

ANNUAL ENVIRONMENTAL REPORT

January - December 2012

For

Dundalk Landfill Site

Co. Louth

Waste Licence Reference W0034-02

By

Dundalk Town Council

То

Environmental Protection Agency

DUNDALK LANDFILL & RECYCLING CENTRE (W0034-02) ANNUAL ENVIRONMENTAL REPORT

JANUARY – DECEMBER 2012

DOCUMENT CONTROL SHEET

Client	Dundalk Town Council						
Project Title	Dundalk La	Dundalk Landfill Site					
Document Title	Annual Env	Annual Environmental Report January – December 2012					
Document No.	IBR0509/Re	IBR0509/Reports					
This Document	DCS TOC Text List of Tables List of Figures No. of Appendices						
Comprises	1	1	41	1	1	9	

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
	Draft	AMG	AMG	DD	Letterkenny	15/04/2013
	Final	AMG	AMG	DD	Letterkenny	16/04/2013
А	Final	AMG	AMG	DD	Letterkenny	07/05/2013

TABLE OF CONTENTS

1.0	INTRO	DUCTIO	N	1
	1.1	REPORT	PERIOD	2
2.0	WASTE		ITIES CARRIED OUT AT THE FACILITY	3
3.0	QUANT	ITY ANI	D COMPOSITION OF WASTE RECEIVED AND DISPOSED OF DURING	
THE RE	EPORTI	NG PER	IOD AND EACH PREVIOUS YEAR	4
	3.1		L	4
	3.2	RECYCL	ING CENTRE	4
4.0	SUMMA	ARY REI	PORT ON EMISSIONS	8
	4.1	EMISSIO	NS TO SEWER	8
		4.1.1	Discharge Point (From Landfill Site)	8
		4.1.2	Discharge Point (from recycling facility)	8
	4.2	EMISSIO	NS TO GROUNDWATER AND SURFACE WATER	8
	4.3	EMISSIO	ns to Air	9
	4.3.1	Сомроз	STING AND BIOFILTER EMISSIONS	9
	4.3.2	FLARE E	EMISSIONS	9
5.0	SUMMA	ARY OF	RESULTS AND INTERPRETATIONS OF ENVIRONMENTAL MONITORIN	٩G,
INCLU	DING LC	CATIO	N PLAN OF ALL MONITORING LOCATIONS	. 10
	5.1	Μονιτο	RING LOCATIONS	. 10
	5.2	LEACHA	TE QUALITY	. 10
	5.3	GROUND	DWATER	. 13
	5.4	BASELIN	IE DATA	. 14
		5.4.1	Monthly Parameters	. 14
		5.4.2	Quarterly Parameters	. 15
		5.4.3	Annually	. 15
	5.5	Down-G	GRADIENT DATA	. 16
		5.5.1	Monthly Parameters	. 17
		5.5.2	Quarterly Parameters	. 17
		5.5.3	Annually	. 18
		5.5.4	Groundwater Levels	. 19
	5.6	Remedia	ATION	. 19
	5.7	SURFAC	E WATER	. 20
		5.7.1	Monthly Parameters	. 23
		5.7.2	Quarterly Parameters	. 23
		5.7.3	Annual Parameters	. 24
	5.8	Remedia	ATION	. 25
	5.9	SEWER	DISCHARGES	. 25
	5.10	PERIMET	FER GAS MONITORING AND LANDFILL GAS EXTRACTION	. 27
	5.11	Estuar	INE SOIL SAMPLES	. 28

	5.12	DUST MONITORING	28
	5.13	COMPOSTING MONITORING	28
	5.14	BIOFILTER MONITORING	30
		5.14.1 Bed Media	30
		5.14.2 Inlet and Outlet Gas	30
	5.15	METEOROLOGICAL MONITORING	30
6.0	RESOL	IRCE AND ENERGY CONSUMPTION SUMMARY	31
7.0	DEVEL	OPMENT / INFRASTRUCTURAL WORKS IN PLACE AND PLANNED, TO	
PROCE	SS WA	STE QUANTITIES PROJECTED FOR THE FOLLOWING YEAR (INCLUDING	
PLANT	OPERA	TING CAPACITY, PROVISION OF ADEQUATE STANDBY CAPACITY AND	
PROVI	SION OF	CONTINGENCY, BACKUP AND SPARES IN THE CASE OF BREAKDOWN)	32
	7.1	PLANTS AND METHODS	32
	7.2	PROPRIETARY VACUUM AERATED STATIC PILE SYSTEM	32
8.0	SCHED	ULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS FOR THE	
FORTH	COMIN	G YEAR	33
9.0	TANK,	DRUM, PIPELINE AND BUND TESTING AND INSPECTION REPORT	34
10.0	FULL T	TILE AND A WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY TH	Е
LICENS	SEE IN 1	THE YEAR, WHICH RELATES TO THE FACILITY OPERATION	35
11.0	REPOR	T ON INCIDENTS AND COMPLAINTS SUMMARIES	36
12.0	REVIE\	N OF NUISANCE CONTROLS	37
	12.1	DUST CONTROL	37
	12.2	LITTER	37
	12.3	Odours	37
	12.4	PEST CONTROL (VERMIN)	37
	12.5	Noise	37
13.0	VOLUN	IE OF LEACHATE PRODUCED AND VOLUME OF LEACHATE TRANSPORTED	
DISCH	ARGED	OFF SITE	39
14.0	REPOR	TS ON FINANCIAL PROVISION MADE UNDER THIS LICENCE, MANAGEMENT	
AND S	TAFFIN	G STRUCTURE OF THE FACILITY, AND A PROGRAMME FOR PUBLIC	40
	14.1	STAFFING STRUCTURE	40
15.0	ANNUA	AL BUDGET AND SITE RUNNING COSTS	41

LIST OF TABLES

Table 3.1	Waste Quantities Accepted (Tonnes) at Landfill	4
Table 3.2	Waste Quantities Accepted for Disposal and Recovery (Tonnes) at CWF	6
Table 4.1	Net Methane Emission	9
Table 5.1	Raw Leachate Concentrations 1	1
Table 5.2	Raw Leachate Concentrations	2
Table 5.3	Leachate Levels mOD 1	2

Table 5.4	Groundwater Parameters Monitoring Frequencies	13
Table 5.5	Groundwater Parameters Down Gradient	16
Table 5.6	Groundwater Level mOD	19
Table 5.7	Surface Water Parameters Monitoring Frequencies	20
Table 5.8	Surface Water Parameters SW1 to SW4	21
Table 5.9	Surface Water Parameters SW5 to SW9	22
Table 5.8	Parameters Monitored in S1	26
Table 5.9	Landfill Gas Monitoring Locations	27
Table 5.10	Dust Monitoring Results	28
Table 5.11	Summary of Meteorological Monitoring for the Reporting Period	30
Table 6.1	Consumption of Resources	31
Table 11.1	Summary of Non Compliances and Audit Observations Noted During Audits/Landfill	
Site Inspection	ns Undertaken During the Reporting Period by EPA	36

LIST OF FIGURES

Figure 14.1	Management Structure at Dundalk Landfill Site	40

APPENDICES

APPENDIX A	Water Balance Calculation
APPENDIX B	PRTR Reporting
APPENDIX C	Flare Emission Report
APPENDIX D	Monitoring Points Drawing
APPENDIX E	Leachate Results
APPENDIX F	Groundwater Results
APPENDIX G	Surface Water Results
APPENDIX H	Discharge to sewer
APPENDIX I	Landfill Gas Monitoring Results
APPENDIX J	Composting Monitoring and Biofilter Results

1.0 INTRODUCTION

This Annual Environmental Report (AER) has been prepared to meet the requirements of Waste Licence W0034-02 for Dundalk Landfill.

The site is owned by Dundalk Town Council and is located at Newry Road, Dundalk. It is situated on the northern bank of the Castletown River in an area of intertidal mudflats. The northern boundary of the site adjoins low lying and poorly drained agricultural lands. Residential and industrial properties adjoin the western boundary of the site.

Dundalk Landfill Site has been in operation since 1980. In 2000 Dundalk Town Council submitted an application to the Environmental Protection Agency (EPA) for the continued operation of the landfill site, as required by the Waste Management (Licensing) Regulations 1997. The landfill site ceased to accept waste in October 2002.

In March 2005, the EPA granted the Council a revised Waste Licence (registration number W0034-02) for the facility, in accordance with the Third and Fourth Schedule of the Waste Management Act, 1996-2003.

A hydrogeological study¹ was undertaken in accordance with Condition 4.14 of the Waste Licence W0034-01 in 2004 to develop a leachate management system at the site. The report recommended that the Best Practicable Environmental Option for the remediation of Dundalk landfill is the capping of the landfill with a low permeability liner augmented by monitored natural attenuation. Groundwater remediation of the Quaternary gravel aquifer impacted by Dundalk landfill leachate is reliant on both the landfill capping intervention and on monitored in-situ natural attenuation processes. Discharge into the Northern Stream will reduce following capping of the site owing the reduction of the leachate head within the waste.

The landfill site was restored in 2006. Works include installation of capping layer, provision of storm water drainage, leachate collection trench, provision of gas collection system, provision of gas flare, grading of site to provide for future football pitches and the provision of access road.

Gas abstraction system provided on site includes for a Gas collection layer under the impermeable layer of capping material which provides a path of least resistance to the 47 No boreholes laid out on a grid system over the main body of the site. The boreholes are connected via 63mm. diameter pipework to a 250mm diameter main gas collection pipe which transfers the gas collected, under suction, provided by compressor, and to the 600 m³ enclosed Flare Unit. A SCADA system and Programmable Logic Controller produces data

¹ Proposal for leachate management, July 2004. RPS MCOS.

which is available by download weekly or by telephone from council offices. The boreholes in the area of historical fill adjoining the rear of Hardy's Grainstore have also been attached to the active gas collection system.

1.1 REPORT PERIOD

The reporting period of this report refers to January to December 2012. The landfill site ceased to accept waste in October 2002. A Recycling Centre is currently in operation at the facility.

2.0 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY

Waste is no longer accepted at the landfill facility except for restoration purposes. The maximum tonnage of waste to be accepted at the Recycling Centre is 20,000 tonnes per annum in accordance with Table A1 of the Waste Licence.

The waste intake at the Recycling Centre is limited to 20,000 tonnes per annum of municipal waste and construction and demolition waste. The licence also allows composting of biodegradable waste and green waste to 4,000 tonnes per annum.

The licensed disposal activities, in accordance with the Third Schedule of the Waste Management Act, 1996, are restricted to those listed as follows:

- Class 11 Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule.
- Class 12 Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule.
- Class 13 Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced.

Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996, are restricted to those listed as follows:

- Class 2 Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes).
- Class 3 Recycling or reclamation of metals and metal compounds.
- Class 4 Recycling or reclamation of other inorganic materials.
- Class 10 The treatment of any waste on land with a consequential benefit for an agricultural activity or ecological system.
- Class 11 Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule.
- Class 13 Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced.

3.0 QUANTITY AND COMPOSITION OF WASTE RECEIVED AND DISPOSED OF DURING THE REPORTING PERIOD AND EACH PREVIOUS YEAR.

3.1 LANDFILL

Dundalk Landfill Site was in operation for the acceptance of waste for disposal from 1980 until 2002. The site ceased to accept waste for disposal in October 2002 and waste was only brought on site for restoration purposes after this date. Waste data figures are derived from estimates and weighbridge readings. These figures are shown in Table 3.1.

Table 3.1 Waste Quantities Accepted (Tonnes) at Landfill²

Waste Types	1997	1998	1999	2000	2001	2002	2003	2004
Total	37,060	37,560	38,000	36,000	32,000	32,420	27,417	3,018

3.2 RECYCLING CENTRE

The Recycling Centre is open;

- Monday Friday 9.30am 6.00pm
- Saturday 9.00am 3.00pm

In accordance with Condition 5 of the waste licence only those waste types and quantities listed in Schedule A shall be disposed of at the facility unless prior agreement from the Agency has been obtained. The maximum annual tonnage of individual waste categories for acceptance to the site is listed in Schedule A of the Waste Licence.

The following are accepted at the Recycling Centre;

- mixed residual waste
- cardboard
- glass
- magazines/newspaper
- building rubble
- plastics
- clothing/textiles
- green/garden waste
- wood
- aluminium cans/steel cans
- domestic appliances
- batteries
- electrical appliances
- scrap metal

² 1997-2001 figures based on estimates.

- waste engine oil
- waste cooking oil

The quantity of waste received during the reporting period at the recycling facility is 8,549 tonnes. The figures are taken from National Waste Report 2012 Survey.

478 tonnes of mixed residual waste arising from members of the public was accepted for disposal at the recycling facility. Building Rubble (945 tonnes), wood packaging (540 tonnes) and wood non-packaging (580 tonnes) accepted at Dundalk recycling facility was also sent to Whiteriver Landfill Site were it was recovered. The remaining waste was recovered on or off site as listed in Table 3.2. 2,665 tonnes of garden and park waste from municipal sources (landscapers, householders etc.) was composted onsite. 1,620 tonnes of compost was produced in 2012. Compost analysis has been undertaken and is detailed in Section 5.12.

WEEE is collected by ERP from the recycling facility from the compliance schemes.

Material Turne	EWC Codes		Toppogo	Name of Destination Facility(ies), or Collector(s) If Directly Exported	Disposal Or Recovery "D" or "R" or "Both"
Material Type	Codes		Tonnage	Directly Exported	R OF BOTH
Mixed residual waste	20 03 01		478	Whiteriver landfill w0060-02	D
garden	20 02 01	Garden and park waste from municipal sources (landscapers, householders etc.)	2665	Dundalk town council W0034-	R
cardboard packaging	15 01 01		960	Peute Europe ni 6000076	R
newspaper and magazines	20 01 01		470	Peute Europe nl 6000076	R
glass packaging	15 01 07		406	Glasson N.I I-n06/08	R
Metals	0		227	Tinnelly N.I wmex22/00	R
plastic packaging	15 01 02		590	Shabra Plastic IRL mn-080022- 01	R
textiles, non-packaging	20 01 11		21	Cookstown N.I wmex01/11	R
wood packaging	15 01 03		540	Whiteriver landfill w0060-02	R
wood non-packaging	20 01 38		580	Whiteriver landfill w0060-02	R
lead acid batteries and accumulators	16 06 01*	non-portable (automotive and industrial)	606	RILTA IRL WO192-02	R
Waste mineral oils	13 02 05*	lubrication, vehicle, machine, etc.	5.56	Enva Portlaoise (W0184-01)	R
Waste cooking or vegetable oils	20 01 25		3	Enva Portlaoise (W0184-01)	R
Building Rubble	17 01 07		945	Whiteriver landfill w0060-02	R

Table 3.2 Waste Quantities Accepted for Disposal and Recovery (Tonnes) at CWF³

³ National Waste Report 2012 Survey.

DUNDALK LANDFILL SITE (W0034-02) ANNUAL ENVIRONMENTAL REPORT – 2010

DUNDALK TOWN COUNCIL

Material Type	EWC Codes	 Tonnage	Name of Destination Facility(ies), or Collector(s) If Directly Exported	Disposal Or Recovery "D" or "R" or "Both"
Inks, paints adhesives and resins	20 01 28	2.73	Enva Portlaoise (W0184-01)	R
Total		8,549		

4.0 SUMMARY REPORT ON EMISSIONS

4.1 EMISSIONS TO SEWER

4.1.1 Discharge Point (From Landfill Site)

A leachate collection trench has been constructed on the southern slope of the landfill. The trench is lined on the estuary side of the trench and also to a level of 3.65mOD on the landfill side of the trench. The trench is connected to the foul sewer running along the western boundary of the site. Zero flow has been measured to date. The flow monitoring device has been removed from this trench as agreed with the EPA.

4.1.2 Discharge Point (from recycling facility)

In accordance with The PRTR Regulations releases of pollutants and off site transfers of waste by facilities operating in relevant industrial sectors are to be reported by the EPA to the European E-PRTR website where the facility exceeds specified thresholds. The PRTR reporting has been completed for Dundalk landfill site and submitted to the EPA.

S1 is the sewer discharge monitoring location at manhole No 2, adjacent to weighbridge. This monitors run-off from the Recycling Centre and Material Recovery Facility and discharge from the composting facility. The estimated flow to sewer from this area is 11,300 m³. Reportable emissions for this location as per PRTR requirement are;

- Chlorides (as Cl)
- Ammonia (NH³)
- BOD
- COD
- Suspended solids
- Sulphate

4.2 EMISSIONS TO GROUNDWATER AND SURFACE WATER

There are no direct emissions to groundwater or surface water. A water balance calculation has been completed for Dundalk landfill site and is presented in Appendix A. The site is unlined and an area of approximately 79,000 m² has been capped. There is no active leachate extraction system on the site. Infiltrations in restored areas are in the range of 2-10% of effective rainfall. This equate to 1,342 m³ to 6,711 m³ of leachate produced.

4.3 EMISSIONS TO AIR

4.3.1 COMPOSTING AND BIOFILTER EMISSIONS

Compost analysis and biofilter emission monitoring has been undertaken during the reporting period. These are discussed in section 5.13 and 5.14.

4.3.2 FLARE EMISSIONS

The PRTR reporting and landfill gas survey have been completed for Dundalk landfill site and submitted to the EPA. The PRTR is including in Appendix B.

A 600m³ flare has been installed at Dundalk Landfill Site. Based on model predications and information from the landfill gas flare the estimated net emission of methane from the flare combustion process and both surface and lateral emissions from the landfill body is 227,229 kg/year (Table 4.1).

Table 4.1 Net Methane Emission

Quantities of Methane Flared and / or Utilised	T (Total) kg/Year
Total estimated methane generation (as per site model)	423805.0
Methane flared	196576.0
Methane utilised in engine/s	0.0
Net Methane Emission	227229.0

Flue gas monitoring was also undertaken on the permanent landfill gas flare. All monitoring was carried out in accordance with Environmental Protection Agency Office of Environmental Enforcement (OEE) Air Emission Monitoring Guidance Note 2 (AG2). These results are provided in Appendix C. NO_x as NO₂ emissions from the flare were within the emission limit values specified in Waste licence W0034-02.

5.0 SUMMARY OF RESULTS AND INTERPRETATIONS OF ENVIRONMENTAL MONITORING, INCLUDING LOCATION PLAN OF ALL MONITORING LOCATIONS

5.1 MONITORING LOCATIONS

Monitoring is carried out at locations and frequencies as specified in Schedules D of the waste licence. Monitoring points are labelled and permanent access to all monitoring points is maintained. The following parameters form the monitoring programme;

- Groundwater Quality
- Groundwater Levels
- Surface Water Quality
- Leachate Quality
- Leachate Levels
- Landfill Gas

All ditches and drains around the perimeter of the facility are kept clear to allow for surface water monitoring points to be maintained.

All monitoring points are detailed in Drawing Monitoring Locations as shown in Appendix D.

5.2 LEACHATE QUALITY

Leachate quality can vary during the lifetime of landfill sites depending on the phase of decomposition of the waste. Leachate results for the reporting period are presented in Appendix E and some of the characteristic parameters of the leachate are listed in Table 5.1

Raw leachate results have been compared to "Typical Leachate Composition of 30 Samples from UK/Irish Landfills accepting mainly Domestic Waste" (Landfill Operational Practices). As can be seen from the Table 5.2 all of the parameters are below the maximum concentration.

Table 5.1 R	aw Leachate Co	ncentration	IS			
		No. of				Standard
Parameters	Units	Samples	Minimum	Maximum	Mean	Deviation
Alkalinity	mg/l CaCO3		_			_
Aluminium	µg/l	4	5	17.5	10	6
Ammonia	mg/l N	16	1.4	107.62	48	48
Antimony	µg/l	4	<0.5	0.91		_
Arsenic	µg/l	4	0.76	4.53	2	2
Barium	µg/l	4	103.4	465.9	287	171
Beryllium	µg/l	4	<0.5	<0.5		
B.O.D.	mg/I O2	16	10.1	163.4	50	51
Boron	µg/l	4	98.3	2319.3	1468	961
Cadmium	µg/l	4	<0.1	<0.1		
Calcium	mg/l Ca	4	194.66	260.08	229	34
C.O.D.	mg/I O2	16	77	757	279	250
Chloride	mg/I CI	16	40	334	161	89
Chromium	µg/l	4	1.3	7.4	4	3
Cobalt (µg/l)	µg/l	4	1.9	4.6	3	1
Conductivity	µS/cm @ 25	16	1657	5080	3018	1103
Copper	µg/l	4	<0.5	0.5		
Cyanide	mg/I CN	16	< 0.05	<0.05		
D.O.	% Saturation					
Fluoride	mg/l	4	<0.150	0.15		
Iron	µg/l	4	10759.3	32084.8	25765	10050
Lead	µg/l	4	<0.5	<0.5		
Magnesium	mg/I Mg	4	41.08	100.14	73	26
Manganese	µg/l	4	647.2	4272.6	1709	1717
Mercury	µg/l	4	< 0.05	<0.05		
Molybdenum	µg/l	4	0.5	1.6	1.1	0.8
Nickel	µg/l	4	1.2	3.8	2.3	1.1
o-Phosphate	mg/l P	16	<0.02	1.24	0.5	0.5
рН	0	16	6.9	7.1	7.0	0.1
Potassium	mg/l	4	17.36	157.91	84.6	58.1
Residue on Evaporation	mg/l					
Sampling Depth	m					
Selenium	µg/l	4	<0.5	0.6	0.6	0.1
Silver	µg/l					
Sodium	mg/l	4	101.34	203.55	140	44
Strontium	µg/l	4	653.49	1169.14	992	231
Sulphate	mg/I SO4	12	2.2	4.5	4	1
Suspended Solids	mg/l					
Temp	°C	16	10	16	12	2
Thallium	µg/l	4	<0.1	<0.1		
Time Sampled	0					
Tin	µg/l	4	<1	<1		
T.O.C.	mg/l					
T.O.N	mg/l N	16	<0.08	0.3		
Total S Solids	mg/l					
Uranium	µg/l	4	<0.1	1.38		
Vanadium	µg/l	4	0.7	3.56	2	1
Zinc	µg/l	4	2.4	23	11	10

Table 5.1	Raw Leachate Concentrations

	Dundalk Landfill Site From 30 Samples from Landfills Accepting Dom Results in mg				estic Waste	
Parameter	Min.Conc	Max.Conc	Min.Conc	Max.Conc	Mean	
Ammonia (mg/N)	1.4	107.62	<0.2	1700	491	
BOD	10.1	163.4	4.5	>4800	>834	
COD	77	757	<10	33,700	3078	
Chloride (mg/l)	40	334	27	3410	1256	
lron (µg/l)*	10759.3	32084.8	0.4	664	54.4	
Potassium (mg/l)	17.36	157.91	2.7	1480	491	
Sodium (mg/l)	101.34	203.55	12	3000	904	
TON (mg/l N)	<0.08	0.3	/	/	/	
Conductivity (µS/cm)	1657	5080	503	19,200	7789	
pH (pH units)	6.9	7.1	6.4	8.0	7.2	

 Table 5.2
 Raw Leachate Concentrations

Leachate levels monitoring is undertaken at four locations on site as show on Table 5.3. The highest leachate head with the landfill site is at LG6. LG7 is no longer in use.

Date	L1	L2	L4	L6
Cover	5.33	4.53	10.51	13.36
Level				
mOD				
18/01/12	2.28	1.58	-0.29	1.86
17/02/12	2.18	1.48	2.46	4.46
16/03/12	2.03	1.58	2.51	4.76
23/04/12	1.91	1.43	2.11	4.46
14/05/12	1.99	1.03	1.90	4.36
06/06/12	2.28	1.45	2.13	4.11
23/07/12	1.93	1.53	2.01	4.01
10/08/12	1.73	1.43	1.81	3.96
10/09/12	2.23	1.63	2.11	4.06
08/10/12	2.13	1.43	2.41	4.36
05/11/12	2.28	1.73	2.31	4.46
10/12/12	2.23	1.53	2.21	4.26

Table 5.3 Leachate Levels mOD

5.3 **G**ROUNDWATER

As required under the Waste Licence, groundwater monitoring has been undertaken at the borehole locations as set out in Table D1.1 of the waste licence. Schedule D of the waste licence requires the monitoring of certain parameters on either a monthly, quarterly or annual basis; the frequencies of the monitoring of groundwater parameters are shown in Table 5.4 below.

		•	-		
Monthly	Quarterly	Annually			
Groundwater Level	Visual	Aluminium	Manganese	Total Alkalinity	
	Inspection/Odour				
Ammoniacal Nitrogen	Dissolved Oxygen	Boron	Nickel	Orthophosphate	
Chloride	рН	Cadmium	Potassium	TON	
Electrical Conductivity	Temperature	Calcium	Sodium	Residue on	
				Evaporation	
	TOC	Chromium	Zinc	List I/II Organic	
		Copper	Cyanide		
		Iron	Fluoride		
		Lead	Mercury		
		Magnesium	Sulphate		

 Table 5.4
 Groundwater Parameters Monitoring Frequencies

A hydrogeological study was undertaken in accordance with Condition 4.14 of the Waste Licence W0034-01 in 2004 to develop a leachate management system at the site. The report recommended that the Best Practicable Environmental Option for the remediation of Dundalk landfill is the capping of the landfill with a low permeability liner augmented by monitored natural attenuation. Groundwater remediation of the Quaternary gravel aquifer impacted by Dundalk landfill leachate is reliant on both the landfill capping intervention and on monitored in-situ natural attenuation processes. Discharge into the Northern Stream will reduce following capping of the site owing the reduction of the leachate head within the waste.

The landfill site was restored in 2006. Works include installation of capping layer, provision of storm water drainage, leachate collection trench, provision of gas collection system, provision of gas flare, and grading of site.

A leachate collection trench has been constructed on the southern slope of the landfill. The trench is lined on the estuary side of the trench and also to a level of 3.65 mOD on the landfill side of the trench. The trench is connected to the foul sewer running along the western boundary of the site. Zero flow has been measured and subsequently the flow meter has now been removed.

The main groundwater flow path is generally towards the estuary, which is located to the south of the site. Groundwater monitoring has been undertaken at boreholes WM1, WM4, WM5, WM6, WM8, WM9 and WM10. Groundwater monitoring results are provided in full within Appendix F. These results are also presented graphically.

Groundwater was assessed against;

Groundwater: the European Communities (Drinking Water) (No. 2) Regulations 2007 parametric value (DWR), Interim Guideline Value (IGV) Towards Setting Guideline Values for the Protection of Ground Water in Ireland and SI. No. 9/2010 European Communities Environmental Objectives (Groundwater) Regulations 2010 (GWR 2010). A table showing the DWR, IGV and GWR 2010 from applicable regulations is to be found in Appendix F.

Total pesticides means the sum of all individual pesticides detected and quantified in the course of the monitoring procedure. The DWR is 0.50µg/l. (Only those pesticides which are likely to be present in a given supply require to be monitored - organic insecticides, organic herbicides, organic fungicides, organic nematocides, organic acaricides, organic algicides, organic rodenticides, organic slimicides , related products (*inter alia*, growth regulators and their relevant metabolites, degradation and reaction products).

Polycyclic aromatic hydrocarbons are the sum of concentrations of specified compounds. The DWR is 0.10ug/l. The specified compounds are benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene and indeno(1,2,3-cd)pyrene.

Total trihalomethanes are the sum of concentrations of specified compounds. The DWR is 100ug/l. The specified compounds are: chloroform, bromoform, dibrom-ochloromethane and bromodichloromethane

5.4 BASELINE DATA

Monitoring was carried out up-gradient of the site in order to obtain an overview of the baseline monitoring water quality of the surrounding groundwater. This allows for a baseline to be established from which the actual impact caused by the site on the down-gradient groundwater can be assessed. WM1 is the up-gradient monitoring point. Monitoring is undertaken on a monthly, quarterly and annual basis.

5.4.1 Monthly Parameters

Electrical Conductivity in WM1 was above the IGV (1000 μ Scm), GWR (800-1875 μ Scm) and DWR (2500 μ Scm) throughout the monitoring period. All Ammonia concentrations recordings were below the GWR 2010 (0.175 mg/l N), IGV (0.15 mg/l) and the DWR (0.30 mg/l). The

concentrations in WM1 were <0.03 mg/l at times during the monitoring period. Chloride concentrations were above the GWR 2010 (187.5 mg/l), IGV (30 mg/l) and the DWR (250 mg/l) throughout the monitoring period. The highest chloride reading recorded was 553 mg/l in February.

5.4.2 Quarterly Parameters

Dissolved Oxygen (DO) levels ranges from 22% to 26 %. WM1 exhibits TOC values ranging from 3.0 mg/l to 111.5 mg/l. The pH levels in WM1 are within the IGV and DWR of 6.5 and 9.5.

5.4.3 Annually

Aluminium, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Copper, Cobalt, Copper, Cyanide, Fluoride, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Selenium Thallium Tin and Zinc are all below the relevant IGV, GWR 2010 where comparable or the lower limit of detection.

Magnesium, Potassium and Sodium and Sulphate exceed the IGV. Magnesium exceeds the IGV of 50 mg/l in WM1 with a reading of 54.92 mg/l. Potassium exceeds the IGV of 5 mg/l with a result of 23 mg/l. Sodium is above the IGV (150 mg/l) and DWR (200 mg/l) with a value of 461.43 mg/l and Sulphate exceeds the GWR 2010 of 187.5 mg/l with a reading of 249.4 mg/l.

Ortho-phosphate is below the IGV of 0.03 mg/l with a recording of < 0.02 mg/l. Total Alkalinity shows no abnormal change with a reading of 396 mg/l. TON shows no abnormal change with a value of 0.97 mg/l for WM1. Residue on Evaporation recorded 1654 mg/l in WM1 in April.

Analysis for Polycyclic Aromatic Hydrocarbons (Total 16 EPA PAHs) was carried out in WM1 in April and recorded <0.1 μ g/l and is below the DWR of 0.1 μ g/l for PAH. All other parameters measured were less than the lower level of detection.

Phenols levels were <0.002 mg/l which is the lower limit of detection for the methodology used for Phenols. This is above the IGV of 0.5μ g/l.

