WATERFORD COUNTY COUNCIL

COMHAIRLE CHONTAE PHORTLAIRGE

ANNUAL ENVIRONMENTAL REPORT 2012

TRAMORE WASTE DISPOSAL SITE

TRAMORE INTAKE & TRAMORE BURROWS

TRAMORE CO. WATERFORD

Waste Licence Register No. W0075-02

Report Compiled by; Mr David Regan, Facility Manager, Tramore Landfill Mr Paul Carroll, Executive Scientific Officer, Adamstown Laboratory

Table of Contents

Intr	odı	uction			5					
	1.	Repo	rting Period	(5					
	2.		Waste Activities permitted at the Facility under conditions of Licence							
	3.	Calcu	Calculated remaining capacity of the site. 8							
	4.	Date	when final capacity of Landfill is expected to be reach	ned. 8	8					
	5.	Licer	used Methods of deposition of waste.	8	8					
	6.	Envir	conmental Monitoring	Ç	9					
		7.1	Surface Water	-	12					
		7.2	Ground Water	-	18					
		7.3	Leachate	2	25					
		7.4	Leachate and Groundwater Levels		31					
		7.5	Landfill Gas		37					
		7.6	Noise and Dust	2	44					
		7.7	Chemical Analysis of Estuarine Sediment and Benthic Macrafauna	2	47					
		7.8	Sediment	4	52					
		7.9	General Conclusions	4	54					
		7.10	Ecological Report		54					
	8.	Тороз	graphical Survey		55					
	9.	Slope	e Stability Assessment		55					
	10	-	osed Development of Facility and Time Scale evelopment.		55					
	11	. Volu	me of Leachate produced and Volume transported off	site.	55					
	12	. Repo	rt of Development work undertaken during report Per	iod.	56					
	13	3. Annual Water Balance Calculation and Interpretation.								

14. Report on the Progress towards Achievement of the Environmental objectives and targets contained in the previous years report.	56
15. Schedule of environmental objectives and targets for the forthcoming year.	57
16. Reported Incidents and Complaints.	58
17. Reports on Financial Provisions.	58
18. Management and Staffing Structure of the Facility.	59
19. Programme for Public Information.	59
20. Reports of Training of Staff.	59
21. Maintenance Program	59
22. Statement of Financial Provisions in relation to prevention of Environmental Damage and Remedial Actions	59

- Appendix A Monitoring Locations
- Appendix B Surface Water Results
- Appendix C Ground Water Results
- Appendix D Leachate Results
- Appendix E Meteorological Data
- Appendix FTopographical Survey
- Appendix G Ecological Report and Survey
- Appendix H Management Structure
- Appendix I Leachate Removal Records and Laborotory Analysis
- Appendix J Pollutant Release Transfer Register
- Appendix KEnvironmental Liability Risk Assessment
- Appendix L Flare Monitoring Results and Landfill Gas Survey
- Appendix M Site Slope Stability Assessment

Introduction

Waterford County Council was granted a Waste License (Ref 75 – 1) by the Environmental Protection Agency for the continued operation of an existing unlined landfill and civic waste facility at Tramore Co. Waterford on 25^{th} September 2001. This is the eleventh Annual Environmental Report, which has been prepared to meet the requirements of Condition 11.8 of Waste License W0075-02 and includes the monitoring period 1^{st} January 2012 to 31^{st} December 2012.

The Civic Amenity Facility at Tramore Landfill was closed indefinitely on 20th November, 2009.

1. **Reporting Period**

This is the eleventh Annual Environmental Report for the Tramore Landfill Facility, which covers the period 1st January 2012 to 31st December 2012.

2. Waste Activities carried out at the Facility

Part 1 of the Waste Licence details the activities authorised by the licence:

Waste Management Act 1996: Third Schedule

Class 12. Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule:

This activity is limited to the storage of waste at the Civic Waste Facility

Class 13. Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced:

Waste Management Act, 1996, Fourth Schedule

Class 2. Recycling or reclamation of organic substances, which are not used as solvents (including composting and other biological transformation processes): This activity is limited to recycling of paper at the Civic Waste Facility

Class 3.Recycling or reclamation of metals and metal compounds:This activity is limited to the storage of metal cans at the Civic Waste Facility

Class 4. Recycling or reclamation of other inorganic materials:

This activity is limited to the receipt, holding and recovery of inert wastes (such as bricks, cement, ceramics, soils) to be sent off site for reprocessing or to be used in the restoration of Tramore landfill site subject to the prior agreement of the Agency.

Class 10. The treatment of any waste on land with a consequential benefit for an agricultural activity or ecological system.

Class 11. Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule:

This activity is limited to the use of inert material diverted from the landfill to be used as cover material, intermediate cover or the formation of embankments at the site.

Class 13. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than the temporary storage, pending collection, on the premises where such waste is produced:

This activity is limited to the temporary storage of waste on site prior to being recycled, reused or reclaimed.

3. Calculated Remaining Capacity of the Site

The Landfill has ceased accepting waste after 31st December 2005.

4. Year in which Final Capacity is expected to be reached

Final capacity has been reached on the 31st December 2005.

5. Licensed Methods of Deposition of Waste

All waste, except residual household waste and hazardous waste, is recycled. Members of the public have no access to the landfill but utilise the civic amenity area, which was upgraded in 2003. The civic amenity area has receptacles, which accept the following materials: scrap metal, timber, household bulky items, dry recyclables, domestic waste, paint, fridges/freezers, cookers, washing machines, dryers, fluorescent tubes, waste oil (cooking and car), aerosols, textiles, pesticides, batteries (domestic and car) and glass. The civic amenity site accepts waste from domestic householders only. THE CIVIC AMENITY SITE WAS CLOSED INDEFINITELY ON 20th NOVEMBER, 2009

6. Environmental-Monitoring

INTRODUCTION

This report is a compilation of environmental monitoring carried out on behalf of Waterford County Council at Tramore Landfill, principally during the period January 2012 to December 2012.

Monitoring of surface waters, groundwaters, and leachate quality, as well as ecological monitoring, was carried out in accordance with the waste licence 75-1, conditions 8, and schedule D.

Sampling sites are as set out in table 1, and appendix 1.

