

Summary of Section 2.4.5, page 84-87 of the Drehid Waste Management Facility Intensification and Extension EIS – (ABP Reference PL09.PA0004)

### Aquifer Potential

The groundwater flow characteristics within the limestones underlying the site are dominated by secondary permeability, i.e. fissure flow. There is effectively no primarily permeability (inter-granular permeability) in these rocks.

As part of this hydrogeological investigation of the aquifer potential a 72 hour pump test was carried out to determine the characteristics of the aquifer. The pump test was undertaken on borehole GW6. Before the pump test began the static water level (SWL) in all monitoring boreholes was recorded to act as a datum for measurement during the test. The water levels in all boreholes were measured periodically to determine if the pumping was resulting in a radial cone of depression as a result of drawdown from the pumped borehole.

The pump test was undertaken by pumping from GW6, which was drilled to a finished 150mm diameter borehole. The other boreholes installed at the site were monitored during the course of the pump test to observe any water level fluctuations. The discharge drawdown data from the pump test are included in Appendix 2.4.7.

The only water level fluctuation in the observation wells was recorded in monitoring wells BH1D and BH1S, which are approximately 35m from the pumping well. A drawdown of 1.53 m was achieved in BH1D with a drawdown of 0.6 m being achieved in borehole BH1S indicating the pumping and drawdown only had a very localized effect.

The peak pump rate measured during the test was 56m³/day. The pump rate of 43m³/day was used for calculations as an average pump rate maintained during the log cycle in which the data was interpreted (i.e. 10 to 100 minutes), due to slight fluctuation in discharge during the test. These fluctuations in pumping rate are discussed below.

Due to slight variation in the pumping rates observed during the test, the pumping rate used in the Jacob Calculation was correlated with the pumping rate observed during a full log cycle. A value of  $43\text{m}^3$ /day was used for the calculation of the aquifer transmissivity in the 10 to 100 minutes log. The drawdown per log cycle during the 10 to 100 minutes log cycle was 37.2m (with actual observed drawdown between 25 and 27 m, however as per the Jacob Method the drawdown per log cycle is used). Therefore, the figures used for calculating the Transmissivity are a drawdown per log cycle of 37.2m and the pumping rate of  $43\text{m}^3$ /day, giving a calculated transmissivity of 0.215 m²/day (See Calculation Appendix 2.4.8).

Following 100 minutes of pumping the drawdown in the well began to vary, making the determination

of a straight line slope for calculation difficult. A similar slope (and hence Transmissivity value) is noted from 1709 minutes to 2909 minutes. Notwithstanding the slight variation, the drawdown in the pumped well was at a relatively steady-state (though oscillating) at a level between 23m and 27m (with an approximate average value of 25m).

A Logan Approximation calculation which relates transmissivity to the pumping rate and steady-state drawdown in a well was applied to this data for pumping after 100 minutes. The Logan Approximation was deemed an appropriate method to approximate the aquifer transmissivity due to the slight variation in drawdown in the pumped well. The values used were a pumping rate 48.5 m³/day (an average pumping rate over the 100 to 4349 minute period) and a drawdown of 25 m. This Logan calculation gave a transmissivity result of 2.37 m²/day, presented as a rounded value of 2 m²/day. The calculated specific capacity of the pumping well is 1.94 m³/day/m, using the above values of the average mid to late pumping rate of 48.5 m³/day and an average drawdown of 25 m. This means the well would be classified as Well Productivity Class V (the lowest classification), as per the Geological Survey of Ireland well classification system.

An additional analysis of the pump test data was undertaken using a simplified Thiem Equation formula. This simplified Thiem equation was derived by Aslibekian (1998) and is normally applied to steady radial flow in a confined aquifer in typical Irish Aquifers. The simplified Thiem Equation gave a transmissivity result of 2.31 m²/day, confirming the values obtained through other methods of data interpretation. (See calculation, Appendix 2.4.8)

The values for Transmissivity calculated from drawdown data from GW6 are presented below in Table 1.

**Table 1:** Transmissivity Values from Drawdown Data from GW6PW

|                         | Jacob Straight | Logan         | Aslibekian  |            |
|-------------------------|----------------|---------------|-------------|------------|
| Analytical              | Line           | Approximation | (simplified | Arithmetic |
| Method used             | (10 to 100     | (100-4349     | Thiem       | Mean       |
|                         | minutes)       | minutes)      | Equation)   |            |
| T (m <sup>2</sup> /day) | 0.215          | 2.37          | 2.31        | 1.7        |

The recovery period of the aquifer pump test was monitored and the data interpreted using the Jacob Straight Line Method using a semi-log plot of residual drawdown (s') vs. t'/t (time since cessation of pumping divided by time since commencement of pumping). The recovery period was 210 minutes long with water levels recovering from a drawdown of 25.93 m to within 1.37 m of zero drawdown (the SWL prior to the test).

Monitoring of the data ceased after continuous monitoring of the data curve showed there was sufficient data to allow an analysis to be carried out and due to the incrementally slower recovery

which always occurs in the final metre of any recovery test, but which is more due to well effects than aquifer response.

Analysis of the graphs showed three subtly different slopes for late, mid and early points in the recovery (highest values of t'/t are early time, lowest values are late time). Values of transmissivity were calculated using the highest pumping rate observed of 56m³/day and also the average pumping rate over the 72 hours of 49m³/day. The calculated values of transmissivity for the recovery data are presented below in Table 2. The transmissivity data from the recovery data is in agreement with the values determined from the pump test drawdown data, with transmissivity values of approximately 2m²/day (See Graph and Calculations in Appendix 2.4.8).

Table 2: Transmissivity Values from Recovery Data from GW6PW

| Pumping Rate        | Late                    | Mid                     | Early      | Average                 |
|---------------------|-------------------------|-------------------------|------------|-------------------------|
| m <sup>3</sup> /day | T (m <sup>2</sup> /day) | T (m <sup>2</sup> /day) | T (m²/day) | T (m <sup>2</sup> /day) |
| 56.68               | 3.84                    | 1.7                     | 0.72       | 2.09                    |
| 49.14               | 3.3                     | 1.47                    | 0.62       | 1.81                    |

Analysis of drawdown data from observation well GW1D gave calculated transmissivity of 16 m<sup>2</sup>/day. Analysis of recovery data using the two pumping rates resulted in transmissivity values in general agreement with the values calculated using drawdown data, with values of 16.06 and 18.5 m<sup>2</sup>/day being calculated, as presented in Table 3.

Table 3: Transmissivity values from recovery data at observation well GW1D

| Pumping Rate        | Average                 |
|---------------------|-------------------------|
| m <sup>3</sup> /day | T (m <sup>2</sup> /day) |
| 56.68               | 18.5                    |
| 49.14               | 16.06                   |

A distance drawdown analysis was carried out by plotting the two data points on a semi-log plot (using 25 m as the steady drawdown for the pumping well and 1.53m as the maximum drawdown for GW1) the straight line intercepts the zero drawdown line at 19.6 m from the pumping well. This indicates that the zone of depression induced by pumping extends approximately 20m. While this is a correctly calculated value, it is most likely not a valid number given the very low drawdowns achieved. It does however demonstrate that the cone of depression is quite restricted in area due to the low Transmissivity of the bedrock aquifer.

When a Jacob Straight Line analysis is applied, using the distance drawdown method using the maximum and averaged pumping rates over the test, the calculated transmissivity values of 0.76 and 0.88 m<sup>2</sup>/day (as presented in Table 4) are in general agreement with values calculated with the Jacob Drawdown and Recovery and Aslibekain Calculations above.

Table 4: Transmissivity Values from Distance Drawdown Analysis

| Pumping Rate        | Average                 |
|---------------------|-------------------------|
| m <sup>3</sup> /day | T (m <sup>2</sup> /day) |
| 56.68               | 0.88                    |
| 49.14               | 0.76                    |

No appreciable drawdowns were detected in the other monitoring boreholes. While minor water level fluctuations occurred these cannot logically be related to the pumping well, with SWLs actually increasing (GW5D) and one well (GW4S) showing a decrease in water levels of 0.19 m and then an increase in water levels after 2000 minutes, halfway through the pumping period (see graphs in Appendix 2.4.8).

### Discussion of Results

Although on-paper there is an order of magnitude difference between the calculated transmissivity values for Mid and Late pumping time values the numbers are only important in that they express that the transmissivity is low. The calculated transmissivity values for the pumping well of 0.2 m²/day (for drawdown) to 2 m²/day (for recovery) at GW6 and 16 m²/day (for drawdown) and 18.5m²/day (for recovery) at observation well GW1D are typical of the Waulsortian Limestone in the northern half of Ireland. These values concur with transmissivity values ranging from 0.3 to 115m²/day with a 50<sup>th</sup> Percentile value of 10m²/day (Aslibekian 1998) for the Waulsortian elsewhere in the Midlands. The consistency of the results allows for a high degree of confidence in the Transmissivity value presented as being in the region of 2 to 16 m²/day, with the transmissivity value of 2m²/day from the pumping well being the most representative of the aquifer.

