

Clare County Council

Waste Licence W0170-01

Annual Environmental Report for 2012

Name & location of facility: Lisdeen Recycling Centre & Transfer Station, Cemetery Road, Lisdeen, Kilkee, Co. Clare

Submitted by:

Environment Section, Clare County Council, New Road, Ennis, Co. Clare.

Table of Contents

1) Reporting Period	3
2) Details of Activity	3
3) Volume and composition of waste received during the reporting period.	3
4) Summary report on emissions	5
5) Foul water emissions	5
6) Surface water emissions	5
7) Summary of results and interpretations of Environmental Monitoring	5
8) Resource Consumption Summary	22
9) Development works undertaken during the period and timescale for proposed works	22
10) Full title and written summary of any procedures developed by the licensee during the previous year	22
11) Drum, Tank and Bund Testing.	23
12) Reported Incidents and Complaints summaries.	23
13) Review of nuisance controls	23
14) Schedule of Environmental objectives and targets	23
15) Report on progress towards achievement of Environmental Objectives and Targets in previous years	26
Financial Provision	27
Appendix I: Location of environmental monitoring points.	

Location of environmental monitoring points.
Summary of surface water monitoring results.
I: Summary of groundwater monitoring results.
: Summary of leachate monitoring results

1) Reporting Period

1/01/12 - 31/12/12

2) Details of Activity

The principal waste activity of the Transfer Station is the compaction of solid waste into 30 m³ closed containers for subsequent disposal to landfill in accordance with Class 12 of the Third Schedule of the Waste Management Act, 1996. Other waste activity is the storage of non-recoverable waste received at the facility, prior to disposal at an appropriate facility in accordance with Class 13 of the Third Schedule.

Other waste recovery activities include recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes) in accordance with Class 2 of the Fourth Schedule, recycling or reclamation of metals and metal compounds in accordance with Class 3 of the Fourth Schedule, and recycling or reclamation of other inorganic materials in accordance with Class 4 of the Fourth Schedule. This covers the acceptance of waste oils, cooking oils, beverage cans, white goods, other metals, and glass at the facility.

3) Volume and composition of waste received during the reporting period.

The quantity of municipal solid waste accepted at the facility during the reporting period(s) was as follows:

Public Domestic Waste delivered to site	471	tonnes
Recyclable material delivered to site	464	tonnes
Total	935	tonnes

The quantity of waste materials accepted for subsequent recycling/recovery for 2012 is as outlined in Table 3.1 below

Table 3.1

Material Type	E.W.C. Code	Tonnage
Domestic waste	20 00 00	
	20 03 01	
Metals for recycling	20 01 40	21.79
Glass for recycling	20 01 02	271.35
Aluminium Cans	15 01 04	.69
Plastic bottles	20 01 39	6.6
Steel cans	15 01 04	9.2
Car Batteries	16 06 01*	0.89
Newspapers	20 01 01	33.34
Waste Engine Oil	13 02 00	1.8
Cardboard	20 01 01	26.28
Tetrapak	15 01 01	.83
Timber	20 01 38	34
Textiles	20 01 11	2.66
WEEE	20 01 36	55.12

The quantities of waste allowed for acceptance the facility under Schedule A of the licence at are as outlined in Table 3.2 below:

Table 3.2:

Waste Type	Maximum (Tonnes per annum)
Municipal Waste	1,800
Wastes for recovery/recycling	200 ^{Note4}
Total	2,000

Note 4: The amount of wastes accepted for recovery/recycling may be altered as long as the total accepted at the facility does not exceed 2000 tonnes per annum.

4) Summary report on emissions, including wastes from silt traps and interception sumps.

No desludging of the septic tank has taken place since installation. Loading on the tank is quite small with one w.c. and sink as well as run-off from waste transfer area.

5) Foul Water Emissions

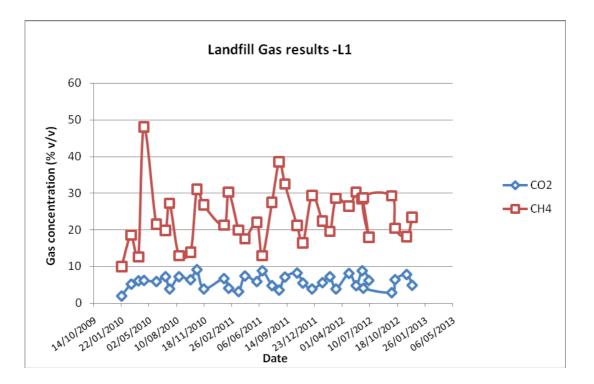
There is no direct foul water discharge. Foul water is diverted to a septic tank unit, which in turn is discharged to a reed bed. This foul water is collected from w.c., sink unit, the transfer station shed, from the compactor and the bin transverse area. It comprises wash water and rainwater falling on the contaminated areas.

6) Surface Water Emissions

Surface water runoff from site roads and uncontaminated surfaces discharges to the surface water drains. There are no other emissions of any environmental significance from the facility.

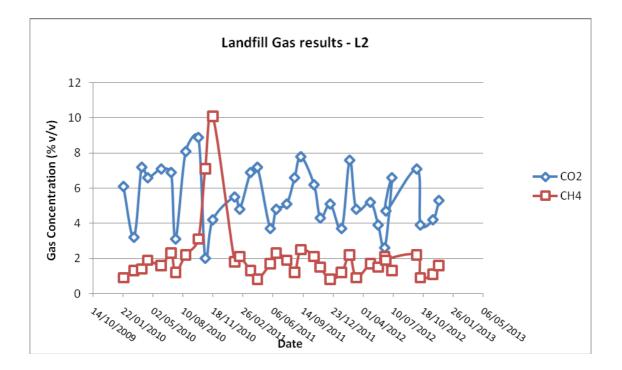
7) Summary of Results and Interpretation of Environmental Monitoring.

Table 7.1. Lisdeen Transfer Station (WL170-1) Monitoring Schedule


Schedule D	Monitoring
D.1	Monitoring Locations
D.2	Waste Water
D.3	Landfill Gas
D.4	Surface Water, Groundwater and Leachate

Monitoring was conducted at the specified locations and frequencies as indicated in each of the above referenced Schedules of the Waste Licence, unless otherwise noted in this report. Monitoring locations are shown in Appendix 1. Wastewater monitoring has not

been carried out to date as the discharge from the septic tank is directly to a percolation area. The reed bed system is now commissioned; however due to the low flow, it was not possible to obtain a sample from the system.


7.1. Landfill Gas

During this reporting period, landfill gas monitoring was carried out on a monthly basis at landfill gas wells L1 and L2. Monitoring was carried out in accordance with Schedule D.3 of the waste licence. Gas monitoring locations are shown in Appendix 1. Completed landfill gas monitoring forms for the period is available for inspection at the facility and can be forwarded if required. Landfill gas results for L1 and L2 are graphed in figures 7.1 and 7.2 below:

Figure 7.1:

Figure 7.2:

Both leachate wells are located in waste; L2 is located in the centre of the waste body and L1 is close to the northwest site boundary

The methane concentration at L1 is significantly higher than at L2. This trend is in line with historic monitoring within the site. Methane at L1 during 2012 ranged between 17 to 31%v/v. However methane levels at L2 ranged at the low levels of 0.9 to 2.2%v/v. Carbon dioxide levels for the majority of the year were similar at both locations with levels <10%v/v.