Pesticide and Herbicides analysis was carried out in WM1 in April. Pesticide levels were <0.01 μ g/l which is the lower limit of detection for the methodology used. The total pesticides could be above or below the IGV 0.5 μ g/l. Herbicides levels were less than the lower level of detection (< 1 μ g/l).

Total-Trihalomethanes (THM) is the sum of Dichloromethane, Chloroform, Bromodichloromethane and Bromoform. Dichloromethane, Bromodichloromethane and

Bromoform were below the lower detection limit for the analytical methodology used (<0.1 μ g /l), however Chloroform (0.1 μ g/l) was detected. However it does not exceed the DWR of 12 μ g/l. THM is below the DWR of 100 μ g/l total trihalomethanes.

Volatiles and semi volatiles parameters were either below the IGV or less than the detection limit for those comparable.

The lower limit of detection for the methodology used is higher than the IGV for a number of parameters.

5.5 DOWN-GRADIENT DATA

The impact on the groundwater from leachate generated within the landfill can be identified from Boreholes WM4, WM5, WM6, WM8, WM9 and WM10. WM4 and WM8 are located in the gravel aquifer.

	Units	No. of Samples	Minimum	Maximum	Mean	Standard Deviation		
Alkalinity	mg/I CaCO3	6	1020	1400	1238	173		
Aluminium	µg/l	6	<5	8.6				
Ammonia	mg/l N	72	0.06	128.39	48	29		
Antimony	μg/l	24	<0.5	1.11	1	0		
Arsenic	μg/l	24	<5	3.81	2	1		
Barium	µg/l	6	<0.5	232.8	139	76		
Beryllium	µg/l	6	<0.5	<0.5				
B.O.D.	mg/l O2							
Boron	µg/l	6	1736.2	2895.5	2045	431		
Cadmium	µg/l	6	<0.1	0.4				
Calcium	mg/l Ca	6	95.36	269.27	189	67		
C.O.D.	mg/l O2							
Chloride	mg/I CI	72	44	5943	1405	1364		
Chromium	µg/l	6	<0.5	1.2				
Cobalt	μg/l	6	1.5	7.8	3	2		
Conductivity	µS/cm @ 25	72	1697	14710	6073	3688		
Copper	µg/l	24	<0.5	91.4				
Cyanide	mg/I CN	24	<0.05	< 0.05				
D.O.	% Saturation	48	12	35	18	10		
Fluoride	mg/l	24	<0.60	<0.60				
Iron	µg/l	6	64.3	20497.2	4826	8122		
Lead	μg/l	6	<0.5	<0.5				
Magnesium	mg/l Mg	6	73.07	319.23	160	92		
Manganese	µg/l	6	148.5	2919.9	1005	1017		
Mercury	µg/l	6	<0.05	<0.05				
Molybdenum	µg/l	6	<0.5	4.6				
Nickel	μg/l	6	1.9	22.9	9	9		
o-Phosphate	mg/l P	24	0.03	0.93	0	0		

Table 5.5 Groundwater Parameters Down Gradient

	Units	No. of Samples	Minimum	Maximum	Mean	Standard Deviation
рН	0	48	6.8	7.4	7	4
Potassium	mg/l	9	4.2	146.12	75	55
Residue on Evaporation	mg/l	27	1489	8423	4031	2171
Sampling Depth	m	72	1.3	5.6	4	2
Selenium	µg/l	21	0.7	6.4	4	1
Silver	µg/l					
Sodium	mg/l	6	250.64	2498.04	1008	880
Strontium	µg/l	6	771.63	2293.52	1350	532
Sulphate	mg/I SO4	24	10.2	486.2	172	110
Suspended Solids	mg/l					
Temp	°C	46	9.9	18	14	7
Thallium	µg/l	8	<0.1	0.21		
Time Sampled	0					
Tin	µg/l	9	<1	<1		
T.O.C.	mg/l	30	17.6	456.4	196	140
T.O.N	mg/I N	24	0.16	3.47	1	1
Total S Solids	mg/l					
Uranium	µg/l	6	0.14	1.1	1	1
Vanadium	µg/l	6	0.87	3.37	2	1
Zinc	µg/l	6	<0.5	88.7	28	33

5.5.1 Monthly Parameters

Results from down gradient boreholes indicate elevated levels of Ammonia in the majority of boreholes. The highest Ammonia level recorded was 128.39 mg/l N WM8 in April. Elevated levels of Ammonia are indicative of leachate contamination. The hydrogeological study undertaken in 2004 predicated a range of concentrations in groundwater in the estuarine perimeter of the site after 10 years from the completion of the landfill capping. For Ammoniacal Nitrogen this range was 67-71 mg/l. WM5, WM6, WM8 and WM9 exceed this range during the monitoring period.

Electrical Conductivity exceeds the DWR and GWR in all boreholes. The highest level was recorded in WM4 (14,710 μ S/cm). Chloride levels also exceeded the DWR throughout the monitoring period. The highest Chloride concentration recorded was 5,943 mg/l in WM4. It should be noted that saline water intrusion may contribute to the high levels of Chloride and Electrical Conductivity recorded down-gradient of the site as seawater can contain Chloride levels up to 20,000 mg/l.

5.5.2 Quarterly Parameters

TOC values provide a measure of organic contamination of the water, the higher the content the more oxygen is consumed. Organic contamination results in an increase in the growth of micro-organisms. TOC results show spike in concentrations in a number of boreholes. This

also increased in the upstream borehole but not to the same concentrations. DO ranges from 12% to 35%.

5.5.3 Annually

Aluminium, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Copper, Cobalt, Copper, Cyanide, Fluoride, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Selenium Thallium Tin and Zinc are all below the relevant IGV, ECOC where comparable or the lower limit of detection.

Cadmium, Chromium, Copper, Cyanide, Fluoride, Lead, Mercury, Nickel and Zinc are all below the relevant IGV.

Aluminium, Boron, Calcium, Iron, Magnesium, Manganese, Potassium and Sodium, and Sulphate exceed the IGV. Magnesium exceeds the IGV of 50 mg/l in WM1 with a reading of 59.58 mg/l. Potassium exceeds the IGV of 5 mg/l with a result of 21.34 mg/l. Sodium is above the IGV (150 mg/l) and DWR (200 mg/l) with a value of 463.85 mg/l and Sulphate exceeds the IGV of 200 mg/l with a reading of 225.7 mg/l.

Ortho-phosphate is above the IGV of 0.03 mg/l with a recording of 0.04 mg/l to 0.24 mg/l. Total Alkalinity readings ranged from 820 mg/l to 1,470 mg/l. TON concentrations range from <0.08 to 4.37 mg/l. Residue on Evaporation recorded reading of 1,638 mg/l to 2195.13 mg/l in downstream boreholes in April. These results are included in Appendix F.

Annual analysis for List I and II substances were undertaken at WM5 and WM6 downstream of the site.

Polycyclic Aromatic Hydrocarbons (total 16 EPA PAHs) was <0.17 μ g/l in WM5 but 0.202 μ g/l in WM6 which is above the DWR and IGV of 0.1 μ g/l for PAH. A number of parameters were detected above the lower level of detection and Benzo (a) pyrene (0.0261 μ g/l) exceed IGV for those comparable.

Phenols levels were lower than the limit of detection for the methodology used (<0.013 μ g/l) but this is above the appropriate IGV of 0.5 μ g/l.

Pesticide and Herbicides analyses were carried out in WM6 and WM8 in April. Pesticide levels were $<0.01\mu g/l$ which is the lower limit of detection for the methodology used. Herbicides levels were less than the lower level of detection.

Total-Trihalomethanes (THM) is the sum of Dichloromethane, Chloroform, Bromodichloromethane and Bromoform. Bromodichloromethane, Bromoform and Chloroform

were below the lower detection limit for the analytical methodology used (<0.1 μ g /l), however Dichloromethane was detected at 0.1 μ g/l in WM6. However it does not exceed the DWR of 10 μ g/l. THM is below the DWR of 100 μ g/l total trihalomethanes.

Volatiles and semi volatiles parameters were either below the IGV or less than the detection limit for those comparable. 1,1-Dichloroethane, Benzene, Chlorobenzene, Dichloromethane, and Isopropylbenzene were all detected above the detection limit of $0.1\mu g/l$. These do not exceed the IGV for those comparable. The detection limit of $0.1\mu g/l$ is higher than the IGV for a number of parameters.

5.5.4 Groundwater Levels

Groundwater levels monitoring is undertaken at six locations on site as show on Table 5.6. WM1 is upgradient of the site and WM4 and WM8 are located in gravel aquifer.

Location	WM1	WM4	WM5	WM6	WM8	WM9	WM10
Cover Level	4.77	5.12	5.57	5.87	5.15	5.78	5.64
mOD							
16-Jan-12	1.97	0.12	0.27	0.97	2.15	0.88	0.44
06-Feb-12	3.57	3.82	3.17	3.37	1.85	2.78	3.84
12-Mar-12	nm	nm	nm	nm	nm	nm	nm
23/04/2012	1.87	0.52	0.85	0.97	1.25	1.38	0.64
14/05/2012	1.75	0.61	0.47	0.89	0.19	0.73	0.34
06/06/2012	1.90	0.76	0.59	1.20	0.65	1.21	0.81
23-Jul-12	1.87	1.62	0.87	0.97	1.25	1.38	0.64
13-Aug-12	2.47	1.12	1.37	1.57	2.05	1.88	1.14
10-Sep-12	1.87	1.02	0.47	0.87	-0.05	0.68	0.74
08-Oct-12	1.87	0.12	0.27	0.87	1.05	1.58	0.04
05-Nov-12	1.87	0.52	0.77	1.07	1.35	0.88	2.34
10-Dec-12	1.87	0.12	0.27	0.87	1.05	1.48	0.14

Table 5.6 Groundwater Level mOD

5.6 REMEDIATION

The results show that groundwater is being impacted by the landfill site. A hydrogeological study was undertaken and the recommended Best Practicable Environmental Option for the remediation of Dundalk landfill was the capping of the landfill with a low permeability liner augmented by monitored natural attenuation. The hydrogeological study predicated a range of concentrations in groundwater (along boundary with estuary) after 10 years from the

completion of the landfill. Capping was completed in 2006. A review of monitoring results shows some improvement in groundwater and surface water quality over time since capping was completed. This will continue to be monitored for longer term trends to assess the extent of the natural attenuation of the site.

In the 'Predicted Environmental Risk Assessment' represented by the Dundalk landfill to the Quaternary Gravel Aquifer and the Castletown Estuary after 10 years from the completion of the landfill capping it is predicted that the concentration range for Ammoniacal Nitrogen will be between 67 mg/l and 71 mg/l in groundwater (along boundary with estuary). In WM4 and WM10 the concentrations are below the maximum predicted concentration range. WM5 and WM6 are below the maximum in all but one occasion in 2012. WM9 exceeds the maximum predicted concentration range for Ammoniacal Nitrogen on four sampling rounds in 2012. WM8 (gravel aquifer) exceeds the maximum predicted concentration range for Ammoniacal Nitrogen for the majority of the year.

5.7 SURFACE WATER

The results contained in this report are Assessed against the Surface Water Quality Standards (SWQS) laid out in the European Communities (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations 1989, European Communities Environmental Objectives (Surface Water) Regulations 2009 as amended (ECEO) and Interim Guideline Value (IGV) Towards Setting Guideline Values for the Protection of Ground Water in Ireland. The frequencies of the monitoring of surface water parameters are shown in Table 5.7.

Monthly	Quarterly	An	nually
Ammoniacal Nitrogen	BOD	Aluminium	Manganese
Chloride	COD	Boron	Nickel
Electrical Conductivity	Dissolved Oxygen	Cadmium	Potassium
	рН	Calcium	Sodium
	Total Suspended Solids	Chromium	Zinc
	Temperature	Copper	Mercury
	TON	Iron	Sulphate
		Lead	Alkalinity
		Magnesium	Orthophosphate

Table 5.7 Surface Water Parameters Monitoring	Frequencies
---	-------------

Samples SW1 to SW4 are taken along the course of the drainage ditch, which adjoins the northern boundaries of the landfill. Monitoring points SW5 to SW9 are located in the estuary. SW5 and SW6 are adjacent (AD) to the landfill, whilst SW7 and SW8 are upstream (US) and SW9 downstream (DS) of the site.

Table 5.8 provides a summary of results in 2012 for SW1 to SW4 surface water locations.

		No. of				Standard
	Units	Samples	Minimum	Maximum	Mean	Deviation
Alkalinity	mg/I CaCO3	4	242	352	298	46
Aluminium	µg/l	4	<5	21		
Ammonia	mg/I N	48	< 0.03	43.86		
Antimony	µg/l	4	0.68	6.56	2.5	2.8
Arsenic	µg/l	4	0.91	2.03	1.3	0.5
Barium	µg/l	4	39.6	90	61.2	22.6
Beryllium	µg/l	4	<0.5	0		
B.O.D.	mg/I O2	32	2.8	417	44	113
Boron	μg/l	4	126.1	317.3	250	85
Cadmium	µg/l	4	<0.1	<0.1		
Calcium	mg/l Ca	4	86.58	115.55	99.6	12.4
C.O.D.	mg/I O2	32	44	1750	224	423
Chloride	mg/I Cl	48	79	467	189	69
Chromium	µg/l	4	<0.5	<0.5		
Cobalt (µg/l)	µg/l	4	<0.5	0.9		
Conductivity	µS/cm @ 25	48	695	2080	1524	337
Copper	µg/l	4	0.9	2.5	1.8	0.7
Cyanide	mg/I CN					
D.O.	% Saturation	32	10	170	52	38
Fluoride	mg/l					
Iron	µg/l	4	28.6	42.6	33.9	6.1
Lead	µg/l	4	<0.5	<0.5		
Magnesium	mg/I Mg	4	24.23	40.42	30.9	7.0
Manganese	µg/l	4	17.8	285.4	178	114
Mercury	µg/l	4	< 0.05	< 0.05		
Molybdenum	µg/l	4	1.6	2.5	2.1	0.4
Nickel	µg/l	4	1.7	3.3	2.5	0.8
o-Phosphate	mg/I P	28	< 0.02	< 0.02		
pH	0	32	7.2	7.9	7.5	0.2
Potassium	mg/l	4	12	23.63	19.0	5.5
Residue on	Ĭ					
Evaporation	mg/l					
Sampling						
Depth	m					
Selenium	µg/l	4	<0.5	<0.5		
Silver	µg/l					
Sodium	mg/l	4	69.9	157.56	100.7	40.5
Strontium	µg/l	4	373.08	670.58	482.6	135.5
Sulphate	mg/I SO4	28	54.9	165.7	97.6	51.4
Suspended	mall					
Solids	mg/l °C		6.0	477	10.0	4.0
Temp	-	32	6.6	17.7	12.6	4.0
Thallium	µg/l	4	<0.1	<0.1		
Time Sampled	0	1				

 Table 5.8
 Surface Water Parameters SW1 to SW4

	Units	No. of Samples	Minimum	Maximum	Mean	Standard Deviation
T.O.C.	mg/l					
T.O.N	mg/I N	32	<0.08	3.97	1.5	1.1
Total S Solids	mg/l	32	6	3200	497	924
Uranium	µg/l	6	0.61	1.06	0.9	0.2
Vanadium	µg/l	4	<0.5	1.82		
Zinc	µg/l	4	1.5	3.6	2.6	1.1

Table 5.9 Surface Water Parameters SW5 to SW9

	No. of Standard										
	Units	Samples	Minimum	Maximum	Mean	Deviation					
Alkalinity	mg/I CaCO3	17	107	140	121	12					
Aluminium	µg/l	6	12.6	91.8	32	33					
Ammonia	mg/I N	59	0.04	1.38	0.3	0.4					
Antimony	µg/l	17	<0.5	<0.5							
Arsenic	µg/l	6	0.67	0.96	0.8	0.1					
Barium	µg/l	6	25	29.2	28	2					
Beryllium	µg/l	6	<0.5	<0.5							
B.O.D.	mg/I O2	39	1.5	17.4	5	5					
Boron	µg/l	13	63.2	1079.4	354	412					
Cadmium	μg/l	6	<0.1	<0.1							
Calcium	mg/I Ca	6	43.43	120.71	68	30					
C.O.D.	mg/l O2	39	15	486	85	141					
Chloride	mg/I Cl	66	21	9113	1562	2480					
Chromium	µg/l	17	<0.5	<0.5							
Cobalt (µg/l)	µg/l	6	<0.5	0.5							
Conductivity	µS/cm @ 25	59	321	17770	3505	4564					
Copper	µg/l	17	1.8	2.7	2	0					
Cyanide	mg/I CN										
D.O.	% Saturation	44	89	123	96	9					
Fluoride	mg/l										
Iron	µg/l	5	76.5	444.1	240	137					
Lead	µg/l	6	<0.5	0.6							
Magnesium	mg/I Mg	6	20.6	271.08	95	101					
Manganese	µg/l	6	64.8	177	115	42					
Mercury	µg/l	6	<0.05	< 0.05							
Molybdenum	µg/l	6	0.6	3	1.3	1.1					
Nickel	µg/l	6	1.3	2.5	1.9	0.5					
o-Phosphate	mg/I P	35	0.03	0.07	0.0	0.0					
рН	0	45	7.5	8.4	8.0	0.2					
Potassium	mg/l	13	7.65	92.51	32.8	34.1					
Residue on											
Evaporation	mg/l										
Sampling Depth	m										
Selenium	µg/l	11	<0.5	0.8							
Silver	µg/l		~0.0	0.0							
Sodium	mg/l	6	133.05	2359.42	780.0	897.3					
Strontium	µg/l	6	210.88	1933.79	719.1	690.6					
Sulphate	mg/I SO4	35	44.8	598	218	256					
Suspended	mg/l		-++.0	000	210	200					
Suspended	iliy/i	1	l	l	<u> </u>	l					

	Units	No. of Samples	Minimum	Maximum	Mean	Standard Deviation
Solids						
Temp	°C	44	7	20	13	5
Thallium	μg/l	13	<0.1	<0.1		
Time Sampled	0					
Tin	µg/l	17	<1	<1		
T.O.C.	mg/l					
T.O.N	mg/l N	44	0.39	2.65	1	1
Total S Solids	mg/l	46	<0.08	82		
Uranium	µg/l	13	0.31	0.98	1	0
Vanadium	µg/l	6	<0.5	0.98		
Zinc	μg/l	6	<0.5	73.7		

5.7.1 Monthly Parameters

Monthly chemical analyses of surface water are summarised in Appendix G. The results indicate elevated levels of Ammonia mg/l N, the highest concentration recorded in the stream was 43.86 mg/l N in SW1 and in the estuary was 1.36 mg/l N in SW9 (DS). Elevated levels of Electrical Conductivity, and Chloride recorded at SW5 to SW9 are also due to the presence of estuarine water.

5.7.2 Quarterly Parameters

The pH values range from 7.2 to 7.9 in all surface water locations which are between the SWQS of 5.5 to 9.

The results indicate elevated levels of BOD and COD, the highest concentration recorded in the stream was 417 mg/l in SW2 and in the estuary was 17.4 mg/l in SW9 (DS) for BOD and for COD the stream was 1,750 mg/l in SW2 and in the estuary was 486 mg/l in SW9 (DS).

Total Suspended Solids exceed the SWQS in all surface water monitoring locations at times, the highest concentration recorded in the stream was 3,200 mg/l in SW1 and in the estuary was 82 mg/l in SW6 (AD).

The Total Organic Nitrogen (TON) showed no abnormal change throughout 2012, the highest concentration recorded in the stream was 3.97 mg/l in SW3 and in the estuary was 2.65 mg/l in SW8 (US).

The majority of parameters assessed show that levels of contamination increase between sampling points SW1 and SW4, which are located along the drainage ditch running along the north of the site. It can be seen that elevated levels of Ammonia, COD and BOD have been recorded at the various monitoring locations along the drainage ditch. These results are presented graphical in Appendix G. A review of the contamination in the stream has been undertaken and submitted to EPA for agreement. The following actions are to be undertaken as agreed;

- The review of existing gas wells to determine if they can also be used for leachate head monitoring shall be completed.
- Leachate head shall be recorded during the quarterly discharge points monitoring rounds.
- The scope of the monitoring shall be to determine if any discharge from the landfill site, including the recycling/composting centre, is impacting on the northern stream (i.e. not just at station SW1).
- A summary report of monitoring undertaken shall be submitted to the Agency within one month of the completion of the fourth recommended monitoring round. The findings of the two already completed surveys shall be incorporated into this report. All monitoring stations shall be clearly shown within the context of the stream setting.
- During the survey period, any adverse impact(s) detected shall be treated as an incident in accordance with the waste licence requirements.

5.7.3 Annual Parameters

Annual analysis was undertaken on 23rd April, 2012.

Aluminium, Arsenic, Barium Beryllium Boron, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Mercury, Nickel, Selenium, Thallium, and Tin are below the IGV, DWR and ECEO were applicable. The remaining parameters are below the lower limits of detection;

- Antimony exceeds DWR at SW1.
- Iron exceeds the DWR at a number of the estuarine locations.
- Magnesium exceeds IGV at SW6 (271.08 mg/l).
- Manganese exceeds IGV and DWR at a number of surface water locations.
- Potassium exceeds IGV at all locations.
- Sodium exceeds IGV and DWR at SW6, SW7 and SW9.
- Sulphate exceeds IGV and DWR at SW4.
- Zinc exceeds ECEO at SW5.

Concentrations above the limit of detection were measured for the following parameters;

- Cobalt <0.5 μg/l to 0.9 μg/l.
- Molybdenum <0.5 µg/l to 2.5 µg/l.
- Strontium 210.88 μg/l to 1,933.79 μg/l
- Uranium 0.31 to 1.06 µg/l and
- Vanadium <0.5 to 73.7 µg/l

Total Suspended Solids in the stream surface water monitoring locations ranged from 8 mg/l (SW3) to 1,640 mg/l (SW2). Total Suspended Solids in the estuarine stream surface water monitoring locations ranged from 6 mg/l to 43 mg/l.

Alkalinity concentrations range from 242 mg/l to 352 mg/l the stream surface water monitoring locations and from 107 mg/l to 140 mg/l in the estuarine water

Ortho-phosphate is above the IGV of 0.03 mg/l at SW6 and SW7.

The remaining parameters are below the lower limits of detection.

5.8 REMEDIATION

The results show that surface water is being impacted by the landfill site. In the hydrogeological study an Ammoniacal Nitrogen contaminant discharge was estimated at 70 mg/l after capping (after 10 years), predicting a long term concentration of 0.26 mg/l in the estuary. The results show the highest Ammoniacal Nitrogen concentration value for the stream is in SW1 at 43.86 mg/l.

The highest concentration for the estuary is in SW9 (1.38 mg/l) which is downstream of the site. SW5 and SW6 are adjacent to the site. Ammoniacal Nitrogen ranged from 0.1 to 1.34 mg/l in SW5 and 0.1 to 1.36 mg/l in SW6. Ammoniacal Nitrogen exceeds the predicting a long term concentration of 0.26 mg/l in these locations in the estuary on two sampling periods during 2012.

5.9 Sewer Discharges

The Waste Licence in Schedule D requires the monitoring of the BOD, COD, Ammonia, Suspended Solids, Sulphates, pH and Temperature on a quarterly basis.

S1 is the sewer discharge monitoring location at manhole No 2, adjacent to weighbridge. This monitors run-off from the Recycling Centre and Material Recovery Facility and discharge from the composting facility.

Table 5.8 illustrates the parameters that were monitored in S1. S1 results can be found in full in Appendix H. BOD, COD and pH exceeds the ELV in October.

Parameter	Jan	Mar	April	June	Aug	Sept	Oct	Nov	Dec	Emission Lim	it Value (ELV)
										S1: Civic Waste Facility Grab Sample (mg/l)	S2: Leachate from Landfill Grab Sample (mg/)
BOD	153.4	27.9	66.6	27.8	202.3	257.3	5193.0	45.2	78.6	750	2000
COD	299	245	481	247	911	1250	7880	193	600	1000	9000
Suspended Solids	560		206	27	139	705	576	297	228	1000	2000
Sulphate		4.9	16	49.1	23.9	18.2	114.7	8.3	15.8	300	400
рН	7.4	7.3	7.2	7.2	7.1	7.3	6.3	7.2	6.9	6-9	6-9
Temperature	9.4		11.3	nm	nm	nm	13.3	nm	nm	40°C	40°C

Table 5.8 Parameters Monitored in S1

5.10 PERIMETER GAS MONITORING AND LANDFILL GAS EXTRACTION

Schedule D of the licence requires the licensee to conduct monthly monitoring of gas levels on the perimeter and in the waste of the landfill site. The gas is monitored using a GA2000 infrared monitoring device. The monitoring locations are shown on Table 5.9 and shown in Drawing in Appendix I (External Gas Monitoring Points).

Table 5.9 Landfill Gas Monitoring Locations

Landfill Gas Wells within	GW1 to GW47 inclusive
Waste and Boundary	(as shown on Drawing No. 004 of the Restoration Plan for
Locations	34-1 (Nov 2002) agreed by the Agency)
Piezometers Boundary Locations	G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G16, G17, GM1, GM2, GM3, GM4, GM5, GM6, GM7, GM8, GM24

Landfill gas around the periphery of the site is indicated by piezometers as shown in Table 5.7 above. GM7 and GM8 are no longer monitored.

A landfill gas trench has been installed to the west of the active landfill site to intercept the potential pathway of the gas migrating from the current active landfill site. Piezometers GM5 to GM7, G4 to G10 are to the west of the landfill gas trench.

A permanent gas extraction system has been installed at the facility. This includes a gas collection layer and 47 landfill gas extraction wells laid out on a grid system over the main body of the site. The wells are connected via 63mm diameter pipework to a 250mm diameter main gas collection pipe. A 600m³ enclosed Flare Unit and SCADA system has been installed. The boreholes in the area of historical fill have also been attached to the active gas collection system. Records of field balancing are maintained.

Monthly monitoring of periphery piezometers around Dundalk Landfill site have indicated no exceedances for methane greater than or equal to 1.0% v/v. The highest recording was G6 of 0.8% v/v during the monitoring period.

There were a number of exceedances of Carbon Dioxide greater than or equal to 1.5% v/v as follows;

- April G9 7.5% v/v, G20 5.7 % v/v
- May G9 7.5% v/v, G20 4.2 % v/v
- June G9 5.5 % v/v, G20 3.9 % v/v

5.11 ESTUARINE SOIL SAMPLES

Sediment sampling was not undertaken in 2012.

5.12 DUST MONITORING

Dust monitoring was carried out three times in the year. Table 5.10 details the results of the three dust monitors installed on site. The waste licence requires dust deposition limits to be no more than 350 mg/m²/day.

Sampling Period	Dust Monitor 1	Dust Monitor 2	Dust Monitor 3		
22/05/2012 19/06/2012	362.8	29.5	53		
24/07/2012 22/08/2012	15.3	25	26.2		
Date collected 07/01/2013	37.5	105.4	25.2		

Table 5.10Dust Monitoring Results

From Table 5.10 it can be seen that all dust deposition levels in all periods are below the limits except in DG1, which exceeds the licence requirements in June – July which is slightly over the 350 mg/m^2 /day limit. It not thought that these exceedances are a result of operations at the recycling facility. No complaints were received nor was problem with dust noted during this period.

5.13 COMPOSTING MONITORING

V & W recycling compost hedge grass & hedge cuttings from Civic Amenity users. 2,827 tonnes was received for composting in 2012. Compost testing was undertaken by Bord na Mona Ltd and is provided in Appendix J. Samples are taken from 5 separate locations and depths within the compost pile to ensure a representative composite sample can be achieved. The sampling of compost takes place from the static pile before the screening process and hence does not take account of the filtering process. The compost is passed through a rotating drum type sieve prior to bagging. Heavier material is returned to the process. Compost is also stored on site for 6 months (held over winter).

The four samples of compost were sent for analysis. The samples of compost were checked for compliance against Schedule F of Waste Licence W0034-02;

24th May 2012

Sample complied with Schedule F, Maturity tests 1, 3 and 4. The results show that the compost if fully stable. Contaminants were <0.01 % for all sieve sizes from 2-4 mm above. Trace elements comply with Class 1 Maximum Trace Element Concentration Limits for Compost. Sample complied with the human pathogen test BSI PAS 100 Standard Limits (Salmonella s.p.p absent in 25g sample and E. coli <1,000 CFU/g)

11th July 2012

Sample complied with Schedule F, Maturity tests 3 and 4. The specific oxygen uptake test was >10 mgO₂/gdm/h. Contaminants were <0.01 % for all sieve sizes above from 2-4 mm except for stone at 1.02%. Trace elements comply with Class 1 Maximum Trace Element Concentration Limits for Compost. Sample complied with the human pathogen test BSI PAS 100 Standard Limits (Salmonella s.p.p absent in 25g sample and E. coli <1,000 CFU/g)

6th November 2012

Sample complied with Schedule F, Maturity tests 3 and 4. The specific oxygen uptake test was 11.5 mmolO₂/kgOS/h which is moderately stable in accordance with Bord Na Mona Maturity Indicator Values. Contaminants were <0.01 % for all sieve sizes above from 2-4 mm except for stone at 0.78% (2-4 mm) and 1.72 (4-8 mm). Trace elements comply with Class 1 Maximum Trace Element Concentration Limits for Compost. Sample complied with the human pathogen test BSI PAS 100 Standard Limits (Salmonella s.p.p absent in 25g sample and E. coli <1,000 CFU/g)

29th January 2012

Sample complied with Schedule F, Maturity tests 1, 3 and 4. The results show that the compost if fully stable. Contaminants were <0.01 % for all sieve sizes from 2-4 mm above. Trace elements comply with Class 1 Maximum Trace Element Concentration Limits for Compost except for Nickel (58.6 mg/kg,dry mass). Sample complied with the human pathogen test BSI PAS 100 Standard Limits (Salmonella s.p.p absent in 25g sample and E. coli <1,000 CFU/g).

As stated above the sampling of compost takes place from the static pile before the screening process and hence does not take account of the filtering process. Contaminants are removed on site by a screening process undertaken by V&W Recycling, whereby the compost is passed through a rotating drum type sieve prior to bagging. Heavier material is returned to the process.