IONS	ASSESSMENT	SURVEY	SHELLFISH
, 7 B1, B2	Leachate	Annual ecological	Annual chemical
		/ biological survey	quality of sediments,
T2, LT3, LT4, Annual survey	Annual assessment of	of backstrand.	cockles and mussels
	toxicity of leachate	Survey of birdlife	from backstrand.
/ levels.	using appropriate	and habitats.	Microbiological
rly and annual	organisms.		quality of shellfish
al analysis			from backstrand.
		T2, LT3, LT4, Annual survey Annual assessment of toxicity of leachate y levels. tly and annual organisms.	T2, LT3, LT4, Annual survey Annual assessment of toxicity of leachate / biological survey y levels. using appropriate and habitats. rly and annual organisms. organisms.

Table 1. Sampling sites and monitoring requirements

Baseline Monitoring

One of the purposes of compliance monitoring is to determine if there has been a release of contaminants to the environmental media, and to demonstrate compliance with landfill licence conditions. *Baseline monitoring* is monitoring which serves as a reference point to which later monitoring results are compared. For the purpose of this report, results obtained during the first licensed year of operation, September 2001 to September 2002, will be used as baseline monitoring data.

Key Parameters

In line with EPA reporting recommendations¹, results trends for key parameters are presented for surface waters (BOD), groundwaters (Ammonia) and leachates (Ammonia).

¹ EPA – Landfill Monitoring Manual, 2nd Ed, 2004

Interference in metals analysis of aqueous samples from Tramore landfill and environs due to salinity.

The test method used to determine metals concentrations in aqueous samples from Tramore landfill is ICP-MS. Elements present in seawater can interfere with the test. The presence of chloride and other elements present in seawater combine with each other and the test carrier gas to form compounds which have the same atomic weights as some of the target test elements. The detector then wrongly identifies and measures these compounds as target test elements and thus gives falsely high results.

According to the Varian ICP-MS Application Note 32, the analysis of samples containing high levels of chloride typically produces polyatomic species in the plasma, which cause major interference in the most abundant isotopes of As V, Cr and Ni. The presence of other major elements such as Na, Ca and Mg in seawater can also produce polyatomic interference on isotopes of Cu, Co and Zn.

An example of this is the interference by chloride in the ICP-MS test for Arsenic. Chlorine, which has an atomic weight of c35, combines with the test carrier gas argon (mass 40). This Ar Cl complex has a combined mass of c75, which is close to atomic weight of Arsenic (75), and which leads to falsely high results.

A list of typical polyatomic interferences for the elements arsenic, chromium, copper and zinc are given in table 1.

Test target element	Polyatomic interference
⁷⁵ Arsenic	⁴⁰ Ar ³⁵ Cl, ⁴⁰ Ca ³⁵ Cl
⁵² Chromium	${}^{40}\text{Ar}{}^{12}\text{C},{}^{40}\text{Ca}{}^{12}\text{C},{}^{35}\text{Cl}{}^{16}\text{O}^{1}\text{H},{}^{38}\text{Ar}{}^{14}\text{N}$
⁶³ Copper	40 Ar 23 Na, 40 Ca 23 Na
⁶⁴ Zinc	32 S 16 O ₂ , 32 S ₂ , 36 Ar 14 N ₂ , 40 Ar 23 Na 1 H,
	40 Ar 24 Mg

Table 1.	Typical	polyatomic interfe	rence – extract from	Varian ICP-MS	Application note 32.

Examination of the Q2 2006 results of metals analysis from Tramore landfill provides evidence for such interference. Using conductivity as a proxy measure of salinity, it can be seen – see figures 1ad - that there is a direct and strong correlation between salinity and measured metal concentration for arsenic, chromium, copper and zinc. This holds true, even for open seawater samples, which would be expected to have very low levels of these metals.

Thus the reported results for these metals in saline samples (conductivity > 5000 us/cm) are unreliable and should be disregarded.

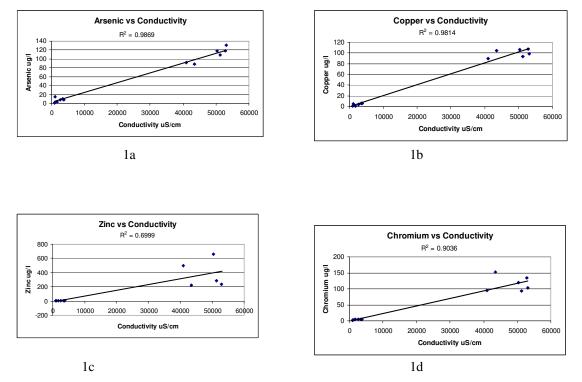


Figure 1a-1d. Relationship between metals concentrations and conductivity in aqueous samples from Tramore landfill and environs, for the 2nd quarter period 2006.

7.1. SURFACE WATER.

7.1.1 Introduction

The surface water sampling sites are SW 1, 2, 3,4,5,6, as per appendix 1. Sampling was carried out by the EPA Kilkenny laboratory personnel in each quarter of 2012.

Results are presented in tables 7.1.1 to 7.1.4, and appendix C.

There are difficulties involved in monitoring surface water pollution from landfills adjacent to estuaries, as the salinity of the samples can interfere with many of the tests, (*ammonia, COD, arsenic, copper*). Additionally, many of the ions, which are considered indicators of leachate contamination, are also major components of sea/brackish water, (*chloride, sulphate, sodium, magnesium, calcium, boron*).

Following the convention of previous reports on Tramore landfill, the results are compared to the standards in the Drinking Water Regulations (SI no. 106, 2009), and Bathing Water Regulations (SI no. 155, 1992). Additionally, water quality criteria used in a recent DOELG / EPA report ("An Assessment of the Trophic Status of Estuaries and Bays in Ireland", DOELG/EPA, 2001) are used also. These standards are presented in the tables of results for comparison.

