 1.6	Grey SILT	
Samples tak	ken from: None Taken	
Notes / Comments:		
Excavated us	sing a 13.5t tracked excavator	

RPS	East Tip Foreshore Investigation	
Trial Pit I	No: TP17	
Date:	15/01/2013	
Survey Poi	nt ID.: h17	
Depth (m)	Strata Encountered	
0 - 2.0	Unconsolidated SLAG with occasional C&D waste including metal scrap and refractory bricks. Some black staining with slight HC odours.	
2.0 - 2.2	Grey SILT	
Samples tal	2 - 2.2	
Notes / Comments: Excavated at base of bank of slag outside line of proposed perimeter as outlined for SI		
	sing a 13.5t tracked excavator	
RPS	East Tip Foreshore Investigation	
Trial Pit I	No: TP18	
Date:	15/01/2013	
Survey Point ID.: h18		
Depth (m)	Strata Encountered	
0 - 1.5	Loose SLAG with abundant C&D waste - rebar steel, refractory bricks, tyres	
15-17	Grev SILT	

0 - 1.5	refractory bricks, tyres
1.5 - 1.7	Grey SILT
Samples tak	ken from: None Taken
Notes / Com	iments:
Excavated a as outlined for	t base of bank of slag outside line of proposed perimeter or SI

RPS East Tip Foreshore Investigation		
Trial Pit I	No: TP19	
Date:	15/01/2013	
Survey Poi	int ID.: h19	
Depth (m)	Strata Encountered	
0 - 1.0	Brown gravel and cobble sized SLAG with occasional rebar steel	
1.0 - 1.8	Dark grey very consolidated SLAG with rebar steel, Scrap metal with moderate hydrocarbon odours with occasional pipes and wires.	
1.8 - 2.2	Consolidated brown SLAG with frequent wires.	
2.2 - 2.5	Grey SILT	
	Samples taken from: 0.3 - 0.5 1.2 - 1.5 2.2 - 2.5	
<u>Notes / Com</u>	<u>iments:</u>	

RPS East Tip Foreshore Investigation			
Trial Pit No:		TP20	
Date:	15/01/2013		
Survey Poi	int ID.:	h20	
Depth (m)		Strata Encountered	
0 - 1.5	Brown partly co SLAG	onsolidated gravel and cobble sized	
1.5 - 1.7	Grey SILT		
Samples tal	ken from:	0.5 - 0.7	
	1.5 - 1.7		
<u>Notes / Comments:</u>			
Excavated using a 13.5t tracked excavator			

RPS East Tip Foreshore Investigation			
Trial Pit I	Trial Pit No: TP21		
Date:	15/01/2013		
Survey Poi	nt ID.: h21		
Depth (m)	Strata Encountered		
0 - 0.5	Brown partly consolidated gravel and cobble sized SLAG with frequent shells		
0.5 - 1.8	Dark brown / grey partly consolidated gravel and cobble sized SLAG with shells		
1.8 - 4.5	Unconsolidated SLAG with abundant shells and C&D waste including timber, refractory bricks, cables, plastic, springs, metal fragments, batteries.		
Samples tak	Samples taken from: 2 - 2.5		
Notes / Comments:			
TP terminated as no progress made below 4.5m and high risk of undermining track machine during excavation			

RPS East Tip Foreshore Investigation		
Trial Pit No: TP21b		TP21b
Date:	16/01/2013	
Survey Poi	nt ID.:	h21b
Depth (m)		Strata Encountered
0 - 0.1	Loose SLAG	
0.1 - 0.50	Grey SILT	
Samples taken from: None		
Notes / Comments:		
TP located 4m seaward of TP21 below a 0.3m step on the consolidated slag surface at this location		
Excavated using a 13.5t tracked excavator		

RPS East Tip Foreshore Investigation			
Trial Pit	No: TP22		
Date:	16/01/2013		
Survey Po	nt ID.: h22		
Depth (m)	Strata Encountered		
0 - 0.1	Loose gravel sized SLAG with occasional cobble sized pieces of SLAG		
0.1 - 0.4	Grey SILT		
Samples tal	ven from: 0.2 - 0.4		
Notes / Comments:			

RPS	East Tip Foreshore Investigation		
Trial Pit	No: TP23 / TP23b		
Date:	16/01/2013		
Survey Po	int ID.: h23 / h23b		
Depth (m)	Strata Encountered		
TP23	Brown gravel and cobble sized SLAG with abundant		
0 - 0.9	shells and occasional refractory bricks and scrap metal.		
0.9	Very consolidated SLAG - No progress made - Pit extended to TP23b		
TP23b			
0-0.4	Brown gravel and cobble sized SLAG with abundant shells and occasional refractory bricks and scrap metal.		
0.4 - 0.7	Grey SILT with abundant shells		
Samples tal	Samples taken from: 0.2 - 0.4		
	0.4 - 0.7		
Notes / Con	intents.		
TP23 excavated inside line of proposed perimeter due to wide beach and possible shallow slag as identified in pits to the north. Pit extended onto line of proposed perimeter (TP23b) and shallow SLAG encountered there. Excavated using a 13.5t tracked excavator			

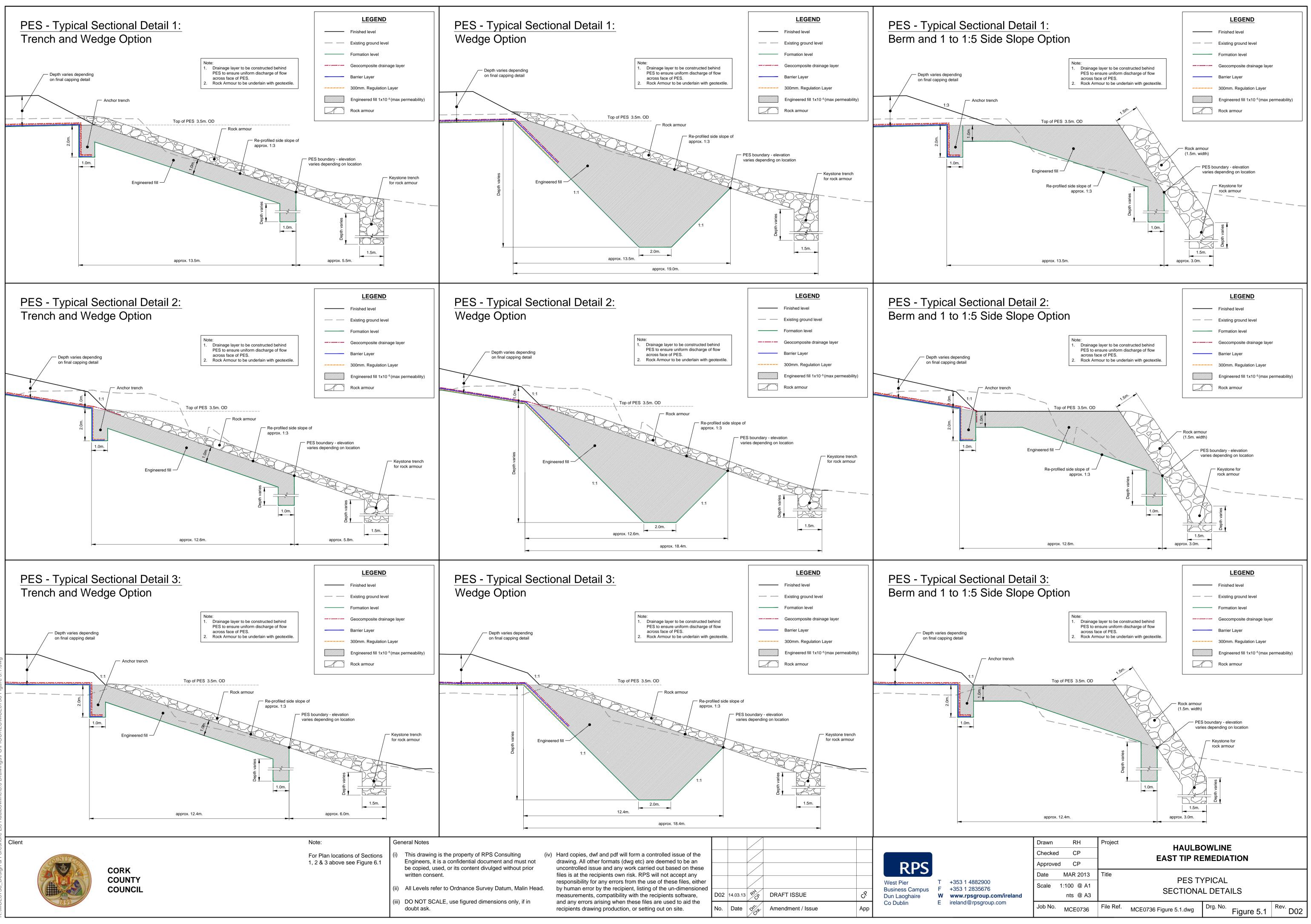
RPS	East Tip Foreshore Investigation						
Trial Pit I	No: TP24						
Date:	16/01/2013						
Survey Poi	nt ID.: h24						
Depth (m)	Strata Encountered						
0 - 0.8	Very Consolidated brown moottled dark brown/grey gravel and cobble sized SLAG						
0.8 - 2.7	Unprocessed SLAG with abundant C&D waste - plastic, metal, pipe, tiles, cables and wires						
2.7 - 3.0	Grey SILT						
Samples tak	xen from: 0.3 - 0.5 1.5 - 1.8 2.7 - 3.0						
<u>Notes / Corr</u>	iments:						