APPENDIX 2.4.7
Pump Test Data

Consent of condition of the condition of th

## **Pumping**



## **Pumping**



APPENDIX 2.4.8 Pump Test Calculation Sheets and Graphs

Consent of congrided congrided to the consent of congrided congrided to the congrida

# Drawdown and Pumping Rate at Pumping Well GW6 Drehid





EPA Export 15-08-2013:23:44:58

## Recovery Data plot for GW6PW Drehid Showing Jacob Slopes used for Calculations



| Proje          | ct Sheet.                            |                                                                        |                | Tab Sheet           | de j a 2      |
|----------------|--------------------------------------|------------------------------------------------------------------------|----------------|---------------------|---------------|
|                | S<br>RUMIEDIOMEERS<br>1731           | BNM-DREHID LANDA<br>TES-GWG PUMP ?<br>RECOVERY T-CALCS                 |                | Foxum               | ed Shooned    |
| . 29 (Height ) |                                      | STRAISHIT LINE RECOVER  2-3 GL HTTYAS'                                 | ry Formula     |                     | Albeit/Astron |
|                | Q = 0                                | LANGE IN RESIDUAL DRAWDO<br>LANGRAGE PUMP RATE A<br>148-40 m3 PUMPED O | FOR TEST ( W   | (d)                 |               |
| LATE           | =                                    | 49.14 m3/d<br>2.9m - 0.2m<br>2.3 × 49.14 m3/o<br>49 × 2.7m             | = 2 7 m        | 4,320 minus         | 5)            |
| MID<br>TIME    |                                      | 2.3 × 49.74 m3/cs<br>497-00 6.1m                                       | = 6.0          | 7 m3/d              |               |
| EARLY<br>TIME  | 15' =<br>T' =                        | 27.3m-12.8m<br>2-3 × 49.14m3/cl<br>49-×14.5m                           | = /4.5         | 2 m <sup>2</sup> /d |               |
|                | LATTE TIME<br>MID TIME<br>EARLY TIME | T= 1.4                                                                 | 33m4el<br>7m4k |                     |               |
|                | MEAN                                 | T= 1-8                                                                 | 1 m2/d         |                     |               |

THE STORY AND THE CHRISTIANS AND AREA OF ANCINARDS TOWN CORPORATE PARK, THER IN IS,

| Project S    | heet           |              |                     |                | 1 Down     | 2 2                             |
|--------------|----------------|--------------|---------------------|----------------|------------|---------------------------------|
| TES          |                | BNM - DREHIL | LANDFILL            | S. CONTRACTOR  | Land Falls |                                 |
| 4.6-2-2 (30) | orthodological | TES-GW       |                     | Hiller . I a   | 11         | at Daniel                       |
| The design   | 1131           | RECOVERY T   | CALCS               | There is the   | R          | V                               |
| 10 100       | IF Char        | = 56.68,     | u³/d                |                |            | $\{(J_{j+1}, \dots, J_{j+1})\}$ |
| LATE TIME    | See a see      | 2.7m         |                     |                |            |                                 |
| 7715012      | T =            | 2.3 × 3      | 56.68 m³/el<br>2.7m | ,<br>- = 3<br> | 84 m²/d    |                                 |
| MID<br>TIME  | ss' =          |              |                     |                |            |                                 |
| 11MC         | 7 =            | 2·3 ×50      | 6-68 m³/cl<br>6-1 m | therise. /.    | 70mc2/cl   |                                 |
| EARLY        | $\Delta s' =$  | 14.5m        | obsessoft for o     | it).           |            |                                 |
|              | T =            | 2.3 × 56.    | Co. 10              | = 0.7          | 72 m²/el   |                                 |
| Ri           | SOULTS US      | SING- COMMAN | = 56.68             | u3/d.          |            |                                 |
| 1            | ATE TIME       | 7=           | 3.84 m2/            | d              |            |                                 |
| 1            | 10 TIME        |              | 1.70m2              |                |            |                                 |
| E            | aby Time       | T=           | 0-72 m2             | (d             |            |                                 |
| L            | EAN            | T=           | 2.09 m2             | /d             |            |                                 |
|              |                |              |                     |                |            |                                 |
|              |                |              |                     |                |            |                                 |

2) STATE FOR A STATE OF A STATE O

| Project Sheet:        | The Small of                                                                                              |
|-----------------------|-----------------------------------------------------------------------------------------------------------|
| TES  OCOMPAGNICAMINAS | BNM-DREHID LANDFILL House In the Market I'm                           |
| T = q                 | 27 ( 1 x / (2/me)                                                                                         |
| rao                   | EIFIC CAPACITY $(m^3/d/m) = \frac{48.5  m^3/d}{25  m} = 1.94  m$<br>Bus of BOREHOLE TOBE $(m) = 0.130  m$ |
| E = RE                | CHARGE RATE ( $m^3/cl$ ) = 48.5 $m^3/cl$ CHARGE RATE ( $m/cl/m^2$ ) = 5×10-4 /d/m <sup>2</sup>            |
| N BAPER -             | 1-94m3/d/m × /11 (2007 mot ) 17 x 5 × 10 4 d/m²)                                                          |
|                       | 1-94 m3/d/more of one (1,7572 × 103)                                                                      |
|                       | 1.94 m3/d/m x 7-472<br>277                                                                                |
|                       | 2.31 m²/d                                                                                                 |
|                       |                                                                                                           |
|                       |                                                                                                           |

THE TENTON TO SELECT THE SECURITION OF THE PART OF THE

## Recovery Test data at BH1D Showing Jacob Slope used for Calculations





(S) DEDOLONG REPORTED THE COLUMN THE SECTION OF THE PARTY OF THE PARTY

## Drawdown Data at GW1D Showing Jacob Slopes used for Calculations



| Projec      | t Sheet:                         |                                                        |                                       |                        | in                | Squet Plo        |
|-------------|----------------------------------|--------------------------------------------------------|---------------------------------------|------------------------|-------------------|------------------|
| TE          |                                  | i'm steril                                             | named the same                        | Dresign.               |                   | feerigka, Mo     |
|             | enki terkuru filot               | 1                                                      |                                       | Manager                | *                 | Onfe             |
|             | ****                             | Forward TES-近い                                         | PUMP TEST                             | Lefermone Lug          |                   | Property Checked |
| Provid      | 1/3/                             | SWID - DRAWD                                           | DOWN T-CALC                           | Diffusi Elisconii      |                   |                  |
| ideasse     | 1                                | STRAIGHT LIMI                                          |                                       |                        | - And the grounds | Cange (CA) St Ma |
|             | 1                                | 2.3Q<br>ATTA-S                                         | Q                                     | = PUMPIN<br>S = DHAWDO | G RATE<br>WAS PER | hild Los eque    |
| TIME        | R =                              | 43.6 m³/d                                              |                                       |                        |                   |                  |
| numites     | (                                | Slope line int<br>21 minutes, u<br>would not ma        | lensects Zeo<br>se s=0 a<br>ke seuse) | o chawelous negative   | on at<br>Value    |                  |
|             | · / · · · ·                      | 2-3×43.6                                               | 67m                                   | 11.9                   | m²/d              |                  |
| ATE<br>TIME | 115 =                            | 2.3×43.6<br>477×0.<br>477×0.<br>1.26m-6,86,<br>2.3×48. | $n = 5m^3/d$                          | O. Am                  |                   |                  |
|             | RESULTS. EARLY TIM LATE TIM MEAN | E  T = $E  T = $ $T =$                                 |                                       | ld                     |                   |                  |
|             |                                  |                                                        | ment of                               |                        |                   |                  |

TES CONSULTIVIS ENCINETERS, INIT 48 S. BLANCHARDSTOWN CORP. MALE PARK, DUBLIN 16. No. of BORDAY, LANGUEST OF MALE STREET, MARIE STREET, MARIESTANDO DE MARIE

Suc English

## Zero Drawdown analysis using GW6 & GW1D



| Projec           | ot Sheet             |                                             |                      | , "ial | Stem It          |
|------------------|----------------------|---------------------------------------------|----------------------|--------|------------------|
|                  | S                    | D 4 D 1.                                    | $t \approx u_{ij}$ , |        | Position No      |
| İ                | 1000 - 100 3/4 0 100 | BUM-DREHIO LANDFILL                         | At to-               | +      | Cate.            |
| 1                | 1.7/31               | DISTANCE DRANDOWN ANALYSIS<br>GWS + GWID    | Other teachers.      |        | Propert Constant |
| 15 9000 - 1<br>1 | JACOB                | DISTANCE DRAWDOWN                           |                      |        | ગ ધૂકાત હૈ જાતા. |
|                  | Q =                  | -5 in GW6 = 25<br>49.14 m3/d                | 5m                   |        |                  |
|                  |                      | 56.68m3/d                                   | O                    |        |                  |
|                  |                      | 27t as                                      | TANCE DIRA           | WDOWN  | TORMULA          |
|                  | 213 =                | DRAWDOWN PER LOG C                          | ycle.                |        |                  |
|                  | 15,-10 =             | 25.0 m - 5.6 m                              | in other 19.         | 4 m    |                  |
| 5                | -/-==                | 2-3 > 4.3 milled in 2 / 2 / 4 m 2 / 2 / 4 m | <u>d</u> = 0         | .927   | in /d            |
| Q.               | 7 =:                 | 2-35th > 56.68m3/d<br>27 × 19.4             | ecm-ng               | 1.069  | 1 m2/ol          |
|                  | RESULTS              |                                             |                      |        |                  |
|                  | 7 =                  | 0.927 m2/d                                  |                      |        |                  |
|                  | 7 =                  | 1.069 m/d                                   |                      |        |                  |
|                  | MEAN                 | T = 0.998  m                                | e/d                  |        |                  |
|                  |                      | $t'=lm^2/d$                                 |                      |        |                  |

