

ANNUAL ENVIRONMENTAL REPORT

Ву

Louth County Council

То

Environmental Protection Agency

For

Waste Licence Reference: W0060-03

Reporting Period January – December 2012

WHITERIVER LANDFILL SITE, COUNTY LOUTH

WHITERIVER LANDFILL SITE ANNUAL ENVIRONMENTAL REPORT JANUARY – DECEMBER 2012

DOCUMENT CONTROL SHEET

Client	Louth Coun	ty Council				
Project Title	Whiteriver L	Whiteriver Landfill Site				
Document Title	Annual Envi	ironmental Re	eport January	– December 20	12	
Document No.	IBR0509/Re	IBR0509/Reports				
This Document	DCS	TOC	Text	List of Tables	List of Figures	No. of Appendices
Comprises	1	1	46	1	1	12

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
	Draft	AMG	AMG	DD	Letterkenny	12/04/2013
	Final	AMG	AMG	DD	Letterkenny	17/04/2013
Α	Final	AMG	AMG	DD	Letterkenny	07/05/2013

.

TABLE OF CONTENTS

1.0	INTRO	TRODUCTION 1					
	1.1	REPORT PERIOD	1				
2.0	WAST	TE ACTIVITIES CARRIED OUT AT THE FACILITY	2				
3.0	QUAN	NTITY AND COMPOSITION OF WASTE RECEIVED AND DISPOSED OF DURING	;				
	THE F	REPORTING PERIOD AND EACH PREVIOUS YEAR	4				
4.0	CALC	CULATED REMAINING CAPACITY OF THE FACILITY AND YEAR IN WHICH					
	FINAL	LCAPACITY IS EXPECTED TO BE REACHED	6				
5.0	METH	HODS OF DEPOSITION OF WASTE	7				
6.0	SUMN	MARY REPORT ON EMISSIONS	8				
	6.1	EMISSIONS TO AIR	8				
	6.2	EMISSIONS TO GROUNDWATER AND SURFACE WATER	8				
	6.3	EMISSIONS TO WASTE WATER TREATMENT WORKS	9				
7.0	SUMN	MARY OF RESULTS AND INTERPRETATION OF ENVIRONMENTAL MONITORII	NG				
			10				
	7.1	MONITORING LOCATIONS	10				
	7.2	LEACHATE QUALITY	13				
	7.3	GROUNDWATER	14				
	7.4	QUARTERLY MONITORING PARAMETERS	17				
	7.5	ANNUAL MONITORING PARAMETERS	17				
		7.5.1 Up Gradient Annual Results	17				
		7.5.2 Down Gradient Annual Results	19				
	7.6	Surface Water	20				
		7.6.1 Lagoon/Surface Water Retention Pond	23				
	7.7	GAS MONITORING	23				
	7.8	MONITORING OF EMISSIONS FROM LANDFILL GAS FLARE	24				
	7.9	Noise Monitoring	24				
	7.10	Dust Monitoring	26				
	7.11	METEOROLOGICAL MONITORING	26				
	7.12	SLOPE STABILITY ASSESSMENT	26				
	7.13	ODOUR MONITORING	27				
8.0	RESO	DURCES AND ENERGY CONSUMPTION SUMMARY	28				
9.0	PROP	POSED DEVELOPMENT OF THE FACILITY AND TIMESCALE OF SUCH					
	DEVE	ELOPMENT	29				
10.0	VOLU	JME OF LEACHATE PRODUCED AND VOLUME OF LEACHATE TANKERED OF	F				
	SITE		30				

i

11.0	REPO	RT ON DEVELOPMENT WORKS UNDERTAKEN DURING THE REPORTING	
	PERIO	DD, AND A TIMESCALE FOR THOSE PROPOSED DURING THE COMING YEAR	31
	11.1	RESTORATION OF COMPLETED CELLS/PHASES	31
	11.2	REPORT ON DEVELOPMENT WORKS UNDERTAKEN DURING THE REPORTING PERIOD	31
	11.3	TIMESCALE FOR DEVELOPMENT WORKS PROPOSED DURING THE COMING YEAR	31
12.0	SITE	SURVEY SHOWING EXISTING LEVELS OF THE FACILITY AT THE END OF THE	Ξ
	REPO	RTING PERIOD	32
13.0	ESTIN	MATED ANNUAL AND CUMULATIVE QUANTITIES OF LANDFILL GAS (LFG)	
	EMIT	TED FROM THE SITE	33
14.0	ESTIN	MATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMISSIONS TO	
	GROU	JNDWATER	34
15.0		SSMENT OF THE FEASIBILITY OF THE UTILISATION OF LANDFILL GAS AS A GY RESOURCE	
16.0		THLY WATER BALANCE CALCULATION AND INTERPRETATION	
			30
17.0		DULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS FOR THE	0-
		HCOMING YEAR	
	17.1	SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS FOR THE FORTHCOMING Y	
	17.2	REPORT ON THE PROGRESS TOWARDS ACHIEVEMENT OF THE ENVIRONMENTAL	
		OBJECTIVES AND TARGETS CONTAINED IN THE PREVIOUS YEARS REPORT	37
18.0	FULL	TITLE AND A WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY T	ΊΗΕ
	LICEN	ISEE IN THE YEAR, WHICH RELATES TO THE FACILITY OPERATION	38
19.0	REPO	RTED INCIDENTS AND COMPLAINTS SUMMARIES, CORRESPONDENCE	
	TO/FF	ROM EPA	39
20.0	REVIE	EW OF NUISANCE CONTROLS	41
	20.1	DUST CONTROL	41
	20.2	LITTER	41
	20.3	Birds	41
	20.4	Odours	42
21.0	REPO	RT ON FINANCIAL PROVISIONS MADE UNDER THIS LICENSE, MANAGEMEN	Т
	AND S	STAFFING STRUCTURE OF THE FACILITY AND A PROGRAMME FOR PUBLIC	
	INFO	RMATION	43
22.0	OTHE	R INFORMATION	45
	22.1	REPORT ON TRAINING OF STAFF TRAINING	45
	22.2	TANK, PIPELINE AND BUND TESTING AND INSPECTION REPORT	
	22.3	UPDATES TO LANDFILL ENVIRONMENTAL MANAGEMENT PLAN (LEMP)	
	22.4	REVIEW OF ENVIRONMENTAL LIABILITIES	
	22.5	REPORT ON WASTE RECOVERY	
	22.6	STATEMENT OF COMPLIANCE OF FACILITY WITH ANY UPDATES OF THE RELEVANT WAS	
	22.0		
		MANAGEMENT PLAN	46

22.	7 STATEMENT ON THE ACHIEVEMENT OF THE WASTE ACCEPTANCE AND TREATMENT	
	LIST OF FIGURES	
Figure 21.1	Management Structure at Whiteriver Landfill Site4	14
	LIST OF TABLES	
Table 2.1	Maximum Annual Tonnage	2
Table 3.1	Waste Quantities Accepted (tonnes)	4
Table 3.2	Total Waste Quantities Accepted (Tonnes) for Disposal for January to December 2012	5
Table 3.3	Total Waste Quantities Accepted (Tonnes) for Recovery for January to December 2012	5
Table 4.1	Minimum Practicable Cell Capacities of Remaining Cells	6
Table 6.1	Net Methane Emission	8
Table 7.1	Grid References of Monitoring Points	10
Table 7.2	Location of Groundwater Monitoring Boreholes	12
Table 7.3	Treated Leachate Concentrations in 2012	13
Table 7.4	Groundwater Parameters Monitoring Frequencies as per W0060-03	14
Table 7.5	Summary of 2012 Results from Groundwater Monitoring Boreholes	16
Table 7.6	Surface Water Parameters Monitoring Frequencies	20
Table 7.7	Summary of 2012 Results from Surface Water Locations	21
Table 7.8	Results from Dust Monitoring Analysis, Whiteriver Landfill Site	26
Table 8.1	Consumption of Resources	28
Table 10.1	Volume of Leachate Transported Off Site in 2012	30
Table 19.1	Complaints Summary	39
Table 19.2	Summary of Incidents Reported During the Reporting Period	39
Table 19.3	Summary of Non Compliances and Audit Observations noted during Audits/Landfill Site	;
	Inspections undertaken during the Reporting Period by EPA	10
Table 21.1	Landfill Charges	13
Table 22.1	Recovered Wastes	15

LIST OF APPENDICIES

Appendix A Sludge Analysis

Appendix B Drawings

Appendix C PRTR Reporting

Appendix D Flue Gas Monitoring

Appendix E Monthly Water Balance Calculation

Appendix F Leachate Results

Appendix G Groundwater Monitoring Results

Appendix H Surface Water Monitoring Results

Appendix I Gas Monitoring Results

Appendix J Slope Stability Assessment
Appendix K Estimated Annual Gas Yield

Appendix L Objectives and Targets

1.0 INTRODUCTION

Louth County Council holds a Waste Licence from the Environmental Protection Agency to operate Whiteriver landfill Site. This report provides a review of all data collected and the environmental aspects of operations at the site for the year 2012.

The site is located 1 km north of the main R169 Collon Rd at its junction with Whiteriver Cross, Co Louth. The facility is located in a rural setting at grid references O301450E 285625N in the townlands of Whiteriver. The northern and western boundaries adjoin two minor roads which serve scattered dwellings, whilst agricultural grazing lands adjoin the southern and eastern boundaries. The main access to the site is situated on the north western site boundary, immediately off the principle approach road. Louth County Council is the sole landowners of the site on which the landfilling activity is based.

The current waste licence (W0060-03) was issued on the 24th March 2010.

1.1 REPORT PERIOD

The report period for this Annual Environmental Report (AER) is from January to December 2012 and relates to the waste licence (W0060-03).

RPS

2.0 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY

In accordance with Condition 5 of the waste licence only those waste types and quantities of waste listed in the Schedule shall be disposed of at the facility unless the prior agreement of the Agency has been obtained. The maximum annual tonnage of individual waste types for disposal is listed in the Schedule of the Waste Licence and total is as follows;

Table 2.1 Maximum Annual Tonnage

Total (Tonnes per annum)	(W0060-03)
Total	96,000

^{*} As from September 2003

The licence waste disposal activities in accordance with the Third Schedule of the waste Management Act, 1996 are restricted to those listed as follows:

- Class 1: Deposit on, in or under land (including landfill).
- **Class 4:** Surface impoundment, including placement of liquid or sludge discards into pits, ponds or lagoons.
- **Class 5:** Specially engineered landfill, including placement into lined discrete cells which are capped and isolated from one another and the environment.
- Class 6: Biological treatment not referred to elsewhere in this Schedule which results in Final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule.
- Class 7: Physio-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination), which results in Final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule.
- **Class 12:** Repacking prior to submission to any activity referred to in a preceding paragraph of this schedule.
- **Class 13:** Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste is produced.

The licence waste disposal activities (W0060-03), in accordance with the Fourth Schedule of the Waste Management Act, 1996 are restricted to those listed as follows;

Class 2 Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes): This activity is limited to the use of compost or similar material in the restoration of the landfill.

RPS

Class 4 Recycling or reclamation of other inorganic materials: This activity is limited to the use of soil, subsoil and construction and demolition waste for daily cover, engineering works and the restoration of cells at the facility.

Class 9 Use of any waste principally as a fuel or other means to generate energy: This activity is limited to the use of landfill gas as a fuel for the generation of electricity/ energy.

Class 10 The treatment of any waste on land with a consequential benefit for an agricultural activity or ecological system: This activity is limited to the use of various suitable wastes as daily or intermediate cover and in the restoration of the landfill, subject to the agreement of the Agency.

Class 13 Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced: This activity is limited to the storage of soil, subsoil and construction and demolitions wastes at the facility prior to recovery / reuse at the facility.

Access to site is controlled by the Site Foreman and Weighbridge Operator. All persons availing of the site must report to the site office at the time of entering and / or leaving the landfill site. Access is restricted to those times when the staff is on duty and the site is secured to prevent unauthorised entry.

RPS

3.0 QUANTITY AND COMPOSITION OF WASTE RECEIVED AND DISPOSED OF DURING THE REPORTING PERIOD AND EACH PREVIOUS YEAR

The quantities of waste accepted for disposal at the facility on a yearly basis are shown in Table 3.1.

Table 3.1 Waste Quantities Accepted (tonnes)¹

Waste	1996*	1997*	1998*	1999*	2000*	2001	2002	2003
Total	25,110	20,940	20,000	15,066	31,500	37,146	25,776	36,006
Waste	2004	2005	2006	2007	2008	2010	2011	2012
Total	60,833	80,634	82,547	70,396	84,402	53,744	75,243	89,290

Waste data figures are currently derived from weighbridge readings. Records of quantities, EWC code and type of waste accepted for disposal and recovery at the facility are maintained at the landfill site. These figures for 2012 are shown in Table 3.2 and Table 3.3. A CEN 10.1 Stage Batch Test has been carried out on water treatment sludge received at the facility from Urban Water Schemes (Cavanhill and Staleen). These results are presented in Appendix A.

RPS

¹ Figures for 1996 to 2000 are the estimated annual waste inputs (tonnes). Waste data figures where estimated by means of assessment based on the category of vehicle depositing waste at the site.

Table 3.2 Total Waste Quantities Accepted (Tonnes) for Disposal for January to

December 2012²

Waste description	Quantity waste recovered at the landfill (tonnes)	EWC code	Quantity waste recovered at the landfill (tonnes)
mixed packaging		15 01 06	19.46
bottom ash and slag other than those mentioned in 19 01 11	Incinerator Bottom ash	19 01 12	39,744
screenings	Sewage screenings	19 08 01	735
sludges from treatment of urban waste water	Water treatment sludges	19 08 05	1,489
other wastes (including mixtures of materials) from mechanical treatment of wastes other than those mentioned in 19 12 11	Organic fines from trommelling MSW	19 12 12	80.18
mixed municipal waste		20 03 01	46138.49
street-cleaning residues	Road sweepings	20 03 03	723
bulky waste	Bulky waste from clearing out houses	20 03 07	362
Total			89,290

Table 3.3 Total Waste Quantities Accepted (Tonnes) for Recovery for January to December 2012

Waste description	Quantity waste recovered at the landfill (tonnes)	EWC code	Quantity waste recovered at the landfill (tonnes)
mixture of concrete, bricks, tiles and ceramics other than those mentioned in 17 01 06	C&D	17 01 07	9,481.32
soil and stones other than those mentioned in 17 05 03	soils used as cover	17 05 04	1,354.68
wood other than that mentioned in 19 12 06	Wood chip	19 12 07	299.14
other wastes (including mixtures of materials) from mechanical treatment of wastes other than those mentioned in 19 12 11	C&D Fines for cover material	19 12 12	41,643.66
wood other than that mentioned in 20 01 37	Wood chip	20 01 38	1,120.00
Total	53,898		

 $^{^{2}}$ As per EPA Waste Survey Part 3 2012

4.0 CALCULATED REMAINING CAPACITY OF THE FACILITY AND YEAR IN WHICH FINALCAPACITY IS EXPECTED TO BE REACHED

The Capacity of Phase V is approximately 600,000 m³ and is divided into three cells. The development of Phase 5 received planning permission in 2003 and was licensed in Waste Licence W0060-03 in 2003 to fill 96,000 tonnes per annum. The breakdown of the remaining sub-cells capacity within Phase V is provided in Table 4.1 below. Filling is currently being undertaken in Phase V, Cell 1A and 1B. Phase VI at the facility will not be developed and the site will close when Phase V reaches capacity.

Table 4.1 Minimum Practicable Cell Capacities of Remaining Cells

Cell	Total Waste to Final Contour Level	Area m2	Years
Cell 1A	80,700	10,083	0.84
Cell 1B	118,900	323	1.23

A Topographical survey has been carried out in April 2012 (Drawing Number RW120419) and is including in Appendix B. At present (end of March 2013) there is approximately 36,000 m³ of void space remaining

RPS

5.0 METHODS OF DEPOSITION OF WASTE

Waste is only accepted at the landfill facility between 8.30am to 4.00pm Monday to Thursday, 8.30am to 3.00pm Friday and 8.30am to 12.30pm Saturday during November through to February. Between March and October, waste is accepted at the landfill between 8.00am to 4.00pm Monday to Thursday, 8.00am to 3.00pm Friday and 8.30am to 12.30pm Saturday.

Waste was filled in Phase 5, Cell 1A and 1B during 2012.

All acceptable waste loads are directed to the active tip face where the waste is in filled, within a designated area, under the direction of the general operative and machine driver. The waste is inspected and if acceptable for disposal spread and compacted directly by the steel wheeled compactor.

Daily cover consists of construction and demolition fines, wood chip, and soils

RPS

6.0 SUMMARY REPORT ON EMISSIONS

6.1 EMISSIONS TO AIR

In accordance with The PRTR Regulations releases of pollutants and off site transfers of waste by facilities operating in relevant industrial sectors are to be reported by the EPA to the European E-PRTR website where the facility exceeds specified thresholds. This has been completed for Whiteriver landfill site and included in Appendix C.

There are two landfill gas flares in operation at Whiteriver landfill site. Based on model predications and information from the landfill gas flares the estimated net emission of methane from the flare combustion process and both surface and lateral emissions from the landfill body is -17,032 kg/year as shown on Table 6.1. Temporary capping with LLDPE, extension of the landfill gas extraction system and increased extraction of landfill gas has been undertaken due to odour problems on site.

Other emissions include:

- Carbon dioxide (CO2
- 1,1,1-trichloroethane
- Hydro-fluorocarbons (HFCs)

Table 6.1 Net Methane Emission

Quantities of Methane Flared and / or Utilised	T (Total) kg/Year
Total estimated methane generation (as per site model)	2,810,068.0
Methane flared	2,827,100.0
Methane utilised in engine/s	0.0
Net Methane Emission	-17,032.0

Flue gas monitoring was also undertaken on the permanent landfill gas flares. All monitoring was carried out in accordance with Environmental Protection Agency Office of Environmental Enforcement (OEE) Air Emission Monitoring Guidance Note 2 (AG2). These results are provided in Appendix D. NOx as NO2, CO, TOC, HCL and HF emissions from both flares were within the emission limit values specified in Waste licence W060-03.

6.2 EMISSIONS TO GROUNDWATER AND SURFACE WATER

There are no direct discharges to groundwater or surface water. The volume of leachate transported off site to Drogheda wastewater treatment plant during the period January to December 2012 is 30,436. A water balance calculation has been undertaken and is included in Appendix E using rainfall data from metrological station on the site. This estimates the annual leachate production to be approximately 21,305 m³.

RPS

6.3 EMISSIONS TO WASTE WATER TREATMENT WORKS

The volume of leachate transported off site to Drogheda wastewater treatment plant during the period January to December 2012 was 30,436 m³.

7.0 SUMMARY OF RESULTS AND INTERPRETATION OF ENVIRONMENTAL MONITORING

7.1 MONITORING LOCATIONS

Monitoring is carried out at locations and at frequencies as specified in Schedule D of the waste licence (W0060-03). Monitoring points are labelled and permanent access to all monitoring points is maintained. BH13A was re drilled and BH20 was installed as a groundwater water borehole to detect leakages of the lagoon in June 2006. Private wells BH15 (Taffes), BH16 (Byrnes), and BH18 (Taffes) have been decommissioned and are no longer monitored as part of the licence requirements.

All ditches and drains around the perimeter of the facility are kept clear to allow for surface water monitoring points to be maintained.

Monitoring points are detailed in Drawings No.IBL0069/101D,102A and Drawing IBR0138/100 Landfill Gas piezometer. The monitoring point grid references for those available are detailed in Table 7.1. The locations of groundwater monitoring boreholes are shown in Table 7.2.

Table 7.1 Grid References of Monitoring Points

Monitoring Points	Easting	Northing
of Groundwater Boreholes		
BH1	301 385	285 310
BH2	301 259	285 380
BH3	301 384	285 501
BH4	301 405	285 648
BH5A	301737	285541
BH6	301 856	285 480
BH7	301 740	285 438
BH8	301 588	285 302
BH9	301 944	285 348
BH10	301 824	285 117
BH11	302 045	285 105
BH12	301 943	285 356
BH13(redrilled)	301 824	285 126
BH14	302 045	285 119
BH15	302 124	284 920
BH16	301 715	285 300
BH17	301 293	285 180
BH18	302 102	284 887
BH19	301490	285650

RPS

Monitoring Points	Easting	Northing
of Groundwater Boreholes		
BH20	301 428	285 623
Surface	Water Monitoring	
SW1	301 384	285 424
SW2A	301 965	285 427
SW3	301 935	285 410
Gas	Piezometers	
PZ1	301 438	285 596
PZ2	301 454	285 614
PZ3	301 496	285 628
PZ4	301 542	285 624
PZ5	301 600	285 610
PZ6	301 603	285 552
PZ7	301 603	285 512
PZ8	301 601	285 463
PZ9	301 594	285 401
PZ11	301 383	285 333
PZ12	301 382	285 381
PZ13	301 382	285 441
PZ14	301 383	285 498
PZ15	301 385	285 563
PZ16	301 410	285 579
PZ21	301 385	285 289
PZ22	301 377	285 205
PZ23	301 459	285 200
PZ24	301 490	285 201
PZ25	301 586	285 219
PZ26 PZ54	Not av	ailable
	Noise	
N1	301 336	285348
N2	135 907	270 000
N3	301345	284 739
N4	302105	284 927
N5	302 723	285 258
N6	301409	285 598
	Dust	
DG1	301 395	285 372
L	•	

Monitoring Points	Easting	Northing
of Groundwater Boreholes		
DG2	301 596	285 374
DG3	301 960	285 421
DG4	302 058	285 043
DG5	301 648	285584
DG6	301834	285486
	Leachate	
L1	301 427	285 625
L2	301 405	285 495

Table 7.2 Location of Groundwater Monitoring Boreholes

Borehole ³	Upstream/Downstre	Private Well	Overburden or Bedrock
'	am		
BH1	Upstream		Overburden
BH2A	Upstream	Crawleys Private Well	Bedrock
BH3	Upstream		Bedrock
BH4	Upstream		Bedrock
BH5	Downstream		Overburden
BH6	Downstream		Bedrock
BH9	Downstream		Bedrock
BH10	Downstream		Overburden
BH11	Downstream		Overburden
BH12	Downstream		Overburden
BH13A	Downstream		Bedrock
BH14	Downstream		Bedrock
BH17	Downstream	Holcrofts Private Well	Domestic
BH19	Upstream	McGranes Private Well	Agricultural water supply
BH20	Upstream landfill down gradient of leachate lagoon		Overburden

³ Private wells BH15 (Taffes), BH16 (Byrnes), and BH18 (Taffes) have been decommissioned and are no longer monitored as part of the licence requirements.

7.2 LEACHATE QUALITY

Leachate results are shown in Appendix F. Leachate values recorded in the lagoon (treated leachate) are within the emission limit values as set out in the waste licence except for Sulphate which exceeded the limit of 250 mg/l in April and COD in July.

Table 7.3 Treated Leachate Concentrations in 2012

Parameter	Min. Conc	Max. Conc	Limit Value
Ammonia (mg/N)	284.71	541.28	900
BOD (mg/l)	18.5	344	500
COD (mg/l)	595	1950	1,500
Sulphate (mg/l)	107.3	666.6	250
Temperature (°C)	9	12	<25°C
pH (pH units)	8.3	8.5	6 – 9

7.3 GROUNDWATER

As required under the Waste Licence, groundwater monitoring has been undertaken at the borehole locations as set out in the current waste licence. The Schedules of the waste licence requires the monitoring of certain parameters on either a monthly, quarterly or annual basis; the frequencies of the monitoring of groundwater parameters are shown in Table 7.4.

Boreholes BH1, BH3 BH4, BH5A are located within the site boundary, whilst BH6 is located approximately 240m from the eastern boundary of the site. BH2A (Crawleys) is a private well located upstream of the facility. BH9, BH10, BH11, BH12, BH13A and BH14 were installed further downstream of the extension to the existing site. Monitoring is also undertaken at two private wells. These private wells are boreholes BH17 (Holcrofts) and BH19 (McGranes, Agricultural Water Supply).

Table 7.4 Groundwater Parameters Monitoring Frequencies as per W0060-03

Monthly	Quarterly	Annually	
Groundwater	Chloride	Metals /Non Metals	List I and II
Level			Substances
	Dissolved Oxygen	Cyanide	Residue on
			evaporation
	pH	Fluoride	
	Total Oxidised Carbon	Total Oxidised Nitrogen	
	Visual Inspection/	Total Alkalinity	
	Odour		
	Ammoniacal Nitrogen	Orthophosphate	
	Electrical Conductivity	Mercury	
	Temperature	Sulphate	

The results contained in this report are assessed as follows:

- Groundwater: Assessed against Whiteriver Trigger Levels (WTL) agreed with the EPA (21 December 2004, 60-2/GEN09EM), EPA Interim guideline values (IGV) and the SI.
 No. 9/2010 European Communities Environmental Objectives (Groundwater) Regulations 2010 (ECEO).
- Total pesticides means the sum of all individual pesticides detected and quantified in the course of the monitoring procedure. The parametric value 0.50ug/l. (Only those pesticides which are likely to be present in a given supply require to be monitored. "Pesticides" means— organic insecticides, organic herbicides,— organic fungicides, —organic nematocides, organic acaricides, organic algicides, —

RPS

organic rodenticides, — organic slimicides, — related products (*inter alia*, growth regulators) and their relevant metabolites, degradation and reaction products. The parametric value of $0.01\mu g/l$ applies to each individual pesticide. In the case of aldrin, dieldrin, heptachlor and heptachlor epoxide the parametric value is $0.030\mu g/l$.

- Polycyclic aromatic hydrocarbons parametric value is 0.10ug/l. This applies to the sum of hydrocarbons concentrations of specified compounds. The specified compounds are benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene and indeno(1,2,3-cd)pyrene.
- Total trihalomethanes are the sum of concentrations of specified compounds. The
 parametric value is Trihalomethanes Total Sum of 100 μg/l. The specified compounds
 are: chloroform, bromoform, dibrom-ochloromethane and bromodichloromethane

The results are presented graphically and in table format in Appendix G. The majority of parameters are below the recommended limits.

Parameters that are indicative of possible leachate contamination include Ammonia, Conductivity, Iron, Chloride and heavy metals.

Table 7.5 provides a summary of results in 2012 from groundwater monitoring boreholes throughout these monitoring periods.

RPS

Table 7.5 Summary of 2012 Results from Groundwater Monitoring Boreholes

	Units	No. of	Minimum	Maximum	Mean	Standard
		Samples				Deviation
Alkalinity	mg/ICaCO3	15	232	408	310	43
Alkalinity Aluminium	μg/I	16	<5	400 <5	310	43
Ammonia	μg/I mg/I N	60	0.03	0.61	0.11	0.11
Antimony	μg/I	45	<0.5	<0.5	0.11	0.11
Arsenic	μg/l	45	0.5	0.73	0.63	0.10
Barium	μg/I	45	0.6	242	107	82
Beryllium	μg/l	45	<0.5	<0.5	107	02
Boron	μg/l	45	10.1	210.1	34	52
Cadmium	μg/l	45	<0.1	<0.1	01	02
Calcium	mg/l Ca	45	53.79	139.21	83	21
Chloride	mg/l Cl	60	13	60	21	11
Chromium	μg/I	45	<0.5	<0.5		
Cobalt	μg/l	45	<0.5	0.9		
Coliform Bacteria	No/ml	17	0	34	11	0
Conductivity	μS/cm @ 25	60	538	1160	695	69
Copper	µg/l	45	0.5	17.2	3	5
Cyanide	0	15	<0.05	<0.05		
D.O.	% Saturation	60	10	98	47	20
E_Coli	no/100ml	18				
Fluoride	mg/l	31	<0.150	1		
Iron	μg/l	45	<10	123.7		
Lead	μg/l	45	<0.5	<0.5		
Magnesium	mg/l Mg	45	7.91	46.35	21	10
Manganese	μg/l	45	2.1	252.3	65	99
Mercury	μg/l	43	<0.05	<0.05		
Molybdenum (μg/l)	0	44	<0.5	3.8		
Nickel	μg/l	43	<0.5	2.6		
Ortho-Phosphate	mg/l P	15	<0.02	0.11		
pH	0	60	6.8	8.1	7.48	0.23
Potassium	mg/l	45	0.46	3.18	1.41	1.41
Residue on evap	mg/l	15	303	1642	577	379
Selenium	μg/l	45	<0.5	<0.5		
Sodium	mg/l	45	8.53	43.12	20.38	8.47
Strontium	μg/l	45	143.55	447.74	227	73
Sulphate	0	31	3.3	55.6	16	14
Temp	°C	60	8	15.4	11.00	0.89
Thallium	μg/l	45	<0.1	<0.1		
Tin	μg/l	44	1.89	2.8	2.42	2.42
T.O.C.	mg/l	60	1.5	109	33	38
T.O.N	mg/l N	44	0.14	1.4	0.52	0.52
Uranium	μg/l	42	0.64	5.67	2.20	1.62
Vanadium	μg/l	42	<0.5	0.98	0.81	0.24
Zinc	μg/l	31	1.9	188.3	19	48

7.4 QUARTERLY MONITORING PARAMETERS

All Ammonia concentrations during the reporting period were within the WTL agreed with the EPA of 0.2 mg/l N and the ECEO of 0.175 mg/l N with the exception of BH9 (0.18 mg/l N), BH10 (0.61 mg/l N), BH11 (0.21 mg/l N), BH12 (0.30 mg/l N), and BH14 (0.29 mg/l N) in October. These had all reduced to below the WTL and ECEO in January, 2013.

pH values analysed during the reporting period were all within the WTL of 7.0 to 8.0 with the exception of BH5 (8.1) in January and BH12 (6.8) in October.

Electrical Conductivity values do not exceed the WTL of 800 µS/cm with the exception of:

- BH10 (825 -850 μS/cm) April, July, October.
- BH11 (835 µS/cm) in October
- BH12 (range 865-1160 μS/cm) April, July, October.

BH12 exceeds the IGV of 1000 μ S/cm but not ECEO of 800-1875 μ S/cm.

Chloride levels are in exceedances of the WTL of 20 mg/l in borehole BH1 in the up-gradient boreholes (range 30 mg/l to 33 mg/l) throughout the year. Downstream of the site the Chloride WTL level has been exceeded in BH5, BH10, BH12, BH13A, and BH17 throughout the monitoring period and range from 21 to 60 mg/l Cl. The highest concentration was in BH5 in January. This reduced to 28 mg/l in April. The results are all below the ECEO of 187.5 mg/l.

Chloride WTL level has been exceeded in BH20 throughout the monitoring period and range from 36 to 40 mg/l Cl. This is adjacent to the leachate lagoon.

Dissolved oxygen ranges from 10% O₂ to 98% O₂.

All boreholes exceeded the WTL for TOC of 10 mg/l in April. TOC levels were all below WTL of 10 mg/l for the remaining monitoring quarters during the year except BH10 and BH12 at times.

7.5 ANNUAL MONITORING PARAMETERS

7.5.1 Up Gradient Annual Results

Annual analysis for List I and II substances, metals and non-metals were undertaken at one location upstream of the site in BH2A in April.

Aluminium, Antimony Arsenic Beryllium, Boron Cadmium, Calcium, Chromium, Cobalt Copper, Fluoride, Iron, Lead, Magnesium, Manganese Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Sulphate, Thallium, Vanadium and Zinc are below the

RPS

WTL, IGV, DWR and ECEO were comparable in all up-gradient boreholes. The remaining parameters are below the lower limits of detection.

Barium exceeds the IGV in BH1. Cyanide concentration of <0.05 mg/l was detected in all upgradient boreholes. This concentration is the lowest limit of detection for the methodology used for cyanide; therefore this could be lower than the WTL and IGV of 0.01 mg/l. The results are below the DWR of 0.05 mg/l.

Orthophosphate forms are produced by natural processes, but major man-influenced sources include: partially treated and untreated sewage, runoff from agricultural sites and application of some lawn fertilisers. BH3 is above the WTL and IGV of 0.03mg/l.

Strontium concentrations range from 144.19 μ g/l to 280.04 μ g/l, Tin concentrations range from <1 to 2.8 μ g/l and Uranium concentrations range from 0.64 to 2.23 μ g/l in the up gradient boreholes.

Annual analysis for Total Oxidised Nitrogen (TON) values upstream range from 0.2 mg/l to 1.06 mg/l. Alkalinity values upstream range from 272 mg/l to 340 mg/l.

The Drinking Water Regulation for Polycyclic Aromatic Hydrocarbon (PAH) is 0.1 ug/l and is the sum of concentrations of specified compounds. The specified compounds are benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene and indeno(1,2,3-cd)pyrene. Analysis for Polycyclic Aromatic Hydrocarbons (total 16 EPA PAHs) was <0.247 μ g/l. All parameters measured where less than the limits of detection. This concentration is the limit of detection for the methodology used and as a result could be below the DWR of 0.1 μ g/l for PAH.

All other compounds measured were all less than the lower detection limit for the methodology used.

Phenol concentration was also analysed at BH2A and is <0.025 mg/l. This concentration is the limit of detection for the methodology used for Phenol however this is higher than the IGV of $0.5\mu g/l$.

Pesticide and herbicide analysis was carried out in BH2A in April. The results were below the lower detection limit for the analytical methodology.

Semi volatiles organic compound parameters were either below the IGV for those comparable or were below the lower detection limit for the analytical methodology used.

RPS

7.5.2 Down Gradient Annual Results

Annual analysis for List I and II substances, metals and non-metals were undertaken at two locations downstream of the site in BH9 and BH14 in April.

Aluminium, Antimony Arsenic Beryllium, Boron Cadmium, Calcium, Chromium, Cobalt Copper, Fluoride, Iron, Lead, Magnesium, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Sulphate, and are below the WTL, IGV, DWR and ECEO) were comparable in all down -gradient boreholes. The remaining parameters are below the lower limits of detection.

Barium exceeds the IGV in a number of the downstream boreholes. Cyanide concentrations of <0.05 mg/l was recorded in all the downstream boreholes. These concentrations are lower limit of detection for the methodology used for Cyanide; however these are possibly higher than the WTL and IGV (0.01mg/l). These reading are below the DWR of 0.05mg/l.

Orthophosphate values downstream range from <0.02 mg/l to 0.11 mg/l. BH6 (0.04 mg/l) and BH13A (0.11 mg/l) are the only down-gradient borehole above the WTL and IGV of 0.03 mg/l.

All down-gradient boreholes (in overburden and bedrock) are below the IGV and DWR of $50\mu g/l$ for Manganese except for BH6 (252.3 $\mu g/l$), BH13A (225.4 $\mu g/l$), and BH17 (204 $\mu g/l$).

Strontium concentrations range from 143.5 μ g/l to 447.74 μ g/l, Tin concentrations range from <1 to 2.77 μ g/l, Uranium concentrations range from 0.70 to 5.67 μ g/l and Vanadium concentrations range from <0.5 to 0.98 μ g/l in the down gradient boreholes. These are in general higher in concentration than μ g gradient.

Zinc concentrations exceed the WTL of 100μg/l and the IGV of 0.1mg/l in BH17 (188.3 μg/l. Down gradient, annual analysis for TON values range from <0.08 mg/l to 1.40 mg/l. Alkalinity values down-stream range from 232 mg/l to 408 mg/l.

Analysis for Polycyclic Aromatic Hydrocarbons (total 16 EPA PAHs) was <0.247 μ g/l. All parameters measured where less than the limits of detection. This concentration is the limit of detection for the methodology used and as a result could be below the DWR of 0.1μ g/l for PAH.

Phenols concentrations were also analysed at BH9 and BH14 and were all <0.025 mg/l. This concentration is the limit of detection for the methodology used for Phenol however this is higher than the IGV of 0.5μ g/l.

Pesticides analysis was carried out in BH9 and BH14 for this monitoring period. The results were all below the limit of detection for the analytical methodology used.

RPS

Semivolatiles organic compound parameters were either below the IGV for those comparable or were below the lower detection limit for the analytical methodology used.

7.6 SURFACE WATER

Whiteriver landfill site is situated on a plateau and is located in a sub-catchment of one of the main tributaries of the White River. The White River is located approximately 4km south west of the site and it is this river, which is the main receptor for any potential surface water contamination from the site.

As required under the Waste Licence, surface water monitoring has been undertaken at the station locations as set out in Table D.1.1 of the waste licence. Schedule D of the waste licence requires the monitoring of certain parameters on either a monthly, quarterly or annual basis; the frequencies of the monitoring of surface water parameters are shown in Table 7.6 below.

Table 7.6 Surface Water Parameters Monitoring Frequencies

Quarterly	Annually
Ammoniacal Nitrogen	Metals / non metals
Biological Oxygen Demand	Mercury
Chemical Oxygen Demand	Sulphate
Chloride	Total Alkalinity
Dissolved Oxygen	Orthophosphate
Electrical Conductivity	TON
Ph	
Total Suspended Solids	
Temperature	

The results contained in this report are assessed against the EC (Drinking water) Regulations 2007, SI .no 106 of 2007 (DWR) and European Communities Environmental Objectives (Surface Water) Regulations 2009 Environmental quality standard (EQS) and the Surface Water Quality Standards (SWQS) laid out in the European Communities Quality of Surface Water Intended for the Abstraction of Drinking Water Regulations 1989. These results are presented in table format in Appendix H.

Table 7.7 provides a summary of results in 2012 from surface water locations.

Table 7.7 Summary of 2012 Results from Surface Water Locations

Units No. of Minimum Maximum Mean Standard						
	Units	No. of Samples	Wilnimum	Maximum	Mean	Standard Deviation
Allcalinite	m=/IC=CO2	3	125	200	211.67	
Alkalinity Aluminium	mg/ICaCO3	3	135 13.9	280 15.8		72.86
	μg/l	12			14.97	0.97
Ammonia	mg/l N	3	0.03	5.84 0.56	1.17	1.78
Antimony	μg/l	3	<0.5 1.35		1.62	0.20
Arsenic Barium	μg/l	3		2.06 105.8	1.63	0.38
	μg/l	3	66.1 <0.5	<0.5	86.03	19.85
Beryllium	μg/l	12			24.60	F2 44
B.O.D.	mg/l O2		2.1	174.7	24.68	53.11
Boron	μg/l	3	19.7	30.3	23.37	6.01
Cadmium	μg/l	0	<0.1	<0.1	00.70	40.00
Calcium	mg/l Ca	9	69.86	91.46	83.78	12.08
C.O.D.	mg/l O2	12	12	266	65.33	74.15
Chloride	mg/l Cl	12	19	47	29.42	8.16
Chromium	μg/l	3	<0.5	<0.5		
Cobalt	µg/l	3	<0.5	<0.5	040.00	70.00
Conductivity	μS/cm @ 25	12	506	745	618.08	78.29
Copper	μg/l	3	2	2.3	2.13	0.15
D.O.	% Saturation	12	43	112	74.08	18.27
Iron	μg/l	3	20	98	58.97	39.00
Lead	μg/l	3	<0.5	<0.5		
Magnesium	mg/l Mg	3	9.01	10.73	9.97	0.88
Manganese	μg/l	3	68.7	134.2	103.90	33.02
Mercury	μg/l	3	<0.05	<0.05		
Molybdenum (µg/l)	0	3	<0.5	2.2	1.55	0.92
Nickel	μg/l	3	1.5	2	1.70	0.26
Ortho-Phosphate	mg/l P	3	<0.02	0.14	0.09	0.07
рН	0	12	7.4	8.3	7.93	0.29
Potassium	mg/l	3	3.23	8.15	5.47	2.49
Selenium	μg/l	3	<0.5	<0.5		
Sodium	mg/l	3	15.26	20.34	18.12	2.60
Strontium	μg/l	3	151.61	171.79	164.63	11.30
Sulphate	mg/l SO4	3	22.9	103.8	60.57	40.74
Temp	°C	12	7	17	12.00	3.20
Thallium	μg/l	3	<0.1	<0.1		
Tin	μg/l	3	<1	<1		
T.O.N	mg/l N	3	0.14	1.77	1.11	0.86
Total Suspended Solids	mg/I	12	5	93	28.30	31.15
Uranium	μg/l	3	0.55	1.24	0.95	0.36
Vanadium	μg/l	3	<0.5	0.51	0.30	0.00
					2.40	0.40
Zinc	μg/l	3	2.3	2.5	2.40	0.10

Surface water monitoring is undertaken at one location upstream at SW1 and one location downstream of the site at SW2A. Chemical analyses of surface water are summarised in Appendix H.

SW1 has a pH reading of 7.8 to 8.2 which is within the A1 SWQS of 5.5 to 8.5.

The Ammonia concentration at SW1 ranged from 0.32 mg/l N to 2.69 mg/l N. An excess of 0.1 mg/l N can indicates agricultural contamination. Downstream samples of Ammonia (SW2A) were elevated at times (0.03 mg/l N to 5.84 mg/l N). These are in general lower in concentration throughout the year than the upstream samples except in July.

Dissolved Oxygen (DO) content ranged from 43% to 77 $\%O_2$ in SW1 and 66% to 88% O_2 in SW2A.

COD show lower concentrations down-stream (28 mg/l - 68 mg/l) from the site than those measured in the up-stream samples (46 mg/l - 266 mg/l) indicating possible contamination upstream of the site. BOD also showed lower concentrations down-stream (2.1 mg/l - 22.6 mg/l) from the site than those measured in the up-stream samples (4.9 mg/l - 174.7 mg/l).

Total Suspended Solids (TSS) exceeds the 1989 Surface Water Quality Standards (SWQS) of 50 mg/l during the monitoring period at SW1 on 3 of the 4 monitoring rounds.