Landfill gas levels in the caretaker's office are continuously monitored using the online gas analyser. No methane or carbon dioxide was detected in the caretaker's office by either monitoring method during the 2012 and are within trigger levels as stated in Condition 6.4.1 of Waste licence 170-1.

Surface Water, Groundwater and Leachate.

SNC-Lavalin Environment (SLE) was retained by Clare County Council to complete groundwater, surface water and leachate sampling at the Lisdeen Waste Recycling Centre (Lisdeen) located at Kilkee, Co. Clare. Sampling was conducted on the 17th October 2012.

7.2 Surface Water

7.2.1a Water Quality Standards and Trigger values used for comparison

Although water is not abstracted for drinking water use from these surface water locations, it is useful to provide a benchmark for comparison of monitoring results and therefore the measured results are compared to the Water Quality Standards as presented below.

	WATER QUALITY STANDARDS			
PARAMETER	SURFACE	WATER REGUL	[2]	
	A1 A2 A3		SALMONID	
	MAC	MAC	MAC	REGULATIONS
Conductivity, µS/cm at	1000	1000	1000	
20°C				
Temperature, ⁰ C	25	25	25	NS
рН	5.5 - 8.5	5.5-9.0	5.5-9.0	> 6 < 9
Dissolved oxygen, mg/L	NS	NS	NS	NS
Dissolved oxygen, % Saturation	> 60%	> 50%	> 30%	50%, > 9 mg/l O2
BOD, mg/L O2	5	5	7	< 5
COD, mg/L O2	NS	NS	NS	NS
Total Ammonium, mg NH4/L	0.2	1.5	4.0	1.0
Suspended solids, mg/L	50	NS	NS	<25

Chloride, mg/L Cl	250	250	250	NS
Phosphates, mg/L P2O5	0.5	0.7	0.7	NS
Sulphates, ml/L SO4	200	200	200	NS

 EC (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations, 1988 [S.I. No. 294 of 1989]

[2] EC (Quality of Salmonid Waters) Regulations, 1988 [S.I. No. 293 of 1988]

7.2.1b Trigger Levels

Clare County Council has proposed trigger levels for ammonia and BOD concentrations for the surface water monitoring locations around the site. These trigger levels are considered to highlight a significant change in water quality compared to normal results and require corrective action to be taken. The proposed trigger levels, which are yet to be agreed with the EPA are presented below in Table 7.2.1.

 Table 7.2.1
 Surface water trigger levels at Lisdeen Recycling Facility

Monitoring Location	SW1	SW2	SW3	SW5	SW5a	SW7
Ammonia Concentration (ppm)	2.5	-	10	12.5	-	1.2
BOD Concentration (ppm)	38	-	10	36	-	10

Evaluation of monitoring results

Annual sampling was completed at six (6) surface water sampling locations on the boundaries of the site and off site to determine any potential impacts the site may have had on surface water quality in the area. Five main surface water bodies were sampled as part of the sampling programme:

- Stream 1 – Main tidal channel located along the eastern boundary of the site.

- Stream 2 Small stream located along eastern boundary of site parallel to Stream
 1.
- Stream 3 Stream located north of the site before it discharges to stream 1 (main tidal
- channel) and stream 2 located along the eastern boundary of the site.
- Stream 4 Surface water ditch located along southern boundary of site.
- Stream 5 Surface water ditch located south of the site and parallel with Stream
 4.

Stream 1 – Main Tidal Channel East of the Site

Annual sampling was completed at two locations on stream 1. Sample location SW3 was at the surface water outlet from the Lisdeen site and sample location SW7 was located approximately 200m downstream from the outlet. The concentrations of all parameters analysed from SW3 with the exception of elevated BOD and COD concentrations were less than the 2009 surface water regulations and EPA guideline values. Concentrations of BOD and COD were lower at SW7 but were also greater than the 2009 surface water regulations and EPA guideline values.

The concentration of NH4-N increased between SW3 and SW7 indicating potential organic impacts from sources external to the Lisdeen site.

Suspended solids concentrations were less than the EPA guideline values at SW3 but were significantly greater at SW7. The results indicated that elevated suspended solids

concentrations at SW7 were not a result of elevated suspended solids in surface water runoff from the Lisdeen site but suspended fine sand material from the channel bed and sides further downstream from the site.

Stream 2 – Stream Parallel to Main Tidal Channel East of the Site

Annual sampling was completed at one location on stream 2 at the northeast corner, and upstream, of the Lisdeen site (SW2). The concentrations of all parameters analysed from SW2 with the exception of chloride, NH4-N, BOD,

COD and suspended solids concentrations were less than the 2009 surface water regulations and EPA guideline values. The concentration of NH4-N at SW2 marginally exceeded the 2009 surface water regulations and the elevated concentration may be due to a combination of impacts from the Lisdeen site and other external sources (e.g., animal waste). BOD and COD concentrations were also elevated at SW2 but may be due to carryover of elevated BOD and COD concentrations found in SW1 (collected from Stream 3) upstream of SW2 (see below).

The sample at SW2 was collected when the tidal waters were beginning to rise which would account for the elevated chloride concentrations and also the suspension of fine sand in the sample which resulted in elevated suspended solids concentrations.

Stream 3 – Stream North of the Site - Background

Annual sampling was completed at one (1) location on stream 3 to the north, and upstream, of the Lisdeen site (SW1). The concentrations of all parameters analysed from SW1 with the exception of NH4-N, BOD and COD concentrations were less than the 2009 surface water regulations and EPA guideline values.

Analytical results indicated that concentrations of BOD and COD in SW1 (upstream of the site) were the most elevated concentrations of any surface water sample location. The results indicated that the main sources of elevated BOD and COD concentrations in surface water bodies to the north and east of the Lisdeen site are external to the site. It should be noted that although the BOD concentrations in SW1 were greater than the 2009 surface water regulations they were consistent with historic results and significantly less than the proposed trigger level for that sample location.

The concentration of NH4-N at SW1 marginally exceeded the 2009 surface water regulations with the elevated concentration due to sources external to the Lisdeen site (e.g., animal waste).

It should be noted that although the NH4-N concentrations in SW1 were marginally greater than the 2009 surface water regulations they were consistent

with historic results and significantly less than the proposed trigger level for that sample location.

Stream 4 – Surface Water Ditch on Southern Boundary of Site

Annual sampling was completed at one (1) location on stream 4 located along the southern boundary of the Lisdeen site (SW5). The concentrations of all parameters analysed from SW5 with the exception of NH4-N, BOD and COD concentrations were less than the 2009 surface water regulations and applicable EPA guideline values.

Analytical results indicated that concentrations of BOD and COD in SW5 (downgradient of the site) were elevated in the surface water sample collected on the southern boundary of the site.

The results indicated that organic contaminants on the Lisdeen site were the most probable source of increased BOD and COD concentrations at this sample location. It should be noted that although the BOD concentration in SW5 was greater than the 2009 surface water regulations they were less than the proposed trigger level for that sample location.

The concentration of NH4-N at SW5 exceeded the 2009 surface water regulations with the elevated concentration most probably due to runoff from the Lisdeen site. It should be noted that although the NH4-N concentration in SW5 was significantly greater than the 2009 surface water regulations they were consistent with historic results and significantly less than the proposed trigger level for that sample location.