TES CONSTITUTE ENGINEERS OUT 1815 BLANCHARDS TOWN TO SEPORATE PARK DURING SEPTEMBER OF THE BUTTON OF THE SETTEMBER OF THE SET

# Pump Test Drawdown & Recovery Plot FTC Borehole BH9 Drehid TES PLOT



| Projec             | t Sheet:                                                           | y                                       | her Typer | sa (iii       |
|--------------------|--------------------------------------------------------------------|-----------------------------------------|-----------|---------------|
| TES                | DIVINI - DRENID LANDFILL SAME                                      | ing.                                    | Noveic    | trilio.       |
| October 4          | 1. 31                                                              | adenin log<br>ar Berend                 | - Ki      |               |
| trienceman,        | JACOB STRAIGHT LINE FERMULA                                        |                                         |           | - intentional |
| -                  | $T = \frac{2.3Q}{4Tas}$ $Q = P_{UM}$                               |                                         |           |               |
| D<br>EMRLY<br>TIME | Q = 136.12m3/d<br>Asso-100 = 1.67m - 0.78m = 0                     |                                         |           |               |
|                    | 7= 2.3 × 136.12 m3/d = 28                                          |                                         |           |               |
| NID.               | Q = 170.24 m3/d                                                    | ise.                                    |           |               |
| TIME               | 1.5,0-100 = 2.59m-1.65m = 00.00                                    | 94 m                                    | ( FROM G  | reaph)        |
|                    | T = 2.3 × 170:24 m3 Reliev = 35                                    | 3.15 m                                  | 3/6/      |               |
| (3)                | Q = 170.24 m3/d                                                    |                                         |           |               |
| LATE               | A/S100-1000 = 04.00m-1.27m = 2                                     | 2-73m                                   | (FROM     | GRAFH)        |
|                    | $T = \frac{2.3 \times 170.24  \text{m}^3/d}{4\pi \times 2.73} = 1$ |                                         |           |               |
|                    | RESULTS:                                                           |                                         |           |               |
|                    | EARLY TIME T = 28.64 mi                                            | 2/2                                     |           |               |
|                    | MID TIME T = 33.15 M                                               | 100000000000000000000000000000000000000 |           |               |
|                    | LATE TIME T= 11.41 m2                                              | 1d                                      |           |               |
|                    | MEAN T = 24-40 N                                                   | $^{2}/d$                                |           |               |
|                    |                                                                    |                                         |           |               |

TO FOUND TIME ENGINEEERS, UNIT 4BF, SLANCHARDSTOWN CORPORATE PARK, DUBLIN 15.

# Recovery Data Plot FTC Borehole BH9 Drehid Showing Jacon Slopes used for Calculations TES PLOT





THE CHARGE THE CONTROL NEEDS. THE ABOUT ABOUT THE PROPERTY OF THE PARK TO THE IN THE CONTROL OF THE PARK TO THE PARK THE

## Drawdown at Piezometers Drehid Pump Test



## **APPENDIX B**

**Air Emissions Tables** (Tables E.1(ii) and E.1(iii))

(iii),

(onsent of copyright owner required for any other use.

## **ANNEX 1 STANDARD FORMS**

Standard forms are provided in this section for the recording and presentation of environmental monitoring and site investigation results

# TABLE E.1(i) LANDFILL GAS FLARE EMISSIONS TO ATMOSPHERE Emission Point: Not Applicable

| Emission Point Ref. Nº:           | Not Applicable                      |
|-----------------------------------|-------------------------------------|
| Location:                         |                                     |
| Grid Ref. (12 digit, 6E,6N):      | g.·                                 |
| Vent Details                      | alter use                           |
| Diameter:                         | tion diffoses of the day ofter use. |
| Height above Ground(m):           | rion purpequite                     |
| Date of commencement of emission: | For inspection where                |

### **Characteristics of Emission**:

| СО                      |         |         |                                      | mg/m <sup>3</sup>                                   |
|-------------------------|---------|---------|--------------------------------------|-----------------------------------------------------|
| Total organic carbon (T | OC)     |         |                                      | mg/m <sup>3</sup>                                   |
| NOx                     |         | 0°C. 39 | 6 O <sub>2</sub> (Liquid or Gas), 6% | mg/Nm <sup>3</sup><br>6 O <sub>2</sub> (Solid Fuel) |
| Maximum volume of e     | mission |         |                                      | m³/hr                                               |
| Temperature             | °C      | C(max)  | °C(min)                              | °C(avg)                                             |

| Periods of Emission (avg) | min/hr | hr/day | day/yr |
|---------------------------|--------|--------|--------|
|---------------------------|--------|--------|--------|

### MAIN EMISSIONS TO ATMOSPHERE (1 Page for each emission point) TABLE E.1(ii)

| Emission Point Ref. Nº:      | A2-7A* (MBT Configuration B) Refer to Figure 3B (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|-----------------------------------------------------------------------------------------------------------|
| Source of Emission:          | СНР                                                                                                       |
| Location:                    | CHP Building (Refer to Figure 3B in Appendix 6 of the Waste Licence Application Attachments)              |
| Grid Ref. (12 digit, 6E,6N): | 274695E, 230602N                                                                                          |
| Vent Details Diameter:       | 0.5                                                                                                       |
| Height above Ground(m):      | 20                                                                                                        |
| Date of commencement:        | TBC                                                                                                       |

<sup>\*</sup>CHP Emission Points A2-7A & A2-7B feed into a single stack.

Characteristics of Emission:

| (i) Volume to be emitted:                  |                         |                     |                          |  |  |
|--------------------------------------------|-------------------------|---------------------|--------------------------|--|--|
| Average/day                                | FORMAN                  | Maximum/day         | 74,712 m <sup>3</sup> /d |  |  |
| Maximum rate/hour                          | 31913 m <sup>3</sup> /h | Min efflux velocity | m.sec <sup>-1</sup>      |  |  |
| (ii) Other factors                         |                         |                     |                          |  |  |
| Temperature                                | °C(max)                 | °C(min)             | 427°C(avg)               |  |  |
| For Combustion Source Volume terms express |                         | t. √dry. 5%         | $\mathrm{O}_2$           |  |  |

### MAIN EMISSIONS TO ATMOSPHERE (1 Page for each emission point) TABLE E.1(ii)

| Emission Point Ref. Nº:      | A2-7B* (MBT Configuration B) Refer to Figure 3B (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|-----------------------------------------------------------------------------------------------------------|
| Source of Emission:          | СНР                                                                                                       |
| Location:                    | CHP Building (Refer to Figure 3B in Appendix 6 of the Waste Licence Application Attachments)              |
| Grid Ref. (12 digit, 6E,6N): | 274695E, 230602N                                                                                          |
| Vent Details Diameter:       | 0.5                                                                                                       |
| Height above Ground(m):      | 20                                                                                                        |
| Date of commencement:        | TBC                                                                                                       |

<sup>\*</sup>CHP Emission Points A2-7A & A2-7B feed into a single stack.

Characteristics of Emission:

| (i) Volume to be emitted:                  |                          |                     |                          |  |  |
|--------------------------------------------|--------------------------|---------------------|--------------------------|--|--|
| Average/day                                | For mily a               | Maximum/day         | 74,712 m <sup>3</sup> /d |  |  |
| Maximum rate/hour                          | 3.1913 m <sup>3</sup> /h | Min efflux velocity | m.sec <sup>-1</sup>      |  |  |
| (ii) Other factors                         |                          |                     |                          |  |  |
| Temperature                                | °C(max)                  | °C(min)             | 427°C(avg)               |  |  |
| For Combustion Source Volume terms express |                          | t. √dry. 5%         | ${ m O}_2$               |  |  |

| Periods of Emission (avg)  | 60 min/hr | 24 l         | hr/day | 365 | day/yr |
|----------------------------|-----------|--------------|--------|-----|--------|
| 1 chods of Elmission (avg) | oo miii/m | <b>2</b> 7 1 | in/day | 303 | day/yi |

| Emission Point Ref. Nº:      | A2-1 (MBT Configuration A) Refer to Figure 3A (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                               |
| Location:                    | Biofilter/Odour Abatement Building No.1                                                                 |
| Grid Ref. (12 digit, 6E,6N): | 274760E, 230585N                                                                                        |
| Vent Details Diameter:       | 1.5                                                                                                     |
| Height above Ground(m):      | 20                                                                                                      |
| Date of commencement:        | TBC                                                                                                     |

| Characteristics of Em | ission:                           | E off any other     |                             |
|-----------------------|-----------------------------------|---------------------|-----------------------------|
|                       |                                   | soff and            |                             |
| (i) Volume to be o    | emitted:                          | philose direct.     |                             |
| Average/day           | m <sup>3</sup> vd o <sup>st</sup> | Maximum/day         | 2,245,608 m <sup>3</sup> /d |
| Maximum rate/hour     | 935675m³/h                        | Min efflux velocity | m.sec <sup>-1</sup>         |
| (ii) Other factors    | Consent                           |                     |                             |
| Temperature           | °C(max)                           | °C(min)             | 16°C(avg)                   |
| For Combustion Source | ces:                              |                     |                             |
| Volume terms express  | sed as:                           | t. √dry.            |                             |

| Periods of Emission (avg) | 60 min/hr | 24 hr/day | y 365 day/yr |
|---------------------------|-----------|-----------|--------------|
|---------------------------|-----------|-----------|--------------|

| Emission Point Ref. Nº:      | A2-2 (MBT Configuration A) Refer to Figure 3A (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                               |
| Location:                    | Biofilter/Odour Abatement Building No.1                                                                 |
| Grid Ref. (12 digit, 6E,6N): | 274783E, 230585N                                                                                        |
| Vent Details Diameter:       | 1.5                                                                                                     |
| Height above Ground(m):      | 20                                                                                                      |
| Date of commencement:        | TBC                                                                                                     |