RPS	RPS East Tip Foreshore Investigation								
Trial Pit	No: TP25								
Date:	16/01/2013								
Survey Poi	nt ID.: h25								
Depth (m)	Strata Encountered								
0 - 0.3	Gravel sized SLAG on surface								
0.3 - 1.9	Very consolidated gravel and cobble sized SLAG with abundant shells								
1.9 - 2.2	Grey SILT								
Samples tak	Samples taken from: 1 - 1 .2								
Notes / Com	Notes / Comments:								
TP25 excavated 20m north of TP24 to delineate the C&D waste encountered in TP24									
Excavated us	Excavated using a 13.5t tracked excavator								

RPS	RPS East Tip Foreshore Investigation								
Trial Pit	No: TP26								
Date:	16/01/2013								
Survey Po	int ID.: h26								
Depth (m)	Strata Encountered								
0 - 1.2	Cobble and boulder sized SLAG infilled with gravel sized SLAG and grey silt								
1.2 - 2.0	Consolidated slag with occasional metal waste and rebar steel								
2.0 - 3.0	Dark grey gravel sized SLAG with frequent metal pieces, cables and a battery								
3.0 - 3.2	Grey SILT								
Samples tal	ken from: 2.2 - 2.5								
	3 - 3.2								
<u>Notes / Con</u>	<u>iments:</u>								

RPS	RPS East Tip Foreshore Investigation							
Trial Pit	No: TP27							
Date:	16/01/2013							
Survey Po	int ID.: h27							
Depth (m)	Strata Encountered							
0 - 0.9	Gravel sized SLAG with frequent refractory bricks, meta & steel							
0.9 - 1.1	Grey SILT							
Samples tal	ken from: None							
Notes / Com	iments:							
TP excavate	d 3m seaward of TP6							
Excavated u	sing a 13.5t tracked excavator							

Trial Pit No: TP28 Date: 16/01/2013 Survey Point ID.: h28 Depth (m) Strata Encountered 0 - 2.5 Loose gravel and cobble sized SLAG with seashells and occasional waste material - wiring, metal , plastic 2.5 - 2.7 Grey SILT Samples taken from: No Samples Notes / Comments: No Samples	RPS	RPS East Tip Foreshore Investigation								
Survey Point ID.: h28 Depth (m) Strata Encountered 0 - 2.5 Loose gravel and cobble sized SLAG with seashells and occasional waste material - wiring, metal , plastic 2.5 - 2.7 Grey SILT No Samples taken from: No Samples	Trial Pit I	No: TP28								
Depth (m) Strata Encountered 0 - 2.5 Loose gravel and cobble sized SLAG with seashells and occasional waste material - wiring, metal , plastic 2.5 - 2.7 Grey SILT Samples taken from: No Samples	Date:	16/01/2013								
0 - 2.5 Loose gravel and cobble sized SLAG with seashells and occasional waste material - wiring, metal , plastic 2.5 - 2.7 Grey SILT Samples taken from: No Samples	Survey Poi	nt ID.: h28								
0 - 2.5 occasional waste material - wiring, metal , plastic 2.5 - 2.7 Grey SILT Samples taken from: No Samples	Depth (m)	Strata Encountered								
Samples taken from: No Samples	0 - 2.5	•								
	2.5 - 2.7	Grey SILT								
Notes / Comments:	Samples tak	en from: No Samples								
Excavated using a 13.5t tracked excavator										


RPS	RPS East Tip Foreshore Investigation							
Trial Pit I	No:	TP29						
Date:	16/01/2013							
Survey Poi	int ID.:	h29						
Depth (m)		Strata Encountered						
0 - 0.4	Very consolidate	d SLAG excavated as gravel						
0.4	TP Terminated following 45 minutes and no progress							
Samples tak	Samples taken from: None							
Notes / Com	<u>iments:</u>							
TP29 located mark	d between TP12 a	nd TP13 and located at the low water						
Excavated us	sing a 13.5t tracke	ed excavator						

	Depth From	
Frial Pit Number	Top of Trial Pit	Notes
TP1	0.3	
TP2	0.3	
TP3	0.3	
TP4	0.3	
TP5	0.3	
TP6	1.5	TP excavated higher up the foreshore, on a steep slope
TP7	0.6	
		No water encountered, Silt at 0.01m BGL and Pit terminated at
TP8	-	0.7m BGL
		No water encountered, Silt at 0.01m BGL and Pit terminated at
TP9	-	0.2m BGL
		No water encountered, Silt at 0.06m BGL and Pit terminated at
TP10	-	1m BGL
TP11	0.1	TP excavated close to the tide, on a very shallow slope
TP12	GL	TP full of water throughout excavation
TP13	GL	TP full of water throughout excavation
TP14	0.1	TP full of water throughout excavation
TP15	0.1	TP full of water throughout excavation
TP16	0.4	Water entering TP from East Tip end of pit aswell as from below
		TP excavated close to tide due to bank of slag material to the
TP17	0.2	north of the location
		TP excavated close to tide due to bank of slag material to the
		north of the location, Water entering TP from East Tip side of p
TP18	0.1	aswell as from below
TP19	1.3	TP located on steeply sloping foreshore
TP20	0.4	
TP21	0.3	
TP21b	0.1	
		No water encountered, Silt at 0.1m BGL and Pit terminated at
TP22	-	0.4mBGL
TP23	0.3	
TP24	?	Depth to water in Pit not recorded
TP25	?	Depth to water in Pit not recorded
		TP excavated on steeply sloping foreshore. Water entering pit
TP26	1.2	from East Tip side of pit as well as from below.
TP27	0.2	TP excavated closer to tide than TP6.
TP28	?	Depth to water in Pit not recorded
TP29	GL	Pit unsuccesfully excavated before incoming tide entered pit.

Groundwater encountered during the excavation of the trial pits along the East Tip foreshore typically comprised seawater which migrated through the granular slag material that makes up the upper subsurface material surrounding the East Tip. Typically groundwater was encountered just below the surface in the majority of the trial pits excavated at depths ranging from GL to 0.4m BGL. The pits were usually excavated when the tide was approaching LW conditions, or shortly after LW conditionsand rising, up to half tide. The pits were typically located along the half tide line around the East Tip. Where GW was encountered at deeper depths, these pits were usually located higher up the foreshore, or on steeper sloping sections of the foreshore. There are a number of locations where there is no record of the depth at which GW was encountered.

Appendix C Proposed Perimeter Engineered Structure

East Tip, Haulbowline Island, Waste Licensing Project

::\MCE0736_Design & Foreshore Lic Haulbowline\8.0 Drawings\FG\FIGURES\MCE0736 F

Appendix D Human Health Generic Assessment Criteria (GAC)

East Tip, Haulbowline Island, Waste Licensing Project

Human Health GACs

	CIEH Commercial Industrial GAC (mg/kg)
Cyanide, Free	
Metals	
Antimony	
Arsenic	640
Barium	
Beryllium	420
Boron, water soluble	192000
Cadmium	230
Chromium Chromium, Hexavalent	30400 35
Copper	71700
Lead	4640
Mercury	3640
Nickel	1800
Selenium	13000
Vanadium	3160
Zinc	665000
Phenols	
Cresols	
Phenol	482
Phenols, Total 5 speciated	
Phenols, Total monohydric	
TPH Criteria Working Group (TPH CWG)	
Aliphatics >C5C6	3400
Aliphatics >C6C8	8300
Aliphatics >C8C10	2100
Aliphatics >C10C12	10000
Aliphatics >C12C16	61000
Aliphatics >C16C21	1000000
Aliphatics >C21C35	1000000
Aromatics >EC5EC7 Aromatics >EC7EC8	28 59000
Aromatics >EC7EC8	3700
Aromatics >EC10EC12	17000
Aromatics >EC12EC16	36000
Aromatics >EC16EC21	28000
Aromatics >EC21EC35	28000
Methyl tertiary butyl ether (MTBE)	20000
Benzene	28
Ethylbenzene	518
m,p,oXylene	
m,pXylene	312
oXylene	
Toluene	869
mi Volatile Organic Compounds (SVOCs) (Soli	ds)
2,4Dimethylphenol (S)	
2,4Dinitrotoluene (S)	
2,6Dinitrotoluene	
2Chloronaphthalene	
2Methylphenol	
4Methylphenol (S) Acenaphthene	05000
Acenaphthene	<u> </u>
Acenaphinylene	530000
Benzo(a)anthracene	90
Benzo(a)pyrene	14
Benzo(b)fluoranthene	100
Benzo(g,h,i)perylene	650
Benzo(k)fluoranthene	140
bis(2Ethylhexyl) phthalate	
Chrysene	140
Dibenzo(a,h)anthracene	13
Diethyl phthalate	
Fluoranthene	23000
Fluorene	64000
Hexachloroethane	
Indeno(1,2,3cd)pyrene	60
Naphthalene	200
Phenanthrene	22000
Phenol	0.482
Pyrene	54000