5.14 BIOFILTER MONITORING

Composting is undertaken in a proprietary vacuum aerated static pile system complete with Biofilters, supplied by Celtic Composting Systems of Cork. Biofilter monitoring has also been undertaking in accordance with Schedule D of the licence.

5.14.1 Bed Media

Moisture content, pH, Ammonia and Total viable counts were analysed for the bed media gases and are provided in Appendix J. There are no limits in waste licence for these parameters.

5.14.2 Inlet and Outlet Gas

Ammonia, Hydrogen sulphide and Mercaptans were measured on inlet and outlet gases and the results are provided in Appendix J. These are below the emission limit in C5.

5.15 METEOROLOGICAL MONITORING

Temperature and rainfall readings are taken from Dublin Airport.

Table 5.11	Summary of Meteorological Monitoring for the Reporting Period
------------	---

Total F	Total Rainfall in Millimetres for Dublin Airport												
Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2012	63.0	20.5	25.6	90.2	60.4	147.7	85.3	78.1	83.4	71.0	72.0	52.3	849.5
mean	62.6	48.8	52.6	54.1	59.5	66.7	56.2	73.3	59.5	79.0	72.9	72.7	757.9

Mean Temperature in Degrees C. for Dublin Airport													
Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2012	6.1	6.6	8.0	6.6	9.8	12.7	14.0	15.3	12.0	8.4	6.4	5.4	9.3
mean	5.3	5.3	6.8	8.3	10.9	13.6	15.6	15.3	13.4	10.5	7.4	5.6	9.8

6.0 RESOURCE AND ENERGY CONSUMPTION SUMMARY

Consumption of resources for the reporting period is shown in Table 6.1 below.

Table 6.1 Consumption of Resources

Parameters	CWF	Unit
Electricity	3,970	kWh
Water	2,640	m ³

7.0 DEVELOPMENT / INFRASTRUCTURAL WORKS IN PLACE AND PLANNED, TO PROCESS WASTE QUANTITIES PROJECTED FOR THE FOLLOWING YEAR (INCLUDING PLANT OPERATING CAPACITY, PROVISION OF ADEQUATE STANDBY CAPACITY AND PROVISION OF CONTINGENCY, BACKUP AND SPARES IN THE CASE OF BREAKDOWN).

There is no additional development /infrastructural works planned for 2013 in the recycling facility and landfill site.

7.1 PLANTS AND METHODS

The current plant on site comprises of;

- Compactor The current compactor is used to bale recyclable materials
- Hopper The hopper is used to accept recyclables.
- Conveyer Belt The conveyer belt is used to sort materials
- Wood Shredder The wood shredder is used to shred wood received at the Civic Waste Facility.

All machines have a 50% back-up capacity and V & W Recycling also have access to spares as required.

7.2 PROPRIETARY VACUUM AERATED STATIC PILE SYSTEM

The licence also allows composting of biodegradable waste and green waste to 4,000 tonnes per annum. A Proprietary Vacuum Aerated Static Pile System has been installed. No food waste is utilised through the composting system. Celtic Composting systems biofilters (2) were specified to have capacity of 8,000 tonnes of compost, thus providing 100% spare capacity in the event of breakdown.

8.0 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS FOR THE FORTHCOMING YEAR

The following developments works (Environmental Objectives and Targets) will be carried out in 2013;

- 1. Investigate the potential impact on the stream to the north of the site
- 2. Investigate the feasibility of using the landfill gas to;
 - Recharge electric vehicles for use by DTC works department. This energy recovery may reduce DTC fuel costs and the carbon footprint and provide a lead by example to the Dundalk community.
 - Provide power for use by the compost making facility.
- 3. Investigate the potential to downsize flare from 600 m3 to 300 m3. This will better aid run time and burn temperatures.
- 4. Investigate the potential to run flare on a timer.

9.0 TANK, DRUM, PIPELINE AND BUND TESTING AND INSPECTION REPORT

The use of specialist Oil tanks was approved by EPA and installed as part of the extension to the Civic Amenity Site in 2004/2005, provided these tanks were protected from vehicular impact. This was done by the provision of railings and the tanks are then set in additional recesses. There are no other bunds on site. No other inspections are undertaken.

10.0 FULL TITLE AND A WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY THE LICENSEE IN THE YEAR, WHICH RELATES TO THE FACILITY OPERATION

The Environmental Management System and Environmental Management Plan were reviewed and updated in 2006 to include the procedures for the Recycling Centre and the closure of the Landfill site. A new flare procedure was developed in 2012 and is available for viewing on site.

11.0 REPORT ON INCIDENTS AND COMPLAINTS SUMMARIES

No complaints were received from the public and no incidents were reported. A site audit was carried out at the facility in July 2012. A summary is provided in Table 11.1.

Table 11.1Summary of Non Compliances and Audit Observations Noted During
Audits/Landfill Site Inspections Undertaken During the Reporting Period
by EPA

Inspection Date and	Summary of Audit	Actions Taken to Address the
Reference	Findings	Observations
12/07/12	Non Compliances	
Issue date:	None	
26/07/12 Reference	Audit Observations	
No:	Landfill Gas.	A new flare procedure has been
(W0034-	Leachate	developed.
02/02/12/SI10EM	Other Issues	New management staff have familiarise
		themselves with landfill gas system.
		Surface water steam investigation
		underway.

12.0 REVIEW OF NUISANCE CONTROLS

12.1 DUST CONTROL

There was one breach of the dust deposition limit in 2012. Daily wind directions are taken and during episodes of high winds no movement of compost is undertaken. In addition operational activities to 'wet down' materials are in place.

12.2 LITTER

The landfill site was closed in October 2002 and therefore there is no wind blown litter arising from the landfill site. V & W Recycling (operators) of recycling facility do regular litter picks on blown paper waste etc and regular site clean up.

12.3 ODOURS

The landfill site was closed in October 2002 and therefore the potential for odours has been reduced. The permanent capping and installation of an active extraction system reduces the occurrence of odour from landfill gas.

The doors to the waste processing building are kept closed where possible; the biofilters minimize the odours from the composting process in the recycling facility.

Odour is checked on a daily basis by V & W Recycling.

12.4 PEST CONTROL (VERMIN)

Pest control is undertaken by V & W Recycling. Bait traps are checked on a weekly basis.

12.5 Noise

The measurements were completed completed on Wednesday and Thursday 28th – 29th November in accordance with the following environmental noise standards:

- ISO 1996: 2007 Acoustics Description and Measurement of Environmental Noise, Parts 1-4.
- EPA Guidance Note for Noise (NG4) 2012.

NSL 1: Daytime: LAeq (T 30 min) 69-68dBA;

Evening time: LAeq (T 15 min) constant at 65dBA; Night time: LAeq (T 15 min 61-51dBA

NSL 2: Daytime: LAeq (T 30 min) 57-55dBA;

Evening time: LAeq (T 15 min) constant at 52dBA; Night time: LAeq (T 15 min) 49-44dBA

- NSL 3: Daytime: LAeq (T 30 min) 69-67dBA; Evening time: LAeq (T 15 min) 63-62dBA; Night time: LAeq (T 15 mins) 59-54dBA
- NSL 4: Daytime: LAeq (T 30 min) 66-65dBA; Evening time: LAeq (T 15 min) 57-56dBA; Night time: LAeq (T 15 mins) 55-54dBA

Traffic was found to be the predominant source of noise at all locations. Reduced traffic noise levels during the night-time measuring period provides a more accurate representation of background noise against which any potential noise levels arising from the site activities could be compared. The findings show that during the night-time measurements and during lulls in traffic noise there was no noise audible from the landfill site. Hence it is considered to be in compliance with NG4 and Waste licence W0034-02 requirements.


13.0 VOLUME OF LEACHATE PRODUCED AND VOLUME OF LEACHATE TRANSPORTED DISCHARGED OFF SITE

A leachate drainage ditch has been constructed along the southern boundary of the landfill, laid to a nominal invert of 3.65 m (this being the level of the highest tide recorded in Dundalk). The base of the trench is lined with bentonite matting over which a 150 mm diameter perforated pipe is placed and the trench is then backfilled with clean stone. Any leachate/runoff entering the trench drains to the perforated pipe and from there drains via a manhole/ monitoring point to the foul sewer.

The trench is connected to the foul sewer running along the western boundary of the site. The in situ flow meter has been removed as agreed with the EPA. No flow has been observed in this trench during inspections.

14.0 REPORTS ON FINANCIAL PROVISION MADE UNDER THIS LICENCE, MANAGEMENT AND STAFFING STRUCTURE OF THE FACILITY, AND A PROGRAMME FOR PUBLIC

The management and staffing structure for the facility is as follows;

Figure 14.1 Management Structure at Dundalk Landfill Site

14.1 STAFFING STRUCTURE

The recycling facility is being operated by third party (V & W recycling) on behalf of Dundalk Town Council. There is currently 14 staff members employed at the recycling facility. This consists of:

- managers
- supervisors
- general operatives

The public information programme is provided in the Environmental Management System for the site.

15.0 ANNUAL BUDGET AND SITE RUNNING COSTS

The recycling facility is operated by third party (V & W Recycling) on behalf of Dundalk Town Council. A €2.00 entrance charge is applicable to all users of the site except for the disposal of electrical goods.

The budget for 2013 for landfill site is €65,000.

APPENDIX A

WATER BALANCE CALCULATION

WATER BALA	NCE CALCULAT	ION														
Year	Active Phase				Infilitration	Restored area	Temp Restored area(Temp) RCA(m ²)		Restored area	Restored area		Cumulative Water	Capacity		Cumulative Leachate	Leachate
				mm				IRCA(m3)					aW(m3)			Lo(m3)
2012	Closed		0.00	849.5	0				79000	6711	6711	6711	0.00	0.00	6711	6711
Total			0.00	849.5	0			0		6711			0			6711

Assumptions			
IRCA	Temporarily capped/restored area infiltration of rainfall estimated %	30%	%
	Permanent capped/restored area infiltration of rainfall estimated % (2-10%)	10%	%
Absorptive	waste density of 0.8 tonnes/m3. Estimated absorptive capacity (water per tonne waste		
Capacity	before leachate is produced) t/m3	0.06	t/m3
Restored Area	Area		
		79,000	m²
Rainfall	Rainfall taken from Dublin Airport	849.5	mm

APPENDIX B

PRTR REPORTING

AER Returns Workbook

7/5/2013 10:25

| PRTR# : W0034 | Facility Name : Dundalk Landfill & Civic Waste Facility | Filename : W0034_2012.xls | Return Year : 2012 |

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2012

Version 1.1.16

FACILITY IDENTIFICATION

Parent Company Name	e Dundalk Town Council	
Facility Name	e Dundalk Landfill & Civic Waste Facility	
PRTR Identification Number	r W0034	
Licence Numbe	r W0034-02	

No. class name Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological 4.2 transformation processes). Blending or mixture prior to submission to any activity referred to in 3.11 a preceding paragraph of this Schedule. Repackaging prior to submission to any activity referred to in a 3.12 preceding paragraph of this Schedule. Storage prior to submission to any activity referred to in a 3.13 collection, on the premises where the waste concerned is produced. The treatment of any waste on land with a consequential benefit for 4.10 an agricultural activity or ecological system. Use of waste obtained from any activity referred to in a preceding 4.11 paragraph of this Schedule. 4.11 paragraph of this Schedule. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule. 4.11 paragraph of this Schedule. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule. 4.13 produced. 4.13 produced. 4.2 Co. Louth Address 2 Co. Louth Address 3 Co. Louth Address 4 Louth Coordinates of Location -6.38622 54.0147 River Basin District (BNIENB Main Economic Activity Recover of sorted materials AER Returns Contact Namio Gamien Holmes AER Returns Contact TePosition Facili	Waste or IPPC Classes of Activity	
as solvents (including compositing and other biological 4.2 transformation processes), Blending or mixture prior to submission to any activity referred to in 3.11 a preceding paragraph of this Schedule. Repackaging prior to submission to any activity referred to in a 3.12 preceding paragraph of this Schedule. Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending paragraph of this Schedule, other than temporary storage, pending use of waste obtained from any activity referred to in a preceding 4.11 paragraph of this Schedule. 4.13 produced. 4.13 produced. 4.13 produced. 4.3 Recycling or reclamation of metals and metal compounds. 4.4 Recycling or reclamation of other inorganic materials. Address 2 Dundalk Address 2 Dundalk Address 2 Dundalk Address 4 Address 4 Add	No.	
Répackaging prior to submission to any activity referred to in a 3.12 preceding paragraph of this Schedule. Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending 3.13 collection, on the premises where the waste concerned is produced. The treatment of any waste on land with a consequential benefit for 4.10 an agricultural activity or ecological system. Use of waste obtained from any activity referred to in a preceding 4.11 paragraph of this Schedule. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule. Storage, pending collection, on the premises where such waste is produced. 4.13 preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced. 4.13 preceding paragraph of the inorganic materials. 4.14 Recycling or reclamation of metals and metal compounds. 4.15 Recycling or reclamation of other inorganic materials. Address 1 Newry Road Address 2 Louth Coordinates of Location -6.39622 54.0147 Coordinates of Location 6.39622 54.0147 River Basin District GBNIENE AER R		as solvents (including composting and other biological transformation processes). Blending or mixture prior to submission to any activity referred to in
Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending 3.13 collection, on the premises where the waste concerned is produced. The treatment of any waste on land with a consequential benefit for 4.10 an agricultural activity or ecological system. Use of waste obtained from any activity referred to in a preceding 4.11 paragraph of this Schedule. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is 4.13 produced. 4.3 Recycling or reclamation of metals and metal compounds. 4.4 Recycling or reclamation of other inorganic materials. Address 1 Newry Road Address 2 Dundalk Address 3 Co. Louth Address 4 County Ireland County Ireland County Ireland County Ireland Address 4 Address AER Returns Contact Name AER Returns Contact Name AER Returns Contact Tenjil Address AER Returns Contact Fax Number AER Returns Contact Fax Number AER Returns Contact Fax Number AER Returns Con		Repackaging prior to submission to any activity referred to in a
The treatment of any waste on land with a consequential benefit for 4.10 an agricultural activity or ecological system. Use of waste obtained from any activity referred to in a preceding 4.11 paragraph of this Schedule. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is 4.13 produced. 4.3 Recycling or reclamation of metals and metal compounds. 4.4 Recycling or reclamation of other inorganic materials. Address 1 Newry Road Address 2 Dundalk Address 3 Co. Louth Country Ireland Country Ireland Coordinates of Location 6.39622 54.0147 River Basin District BINIENB AER Returns Contact Name Damlen Holmes AER Returns Contact Name Damlen Holmes@louthcoco.le AER Returns Contact Fax Number Countly 16859019 AER Returns Contact Fax Number Production Volume AER Returns Contact Fax Number Countly 16859019 AER Returns Contact Fax Number Countly 16859019 AER Returns Contact Fax Number		Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending
4.11 paragraph of this Schedule. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is 4.13 produced. 4.14 Recycling or reclamation of metals and metal compounds. 4.15 Produced. 4.16 Recycling or reclamation of other inorganic materials. Address 1 Newry Road Address 2 Dundalk Address 3 Co. Louth Address 3 Co. Louth County Ireland Coordinates of Location -6.39622 54.0147 River Basin District GBNIIENB NACE Code 3832 Main Economic Activity Recovery of sorted materials AER Returns Contact Position Facility Manager AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number 0416859019 AER Returns Contact Fax Number 20000.0 Production Volume Units tonnes O Number of Installations 0		The treatment of any waste on land with a consequential benefit for an agricultural activity or ecological system.
4.13 produced. 4.3 Recycling or reclamation of metals and metal compounds. 4.4 Recycling or reclamation of other inorganic materials. Address 1 Newry Road Address 2 Dundalk Address 3 Co. Louth Address 4	4.11	paragraph of this Schedule. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary
4.4 Recycling or reclamation of other inorganic materials. Address 1 Newry Road Address 2 Dundalk Address 3 Co. Louth Address 4 County Ireland Country Ireland Coordinates of Location -6.39622 54.0147 River Basin District GBNIIENB NACE Code 3832 Main Economic Activity Recovery of sorted materials AER Returns Contact Name Damien Holmes AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Fax Number 20000.0 Production Volume 010 Number of Installations 00 Number of Operating Hours in Year 0		produced.
Address 1 Newry Road Address 2 Dundalk Address 3 Co. Louth Address 4 Address 4 Address 4 Intervent of the state of		
Address 2 Dundalk Address 3 Co. Louth Address 4 Louth Courdinates of Location -6.39622 54.0147 River Basin District GBNIIENB NACE Code 3832 Main Economic Activity Recovery of sorted materials AER Returns Contact Name Damien Holmes AER Returns Contact Email Address damien.holmes@louthcoco.ie AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Tax Number 20000.0 Production Volume 20000.0 Production Volume 0 Number of Installations 0		
Address 3 Co. Louth Address 4 Louth Country Ireland Coordinates of Location -6.39622 54.0147 River Basin District GBNIIENB NACE Code 3832 Main Economic Activity Recovery of sorted materials AER Returns Contact Name Damien Holmes AER Returns Contact Position Facility Manager AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Fax Number 20000.0 Production Volume 20000.0 Production Volume Units tonnes Number of Installations 0 Number of Operating Hours in Year 0		
Address 4 Louth Country Ireland Coordinates of Location Coordinates of Location Gasta River Basin District GBNIENB NACE Code NACE Code 3832 Main Economic Activity Recovery of sorted materials AER Returns Contact Name Damien Holmes AER Returns Contact Email Address damien.holmes@louthcoco.ie AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number AER Returns Contact Fax Number		
Louth Country Ireland Coordinates of Location -6.39622 54.0147 River Basin District GBNIIENB NACE Code 3832 Main Economic Activity Recovery of sorted materials AER Returns Contact Name Damien Holmes AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Fax Number 20000.0 Production Volume Units Number of Installations 0 Number of Operating Hours in Year 0		Co. Louth
CountryIrelandCoordinates of Location-6.39622 54.0147River Basin DistrictGBNIIENBNACE Code3832Main Economic ActivityRecovery of sorted materialsAER Returns Contact NameDamien HolmesAER Returns Contact Email Addressdamien.holmes@louthcoco.ieAER Returns Contact PositionFacility ManagerAER Returns Contact Telephone Number041 6859019AER Returns Contact Fax Number20000.0Production VolumeUnitsUnitstonnesNumber of Installations0Number of Operating Hours in Year0	Address 4	
CountryIrelandCoordinates of Location-6.39622 54.0147River Basin DistrictGBNIIENBNACE Code3832Main Economic ActivityRecovery of sorted materialsAER Returns Contact NameDamien HolmesAER Returns Contact Email Addressdamien.holmes@louthcoco.ieAER Returns Contact PositionFacility ManagerAER Returns Contact Telephone Number041 6859019AER Returns Contact Fax Number20000.0Production VolumeUnitsUnitstonnesNumber of Installations0Number of Operating Hours in Year0		Lauth
Coordinates of Location -6.39622 54.0147 River Basin District GBNIIENB NACE Code 3832 Main Economic Activity Recovery of sorted materials AER Returns Contact Name Damien Holmes AER Returns Contact Email Address damien.holmes@louthcoco.ie AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Fax Number 20000.0 Production Volume 20000.0 Production Volume Units tonnes Number of Installations 0	Country	
River Basin District GBNIIENB NACE Code 3832 Main Economic Activity Recovery of sorted materials AER Returns Contact Name Damien Holmes AER Returns Contact Email Address damien.holmes@louthcoco.ie AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Fax Number 20000.0 Production Volume 20000.0 Production Volume Units tonnes Number of Installations 0 Number of Operating Hours in Year 0		
NACE Code 3832 Main Economic Activity Recovery of sorted materials AER Returns Contact Name Damien Holmes AER Returns Contact Email Address damien.holmes@louthcoco.ie AER Returns Contact Telephone Number Facility Manager AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Fax Number 20000.0 Production Volume 20000.0 Production Volume Units tonnes Number of Installations 0 Number of Operating Hours in Year 0		
Main Economic Activity Recovery of sorted materials AER Returns Contact Name Damien Holmes AER Returns Contact Email Address damien.holmes@louthcoco.ie AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Fax Number 041 6859019 AER Returns Contact Fax Number 20000.0 Production Volume 20000.0 Production Volume Units tonnes Number of Installations 0 Number of Operating Hours in Year 0		
AER Returns Contact Name Damien Holmes AER Returns Contact Email Address damien.holmes@louthcoco.ie AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Fax Number 041 6859019 AER Returns Contact Fax Number 20000.0 Production Volume 0100000000000000000000000000000000000		
AER Returns Contact Email Address damien.holmes@louthcoco.ie AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Mobile Phone Number 041 6859019 AER Returns Contact Fax Number 20000.0 Production Volume Units Number of Installations 0 Number of Operating Hours in Year 0		
AER Returns Contact Position Facility Manager AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Mobile Phone Number 041 6859019 AER Returns Contact Fax Number 20000.0 Production Volume 20000.0 Production Volume Units tonnes Number of Installations 0 Number of Operating Hours in Year 0		
AER Returns Contact Telephone Number 041 6859019 AER Returns Contact Mobile Phone Number		
AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume Production Volume Units tonnes Number of Installations Number of Operating Hours in Year		
AER Returns Contact Fax Number 20000.0 Production Volume Units tonnes Number of Installations 0 Number of Operating Hours in Year 0		
Production Volume 20000.0 Production Volume Units tonnes Number of Installations 0 Number of Operating Hours in Year 0		
Production Volume Units tonnes Number of Installations 0 Number of Operating Hours in Year 0		
Number of Installations 0 Number of Operating Hours in Year 0		
Number of Operating Hours in Year 0		
	Number of Employees	

| PRTR# : W0034 | Facility Name : Dundalk Landfill Civic Waste Facility | Filename : W0034_2012.xls | Return Year : 2012 | Page 1 of 2

Sheet : Releases to Air

AER Returns Workbook

7/5/2013 10:25

Link to previous years emissions data **4.1 RELEASES TO AIR**

| PRTR# : W0034 | Facility Name : Dundalk Landfill & Civic Waste Facility | Filename : W0034_2012 Xs | Return Year : 2012 |

07/05/2013 10:25

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

	RELEASES IU AIR		Please enter all quantitie	s in this section in KGs		
	OLLUTANT	METHOD			QUANTITY	ないていてきたいであっていた
		Method Used	Flare	and the second of the second se		
No. Annex II	Name	M/C/E Method Code Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
- Methane (CH4)			4011.8	.8 227229.1	0.0	223217.3

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	TITY	and the second	(Accidental) KG/Year F (Fugitive) KG/Year	0.0	
s in this section in KGs	QUANTITY		T (Total) KG/Year	0.0	
please enter all quantities			Emission Point 1	0	
F	METHOD	Method Used	Method Code Designation or Description		
RELEASES TO AIR			Name M/C/E		
	POLLUTANT		No. Annex II		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES ID AIR			lease enter all quantities	s in this section in KUS		
	POLLUTANT	M	METHOD			QUANTITY	A REAL PROPERTY OF A REAL PROPERTY OF
			Method Used	and the second sec	Service and a service of the		A second second second as
Pollutant No.	Name	M/C/E Method Code	Designation or Description	Emission Point 1 T (Total) KG/Year	T (Total) KG/Year	A (Accidental) KG/Year	(Accidental) KG/Year F (Fugitive) KG/Year
				0	0	0.0	0.0
	* Select a row by double-clicking on the Pollutant Name (Column B) the	B) then click the delete button					

Additional Data Requested from Landfill operators

purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide
nary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total
ine generated. Operators should only report their Net methane (CH4) emission to the environment under
I) KG/vr for Saction A. Sactor enacific PRTR nollistants above Diases complete the table holow:

I (TOTAI) NOIYETOT SECTION AL SECTOR SPECIFIC PKIK POILITANTS ADOVE	tants above. Please complete the table below:					
Landfill:	Dundalk Landfill & Civic Waste Facility					
Please enter summary data on the quantities of methane flared and / or utilised			Meth	Method Used		
	T (Total) kg/Year	M/C/E	Method Code	Designation or Description	Facility Total Capacity m3 per hour	
Total estimated methane generation (as per site model)	423805.0				NIA	
Methane flared	196576.0				0.0	0.0 (Total Flaring Capacity)
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)
Net methane emission (as reported in Section A above)	22729.0				N/A	

Sheet : Releases to Wastewater or Sewer

AER Returns Workbook

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

07/05/2013 10:25 | PRTR# : W0034 | Facility Name : Dundalk Landfill & Civic Waste Facility | Filename : W003 Year F (Fugitive) KG/Year 0.0 0.0 0.0 0.0

0.0

0.0

SECTION A : PRTR POLLUTANTS	
R POLLUT	
R POLLUT	TS
R POLLUT	Z
~	E
~	3
~	б
SECTION A : PRTR	a.
SECTION A : PR	R
SECTION A : F	R
SECTION A	
SECTION	4
SECTI	ð
SEC	E
S	M
	S

ties in this section in KGs	QUANTITY		T (Total) KG/Year A (Accidental) KG/Ye	715.0 715.0
Please enter all quanti		S1	Emission Point 1	7
	METHOD	Method Used	Designation or Description	
R SEWER	ME		Method Code	
ATMENT OF			M/C/E	v
OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TRE/	POLLUTANT		Name	Ammonia (NH3)
			No. Annex II	06

Chlorides (as CJ) * Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	「日本のの日本		<u>u</u>	(Fug	KG/	0.0	0.0	0.0	0.0
	QUANTITY			A (Accidental)	KG/Year	Construction of the local distance of the lo			
is	A Stranger of the second s				(Total) KG/Year	9027.0	16054.0	3567.0	393.0
n this section in KG		North Contraction of the State			Emission Point 2 T (Total) K	0.0	0:0	0:0	0:0
antities ir		States and States				9027.0	16054.0	3567.0	393.0
Please enter all quantities in this section		S1			Emission Point 1				
		d Used			esignation or Description Emission Point 1				
	METHOD	Method			Õ				
SEWER					Method Code				
MENT OR					M/C/E	C	0	0	0
OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER	POLLUTANT				Name	BOD	COD	Suspended Solids	Sulphate
					Pollutant No.	303	306	240	343

(Fugitive) KG/Year 0.0 0.0 0.0

Sulphate • Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Waste	
5	
Transfers	
Treatment	
••	
Sheet	

AER Returns Workbook

7/5/2013 10:26

E TREATMENT & OFFSITE TRANSFERS OF WASTE PRTR# - V0034 Facily Name . Dundak Landfil & Ciric Waste Facily Filename - W0034 _ 2012 xis Return Year
--

07/05/2013 10:2	3	2	
7/05/2013 1	5	÷.	
7/05/2013 1	C	>	
07/05/2013		-	
7/05/20	C	2	
7/05/2(×	-	
120/10		>	
20/20	Ω		
0//0	14	5	
120	Ċ	5	
0	R	2	
	c	5	
		۰.	