## **Characteristics of Emission:**

|                           |                         | 74. vg              |                             |  |  |
|---------------------------|-------------------------|---------------------|-----------------------------|--|--|
| (i) Volume to be emitted: |                         |                     |                             |  |  |
| Average/day               | m³/d.oñ                 | Maximum/day         | 2,245,608 m <sup>3</sup> /d |  |  |
| Maximum rate/hour         | 93567 m <sup>3</sup> A1 | Min efflux velocity | m.sec <sup>-1</sup>         |  |  |
| (ii) Other factors        | asent of co.            |                     |                             |  |  |
| Temperature               | °C(max)                 | °C(min)             | 16°C(avg)                   |  |  |
| For Combustion Sources:   |                         |                     |                             |  |  |
| Volume terms express      | sed as: □ we            | t. $\sqrt{dry}$ .   |                             |  |  |

| Periods of Emission (avg) | 60 min/hr | 24 | hr/day | 365 | day/yr |
|---------------------------|-----------|----|--------|-----|--------|
|                           |           |    |        |     | J, J = |

| Emission Point Ref. Nº:      | A2-3 (MBT Configuration A) Refer to Figure 3A (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                               |
| Location:                    | Biofilter/Odour Abatement Building No.2                                                                 |
| Grid Ref. (12 digit, 6E,6N): | 274872E, 230585N                                                                                        |
| Vent Details Diameter:       | 0.9                                                                                                     |
| Height above Ground(m):      | 20                                                                                                      |
| Date of commencement:        | TBC                                                                                                     |

## **Characteristics of Emission:**

| <u></u>                   |              |                     |                             |  |
|---------------------------|--------------|---------------------|-----------------------------|--|
| (i) Volume to be emitted: |              |                     |                             |  |
| Average/day               | m³/d.oñ      | Maximum/day         | 1,146,288 m <sup>3</sup> /d |  |
| Maximum rate/hour         | 47763 m. A   | Min efflux velocity | m.sec <sup>-1</sup>         |  |
| (ii) Other factors        | asent of con |                     |                             |  |
| Temperature               | °C(max)      | °C(min)             | 16°C(avg)                   |  |
| For Combustion Sources:   |              |                     |                             |  |
| Volume terms express      | sed as: □ we | t. √dry.            |                             |  |

| Periods of Emission (avg) | 60 min/hr | 24 | hr/day | 365 | day/yr |
|---------------------------|-----------|----|--------|-----|--------|
|                           |           |    |        |     | J, J = |

| Emission Point Ref. Nº:      | A2-4 (MBT Configuration A) Refer to Figure 3A (Appendix 6 of the Waste |
|------------------------------|------------------------------------------------------------------------|
|                              | Licence Application Attachments)                                       |
| Source of Emission:          | Biofilter                                                              |
| Location:                    | Biofilter/Odour Abatement Building No.2                                |
| Grid Ref. (12 digit, 6E,6N): | 274885E, 230585N                                                       |
| Vent Details Diameter:       | 0.9                                                                    |
| Height above Ground(m):      | 20                                                                     |
| Date of commencement:        | TBC LEETING.                                                           |

## **Characteristics of Emission:**

| (i) Volume to be emitted: |                            |                     |                             |  |
|---------------------------|----------------------------|---------------------|-----------------------------|--|
| Average/day               | of com <sup>3</sup> /d     | Maximum/day         | 1,146,288 m <sup>3</sup> /d |  |
| Maximum rate/hour         | con47762 m <sup>3</sup> /h | Min efflux velocity | m.sec <sup>-1</sup>         |  |
| (ii) Other factors        |                            |                     |                             |  |
| Temperature               | °C(max)                    | °C(min)             | 16°C(avg)                   |  |
| For Combustion Sources:   |                            |                     |                             |  |
| Volume terms express      | sed as: □ we               | t. $\sqrt{dry}$ .   |                             |  |

| Periods of Emission (avg) | 60 min/hr 24 | 4 hr/day 365 day/yr |
|---------------------------|--------------|---------------------|
|---------------------------|--------------|---------------------|

| Emission Point Ref. Nº:      | A2-5 (MBT Configuration A) Refer to Figure 3A (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                               |
| Location:                    | Biofilter/Odour Abatement Building No.3                                                                 |
| Grid Ref. (12 digit, 6E,6N): | 274798E, 230756N                                                                                        |
| Vent Details Diameter:       | 1.4                                                                                                     |
| Height above Ground(m):      | 20                                                                                                      |
| Date of commencement:        | TBC                                                                                                     |

## **Characteristics of Emission:**

|                           |                         | 74. vg              |                             |  |
|---------------------------|-------------------------|---------------------|-----------------------------|--|
| (i) Volume to be emitted: |                         |                     |                             |  |
| Average/day               | m³/d.oñ                 | Maximum/day         | 2,250,384 m <sup>3</sup> /d |  |
| Maximum rate/hour         | 93766 m <sup>3</sup> A1 | Min efflux velocity | m.sec <sup>-1</sup>         |  |
| (ii) Other factors        | asent of co.            |                     |                             |  |
| Temperature               | °C(max)                 | °C(min)             | 16°C(avg)                   |  |
| For Combustion Sources:   |                         |                     |                             |  |
| Volume terms express      | sed as: □ we            | t. $\sqrt{dry}$ .   |                             |  |

| Periods of Emission (avg) | 60 min/hr 24 | hr/day 365 day/yr |
|---------------------------|--------------|-------------------|
|---------------------------|--------------|-------------------|

| Emission Point Ref. Nº:      | A2-6 (MBT Configuration A) Refer to Figure 3A (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                               |
| Location:                    | Biofilter/Odour Abatement Building No.3                                                                 |
| Grid Ref. (12 digit, 6E,6N): | 274821E, 230756N                                                                                        |
| Vent Details Diameter:       | 1.4                                                                                                     |
| Height above Ground(m):      | 20                                                                                                      |
| Date of commencement:        | TBC                                                                                                     |

## **Characteristics of Emission:**

|                           |                         | 14. vg              |                             |  |
|---------------------------|-------------------------|---------------------|-----------------------------|--|
| (i) Volume to be emitted: |                         |                     |                             |  |
| Average/day               | m³/d.oñ                 | Maximum/day         | 2,250,384 m <sup>3</sup> /d |  |
| Maximum rate/hour         | 93766 m <sup>3</sup> A1 | Min efflux velocity | m.sec <sup>-1</sup>         |  |
| (ii) Other factors        | asent of co.            |                     |                             |  |
| Temperature               | °C(max)                 | °C(min)             | 16°C(avg)                   |  |
| For Combustion Sources:   |                         |                     |                             |  |
| Volume terms express      | sed as: □ we            | t. $\sqrt{dry}$ .   |                             |  |

| Periods of Emission (avg) | 60 min/hr | 24 | hr/day | 365 | day/yr |
|---------------------------|-----------|----|--------|-----|--------|
| (1.18)                    |           |    |        |     | JJ     |

| Emission Point Ref. Nº:      | A2-1 (MBT Configuration B) Refer to Figure 3B (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                               |
| Location:                    | Biofilter/Odour Abatement Building No.1                                                                 |
| Grid Ref. (12 digit, 6E,6N): | 274760E, 230585N                                                                                        |
| Vent Details Diameter:       | 1.5                                                                                                     |
| Height above Ground(m):      | 20                                                                                                      |
| Date of commencement:        | TBC                                                                                                     |

#### **Characteristics of Emission:**

|                           |                                    | <u>4. vg</u>        |                             |  |
|---------------------------|------------------------------------|---------------------|-----------------------------|--|
| (i) Volume to be emitted: |                                    |                     |                             |  |
| Average/day               | m <sup>3</sup> /d <sub>1</sub> (d) | Maximum/day         | 2,414,040 m <sup>3</sup> /d |  |
| Maximum rate/hour         | 100585 m <sup>3</sup> A1           | Min efflux velocity | m.sec <sup>-1</sup>         |  |
| (ii) Other factors        | asent of Cart                      |                     |                             |  |
| Temperature               | °C(max)                            | °C(min)             | 16°C(avg)                   |  |
| For Combustion Source     | ces:                               |                     |                             |  |
| Volume terms express      | sed as:                            | t. √dry.            |                             |  |

| Periods of Emission (avg) | 60 min/hr | 24 | hr/day | 365 | day/yr |
|---------------------------|-----------|----|--------|-----|--------|
| ( 6)                      |           |    |        |     | J, J = |

| Emission Point Ref. Nº:      | A2-2 (MBT Configuration B)  Refer to Figure 3B (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|----------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                                |
| Location:                    | Biofilter/Odour Abatement Building No.1                                                                  |
| Grid Ref. (12 digit, 6E,6N): | 274783E, 230585N                                                                                         |
| Vent Details Diameter:       | 1.5                                                                                                      |
| Height above Ground(m):      | 20                                                                                                       |
| Date of commencement:        | TBC                                                                                                      |