Human Health GACs

olatile Organic Compounds (VOCs) (Solids)	
1.1.1.2Tetrachloroethane	120
1.1.1Trichloroethane	700
1.1.2.2Tetrachloroethane	290
1.1.2Trichloroethane	
1.1Dichloroethane	
1.1Dichloroethene	
1.2.4Trimethylbenzene	
1.2Dichloroethane	0.71
1.2Dichloropropane	
Benzene	28
Bromobenzene	
Bromodichloromethane	
Bromoform	
Carbon Disulphide	
Carbontetrachloride	3
Chlorobenzene	
Chloroethane	
Chloroform	110
Chloromethane	
cis12Dichloroethene	
Dibromochloromethane	
Dichloromethane	
Ethylbenzene	518
Isopropylbenzene	
Naphthalene	
p/mXylene	312
Propylbenzene	
Tetrachloroethene	130
Toluene	869
trans12Dichloroethene	
Trichloroethene	12
Vinyl Chloride	0.063

Appendix E Waste Solid Analysis Results

East Tip, Haulbowline Island, Waste Licensing Project

			Very sandy SLAG with metal debris with abundant seashells	Consolidated SLAG with rebar, metal pieces, refractory bricks	Brown gravelly SLAG with occasional refractory brick	SLAG with occasional C&D waste including metal scrap and refractory bricks. Some black staining with slight HC odours.	consolidated SLAG with rebar steel, Scrap metal with moderate hydrocarbon odours with occasional pipes and wires.	Unconsolidated SLAG with abundant shells and C&D waste including timber, refractory bricks, cables, plastic, springs, metal fragments, batteries.	slag with frequent metal pieces, cable and battery
Sample Identity	Commondial		FTP 2	FTP 6	FTP 10	FTP 17	FTP 19	FTP 21	FTP 26
Depth (m)	Commercial Human Health GAC (mg/kg)		0-0.2	0.6-1.0	0.1-0.4	1.7-1.9	1.2-1.5	2-2.5	2.2-2.5
Laboratory data									
Carbon Fraction Organic Carbon (FOC)			0.017	0.014	0.004	0.015	0.002	<0.001	NA
Inorganics			0.017	0.014	0.004	0.013	0.002	<0.001	NA
у рН			9.25	10.18	9.32	8.28	8.9	9.47	NA
Metals									
Arsenic	640	mg/kg	16.8	13.7	<0.5	28.3	0.5	<0.5	<0.5
Barium		mg/kg	163	257	665	346	579	884	494
Beryllium	420	mg/kg	1.5	1.1	<0.5	2	1.3	<0.5	0.7
Boron, water soluble	192000	mg/kg	29.9	42.9	23.4	21.2	19	19	31.2
Cadmium	230	mg/kg	8.1	27.8	1.9	6.2	1.7	0.8	4.7
Chromium	30400	mg/kg	1317	1591	2916	1060	3378	3736	3824
Chromium, Hexavalent	35	mg/kg	<0.3	0.6	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium III	30400	mg/kg	1317	1590.4	2916	1060	3378	3736	3824
Copper	71700	mg/kg	1344	1225	639	894	1543	308	1675
Lead	4640	mg/kg	1243	2160	440	424	193	99	1048
Manganese		mg/kg	13510	20540	27680	12310	28460	37610	10520
Mercury	3640	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7
Nickel	1800	mg/kg	288.4	193.1	416.9	182.8	270.5	38.4	5770
Selenium	13000	mg/kg	5	6	7	5	9	11	4
Vanadium	3160	mg/kg	92	104	248	157	388	371	92
Zinc	665000	mg/kg	10920	22530	1155	2912	721	530	3897
PAHs									
Acenaphthene	85000	mg/kg	NA	NA	NA	<0.05	0.84	NA	NA
Acenaphthylene	84000	mg/kg	NA	NA	NA	<0.03	0.05	NA	NA
Anthracene	530000	mg/kg	NA	NA	NA	0.09	2.27	NA	NA
Benzo(a)anthracene	90	mg/kg	NA	NA	NA	0.22	5.05	NA	NA
Benzo(a)pyrene	14	mg/kg	NA	NA	NA	0.12	3.43	NA	NA
Benzo(b)fluoranthene	100	mg/kg	NA	NA	NA	0.19	4.28	NA	NA
Benzo(ghi)perylene	650	mg/kg	NA	NA	NA	0.09	1.71	NA	NA
Benzo(k)fluoranthene		mg/kg	NA	NA	NA	0.08	1.66	NA	NA
Chrysene	140	mg/kg	NA	NA	NA	0.22	4.32	NA	NA
Dibenzo(ah)anthracene	13	mg/kg	NA	NA	NA	<0.04	0.69	NA	NA
Fluoranthene	23000	mg/kg	NA	NA	NA	0.42	9.3	NA	NA
Fluorene	64000	mg/kg	NA	NA	NA	<0.04	0.78	NA	NA
Indeno(123cd)pyrene	60	mg/kg	NA	NA	NA	0.09	1.96	NA	NA
Naphthalene	200	mg/kg	NA	NA	NA	<0.04	0.04	NA	NA
Phenanthrene	22000	mg/kg	NA	NA	NA	0.27	7.04	NA	NA
Pyrene	54000	mg/kg	NA	NA	NA	0.32	6.38	NA	NA
PAH 16 Total		mg/kg	NA	NA	NA	2.1	49.8	NA	NA
TPH Criteria Working Group (TPH CWG)	0.455							.	
	3400	mg/kg	NA	NA	NA	<0.1	<0.1	NA	NA
Aliphatics >C5C6 Aliphatics >C6C8		mg/kg	NA	NA	NA	<0.1	<0.1	NA	NA

Sample Identity			FTP 2	FTP 6	FTP 10	FTP 17	FTP 19	FTP 21	FTP 26
Depth (m)	Commercial Human Health GAC (mg/kg)		0-0.2	0.6-1.0	0.1-0.4	1.7-1.9	1.2-1.5	2-2.5	2.2-2.5
Aliphatics >C10C12		mg/kg	NA	NA	NA	4.5	<0.2	NA	NA
Aliphatics >C12C16		mg/kg	NA	NA	NA	47	<4	NA	NA
Aliphatics >C16C21	100000	mg/kg	NA	NA	NA	38	<7	NA	NA
Aliphatics >C21C35	100000	mg/kg	NA	NA	NA	413	144	NA	NA
Aliphatics >C35C44		mg/kg	NA						
Aromatics >EC5EC7	3400	mg/kg	NA	NA	NA	<0.1	<0.1	NA	NA
Aromatics >EC7EC8	8 8300	mg/kg	NA	NA	NA	<0.1	<0.1	NA	NA
Aromatics >EC8EC10		mg/kg	NA	NA	NA	<0.1	<0.1	NA	NA
Aromatics >EC10EC12	10000	mg/kg	NA	NA NA	NA NA	<0.2	<0.2	NA NA	NA
Aromatics >EC12EC16 Aromatics >EC16EC21		mg/kg	NA NA	NA	NA	<4 25	<4 43	NA	NA NA
Aromatics >EC16EC21	1000000 1000000	mg/kg mg/kg	NA	NA	NA	305	18	NA	NA
			NA	NA	NA	<5	<5	NA	NA
Methyl tertiary butyl ether (MTBE) Benzene	28000	µg/kg µg/kg	NA	NA	NA	<5	<5	NA	NA
Ethylbenzene		μg/kg μg/kg	NA	NA	NA	<5	<5	NA	NA
m,pXylene		μg/kg	NA	NA	NA	<5	<5	NA	NA
oXylene		µg/kg	NA	NA	NA	<5	<5	NA	NA
Toluene		μg/kg	NA	NA	NA	<5	<5	NA	NA
SemiVolatile Organic Compounds (SVOCs)	007000	µg/kg				10			
1,2,4Trichlorobenzene	, ,	µg/kg	NA	NA	NA	NA	NA	<50	<50
1,2Dichlorobenzene		μg/kg	NA	NA	NA	NA	NA	<50	<50
1,3Dichlorobenzene		µg/kg	NA	NA	NA	NA	NA	<50	<50
1,4Dichlorobenzene		μg/kg	NA	NA	NA	NA	NA	<50	<50
2,4,5Trichlorophenol		μg/kg	NA	NA	NA	NA	NA	<50	<50
2,4,6Trichlorophenol (S)		µg/kg	NA	NA	NA	NA	NA	<50	<50
2,4Dichlorophenol (S)		µg/kg	NA	NA	NA	NA	NA	<50	<50
2,4Dimethylphenol (S)		µg/kg	NA	NA	NA	NA	NA	<50	<50
2,4Dinitrotoluene (S)		µg/kg	NA	NA	NA	NA	NA	<50	<50
2,6Dinitrotoluene		µg/kg	NA	NA	NA	NA	NA	<50	<50
2Chloronaphthalene		µg/kg	NA	NA	NA	NA	NA	<50	<50
2Chlorophenol (S))	µg/kg	NA	NA	NA	NA	NA	<50	<50
2Methylnaphthalene	9	µg/kg	NA	NA	NA	NA	NA	<50	120
2Methylphenol	l	µg/kg	NA	NA	NA	NA	NA	<50	<50
2Niitroaniline (S))	µg/kg	NA	NA	NA	NA	NA	<50	<50
2Nitrophenol (S))	µg/kg	NA	NA	NA	NA	NA	<50	<50
3Nitroaniline		µg/kg	NA	NA	NA	NA	NA	<50	<50
4Bromophenylphenylether	r	µg/kg	NA	NA	NA	NA	NA	<50	<50
4Chloro3methylphenol (S))	µg/kg	NA	NA	NA	NA	NA	<50	<50
4Chloroaniline		µg/kg	NA	NA	NA	NA	NA	<50	<50
4Chlorophenylphenylether	r	µg/kg	NA	NA	NA	NA	NA	<50	<50
4Methylphenol (S)		µg/kg	NA	NA	NA	NA	NA	<50	<50
4Nitroaniline		µg/kg	NA	NA	NA	NA	NA	<50	<50
4Nitrophenol (S)		µg/kg	NA	NA	NA	NA	NA	<50	<50
Acenaphthene		µg/kg	NA	NA	NA	NA	NA	252	366
Acenaphthylene		µg/kg	NA	NA	NA	NA	NA	114	167
Anthracene	53000000	µg/kg	NA	NA	NA	NA	NA	185	489
Azobenzene	00000	µg/kg	NA	NA	NA	NA	NA	<50	<50
Benzo(a)anthracene		µg/kg	NA	NA	NA	NA	NA	736	841
Benzo(a)pyrene		µg/kg	NA	NA	NA	NA	NA	468	531
Benzo(bk)fluoranthene		µg/kg	NA	NA	NA	NA	NA	699	900
Benzo(g,h,i)perylene	650000	µg/kg	NA	NA	NA	NA	NA	245	279
Bis(2chloroethoxy)methane		µg/kg	NA	NA	NA	NA	NA	<50	<50
bis(2Chloroethyl)ether		µg/kg	NA	NA	NA	NA	NA	<50	<50
bis(2Ethylhexyl) phthalate	9	µg/kg	NA	NA	NA	NA	NA	<50	<50