Electrical Conductivity is below the SWQS of 1000µS/cm during the monitoring period.

Annual Results SW1

Arsenic Barium Boron, Cadmium Chromium, Copper, Lead, Mercury Nickel, Sulphate and Zinc are below the SWQS or EQS.

Iron had a concentration of 98 μ g/l fitting into the A1 SWQS classification of 200 μ g/l. Manganese fits into the A2 SWQS classification of 300 μ g/l with a reading of 108.8 μ g/l.

Other parameters were Total Alkalinity (280 mg/l), Calcium (91.46 mg/l), Magnesium (10.17 mg/l), Molybdenum (<0.5 μ g/l), Ortho-phosphate (0.14 mg/l), Potassium (8.15 mg/l), Sodium (15.26 mg/l) Strontium (151 μ g/l), Uranium (0.55 μ g/l), Vanadium (0.51 μ g/l) and TON (1.77 mg/l). Other parameters measured where below the lower limits of

Annual Results SW2A

Arsenic Barium Boron, Cadmium Chromium, Copper, Lead, Mercury, Nickel, Sulphate and Zinc are below the SWQS or EQS.

Iron had a concentration of 58.9 μ g/l fitting into the A1 SWQS classification of 200 μ g/l. Manganese fits into the A2 SWQS classification of 300 μ g/l with a reading of 134.2 μ g/l.

Other parameters were Total Alkalinity (220 mg/l), Calcium (90.03.mg/l), Magnesium (10.73 mg/l), Molybdenum (0.9 μ g/l), Ortho-phosphate (0.04 mg/l), Potassium (5.04 mg/l), Sodium (20.34 mg/l) Strontium (170 μ g/l), Uranium (1.24 μ g/l), Vanadium (<0.5 μ g/l) and TON (1.42 mg/l). Other parameters measured where below the lower limits of detection.

RPS

7.6.1 Lagoon/Surface Water Retention Pond

The surface water retention pond, SW3 is located on the eastern boundary of the site and

discharges to the stream running along the northern boundary of the site.

SW3 has a pH reading of 8.0 to 8.2 which is within the A1 SWQS of 5.5 to 8.5. The DO

concentration in SW3 monitoring point is 62 % - 112 % saturation. This falls into the A1

SWQS classification (>60%).

The Ammonia concentration of <0.03 mg/l to 0.55 mg/l for SW3 falls into the SWQS category

of A1 (0.2mg/l) and A2 (1.5mg/l).

The BOD concentration in the SW3 ranged from <1.5 mg/l to 3.8 mg/l during this monitoring

period, below the SWQS A1 classification of 5mg/l.

Electrical Conductivity in SW3 ranged from 506 μS/cm to 601 μS/cm, which is below the

SWQS of 1000µS/cm. The Chloride level of 19 mg/l to 27 mg/l is below the SWQS of 250mg/l

for this monitoring period.

Total Suspended Solids concentration of <5 mg/l to 8 mg/l is below the SWQS limit of 50mg/l

and the surface water discharge limit of 35mg/l as per Schedule C4 of the waste licence.

The COD level in SW3 was recorded at 12 mg/l to 32 mg/l during this monitoring period, which

are below and equal to the SWQS classification of 40 mg/l.

Annual Results

Arsenic Barium Boron, Cadmium Chromium, Copper, Lead, Mercury Nickel, Sulphate and

Zinc are below the SWQS or EQS.

Iron had a concentration of 20 μg/l fitting into the A1 SWQS classification of 200μg/l.

Manganese fits into the A2 SWQS classification of 300 μ g/l with a reading of 68.7 μ g/l.

Other parameters were Total Alkalinity (135 mg/l), Calcium (69.86.mg/l), Magnesium (9.01

mg/l), Molybdenum (2.2 μ g/l), Ortho-phosphate (<0.02 mg/l), Potassium (3.23 mg/l), Sodium

(18.75 mg/l) Strontium (171 μg/l) Uranium (1.07 μg/l), Vanadium (<0.5 μg/l) and TON (0.14

mg/l). Other parameters measured where below the lower limits of detection.

7.7 GAS MONITORING

As required under the Waste Licence, landfill gas monitoring has been undertaken at the

borehole locations as set out in current waste licence.

IBR0509/Reports Status: Final Date: May 2013

RPS

Schedule D of the waste licence requires the licensee to conduct monthly monitoring on the perimeter and in the waste of the landfill site. The trigger level for landfill gas emissions are Methane, greater than or equal to 1.0% v/v and Carbon dioxide, greater than or equal to 1.5% v/v. Landfill gas is monitored using a GA2000 infra-red analyser. These results are presented in Appendix I.

Results are below the trigger limit for Methane of 1% v/v for all perimeter locations (not in waste) during the year. From the results it can be seen that no methane was recorded in piezometers around the perimeter of the site except for:

- 0.2% in piezometer PZ26 in March
- Methane levels of 0.1% where detected in a number of piezometers in May.

Carbon dioxide levels around the perimeter of the site exceed the licence requirements of 1.5%v/v during the year. Exceedances were recorded in PZ2-PZ5, PZ22, PZ28 -PZ36, PZ46 – PZ52. The results can be seen in Appendix I.

There are two enclosed gas flares at Whiteriver Landfill Site with a combined capacity of 2,600m³/hr. Landfill gas is currently been flared through the 2,000 m³/hr flare. Two engines have been installed at the facility to generate power to the national grid. These have been commissioned but are not yet connected to the grid. This is expected to be undertaken in June.

A permanent gas monitoring system has been installed in the site building. No exceedances have been recorded.

7.8 MONITORING OF EMISSIONS FROM LANDFILL GAS FLARE

Flue gas monitoring was also undertaken on the permanent landfill gas flares. All monitoring was carried out in accordance with Environmental Protection Agency Office of Environmental Enforcement (OEE) Air Emission Monitoring Guidance Note 2 (AG2). These results are provided in Appendix D. NOx as NO2, CO, TOC, HCL and HF emissions from both flares were within the emission limit values specified in Waste licence W060-03.

7.9 Noise Monitoring

The measurements were completed on Monday and Thursday 3rd to 6th December in accordance with the following environmental noise standards:

- ISO 1996: 2007 Acoustics Description and Measurement of Environmental Noise,
 Parts 1-4
- EPA Guidance Note for Noise (NG4) 2012

RPS

- NSL 1: Daytime: LAeq (T 15 min) 64-61dBA; Evening time: LAeq (T 15 min) 44-43dBA;
 - Night time: LAeq (T 15 min 42-40dBA
- NSL 2: Daytime: LAeq (T 15 min) 59-47dBA; Evening time: LAeq (T 15 min) 56-51dBA; Night time: LAeq (T 15 min) 50-48dBA
- NSL 3: Daytime: LAeq (T 15 min) 69-61dBA; Evening time: LAeq (T 15 min) 55-48dBA; Night time: LAeq (T 15 min) 46-44dBA
- NSL 4: Daytime: LAeq (T 15 min) constant at 72dBA; Evening time: LAeq (T 15 min) 66-65dBA; Night time: LAeq (T 15 min) 63-61dBA
- NSL 5: Daytime: LAeq (T 15 min) 53-48dBA; Evening time: LAeq (T 15 min) 48-46dBA; Night time: LAeq (T 15 min) 43-41dBA
- NSL 6: Daytime: LAeq (T 15 min) 61-52dBA; Evening time: LAeq (T 15 min) 49-47dBA; Night time: LAeq (T 15 min) 40-39dBA Flares: Daytime: LAeq (T 15 min) 59-58dBA;

Night time: LAeq (T 15 mins) 56-55dBA

All noise sensitive locations (N1 - N6) are not adversely effected by noise arising from landfill operations. Although noise from the landfill site could be detected at Locations 1, 3, 5, and to a lesser extent Location 2, it was not the dominant source and was not obtrusive. Road traffic noise was the dominant noise source at Location 4. Location 6 shows a significant decrease in noise once traffic entering / leaving the site ceases. Location 6 is not significantly impacted by noise from the flares.

There is no specific waste licence requirement to monitor for noise at the flares. However, measurements show that it is not adversely impacting on noise levels N1-N6.

While daytime LAeq and DEN values are shown to exceed the requirements at Locations 1, 3 and 6 a more accurate representation of noise levels arising from landfill operations as experienced during the survey is provided by the LA90. The current report therefore shows noise levels directly associated with landfill operations and in the absence of traffic noise external to the landfill site to be in compliance with the requirement of the licence.

7.10 DUST MONITORING

Table 7.8 details the results of the four dust monitors installed on the site. The waste licence requires dust deposition limits to be no more than 350 mg/m²/day.

Table 7.8 Results from Dust Monitoring Analysis, Whiteriver Landfill Site

Sampling	DG1	DG2	DG3	DG4	DG5	DG6
Point						
03/01/12 to 01/02/12	84.5	14.1	145.8	17.0		
01/02/12 to 01/03/12	165.13	238	145.21	16.25		
01/03/12 to 02/04/12	46.1	131.7	37.9	5.6		
02/04/12 to 30/04/12	55.4	66.1	20.9	392.3	149.8	358.4
01-05-12 to 31-05-12	455.2	448.6	300.5	266.7	57.9	82.0
04/06/12 - 03/07/12	1,181.4	1,015.8	1,201.1	924	666.1	1,013.7
01/07/12 - 31/07/12	352.81	255.83	314.54	396.32	273.13	285.18
01/08/12 - 31/08/12	79.68	290.95	255.83	188.2	207.07	207.07
03/09/12 - 28/09/12	230.3	229.5	11.1	21.8	371.1	93.8
01/11/12 - 30/11/12	467.7	409.8	324.3	363.2	308.9	307.4
01/12/12 - 02/01/13	512.2	521.2	424.5	537.0	325.6	292.3

From Table 7.8 it can be seen that dust monitoring results exceeded the licence requirements at all locations at times during the monitoring period. DG1 and DG2 are located adjacent to the haul roads within the site and may receive dust from traffic movement; however excessive dust was not noted in the daily site inspections. No dust complaints where received. Access roads are now swept on a weekly basis since mid November.

7.11 METEOROLOGICAL MONITORING

Meteorological data is monitored in accordance with Schedule of the licence. This information is provided in Appendix E.

7.12 SLOPE STABILITY ASSESSMENT

A slope stability assessment was undertaken in August 2012 and is included in Appendix J.

The analysis for the final waste slopes suggests that the factors of safety for the filling of waste are satisfactory. In addition a site walkover survey and examination of the waste slopes evidenced no apparent slope instability on these recently filled slopes.

7.13 ODOUR MONITORING

Total Volatile Organic compound monitoring has been undertaken at the site on a quarterly basis. Based on these reports a number of the recommendations have been carried out to reduce the landfill gas leakage from the site and therefore reducing odour. These reports were included in quarterly monitoring reports.

RPS

8.0 RESOURCES AND ENERGY CONSUMPTION SUMMARY

Consumption of resources for the reporting period is shown in Table 8.1 below.

Table 8.1 Consumption of Resources

Parameters	Annual Total	Unit
Light fuel oil (Diesel)	2,088,200	kWh
Electricity	213,300	kWh

9.0 PROPOSED DEVELOPMENT OF THE FACILITY AND TIMESCALE OF SUCH DEVELOPMENT

Objectives and targets have been set for 2013. These are as follows:

- Reduce pressure on non-renewable fossil fuels used to generate electricity. Generation
 of electricity to the grid due to commence in June 2013.
- Minimise the release of landfill gases. A new contract is currently being developed for the capping of the entire site as the decision has been made to close after the filling of phase 5.

Capping of filled areas will continue as described in Section 11.

10.0 VOLUME OF LEACHATE PRODUCED AND VOLUME OF LEACHATE TANKERED OFF SITE

The volume of leachate transported off site to Drogheda wastewater treatment plant during the period January to December 2012 is provided in Table 10.1. A water balance calculation has been undertaken and is included in Appendix E using rainfall data from metrological station o site. This estimates the annual leachate production to be approximately 21,305 m³. This is based on using worst case scenario for infiltration on temporarily capped /restored area of 30% and 10% for restored areas.

The results for treated leachate are within the limit values for those parameters as set out in the waste licence as shown in Table 7.3 except for Sulphate and COD.

Table 10.1 Volume of Leachate Transported Off Site in 2012

Month	Weight Volume (m³)
January	2,700.82
February	2,249.76
March	1,209.44
April	1,913.62
May	1,861.78
June	3,207.82
July	3,622.36
August	2,445.88
September	2,246.34
October	2,411.36
November	3,606.56
December	2,960.52
Total	30,436.26

11.0 REPORT ON DEVELOPMENT WORKS UNDERTAKEN DURING THE REPORTING PERIOD, AND A TIMESCALE FOR THOSE PROPOSED DURING THE COMING YEAR

11.1 RESTORATION OF COMPLETED CELLS/PHASES

The following Cells/Phases have been restored to date;

- Phase I to IV
- Phase V Cell 3a, b
- Phase V Cell 2 (4000m²)

Approx 4000 m² of LLDPE temporary capping was undertaken on Phase 5 Cell 1a in December 2012 to control odours.

11.2 REPORT ON DEVELOPMENT WORKS UNDERTAKEN DURING THE REPORTING PERIOD

The following development works were completed in 2012;

- Capped 4000 m² with LLDPE to control odours
- Drilled 9 additional gas wells in phase 5 cell 2
- Drilled 500 mm leachate well for phase 5 cell 2 due to SSR collapsing

11.3 TIMESCALE FOR DEVELOPMENT WORKS PROPOSED DURING THE COMING YEAR

The remaining area of Phase 5 will be capped by end of 2014. Louth County Council will continue to expand the landfill gas extraction system as required.

12.0 SITE SURVEY SHOWING EXISTING LEVELS OF THE FACILITY AT THE END OF THE REPORTING PERIOD

A topographical survey was carried out in 2012 and is included in Appendix B.

13.0 ESTIMATED ANNUAL AND CUMULATIVE QUANTITIES OF LANDFILL GAS (LFG) EMITTED FROM THE SITE

The gas yield figures provided in Appendix K are calculated using Gassim Model 2.0. As can be seen from the data landfill gas production is approximately 990 m^3/hr in 2012 based on current waste inputs. The average flow rate for the flare in 2012 was 1,446 m^3/hr . The average methane was 35%.

RPS

14.0 ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMISSIONS TO GROUNDWATER

The site has been developed on a containment basis, hence controlling potential discharge to groundwater. The risk of leakage is mitigated by the following;

- The relative thickness of the low permeability boulder clays constitutes a natural effective barrier to downward groundwater migration.
- Groundwater resources within the granular horizons are confined under subartesian pressure with a net upward groundwater movement.
- Leachate levels are maintained below licence limits on site.
- Leachate is pumped from the cells, to treatment lagoon and tankered off site for treatment.

There are no direct discharges to groundwater or surface water. The volume of leachate transported off site to Drogheda wastewater treatment plant during the period January to December 2012 is $30,436~\text{m}^3$. A water balance calculation has been undertaken and is included in Appendix E using rainfall data from meteorological station on the site. This estimates the annual leachate production to be approximately $21,305~\text{m}^3$ as discussed in Section 10.

RPS

15.0 ASSESSMENT OF THE FEASIBILITY OF THE UTILISATION OF LANDFILL GAS AS AN ENERGY RESOURCE

Two 0.65 Mw engines have been installed at the facility to generate power to the national grid. These have been commissioned but are not yet connected to the grid. This is expected to be undertaken in June.

16.0 MONTHLY WATER BALANCE CALCULATION AND INTERPRETATION

The calculation for monthly water balance is as follows;

$$Lo = [ER (A) + LW + IRCA + ER (1)] - [aW]$$

Where;

Lo = leachate produced (m³)

ER = effective rainfall

A = area of cell (m^3)

LW = liquid waste

IRCA = infiltration through restored areas and capped areas (m)

a = absorptive capacity of waste (m³/t)

W = weight of waste deposited

I = surface area of lagoons (m²)

A water balance calculation has been undertaken and is included in Appendix E using rainfall data from metrological station on the site. This estimates the annual leachate production to be approximately 21,305 m³. This is based on using worst case scenario for infiltration on temporarily capped /restored area of 30% and 10% for restored areas. The difference in actual and predicted quantities month to month may be partly due to the absorptive capacity of the waste, which determined the speed of percolation of rainwater through the wastes, actual rainfall was used for all areas and using worst case scenario for infiltration.

17.0 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS FOR THE FORTHCOMING YEAR

17.1 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS FOR THE FORTHCOMING YEAR

Objectives, targets and timescales for the year 2013 for Whiteriver Landfill Site have been completed as part of the ISO14001 Environmental Management System. These are as follows:

- Reduce pressure on non-renewable fossil fuels used to generate electricity.
- Reduce BMW to landfill.
- Minimise the release of landfill gases.
- Meet the requirements of the new Environmental Objectives (Groundwater) Regulations 2010.
- Enhance the Biodiversity of the site post closure.

Some of these are ongoing from previous years. These are included in Appendix L detailing tasks, due date and responsibility.

17.2 REPORT ON THE PROGRESS TOWARDS ACHIEVEMENT OF THE ENVIRONMENTAL OBJECTIVES AND TARGETS CONTAINED IN THE PREVIOUS YEARS REPORT

Objectives, targets and timescales for the year 2012 for Whiteriver Landfill Site were reviewed as part of the ISO14001 Environmental Management System and many on ongoing;

- Reduce pressure on non-renewable fossil fuels used to generate electricity. Project currently underway. Two 0.65 Mw generators have been installed. These have been commissioned but are not yet connected to the grid. This is expected to be undertaken in June.
- Comply with the relevant requirements of the Landfill Directive (1993/31/EC). Objective
 and Target has been compiled to reduce BMW to landfill. The total reported for 2012
 was 32.85 % this was within the target limit of 47%.
- Minimise the release of landfill gases.
- Meet the requirements of the new Environmental Objectives (Groundwater) Regulations 2010.
- Enhance the Biodiversity of the site post closure.

18.0 FULL TITLE AND A WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY THE LICENSEE IN THE YEAR, WHICH RELATES TO THE FACILITY OPERATION

Environmental Management Procedures have been developed as part of the ISO14001 Environmental Management System (EMS) for the purpose of maintaining and assessing the EMS. Operational procedures ensure that the routine operational tasks related to the environmental management of the facility are undertaken in a satisfactory manner as required to maintain effective control of the environmental aspects of the facility. This system is audited annually and is available for inspection on site.

As part of the EMS procedures have been developed. The following procedures where updated in 2012;

- Odour Management Plan
- Waste Placement and Covering Procedure.
- Waste Acceptance and Handling Procedure.
- Landfill Gas Flaring

19.0 REPORTED INCIDENTS AND COMPLAINTS SUMMARIES, CORRESPONDENCE TO/FROM EPA

In total 156 complaints were made in 2012. These related to odour especially during the month of October. These are summarised in Table 19.1.

Table 19.1 Complaints Summary

Category	Number of Complaints	Resolution Status
Odour	4 Complaints in Jan	Complete
Odour	1 Complaint in Feb	Complete
Odour	2 Complaints in March	Complete
Odour	0 Complaints in April	Complete
Odour	1 Complaint in May	Complete
Odour	5 Complaints in June	Complete
Odour	8 Complaints in July	Ongoing
Odour	14 Complaint in August	Ongoing
Odour	7 Complaints in Sept	Complete
Odour	32 Complaints in Oct	Complete
Odour	8 Complaints in Nov	Complete
Odour	0 Complaints in Dec	Complete

These are available for inspection at Whiteriver Landfill Site. Incidents reported for 2012 (15 in total) are summarised in Table 19.2. A summary of non-compliances noted during Audits/Landfill Site Inspections undertaken during the reporting period by EPA are given in Table 19.3.

Table 19.2 Summary of Incidents Reported During the Reporting Period

Date	Nature of Incident
Monthly	Licensees/COA holder Environmental Impact Ranking: 1
	The Trigger Level of 1.5% V/V CO ₂ was exceeded in Perimeter
	Piezometers.
13/02/12	Licensees/COA holders Environmental Impact Ranking: 1
	Flare turned off to allow replacement of level probes in condensate KO pot.
13/03/12	Licensees/COA holder Environmental Impact Ranking: 1
	Trigger level for surface VOC emission breached.
01/10/12	Licensees/COA holder Environmental Impact Ranking: 1
	Trigger level for surface VOC emission breached.

Table 19.3 Summary of Non Compliances and Audit Observations noted during Audits/Landfill Site Inspections undertaken during the Reporting Period by EPA

Date and	Summary of Inspection Report/Audit	Response
Reference		
29/03/2012	Audit Observations	Our Ref: W0060-02/10/008
W0060-03	1. Dust Monitoring	Your Ref: W0060-
03/12/AR I2EM	2. Groundwater Monitoring	03/12/AR12EM
W0060-02	3. Landfill Gas Collection System	
	4. Leachate Monitoring	
17/10/2012	Inspection Observations	Surface emissions reports
W0060-03	Landfill Gas Management	submitted to EPA as
/12/SI40 EM		requested as part of the 4th
Site Inspection		qrt 2012 reporting
29/11/2012	Inspection Observations	Works to be verified during
W0060-03	Landfill Gas Management	subsequent inspections
/12/SI41 EM	2. New Leachate Extraction Well	
Site Inspection	Phase V Cell 2	

40

LOUTH COUNTY COUNCIL

20.0 REVIEW OF NUISANCE CONTROLS

The facility is inspected daily and weekly for nuisances caused by vermin, birds, flies, dust and

odours and written records are made of all inspections and any actions taken. These records

provide for the recording of nuisances and description of works carried out to minimise each

nuisance as described below.

20.1 DUST CONTROL

All waste vehicles are required to use the wheel wash prior to exiting the facility. Dust

monitoring has shown exceedances during the monitoring period. Access roads are now

swept on a weekly basis.

20.2 LITTER

Any waste found around the boundary is removed immediately or by 10.00 a.m. the next

working day. Disposal activities are confined to within bunded cells and litter nets have been

around entire perimeter of Phase 5 cells 1 and 2. All waste is compacted to reduce the

potential sources of litter and wastes are covered daily or as soon as practicable. Litter, which

is blown away from the landfilling area, is collected as soon as possible and inspection of the

facility and netting is performed on a daily basis.

All vehicles delivering and removing wastes to the facility are checked to ensure that they are

appropriately covered.

20.3 BIRDS

In general during the Spring, Summer and Autumn there is no problem on-site from birds

scavenging. This is due to the large area of tillage crops in the area and hence the easy

availability of food sources. In the Months November – February there are increased numbers

of birds trying to feed on the site.

A Pest Control company visits the site between October and March and fly a falcon, fire

bangers, fly a kite, etc. to scare birds off.

A Scarecrow bird distress call is also employed on site during operational hours. The

operative on the tip face also has a hand held distress caller to scare birds.

IBR0509/Reports Status: Final Date: May 2013

RPS

20.4 ODOURS

As part of the ISO14001 Environmental Management System an Odour Management Plan has been developed for the facility. This was updated in 2012. Total Volatile Organic compound monitoring has been undertaken at the site on a quarterly basis.

RPS

21.0 REPORT ON FINANCIAL PROVISIONS MADE UNDER THIS LICENSE, MANAGEMENT AND STAFFING STRUCTURE OF THE FACILITY AND A PROGRAMME FOR PUBLIC INFORMATION

Louth County Council being a local authority is able to provide the necessary finances to ensure the proper management development and restoration of Whiteriver Landfill Site.

The 2013 gate charges at the facility are provided in Table 21.1.

Table 21.1 Landfill Charges

Category	Base Charge	Landfill Levy	VAT 13.5%	Total Charge
Commercial waste 0 to 10,000 tonnes per annum	€35 to €40 per tonne	€65.00 per tonne	€13.50 to €14.18 per tonne	€113.50 to €119.18 per tonne
Commercial waste 10,001 to 20,000 tonnes per annum	€30 to €35 per tonne	€65.00 per tonne	€12.83 to €13.50 per tonne	€102.83 to €113.50 per tonne
Commercial waste 20,000+ tonnes per annum	€20 to €30 per tonne	€65.00 per tonne	€11.48 to €12.83 per tonne	€96.48 to €107.83 per tonne
Deep burial	€120.00 per tonne	€65.00 per tonne	€24.98 per tonne	€209.98 per tonne

Overall responsibility for the ongoing operations and development of the landfill site is held by a Senior Engineer assigned to the Environmental Section of Louth County Council. A Facility Manager and three Deputy Facility Managers are currently assigned to the site. The Landfill Foreman oversees the day to day running of the landfill site and is assisted by two General Operatives.

As part of the ISO14001 Environmental Management System a communication programme in accordance with the Conditions of the waste licence is provided to ensure that members of the public can obtain information concerning the environmental performance of the facility at all reasonable times.

Management Structure at Whiteriver Landfill site is as follows. This is the present status although it may be changed at a future stage.

Information is available at the facility for public viewing concerning the environmental performance of the facility. Louth County Council hold regular meeting with the local residents committee (approx 6 per year) and issue newsletters as required.

RPS

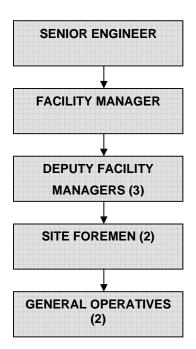


Figure 21.1 Management Structure at Whiteriver Landfill Site

RPS

22.0 OTHER INFORMATION

22.1 REPORT ON TRAINING OF STAFF TRAINING

No staff training was undertaken in 2012.

22.2 TANK, PIPELINE AND BUND TESTING AND INSPECTION REPORT

There are no tanks, pipeline or bund inspection undertaken on site.

22.3 UPDATES TO LANDFILL ENVIRONMENTAL MANAGEMENT PLAN (LEMP)

ISO14001 Environmental Management System was implemented in October 2009. This included a review of the Environmental Management Plan for the site. This was last reviewed in October/November 2010 and is available for inspection on site.

22.4 REVIEW OF ENVIRONMENTAL LIABILITIES

An Environmental Liabilities Risk Assessment (ELRA) has been completed for the site. This was submitted to EPA in June 2011.

22.5 REPORT ON WASTE RECOVERY

A report on the contribution by this facility to the achievement of the waste recovery objectives stated in Condition 2.3.2.1 and as otherwise may be stated in National and European Union waste policies has not been completed to date for the site.

Louth County Council recovers construction and demolition waste arising from council project and other sources in the landfill operations. The material listed below were recovery on site as cover material and used in the construction of temporary roads in 2012.

Table 22.1 Recovered Wastes

Recovery	Cover Material	C & D	C & D Dust	Wood Chip	Total
	17 05 04	17 01 07	19 12 12	19 12 07	
2012	1,354.28	9,481.32	41,681.66	299.14	53,936

22.6 STATEMENT OF COMPLIANCE OF FACILITY WITH ANY UPDATES OF THE RELEVANT WASTE MANAGEMENT PLAN

Under the European Communities (Waste Directive) Regulations 2011, all waste management plans where to be evaluated by 31 December 2012. This evaluation process has been completed and all ten evaluations recommended the development of replacement plans.

22.7 STATEMENT ON THE ACHIEVEMENT OF THE WASTE ACCEPTANCE AND TREATMENT OBLIGATIONS

Whiteriver landfill site has completed quarterly Biodegradable Municipal Waste Reporting Landfill Submission Report to the EPA for 2012. The total reported for 2012 was 32.85 %. This is in compliance with Condition 5.15 where the maximum of 47% by weight of municipal solid waste (MSW) accepted for disposal to the body of the landfill shall comprise biodegradable municipal waste (BMW), measured on a calendar year basis.

RPS

APPENDIX A

SLUDGE ANALYSIS

CERTIFICATE OF ANALYSIS

Validated

REF: BS EN 12457/2

120619-214 SDG: Job:

Client Reference:

D_TERRAWATH_KIL

>95%

Location: Customer: Attention:

Cavan Hill WTP D_TERRAWATH_KIL Damian Walsh

Order Number: Report Number: Superseded Report:

185292

CEN 10:1 STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.610 0.198 Mass of dry sample (kg)

Site Location

391 **Moisture Content Ratio (%) Dry Matter Content Ratio (%)** 15.1

Case

SDG 120619-214 Lab Sample Number(s) 5739963

Sampled Date

Particle Size <4mm

CAVANHILL WTP **Customer Sample Ref.**

Depth (m)

Murphy LoD Result **Solid Waste Analysis** mg/kg dry substance <30,000.0 mg/kg dry substance 1.92 Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) <0.026 <6.0 Sum of 7 PCBs (mg/kg) < 0.022 <1.0 Mineral Oil (mg/kg) 232 <500.0 PAH Sum of 17 (mg/kg) <100.0 <10 pH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Eluate Analysis	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Murphy Limits of Detection mg/kg dry		
	Result	Limit of Detection	Result	Limit of Detection	ing/kg ary		
Arsenic	0.000614	<0.00012	0.00614	<0.0012	0.5	_	-
Barium	0.0419	<0.00003	0.419	< 0.0003	20	_	-
Cadmium	<0.0001	<0.0001	<0.001	<0.001	0.04	_	-
Chromium	0.00387	<0.00022	0.0387	<0.0022	0.5	_	=
Copper	<0.000875	<0.00085	<0.0085	<0.0085	2	_	=
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	_	-
Molybdenum	0.00129	<0.00024	0.0129	<0.0024	0.5	_	-
Nickel	0.00509	<0.00015	0.0509	<0.0015	0.4	_	-
Lead	<0.00002	<0.00002	<0.0002	<0.0002	0.5	_	-
Antimony	0.00392	<0.00016	0.0392	<0.0016	0.06	_	-
Selenium	0.00167	<0.00039	0.01676	< 0.0039	0.1	_	-
Zinc	0.000403	<0.00041	0.00403	<0.0041	4	_	-
Chloride	20.1	<2	201	<20	800	_	-
Fluoride	<0.5	<0.5	<5	<5	10	_	-
Sulphate (soluble)	40	<2	400	<20	1000	_	-
Total Dissolved Solids	301	<10	3010	<100	4000	_	-
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	_	-
Dissolved Organic Carbon	11.1	<3	111	<30	500	_	-

Leach Test Information

Date Prepared	19-Nov-2012
pH (pH Units)	7.61
Conductivity (µS/cm)	552.00
Temperature (°C)	20.60
Volume Leachant (Litres)	0.510
Volume of Elusto VE1 (Litros)	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

20/11/2012 14:52:42

12:46:28 23/11/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park,

Drogheda, Co. Louth Ireland

Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Lab Report Ref. No. 2710/353/02 Customer **Dermot Baxter** Date of Receipt 20/01/2012 Louth Co. Co. 20/01/2012 Sampled On **County Offices Date Testing Commenced Dundalk** 20/01/2012 Co. Louth Received or Collected **Delivered by Customer** Condition on Receipt **Acceptable Customer PO** 4/137116 Date of Report 13/02/2012 **Customer Ref** Cavan Hill WTP - 20/01/12 Sample Type Other

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
% Dry Matter	302	Drying @ 104 C	14.48	%	
Acid Neutralisation capacity (pH4)	128	Titrimetry	< 0.50	mol/Kg	
Acid Neutralisation Capacity (pH7)	128	Titrimetry	< 0.50	mol/Kg	
Antimony (Leachate)	128	ICPMS	354.6	ug/Kg	
Arsenic (Leachate)	128	ICPMS	40.03	ug/Kg	
Barium (Leachate)	128	ICPMS	2083	ug/Kg	
Benzene (Solid)	198	GC-FID	<0.5	mg/Kg	
BTEX (Solid)	198	GC-FID	<0.5	mg/Kg	
Cadmium (Leachate)	128	ICPMS	< 0.09	ug/Kg	
Chloride (Leachate WAC)	190	IC	253.21	mg/Kg	
Chromium (Leachate)	128	ICPMS	9.349	ug/Kg	
Copper (Leachate)	128	ICPMS	208.5	ug/Kg	
Dissolved Organic Carbon (Leachate	316	TOC Analyser	1278	mg/Kg	
Ethylbenzene (Solid)	198	GC-FID	<0.5	mg/Kg	
Fluoride (Leachate WAC)	190	IC	4.03	mg/Kg	
Lead (Leachate)	128	ICPMS	<0.38	ug/Kg	
Loss on Ignition	310	Ashing @ 550 C	48.6	%	
m- & p-Xylene (Solid)	198	GC-FID	<1	mg/Kg	
Mercury (Leachate)	128	ICPMS	0.573	ug/Kg	
Mineral oil by Calculation (solid)	327	GC-FID	7.52	mg/Kg	
Molybdenum (Leachate)	128	ICPMS	7.475	ug/Kg	
Nickel (Leachate)	128	ICPMS	64.23	ug/Kg	
o-Xylene (Solid)	198	GC-FID	<0.5	mg/Kg	
PAH Solid (Sum of 17)	200	GCMS	< 0.05	mg/Kg	
PCBs(Solid)	323	GCMS	< 0.005	mg/Kg	
pH (Solid)	110	Electrometry	7.1	pH Units	
Phenol Index (Leachate)	128	Colorimetry	0.96	mg/Kg	

Signed : A House Supervisor

Aoife Harmon - Technical Supervisor

Acc. : Accredited Parameters by ISO 17025:2005

PVL - Parametric Value Limit as per EU Drinking water Regulations (SI 278 2007)

All organic results are analysed as received and all results are corrected for dry weight at 104 C

Results shall not be reproduced, except in full, without the approval of Fitz Scientific

Results contained in this report relate only to the samples tested

**The analytical result for this parameter may not be reflective of the concentration present at the time of sampling. The maximum recommended preservation time for this parameter has been exceeded.

A copy of this certificate is available on www.fitzsci.ie

Unit 35,

Boyne Business Park,

Drogheda, Co. Louth Ireland

Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Lab Report Ref. No. 2710/353/02 Customer **Dermot Baxter** Date of Receipt 20/01/2012 Louth Co. Co. 20/01/2012 Sampled On **County Offices Date Testing Commenced Dundalk** 20/01/2012 Co. Louth Received or Collected **Delivered by Customer** Condition on Receipt **Acceptable Customer PO** 4/137116 Date of Report 13/02/2012 **Customer Ref** Cavan Hill WTP - 20/01/12 Sample Type Other

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Selenium (Leachate)	128	ICPMS	58.86	ug/Kg	
Sulphate (Leachate WAC)	190	IC	26576.08	mg/Kg	
TOC (Solid)	315	TOC Analyser	14.826	%	
Toluene (Solid)	198	GC-FID	<0.5	mg/Kg	
Total Dissolved Solids (Leachate)	128	Evaporation/ Gravimetry	4150	mg/Kg	
Xylene Total (Solid)	198	GC-FID	<0.5	mg/Kg	
Zinc (Leachate)	128	ICPMS	<4.6	ug/Kg	

Signed : A Horizontal Supervisor

Acc. : Accredited Parameters by ISO 17025:2005

PVL - Parametric Value Limit as per EU Drinking water Regulations (SI 278 2007)

All organic results are analysed as received and all results are corrected for dry weight at 104 C

Results shall not be reproduced, except in full, without the approval of Fitz Scientific

Results contained in this report relate only to the samples tested

**The analytical result for this parameter may not be reflective of the concentration present at the time of sampling. The maximum recommended preservation time for this parameter has been exceeded.

A copy of this certificate is available on www.fitzsci.ie

Unit 35,

Boyne Business Park,

Drogheda, Co. Louth Ireland

Tel: +353 41 9845440 Fax: +353 41 9846171 www.fitzsci.ie

Web: info@fitzsci.ie email

Customer	Dermot Baxter	Lab Report Ref. No.	2710/353/01
	Louth Co. Co.	Date of Receipt	20/01/2012
	County Offices	Sampled On	20/01/2012
	Dundalk	Date Testing Commenced	20/01/2012
	Co. Louth	Received or Collected	Delivered by Customer
		Condition on Receipt	Acceptable
Customer PO	4/137116	Date of Report	13/02/2012
Customer Ref	Staleen WTP - 20/01/12	Sample Type	Other

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
% Dry Matter	302	Drying @ 104 C	16.29	%	
Acid Neutralisation capacity (pH4)	128	Titrimetry	<0.50	mol/Kg	
Acid Neutralisation Capacity (pH7)	128	Titrimetry	<0.50	mol/Kg	
Antimony (Leachate)	128	ICPMS	100.98	ug/Kg	
Arsenic (Leachate)	128	ICPMS	39.68	ug/Kg	
Barium (Leachate)	128	ICPMS	1168	ug/Kg	
Benzene (Solid)	198	GC-FID	<0.5	mg/Kg	
BTEX (Solid)	198	GC-FID	<0.5	mg/Kg	
Cadmium (Leachate)	128	ICPMS	< 0.09	ug/Kg	
Chloride (Leachate WAC)	190	IC	135.60	mg/Kg	
Chromium (Leachate)	128	ICPMS	2.33	ug/Kg	
Copper (Leachate)	128	ICPMS	188.3	ug/Kg	
Dissolved Organic Carbon (Leachate	316	TOC Analyser	1275	mg/Kg	
Ethylbenzene (Solid)	198	GC-FID	<0.5	mg/Kg	
Fluoride (Leachate WAC)	190	IC	4.50	mg/Kg	
Lead (Leachate)	128	ICPMS	<0.38	ug/Kg	
Loss on Ignition	310	Ashing @ 550 C	42.27	%	
m- & p-Xylene (Solid)	198	GC-FID	<1	mg/Kg	
Mercury (Leachate)	128	ICPMS	1.1	ug/Kg	
Mineral oil by Calculation (solid)	327	GC-FID	9.71	mg/Kg	
Molybdenum (Leachate)	128	ICPMS	30.73	ug/Kg	
Nickel (Leachate)	128	ICPMS	145	ug/Kg	
o-Xylene (Solid)	198	GC-FID	<0.5	mg/Kg	
PAH Solid (Sum of 17)	200	GCMS	< 0.05	mg/Kg	
PCBs(Solid)	323	GCMS	< 0.005	mg/Kg	
pH (Solid)	110	Electrometry	7.1	pH Units	
Phenol Index (Leachate)	128	Colorimetry	1.04	mg/Kg	

Acc. : Accredited Parameters by ISO 17025:2005

PVL - Parametric Value Limit as per EU Drinking water Regulations (SI 278 2007)

All organic results are analysed as received and all results are corrected for dry weight at 104 C

Results shall not be reproduced, except in full, without the approval of Fitz Scientific

Results contained in this report relate only to the samples tested

^{**}The analytical result for this parameter may not be reflective of the concentration present at the time of sampling. The maximum recommended preservation time for this parameter has been exceeded.

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park,

Drogheda, Co. Louth Ireland

Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Dermot Baxter	Lab Report Ref. No.	2710/353/01
	Louth Co. Co.	Date of Receipt	20/01/2012
	County Offices	Sampled On	20/01/2012
	Dundalk	Date Testing Commenced	20/01/2012
	Co. Louth	Received or Collected	Delivered by Customer
		Condition on Receipt	Acceptable
Customer PO	4/137116	Date of Report	13/02/2012
Customer Ref	Staleen WTP - 20/01/12	Sample Type	Other

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Selenium (Leachate)	128	ICPMS	20.61	ug/Kg	
Sulphate (Leachate WAC)	190	IC	600.26	mg/Kg	
TOC (Solid)	315	TOC Analyser	11.697	%	
Toluene (Solid)	198	GC-FID	<0.5	mg/Kg	
Total Dissolved Solids (Leachate)	128	Evaporation/ Gravimetry	3860	mg/Kg	
Xylene Total (Solid)	198	GC-FID	<0.5	mg/Kg	
Zinc (Leachate)	128	ICPMS	<4.6	ug/Kg	

Signed : A Horeman Aoife Harmon - Technical Supervisor

Acc. : Accredited Parameters by ISO 17025:2005

PVL - Parametric Value Limit as per EU Drinking water Regulations (SI 278 2007)

All organic results are analysed as received and all results are corrected for dry weight at 104 C

Results shall not be reproduced, except in full, without the approval of Fitz Scientific

Results contained in this report relate only to the samples tested

**The analytical result for this parameter may not be reflective of the concentration present at the time of sampling. The maximum recommended preservation time for this parameter has been exceeded.