#### **Characteristics of Emission:**

|                       |              | 14. vg              |                             |
|-----------------------|--------------|---------------------|-----------------------------|
| (i) Volume to be o    | emitted:     | TO ited for it      |                             |
| Average/day           | m³/d.oñ      | Maximum/day         | 2,414,040 m <sup>3</sup> /d |
| Maximum rate/hour     | 100585 m. A  | Min efflux velocity | m.sec <sup>-1</sup>         |
| (ii) Other factors    | asent of co  |                     |                             |
| Temperature           | °C(max)      | °C(min)             | 16°C(avg)                   |
| For Combustion Source | ces:         |                     |                             |
| Volume terms express  | sed as: □ we | t. $\sqrt{dry}$ .   |                             |

| Periods of Emission (avg) 60 min/hr 24 hr/day 365 day/yr | Periods of Emission (avg) | 60 min/hr | 24 hr/day | 365 day/yr |
|----------------------------------------------------------|---------------------------|-----------|-----------|------------|
|----------------------------------------------------------|---------------------------|-----------|-----------|------------|

| Emission Point Ref. Nº:      | A2-3 (MBT Configuration B) Refer to Figure 3B (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                               |
| Location:                    | Biofilter/Odour Abatement Building No.2                                                                 |
| Grid Ref. (12 digit, 6E,6N): | 274872E, 230585N                                                                                        |
| Vent Details Diameter:       | 0.9                                                                                                     |
| Height above Ground(m):      | 20                                                                                                      |
| Date of commencement:        | TBC                                                                                                     |

#### **Characteristics of Emission:**

|                       |                         | 74. vg              |                           |
|-----------------------|-------------------------|---------------------|---------------------------|
| (i) Volume to be o    | emitted:                | Do ited for it      |                           |
| Average/day           | m³/d.oñ                 | Maximum/day         | 778,200 m <sup>3</sup> /d |
| Maximum rate/hour     | 32425 m <sup>3</sup> A1 | Min efflux velocity | m.sec <sup>-1</sup>       |
| (ii) Other factors    | asent of co             |                     |                           |
| Temperature           | °C(max)                 | °C(min)             | 16°C(avg)                 |
| For Combustion Source | ces:                    |                     |                           |
| Volume terms express  | sed as: □ we            | t. $\sqrt{dry}$ .   |                           |

| Periods of Emission (avg) | 60 min/hr | 24 | hr/day | 365 | day/yr |
|---------------------------|-----------|----|--------|-----|--------|
| ( 6)                      |           |    |        |     | J, J = |

| Emission Point Ref. Nº:      | A2-4 (MBT Configuration B) Refer to Figure 3B (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                               |
| Location:                    | Biofilter/Odour Abatement Building No.2                                                                 |
| Grid Ref. (12 digit, 6E,6N): | 274885E, 230585N                                                                                        |
| Vent Details Diameter:       | 0.9                                                                                                     |
| Height above Ground(m):      | 20                                                                                                      |
| Date of commencement:        | TBC                                                                                                     |

#### **Characteristics of Emission:**

|                       |                         | 74. vg              |                           |
|-----------------------|-------------------------|---------------------|---------------------------|
| (i) Volume to be o    | emitted:                | Do ited for it      |                           |
| Average/day           | m³/d.oñ                 | Maximum/day         | 778,200 m <sup>3</sup> /d |
| Maximum rate/hour     | 32425 m <sup>3</sup> A1 | Min efflux velocity | m.sec <sup>-1</sup>       |
| (ii) Other factors    | asent of co             |                     |                           |
| Temperature           | °C(max)                 | °C(min)             | 16°C(avg)                 |
| For Combustion Source | ces:                    |                     |                           |
| Volume terms express  | sed as: □ we            | t. $\sqrt{dry}$ .   |                           |

| Periods of Emission (avg) 60 min/hr 24 hr/day 365 day/yr | Periods of Emission (avg) | 60 min/hr | 24 hr/day | 365 day/yr |
|----------------------------------------------------------|---------------------------|-----------|-----------|------------|
|----------------------------------------------------------|---------------------------|-----------|-----------|------------|

| Emission Point Ref. Nº:      | A2-5 (MBT Configuration B) Refer to Figure 3B (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                               |
| Location:                    | Biofilter/Odour Abatement Building No.3                                                                 |
| Grid Ref. (12 digit, 6E,6N): | 274798E, 230756N                                                                                        |
| Vent Details Diameter:       | 1.4                                                                                                     |
| Height above Ground(m):      | 20                                                                                                      |
| Date of commencement:        | TBC Left like.                                                                                          |

#### **Characteristics of Emission:**

|                           |                            | · · · · · · · · · · · · · · · · · · · |                             |  |  |  |  |  |  |  |  |
|---------------------------|----------------------------|---------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| (i) Volume to be emitted: |                            |                                       |                             |  |  |  |  |  |  |  |  |
| Average/day               | om <sup>3</sup> /d         | Maximum/day                           | 2,050,728 m <sup>3</sup> /d |  |  |  |  |  |  |  |  |
| Maximum rate/hour         | Con85447 m <sup>3</sup> /h | Min efflux velocity                   | m.sec <sup>-1</sup>         |  |  |  |  |  |  |  |  |
| (ii) Other factors        |                            |                                       |                             |  |  |  |  |  |  |  |  |
| Temperature               | °C(max)                    | °C(min)                               | 16°C(avg)                   |  |  |  |  |  |  |  |  |
| For Combustion Source     | ces:                       |                                       |                             |  |  |  |  |  |  |  |  |
| Volume terms express      | sed as: □ we               | t. √dry.                              |                             |  |  |  |  |  |  |  |  |

| Periods of Emission (avg) | 60 min/hr | 24 | hr/day | 365 | day/yr |  |
|---------------------------|-----------|----|--------|-----|--------|--|
|---------------------------|-----------|----|--------|-----|--------|--|

| Emission Point Ref. Nº:      | A2-6 (MBT Configuration B)  Refer to Figure 3B (Appendix 6 of the Waste Licence Application Attachments) |
|------------------------------|----------------------------------------------------------------------------------------------------------|
| Source of Emission:          | Biofilter                                                                                                |
| Location:                    | Biofilter/Odour Abatement Building No.3                                                                  |
| Grid Ref. (12 digit, 6E,6N): | 274821E, 230756N                                                                                         |
| Vent Details Diameter:       | 1.4                                                                                                      |
| Height above Ground(m):      | 20                                                                                                       |
| Date of commencement:        | TBC                                                                                                      |

| Characteristics of Em | ission :                | Ses of to any other use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
|-----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| (i) Volume to be      | emitted:                | purpose of the purpos |                             |
| Average/day           | m³d ou                  | Maximum/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,050,728 m <sup>3</sup> /d |
| Maximum rate/hour     | 854475m <sup>3</sup> /h | Min efflux velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m.sec <sup>-1</sup>         |
| (ii) Other factors    | Consent                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| Temperature           | °C(max)                 | °C(min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16°C(avg)                   |
| For Combustion Source | ces:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| Volume terms express  | sed as: $\square$ we    | t. √dry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |

| Periods of Emission (avg) 60 min/hr | 24 | hr/day | 365 | day/yr |
|-------------------------------------|----|--------|-----|--------|
|-------------------------------------|----|--------|-----|--------|