Sample Identity	Communication		FTP 2	FTP 6	FTP 10	FTP 17	FTP 19	FTP 21	FTP 26
Depth (m)	Commercial Human Health GAC (mg/kg)		0-0.2	0.6-1.0	0.1-0.4	1.7-1.9	1.2-1.5	2-2.5	2.2-2.5
Butylbenzyl phthalate	1	μg/kg	NA	NA	NA	NA	NA	<50	<50
Carbazole		µg/kg	NA	NA	NA	NA	NA	<50	113
Chrysene		µg/kg	NA	NA	NA	NA	NA	854	970
Dibenzo(a,h)anthracene		µg/kg	NA NA	NA NA	NA NA	NA NA	NA NA	103 <50	144 182
Dibenzofurar Distud abteriat		µg/kg	NA	NA	NA	NA	NA	<50	
Diethyl phthalate Dimethyl phthalate		µg/kg	NA	NA	NA	NA	NA	<50	<50 <50
Dinethyl phthalate		μg/kg μg/kg	NA	NA	NA	NA	NA	<50	<50
Di-n-Octyl phthalate		μg/kg μg/kg	NA	NA	NA	NA	NA	<50	<50
Fluoranthene		μg/kg	NA	NA	NA	NA	NA	760	1472
Fluorene	64000000	μg/kg	NA	NA	NA	NA	NA	185	374
Hexachlorobenzene		μg/kg μg/kg	NA	NA	NA	NA	NA	<50	<50
Hexachlorobutadiene		μg/kg	NA	NA	NA	NA	NA	<50	<50
Hexachlorocyclopentadiene		μg/kg	NA	NA	NA	NA	NA	<50	<50
Hexachloroethane		μg/kg	NA	NA	NA	NA	NA	<50	<50
Indeno(1,2,3cd)pyrene	60000	μg/kg	NA	NA	NA	NA	NA	200	241
Isophorone	00000	μg/kg	NA	NA	NA	NA	NA	<50	<50
Naphthalene	200000	μg/kg	NA	NA	NA	NA	NA	137	429
Nitrobenzene		μg/kg	NA	NA	NA	NA	NA	<50	<50
nNitrosondipropylamine		μg/kg	NA	NA	NA	NA	NA	<50	<50
Pentachloropheno		µg/kg	NA	NA	NA	NA	NA	<50	<50
Phenanthrene	22000000	µg/kg	NA	NA	NA	NA	NA	362	1183
Pheno	482000	μg/kg	NA	NA	NA	NA	NA	<50	1072
Pyrene	5400000	µg/kg	NA	NA	NA	NA	NA	1036	1427
Tic Report		P3/3							
Volatile Organic Compounds (VOCs) (Solids)									
1.1.1.2Tetrachloroethane	120000	µg/kg	NA	NA	NA	NA	NA	<3	<3
1.1.1Trichloroethane	700000	µg/kg	NA	NA	NA	NA	NA	<3	227
1.1.2.2Tetrachloroethane		µg/kg	NA	NA	NA	NA	NA	<3	<3
1.1.2Trichloroethane		µg/kg	NA	NA	NA	NA	NA	<3	<3
1.1Dichloroethane		µg/kg	NA	NA	NA	NA	NA	<3	<3
1.1Dichloroethene		µg/kg	NA	NA	NA	NA	NA	<6	<6
1.1Dichloropropene	1	µg/kg	NA	NA	NA	NA	NA	<3	<3
1.2.3Trichlorobenzene	2	µg/kg	NA	NA	NA	NA	NA	<7	<7
1.2.3Trichloropropane	1	µg/kg	NA	NA	NA	NA	NA	<4	<4
1.2.4Trichlorobenzene		µg/kg	NA	NA	NA	NA	NA	<7	<7
1.2.4Trimethylbenzene		µg/kg	NA	NA	NA	NA	NA	<6	60
1.2Dibromo3chloropropane		µg/kg	NA	NA	NA	NA	NA	<4	<4
1.2Dibromoethane		µg/kg	NA	NA	NA	NA	NA	<3	<3
1.2Dichlorobenzene		µg/kg	NA	NA	NA	NA	NA	<4	<4
1.2Dichloroethane	710	µg/kg	NA	NA	NA	NA	NA	<4	<4
1.2Dichloropropane		µg/kg	NA	NA	NA	NA	NA	<6	<6
1.3.5Trimethylbenzene		µg/kg	NA	NA	NA	NA	NA	<3	15
1.3Dichlorobenzene		µg/kg	NA	NA	NA	NA	NA	<4	<4
1.3Dichloropropane		µg/kg	NA	NA	NA	NA	NA	<3	<3
1.4Dichlorobenzene		µg/kg	NA	NA	NA	NA	NA	<4	<4
2.2Dichloropropane		µg/kg	NA	NA	NA	NA	NA	<4	<4
2Chlorotoluene		µg/kg	NA	NA	NA	NA	NA	<3	<3
4Chlorotoluene	1	µg/kg	NA	NA	NA	NA	NA	<3	<3
4lsopropyltoluene		µg/kg	NA	NA	NA	NA	NA	<4	<4
Benzene	28000	µg/kg	NA	NA	NA	NA	NA	<3	8
Bromobenzene		µg/kg	NA	NA	NA	NA	NA	<2	<2
		µg/kg	NA	NA	NA	NA	NA	<3	<3
Bromochloromethane Bromodichloromethane		µg/kg	NA	NA	NA	NA	NA	<3	<3