CERTIFICATE OF ANALYSIS

Validated

SDG: 120209-44

Depth (m)

Job: D_TERRAWATH_KIL-1
Client Reference:

Location: Customer: Attention:

Terra Watch Ltd Damian Walsh Order Number: Report Number: Superseded Report:

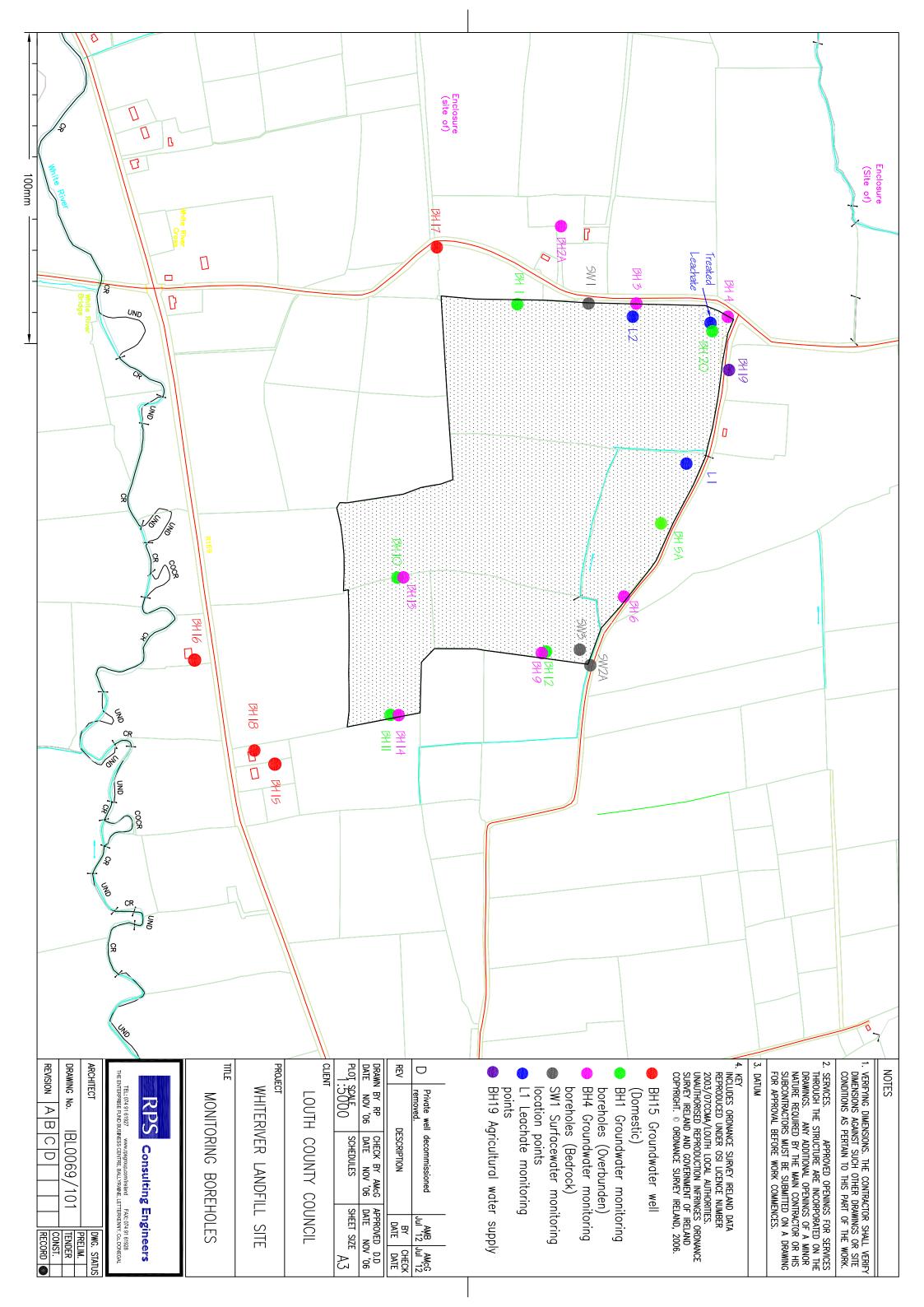
171967

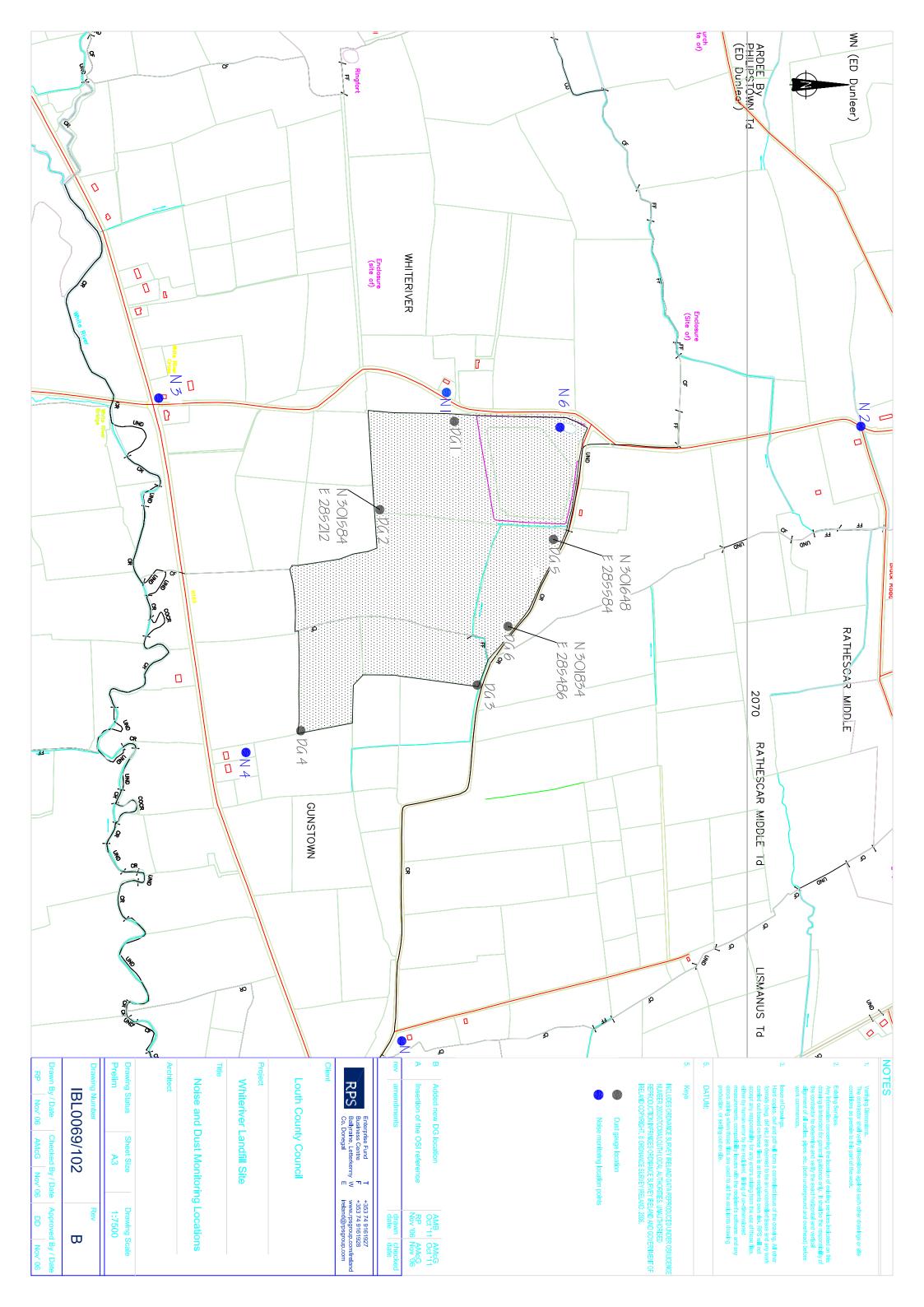
Hazardous

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Client Reference Site Location 0.305 240 Mass Sample taken (kg) **Moisture Content Ratio (%)** 29.5 Mass of dry sample (kg) 0.175 **Dry Matter Content Ratio (%)** Particle Size <4mm >95% **Landfill Waste Acceptance** Case **Criteria Limits** SDG 120209-44 Lab Sample Number(s) 5145583 Stable **Sampled Date** Non-reactive Inert Waste Hazardous **Customer Sample Ref.** NO ID Hazardous Landfill Waste Landfill Waste in Non-

Solid Waste Analysis
Total Organic Carbon (%)
Loss on Ignition (%)
Sum of BTEX (mg/kg) <0.024
Sum of 7 PCBs (mg/kg) <0.021
Mineral Oil (mg/kg) 647
PAH Sum of 17 (mg/kg) <10
pH (pH Units) 7.54
ANC to pH 6 (mol/kg)
ANC to pH 4 (mol/kg)


Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	m	g/l	mg	/kg	using bs	EN 12457-3 at L/S	10 I/Kg
Arsenic	0.000693	-	0.00693	-	0.5	2	25
Barium	0.0554	-	0.554	-	20	100	300
Cadmium	<0.0001	-	<0.001	-	0.04	1	5
Chromium	<0.00022	-	<0.0022	-	0.5	10	70
Copper	0.0026	-	0.026	-	2	50	100
Mercury Dissolved (CVAF)	<0.00001	-	<0.0001	-	0.01	0.2	2
Molybdenum	0.000827	-	0.00827	-	0.5	10	30
Nickel	0.00404	-	0.0404	-	0.4	10	40
Lead	0.000562	-	0.00562	-	0.5	10	50
Antimony	0.00221	-	0.0221	-	0.06	0.7	5
Selenium	0.00185	-	0.0185	-	0.1	0.5	7
Zinc	0.000816	-	0.00816	-	4	50	200
Chloride	22.9	-	229	-	800	15000	25000
Fluoride	<0.5	-	<5	-	10	150	500
Sulphate (soluble)	62.7	-	627	-	1000	20000	50000
Total Dissolved Solids	378	-	3780	-	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	-	<0.16	-	1	-	-
Dissolved Organic Carbon	20.2	-	202	-	500	800	1000


Leach Test Information	2:1	8
Date Prepared	13-Feb-2012	
pH (pH Units)		
Conductivity (µS/cm)		
Temperature (°C)		
Volume Leachant (Litres)	-0.070	
Volume of Eluate VE1 (Litres)		

APPENDIX B

DRAWINGS

APPENDIX C

PRTR REPORTING

HATTY CORE SAN THE STATE OF THE PARTY OF THE

Guidance to completing the PRTR workbon

AER Returns Workbook

REFERENCE YEAR	2012
1. FACILITY IDENTIFICATION	
Parent Company Name	Louth County Council
Facility Name	Whiteriver Landfill Site:
PRTR Identification Number	W0060
Licence Number	W0060-03

Waste or IPPC Classes of Acti	No. class_name
	No. Class name
	Specially engineered landfill, including placement into lined discre-
	cells which are capped and isolated from one another and the 3.5 environment.
	S. Speriviroriment
	3.1 Deposit on, in or under land (including landfil).
	Repackaging prior to submission to any set it.
3.	12 preceding paragraph of this Schedule.
	Storage prior to submission to any activity referred to in a precedin
	paragraph of this Schedule, other than temporary storage, pending
3.	
3	
	Biological treatment not referred to elevation in the
	results in final compounds or mixtures which are disposed of by
	means of any activity referred to in paragraphs 1. to 10. of this
3	
3	7 #####################################
	7 DENGRALE OF THE TRANSPORT OF T
4.0	O an agricultural activity or ecological system.
	Storage of waste intended for submission to any activity referred to
12.2	
9.3	
	Recycling or reclamation of organic substances which are not used
4.3	
4.4	Recycling or rectamation of other inorganic materials.
	Use of any waste principally as a find or other
4.5	energy.
Address 1	Whiteriver & Gunstown Townland
Address 2	
Address 3	Co Louth
Address 4	
	Lough
Country	Ireland
Coordinates of Location	-6.52774 53.6647
River Basin District	GBNIIENB
NACE Code	3821
Main Economic Activity	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	Damien Holmes
AER Returns Contact Front Address	dentification and the second
AER Returns Contact Telephone Number	041 6859019
ALPC Returns Contact Mobile Phone Number	000 400 7245
	0416851623
MER Returns Contact Fax Number	1100100
AER Returns Contact Fax Number Production Volume	
Production Volume	0.0
Production Volume Production Volume Units	0.0
Production Volume Production Volume Units Number of Installations	
Production Volume Production Volume Units Number of Installations Number of Operating Hours in Year	0
Production Volume Production Volume Units Number of Installations	

Activity Number 5(d)	Activity Name
5(0)	Landfills
5(c) (5(d) 50.1 3. SOLVENTS REGULATIONS (8.1. No. 543 of 2)	Installations for the disposal of non-hazardous waste. Landfills General
is it applicable?	
Have you been practed an execution 2	
If applicable which activity class applies (as per Schedule 2 of the regulations) 2	
is the reduction scheme compliance route being	

WASTE IMPORTED/ACCEPTED ONTO SITE Do you import/accept waste onto your site for on-	Guidance on waste imported/accepted onto site
site treatment (either recovery or disposal activities)	
7 This	Clusterion in each and a section in

This question is only applicable if you are an IPPC or Quarry site

Please enter all quantities in this sect	НОВ	lethod Used	Designation or Description Emission Point 1 [Total) R	Gassim 0.0 Flare Monitoring 0.0 GASSIM 0.0
	METI	W	MC/E Method Code	H 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DEI ENGRE TO AIR	NELEMBER 10 MIN		a EL CX	0.1181
POLLUTANTS		POLLUIANI		Carbon dioxide (CO2) Methane (CH4)
SECTION A SECTOR SPECIFIC PRTR I	THE REAL PROPERTY.		STATE OF THE PERSON NAMED IN	No. Arnex II

ECTION B : REMAINING PRTR POLLUTANT	TS DELEASES TO AIR		Please enter all quantities in this section in K	GIANTITY	
		METHOD			
	POLLUTANT	Method Used		The state of the state of	LVC/Van
		AANTIC MANHON Code Designation or Description	Emission Point 1 T (Total) KG/Year	A (Accidental) AGITEBI IT (Fugitive)	00
No Annex II	Name		0.0	0.0	64.0
		C OTH Gassim	0.0	54.8	5
	Chiorottuoroccardoria, (or ca)				

PESSE EIROL AIL QUAITITY	Emission Point 1 T (Total) KGYear A (Accidental) KGYear F (Fuglive) KGYear 0.0	
SECTION C: REMAINING POLLUTANT EMISSIONS (XST HOUSE IN) CONTRACTION (RELEASES TO AIR RELEASES TO AIR	POLLUTANT Name Netrod Code Description	

Additional Data Requested from Landfill operators	
For the purposes of the National Inventory on Creambouse Cases, landfill operators are requested to privide summary data on landfill gas (Methers) from the Company of Supras for tall methers for tall methers for the Company of Supras for tall methers generated. Operations should only report the kill methods (Cifet)	

andfill: Whiteriver Landfill Site					
Please enter summary data on the			Me	Method Used	
quantities of methane flared and / or utilised		MIC/F	Method Code	Designation or Description	Facility Total Capacity m3 per hour
	I (Total) Kg/rear				
Total estimated methane generation (as per	0810086	C	Gassim Model	Predicted	N/A
site model)	0.000103	174	Massiran of Flam	I andfill gas survey report	0.0 (Total F
Mathana farad	787,100.0	(4)	And and and and		0.0 (Total Ut
Alekson in book at the second	0.0				
Net methans emission (as reported in Section A	-17032.0	O	-17032 0 C Gassim minus measure(e As reported in gas survey.	NA

				Please enter all quantities on this sheet in Tonnes								
			Quantity (Tonnes per Year)	76		-	Method Used		Haz Waste: Name and Licence/Permit No of Next Destriation Facility Haz Waste: Name and Licence/Permit No of Recover/Disposer	Haz Waste. Address of Next Destrator Facility Non Haz Waste. Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Address of Frail Recovers / Address of Frail Destrution Places of Frail Recovery (Prosposal Site (HAZARDOUS WASTE (HAZARDOUS WASTE ONLY)
	Europ			December of Wests	Waste	M/C/E	Waste Treatment Operation MC/E Method Item	Location of Treatment				
Within the Country 19 07 03	19 07 03	No		landfill leachate other than those mentioned 30436.26 in 19 07 02	1	2	Weighed	Offsite in Ireland EPS,	EPS,,	Marsh Road, Drogheda, Co. Louth, Ireland		

APPENDIX D

FLUE GAS MONITORING

IBR0509/Reports Status: Final Date: May 2013

ODOUR & ENVIRONMENTAL CONSULTANTS

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Fax: +353 46 9483696 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

TITLE: AIR EMISSION TESTING OF TWO LANDFILL FLARES LOCATED IN WHITERIVER LANDFILL FACILITY, DUNLEER, CO. LOUTH

PREFORMED BY ODOUR MONITORING IRELAND ON BEHALF OF LOUTH COUNTY COUNCIL

PREPARED BY:	Dr. John Casey
ATTENTION:	Mr. Damien Holmes
LICENCE NUMBER:	WL060-03
LICENCE HOLDER:	Louth County Council
FACILITY NAME:	Whiteriver Landfill Facility
DATE OF MONITORING VISIT:	23 rd Nov. 2012
NAME AND ADDRESS OF CLIENT ORGANISATION:	Dunleer, Co. Louth
NAME AND ADDRESS OF MONITORING ORGANISATION:	Odour Monitoring Ireland, Unit 32 DeGranville Court, Dublin Road, Trim, Co. Meath
DATE OF REPORTING:	01 st Feb .2013
NAME AND THE FUNCTION OF THE PERSON APPROVING THE REPORT:	Dr. Brian Sheridan, Managing Partner, Odour Monitoring Ireland
REPORT NUMBER:	2013586(1)
REVIEWERS:	Dr. Brian Sheridan

TABLE OF CONTENTS

Section	on	Page number
	E OF CONTENTS IMENT AMENDMENT RECORD	i ii
Воос	MENT AMENDMENT RESORD	••
1.	Executive Summary	1
1.1	Monitoring Objectives	1
1.2	Special Monitoring Requirements	1
1.3	The substances to be monitored at each emission point	2
2.	Monitoring Results	3
2.1	Operating Information	3 3 3 3 4
2.2	Monitoring Result Reference Conditions	3
2.3.	Sampling Location Summary	3
2.4.	Sampling run times	4
2.5.	Characteristics of raw inlet gas to enclosed Landfill flares	5
2.6.	Theoretically calculated landfill gas exhaust volume and physica characteristics from the Landfill flare.	ıı 6
	characteristics from the Landill flare.	0
3.	Discussion of results	9
4.	Conclusion	10
5.	References	10
6.	Appendix I-Sampling, analysis	11

i

Document Amendment Record

Client: Louth County Council

<u>Project:</u> Air emission testing of two enclosed Landfill flares located in Whiteriver landfill facility, Dunleer, Co. Louth.

Project Number: 2013586(1)		Document Reference:				
2013586(1)	Document for review	B.A.S.	JWC	JWC B.A.S		
Revision	Purpose/Description	Originated	Checked	Authorised	Date	
Q _i						

Signing sheet

Brian Sheridan Ph.D Eng

Blewn

For and on behalf of Odour Monitoring Ireland

1. Executive Summary

The results of the monitoring exercise are contained in Section 2 of this report.

 NO_x as NO₂, CO, TOC and HCL/HF emissions from both flares were within the emission limit values specified in Waste licence W060-03;

1.1 Monitoring Objectives

This report has been prepared by Odour Monitoring Ireland and contains the results of emission testing carried out on 2 No. Enclosed ground flares at Whiteriver Landfill, Co. Louth. The monitoring was carried out at this facility as part of compliance monitoring with the requirements of Waste licence W0060-03. The emission testing was carried out by Odour Monitoring Ireland on behalf of Louth County Council.

1.2 Special Monitoring Requirements

There were no special monitoring requirements for this campaign.

1.3 The substances to be monitored at each emission point

The parameters listed in *Table 1.1* were monitored using the appropriate instrumentation as illustrated in *Table 1.1*. All monitoring was carried out in accordance with Environmental Protection Agency Office of Environmental Enforcement (OEE) Air Emission Monitoring Guidance Note 2 (AG2).

Table 1.1. Monitored parameters and techniques

Sample location	Parameter	Analytical method
Landfill Flare	Volumetric airflow rate & Temperature (⁰ C)	Pitot in accordance with EN13284-1 where possible. MGO coated K type thermocouple and PT100 Volumetric airflow rate theoretical calculated for Landfill flare.
Landfill Flare	Oxides of nitrogen (NO _X as NO ₂), Carbon monoxide (CO), Carbon dioxide (CO ₂), Sulphur dioxide (SO ₂), and Oxygen (O ₂)	Horiba PG250 All analytes, Oxygen EN14789, Oxides of Nitrogen Chemiluminescence, Carbon Monoxide EN15085.
Landfill Flare	Hydrogen chloride (HCL)	Impinger train containing high purity deionised water solution in accordance ISEN 1911:2010
Landfill Flare	Hydrogen fluoride (HF)	Impinger train containing 0.10 molar sodium hydroxide ISEN 15713:2006
Landfill Flare	Total Organic Carbon (TOC)	TOC analyser in accordance with EN12619:2002

This report presents details of this monitoring programme. This environmental monitoring was carried out Dr. John Casey, Managing Partner, Odour Monitoring Ireland on the 23rd Nov. 2012. Methodology, Results, Discussion and Conclusions are presented herein.

2. Monitoring Results

This section will present the results of the monitoring exercise.

2.1 Operating Information

Emission Point Reference	Date	Process Type	Process Duration	Fuel	Feedstock	Abatement	Load
Flare 1	23/11/2012	Landfill flare	Continuous	Landfill Gas	N/A	None	Landfill Gas
Flare 2	23/11/2012	Landfill flare	Continuous	Landfill Gas	N/A	None	Landfill Gas

2.2 Monitoring Result Reference Conditions

Emission Point Reference	Temperature (K)	Pressure	Moisture Correction	Oxygen Correction (%)
Flare 1	K	101.3	Yes	3
Flare 2	K	101.3	Yes	3

2.3. Sampling Location Summary

Sampling Location Summary				
Comment	Yes/No			
Recommended 5 hydraulic diameters straight length before sampling plane	Yes			
Recommended 2 hydraulic diameters straight length after sampling plane	Yes			
Ports number <1.5m - 2 ports >1.5m - 4 ports	1 port on the flares			
Appropriate port size	Yes			
Suitable working platform	Yes			

Note: Temperature and airflow rate traverse measurements were performed across the stack in one plane only. Only one plane was possible due to access port issues.

2.4. Sampling run times for the monitoring

Parameter	Approx. Sampling period for landfill flare
Inlet CH₄	30 minutes
Inlet O ₂	30 minutes
Volumetric air flow rate	Theoretically calculated
SO ₂	35 minutes
NO _x	35 minutes
CO	35 minutes
O ₂	35 minutes
CO ₂	35 minutes
Stack gas temp	35 minutes
TOC	35 minutes
HCL	32 minutes
HF	31 minutes

WL060-03 Louth County Council Whiteriver Landfill Facility

Document No. 2013586 (ver.1) Visit No: 01 Year: 2012

Characteristics of raw inlet gas to enclosed Landfill flare 2.5.

Parameter	Compound loading Flare1	Compound loading Flare 2	Units
CH ₄	35	36.7	%
CO ₂	31.5	30.5	%
O ₂	5.87	4.8	%
Volumetric flow rate	500	1002	m³/hr
Total chloride	3.54	-	mg/Nm ³
Total fluoride	<1.54	-	mg/Nm ³
Total sulphur	547	-	mg/Nm ³

2.6. Theoretically calculated landfill gas exhaust volume and physical characteristics from the Landfill flare.

Parameter	Flare 1	Flare 2
Total Volumetric methane loading (m³/hr)	177	367
Total Volumetric Oxygen loading (m³/hr)	29.3	48
Ratio to complete combustion of methane assuming no excess Oxygen	45/	9.57
Oxygen concentration level in flue gas (%)	11.21	12.67
Flue gas temperature (Kelvin) ²	1,302	1,318
Theoretical calculated Volumetric exhaust airflow rate (m³/h)	4,678	11,359
Normalised average exhaust airflow rate (Nm³ h-1)3	980	2,352

Notes:

 $^{^{1}}$ denotes data from 23/11/2012. 2 denoted converted from degrees Celsius to Kelvin ($^{0}\mathrm{C}$ + 273.15); 3 denotes normalised to 273.15 Kelvin and 101.3 kPa.

Table 2.7. Emission value results for landfill gas Flare 1.

Flare 1	Conc.	Normalised (mgN/m³)	Oxygen corrected emission concentration to flare (mgN/m³) 3% ref.	Kg/hr	Expanded uncertainty as percentage of limit value (%) ¹	Emission limit Values	Operating Status
Total NOx [as NO ₂] (ppm)	17	34.85	64.38	0.03	16.54	<150 mg/Nm ³	As Normal
CO (ppm)	0	0	0.00	0.000	12.41	<50 mg/Nm ³	As Normal
Total Organic Carbon (mg/m³)	1.88	3.01	5.56	0.00	16.47	<10 mg/Nm ³	As Normal
Average Hydrogen Chloride (mg/m³)	1.54	1.54	2.85	0.0015	-	<50 mg/Nm ³ (at mass flow > 0.30 kg/hr)	As Normal
Average Hydrogen Fluoride (mg/m³)	0.52	0.72	1.32	0.0007	-	<5 mg/Nm³ (at mass flow > 0.050 kg/hr)	As Normal
SO ₂ (ppm)	438	1,248.3	2,305.94	1.22	-	-	As Normal
O ₂ (%)	11.21	-	-	-	-	-	As Normal
Temperature (degrees)	1029	1302K	-	-	-	>1273K	As Normal
CO ₂ (%)	5.55	-	-	-	-	-	As Normal
Volumetric Airflow (m ³ /hr)	-	-	531	-	-	<3,000	As Normal
Efficiency (%)	>99.99	-	-	-	-	-	As Normal

<u>Notes:</u> ¹ denotes that expanded uncertainty is elevated as the equation has not been validated for use with high temperature sources. Leak check results for Horiba = <2%

Leak check results for Signal = <2% Leak check results HCL = <2%

Leak check results HF = <2%

Span (<2% range) and drift values within acceptable tolerance (<1%) for Horiba. Span (<2% range) and drift values within acceptable tolerance (<1%) for Signal.

www.odourireland.com 7 of 11

Table 2.8. Emission value results for landfill gas Flare 2.

Flare 1	Conc.	Normalised (mgN/m³)	Oxygen corrected emission concentration to flare (mgN/m³) 3% ref.	Kg/hr	Expanded uncertainty as percentage of limit value (%) ¹	Emission limit Values	Operating Status
Total NOx [as NO ₂] (ppm)	24	49.20	107.01	0.1157	13.54	<150 mg/Nm ³	As Normal
CO (ppm)	5	6.25	13.59	0.015	7.84	<50 mg/Nm ³	As Normal
Total Organic Carbon (mg/m³)	1.99	3.18	6.93	0.007	16.54	<10 mg/Nm ³	As Normal
Average Hydrogen Chloride (mg/m³)	0.11	0.10	0.23	0.0003	-	<50 mg/Nm ³ (at mass flow > 0.30 kg/hr)	As Normal
Average Hydrogen Fluoride (mg/m³)	0.09	0.09	0.19	0.0002	-	<5 mg/Nm³ (at mass flow > 0.050 kg/hr)	As Normal
SO ₂ (ppm)	444	1,265	2,752	2.97	-	-	As Normal
O ₂ (%)	12.67	-	-	-	-	-	As Normal
Temperature (degrees)	1045	1318.15K	-	-	-	>1273K	As Normal
CO ₂ (%)	4.81	-	-	-	-	-	As Normal
Volumetric Airflow (m ³ /hr)	-	-	1,081	-	-	<3,000	As Normal
Efficiency (%)	>99.99	-	-	-	-	-	As Normal

Notes: 1 denotes that expanded uncertainty is elevated as the equation has not been validated for use with high temperature sources. Leak check results for Horiba = <2%

www.odourireland.com 8 of 11

Leak check results for Signal = <2%

Leak check results HCL = <2%

Leak check results HF = <2%

Span (<2% range) and drift values within acceptable tolerance (<1%) for Horiba.

Span (<2% range) and drift values within acceptable tolerance (<1%) for Signal.

3. Discussion of results

Tables 2.1 to 2.8 present the results of the emission monitoring carried out on the landfill flares located in Whiteriver Landfill.

There was very little variation at one traverse in oxygen and flue gas temperature profiles across the stack during the monitoring exercise (i.e. less than 15% as recommended by the Environment Agency, UK (Environment Agency, 2002)).

A high temperature Inconel 625 and ceramic probe (Testo, Germany) was used to prevent variations in CO emissions data. Normal stainless steel probes when subjected to temperatures above 600°C can release CO from within the structure of the material and cause the recording of erroneous results (Environment Agency, 2002).

Correction of data to 3% oxygen was performed. Due to possible inaccuracies in airflow rate measurement, it was not possible to determine the oxygen intake of the flare through the louver system using measurement. Since the volume of intake air required for complete combustion was known and the oxygen concentration in the exhaust flue gas was known, the volume of intake excess fuel air could be theoretically calculated through numerous iterations using the Solver program (i.e. Microsoft Excel). This allows for the calculation of the volume of intake excess air through the louver landfill flare intake system (Environment Agency, 2002).

WL060-03 Louth County Council Whiteriver Landfill Facility

Document No. 2013586 (ver.1) Visit No: 01 Year: 2012

4. Conclusion

The following conclusions can be drawn from this study:

- 1. A theoretically exhaust flue gas volume was calculated for the landfill flare.
- 2. NO_x as NO₂, SO₂, CO, O₂, TOC, HCL and HF monitoring and analysis was carried out in accordance with specified requirements;
- 3. All data was standardised to 273.15 Kelvin, 101.3 kPa;
- 4. All data is presented as Oxygen corrected to 3% (v/v) using the appropriate equations;
- 5. NO_x as NO₂, CO, TOC, HCL and HF emissions from both flares were within the emission limit values specified in Waste licence W060-03;

5. References

- 1. Environment Agency. (2002). Guidance for Monitoring Enclosed Landfill Gas Flares. www.environment-agency.co.uk
- 2. Environmental Protection Agency. (2009). Air Emissions Monitoring Guidance Note 2 (AG2).
- 3. I.S. EN 13284-1:2002. Stationary source emissions. Measurement of velocity and volume flow rate of gas streams in ducts.
- 4. IS EN13526:2002-Stationary source emissions-Determination of the mass concentration of total gaseous organic carbon in flue gases from solvent using processes-Continuous flame ionisation detector method.
- 5. IS EN12619:1999-Stationary source emissions-Determination of the mass concentration of total gaseous organic carbon at low concentrations in flue gases-Continuous flame ionisation detector method.
- 6. I.S. EN 13284-1:2002. Stationary source emissions. Determination of low range mass concentration of dust. Manual gravimetric method.

6. Appendix I-Sampling, analysis

6.1.1 Location of Sampling

Whiteriver landfill facility, Dunleer, Co. Louth.

6.1.2 Date & Time of Sampling

23rd Nov. 2012

6.1.3 Personnel Present During Sampling

Dr. John Casey, Odour Monitoring Ireland, Trim, Co. Meath.

6.1.4 Instrumentation check list

Testo 350 MXL/454 in stack analyser;

Federal Method 2 S type pitot and MGO coated thermocouple;

L type pitot tube

Testo 400 handheld and appropriate probes.

Ceramic and Inconel 625 sampling probes.

Portable Signal 3030PM FID calibrated with Propane with non-methane

hydrocarbon cutter.

SKC sample pumps and Bios Primary calibrator

APPENDIX E

MONTHLY WATER BALANCE CALCULATION

IBR0509/Reports Status: Final Date: May 2013

WONTHE WA	TER BALANCE CALCULA		Masta Issue	Dainfall	Antina Anna	I involut	Tama Dantarad area	T	Destaurad	Lanahata	Darmanauth.	Desmananthi	Destared area	Tatal Mater	Comodetica	Abasantina	Cumulativa	Communications	Lanahata	Lanahata
	Active Phase		Waste Input t/month	Rainfall mm	Active Area Infilitration AR(A)(m3)	Liquid Waste LW(m3) Excess Water From Sludge	Temp Restored area	Temp Restored area(Temp) RCA(m2)	Restored area(Temp) infiltration IRCA(m3)	Leachate Lagoon AR(I)	Permanently Restored area	Permanently Restored area	Restored area RCA(m2)	Total Water	Cumulative Water	Absorptive Capacity aW(m3)	Cumulative Absorptive Capacity	Cumulative Leachate	Leachate produced Lo(m3)	Leachate tankered to WWTP
January	5, Cell 1A and Cell	12,006	6234	74.6	896	26	5, Cell 2	15,556	348	119	1,2,3,4,5(3a,b),	103844	775	2164	2164	374.05	374.05	1790	1790	2701
February	5, Cell 1A and Cell	12,006	5748	25.4	305	6	5, Cell 2	15,556	119	41	1,2,3,4,5(3a,b),	103844	264	734	2898	344.89	718.94	2179	389	2250
March	5, Cell 1A and Cell	12,006	7436	13.2	158	418	5, Cell 2	15,556	62	21	1,2,3,4,5(3a,b),	103844	137	797	3695	446.13	1165.07	2530	350	1209
April	5, Cell 1A and Cell	12,006	7545	84.8	1018	115	5, Cell 2	15,556	396	136	1,2,3,4,5(3a,b),	103844	881	2545	6239	452.69	1617.76	4622	2092	1914
May	5, Cell 1A and Cell	12,006	12515	42.8	514	133	5, Cell 2	15,556	200	68	1,2,3,4,5(3a,b),	103844	444	1359	7599	750.88	2368.64	5230	608	1862
June	5, Cell 1A and Cell	12,006	14891	144.6	1736	114	5, Cell 2	15,556	675	231	1,2,3,4,5(3a,b),	103844	1502	4257	11856	893.46	3262.10	8594	3364	3208
July	5, Cell 1A and Cell	12,006	5777	94.4	1133	152	5, Cell 2	15,556	441	151	1,2,3,4,5(3a,b),	103844	980	2857	14714	346.63	3608.73	11105	2511	3622
August	5, Cell 1A and Cell	12,006	3953	103.2	1239	103	5, Cell 2	15,556	482	165	1,2,3,4,5(3a,b),	103844	1072	3060	17774	237.18	3845.91	13928	2823	2446
September	5, Cell 1A and Cell	12,006	5830	61.4	737	106	5, Cell 2	15,556	287	98	1,2,3,4,5(3a,b),	103844	638	1866	19640	349.83	4195.74	15444	1516	2246
October	5, Cell 1A and Cell	12,006	8142	64.6	776	98	5, Cell 2	15,556	301	103	1,2,3,4,5(3a,b),	103844	671	1949	21589	488.54	4684.28	16905	1461	2411
November	5, Cell 1A and Cell	12,006	5692	76.6	920	128	5, Cell 2	15,556	357	123	1,2,3,4,5(3a,b),	103844	795	2323	23912	341.51	5025.79	18886	1981	3607
December	5, Cell 1A and Cell	12,006	4038	84.2	1011	90	5, Cell 2	15,556	393	135	1,2,3,4,5(3a,b),	103844	874	2503	26415	242.30	5268.09	21147	2261	2961
Total	101 1.1		87801	869.8	10443	1489			4059	1392	5(0)		9032	26415		5268			21147	30436

Assumptions			
IRCA=	Temporarily capped/restored area infiltration of rainfall estimated %	30%	%
	Permanent capped/restored area infiltration of rainfall estimated %	10%	%
Absorptive Capacity=	waste density of 0.8 tonnes/m3. Estimated absorptive capacity (water per tonne waste before leachate is produced) t/m3	0.06	t/m3
Temporary restored	Area of landfill site restored (1,2)	41.000	m ²
assumed 50%	Area of Phase 3	11.500	m²
Phase I to III permanent	Area of Phase 1,2 and 3 remaining to be temp capped	7,000	m ²
restored.	Area of Phase 4, Cell 1A	2,190	m ²
	Area of Phase 4, Cell 1	15.000	m²
	Area of Phase 4, Cell 2	8,000	m²
	Area of Phase 5, Cell 3A	7.974	m²
	Area of Phase 5, Cell 3B	7,180	m²
	Area of Phase 5, Cell 2A	13,761	m ²
	Area of Phase 5, Cell 2B	5.795	m²
	Area of Phase 5, Cell 1A	10.083	m²
	Area of Phase 5, Cell 1B	323	m ²
	Surface Area Leachate Lagoon	1,600	m ²
Rainfall	Rainfall taken from on site	869.8	mm

MONTHLY CLIMATOLOGICAL SUMMARY for JAN. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR	
1			1:00	1.0	00:00	12.7		2.8	23.5			SSW	
2		5.5	00:00		2:00	15.8		5.2				SSW	
3	5.8		4:30		22:00	12.5		11.8	37.2			SW	
4		9.8	00:00		1:30	11.9		9.0	36.4			SW	
5			1:00	4.4	00:00	11.3		2.8		85.3	3:30	WSW	
6			20:30		4:00	11.0		0.4	23.3		20:30	SW	
7			0:30		8:30	11.5		0.0	23.7			WSW	
8	8.6		13:00		2:30	9.7	0.0	0.2	21.7		13:30	SW	
9		9.0	3:00		00:00		0.0	0.6	15.9			SW	
10	8.5	10.4	14:30		0:30	9.8	0.0	1.2	20.9			SSW	
11	9.7	17.2	14:00		9:30	8.4		0.4				SW	
12	7.3		0:30	3.9	00:00	11.0		0.2			3:30	WSW	
13	4.6	7.6	12:30		00:00	13.7	0.0		4.7		0:30	WSW	
14	4.3	5.8	14:00	2.4	4:00	14.0		0.0			16:00	ESE	
15	4.7	5.2	3:00	3.6	21:30	13.6					12:30	ESE	
16	4.3	5.8	15:00	3.3	20:30	14.0			8.7			SE	
17	7.2	9.6	15:00		2:30	11.1		0.0		45.1		SSE	
18	7.9	10.8	5:00	5.4	18:30	10.4		0.8	19.3			SW	
19	5.1	6.8	13:30	3.1	21:30	13.3		1.8		104.6		SW	
20	8.0	10.2	23:30	3.9	0:30	10.3		1.2			6:30	SW	
21	6.8	10.0	0:30	4.7	20:30	11.5		3.2	34.4		6:30	WSW	
22	6.6	8.9	5:30	4.5	23:30			0.0	29.1		7:00	SW	
23	4.6	6.4	15:00	3.4	21:30	13.7		0.4			11:00	SW	
24	8.9	10.4	12:30	3.3	0:30	9.4		4.6	19.3		22:30	SSW	
25	7.2	10.0	13:00	1.6	00:00	11.1		7.6			12:00	S	
26	2.4	4.3	14:30	0.5	1:30	15.9	0.0	1.6	20.9	53.1	18:00	SW	
27	3.1	5.6	15:30	1.7	7:30	15.2	0.0	1.0			12:00	SW	
28	3.3	4.7	23:00	1.7	2:00	15.0	0.0	0.2	9.2		23:30	S	
29	4.7	6.2	14:30		23:00	13.7		15.8				SE	
30	3.5				0:30	14.8		1.8				ESE	
31		3.5	0:30	2.1	00:00			0.0	11.9	38.6	20:00	E	
	5.9		11					74.6	20.6	104.6	19	SW	

Max >= 32.0: 0 Max <= 0.0: 0 Min <= 0.0: 0 Min <= -18.0: 0

Max Rain: 15.80 ON 29/01/12

Days of Rain: 23 (> .2 mm) 9 (> 2 mm) 0 (> 20 mm)

Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for FEB. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

DAY	MEAN TEMP		TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS		AVG WIND SPEE	D HIGH	TIME	DOM DIR
1 2	1.5		15:30		20:30	16.8	0.0	0.0	9.5	29.0	0.30	
3	0.1		14:30		9:00		0.0				0:30	E
4	0.7		14:30	7.5	6:30	17.6	0.0	100000000000000000000000000000000000000			12:00	SSE
5	5.1	7.4	16:00		0:30	13.2	0.0				14:30	SSE
6	4.6	6.5	14:30		3:30	13.7	0.0	1000 1000 1000			16:00	SSE
	5.6	8.4	14:30		23:30		0.0				1:00	SW
7	3.9	6.5	15:00		7:00		0.0				1:00	ESE
8	3.2	4.1	18:30		10:00		0.0	1.0		The state of the s	23:30	SE
9	6.8	9.1	18:30		0:30		0.0	4.4			4:00	SE
10	7.1	8.9	0:30		21:00		0.0	1.0		37.0	9:00	SW
11	5.9	6.6	14:30	5.4	00:00	The second second	0.0	2.8		30.6	22:30	E
12	5.3	6.1	12:30	4.5	8:00		0.0	0.0		40.2	5:30	S
13	5.9	7.6	12:00	4.5	2:30	12.4	0.0	0.2	9.8	25.7	15:00	WSW
14	6.6	7.7	20:30		9:00	11.7	0.0		22.4	49.9	12:30	WNW
15	7.3	9.0	12:00		7:30	11.0	0.0	0.0	23.5		23:00	WNW
16	7.9	9.3	15:30	6.2	4:30	10.4	0.0	0.0	24.8		0:30	WNW
17	9.1	10.6	14:30	7.4	22:30	9.2	0.0	0.0		51.5	9:30	SW
18	4.0	7.6	0:30		23:30	14.3	0.0	0.8		61.2	22:30	SW
19	2.6	5.9	14:30		3:00	15.7	0.0	3.2		72.4	5:00	WSW
20	5.9	8.2	19:00		1:00	12.4	0.0	0.0		33.8	1:00	WSW
21	9.7	11.9	14:30	7.8	1:00	8.6	0.0	1.0		62.8	15:30	SSW
	11.0	12.8	13:30	9.9	3:30	7.3		0.6		64.4	21:30	SSW
	11.1	12.1	14:30	10.3	3:30	7.2	0.0	3.6		70.8	7:00	SW
	8.1	10.9	0:30	5.5	00:00	10.2	0.0	0.4	29.1	54.7	11:30	SW
	6.4	8.0	20:30	4.2	6:30	11.9	0.0	2.0			1:30	W
	7.7	9.9	15:30	5.2	9:00	10.6	0.0	0.0	11.3	38.6	12:00	SW
27	9.7	10.6	17:00		3:30		0.0	0.6	14.0	43.5	22:30	S
28	9.7	10.9			23:00	0.0	0.0	0.2	25.1	49.9	12:00	SW
29	8.8	10.6	16:00		7:00	0.6	0.0	0.0	14.3	38.6	1:00	SW
						9.5	0.0	0.0	10.5	38.6	11:00	SSE
Moss		12.8	22	-2.2	3 3	349.2	0.0	25.4	16.9	72.4	18	SW