Emission Point Reference Number: A2-7A

| Parameter |                         | Prior to tr | eatment <sup>(1)</sup> |                | Brief                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       | As disch | narged <sup>(1)</sup> |     |       |
|-----------|-------------------------|-------------|------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------|-----------------------|-----|-------|
|           | mg/Nm <sup>3</sup> kg/h |             | g/h                    | description    | mg/Nm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | kg/h. |          | kg/year               |     |       |
|           | Avg                     | Max         | Avg                    | Max            | of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avg | Max   | Avg      | Max                   | Avg | Max   |
| $NO_X$    |                         |             |                        |                | N/A  N/A  Specified but by control of the stand of the stand of the standard o |     | 500   |          | 1.56                  |     | 13635 |
| $PM_{10}$ |                         |             |                        |                | 1. Nother                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 50    |          | 0.16                  |     | 1363  |
| HCl       |                         |             |                        |                | १९५ वर्षिय वर्षा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 60    |          | 0.19                  |     | 1636  |
| HF        |                         |             |                        |                | purpos lifed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 4     |          | 0.01                  |     | 109   |
| $SO_2$    |                         |             |                        |                | oscitor retre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 200   |          | 0.62                  |     | 5454  |
| СО        |                         |             |                        | cot.           | tight o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 100   |          | 0.31                  |     | 2712  |
| $H_2S$    |                         |             |                        | ofcor          | p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 50    |          | 0.16                  |     | 1363  |
|           |                         |             |                        | Onsent         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |          |                       |     |       |
|           |                         |             |                        | C <sup>3</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |          |                       |     |       |
|           |                         |             |                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |          |                       |     |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-7B

| Parameter |                         | Prior to tr | eatment <sup>(1)</sup> |                | Brief                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       | As disch | narged <sup>(1)</sup> |     |       |
|-----------|-------------------------|-------------|------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------|-----------------------|-----|-------|
|           | mg/Nm <sup>3</sup> kg/h |             | g/h                    | description    | mg/Nm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | kg/h. |          | kg/year               |     |       |
|           | Avg                     | Max         | Avg                    | Max            | of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avg | Max   | Avg      | Max                   | Avg | Max   |
| $NO_X$    |                         |             |                        |                | N/A  N/A  Specified but by control of the stand of the stand of the standard o |     | 500   |          | 1.56                  |     | 13635 |
| $PM_{10}$ |                         |             |                        |                | 1. Nother                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 50    |          | 0.16                  |     | 1363  |
| HCl       |                         |             |                        |                | १९५ वर्षिय वर्षा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 60    |          | 0.19                  |     | 1636  |
| HF        |                         |             |                        |                | purpos lifed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 4     |          | 0.01                  |     | 109   |
| $SO_2$    |                         |             |                        |                | oscitor retre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 200   |          | 0.62                  |     | 5454  |
| СО        |                         |             |                        | cot.           | tight o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 100   |          | 0.31                  |     | 2712  |
| $H_2S$    |                         |             |                        | ofcor          | p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 50    |          | 0.16                  |     | 1363  |
|           |                         |             |                        | Onsent         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |          |                       |     |       |
|           |                         |             |                        | C <sup>3</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |          |                       |     |       |
|           |                         |             |                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |          |                       |     |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C, 101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-1 (MBT Configuration A)

| Parameter  |     | Prior to tr     | reatment <sup>(1)</sup> |         | Brief                                                                          |                    |     | As disc | narged <sup>(1)</sup> |         |       |
|------------|-----|-----------------|-------------------------|---------|--------------------------------------------------------------------------------|--------------------|-----|---------|-----------------------|---------|-------|
|            | mg/ | Nm <sup>3</sup> | kg/h                    |         | description                                                                    | mg/Nm <sup>3</sup> |     | kg/h.   |                       | kg/year |       |
|            | Avg | Max             | Avg                     | Max     | of treatment                                                                   | Avg                | Max | Avg     | Max                   | Avg     | Max   |
| $NH_3$     |     |                 |                         |         | N/A other                                                                      |                    | 50  |         | 4.68                  |         | 40982 |
| $H_2S$     |     |                 |                         |         | ३५ विष्यु राष्ट्र                                                              |                    | 5   |         | 0.47                  |         | 4098  |
| Mercaptans |     |                 |                         |         | outposeried.                                                                   |                    | 5   |         | 0.47                  |         | 4098  |
|            |     |                 |                         |         | N/A offer use.                      |     |         |                       |         |       |
|            |     |                 |                         | , of    | tight o                                                                        |                    |     |         |                       |         |       |
|            |     |                 |                         | of co   |                                                                                |                    |     |         |                       |         |       |
|            |     |                 |                         | Onsente |                                                                                |                    |     |         |                       |         |       |
|            |     |                 |                         | C       |                                                                                |                    |     |         |                       |         |       |
|            |     |                 |                         |         |                                                                                |                    |     |         |                       |         |       |
|            |     |                 |                         |         |                                                                                |                    |     |         |                       |         |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-2 (MBT Configuration A)

| Parameter  | Prior to treatment <sup>(1)</sup> |     |      |          | Brief                                                          |                    |     | As discl | harged <sup>(1)</sup> |         |       |
|------------|-----------------------------------|-----|------|----------|----------------------------------------------------------------|--------------------|-----|----------|-----------------------|---------|-------|
|            | mg/Nm <sup>3</sup>                |     | kg/h |          | description                                                    | mg/Nm <sup>3</sup> |     | kg/h.    |                       | kg/year |       |
|            | Avg                               | Max | Avg  | Max      | of treatment                                                   | Avg                | Max | Avg      | Max                   | Avg     | Max   |
| $NH_3$     |                                   |     |      |          | N/A other                                                      |                    | 50  |          | 4.68                  |         | 40982 |
| $H_2S$     |                                   |     |      |          | 25 0 मिंग विषये                                                |                    | 5   |          | 0.47                  |         | 4098  |
| Mercaptans |                                   |     |      |          | out Postifed                                                   |                    | 5   |          | 0.47                  |         | 4098  |
|            |                                   |     |      |          | action verice                                                  |                    |     |          |                       |         |       |
|            |                                   |     |      | cot.     | asy to                                                         |                    |     |          |                       |         |       |
|            |                                   |     |      | of co    | N/A offer use.  N/A offer use.  N/A offer use.  N/A offer use. |                    |     |          |                       |         |       |
|            |                                   |     |      | CORSERLE |                                                                |                    |     |          |                       |         |       |
|            |                                   |     |      | C        |                                                                |                    |     |          |                       |         |       |
|            |                                   |     |      |          |                                                                |                    |     |          |                       |         |       |
|            |                                   |     |      |          |                                                                |                    |     |          |                       |         |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-3 (MBT Configuration A)

| Parameter  | Prior to treatment <sup>(1)</sup> |     |      |         | Brief                                                                          |                    |     | As discl | narged <sup>(1)</sup> |         |       |
|------------|-----------------------------------|-----|------|---------|--------------------------------------------------------------------------------|--------------------|-----|----------|-----------------------|---------|-------|
|            | mg/Nm <sup>3</sup>                |     | kg/h |         | description                                                                    | mg/Nm <sup>3</sup> |     | kg/h.    |                       | kg/year |       |
|            | Avg                               | Max | Avg  | Max     | of treatment                                                                   | Avg                | Max | Avg      | Max                   | Avg     | Max   |
| $NH_3$     |                                   |     |      |         | N/A other                                                                      |                    | 50  |          | 2.39                  |         | 20920 |
| $H_2S$     |                                   |     |      |         | ३५ ० हित बाजे                                                                  |                    | 5   |          | 0.24                  |         | 2092  |
| Mercaptans |                                   |     |      |         | outpostifed.                                                                   |                    | 5   |          | 0.24                  |         | 2092  |
|            |                                   |     |      |         | cection be the                                                                 |                    |     |          |                       |         |       |
|            |                                   |     |      | cot.    | tight o                                                                        |                    |     |          |                       |         |       |
|            |                                   |     |      | of co   | N/A offer use.                      |     |          |                       |         |       |
|            |                                   |     |      | Consent |                                                                                |                    |     |          |                       |         |       |
|            |                                   |     |      |         |                                                                                |                    |     |          |                       |         |       |
|            |                                   |     |      |         |                                                                                |                    |     |          |                       |         |       |
|            |                                   |     |      |         |                                                                                |                    |     |          |                       |         |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-4 (MBT Configuration A)

| Parameter  |                    | Prior to tr | eatment <sup>(1)</sup> |                | Brief                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |     | As discl | harged <sup>(1)</sup> |         |       |
|------------|--------------------|-------------|------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|----------|-----------------------|---------|-------|
|            | mg/Nm <sup>3</sup> |             | kg/h                   |                | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/Nm <sup>3</sup> |     | kg/h.    |                       | kg/year |       |
|            | Avg                | Max         | Avg                    | Max            | of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avg                | Max | Avg      | Max                   | Avg     | Max   |
| $NH_3$     |                    |             |                        |                | N/A other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 50  |          | 2.39                  |         | 20920 |
| $H_2S$     |                    |             |                        |                | ३५ ० हित बाजे                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | 5   |          | 0.24                  |         | 2092  |
| Mercaptans |                    |             |                        |                | outpostired.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 5   |          | 0.24                  |         | 2092  |
|            |                    |             |                        |                | N/A offer the N/A offer any offer an |                    |     |          |                       |         |       |
|            |                    |             |                        | cot.           | tight o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |     |          |                       |         |       |
|            |                    |             |                        | Consent of cor | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |     |          |                       |         |       |
|            |                    |             |                        | Consent        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |          |                       |         |       |
|            |                    |             |                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |          |                       |         |       |
|            |                    |             |                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |          |                       |         |       |
|            |                    |             |                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |          |                       |         |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-5 (MBT Configuration A)