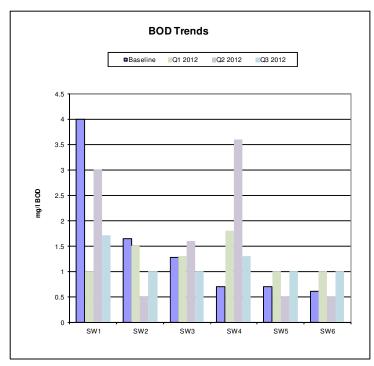
Where possible, results are also compared to results of <u>baseline monitoring</u> carried out between September '01 and September '02

7.1.2 Results

Visual and odour examination indicated that there was no obvious contamination at any of the sites. There was no observed odour or floating materials, which would interfere with bathing water use. Some of the samples at sites SW1-3 from the inner back strand were cloudy, but this is normal due to the effect of tidal flushes on silt and sand.

The conductivity results indicate that sites S1 to S4 have varying degrees of brackishness, while sites SW5 and SW6 are saline.

pH and temperature are normal at all sites over the monitoring period and fall within relevant quality standards.


Dissolved oxygen levels were generally satisfactory at all the sites. The suspended solids levels seem quite high at times at many of the sampling stations, and this may be due to silt/sand entrainment in the samples, as the BOD values do not indicate the presence of significant amounts of organic matter.

Ammonia and BOD were elevated at times at site SW1 though a deceasing trend was evident.

Apparently elevated ammonia at all surface water sites in Q4 is most likely due to saline interference in the test.

The BOD test is a measure of the amount of oxygen consumed by microorganisms in breaking down organic matter in water.

Respiration by phytoplankton or their decay, can also lead to oxygen depletion during the BOD test resulting in a high BOD value. Natural seawaters are likely to have a BOD value < 2 mg/l BOD.

BOD Trends 2012

BOD was generally low at all the surface water sites. There was a slight elevation at SW4 in Q2, likely due to algal activity. BOD was not reported for Q4.

7.1.3 Discussion

The results of analysis indicate an improvement at SW1 with regards to organic matter and nutrients. It is known that an off-site storm-water discharge discharges to SW1. A constructed wetland was installed in 2011 in order to attenuate contamination at this location. There is no indication of any effect from the landfill on the surface water sites.

EntityName	Tramore	Tramore	Tramore	Tramore	Tramore	Tramore
StationName	SW1	SW2	SW3	SW4	SW5	SW6
StationLocalCode	1	2	3	4	5	6
SamplePurpose	Landfill SW quarterly					
SampleLabCode	1204SW010602	1204SW020602	1204SW030602	1204SW040602	1204SW050602	1204SW060602
SampleDate	06/02/2012	06/02/2012	06/02/2012	06/02/2012	06/02/2012	06/02/2012
Ammonium(NH4)	0.12	0.16	0.11	0.05	BLD	BLD
BOD	1	1.5	1.3	1.8	BLD	BLD
Chemical Oxygen Demand	29	NT	NT	NT	NT	NT
Chloride	191	NT	NT	NT	NT	NT
Conductivity @ 25°C	1226	NT	NT	NT	NT	NT
Dissolved Oxygen % Saturation	129	102	97	106	100	100
рН	8.1	8.3	8	8.1	8	8
Suspended Solids	51	NT	24	17	15	13
Temperature	9.6	10.4	9.9	8.9	9.5	9.2

Table 7.1.1Tramore Landfill Surface Water Monitoring Q1 2012

							Water Quality Standards		
							(Surface Water Regs 2009 and Bathing Water	Comment	Environmental
StationName	SW1	SW2	SW3	SW4	SW5	SW6	Regs 2008)	Comment	significance
SampleDate	14/05/2012	14/05/2012	14/05/2012	14/05/2012	14/05/2012	14/05/2012		Clinitation of a standard	
								Slightly elevated at SW1 (non-landfill	None given dilution available
Ammonium(NH4)	0.18	0.02	0.05	0.02	0.02	0.02		influence)	None given diution available
BOD	3	BLD	1.6	3.6	BLD	BLD	4 (Transitional)	Satisfactory at all sites	None
								Satisfactory where	
Chemical Oxygen Demand	34	NT	NT	NT	NT	NT		measured	None
Chloride	179	NT	NT	NT	NT	NT		SW1 freshwater	None
Conductivity @ 25°C	1018	NT	NT	NT	NT	NT		SW1 freshwater	None
							70-130% (Transitional)	Elevated at SW4,	
Dissolved Oxygen % Saturation	126	110	97.9	150.9	101	102	80-120% (Coastal)	likely algal activity	None
								Elevated at SW4,	
рН	8.2	7.9	8.1	8.7	8	8.1		likely algal activity	None
								Slightly elevated at	
								SW3, reflecting	
								muddy conditions at	
								this high velocity	
Suspended Solids	12	9	50	20	17	11		tidal area.	None
Temperature	15.1	13.7	10.8	12.2	10.4	10.3		Normal range	None

Table 7.1.3	Tramore Landfill Surface Water Monitoring Q3 2012

							WATER		
							QUALITY		
							STANDARDS		
							-		
							SURFACE		ENVIRONMENTAL
EntityName	Tramore	Tramore	Tramore	Tramore	Tramore	Tramore	WATER REGS	COMMENT	SIGNIFICANCE
StationName	SW1	SW2	SW3	SW4	SW5	SW6	2009 AN D		
StationLocalCode	1	2	3	4	5	6	BATHING		
SamplePurpose	ndfill SW quarte								
SampleLabCode	1250trasw12208	1250trasw22208	1250trasw32208	1250trasw42208	12350trasw52208	1250trasw62208	2008		
SampleDate	22/08/2012	22/08/2012	22/08/2012	22/08/2012	22/08/2012	22/08/2012			
Ammonium(NH4)	0.02	0.01	0.01	0.01	0.01	0.01		Low levels	none
BOD	1.7	1	1	1.3	1	1	4	Low levels	none
Chemical Oxygen Dem	NT NT	NT	NT	NT	NT	NT			
Chloride	302	NT	NT	NT	NT	NT			
Conductivity @ 25°C	1517	NT	NT	NT	NT	NT			
Dissolved							70-130%	Slightly	
							TRANSITIONAL	elevated	Dessible diversal
Oxygen	101	110	110				80-120 COASTAL	likely due to	Possible diurnal variations
% Saturation	131	119	112	140	119	113	COASTAL	algal activity	
рН	8.1	8.2	8.2	8.4	8.1	8.1		Normal range	none
								possible saline	
								interference	
Suspended Solids	<3	11	12	29	26	36			None
Temperature	19.2	17	17.2	18	16	16.3		Normal range	none