Max >= 32.0: 0

Max <= 0.0: 0 Min <= 0.0: 3

Min <= -18.0: 0

Max Rain: 4.39 ON 09/02/12

Days of Rain: 17 (> .2 mm) 6 (> 2 mm) 0 (> 20 mm)

Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for MAR. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR	
1	8.5	11.7	13:00		23:00		0.0	0.0				S	
2		10.3	12:00		0:30				12.1			SE	
3		9.6			00:00				18.2			WSW	
4		6.1	15:00		7:30				19.8 15.1	48.3	15:00 3:30	WSW	
5		8.6	15:00		6:30			0.0		59.5		S	
6	6.0		00:00		7:00			0.8	18.2	64.4	3:30	WSW	
7	5.8		0:30					3.8	28.3	54.7	15:00	SSW	
8	7.2		15:30		2:00		0.0	0.0	21.7 23.5	53.1	12:00	SW	
9	9.9		16:30		4:30		0.0	0.0	19.8	43.5	15:00	SW	
10		12.8	15:30		7:30		0.0	0.0	12.7	30.6	14:30	SW	
11		9.8	14:30		8:00 7:00		0.0	0.0	3.4	17.7	11:30	SE	
12		10.3	15:30		00:00		0.0	0.0	4.8	16.1	13:00	SE	
13		8.8	13:00		7:00		0.0		6.1	25.7	10:30	S	
14		8.2	17:00 16:00		4:30		0.0	0.0	10.1	41.8	23:00	S	
15 16		10.4	2:00				0.0	3.4	15.8	48.3	4:00	S	
17		7.3	12:30		6:30		0.0	0.2	8.5	27.4	13:00	ENE	
18	5.4		16:00		6:30		0.0	0.2	15.0	35.4	11:00	W	
19	7.3		17:00		3:30		0.0	0.0	22.9		12:30	SW	
	9.4		15:00		7:30	8.9	0.0	0.0	18.2	53.1	2:00	SSW	
21		9.8	14:30		00:00	9.9	0.0	0.0	7.9		11:30	S	
22		9.7	23:00		2:00		0.0	0.0		37.0	12:00	ENE	
23	8.6		11:30		22:30	9.7	0.0	0.4	9.3	30.6	14:30	ESE	
24	10.3		11:30		1:00		0.0	0.2		35.4	12:00	E	
25	12.3		15:30		22:00		0.0	0.0	7.7	27.4	15:30	SE	
26	9.7	14.2	17:00		9:00		0.0	0.0	4.8		15:00	E	
27	10.7		16:30		1:30		0.0	0.0	3.9		14:30	E	
28	13.1		16:30		6:00		0.0	0.0	7.2		17:00	WSW	
29	11.1		16:30		23:00		0.0	0.0		38.6	23:30	W	
	8.7				7:30			0.0				NW	
		9.9	15:30				0.0	0.0		41.8	9:30	NNW	
	8.1	18.6	25	0.2	4	315.5	0.0	13.2	13.5	64.4	7	SW	

Max >= 32.0: 0

Max <= 0.0: 0 Min <= 0.0: 0

Min <= -18.0: 0

Max Rain: 3.99 ON 03/03/12

Days of Rain: 9 (> .2 mm) 3 (> 2 mm) 0 (> 20 mm) Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for APR. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR	
1	6.7	9.8	16:30	2.6	7:30	11.6	0.0	0.0	8.5	20.9	12:30	WNW	
2	7.3	9.7	17:30	6.0	7:00	11.0	0.0	0.8	12.1	27.4	18:00	W	
3	3.7	6.4	0:30	0.6	20:00	14.6	0.0	0.4	26.1	56.3	14:00	NNW	
4	3.8	6.3	16:30	1.1	3:00	14.5	0.0	0.2	23.2	54.7	11:30	N	
5	4.9	9.2	17:30	-0.4	7:00	13.4	0.0	0.0	8.7	35.4	1:30	NNE	
6	7.4	9.9	16:30	3.7	7:30	10.9	0.0	0.0	17.1	40.2	16:00	W	
7	9.3	11.1	18:30	7.3	6:30	9.0	0.0	0.0	20.3	40.2	19:30	NW	
8	8.4	9.9	14:00	6.8	00:00	9.9	0.0	1.6		43.5	14:30	WSW	
9	6.2	9.4	16:00	2.8	23:30	12.1	0.0	6.6	18.2	51.5	18:30	SSW	
10	4.7	8.3	14:00	1.6	7:00	13.6	0.0	1.0	20.4		14:00	SW	
11	5.9	11.2	15:30	2.4	5:00	12.4	0.0	2.6	15.4		17:30		
12	6.4	9.8	15:30	3.1	5:30	11.9	0.0	0.0	12.1	29.0	6:00	M	
13	4.6	7.4	13:00	1.6	7:00	13.7	0.0	0.0	10.8	30.6			
14	4.6	7.6	18:30	1.4	7:00	13.7	0.0	0.0		38.6		NW	
15	4.2	8.7	17:00	0.3	6:30	14.1	0.0	0.0		30.6	9:30	W	
16	6.1	8.6	11:30	3.4	6:00	12.2	0.0	4.4		48.3	00:00	SSE	
17	6.1	8.9	2:00	3.9	7:00	12.2	0.0	8.6	22.0	61.2	14:00	SW	
18	6.4	9.7	16:30	4.1	1:30	11.9	0.0	13.8	12.7	33.8	11:00	NNW	
19	6.4	10.6	18:30	2.6	5:00	11.9	0.0	0.2	14.0	30.6	12:00	WNW	
20	5.7	10.2	18:00	3.2	7:00	12.4	0.0	8.2	13.0	40.2	18:30	WSW	
21	7.4	11.7	17:00	3.8	2:00	10.9	0.0	0.2	19.6	45.1	16:00	W	
22	6.8	10.0	17:30	4.9	6:00	11.5	0.0	11.4	10.3	33.8	15:30	W	
23	7.2	10.0	18:00	4.8	00:00	11.1	0.0	2.6	10.9	38.6	13:00	NNE	
24	6.1	9.6	17:00	3.3	5:30	12.2	0.0	0.0	8.0	24.1	13:30	W	
25	6.1	6.9	9:30	4.2	0:30	12.3	0.0	13.6	31.5	74.0	18:00	NE	
26	6.8	8.8	17:00	5.6	1:30	11.5		2.4	22.9	48.3	7:30	NNW	
27	5.7	8.2	15:00	2.3	00:00	12.6		0.6				NW	
28	5.7	8.3	17:30	2.2	1:00	12.6		0.0				NNE	
29	4.6		15:00	1.1	6:00	13.7		5.0				N	
30	8.4	12.2	16:30		0:30			0.6	29.0	56.3	12:00	NE	
	6.1	12.2						84.8	16.7	74.0	25	W	

Max >= 32.0: 0 Max <= 0.0: 0 Min <= 0.0: 1 Min <= -18.0: 0

Max Rain: 13.79 ON 18/04/12

Days of Rain: 20 (> .2 mm) 11 (> 2 mm) 0 (> 20 mm)

Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for MAY. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR	_
1	8.6		9:00	7.9	00:00		0.0	5.0	28.3	61.2	10:30 0:30	NNE NE	
	8.7		18:30		7:00				6.6		6:30	NE	
3	8.6		19:00		00:00				13.7		11:30	WNW	
4			9:30		2:00	11.1 13.3			8.9		10:00	NE	
5		6.8	15:00		6:00 3:00	12.8			4.7		13:30	E	
6	5.5	8.8	16:30		2:30	11.0			12.1		14:30	E	
7	7.3	11.3	13:30		6:00	10.8			9.7		14:00	NW	
8	7.4	9.2	17:00 14:30		6:00	12.1			13.4	41.8	23:30	NE	
9		8.3	15:30		00:00	10.9		8.4		45.1	10:30	NNE	
	6.7	9.9	18:00		6:00	11.6		1.8	20.4		14:00	W	
11 12	8.3	12.8	17:30		2:30	10.0		0.0	14.5	30.6	10:00	WSW	
13	8.4	12.2	15:00		3:30	9.9		1.0	28.3	70.8	13:30	SW	
14	7.3	10.9	14:30		00:00			1.6		56.3	12:30	WSW	
15	6.1	10.3	16:00		4:30	12.2		0.2			1:30	WSW	
16		9.7	18:30		2:30	11.4			11.4	27.4	13:30	SW	
17		9.6	13:00		6:30	11.0			4.8	20.9	13:30	ESE	
18		10.0	17:30		7:00	11.0			15.1	41.8	17:30	NNE	
19	7.3	9.2	16:00	6.1	8:00	11.0		0.6		41.8	11:30	NNE	
	8.4		15:30	5.4	2:30	9.9			4.5	20.9	11:30	E	
21		14.9	16:00		6:00	7.2	0.0		5.1	24.1	14:30	E	
22		16.5	14:30		4:30	5.2			5.5	24.1	8:30	ENE	
23	14.6		17:30		6:00	3.7	0.0	0.0	6.0	24.1	17:30	SSW	
24	14.8		17:00		5:30			0.0	6.1	25.7	1:00	NE	
25	16.2	20.2	16:30	13.4	7:00	2.2	0.2	0.0	13.7	40.2	13:30	NE	
26	15.6		18:00	11.2	5:00	2.8		0.0	20.1	49.9	8:30	NE	
27	14.3		16:30		5:00	4.0			12.9	37.0	14:00	NE	
28	15.5	20.9	16:00	10.4	5:30	3.2	0.4	0.0	7.4	29.0	16:00	ENE	
29	13.3	16.4	15:00	9.4	5:30	5.0			8.7		5:00	SSW	
		17.3	18:30		7:00	3.9					5:00	SSW	
31	13.4	15.3	16:30	11.3	5:30		0.0	3.2	10.0	27.4	11:30	SW	
			28			266.2	0.8	42.8	12.5	70.8	13	NE	

Max >= 32.0: 0

Max <= 0.0: 0 Min <= 0.0: 0 Min <= -18.0: 0

Max Rain: 13.00 ON 07/05/12

Days of Rain: 16 (> .2 mm) 5 (> 2 mm) 0 (> 20 mm) Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for JUN. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR	
1	13.4	16.4	14:30	11.7	23:30	4.8	0.0	0.0	5.1	20.9	1:30	SE	
	11.7	13.5	12:30		22:00	6.6	0.0	8.6	13.4			NE	
	8.9		0:30		15:00	9.3	0.0	15.6	20.0	49.9	1:00	NNE	
	9.9	13.2	17:30		5:30	8.4	0.0	0.0	6.1	24.1	12:00	ENE	
	9.5		15:30		4:00	8.8	0.0	4.6	5.5	25.7	16:00	ESE	
6	12.2	15.8	14:30		6:30	6.1	0.0	6.4	4.3	27.4	13:00	WSW	
7	11.3	12.4	17:00	10.0	4:30	7.0	0.0	25.6	11.9	43.5	11:00	NE	
8	10.8	12.3	11:00	8.4	00:00	7.5	0.0	14.0	23.2		20:00	WSW	
9	10.9	15.6	19:30		0:30	7.4	0.0	0.4	17.9		0:30	WSW	
10	11.7	15.5	17:30	6.8	5:00	6.6	0.0		5.5		13:30	M	
11	11.8	14.6	14:00	8.6	4:30	6.5	0.0		5.8		13:30	ENE	
12	11.3	13.4	14:30	10.1	3:30	6.9	0.0		4.3	22.5	12:00	E	
13	10.6	12.6	15:30	9.6	5:00	7.7	0.0	0.2	6.3			NE	
14	11.4	13.4	13:00	9.5	1:00	6.9	0.0	11.4	12.7		23:30	E	
15	11.4	13.9	20:00	9.9	3:30	6.9	0.0	9.2	15.8	56.3	1:30	E	
16	11.4	13.4	11:00	9.4	23:30	6.9	0.0	7.8			16:30	W	
17	10.2	14.3	16:30	7.1	6:00	8.1	0.0	0.0	9.5		1:30	WSW	
18	11.1	15.3	15:00	7.6	1:00	7.2	0.0	1.0	4.7	33.8	16:00	E	
19	11.9	16.4	16:00	7.6	4:30	6.3	0.0	0.0	9.0	29.0	14:30	SW	
20	12.4	15.0	16:00	9.6	6:00	5.9	0.0	0.0	6.8	30.6	15:00	E	
21	11.2	13.1	19:00	9.1	10:30	7.1	0.0	14.0	10.1	41.8	7:30	NE	
22	11.7	14.2	16:00	10.0	00:00	6.6	0.0	1.8	26.9	72.4	13:30	WSW	
23	11.7	14.4	17:00		0:30	6.6	0.0	3.2	18.5		12:00	SW	
24	12.8	16.7	16:30	9.7	2:30	5.5		0.2		37.0	17:00	W	
25	11.6	14.4	14:00		5:30	6.7			7.1		17:00	E	
26	14.9	20.1	17:30		0:30	3.6				33.8	17:30	SW	
27	17.9		17:30	15.2	4:00	1.2	0.8	5.4		40.2	12:00	SSW	
28	15.7	20.1	16:00	13.0	7:30			10.8			19:30	S	
	14.0		16:00	12.2				3.0					
30	11.7		16:30	10.3	23:00				17.2		18:30	SW	
											22		

Max >= 32.0: 0 Max <= 0.0: 0 Min <= 0.0: 0 Min <= -18.0: 0

Max Rain: 25.60 ON 07/06/12

Days of Rain: 21 (> .2 mm) 14 (> 2 mm) 1 (> 20 mm) Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for JUL. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR	_
1	11.9	14.8	16:30	9.9	1:30	6.4	0.0	2.8	16.7	45.1	11:30		
		17.9	20:00		0:30	3.3	0.0	2.4	5.8	20.9	1:00		
	14.3	16.4	15:00	13.2	00:00	4.0	0.0	2.6	10.3	30.6	20:30		
	13.6	16.9	15:30	11.6	4:30	4.7	0.0	3.4	6.8	25.7	16:00		
	13.7	17.0	16:00		5:30	4.6	0.0	0.0	4.7	19.3	12:30	W	
	14.6	16.9	18:00		1:00	3.8	0.0	7.4	11.4	41.8	21:30	NNW	
			17:30	12.8	00:00	3.5	0.0	5.8	12.6	33.8	2:30	NE	
	11.8	12.9	0:30	10.2	00:00	6.4	0.0	1.2	12.7	30.6	21:00	WNW	
9	11.5	14.8	13:30	9.0	00:00	6.8	0.0	11.2	10.0		23:00	WNW	
10	11.3	14.4	18:30	9.0	0:30	7.0	0.0	7.8	15.0	37.0	18:30	W	
11	10.7	14.4	15:00	8.4	5:30	7.7			12.7		14:30	W	
12	10.8	13.7	12:30	7.0	4:30	7.5			7.4		15:00		
13	12.3	15.2	16:00	9.6	5:00	6.0	0.0	0.0	9.5		10:30		
14	10.9	13.8	17:00	7.7	5:30	7.4	0.0	0.0	13.5			W	
15	11.7	16.4	18:30	7.2	5:30	6.6	0.0	2.0	12.2	32.2	10:30	SW	
16	14.2	17.7	18:30	11.8	0:30	4.1	0.0	5.8	12.9			SW	
17	15.1	17.3	17:30	13.0	5:00	3.2	0.0	5.8	12.9			SW	
18	13.9	17.7	14:30	11.6	00:00	4.4		6.0			2:30	WSW	
19	12.1	14.7	16:30	9.8	4:30	6.3	0.0	0.2	15.6	38.6	9:30	W	
20	12.0	15.2	17:00	8.4	7:00	6.3	0.0		8.7		11:00	W	
21	14.0	17.7	17:30	9.7	4:00	4.3	0.0	0.0	7.6		15:30		
22	16.2	20.7	16:00		4:00	2.5	0.3	0.0	19.0	56.3	18:00	S	
23	17.4	21.2	13:00		00:00	1.4			16.3		13:00	S	
24	14.8	17.6	15:00		4:00	3.5			3.5		20:00	ENE	
25	14.4	17.7	17:00	12.1	6:00	3.9			5.8		9:00	NW	
26	15.4	20.6	16:30		4:00	3.2	0.3		5.8		14:00	W	
27	13.0	16.3	15:00	9.9	00:00	5.3		0.0			15:00	W	
28	11.3	14.9	14:30		4:00	7.0		3.2	19.0		16:00	WSW	
29	10.8	13.8	15:30	8.7	6:00	7.5		3.6			10:30	WSW	
		17.3	16:30	8.4	5:30	6.4			10.8			WSW	
	12.4		19:30		6:00			4.8	8.4	30.6	14:00	ESE	
			23					94.3	11.6	64.4	23	W	

Max >= 32.0: 0 Max <= 0.0: 0 Min <= 0.0: 0 Min <= -18.0: 0

Max Rain: 11.20 ON 09/07/12

Days of Rain: 22 (> .2 mm) 18 (> 2 mm) 0 (> 20 mm)
Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for AUG. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR
			12:30		00:00				17.1			
	13.9				6:00				10.5			
3	14.4		17:00		4:00				12.1			
4	13.9				23:30				10.1			
5	13.2				1:30				11.4		15:30	
	12.9		20:30		6:00				11.1			W
7	14.8				7:00				6.9		2:30	
	14.3				6:00				4.5			
	14.5	19.4	15:00	10.6	1:30	3.9	0.1		2.3		15:30	
10	15.8				6:30				5.1		15:30	ENE
11	15.4				3:00				8.0	37.0	16:00	E
12	15.2				3:30				7.6		19:00	ESE
13	16.3	20.9	17:00	14.2	00:00				12.6		10:00	SE
14	16.4		16:00		6:30				8.5		17:00	SE
15	15.4				21:30				19.3		21:00	ENE
16	15.6		15:00		6:30				18.3			SE
17	16.9		17:30		0:30				10.5		0:30	SE
18	17.3	20.7	16:30	15.0	8:30				10.6			SSE
19	16.0		15:00		6:30					32.2		SE
20	16.4		15:30		4:30			0.8		41.8	14:30	S
21	14.5		17:30		00:00				11.4		16:30	SW
22	13.8	17.3	15:30		2:30	4.5	0.0		15.6		14:00	SW
23	12.9	15.8	14:30	11.5	22:00					32.2	17:30	SSW
24	12.9	15.4	14:00	11.2	3:30			1.6		29.0	17:30	E
25	13.6	16.6	16:00	10.7	00:00				16.7		14:30	NW
26	13.1	17.3	18:00	9.1	5:30	5.2	0.0		10.6		00:00	SE
27	14.8	18.2	17:00	11.9	00:00			14.2			3:00	SE
28	13.3	17.2	17:00	9.8	6:30	5.0	0.0	0.0			13:30	SSW
29	12.9	15.7	14:00		4:30				10.1			SSE
30	11.8	15.4			7:30		0.0	0.0	19.2	45.1	10:30	WNW
31	11.9	15.7	18:00	8.5	3:30	6.4	0.0	0.8	12.1	37.0	13:30	SW
	14.5	20.9	13	8.5	31	120.2	2.2	103.1	11.3	61.2	15	SE

Max >= 32.0: 0

Max <= 0.0: 0 Min <= 0.0: 0

Min <= -18.0: 0

Max Rain: 14.20 ON 27/08/12

Days of Rain: 24 (> .2 mm) 12 (> 2 mm) 0 (> 20 mm) Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for SEP. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR
1	14.7	18.5	15:00	12.2	6:30			0.2	18.0			
2	15.1	17.6	16:30						10.9		0:30	
3	15.6	20.9	16:00		6:00			0.0	12.1	43.5	20:30	SSW
4	14.2	17.0	15:30		00:00						18:00	
5	12.8	16.8			6:00	5.5			9.5		2:00	
6	13.4	18.4		8.8	7:00			0.0	18.0	49.9	12:00	SW
7	15.6	19.4	16:30		6:00						1:00	SW
8	15.6	19.9	17:00		00:00		0.2		6.0		17:30	
9	14.4	18.7	16:30		6:30		0.0		13.2		17:30	
10	11.6			9.2	00:00	6.7	0.0			30.6	10:00	
11	9.2	12.5	17:00		7:00	9.1	0.0			59.5	14:00	
12	11.1		13:30		00:00	7.2	0.0			45.1	10:30	
13	11.7	16.3	15:00		4:30	6.7	0.0	0.4		64.4	18:30	
	12.7		16:00		22:30	5.6	0.0			54.7	0:30	
15	12.4	15.3	15:00		4:30		0.0			38.6	15:00	SW
16	11.9	16.3	13:30	8.9	23:00	6.3	0.0			57.9	17:30	
17	10.2	13.3	17:00		2:30	8.2	0.0	2.0		53.1	13:00	SSW
18	8.7	12.2	15:00		7:30		0.0	0.8		54.7	17:30	WSW
19	9.2	12.7	15:00		6:30		0.0	0.2		35.4	12:30	SW
20	11.3	14.1	14:00		2:00	7.0			14.3	41.8	14:00	
21	8.7	12.2	17:00		23:30			1.4		29.0	13:00	NW
22	8.3	12.5	15:00		6:00		0.0	0.0		27.4	17:30	
23	9.6	12.1	16:30		5:30	8.7	0.0		5.1		11:00	
24	8.3		0:30		9:00		0.0		16.1		1:00	
25	9.3	10.9	17:00		8:00		0.0	9.6		54.7		
26	10.9	14.4	16:00	8.5	00:00			3.4		53.1		NNW
27	9.7	12.3	16:00		3:30			0.2		43.5		W
28	10.2	14.3	15:30	7.1	00:00			0.2		57.9		
		13.7	16:30		5:30						00:00	
30	12.3	15.1	15:00	9.8	23:00	6.0	0.0	5.0	19.3	54.7	2:00	S
	11.6	20.9	3	4.7	22	201.2	0.8	61.4	15.6	64.4	13	SW

Max >= 32.0: 0

Max <= 0.0: 0

Min <= 0.0: 0

Min <= -18.0: 0

Max Rain: 16.79 ON 24/09/12

Days of Rain: 20 (> .2 mm) 10 (> 2 mm) 0 (> 20 mm) Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for OCT. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR	
1	9.9	12.9	14:30	8.3	23:30	8.3	100000000000000000000000000000000000000		17.4		14:30		
2	9.3	13.3	14:00	6.5	00:00	9.0		3.2		48.3	10:30	S	
3	7.6	10.6	16:30		2:00	10.7		2.8		45.1	11:00	SW	
4	7.6	12.6	16:00	5.0	2:00	10.7		3.4			17:00	SW	
5	8.2	11.6	15:00	5.6	6:00	10.1		0.2		40.2	10:30	SW	
6	8.7	12.3	14:30		8:30	9.6		0.0			6:00	WNW	
7	8.1	11.3	14:30		8:00	10.2		0.0	4.3		14:30	W	
8	8.9	11.3	16:30		00:00	9.4			9.7		13:00	NNE	
9	7.7	10.8	15:00		5:30	10.6			6.6		11:30	NE	
10	10.2	12.4	19:30	8.0	1:00	8.1	0.0		5.1		17:00	ESE	
11	10.3		0:30	6.8	00:00	8.0			19.2		15:30	SE	
	6.7	10.6	16:00	4.2	6:30	11.6		0.0	14.8		7:00	SW	
13	6.4	10.9	16:00	2.8	7:30	11.9		0.0	11.9		16:30	WSW	
14	7.4		15:00	5.4	8:30	10.9		2.0	9.8	30.6	9:30	SW	
15		9.2	13:30	4.5	7:00	11.6			7.4			M	
		10.7	17:00	4.4	9:00	11.2		3.6				SW	
		10.7	18:00	7.1	0:30	9.0		15.6			5:30	ESE	
		12.6	13:00	8.7	3:00	8.1			5.1		1:00	ESE	
	9.6	11.3	15:00	8.7	00:00	8.7			6.3	20.9	9:00	NW	
20	9.8	13.1	15:30	8.0	7:30	8.5			6.1	24.1	23:00	SSE	
	9.7	12.4	14:30	7.6	6:00	8.6		0.0	5.0	22.5	15:00	ESE	
22	10.1		15:00	8.1	0:30	8.2		0.4		24.1	11:30	ENE	
23		12.1	15:30	10.1	7:30	7.6		0.4			2:00	NNE	
24	10.5		19:00	9.8	00:00	7.8		0.6		37.0	13:00	NNE	
25	9.2	9.9	0:30	7.8	00:00	9.1		0.0	21.2		20:00	NNE	
26	4.2	7.8	0:30	1.1	23:30	14.2		1.4	16.1		0:30	NNW	
27	3.6	7.6	15:30	0.1	7:30	14.7		0.0	15.6		23:30	W	
28	7.2	8.1	15:00	5.9	00:00	11.1		3.4			8:00	SW	
29	5.7	9.5	15:00		8:00	12.6		0.4				W	
30	5.8	8.3	14:00	2.8		12.5		0.2	21.2		22:30	SW	
31	4.8		7:00	1.5	23:00	13.5			12.6	46.7	1:30	SW	
									12.4	51.5	1	SW	

Max >= 32.0: 0 Max <= 0.0: 0 Min <= 0.0: 0 Min <= -18.0: 0

Max Rain: 15.60 ON 17/10/12

Days of Rain: 23 (> .2 mm) 10 (> 2 mm) 0 (> 20 mm)

Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for NOV. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR
1	3.2	5.8	14:00		7:30			0.4				
2		6.6	11:30			14.6		5.4	23.5			
3		6.6	14:30		7:00			0.0	16.7			
4		6.8	15:00		0:30			10.2	12.1		11:30	SE
5		8.6	15:00	1.7				0.0	14.6			W
6		10.3	14:00	3.9	1:00			0.0				
7		9.9	14:30			9.8			25.1		15:00	SW
8	7.8	9.6	15:00		8:00	10.5	0.0		17.5	43.5	23:30	SW
9	7.0	8.8	15:00	3.9			0.0	5.0	18.2	46.7	5:30	SSW
		7.4	14:00		7:00	14.1		0.4		35.4	5:30 0:30	SSW
11	5.5	8.1	13:00	3.0	0:30	12.8	0.0	0.6		30.6	3:30	WSW
12	10.1	12.4	15:30		1:30	8.2	0.0	2.8	19.2			
13	11.4	12.8	12:30	9.6			0.0	3.4		53.1	5:00	S
14	10.3	11.7	15:00		6:30		0.0			37.0		
15	9.0	10.6	14:30	5.1	00:00	9.3				27.4	15:30	
16	5.5	7.4	13:30	3.6	6:00	12.8		1.0		25.7	14:00	
17	4.2	6.7	14:00		22:30					38.6	14:30	SW
18	3.7	9.5	00:00	0.2	8:30	14.6	0.0	10.6		56.3	00:00	
19	10.6	12.9	12:30			7.8		6.2	24.8	67.6	2:30	
20	8.9		14:00		00:00	9.4		0.6	20.0	75.6	18:00	S
21	6.8	9.2	00:00	4.3	8:30	11.5	0.0	0.0	12.4	38.6	19:00	
22	6.8	10.2	2:30	4.7	23:30	11.5	0.0	15.8	20.6	51.5	21:30	S
23	4.1	6.3	13:30	2.2	21:30	14.3				53.1	15:00	SSW
24	2.6	4.8	19:00	0.4	10:00	15.7			7.4			N
25	1.9	4.1	00:00	-0.7	9:00	16.4	0.0	1.4	11.1	38.6		
26	5.1	6.8	14:00	3.9	00:00	13.2	0.0	0.0	24.8	46.7	10:00	NW
27	3.7	5.8			22:30			0.0	19.5	45.1	12:00	WNW
28	2.7	5.3	15:00	1.3	6:00	15.6	0.0			27.4		
		4.3	11:30	1.2	7:00	15.9	0.0				5:00	
30		4.9	12:30	0.7	21:00	15.9	0.0	0.0	7.6	30.6	23:00	S
	5.7	12.9	19	-0.7	25	376.7	0.0	76.6	16.2	75.6	20	SSW

Max >= 32.0: 0

Max <= 0.0: 0 Min <= 0.0: 1 Min <= -18.0: 0

Max Rain: 15.80 ON 22/11/12

Days of Rain: 17 (> .2 mm) 10 (> 2 mm) 0 (> 20 mm)

Heat Base: 18.3 Cool Base: 18.3 Method: Integration

MONTHLY CLIMATOLOGICAL SUMMARY for DEC. 2012

NAME: Whiteriver Landfill CITY: STATE:

ELEV: 374 ft LAT: 37'360'0N LONG: 122'06'00'W

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

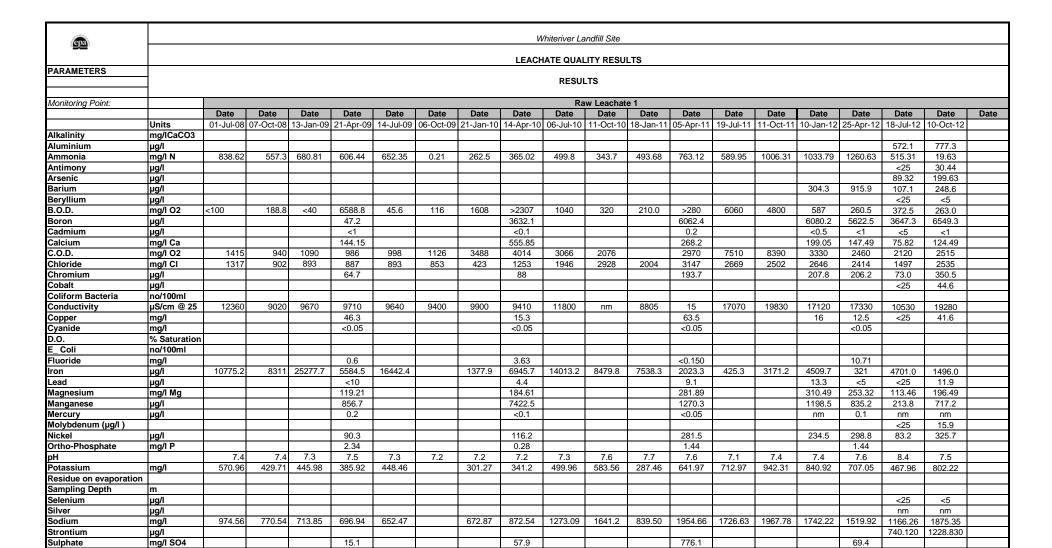
DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR
1		4.9	14:30		0:30			0.0			4:00	WSW
2		8.9	23:00		8:00			4.0			23:30	SW SW
3 4	4.3		0:30				0.0	0.2		48.3		
4		4.3	14:30				0.0	0.0		46.7		SW
5		3.2	14:00		00:00		0.0	0.2				W
6		5.7			2:30			11.2			13:30	S
7		6.6			2:30			0.0			4:00	
8		6.9	17:00								17:00	
9		6.7			00:00						5:30	
10		4.4			8:30			0.0			0:30	
11		4.6			20:00						13:00	
12	3.1	4.6			6:00						5:00	SE
13	2.8	4.0	12:30								23:00	ESE
14		6.3			0:30						8:00	ESE
15		7.0			00:00						2:30	SSW
16		8.1			5:00				13.4			S
		6.9	14:00		7:00						4:00	SW
		6.5			16:00						00:00	ESE
		8.0	16:00		5:30						4:00	ESE
20	5.7		0:30								8:30	NE
21	5.4	6.7	00:00	4.2	18:30	12.9	0.0		7.9			SW
22			14:30			8.0	0.0				2:30	
23			0:30								2:30	
24	6.2	7.6			21:30			0.8			6:30	
25	4.8	6.2			22:00				16.4			
26	5.2	7.1	14:30	3.6	9:30				25.9			
27	4.3	5.4	14:00	3.0	8:00	14.0	0.0				1:00	
28	9.8	12.1	22:30	4.2	1:30					72.4		
29	5.8	10.2	0:30	1.8	00:00	12.5	0.0	0.4	22.4	54.7	10:30	SSW
30	5.4	9.8	22:30	1.0	0:30	12.9	0.0	6.2	28.8	67.6	00:00	SSW
31	6.6	10.1	3:30	2.0	00:00	11.7	0.0	1.8	25.3	80.5	3:30	SW
			22					84.2	17.3		23	

Max >= 32.0: 0 Max <= 0.0: 0 Min <= 0.0: 2

Min <= -18.0: 0

Max Rain: 16.00 ON 14/12/12

Days of Rain: 24 (> .2 mm) 9 (> 2 mm) 0 (> 20 mm)


Heat Base: 18.3 Cool Base: 18.3 Method: Integration

APPENDIX F

LEACHATE RESULTS

IBR0509/Reports Status: Final Date: May 2013

Suspended Solids

Total Suspended Solids mg/l

Temp Thallium

Time

T.O.C.

T.O.N

Zinc

Uranium

Vanadium

Tin

mg/l °C

μg/l

μg/l

mg/l

μg/l

μg/l

μg/l

mg/l N

nm

4.21

72

65

5

9.5

< 0.08

11

9.3

<0.08

1377.7

16

< 0.08

80

12

12.15

<0.08

250

8

10.15

< 0.08

150

9

9.3

<0.08

114.7

15

9.05

<0.08

1280

12

09:35

<0.08

140

9.0

9.30

<0.08

370

12

10:15

<0.08

187.5

15

09:40

<0.08

900

15

09:15

<0.08

840

9

10:15

<0.08

420

102.9

8

10:00

<0.08

270.5

19.0

<5

09:15

<50

<0.08

560

<5

68.97

172.8

10.0

<1

10:10

<10

<0.08

230

<1

268.74

124.4

10.5

13

2.46

440

<u> </u>	Whiteriver Landfill Site																			
	LEACHATE QUALITY RESULTS																			
PARAMETERS										RESU	LTS									
Monitoring Point:	Raw Leachate 2																			
		Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
Alkalinity	Units mg/ICaCO3	01-Jul-08	07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12	25-Apr-12	18-Jul-12	10-Oct-12	<u> </u>
Aluminium	µg/I																	443.7	108.6	<u> </u>
Ammonia	mg/l N	1032.46	606.97	624.23	820.72	350.71	<0.03	229.4	565.48	567.8	742.5	556.89	468.14	766.9	423.56	275.49	352.92	358.64	275.78	
Antimony	µg/I	1002.40	000.57	024.20	020.72	330.71	\0.03	225.4	303.40	307.0	142.0	330.03	700.17	700.5	420.00	210.40	332.32	<25	<5	
Arsenic	μg/I																	78.56	11.58	
Barium	μg/l															180.4	612.7	109.9	286.0	
Beryllium	μg/l																	<25	<5	
B.O.D.	mg/l O2	<1000	1614	60.5	4970.8	29.3	<100	40.3	57.6	47.5	63.3	65.0	50.4	374	154.2	21.5	41.7	42.0	38.8	
Boron	μg/l				101				3788.6				2471.1			1311.9	2195.1	3560.5	1584.7	
Cadmium	μg/l				<1				0.1				<1			<0.5	<1	<5	<1	
Calcium	mg/I Ca				126.06				144.18				143.3			130.18	122.32	72.90	159.11	
C.O.D.	mg/l O2	2820	2790	1299	1950	641	2255	526	1305	1186	1191		929	2395	756	381	586	707	494	
Chloride	mg/l Cl	2160	1356	1091	1625	665	1586	571	1132	1204	1096	1005	863	1471	812	340	581	645	448	
Chromium	μg/l				218.6				96.7				93.7			34.1	67.4	76.4	40.7	
Cobalt	μg/l																	<25	7.1	
Coliform Bacteria	no/100ml																			<u> </u>
Conductivity	μS/cm @ 25	16360	10980	9620	13180	6240	12690	4810	9130	9470	nm	7950	<9	12120	7140	3850	5770	6570	5680	<u> </u>
Copper	mg/l				24.3				86.4				10.5			10.7	8.4	<25	<5	
Cyanide	mg/l				0.06				<0.05				<0.05				<0.05			
D.O.	% Saturation																			
E_ Coli Fluoride	no/100ml				0.42				6.02				<0.150				3.68			├──
	mg/l	4772.4	3186	8963.1	3611.5	2129.1		2890.9	3070.7	3322.7	4581.6	1363.1	1111.5	7441.8	1897.9	1616.6	631.6	4707.4	834.7	├ ──
Iron Lead	µg/l µg/l	4/12.4	3100	0903.1	9.3	2129.1		2090.9	35.5	3322.1	4361.0	1303.1	<5	7441.0	1097.9	1616.6 2.5	<5	<25	<5	├ ──
Magnesium	mg/l Mg				88.11				69.88				59.55			42.72	63.56	116.49	50.60	
Manganese	µg/I				632.4				723.1				683.5			756.3	579	215.3	750.9	
Mercury	μg/l				0.9				<0.1				< 0.05			nm	< 0.05	nm	nm	
Molybdenum (µg/l)	ру/і				0.5				V0.1				\0.00			11111	VO.00	<25	<5	
Nickel					202				170.3				73			27.2	56.6	87.3	27.8	
Ortho-Phosphate	mg/l P				5.5				1.27				2.92				1.93	07.0	21.0	
pH		8	7.2	7.4	7.8	7.3	7.7	7.1	7.7	7.3	7.5	7.4	7.4	7.4	7.5	7.2	7.5	7.7	7.2	
Potassium	mg/l	612.8	396.9	337.25	447.81	204.85		114.09	360.63	289.92	306.19	233.49	222.34	443.03	222.49	113.85	178.93	465.47	136.28	
Residue on evaporation																				
Sampling Depth	m																			1
Selenium																		<25	<5	
Silver																		nm	nm	
Sodium	mg/l	1712.2	1112.03	798.17	1198.22	523.8		282.71	948.03	782.83	780.36	604.65	648.45	1173.17	693.92	285.11	508.94	1174.89	381.14	
Strontium																		715.630	976.600	
Sulphate	mg/I SO4				204.8				684.1				200.4				41.8			
Suspended Solids	mg/l			60																<u> </u>
Temp	°C	9.31	10.5	5	11	17	12	8	9	15	12	10.0	12	14	15	10	8	20.3	11.0	
Thallium	1			40	0.0		40.45	0.55	0.4		0.4000=	0.40	40.05	00.45	00.00	40.00	00.55	<5	<1	₩
Time	1	16	13	10	9.3		10.15	9.55	9.4	9	0.40625	9.40	10:25	09:45	09:00	10:20	09:55	12:45	10:20	
Tin	m a/I																	<50	<10	
T.O.C. T.O.N	mg/l	2.25	0.45	0.16	5.93	2.05	0.23	1.38	5.42	0.24	0.17	<0.08	0.08	<0.08	0.22	0.23	0.1	z0.00	0.46	
Total Suspended Solids	mg/l N mg/l	3.25 113	0.15 309	0.16	5.93	2.85 15	130	90	5.42	0.24 57	350	<0.08 110	ს.სგ	<0.08 180	37	28	U.T	<0.08	0.16 10	
Uranium	mg/i	113	309	-	-	15	130	90		31	330	110		100	31	20	-	<5 <5	10 <1	
Vanadium	1			-	-	-		-			-	-					-	68.85	33.65	
Zinc	μg/l			+	1254.8				361.7				32.3			259.6	195.9	184.5	89.5	
LIIIO	Iha.,	l		1	1234.0	l	1	l	301.7	1	1	l	32.3			203.0	133.3	104.0	03.5	ь