Stream 5 – Surface Water Ditch South of the Site Parallel with Stream 4.

Annual sampling was completed at one (1) location on stream 5 located south (and outside the boundary) of the Lisdeen site (SW5a). The concentrations of all parameters analysed from SW5a were less than the 2009 surface water regulations and applicable EPA guideline values.

Analytical results indicated no impacts on groundwater quality on the water quality in the surface water ditch located south of the Lisdeen site.

7.3 Groundwater

Groundwater wells BH1, BH3s, BH3d, BH4s and BH4d were sampled on the 17th October 2012. Monitoring locations are shown in Appendix 1.

Table 7.3.1 G	Table 7.3.1 Groundwater water locations				
Location	Description of location				
Reference					
BH1	Artesian bedrock well located outside the site, adjacent to the northeast boundary.				
BH3d	Bedrock well located close to BH3s, downgradient of the main waste body.				
BH3s	Overburden well located within the landfill, close to the southern site boundary.				
BH4d	Bedrock monitoring well located in waste and downgradient of the main waste body.				
BH4s	Overburden well located within the landfill, close to the southern site boundary.				

7.3.1 Water Quality Standards and Trigger Values used for comparison purposes

Table 7.3.2Extracted from E.C. (Drinking Water) Regulations, 2007 SI No.106 of 2007

Parameter	Table [1]	Drinking Water Quality Standard	Deviations
Temperature	Not Listed	-	N/A
Conductivity	Table C	2500 μS/cm @ 20°C	none

рН	Table C	$6.5 \le p \mathrm{H} \le 9.5$	none
Ammonium	Table C	0.23 mg/l N (0.30 mg/l NH ₄)	See trigger levels below
Total Organic Carbon	Table C	No abnormal change	N/A
Cadmium	Table B	0.005 mg/l	none
Chromium	Table B	0.05 mg/l	none
Iron	Table B	0.2 mg/l	BH3, BH3s, BH4
Lead	Table B	0.010 mg/l	none
Manganese	Table B	0.05 mg/l	none
Nickel	Table B	0.020 mg/l	none
Sodium	Table B	200 mg/l	none

The notes above quote the Table in the regulations from which parametric or limit values were obtained
 N/A Not applicable.

Trigger Levels

Clare County Council have proposed trigger levels for ammonia concentrations for the monitoring wells located around the site. These trigger levels are considered to highlight a significant change in water quality compared to normal results and require corrective action to be taken. The proposed trigger levels, which are yet to be agreed with the EPA are presented below in Table 7.3.3.

 Table 7.3.3
 Groundwater trigger levels at Lisdeen Recycling Facility

Monitoring Well	BH1	BH3	BH3s	BH4
Ammonia Concentration (ppm)	0.5	1.7	1.0	0.5

7.3.2 Evaluation of results

Background Well

The annual sampling programme indicated that that the concentrations of the majority of contaminants of concern in groundwater at the Lisdeen site were below the applicable groundwater standards and/or the EPA guideline values. The only parameters with elevated concentrations in monitoring well BH1 were NH4-N and manganese. The NH4-N concentrations BH1 indicated that background concentrations of NH4-N were similar to those in on-site wells and that some external factors apart from the historic landfill (e.g., animal waste, sewage from septic tanks and chemical fertilisers) may be sources of elevated NH4-N concentrations.

Although the concentrations of NH4-N in the background well were greater than the 2010 groundwater standards they were less than the proposed trigger levels for monitoring well BH1. The elevated concentrations of manganese in BH1 indicate that there may be a natural source of manganese in the area. The background well is located upgradient of the site and would not be considered to be influenced by historic activities at the Lisdeen site. The EPA guideline value for manganese is set as an aesthetic objective for drinking water (i.e., staining of pipes and appliances) rather than as a concentration that would constitute a health impact. However, none of the monitoring wells are used for potable water extraction and the application of the standard may be considered overly conservative.

Southwest Area Wells

Monitoring wells BH3 and BH3S are located at the southwest of the site, and down gradient from the historic landfill body. The results of the annual sampling event indicated that that the concentrations of the majority of contaminants of concern in groundwater were below the applicable groundwater standards and/or the EPA guideline values in monitoring wells BH3 and BH3S. The only parameters with elevated concentrations in both monitoring wells were NH4-N, iron, total alkalinity and manganese.

The analysis results for both monitoring wells indicated that concentrations of NH4-N in the southwest of the site were slightly higher than the concentrations in the background well (BH1) indicating potential limited NH4-N migration from the landfill to the deep and shallow aquifer to the southwest. Although the concentrations of NH4-N in both wells located in the southwest of the site were greater than the 2010 groundwater standards they were less than the proposed trigger levels for monitoring wells BH3 and BH3S.

The elevated concentrations of iron and manganese in BH3 and BH3s indicated that there are natural source of iron and manganese in the area. However, based on the elevated concentrations of both parameters when compared to background concentrations it is considered that the historic landfill is an additional source of manganese and iron impacts. The EPA guideline value for iron and manganese are set as aesthetic objectives for drinking water (i.e., staining of pipes and appliances) rather than as a concentration that would constitute a health impact. However, none of the monitoring wells are used for potable water extraction and the application of the standards may be overly conservative.

The slightly elevated total alkalinity concentration in both monitoring wells indicated that the water contains higher concentrations of calcium carbonate (CaCO3) which may act as a buffer against significant pH changes within the groundwater aquifer.

Southeast Area Wells

Monitoring wells BH4 and BH4S are located at the southeast of the site, and down gradient from the historic landfill body. The results of the annual sampling event indicated that that the concentrations of the majority of contaminants of concern in groundwater were below the applicable groundwater standards and/or the EPA guideline values in both monitoring wells with the exception of NH4-N, iron, total alkalinity and manganese.

The analytical results indicated that the concentration of NH4-N in the deeper aquifer (BH4) contained similar concentrations of NH4-N to the groundwater sample collected from the background well (BH1), indicating minimal impact on the groundwater quality from on-site historic activities. The concentration of NH4-N in the shallow aquifer (BH4S) was only marginally greater than the 2010 groundwater standard and significantly less than the NH4-N concentration in all other monitoring wells sampled (including background well BH1). Although the concentrations of NH4-N in both wells located in the southwest of the site were greater than the 2010 groundwater standards they were less than the proposed trigger levels for monitoring wells BH4 and BH4S.

The elevated concentrations of iron and manganese in BH4 and BH4S indicated that although there are natural source of iron and manganese in the area it is considered that the historic landfill is an additional source of manganese and iron impacts. It should be noted that the EPA guideline value for iron and manganese are set as aesthetic objectives for drinking water (i.e., staining of pipes and appliances) rather than as a concentration that would constitute a health impact. However, none of the monitoring wells are used for potable water extraction and the application of the standards may be overly conservative.

The slightly elevated total alkalinity concentration in both monitoring wells indicated that the water contained higher concentrations of calcium carbonate (CaCO3) which may act as a buffer against significant pH changes within the groundwater aquifer.

7.4 Leachate

7.4.1 Evaluation of monitoring results

The leachate samples were collected from monitoring locations L1 and L2 on the 17^{th} October 2012.