Sample Identity	Communial		FTP 2	FTP 6	FTP 10	FTP 17	FTP 19	FTP 21	FTP 26
Depth (m)	Commercial Human Health GAC (mg/kg)		0-0.2	0.6-1.0	0.1-0.4	1.7-1.9	1.2-1.5	2-2.5	2.2-2.5
Bromoform		µg/kg	NA	NA	NA	NA	NA	<3	<3
Bromomethane		µg/kg	NA	NA	NA	NA	NA	<1	<1
Carbontetrachloride		µg/kg	NA	NA	NA	NA	NA	<4	<4
Chlorobenzene		µg/kg	NA	NA	NA	NA	NA	<3	<3
Chloroethane		µg/kg	NA	NA	NA	NA	NA	<2	<2
Chloroform		µg/kg	NA	NA	NA	NA	NA	<3	<3
Chloromethane		µg/kg	NA	NA	NA	NA	NA	<3	<3
cis12Dichloroethene		µg/kg	NA	NA	NA	NA	NA	<3	<3
cis13Dichloropropene		µg/kg	NA	NA	NA	NA	NA	<4	<4
Dibromochloromethane		µg/kg	NA	NA	NA	NA	NA	<3	<3
Dibromomethane		µg/kg	NA	NA	NA	NA	NA	<3	<3
Dichlorodifluoromethane		µg/kg	NA	NA	NA	NA	NA	<2	<2
Dichloromethane		µg/kg	NA	NA	NA	NA	NA	<7	<7
Ethylbenzene		µg/kg	NA	NA	NA	NA	NA	<3	53
Hexachlorobutadiene		µg/kg	NA	NA	NA	NA	NA	<4	<4
Isopropylbenzene		µg/kg	NA	NA	NA	NA	NA	<3	8
Methyl Tertiary Butyl Ether		µg/kg	NA	NA	NA	NA	NA	<2	<2
nButylbenzene		µg/kg	NA	NA	NA	NA	NA	<4	<4
oXylene		µg/kg	NA	NA	NA	NA	NA	<3	36
p/mXylene	312000	µg/kg	NA	NA	NA	NA	NA	<6	56
Propylbenzene		µg/kg	NA	NA	NA	NA	NA	<4	8
secButylbenzene		µg/kg	NA	NA	NA	NA	NA	<4	<4
Styrene		µg/kg	NA	NA	NA	NA	NA	<3	30
tertButylbenzene		µg/kg	NA	NA	NA	NA	NA	<5	<5
Tetrachloroethene	130000	µg/kg	NA	NA	NA	NA	NA	<3	<3
Toluene	869000	µg/kg	NA	NA	NA	NA	NA	<3	10
trans12Dichloroethene		µg/kg	NA	NA	NA	NA	NA	<3	<3
trans13Dichloropropene		µg/kg	NA	NA	NA	NA	NA	<3	<3
Trichloroethene	12000	µg/kg	NA	NA	NA	NA	NA	<3	<3
Trichlorofluorormethane		µg/kg	NA	NA	NA	NA	NA	<2	43
Vinyl Chloride	63	µg/kg	NA	NA	NA	NA	NA	<2	<2

turquoise indicates value exceeds commercial GAC

Screen Unformatted Data

Screen Formatted Data

Appendix F Leachability Analysis Results

East Tip, Haulbowline Island, Waste Licensing Project

2012/13 Investigation Foreshore Waste Solid Samples, Laboratory Analysis Leachability

			Very sandy SLAG with metal debris with abundant seashells	Consolidated SLAG with rebar, metal pieces, refractory bricks	Brown gravelly SLAG with occasional refractory brick	SLAG with occasional C&D waste including metal scrap and refractory bricks. Some black staining with slight HC odours.	consolidated SLAG with rebar steel, Scrap metal with moderate hydrocarbon odours with occasional pipes and wires.		gravel sized SLAG with frequent metal pieces, cables and a battery
Sample Identity	Units	WQS	FTP 2	FTP 6	FTP 10	FTP 17	FTP 19	FTP 21	FTP 26
Depth (m)			0-0.2	0.6-1.0	0.1-0.4	1.7-1.9	1.2-1.5	2-2.5	2.2-2.5
Sample Type			SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID
Laboratory data									
Metals									
NRA - Arsenic	µg/l	20		1.9	6.4	1.5	<0.9	2.4	<0.9
NRA-barium	µg/l		4.5	74.7	11	19.8	20.7	57.3	51.2
NRA-beryllium	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
NRA - Boron	µg/l	7000		1090	399	576	649	862	780
NRA - Cadmium	μg/l	0.2	<0.03	0.11	0.15	<0.03	<0.03	<0.03	<0.03
NRA - Chromium	µg/l	4.6		<0.2	2.3	<0.2	<0.2	<0.2	<0.2
NRA - Chromium, Hexavalent	mg/l	0.0006	0.002	0.002	0.003	0.003	0.002	0.002	0.002
NRA Chromium III	mg/l		<0.03	< 0.03	2.3	< 0.03	< 0.03	<0.03	<0.03
NRA - Copper	μg/l	5	66	<3	<3	<3	<3	<3	<3
NRA - Lead	μg/l	7.2	<0.4	<0.4	1	<0.4	<0.4	<0.4	<0.4
NRA - Manganese	μg/l	30		<1.5	<1.5	54.3	<1.5	<1.5	<1.5
NRA - Nickel	μg/l	20		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
NRA - Selenium	μg/l		<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2
NRA - Vanadium	μg/l		0.8	<0.6	22.5	<0.6	<0.6	1.1	<0.6
NRA - Zinc	μg/l	40		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
NRA Mercury disolved by CVAF	μg/l	0.05	0.04	0.02	0.03	0.05	0.06	0.11	0.03
yellow indicates value exceeds WQS									

Appendix G Asbestos Analysis Results

East Tip, Haulbowline Island, Waste Licensing Project

CERTIFICATE OF ANALYSIS

ANALYSIS REQUESTED BY:

WYG Environmental Ltd 1 Locksley Business Park Montgomery Road Belfast BT6 9UP

 CONTRACT NO:
 32524

 PROJECT NO:
 610

 DATE OF ISSUE:
 07.02.13

DATE SAMPLES RECEIVED: 04.02.13

DATE SAMPLES ANALYSED: 07.02.13

SAMPLE DESCRIPTION: Four soil/loose aggregate samples each weighing approximately 1.1-1.2kg.

ANALYSIS REQUESTED: Qualitative and quantitative analysis of soil/loose aggregate samples for mass determination of asbestos.

METHODS:

Qualitative - The samples were analysed qualitatively for asbestos by polarised light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative - The analysis was carried out using our documented in-house method based on HSE Contract Research Report No. 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies *et al*, 1996) and HSG 248. Our method includes initial examination of the entire sample, detailed analysis of a representative sub-sample and quantification by hand picking/weighing and/or fibre counting/sizing as appropriate.

RESULTS:

Initial Screening

Asbestos was detected in all four soil samples by stereo-binocular and polarised light microscopy.

A summary of the qualitative and quantitative results are given in Tables 1 & 2 respectively.

Page 1 of 2

RESEARCH CONSULTING SERVICES

Multi-disciplinary specialists in Occupational and Environmental Health and Hygiene

IOM CONSULTING LIMITED, Research Avenue North, Riccarton, Edinburgh, EH14 4AP, United Kingdom Telephone: +44 (0)131 449 8000, Facsimile: +44 (0)131 449 8084, Email: iom@iom-world.org REGISTERED IN SCOTLAND NO. SC205670. IOM CONSULTING LIMITED IS A WHOLLY OWNED SUBSIDIARY OF THE INSTITUTE OF OCCUPATIONAL MEDICINE, A REGISTERED SCOTTISH CHARITY

RESULTS: (cont.)

Table 1: Qualitative Results

IOM sample number	Client sample number	ACM type detected	PLM result
S20327	TP02 0-0.2	Free Fibres	Amosite
S20328	TP07 0.2-0.7	Bound Insulation	Amosite
S20329	TP21 2-2.5	Bound Insulation	Chrysotile
S20330	TP24 1.5-1.8	Bound Insulation	Chrysotile

Our detection limit for this method is 0.001%.

Table 2: Quantitative Analysis Results

Client Sample Number	Sample weight (g)	% Asbestos by hand picking/weighing	% Asbestos by fibre counting/sizing	Total % Asbestos in Sample
TP02 0-0.2	1184	0.003	-	0.003
TP07 0.2-0.7	1114	0.004	-	0.004
TP21 2-2.5	1092	0.006	-	0.006
TP24 1.5-1.8	1119	0.010	-	0.010

- not applicable

The detection limit for this method is around 0.0001% with a limit of quantification of 0.001%.

COMMENTS:

IOM Consulting cannot accept responsibility for samples that have been incorrectly collected or despatched by external clients.

Any opinions and interpretations expressed herein are outwith the scope of our UKAS accreditation.