PARAMETERS

LEACHATE QUALITY RESULTS

Leachate at active cell

									eachate at									
Monitoring Point:								P5, Cell 2										
		Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	10-Oct-11	11-Oct-11	10-Jan-12	25-Apr-12	18-Jul-12	10-Oct-12	↓
Alkalinity	mg/ICaCO3																	<u> </u>
Aluminium	μg/l															1087.5	676.2	<u> </u>
	mg/l N	684.35	1.2	378.78	439.7	247.96	567.4	622.4	667.15	666.49	524.61	164.17	934.02	319.99	184.43	1147.23	19.17	↓
Antimony	μg/l															56.58	87.31	<u> </u>
Arsenic	μg/l															190.83	468.48	
Barium	μg/l													150.8	759.1	209.5	290.4	<u> </u>
Beryllium	μg/l															<25	<5	<u> </u>
B.O.D.	mg/l O2	6152.1	21.8	3070	2140	4716	149.6	140.8	798.0	>84000	8850	214.5	424.5	94.2	612	2156.0	493.0	
Boron	μg/l	<40.0				3561				4464				2123.2	2371.4	4287.1	6550.6	<u> </u>
Cadmium	μg/l	<0.1				<0.1				0.6				<0.5	<1	<5	<1	
	mg/l Ca	135.5				964.76				2569.1				145	405.13	89.53	143.92	
C.O.D.	mg/l O2	979	78	3320	4300	7180	2118	1748		75250	17340	825	3070	1021	1493	3980	3280	<u> </u>
Chloride	mg/l Cl	911	28	1669	1036	1678	2054	1940	2560	1474	1249	595	2256	941	1629	2410	3108	
Chromium	μg/l	63.6				56.9				140.7				97.7	44.9	163.4	224.9	
Cobalt	μg/l												1			<25	24.8	<u> </u>
Coliform Bacteria	no/100ml																	
Conductivity	μS/cm @ 25	9740	541	10230	8600	12050	14100	nm	10640	18	11550	4790	17330	7040	9040	19260	2000	
Copper	μg/l	39.6				4.7				165.2				474.8	47.8	57.8	41.9	
Cyanide	mg/l	0.06				< 0.05				<0.05					< 0.05			
D.O.	% Saturation																	
E_ Coli	no/100ml																	
Fluoride	mg/l	0.47	=00.4		4=000=	5.36		11500		<0.150					3.54			↓
Iron	μg/l	4580.5	503.1		15698.7	22808.1	5017.3	1152.8	1400.5	195556.9	926.3	655	682.5	3992.7	167.9	3280.0	1365.5	
Lead	μg/l	<1				2.8				59				6.9	<5	32.1	17.3	↓
Magnesium	mg/l Mg	113.15 835.4				281.67 7946.8				555.78 49243.1				76.13 957.6	78.46	213.36	140.18	
Manganese	µg/l														5435.5	382.1	664.3	
Mercury	μg/l	0.2				<0.1				<0.05				nm	0.1	nm <25	nm 22.6	
Molybdenum (µg/l) Nickel	/!	88.5				90.1				465.9				91.7	39	155.2	197.5	
Ortho-Phosphate	μg/l mg/l P	1.69				<0.02		-		465.9				91.7	0.57	155.2	197.5	
pH	ilig/i F	7.4	7.5	7	7.1	6.9	7.9	8.3	7.6	6	7.3	7.8	7.2	7.6	7	8.0	7.6	
Potassium	mg/l	385.12	7.02	,	241.66	391.6	570.43	535.45	313.43	1022.01	511.61	218.18	552.54	328.94	264.78	879.91	801.18	
Residue on evaporation	ilig/i	303.12	7.02		241.00	391.0	370.43	333.43	313.43	1022.01	311.01	210.10	332.34	320.94	204.70	079.91	001.10	
Sampling Depth	mg/l																	
Selenium	μg/l															<25	<5	+
Silver	μg/l							-								nm	nm	
Sodium	mg/l	719.63	16.98		634.68	1291.19	1507.06	1416.55	958.77	1527.9	952.86	425.55	1481.66	636.35	1087.92	1690.89	2294.51	
Strontium	μg/l	7 10.00	10.00		001.00	1201.10	1007.00	1110.00	000.11	1027.0	002.00	120.00	1101.00	000.00	1007.02	1165.040		
	mg/l SO4	18.8				7.3				787.8					771.7	1100.010	1100.770	
Suspended Solids	mg/l																	
Temp	°C	18	17	12	19	19	20	29	12.0	13	17	19	26	14	17	29.0	35.0	
Thallium	μg/l							20								<5	<1	
Time	ra.	12.3		12.2	13.35	13.1	11.45	13:15	13.40	12:30	11:35	12:50	13:10	11:55	11:50	11:50	11:55	
Tin	μg/l	0			. 5.00			10.10		00		00				<50	10.30	1
T.O.C.	mg/l															1.00		1
T.O.N	mg/l N	0.08	<0.08	<0.08	<0.08	<0.08	0.14	0.16	<0.08	<0.08	<0.08	<0.08	<0.08	1.49	<0.08	<0.08	<0.08	
	mg/l	0.00	15	717	450	-0.00	477	360	280	10.00	414	130	190	150	10.00	560	590	
Uranium	μg/l			· · · ·				230			 					<5	<1	
Vanadium	μg/l															112.12	148.64	
Zinc	ua/l	256.8				114.1				663.6				54.5	292.7	447.7	76.1	†
LIIIV	P9'1	200.0	<u> </u>	<u> </u>		117.1	<u> </u>			000.0	<u> </u>	1		J -1 .J	232.1	441.1	70.1	

									1/	Vhiteriver La	ndfill Site									
<u>(572)</u>										HATE QUAL		LTS								
PARAMETERS																				
-										RESUL	.TS									
Monitoring Point:											ated leach									
	Unito	Date 01-Jul-08	Date 07-Oct-08	Date 13-Jan-09	Date 21-Apr-09	Date 14 Jul 00	Date 06-Oct-09	Date	Date 14-Apr-10	Date 06-Jul-10	Date 11-Oct-10	Date 18-Jan-11	Date 05-Apr-11	Date 19-Jul-11	Date 11-Oct-11	Date 10-Jan-12	Date 25-Apr-12	Date 18-Jul-12	Date 10-Oct-12	Date
Alkalinity	Units mg/ICaCO3	01-Jul-06	07-001-06	13-Jan-09	21-Apr-09	14-Jul-09	06-001-09	21-Jan-10	14-Apr-10	06-Jul-10	11-001-10	10-Jan-11	US-Apr-11	19-Jul-11	11-061-11	10-Jan-12	25-Apr-12	10-Jul-12	10-OCt-12	
Aluminium	µg/I																	497.4	408.6	
Ammonia	mg/I N	367.96	437.56	533.09	433.63	248.87	0.66	267.3	260.14	428.7	658		367.79	488.77	340.29	284.71	362.46	486.60	541.28	
Antimony	μg/l	001.00	107.00	000.00	100.00	210.07	0.00	20110	200	.20.1	000		001110	100.11	0.10.20	20	002.10	25.27	33.16	
Arsenic	μg/l																	89.50	236.42	
Barium	μg/l															102.3	495.5	110.3	198.9	
Beryllium	μg/l																	<25	<5	l
B.O.D.	mg/l O2	<50	288	32.7	3063.8	32.4	71	207.2	73.3	91.5	274.2		15020	459	88.8	18.5	282.5	344.0	177.3	
Boron	μg/l				<30.0				2918.4				3146.9			2154.9	3010.1	3464.5	4904.5	
Cadmium	μg/l				0.2				<0.1				0.4			<0.5	<1	<5	<1	
Calcium	mg/l Ca	201	1000	1010	95.17		4050		70.29				319.69		0.40	90.99	151.96	72.90	119.87	
C.O.D.	mg/I O2	924 897	1280 1082	1016 1042	833	449	1056 954	896	683	1143 1419	977		5850	2330	842	595	1226	1950	1461	
Chloride Chromium	mg/l Cl µg/l	897	1082	1042	878 86.6	489	954	1180	671 40.8	1419	1100		875 65.9	1367	826	617 55.9	1380 74.2	1531 73.7	2210 116.1	
Cobalt	μg/l				00.0				40.0				05.9			55.9	74.2	<25	16.3	
Coliform Bacteria	no/100ml																	\25	10.5	
Conductivity	μS/cm @ 25	6750	8000	8620	6950	4360	7570	5240	5230	8740	nm		<9	9660	7000	5030	8970	10910	1347	
Copper	µg/l				16.6				8.8				10.4			10.5	58.5	<25	13.0	
Cyanide	mg/l				< 0.05				< 0.05				< 0.05				< 0.05			
D.O.	% Saturation																			
E_ Coli	no/100ml																			
Fluoride	mg/l				0.21				0.34				<0.150				0.96			
Iron	μg/l	2656.4		7486.8	2938.6	1707		2680.5	3847.9	5139.3	5817.2		19269.6	653.3	2867.7	3621	1275.2	4575.7	2884.8	
Lead	μg/l				4.9				2.2				9			<2.5	6.6	<25	<5	
Magnesium	mg/l Mg				77.37				85.01				159.65			58.38	79.43	108.75	114.74	
Manganese Mercury	μg/l μg/l				388.7 0.2				193.1 <0.1				607.9 <0.05			308.9 nm	1132.9 0.1	226.3 nm	536.0 nm	
Molybdenum (µg/l)	μул				0.2				<0.1				<0.05			11111	0.1	<25	17.5	
Nickel	μg/l				95.9				59.7				137.1			53.8	73.6	80.1	125.2	
Ortho-Phosphate	mg/I P				1.75				0.53				0.21			00.0	0.08	00.1	120.2	
рН		8.7	8.3	8.6	8.7	8.2	8.6	7.7	8.5	8.5	8.4		7.9	8.5	8.5	8.4	8.4	8.3	8.5	
Potassium	mg/l	278		351.56	259.95	150.15		148.5	207.35	355.59	338.49		356.37	424.93	291.86	196.57	324.61	451.53	560.52	
Residue on evaporation																				
Sampling Depth	mg/l																			
Selenium	μg/l																	<25	<5	
Silver	μg/l																	nm	nm	
Sodium	mg/l	676.4		739.35	671.23	348.5		375.85	529.4	806.6	776.14		709.68	1033.72	678.99	444.33	1075.89	1122.54	1614.46	
Strontium	µg/l	044		200.4	100.0	405.5	105.4	000.4	100.1	000.0	100.5		000.0		050.0	407.0	200.0	712.880	1102.250	
Sulphate	mg/I SO4	241	444.7	226.4 70	123.3	405.5	125.1	360.1	436.4	303.9	436.5		330.2		356.6	107.3	666.6		278.4	——
Suspended Solids Temp	mg/l °C	nm	141.7 13	70	17	19	13	11	12	15	13		14	16	16	9	12	19.0	13.0	
Thallium	μg/l	11111	10		- 17	13	10	- ' '	14	13	13		17	10	10	9	14	<5	<1	$\overline{}$
Time	ra	nt	13.3	11.45	12.15		12.3	13.4	13.15	11.05	13:30		10:00	11:50	12:30	12:05	12:15	11:25	12:25	
Tin	μg/l			5	.23						.0.00				.2.00	.2.00	125	<50	<10	
T.O.C.	mg/l																			
T.O.N	mg/l N	14.24	0.1	0.73	1.79	0.53	28.45	<0.08	0.48	50.62	129.32		<0.08	<0.08	1.53	0.32	<0.08	<0.08	22.31	
Total Suspended Solids	mg/l	275	410			40	330	390		1080	250			475	167	130		700	230	
Uranium	μg/l																	<5	<1	
Vanadium	μg/l																	71.91	102.95	
Zinc	μg/l				89.3				41.4				107.1			24.5	230.1	165.8	47.1	

APPENDIX G

GROUNDWATER MONITORING RESULTS

IBR0509/Reports Status: Final Date: May 2013

(pa			S.I. No. 9/2010 — European		EC (Drinking water)	EC (Quality of Surface Water Intended for the	EUROPEAN COMMUNITIES
100		Whiteriver Trigger Limits	Communities Environmental	EPA Interim guideline values	Regulations 2007 (SI .no	Abstraction of Drinking Water) Regulations 1989 S.I.	ENVIRONMENTAL OBJECTIVES
PARAMETERS	UNITS	(WTL)	Objectives (Groundwater)	(IGV)	106 of 2007)	No.294/1989 Surface Water Quality Standards	(SURFACE WATERS)
Alkalinity	mg/I CaCO3			NAC			
Aluminium	μg/l		150	0.2 mg/l	200		
							High status < 0.040 (mean) or <
Ammonia Antimony	mg/l N	0.2 mg/l N	65-175 ug/l	0.15 mg/l	0.3 mg/l (0.23 mg/l N)	(A1- 0.2) (A2- 1.5) (A3- 4)	0.090 (95%ile)
Antimony	μg/l				5		
Arsenic	μg/l		7.5				25
Barium	mg/l			0.1		(A1- 0.1) (A2- 1)	
Beryllium	μg/l						
B.O.D.	mg/l					(A1- 5) (A2- 5), (A3- 7)	High status < 1.3 (mean) or < 2.2
Boron	μg/l	1000	750	1000	1000	2000	
Cadmium	μg/l	5	3.75	5	5	5	
Calcium	mg/l Ca	200		200			
C.O.D.	mg/l					40	
Chloride	mg/l Cl	20	24-187.5	30	250	250	
Chromium	μg/l	30	37.5	30	50	50	
Colbalt	μg/l						
Coliform Bacteria	No/100 ml				0		
Conductivity	μS/cm @20	800	800-1875	1000	2500	1000	
Copper	μg/l	30	1500	0.03 mg/l	2000	(A1- 0.05) (A2- 0.1) (A3- 1)	5 or 30
Cyanide	μg/l	0.01	37.5	0.01 mg/l	0.05	50	
D.O	% Sat			NAC		>60% (A1), >50% (A2), >30% (A3)	lower limit 95%ile >80% saturation,
E Coli	No/100 ml			0	0	(A1- 1000) (A2- 5000) (A3- 40000)	
Fluoride	mg/l	1		1	0.8	(A1-1) (A2-1.7)	
Iron Lead	µg/l µg/l	10	18.75	200 10	200 25	(A1- 200) (A2- 2000) 50	
Magnesium	mg/l Mg	50	16.75	50	25	30	
Magnesium	mg/r wg	30		30			
Manganese	μg/l			50	50	(A1- 50) (A2- 300) (A3- 1000)	
Mercury	μg/l	1	0.75	1	1	1	0.05
Molybdenum	μg/l		35				
Nickel	μg/l	20	15	20	20		20
o-Phosphate	mg/l P	0.03		0.03			
							Soft Water 4.5< pH < 9.0 Water
							hardness 100 mg/1 CaCO3 Hard
pН		>7 or <8		6.5 - 9.5	6.5 - 9.5	(A1- 5.5-8.5) (A2- 5.5-9.0)	Water 6.0< pH < 9.0 Water hardness > 100 mg/1 CaCO3
Phenol	mg/l	// UI NO		0.0005	0.0 - 9.0	(A1- 0.5) (A2- 5) (A3- 100)	naraness > 100 mg/1 CaCOS
Potassium	mg/l	5		5		V 2.5, V 5, V 100)	
Selenium	μg/l			-	10		
Silver							
Sodium	mg/l	150	150	150	200	200	
Strontium		F0	107 5		252		
Sulphate Total Dissolved	mg/l SO4	50	187.5		250		
Solids	mg/l			1000			
Temperature	degrees C			25		25	
Thallium							
Tin							
T.O.C.	mg/l	10		NAC	No abnormal change		
T.O.N	mg/l N		27.5	NAC	50	Nilset - 50	
Nitrate	mg/l		37.5	25	50	Nitrates 50	
Nitrite Nitrites	mg/l mg/l		375	0.1	0.5 0.1		
Total S Solids	mg/l				U. I	50	
Uranium	μg/l					30	
Vanadium	μg/l						
Zinc	μg/l	100		100		(A1- 3000) (A2- 5000)	

cpa PARAMETERS Whiteriver Landfill Site

GROUNDWATER QUALITY

RESULTS

Monitoring Point:									UPSTI	BH1 REAM OVE	RBURDEN									
		Trigger Level	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units		07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12	25-Apr-12	18-Jul-12	10-Oct-12	Í
Alkalinity	mg/ICaCO3	NAC			216				272				240				290			
Aluminium	μq/l																<5			Ī
Ammonia	mg/l N	0.2	0.05	< 0.03	0.03	< 0.03	0.09	0.03	0.23	< 0.03	0.03	0.03	< 0.03	< 0.03	0.04	< 0.03	0.03	< 0.03	0.05	Ī
Antimony	μg/l																<0.5			Ī
Arsenic	μg/l																<0.5			Ī
Barium	μg/l																153.6			
Beryllium	μg/l																<0.5			
B.O.D.	mg/l O2				<50															
Boron	μg/l	1000							11.9				13.9				12.3			
Cadmium	μg/l	5			<0.1				<0.1				<0.1				<0.1			
Calcium	mg/l Ca	200			101.49				99.77				97.49				100.79			l
C.O.D.	mg/l O2											6.8								l
Chloride	mg/l Cl	20	39	28	31	33	27	31	38	41	32	30	36	39	34	30	33	33	30	
Chromium	μg/l	30			6.2				<1				<0.5				<0.5			
Cobalt	μg/l																<0.5			
Coliform Bacteria	No/ml		1986	411	1															
Conductivity	µS/cm @ 25	800	651	650	647	646	636	637	660	661	578	643	690	632	716	660	657	730	735	
Copper	μg/l	30			2.3				1.4				1.1				<0.5			
Cyanide		0.01			<0.05				< 0.05				< 0.05				< 0.05			
D.O.	% Saturation		42	10	51	50	44	24	45	nm	46	56	42	30	35	44	36	43	44	
E_ Coli	no/100ml		39	19	0															
Fluoride	mg/l	1			<0.150				0.15				<0.150				<0.150			
Iron	μg/I				572.7				314.9				97				<10			
Lead	μg/l	10			2				<1				<0.5				<0.5			
Magnesium	mg/l Mg	50			10.11				9.95				10.38				9.76		ı	
Manganese	μg/l				64.3				38.9				60.5				2.1			
Mercury	μg/l	1			<0.1				<0.1				<0.05				<0.05			
Molybdenum (μg/l)		20			2.7				4.0				0.5				<0.5			——
Nickel	µg/l	0.03			0.05				1.3 0.03				<0.5				<0.5 <0.02			
Ortho-Phosphate pH	mg/l P	>7 or <8	7.3	7.3	7.2	7.2	7.4	7.3	7.2	7.2	7.3	7.5	<0.02 7.4	7.2	7.4	7.4	7.3	7.2	7.2	
Potassium	mg/l	5	1.3	1.3	<1	1.2	7.4	7.3	<1	1.2	1.3	7.5	0.48	1.2	7.4	7.4	0.46	1.2	7.2	1
Residue on evap	mg/l	3			545				420				392				366			1
Sampling Depth	m		6.8	6.8	6.9	6.8	6.8	6.7	6.7	6.9	7		6.7	7.1	7.2	7	6.9	6.8	6.9	
Selenium	μg/l		0.0	0.0	0.5	0.0	0.0	0.7	0.7	0.5	'		0.7	7.1	1.2	'	<0.5	0.0	0.5	ſ
Silver	μg/l																<0.5			ſ
Sodium	mg/l	150			23.43				20.82				20.31				16.54			
Strontium	μg/l				200												144.190			
Sulphate	r-o''	50			22.6				21.1				19.2				18.2			
Suspended Solids	mg/l																			i
Temp	°C		11	10.3	11	11	11	9	10.5	10	13	10.4	10	12.7	12	10	9.0	11.0	11.0	i
Thallium	μg/l					· · · · · · · · · · · · · · · · · · ·	<u> </u>							<u> </u>	<u> </u>	1	<0.1			i
Time	1		13.1	12.4	12.15		12.1	12.35	12.35	11.1	12:35	11.55	11:45	11:05	11:00	11:30	11:35	11:30	11:22	i
Tin	μg/l																2.80			
T.O.C.	mg/l	10	16.2	4.5	2.2	3.4	4	2.9	1.9	1.6	3.5	3.3	2.5	2.4	4	1.7	70.3	<1.5	3.8	i
T.O.N	mg/l N				1.82				1.1				1.23				1.06			i
Total Suspended Solids	mg/l																			i
Uranium .	μg/l																0.64			i
Vanadium	μg/l																<0.5			i
Zinc	μg/l	100			8.7				17.3				19.4				6.1			i
Water Level m OD	119.94		113.14	113.14	113.04	113.14	113.14	113.24	113.24	113.04	112.94	119.94	113.24	112.84	112.74	112.94	113.04	113.14	113.04	1

<u>@</u>										Whiterive	er Landfill S	ite								
									(GROUNDW		LITY								
PARAMETERS											SULTS									
Monitoring Point:								DOTDEAM	BEDROCK		BH2A	WELL D	OTABLE O	OLIDOE						
		Trigger Level	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units	Trigger Level	07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09			06-Jul-10			05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12	25-Apr-12	18-Jul-12	10-Oct-12	
Alkalinity	mg/ICaCO3	NAC	07-001-00	13-3411-03	282	14-301-03	00-001-03	21-3411-10	324	00-341-10	11-001-10	10-0411-11	288	13-341-11	11-000-11	10-5411-12	340	10-501-12	10-001-12	
Aluminium	μg/I	14710			ZOZ				027				200				<5			
Ammonia	mg/l N	0.2	0.03	< 0.03	< 0.03	< 0.03	0.05	< 0.03	0.04	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03	0.14	
Antimony	μg/l	*															<0.5			
Arsenic	μg/l																<0.5			
Barium	μg/l								<1								0.6			
Beryllium	μg/l																<0.5			
B.O.D.	mg/l O2				<50															
Boron	μg/l	1000							12.5				15.3				14.1			
Cadmium	μg/l	5			<0.1				<0.1				<0.1				<0.1			
Calcium	mg/l Ca	200			63.64				63.33				69.74				65.21			
C.O.D.	mg/l O2											nm								
Chloride	mg/l Cl	20	16	16	16	16	16	16	16	17	17	16	16	15	16	15	16	16	16	
Chromium	μg/l	30			6.2				<1				<0.5				<0.5			
Cobalt	μg/l																<0.5			
Coliform Bacteria	no/100ml		50	4	9	130	34	0	7	18					20	0				
Conductivity	μS/cm @ 25	800	614	607	603	609	611	616	615	610	549	627	608	610	657	632	614	674	644	
Copper	μg/l	30			1.2				1.6				1.5				0.7			
Cyanide	mg/l	0.01			< 0.05				< 0.05				< 0.05				<0.05			
D.O.	% Saturation		34	30	25	23	33	31	54	25	20	43	26	37	33	30	28	33	19	
E_ Coli	no/100ml		0	0	0	0	0	0	0	0					1	0				
Fluoride	mg/l	1			<0.150			_	<0.150				<0.150				<0.150		1	
Iron	μg/l				101.8				<10				<10				<10			
Lead	μg/l	10			<1				<1				<0.5				<0.5			
Magnesium	mg/l Mg	50			30.62			1	31.3				34.16				31.42			
Manganese	μg/l	4			4.6				2.5				2.9				2.5			
Mercury	μg/l	1			<0.1			1	<0.1				<0.05				<0.05			
Molybdenum (µg/l)		20			<1			-	<1				<0.5				<0.5 <0.5			
Nickel Ortho-Phosphate	μg/l mg/l P	0.03			<0.02			-	<0.02				<0.02				<0.02			
pH	mg/i P	>7 or <8	7.4	7.5	7.4	7.2	7.5	7.5	7.5	7.4	7.5	7.7	7.5	7.5	7.5	7.6	7.6	7.5	7.5	
Potassium	mg/l	5	7.4	7.5	1.4	1.2	7.5	7.5	1.06	7.4	7.3	1.1	1.13	7.5	7.5	7.0	1.16	7.5	7.5	
Fotassium	ilig/i	J			- '			+	1.00				1.13				1.10			
Residue on evaporation	mg/l				354				332				322				337			
Sampling Depth	m		nm	nm	nm	nm	nm	nm	nm	nm	nm		nm	nm	nm	nm	nm	nm	nm	
Selenium	µg/l		11111														<0.5	11111	11111	
Silver	µg/l							†									nm			
Sodium	mg/l	150			20.75	1		1	19.78	1			21.1				20.11			1
Strontium	μg/l																226.680			
Sulphate	F-37 ·	50			4.4				4.9				4.8				5.1			
Suspended Solids	mg/l																			
Temp	°C		11.3	10.2	10.8	14.1	11.7	7.5	7.8	15	11.4	8.7	14	13.5	16.2	10.1	11.7	15.0	14.5	
Thallium	μg/l			T		<u> </u>		<u> </u>	<u> </u>				<u> </u>		<u> </u>		<0.1			
Time	T T		12.1	12	12.1		12.15	11.4	11.55	10.25	12:20	12.35	10:45	10:10	10:20	10:30	10:25	10:45	11:00	
Tin	μg/l																<1			
T.O.C.	mg/l	10	34.4	<1.5	3.3	<3.0	<3.0	2.1	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	4.2	<1.5	77.0	<1.5	<1.5	
T.O.N	mg/l N				0.32			1	0.26				0.46				0.37			
Total Suspended Solids	mg/l																			
Uranium	μg/l																1.81			
Vanadium	μg/l																<0.5			
Zinc	μg/l	100			2				2.6				4.9				1.9			

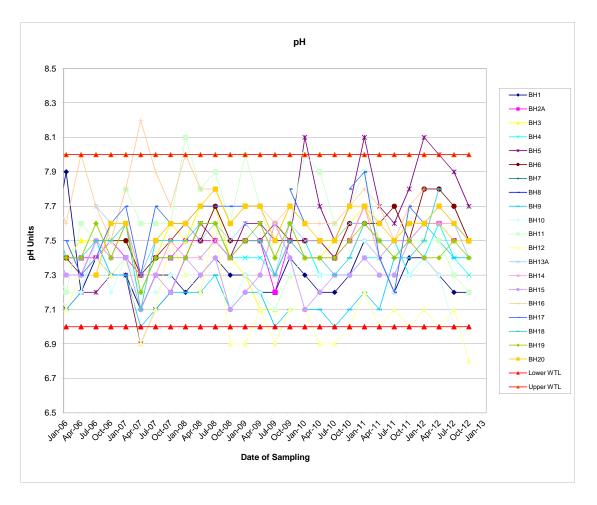
									\A/l=i4 = =i-	er Landfill	0:1-								
<u>epa</u>									GROUND										
PARAMETERS										ESULTS	JALIT								
Monitoring Point:									- 1	BH3									
Worldoning Fount.									HIDSTDE	AM BEDR	OCK								
		Trigger Level	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date		Date
	Units	Trigger Level	13-Jan-09		14-Jul-09		21-Jan-10		06-Jul-10		18-Jan-11		19-Jul-11	11-Oct-11			18-Jul-12	10-Oct-12	Date
Alkalinity	mg/ICaCO3	NAC	13-3411-09	328	14-301-09	00-001-09	21-Jan-10	308	00-Jul-10	11-001-10	10-Jan-11	308	19-Jul-11	11-001-11	10-Jan-12	320	10-3ul-12	10-001-12	
Aluminium	µg/I	INAC		320				300				300				<5			
Ammonia	mg/I N	0.2	<0.03	<0.03	<0.03	0.07	0.03	0.06	<0.03	0.03	0.03	<0.03	<0.03	< 0.03	< 0.03	0.09	<0.03	0.17	
Antimony	μg/I	0.2	٧٥.٥٥	10.00	٧٥.٥٥	0.07	0.00	0.00	40.00	0.00	0.00	νο.σο	10.00	40.00	40.00	<0.5	\0.03	0.17	
Arsenic	μg/l											-				0.69			
Barium	μg/l															67.0			
Beryllium	μg/l															<0.5			
B.O.D.	mg/l O2			<50												10.0			
Boron	μg/l	1000		100				17.6				18				18.8			
Cadmium	μg/l	5		0.2				<0.1				<0.1				<0.1			
Calcium	mg/l Ca	200		102.59				78.89				72.76				73.59			
C.O.D.	mg/l O2	_50									0.0	1 2							
Chloride	mg/l Cl	20	23	37	40	33	23	17	15	15	15	15	14	15	15	15	15	15	
Chromium	µg/l	30		4.8				<1				<0.5				<0.5			-
Cobalt	µq/l															<0.5			-
Coliform Bacteria	no/100ml		>2420	8164															-
Conductivity	µS/cm @ 25	800	709	767	801	797	696	649	623	559	634	616	621	709	638	626	686	716	
Copper	µq/l	30		4.5				<1				<0.5				2.7		-	-
Cyanide		0.01		< 0.05				< 0.05				< 0.05				< 0.05			
D.O.	% Saturation		47	96	82	36	24	43	nm	40	42	28	26	27	31	27	29	27	
E_ Coli	no/100ml		30	<10															
Fluoride	mg/l	1		<0.150				<0.150				<0.150				<0.150			
Iron	μg/l			186.8				<10				31.7				<10			
Lead	μg/l	10		<1				<1				<0.5				<0.5			
Magnesium	mg/l Mg	50		27.77				26.64				25.92				25.74			
Manganese	μg/l			791.9				17.3				9.7				10.9			
Mercury	μg/l	1		<0.1				<0.1				< 0.05				< 0.05			
Molybdenum (µg/l)																<0.5			
Nickel	μg/l	20		2.8				<1				<0.5				1.1			
Ortho-Phosphate	mg/l P	0.03		0.04				0.04				0.04				0.05			
pH		>7 or <8	7.4	7.3	7.1	7.3	7.4	7.4	7.5	7.6	7.7	7.5	7.5	7.6	7.6	7.6	7.5	7.5	
Potassium	mg/l	5		1.25				1.4				1.38				1.60			
Residue on evaporation	mg/l			495				357				348				370			
Sampling Depth	m		7.7	8.8	9.3	2.8	0.5	0	nm	0	<u> </u>	nm	nm	nm	nm	nm	nm	nm	
Selenium	μg/l											1				<0.5			
Silver	μg/l	450									ļ					nm			
Sodium	mg/l	150		22.77				21.71			ļ	20.6				21.03			
Strontium	μg/l	50		54.0		ļ		47.0				4.0				280.040			
Sulphate	/I	50		51.3		ļ		17.6				4.9				4.6			
Suspended Solids	mg/l		10.5	4.4	40	40	0.0	40.0	40	40	400		40.7	40	40	40.0	44.0	44.0	
Temp	°C		10.5	11	12	12	8.2	10.3	10	13	10.3	11	13.7	12	10	10.0	11.0	11.0	
Thallium	μg/l		12.2	10.0		10.0	12 55	10.5	11.15	12.45	12.05	11.50	11:10	11.05	11.05	<0.1 11:40	11:05	11.20	
Time	ug/l		12.2	12.3		12.3	12.55	12.5	11.15	12:45	12.05	11:50	11:10	11:05	11:35		11:35	11:30	
Tin T.O.C.	µg/l	10	2.0	7.0	6.3	4.6	2.7	-1.5	<1.5	-1.5	2.5	-1.5	-1.5	8.5	-1.5	<1 80.5	-1 E	-1.5	
T.O.C. T.O.N	mg/l N	10	2.9	7.9 0.24	0.3	4.0	2.1	<1.5 0.21	<1.5	<1.5	2.5	<1.5 0.28	<1.5	o.5	<1.5	0.20	<1.5	<1.5	
	mg/l N			U.Z4				0.21			<u> </u>	0.28				0.20			
Total Suspended Solids	mg/l										<u> </u>	<u> </u>				2.22			
Uranium	μg/l					 			-		 			1	1	2.23 <0.5			
Vanadium	μg/l	100		11.9		 		10.7			 	13		1	1				
Zinc	μg/l	100		11.9				10.7			1	13		ļ		14.2			

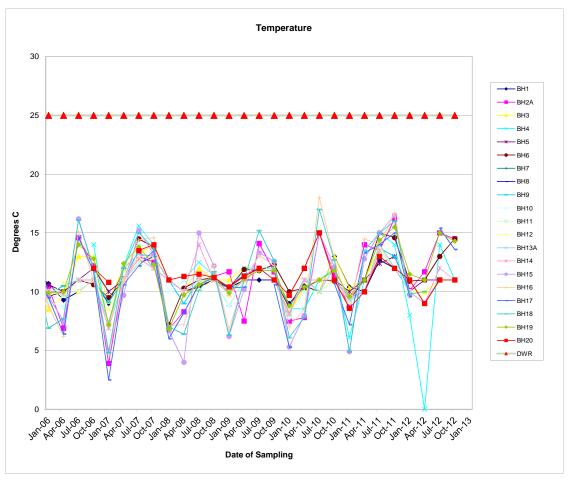
Units 07-Oct-08 13-Jan-09 21-Apr-09 14-Jul-09 06-Oct-09 21-Jan-10 14-Apr-10 06-Jul-10 11-Oct-10 18-Jan-11 05-Apr-11 19-Jul-11 11	Date Date Date Date Date Date 1-Oct-11 10-Jan-12 25-Apr-12 18-Jul-12 10-Oct-12 272 <5 <0.03 <0.03 <0.03 <0.07 <0.5 <0.5 <0.5
RESULTS	1-Oct-11 10-Jan-12 25-Apr-12 18-Jul-12 10-Oct-12 272
Monitoring Point: BH4 UPSTREAM BEDROCK UPSTREAM BEDROCK UPSTREAM BEDROCK Units O7-Oct-08 13-Jan-09 21-Apr-09 14-Jul-09 06-Oct-09 21-Jan-10 14-Apr-10 06-Jul-10 11-Oct-10 18-Jan-11 05-Apr-11 19-Jul-11 11 Alkalinity mg/ICaCO3 NAC 284 UPSTREAM BEDROCK Date	1-Oct-11 10-Jan-12 25-Apr-12 18-Jul-12 10-Oct-12 272
Very street Date	1-Oct-11 10-Jan-12 25-Apr-12 18-Jul-12 10-Oct-12 272
Trigger Level Date	1-Oct-11 10-Jan-12 25-Apr-12 18-Jul-12 10-Oct-12 272
Alkalinity mg/lCaCO3 NAC 284 282 278 Aluminium μg/l 1 1 2	272
Aluminium µg/l	<5 <0.03
	<0.03
Ammonia mg/l N 0.2 0.04 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.0	<0.5
Animonia ing/ N 0.2 0.04 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03	
Arsenic µg/I	
Barium µg/l	7.1
Beryllium µg/l	<0.5
B.O.D. mg/l O2 <50	
Boron µg/l 1000 11 12.4	11.5
Cadmium μg/l 5 <0.1	<0.1
Calcium mg/l Ca 200 74.07 77.68 76.57	75.90
C.O.D. mg/l O2 nm	
Chloride mg/l Cl 20 13 13 14 13 14 13 14 14 21 14 13	16 14 14 15 14
Chromium µg/l 30 3.1 <1	<0.5
Cobalt µg/l	<0.5
Coliform Bacteria no/100ml 1 0 0 6 560 566 588 599 540 905 563 559	645 562 576 627 675
Copper µg/I 30 2.9 11.3 40 905 563 559 563 559 563 559 563 559 563	645 562 576 627 675
Cyanide 0.01 <0.05 <0.05 <0.05	<0.05
D.O. % Saturation 20 25 29 25 27 21 24 nm 14 29 16 23	40 15 nm 21 10
E Coli no/100ml 0 0 0 0	10 10 1111 21 10
Fluoride mg/l 1 <0.150 <0.150 <0.150 <0.150	<0.150
iron µg/l 77.8 1284.2 337.8	123.7
Lead µg/l 10 <1 8.7 <0.5	<0.5
Magnesium mg/l Mg 50 19.45 20.56 20.99	20.01
Manganese μg/l 1.5 21.2 17.3	39.3
Mercury µg/l 1 <0.1	<0.05
Molybdenum (µg/l)	<0.5
Nickel µg/l 20 <1	<0.5 <0.02
Ortho-Phosphate mg/l P 0.03 < 0.02	7.3 7.4 7.6 7.4 7.3
Potassium mg/l 5 -4 1.4 1.5 1.	0.98
Residue on evaporation mg/l 314 340 303	303
	nm nm nm nm
Selenium µg/l	<0.5
Silver µg/l	nm
Sodium mg/l 150 16.74 16.19 16.25	15.65
Strontium µg/l	201.780
Sulphate 50 4 21.7 3.7	4.8
Suspended Solids mg/l	44 0 440
Temp °C 11.4 9.8 12 12 12 8.6 8.5 11 12 6.1 11 15	14 8 nm 14.0 11.0
Thallium μg/l 13.4 12.55 12.4 13.2 13.2 14 11.55 13:00 12.20 12:10 10:55	<0.1 11:55 12:00 nt 11:45 11:50
Tin µg/l 13.4 12.55 12.4 13.2 13.2 14 11.55 13:00 12.20 12:10 10:55	11:55 12:00 nt 11:45 11:50
T.O.C. mg/l 10 28.1 <1.5 5.5 <3.0 <3.0 <1.5 <1.5 <1.5 <1.5 2.9 <1.5 1.6	5.5 3.9 69.7 <1.5 1.7
T.O.N mg/l N 0.55 0.00 0.59	0.50
Total Suspended Solids mg/l	
Uranium µg/l	1.29
Vanadium µg/l	<0.5
Zinc µg/l 100 44.4 323.3 10.3	34.1

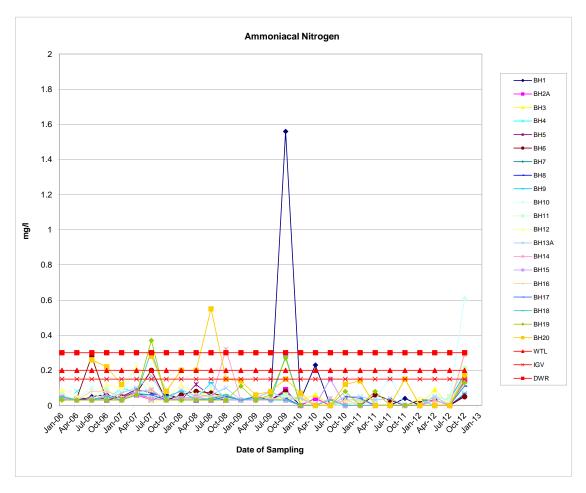
<u> </u>									W	hiteriver La	ndfill Site									
100									GRO	JNDWATE	R QUALITY	′								
PARAMETERS										RESUL	TS									
Monitoring Point:										BH5A	4									
											VERBURD									
		Trigger Level		Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units		07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11		19-Jul-11	11-Oct-11	10-Jan-12		18-Jul-12	10-Oct-12	
Alkalinity	mg/ICaCO3	NAC			270				240				192				232			
Aluminium	μg/l	0.2	0.00	<0.03	0.05	-0.02	0.00	-0.02	-0.00	-0.02	0.00	-0.00	-0.00	-0.00	-0.00	-0.02	<5	-0.00	0.00	
Ammonia Antimony	mg/l N µg/l	0.2	0.03	<0.03	0.05	<0.03	0.08	<0.03	<0.03	<0.03	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03 <0.5	<0.03	0.06	
Artimony	μg/I																0.50			
Barium	μg/l																81.4			
Beryllium	μg/l																<0.5			
B.O.D.	mg/I O2				<50												10.0			
Boron	μg/l	1000			100				17				21.5				15.9			
Cadmium	μg/l	5			0.1				<0.1				<0.1				<0.1			
Calcium	mg/l Ca	200			114.58				103.29				87.15				74.90			
C.O.D.	mg/I O2											7.8								
Chloride	mg/l Cl	20	59	74	57	40	25	46	54	49	30	48	57	44	42	60	28	26	25	1
Chromium	μg/l	30			11.9				4.6				0.6				<0.5			
Cobalt	μg/l																<0.5			
Coliform Bacteria	no/100ml		45	18	41															
Conductivity	μS/cm @ 25	800	756	763	706	664	638	605	671	640	534	584	645	631	666	660	564	627	609	
Copper	μg/l	30			15.2				6.2				1.3				2.5			
Cyanide D.O.	% Saturation	0.01	47	21	<0.05 52	69	36	92	<0.05 81	nm	56	97	<0.05 53	37	54	90	<0.05 75	98	65	
E Coli	no/100ml		47	1	<10	09	30	92	01	11111	30	91	55	31	34	90	73	96	65	
Fluoride	mg/I	1			0.19				0.23				0.19				0.190			
Iron	μg/l				6848.9				3272.3				312.1				<10			
Lead	μg/l	10			14.4				5.2				<0.5				<0.5			
Magnesium	mg/l Mg	50			17.1				15.01				12.9				10.81			
Manganese	μg/l				592.7				263.2				12.3				<1			
Mercury	μg/l	1			<0.1				<0.1				< 0.05				< 0.05			1
Molybdenum (µg/l)																	0.6			
Nickel	μg/l	20			22.6				9.6				<0.5				0.7			
Ortho-Phosphate	mg/l P	0.03			<0.02				<0.02				<0.02				<0.02			
pH		>7 or <8	7.4	7.6	7.6	7.5	7.5	8.1	7.7	7.5	7.7	8.1	7.7	7.6	7.8	8.1	8.0	7.9	7.7	
Potassium	mg/l	5			1.3				1.38				1.31				1.41			
Residue on evaporation Sampling Depth	mg/l m		7.1	7.5	2103 7.7	7.8	7.2	7.8	2099 7.9	8.1	8		456 7.9	8.2	8.1	7.4	956 3.5	7.7	7.6	
Selenium	μg/l		7.1	7.5	7.7	7.0	1.2	7.0	7.9	0.1	0		7.9	0.2	0.1	7.4	<0.5	1.1	7.6	
Silver	μg/l																nm			
Sodium	mg/l	150			30.55				29.11				29.31				26.89			
Strontium	μα/I	. 50															143.550			
Sulphate		50			56.3				42				42				32.3			
Suspended Solids	mg/l																			
Temp	°C		11	10.4	11.4	12	11	8.7	11	11	11	10.0	11	12.4	13	10	11.0	11.0	11.0	
Thallium	μg/l																<0.1			
Time			12.55	13.45	14.05		13.1	12	13.2	10.15	12:10	12.55	12:10	11:15	11:15	11:45	12:00	11:10	12:00	
Tin	μg/l																2.02			
T.O.C.	mg/l	10	18.4	4.1	2.9	4.3	4.4	5.7	3.4	3.9	4.9	5.3	3.5	3.2	11.5	5.4	67.0	4.4	4.7	
T.O.N	mg/l N				0.16				<0.08				0.08				0.17			
Total Suspended Solids	mg/l																0.00			
Uranium Vanadium	μg/l														-	-	0.99 0.64			
Vanadium Zinc	μg/l μg/l	100			32.5				17.3				4.2				3.9			
Water Level m OD	μg/ι 107.88	100	100.78	100.38	32.5 100.18	100.08	100.68	100.08	99.98	99.78	99.88	107.88	99.98	99.68	99.78	100.48	104.38	100.18		
Water Level III OD	107.00		100.78	100.36	100.18	100.08	100.08	100.08	33.30	99.10	99.00	107.00	99.90	99.00	99.76	100.46	104.30	100.16		