Background Wells

Monitoring well BH1 is located in the southwest corner of an agricultural field located immediately to the north of the entrance gate of the Lisdeen site. The monitoring well was located up gradient from the Lisdeen site and had artesian flow when the well cap was removed. The analysis results for the submitted groundwater sample from BH1 indicated the following:

- The NH4-N concentration in the groundwater sample collected from monitoring well BH1(i.e., 0.3 mg/l) exceeded the 2010 groundwater standard of 0.175 mg/l and was equal to the EPA guideline value of 0.3 mg/l.
- Monitoring well BH1 contained concentrations of manganese (458ug/l) and total alkalinity (256 mg/l) that exceeded the applicable EPA guideline values of 50 µg/l and 200 mg/l respectively. The concentrations of all other anions in the groundwater sample submitted from BH1 contained concentrations less than the 2010 groundwater standards or the applicable EPA guideline values;
- The concentrations of dissolved metals in the submitted groundwater sample from BH1 were less than the 2010 groundwater standards and/or the applicable EPA guideline values;

The well is located on agricultural land where a number of horses were observed in close proximity. The elevated NH4-N concentration may be due to the infiltration of other potential sources (i.e., other than landfill leachate) including; animal waste, fertilisers or sewage. It should be noted that although the NH4-N concentration exceeded the 2010 groundwater standard it was less than the proposed concentration trigger level for BH1 (i.e., 0.5 mg/l) indicating that the result was consistent with historic concentrations for that monitoring well.

The elevated concentrations of manganese in BH1 indicate that there may be a natural source of manganese in the area. The background well is located upgradient of the site and would not be considered to be influenced by historic activities at the Lisdeen site. It has been established that historic manganese concentrations reported for the site reported as parts per billion (ppb) should have been reported as parts per million (ppm). Based on this change the manganese concentrations for 2012 are consistent with historic concentrations observed on site during previous annual sampling events. The EPA guideline value for manganese is set as an aesthetic objective for drinking water (i.e., staining of pipes and appliances) rather than as a concentration that would constitute a health impact. However, the monitoring well is not used for potable water extraction and the application of the standard may be overly conservative.

Southwest Area Wells

Monitoring wells BH3 and BH3S are located at the southwest of the site, and from the old landfill body, the analysis results for samples submitted from the monitoring wells indicated the following:

- Concentrations of NH4-N in BH3 (0.43 mg/l) and BH3S (0.41 mg/l) were greater than the 2010 groundwater standard of 0.175 mg/l;
- Concentrations of manganese in BH3 (998 μg/l) and BH3S (1,023 μg/l) were greater than the applicable EPA guideline value of 50 μg.
- Concentrations of iron in BH3 (4,061 μg/l) and BH3S (19,160 μg/l) were greater than the applicable EPA guideline value of 200 μg/l;
- Total alkalinity concentrations in both BH3 and BH3S (i.e., 298 mg/l and 288 mg/l

respectively) marginally exceeded the applicable EPA guideline value of 200 mg/l;

 All other parameters analysed in submitted groundwater samples contained concentrations less than the 2010 groundwater standards and/or the applicable EPA guideline values.

The wells indicated NH4-N concentrations marginally greater than background concentrations indicating that the groundwater quality at both wells may be influenced by on-site and off-site sources of ammonia. It should be noted that although the NH4-N concentration exceeded the 2010 groundwater standard in both BH3 and BH3S it was significantly less than the proposed concentration trigger level for both wells (i.e., 1.7 mg/l and 1.0 mg/l respectively).

The elevated concentrations of iron and manganese in BH3 and BH3s indicated that there are natural source of iron and manganese in the area. However, based on the elevated concentrations of both parameters when compared to background concentrations it is considered that the historic landfill may also be an additional source of manganese and iron impacts. The EPA guideline value for iron and manganese are set as aesthetic objectives for drinking water (i.e., staining of pipes and appliances) rather than as a concentration that would constitute a health impact. However, none of the monitoring wells are used for potable water extraction and the application of the standards may be overly conservative.

The slightly elevated total alkalinity concentration in both monitoring wells indicated that the water contains higher concentrations of calcium carbonate (CaCO3) which may act as a buffer against significant pH changes within the groundwater aquifer.

Southeast Area Wells

Monitoring wells BH4 and BH4S are located at the southeast of the site, and down gradient from, the old landfill body. The analysis results for samples submitted from the monitoring wells indicated the following:

- Concentrations of NH4-N in BH4 (0.35 mg/l) and BH4S (0.19 mg/l) were greater than the 2010 groundwater standard of 0.175 mg/l;
- Concentrations of manganese in BH4 (416 μg/l) and BH4S (1,285 μg/l) were greater than the applicable EPA guideline values of 50 μg;
- Concentrations of iron in BH4 (531 μg/l) and BH4S (2,898 μg/l) were greater than the applicable EPA guideline values of 200 μg;
- Total alkalinity concentrations in both BH4 and BH4S (i.e., 242 mg/l and 240 mg/l

respectively) marginally exceeded the applicable EPA guideline value of 200 mg/l;

- All other parameters analysed in submitted groundwater samples from BH4 and BH4S contained concentrations less than the 2010 groundwater standards and/or the applicable EPA guideline values.

Monitoring wells BH4 and BH4S are located at the southeast of the site, and down gradient from the old landfill body. The results of the annual sampling event indicated that that the concentrations of the majority of contaminants of concern for groundwater were below the applicable groundwater standards and/or the EPA

guideline values in both monitoring wells with the exception of NH4-N, iron, total alkalinity and manganese.

The analytical results indicated that the concentration of NH4-N in the deeper aquifer (BH4) contained similar concentrations of NH4-N to the groundwater sample collected from the background well (BH1), indicating minimal impact on the groundwater quality from on-site historic activities. The concentration of NH4-N in the shallow aquifer (BH4S) was only marginally greater than the 2010 groundwater standard and significantly less than the NH4-N concentration in all other monitoring wells sampled (including background well BH1). Although the concentrations of NH4-N in both wells located in the southwest of the site were greater than the 2010 groundwater standards they were less than the proposed trigger levels for monitoring wells BH4 and BH4S.

The elevated concentrations of iron and manganese in BH4 and BH4S indicated that although there are natural source of iron and manganese in the area it is considered that the historic landfill is an additional source of manganese and iron impacts. It should be noted that the EPA guideline value for iron and manganese are set as aesthetic objectives for drinking water (i.e., staining of pipes and appliances) rather than as a concentration that would constitute a health impact. However, neither of the monitoring wells are used for potable water extraction and the application of the standards may be overly conservative. The slightly elevated total alkalinity concentrations of calcium carbonate (CaCO3) which may act as a buffer against significant pH changes within the groundwater aquifer.

The Leachate results are presented in Appendix IV Table IV.

8) Resource Consumption Summary

Diesel

700 litres of diesel was used to power the 3-phase generator on site.

Electricity

It is estimated that approximately 3,000 units of electricity were used in 2012.

Water

Water supply to the site is via a connection to the group water scheme. Water usage on site is mainly for power washing yards, transfer station apron and hopper. Average water usage is approximately 3,000 litres monthly, with an approximate total of 36,000 litres used in 20112

9) Development works undertaken during the period and timescale for proposed works.

Additional lighting and CCTV cameras were installed during 2012 to improve security on site.