			Quantity (Tonnes per Year)			2	Method Used		Haz Waste : Name and Licence/Permit No of Nox Destination Facility Haz Waste: Name and Licence/Permit No of Recover/Dispose	<u>Haz Waste</u> : Address of Noxt Destination Facility <u>Non Haz Waste</u> , Address of Recover/Diaposet	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination	European Waste Code	Hazardous		Description of Waste	Waste Treatment Operation	MC/E	Method Used	Location of Treatment				
	20 01 99	ž		other fractions not otherwise specified	ā	Σ	Weighed	Onsite of generati	V&W Recycling to Whethever Landill Co Onsite of generati Louth, WCP?MH72001/90C V& W Recycling Whiteriver	Dundalk Civic amenity Site,Newry Road,Dundalk Ireland Dundalk Civic Amenity		
Within the Country 20	20 03 03	No		street-cleaning residues	ы	W	Weighed	Onsite of generati	Landfill Co Onsite of generati Louth,WCP/MH/200190C	Site,Newry Road,Dundalk.,.,Ireland		
Within the Country 20	20 03 01	g	478.0 г	478.0 mixed municipal waste	5	Σ	Weighed	Whiteriver I Offsite in Ireland ,W0060-03	Whiteriver Landfill Site ,W0060-03	Gunstown Townland, DunleerCo Louth, Ireland Dundalk Civic Amenity		
Within the Country 20	20 02 01	No	2665.0 1	2665.0 biodegradable waste	ß	W	Weighed	Onsite of generati	Onsite of generati V& W Recycling ,W0034-02			
To Other Countries 15	15 01 01	No	960.0	960.0 paper and cardboard packaging	R3	W	Weighed	Abroad	Peute Europe, nl 6000076	Dordrecht,,Netherlands		
To Other Countries 20	20 01 01	No	470.0	470.0 paper and cardboard	ß	W	Weighed	Abroad	Peute Europe, nl 6000076	Baanoekweg 4,LA Dordrecht,,Netherlands		
To Other Countries 15	15 01 07	Ŷ	406.0 5	406.0 glass packaging	ß	Ð	Weighed	Abroad	Glassdon ,NI licenceLN/06/08	52 Creagh Road, Toomebridge, Co Antrim, BT41 3SE, United Kingdom Newtowncloughogue, Newry.		
To Other Countries 15	15 01 04	No	277.0	277.0 metallic packaging	R4	W	Weighed	Abroad	John Tinnelly & Sons,WMEX 20/01			
Within the Country 15	15 01 02	Ŷ	590.01	590.0 plastic packaging	8	W	Weighed	Offsite in Ireland	Shrabra Plastic IRL,Licence No 15/5	Castleblayey,Co Monaghan,,Ireland		
To Other Countries 20	20 01 11	No	21.01	21.0 textiles	۲ ۲	×	Weighed	Abroad	01/11, Cookstown NI WMEX 01/11	Antrim,.,United Kingdom		
Within the Country 15	15 01 03	°N N	540.0	540.0 wooden packaging	5	¥	Weighed	Offsite in Ireland	Whiteriver Landfill Site ,W0060-03	Gunstown Townland, DunleerCo Louth, Ireland		
Within the Country 20	20 01 38	N	580.0	580.0 wood other than that mentioned in 20 01 37 D1	7 D1	¥	Weighed	Offsite in Ireland	Whiteriver Landfill Site ,W0060-03	Townland, Dunleer, ., Co Louth, Ireland Block An? Grants		
Within the Country 16	16 06 01	Yes	606.0 1	606.0 lead batteries	R4	×	Weighed	Offsite in Ireland	Rilta Environmental Ltd,Licence No W0192-02	Drive, Greenogue Business Park, Rathcoole, Co Dublin, Ireland		
Within the Country 1:	13 02 05	Yes	5.56	mineral-based non-chlorinated engine, gear 5.56 and lubricating oils	rg Rg	Σ	Weighed	Offsite in Ireland	Enva ,WO184-01	Clonminam Industrial Estate, Portlaoise, Co. Laois		
Within the Country 20	20 01 25	Ŷ	3.0	3.0 edible oil and fat	8	Σ	Weighed	Offsite in Ireland	Enva ,WO184-01	Clonminam Industrial Estate, Portlaoise, Co. Laois ,,,Ireland		
	17 01 07	Ŷ	ceram ceram 945.0 01 06	mixture of concrete, bricks, tiles and ceramics other than those mentioned in 17 01 06	Б	Σ	Weighed	Offsite in Ireland	Whiteriver Landfill Site ,W0060-03	Gunstown Townland,Dunleer,Co Louth,Ireland		
	80.00	Q	57.6	paint, inks, adhesives and resins other than 2.73 those mentioned in 20.01.27	8	Σ	Weighed	Offsite in Ireland Enva .WO184-01	Enva .WO184-01	Clonminam Industrial Estate, Portlaoise, Co. Laois Ireland		

APPENDIX C

FLARE EMISSION REPORT

ODOUR & ENVIRONMENTAL ENGINEERING CONSULTANTS

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Fax: +353 46 9483696 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

TITLE: AIR EMISSION TESTING OF ONE LANDFILL FLARE LOCATED IN DUNDALK TOWN COUNCIL LANDFILL, NEWRY ROAD, DUNDALK, CO. LOUTH

PREFORMED BY ODOUR MONITORING IRELAND ON BEHALF OF LOUTH COUNTY COUNCIL

PREPARED BY:	Dr. John Casey
ATTENTION:	Mr. Damien Holmes
LICENCE NUMBER:	WL0034-02
LICENCE HOLDER:	Dundalk Town Council
FACILITY NAME:	Dundalk Town Landfill Facility
DATE OF MONITORING VISIT:	23 rd Nov. 2012
NAME AND ADDRESS OF CLIENT ORGANISATION:	Dundalk Town Council Landfill, Newry Road, Dundalk, Co. Louth
NAME AND ADDRESS OF MONITORING ORGANISATION:	Odour Monitoring Ireland, Unit 32 DeGranville Court, Dublin Road, Trim, Co. Meath
DATE OF REPORTING:	01 st Feb. 2013
NAME AND THE FUNCTION OF THE PERSON APPROVING THE REPORT:	Dr. Brian Sheridan, Managing Partner, Odour Monitoring Ireland
REPORT NUMBER:	2013585(1)
Reviewers:	Dr. Brian Sheridan

TABLE OF CONTENTS

Section	on	Page number
	E OF CONTENTS IMENT AMENDMENT RECORD	i ii
1.	Executive Summary	2
1.1	Monitoring Objectives	2
1.2	Special Monitoring Requirements	2
1.3	The substances to be monitored at each emission point	2
2.	Monitoring Results	3
2.1	Operating Information	4
2.2	Monitoring Result Reference Conditions	5
2.3.	Sampling Location Summary	5
2.4.	Sampling run times	6
2.5. 2.6.	Characteristics of raw inlet gas to 1 enclosed Landfill flare gas Theoretically calculated landfill gas exhaust volume and physica	7 I
	characteristics from the Landfill flare.	8
3.	Discussion of results	10
4.	Conclusion	11
5.	References	11
6.	Appendix I-Sampling, analysis	12

Document Amendment Record

Client: Dundalk Town Council

<u>**Project:**</u> Air emission testing of one enclosed Landfill flare located in Dundalk Town Council Landfill, Newry Road, Dundalk, Co. Louth

B.A.S	01/02/2013	
	01/02/2013	
Authorised	Date	
	Authorised	

Signing sheet

Been

Brian Sheridan Ph.D Eng

For and on behalf of Odour Monitoring Ireland

1. Executive Summary

The results of the monitoring exercise are contained in Section 2 of this report.

 NO_x as NO₂ emissions from flare 1 were within the emission limit values specified in Waste licence W0034-02;

1.1 Monitoring Objectives

This report has been prepared by Odour Monitoring Ireland and contains the results of emission testing carried out on 1 No. Enclosed ground flare at Dundalk Town Council Landfill, Newry Road, Dundalk, Co. Louth. The monitoring was carried out at this facility as part of compliance monitoring with the requirements of Waste licence W0034-02. The emission testing was carried out by Odour Monitoring Ireland on behalf of Louth Councy Council.

1.2 Special Monitoring Requirements

There were no special monitoring requirements for this campaign.

1.3 The substances to be monitored at each emission point

The parameters listed in *Table 1.1* were monitored using the appropriate instrumentation as illustrated in *Table 1.1*. All monitoring was carried out in accordance with Environmental Protection Agency Office of Environmental Enforcement (OEE) Air Emission Monitoring Guidance Note 2 (AG2).

 Table 1.1. Monitored parameters and techniques for Dundalk Town Council Landfill 1 No.

 Enclosed flare

Sample location	Parameter	Analytical method
1 Landfill Flare outlet	Volumetric airflow rate & Temperature (⁰ C)	Pitot in accordance with EN13284-1 where possible. MGO coated K type thermocouple and PT100 Volumetric airflow rate theoretical calculated for Landfill flare.
1 Landfill Flare outlet	Oxides of nitrogen (NO _x as NO ₂), Carbon monoxide (CO), Carbon dioxide (CO ₂), Sulphur dioxide (SO ₂), and Oxygen (O ₂)	Horiba PG250 gas analyser, NOx ISEN14792-2006

This report presents details of this monitoring programme. This environmental monitoring was carried out Dr. John Casey, Managing Partner, Odour Monitoring Ireland on the 23rd Nov. 2012. Methodology, Results, Discussion and Conclusions are presented herein.

2. Monitoring Results

This section will present the results of the monitoring exercise.

2.1 Operating Information

Emission Point Reference	Date	Process Type	Process Duration	Fuel	Feedstock	Abatement	Load
Flare1	23/11/2012	Landfill flare	Continuous	Landfill Gas	N/A	None	Landfill Gas

2.2 Monitoring Result Reference Conditions

Emission Point Reference	Temperature (K)	Pressure	Moisture Correction	Oxygen Correction (%)
Flare1	К	101.3	Yes	3

2.3. Sampling Location Summary

Comment	Yes/No
Recommended 5 hydraulic diameters straight length before sampling plane	N/A
Recommended 2 hydraulic diameters straight length after sampling plane	N/A
Ports number <1.5m - 2 ports >1.5m - 4 ports	1 port
Appropriate port size	Yes
Suitable working platform	Yes

Note: Temperature and airflow rate traverse measurements were performed across the stack in one plane only. Only one plane was possible due to access port issues.

2.4. Sampling run times for the monitoring of 1 landfill flare

Parameter	Approx. Sampling period for 1 landfill flare
Inlet CH₄	30 minutes
Inlet O ₂	30 minutes
Volumetric air flow rate	Theoretically calculated
SO ₂	30 minutes
NO _x	30 minutes
СО	30 minutes
O ₂	30 minutes
CO ₂	30 minutes
Stack gas temp	30 minutes

2.5. Characteristics of raw inlet gas to 1 enclosed Landfill flare gas burner

Parameter	Compound loading Con 1 Flare1	Units
CH ₄	28.3	%
CO ₂	20.9	%
O2	2.2	%
Volumetric flow rate	194	m ³ /hr

2.6. Theoretically calculated landfill gas exhaust volume and physical characteristics from the Landfill flare.

Parameter	Con 1 Fl 1	
Total Volumetric methane loading (m ³ /hr)	54.9	
Total Volumetric Oxygen loading (m ³ /hr)	4.2	
Ratio to complete combustion of methane assuming no excess Oxygen	9.57	
Oxygen concentration level in flue gas (%)	7.88	
Flue gas temperature (Kelvin) ²	1,337	
Theoretical calculated Volumetric exhaust airflow rate (m ³ /h)	1,147	
Normalised average exhaust airflow rate (Nm ³ h ⁻¹) ³	234	

Notes:

¹ denotes data from 23/11/2012. ² denoted converted from degrees Celsius to Kelvin (⁰C + 273.15); ³ denotes normalised to 273.15 Kelvin and 101.3 kPa.

Table 2.7. Emission value results for landfill gas Flare 1.

Flare 1	Conc.	Normalised (mgN/m³)	Oxygen corrected emission concentration to flare (mgN/m ³) 3% ref.	Mass Kg/hr	Expanded uncertainty as percentage of limit value (%) ¹	Emission limit Values	Operating Status
Total NOx [as NO ₂] (ppm)	17	34.85	47.91	0.008	16.54	<150 mg/Nm ³	As Normal
CO (ppm)	0	0	0.00	-	3.21	-	As Normal
SO ₂ (ppm)	2	5.7	7.84	0.001	21.4	-	As Normal
O ₂ (%)	7.88	-	-	-	-	-	As Normal
Temperature (degrees)	1064	1337K	-	-	-	>1273K	As Normal
CO ₂ (%)	7.25	-	-	-	-	-	As Normal
Volumetric Airflow (m ³ /hr)	-	-	-	170		<3,000 m ³ /hr	As Normal
Efficiency (%)	99.99	-	-	-	-	-	As Normal

<u>Notes:</u> ¹ denotes that expanded uncertainty is elevated as the equation has not been validated for use with high temperature sources. Span concentration NO = 300 ppm, Span value at analyser = 300 ppm, Leak check <2% = 299 ppm.

3. Discussion of results

Tables 2.1 to *2.7* present the results of the emission monitoring carried out on the 1 landfill flare located in Dundalk Town Council Landfill, Newry Road, Dundalk, Co. Louth.

There was very little variation at one traverse in oxygen and flue gas temperature profiles across the stack during the monitoring exercise (i.e. less than 15% as recommended by the Environment Agency, UK (Environment Agency, 2002)).

A high temperature Inconel 625 and ceramic probe (Testo, Germany) was used to prevent variations in CO emissions data. Normal stainless steel probes when subjected to temperatures above 600°C can release CO from within the structure of the material and cause the recording of erroneous results (Environment Agency, 2002).

Correction of data to 3% oxygen was performed. Due to possible inaccuracies in airflow rate measurement, it was not possible to determine the oxygen intake of the flare through the louver system using measurement. Since the volume of intake air required for complete combustion was known and the oxygen concentration in the exhaust flue gas was known, the volume of intake excess fuel air could be theoretically calculated through numerous iterations using the Solver program (i.e. Microsoft Excel). This allows for the calculation of the volume of intake excess air through the louver landfill flare intake system (Environment Agency, 2002).

4. Conclusion

The following conclusions can be drawn from this study:

- 1. A theoretically exhaust flue gas volume was calculated for the landfill flare.
- 2. NO_x as NO₂, SO₂, CO and O₂ monitoring and analysis was carried out in accordance with specified requirements;
- 3. All data was standardised to 273.15 Kelvin, 101.3 kPa;
- 4. All data is presented as Oxygen corrected to 3% (v/v) using the appropriate equations;
- 5. NO_x as NO_2 emissions from Flare 1 were within the emission limit values specified in Waste licence W0034-02;

5. References

- 1. Environment Agency. (2002). Guidance for Monitoring Enclosed Landfill Gas Flares. <u>www.environment-agency.co.uk</u>
- 2. Environmental Protection Agency. (2009). Air Emissions Monitoring Guidance Note 2 (AG2).

6. Appendix I-Sampling, analysis

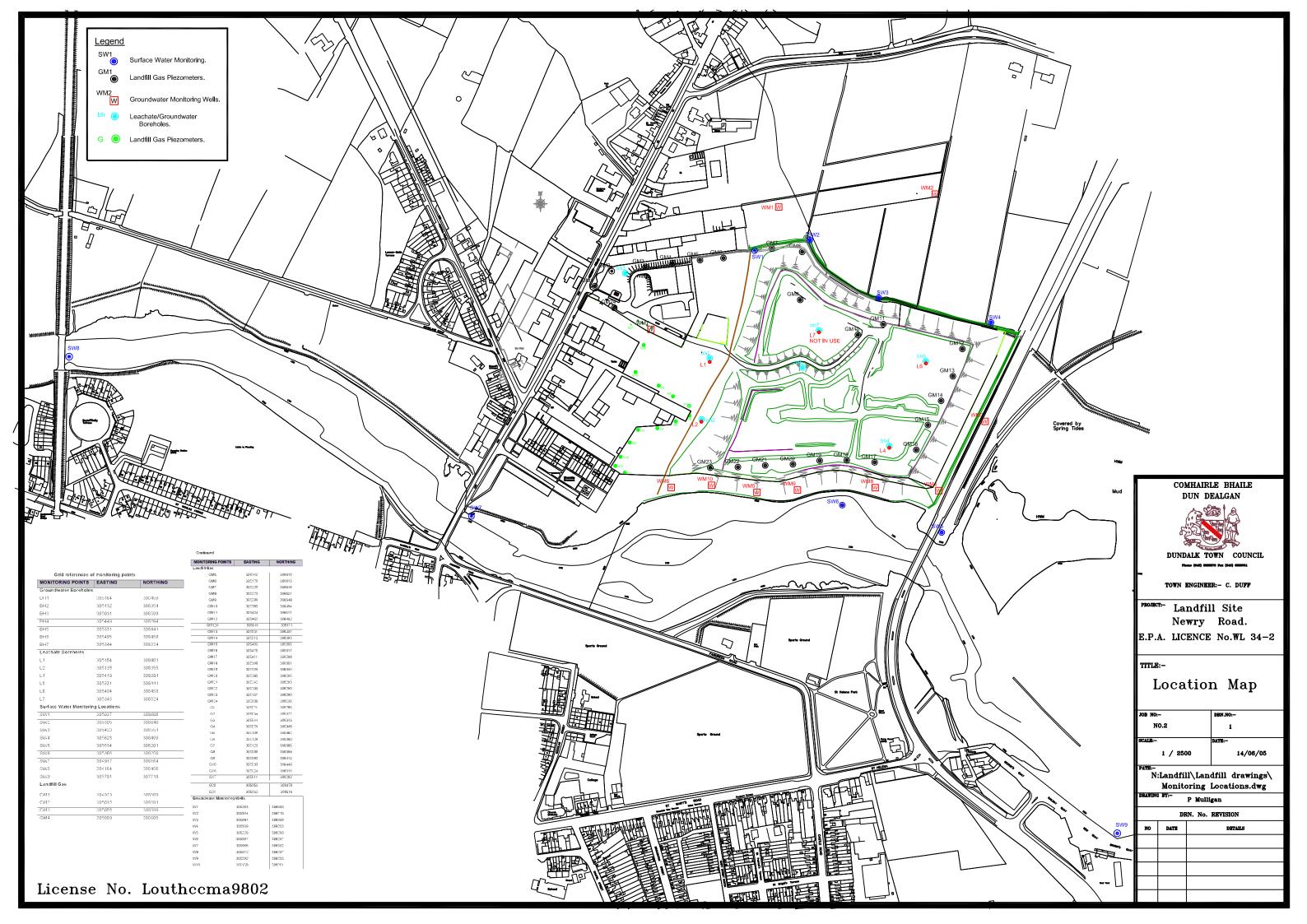
6.1.1 Location of Sampling

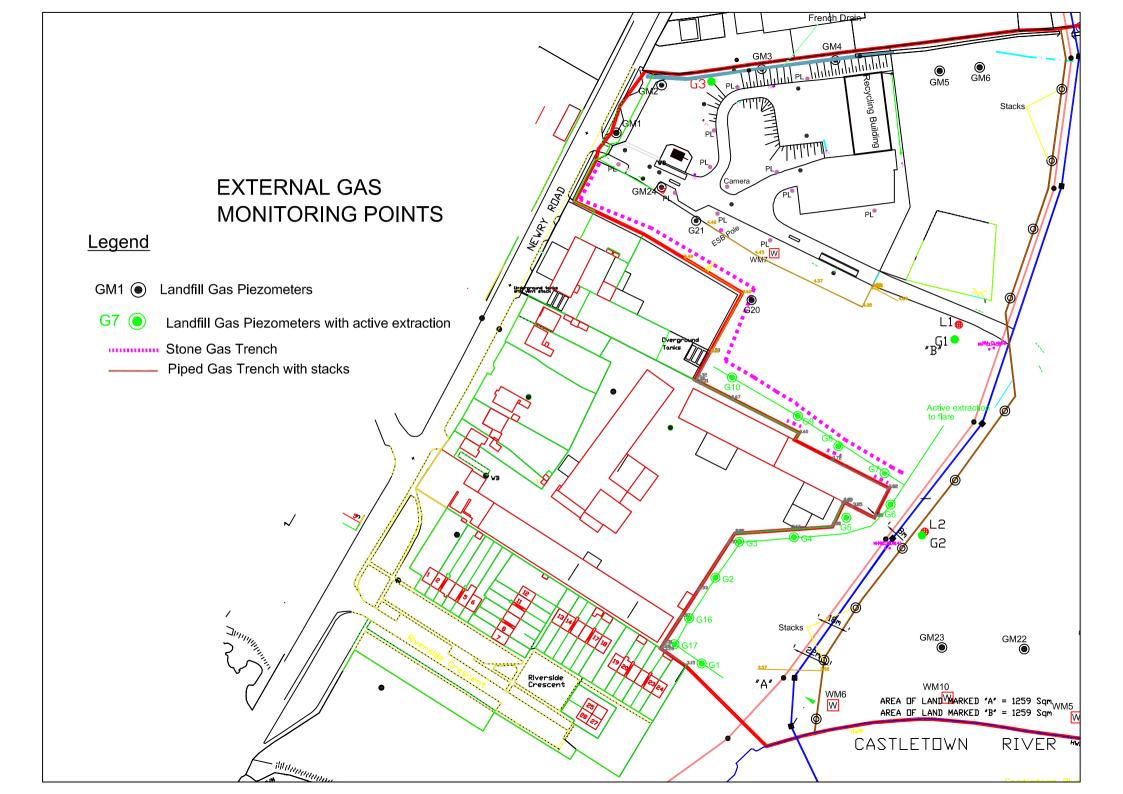
Dundalk Town Council Landfill, Newry Road, Dundalk, Co. Louth

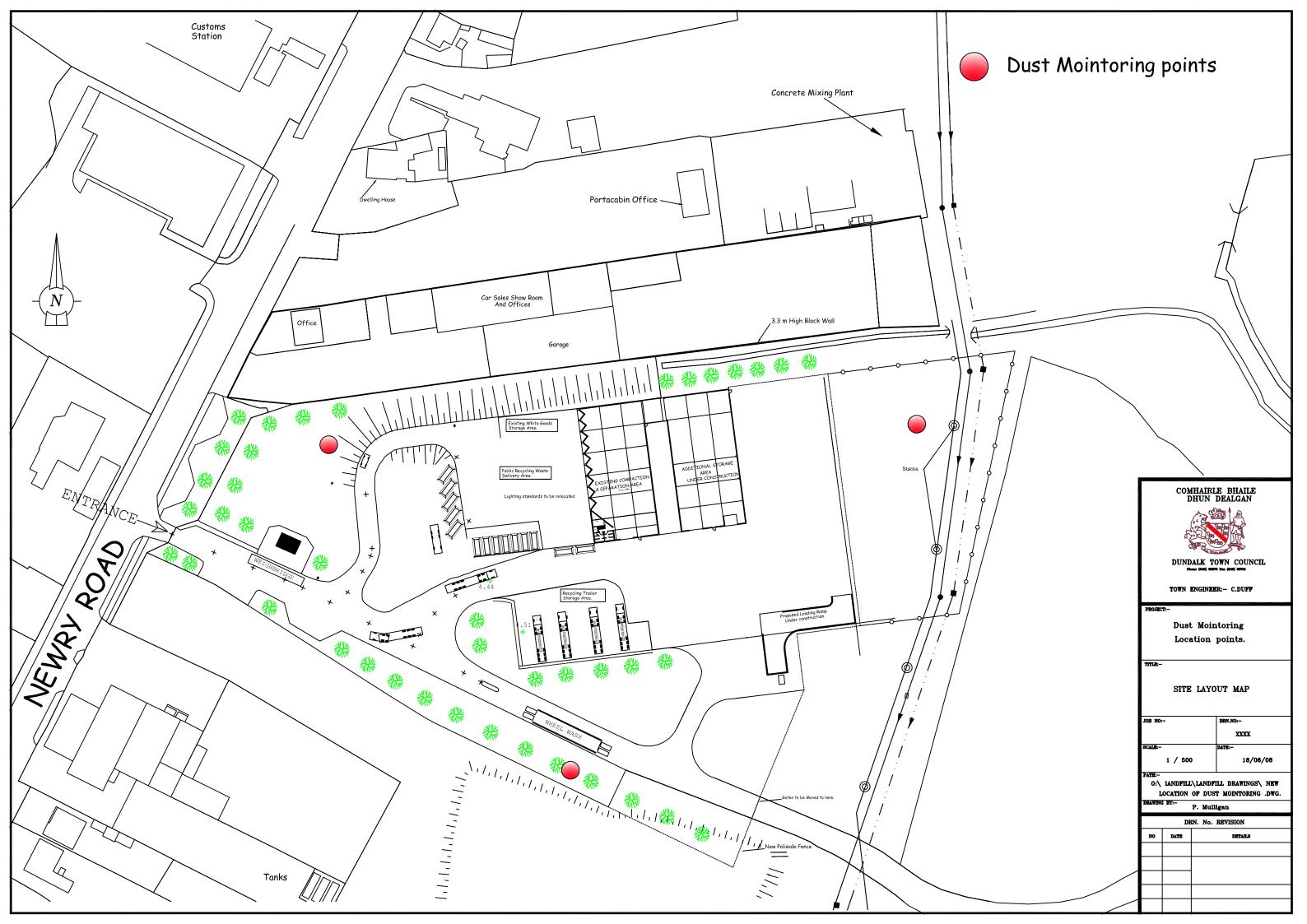
6.1.2 Date & Time of Sampling 23/11/2012

6.1.3 Personnel Present During Sampling

Dr. John Casey, Odour Monitoring Ireland, Trim, Co. Meath.


6.1.4 Instrumentation check list


Testo 350 MXL/454 in stack analyser; Horiba PG250 gas analyser, Federal Method 2 S type pitot and MGO coated thermocouple; L type pitot tube Testo 400 handheld and appropriate probes. Ceramic and Inconel 625 sampling probes.


APPENDIX D

MONITORING POINTS DRAWING

APPENDIX E

LEACHATE RESULTS

Antimory µgn Image Image <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																					
<th column="" point<<="" th=""><th>CPA</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>CPA</th> <th></th>	CPA																			
Namiolary Point Unit VIEND																					
PARAMETERS Divisor Parameters	Monitoring Point:																				
PARAMETERS PARAMETERS PARAMETERS PARAMETERS											DEGI	ште									
PARAMETERS Units 92-April 22 Junc9 92-April 22																					
Akalanity mgl CrCO3 image																					
Auminiam ug/l image <	-		30-Jui-08	28-Oct-08	27-Jan-09	29-Apr-09	23-Jui-09	28-Oct-09	19-Jan-10	20-Apr-10	28-Jul-10	26-Oct-10	25-Jan-11	11-Apr-11	11-Jul-11	03-Oct-11	16-Jan-12	23-Apr-12	23-Jul-12	08-Oct-12	
Ammonia mgl N 114.43 980 112.55 1.54 107.92 1.75 154 103.42 109.52 101.78 99.88 90.87 107.52 99.61 Artsenic jgd - - - - - 10.792 10.782 101.78 99.88 90.87 107.52 90.61 Artsenic jgd - - - - - - - - - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 0.5 0.7 0.61		•	-	1		50				40.0				5.0				0.5			
Antimory jug1 Image <			111 12	- 90	110 55		100.7	107.00	4 75		102.42	100.50	104.62		101 70	00.92	02.97		00.00	101.22	
Arsenic jugit Image <			114.43	>00	112.55	1.54	102.7	107.92	1.75	154	103.42	109.52	104.63	102.03	101.76	90.83	93.07		99.60	101.22	
Barlum ipin L <thl< th=""> <thl< th=""> L <thl< t<="" td=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thl<></thl<>																					
Berylium ig/l r< r< <td></td> <th></th> <td></td>																					
B.O.D. mg7 O2 25 23.1 m 8.4 7.4 12.7 11.6 6.7 4.2 7.7 20.2 21.6 10.8 15 11.7 24.1 14.0 Gadnium µg1 - - - - - - - 198.2 - 198.4 198.12 - 198.4 - - 198.4 - - - 198.4 - - - 198.4 - <td< td=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																					
Boron igh Image I			25	23.1		84	74	12.7	11.6	67	4.2	77	20.2	21.6	10.8	15	117		14.0	9.6	
Cadmium igh col. <			25	20.1				12.1	11.0		7.2	1.1	20.2		10.0	15	11.7		14.0	3.0	
Calcium mg/l Ca mg/l Ca <t< td=""><td></td><th></th><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td> </td><td>t</td><td></td><td></td><td> </td></t<>				1	1					-							t				
Co.D. mg/l O2 147 238 80 102 146 73 124 116 106 83 95 100 107 102 80 82 Chronium µg/l 221 116 176 170 171 154 144 144 144 146 161 154 203 231 195 159 159 Chronium µg/l 221 270 270 2610 2580 260 2500 270 260 231 195 2.2 2 Conductivity µg/len 11.1 160 11.1 160 100 0.1 7.4 2.2 2 2.2				<u> </u>													<u> </u>				
Chioride mg/l 221 216 176 170 171 154 144 139 166 180 161 154 203 231 195 159 150 1			147	238				145	73		116	105	83		100	107	102		82	104	
Ghromium gh Image in the second seco					176															182	
Cobalt (ug/l) µg/l l						-													100	102	
Conductivity is/scm @ 25 2740 2770 2610 2580 2680 2580 2700 2710 2630 2630 2680 2680 2680 2680 2680 2700 2710 2580 2630 2680 2600 </td <td></td> <th></th> <td></td>																					
Gopper jg/l m 12 3.3 m 2.6 m m d.0.5 m m d.0.5 m d.0.5			2740	2760	2770	2610	2580	2660	2590	2960	2500	2720	2600	2710	2560	2630	2660		2580	2690	
Cyanide mg/f CN ice mm ice mm ice mm ice mm ice mm ice ice<	Copper	µg/l				1.2	3.3			2.6				<0.5				<0.5			
Fluoride mg/l im description work description description <thdescription< th=""> description <thdescript< td=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td>nm</td><td></td><td></td><td></td><td>nm</td><td>< 0.01</td><td>nm</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td></thdescript<></thdescription<>								nm				nm	< 0.01	nm	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Iron ig/l is is< is< is	D.O.	% Saturation			nm																
Lead ug/l m m	Fluoride	mg/l					<0.150			<0.150				<0.150				<0.150			
Magnesium mg/l Mg w 60.21 56.47 w 58.55 w w 62.84 w w 66.33 w Manganese µg/l w 578.3 60.21 56.47 w 627.3 w 565.6 w w 66.33 w 66.7 w 66.7 w 66.7 w 66.7 w 67.8 60.07 w 67.8 60.7 6.8 6.9 6.7 6.8 6.9 6.7 6.8 6.9 7.0 7.0 Plotssum mg/l magnin 2.6	Iron	µg/l				11227.3	33120.5			30325.1											
Marganese µg1 Image marganese Image marganese marganes marganes marga	Lead	µg/l																			
Mercury µg/l Image: constraint of the symplement of the symplem																					
Molybdenum µg/l Image: constraint of the state of th																					
Nickel µg/l Image: solution of the so						<0.1	<0.1			<0.1				<0.05							
o-Phosphate mg/l P mg																					
pH 6.7 6.8 6.8 6.8 6.8 6.7 6.8 6.9 6.7 6.8 6.9 6.7 6.8 6.9 6.7 6.8 6.9 6.7 6.8 6.9 6.7 6.8 6.9 6.7 6.8 6.9 6.7 6.8 6.9 6.7 6.8 6.9 6.7 6.8 6.9 6.7 0.8 6.9 6.7 0.8 6.9 6.9 7.0 Potassium mg/l m 2.6 5.5 3.2 3.1 4.2 6.2.5 7.0 7.0 Selenium µg/l m 2.6 5.5 3.2 3.1 4.2 <td></td> <th></th> <td></td>																					
Potassium mg/l c 62.43 74.57 66.39 c 62.55 c 70.91 c Residue on Evaporation m 2.6 5.5 3.2 3.1 4.2 4 <td></td> <th>mg/I P</th> <td></td> <td>0.02</td>		mg/I P																		0.02	
Residue on Evaporation m 2.6 5.5 3.2 3.1 4.2			6.7	6.8	6.8			6.8	6.8		6.7	6.8	6.8		6.7	6.8	6.9		7.0	6.7	
Sampling Depth (m) m 2.6 5.5 3.2 3.1 4.2		mg/I				62.43	74.57			66.39				62.55				70.91			
Selenium µg/l				0.0	F F				0.0	0.4	10						-	-			
Silver µg/l Image: constraint of the second				2.6	5.5				3.2	3.1	4.2							0.5			
Sodium mg/l Img/l Img/l <th< td=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>├───┦</td></th<>																	-			├───┦	
Strontium µg/l Image: stront integral integra						07.54	124.02			106.00				111 5						───┦	
Sulphate mg/l SO4						97.04	124.03			100.90				C.111						───┦	
Suspended Solids mg/l Image: constraint of the system of						<20	<20			6.6				22						├────┦	
Temp °C 12.9 11 10 15.8 14.8 nm 8.2 9.4 nm 13.1 11.1 nm 18.2 16.1 10.8 10.5 18.2 Thallium µg/l 11.3 11.2 11 11 11.3 nt 10.5 10.5 10.5 11.00 11.11 nm 18.2 16.1 10.8 10.5 18.2 Time Sampled 11.3 11.2 11 11 11.3 nt 10.5 10.5 10.45 11:00 11:15 0.454861 11:00 10:15 11:01 10:30 10:20 Tin (µg/l) µg/l 35.5 10.5 10.65 10.45 11:00 11:15 0.454861 11:00 10:15 11:01 10:30 10:20 To.O.C. mg/l 35.5						<2.0	<2.0			0.0				2.2				4.1		├────┦	
Thallium µg/l Image: constraint of the symbol of the symb			12 0	11	10	15.8	14.8	nm	82	Q /	nm	13.1	11 1	nm	18.2	16.1	10.8	10.5	18.2	12.8	
Time Sampled 11.3 11.2 11 11.3 nt 10.5 10.5 11.00 11:10 11:00 10:15 11:10 10:30 10:20 Tin (µg/l) µg/l -			12.3		10	13.0	14.0		0.2	3.4	11111	10.1	11.1	11111	10.2	10.1	10.0		10.2	12.0	
Tin (µg/l) µg/l Image: log		ry'	11.3	11.2	11	11	11.3	nt	10.5	10.5	10 45	11.00	11.15	0 454861	11.00	10.12	11.10		10.20	10:45	
T.O.C. mg/l 35.5 0.1 0.12 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.		ua/I	11.0	11.6			11.0		10.0	10.0	10.40	11.00	11.10	5.101001	11.00	10.10	11.10		10.20	10.45	
TO.N mg/l N <0.05 <0.05 0.11 0.12 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <				1	35.5												1				
Total S Solids mg/1			<0.05	< 0.05		0.11	0.12	<0.08	<0.08	<0.08	<0.08	<0.08	0.18	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
																			-0.00		
juranium jugyi j j j j j j j j j j j j j j j j j j j	Uranium	µg/l		1														<0.1			
Vanadium µg/1				İ													İ				
Zinc µğ/l 5.2 21 20.7 5 2.4					1	5.2	21			20.7				5				2.4			