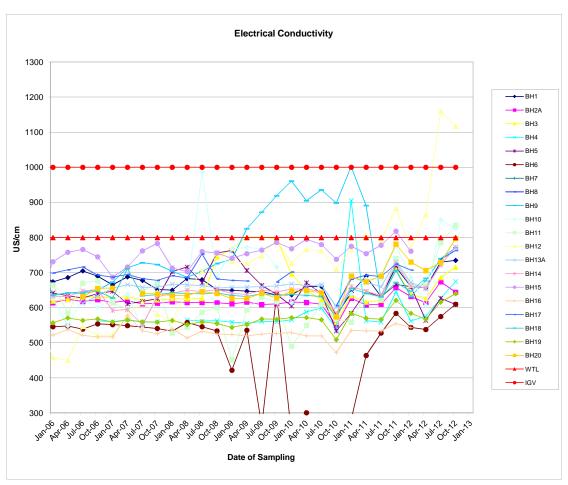
									Wł	niteriver Lan	ndfill Site									
<u> </u>										INDWATER										
PARAMETERS									0.1.00	RESUL1										
Monitoring Point:										BH6										
									DOW		BEDROCK									
		Trigger Level	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units		07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12	25-Apr-12	18-Jul-12	10-Oct-12	
Alkalinity	mg/ICaCO3	NAC			250				141				208				260			
Aluminium	μg/l																<5			
Ammonia	mg/l N	0.2	0.05	<0.03	<0.03	<0.03	0.28	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	0.03	<0.03	0.03	0.03	< 0.03	0.05	
Antimony	µg/l																<0.5			
Arsenic	μg/l																0.73 209.3			
Barium Beryllium	μg/l μg/l																<0.5			
B.O.D.	mg/l O2				54.2												<0.5			
Boron	μg/l	1000			34.2				32.5				61.3				60.3			
Cadmium	μg/l	5			<0.1				<0.1				<0.1				<0.1			
Calcium	mg/l Ca	200			75.21				40.67				66.84				74.69			
C.O.D.	mg/l O2											13.4								
Chloride	mg/l Cl	20	15	32	16	9	10	13	7	8	9	7	13	16	16	14	14	15	14	
Chromium	μg/l	30			5.3				1.9				2.1				<0.5			
Cobalt	μg/l																<0.5			
Coliform Bacteria	no/100ml		>12100	>2420	98															ı
Conductivity	μS/cm @ 25	800	534	422	536	263	638	240	301	273	262	281	464	528	584	544	538	575	610	
Copper	μg/l	30			3.6				6.1				3.1				<0.5			
Cyanide	0/ 0 / /	0.01		70	<0.05	70	40	7.	<0.05		07	45	<0.05		40		< 0.05			
D.O.	% Saturation no/100ml		30 114	72	28	78	48	75	24	32	37	45	35	59	43	58	42	60	42	
E_ Coli Fluoride	mg/l	1	114	58	<10 <0.150				<0.150				<0.150				<0.150			
Iron	μg/l	'			871.5				1694				1983				<10			
Lead	µg/l	10			3.9				6.9				1.8				<0.5			
Magnesium	mg/l Mg	50			16.65				8.86				15.58				16.46			
Manganese	µg/l				121.8				425.7				59.7				252.3			
Mercury	μg/l	1			<0.1				<0.1				< 0.05				< 0.05			
Molybdenum (μg/l)																	0.8			
Nickel	μg/l	20			2.9				3.6				16.7				0.6			ı
Ortho-Phosphate	mg/l P	0.03			0.02				0.03				0.03				0.04			
pH		>7 or <8	7.5	7.5	7.5	7.6	7.5	7.5	7.5	7.4	7.6	7.6	7.6	7.7	7.5	7.8	7.8	7.7	7.5	
Potassium	mg/l	5			1.98				2.67				6.2				2.18			
Residue on evaporation	mg/l		13.9	13.3	1077 13.1		13.8	13.9	580		13.9		378 13.8		13.9		370 0.0			
Sampling Depth Selenium	m μg/l		13.9	13.3	13.1		13.0	13.9	13.3		13.9		13.0		13.9		<0.5	nm	nm	
Silver	μg/l																nm			
Sodium	mg/l	150			16.29				7.98				21.44				14.82			
Strontium	μg/l	100			10.20				7.00								199.450			
Sulphate	F-5-	50			10.5				6				8.9				10.4			
Suspended Solids	mg/l																			
Temp	°C		11.2	10.3	11.9	11.8	12.3	10	10.3	11	10.9	9.3	11	15	14.6	10.9	11.0	13.0	14.5	
Thallium	μg/l																<0.1			
Time			12.45	12.4	13.4		12.5	12.35	13.2	11.3	13.15	13.45	12:20	12:00	12:25	11:20	11:20	11:30	12:00	
Tin	μg/l																<1			
T.O.C.	mg/l	10	24.2	5.6	4	5.3	8.2	43.3	19.8	47.1	36.2	5.9	3.4	12.3	4	3.3	68.0	2.2	2.4	
T.O.N	mg/l N				0.28				0.33				0.31				0.14			
Total Suspended Solids	mg/l																0.05			
Uranium Vanadium	µg/l															1	0.95 <0.5			
	μg/l μg/l	100			8.4				14.6			-	12.2		-	 	<0.5 10.4			
Zinc Water Level m OD	μg/i 105.01	100	91.11	91.71	91.91	105.01	91.21	91.11	91.71	105.01	91.11	105.01	91.21	105.01	91.11	105.01	105.01			
Water Level III OD	103.01	<u> </u>	91.11	91.71	91.91	105.01	91.21	91.11	91.71	100.01	91.11	100.01	91.21	100.01	91.11	103.01	103.01			

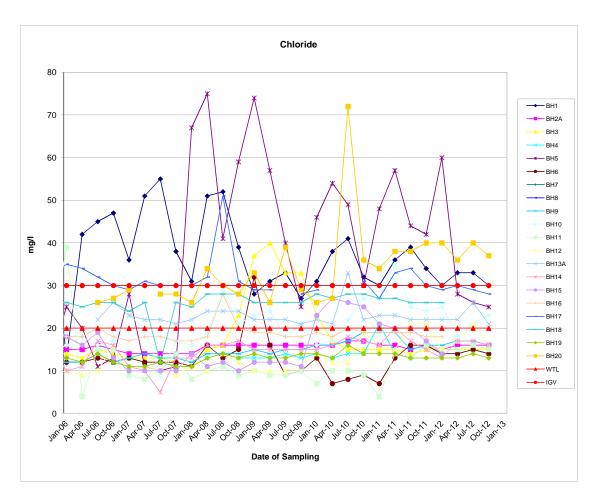
<u>@</u>										hiteriver La	ndfill Site R QUALITY	<u>'</u>								
PARAMETERS										RESUL	.TS									
Monitoring Point:										BH9)									
									DOW	/NSTREAM	BEDROCK	(
		Trigger Level	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units		07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12	25-Apr-12	18-Jul-12	10-Oct-12	
Alkalinity	mg/ICaCO3	NAC			440				440				408				336			
Aluminium	μg/l																<5			
Ammonia	mg/l N	0.2	0.03	< 0.03	<0.03	< 0.03	0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	0.05	0.03	0.18	
Antimony	μg/l																<0.5			
Arsenic	μg/l																0.56			
Barium	μg/l																163.0			
Beryllium	μg/l																<0.5			
B.O.D.	mg/l O2	1000			<50												10.0			
Boron	μg/l	1000			0.4				17.3				37.3				19.2			
Cadmium	μg/I	5			<0.1				<0.1				<0.1				<0.1			
Calcium	mg/l Ca	200			139.46				151.69			00.0	148.74				102.87			
C.O.D.	mg/l O2	00	4.4	15	44	45	45	40	40	17	40	23.3	40	45	40	40	47	17	16	
Chloride	mg/l Cl	20	14	15	14	15	15	16	16	17	19	19	19	15	16	16	17	17	16	
Chromium	μg/I	30			5.4				<1				1.8				<0.5 <0.5			
Cobalt Coliform Bacteria	μg/l no/100ml		548	105	31												<0.5			
	µS/cm @ 25	800	726	737	825	872	919	961	905	936	898	1002	891	625	706	632	677	740	771	
Conductivity	•	30	720	131	1.5	0/2	919	961	1.2	936	898	1002	1	020	700	032	1.5	740	//1	
Copper Cyanide	μg/l	0.01			<0.05				< 0.05				<0.05				<0.05			
D.O.	% Saturation	0.01	66	36	85	59	47	54	68	nm	62	65	35	67	54	67	61	78	65	
E_ Coli	no/100ml		5	0	20	33	41	34	00	11111	02	0.0	33	01	J4	01	01	70	0.5	
Fluoride	mg/l	1		0	<0.150				<0.150				<0.150				<0.150			
Iron	μg/l				1215.8				6454.7				1116.4				<10			
Lead	μg/l	10			<1				<1				1.1				<0.5			
Magnesium	mg/I Mg	50			18.92				21.98				27.48				18.00			
Manganese	μg/l				217				941.6				199.3				3.1			
Mercury	μg/l	1			<0.1				<0.1				< 0.05				< 0.05			-
Molybdenum (µg/l)																	<0.5			
Nickel	μg/l	20			1.6				<1				2				<0.5			
Ortho-Phosphate	mg/l P	0.03			<0.02				< 0.02				< 0.02				< 0.02			
pH		>7 or <8	7.1	7.2	7.2	7	7.1	7.1	7.1	7	7.1	7.2	7.1	7.4	7.5	7.6	7.5	7.4	7.4	
Potassium	mg/l	5			<1				<1				3.39				1.20			
Residue on evaporation	mg/l				605				604				754				486			
Sampling Depth	m		23	23	23.2	23.1	23	22.9	23	23	22.9		23.1	23.3	23.3	23.4	22.9	23.0	22.8	
Selenium	μg/l																<0.5			
Silver	μg/l																nm			
Sodium	mg/l	150			14.63				14.25				23.78				15.24			
Strontium	μg/l																213.380			
Sulphate		50			32.4				46.9				35.5				13.7			
Suspended Solids	mg/l																			
Temp	°C		11	8.8	11	12	11	8.4	11.1	10	11	9.5	10	13.7	13	10	9.0	11.0	11.0	
Thallium 	μg/l		44.0=	40.05	10.55		40 =	44.05	0.45	40.0	44.00		44.40	40.00	40.45	44.00	<0.1			
Time	<u> </u>		11.25	10.25	10.55		10.5	11.25	9.45	10.3	11:30	11.15	11:10	10:30	10:45	11:00	10:50	10:45	11:00	
Tin	μg/l	4.2	07.0		0 -	4.5					4.5				0 -	4 -	<1			
T.O.C.	mg/l	10	27.2	2.8	6.5	4.9	5.4	9	5.6	4.3	4.6	5.7	8.4	3.5	6.5	1.7	83.3	<1.5	<1.5	
T.O.N	mg/l N				0.08				<0.08				0.08				0.21			
Total Suspended Solids	mg/l									1	1	1	1				4.04			
Uranium	µg/l											1					1.61			
Vanadium	μg/l	100			2.7				7.0			1	2.5				<0.5 4.2			
Zinc Water Level m OD	µg/l 103.47	100	80.47	80.47	3.7 80.27	80.37	80.47	80.57	7.2 80.47	80.47	80.57	103.47	3.5 80.37	80.17	80.17	80.07	4.2 80.57	80.47		
Water Level III OD	103.47		00.47	00.47	00.27	00.37	00.47	00.57	00.47	00.47	00.07	103.47	00.37	00.17	00.17	00.07	00.07	00.47		

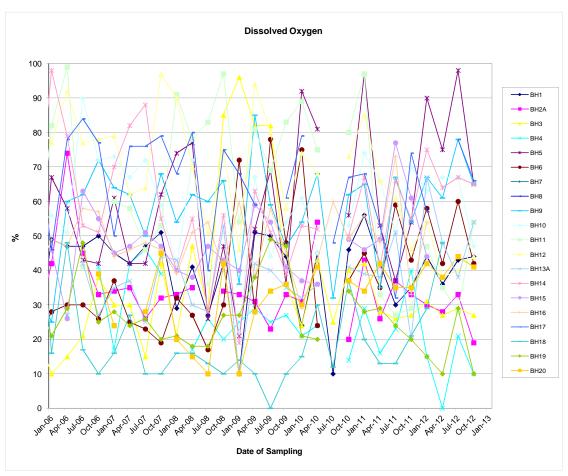

																				$\overline{}$
									Wh	niteriver Lar	ndfill Site									
<u>CDA</u>											RQUALITY									-
PARAMETERS										RESUL1										-
Monitoring Point:										BH10										
-									DOWNS	TREAM O	VERBURDE	EN								
		Trigger Level	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units		07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12	25-Apr-12	18-Jul-12	10-Oct-12	
	mg/ICaCO3	NAC			294				284				308				270			
	μg/l	0.0	0.05	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.40	0.00	0.04	<5	0.00	0.64	—
	mg/l N μg/l	0.2	0.05	<0.03	0.06	0.06	0.06	0.04	<0.03	<0.03	<0.03	<0.03	0.03	0.16	<0.03	0.04	0.05 <0.5	0.03	0.61	
	μg/I μg/I																<0.5			
	μg/l																209.3			
	μg/l																<0.5			
	mg/l O2				<50															
	µq/l	1000							<10				11.2				<10			
Cadmium	μg/l	5			<0.1				0.1				<0.1				<0.1			
Calcium	mg/l Ca	200			132.91				114.18				112.14				102.54			1
	mg/l O2											3.0								1
	mg/l Cl	20	21	23	24	18	21	16	17	22	27	27	35	25	24	25	18	21	23	
	μg/l	30			6.9				5.4				1.9				<0.5			
	µg/l		0.400	570													<0.5			
	no/100ml	000	2420	579	52	700	740	04.4	007	007	004	0.40	000	000	770	000	000	050	025	—
Conductivity	μS/cm @ 25	800	686	767	772 5.3	768	716	614	637 9	667	604	640	682 1.4	683	776	686	606 1.6	850	825	\vdash
Copper Cyanide	μg/l	30 0.01			< 0.05				<0.05				<0.05				< 0.05			
	% Saturation	0.01	51	22	67	44	54	61	45	nm	53	74	66	51	70	63	67	67	47	
	no/100ml		26	3	<10	77	54	01	70	11111	- 55	- / -	- 00	- 51	70	00	01	01	47	
	mg/l	1			<0.150				<0.150				<0.150				<0.150			
	μg/l				1576.6				4062.2				1001.3				<10			
	μg/l	10			4.8				10.1				1.3				<0.5			
Magnesium	mg/l Mg	50			13.19				12.43				13.17				7.91			
	μg/l				735.7				686.1				673.5				12.1			
	μg/l	1			<0.1				<0.1				< 0.05				< 0.05			
Molybdenum (µg/l)																	<0.5			
	μg/l	20			6.7				10.9				0.8				<0.5			
Ortho-Phosphate pH	mg/l P	0.03	7.1	7.3	<0.02 7.2	7.1	7.3	7.4	<0.02 7.3	7.3	7.4	7.5	<0.02 7.4	7.2	7.3	7.4	<0.02 7.3	7.0	7.0	\vdash
	mg/l	>7 or <8	7.1	7.3	1.25	7.1	1.3	7.4	1.26	1.3	7.4	7.5	1.22	1.2	7.3	7.4	1.08	7.0	7.0	
	mg/l	3			765				941				15250				741			
	m		2	1.8	2.3	1.8	3.6	1.7	2.9	3.3	4		4.1	4.5	4	3.8	3.7	3.6	4.6	
	μg/l																<0.5	0.0		
	μg/l																<0.5			
	mg/l	150			15.97				11.59				12.91				8.53			
	μg/l																159.170			
Sulphate		50			92				60.6				36.7				31.5			
	mg/l																			
Temp	°C		11	8.8	11	13	11	7.8	10	10	11	9.1	10	13.6	12	10	9.0	11.0	11.0	
	µg/l			44.0													<0.1			
Time Tin	ua/l		12.35	11.3	11.55		11.55	10.3	12.15	10.5	0.451389	10.30	10:40	10:05	10:35	10:40	10:15 2.63	10:20	10:35	
	μg/l mg/l	10	16.4	3.7	4.7	7.3	3.6	6.6	3.7	1.8	5.1	9.3	14.6	3.2	6.6	12.2	70.0	2.7	21.3	
	mg/l N	10	10.4	3.1	0.46	1.5	3.0	0.0	0.13	1.0	J. I	3.3	0.18	J. <u>Z</u>	0.0	14.4	1.40	۷.1	21.3	
	mg/l				0.40				0.10				0.10		-	+	1.40			$\overline{}$
	µg/l																0.70			
	μg/l															1	<0.5			
	μg/l	100			11.6				19.3				3.5				1.9			
Water Level m OD	105.6		103.6	103.8	103.3	103.8	102	103.9	102.7	102.3	101.6	105.6	101.5	101.1	101.6	101.8	101.9	102		

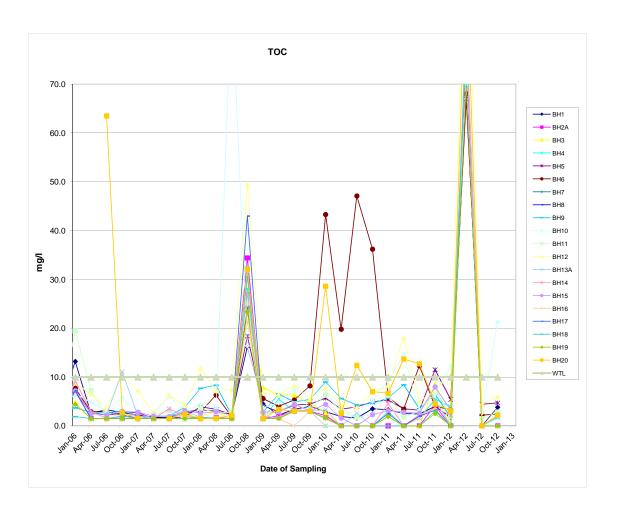

<u> </u>									٧	Vhiteriver L	andfill Site									
98									GRO	DUNDWAT	ER QUALIT	ΓY								
PARAMETERS										RESU										
Monitoring Point:										BH′										
										STREAM										
		Trigger Level	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units	NAC	07-Oct-08	13-Jan-09		14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12		18-Jul-12	10-Oct-12	
Alkalinity Aluminium	mg/ICaCO3 µg/I	NAC			280				236				296				328 <5			
	mg/l N	0.2	0.04	<0.03	<0.03	<0.03	0.04	0.04	<0.03	<0.03	<0.03	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.05	0.21	
Antimony	μg/l	0.2	0.04	νο.οο	40.00	٧٥.٥٥	0.04	0.04	40.00	٧٥.٥٥	٧٥.٥٥	0.00	10.00	٧٥.٥٥	٧٥.٥٥	νο.σο	<0.5	0.00	0.21	
Arsenic	μg/l																<0.5			
Barium	μg/l																141.7			
Beryllium	μg/l																<0.5			
	mg/l O2				<50															
Boron	μg/l	1000							10.1				28.8				25.2			
Cadmium	μg/l	5			<0.1				<0.1				0.2				<0.1			
	mg/l Ca	200			67.21				37.04			0.4	75.87				78.74			
C.O.D. Chloride	mg/l O2 mg/l Cl	20	9	10	9	9	10	7	10	10	9	9.4	14	13	16	15	15	16	15	
Chromium	μg/l	30	9	10	2.1	9	10	- /	<1	10	9	4	0.5	13	10	15	<0.5	16	15	
Cobalt	μg/l	30			4.1				<u> </u>				0.5				<0.5			
Coliform Bacteria	no/100ml		1414	51	7												~0.5			
Conductivity	µS/cm @ 25	800	601	452	594	630	617	490	550	609	568	559	644	624	740	664	665	785	835	
Copper	μg/l	30			1.9				1.8				1.2				<0.5			
Cyanide		0.01			< 0.05				< 0.05				< 0.05				< 0.05			-
D.O.	% Saturation		97	54	81	69	83	89	75	nm	80	97	33	27	29	47	35	28	54	
E_ Coli	no/100ml		8	0	0															
	mg/l	1			<0.150				0.17				<0.150				<0.150			
Iron	μg/l				119.4				147.8				801.8				<10			
Lead	μg/l	10			<1				<1				1.1				<0.5			
Magnesium Manganese	mg/l Mg	50			14.13 108.7				11.16 212.9				22.98 154.1				20.87 19.7			
	μg/l μg/l	1			<0.1				<0.1				<0.05			†	<0.05			
Molybdenum (µg/l)	μg/ι	1			V 0.1				V 0.1				V0.03				0.8			
Nickel	μg/l	20			1.1				1.3				<0.5				<0.5			
	mg/l P	0.03			<0.02				<0.02				<0.02				<0.02			
pH	Ĭ	>7 or <8	7.6	8	7.7	7.4	7.6	8	7.9	7.6	7.7	7.9	7.5	7.5	7.5	7.5	7.5	7.3	7.2	
Potassium	mg/l	5			1.25				1.4				1.39				1.35			
Residue on evaporation	mg/l				376				380				464				426			
Sampling Depth	m		9.2	9.3	9.4	9.2	9.1	9.1	9.3	9.3	9.3		9.2	9.2	9.4	9.7	9.1	9.3	9.4	
Selenium	μg/l																<0.5			
Silver Sodium	µg/l	150			46.71				72.3				32.36				<0.5 24.50			
Strontium	mg/l μg/l	130			40./1				12.3			-	32.30			-	24.50			
Sulphate	μg/1	50			25.4				42.1				15.7				11.2			
Suspended Solids	mg/l	30			20.7				74.1				10.1			†	11.2			
Temp	°C		11	10	11	12	11	8.1	11	11	11	9.2	10	13.4	12	10	9.0	11.0	11.0	
Thallium	μg/l																<0.1			
Time			11.55	11.1	11.25		11.1	11.1	11.45	10.4	11:00	11.00	10:55	10:15	10:25	10:55	10:30	10:35	10:40	
Tin	μg/l																<1			
T.O.C.	mg/l	10	25.2	2.3	2.9	4.5	3.2	6.3	3	1.7	2.4	6.3	1.8	2.9	7.6	1.9	83.6	1.5	2.8	
T.O.N	mg/l N				0.29				0.21				0.75				0.64			
Total Suspended Solids	mg/l																			
Uranium	µg/l																2.52			
Vanadium Zinc	μg/l μg/l	100			4.5				14.2			-	23.7			 	<0.5 2.5			
	μg/i 95.66	100	86.46	86.36	4.5 86.26	86.46	86.56	86.56	86.36	86.36	86.36	95.66	86.46	86.46	86.26	85.96	2.5 86.56	86.36	86.26	
Water Level III UD	33.00		00.40	00.30	00.20	00.40	00.00	00.00	00.30	00.30	00.30	90.00	00.40	00.40	00.20	09.90	00.00	00.30	00.20	


GPA									W	niteriver Lar	ndfill Site									
									GROU	INDWATER	QUALITY									
PARAMETERS										RESUL1	rs									
Monitoring Point:										BH12										
										TREAM O										
		Trigger Level	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units		07-Oct-08	13-Jan-09		14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11		19-Jul-11	11-Oct-11	10-Jan-12	25-Apr-12	18-Jul-12	10-Oct-12	
Alkalinity	mg/ICaCO3	NAC			348				396				324				408			
Aluminium	µg/l	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	<5	0.00	0.00	
Ammonia	mg/l N	0.2	0.06	<0.03	0.03	<0.03	<0.03	0.03	<0.03	<0.03	0.03	<0.03	<0.03	<0.03	<0.03	0.04	0.03	<0.03	0.30	
Antimony	μg/l																<0.5 0.52			
Arsenic Barium	μg/l μg/l																242.0			
Beryllium	μg/I																< 0.5			
B.O.D.	mg/l O2				<50												\0.0			
Boron	µg/l	1000			100				<10				10.9				10.1			
Cadmium	μg/l	5			0.3				0.2				0.4				<0.1			
Calcium	mg/l Ca	200			135.76				143.83				141.79				139.21			
C.O.D.	mg/l O2											5.7								
Chloride	mg/l Cl	20	12	10	10	10	11	14	12	12	19	16	15	21	21	15	17	21	16	
Chromium	μg/l	30			5.5				1.1				1.9				<0.5			
Cobalt	μg/l																<0.5			
Coliform Bacteria	no/100ml		>12100	>2420	135									nm						
Conductivity	μS/cm @ 25	800	754	731	727	748	793	727	766	762	709	768	806	792	883	769	865	1160	1117	
Copper	μg/l	30			5.5				2.6				1.9				2.2			
Cyanide		0.01			< 0.05				< 0.05				< 0.05				< 0.05			
D.O.	% Saturation		75	46	94	80	58	74	68	nm	73	85	66	61	46	54	38	40	44	
E_ Coli	no/100ml		131	0	<10									nm						
Fluoride	mg/l	1			<0.150				<0.150				<0.150				<0.150			
Iron	µg/l	10			912.8				565.4				878.5				<10			
Lead	µg/l	10 50			1.6 11.74				<1 12.99				<0.5 14.32				<0.5 16.44			
Magnesium Manganese	mg/l Mg µg/l	50			773.5				606.6				3463.8				3.1			
Mercury	μg/I	1			<0.1				<0.1				< 0.05				<0.05			
Molybdenum (µg/l)	μg/1	'			V 0.1				V 0.1				X0.03				<0.5			
Nickel	µg/l	20			6.2				2.9				3.6				1.0			
Ortho-Phosphate	mg/l P	0.03			<0.02				<0.02				<0.02				<0.02			
рН		>7 or <8	6.9	6.9	7.1	6.9	7.1	7.1	6.9	6.9	7	7.2	7	7.1	7	7.1	7.0	7.1	6.8	
Potassium	mg/l	5			<1				<1				0.74				1.06			
Residue on evaporation	mg/l				655				519				1005				1081			
Sampling Depth	m		5.5	5.6	5.7	5.4	5.5	5.5	5.6	5.7	5.7		5.7	5.8	5.6	5.7	5.1	5.3	6.3	
Selenium	μg/l																<0.5			
Silver	μg/l																nm			
Sodium	mg/l	150			6.92				7.01				9.04				10.39			
Strontium	µg/l																247.230			
Sulphate		50			31.3				34				44.8				55.6			
Suspended Solids	mg/l													10.0		4.0				
Temp	°C		11	9.7	11	12	11	8.4	11	10	11	9.6	10	13.8	12	10	9.0	11.0	11.0	
Thallium	µg/l		44.0	40.4	40.5		40.05	44.4	40	40.05	44.45	44.00	44.45	40.05	40.50	44.40	<0.1	40.50	10.55	
Time	/!	 	11.2	10.4	10.5		10.35	11.4	10	12.25	11:45	11.30	11:15	10:35	10:50	11:10	10:55	10:50	10:55	
Tin T.O.C.	μg/l mg/l	10	49.3	6.8	6.3	8.3	5.6	7.8	4.3	3.7	6.9	8.3	18.1	4.9	7.3	10.4	<1 109.0	4.5	6.0	
T.O.N	mg/l mg/l N	10	43.3	0.0	0.13	0.3	0.0	1.0	<0.08	J.1	0.9	0.3	<0.08	4.9	1.3	10.4	1.25	4.0	0.0	
Total Suspended Solids	mg/l	1		-	0.13				\ 0.00				\ 0.00				1.20			
Uranium	μg/I	1		-	-												1.25			
Vanadium	μg/I																<0.5		+	
Zinc	μg/l	100			19.9				18.1				31.2				5.2		+	
Water Level m OD	103.38	100	97.88	97.78	97.68	97.98	97.88	97.88	97.78	97.68	97.68	103.38	97.68	97.58	97.78	97.68	98.28	98.08	97.08	-
			000	55	000	000	000	000	00	555	000	.00.00	000	000	00	000	00.20	00.00	000	


	1																			
									\/\/h	niteriver Lar	ndfill Site									
<u>cpa</u>										INDWATER										
PARAMETERS									ONOC	RESUL										
Monitoring Point:										BH13/	-									
income ing r com.									DOW	NSTREAM										
		Trigger Level	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units		07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	10-Oct-11	10-Jan-12	25-Apr-12	18-Jul-12	10-Oct-12	
Alkalinity	mg/ICaCO3	NAC			332				344				264				320			
Aluminium	μg/l																<5			
Ammonia	mg/l N	0.2	0.1	0.03	0.04	0.08	0.03	0.04	< 0.03	0.04	0.05	0.05	0.03	0.04		< 0.03	0.05	< 0.03	0.15	
Antimony	µg/l																<0.5			
Arsenic	μg/l																< 0.5			
Barium	μg/l μg/l																48.9 <0.5			
Beryllium B.O.D.	mg/I O2				<50												<0.5			
Boron	μg/l	1000			\30				20.7				19.8				19.5			
Cadmium	μg/l	5			<0.1				<0.1				<0.1				<0.1			
Calcium	mg/l Ca	200			79.9				76.87				75.45				77.57			
C.O.D.	mg/l O2											25.6								
Chloride	mg/l Cl	20	24	22	22	22	21	22	21	33	22	23	23	22		22	22	26	21	
Chromium	μg/l	30			2.6				<1				1				<0.5			
Cobalt	μg/l																<0.5			
Coliform Bacteria	no/100ml		170	54	5															
Conductivity	µS/cm @ 25	800	656	658	659	660	662	668	663	665	602	688	672	660		672	654	723	772	
Copper	μg/l	30			2				1				1.9				0.5			
Cyanide		0.01			< 0.05				< 0.05				<0.05				< 0.05			
D.O.	% Saturation		53	<10	42	40	35	32	36	nm	41	39	38	51		67	48	38	54	
E_ Coli	no/100ml	1	7	0	0				0.450				<0.150				0.450			
Fluoride Iron	mg/l μg/l	1			<0.150 156.6				<0.150				691.2				<0.150 <10			
Lead	μg/l	10			<1				<1				0.6				<0.5			
Magnesium	mg/l Mg	50			23.96				25.53				25.36				26.14			
Manganese	μg/l	- 55			264.5				330.4				235.5				225.4			
Mercury	μg/l	1			<0.1				<0.1				< 0.05				< 0.05			
Molybdenum (μg/l)																	1.2			
Nickel	μg/l	20			<1				<1				<0.5				<0.5			
Ortho-Phosphate	mg/l P	0.03			0.1				0.09				0.08				0.11			
pH		>7 or <8	7.5	7.6	7.5	7.3	7.6	7.5	7.5	7.5	7.6	7.6	7.5	7.5		7.6	7.7	7.6	7.4	
Potassium	mg/l	5			1.33				1.38				1.3				1.49			
Residue on evaporation	mg/l		05.4	05.4	409	05.5	05.4	05.4	421	05.5	05.4		524	05.7		05.0	414			
Sampling Depth	m		25.4	25.4	25.5	25.5	25.4	25.4	25.4	25.5	25.4		25.6	25.7		25.6	25.4	25.5	25.2	
Selenium Silver	μg/l μg/l															 	<0.5 nm			
Sodium	mg/l	150			27.71				26.21				25.36			-	26.08			
Strontium	μg/l	130			21.11				20.21				20.00				241.300			
Sulphate	ra''	50			11.6				13				14			<u> </u>	10.7			
Suspended Solids	mg/l																			
Temp	°C		11	10	11	12	11	8.2	11	10	12	9.3	10	14		10	9.0	11.0	11.0	
Thallium	μg/l																<0.1			
Time			12.25	11.2	11.45		11.35	10.45	12	10.55		10.10	10:35	10:00		10:30	10:20	10:15	10:25	
Tin	μg/l																<1			
T.O.C.	mg/l	10	31.1	<1.5	1.8	<3.0	<3.0	3.3	<1.5	2.6	<1.5	2.7	<1.5	1.6		<1.5	78.6	<1.5	<1.5	
T.O.N	mg/l N				<0.08				<0.08				<0.08				<0.08			
Total Suspended Solids	mg/l																			
Uranium	µg/l	ļ															5.26			
Vanadium	μg/l	100	-		40.0	-			400			-	F 4		1	1	<0.5			
Zinc Water Level m OD	µg/l	100	90.61	90.61	10.8	90 E1	90.61	90.61	12.3	90 E1	90.61	106.04	5.1	90.21	106.04	90.44	2.1	90 E1	90.91	
Water Level m OD	106.01	1	80.61	80.61	80.51	80.51	80.61	80.61	80.61	80.51	80.61	106.01	80.41	80.31	106.01	80.41	80.61	80.51	80.81	


									14/1		1011 011									
										iteriver Lar	R QUALITY									
PARAMETERS										RESUL1	rs									
Monitoring Point:										BH14										
											BEDROCK									
		Trigger Level	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units		07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12		18-Jul-12	10-Oct-12	
Alkalinity	mg/ICaCO3	NAC			324				356				352				332			
Aluminium	µg/l																<5			
Ammonia	mg/l N	0.2	0.32	< 0.03	< 0.03	0.04	< 0.03	< 0.03	< 0.03	0.15	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	0.03	< 0.03	0.29	
Antimony	μg/l																<0.5			
Arsenic	μg/l																<0.5			
Barium	μg/l																145.4			,
Beryllium	μg/l																<0.5			
B.O.D.	mg/l O2				<50															
Boron	μg/l	1000							30.7				29.7				36.6			
Cadmium	μg/l	5			<0.1				<0.1				<0.1				<0.1			
Calcium	mg/l Ca	200		1	84.86				85.1			40.0	81.99				86.84			
C.O.D.	mg/l O2	- 00	47	45	45	45	45	45	40	40	47	19.0	00	47	45	40				
Chloride	mg/l Cl	20	17	15	15	15	15	15	16	18	17	16	20	17	15	13	17	17	16	
Chromium	μg/l	30			5				<1				2.7				<0.5			
Cobalt	µg/l		60	F.0	170												<0.5			
Coliform Bacteria	no/100ml μS/cm @ 25	800	60 652	56 641	173 638	650	645	653	654	645	584	661	647	635	725	661	057	700		
Conductivity	•	30	002	041	1.2	000	040	003	<1	040	564	001	1.9	030	725	001	657	722	773	
Copper Cyanide	μg/l	0.01			<0.05				<0.05				<0.05				1.0 <0.05			
D.O.	% Saturation		56	19	63	51	39	53	<0.05 52	nm	50	67	<0.05 41	66	55	75	64	67	65	
E Coli	no/100ml		2	0	<10	31	39	55	52	11111	30	07	41	00	33	73	04	07	03	
Fluoride	mg/l	1		·	<0.150				<0.150				<0.150				<0.150			
Iron	μg/l	'			74.9				<10				2070.3				<10			
Lead	μg/l	10			<1				<1				1.5				<0.5			
Magnesium	mg/l Mg	50			21.33				24.12				26				20.71			
Manganese	μg/l				326.6				324.7				111.3				2.3			
Mercury	µg/l	1			<0.1				<0.1				< 0.05				< 0.05			
Molybdenum (μg/l)																	1.8			
Nickel	μg/l	20			<1				<1				1.6				<0.5			
Ortho-Phosphate	mg/l P	0.03			< 0.02				<0.02				< 0.02				0.02			
pH	_	>7 or <8	7.4	7.5	7.5	7.3	7.5	7.4	7.4	7.4	7.5	7.7	7.4	7.5	7.5	7.6	7.6	7.6	7.5	
Potassium	mg/l	5			1.2				1.34				1.53				1.62			
																	494			
Residue on evaporation	mg/l				396				388				565							ı
Sampling Depth	m		18.8	18.7	18.9	18.9	18.8	18.7	18.8	18.8	18.8		19	19.1	19.2	19.2	18.8	18.9	18.7	
Selenium	µg/l																<0.5			
Silver	μg/l																nm			
Sodium	mg/l	150			23.15				24.79				22.69				26.84			
Strontium	μg/l																226.930			
Sulphate		50			8.4				9.9				8.6				11.3			
Suspended Solids	mg/l		- 44	0.0		40		0.4			44		40	40.5		40		40.0		
Temp	°C		11	9.8	11	12	11	8.1	11	11	11	9.6	10	13.5	nm	10	9.0	12.0	11.0	
Thallium	μg/l		40.4	10.55	44.4		44.0	10.55	11.0	10.05	44.45	10.45	10:50	10:00	10:00	10:45	<0.1	10,00	10.50	
Time			12.1	10.55	11.1		11.2	10.55	11.2	10.35	11:15	10.45	10:50	10:20	10:20	10:45	10:35	10:30	10:50	
Tin T.O.C.	µg/l	10	27.1	2.1	1.6	3.4	<3.0	1.6	<1.5	<1.5	<1.5	4.6	<1.5	2.3	3.6	2.2	<1	.4 E	2.0	
T.O.C. T.O.N	mg/l	10	21.1	Z. I	0.2	3.4	<3.0	1.0	0.13	<1.5	<1.5	4.0	<0.08	2.3	3.0	2.2	82.0 0.16	<1.5	2.0	
Total Suspended Solids	mg/l N mg/l				U.Z				0.13				<0.06				0.16			
Uranium		 	-	1			-	-			-	-					5.67			
Vanadium	μg/l μg/l															1	<0.5			
Zinc	μg/l	100			4.9				5.3				4.8				2.6			
Water Level m OD	98.98	100	80.18	80.28	80.08	80.08	80.18	80.28	80.18	80.18	80.18	98.98	79.98	79.88	79.78	79.78	80.18	80.08	80.28	
water Level III UD	30.30	l	00.10	00.20	00.00	00.00	00.10	6U.Z6	00.10	00.10	OU. 16	90.96	19.90	19.00	19.10	19.10	00.10	00.00	00.20	





APPENDIX H

SURFACE WATER MONITORING RESULTS

IBR0509/Reports Status: Final Date: May 2013

	(Į	R	

Whiteriver Landfill Site

SURFACE WATER QUALITY

PARAMETERS

RESULTS

	1										K	ESULIS											
Monitoring Point:												SV											
		Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
Alkalinitu	Units	19-Apr-07 328	03-Jul-07	15-Jan-08	08-Apr-08 280	07-Oct-08	13-Jan-09		14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10 304	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12		18-Jul-12	10-Oct-12	
Alkalinity	mg/ICaCO3	328			280			304				304		290		352				280			
Aluminium	μg/l	8.29	2.55	0.50	4.07	0.00	0.75	0.50	4.04	0.57	0.50	0.40		<5	4.00	0.00		0.40	4.04	15.2	4.04	0.00	
Ammonia	mg/l N	8.29	3.55	0.56	1.37	0.68	0.75	0.56	1.04	0.57	0.58	0.43		0.03	1.33	6.33		0.48	1.84	0.32	1.24	2.69	
Antimony	μg/l													<0.5						<0.5			
Arsenic	μg/l													<0.5 153.6						1.48			
Barium	μg/l																			105.8			
Beryllium	μg/l mg/l O2	23.8		4.5	5.4	174.9	7.4	<50	50.2	24.7	4.3	2.8		<0.5		31.5		13.1	174.7	<0.5 4.9	15.5	9.5	
B.O.D. Boron	mg/i O2 µg/l	<50		4.5	<50	174.9	7.4	6.2	50.2	24.7	4.3	14.3		12.3		28.1		13.1	174.7	20.1	15.5	9.5	
	ua/l	<0.10			<0.10			<0.1				<0.1		<0.1		<0.1				<0.1			
Cadmium Calcium	μg/ι mg/l Ca	89.84			98			108.98				104.52		100.79	4.0	108.39				91.46			
	mg/l O2	90	000	42	35	801	30	37	000	98	40	104.52		100.79	4.0	162		78	266	46	455	00	
C.O.D.			220						288					22	20			40			155	60	
Chloride	mg/l CI	41 <1	28	28	32	40	25	32 1.7	36	54	29	31 <1		33 <0.5	30	60 0.8		40	36	28 <0.5	23	27	
Chromium Cobalt	μg/l	<1			<1			1.7				<1		<0.5		0.0							
Cobait Coliform Bacteria	μg/l no/100ml													<0.5						<0.5			
Conductivity	uS/cm @ 25	824	652	498	659	444	574	692	604	954	522	677		657	640	879		632	675	604	582	745	
		5.1	032	490	2.2	444	374		604	954	522	1.6		<0.5	040	5.3		632	6/5	2.1	302	745	
Copper	μg/l	5.1			2.2			3				1.6				5.3				2.1			
Cyanide	mg/l													<0.05									
D.O.	% Saturation	81	45	80	60	72	88	84	69	60	89	86		36	94	58		78	51	77	43	75	
E_ Coli	no/100ml																						
Fluoride	mg/l													<0.150									
Iron	μg/l	935.9			418.4			586.5				372.8		<10 <0.5		962.8				98.0			
Lead	μg/l	14.6			<1			1.6				<1				1.5				< 0.5			
Magnesium	mg/I Mg	10.16 332.7			11.69 124.8			11.69				13		9.76		17.87				10.17			
Manganese	μg/l μg/l	<0.10			<0.10			96 <0.1				126.1 <0.1		2.1 <0.05		644.8 <0.05				108.8 <0.05			
Mercury	μg/ι	<0.10			<0.10			<0.1				<0.1		<0.05		<0.05			-	<0.05			
Molybdenum (µg/l) Nickel	ua/l	7.9			2			3.2				1.4		<0.5		2.1			-	1.5			
Ortho-Phosphate	mg/I P	0.63			0.4			0.47				0.26		<0.02		1.45				0.14			
pH	ilig/i F	7.8	7.6	7.8	7.8	7.3	7.8	8	7.4	7.8	7.8	8.1		7.3	7.9	7.9		7.6	7.4	8.2	7.6	7.9	
Potassium	mg/l	19.99	7.0	7.0	10.97	7.5	7.0	12.71	7.4	7.0	7.0	7.92		0.46	7.5	51.45		7.0	7.4	8.15	7.0	1.5	
Residue on evaporation	ilig/i	13.33			10.37			12.71				1.52		366		31.43				0.13			
Sampling Depth	m													6.9									
Selenium	μg/l													<0.5						<0.5			
Silver	μg/I													<0.5						nm			
Sodium	mg/l	21.89			17.92			16.98				15.56		16.54		28.55				15.26			
Strontium	µg/l	200						10.00				10.00		144.190		20.00				151.610			
Sulphate	mg/I SO4	52.2			28.1			19.5				17.5		18.2		23.1				22.9			
Suspended Solids	mg/l						12								,	20							
Temp	°C	11.4	16.8	6.5	6	11.9	5	10.3	14.1	13.2	5.6	7		9.0	4.1	12.8		16.7	9.6	9.9	15.8	14.2	
Thallium	μg/l				Ť									<0.1						<0.1			
Time		12.1	12.35	12.35	12.15	13	12.55	13.1		14.3	12.45	12.15		11:35	12.50	10:35		10:00	13:05	10:00	10:15	10:45	
Tin	μg/l													2.80						<1			
T.O.C.	mg/l						11.6							70.3									
T.O.N	mg/l N	0.9			1.93			2.15				1.2		1.06		0.17				1.77			
Total Suspended Solids	mg/l	37	51	8	21	1410		26	363	61	11	9			6	12		30	11	66	54	93	
Uranium	μg/l													0.64						0.55			
Vanadium	μg/l													<0.5						0.51			
Zinc	μg/l	6.7			<1			9.1				5.9		6.1		18.1				2.5			
	11 4																						