Page 2 of 2

Appendix H Laboratory Certificates

East Tip, Haulbowline Island, Waste Licensing Project

WYG

Belfast Northern Ireland BT6 9UP

1 Locksley Business Park

Montgomery Park

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Yvonne Buchanan
Date :	13th February, 2013
Your reference :	A080615-1
Our reference :	Test Report 13/1433 Batch 1
Location :	East Tip - Foreshaw
Date samples received :	4th February, 2013
Status :	Final report
Issue :	1

Twenty eight samples were received for analysis on 4th February, 2013. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

h lun

Bruce Leslie Project Co-ordinator

Rjuiellward

Bob Millward B.Sc Principal Chemist

Client Name:	WYG	2					Report :	Solid					
Reference:	A080615	-1					•						
Location:	East Tip	- Foresha	w				Solids: V=	60g VOC jai	r, J=250g gl	ass jar, T=p	lastic tub		
Contact:		Buchanan						о ,					
JE Job No.:	13/1433												
J E Sample No.	4-6	22-24	34-36	52-54	58-60	64-66	79-81						
Sample ID	FTP 2	FTP 6	FTP 10	FTP 17	FTP 19	FTP 21	FTP 26						
Depth	0-0.2	0.6-1.0	0.1-0.4	1.7-1.9	1.2-1.5	2-2.5	2.2-2.5						
		0.0-1.0	0.1-0.4	1.7-1.5	1.2-1.3	2-2.5	2.2-2.3					e attached ne ations and ac	
COC No / misc													,
Containers	VТ	VT	VТ	VT	VТ	VT	VT						
Sample Date	29/01/2013	29/01/2013	29/01/2013	01/02/2013	01/02/2013	01/02/2013	01/02/2013						
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1						Method
Date of Receipt	04/02/2013	04/02/2013	04/02/2013	04/02/2013	04/02/2013	04/02/2013	04/02/2013				LOD	Units	No.
Arsenic [#]	16.8	13.7	<0.5	28.3	0.5	<0.5	<0.5				<0.5	mg/kg	TM30/PM15
Barium [#]	163	257	665	346	579	884	494				<1	mg/kg	TM30/PM15
Beryllium	1.5	1.1	<0.5	2.0	1.3	<0.5	0.7				<0.5	mg/kg	TM30/PM15
Cadmium [#]	8.1	27.8	1.9	6.2	1.7	0.8	4.7				<0.1	mg/kg	TM30/PM15
Chromium [#]	1317.0	1591.0	2916.0	1060.0	3378.0	3736.0	3824.0				<0.5	mg/kg	TM30/PM15
Copper [#]	1344	1225	639	894	1543	308	1675				<1	mg/kg	TM30/PM15
Lead [#]	1243	2160	440	424	193	99	1048				<5	mg/kg	TM30/PM15
Manganese [#]	13510	20540	27680	12310	28460	37610	10520				<1	mg/kg	TM30/PM15
Nickel [#] Selenium [#]	288.4 5	193.1 6	416.9 7	182.8 5	270.5 9	38.4 11	5770.0 4				<0.7	mg/kg	TM30/PM15 TM30/PM15
	92	104	248	157	388	371	92				<1 <1	mg/kg mg/kg	TM30/PM15
Vanadium Water Soluble Boron [#]	29.9	42.9	240	21.2	19.0	19.0	31.2				<0.1	mg/kg	TM74/PM32
Zinc [#]	10920	22530	1155	2912	721	530	3897				<5	mg/kg	TM30/PM15
Mercury CVAF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7				<0.5	mg/kg	TM61/PM15
,.													
PAH MS													
Naphthalene #	-	-	-	<0.04	0.04	-	-				<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	-	-	<0.03	0.05	-	-				<0.03	mg/kg	TM4/PM8
Acenaphthene #	-	-	-	<0.05	0.84	-	-				<0.05	mg/kg	TM4/PM8
Fluorene [#]	-	-	-	<0.04	0.78	-	-				<0.04	mg/kg	TM4/PM8
Phenanthrene [#] Anthracene [#]	-	-	-	0.27	7.04 2.27	-	-				<0.03 <0.04	mg/kg mg/kg	TM4/PM8 TM4/PM8
Fluoranthene #	-	_	-	0.42	9.30	-	-				<0.04	mg/kg	TM4/PM8
Pyrene #	-	-	-	0.32	6.38	-	-				< 0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	-	-	-	0.22	5.05	-	-				<0.06	mg/kg	TM4/PM8
Chrysene #	-	-	-	0.22	4.32	-	-				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	-	-	-	0.27	5.94	-	-				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	-	-	-	0.12	3.43	-	-				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	-	-	-	0.09	1.96	-	-				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	-	-	-	<0.04	0.69	-	-				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	-	-	-	0.09	1.71	-	-				<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	-	-	2.1 0.19	49.8 4.28	-	-				<0.6 <0.05	mg/kg	TM4/PM8 TM4/PM8
Benzo(b)fluoranthene Benzo(k)fluoranthene	-	-	-	0.08	1.66	-	-				<0.02	mg/kg mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	-	102	104	-	-				<0.02	%	TM4/PM8
A A Controgate /s Necovery													
1		1		1	1	1	1						

Jones Environment	ui Luvo	raiory											
Client Name:	WYG						Report :	Solid					
Reference:	A078423	;											
Location:	Morans [Derry					Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub		
Contact:	Yvonne I	Buchanan											
JE Job No.:	13/1433												
J E Sample No.		22-24	34-36	52-54	58-60	64-66	79-81				İ		
-		FTP 6	FTP 10	FTP 17	FTP 19	FTP 21	FTP 26						
Sample ID													
Depth	0-0.2	0.6-1.0	0.1-0.4	1.7-1.9	1.2-1.5	2-2.5	2.2-2.5					e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VТ	VТ	VТ	VТ	νт	VТ	VТ						
Sample Date	29/01/2013	29/01/2013	29/01/2013	01/02/2013	01/02/2013	01/02/2013	01/02/2013						
Sample Type	Soil												
													1
Batch Number	1	1	1	1	1	1	1				LOD	Units	Method
Date of Receipt	04/02/2013	04/02/2013	04/02/2013	04/02/2013	04/02/2013	04/02/2013	04/02/2013						No.
TPH CWG													
Aliphatics													
>C5-C6 [#]	-	-	-	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	-	-	-	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C8-C10	-	-	-	0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C10-C12 [#]	-	-	-	4.5	<0.2	-	-				<0.2	mg/kg	TM5/PM16
>C12-C16 [#]	-	-	-	47	<4	-	-				<4	mg/kg	TM5/PM16
>C16-C21 #	-	-	-	38	<7	-	-				<7	mg/kg	TM5/PM16
>C21-C35 #	-	-	-	413	144	-	-				<7	mg/kg	TM5/PM16 TM5/TM36/PM12/PM16
Total aliphatics C5-35	-	-	-	503	144	-	-				<19	mg/kg	1Mb/1M3b/PM12/PM16
Aromatics	_	-	-	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C5-EC7 >EC7-EC8	-	-	-	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	-	-	-	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>EC10-EC12 [#]	-	-	-	<0.2	<0.2	-	-				<0.2	mg/kg	TM5/PM16
>EC12-EC16 [#]	-	-	-	<4	<4	-	-				<4	mg/kg	TM5/PM16
>EC16-EC21 #	-	-	-	25	43	-	-				<7	mg/kg	TM5/PM16
>EC21-EC35 #	-	-	-	305	18	-	-				<7	mg/kg	TM5/PM16
Total aromatics C5-35	-	-	-	330	61	-	-				<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	-	-	833	205	-	-				<38	mg/kg	TM5/TM36/PM12/PM16
MTBE [#]	-	-	-	<5	<5	-	-				<5	ug/kg	TM31/PM12
Benzene [#]	-	-	-	<5	<5	-	-				<5	ug/kg	TM31/PM12
Toluene #	-	-	-	<5	<5	-	-				<5	ug/kg	TM31/PM12
Ethylbenzene #	-	-	-	<5	<5	-	-				<5	ug/kg	TM31/PM12
m/p-Xylene #	-	-	-	<5	<5	-	-				<5	ug/kg	TM31/PM12 TM31/PM12
o-Xylene [#]	-	-	-	<5	<5	-	-				<5	ug/kg	110131/P10112
Hovovolopt Chromium	<0.3	0.6	<0.3	<0.3	<0.3	<0.3	<0.3				<0.3	mg/kg	TM38/PM20
Hexavalent Chromium Chromium III	1317.0	1590.4	2916.0	1060.0	3378.0	3736.0	3824.0				<0.3	mg/kg	NONE/NONE
Fraction Organic Carbon	0.017	0.014	0.004	0.015	0.002	<0.001	-				<0.001	None	TM21/PM24
рН #	9.25	10.18	9.32	8.28	8.90	9.47	-				<0.01	pH units	TM73/PM11
											1		