| Parameter  |      | Prior to tr     | reatment <sup>(1)</sup> |         | Brief                                                          |     |                 | As discl | harged <sup>(1)</sup> |     |       |
|------------|------|-----------------|-------------------------|---------|----------------------------------------------------------------|-----|-----------------|----------|-----------------------|-----|-------|
|            | mg/l | Nm <sup>3</sup> | kg                      | g/h     | description                                                    | mg/ | Nm <sup>3</sup> | kg       | y/h.                  | kg/ | year  |
|            | Avg  | Max             | Avg                     | Max     | of treatment                                                   | Avg | Max             | Avg      | Max                   | Avg | Max   |
| $NH_3$     |      |                 |                         |         | N/A other                                                      |     | 50              |          | 4.69                  |     | 41070 |
| $H_2S$     |      |                 |                         |         | ेड्ड शिर्म विषे                                                |     | 5               |          | 0.47                  |     | 4107  |
| Mercaptans |      |                 |                         |         | out Postifed                                                   |     | 5               |          | 0.47                  |     | 4107  |
|            |      |                 |                         |         | action verice                                                  |     |                 |          |                       |     |       |
|            |      |                 |                         | cot.    | nsight o                                                       |     |                 |          |                       |     |       |
|            |      |                 |                         | of co   | N/A offer use.  N/A offer use.  N/A offer use.  N/A offer use. |     |                 |          |                       |     |       |
|            |      |                 |                         | Consent |                                                                |     |                 |          |                       |     |       |
|            |      |                 |                         |         |                                                                |     |                 |          |                       |     |       |
|            |      |                 |                         |         |                                                                |     |                 |          |                       |     |       |
|            |      |                 |                         |         |                                                                |     |                 |          |                       |     |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-6 (MBT Configuration A)

| Parameter  |      | Prior to treatment <sup>(1)</sup> |     | Brief         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | As discharged <sup>(1)</sup> |     |      |     |       |
|------------|------|-----------------------------------|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------|-----|------|-----|-------|
|            | mg/l | Nm <sup>3</sup>                   | kg  | g/h           | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/. | Nm <sup>3</sup>              | kg  | :/h. | kg/ | year  |
|            | Avg  | Max                               | Avg | Max           | of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avg  | Max                          | Avg | Max  | Avg | Max   |
| $NH_3$     |      |                                   |     |               | N/A other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 50                           |     | 4.69 |     | 41070 |
| $H_2S$     |      |                                   |     |               | ३५ ० हित बाजे                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 5                            |     | 0.47 |     | 4107  |
| Mercaptans |      |                                   |     |               | outpostired.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 5                            |     | 0.47 |     | 4107  |
|            |      |                                   |     |               | N/A offer the N/ |      |                              |     |      |     |       |
|            |      |                                   |     | cot.          | tight o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                              |     |      |     |       |
|            |      |                                   |     | Consent of co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |      |     |       |
|            |      |                                   |     | Onsent        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |      |     |       |
|            |      |                                   |     | C             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |      |     |       |
|            |      |                                   |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |      |     |       |
|            |      |                                   |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |      |     |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-1 (MBT Configuration B)

| Parameter  |      | Prior to treatment <sup>(1)</sup> |     | Brief   |                                                                |      | As discl        | narged <sup>(1)</sup> |      |     |       |
|------------|------|-----------------------------------|-----|---------|----------------------------------------------------------------|------|-----------------|-----------------------|------|-----|-------|
|            | mg/l | Nm <sup>3</sup>                   | kg  | g/h     | description                                                    | mg/. | Nm <sup>3</sup> | kg                    | :/h. | kg/ | year  |
|            | Avg  | Max                               | Avg | Max     | of treatment                                                   | Avg  | Max             | Avg                   | Max  | Avg | Max   |
| $NH_3$     |      |                                   |     |         | N/A other                                                      |      | 50              |                       | 5.03 |     | 44056 |
| $H_2S$     |      |                                   |     |         | ्र ५० होते वामे                                                |      | 5               |                       | 0.50 |     | 4406  |
| Mercaptans |      |                                   |     |         | out Postified                                                  |      | 5               |                       | 0.50 |     | 4406  |
|            |      |                                   |     |         | getton ker te                                                  |      |                 |                       |      |     |       |
|            |      |                                   |     | cot.    | nsight o                                                       |      |                 |                       |      |     |       |
|            |      |                                   |     | of co   | N/A offer use.  N/A offer use.  N/A offer use.  N/A offer use. |      |                 |                       |      |     |       |
|            |      |                                   |     | Consent |                                                                |      |                 |                       |      |     |       |
|            |      |                                   |     | C       |                                                                |      |                 |                       |      |     |       |
|            |      |                                   |     |         |                                                                |      |                 |                       |      |     |       |
|            |      |                                   |     |         |                                                                |      |                 |                       |      |     |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-2 (MBT Configuration B)

| Parameter  |      | Prior to treatment <sup>(1)</sup> |     | Brief   |                                                                |      | As discl        | narged <sup>(1)</sup> |      |     |       |
|------------|------|-----------------------------------|-----|---------|----------------------------------------------------------------|------|-----------------|-----------------------|------|-----|-------|
|            | mg/l | Nm <sup>3</sup>                   | kg  | g/h     | description                                                    | mg/. | Nm <sup>3</sup> | kg                    | :/h. | kg/ | year  |
|            | Avg  | Max                               | Avg | Max     | of treatment                                                   | Avg  | Max             | Avg                   | Max  | Avg | Max   |
| $NH_3$     |      |                                   |     |         | N/A other                                                      |      | 50              |                       | 5.03 |     | 44056 |
| $H_2S$     |      |                                   |     |         | ्र ५० होते वामे                                                |      | 5               |                       | 0.50 |     | 4406  |
| Mercaptans |      |                                   |     |         | out Postified                                                  |      | 5               |                       | 0.50 |     | 4406  |
|            |      |                                   |     |         | getton ker te                                                  |      |                 |                       |      |     |       |
|            |      |                                   |     | cot.    | nsight o                                                       |      |                 |                       |      |     |       |
|            |      |                                   |     | of co   | N/A offer use.  N/A offer use.  N/A offer use.  N/A offer use. |      |                 |                       |      |     |       |
|            |      |                                   |     | Consent |                                                                |      |                 |                       |      |     |       |
|            |      |                                   |     | C       |                                                                |      |                 |                       |      |     |       |
|            |      |                                   |     |         |                                                                |      |                 |                       |      |     |       |
|            |      |                                   |     |         |                                                                |      |                 |                       |      |     |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-3 (MBT Configuration B)

| Parameter  |      | Prior to treatment <sup>(1)</sup> |     | Brief           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | As discl        | narged <sup>(1)</sup> |      |      |       |
|------------|------|-----------------------------------|-----|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-----------------------|------|------|-------|
|            | mg/l | Nm <sup>3</sup>                   | kg  | g/h             | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/ | Nm <sup>3</sup> | kg                    | :/h. | kg/y | year  |
|            | Avg  | Max                               | Avg | Max             | of treatment use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Avg | Max             | Avg                   | Max  | Avg  | Max   |
| $NH_3$     |      |                                   |     |                 | NKA any out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 50              |                       | 1.62 |      | 14202 |
| $H_2S$     |      |                                   |     |                 | in 100 site of 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 5               |                       | 0.16 |      | 1420  |
| Mercaptans |      |                                   |     |                 | ction per redu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 5               |                       | 0.16 |      | 1420  |
|            |      |                                   |     | s <sup>is</sup> | EQEC ONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                 |                       |      |      |       |
|            |      |                                   |     | £01             | Nation of the state of the stat |     |                 |                       |      |      |       |
|            |      |                                   |     | Gonsent of cor  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |      |      |       |
|            |      |                                   |     | Corr            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |      |      |       |
|            |      |                                   |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |      |      |       |
|            |      |                                   |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |      |      |       |
|            |      |                                   |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |      |      |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-4 (MBT Configuration B)

| Parameter  |     | Prior to treatment <sup>(1)</sup> |     | Brief          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | As discl        | harged <sup>(1)</sup> |             |     |       |
|------------|-----|-----------------------------------|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-----------------------|-------------|-----|-------|
|            | mg/ | Nm <sup>3</sup>                   | kg  | g/h            | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/ | Nm <sup>3</sup> | kg                    | <u>/</u> h. | kg/ | year  |
|            | Avg | Max                               | Avg | Max            | of treatment life.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Avg | Max             | Avg                   | Max         | Avg | Max   |
| $NH_3$     |     |                                   |     |                | N/A ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 50              |                       | 1.62        |     | 14202 |
| $H_2S$     |     |                                   |     |                | 100 sited for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 5               |                       | 0.16        |     | 1420  |
| Mercaptans |     |                                   |     |                | ation net teat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 5               |                       | 0.16        |     | 1420  |
|            |     |                                   |     | , in           | NKA any out  NKA a |     |                 |                       |             |     |       |
|            |     |                                   |     | E co           | y <sup>the</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                 |                       |             |     |       |
|            |     |                                   |     | Consent of con |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |             |     |       |
|            |     |                                   |     | Corr           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |             |     |       |
|            |     |                                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |             |     |       |
|            |     |                                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |             |     |       |
|            |     |                                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |             |     |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-5 (MBT Configuration B)