Additional traffic control measures were also implemented to aid traffic flow through the facility.

Clare County Council has received Part VIII Planning Permission to begin the remediation process. Clare County Council intend to begin works as soon as finances permit.

10) Full title and written summary of any procedures developed by the licensee during the previous year.

No procedures were developed during the past year.

11) Drum, Tank and Bund Testing.

An integrity test was carried out on the bund in May 2012.

12) Reported Incidents and Complaints Summaries.

There were no complaints received during the year and no incidents recorded at the facility.

13) Review of nuisance controls

No review of nuisance controls was carried out during 2012; no nuisances were noted at the facility during 2012, therefore a review was not considered to be necessary.

14) Schedule of Environmental Objectives and Targets

Objective 1

Comply with all aspects of the licence.

Target 1.1 - Every effort will be made to comply with all conditions of the waste licence by the prescribed dates.

The Senior Engineer, Executive Engineer in charge, Deputy Site Manager, Executive Chemist and Environmental Patrol Warden have responsibility for implementing this objective.

Objective 2

Ensure that sufficient funds are available to comply with condition 12 of the licence.

Responsibility for ensuring compliance with this objective lies with the Finance Officer of Clare County Council.

Objective 3

Increase the quantity of waste collected for recycling at the facility.

Target 3.1-Increase the quantities of cardboard and newspaper collected at the Recycling Centre. Suitable containers for each waste type will be provided on site and the public will be informed by means of appropriate awareness campaigns.

Target 3.2-Increase the quantities of glass, aluminium cans, and steel cans collected at the Recycling Centre.

The Senior Engineer, Environmental Services has responsibility for implementing this objective with the assistance of the Executive Engineer in charge and the Environmental Awareness Officer in the Environment Dept.

Objective 4

Improve facilities at the facility.

Target 4.1 - Make facility more user-friendly by providing containers and providing clear instructions as to what these are for. This will allow for proper segregation of recyclable streams. All bulky wastes and hazardous wastes will be stored in one particular area of the facility and this area will be secured thus

allowing for greater supervision when these recyclable streams are being deposited. This will also eliminate traffic hazards. On occasion there is difficulty with turning/reversing manoeuvres at the facility due to large stockpiles of white goods and large recycling receptacles.

Target 4.2 - Provision of additional recyclable streams by year-end.

The Executive Engineer in charge has responsibility for implementing this objective.

Objective 5

Improve correspondence with the E.P.A.

Target 5.1 - Council will make every effort to reply to letters of correspondence received from the Agency by the requested dates.

The Executive Engineer in charge and Senior Staff Officer have responsibility for implementing this objective.

Objective 6

Comply with condition 3.10.1

Target 6.1 - Install by mid-2008 an interceptor as per condition 3.10.1 of the waste license, as part of overall landfill remediation programme.

This will be installed when funds become available.

The Executive Engineer in charge will have responsibility for implementing this objective.

Objective 7

Advance the Restoration and Aftercare Plan.

Target 7.1 - Implement the first phase of the Restoration and Aftercare plan as agreed with the Agency.

The Senior Executive Engineer, Executive Engineer, Finance Officer and Senior Staff Officer have responsibility for implementing this objective.

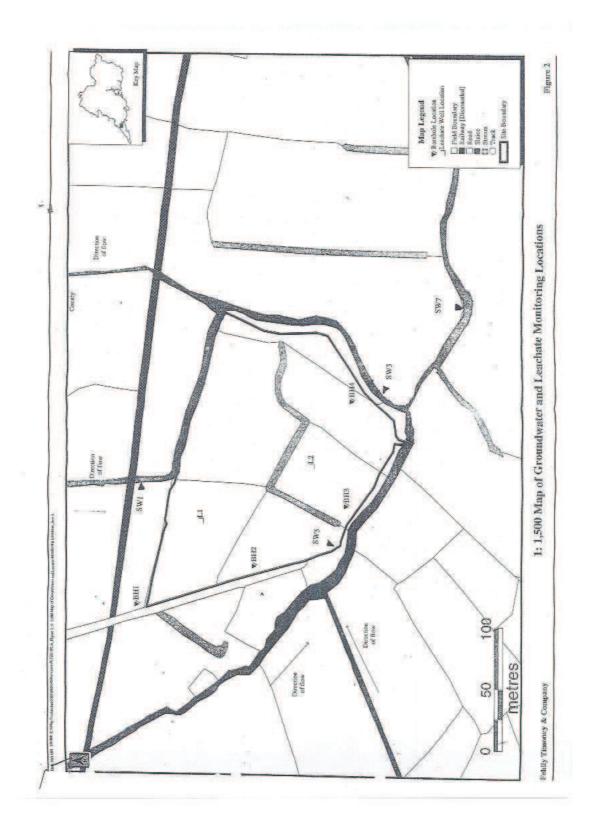
Time scale

A requisition for funding is with the DOEHLG at present. When this funding becomes available details of the Restoration and Aftercare plan will be submitted.

Designation of Responsibilities

The Senior Engineer, Environmental Services Section of Clare County Council has overall responsibility for the implementation of these objectives. The specific responsibilities for each objective are outlined in the description.

15) Progress of objectives and targets


Objective	This is ongoing and mainly successful, the licensee will continue to aim for
1	maximum compliance.
Objective	Funding has been made available and the licensee will continue to ensure
2	funding is made available.
Objective	Recyclable material amounted to 50.3% of all waste accepted at the facility
3	in 2012.
Objective	The licensee placed additional signage to improve user friendliness on the
4	site. A new concrete base was installed in the main recycling area which

	improves greatly the safety and layout of the site. The licensee will continue to review the site layout in order to provide the best possible service. We introduced the following new waste streams: rigid plastics and flourescent tubes (WEEE).
Objective	Correspondence with EPA as set out by EPA is an ongoing objective, the
5	licensee will continue to progress this objective.
Objective	Installation of the oil Interceptor will form part of the remediation project.
6	
Objective	This project will proceed when funding becomes available
7	

16) Financial Provision

A sum of €200,000 has been set aside in the 2012 Clare Co. Council Budget for the operation of the facility. Additional monies are being sought through grants from the Department of the Environment and Local Government for the capital works relating to the Restoration and Aftercare of the Site.