Table 7.1.4 Tramore Landfill Surface Water Monitoring Q4 2012

					WATER		
					QUALITY		
					STANDARDS		
					SURFACE		ENVIRONMENTAL
EntityName	Tramore	Tramore	Tramore	Tramore	WATER REGS	COMMENT	SIGNIFICANCE
StationName	SW1	SW3	SW4	SW5			
SampleDate	13/11/2012	13/11/2012	13/11/2012	13/11/2012			
Ammonium(NH4)	1.2	0.95	0.34	0.7		Low levels	none
BOD	NT	NT	NT	NT	4	Low levels	hono
Chemical Oxygen Demand		NT	NT	NT	-		
Chloride	169	12840	10838	14710			
Conductivity @ 25℃	1040	NT	NT	NT			
					70-130%		
					TRANSITIONAL		
					80-120		
solved Oxygen % Saturat	91	98	108	99	COASTAL	Normal levels	None
рH	7.9	8	8.1	8.1		Normal range	none
I -						Possible	
						saline	
						interference in	
Suspended Solids	5	30	27	24		test	None
Temperature		11.8	12	11.8		Normal range	2020
rempetature		11.0	12	11.0		Normal range	

7.2.2. Groundwater

7.2.1 INTRODUCTION

Samples were taken at sites BH2, BH5, BH8, BH9, RC4, RC5, RC6a, GW2, GW5.

Borehole locations are shown on appendix 1. Drilling records, where available, for groundwater boreholes are shown on table.

	Table 7.2.1.	Drilling record	ls for groundw	ater boreholes.			
Name	BH2	BH5	BH8	BH9	BH10A	RC4	RC5
Nominal Type	GW	GW	GW	GW	GW	GW	GW
Total Depth (m)	4.2	3.95	7.7	8.7	13	15.3	25
Strata (m)	Made ground: hardcore fill (0-0.5) Made ground; loose mixture of gravel and rubble with fill (0.5-1.0) Made Ground: soft black sandy silt with domestic refuse (1.0- 1.7) Soft/loose mixture of silt and gravel: (1.7-2.5) medium dense well graded silty gravel: (2.5- 3.0) Frim brown gravelly silty clay: (3.0-4.2)	traces of reduse (1.8-	topsoil: (0-0.3) Soft grey brown sandy silty clay: (0.3- 1.2) Firm grey brown sandy clay with some gravel: (1.2- 1.9) Stiff to very stiff brown silty sandy gravelly clay with cobbles and boulders: (1.9-7.7) refers to	Made ground: grey silty clay with wood, paper and plastic (0- 0.4) Firm grey brown sandy clay with some gravel (0.4-2.2 Stiff to very stiff brown silty sandy gravelly clay with cobbles and boulders (2.2-7.4 Hard brown silty laminated clay with frequent cobble and boulder size fragments of shale (7.4-8.7	1.3) Made ground: brick, ash, wood, plastic, paper and steel (1.3- 4.2) Soft grey very silty sandy clay with shells (4.2-10.2)	open hole (0- 9.7 gravel (9.7- 11.7 Siltstone (11.7	Overburden (0-20 Siltstone (20-25)
Response zone (m)	none given	not given	installation sheet			12 to 14 m	21 to 24.5
Designation based on drill record				GW	GW	GW	GW

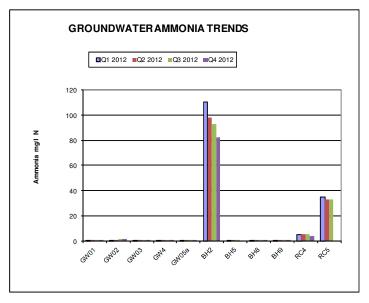
Table 7.2.1. Drilling records for groundwater boreholes.

7.2.2 RESULTS

Results are presented in tables 7.2.2 to 7.2.5, and appendix D.

Groundwater monitoring results are compared with the Interim Guideline Values (IGVs) as outlined in the interim report by the environmental Protection agency, "*Towards Setting Guidelines for the Protection of Groundwater in Ireland*".

Elevated values for *Boron, Calcium, Chloride, Conductivity, Potassium and Sodium* reflect the impact of saline intrusion on borehole water characteristics. Additionally, the salinity of the samples can interfere with some of the tests, (*ammonia, arsenic, copper*). Accordingly interpretation of test results for some parameters must bear this in mind.


Conductivity values were elevated in many of the boreholes, reflecting significant saline intrusion at this estuarine site. A discussion of the extent of saline intrusion is beyond the scope of this environmental report, however detailed studies² of saline intrusion into these boreholes was carried out in 2002 and 2006.

Heavy metals, list I/II organics, phenols and coliform bacteria were low at all boreholes throughout the monitoring period.

² Waterford County Council, Investigation into the Occurrence of Salinity Intrusion at Tramore Landfill Site, MCOS, 2002 and RPS 2006.

AMMONIA

Ammonia occurs naturally in water bodies, including estuarine and marine waters, arising from the microbiological decomposition of nitrogenous organic matter. Fish and other aquatic organisms also excrete ammonia. Therefore unpolluted waters contain ammonia, usually < 0.1 mg/l N, although groundwaters in reducing conditions can contain higher levels.

Groundwater ammonia levels 2012

Ammonia levels were high (>5mg/l) in BH2, RC4 and RC5.

Results for 2012 were similar to baseline monitoring in most boreholes, though an increase at BH2 since baseline measurement was evident, likely due to waste degradation activity and concentration of leachate due to landfill capping.

7.2.3 DISCUSSION

The results of groundwater monitoring are in line with results from previous rounds of testing carried out since 1999. As indicated in previous reports, it appears that groundwater quality within the current working area is somewhat impacted by leachate from the landfill, as evidenced by elevated ammonia and iron levels at BH2, and RC4, though drilling records indicate that BH2 is characteristic of a leachate rather than groundwater borehole. RC5 is distant from the municipal landfill, but adjacent to an historic land-filled area, which is likely to be the source of the ammonia in this borehole. This is the subject of further investigation.

Heavy metals, List I/II Organics, and phenols were low at all boreholes throughout the monitoring period.