Client Name:	WYG						Report :	NRA Lea	chate				
Reference:	A080615	-1					•						
Location:		- Foresha	w				Solids: V=	60g VOC ia	r, J=250g gl	ass iar T=n	lastic tub		
Contact:		Buchanan					eenuer (00g 100 ja	., o 2009 g.	acc jai, i -p			
JE Job No.:	13/1433	Suchanan											
J E Sample No.	4-6	22-24	34-36	52-54	58-60	64-66	79-81				1		
Sample ID	FTP 2	FTP 6	FTP 10	FTP 17	FTP 19	FTP 21	FTP 26						
Depth	0-0.2	0.6-1.0	0.1-0.4	1.7-1.9	1.2-1.5	2-2.5	2.2-2.5					e attached n ations and a	
COC No / misc											abbievi		cionyma
Containers	VТ	VТ	VТ	VТ	VТ	VТ	VТ						
Sample Date	29/01/2013	29/01/2013	29/01/2013	01/02/2013	01/02/2013	01/02/2013	01/02/2013						
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1						
Date of Receipt					04/02/2013	04/02/2013					LOD	Units	Method No.
											.0.0		TM20/DM14
Dissolved Arsenic	4.7 4.5	1.9 74.7	6.4 11.0	1.5 19.8	<0.9 20.7	2.4 57.3	<0.9 51.2				<0.9 <1.8	ug/l ug/l	TM30/PM14 TM30/PM14
Dissolved Barium Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM30/PM14
Dissolved Boron	668	1090	399	576	649	862	780				<2	ug/l	TM30/PM14
Dissolved Cadmium	<0.03	0.11	0.15	<0.03	<0.03	<0.03	<0.03				<0.03	ug/l	TM30/PM14
Dissolved Chromium	<0.2	<0.2	2.3	<0.2	<0.2	<0.2	<0.2				<0.2	ug/l	TM30/PM14
Dissolved Copper	66	<3	<3	<3	<3	<3	<3				<3	ug/l	TM30/PM14
Dissolved Lead	<0.4	<0.4	1.0	<0.4	<0.4	<0.4	<0.4				<0.4	ug/l	TM30/PM14
Dissolved Manganese	<1.5	<1.5	<1.5	54.3	<1.5	<1.5	<1.5				<1.5	ug/l	TM30/PM14
Dissolved Nickel	4.8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				<0.2	ug/l	TM30/PM14
Dissolved Selenium	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2				<1.2	ug/l	TM30/PM14
Dissolved Vanadium	0.8	<0.6	22.5	<0.6	<0.6	1.1	<0.6				<0.6	ug/l	TM30/PM14
Dissolved Zinc	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM30/PM14
Mercury Dissolved by CVAF	0.04	0.02	0.03	0.05	0.06	0.11	0.03				<0.01	ug/l	TM61/PM38
Chromium III	<0.03	<0.03	2.30	<0.03	< 0.03	<0.03	<0.03				<0.03	mg/l	NONE/NONE
Hexavalent Chromium	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03				<0.03	mg/l	TM38/PM0
												-	

Jones Environmental Laboratory Client Name: WYG SVOC Report : A080615-1 Reference: Location: East Tip - Foreshaw Contact: Yvonne Buchanan

Contact:	Yvonne E	suchanan							
JE Job No.:	13/1433								
J E Sample No.	64-66	79-81							
Sample ID	FTP 21	FTP 26							
Depth	2-2.5	2.2-2.5						e attached n	
COC No / misc							abbrevia	ations and ad	cronyms
Containers	VT	VT							
Sample Date	01/02/2013	01/02/2013							
Sample Type	Soil	Soil							
Batch Number	1	1							Method
Date of Receipt		04/02/2013					LOD	Units	No.
· · · · ·	04/02/2010	04/02/2010							
SVOC MS									
Phenols	x5 dilution	x5 dilution							
2-Chlorophenol	<50	<50					<10	ug/kg	TM16/PM8
2-Methylphenol	<50	<50					<10	ug/kg	TM16/PM8
2-Nitrophenol	<50	<50					<10	ug/kg	TM16/PM8
2,4-Dichlorophenol	<50	<50					<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<50	<50					<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<50	<50					<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<50	<50					<10	ug/kg	TM16/PM8
	<50	<50							TM16/PM8
4-Chloro-3-methylphenol							<10	ug/kg	
4-Methylphenol	<50	<50					<10	ug/kg	TM16/PM8
4-Nitrophenol	<50	<50					<10	ug/kg	TM16/PM8
Pentachlorophenol	<50	<50					<10	ug/kg	TM16/PM8
Phenol	<50	1072					<10	ug/kg	TM16/PM8
PAHs									
2-Chloronaphthalene	<50	<50					<10	ug/kg	TM16/PM8
2-Methylnaphthalene	<50	120					<10	ug/kg	TM16/PM8
Naphthalene	137	429					<10	ug/kg	TM16/PM8
									TM16/PM8
Acenaphthylene	114	167					<10	ug/kg	
Acenaphthene	252	366					<10	ug/kg	TM16/PM8
Fluorene	185	374					<10	ug/kg	TM16/PM8
Phenanthrene	362	1183					<10	ug/kg	TM16/PM8
Anthracene	185	489					<10	ug/kg	TM16/PM8
Fluoranthene	760	1472					<10	ug/kg	TM16/PM8
Pyrene	1036	1427					<10	ug/kg	TM16/PM8
	736	841					<10		TM16/PM8
Benzo(a)anthracene								ug/kg	
Chrysene	854	970					<10	ug/kg	TM16/PM8
Benzo(bk)fluoranthene	699	900					<10	ug/kg	TM16/PM8
Benzo(a)pyrene	468	531					<10	ug/kg	TM16/PM8
Indeno(123cd)pyrene	200	241					<10	ug/kg	TM16/PM8
Dibenzo(ah)anthracene	103	144					<10	ug/kg	TM16/PM8
Benzo(ghi)perylene	245	279					<10	ug/kg	TM16/PM8
Phthalates	-						-	- 3- 3	
	<50	<50					<10	ua/ka	TM16/PM8
Bis(2-ethylhexyl) phthalate								ug/kg	
Butylbenzyl phthalate	<50	<50					<10	ug/kg	TM16/PM8
Di-n-butyl phthalate	<50	<50					<10	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<50	<50					<10	ug/kg	TM16/PM8
Diethyl phthalate	<50	<50					<10	ug/kg	TM16/PM8
Dimethyl phthalate	<50	<50					<10	ug/kg	TM16/PM8
									ļ

Solid

Jones Environmental Laboratory Client Name: WYG SVOC Report : Solid A078423 Reference: Location: Morans Derry Contact: Yvonne Buchanan JE Job No.: 13/1433 J E Sample No. 64-66 79-81

Sample ID	FTP 21	FTP 26							
Depth	2-2.5	2.2-2.5					Please se	e attached n	otes for all
COC No / misc								ations and ad	
Containers	VΤ	VТ							
Sample Date									
Sample Type	Soil	Soil							
Batch Number	1	1							Method
Date of Receipt							LOD	Units	No.
SVOC MS									
Other SVOCs									
1,2-Dichlorobenzene	<50	<50					<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene	<50	<50					<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene	<50	<50					<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene	<50	<50					<10	ug/kg	TM16/PM8
2-Nitroaniline	<50	<50					<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<50	<50					<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene	<50	<50					<10	ug/kg	TM16/PM8
3-Nitroaniline	<50	<50					<10	ug/kg	TM16/PM8
	<50	<50					<10	ug/kg	TM16/PM8
4-Bromophenylphenylether 4-Chloroaniline	<50	<50					<10	ug/kg	TM16/PM8
	<50	<50					<10	ug/kg	TM16/PM8
4-Chlorophenylphenylether 4-Nitroaniline	<50	<50					<10	ug/kg	TM16/PM8
Azobenzene	<50	<50					 <10	ug/kg ug/kg	TM16/PM8
	<50	<50					<10	ug/kg ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<50	<50					<10	ug/kg ug/kg	TM16/PM8
Bis(2-chloroethyl)ether	<50	113					<10	ug/kg ug/kg	TM16/PM8
Carbazole Dibenzofuran	<50	113					<10	ug/kg ug/kg	TM16/PM8
Hexachlorobenzene	<50	<50					<10	ug/kg ug/kg	TM16/PM8
	<50	<50					<10	ug/kg	TM16/PM8
Hexachlorobutadiene	<50	<50					<10		TM16/PM8
Hexachlorocyclopentadiene	<50	<50					<10	ug/kg	TM16/PM8
Hexachloroethane	<50	<50						ug/kg	TM16/PM8
Isophorone							<10	ug/kg	
N-nitrosodi-n-propylamine	<50	<50					<10	ug/kg	TM16/PM8
Nitrobenzene	<50	<50					<10	ug/kg	TM16/PM8
									
									
									
									ļ
									ļ
							,		

Client Name:	WYG
Reference:	A080615-1
Location:	East Tip - Foreshaw
Contact:	Yvonne Buchanan
IE Job No :	13/1/33