Appendix I Location of Monitoring Points

- 29 -

Appendix II Summary of Surface Water Monitoring Results

Sample Type: Location: Date:	Surface Waters Lisdeen Transfer Station 17 th October 2012					
Sampled By: Variables	SNC Lavelin SW1	SW2	SW3	SW5	SW5a	SW7
Biochemical Oxygen Demand (ppm)	15	13	14	15	3	8
Boron (ppm)	40	538	59	85	15	193
Calcium (ppm)	30.3	66.8	32.3	72.9	28.1	35.5
Cadmium (ppb)	.5	.5	.5	.5	.5	.5
Chloride (ppm)	65.6	2095.5	171.3	73.6	48.8	590.1
Chemical Oxygen Demand (ppm)	140	99	98	131	22	81
Electrical Conductivity (uS/cm)						
Chromium (ppb)	2.6	<1.5	<1.5	<1.5	<1.5	<1.5
Copper (ppb)	<7	<7	<7	<7	<7	<7
Temperature (Celcius)						
Iron (ppb)	1853	287	531	<20	569	335
Potassium (ppm)	3.6	46.3	8.5	5.8	6.9	17.3
Magnesium (ppm)	7.5	115.6	14.0	21.5	6.6	38.4
Manganese (ppb)	211	8	8	6	4	<2
Sodium (ppm)	41	962.7	95.3	68.4	24.6	292.7
Ammoniacal Nitrogen (ppm)	.16	.37	.06	1.7	.09	.23
Nickel (ug/l)	12	<2	3	<2	4	2
Lead (ppb)	<5	<5	<5	<5	<5	<5
рН						
Total Suspended Solids (ppm)	11	169	50	39	26	1173
Zinc (ppb)	20	<3	<3	<3	<3	<3

Table II: Surface water results at Lisdeen facility (17th October 2012)

Appendix III Summary of Groundwater Monitoring Results

Second Trans	Crown dwystar					
Sample Type: Location:	Groundwater Lisdeen Transfer Station 17 th October					
Date:	2012					
Sampled By: Parameter	SNC Lavelin BH1	BH3	BH3s	BH4	BH4s	Limita(1)
						Limits(1)
Alkalinity (ppm)	256	298	242	288	240	No abnormal change
Boron (ppb)	57	65	74	61	72	1000
Calcium (ppm)	60	69.1	52.1	68.6	54.2	200
Cadmium (ppm)	.5	1.2	.5	2	.5	5
Chloride (ppm)	75.1	75.6	74.8	75.6	75.3	250
Cyanide (ppm)	<.01	<.01	<.01	<.01	<.01	0.05
Electrical Conductivity (uS/cm)	858	869	975	824	887	1500
Chromium (ppb)	<1.5	4.2	<1.5	12.1	1.9	50
Copper (ppb)	<7	10	<7	7	<7	2000
Iron (ppp)	78	4061	531	19160	2898	200
Fluoride (ppm)	<.3	<.3	<.3	<.3	<.3	1
Mercury (ppb)	<.1	<.1	<.1	<.1	<.1	1
Potassium (ppm)	2.7	3.6	3	3.4	3	12
Magnesium (ppm)	20.2	21.1	13.1	20.3	13	50
Manganese (ppb)	458	998	416	1023	1285	50
Sodium (ppm)	69.1	72.5	94	70.2	93.4	150
Total dissolved soilds (mg/l)						Not specfied
Temperature (Celsius)	11.7	12.5	11.9	11.8	11.9	25
Ammoniacal Nitrogen (ppm)	.3	.43	.35	.41	.19	0.30mg/l
Nickel (ppm)	<2	4	<2	2	<2	20
Orthophosphate P ppm	<0.06	< 0.06	< 0.06	< 0.06	<0.06	0.03 (Orthophosphate)
Lead (ppm)	<5	11	<5	9	<5	10

Table III: Groundwater water results at Lisdeen facility (17th October 2012)

pH	7.3	7.7	7.6	7.6	7.9	6.5-9.5
Sulphate (ppm)	7.25	5.3	4.97	5.63	5.17	250
Total Organic Carbon (ppm)	26	22	20	19	21	No abnormal change
Total Oxidised Nitrogen (ppm)	<0.2	<0.2	<0.2	<0.2	<0.2	No abnormal change
Total phosphorus (ppm)						
Zinc (ppb)	4	33	3	27	7	5000

Limits quoted are Interim Guidance Values from EPA document "Towards setting guidance values for protection of Groundwater in Ireland"

Appendix IV Summary of Leachate Monitoring Results

Sample Type:	Groundwater	
Location:	Lisdeen Transfer Station	
Date:	17 th October 2012	
Sampled By:	SNC Lavelin	
Parameter	L1	L2
Alkalinity (ppm)	242	864
Biochemical Oxygen Demand (ppm)	10	7
Boron (ppb)	19	518
Calcium (ppm)	78.7	277
Cadmium (ppb)	< 0.5	< 0.5
Chloride (ppm)	17.1	151.6
Cyanide (ppm)		
Chemical Oxygen Demand (ppm)	198	103
Electrical Conductivity (uS/cm)	568	1100
Chromium (ppb)	<1.5	<1.5
Copper (ppb)	<7	<7
Iron (ppb)	1072	81
Fluoride (ppm)	< 0.3	< 0.3
Mercury (ppb)	<1	<1
Potassium (ppm)	7.4	72.7
Magnesium (ppm)	7.4	79.2
Manganese (ppb)	557	3057
Sodium (ppm)	12.9	163.3
Ammoniacal Nitrogen (ppm)	1.39	105.63
Orthophosphate P	< 0.06	< 0.06
Lead (ppb)	<5	<5
pН	7	7
Sulphate (ppm)	7.78	7.64
Total Organic Carbon (ppm)	26	49
Total Oxidised Nitrogen (ppm)	< 0.2	.3
Total phosphorus (ppm)		
Temperature C	12.1	12.3

Table IV: Leachate results at Lisdeen facility (17th October 2012)

[PRTR# : W0170 | Facility Name : Lisdeen Recycling Centre & Transfer Station | Filename : PRTR_W0170_2012(1).xls | Return Year : 2012 |

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2012

Version 1.1.16

1. FACILITY IDENTIFICATION

Parent Company Name	Clare County Council
Facility Name	Lisdeen Recycling Centre & Transfer Station
PRTR Identification Number	W0170
Licence Number	W0170-01

Waste or IPPC Classes of Activity	
No	class_name
	Repackaging prior to submission to any activity referred to in a
3.12	preceding paragraph of this Schedule.
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
3.13	collection, on the premises where the waste concerned is produced.
	Storage of waste intended for submission to any activity referred to
	in a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4.13	produced.
	Recycling or reclamation of organic substances which are not used
	as solvents (including composting and other biological
	transformation processes).
4.3	Recycling or reclamation of metals and metal compounds.
4.4	Recycling or reclamation of other inorganic materials.
Address 1 Address 2	Cemetry Road
Address 2 Address 3	
Address 3 Address 4	
Address 4	CO Ciale
	Clare
Country	
Coordinates of Location	
River Basin District	
NACE Code	
Main Economic Activity	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	Patrick Mullane
AER Returns Contact Email Address	pmullane@clarecoco.ie
AER Returns Contact Position	
AER Returns Contact Telephone Number	065-6846331
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	
Production Volume	0.0
Production Volume Units	
Number of Installations	0
Number of Operating Hours in Year	0
Number of Employees	1
User Feedback/Comments	
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
50.1	General

SOLVENTS REGULATIONS (S.I. No. 543 of 2002) Is it applicable?	
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being used ?	

THE OTTED ACCEL TED ONTO SHE	Suidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	
site treatment (either recovery or disposal	
activities) ?	