Dry

Whiteriver Landfill Site

SURFACE WATER QUALITY

PARAMETERS

RESULTS

Monitoring Point:											,	SW2A									,	
	11	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	Units	03-Jul-07	15-Jan-08		07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10		06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12		18-Jul-12	10-Oct-12	
Alkalinity	mg/ICaCO3	0.39		280			280				224		290		300				220			
Aluminium	μg/l												<5									
Ammonia	mg/l N		0.23	0.08	0.12	0.6	<0.03	0.16	0.09	0.09	0.16		0.03	1.23	1.31		0.1	0.03	0.05	5.84	0.16	
Antimony	μg/l												<0.5									
Arsenic	μg/l												<0.5									
Barium	μg/l												153.6						86.2			
Beryllium	μg/l												<0.5									
B.O.D.	mg/I O2		<2	1.7	8.5	2.7	<50	2.2	1.6	2.1	1.6				7.6		5.3	22.6	3.3	6.7	2.1	
Boron	μg/l			<50			2.4				19		12.3		26.2				19.7			
Cadmium	μg/l			<0.10			<0.1				<0.1		<0.1		<0.1				<0.1			
Calcium	mg/I Ca	52		95.9			95.36				96.78		100.79	2.4	105.18				90.03			
C.O.D.	mg/I O2	19	21	19	49	17	<10	31	10	22	17				80		36	59	23	68	24	
Chloride	mg/l Cl		40	44	51	53	40	52	36	53	65		33	70	120		48	47	37	35	31	
Chromium	μg/l			<1			<1				<1		<0.5		1.1				<0.5			
Cobalt	μg/l												<0.5									
Coliform Bacteria	mg/l																					
Conductivity	µS/cm @ 25	440	530	662	602	685	662	651	632	636	689		657	762	953		615	664	626	676	705	
Copper	μg/l			12.3			2.8				2.5		<0.5		4.2				2			
Cyanide	mg/l												<0.05									
D.O.	% Saturation	79	69	86	82	90	105	87	87	95	124		36	96	96		93	67	88	85	66	
E_ Coli	no/100ml																					
Fluoride	mg/l												<0.150									
Iron	μg/l			307.9			239.4				213		<10		858.1				58.9			
Lead	μg/l			<1			<1				<1		<0.5		1.8				<0.5			
Magnesium	mg/l Mg			12.38			13.8				13.04		9.76		14.13				10.73			
Manganese	μg/l			128.4			124.7				126.9		2.1		266.7				134.2			
Nickel	μg/l			<0.10			<0.1				<0.1		<0.05		<0.05				< 0.05			
Molybdenum (µg/l)				0.0			0.0				4.5		<0.5		4.0				4.0			
Mercury	μg/l			2.2			2.8				1.5		<0.5		1.8				1.6			
Ortho-Phosphate	mg/l P			0.1			0.05			_	0.06		<0.02		0.34				0.04			
pH Determine		7.8	7.7	8.1	7.7	8	8	7.7	8.2	8	8.6		7.3	8.0	8.1		8.1	7.8	8.3	7.7	7.7	
Potassium Sodium	mg/l			5.8			3.99				5.22		0.46		22.4				5.04			
	mg/l										1		366 6.9									
Sampling Depth Selenium	mg/l			-									<0.5									
Silver	μg/l μg/l			<u> </u>	1						1		<0.5	-					 			
	μул			20.22	1		24.01				26.26		16.54		EC 90				20.24			
Residue on evaporation Strontium	μg/l			30.33			24.81				26.26		144.190		56.89				20.34			
Suspended Solids	mg/l			38.4	1		56.3				39		18.2	-	47.2				55			
Sulphate	mg/I SO4			30.4		<5	30.3				33		10.2		41.2				33			
Temp	°C	16.9	6.4	6.8	12.2	5.2	11.9	16.5	13.3	5.6	8.5		9.0	4.1	14.9		16.6	9.5	10.4	16.1	13.5	
Thallium	μg/l	10.8	0.4	0.0	12.2	J.Z	11.8	10.0	13.3	5.0	0.0		<0.1	4.1	14.9		10.0	9.0	10.4	10.1	13.3	
Time	μg/ι	12.5	12	12.3	12.2	12.15	12.2		13.25	11.55	12.3		11:35	13.15	12:35		12:15	11:45	11:05	11:45	11:35	
Tin	µg/l	12.5	14	12.0	14.4	12.10	12.2		13.23	11.55	12.3		2.80	13.13	12.33		12.13	11.43	11.03	11.43	11.33	
Total coliforms	no/100ml			1	 						1		70.3	-				1	 			
T.O.N	mg/l N			1.53			0.75				1.13		1.06		1.61				1.42			
Total Suspended Solids	mg/l	20	16	1.55	55		8	20	36	12	8		1.00	6	7		40	10	1.42	10	7	
Uranium	µg/l	20	10	13	- 55		U	20	30	14	U		0.64	U	- 1		40	10	15	10	- '	
Vanadium	μg/I												<0.5						 			
Zinc	μg/I			<1			4.2				3.4		6.1		9.2				2.4			
Emo	Dry			` '	1	ı	7.2				5.7		0.1		9.2			1	2.7			

Whiteriver Landfill Site

SURFACE WATER QUALITY

PARAMETERS

RESULTS

Monitoring Point:												SW3										
·		Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date									
	Units	03-Jul-07	15-Jan-08	08-Apr-08	07-Oct-08	13-Jan-09	21-Apr-09	14-Jul-09	06-Oct-09	21-Jan-10	14-Apr-10	06-Jul-10	11-Oct-10	18-Jan-11	05-Apr-11	19-Jul-11	11-Oct-11	10-Jan-12	25-Apr-12	18-Jul-12	10-Oct-12	
lkalinity	mg/ICaCO3										148		290						135			
Aluminium	μg/l												<5									
Ammonia	mg/l N							0.56	0.72	0.12	0.44		0.03	5.38			0.04	< 0.03	0.04	0.55	0.13	
Antimony	μg/l												<0.5									
Arsenic	μg/l												<0.5									
Barium	μg/l												153.6						66.1			
3eryllium	μg/l												<0.5									
3.O.D.	mg/l O2							<2.0	<1.5	4.6	<1.5						<1.5	<1.5	3.7	3.8	<1.5	
Boron	μg/l										39.8		12.3						30.3			
Cadmium	μg/l										<0.1		<0.1						<0.1			
Calcium	mg/l Ca										72.78		100.79	5.5					69.86			
C.O.D.	mg/l O2							32	<10	38	<10						13	14	25	32	12	
Chloride	mg/l Cl							22	28	30	20		33	46			18	21	22	27	19	
Chromium	µq/I									- 00	<1		<0.5						<0.5			
Cobalt	μg/l										1.		<0.5						10.0			
Coliform Bacteria	mg/l								1	1			10.0						1	1		
Conductivity	μS/cm @ 25							550	547	598	524		657	815			599	506	515	518	601	
Copper	ua/I							000	571	550	2.4		<0.5	010			000	550	2.3	010	551	
Cyanide	mg/l										2.7		<0.05						2.0			
D.O.	% Saturation							85	67	87	98		36	89			nm	86	77	112	62	
E_ Coli	no/100ml							65	67	07	90		30	09			11111	00	- / /	112	62	
=_ Coll Fluoride													<0.150									
ron	mg/l μg/l										48.4		<10.150						20		-	
Lead	μg/I										<1 9.76		<0.5 9.76						<0.5		-	
Magnesium	mg/l Mg																		9.01			
Manganese	μg/l										45.7		2.1						68.7			
Nickel	μg/l										<0.1		<0.05						<0.05			
Molybdenum (µg/l)													<0.5									
Mercury	μg/l										3.2		<0.5						2			
Ortho-Phosphate	mg/l P										<0.02		<0.02						<0.02			
pH								7.8	8	7.9	7.9		7.3	7.9			7.8	8	8.2	8.2	8.2	
Potassium	mg/l										2.55		0.46						3.23			
Sodium	mg/l												366									
Sampling Depth	mg/l												6.9									
Selenium	μg/l												<0.5									
Silver	μg/l												<0.5									
Residue on evaporation											16.95		16.54						18.75			
Strontium	μg/l												144.190									
Suspended Solids	mg/l										94.2		18.2						103.8			
Sulphate	mg/I SO4													`								
Гетр	°C							17.6	13	5.5	8.3		9.0	6.8			14	7	10	17.0	11.0	
Thallium	μg/l												<0.1									
Time									13.3	13.2	14.2		11:35	14.20			13:25	12:30	11:15	11:00	11:10	
Γin	μg/l												2.80									
Total coliforms	no/100ml												70.3									
T.O.N	mg/l N										0.58		1.06						0.14			
Total Suspended Solids	mg/l							14	<5	42	<5			15			<5	8	5	<5	<5	
Uranium	μg/l								10	<u> </u>			0.64					•	Ť	<u> </u>		
Vanadium	μg/I												<0.5									
Zinc	μg/l										2.4		6.1						2.3			

<u>APPENDIX I</u>

GAS MONITORING RESULTS

IBR0509/Reports Status: Final Date: May 2013

				P10_39900
	Date/Time (UK)	CH4	CO2	O2
PZ1 WHIT		0		20.6
PZ2 WHIT		0		19.1
PZ3 WHIT		0		20.3
PZ4 WHIT		0		20.1
PZ5 WHIT		0		19.6
PZ54 WHI	27/01/2012 14:47	0		20
PZ53 WHI	27/01/2012 14:49	0		19.5
PZ52 WHI	27/01/2012 14:50	0	1.3	19.5
PZ51 WHI	27/01/2012 14:52	0	0.3	20.2
PZ50 WHI	27/01/2012 14:54	0	0.8	19.7
PZ49 WHI	27/01/2012 14:55	0	3.4	17.7
PZ48 WHI	27/01/2012 14:56	0	2.6	18.7
PZ47 WHI	27/01/2012 14:58	0	2.7	18.2
PZ46 WHI	27/01/2012 14:59	0	4.6	17.2
PZ45 WHI	27/01/2012 15:00	0	0.6	19.9
PZ44 WHI	27/01/2012 15:01	0	0.6	19.9
PZ43 WHI	27/01/2012 15:02	0	0.9	19.8
PZ43 WHI	27/01/2012 15:03	0	0.9	19.6
PZ42 WHI	27/01/2012 15:03	0	0.6	19.8
PZ41 WHI	27/01/2012 15:05	0	0.8	19.6
PZ40 WHI	27/01/2012 15:26	0	0.4	19.8
PZ39 WHI	27/01/2012 15:29	0	0.8	19.5
PZ38 WHI	27/01/2012 15:31	0	0.6	19.7
PZ37 WHI	27/01/2012 15:39	0	0.3	19.9
PZ36 WHI	27/01/2012 15:40	0	1.5	18.5
PZ35 WHI	27/01/2012 15:42	0	0.5	19.8
PZ34 WHI	27/01/2012 15:44	0	2.2	18.4
PZ33 WHI	27/01/2012 15:46	0	3.1	16.5
PZ32 WHI	27/01/2012 15:47	0	1.3	19.1
PZ31 WHI	27/01/2012 15:48	0	2.4	18.4
PZ30 WHI	27/01/2012 15:49	0	2.6	18.3
PZ29 WHI	27/01/2012 15:50	0	1.4	19.1
PZ28 WHI	27/01/2012 15:50	0	2.1	18
PZ26 WHI	27/01/2012 15:51	0	0	20.5
PZ25 WHI		0	0	20.5
PZ24 WHI	27/01/2012 15:53	0	0	20.6
PZ23 WHI	27/01/2012 15:54	0	0	20.6
PZ22 WHI	27/01/2012 15:55	0	0	20.6
PZ21 WHI	27/01/2012 15:56	0	0	20.6
PZ11 WHI	27/01/2012 15:57	0	0	20.6
PZ12 WHI	27/01/2012 15:58	0	0	20.7
PZ13 WHI	27/01/2012 15:59	0	0	20.7
PZ14 WHI	27/01/2012 15:59	0	0	20.7
PZ15 WHI	27/01/2012 16:00	0	0	20.7
PZ16 WHI	27/01/2012 16:02	0	0	20.7

Device ID	Date/Time (UK)	CH4	CO2	02	
	03/02/2011 14:06)	0	21
PZ2 WHIT)	0.4	20.8
PZ3 WHIT			Š	1.8	19.5
PZ4 WHIT)	0.5	20.8
PZ5 WHIT				3.5	17.1
PZ54 WHI	03/02/2011 13:12)	0.3	20.8
PZ53 WHI	03/02/2011 13:13)	0.9	18.9
PZ52 WHI	03/02/2011 13:14)	0.7	20.4
PZ51 WHI	03/02/2011 13:16)	0	21
PZ50 WHI	03/02/2011 13:17)	1.3	20.2
PZ49 WHI)	1.2	19.4
PZ48 WHI	03/02/2011 13:20		Š	1.3	19.9
PZ47 WHI			Ď	1.4	20.3
PZ46 WHI				4.6	17.4
PZ45 WHI)	1	19.8
PZ44 WHI			Ď	0.2	20.8
PZ43 WHI			Ď	0.8	20.4
PZ42 WHI	03/02/2011 13:28)	0.6	20.5
PZ41 WHI	03/02/2011 13:29)	1	20
PZ40 WHI	03/02/2011 13:31			0.1	20.9
PZ39 WHI	03/02/2011 13:32			0.4	20.8
PZ38 WHI	03/02/2011 13:34)	0.2	20.8
PZ37 WHI	03/02/2011 13:35)	0.1	21
PZ36 WHI	03/02/2011 13:36	()	0.5	20.4
PZ35 WHI	03/02/2011 13:38)	0.2	20.9
PZ34 WHI	03/02/2011 13:39	(2	15.8
PZ33 WHI	03/02/2011 13:41	()	0.2	20.3
PZ32 WHI	03/02/2011 13:42	()	1.4	20.2
PZ31 WHI	03/02/2011 13:44	()	0.5	20.6
PZ30 WHI	03/02/2011 13:45	()	0.6	20.7
PZ29 WHI	03/02/2011 13:47	()	0.3	20.8
PZ28 WHI	03/02/2011 13:48	(4.4	18
PZ26 WHI	03/02/2011 13:50	()	0	21
PZ25 WHI	03/02/2011 13:51	()	0.1	21
PZ24 WHI	03/02/2011 13:52	()	0.1	20.9
PZ23 WHI	03/02/2011 13:54	()	0.4	20.7
PZ22 WHI	03/02/2011 13:55	(1.7	18.2
PZ21 WHI	03/02/2011 13:57	()	0	20.9
PZ11 WHI	03/02/2011 13:58	()	0	21
PZ12 WHI	03/02/2011 13:59	()	0	21
PZ13 WHI	03/02/2011 14:00	()	0	21
PZ14 WHI	03/02/2011 14:01	()	0	21
PZ15 WHI	03/02/2011 14:02	()	0	21
PZ16 WHI	03/02/2011 14:03	C)	0	21

Device ID	Date/Time (UK)	CH4	CO2	O2	
	09/03/2012 15:59	0	0		
PZ2 WHIT	09/03/2012 15:11	0	0.6	20.3	
PZ2 WHIT	09/03/2012 15:11	0	0.6	20.2	
PZ3 WHIT	09/03/2012 15:12	0	2.4	18	
PZ4 WHIT	09/03/2012 15:13	0	1.2	19.6	
PZ5 WHIT	09/03/2012 15:14	0	4.4	15	
PZ54 WHI	09/03/2012 15:15	0	0.3	20.4	
PZ53 WHI	09/03/2012 15:16	0	0.5	20.1	
PZ52 WHI	09/03/2012 15:17	0	1	19.3	
PZ51 WHI	09/03/2012 15:18	0	0.4	20.3	
PZ50 WHI	09/03/2012 15:20	0	2.7	18.1	
PZ49 WHI	09/03/2012 15:21	0	2	18	
PZ48 WHI	09/03/2012 15:22	0	4.2	17.4	
PZ47 WHI	09/03/2012 15:23	0	1.5	19.6	
PZ46 WHI	09/03/2012 15:24	0	5.7	12.4	
PZ45 WHI	09/03/2012 15:25	0	0.8	19.8	
PZ44 WHI	09/03/2012 15:26	0	0.3	20.5	
PZ43 WHI	09/03/2012 15:27	0	0.6	20.2	
PZ42 WHI	09/03/2012 15:28	0	0	20.7	
PZ41 WHI	09/03/2012 15:29	0	1.4	19.3	
PZ40 WHI	09/03/2012 15:31	0	0.6	20.1	
PZ39 WHI	09/03/2012 15:32	0	0	20.9	
PZ38 WHI	09/03/2012 15:33	0	0.2	20.7	
PZ37 WHI	09/03/2012 15:34	0	0.1	20.8	
PZ36 WHI	09/03/2012 15:35	0	1.3	19.4	
PZ35 WHI	09/03/2012 15:36	0	0.5	20.3	
PZ34 WHI	09/03/2012 15:37	0	0.8	20.3	
PZ33 WHI	09/03/2012 15:39	0	0.9	19.5	
PZ32 WHI	09/03/2012 15:40	0	2.3		
PZ31 WHI	09/03/2012 15:41	0	2		
PZ30 WHI		0	1	19.4	
PZ29 WHI		0	0.5		
PZ28 WHI		0	5.2		
PZ26 WHI	09/03/2012 15:50	0.2	1.1		
PZ25 WHI	09/03/2012 15:51	0	0.1	21	
PZ24 WHI	09/03/2012 15:51	0	0		
PZ23 WHI	09/03/2012 15:52	0	0		
PZ22 WHI	09/03/2012 15:53	0	0		
PZ21 WHI	09/03/2012 15:54	0	0		
PZ11 WHI	09/03/2012 15:54	0	0		
PZ12 WHI	09/03/2012 15:55	0	0		
PZ13 WHI	09/03/2012 15:56	0	0		
PZ14 WHI	09/03/2012 15:56	0	0		
PZ15 WHI	09/03/2012 15:57	0	0		
PZ16 WHI	09/03/2012 15:58	0	0	21.1	

ID	DATE	CH4	CO2	02	BALA	NCE
		%	%	%	%	
PZ1 WHIT	13/04/2012 12:57	,	0	0	21.4	78.6
PZ2 WHIT	13/04/2012 12:09	1	0	0	21	79
PZ3 WHIT	13/04/2012 12:09)	0	0	21	79
PZ4 WHIT	13/04/2012 12:11		0	1.2	20.2	78.6
PZ5 WHIT	13/04/2012 12:12		0	2.9	19	78.1
PZ54 WHI	13/04/2012 12:13		0	0.6	20.4	79
PZ53 WHI	13/04/2012 12:14		0	1.1	19.6	79.3
PZ52 WHI	13/04/2012 12:15		0	0.8	20.2	79
PZ51 WHI	13/04/2012 12:17		0	0.6	20.4	79
PZ50 WHI	13/04/2012 12:18		0	2.3	19.1	78.6
PZ49 WHI	13/04/2012 12:19	1	0	3.8	18.8	77.4
PZ48 WHI	13/04/2012 12:20	1	0	4.3	17.5	78.2
PZ47 WHI	13/04/2012 12:22		0	2.8	17.8	79.4
PZ46 WHI	13/04/2012 12:23		0	9	9.4	81.6
PZ45 WHI	13/04/2012 12:24		0	8.0	19.5	79.7
PZ44 WHI	13/04/2012 12:25		0	0.3	20.4	79.3
PZ43 WHI	13/04/2012 12:27		0	0.8	19.9	79.3
PZ42 WHI	13/04/2012 12:28		0	1.2	20	78.8
PZ41 WHI	13/04/2012 12:29		0	1.2	19.7	79.1
PZ40 WHI	13/04/2012 12:31		0	0.9	19.8	79.3
PZ39 WHI	13/04/2012 12:32		0	2	19.3	78.7
PZ38 WHI	13/04/2012 12:33		0	0.4	20.2	79.4
PZ37 WHI	13/04/2012 12:34		0	0.4	20.5	79.1
PZ36 WHI	13/04/2012 12:36		0	1.3	19.8	78.9
PZ35 WHI	13/04/2012 12:39		0	0.6	20.3	79.1
PZ34 WHI	13/04/2012 12:40		0	2.4	15.7	81.9
PZ33 WHI	13/04/2012 12:41		0	1.5	17.8	80.7
PZ32 WHI	13/04/2012 12:42		0	2	19.2	78.8
PZ31 WHI	13/04/2012 12:43		0	8.0	20.3	78.9
PZ30 WHI	13/04/2012 12:44		0	1.9	16.1	82
PZ29 WHI	13/04/2012 12:46		0	0.9	20.3	78.8
PZ28 WHI	13/04/2012 12:47		0	4.5	18.2	77.3
PZ26 WHI	13/04/2012 12:49		0	1	20.2	78.8
PZ25 WHI	13/04/2012 12:49		0	0.4	20.2	79.4
PZ24 WHI	13/04/2012 12:50		0	0.1	21.1	78.8
PZ23 WHI	13/04/2012 12:51		0	0	21.1	78.9
PZ21 WHI	13/04/2012 12:52		0	0.2	20.8	79
PZ11 WHI	13/04/2012 12:53		0	0	21.2	78.8
PZ12 WHI	13/04/2012 12:54		0	0	21.2	78.8
PZ13 WHI	13/04/2012 12:54		0	0	21.2	78.8
PZ14 WHI	13/04/2012 12:55		0	0	21.3	78.7
PZ15 WHI	13/04/2012 12:56		0	0	21.3	78.7
PZ16 WHI	13/04/2012 12:57		0	0	21.3	78.7
	·, · ·, · · · · · · · · · · · · · · · ·					

	MAY				
ID	DATE	CH4	CO2	O2	BALANCE
		%	%	%	%
PZ2 WHIT	29/05/2012 10:54	0	2.2	19	78.8
PZ3 WHIT	29/05/2012 10:55	0	2.4	18.6	79
PZ4 WHIT	29/05/2012 10:56	0	1.5	20.1	78.4
PZ5 WHIT	29/05/2012 10:57	0	3	18.4	78.6
PZ54 WHI	29/05/2012 10:59	0.1	1.4	20	78.5
PZ53 WHI	29/05/2012 11:00	0	1	19.5	79.5
PZ52 WHI	29/05/2012 11:01	0	1.6	19.8	78.6
PZ51 WHI	29/05/2012 11:05	0	0.7	20.2	79.1
PZ50 WHI	29/05/2012 11:07	0	2.9	18.4	78.7
PZ49 WHI	29/05/2012 11:08	0	4.1	18.6	77.3
PZ48 WHI	29/05/2012 11:09	0	6.3	14.4	79.3
PZ47 WHI	29/05/2012 11:10	0.1	6.1	16.7	77.1
PZ46 WHI	29/05/2012 11:11	0.1	11.1	8.5	80.3
PZ45 WHI	29/05/2012 11:12	0.1	0.4	20.1	79.4
PZ44 WHI	29/05/2012 11:13	0.1	1	19.9	79
PZ43 WHI	29/05/2012 11:15	0.1	0.3	20.2	79.4
PZ42 WHI	29/05/2012 11:16	0	1.5	19.7	78.8
PZ41 WHI	29/05/2012 11:17	0.1	2	19.2	78.7
PZ40 WHI	29/05/2012 11:18	0.1	1.5	19.4	79
PZ39 WHI	29/05/2012 11:19	0	0.9	19.5	79.6
PZ38 WHI	29/05/2012 11:20	0.1	0.9	19.4	79.6
PZ37 WHI	29/05/2012 11:21	0	0.1	20.3	79.6
PZ36 WHI	29/05/2012 11:22	0.1	2	19.1	78.8
PZ35 WHI	29/05/2012 11:23	0	0.9	19.8	79.3
PZ34 WHI	29/05/2012 11:24	0.1	1.4	18.7	79.8
PZ33 WHI	29/05/2012 11:25	0.1	1.7	17.9	80.3
PZ32 WHI	29/05/2012 11:27	0	2.9	17.9	79.2
PZ31 WHI	29/05/2012 11:28	0	1.4	19.6	79
PZ30 WHI	29/05/2012 11:29	0.1	1.9	18.7	79.3
PZ29 WHI	29/05/2012 11:31	0	1.2	19.6	79.2
PZ28 WHI	29/05/2012 11:32	0	5.9	16.1	78
PZ26 WHI	29/05/2012 11:34	0	1.6	19.2	79.2
PZ25 WHI	29/05/2012 11:35	0.1	0.1	20.6	79.2
PZ24 WHI	29/05/2012 11:36	0	0	20.8	79.2
PZ23 WHI	29/05/2012 11:37	0	0	20.8	79.2
PZ22 WHI	29/05/2012 11:38	0	0	20.9	79.1
PZ21 WHI	29/05/2012 11:39	0	0.2	20.7	79.1
PZ11 WHI	29/05/2012 11:40	0	0	21	79
PZ12 WHI	29/05/2012 11:40	0	0	20.8	79.2
PZ13 WHI	29/05/2012 11:41	0	0	20.9	79.1
PZ14 WHI	29/05/2012 11:41	0	0	21	79
PZ15 WHI	29/05/2012 11:42	0	0	20.8	79.2
PZ16 WHI	29/05/2012 11:43	0.1	0	21.2	78.7

Jun-12

ID	DATE	CH4	CO2	02
D74 M/HT	44/05/2042 44:44	%	%	%
PZ1 WHIT PZ2 WHIT	11/06/2012 11:11 11/06/2012 11:12			
PZ3 WHIT	11/06/2012 11:12			
PZ4 WHIT	11/06/2012 11:14			
PZ5 WHIT	11/06/2012 11:16			
PZ54 WHI	11/06/2012 11:19			
PZ53 WHI	11/06/2012 11:20			
PZ52 WHI	11/06/2012 11:21			
PZ51 WHI	11/06/2012 11:23		0.8	19.8
PZ50 WHI	11/06/2012 11:25	0	0.1	20.2
PZ49 WHI	11/06/2012 11:26	0	6.5	13.1
PZ48 WHI	11/06/2012 11:28	0	4.4	15.5
PZ47 WHI	11/06/2012 11:30	0	2.4	18.6
PZ46 WHI	11/06/2012 11:31	. 0	6.7	13.6
PZ45 WHI	11/06/2012 11:32		0.6	
PZ44 WHI	11/06/2012 11:34			
PZ43 WHI	11/06/2012 11:35			
PZ42 WHI	11/06/2012 11:36			
PZ41 WHI	11/06/2012 11:38			
PZ40 WHI	11/06/2012 11:39			
PZ39 WHI	11/06/2012 11:41			18.9
PZ38 WHI	11/06/2012 11:42			20.2
PZ37 WHI	11/06/2012 11:44			
PZ36 WHI	11/06/2012 11:47			
PZ35 WHI	11/06/2012 11:48			
PZ34 WHI	11/06/2012 11:54			
PZ33 WHI PZ33 WHI	11/06/2012 11:54			18.3
PZ33 WHI PZ32 WHI	11/06/2012 11:55 11/06/2012 11:56			18.7 18.2
PZ32 WHI	11/06/2012 11:57			
PZ31 WHI	11/06/2012 11:59			
PZ29 WHI	11/06/2012 11:33			
PZ28 WHI	11/06/2012 12:01			
PZ27 WHI	11/06/2012 12:07		0.6	
PZ26 WHI	11/06/2012 12:07		0.6	
PZ25 WHI	11/06/2012 12:09		0	20.6
PZ24 WHI	11/06/2012 12:10		0	20.6
PZ23 WHI	11/06/2012 12:11	0	1	19.6
PZ22 WHI	11/06/2012 12:16	0	0	20.4
PZ21 WHI	11/06/2012 12:19	0	0.2	20.4
PZ11 WHI	11/06/2012 12:21	0	0	20.6
PZ12 WHI	11/06/2012 12:23	0	0	20.6
PZ13 WHI	11/06/2012 12:25	0	0	20.6
PZ14 WHI	11/06/2012 12:27	0	0	20.6
PZ15 WHI	11/06/2012 12:29	0	0	20.7

Pz number	Date	CH4	CO2	O2
PZ1 WHIT	27/07/2012 00:00	0	0.1	23.2
PZ2 WHIT	27/07/2012 00:00	0	0.6	19.4
PZ3 WHIT	27/07/2012 00:00	0	1.2	19.2
PZ4 WHIT	27/07/2012 00:00	0	1.8	20.1
PZ5 WHIT	27/07/2012 00:00	0	0.2	19.8
PZ54 WHI	27/07/2012 00:00	0	0.6	19.5
PZ53 WHI	27/07/2012 00:00	0	0.9	19.2
PZ52 WHI	27/07/2012 00:00	0	0.2	20.1
PZ51 WHI	27/07/2012 00:00	Õ	0.3	20
PZ50 WHI	27/07/2012 00:00	ő	0.3	20
PZ49 WHI	27/07/2012 00:00	0	1	19.7
PZ48 WHI	27/07/2012 00:00	0	0.2	20.1
PZ47 WHI	27/07/2012 00:00	Ő	0.6	199.3
PZ46 WHI	27/07/2012 00:00	0	3.7	17.4
PZ45 WHI	27/07/2012 00:00	0	1.3	18.4
PZ44 WHI	27/07/2012 00:00	0	0.2	20.2
PZ43 WHI	27/07/2012 00:00	0	1.3	19.6
PZ43 WHI	27/07/2012 00:00	0	1.3	19.8
PZ42 WHI	27/07/2012 00:00	0	0.2	19.7
PZ42 WHI	27/07/2012 00:00	0	0.2	19.7
PZ41 WHI	27/07/2012 00:00		0.3	20
PZ39 WHI	27/07/2012 00:00	0	0.1	19.9
PZ38 WHI	27/07/2012 00:00	0		20.1
			0.1	20.1
PZ37 WHI	27/07/2012 00:00	0	0.1	
PZ36 WHI	27/07/2012 00:00	0	0.5	19.4
PZ35 WHI	27/07/2012 00:00	0	0.2	20
PZ34 WHI	27/07/2012 00:00	0	1.1	19
PZ33 WHI	27/07/2012 00:00	0	0.2	19.9
PZ33 WHI	27/07/2012 00:00	0	1.3	19.2
PZ32 WHI	27/07/2012 00:00	0	0.5	19.8
PZ31 WHI	27/07/2012 00:00	0	1.4	18.8
PZ30 WHI	27/07/2012 00:00	0	1.5	18
PZ29 WHI	27/07/2012 00:00	0	0.2	20
PZ28 WHI	27/07/2012 00:00	0	2.3	18.2
PZ27 WHI	27/07/2012 00:00	0	0.1	20.1
PZ25 WHI	27/07/2012 00:00	0	0.1	20.2
PZ24 WHI	27/07/2012 00:00	0	0.2	19.9
PZ23 WHI	27/07/2012 00:00	0	0.5	19.7
PZ22 WHI	27/07/2012 00:00	0	1.4	19.1
PZ21 WHI	27/07/2012 00:00	0	0.1	20.1
PZ11 WHI	27/07/2012 00:00	0	0.1	20.2
PZ12 WHI	27/07/2012 00:00	0	0.1	20.2
PZ13 WHI	27/07/2012 00:00	0	0	20.2
PZ14 WHI	27/07/2012 00:00	0	0.1	20.2
PZ15 WHI	27/07/2012 00:00	0	0.1	20.2
PZ16 WHI	27/07/2012 00:00	0	0.1	20.2

Device ID Empty	Date/Time (UK)	CH4 CO2	2 02	P	eak CH4
PZ1 WHIT	06/08/2012 00:00	0	0	21	0
PZ2 WHIT	06/08/2012 00:00	0	0.3	20.8	0
PZ3 WHIT	06/08/2012 00:00	0	1.7	19.8	0
PZ4 WHIT	06/08/2012 00:00	0	0.4	20.8	0
PZ5 WHIT	06/08/2012 00:00	0	2.6	18.8	0
PZ54 WHI	06/08/2012 00:00	0	0	20.8	0
PZ53 WHI	06/08/2012 00:00	0	1.1	19	0
PZ52 WHI	06/08/2012 00:00	0	0.5	20.3	0
PZ51 WHI	06/08/2012 00:00	0	0.1	20.8	0
PZ50 WHI	06/08/2012 00:00	0	8.0	20.2	0
PZ49 WHI	06/08/2012 00:00	0	1.1	19.6	0
PZ48 WHI	06/08/2012 00:00	0	1.3	20	0
PZ47 WHI	06/08/2012 00:00	0	1.2	19.9	0
PZ46 WHI	06/08/2012 00:00	0	3.9	17.6	0
PZ45 WHI	06/08/2012 00:00	0	1	20	0
PZ44 WHI	06/08/2012 00:00	0	0	20.6	0
PZ43 WHI	06/08/2012 00:00	0	0.7	20.2	0
PZ42 WHI	06/08/2012 00:00	0	0.6	20.5	0
PZ42 WHI	06/08/2012 00:00	0	0.6	20.2	0
PZ41 WHI	06/08/2012 00:00	0	0.9	19.9	0
PZ40 WHI	06/08/2012 00:00	0	0.1	20.9	0
PZ39 WHI	06/08/2012 00:00	0	0.3	20.6	0
PZ38 WHI	06/08/2012 00:00	0	0.3	20.6	0
PZ37 WHI	06/08/2012 00:00	0	0.1	20.9	0
PZ36 WHI	06/08/2012 00:00	0	0.5	20.5	0
PZ35 WHI	06/08/2012 00:00	0	0.3	20.8	0
PZ34 WHI	06/08/2012 00:00	0	2.1	17.6	0
PZ33 WHI	06/08/2012 00:00	0	0.2	20.3	0
PZ32 WHI	06/08/2012 00:00	0	1.2	20.4	0
PZ31 WHI	06/08/2012 00:00	0	0.5	20.5	0
PZ30 WHI	06/08/2012 00:00	0	0.2	20.3	0
PZ29 WHI	06/08/2012 00:00	0	0.3	20.8	0
PZ28 WHI	06/08/2012 00:00	0	3.9	18.4	0
PZ26 WHI	06/08/2012 00:00	0	0	21	0
PZ25 WHI	06/08/2012 00:00	0	0	20.9	0
PZ24 WHI	06/08/2012 00:00	0	0	21	0
PZ23 WHI	06/08/2012 00:00	0	0	20.8	0
PZ22 WHI	06/08/2012 00:00	0	1.5	18.7	0
PZ21 WHI	06/08/2012 00:00	0	0	20.9	0
PZ11 WHI	06/08/2012 00:00	0	0	21	0
PZ12 WHI	06/08/2012 00:00	0	0	21	0
PZ13 WHI	06/08/2012 00:00	0	0	21	0
PZ14 WHI	06/08/2012 00:00	0	0	21	0
PZ15 WHI	06/08/2012 00:00	0	0	21	0
PZ16 WHI	06/08/2012 00:00	0	0	21	0

Device ID	Empty Date/Time (UK)	CH4	CO2	O2	Peak CH4
PZ1 WHIT	06/09/2012 00:00	0	0	21	0
PZ2 WHIT	06/09/2012 00:00	0	0.3	20.8	0
PZ3 WHIT	06/09/2012 00:00	0	1.4	19.8	0
PZ4 WHIT	06/09/2012 00:00	0	0.4	20.8	0
PZ5 WHIT	06/09/2012 00:00		2.9	18.8	0
PZ54 WHI	06/09/2012 00:00		0.2	20.8	0
PZ53 WHI	06/09/2012 00:00		1.2	19	0
PZ52 WHI	06/09/2012 00:00		0.5	20.3	0
PZ51 WHI	06/09/2012 00:00		0.1	20.8	0
PZ50 WHI	06/09/2012 00:00		8.0	20.2	0
PZ49 WHI	06/09/2012 00:00		1.1	19.6	0
PZ48 WHI	06/09/2012 00:00		1.3	20	0
PZ47 WHI	06/09/2012 00:00		1.2	19.9	0
PZ46 WHI	06/09/2012 00:00		5.1	17.6	0
PZ45 WHI	06/09/2012 00:00		1	20	0
PZ44 WHI	06/09/2012 00:00		0.3	20.6	0
PZ43 WHI	06/09/2012 00:00		0.7	20.2	0
PZ42 WHI	06/09/2012 00:00		0.6	20.5	0
PZ42 WHI	06/09/2012 00:00	0	0.6	20.2	0
PZ41 WHI	06/09/2012 00:00	0	0.9	19.9	0
PZ40 WHI	06/09/2012 00:00	0	0	20.9	0
PZ39 WHI	06/09/2012 00:00	0	0.3	20.6	0
PZ38 WHI	06/09/2012 00:00	0	0.3	20.6	0
PZ37 WHI	06/09/2012 00:00	0	0	20.9	0
PZ36 WHI	06/09/2012 00:00	0	0.5	20.5	0
PZ35 WHI	06/09/2012 00:00	0	0.3	20.8	0
PZ34 WHI	06/09/2012 00:00	0	1.5	17.6	0
PZ33 WHI	06/09/2012 00:00	0	0.4	20.3	0
PZ32 WHI	06/09/2012 00:00	0	1.2	20.4	0
PZ31 WHI	06/09/2012 00:00	0	0.5	20.5	0
PZ30 WHI	06/09/2012 00:00	0	0.6	20.3	0
PZ29 WHI	06/09/2012 00:00	0	0.3	20.8	0
PZ28 WHI	06/09/2012 00:00	0	3.9	18.4	0
PZ26 WHI	06/09/2012 00:00	0	0	21	0
PZ25 WHI	06/09/2012 00:00	0	0	20.9	0
PZ24 WHI	06/09/2012 00:00	0	0	21	0
PZ23 WHI	06/09/2012 00:00	0	0	20.8	0
PZ22 WHI	06/09/2012 00:00	0	1.5	18.7	0
PZ21 WHI	06/09/2012 00:00	0	0	20.9	0
PZ11 WHI	06/09/2012 00:00	0	0	21	0
PZ12 WHI	06/09/2012 00:00	0	0	21	0
PZ13 WHI	06/09/2012 00:00	0	0	21	0
PZ14 WHI	06/09/2012 00:00	0	0	21	0
PZ15 WHI	06/09/2012 00:00	0	0	21	0
PZ16 WHI	06/09/2012 00:00	0	0	21	0

Device ID	Empty D	ate/Time (UK)	CH4	CO2	O2	Peak CH4
PZ1 WHI	Γ	16/10/2012 00:00	0	0	20.9	0
PZ2 WHI	Γ	16/10/2012 00:00	0	0	20.8	0
PZ3 WHI	Γ	16/10/2012 00:00	0	1.1	20.1	0
PZ4 WHI	Γ	16/10/2012 00:00	0	0.4	20.8	0
PZ5 WHI	Γ	16/10/2012 00:00	0	2.2	19.3	0
PZ54 WH	ŀ	16/10/2012 00:00	0	0.2	20.8	0
PZ53 WH	l	16/10/2012 00:00	0	1	19.2	0
PZ52 WH		16/10/2012 00:00	0	0.6	20.2	0
PZ51 WH		16/10/2012 00:00	0	0	20.9	0
PZ50 WH	l	16/10/2012 00:00	0	8.0	20.2	0
PZ49 WH		16/10/2012 00:00	0	1.3	19.4	0
PZ48 WH		16/10/2012 00:00	0	0.9	20.4	0
PZ47 WH		16/10/2012 00:00	0	1.2	20	0
PZ46 WH		16/10/2012 00:00	0	5.1	17.7	0
PZ45 WH	·	16/10/2012 00:00	0	0.8	19.9	0
PZ44 WH		16/10/2012 00:00	0	0	20.9	0
PZ43 WH		16/10/2012 00:00	0	0.8	19.9	0
PZ42 WHI		16/10/2012 00:00	0	0.6	20.5	0
PZ42 WH		16/10/2012 00:00	0	0.6	20.3	0
PZ41 WH		16/10/2012 00:00	0	1	20	0
PZ40 WHI		16/10/2012 00:00	0	0	20.9	0
PZ39 WHI	•	16/10/2012 00:00	0	0.2	20.5	0
PZ38 WHI		16/10/2012 00:00	0	0.3	20.5	0
PZ37 WHI	•	16/10/2012 00:00	0	0	20.9	0
PZ36 WHI		16/10/2012 00:00	0	0.4	20.6	0
PZ35 WHI	•	16/10/2012 00:00	0	0.3	20.7	0
PZ34 WHI		16/10/2012 00:00	0	1.6	17.7	0
PZ33 WHI		16/10/2012 00:00	0	0.3	20.2	0
PZ32 WHI		16/10/2012 00:00	0	1.1	20.4	0
PZ31 WHI		16/10/2012 00:00	0	0.5	20.4	0
PZ30 WHI		16/10/2012 00:00	0	0.5	20.2	0
PZ29 WHI		16/10/2012 00:00	0	0.2	20.8	0
PZ28 WHI		16/10/2012 00:00	0	3.7	18.5	0
PZ26 WHI		16/10/2012 00:00	0	0	20.9	0
PZ25 WHI		16/10/2012 00:00	0	0	20.9	0
PZ24 WHI		16/10/2012 00:00	0	0	20.9	0
PZ23 WHI		6/10/2012 00:00	0	0	20.9	0
PZ22 WHI		6/10/2012 00:00	0	1.3	19	0
PZ21 WHI		6/10/2012 00:00	0	0	20.9	0
PZ11 WHI		6/10/2012 00:00	0	0	20.9	0
PZ12 WHI		6/10/2012 00:00	0	0	21	0
PZ13 WHI		6/10/2012 00:00	0	0	20.9	0
PZ14 WHI		6/10/2012 00:00	0	0	21	0
PZ15 WHI		6/10/2012 00:00	0	0	21	0
PZ16 WHI	1	6/10/2012 00:00	0	0	21	0