EntityName	Tramore	Tramore	Tramore	Tramore	Tramore	Tramore	Tramore	Tramore	Tramore	Tramore	Tramore			
StationName	BH2	BH5	BH8	BH9	GW1	GW2	GW3	GW4	GW5	RC4	RC5			
StationLocalCode	2	15	8	9	11	12	13	4	5	3	25			
	landfill GW	landfill GW		landfill GW	landfill GW		landfill GW			landfill GW		GROUNDWATER QUALITY STANDARDS		ENVIRONMENTAL
SamplePurpose	quarterly	quarterly	quarterly	quarterly	quarterly	quarterly	quarterly	quarterly	quarterly	quarterly	quarterly	SI No. 9, 2010	COMMENTS	SIGNIFICANCE
	1204bh0207	1204	1204bh8070	1204BH9070	1204GW010	1204GW020	1204GW030	1204GW407	1204GW5A0	1204RC4070	1204RCG060			
SampleLabCode	02	bh50602	2	2	602	602	602	02	702	2	2			
SampleDate	07/02/2012	06/02/2012	07/02/2012	07/02/2012	06/02/2012	06/02/2012	06/02/2012	07/02/2012	07/02/2012	07/02/2012	06/02/2012			
Ammonia(N)	110	BLD	0.1	0.26	0.09	0.36	0.08	0.02	0.07	4.8	35	0.175 Nominal action level 100	Evelated levels at BH2 and RC5, likely due to landfill.	None, given dilution factor in receiving environment
Chloride	NT	NT	868	110	NT	NT	NT	134	104	NT	NT	24	Associated with salinity	None
Conductivity @ 25°C	11950	NT	3520	931	NT	NT	NT	1047	1113	NT	NT	800	Conductivity associated with salinity	None
Dissolved Oxygen % Saturation	62	98	27.9	19	86	75	38	38	48	57	37		Moderate levels in many boreholes indicative of reducing conditions	None
Faecal Coliforms	BLD	BLD	BLD	BLD	BLD	BLD	41	BLD	BLD	BLD	BLD		Low levels	None
Iron		440	680	1900	150	1400	1200	910	430	2600	1800		Somewhat elevated levels at many boreholes, possibly derived from landfill	None - no groundwater abstractions in vicility and large dilution available in receiving surface water estuarine environment.
рН	7	7.7	7.3	7.1	7.4	7.3	7.9	7.2	7.3	7.1	6.9		Within normal range	None
Phenols	BLD	BLD	BLD	BLD	BLD	BLD	NT	BLD	BLD	BLD	BLD		Low levels	None
Potassium		380	19	15	92	98	86	11	12	470	250	5	Elevated levels associated with salinity	None
Salinity	6.6	2	1.7	NT	8	8.3	7.3	NT	NT	33.1	31.4		RC4 and RC5 most saline	None
Sodium	NT	9900	560	140	2500	2700	2500	98	180	12000	11000	150	Elevated levels associated with salinity	None
Temperature	12.1	10.9	9.7	11.3	11.4	10.1	7.9	10.5	9.4	11.5	12.1		Within normal range	None
Total Coliforms	8700	9200	41	52	20	74	120	290	1500	BLD	BLD		Moderate levels BH2 and BH5, otherwise low levels.	None
Total Organic Carbon Total Oxidised Nitrogen	NT NT	5.6 NT	NT NT	NT NT	13.7 NT	15.1 NT	37.8 NT	NT NT	NT NT	NT NT	5.6 NT	37.5	Moderate level GW3 NT	abstractions in vicility and large dilution available in receiving surface water estuarine None
es exceedance of GW standards SI Denotes exceedance of nominal a														

Table 7.2.2Tramore Landfill Groundwater Monitoring Q1 2012

-												Groundwater	[
												Threshold		
EntityName	Tramore	Values (GTV)	Comment	Environmental Significance										
	5112	0.15	5110	5.10	0.14	0.110	0.110		01/5		0.05			
StationName	BH2	BH5	BH8	BH9	GW1	GW2	GW3	GW4	GW5	RC4	RC5			
SampleDate	14/05/2012	14/05/2012	14/05/2012	14/05/2012	14/05/2012	14/05/2012	14/05/2012	14/05/2012	14/05/2012	14/05/2012	14/05/2012			
r	,, .	,,.	, , .	,,.	,, .	,, .	,, .	,,.	,, .	,,.	,, .		Very elevated BH2 and RC5.	
													Also elevated RC4. Most likely	None - no groundwater abstractions
													source is municipal landfill for	in vicinity and large dilution available
													BH2 and RC4 and historic	in receiving surface water estuarine
Ammonium(NH4)	98	0.48	0.11	0.31	0.01	0.67	0.2	0.04	0.04	5.1	33	0.175	landfill for RC5.	environment.
Chloride	NT	NT	672	108	NT	NT	NT	126	99	NT	NT	24	Associated with salinity	None
													Conductivity associated with	
													salinity from surrounding	
Conductivity @ 25°C	NT	NT	2850	1368	13950	NT	11900	1032	1075	NT	NT	800	environment.	None
													Moderate levels in many boreholes indicative of	
Dissolved Oxygen % Satura	64.3	90	54.1	41.2	75	94	48	44.6	28.2	50.5	26.2		oxidative conditions this	None
Dissolved Oxygen % Salura	04.5	90	54.1	41.2	75	94	40	44.0	28.2	50.5	20.2		oxidative conditions this	None - no groundwater abstractions
														in vicility and large dilution available
Faecal Coliforms	BLD	BLD	BLD	52	BLD	BLD	10	BLD	BLD	BLD	BLD		Low levels	in receiving surface water estuarine
l accal comornis	DLD	DLD	DLD	52	DLD	DLD	10	DLD	DLD	DLD	DLD		Low levels	None - no groundwater abstractions
														in vicility and large dilution available
Iron	NT		NT	in receiving surface water estuarine										
														Ě Š
рН	7	7.7	7.3	7.3	7.5	7.5	7.3	7.1	7	7.1	7		Within normal range	None
													NT	News
Phenols	NT		NI	None										
Potassium	NT	5	NT	None										
i otabbiani												5		
Salinity	5.7	27.1	1.3	<0.5	7.9	8.7	6.7	<0.3	<0.3	33.1	31		BH5, RC4 and RC5 most saline	None
Sodium	NT	150	NT	None										
Tomporatura	12	10.2	11.0	11.2	11.0	10.2	10.0	11.0	11.2	12 5	13.5		Mithin normal range	None
Temperature	12	10.2	11.6	11.3	11.8	10.3	10.9	11.6	11.2	12.5	12.5		Within normal range	None None - no groundwater abstractions
													Slightly elevated at GW2, over	in vicility and large dilution available
Total Coliforms	180	BLD	BLD	200	BLD	1300	86	BLD	160	BLD	BLD		all relatively low.	in receiving surface water estuarine
		- 10		_30			50		_00					
													Somewhat elevated BH2and	
Total Organic Carbon	145.1	5.3	2.6	5.3	23.1	22.7	128.3	2.3	2.7	3	5.5		GW3.	
Total Oxidised Nitrogen	BLD	BLD	BLD	BLD	0.52	BLD	BLD	1.05	0.3	BLD	BLD	37.5	Low levels	None