| Parameter  |     | Prior to treatment <sup>(1)</sup> |     | Brief          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | As discl        | harged <sup>(1)</sup> |             |     |       |
|------------|-----|-----------------------------------|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-----------------------|-------------|-----|-------|
|            | mg/ | Nm <sup>3</sup>                   | kg  | g/h            | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/ | Nm <sup>3</sup> | kg                    | <u>/</u> h. | kg/ | year  |
|            | Avg | Max                               | Avg | Max            | of treatment life.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Avg | Max             | Avg                   | Max         | Avg | Max   |
| $NH_3$     |     |                                   |     |                | N/A and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 50              |                       | 4.27        |     | 37426 |
| $H_2S$     |     |                                   |     |                | 170° es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 5               |                       | 0.43        |     | 3743  |
| Mercaptans |     |                                   |     |                | ation net redu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 5               |                       | 0.43        |     | 3743  |
|            |     |                                   |     | , 'A           | NKA ary out  NKA ary out  Section purposes of for ary out  Section purpose of for ary out  Sectio |     |                 |                       |             |     |       |
|            |     |                                   |     | c co           | y <sup>the</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                 |                       |             |     |       |
|            |     |                                   |     | Consent of cor |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |             |     |       |
|            |     |                                   |     | Con            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |             |     |       |
|            |     |                                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |             |     |       |
|            |     |                                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |             |     |       |
|            |     |                                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                       |             |     |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Emission Point Reference Number: A2-6 (MBT Configuration B)

| Parameter       |      | Prior to treatment <sup>(1)</sup> |     | Brief          |                   |     | As discl        | harged <sup>(1)</sup> |      |     |       |
|-----------------|------|-----------------------------------|-----|----------------|-------------------|-----|-----------------|-----------------------|------|-----|-------|
|                 | mg/l | Nm <sup>3</sup>                   | kg  | g/h            | description       | mg/ | Nm <sup>3</sup> | kg                    | y/h. | kg/ | year  |
|                 | Avg  | Max                               | Avg | Max            | of treatment use. | Avg | Max             | Avg                   | Max  | Avg | Max   |
| NH <sub>3</sub> |      |                                   |     |                | NKA ary out       |     | 50              |                       | 4.27 |     | 37426 |
| $H_2S$          |      |                                   |     |                | 100 site of the   |     | 5               |                       | 0.43 |     | 3743  |
| Mercaptans      |      |                                   |     |                | ation net teat    |     | 5               |                       | 0.43 |     | 3743  |
|                 |      |                                   |     | , 'A           | ESPE ONE          |     |                 |                       |      |     |       |
|                 |      |                                   |     | £00            | N <sup>the</sup>  |     |                 |                       |      |     |       |
|                 |      |                                   |     | Gonsent of cor |                   |     |                 |                       |      |     |       |
|                 |      |                                   |     | Corr           |                   |     |                 |                       |      |     |       |
|                 |      |                                   |     |                |                   |     |                 |                       |      |     |       |
|                 |      |                                   |     |                |                   |     |                 |                       |      |     |       |
|                 |      |                                   |     |                |                   |     |                 |                       |      |     |       |

<sup>1.</sup> Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

# **APPENDIX C**

Water Emissions Tables (Tables E.2(i) and E.2(ii))

Figure 3A, Figure 3B and Figure 6.3

Consent of congrided congrided for any of the congrided congrided for any of the congrided foreary of the congrided for any of the congrided for any of the con

#### TABLE E.2(i): EMISSIONS TO SURFACE WATERS

(One page for each emission)

#### **Emission Point:**

| Emission Point Ref. Nº:                | SW7 (SW Pond discharge pt)                                                                                        |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Source of Emission:                    | Surface water Runoff                                                                                              |
| Location:                              | Drehid MBT Facility (Refer to Figure 3A and Figure 3B in Appendix 6 of the Waste Licence Application Attachments) |
| Grid Ref. (10 digit, 5E,5N):           | E274415 N230850                                                                                                   |
| Name of receiving waters:              | Drainage Ditch leading to Cushaling River                                                                         |
| Flow rate in receiving waters:         | Not applicable                                                                                                    |
| Available waste assimilative capacity: | Conse Not Applicable                                                                                              |

# **Emission Details:**<sup>1</sup>

(i) Volume to be emitted (total of SW7 and SW8)

<sup>&</sup>lt;sup>1</sup> Surface water runoff is discharge to the surface water lagoons and treated in parallel. Discharge is split between SW7 and SW8. Calculations for total runoff are included in the Engineering Services Report (Appendix 2.2 of the EIS).

| Normal/day*       | 244 m <sup>3</sup> | Maximum/day** | 12,132 m <sup>3</sup> |
|-------------------|--------------------|---------------|-----------------------|
| Maximum rate/hour | 506 m <sup>3</sup> |               |                       |

|                           |                      |                | 14.03       |
|---------------------------|----------------------|----------------|-------------|
| Periods of Emission (avg) | min/hr               | hr/day         | dayiyr      |
|                           | Rainfall dependant - | 0 to 24 hr/day | 365 days/yr |

<sup>\*</sup>Based on EIS data – Area 26.9 hectares, Average runoff of 331mm/yr
\*\*Based on Appendix 3 Engineering Services Report (Refer to Appendix 2.2, Volume IV of EIS), Attenuation Pond Calculation

#### **Emission Point:**

| Emission Point Ref. Nº:                | SW8 (SW Pond discharge pt.)                                                                                       |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Source of Emission:                    | Surface water Runoff                                                                                              |
| Location:                              | Drehid MBT Facility (Refer to Figure 3A and Figure 3B in Appendix 6 of the Waste Licence Application Attachments) |
| Grid Ref. (10 digit, 5E,5N):           | E274760 230470                                                                                                    |
| Name of receiving waters:              | Drainage Ditch leading to Cushaling River                                                                         |
| Flow rate in receiving waters:         | York Not applicable                                                                                               |
| Available waste assimilative capacity: | Not applicable                                                                                                    |

# **Emission Details:**

| (i) Volume to be emitted (total of SW7 and SW8) |                    |               |                       |  |  |  |  |
|-------------------------------------------------|--------------------|---------------|-----------------------|--|--|--|--|
| Normal/day*                                     | 244 m <sup>3</sup> | Maximum/day** | 12,132 m <sup>3</sup> |  |  |  |  |
| Maximum rate/hour                               | 506 m <sup>3</sup> |               |                       |  |  |  |  |

(ii) Period or periods during which emissions are made, or are to be made, including daily or seasonal variations (*start-up/shutdown to be included*):

| Periods of Emission (avg) | min/hr             | hr/day           | day/yr      |        |
|---------------------------|--------------------|------------------|-------------|--------|
|                           | Rainfall dependant | - 0 to 24 hr/day | 365 days/yr | , 15°C |

EPA Export 15-08-2013:23:45:00

<sup>\*</sup>Based on EIS data – Area 26.9 hectares, Average runoff of 331mm/yr

<sup>\*\*</sup>Based on Appendix 3 Engineering Services Report (Refer to Appendix 2.2, Volume IV of EIS), Attenuation Pond Calculation

# TABLE E.2(ii): EMISSIONS TO SURFACE WATERS - Characteristics of the emission (1 table per emission point)

Emission point reference number: SW7

| Parameter        | Prior to treatment         |                                 |          |              | As discharged              |                           |        |         | % Efficiency |
|------------------|----------------------------|---------------------------------|----------|--------------|----------------------------|---------------------------|--------|---------|--------------|
|                  | Max. hourly average (mg/l) | Max. daily<br>average<br>(mg/l) | kg/day   | kg/year      | Max. hourly average (mg/l) | Max. daily average (mg/l) | kg/day | kg/year |              |
| Ammonia          |                            | ≤0.5                            |          |              | et itse.                   | ≤0.5                      |        |         |              |
| BOD              |                            | ≤25                             |          |              | Solity, any other          | ≤25                       |        |         |              |
| <u>рН</u>        |                            | pH 6 to 9                       |          | tion purpo   | sould any other use.       | pH 6 to 9                 |        |         |              |
| Suspended Solids |                            | Will vary                       | Ŷ        | orinspectown |                            | ≤ 35                      |        |         |              |
|                  |                            |                                 | onsentof | ,<br>CO.     |                            |                           |        |         |              |
|                  |                            |                                 | C        |              |                            |                           |        |         |              |
|                  |                            |                                 |          |              |                            |                           |        |         |              |

# TABLE E.2(ii): EMISSIONS TO SURFACE WATERS - Characteristics of the emission (1 table per emission point)

Emission point reference number: SW8

| Parameter        | Prior to treatment         |                                 |            |                  | As discharged              |                           |        |         | % Efficiency |
|------------------|----------------------------|---------------------------------|------------|------------------|----------------------------|---------------------------|--------|---------|--------------|
|                  | Max. hourly average (mg/l) | Max. daily<br>average<br>(mg/l) | kg/day     | kg/year          | Max. hourly average (mg/l) | Max. daily average (mg/l) | kg/day | kg/year |              |
| Ammonia          |                            | ≤0.5                            |            |                  | atuse.                     | ≤0.5                      |        |         |              |
| BOD              |                            | ≤25                             |            |                  | colly, any other           | ≤25                       |        |         |              |
| <u>pH</u>        |                            | pH 6 to 9                       |            | ion pupo         | ited                       | pH 6 to 9                 |        |         |              |
| Suspended Solids |                            | Will vary                       | Ŷ          | or inspectionine |                            | ≤ 35                      |        |         |              |
|                  |                            |                                 | Consent of | SO.              | sould any other use.       |                           |        |         |              |
|                  |                            |                                 |            |                  |                            |                           |        |         |              |
|                  |                            |                                 |            |                  |                            |                           |        |         |              |