epa																			
									Dundal	k Landfill S	ite								
									LEACH/	ATE QUAL	ITY								
Monitoring Point:										Lŀ	12								
										RESI	JETS								
DADAMETERS	Unite	20 1.1 00	00.0+4.00	07 1 00	00 4	00 1.1 00	00.0+4.00	40. Jan 40	00 4	Da		05 Jan 44	44	44 1.1.44	02 0-4 44	40 Jan 40	00 4	00 1.1 40	00.0+40
PARAMETERS Alkalinity	Units mg/I CaCO3	30-Jui-08	28-UCT-08	27-Jan-09	29-Apr-09	23-JUI-09	28-Oct-09	19-Jan-10	20-Apr-10	28-Jui-10	26-Oct-10	25-Jan-11	11-Apr-11	11-Jul-11	03-Oct-11	16-Jan-12	23-Apr-12	23-Jul-12	08-Oct-12
	•				= 0												_		───┦
Aluminium	µg/l	404.00	00.04	107.71	<50	5.04	04.47	40.07	23.4	00.05	05.04	04.04	63.8	400.40	05.40	50.00	5		
	mg/I N	181.92	89.61	107.71	1.79	5.04	91.17	48.07	111.95	80.95	85.94	81.31	101.56	100.18	25.18	56.09	104.8 <0.5	8.40	76.78
	μg/l μg/l																<0.5		
	µg/l																393.3		
	µg/l																<0.5		
	mg/I O2	21.3	18.5		35.4	5.1	6.4	60.1	28.1	7.5	5.1	144.4	26	7.1	24.2	10.1	15.8	nm	18.5
-	μg/l	20			2335.2	241.1	0		1335.4		0		1401.9		_ 1.2		1858.9		10.0
	μg/l				<0.1	<0.1			<0.1				0.1				<0.1		<u>├</u> ───
	mg/I Ca				180.22	99.57			234.08		1		226.83	1	1	1	260.08	1	1
C.O.D.	mg/I O2	186	128		180	13	121	72	148	108	76	222	168	100	38	77	148	21	144
Chloride	mg/I CI	197	115	113	170	15	83	62	114	98	85	78	112	108	27	78	114	11	79
	µg/l				19.8	4			9				17.6				2.7		
	µg/l																2.6		
	µS/cm @ 25	3700	2450	2790	3310	680	2260	1803	3020	2260	2250	2300	2810	2610	1148	2110	2700	685	2320
	µg/l				3.3	4.7			2.3				4				0.5		
	mg/I CN						nm				nm	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
	% Saturation			nm															
	mg/l				4000.0	0.19			0.16				< 0.150				0.15		┥────┦
	µg/l				4909.2 <1	867.4 <1			24610.8 1.8				54713.6 3.8				10759.3 <0.5		───┦
	µg/l mg/l Mg				87.71	14.66			67.31				73.28				<0.5 86.04		
	µg/l				668.2	130.9			767.7				784.4				855.8		
	µg/l				<0.1	<0.1			<0.1				<0.05				< 0.05		
	µg/l				10.1	NO.1			20.1				-0.00				1.6	1	1
	µg/l				18	4.7			14.3				1.5				2.2		1
	mg/I P				0.54	0.02	0.02	< 0.02	< 0.02	< 0.02	0.03	0.10	0.15	0.03	0.16	0.16	0.03	0.04	0.19
pH .		6.9	6.8	6.9	6.9	7.2	6.9	6.9	6.9	6.8	6.9	6.9	6.9	6.8	6.9	6.9	7.1	7.2	6.8
Potassium	mg/l				106.62	14.34			73.89				73.94				92.07		
Residue on Evaporation																			
	m		2.4	1				2.9	2.9	4									
	µg/l																<0.5		↓Į
	µg/l				4 40 7 1	40.00			404.04				400.45	ļ			nm	ļ	₽
	mg/l				142.74	16.09			101.24				102.15				124.94		↓ ┃
	µg/l				10.4	96.0			10.0				<2.0	<u>├</u> ───			1043.19	<u>├</u> ───	├────┦
	mg/I SO4 mg/I				10.1	86.2			10.9				<2.0				4.1		├────┦
Temp	°C	12	11	9	16	14.8	nm	8.9	9.5	nm	13.3	10.0	nm	17.9	16.7	10	10.7	17.9	13.0
	μg/l	14		3	10	14.0	1011	0.9	3.5	1010	10.0	10.0		17.3	10.7	10	<0.1	17.9	13.0
Time Sampled	ry'	11.5	12.05	11.2	11.2	11.45	nt	11.2	11.2	11.05	11:25	11:45	11:20	11:25	10:35	11:25	10:45	10:35	11:00
	µg/l		.2.00														<1	10.00	
	mg/l			33.1															├───┨
	mg/I N	<0.05	0.54		0.46	0.45	<0.08	<0.08	<0.08	<0.08	0.09	<0.08	<0.08	0.16	<0.08	<0.08	0.3	0.13	0.98
	mg/l		l		İ	İ					1	l	İ	l	1				
	μg/l																0.1		1
	µg/l																0.7		
Zinc	µg/l				33.6	15.6			27.5				31.7				23		

(
CPa										k Landfill Si									
Monitoring Point:										LH	14								
										RESU	JLTS								
										Da	te								
PARAMETERS	Units	30-Jul-08	28-Oct-08	27-Jan-09	29-Apr-09	23-Jul-09	28-Oct-09	19-Jan-10	20-Apr-10			25-Jan-11	11-Apr-11	11-Jul-11	03-Oct-11	16-Jan-12	2 23-Apr-12	23-Jul-12	08-Oct-12
Alkalinity	mg/I CaCO3																		
Aluminium	µg/l				<50				35.7				68				9.5		
Ammonia	mg/I N	194.38	242.41	1.41	1.22	1.78	131.19	1.58	118.86	169.97	124.6	195.90	1.95	196.2	154.17	1.64	1.63	154.03	114.18
Antimony	µg/l																<0.5		
Arsenic	µg/l																2.6		
Barium	µg/l																185.2		I
Beryllium	µg/l	15.5			10.0	10.1		10.0	15.0						10		< 0.5		
B.O.D.	mg/I O2	15.5	6.3		10.3	13.4	14.1	16.3	15.9	16	15.4	16.1	24.8	11	19	44.4	71.1	1121.0	33.8
Boron Cadmium	µg/l				2298.4 <0.1	2888.4 <0.1			1086.9 <0.1		<u> </u>	<u> </u>	1713.5 <0.1				2319.3 <0.1		↓ ┦
Cadmium Calcium	µg/l mg/l Ca				<0.1 140.09	<0.1			<0.1 143.63				<0.1 159.24		+		<0.1		┼───┦
C.O.D.	mg/I O2	212	209		170	190	156	145	143.03	209	109	174	139.24	266	140	249	265	2450	176
	ma/I CI	330	240	199	205	169	98	179	95	255	118	168	211	397	187	181	185	34	132
Chromium	µg/l				23.4	28			2.8				6				1.3	0.	102
Cobalt (µg/l)	µg/l																4.6		
Conductivity	µS/cm @ 25	3870	4480	4310	3800	3620	2590	3450	2820	3490	2660	3450	3810	4410	3360	3890	3570	1690	2790
Copper	µg/l				2.4	13.4			6.2				1.3				<0.5		
Cyanide	mg/I CN						nm				nm	<0.01	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
D.O.	% Saturation			nm															I
Fluoride	mg/l				= + + 0 =	< 0.150			0.15				< 0.150				< 0.150		
Iron Lead	µg/l				5416.5 <1	30127.9			26317.3				15907.8 0.5		-		29832.9 <0.5		↓
Magnesium	µg/l mg/l Mg	-		-	86.67	3 93.1			<1 59.14				88.67		-		<0.5		├───┦
Magnesium Manganese	µg/l				780.6	860.7			805				786				100.14		┼───┦
Mercury	µg/l				<0.1	<0.1			<0.1				< 0.05		1		< 0.05		
Molybdenum	µg/l																< 0.5		
Nickel	µg/l				13.2	29.9			4				1.7				3.8		
o-Phosphate	mg/I P				1.6	0.94	0.1	0.14	1.14	0.09	0.09	0.38	0.23	0.07	0.36	1.24	0.57	<0.02	0.16
рН		6.9	7	6.8	6.9	6.9	6.9	6.9	6.9	6.9	6.8	6.9	7	6.9	6.9	6.9	7	7.2	6.8
Potassium	mg/l				151.94	149.12			82.74				136.66				157.91		
Residue on Evaporation																			L
	m		8.5	8.5				8.9	7.9	4							0.5		/
Selenium Silver	µg/l µg/l														-		0.5 nm		↓
Strontium	µg/l	-		-											-		203.55		├───┦
Sodium	mg/l				172.92	179.3			92.42				188.7				1101		┼───┦
Sulphate	mg/I SO4				<2.0	<2.0			<2.0				<2.0				2.2		
Suspended Solids	mg/l					1210			-2.0				1210						
Temp	°C	14.2	14	14	16.4	15.9	nm	12.8	12	nm	13.7	13.6	nm	18.1	15.8	12.4	12.1	18.1	13.7
Thallium	µg/l																<0.1		
Time Sampled		12.35	12.3	11.45	11.45	12.4	nt	11.5	11.55	11.15	12:20	12:10	12:00	12:00	10:50	12:15	11:10	11:45	11:25
Tin (µg/l)	µg/l																<1		↓/
T.O.C.	mg/l	0.07		45.3	0.00														
T.O.N	mg/l N	<0.05	<0.05		<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	0.08	<0.08	<0.08	<0.08	0.89
Total S Solids	mg/l																-0.1		┟────┤
Uranium Vanadium	µg/l														+		<0.1 2.51		───┦
Zinc	µg/l µg/l				4.7	64.9			19.3				13		+		13.8		┥───┤
200	µy/I				4.7	04.9		I	19.3		L	I	13				13.0		

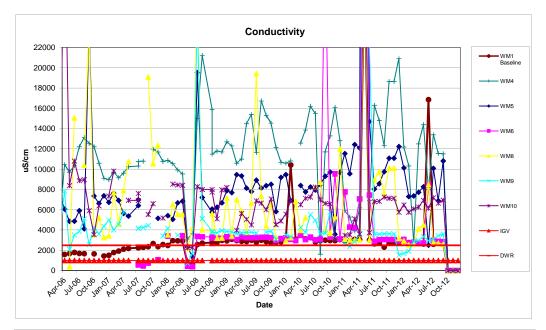
										k Landfill Si ATE QUAL									
Monitoring Point:										Lŀ	16								
										RESU	JLTS								
										Da	ite								
PARAMETERS	Units	30-Jul-08	28-Oct-08	27-Jan-09	29-Apr-09	23-Jul-09	28-Oct-09	19-Jan-10	20-Apr-10	28-Jul-10	26-Oct-10	25-Jan-11	11-Apr-11	11-Jul-11	03-Oct-11	16-Jan-12	23-Apr-12	23-Jul-12	08-Oct-12
Alkalinity	mg/I CaCO3																		
Aluminium	µg/l				<500				738.1				2554.8				17.5		
Ammonia	mg/I N	708.87	707.34	0.05	<0.03	98.25	4.49	1.15	509.45	0.47	<0.03	461.24	0.49	508.6	71.67	1.4	16.75	10.11	14.17
Antimony	µg/l																0.91		
Arsenic	µg/l																4.53		
Barium	µg/l																103.4		
Beryllium	µg/l	011.0	05.0		40	44	400.5	00	05.0	07.5	00.4	00.0	54.0	0.4		50.4	< 0.5		
B.O.D. Boron	mg/I O2	211.2	35.6		<40 5898.8	41 667	139.5	22	35.9 2099.6	27.5	28.4	30.0	51.3 2696.1	24	36	56.1	163.4 98.3	141.2	21.7
	µg/l µg/l				5898.8 <1	<0.1			<0.1				0.4				98.3 <0.1		├──── ┨
Calcium	mg/I Ca				115.4	227.8			138.39				184.46				257.21		├─── ┨
	mg/I O2	1035	818		842	541	703	336	660	486	529	424	785	684	275	557	757	819	255
Chloride	mg/I CI	635	676	442	655	90	500	243	451	445	478	341	570	484	164	334	40	31	28
Chromium	µg/l				55.3	19.3			12.1				16.4				<0.5		
Cobalt (µg/I)	µg/l																1.9		
Conductivity	µS/cm @ 25	8800	9220	7610	9910	2670	8100	4240	8270	6980	7680	5760	7550	6910	2350	5080	1657	1096	1681
Copper	µg/l				<10	8.8			5.2				20.6				<0.5		
Cyanide	mg/I CN										nm	<0.01	<0.05	<0.05	<0.05	< 0.05	<0.05	nm	< 0.05
D.O.	% Saturation			nm															
	mg/l					0.18			<0.150				<0.150				<0.150		
	µg/l				10645	32103.5			26643.2				30512.2				32084.8		L
Lead	µg/l				<10 119.1	6.3			4.1				16.6				< 0.5		├─── ┃
Magnesium Manganese	mg/I Mg µg/I				632.9	50.8 4635.2			83.86 936.7				111.45 1276.8				41.08 4272.6		<u> </u>
Manganese	µg/l				0.2	<0.1			<0.1				< 0.05				<0.05		II
Molybdenum	µg/l				0.2	NO.1			NO.1				<0.00				<0.5		<u> </u>
	µg/l				105.1	48.8			52.6				91.6				1.8		
o-Phosphate	mg/I P				3.32	2.01	2.95	1.52	2.08	2.37	2.17	0.42	1.13	1.74	<0.02	0.96	<0.02	0.03	< 0.02
pH		7.1	7.1	7	7.2	6.7	7.1	6.8	7	7.1	7	7.0	7.2	7	6.8	7	7.1	7.0	6.7
Potassium	mg/l				370.32	40.31			257.56				341.6				17.36		
Residue on Evaporation																			
	m		7.5	8				8.1	7.5	3.5							0.0		
Selenium Silver	µg/l																0.6 nm		L
	µg/l µg/l					+						<u> </u>	ł	ł	<u> </u>	<u> </u>	101.34		├────┨
	mg/l				535.8	175.45			360.75				526.92				653.49		
	mg/I SO4				7.4	20.4			8.6				28.3	<u> </u>	<u> </u>		4.5		
Suspended Solids	mg/l											1				1	-		
Temp	°C	16.6	17	16	16.5	15.9	nm	15.1	15.5	nm	13.4	16.9	nm	18	18.4	16	12.2	18.0	14.7
Thallium	µg/l																<0.1		
Time Sampled		12.15	12.5	11.55	12.1	12.25	nt	12.15	12.2	11.35	12:20	12:35	12:30	12:20	11:10	12:45	11:30	12:10	11:50
	µg/l			4015													<1		
T.O.C.	mg/l	0.05	0.05	134.5	0.44	0.00	.0.00	.0.00	0.00	.0.00	0.00	.0.00	0.00	.0.00	0.47	.0.00	0.00	0.00	0.00
T.O.N Total S Solids	mg/I N mg/I	<0.05	<0.05		0.11	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	0.17	<0.08	<0.08	<0.08	<0.08
	mg/l											<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1.38		<u>⊦ </u>
Vanadium	µg/l																3.56		├────┨
Zinc	µg/l				<10	141.7			70.2			1	390.9	1	1	1	3.1		1
	"' ["]					141.7			10.2			L	000.0	L	L	L	0.1		

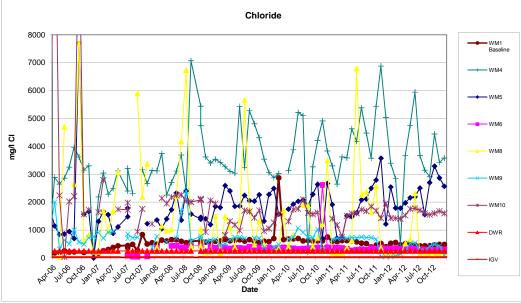
APPENDIX F

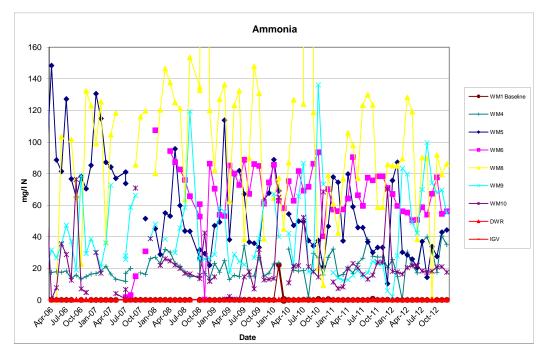
GROUNDWATER RESULTS

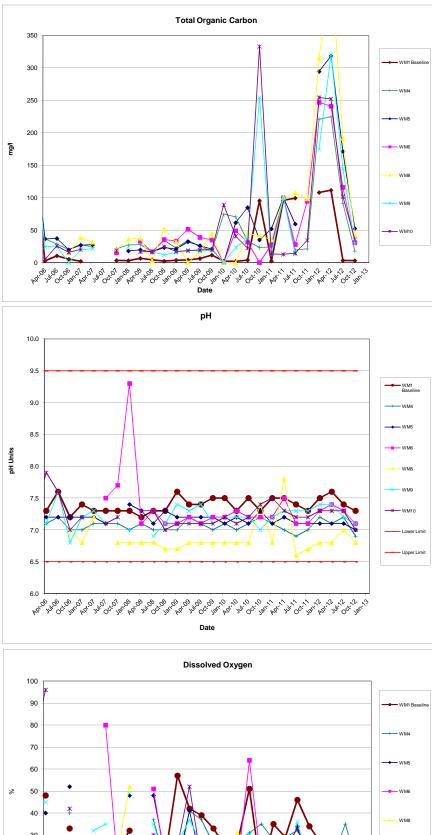
(TA)												Du	ndalk Landfi	ll Site											
												GROU		QUALITY											
Monitoring Point:		_											WM1												
													RI	ESULTS Date											
PARAMETERS	Units	25-Jan-11	14-Feb-11	28-Mar-11	11-Apr-11	09-Mav-11	13-Jun-11	11-Jul-11	08-Aua-11	21-Sep-11	03-Oct-11	07-Nov-11	12-Dec-11	16-Jan-12	06-Feb-12	12-Mar-12	23-Apr-12	14-Mav-12	06-Jun-12	23-Jul-12	13-Aua-12	10-Sep-12	08-Oct-12	05-Nov-12	10-Dec-12
Alkalinity	mg/l CaCO3				408												396								
Aluminium	ua/l				<5												<5								
Ammonia	mg/I N	0.04	0.05	0.03	0.04	< 0.03	0.03	0.04	< 0.03	0.87	0.05	0.04	0.17	0.05	0.07	< 0.03	< 0.03	< 0.03	0.06	0.04	< 0.03	0.05	0.04	0.03	0.06
Antimony	µg/l																<0.5								
	µg/l																<0.5								
	µg/I																87.9								
	µg/l																<0.5								
	mg/I O2																101 7								
	µg/l				6	-											421.7								L
	µg/l mg/l Ca				<0.1 118.01												<0.1 102.99								
	mg/ICa mg/IO2				110.01	+						+		+		+	102.99								<u> </u>
	mg/I CI	598	584	623	623	622	576	530	516	393	459	520	398	524	553	471	512	486	464	435	435	436	463	483	482
	µg/l	000	504	023	0.7	022	5/0	000	510	000	400	520	000	524	000	4/1	<0.5	400	404		400	400	400	400	402
	µg/l				0.7	1										1	<0.5								
	µS/cm @ 25	2920	2930	3080	3060	30100	3010	2640	2780	2310	2700	2700	2090	2890	2760	2680	2680	2620	16860	2600	2730	2700	2720	3090	2560
	µg/l				4.6												<0.5								
	mg/I CN				< 0.05												< 0.05								
D.O.	% Saturation	35			29			46			34			26			22			27			18		
	mg/l				<0.150						<0.150						<0.60								
	µg/l				48.3												<10								
	µg/l				<0.5												<0.5								
	mg/I Mg				59.58												54.92								
	µg/l				10.8												9.7								
	µg/l				< 0.05		_										< 0.05								
	µg/l				0.5												1.9								
	µg/l mg/l P				<0.5 <0.02						0.02						<0.5								
pH	ilig/i F	7.5			7.5	-		7.4			7.3			7.5		-	7.6			7.4			7.3		
	mg/l	1.5			21.34			7.4			1.5			1.5			23			7.4			1.5		
	mg/l				1802												1654								
	m							3	3	2.5		nm	1.9	2.8	1.2	nm	2.9	3	nm	2.9	2.3	2.9	2.9	2.9	2.9
	µg/l				1	1						1			1	1	<0.5								
	µg/l				1	1	1								1	1	nm	1	1	1	1	1			
Sodium	mg/l				463.85												461.43								
	µg/l																567.58								
	mg/I SO4				225.7						225						249.4								
	mg/l																								
	°C	11.0			14			18.4			16.6			9.4			12.1			16			15.5		
	µg/l	40.00		0.45		00.40	00.55	40.40					10.10	40.05	40.40	10.10	<0.1		10.10	40.00	10.05	10.00		00.45	0.00
Time Sampled		12:30	nt	9:45	11:15	09:40	08:55	12:10	11:45	10:45	11:00	11:15	16:10	12:05	10:40	10:10	10:05	11:15	10:40	10:30	10:05	10:00	11:40	09:15	9:30
	µg/l						L					L		400	L		<1	L	L	L	I	L			1
	mg/l	2.3			96	+		99.3			1.0	ł		108	ł		111.5	ł		l			3		├──── ┃
	mg/IN mg/I				1.33	+					1.8	<u> </u>		<u> </u>	<u> </u>	+	0.97	<u> </u>		<u> </u>	<u> </u>		-		├─── ┃
	mg/i µg/l				+	+						+		+		+	1.08	+							────
	µg/l				+	+						<u> </u>		<u> </u>	<u> </u>	+	0.59	<u> </u>		<u> </u>	1				<u> </u>
	µg/l				3	+						<u> </u>		<u> </u>	<u> </u>	+	<0.59	<u> </u>		<u> </u>	1				<u> </u>
Water Level m OD	4.77					+		1.77	1.77	2.27	4.77	#VALUE!	2.87	1.97	3.57	#VALUE!	1.87	1.77		1.87	2.47	1.87	1.87	1.87	1.87
That is a control of the control of	4.77				1	1		1.77	1.77	6.61	4.11	"TALOL!	2.01	1.01	0.01	ATTALOL!	1.07	1.77	1	1.07	2.71	1.07	1.07	1.07	1.07

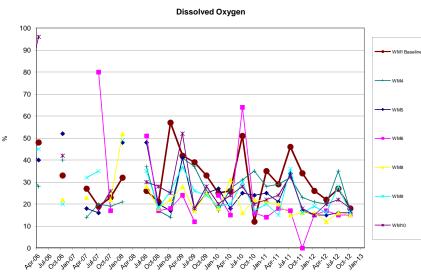
												Dund	alk Landfill S	Site											
												GROUND	WATER QU	JALITY											
Monitoring Point:													WM4												
														ULTS											
PARAMETERS	Units	25-Jan-11	14-Feb-11	28-Mar-11	11-Apr-11	09-May-11	13-Jun-11	11-Jul-11	08-Aug-11	21-Sen-11	03-Oct-11	07-Nov-11		ate 16-Jan-12	06-Feb-12	12-Mar-12	23-Apr-12	14-May-12	06-Jun-12	23-Jul-12	13-Aug-12	10-Sen-12	08-Oct-12	05-Nov-12	10-Dec-12
Alkalinity	mg/I CaCO3				820				•••••g								1020								
	µg/l				6.3												<5							ب ــــــــــــــــــــــــــــــــــــ	I
	mg/IN	32.23	15.10	16.09	20.74	16.79	23.09	26.45	38.39	27.71	27.17	11.91	20.5	25.52	14.98	0.06	30.36	22.42	17.25	36.98	39.89	31.47	17.56	40.52	35
	µg/l	02.20	10.10	10.05	20.14	10.75	20.00	20.40	00.00	21.11	21.11	11.51	20.0	20.02	14.50	0.00	<0.5	22.72	17.20	50.50	00.00	51.47	17.50	40.02	
	µg/l																<5								
	μg/l																31.3								
	ua/l																< 0.5							·	
	mg/I O2														1		<0.5							ب ــــــــــــــــــــــــــــــــــــ	
					1 100 0									-			1070 5							j/	
	µg/l				1499.3										1	1	1879.5				1			<u>ا</u>	L
	µg/l mg/l Ca				<0.1 200.54	<u> </u>										<u> </u>	<0.1 229.75		<u> </u>	<u> </u>	<u> </u>	<u> </u>		لــــــــــــــــــــــــــــــــــــ	<u>⊢</u>
	mg/ICa mg/IO2				200.54									-			229.75							j/	
	mg/I CI	3300	2646	3620	3586	4631	4177	5383	4475	3575	5427	6878	5039	3395	2844	473	3670	4750	5943	3669	3145	2909	4441	3424	3581
	µg/l	3300	2040	3020	1.4	4031	4177	5363	4475	3575	5427	00/0	5039	3395	2044	473	<0.5	4750	5945	3009	3145	2909	4441	3424	3001
	µg/l				1.4												2							⊢−−−− ₹	
	µS/cm @ 25	11540	9550	12430	12100	150800	14700	16300	14800	12330	18630	20900	14130	12180	10320	2670	12500	14390	7960	13400	11550	11520	14710	13790	10750
	µg/l	110-10	3330	12400	<0.5	100000	14700	10000	14000	12000	10000	20000	14100	12100	10020	2070	<0.5	14000	1300	10400	11000	11020	14/10	10/00	10/30
	ma/I CN				<0.05												< 0.05							·	
	% Saturation	28			29			32			23			21			20			35			17	,	
	mg/l				<0.150												< 0.60							,	
	µg/l				2278.8												814.5								
Lead	μg/l				<0.5												<0.5								
Magnesium	mg/I Mg				278.44												319.23								
	µg/l				1000												926.1								
	µg/l				< 0.05												< 0.05								
	µg/l																2.3								
	µg/i				<0.5												1.9								
o-Phosphate	mg/I P				0.8												0.49							┝───┘	
pH		7.1			7			6.9			7			7.2			7.1			7.2			6.9	Ļ'	
	mg/l				122.37												146.12							Ļ'	L
Residue on Evaporation					7811								1.0				8423			0.5			_	<u> </u>	<u> </u>
	m							4.1	4.7	4	4.7	nm	1.2	5	1.3	nm	4.6	4.5	nm	3.5	4	4.1	5	4.6	5
	µg/l																6.4							└───┘	L
	µg/l mg/l				2195.13												nm 2498.04							└──── ┘	
	µg/l				2195.15												2293.52							ļJ	
	mg/ISO4				464.2									-			486.2							j/	
	mg/l				404.2												400.2								
	°C	11.8			13			19.8			17.5			9.9			11.9			18			15.4	¹	
	µg/I	11.0			10			15.0			17.5			0.0			<0.1			10			13.4	⊢−−−− ┦	
Time Sampled	-9-	14:10	nt	11:05	11:55	11:10	10:50	13:55	11:05	11:45	11:30	11:45	16:45	13:00	13:35	13:15	11:15	12:00	12:20	12:45	15:30	13:10	13:10	11:50	11:00
	µg/l																<1						10.10	11.00	11.00
	mg/l	23.9			>100			19.4			21.1			221	1	1	225				1		17.6	ا ا	I
	mg/I N		l	l	< 0.08		l								1	1	0.16				1			,	
	mg/l					1									1	1	1		1	1	1	1			1
	µg/l				1	1									1	1	0.49		1	1	1	1			1
	µg/l				1	1									1	1	1.24		1	1	1	1			1
	µg/l	İ	İ	İ	1.5	1	İ								1	1	<0.5		1	1	1	1	İ	(
Water Level m OD	5.12	1	1	1	1	1	1	1.02	0.42	1.12	0.42	#VALUE!	3.92	0.12	3.82	#VALUE!	0.52	0.62	1	1.62	1.12	1.02	0.12	0.52	0.12
Tato. Level III OD	0.12		1	1			1	1.02	0.72	1.14	0.42	" THEOL!	0.02	0.12	0.02	ATALOL:	0.02	0.02		1.04	1.14	1.02	0.12	0.02	0.12