Table 7.2.3Tramore Landfill Groundwater Monitoring Q2 2012

								r –			I	Crowndurator		
												Groundwater Threshold		
Faction Manage	T	-	T	T	T		Commente	For the second state if the second						
EntityName								Tramore				Values	Comments	Environmental significance
StationName	BH2	BH5	BH8	BH9	GW1	GW2	GW3	GW4	GW5	RC4	RC5		Very elevated BH2, and	
														none - no groundwater
													Most likely source is	abstractions in vicinity and large
														dilution available in receiving
													and RC4, and historic	surface water estuarine
Ammonia(N)	93	0.48	0.17	0.37	0.2	1.6	0.2	0.05	0.11	5.4	33	0.175	landfill for RC5.	environment.
Chloride	NT	NT	538	110	NT	NT	NT	127	106	NT	NT	24	Associated with salinity	None
Conductivity @														
25°C	NT	NT	NT	915	NT	NT	NT	1017	1076	NT	NT	800	Associated with salinity	None
Dissolved Oxygen														
% Saturation	55	72	88	20	84	93.6	57	32	47	52	33		Moderate levels	None
													Elevated at BH5, may be	
													local contamination.	
													Moderate levels	Unlikely to affect bathing
Faecal Coliforms	BLD	24000	BLD	61	31	620	120	BLD	20	BLD	<5		elsewhere.	water.
													Very elevated at BH2,	
														none - no groundwater
													Most likely source	abstractions in vicinity and large
													•	dilution available in receiving surface water estuarine
Iron	11000	2400	5700	5500	11000	21000	60000	5900	6700	3100	5400		other boreholes.	environment.
pH	6.9	7.3	7.3	6.8	7.5	7.3	7	7.2	7.2	7.1	5400 7		Normal range	None
Phenols	BLD	BLD	BLD	BLD	BLD	BLD	, BLD	BLD	BLD	BLD	BLD		Not detected	None
Potassium	100	240	5.5	5.1	47	52	53	BLD	5.5	290	140	5	Associated with salinity	None
Salinity	6.2	27.2	1.1	NT	6.6	7.7	7.1	NT	NT	33	31		Associated with salinity	None
Sodium	1000	4800	220	91	1600	1800	1200	64	210	4900	6200	150	Associated with salinity	None
Temperature	14.7	16.7	14.6	14.3	14.4	15.6	17.1	14.2	15.1	14	13.8	100	Normal range	None
remperature	1	1017	1.10	1.110		10.0	2712		10/1		10.0			
													Elevated at BH5, may be	
													local contamination.	
													Moderate levels	Unlikely to affect bathing
Total Coliforms	1100	24000	790	360	2200	24000	150	470	240	BLD	10		elsewhere.	water.
	1100	24000	790	500	2200	24000	150	470	240	BLD	10			none - no groundwater
														abstractions in vicinity and large
														dilution available in receiving
Total Organic														surface water estuarine
Carbon	16.6	6	2.9	3.5	16.8	13.3	54.9	2.5	4.8	3.8	6.7		Elevated at GW3	environment.
Total Oxidised														
Nitrogen	BLD	BLD	BLD	BLD	0.42	BLD	BLD	0.71	0.21	BLD	BLD	37.5	Low levels	None

Table 7.2.4Tramore Landfill Groundwater monitoring Q3 2012

						_	_					Groundwater		Environmental
EntityName	Tramore	Threshold Values	Comments	significance										
StationName	BH2	BH8	BH9	GW1	GW2	GW3	GW4	GW5	GW6	GW7	RC4			
SampleDate	12/11/2012	12/11/2012	12/11/2012	12/11/2012	12/11/2012	12/11/2012	12/11/2012	12/11/2012	12/11/2012	12/11/2012	12/11/2012			
													Very elevated BH2. Also elevated GW7 and RC4. Most likely source is	None - no groundwater abstractions in vicinity and large dilution available in receiving surface water estuarine
Ammonia(N)	82	0.49	0.35	0.51	1.2	0.4	0.06	0.07	2.6	10	4.1	0.175	municipal landfill. Associated with	environment.
Chloride	1525	3399	495	1790	3451	3451	98	157	273	216	8221	24	salinity	None
Conductivity @ 25℃	6820	11920	2120	7090	1285	1374	1043	989	2090	1806	5110	800	Associated with salinity	None
Dissolved Oxygen % Saturation	53	75	14	51	63	58	32	33	12	18	NT		Moderate levels	None
Faecal Coliforms	BLD	BLD	BLD	160	52	1200	BLD	10	BLD	20	NT		Moderate levels	Unlikely to affect bathing water.
													Very elevated at GW2, GW3 and GW6. Most likely source municipal landfill. Moderately elevated at other	None - no groundwater abstractions in vicinity and large dilution available in receiving surface water estuarine
Iron	4100	1100	1700	3200	20000	25000	5900	2100	12000	7500	NT		boreholes.	environment.
рН	6.8	7.2	7	7.4	7.1	7.1	7.1	7.1	6.7	6.8	7.1		Normal range	None
Phenols	NT		Not tested	N/A										
Potassium	130	46	11	60	83	84	BLD	BLD	9.6	20	NT	5	Associated with salinity	None
Salinity	3.7	6.7	<0.9	3.8	7.3	7.8	NT	NT	<0.9	NT	NT		Associated with salinity	None
Sodium	650	1300	240	1000	1700	1800	78	60	99	89	NT	150	Associated with salinity	None
Temperature	13.3	12.2	12.4	12	11.7	10.9	12.2	12.3	12.5	12.7	12.6		Normal range	None
Total Coliforms	24192	660	1600	16000	4000	3900	1500	1500	1600	110	NT		Elevated at BH2 and GW1, may be local contamination. Moderate levels elsewhere.	Unlikely to affect
														bathing water.
Total Organic Carbon	NT		Not tested	N/A										
Total Oxidised Nitrogen	BLD	BLD	BLD	0.3	BLD	BLD	BLD	1.99	BLD	BLD	BLD	37.5	Low levels	None