17/7/2013 11:42

Link to previous years emissions data 4.1 RELEASES TO AIR

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

PRTR# : W0170 | Facility Name : Lisdeen Recycling Centre & Transfer Station | Filename - PRTR_W0170_2012(1) als | Refurm Year : 2012 |

17/07/2013 11:42

F (Fugitive) KG/Year 0.0

0.0

0.0

0.0

				ш	ļ
		VIIANTITY		A (Accidental) KG/Year	
s in this section in KGs	A ILL RIES SCOROLL III INOS			T (Total) KG/Year	
Please enter all quantities				Emission Point 1	
		METHOD	Method Used	Designation or Description	
		ME		M/C/E Method Code	
RELEASES TO AIR				Name	
	TIATITICO	LOLLUIAN		No. Annex II	

· Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES IU AIR			please enter all quantitie:	s in this section in KGs		
POLLUTAN	ANT	METHOD				VIIANTITY	
						I IIININON	
		Method	ethod Used				
No. Annex II	Name	M/C/E Method Code De	esignation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Funitive) KG/Year
				0.0		0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES IU AIR			Please enter all quantities in this section in KGs	s in this section in KGs		
P	JLLUTANT CLUTANT	METHOD	ООН			OLIANTITY	
		Me	ethod Lised				
Dollistant No.	Manual		0000 0000				
F UNUCATIVE INU.	Name	M/C/E Method Code	Designation or Description	Emission Point 1 IT (Total) KG/Year	T (Total) KG/Year	A (Accidental) KG/Vear F (Funitive) KG/Vear	F (Funitive) KG/Vear
							ino iovi (panifin i)
				0	0.0	0.0	00
	· Calada and build all the set of						

Name (Column B) then click the delete button ung on the Po Select a row by dou

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CHA) emission to the arrivorment under (Total) KGN/rfox Section A: Section S; Secti

Ladeen Recycling Centre & Transfer Station Please enter summary data on the quantities of methane flared and / or utilised Method Used Total estimated methane generation (as per model) Nethod Used Total estimated methane generation (as per model) 0.0 0.0 0.0 0.0 Nethona emission (as reported) 0.0 0.0 0.0 0.0 0.0 Nethane utilised in engines 0.0 0.0 0.0 0.0 0.0 Nethane utilised in engines 0.0 0.0 0.0 0.0 0.0 Nethane utilised in engines 0.0 0.0 0.0 0.0 0.0 Nethane emission (as reported in Section 2.0 0.0 0.0 0.0 0.0							
T (Total) kg/Year Mitchod Used Eaclify Total Capacity 0:0 Mitchod Code Description Facility Total Capacity 0:0 0:0 Nichod Code Description 0:0 0:0 Nichod Code Nichod Code 0:0 0:0 Nichod Code Nichod Code	Landfill:	Lisdeen Recycling Centre & Transfer Station				ī	
T (Total) kg/Year MiC/E Method Code Designation or Description Facility Total Capacity per hour 0.0 0.0 0.0 NIA 0.0 0.0 0.0 NIA	Please enter summary data on the quantities of methane flared and / or utilised			Meth	iod Used		
0.0 0.0 0.0 0.0 0.0 0.0 0.0		T (Total) kg/Year	M/C/E	Method Code	Designation or Description	Facility Total Capacity m3 per hour	
0.0 0.0 NIA 0.	Total estimated methane generation (as per						
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	site model)	0.0				N/A	
0.0 0.0 N/A	Methane flared	0.0				0.0	(Total Flaring Capacity)
0.0 N/A	Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)
0.0	Net methane emission (as reported in Section						
	A above)	0.0				N/A	

Sheet : Releases to Waters

AER Returns Workbook

17/7/2013 11:42

00

00

00

Link to previous years emissions data 4.2 RELEASES TO WATERS

4.2 RELEASES TO WATERS	Link to previous years emissions data	I PRTR# W0170 Facility Name : Lisdeen Recycling Centre & Transfer Station Fuename PR	TR_W0170_2012[1].vis Return Year 2012	17/07/2013 11 42
SECTION A : SECTOR SPECIFIC PRTR POL	S POLLUTANTS	Dista on ambient monthoring of structures wates to reconcisional to an and a		
	RELEASES TO WATERS	Please enter all ou	our resurce requirements, anound NUT pe submitted under AER / PKTR Se https://provides.in/this section in KGs	aporting as this on
	POLLUTANT		DIIANTITY	
		Mathod Isad		
No Annav II				
II YOUTO' YAL	Name	M/C/E Method Code Designation or Description Emission Point 1	T (Total) KG/Year A (Accidental) KG/Year F (Finitive) KG/Year	hitina) KGNaar
				ino loci locali

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO WATERS		Please enter all mightine	in this section in KCs		The state of the state of the
	POLLUTANT				CIANTITU	
					MUANITI T	
Ala Canada II		Method Used	A CONTRACTOR OF A CONTRACTOR O			
ND. ANTRX II	Name	M/C/E Method Code Designation or Description	Emission Point 1	T (Total) KGNaar	A (Accidental) VCNane	E /E with and WC War
	Cartmium and compounds fas Cdi			in indian indian	V /Vronalian NOI 164	IL (Luginve) Norreal
		Let Let	0.0	0.001744	0.0	0 0.001744
		C PER	0.0	294.212	10	0 294 213
	Chromium and compounds (as Cr)	C PER	0.0	0.00523	10	0 00525
	Copper and compounds (as Cu)	C PER	0.0	0.0274	10	00274
	Fluondes (as total F)	C PER	0.0	1.046	00	
	Mercury and compounds (as Hg)	C PER	0.0	0.003488		0 003488
	Lead and compounds (as Pb)	C PER	0.0	0.01744	00	0.01744
	Autor and compounds (as Zn)	C PER	0.0	0.09417	0.0	0 0.09417
			0.0	0.0	00	00

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

-
2
5
2
12
_
-
5
õ
5
equired in your L
-
υ
ø
.=
-
0
ð
5
60
*
-
10
22
z
Ο
=
ú
ŝ
MIS
EMIS
EMIS
T EMIS
NT EMIS
ANT EMIS
TANT EMIS
JTANT EMIS
UTANT EMIS
-LUTANT EMIS
DLLUTANT EMIS
OLLUTANT EMIS
POLLUTANT EMIS
POLLUTANT EMIS
G POLLUTAN
<i>IEMAINING POLLUTAN</i>
<i>EMAINING POLLUTAN</i>
<i>EMAINING POLLUTAN</i>
<i>EMAINING POLLUTAN</i>
<i>EMAINING POLLUTAN</i>
<i>EMAINING POLLUTAN</i>
SECTION C : REMAINING POLLUTANT EMISSIONS (as required in

DELEASES TO

	RELEASES ID WAIEKS		Please enter all mantities	in this section in KGe		
	POLLUTANT				OILANTIN'	
					TIIINAUM	and the second s
and a second sec		Method Used	The second secon			
Pollutant No.	Name	I/C/E Method Code Designation or Description	Emission Point 1	T (Total) KGNear	A (Accidental) KGNear	E (Eucliva) KGNaar
351	Total Organic Carbon (as C)	PER	00	0 1308		10000 U
305	Calorim	DCD				0.1300
925			7.0		0.0	620.34
000	Potassium	PER	0.0	135.5		
320	Magnesium	PER		464.00		
100	Wannanasa (as Mel			CO.1CI		
		TEK	0.0	6.27		
	Continu	PER	0.0	306.7		
238	Ammonia (as N)	PER	0.0	186.6		
387	Ortho-phosphate (as P)	PER	UU	0.200		
573	Simheite					
		LEK	0.0	26.8	0.0	26.8
	* Select a row by double-clicking on the Dollitant Alama (Column D) than allot the doleta better					

Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

17/7/2013 11:42

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

17/07/2013 11.42 PRTR# : W0170 | Facility Name : Lisdean Recycling Centre & Transfer Station | Filename : PRTR_

POLLUTANT METHOD METHOD QUANTITY xII Martie Method Used Method Used Al Accidentaly KGNear Al Acc		OFFSITE TRANSFER OF POLLUTANTS DEST	DF POLLUTANTS DESTINED FOR WASTE-WATER	REATMENT OR SEWER	ER	Please enter all quantities in th	es in this section in KGs		
Method Used Designation or Description Emission Point 1 Trataly KGWPar		POLLUTANT		ME	THOD			OLIANTITY	
Designation or Description Emission Point 1 T (Total) KG/Vear					Method Used				
	ex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year		E (Enditive) KCNe

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence) OFFSITE TRANSFERGOT OUT UTANTE DESTINED E

	OFFSILE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATE	STE-WATER IR	R TREATMENT OR SEWER	VER	Please enter all quantit	es in this section in KGs		A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O
	POLLUTANT		W	METHOD			CITANTIV	- Indian - and an and an an
							I III NIMON	
				Method Used				
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	escription Emission Point 1	T (Total) KG/Year	A (Accidental) KGNear E (Euclitica) KGNear	E (Encitive) KGNoor
						include line it	In Incurating in Nor I car	It (ruginve) nor real
						0.0	0.0	00
	* Select a row by double-clicking on the Pollistant Name (Column B) than	"olimn B) than click a	the delete hitten					

17/7/2013 11:42

4.4 RELEASES TO LAND

SECTION A : PRTR POLLUTANTS

Vo. Anne

PRTR#: W0170 | Facility Name _Lisdeen Recycling Centre & Transfer Station | Filename _PRTR_W0170_2012(1).xis | Return Year: 2012 | Link to previous years emissions data

17/07/2013 11:42

METHOD METHOD METHOD vill Name Mic/E Method Used vill Name Mic/E Name vill Name Nic/E Nic/E vill Nic/E Nic/E Nic/E vill Nic/E Nic/E Nic/E Nic/E Nic/E Nic/E Nic/E		DOILITANT			Please enter all quan	ittles in this section in KG.	
Method Used Method Used IDesignation or Description Emission Point 1 T (Total) KG/Year A		FOLLUIANI		METHOD			OLIANTITV
Method Used T (Total) KG/Year Designation or Description Emission Point 1 T (Total) KG/Year							
Comparison of Description Emission Point 1 T (Total) KG/Year A 0.0				Method Used	のころのからなっていているのでいう		
Comparison of Designation of De	X	Name					
0.0 0.0		INAILIC	M/C/E MIGUN	Code Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year
0.0 0.0							mo i iovi (imilionicoi i/
						0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES TO LAND		Please enter all quantities in thi	is section in KCs	
	POLLUTANT	METHOD			CUANTITY
					MUANIII T
		Method Used			
Pollutant No.	Name	CIM CIM		and the second se	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
			Emission Point 1 T (To	Total) KG/Year	A (Accidental) KG/Year
			0.0	0	00

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

+++
0
. 65
-
~
~
10
0
0
10
an a
, w
10
0,
C
m
20
-
-
-
100
O
C
-
-
.00
(1)
100
100
-
1.0
20.0
100
ω.
CD
1
-
S

17/7/2013 11:43

ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE Plasse ander all quantities on this shoet in Tonneis

17/07/2015 11 43

				services on this shoet at 1 onnes									ar
			Quantity (Tonnes per Year)				Method Used		Haz Waste : Name and Licence/Permit No of Next Destination Facility Haz Waste Name and Licence/Permit No of Recover/Discoser	Haz Waste Address of Next Destination Facility Non Haz Waste Address of Recover/Discress	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZABOUS WASTE	Actual Address of Final Destination Actual Address of Final Destination 1.6. Final Recovery Of Disposal Site	Destination Dosal Site
Transfer Destination	European Waste Code	Hazardous		Description of Waste	Waste Treatment Operation M/C/E	M/C/E	Method Used	Location of Treatment					
Within the Country	20 03 01	No	650.0	650.0 mixed municipal waste	Б	W	Weighed	Offsite in Ireland	CWMF Clare Co. Co. ,W109- 01	H. Inagh ,Co. ClareIreland			
Within the Country	20 01 40	oN N	21.79	21.79 metals	R4	×	Weighed	Offsite in Ireland	Clearcircle Environmental, WFP-LK-10- 001-01	Ballysimon Road, LimenckIreland			
Within the Country Within the Country	20 01 02 20 01 39	N N	271.0	271.0 glass 6.6 plastics	R5 R3	× ×	Weighed Weighed	Offsite in Ireland Offsite in Ireland		Kilmallock, Limerick, Ireland Cree, Clare,, Ireland			
Within the Country	15 01 04	No	9.2	9.2 metallic packaging	R5	×	Weighed	Offsite in Ireland	Clare Waste & Recycling, WFP/CE/08/002/0 1) Scarriff ,Clare ,,Ireland			
Within the Country Within the Country	16 06 01 20 01 01	Yes No	0.89 33.34	0.89 lead batteries 33.34 paper and cardboard	R4 R3	ΣΣ	Weighed Weighed	Offsite in Ireland Offsite in Ireland	Offsite in Ireland Enva Ireland, W0184-01 Offsite in Ireland Clean Irt, 002/07/wpt/cl	Portioaise ,Laoise,,Ireland Cree,Clare,,Ireland	Enva Ireland,W0184091,Portlaois e,Laoise,,Ireland	Portlaoise, Laoise,, Ireland	Ireland
Within the Country	13 02 04	Yes	1.8	mineral-based chlorinated engine, gear and 1.8 lubricating oils	Rg	×	Weighed	Offsite in Ireland	Enva irelamd, W0184-01	Portloaise, Laoise,, Ireland	Enva Ireland, W0184091, Portlaois e, Laoise,,Ireland	Portlaoise, LaoiseIreland	Ireland
Within the Country Within the Country	20 01 01 15 01 05	o N N	26.28 0.83	26.28 paper and cardboard 0.83 composite packaging	R3 R3	× ×	Weighed Weighed	Offisite in Ireland Offisite in Ireland	Binman, W062-02 Clean Irt., 002/07/wpt/cl Clare Waste &	Kilmallock, Limerick, Ireland Cree, Clare,, Ireland			
Within the Country	20 01 38	No	34.0	34.0 wood other than that mentioned in 20 01 37 R3	R3	×	Weighed	Offsite in Ireland	Recycling.WFP/CE/08/002/0	Scamiff ,Clare,Ireland Ballvcregadh			
Within the Country 20 01 11	20 01 11	No	2.66	2.66 textiles discarded electrical and electronic	ß	Σ	Weighed	Offsite in Ireland	Offsite in Ireland All-Tex Recyclers, N/A	Rd.,Ballymena,Antrim., Irela nd			
Within the Country 20 01 36	20 01 36	No	55.12	equipment other than those mentioned in 55.12 20 01 21, 20 01 23 and 20 01 35	R4	Σ	Weighed	Offisite in Ireland	Offsite in Ireland Enva Irelamd, W0184-01	Portloaise ,Laoise,,Ireland			
		· Select a row	by double-clicking t	 Select a row by double-clicking the Description of Waste then click the delete button 									