												Dunda	alk Landfill S	ite											
												GROUND	WATER QU	ALITY											
Monitoring Point:													WM5												
													RES												
PARAMETERS	Units	25-Jan-11	14-Feb-11	28-Mar-11	11-Apr-11	09-May-11	13-Jun-11	11-Jul-11	08-Aug-11	21-Sep-11	03-Oct-11	07-Nov-11	Da 12-Dec-11		06-Feb-12	12-Mar-12	23-Apr-12	14-May-12	06-Jun-12	23-Jul-12	13-Aug-12	10-Sep-12	08-Oct-12	05-Nov-12	10-Dec-12
Alkalinity	mg/I CaCO3				1370												1360								
Aluminium	µg/l				19.7												5.8								
Ammonia	mg/I N	77.88	74.51	37.43	79.74	59.03	45.9	45.82	36.84	30.12	33.26	51.34	10.31	75.68	87.15	30.2	28.48	25.88	20.56	37.04	14.34	33.82	27.59	42.91	44.31
Antimony	µg/l																< 0.5						1		
Arsenic	µg/I																3.81							ſ	
Barium	µg/l																221.3						1		
	ua/l																<0.5								
	mg/I O2																-0.0								
	µg/l				1700.4												2055.3								
	µg/l				<0.1												<0.1						1		
	mg/I Ca				145.59										1		194.49						1		
C.O.D.	mg/I O2																						1		
Chloride	mg/I CI	1912	700	731	1511	1477	1616	2079	2112	2496	2792	3574	1214	2542	1789	1783	1970	2158	2192	2504	1556	2700	3289	2869	2569
Chromium	µg/l				4.1												0.8								
	µg/l																2.3								
	µS/cm @ 25	7760	4290	4220	7070	68000	7450	8040	8570	9750	11080	12230	4880	10130	7300	7360	7720	8260	2510	10080	6890	10810	12000	12270	8710
	µg/l				2.4												0.5								
	mg/I CN				< 0.05												< 0.05							<u> </u>	
	% Saturation	25			21			34			17			15			15			16			16		
	mg/l				<0.150						<0.150						<0.60							L	
	µg/l				2391.3												6968.1	_							
	µg/l				<0.5												<0.5 215.18	_							
	mg/I Mg				170.37																		'		ll
	µg/l µg/l				454.4												718.9 <0.05						├ ────'	<u> </u>	
	µg/i µg/i				<0.05												<0.05						├ ────'	<u> </u>	├ ───┤
	µg/i				<0.5										-		2.6		-					i	
	mg/I P				0.77						2.48						0.93						'		
nH	ilig/11	7.1			7.2			7.1			7.1			7.1			7.1			7.1			7	<u> </u>	<u> </u>
Potassium	mg/l	7.1			103.51									7.1	1		110.26		1	4.7	4.2	5.1	<u> </u>	<u> </u>	
Residue on Evaporation					3950												4747						5888	<u> </u>	
	m							5.1	4.1	6.3		nm	3.7	5.3	2.4	nm	4.7	5.1	nm				5.3	4.8	5.3
	µg/l																< 0.5								
Silver	µg/l														1		nm						1		
Sodium	mg/l				957.81												1402.7						1		
	µg/I																1505.19								
	mg/I SO4				111.9						318						209.9								
	mg/l																								
	°C	12.4			13			19.8			17.4			12.4			12.7			15.5			15.8		
	µg/l																<0.1							<u> </u>	
Time Sampled		12:50	nt	13:50	12:30	13:00	13:30	12:30	12:35	13:35	11:45	13:40	17:30	13:50	12:30	12:45	11:30	12:20	13:40	11:50	14:40	12:05	12:50	13:15	12:55
	µg/l			L	400	ļ	L							0015		L	<1	L		L		L		┝───	L
	mg/l	52.0			>100	I		59.4			0.00			294.5			318.4				I		52.5		L
	mg/I N				1.03	1					<0.08						0.16	L					l'		L
	mg/i			ł		l											0.1			ł			└─── '	↓	┥────┤
	µg/l			ł	+										-	ł	<0.1 1.53			ł		ł	├ ────'	┢────	├──── ┃
	µg/l				6.0																1		↓ '		1 1
	μg/l			ł	6.9			0.47	1 47	0.72	E E7	#\/ALLE	1 07	0.27	2.17	#\/ALLIE!	4.3	0.47		#\/\\\	#\/\\\	#\/ALLIE!	0.27	0.77	0.27
Water Level m OD	5.57			1	1			0.47	1.47	-0.73	5.57	#VALUE!	1.87	0.27	3.17	#VALUE!	0.87	0.47		#VALUE!	#VALUE!	#VALUE!	0.27	0.77	0.27


												Dunda	alk Landfill S	Site											
												GROUND	WATER QU	ALITY											
Monitoring Point:													WM6												
													RES	ULTS											
														ate											
PARAMETERS	Units	25- Jan-11	14-Feb-11	28-Mar-11	11-Apr-11	09-May-11	13- Jun-11	11- Jul-11	08-Aug-11	21-Sen-11	03-Oct-11	07-Nov-11			06-Eeb-12	12-Mar-12	23-Apr-12	14-May-12	06- lun-12	23- Jul-12	13-Aug-12	10-Sen-12	08-Oct-12	05-Nov-12	10-Dec-12
Alkalinity	mg/l CaCO3	20-0011-11	14-1 00-11	20-1101-11	973		10 001111	11-001-11	00-Aug-11	21-000-11	00-000-11	07-1101-11	12-000-11	10-0411-12	00-1 00-12	12-14101-12	1040	14 may-12	00-0411-12	20-041-12	10-Aug-12	10-0Cp-12	00-001-12	00-1101-12	10-200-12
Aluminium	µg/l				21.6												<5							I	
Ammonia	mg/I N	57.24	56.28	57.40	64.3	90.48	66.34	59.63	77.44	75.79	78.39	65.05	71.02	67.11	59.59	56.17	55.37	50.5	50.81	58.74	54.01	67.27	77.64	54.54	56.22
Antimony	µg/l	07.21	00.20	07.10	01.0	00.10	00.01	00.00		10.10	10.00	00.00	11.02	07.111	00.00	00.11	<0.5	00.0	00.01	00.7 1	01.01	01.21	11.01		00.LL
Arsenic	µg/l						1										3.24							(
Barium	µg/l						1 1										124								
Beryllium	µg/I																< 0.5							i	()
B.O.D.	mg/I O2																								
Boron	µg/I				1454.1												1736.2								1
Cadmium	µg/l				<0.1												<0.1							لــــــــــــــــــــــــــــــــــــــ	· · · · · · · · · · · · · · · · · · ·
Calcium	mg/I Ca				125.79												122.15								I
C.O.D.	mg/I O2	070	0.07	050		070	005		0.05	0.40	004	074	0.45	0.05	050			0.40			000	00.4			
Chloride	mg/I CI	379	367	356	326		295	318	295	349	331	371	345	335	352	336	326	343	334	309	298	294	290	295	299
Chromium Cobalt	µg/l				2.8										-		1.2 2.8							ļļ	·
Conductivity	μg/l μS/cm @ 25	3100	3020	3030	3070	30900	3020	2890	3050	3060	3060	2930	2620	3080	2720	2800	2.0	2710	8420	2970	2890	2850	3140	3100	2760
Copper	µg/l	3100	3020	3030	3070	30900	3020	2090	3030	3060	3060	2930	2020	3060	2720	2000	4.5	2/10	0420	2970	2090	2000	3140	3100	2760
Cyanide	mg/I CN				<0.05												<0.05								
D.O.	% Saturation	14			18			17			<10			15			17			15			15	I	
Fluoride	mg/l				0.25						10			10	1		<0.60			10				ł	
Iron	µg/l				2424.8		1										353.9							(
Lead	µg/l				<0.5		1 1										<0.5								
Magnesium	mg/I Mg				73												73.07								i
Manganese	µg/I				422.5												188.1								1
Mercury	µg/I				<0.05												<0.05								· · · · · · · · · · · · · · · · · · ·
Molybdenum	µg/l																1.3							لــــــــــــــــــــــــــــــــــــــ	
Nickel	µg/l				4												4.8							ļļ	i
o-Phosphate pH	mg/l P	7.0			0.04			7.1			7.1			7.3			0.03			7.3			7.1		
Potassium	mg/l	7.2			7.5			7.1			7.1			7.3			103.76			1.3			7.1	ļļ	<u> </u>
	mg/l				97.5	-									-		1489							I	I
Sampling Depth	m				1032			4.9	4.1	5	4.8	nm	3.9	4.9	2.5	nm	4.9	5	nm	4.9	4.3	5	5	4.8	5
Selenium	µg/l							4.5	7.1	5	4.0		0.0		2.0	. 411	<0.5			7.0		, , , , , , , , , , , , , , , , , , ,	3		<u> </u>
Silver	µg/l														1	1	nm							ł	
Sodium	mg/l				260.76										1	1	301.84			1		1			
Strontium	µg/l						1 1										771.63								
Sulphate	mg/I SO4				9.4												10.2								í – – – – – – – – – – – – – – – – – – –
Suspended Solids	mg/l																								
Temp	°C	13.0			14			27.5			17.2			12.6			12.7			16			15.8		
Thallium	µg/I																<0.1							لــــــــــــــــــــــــــــــــــــــ	·
Time Sampled	L	13:10	nt	13:00	12:50	13:15	12:45	12:50	12:55	14:10	12:00	13:15	17:50	14:15	12:05	11:00	11:40	12:35	13:05	12:25	13:30	11:15	11:55	13:35	12:15
Tin	µg/l	07.0	ļ		400	ļ					04.5			0.47	L	ļ	<1	ļ	ļ				20.7	I	
T.O.C. T.O.N	mg/l	27.3			>100 4.37			28			94.5			247	+		241 3.47			l		l	30.7		<u> </u>
Total S Solids	mg/I N mg/I				4.37										+	<u> </u>	3.47			<u> </u>		<u> </u>		<u> </u>	I
Uranium	μg/l				+										+		0.14					+		<u> </u>	I
Vanadium	µg/l				<u> </u>										+	1	0.14			<u> </u>		<u> </u>			I
Zinc	µg/l				8.8										+	1	9.9			<u> </u>		<u> </u>			I
Water Level m OD	5.87				0.0			0.97	1.77	0.87	1.07	#VALUE!	1.97	0.97	3.37	#VALUE!	0.97	0.87		0.97	1.57	0.87	0.87	1.07	0.87
Hater Level III OD	0.01							0.57	1.77	0.07	1.07	#TALUL!	1.31	0.57	5.57	#VALUE!	0.57	0.07		0.57	1.57	0.07	0.07	1.57	0.01


												Duna	alk Landfill Site												
												GROUND	WATER QUALI	тү											
Monitoring Point:		-											WM8												
													RESULT	S											
PARAMETERS	Units	Date 25-Jan-11	14-Feb-11	28-Mar-11	11-Apr-11	09-May-11	13-Jun-11	11-Jul-11	08-Aug-11	21-Sep-11	03-Oct-11	07-Nov-11	12-Dec-11 16-	-Jan-12	06-Feb-12	12-Mar-12	23-Apr-12	14-May-12	06-Jun-12	23-Jul-12	13-Aug-12	10-Sep-12	08-Oct-12	05-Nov-12	10-Dec-12
Alkalinity	mg/l CaCO3				1470												1400								
Aluminium	µg/l				81.6												8.6								
Ammonia	mg/IN	60.90	42.43	76.72	105.89	97.93	77.2	123.4	130.15	123.59	58.76	6.28	85.86	84.99	84.9	89.46	128.39	119.24	38.38	90.22	89.57	1.69	91.91	79.52	86.29
Antimony	μα/Ι											0.00					< 0.5								
Arsenic	μg/l																1.22								
Barium	µg/l																232.8								
Beryllium	µg/l																<0.5								
B.O.D.	mg/l O2																								
Boron	µg/l				1865.3												2895.5								
Cadmium	µg/l				0.1												<0.1								<u> </u>
Calcium C.O.D.	mg/l Ca mg/l O2	1 1			237.68	<u> </u>											269.27				+				—
C.O.D. Chloride	mg/I CI	181	149	182	367	636	6792	2256	2374	1632	2566	361	174	130	123	107	516	662	2315	112	116	91	168	147	177
Chromium	µg/l	101	145	102	307	030	0792	2230	23/4	1032	2300	301	1/4	130	123	107	1.1	002	2315	112	110	51	100	147	177
Cobalt	µg/l																4.5								
Conductivity	µS/cm @ 25	2680	2390	2830	3660	44100	22100	8960	9760	7590	10100	3180	2640	2930	2540	2640	4130	4500	8490	2770	2720	2590	2940	3070	2700
Copper	µg/l				5.4												0.6								
Cyanide	mg/I CN				< 0.05												< 0.05								
D.O.	% Saturation	21			20			15			16			16			12			16			15		
Fluoride	mg/l				<0.150												<0.60								
Iron	µg/l				11859.6												20497.2								
Lead	µg/l				1.9												<0.5								
Magnesium	mg/I Mg				87.61 2996.8												111.42 2919.9								
Manganese Mercury	µg/l				<0.05												<0.05								
Molybdenum	µg/l µg/l				<0.05												2.8								
Nickel	µg/l				15.2												22.9								
o-Phosphate	mg/I P				0.24												0.57								
pH		6.8			7.8			6.6			6.7			6.8			6.8			7			6.8		
Potassium	mg/l				83.36												108.05								
Residue on Evaporation	n mg/l				2015												2257								
Sampling Depth	m							4.1	5.3	4.9	3.6	nm	2.9	3	3.3	nm	3.9	5	nm	3.9	3.1	5.2	4.1	3.8	4.1
Selenium	µg/l						-										<0.5		-			-			<u> </u>
Silver	µg/l	1			0.40.00												nm								+
Sodium	mg/l µg/l	1			249.89	<u> </u>											390.79 1376.28				+				↓
Strontium Sulphate	μg/I mg/I SO4				15.3		1										1376.28		1	1		1			+
Suspended Solids	mg/l	1			13.3												30								<u> </u>
Temp	°C				13		1	19.2			17.2			12.4			13.4		1	17.2	+	1	16.7		1
Thallium	µg/I						1										<0.1		1	1	1	1			<u> </u>
Time Sampled		13.0	nt	14:35	13:05	12:45	14:15	14:00	13:15	14:50	12:20	12:55	17:00	14:00	13:15	11:25	12:00	13:00	14:15	12:10	15:15	12:40	12:10	12:35	13:35
Tin	µg/l																<1								
T.O.C.	mg/l	13:20			>100			107.6			98.4			314.8			456.4			1			42.6		
T.O.N	mg/l N	35.4			0.16		-										0.26		-			-			<u> </u>
Total S Solids	mg/l				L	L																			
Uranium	µg/l	1			-		-										<0.1		-			-			
Vanadium Zinc	µg/l	1			26.6	<u> </u>											3.37				+				<u> </u>
Zinc Water Level m OD	µg/l 5.15	1			36.6		1	1.05	-0.15	0.25	1.55	#VALUE!	2.25	2.15	1.85	#VALUE!	17.5	0.15	1	1.25	2.05	-0.05	1.05	1.35	1.05
water Level M OD	5.15	1		I	1	1	1	1.05	-0.15	0.25	1.55	#VALUE!	2.20	2.10	1.85	#VALUE!	1.25	0.15	1	1.25	2.05	-0.05	1.05	1.35	1.05


6												Dunda	alk Landfill S	lite											
												GROUND	WATER QU	IALITY											
Monitoring Point:													WM9												
														ULTS											
PARAMETERS	Units	25-Jan-11	14-Feb-11	28-Mar-11	11-Apr-11	09-May-11	13-Jun-11	11-Jul-11	08-Aug-11	21-Sep-11	03-Oct-11	07-Nov-11		ate 16-Jan-12	06-Feb-12	12-Mar-12	23-Apr-12	14-May-12	06-Jun-12	23-Jul-12	13-Aug-12	10-Sep-12	08-Oct-12	05-Nov-12	10-Dec-12
Alkalinity	mg/I CaCO3				1010												1385				i i i i i i i j i i i				
,	µg/l				27.7											1	8				1			1	
	mg/IN	17.34	13.98	12.47	12.83	15.65	18.54	14.67	17.2	24.5	22.95	2.51	5.85	2.17	27.97	83.28	79.79	48.99	42.36	69.89	99.62	74.24	67.99	69.6	54.97
		17.34	13.90	12.47	12.03	15.65	10.34	14.07	17.2	24.0	22.95	2.51	5.65	2.17	21.91	03.20		40.99	42.30	09.09	99.02	74.24	67.99	69.6	54.97
	µg/l																1.11							I	
	µg/l																1.14	_						l	
	µg/l																122.9							I	
	µg/l																<0.5							I	
	mg/I O2				739.9												1907.2							───	
	µg/l				<0.1												0.4							├ ────	
	µg/l				<0.1											-	224.02				-			l	
	mg/I Ca mg/I O2			1	11.00	ł			ł						1	+	224.02	-	1	1	+	1	ł	t	
		661	704	712	700	738	711	753	728	725	672	39	43	44	69	141	244	516	546	258	249	420	484	431	98
	µg/l	001	704	112	< 0.5	100	711	100	120	120	072	55	-+5		00	141	<0.5	510	340	200	245	420	+0+	401	
	µg/l				~0.0											1	7.8				1			1	
	µS/cm @ 25	3480	3530	5100	3600	36400	3740	3580	3570	3630	3620	1539	1559	1697	1903	2860	2980	3350	2960	3070	3440	3600	3700	4010	2310
	µg/l	0100	0000	0100	8.3	00100	01.10	0000	00/0	0000	0020	1000	1000	1007	1000	2000	91.4	0000	2000	0010	0110	0000	0,00	1010	2010
	mg/I CN				< 0.05												< 0.05								
	% Saturation	20			15			36			16			19			16			28			16		
	mg/l				< 0.150						0.18					1	<0.150								
Iron	µg/l				1297.9												64.3								
Lead	µg/l				1.1												<0.5								
Magnesium	mg/I Mg				73.59												102.01								
	µg/l				410.7												1127.2								
	µg/l				< 0.05												< 0.05								
	µg/i																4.6								
	µg/l				16.5												18							L	
o-Phosphate	mg/I P				< 0.02						0.11						0.04							L	
pH		7.2			7.3			7.3			7.3			7.4			7.4			7.2			7.1	L	
	mg/l				41.59												101.86							L	
	mg/l				3511			1.0		1.0				10	0		1726 4.4	5.4			2.0	5.4	10	10	4.0
	m µg/l							4.6	5.5	4.3		nm	2.9	4.9	3	nm	4.4	5.1	nm	4.4	3.9	5.1	4.2	4.9	4.3
	µg/i µg/i																0.7 nm							───	
	mg/l				493.07	-										-	250.64				-			l	
	µg/l				433.07				-							-	990.11				-			l	
	mg/I SO4				128.4				-		107.1					-	128.8				-			l	
	mg/l				120.4						107.1					-	120.0							l	
	°C	15.0			15			19.9			17.1			13.8		1	13.5			16.2			17	<u> </u>	
	µg/l	10.0						10.0						10.0		1	0.21			10.2	1			1	
Time Sampled	-3	13:35	nt	14:10	13:20	12:30	14:00	13:50	13:40	14:35	12:45	12:30	17:10	13:10	12:50	11:55	12:20	13:15	14:00	12:55	15:00	12:55	12:30	12:55	13:15
	µg/l																<1								
	mg/l	12.2		1	>100			13.3						174.7		1	320.4		1	1	1		28.9	1	
	mg/I N			1	< 0.08						0.1				1		1.92					1		1	
	mg/l			1		1									1	1	1	1	1	1	1	1	1	İ	
	µg/l			1		1									1	1	1.1	1	1	1	1	1	1	İ	
	µg/l					1										1	1.42				1		1		
Zinc	µg/l				14.3												88.7								
	5.78			1		1		1.18	0.28	1.48	5.78	#VALUE!	2.88	0.88	2.78	#VALUE!	1.38	0.68		1.38	1.88	0.68	1.58	0.88	1.48


1												Dundalk La	andfill Site												
											G	ROUNDWAT		ſY											
Monitoring Point:		1										WN	110												
													RESULT	s											
													Date												
PARAMETERS	Units	25-Jan-11	14-Feb-11	28-Mar-11	11-Apr-11	09-May-11	13-Jun-11	11-Jul-11	08-Aug-11	21-Sep-11	03-Oct-11	07-Nov-11	12-Dec-11	16-Jan-12	06-Feb-12	12-Mar-12	23-Apr-12	14-May-12	06-Jun-12	23-Jul-12	13-Aug-12	10-Sep-12	08-Oct-12	05-Nov-12	10-Dec-12
Alkalinity	mg/l CaCO3				nm												1220								
Aluminium	µg/I				28.7												<5								
Ammonia	mg/l N	11.38	7.27	8.27	19.78	23.14	20.29	16.2	13.19	15.74	23.95	14.45	70.12	18.09	17.72	16.36	20.46	21.95	21.79	18.36	17.35	18.16	20.92	21.06	17.62
Antimony	µg/l																<0.5								
Arsenic	µg/l																1.39								
Barium	µg/l																103.1								
Beryllium	µg/l																<0.5								
B.O.D.	mg/I O2																							<u> </u>	
Boron	µg/l				1475												1796.3							───	↓
Cadmium	µg/l				<0.1												<0.1							┝───	┢───┦
Calcium C.O.D.	mg/l Ca mg/l O2				85.7										-	-	95.36							<u> </u>	+
Chloride	mg/I CI	1408	1182	755	1506	1593	1603	1733	1680	1843	1696	1425	1952	1429	1423	1406	1523	1760	1777	1705	1600	1546	1600	1680	1600
Chromium	µg/l	1400	1102	755	0.9	1535	1005	1755	1000	1043	1030	1423	1992	1423	1423	1400	< 0.5	1700	1///	1705	1000	1340	1000	1000	1000
Cobalt	µg/l				0.5												1.5								
Conductivity	µS/cm @ 25	5910	5280	3910	6190	66600	6930	6800	6830	7250	7130	5750	10910	6470	5760	6090	6260	6920	6150	7180	6650	6940	6950	7930	6180
Copper	µg/l				5							0.00					5.2		0.00						
Cyanide	mg/I CN				< 0.05												< 0.05								
D.O.	% Saturation	22			24			33			18			15			20			22			18		
Fluoride	mg/l				0.15												<0.60								
Iron	µg/l				2211.1												257.4								
Lead	µg/l				0.6												<0.5								
Magnesium	mg/I Mg				125.98												141.65								┦
Manganese	µg/l				192.7												148.5 <0.05							───	↓
Mercury Molybdenum	µg/I µg/I				<0.05												<0.05							┢────	───
Nickel	µg/l				4.1										-	-	5.6							<u> </u>	+
o-Phosphate	mg/I P				0.03												0.05								<u> </u>
pH	ing/iii	7.5			7.3			7.2			7.2			7.3			7.3			7.3			7		+
Potassium	mg/l	7.0			82.85												93.89							1	├── ┦
Residue on Evaporation	mg/l				3567												3689								
Sampling Depth	m							5.3	5.3	4.8	5	nm	2.8	5.2	1.8	nm	5	5.3	nm	5	4.5	4.9	5.6	3.3	5.5
Selenium	µg/l																<0.5								
Silver	µg/I																nm								
Sodium	mg/l				1044.07												1205.87								
Strontium	µg/l																1160.86								
Sulphate	mg/I SO4				115.9												157.6							<u> </u>	
Suspended Solids	mg/l							40.0			47.4			40.0			40.4			40.4			46.4	───	<u> </u>
Temp Thallium	°C µg/l				14			19.6			17.1			12.8			13.1 <0.1			16.1			16.1	┢────	───
Time Sampled	μg/i	12.6			13:35	12:10	13:05	13:40	14:00	13:50	13:00	12:00	17:30	12:40	12:15	12:15	12:45	13:30	13:20	13:10	14:05	11:35	11:50	12:10	12:35
Tin Sampled	µg/l	12.0			13.33	12.10	13.03	13.40	14.00	13.30	13.00	12.00	17.30	12.40	12.13	12.13	<1	13.30	13.20	13.10	14.03	11.55	11.00	12.10	12.00
T.O.C.	mg/l	13:55	nt	13:20	12.7			14.4			34.3			254.5	1	1	252.2						35.8	┼────	+
T.O.N	mg/I N	13.2		10.20	0.26						01.0			20110	1	1	0.45						2.5.0	1	
Total S Solids	mg/l					1									1	1					1	1	1	1	
Uranium	µg/l					1	1								1	1	1.05			1	1		1	1	
Vanadium	µg/l																<0.5								
Zinc	µg/l				12.1												20.8								
Water Level m OD	5.64							0.34	0.34	0.84	0.64	#VALUE!	2.84	0.44	3.84	#VALUE!	0.64	0.34		0.64	1.14	0.74	0.04	2.34	0.14

Date

APPENDIX G

SURFACE WATER RESULTS

APPENDIX H

DISCHARGE TO SEWER

											lk Landfill S										
Monitoring Point:										DISCHAI	RGE TO SE										
Monitoring Point.												61									
												ULTS									
PARAMETERS	Units	44	00 May 11	11-Jul-11	00 4.00 44	04 Cam 44	02 0 -+ 11	07 Nov 44	42 Dec 44	16 Jan 13		ate	22 Ame 42	14 May 12	06 1.00 40	22 14 42	42 4.00 42	40 Can 42	00 0+4 12	OF New 42	10 Dec 12
Alkalinity	mg/I CaCO3	700	09-Way-11	11-Jui-11	06-Aug-11	21-Sep-11	03-001-11	07-NOV-11	12-Dec-11	10-Jan-12	00-rep-12	12-War-12	23-Apr-12	14-Way-12	06-Jun-12	23-Jui-12	13-Aug-12	10-Sep-12	08-Oct-12	05-NOV-12	10-Dec-12
Aluminium	µg/l	895.4																			
Ammonia	mg/IN	73.08	53.62	25.69	89.59	14.27	19.64	55.7	13.6	35.57		58.44	10.76		26.87		69.19	10.70	186.57	58.02	66.76
Antimony (µg/l)	ing/in	70.00	00.02	20.00	00.00	14.27	10.04	00.7	10.0	00.07		50.44	10.70		20.07		00.10	10.70	100.07	00.02	00.70
Arsenic (µg/I)												-			-						
Barium (µg/l)																					
Beryllium (µg/l)																					
B.O.D.	mg/I O2	87.6		101			10.7			153.4		27.9	66.6		27.8		202.3	257.3	5193	45.2	78.6
Boron	µg/l																				
Cadmium	µg/l	0.4											1								
Calcium	mg/l Ca	134.32																			
C.O.D.	mg/I O2	577		520			72			299		245	481		247		911	1250	7880	193	600
Chloride	mg/I CI	83	76	58	155	47	41	66	106	61											
Cobalt (µg/I)																					1
Chromium	µg/l	7.3																			1
Conductivity	µS/cm @ 25	2370	1174	1192	2790	614	1019	1922	912	1246											ı
Copper	µg/l	38.1																			ı
Depth	m																				
D.O.	% Saturation	nm		nm			53			nm											
Fluoride	mg/l																				
Iron	µg/l	9970.3																			
Lead	µg/l	32.5																			
Magnesium	mg/I Mg	41.96																			
Manganese	µg/l	721.9																			
Molybdenum (µg/l) Mercury		<0.05																			
Nickel	µg/l	<0.05																			
o-Phosphate	mg/I P	1.71																			
pH	ilig/i F	7.4		7			7.1			7.4		7.3	7.2		7.2		7.3	7.1	6.3	7.2	6.9
Potassium	mg/l	49.64		'			7.1			7.4		1.3	1.2		1.2		1.5	7.1	0.3	1.2	0.9
Sampling Depth	mg/I CN	43.04																			
Selenium (µg/l)	ing/i on				-							-			-						
Silver (µg/l)																					
Residue on Evaporation																					
Strontium (µg/l)																					
Sodium	mg/l	71.41																			
Suspended Solids (mg/l)	Ť																				
Sulphate	mg/I SO4	31.6		34.5			55.2					4.9	16		49.1		23.9	18.2	114.7	8.3	15.8
Thallium (µg/l)													206		27		139	705	576	297	228
Temp	°C	nm		18			18.8			9.4		nm	11.3		nm		nm	nm	13.3	nm	nm
Tin (µg/l)																					
Time Sampled		12:45	14:10	14.2	14:20	15:25	11:30	14:45	15:45	13:30		15:00	13:40		10:15		13:10	14:05	12:10	13:55	14:05
T.O.C.	mg/l																				
T.O.N	mg/I N	<0.08		<0.08			1.82			<0.08			L								
Uranium (µg/l)																					
Vanadium (µg/l)	6																				
Total S Solids	mg/l	660		298			26			560											
Zinc	µg/I	111.4																			,I
No sample																					

APPENDIX I

LANDFILL GAS MONITORING RESULTS

LANDFILI	L GAS MONITO	RING FOR	M	(Baselii	ne Ambier	nt[])		
Site Nam	e:			Site Address:				
DUNDAI	.K LANDFILL			NEWRY ROAD, DUNDALK				
Operator	•							
DUNDAL	.K TOWN COI	JNCIL		National Grid Reference: 1632-12				
Site Statu	s: Closed			Date: 19:01:2012 Time: 16.00 pm				
Instrume	nt used:	Norm	al Analytic	al Range: Date Next Calibration:				
GA2000			·	May 2012				
Monitori	ng Personnel:			Weather: Barometric pressure:				
aw	0			Drizzle		1017mb		
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	_			
G1	PIEZO		0	0.4	18.9	****		
 G2	PIEZO		0.1	0.4	18.6			
G3	PIEZO		0.1	0.0	18.6			
G4	PIEZO		0.3	0.4	18.9			
G5	PIEZO		0.0	0.0	18.4			
G6	PIEZO		0.4	0.5	18.6			
G7	PIEZO		0.1	0.4	18.6			
G8	PIEZO		0.3	0.5	18.6			
G9	PIEZO		0.1	0.4	18.6			
G10	PIEZO		0.1	0.4	18.6			
G16	PIEZO		0	0.3	18.6			
G17	PIEZO		0.1	0.4	19.1			
G20	PIEZO		0.3	0.4	18.6			
G21	PIEZO		0	0.4	18.4			
GM1	PIEZO		0.1	0.5	18.6			
GM2	PIEZO		0	0.5	18.8			
GM3	PIEZO		0	0.5	18.7			
GM4	PIEZO		0	0.4	18.7			
GM5	PIEZO		0	0.3	18.7			
GM6	PIEZO		0	0.4	18.6			
GM24	PIEZO		0	0.4	18.9			

LANDFILI	L GAS MONITO	RING FOR	M	(Baselir	1e Ambier	at_)				
Site Nam	e:		Site Address:							
DUNDAI	.K LANDFILL		NEWRY	ROAD, D	UNDAI	LK				
Operator	•		-							
DUNDAI	K TOWN CO		National Grid Reference: 1632-12							
Site Statu	s: Closed		Date : 19:01:2012 Time : 16.00pm							
Instrume	nt used:	Norm	al Analytic	al Range: Date Next Calibration:						
GA2000/H	FID				May 2012					
Monitori	ng Personnel:	I.		Weather		Baron	netric pressure:			
aw				Drizzle		1017n	ıb			
			R	esults		<u>.</u>				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments				
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)					
Pipe to flare monitor	PIEZO		29.4	10.0	3.5					
Landfill			29.4	10.8	3.0					
flare monitor			29	11	3					
mornitor			20		<u> </u>		······································			
The followin and FID an		ommercial	properties we	ere visited a	ind surveye	d using C	GA2000 infra-red gas			

No's 2, 3, 4, 5, ,8, 9, 10, 11, 12, 15, 18, 19, 20, Riverside Crescent

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

All levels detected using the FID where below 15 part per million (10,000ppm = 1% v/v).