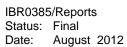
Device ID Empty	Date/Time (UK) CH4	CO2	02		ık CH4
PZ1 WHIT	06/11/2012 00:00	0	0	21	0
PZ2 WHIT	06/11/2012 00:00	0	0.3	20.8	0
PZ3 WHIT	06/11/2012 00:00	0	1.5	20	0
PZ4 WHIT	06/11/2012 00:00	0	0.4	20.8	0
PZ5 WHIT	06/11/2012 00:00	0	2.6	18.8	0
PZ54 WHI	06/11/2012 00:00	0	0	20.9	0
PZ53 WHI	06/11/2012 00:00	0	1	19.1	0
PZ52 WHI	06/11/2012 00:00	0	0.5	20.3	0
PZ51 WHI	06/11/2012 00:00	0	0	20.9	0
PZ50 WHI	06/11/2012 00:00	0	0.8	20.2	0
PZ49 WHI	06/11/2012 00:00	0	1.1	19.6	0
PZ48 WHI	06/11/2012 00:00	0	1.3	20	0
PZ47 WHI	06/11/2012 00:00	0	1.2	19.9	0
PZ46 WHI	06/11/2012 00:00	0	3.2	18.1	0
PZ45 WHI	06/11/2012 00:00	0	1	20	0
PZ44 WHI	06/11/2012 00:00	0	0	20.6	0
PZ43 WHI	06/11/2012 00:00	0	0.7	20.2	0
PZ42 WHI	06/11/2012 00:00	0	0.4	20.4	0
PZ42 WHI	06/11/2012 00:00	0	0.6	20.2	0
PZ41 WHI	06/11/2012 00:00	0	0.9	19.9	0
PZ40 WHI	06/11/2012 00:00	0	0	20.9	0
PZ39 WHI	06/11/2012 00:00	0	0.3	20.6	0
PZ38 WHI	06/11/2012 00:00	0	0.3	20.6	0
PZ37 WHI	06/11/2012 00:00	0	0.1	20.9	0
PZ36 WHI	06/11/2012 00:00	0	0.5	20.5	0
PZ35 WHI	06/11/2012 00:00	0	0.3	20.8	0
PZ34 WHI	06/11/2012 00:00	0	1.4	18.9	0
PZ33 WHI PZ32 WHI	06/11/2012 00:00 06/11/2012 00:00	0 0	0.2 1.2	20.3 20.4	0 0
PZ32 WHI	06/11/2012 00:00	0	0.5	20.4	0
PZ30 WHI	06/11/2012 00:00	0	0.5	20.3	0
PZ29 WHI	06/11/2012 00:00	0	0.2	20.8	0
PZ28 WHI	06/11/2012 00:00	0	3.9	20.6 18.4	0
PZ26 WHI	06/11/2012 00:00	0	ა.9 0	21	0
PZ25 WHI	06/11/2012 00:00	0	0	20.9	0
PZ24 WHI	06/11/2012 00:00	0	0	20.9	0
PZ23 WHI	06/11/2012 00:00	0	0	20.8	0
PZ22 WHI	06/11/2012 00:00	0	1.3	19.2	0
PZ21 WHI	06/11/2012 00:00	0	0	20.9	0
PZ11 WHI	06/11/2012 00:00	0	0	20.9	0
PZ12 WHI	06/11/2012 00:00	0	0	21	0
PZ13 WHI	06/11/2012 00:00	0	0	21	0
PZ14 WHI	06/11/2012 00:00	0	0	21	0
PZ15 WHI	06/11/2012 00:00	0	0	21	0
PZ16 WHI	06/11/2012 00:00	0	0	21	0
1 410 44111	00/11/2012 00:00	v	v	- :	V

ID	DATE	CH4	CO2	02
		%	%	%
PZ1 WHIT	13/12/2012 00:00	0	0	21.4
PZ2 WHIT	13/12/2012 00:00	0	0	21
PZ3 WHIT	13/12/2012 00:00	0	0	
PZ4 WHIT	13/12/2012 00:00	0	1.1	20.5
PZ5 WHIT	13/12/2012 00:00	0	2.2	18.9
PZ54 WHI	13/12/2012 00:00	0	0.4	20.5
PZ53 WHI	13/12/2012 00:00	0	0.9	
PZ52 WHI	13/12/2012 00:00	0	0.8	
PZ51 WHI	13/12/2012 00:00	0	0.6	20.4
PZ50 WHI	13/12/2012 00:00	0	2.3	19.1
PZ49 WHI	13/12/2012 00:00	0	3.8	18.8
PZ48 WHI	13/12/2012 00:00	0	4.3	17.5
PZ47 WHI	13/12/2012 00:00	0	2.8	17.8
PZ46 WHI	13/12/2012 00:00	0	3.7	18.3
PZ45 WHI	13/12/2012 00:00	0	0.8	
PZ44 WHI	13/12/2012 00:00	0	0.3	20.4
PZ43 WHI	13/12/2012 00:00	0	0.8	19.9
PZ42 WHI	13/12/2012 00:00	0	0.7	20.6
PZ41 WHI	13/12/2012 00:00	0	0.9	20.1
PZ40 WHI	13/12/2012 00:00	0	0.9	19.8
PZ39 WHI	13/12/2012 00:00	0	1.8	19.2
PZ38 WHI	13/12/2012 00:00	0	0.4	20.2
PZ37 WHI	13/12/2012 00:00	0	0.4	20.5
PZ36 WHI	13/12/2012 00:00	0	1.3	19.8
PZ35 WHI	13/12/2012 00:00	0	0.6	20.3
PZ34 WHI	13/12/2012 00:00	0	2.4	15.7
PZ33 WHI	13/12/2012 00:00	0	1.5	17.8
PZ32 WHI	13/12/2012 00:00	0	2	19.2
PZ31 WHI	13/12/2012 00:00	0	0.8	20.3
PZ30 WHI	13/12/2012 00:00	0	1.9	16.1
PZ29 WHI	13/12/2012 00:00	0	0.9	20.3
PZ28 WHI	13/12/2012 00:00	0	4.5	18.2
PZ26 WHI	13/12/2012 00:00	0	0.9	20.2
PZ25 WHI	13/12/2012 00:00	0	0.3	20.2
PZ24 WHI	13/12/2012 00:00	0	0.1	21.1
PZ23 WHI	13/12/2012 00:00	0	0	21.1
PZ21 WHI	13/12/2012 00:00	0	0.2	20.8
PZ11 WHI	13/12/2012 00:00	0	0	21.2
PZ12 WHI	13/12/2012 00:00	0	0	21.2
PZ13 WHI	13/12/2012 00:00	0	0	20.9
PZ14 WHI	13/12/2012 00:00	0	0	20.9
PZ15 WHI	13/12/2012 00:00	0	0	21.1
PZ16 WHI	13/12/2012 00:00	0	0	21.3

APPENDIX J

SLOPE STABILITY ASSESSMENT

IBR0509/Reports Status: Final Date: May 2013


DOCUMENT CONTROL SHEET

Client	Louth Coun	Louth County Council				
Project Title	Whiteriver L	Whiteriver Landfill				
Document Title	Slope Stabi	Slope Stability Report 2012				
Document No.	IBR0385					
This Document	DCS	TOC	Text	List of Tables	List of Figures	No. of Appendices
Comprises	1	1	3	2	0	2

Rev.	Status	Author(s)	Reviewed & Approved By	Issue Date
1.0	Final	Helen Halliday Helen Halliday, Senior Engineer	Andrew Baskin, Director	August 2012

Contents

1.0	Introduction	. 1
1.1	Conceptual Stability Model	. 1
1.1.1	Existing Waste Slope	1
2.0	STABILITY RISK ASSESSMENT	. 1
2.1	Risk Screening	. 1
2.2	Data Summary	. 2
2.3	Factors of Safety	. 2
2.4	Parameters for Final Waste Mass Stability	. 2
2.5	Analyses	. 2
2.6	Assassment	2

SLOPE STABILITY REPORT

1.0 INTRODUCTION

Under condition 8.13 of Waste License 60-2 for Whiteriver Landfill requires an annual Slope

Stability Assessment. This report details the slope stability assessment undertaken at

Whiteriver in 2012.

The report is based on the annual topographical survey of the site and a site walkover. The

topographical survey was undertaken in April 2012 and the site walkover was conducted in

July2012.

The slopes assessed for stability are the most recently completed slopes. These are slopes in

the central area of the site, Phase 5, Cell 2A, and 1A. Locations of the sections analysed are

shown on Drawing IBR0385/001, Appendix A.

1.1 CONCEPTUAL STABILITY MODEL

1.1.1 Existing Waste Slope

The requirement for waste filling in Phase 5, Cell 2 and Cell 1 was that filling should be

undertaken at not more than 1vertical:3 horizontal.

2.0 STABILITY RISK ASSESSMENT

2.1 RISK SCREENING

The slopes in Phase 5 Cell 3A, 3B, 2B and 1B have been considered previously, in April 2010

and 2011. A site walkover survey of these slopes is undertaken to determine if there are any

visible changes in the slope geometry or indications of instability.

A site walkover of these slopes was undertaken on Wednesday 4th July 2012. No visible

changes to the slope geometry or slope instability features were noted in the capped area of

the site. Photographs from the site survey of these slopes are included in Appendix B.

A small very localised area or veneer failure was evident at the east side of the access track

over Cell4B to the tiphead was observe, however it is not reflective of any deep seated

instability in the access road. It should continue to be examined during stability assessment

surveys.

IBR0385/Reports Status: Final Date: August 2012

Analysis of the remaining waste slopes in Phase 5 Cells 2A and 2B are examined using Slope/W.

2.2 DATA SUMMARY

Waste properties are derived from literature¹.

1 D R V Jones, D Taylor & N Dixon (1997). Shear Strength of Waste and its use in Landfill Stability analysis. Proc. Geoenvironmental Engineering Conf., Yong & Thomas (eds.) Thomas Telford, pp99-117

2.3 FACTORS OF SAFETY

A Factor of Safety of 1.3 is required for the stability of the waste slope. Eurocode 7 requires the use of partial factors of 1.25 for friction angle (ϕ) and effective cohesion (c') therefore 1.3 is deemed suitable for an overall factor of safety.

2.4 PARAMETERS FOR FINAL WASTE MASS STABILITY

The parameters used in the temporary waste slope analysis are shown in Table 1 below:

Table 1 Summary of the Parameters used in the Annual Capping Analysis

Material	Unit Weight y, (kN/m³)	Effective Cohesion, c' (kPa)	Friction Angle, Φ' (degrees)
Waste Based on RPS landfill analysis experience	10	5	25
Waste/LLDPE Interface Material testing	9.2	0	19
Boulder Clay	18	5	30

2.5 ANALYSES

Stability analyses was carried out on two sections through the site for examination of the waste slope mass stability, see Drawing IBR0385/002, Appendix A.

Sections A-A and B-B (Appendix A) represent three sections through the Waste Slopes of Phase 5, Cell 2A, 2B and Cell 1A. They have a range of grades, Section A-A from 1v:2.8h to

RPS

1v:7.1h and Section B-B from 1v:3.1h to 1v:4.9h on the filled waste slopes. Stability analysis has been carried out for both sections.

An Ru value of 0.2 is included to represent the undrained nature of the waste, while a porewater pressure line up to 1m in the waste layer is included to represent the Leachate head in the landfill cells.

All sections show rotational failures within a satisfactory factor of safety.

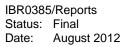
2.5.1 Waste Slope Analysis

A summary of the Slope/W runs for the waste slopes is presented in Table 2.

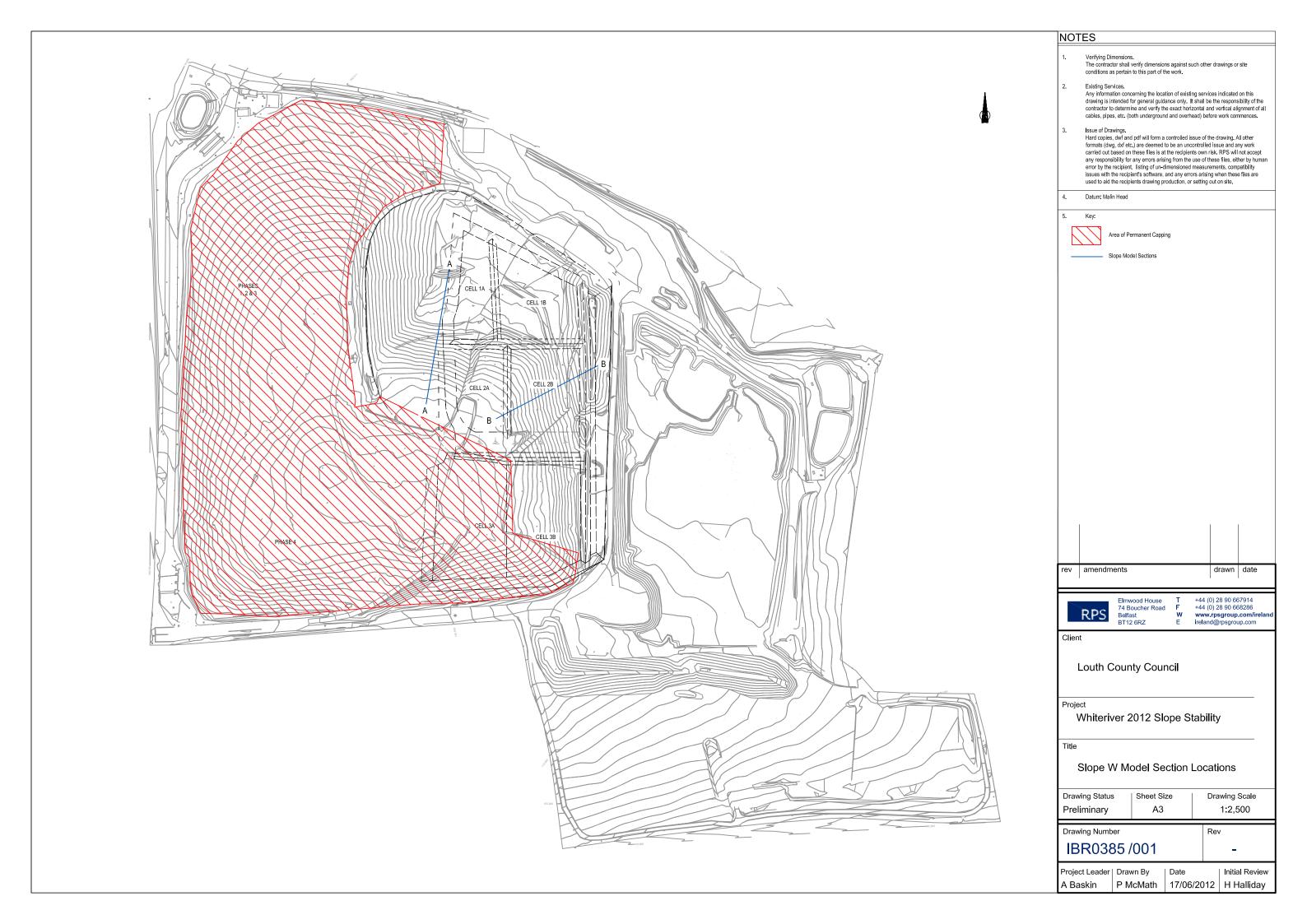
Table 1 Summary of the Waste Slope Stability

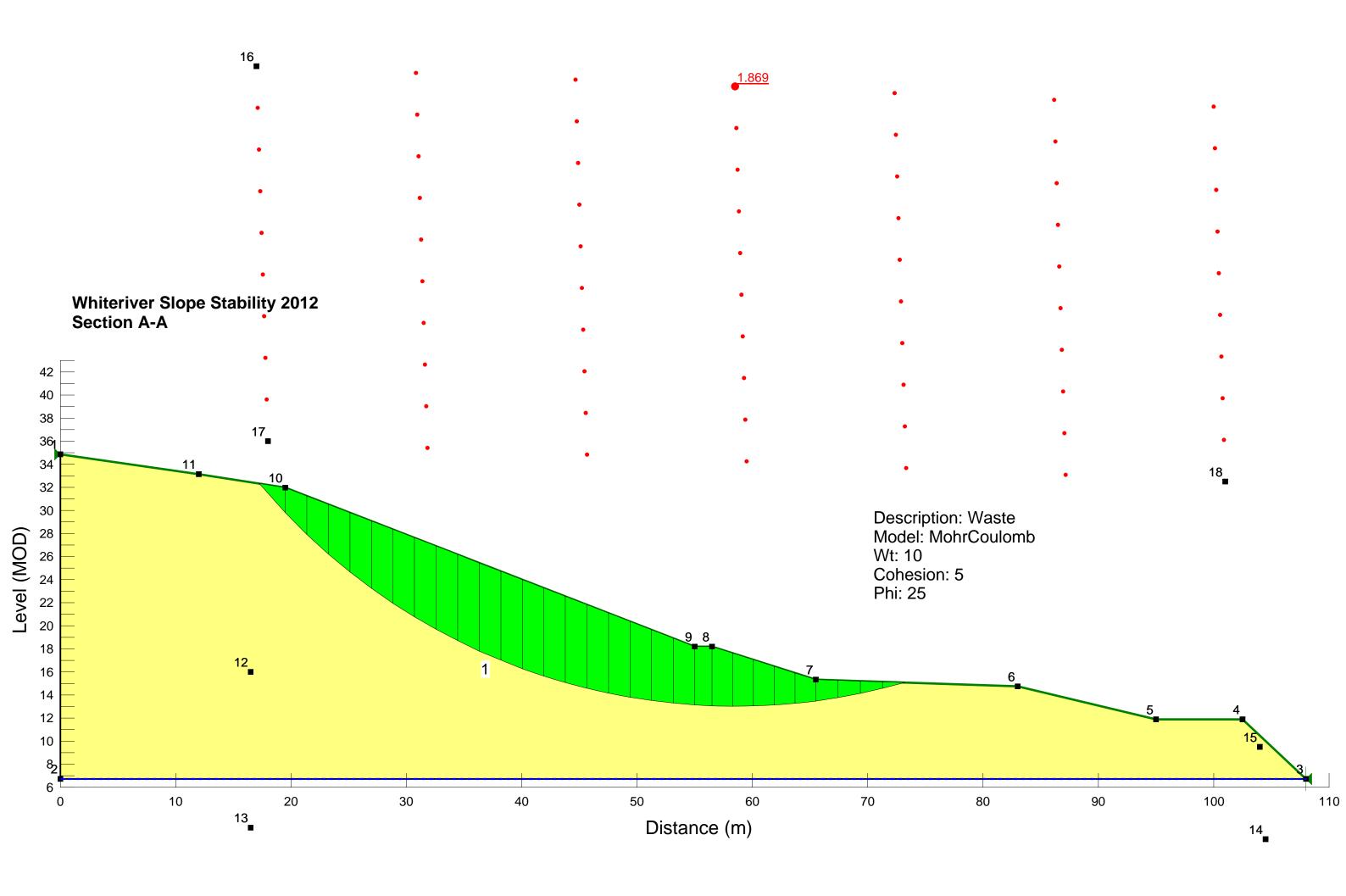
Reference	Scenario Description	Factor of Safety for Critical Circular Slip Failure
A-A	Waste Slope, Cell 2A, 1v:2.8 h to 1v:7.1h & Ru=0.2	1.9
B-B	Waste Slope, Cell 2B, 1v:3.1h to 1v:4.9h & Ru=0.2	2.3

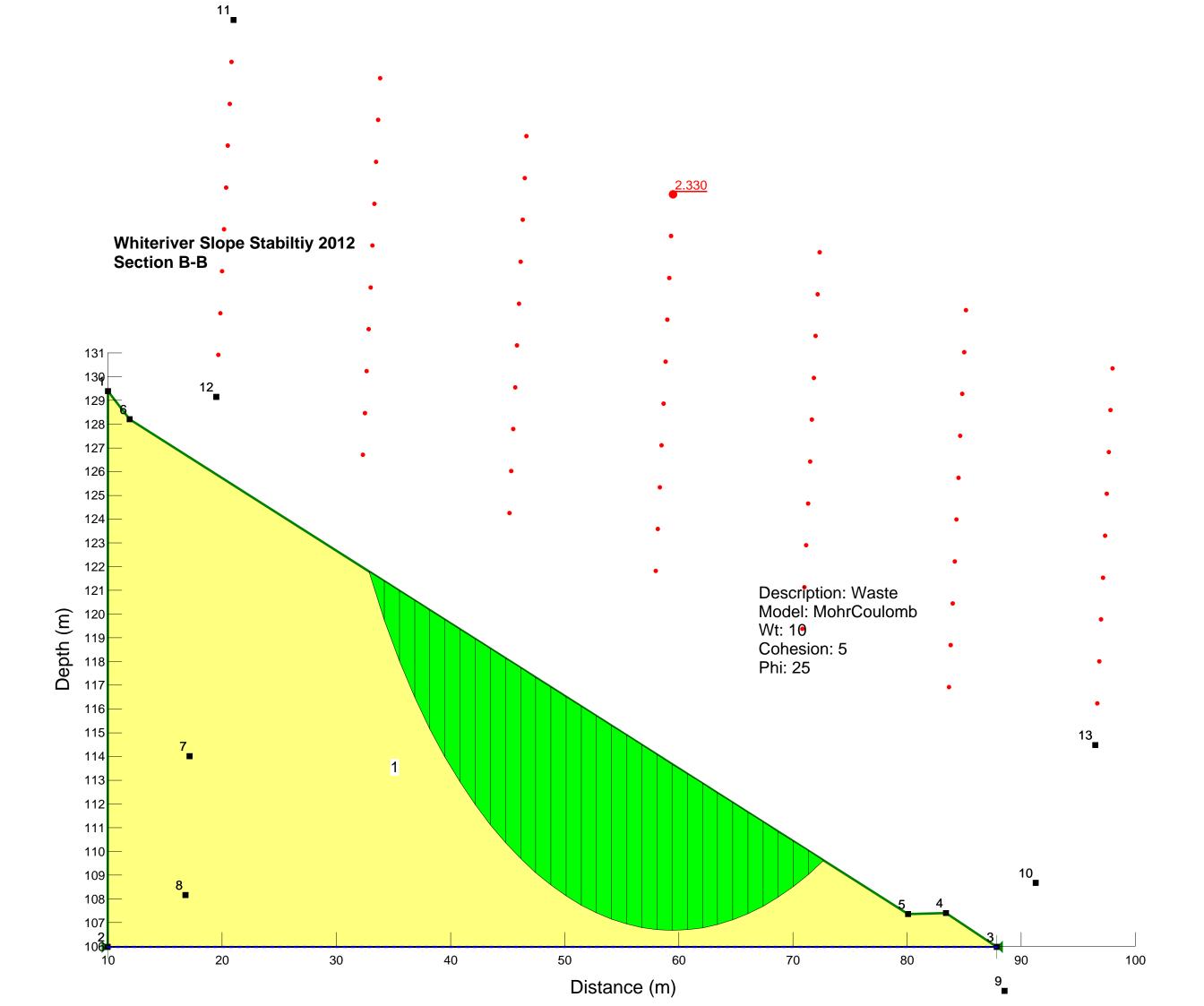
2.6 ASSESSMENT


The analysis for the final waste slopes suggests that the factors of safety for the filling of waste are satisfactory. In addition a site walkover survey and examination of the waste slope's as illustrated in the photographs in Appendix B evidenced no apparent slope instability on these recently filled slope.

RPS


IBR0385/Reports Status: Final Date: August 2012


APPENDIX A


Drawings Slope/W Analysis

APPENDIX B

Photographs

IBR0385/Reports Status: Final Date: August 2012

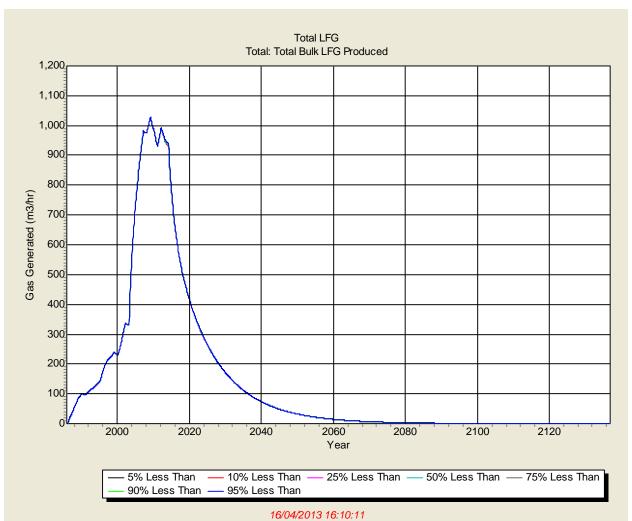
Photograph 1: Capped Area Cell 1,2 & 3

Photograph 2: Capped Area Phase 4

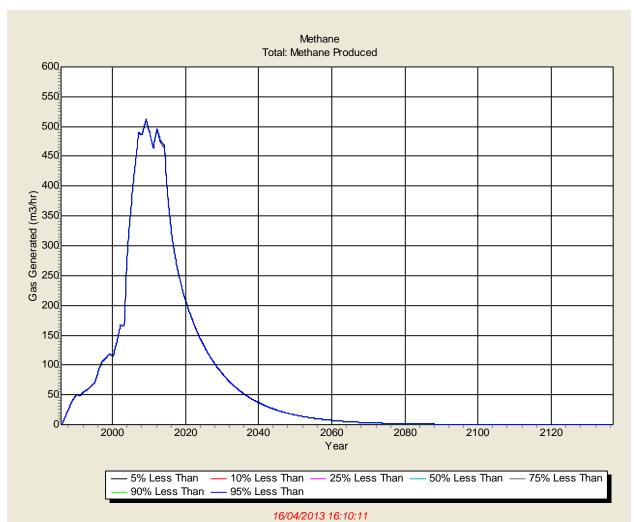
Photograph 3: Capped Area Phase 5, Cell 3

Photograph 4: Temporary Cap Phase 5 Cell 3

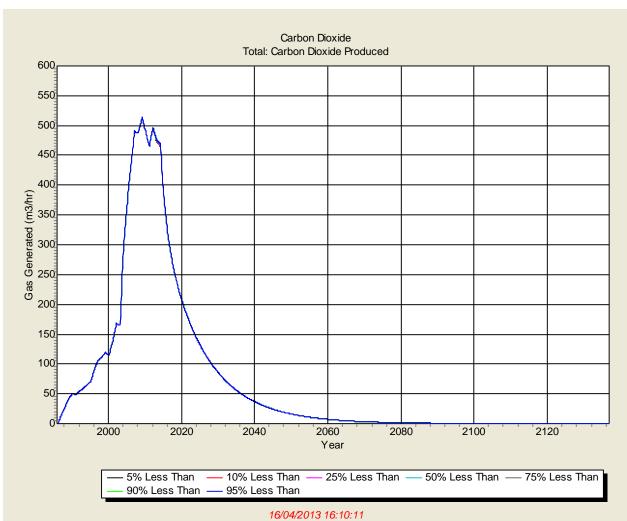
Photograph 5: Existing Waste Slope Cell 2B


Photograph 6: Existing Filling area Cell "A

APPENDIX K


ESTIMATED ANNUAL GAS YIELD OBJECTIVES AND TARGETS

IBR0509/Reports Status: Final Date: May 2013



1400 IBR Jobs\IBR0380 Whiteriver GasSim PI Report\IBR0380 Working Files PI Report 2012\IBR0380 Whiteriver Landfill 2012 PI Re

1400 IBR Jobs\IBR0380 Whiteriver GasSim PI Report\IBR0380 Working Files PI Report 2012\IBR0380 Whiteriver Landfill 2012 PI Re

1400 IBR Jobs\IBR0380 Whiteriver GasSim PI Report\IBR0380 Working Files PI Report 2012\IBR0380 Whiteriver Landfill 2012 PI Re

APPENDIX L

OBJECTIVES AND TARGETS

IBR0509/Reports Status: Final Date: May 2013

Document number: L-AL-FOR-002-02	Title: Objectives, Targets and EMP Review Form
Issue Date: 09/09/08	Issued by: GS/ NMcC / HC
	Approved by: GS

Objec	tive: Red	uce pressure on non-renewable for	ssil fuels	use	ed to generate ele	ectricity.
Target	: Devise st	rategy to utilise landfill gas as a fue	I for the	gen	eration of electric	city /
energy						
Linked t	o aspect(s)	No: 4 & 3				
(WR) Overall Responsibility: Senior Engineer (The above named person shall check the status of each task until closed out)				(Tas	art Date: Nov' 09 sks shall be checked regul ve date until closed out)	
Task	Details		Due Dat		Task responsibility	Status
Α	Review bus strategy	iness case and devise procurement	Mar 20	10.	Senior Engineer	Not complete
		Date: 16/3/10 te a task with a status of not complete shall be reiss	ued below u	sing th	ne initial task lettering whe	reby checking
Α	Review bus strategy	iness case and devise procurement	May 2010.		Senior Engineer	Complete
		Date: 15/10/10 te a task with a status of not complete shall be reiss	ued below u	sing th	ne initial task lettering whe	reby checking
В	Appoint the	design consultant	Dec 2010		Senior Engineer	Complete
		Date: 30/6/11 te a task with a status of not complete shall be reiss	ued below u	sing th	ne initial task lettering whe	reby checking
С	Apply to the	ESB for grid connection.	Dec 11		Senior Engineer	Complete
D	Review the viability of p	proposal from ESB and determine roject.	April 12		Senior Engineer	Complete
E	Appoint a design build operate company.				Senior Engineer	Complete
	ching the due da	IC Date: 13/2/13 te a task with a status of not complete shall be reiss	ued below u	sing th	ne initial task lettering whe	reby checking
F	Begin gene	ration of electricity.	June 1	3	Senior Engineer	
Reviewe		Date:				
(Upon read	-	te a task with a status of not complete shall be reiss	ued below u	sing th	ne initial task lettering whe	reby checking

Notes:

Estimated cost and funding available to implements objectives

Depends on procurement strategy adopted.

Payback from Project

• Simple payback for Grid Connection occurs within four years.

16/3/10:

Document number: L-AL-FOR-002-02	Title: Objectives, Targets and EMP Review Form
Issue Date: 09/09/08	Issued by: GS/ NMcC / HC
	Approved by: GS

Consultants ha	ve been	appointed	to	review	the	business	case	and	report	back,	expected	in	the	next	few
weeks FMS Le	ader has	extended t	ime	frame											

15/10/10:

Oct 2010 tender has been issued for a consultant to design and specifications to be put out to construction and installation tendering.

5/3/12:

The application has been made to the ESB for the grid connection. Council anticipate return of this in the coming weeks. A decision shall be made based on the proposal from this application.

The EMS has concerns over the design spec for the sites electricity generation. EMS is concerned that the landfill will not produce enough gas to sustain the viability of two 0.65 Mw generators. EMS Leader for the site has voiced these concerns with Senior Engineer.

Therefore this objective shall continue into 2013 and potentially beyond.

13/2/13:

Task D: Project was agreed and contractor assigned.

Task E: RPS selected and project underway due to begin approximately end of April 2013.

Close out reviewed by:	Date:	
Objective tasks completed		
Signature (Director):		Date:

Document number: L-AL-FOR-002-02	Title: Objectives, Targets and EMP Review Form
Issue Date: 09/09/08	Issued by: GS/ NMcC / HC
	Approved by: GS

Objective: Reduce BIVIVV to landfill							
_		EPA waste target for BMW to land	fill. (201	0 =	47% / 55%) (201:	3 = 30%	
	2016 = 15 ⁹						
Linked t	o aspect(s)	No: 1					
(WR) Overall Responsibility: Landfill Manager (The above named person shall check the status of eatask until closed out)			f each	Start Date: Oct 10 (Tasks shall be checked regularly from the above date until closed out)			
Task	Details		Due Date		Task responsibility	Status	
Α	Calculate the report this to	ne % BMW landfilled each quarter and to the EPA.	Oct 10		D. Holmes	Complete	
В	Draft a list of ways to reach the next level targets.			11	D. Holmes	Complete	
С	Continue to ensure that only treated wastes are accepted in accordance with EPA approved factors.				D. Holmes	Complete	
		Date: 30/6/11 te a task with a status of not complete shall be reissu	ed below us	sing t	he initial task lettering whe	reby checking	
D	Respond to	the EPA audit of June 17 th 2011.	Sep 11		D. Holmes	Complete	
E	Review and amend any waste procedures and draft any new forms needed based on the actions from this audit.			Dec 11 D. Holmes / Compl Helen Cranney			
		Date: 5/3/12 te a task with a status of not complete shall be reissu	ed below us	sing t	he initial task lettering whe	reby checking	
F	Make the 2012 quarterly reports to EPA Dec 2012 D. Holmes Co		Complete				
		HC Date: 13/2/13 te a task with a status of not complete shall be reissu	ed below us	sing t	he initial task lettering whe	reby checking	
G	Make the 20	013 quarterly reports to EPA	Dec 20	13	D. Holmes		
(Upon read	ching the due da	ate: te a task with a status of not complete shall be reissu	ed below us	sing t	he initial task lettering whe	reby checking	

Notes:

19/10/10: The current BMW waste to landfill at WR is 45.9%.

30/6/11: The 2010 BMW waste to landfill was 47% meeting the EPA targets.

Due to the nature of waste received in the first quarter of 2011 the BMW figure was 61% an EPA audit in June 2011 has requested an action plan to show how WR shall meet the 47% by year end. Senior management has been made aware of this issue.

The system to gather information in relation to BMW content of waste from contractors is to be reviewed in order to meet the 47% target. EPA audit response actions shall set out the

Document number: L-AL-FOR-002-02	Title: Objectives, Targets and EMP Review Form
Issue Date: 09/09/08	Issued by: GS/ NMcC / HC
	Approved by: GS

plans for this. Waste procedures for the EMS may require amendment in relation to these actions.

5/3/12:

Waste Acceptance and Handling Procedure has been revised to Issue 4 to address the acceptance of incinerator bottom ash.

WR submitted an action plan to the EPA on 5th Aug of 2011. This action plan was implemented to cease the acceptance of waste from a number of streams from mid to late 2011. However this was not enough to prevent the site exceeding its 2011 targets.

WR submitted its final 2011 report to the EPA stating the exceedance of the target and have had no response.

WR have continued to make preventative plans to meet the BMW targets for 2012. These are:

- Accept incinerator bottom ash which has a 0% BMW rating
- Ceased accepting waste from the general public which had a 67% BWM rating
- Cease the acceptance of non pre-treated waste from waste collectors.

EMS Leader for WR considers that 2012s first quarter will be within the 47% target limit.

13/2/13:

The total reported for 2012 was 32.85 % this was within the target limit of 47%.

Within the 2012 reporting period the EPA increased the target limit to 55%.

The 2013 limit has been set at 40% from July.

Figures in the Target noted in RED represent the EPA changes to the landfill limits.

Close out reviewed by:	Date:	
Objective tasks completed		
Signature (Director):		Date:

Document number: L-AL-FOR-002-02	Title: Objectives, Targets and EMP Review Form				
Issue Date: 09/09/08	Issued by: GS/ NMcC / HC				
	Approved by: GS				

Targe	t: Cap all c	ells of phase 5 by end of 2014.				
Linked	to aspect(s)	No: 3				
EMP No: 8 (WR) Overall Responsibility: Landfill Manager (The above named person shall check the status of each task until closed out) Start Date: Oct 10 (Tasks shall be checked regularly from the above date until closed out)					arly from the	
Task	Details Due Task S Date responsibility					Status
A	Prepare a tender to select contractors to complete the capping works.		Dec 20	Dec 2010 Senior Engineer		Complete
В	Appoint co	ntractors	Feb 2011		Senior Engineer	Complete
С	Commence first part of capping		Mar 2011		Senior Engineer	Complete
D	Complete cell 2 & 1 and receive the CQA folder upon completion.			14	Senior Engineer	Obsolete
shall cont Review	aching the due d inue) ed by: aching the due d	Date: 30/6/11 late a task with a status of not complete shall be reissue DH /HC Date: 13/2/12 late a task with a status of not complete shall be reissue				
E	Appoint an additional contractor to complete the final					
F	Commence final capping		June 13		Senior Engineer	
G	Receive th	e CQA folder upon completion.	Dec 14	-	Senior Engineer	

Notes:

30/6/11:

Task A & B: Tender completed and awarded to Gibson Bros Ireland in Feb 2011.

Task C: Work on the capping began May 2011 and the first phase is completed. Phase 5 Cell 2A permanent and temporary capping and phase 5 cell 1B temporary capping completed.

CQA folders are to be signed at the end of each capping mobilisation rather than at the end of the project.

Document number: L-AL-FOR-002-02	Title: Objectives, Targets and EMP Review Form				
Issue Date: 09/09/08	Issued by: GS/ NMcC / HC				
	Approved by: GS				

5/3/12:

Within the three mobilisations of the existing capping contract, two are now completed and CQA confirmation held on site. Filling of Phase 5 Cell 1 will not be completed until mid 2013 and capping will follow.

A new contract is currently being developed for the capping of the entire site as the decision has been made to close after the filling of phase 5.

13/2/13:

Task D has been rendered Obsolete due to the need for a final contractor to be appointed to complete the permanent capping of the site.

Close out reviewed by:	Date:	
Objective tasks completed		
Signature (Director):		Date:

Document number: L-AL-FOR-002-02	Title: Objectives, Targets and EMP Review Form
Issue Date: 09/09/08	Issued by: GS/ NMcC / HC
	Approved by: GS

Objective: Prevent pollution to the Environment from the management of the							
landfill.							
Regula	tions 2010		·		`	r)	
Linked t	Linked to aspect(s) No: 6 from 2012 register (Due to incoming legislation in Feb 2013)						
(WR) Overall Responsibility: Senior Engineer (The above named person shall check the status of each task until closed out) Start Date: Feb 2013 (Tasks shall be checked regularly from the above date until closed out)							
Task	Details		Due Date		Task responsibility	Status	
A	Hire a contractor to complete the Hydrological Assessment of the licensed area and draft necessary action plans. (Technical Amendment to site license allows 18 months from 15 th Jan 2013 to complete this assessment)			13	Landfill Manager		
В	the action p	ment from Senior Management to report lans to EPA.	Mar 20	14	Landfill Manager		
С	Send report to the EPA			014	Landfill Manager		
D	Receive feedback from the EPA prior to start of implementation. Dec 2015 Landfill Manager						
E	Begin the implementation of action plans. This task start and due date are dependent on the results of task D. 22 Dec Landfill Manager 2015						
(Upon read shall contin	ching the due da	Date: tte a task with a status of not complete shall be reissue	ed below us	sing th	e initial task lettering whe	reby checking	
(Upon read shall continu	ching the due da	Date: tte a task with a status of not complete shall be reissue	ed below us	sing th	e initial task lettering whe	reby checking	
Reviewed by: Date: (Upon reaching the due date a task with a status of not complete shall be reissued below using the initial task lettering whereby checking shall continue)							
Notes:							
Close	out review	ed by: Date:					
Object	ive tasks o	completed					
Signature (Director): Date:							

Document number: L-AL-FOR-002-02	Title: Objectives, Targets and EMP Review Form
Issue Date: 09/09/08	Issued by: GS/ NMcC / HC
	Approved by: GS

Objective: Enhance the Biodiversity of the site post closure						
_		io diversity into the revised restoration	on and	afte	rcare works for th	e site to
		end of 2015.				
Linkea t	o aspect(s)	NO: 2 & 10				
(WR) Overall Responsibility: Landfill Manager (The above named person shall check the status of each task until closed out) Start Date: July 2012 (Tasks shall be checked regularl above date until closed out)					arly from the	
Task	Details		Due Date		Task responsibility	Status
Α		val to consultants to finalise the and aftercare plan.	Oct 12		R. Mc Kenna	Complete
В	Present the	plan for approval to the EPA	Dec 12		R. Mc Kenna	Complete
С	Tender for a	a contractor to complete works	June 13		R. Mc Kenna	Complete
D	Select contractor and being the works.		Sep 20	13	Contractor	Complete
E	Complete the works and signoff		June 2014		Landfill Manager	
F	Carry out ongoing maintenance			g	LLA	
		HC Date: 13/2/13 te a task with a status of not complete shall be reissue	d below us	sing th	e initial task lettering whe	reby checking
(Upon read shall contin	ching the due da	Date: te a task with a status of not complete shall be reissue	d below us	sing th	e initial task lettering whe	reby checking
Notes:						
13/2/13:						
Approval was provided and the EPA agreed the plan. Greenbelt contractor was hired and works commenced Feb 2013.						
Close	out review	ed by: Date:				
Objecti	ive tasks o	completed				
Signati	Signature (Director): Date:					