Table 7.2.5 Tramore Landfill Groundwater monitoring Q4 2012

7.3 LEACHATE

7.3.1 INTRODUCTION

Leachate boreholes, BH1, BH 7 and RC6 have been routinely sampled since Sept 2001. Supplementary

boreholes LT 1-5 were constructed in late 2001, and sampled since 2002.

Borehole locations are shown on appendix 1. Drilling records, where available, for groundwater boreholes are shown on table .

	1	aute 7.5.1. LA		unoic un	ining reek	5145		
Name	BH1/1	BH7A	LT1	LT2	LT3a	LT4a	LT5a	RC6A
Nominal Type	GW + L	leachate	L	L	L	L	L	L
Total Depth (m)	4.5	6	8.4	4.8	6	6	6	9
Strata (m)	(3.7-4.2) Firm brown sandy	Made ground; clay with cobbles (0-0.6) Made ground:waste, bricks and metal (0.6- 6)	Made ground; mixture of rubbish and black	Made ground clay with occasional cobbles (0-1.2) Made ground: refuse (1.2 - 4.5) Made ground silty refuse (domestic) (4.5 - 4.8)	Clay with	Made ground clay occasional cobbles (0-0.7) Made ground: clay/waste (0.7 - 6)	and boulder obs (0-2) Made ground: clay (2 - 3) Made ground clay with traces of refuse (3 - 3.8) Made ground; domestic refuse (3.8 - 7.8)	Made ground light brown clay with gravel, cobbles and concrete (0-1) Made ground: black silty clay with gravel and plastic (1-3.2) Firm light brown grey gravelly clay with cobbles (3.2- 7) Light brown clay with gravel and abundant cobbles (7-8.3) Light brown clay with gravel and large cobbles (8.3- 9)
Response zone (m)	0.80m to 4.0m	3.5m to 6.0m	1.8 to 7.2	1.3 to 4.6	1.5 to 5.6	1.5 to 5.2	2.8 to 6.35	3 to 9
Designation based on drill record	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate

Table 7.3.1. Leachate borehole drilling records

Results of analysis are presented in tables 7.3.2 to 7.3.5, and appendix E, and are compared with the median of "typical" landfill leachate, as published in the EPA document "*Landfill Operational Practices*", 1998.

7.3.2 RESULTS

Saline intrusion is evident in many of the leachate boreholes, reflected in the high concentrations of ions associated with seawater, such as *chloride, sodium, magnesium calcium and boron*, and subsequent interference in some of the tests normally used to characterise landfill leachate, as discussed in the introduction.

Heavy metal concentrations (*cadmium, lead*) are generally low, being at about drinking water standard levels. There is a strong relationship between salinity and measured levels of zinc, copper, chromium and arsenic, which strongly indicate interference in tests due to salinity – see introduction.

Key Parameter – Ammonia

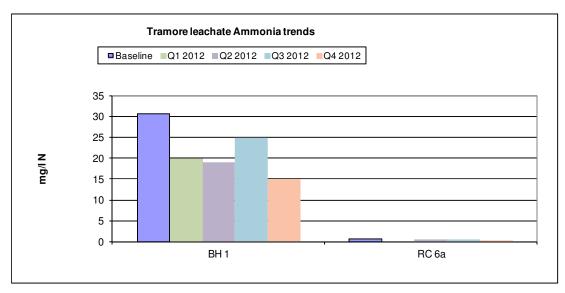


Fig 7.3.1 Leachate ammonia levels 2012

Many of the leachate boreholes were dry as a result of landfill capping and thus were not sampled in 2012. BH1/1 showed a slight decline in ammonia concentration during 2012.

EntityName	Tramore	Tramore	Tramore	Tramore	Comments	Environmental Significance
StationName	BH1/1	BH7b	LT1	LT3a		
	LANDFILL	LANDFILL	LANDFILL	LANDFILL		
	LEACHATE	LEACHATE	LEACHATE	LEACHATE		
SamplePurpose	QUARTERLY	QUARTERLY	QUARTERLY	QUARTERLY		
SampleLabCode	1204BH110602A	1204bh7b0702	1204lt10702	1204lt3a0702		
SampleDate	06/02/2012	07/02/2012	07/02/2012	07/02/2012		
Ammonium(NH4)	20	31	180	1700	Levels generally within range expected for municipal landfill leachate. LT3a highest.	Some elevation of ammonia levels in adjacent groundwaters possible, but - given the dilution available in the wider environment (>1/30,000) no wider environmental effect is expected.
200	NT	40	20	125	Relatively low all sites	None given available dilution.
BOD	NT	48	20	135	Relatively low all sites	None given available dilution.
Chloride	276	201	446	NT	Relatively low all sites measured	None
Conductivity @ 25°C	2210	2410	5060	23870	Reflects possible saline intrusion LT3a	
рН	7	6.6	6.8	7.5	Normal range	None
					Low at BH 1/1, only site	
Total Oxidised Nitrogen	BLD	NT	NT	NT	measured.	None