Site Nam	e:		·····	Site Add	ress:			
DUNDAI	.K LANDFILL	,		NEWRY ROAD, DUNDALK				
Operator	;							
DUNDAL	.K TOWN CO	UNCIL		National	Grid Refe	erence: 1632-12		
Site Statu	s: Closed			Date : 16:02:2012 Time : 16.00 pm				
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calibration:		
GA2000				May 2012				
Monitori	ng Personnel:	I		Weather: Barometric pressure:				
aw				Drizzle				
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
G1	PIEZO		0	0.6	18.6			
G2	PIEZO		0.2	0.4	18.3			
G3	PIEZO		0	0.6	19.2			
G4	PIEZO		0.1	0.4	18.6			
G5	PIEZO		0	0.6	19.1			
G6	PIEZO		0.5	0.6	19.2			
G7	PIEZO		0	0.3	18.8			
G8	PIEZO		0.4	0.6	18.9			
G9	PIEZO		0.2	0.5	18.2			
G10	PIEZO		0	0.6	18.9			
G16	PIEZO		0	0.4	18.2			
G17	PIEZO		0	0.8	18.4			
G20	PIEZO		0.4	0.3	18.9			
G21	PIEZO		0	0.6	19.1			
GM1	PIEZO		0.1	0.4	18.1			
GM2	PIEZO		0	0.3	18.6			
GM3	PIEZO		0	0.4	18.5			
GM4	PIEZO		0	0.3	19.1			
GM5	PIEZO		0	0.2	19.1			
GM6	PIEZO		0	0.2	18.9			

LANDFILI	GAS MONITOR	ING FOR	M	(Baselin	ne Ambier	nt])			
Site Nam		Site Address:							
DUNDAL		NEWRY	NEWRY ROAD, DUNDALK						
Operator									
DUNDAL		National Grid Reference: 1632-12							
Site Status: Closed				Date : 16:02:2012 Time : 16.00pm					
Instrume	nt used:	Norm	al Analytic	al Range:	Range: Date Next Calibration:				
GA2000/F	FID				May 2012				
Monitori	ng Personnel:	I	·····	Weather	Weather: Barometric pressure				
aw				Drizzle		1026mb			
			R	esults					
Sample	Sample Borehole/ S		CH ₄	CO ₂	O ₂	Comments			
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)				
Pipe to	PIEZO								
flare monitor			30.1	11.1	4.2				
Landfill flare									
monitor			30	11	4				
and FID an	alyser.				·	d using (GA2000 infra-red gas		
No's 2, 3, 4, 5, ,8, 9, 10, 11, 12, 15, 18,19,20, Riverside Crescent									

.

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

All levels detected using the FID where below 15 part per million (10,000ppm = 1% v/v).

LANDFIL	L GAS MONITO	RING FOR	RM	(Baseli	ne Ambie	nt])		
Site Nam	e:			Site Address:				
DUNDAI	.K LANDFILL	,		NEWRY	ROAD, I	DUNDALK		
Operator	•			-				
DUNDAI	LK TOWN CO	UNCIL		National	Grid Ref	erence: 1632-12		
Site Statu	s: Closed			Date: 6:03:2012 Time: 16.00 pm				
Instrume	nt used:	Norm	al Analytic	al Range: Date Next Calibration:				
GA2000				May 2012				
Monitori	ng Personnel:	<u> </u>		Weather: Barometric pressure:				
aw	-			Drizzle		1018mb		
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
G1	PIEZO		0.3	0.5	19.1			
G2	PIEZO		0.2	0.2	18.4			
G3	PIEZO		0.2	0.5	18.8			
G4	PIEZO		0.2	0.5	18.2			
G5	PIEZO		0.1	0.6	18.6			
G6	PIEZO		0.8	1.1	18.8			
G7	PIEZO		0	0.2	19.4			
G8	PIEZO		0.2	0.4	19.1			
G9	PIEZO		0.2	0.4	19.1			
G10	PIEZO		0.2	0.4	18.2	Annon 1997 - E - E - E - E - E - E - E - E - E -		
G16	PIEZO		0	0.5	19.1			
G17	PIEZO		0.1	0.6	18.6			
G20	PIEZO		0.5	0.2	19.1			
G21	PIEZO		0.2	0.5	18.6			
GM1	PIEZO		0	0.6	19.1			
GM2	PIEZO		0	0.4	19.2			
GM3	PIEZO		0	0.4	18.6	·····		
GM4	PIEZO		0	0.3	8.8			
GM5	PIEZO		0	0.4	18.9			
GM6	PIEZO		0	0.3	19.1			
GM24	PIEZO		0	0.3	18.6			

LANDFILI	GAS MONITO	RING FOR	М	(Baseline Ambient)					
Site Name	e:			Site Add	ress:				
DUNDAL	K LANDFILL			NEWRY ROAD, DUNDALK					
Operator	•			-					
DUNDAL	K TOWN COU	JNCIL		National Grid Reference: 1632-12					
Site Statu	s: Closed		Date: 6:0	3:2012		Time : 16.00pm			
Instrument used: Normal Analytic			al Range:	Date Ne	xt Calil	oration:			
GA2000/F	FID				May 201	2			
Monitori	ng Personnel:	I		Weather	••	Baron	netric pressure:		
aw	aw					1018n	ıb		
			R	esults		J			
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)				
Pipe to	PIEZO								
flare monitor			28.6	9.6	4				
Landfill flare									
monitor			29	10	4				
			····						
					-				
The fallows									
and FID an	•	ommerciai	properties w	ere visited a	and surveye	u using (GA2000 infra-red gas		
No's 2, 3, 4	4, 5, ,8, 9, 10, 11	, 12, 15, 18	3,19,20, Rive	rside Cresc	ent				

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

All levels detected using the FID where below 15 part per million (10,000ppm = 1% v/v).

LANDFILI	L GAS MONITO	RING FOR	M	(Baselin	ne Ambier	nt[])		
Site Nam	e:			Site Address:				
DUNDAL	.K LANDFILL			NEWRY ROAD, DUNDALK				
Operator	•							
DUNDAL	K TOWN CO	JNCIL		National	Grid Refe	erence: 1632-12		
Site Statu	s: Closed			Date 11:0	05:2012	Time : 16.00 pm		
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calibration:		
GA2000					Septemb	per 2012		
Monitori	ng Personnel:			Weather	:	Barometric pressure:		
J.O'N				Drizzle		1022mb		
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
G1	PIEZO		0.1	0	19.0			
G2	PIEZO		0.1	0.1	18.7			
G3	PIEZO	****	0.1	0.1	19			
G4	PIEZO		0.1	0.1	18.9			
G5	PIEZO		0	0	18.9			
G6	PIEZO		0.1	0.1	18.8			
G7	PIEZO		0.1	0	19.9			
G8	PIEZO		0.2	0	19.7			
G9	PIEZO		0.1	7.5	9.6	······································		
G10	PIEZO		0.2	0	19.9			
G16	PIEZO		0.1	0	20.1			
G17	PIEZO		0.1	0	19.8			
G20	PIEZO		0.2	4.2	18.1			
G21	PIEZO		0	0.5	18.9			
GM1	PIEZO		0	0.4	18.9			
GM2	PIEZO		0	0.5	18.6			
GM3	PIEZO		0	0.3	18.8			
GM4	PIEZO		0	0.2	19.5			
GM5	PIEZO		0	0.3	18.9			
GM6	PIEZO		0	0.3	18.8			
GM24	PIEZO		0	0.4	18.5			

LANDFILI	L GAS MONITO	М	(Baseline Ambient)					
Site Nam	e:			Site Address:				
DUNDAL	.K LANDFILL	,		NEWRY ROAD, DUNDALK				
Operator	•							
DUNDAL	K TOWN CO	UNCIL		National	Grid Refe	erence:	1632-12	
Site Statu	s: Closed		Date: 11	:05:2012		Time : 16.00pm		
Instrume	nt used:	al Analytic	al Range:	Date Ne	xt Calik	pration:		
GA2000/I	7ID			Septemb	er 2012			
Monitorii	ng Personnel:			Weather	•••	Baron	ietric pressure:	
J.O'N				Drizzle		1022m	ıb	
Results								
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		30.9	20.5	4.3			
НИТ			30	19	3.2		.,	
The following	ha hauses and a	ommercial	nronerties we	ere visited a	and surveye	d using (GA2000 infra-red gas	

The following houses and commercial properties were visited and surveyed using GA2000 infra-red gas and FID analyser.

No's 2, 3, 4, 5, ,8, 9, 10, 11, 12, 15, 18, 19, 20, Riverside Crescent

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

All levels detected using the FID where below 15 part per million (10,000ppm = 1% v/v).

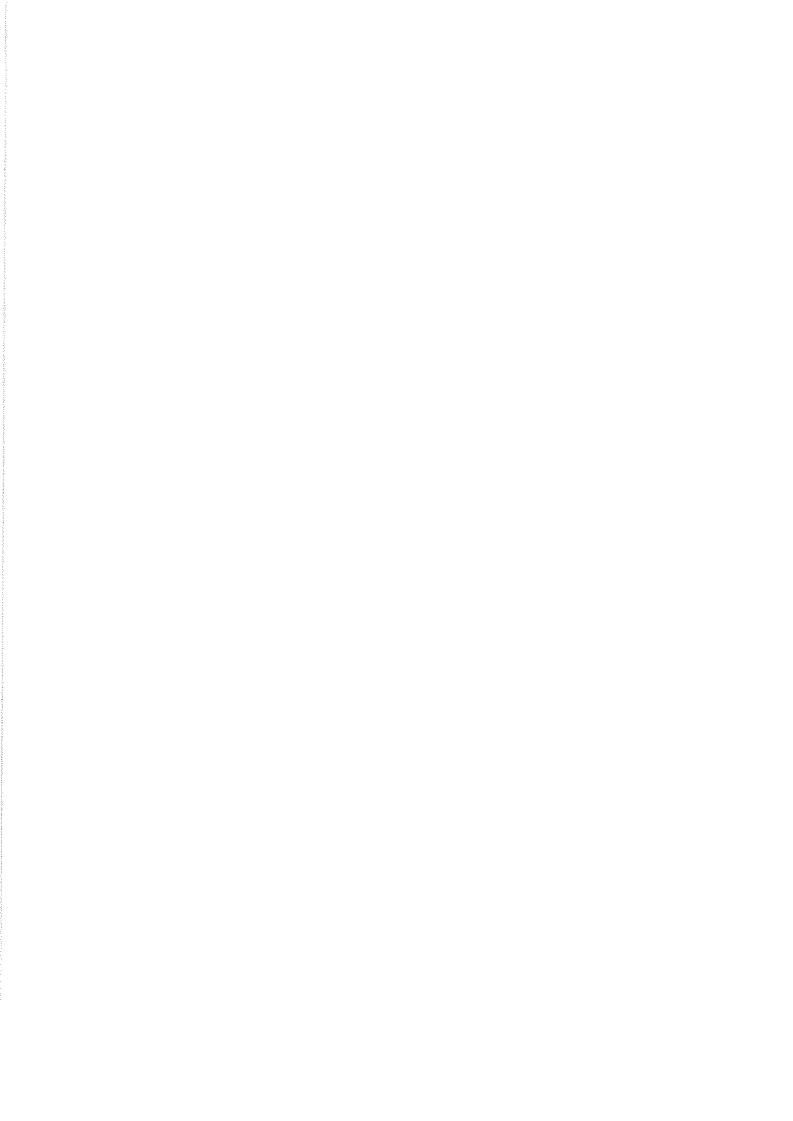
LANDFILI	L GAS MONITO	RING FOR	M	(Baselin	1e Ambiei	nt[])		
Site Nam	e:			Site Address:				
DUNDAL	.K LANDFILL			NEWRY ROAD, DUNDALK				
Operator	:							
DUNDAL	.K TOWN COU	JNCIL		National Grid Reference: 1632-12				
Site Statu	s: Closed			Date 22:	Date 22:06:2012 Time : 16.00 pm			
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calibration:		
GA2000					Septemb	per 2012		
Monitorii	ng Personnel:			Weather	:	Barometric pressure:		
J.O'N						1002mb		
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
G1	PIEZO		0.1	0.1	18.8			
G2	PIEZO		0.1	0.1	19.8			
G3	PIEZO		0.1	0.1	18.8			
G4	PIEZO		0.1	0.2	18.5			
G5	PIEZO		0.1	0.1	18.6			
G6	PIEZO		0.1	0.9	18.5			
G7	PIEZO		0.1	0.2	20.2			
G8	PIEZO		0.2	0.1	19.3			
G9	PIEZO		0.1	5.5	19.6			
G10	PIEZO		0.2	0.1	19.5			
G16	PIEZO		0.1	0.1	19.9			
G17	PIEZO		0.1	0.1	19.4			
G20	PIEZO		0.2	3.9	17.9			
G21	PIEZO		0.1	0.4	19.5			
GM1	PIEZO		0	0.4	18.9			
GM2	PIEZO		0.1	0.6	19.6			
GM3	PIEZO		0	0.5	17.8			
GM4	PIEZO		0	0.4	18.7			
GM5	PIEZO		0	0.5	19.2			
GM6	PIEZO		0	0.6	19.3			
GM24	PIEZO		0	0.5	17.7			

LANDFILI	L GAS MONITO	M	(Baseline Ambient)					
Site Name	e:			Site Address:				
DUNDAL	.K LANDFILL			NEWRY ROAD, DUNDALK				
Operator	:			-				
DUNDAL	K TOWN COU	JNCIL		National	Grid Refe	erence:	1632-12	
Site Statu	s: Closed		Date: 22	:06:2012		Time : 16.00pm		
Instrume	nt used:	al Analytic	al Range:	Date Ne	xt Calib	oration:		
GA2000/F	FID				Septemb	er 2012		
Monitorii	ng Personnel:			Weather	•;	Baron	netric pressure:	
J.O'N				Drizzle		1002m	ıb	
Results								
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
Pipe to flare monitor	PIEZO		28.9	19.8	8.1			
						····		
The followin	a hausaa and a	mmoroiol	nroportion w			d uning (A2000 infra-red das	

The following houses and commercial properties were visited and surveyed using GA2000 infra-red gas and FID analyser.

No's 2, 3, 4, 5, ,8, 9, 10, 11, 12, 15, 18, 19, 20, Riverside Crescent

No's 2, 3 & Newry Road


Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

All levels detected using the FID where below 15 part per million (10,000ppm = 1% v/v).

LANDFILI	GAS MONITO	RING FOR	М	(Baselir	1e Ambier	nt])			
Site Name	e:			Site Address:					
DUNDAL	K LANDFILL			NEWRY ROAD, DUNDALK					
Operator	•								
DUNDAL	K TOWN COU	JNCIL		National	National Grid Reference: 1632-12				
Site Statu	s: Closed			Date 11:0	04:2012	Time : 16.00 pm			
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	ext Calibration:			
GA2000					Septemb	per 2012			
Monitorii	ng Personnel:	l		Weather		Barometric pressure:			
J.O'N				Drizzle		997mb			
			R	esults					
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments			
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)				
G1	PIEZO		0.1	0	19.8				
G2	PIEZO		0.1	0.1	19.4				
G3	PIEZO		0.1	0	19.8				
G4	PIEZO		0.1	0	19.8				
G5	PIEZO		0.1	0	19.9				
G6	PIEZO		0.1	0.1	19.4				
G7	PIEZO		0.1	0	19.9				
G8	PIEZO		0.2	0	19.7				
G9	PIEZO		0.1	7.5	9.6				
G10	PIEZO		0.2	0	19.9				
G16	PIEZO		0.1	0	20.1				
G17	PIEZO		0.1	0	19.8	-,			
G20	PIEZO		0.2	5.7	12.9				
G21	PIEZO		0.1	0.6	19.3				
GM1	PIEZO		0	0.4	18.9				
GM2	PIEZO		0	0.6	18.6				
GM3	PIEZO		0	0.5	18.8				
GM4	PIEZO		0	0.4	19.1				
GM5	PIEZO		0	0.3	18.4				
GM6	PIEZO		0	0.4	18.5				
GM24	PIEZO		0	0.4	18.7				

LANDFILI	L GAS MONITO	RING FOR	M	(Baselin	ne Ambier	nt_)	
Site Name	e:			Site Address:			
DUNDAL	K LANDFILL			NEWRY ROAD, DUNDALK			
Operator	•						
DUNDAL	K TOWN CO		National	Grid Refe	erence:	1632-12	
Site Statu	s: Closed		Date: 11:	04:2012		Time : 16.00pm	
Instrume	nt used:	al Analytic	al Range:	Date Ne	ext Calik	oration:	
GA2000					Septemb	er 2012	
Monitori	ng Personnel:	I		Weather	•	Baron	netric pressure:
J.O'N				Drizzle		997mł	0
			R	esults		<u></u>	
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)		
Pipe to	PIEZO						
flare monitor			23.2	15	8.6		
Landfill							
flare monitor			25	18	3		
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		······					
						,	

The following houses and commercial properties were visited and surveyed using GA2000 infra-red gas and FID analyser.									
No's 2, 3, 4, 5, ,8, 9, 10, 11, 12, 15, 18,19,20, Riverside Crescent									
No's 2, 3 &	Newry Road								
Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.									
All levels detected using the FID where below 15 part per million (10,000ppm = $1\% v/v$ ).									
							·····		



LANDFIL	L GAS MONITO	RING FOR	M	(Baselin	ne Ambie	nt[])		
Site Nam	e:			Site Address:				
DUNDAI	LK LANDFILL			NEWRY ROAD, DUNDALK				
Operator	;							
DUNDAI	.K TOWN COU	JNCIL		National	Grid Refe	erence: 1632-12		
Site Statu	s: Closed			Date 11:	05:2012	<b>Time</b> : 16.00 pm		
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	ext Calibration:		
GA2000					Septemb	per 2012		
Monitori	ng Personnel:	<u> </u>		Weather	:	Barometric pressure:		
J.O'N	-			Drizzle		1022mb		
			R	esults		1		
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
G1	PIEZO		0.1	0	19.0			
G2	PIEZO		0.1	0.1	18.7			
G3	PIEZO		0.1	0.1	19			
G4	PIEZO		0.1	0.1	18.9	· · · · · · · · · · · · · · · · · · ·		
G5	PIEZO		0	0	18.9			
G6	PIEZO		0.1	0.1	18.8	· · · ·		
G7	PIEZO		0.1	0	19.9			
G8	PIEZO		0.2	0	19.7			
G9	PIEZO		0.1	7.5	9.6			
G10	PIEZO		0.2	0	19.9			
G16	PIEZO		0.1	0	20.1	· · ·		
G17	PIEZO		0.1	0	19.8	· · · · · ·		
G20	PIEZO		0.2	4.2	18.1			
G21	PIEZO		0	0.5	18.9			
GM1	PIEZO		0	0.4	18.9			
GM2	PIEZO		0	0.5	18.6			
GM3	PIEZO		0	0.3	18.8			
GM4	PIEZO		0	0.2	19.5			
GM5	PIEZO		0	0.3	18.9			
GM6	PIEZO		0	0.3	18.8			
GM24	PIEZO		0	0.4	18.5			

LANDFILI	. GAS MONITO	M	(Baselin	ie Ambier	ıt□)		
Site Name	e:		·	Site Add	ress:		
DUNDAL	.K LANDFILL			NEWRY ROAD, DUNDALK			
Operator	•						
DUNDAL	K TOWN CO		National	Grid Refe	erence:	1632-12	
Site Statu	s: Closed		Date: 11:	05:2012		<b>Time</b> : 16.00pm	
Instrume	nt used:	al Analytic	al Range:	Date Ne	xt Calib	oration:	
GA2000/F	FID				Septemb	er 2012	
Monitorii	ng Personnel:			Weather	:	Baron	netric pressure:
J.O'N				Drizzle		1022m	ıb
		·	R	esults			
Sample	Borehole/	Survey	CH ₄	CO ₂	<b>O</b> ₂		Comments
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)		
Pipe to flare monitor	PIEZO		30.9	20.5	4.3		
Landfill flare monitor			30	19	3.2		
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

The following houses and commercial properties were visited and surveyed using GA2000 infra-red gas and FID analyser.

No's 2, 3, 4, 5, ,8, 9, 10, 11, 12, 15, 18, 19, 20, Riverside Crescent

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

All levels detected using the FID where below 15 part per million (10,000ppm = 1% v/v).

LANDFILL GAS MONITORING FORM     (Baseline Ambient )										
Site Name	e:			Site Address:						
DUNDAL	K LANDFILL			NEWRY ROAD, DUNDALK						
Operator	:									
DUNDAL	K TOWN COU	JNCIL		National	Grid Refe	erence: 1632-12				
Site Statu	s: Closed			Date 11:0	07:2012	<b>Time</b> : 16:00 pm				
Instrume	nt used:	Norm	al Analytic:	al Range:	Date Ne	xt Calibration:				
GA2000					Septemb	per 2012				
Monitorin	ng Personnel:			Weather	:	Barometric pressure:				
J.O'N				Wet/dull		983mb				
		,	R	esults						
Sample	Borehole/	Survey	CH ₄	CO ₂	<b>O</b> ₂	Comments				
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)					
G1	PIEZO		0.1	0.1	19.5					
G2	PIEZO		0.1	0.1	19.5					
G3	PIEZO		0.1	0.1	19.9					
G4	PIEZO		0.1	0.1	18.6					
G5	PIEZO		0.1	0.1	19.5					
 G6	PIEZO	. <u> </u>	0.1	0.2	19.2					
G7	PIEZO		0.1	0.2	19.8					
G8	PIEZO		0.1	0.2	18.5					
G9	PIEZO		0.1	0.5	19.8					
G10	PIEZO		0.2	0.1	19.8					
G16	PIEZO		0.1	0.1	19.2					
G17	PIEZO		0.1	0.4	19.3	· · ·				
G20	PIEZO		0.1	0.6	18.9					
G21	PIEZO		0.1	0.4	19.2					
GM1	PIEZO		0.1	0.3	18.5					
GM2	PIEZO		0.1	0.6	18.9					
GM3	PIEZO		0.1	0.4	19.6					
GM4	PIEZO		0	0.4	19.0					
GM5	PIEZO		0	0.3	19,1					
GM6	PIEZO		0	0.4	19.7					
GM24	PIEZO		0	0.4	18.2					

LANDFILI	L GAS MONITO	M	(Baseline Ambient )						
Site Name	e:			Site Add	ress:				
DUNDAL	LK LANDFILL	,	· · · · · · · · · · · · · · · · · · ·	NEWRY	ROAD, D	UNDAI	LK		
Operator	4								
DUNDAL	LK TOWN COU	UNCIL		National Grid Reference: 1632-12					
Site Statu	is: Closed			Date 11:0	07:2012		<b>Time</b> : 16:00 pm		
Instrume	nt used:	Norm	al Analytic:	al Range:	Date Ne	xt Calik	oration:		
GA2000/F	FID				Septemb	er 2012			
Monitoriı	ng Personnel:	ł		Weather		Baron	netric pressure:		
J.O'N				Wet/dull		983mt	0		
Results									
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	. <u> </u>	Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)				
FLARE	PIEZO		22.9	15.6	9				
						·····			

LANDFILI	. GAS MONITOI	RING FOR	M	(Baselin	ne Ambier	nt_)	
Site Name	e:			Site Address:			
DUNDAL	K LANDFILL			NEWRY	ROAD, D	DUNDALK	
Operator	•						
DUNDAL	K TOWN COL	INCIL		National	Grid Refe	erence: 1632-12	
Site Statu	s: Closed			Date 22:0	08:2012	<b>Time</b> : 16:00 pm	
Instrume	nt used:	Norm	al Analytic:	al Range:	Date Ne	xt Calibration:	
GA2000					Septemb	er 2012	
Monitorin	ng Personnel:	1		Weather	•	Barometric pressure:	
J.O'N				Dull		1012mb	
			R	esults		<u></u>	
Sample	Borehole/	Survey	CH ₄	CO ₂	<b>O</b> ₂	Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)		
G1	PIEZO		0.1	0.2	18.5		
G2	PIEZO		0.1	0.1	19.5		
G3	PIEZO		0.1	0.2	19.1		
G4	PIEZO		0.1		20.1		
G5	PIEZO		0	0.2	18.9		
G6	PIEZO		0.1	0.4	19.2		
G7	PIEZO		0.1	0.2	19.8		
G8	PIEZO		0.2	0.2	19.5		
G9	PIEZO		0.1	0.6	19.8		
G10	PIEZO		0.1	0.1	19.4		
G16	PIEZO		0.1	0.1	19.9		
G17	PIEZO		0.1	0.2	18.9		
G20	PIEZO		0.2	0.4	17.8		
G21	PIEZO PIEZO		0.1	0.5	19.8		
GM1	PIEZO		0	0.5	18.7		
GM2	PIEZO		0	0.6	18.9		
GM3	PIEZO		0	0.4	19.5		
GM4	PIEZO		0	0.3	18.8		
GM5	PIEZO		0	0.4	19.1		
GM6	PIEZO		0	0.3	19.0		
GM24			0	0.5	18.7		

LANDFILL GAS MONITORI	M	(Baselin	e Ambier	nt_)			
Site Name:			Site Address:				
DUNDALK LANDFILL			NEWRY ROAD, DUNDALK				
Operator:	Operator:						
DUNDALK TOWN COUN		National	Grid Refe	erence:	1632-12		
Site Status: Closed			Date 22:0	08:2012		<b>Time</b> : 16:00 pm	
Instrument used:	Norm	al Analytic:	al Range:	Date Ne	xt Calib	oration:	
GA2000/FID				Septemb	er 2012		
Monitoring Personnel:	1		Weather	•	Baron	netric pressure:	
J.O'N			Dull		1012n	nb	
		R	esults				
	Survey	CH ₄	CO ₂	<b>O</b> ₂		Comments	
Station spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE PIEZO		32	10.9	9			
		······					
						·	
Sample Borehole/ S Station spike/other I Number	Survey Depth	CH4 (% v/v)	esults CO ₂ (% v/v)	(% v/v)	1012m		

LANDFILI	L GAS MONITO	RING FOR	M	(Baselin	ie Ambier	nt[])	
Site Name	e:			Site Address:			
DUNDAL	K LANDFILL			NEWRY	ROAD, E	DUNDALK	
Operator	•						
DUNDAL	.K TOWN COU	JNCIL		National	Grid Refe	erence: 1632-12	
Site Statu	s: Closed			Date 21:0	09:2012	<b>Time</b> : 16:00 pm	
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calibration:	
GA2000					Septemb	per 2012	
Monitorii	ng Personnel:			Weather	:	Barometric pressure:	
J.O'N	-			Cloud		1016mb	
			R	esults		L	
Sample	Borehole/	Survey	CH ₄	CO ₂	<b>O</b> ₂	Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)		
G1	PIEZO		0.1	0.1	18.9		
G2	PIEZO		0.1	0.1	19.6		
G3	PIEZO		0.1	0.1	19.0		
G4	PIEZO		0.1	0.1	19.5		
G5	PIEZO		0.1		19.8		
G6	PIEZO		0.1	0.1	19.3		
G7	PIEZO		0.1	0	19.5		
G8	PIEZO		0.2	0.1	19.3		
G9	PIEZO		0,1	0.4	19.6		
G10	PIEZO		0.2	0.1	19,9		
G16	PIEZO		0.1	0	20.1		
G17	PIEZO		0.1	0	19.9		
G20	PIEZO		0.2	0.4	19.5		
G21	PIEZO		0.1	0.4	19.8		
GM1	PIEZO		0	0.4	18.7		
GM2	PIEZO		0	0.4	18.9		
GM3	PIEZO		0	0.5	18.5		
GM4	PIEZO		0	0.6	19.6		
GM5	PIEZO		0	0.3	18.4		
GM6	PIEZO		0	0.4	18.4		
GM24	PIEZO		0	0.4	19.0		

LANDFILI	GAS MONITO	RING FOR	M	(Baselin	ie Ambier	nt[])		
Site Name	e:			Site Address:				
DUNDAL	K LANDFILL			NEWRY ROAD, DUNDALK				
Operator	•							
DUNDAL	K TOWN COU	UNCIL		National	Grid Refe	erence: 1	632-12	
Site Statu	s: Closed			Date 21:0	09:2012		<b>Time</b> : 16:00 pm	
Instrume	nt used:	Norm	al Analytic:	al Range:	Date Ne	xt Calib	ration:	
GA2000								
Monitorii	ng Personnel:	J		Weather	•	Barom	etric pressure:	
J.O'N				Cloud		1016m	b	
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	<b>O</b> ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		35	9	3			
			I	I	<u>I</u>			

_____

LANDFILI	GAS MONITO	RING FOR	M	(Baselin	e Ambie	nt])	
Site Nam			Site Address:				
DUNDAL	K LANDFILL			NEWRY ROAD, DUNDALK			
Operator	•						
DUNDAL	.K TOWN COU	JNCIL		National	Grid Ref	<b>erence</b> : 1632-12	
Site Statu	s: Closed		· · · · ·	<b>Date</b> 13-1	2-12	<b>Time</b> : 16:00 pm	
Instrume	nt used:	Norm	al Analytic	al Range:	Date No	ext Calibration:	
GA2000					August	2013	
Monitorii	ng Personnel:	<b>L</b>		Weather		Barometric pressure:	
J.O'N				Dry/Dam	р	1002mb	
			R	esults		, , , , , , , , , , , , , , , , ,	
Sample	Borehole/	Survey	CH ₄	CO ₂	<b>O</b> ₂	Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)		
G1	PIEZO		0.1	0.4	19.4		
G2	PIEZO		0.1	0.4	18.7		
G3	PIEZO		0	0.5	18.7		
G4	PIEZO		0.2		19.2		
G5	PIEZO		0		18.8		
G6	PIEZO		0.2	0.5	19.9		
G7	PIEZO		0.1	0.2	18.9		
G8	PIEZO		0.1	0.5	19.8		
G9	PIEZO		0.2	0.2	19.0		
G10	PIEZO		0.1	0.4	18.5		
G16	PIEZO		0.1	0.2	19.8		
G17	PIEZO		0.1	0.5	19.7		
G20	PIEZO		0.2	0.4	19.6		
G21	PIEZO		0.1	0.4	19.6		
GM1	PIEZO		0.1		19.7		
GM2	PIEZO		0		19.2		
GM3	PIEZO		0.1		19.3		
GM4	PIEZO		0	0.3	19.4		
GM5	PIEZO		0	0.4	19.2		
GM6	PIEZO		0.1	0.2	18.5		
GM24	PIEZO		0.1	0.3	19.4		

LANDFILI	L GAS MONITO	RING FOR	M	(Baselin	1e Ambier	nt_)		
Site Name	e:			Site Address:				
DUNDAL	.K LANDFILL	,		NEWRY ROAD, DUNDALK				
Operator	•							
DUNDAL	LK TOWN CO		National	Grid Refe	erence:	1632-12		
Site Statu	s: Closed			Date 13:	12:2012		<b>Time</b> : 16:00 pm	
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calil	oration:	
GA2000					August 2	2013		
Monitori	ng Personnel:			Weather	•	Baron	netric pressure:	
J.O'N				Dry/Dam	p	1002n	nb	
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	<b>O</b> ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		27	8	2			
				I1	. <u></u> I.			