JE Job No.:	13/1433								
J E Sample No.	64-66	79-81							
Sample ID	FTP 21	FTP 26							
Depth	2-2.5	2.2-2.5						e attached n	
COC No / misc							abbrevi	ations and a	cronyms
Containers	VΤ	VT							
Sample Date					 				
Sample Type		Soil							
Batch Number	1	1			 		LOD	Units	Method
Date of Receipt	04/02/2013	04/02/2013							No.
VOC MS					 				
Dichlorodifluoromethane	<2	<2			 		<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #	<2	<2			 		<2	ug/kg	TM15/PM10
Chloromethane #	<3	<3			 		<3	ug/kg	TM15/PM10
Vinyl Chloride	<2	<2					<2	ug/kg	TM15/PM10
Bromomethane Chloroethane [#]	<1	<1 <2					<1	ug/kg	TM15/PM10 TM15/PM10
Trichlorofluoromethane #	<2 <2	43					<2 <2	ug/kg ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE) [#]	<2	43 <6					<2	ug/kg ug/kg	TM15/PM10
Dichloromethane (DCM)	<7	<7					<7	ug/kg	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3			 		<3	ug/kg	TM15/PM10
1,1-Dichloroethane #	<3	<3					<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene	<3	<3					<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4					<4	ug/kg	TM15/PM10
Bromochloromethane #	<3	<3					<3	ug/kg	TM15/PM10
Chloroform #	<3	<3					<3	ug/kg	TM15/PM10
1,1,1-Trichloroethane #	<3	227					<3	ug/kg	TM15/PM10
1,1-Dichloropropene #	<3	<3					<3	ug/kg	TM15/PM10
Carbon tetrachloride #	<4	<4					<4	ug/kg	TM15/PM10
1,2-Dichloroethane#	<4	<4					<4	ug/kg	TM15/PM10
Benzene [#]	<3	8					<3	ug/kg	TM15/PM10
Trichloroethene (TCE) #	<3	<3					<3	ug/kg	TM15/PM10
1,2-Dichloropropane #	<6	<6					<6	ug/kg	TM15/PM10
Dibromomethane #	<3	<3					<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3					<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4					<4	ug/kg	TM15/PM10
Toluene #	<3	10					<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3	<3					<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane #	<3	<3					<3	ug/kg	TM15/PM10
Tetrachloroethene (PCE) #	<3	<3					<3	ug/kg	TM15/PM10
1,3-Dichloropropane #	<3	<3			 		<3	ug/kg	TM15/PM10
Dibromochloromethane #	<3	<3					<3	ug/kg	TM15/PM10
1,2-Dibromoethane #	<3	<3			 		<3	ug/kg	TM15/PM10
Chlorobenzene [#]	<3	<3			 		<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane	<3	<3			 		<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	53			 		<3	ug/kg	TM15/PM10
p/m-Xylene #	<6	56			 		<6	ug/kg	TM15/PM10
o-Xylene [#]	<3	36			 		<3	ug/kg	TM15/PM10
Styrene #	<3	30					<3	ug/kg	TM15/PM10
Bromoform [#] Isopropylbenzene [#]	<3	<3 8					<3	ug/kg	TM15/PM10 TM15/PM10
Isopropylbenzene 1,1,2,2-Tetrachloroethane #	<3						<3	ug/kg	1
1,1,2,2-1 etrachioroethane Bromobenzene	<3 <2	<3 <2					<3 <2	ug/kg ug/kg	TM15/PM10 TM15/PM10
Bromobenzene 1,2,3-Trichloropropane	<2	<2					<2		TM15/PM10 TM15/PM10
Propylbenzene [#]	<4 <4	<4 8					<4 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
2-Chlorotoluene	<4	° <3					<3	ug/kg ug/kg	TM15/PM10
1,3,5-Trimethylbenzene #	<3	15			 		<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3			 		<3	ug/kg	TM15/PM10
tert-Butylbenzene #	<5	<5					<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene [#]	<6	60					<6	ug/kg	TM15/PM10
sec-Butylbenzene #	<4	<4					<4	ug/kg	TM15/PM10
4-lsopropyltoluene #	<4	<4					<4	ug/kg	TM15/PM10
1,3-Dichlorobenzene #	<4	<4					<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene #	<4	<4					<4	ug/kg	TM15/PM10
n-Butylbenzene	<4	<4					<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene #	<4	<4					<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane	<4	<4					<4	ug/kg	TM15/PM10
1,2,4-Trichlorobenzene #	<7	<7					<7	ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4					<4	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #						1 7		1 .	
1,2,3-1101000012010	<7	<7			 		<7	ug/kg	TM15/PM10
1,2,3-110110100012010	<7	<7					<7	ug/kg	TM15/PM10

Client Name: WYG

Reference: A080615-1

Location: East Tip - Foreshaw

Contact: Yvonne Buchanan

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
13/1433	1	FTP 17	1.7-1.9	52-54	EPH	Sample received in inappropriate container
13/1433	1	FTP 19	1.2-1.5	58-60	EPH	Sample received in inappropriate container

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 13/1433

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory. It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only accredited when all the requirements of our Quality System have been met. In certain circumstances where the requirements have not been met, the laboratory may issue the data in an interim report but will remove the accreditation, in this instance results should be considered indicative only. Where possible samples will be re-extracted and a final report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance.
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
СО	Suspected carry over
NFD	No Fibres Detected

Method Code Appendix

JE Job No 13/1433

JE JOb No	13/1433						
Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Solid Results expressed on Dry/Wet basis
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	End Over End extraction			AR	DRY
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	End Over End extraction	Yes		AR	DRY
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	End Over End extraction			AR	
TM5	EPH by GC-FID, modified USEPA 8015	PM16	Aliphatic/Aromatic fractionation	Yes		AR	DRY
TM5/TM36	TPH CWG by GC-FID	PM12/PM16	CWG GC-FID			AR	DRY
TM15	VOC - Target by GC-MS, modified USEPA 8260	PM10	VOC GC-MS			AR	DRY
TM15	VOC - Target by GC-MS, modified USEPA 8260	PM10	VOC GC-MS	Yes		AR	DRY
TM16	SVOC - Target by GC-MS, modified USEPA 8270	PM8	End Over End extraction			AR	DRY
TM21	TOC and TC by Combustion	PM24	Eltra preparation			AD	DRY
TM30	Metals by ICP-OES	PM14	Metals by ICP (Waters)			AR	WET
TM30	Metals by ICP-OES	PM15	Aqua Regia extraction (Soils)			AD	DRY
TM30	Metals by ICP-OES	PM15	Aqua Regia extraction (Soils)	Yes		AD	DRY
TM31	BTEX/MTBE by GC-FID, modified USEPA 8015	PM12	GRO GC-FID			AR	DRY
TM31	BTEX/MTBE by GC-FID, modified USEPA 8015	PM12	GRO GC-FID	Yes		AR	DRY
TM36	GRO by Headspace GC-FID	PM12	GRO GC-FID			AR	DRY
TM36	GRO by Headspace GC-FID	PM12	GRO GC-FID	Yes		AR	DRY
TM38	SO4,CI,NO3,NO2,F,PO4, Amm N2,ThioCN, Hex Cr by Aquakem	PM0	No Preparation			AR	WET
TM38	SO4,CI,NO3,NO2,F,PO4, Amm N2,ThioCN, Hex Cr by Aquakem	PM20	1:2 soil to water extraction			AR	DRY
TM61	Mercury - low level CVAF	PM15	Aqua Regia extraction (Soils)			AD	DRY
TM61	Mercury - Iow level CVAF	PM38	Mercury CVAF			AR	WET
TM73	pH in by Metrohm	PM11	1:2.5 soil/water extraction	Yes		AR	WET
TM74	Water Soluble Boron by ICP-OES	PM32	Preparation of soils for WSB	Yes		AD	DRY
NONE	No Method Code	NONE	No Method Code				DRY
NONE	No Method Code	NONE	No Method Code			AR	WET
		<u> </u>					

WYG

Belfast Northern Ireland BT6 9UP

1 Locksley Business Park

Montgomery Park

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Yvonne Buchanan
Date :	25th February, 2013
Your reference :	A080615-1
Our reference :	Test Report 13/1433 Batch 1 Schedule E
Location :	East Tip- Foreshaw
Date samples received :	4th February, 2013
Status :	Final report
Issue :	1

Twenty eight samples were received for analysis on 4th February, 2013. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Phil Sommerton B.Sc Project Manager

Ruielward.

Bob Millward B.Sc Principal Chemist

Client Name:	WYG	raiory					Report :	NRA Lead	chate				
Reference:	A080615	-1											
Location:		Foreshav	v				Solids: V=	60g VOC ia	r. J=250a al	ass iar. T=p	lastic tub		
Contact:		Buchanan							,	j, · · p			
JE Job No.:	13/1433												
J E Sample No.		22-24	34-36	52-54	58-60	64-66	79-81						
Sample ID	FTP 2	FTP 6	FTP 10	FTP 17	FTP 19	FTP 21	FTP 26						
Depth	0-0.2	0.6-1.0	0.1-0.4	1.7-1.9	1.2-1.5	2-2.5	2.2-2.5				Disease		
COC No / misc												e attached no ations and ac	
Containers		VТ	VТ	VТ	VТ	VТ	VT						
Sample Date													
Sample Type		Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number		1	1	1	1	1	1				LOD	Units	Method No.
Date of Receipt	04/02/2013	04/02/2013	04/02/2013	04/02/2013	04/02/2013	04/02/2013	04/02/2013						
Hexavalent Chromium	0.002	0.002	0.003	0.003	0.002	0.002	0.002				<0.002	mg/l	TM38/PM0
											1		1

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 13/1433

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory. It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only accredited when all the requirements of our Quality System have been met. In certain circumstances where the requirements have not been met, the laboratory may issue the data in an interim report but will remove the accreditation, in this instance results should be considered indicative only. Where possible samples will be re-extracted and a final report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance.
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
СО	Suspected carry over
NFD	No Fibres Detected

Method Code Appendix

JE Job No 13/1433

JE JOD NO	10/1400						
Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Solid Results expressed on Dry/Wet basis
TM38	SO4,Cl,NO3,NO2,F,PO4, Amm N2,ThioCN, Hex Cr by Aquakem		No Preparation				
	<u> </u>						
	<u> </u>						

Detailed Quantitative Risk Assessment Addendum Foreshore

East Tip, Haulbowline Island, Waste Licensing Project