LANDFILI	GAS MONITO	RING FOR	M	(Baselir	ne Ambier	nt_)	
Site Name	e:			Site Address:			
DUNDAL	.K LANDFILL			NEWRY ROAD, DUNDALK			
Operator	•						
DUNDAL	.K TOWN COU	JNCIL		National	Grid Refe	erence: 1632-12	
Site Statu	s: Closed			Date 24-	10-12	<b>Time</b> : 16:00 pm	
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calibration:	
GA2000					August 2	2013	
Monitorii	ng Personnel:	I		Weather	:	Barometric pressure:	
J.O'N				Cloud		1005mb	
			R	esults		a)	
Sample	Borehole/	Survey	CH ₄	CO ₂	<b>O</b> ₂	Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)		
G1	PIEZO		0.1	0.2	18.9		
G2	PIEZO		0.1	0.4	18.6		
G3	PIEZO		0.1	0.4	18.7		
G4	PIEZO		0.2		19.4		
G5	PIEZO		0.1	0.4	19.6		
G6	PIEZO		0.2	0.2	19.4		
G7	PIEZO		0.1	0.1	19.4		
G8	PIEZO		0.2	0.1	19.0		
G9	PIEZO		0.2	0.1	19.5		
G10	PIEZO		0.3	0.4	19.0		
G16	PIEZO		0.1	0.2	19.4		
G17	PIEZO		0.1	0.4	19.5		
G20	PIEZO		0.3	0.5	19.5		
G21	PIEZO		0.1		19.2		
GM1	PIEZO		0	0.2	18.9		
GM2	PIEZO		0	0.2	18.8		
GM3	PIEZO		0		18.5		
GM4	PIEZO		0	0.1	19.0		
GM5	PIEZO		0	0.3	18.5		
GM6	PIEZO		0	0.3	18.9		
GM24	PIEZO		0	0.4	19.1		

LANDFILI	L GAS MONITO	RING FOR	M	(Baseline Ambient )			
Site Nam	e:			Site Address:			
DUNDAL	.K LANDFILL	,		NEWRY ROAD, DUNDALK			
Operator	:						
DUNDALK TOWN COUNCIL				National	Grid Refe	erence: 1632-12	
Site Statu	s: Closed			Date 24-	10-12	<b>Time</b> : 16:00 pm	
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	ext Calibration:	
GA2000					August 2	2013	
Monitori	ng Personnel:			Weather	•	Barometric pressure:	
J.O'N				Cloud		1005mb	
			R	esults			
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)		
FLARE	PIEZO		31	7	3		
			······································			· · · · · · · · · · · · · · · · · · · ·	
		·					

LANDFILI	L GAS MONITO	RING FOR	М	(Baselin	e Ambie	nt])	
Site Nam	e:			Site Add	ress:		
DUNDAL	.K LANDFILL			NEWRY ROAD, DUNDALK			
Operator	•	······					
DUNDAL	.K TOWN COU	JNCIL		National	Grid Ref	erence: 1632-12	
Site Statu	s: Closed			<b>Date</b> 27-1	1-12	<b>Time</b> : 16:00 pm	
Instrume	nt used:	Norm	al Analytic:	al Range:	Date Ne	ext Calibration:	
GA2000			-	_	August	2013	
Monitorii	ng Personnel:			Weather	 :	Barometric pressure:	
J.O'N				Cloud		1004mb	
			R	esults			
Sample	Borehole/	Survey	CH ₄	CO ₂	<b>O</b> ₂	Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)		
G1	PIEZO	*****	0.1	0.4	19.0		
 G2	PIEZO		0.1	0.5	18.9		
G3	PIEZO		0.1	0.4	19.2	· · · · · · · · · · · · · · · · · · ·	
G4	PIEZO		0.2		19.5		
G5	PIEZO		0.1		18.9		
G6	PIEZO		0.2	0.4	19.5		
G7	PIEZO		0.1	0.1	19.0		
G8	PIEZO		0.2	0.2	18.8		
G9	PIEZO		0.3	0.2	19.7		
G10	PIEZO		0.2	0.3	19.4		
G16	PIEZO		0.1	0.1	19.6		
G17	PIEZO		0.1	0.4	19.5		
G20	PIEZO		0.1	0.4	19.7		
G21	PIEZO		0.1	0.3	19.5		
GM1	PIEZO		0.1	0.4	18.7		
GM2	PIEZO		0	0.2	18.7		
GM3	PIEZO		0.1	0.4	18.3		
GM4	PIEZO		0	0.2	18.7		
GM5	PIEZO		0	0.2	19.5		
GM6	PIEZO		0	0.4	19.8		
GM24	PIEZO		0	0.5	19.9		

LANDFILI	L GAS MONITO	RING FOR	M	(Baselin	ne Ambier	nt_)	
Site Nam	e:			Site Address:			
DUNDAI	LK LANDFILL		NEWRY	ROAD, D	UNDAI	LK	
Operator	:			-			
DUNDAL	LK TOWN CO		National	Grid Refe	erence:	1632-12	
Site Statu	s: Closed		Date 27-	11-12		<b>Time</b> : 16:00 pm	
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calib	pration:
GA2000					August 2	2013	
Monitori	ng Personnel:	I		Weather	•:	Baron	netric pressure:
J.O'N				Cloud		1004n	ıb
			R	esults			
Sample	Borehole/	Survey	CH ₄	CO ₂	<b>O</b> ₂		Comments
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)		
FLARE	PIEZO		28	9	3		
				· · · · · · · · · · · · · · · · · · ·			

# APPENDIX J

# COMPOSTING MONITORING AND BIOFILTER RESULTS





BORD NA MÓNA HORTICULTURE LIMITED

ANALYSIS OF COMPOSTED GREEN MATERIAL FROM V&W RECYCLING

**REPORT NO:** 

GW 120405

**ATTENTION:** 

V&W RECYCLING, NEWRY ROAD, DUNDALK, CO. LOUTH

PREPARED BY:

Sarah Lombard Scientist, Bord na Móna ltd.

DATE:

24 May 2012

#### 1 Introduction

1 sample was received from V&W Recycling on the 25th of April 2012. No details of this sample are known; it was received in good condition and labelled as follows:

BnM lab code	Client code
GW120405	Not known

The sample was analysed as requested by the client.

#### 2 Results of Analysis

# Compost Testing and Analysis Service

Report ref: GW 120405

Sample reference:	GW 120405
Sample matrix:	not known

**Maturity Tests** 

Specific Oxygen Uptake Rate

Sample no	mgO2/gdm/h
GW 120405	2.3

#### Self Heating

Sample no	Self Heating (°C)	
GW120405	20	

#### Moisture content

Sample no	[%] Moisture (w/w)
GW 120405	58.1

#### Extractable nutrients (CAT soluble)

Sample no	pH	EC uS.cm ⁻¹	NH ₄ -N mg.L ⁻¹	NO ₃ -N mg.L ⁻¹	PO ₄ -P mg.L ⁻¹	K mg.L ⁻¹
GW 120405	7.04	1384	< 0.01	337	26	1150

#### Total Plant Nutrients and Organic Matter

Sample no	% Organic Matter	%C	%N	[≈] %P	%K	
GW 120405	57.1	31.7	2.1	0.3	1.0	

Bord na Móna Ltd.

V & W Recycling

Compost Analysis Service

3

#### Particle Size Analysis (Dry Wt. Basis)

<1mm %	1-2mm %	2-4mm %	4-8mm %	8-16.5mm %	16.5- 31.5mm %	>31.5 mm %
5	2	2	89	2	< 0.01	< 0.01

#### Contaminants (Dry Wt. Basis)

Sieve size	Stones %	Metals %	Plastic %	Glass %	Other %
<1mm	n/d	n/d	n/đ	n/d	n/d
1-2mm	n/d	n/d	n/d	n/d	n/d
2-4mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-8mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
8-16mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16-31.5mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>31.5mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

#### Heavy Metals (Dry Wt. Basis)

Sample no	Cd	Cr	Cu	Hg	Ni	Pb	Zn
	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹
GW 120405	0.27	13.9	23.6	0.05	10	22.4	90.9

#### **Microbiological Analysis**

E. Coli	Salmonella
(cfu/g)	(sp/25g)
<10	Not Detected



Bord na Móna 🛹

BORD NA MÓNA HORTICULTURE LIMITED

ANALYSIS OF COMPOSTED GREEN MATERIAL FROM V&W RECYCLING

**REPORT NO:** 

GW 120610

**ATTENTION:** 

V&W RECYCLING, NEWRY ROAD, DUNDALK, CO. LOUTH

PREPARED BY:

Sarah Lombard Scientist, Bord na Móna ltd.

DATE:

11 July 2012

V & W Recycling

#### 1 Introduction

1 sample was received from V&W Recycling on the 25th of June 2012. No details of this sample are known; it was received in good condition and labelled as follows:

BnM lab code	Client code
GW120610	Not known

The sample was analysed as requested by the client.

#### 2 Results of Analysis

# **Compost Testing and Analysis Service**

Report ref: GW 120610

Sample reference:	GW 120610
Sample matrix:	not known

**Maturity Tests** 

Specific Oxygen Uptake Rate

Sample no	mgO2/gdm/h	
GW 120610	14.0	

Self Heating

Sample no	Self Heating (°C)
GW120610	20

Moisture content

Sample no	[%] Moisture (w/w)
GW 120610	55.5

Extractable nutrients (CAT soluble)

Sample no	pH	EC µS.cm ⁻¹	NH ₄ -N mg.L ⁻¹	NO ₃ -N mg.L ⁻¹	PO₄-P mg.L ⁻¹	K mg.L ⁻¹
GW 120610	6.78	2260	3	493	22	1690

#### **Total Plant Nutrients and Organic Matter**

Sample no	% Organic	%C	%N	%P	%K	
GW 120610	Matter 56.6	31.4	2.5	0.4	1.3	
	r. 1		100 100 100 100 100 100 100 100 100 100			2

Bord na Móna Ltd.

V & W Recycling

3

## Particle Size Analysis (Dry Wt. Basis)

<1mm %	1-2mm %	2-4mm %	4-8mm %	8-16.5mm	16.5- 31.5mm %	>31.5
55	18	15	10	2	<0.01	mm %
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		.0	2	-0.01	< 0.01

#### Contaminants (Dry Wt. Basis)

Sieve size	Stones %	Metals %	Plastic %	Glass %	Other %
<1mm	n/d	n/d	n/d	n/d	n/d
1-2mm	n/d	n/d	n/d	n/d	n/d
2-4mm	1.02	< 0.01	< 0.01	< 0.01	< 0.01
4-8mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
8-16mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16-31.5mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>31.5mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

#### Heavy Metals (Dry Wt. Basis)

Cd mg.kg ⁻¹	Cr mg.kg ⁻¹	Cu mg.kg ⁻¹	Hg mg.kg ⁻¹	Ni mg.kg ⁻¹	Pb mg.kg ⁻¹	Zn mg.kg ⁻¹
0.5	39	40.3		20.00 10		168
	mg.kg ⁻¹	mg.kg ⁻¹ mg.kg ⁻¹	mg.kg ⁻¹ mg.kg ⁻¹ mg.kg ⁻¹	mg.kg ⁻¹ mg.kg ⁻¹ mg.kg ⁻¹ mg.kg ⁻¹	mg.kg ⁻¹ mg.kg ⁻¹ mg.kg ⁻¹ mg.kg ⁻¹ mg.kg ⁻¹	mg.kg ⁻¹ mg.kg ⁻¹ mg.kg ⁻¹ mg.kg ⁻¹ mg.kg ⁻¹ mg.kg ⁻¹

#### Microbiological Analysis

E. Coti	Saimonella
(cfu/g)	(sp/25g)
<10	Not Detected

Bord na Móna Ltd.



BORD NA MÓNA HORTICULTURE LIMITED

ANALYSIS OF COMPOSTED GREEN MATERIAL FROM V&W RECYCLING

**REPORT NO:** 

GW 121009

**ATTENTION:** 

V&W RECYCLING, NEWRY ROAD, DUNDALK, CO. LOUTH

**PREPARED BY:** 

Sarah Lombard Scientist, Bord na Móna ltd.

DATE:

06 November 2012

V & W Recycling

Compost Analysis Service

#### 1 Introduction

1 sample was received from V&W Recycling on the 04th of October 2012. No details of this sample are known; it was received in good condition and labelled as follows:

BnM lab code	Client code
GW121009	Not known

The sample was analysed as requested by the client.

#### 2 Results of Analysis

٢

			Repor	t ref: GW 1210
Sample reference Sample mat				
Maturity Tes	ts			
Oxygen Upta	ike Rate			
Sample no	Test Method	OUR Stability results (mmolO ₂ /kg OS/h)		
GW 121009	PrEN 16087-1	11.5	_	
Self Heating Sample no	Maximum Temperature reac	had		
	(ambient 20°C)			
GW 121009	20			
511 121007	20			
Plant Nutrier			_	
		EC μS.cm ⁻¹	-	
Plant Nutrier	nt	μS.cm ⁻¹ 1159	-	
Plant Nutrier Sample no	nt pH	µS.cm ⁻¹	-	
Plant Nutrier Sample no GW 121009	nt pH 7.39 I.S. EN13037	μS.cm ⁻¹ 1159	-	
Plant Nutrier Sample no GW 121009 Fest Method	nt pH 7.39 1.S. EN13037 e Nutrients NH4-N	μS.cm ⁻¹ 1159	<b>PO</b> ₄ <b>-P</b> mg.L ⁻¹	K mg.L ⁻¹
Plant Nutrier Sample no GW 121009 Test Method CAT Solubl Sample no	nt <b>pH</b> 7.39 I.S. EN13037 e Nutrients	μS.cm ⁻¹ 1159 I.S. EN13038	PO ₄ -P mg.L ⁻¹ 29	<b>K</b> mg.L ⁻¹ 1250
Plant Nutrier Sample no GW 121009 Test Method CAT Solubl Sample no GW121009	nt <b>pH</b> 7.39 I.S. EN13037 e Nutrients <b>NH₄-N</b> mg.L ⁻¹	μS.cm ⁻¹ 1159 I.S. EN13038 <b>NO₃-N</b> mg.L ⁻¹		mg.L ⁻¹
Plant Nutrier Sample no GW 121009 Test Method CAT Solubl Sample no GW121009 Test Method	nt <b>pH</b> 7.39 I.S. EN13037 e Nutrients <b>NH4-N</b> mg.L ⁻¹ 9	μS.cm ⁻¹ 1159 I.S. EN13038 <b>NO₃-N</b> mg.L ⁻¹ 252 I.S. EN 13652	29 I.S. EN 13652	mg.L ⁻¹ 1250
Plant Nutrier Sample no GW 121009 Test Method CAT Solubl Sample no GW121009 Test Method	nt <b>pH</b> 7.39 I.S. EN13037 e Nutrients <b>NH₄-N</b> mg.L ⁻¹ 9 I.S. EN 13652 Nutrients and Carb	μS.cm ⁻¹ 1159 I.S. EN13038 NO ₃ -N mg.L ⁻¹ 252 I.S. EN 13652 on Content (Dry ⁻¹ )	29 I.S. EN 13652 Wt. Basis)	mg.L ⁻¹ 1250 I.S. EN 13652
Plant Nutrier Sample no GW 121009 Test Method CAT Solubl Sample no GW121009 Test Method	nt 7.39 1.S. EN13037 e Nutrients NH4-N mg.L ⁻¹ 9 1.S. EN 13652 Nutrients and Carb N	μS.cm ⁻¹ 1159 I.S. EN13038 NO ₃ -N mg.L ⁻¹ 252 I.S. EN 13652 on Content (Dry P	29 I.S. EN 13652 Wt. Basis) K	mg.L ⁻¹ 1250 I.S. EN 13652 C

Bord na Móna Ltd.

V & W Recycling

Compost Analysis Service

3

Heavy	y M	etals	(Dr	y W	t. E	Basis	)
-------	-----	-------	-----	-----	------	-------	---

Sample no	Cd mg.kg ⁻¹	Cr mg.kg ⁻¹	Cu mg.kg ⁻¹	Hg mg.kg ⁻¹
GW121009	0.58	18.7	39.3	0.14
Test Method	I.S. EN 13650	I.S. EN 13650	I.S. EN 13650	ISO 16772

Sample no	Ni	Pb	Zn
	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹
GW121009	17.3	40.1	160
Test Method	I.S. EN 13650	I.S. EN 13650	I.S. EN 13650
		the second second second second second second second second second second second second second second second s	The second second second second second second second second second second second second second second second s

Physical Ana	lysis		
Sample no	H ₂ 0 %	Dry Matter %	Organic Matter %
GW121009	55.5	44.5	56
Test Method	I.S. EN 13041	I.S. EN 13041	I.S. EN 13039

Particle Size Analysis (Dry Wt. Basis)

<1mm %	1-2mm %	2-4mm %	4-8mm %	8-16.5mm %	16.5- 31.5mm %	>31.5 mm %
34	24	19	19	4	< 0.01	< 0.01

#### Contaminants (Dry Wt. Basis)

Sieve size	Stones %	Metals %	Plastic %	Glass %	Other %
<1mm	n/d	n/d	n/d	n/d	n/d
1-2mm	n/d	n/d	n/d	n/d	n/d
2-4mm	0.78	< 0.01	< 0.01	< 0.01	< 0.01
4-8mm	1.72	< 0.01	< 0.01	< 0.01	< 0.01
8-16mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16-31.5mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>31.5mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

#### Microbiological Analysis

Sample no	E. coli (cfu/g)	Salmonella (spp/25g)
GW121009	300	Not Detected
Test Method	ISO 11866-2	I.S. EN ISO 6579

Bord na Móna Ltd.



ANALYSIS OF COMPOSTED GREEN MATERIAL FROM V&W RECYCLING

**REPORT NO:** 

12-33867

**ATTENTION:** 

V&W RECYCLING, NEWRY ROAD, DUNDALK, CO. LOUTH

PREPARED BY:

Aoife Doyle Environmental Scientist, ANUA

DATE:

29 January 2013 (ref 2012)

Compost Analysis Service

2

#### V & W Recycling

#### 1 Introduction

1 sample was received from V&W Recycling on the 29th of November 2012. No details of this sample are known; it was received in good condition and labelled as follows:

ANUA lab code	Client code
343753	Not known

The sample was analysed as requested by the client.

#### 2 Results of Analysis

	Compost	Testing an	d Analysis	Service
		_	Repor	rt ref: 12-33867
Sample rofe	rence: 343753			
Sample refe Sample mat		wn		
Sample mat	HA. HOUKHOW	WII -		
Maturity Tes	sts			
Oxygen Upta				
Sample no	Test Method	OUR Stability results (mmolO ₂ /kg		
242752	D-EN 16097 1	OS/h)	5	
343753	PrEN 16087-1	4.4		
Self Heating				
Sample no	Maximum			
	Temperature reac			
2 (27.52	(ambient 20°C)			
343753	16			
Plant Nutrier	nt			
Sample no	pH	EC μS.cm ⁻¹		
343753	7.6	1475		
Test Method	I.S. EN13037	I.S. EN13038		
CAT Solubl	e Nutrients			
Sample no	NH ₄ -N mg.L ⁻¹	NO ₃ -N mg.L ⁻¹	<b>PO₄-P</b> mg.L ⁻¹	K mg.L ⁻¹
GW121009	14	443	46	1630
Test Method	I.S. EN 13652	I.S. EN 13652	I.S. EN 13652	I.S. EN 13652
Total Plant N	Nutrients (Dry Wt.	Basis)	5	
Sample no	N	Р	K	.5
	%	%	%	_
343753	2.1	0.4	1.0	-
Test Method	I.S.EN 13554-1	I.S. EN 13650	I.S. EN 13650	

ANUA.

#### Compost Analysis Service

/ & W Recycling				Comp
Microbiologi	cal Analysis			
Sample no	E. coli (cfu/g)	Salmonella (spp/25g)		
343753	<10	Not detected		
Test Method	ISO 11866-2	I.S. EN ISO 6579		
Heavy Metal	s (Dry Wt. Basis)			
Sample no	Cd mg.kg ⁻¹	Cr mg.kg ⁻¹	Cu mg.kg ⁻¹	Hg mg_kg ⁻¹
GW121009	.051	59.6	47.5	0.08
Test Method	I.S. EN 13650	I.S. EN 13650	I.S. EN 13650	ISO 16772
Sample no	Ni mg.kg ⁻¹	Pb mg.kg ⁻¹	Zn_ mg.kg ⁻¹	*
GW121009	58.6	39.2	161	
Test Method	I.S. EN 13650	I.S. EN 13650	I.S. EN 13650	
Physical Ana	lysis			
Sample no	H20 %	Dry Matter %	Organic Matter %	
GW121009	48	52.05	47.26	
Test Method	I.S. EN 13041	I.S. EN 13041	I.S. EN 13039	

				8-16.5mm	16.5-	>31.5
<1mm %	1-2mm %	2-4mm %	4-8mm %	%	31.5mm %	mm %
50	18	16	14	2	< 0.01	< 0.01

#### Contaminants (Dry Wt. Basis)

1

Sieve size	Stones	Metals	Plastic	Glass	Other
	%	%	%	%	%
<1mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1-2mm	1.74	< 0.01	< 0.01	< 0.01	< 0.01
2-4mm	2.17	< 0.01	< 0.01	< 0.01	< 0.01
4-8mm	3.70	< 0.01	0.05	< 0.01	< 0.01
8-16mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16-31.5mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>31.5mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

#### Cress Germination Test

Sample no	Sample Diluted with 50% peat, to bring to correct	% Germination compared to control*	Root Index Compared to control (%)	MLVI compared to control (%)
343753	EC	100	64.2	65.6

* <80% = fail (method based on pr EN 16086-2)

3

# **SFitz**scientific

#### Monitoring and Testing Services

A copy of this certificate is available on www.fitzsci.ie

Ref 2

Unit 35. Boyne Business Park, Drogheda, Co. Louth Ireland +353 41 9845440 Tel: +353 41 9846171 Fax: Web: www.fitzsci.ie email info@fitzsci.ie

		Lab Report Ref. No.	1143/014/01
Customer		Date of Receipt	31/07/2012
	V & W Recycling	Sampled On	31/07/2012
	Newry Rd	Date Testing Commenced	31/07/2012
	Dundalk	Received or Collected	Delivered by Customer
	Co. Louth	Condition on Receipt	Acceptable
Customer PO		Date of Report	28/08/2012
Customer Ref	Biofilter 1	Sample Type	Other

# CERTIFICATE OF ANALYSIS

#### Units Result Acc. **Analytical Technique** SOP **Test Parameter** 71.32 % 0 Drying @ 104 C % Moisture Content 163.26 mg/Kg as N Colorimetry 114 Ammonia (Solid) pH Units 7.4 Electrometry 110 pH (Solid) cfu/q 194x10⁸ Incubation @ 22C/ 72H 141 TVC @ 22°C (Solid) cfu/q Incubation @ 37C/ 48H 15x10⁸ 141 TVC @ 37°C (Solid)

Signed : <u>A Hoverna</u> Aoife Harmon - Technical Supervisor

Acc. : Accredited Parameters by ISO 17025:2005

PVL - Parametric Value Limit as per EU Drinking water Regulations (SI 278 2007)

All organic results are analysed as received and all results are corrected for dry weight at 104 C

Results shall not be reproduced, except in full, without the approval of Fitz Scientific

Results contained in this report relate only to the samples tested

**The analytical result for this parameter may not be reflective of the concentration present at the time of sampling. The maximum recommended preservation time for this parameter has been exceeded. Page 1 of 1

Date : 28/08/2012

# **SFitz**scientific

#### Monitoring and Testing Services

A copy of this certificate is available on www.fitzsci.ie

Customer		Lab Report Ref. No.	1143/014/02	
	V & W Recycling	Date of Receipt	31/07/2012	
		Sampled On	31/07/2012	
	Newry Rd	Date Testing Commenced	31/07/2012	
	Dundalk	Received or Collected	Delivered by Customer	
Customer PO	Co. Louth	Condition on Receipt	Acceptable	
		Date of Report	28/08/2012	
Customer Ref	Biofilter 2	Sample Type	Other	
Ref 2				

# **CERTIFICATE OF ANALYSIS**

SOP	Analytical Technique	Result	Unite	Acc	
0	Drying @ 104 C			ALL.	
114	Colorimetry	-	and the second second second second second second second second second second second second second second second		
110	Electrometry				
141	Incubation @ 22C/ 72H		· 25.375		
141	Incubation @ 37C/ 48H				
	0 114 110 141	0 Drying @ 104 C 114 Colorimetry 110 Electrometry 141 Incubation @ 22C/ 72H	0         Drying @ 104 C         68.38           114         Colorimetry         11.93           110         Electrometry         7.2           141         Incubation @ 22C/ 72H         80 ⁶	0Drying @ 104 C68.38%114Colorimetry11.93mg/Kg as N110Electrometry7.2pH Units141Incubation @ 22C/72H80°cfu/g	0Drying @ 104 C68.38%114Colorimetry11.93mg/Kg as N110Electrometry7.2pH Units141Incubation @ 22C/72H80°cfu/g141Incubation @ 37C/ 48H80°cfu/g

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 28/08/2012

Acc. : Accredited Parameters by ISO 17025:2005 PVL - Parametric Value Limit as per EU Drinking water Regulations (SI 278 2007) All organic results are analysed as received and all results are corrected for dry weight at 104 C Results shall not be reproduced, except in full, without the approval of Fitz Scientific Results contained in this report relate only to the samples tested **The analytical result for this parameter may not be reflective of the concentration present at the time of sampling. The maximum recommended preservation time for this parameter has been exceeded.

Page 1 of 1

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie



#### Monitoring and Testing Services

Manager

Newry Rd

Dundalk

Co. Louth

V & W Recycling

Biofilter 1 (December 2012)

A copy of this certificate is available on www.fitzsci.ie

Drogheda, Co. Louth Ireland +353 41 9845440 Tel: +353 41 9846171 Fax: www.fitzsci.ie Web: info@fitzsci.ie email:

Boyne Business Park,

Unit 35,

Lab Report Ref. No. Date of Receipt Sampled On Date Testing Commenced Received or Collected Condition on Receipt Date of Report Sample Type

1143/016/01 24/01/2013 24/01/2013 24/01/2013 **Delivered by Customer** Acceptable 29/01/2013 Other

Ref 2

Customer PO

Customer Ref

Customer

# CERTIFICATE OF ANALYSIS

Test Decemptor	SOP	Analytical Technique	Result	Units	Acc.
Test Parameter		Drying @ 104 C	65.63	%	
% Moisture Content	0		204.50	mg/Kg as N	
Ammonia (Solid)	114	Colorimetry	8.3	pH Units	
pH (Solid)	110	Electrometry	290000	, cfu/g	
TVC @ 22°C (Solid)	141	Incubation @ 22C/ 72H	123000	cfu/g	
TVC @ 37°C (Solid)	141	Incubation @ 37C/ 48H	123000	Citag	

Signed : <u>A Hoseman</u> Aoife Harmon - Technical Supervisor

Acc. : Accredited Parameters by ISO 17025:2005

PVL - Parametric Value Limit as per EU Drinking water Regulations (SI 278 2007)

All organic results are analysed as received and all results are corrected for dry weight at 104 C

Results shall not be reproduced, except in full, without the approval of Fitz Scientific

Results contained in this report relate only to the samples tested

**The analytical result for this parameter may not be reflective of the concentration present at the time of sampling. The maximum recommended preservation time for this parameter has been exceeded.

Date : 29/01/2013

Page 1 of 1

Biofilter Bi-Annual Monitoring Dundalk Civic Waste Facility W0034-02

1

.

ŧ