 Table 7.3.2
 Tramore Landfill Leachate Monitoring Q1 2012

г

				Environmental
StationName	BH1/1	RC6a	Comments	Significance
SampleDate	14/05/2012	14/05/2012		
				Some elevation of
				ammonia levels in
				adjacent groundwaters
				possible, but - given the
				dilution available in the
			Levels generally within	wider environment
			range expected for	(>1/30,000) no wider
			municipal landfill	environmental effect is
Ammonium(NH4)	19	0.48	leachate.	expected.
				None given available
BOD	NT	NT	NT	dilution.
				None given available
Chemical Oxygen Demand	NT	NT	NT	dilution.
			Relatively low all sites	
Chloride	251	112	measured	None
			Relatively low all sites	
Conductivity @ 25°C	2130	1078	measured	
рН	6.7	7.1	Normal range	None
Total Oxidised Nitrogen	BLD	<0.2	Low all sites measured.	None

Table 7.3.3Tramore Landfill Leachate Monitoring Q2 2012

				Environmental
EntityName	Tramore	Tramore	Comments	Significance
StationName	BH1/1	RC6a		
SampleDate	21/08/2012	21/08/2012		
Ammonium(NH4)	25	0.53	Range as generally expected for leachate	None given available dilution
BOD	NT	NT		
Chemical Oxygen Dema	NT	NT		
Chloride	259	120	Associated with saline intrusion	None
Conductivity @ 25°C	2100	1067	Associated with saline intrusion	None
	6.9	7.3	Normal range	None
pH Total Oxidised Nitroger	BLD	BLD	None detected	None

Table 7.3.4Tramore Landfill Leachate Monitoring Q3 2012

EntityName	Tramore	Tramore	Comments	Environmental Significance
StationName	BH1/1	RC6a		
SampleDate	12/11/2012	12/11/2012		
				None given available
Ammonium(NH4)	15	0.4	Range low for leachate	dilution
BOD	NT	NT		
Chemical Oxygen Demand	NT	NT		
			Associated with saline	
Chloride	190	139	intrusion	None
			Associated with saline	
Conductivity @ 25℃	1808	1061	intrusion	None
рН	6.8	7.3	Normal range	None
Total Oxidised Nitrogen	BLD	BLD	None detected	None

Table 7.3.5 Tramore Landfill Leachate Monitoring Q4 2012

7.4. Leachate Levels

7.4.1 Introduction

Leachate levels are determined weekly, by dip meter, at boreholes BH1/1, BH7, RC6, LT1, LT2, LT3, LT4, and LT5.

7.4.2 Results

Results of monitoring are presented in tables 4.1 to 4.4. There were minor fluctuations in levels in BH7, LT1, and LT2. LT 4 and LT5 were dry most of 2012.

7.4.3 Discussion

The variation in groundwater and leachate levels may be due to air pressure, changes in landfill water balance or tidal effects.

Tidal intrusion into the landfill boreholes was the subject of special reports in 2002 and 2006; Waterford County Council, *Investigation into the Occurrence of Salinity Intrusion at Tramore Landfill Site*, MCOS, 2002 and *Investigation into the possible occurrence of salinity intrusion at Tramore Landfill*, RPS 2006.

Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7b	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW 1	GW 2	GW 3	GW4	GW 5	GW 6	GW7	GW 8
																									i i
1	04/01/2012	DR	0.7				1.2					1.1	0.2	0.6	1.7	Dry	Dry	-	-	-	-	-	-	-	-
2	12/01/2012	DR	0.6				1.2					1	0.1	0.6	1.7	Dry	Dry								
3	19/01/2012	DR	0.8				1.2					1.1	0.1	0.6	1.7	Dry	Dry								
4	24/01/2012	DR	0.8				1.2					1.1	0.1	0.6	1.7	Dry	Dry								
5	31/01/2012	DR	0.9	1.3		0.6	1.4	1.4	1.7	0.6	0.3	1	0.2	0.5	1.7	Dry	Dry	0.3	1	0.1		0.1			
6	09/02/2012	DR	0.6				1					1	0.2	0.6	1.7	Dry	Dry								
7	17/02/2012	DR	0.6				1					0.9	0.2	0.6	1.7	Dry	Dry								
8	23/02/2012	DR	0.7	1.3		0.6	1	1.4	1.7	0.6	0.3	1	0.2	0.5	1.9	Dry	Dry	0.3	1	0.1		0.1			
9	29/02/2012	DR	0.6				1					0.9	0.2	0.6	1.7	Dry	Dry								
10	06/03/2012	DR	0.6				1					0.9	0.2	0.6	1.7	Dry	Dry								
11	16/03/2012	DR	0.6				1					0.9	0.2	0.6	1.7	Dry	Dry								
12	20/03/2012	DR	0.5	1.3		0.6	0.9	1.4	1.7	0.6	0.3	0.9	0.1	0.6	1.7	Dry	Dry	0	0.7	0.2		0.1			
13	29/03/2012	AOF	0.6				1					0.9	0.2	0.6			Dry								
Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7b	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW 1	GW 2	GW 3	GW4	GW 5	GW 6	GW7	GW 8
																									1

Table 4.1 Tramore Landfill Leachate & Groundwater Levels Q1 2012

na No Access

Heights of monitoring wells were adjusted from 07/03/08 onwards due to updated GPS locations

Height of LT5 & BH2 adjusted in Oct 2008

Height of all monitoring wells within Landfill area adjusted from 02/05/09 onwards due to replacement of well platforms and borewell covers

Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7b	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW 1	GW 2	GW 3	GW4	GW 5	GW 6	GW7	GW 8
																									i i
14	02/04/2012	DR	0.6				0.8					1	0.2	0.6	1.7	Dry	Dry	-	-	-	-	-	-	-	-
15	12/04/2012	DR	0.6				0.8					1	0.2	0.5	1.7	Dry	Dry								
16	16/04/2012	DR	0.5				0.8					0.9	0.2	0.5	1.7	Dry	Dry								
17	24/04/2012	DR	0.6	1.3		0.6	0.8	1.4	1.7	0.6	0.3	0.9	0.1	0.6	1.8	Dry	Dry								
18	04/05/2012	DR	0.5				0.8					0.9	0.2	0.5	1.7	Dry	Dry								
19	08/04/2012	DR	0.5				0.8					0.9	0.2	0.5	1.7	Dry	Dry								
20	14/05/2012	DR	0.7				1					0.8	0.2	0.6	1.7	Dry	Dry								
21	24/05/2012	DR	0.5	1.3		0.6	0.9	1.4	1.6	0.6	0.1	0.7	0.2	0.5	1.7	Dry	Dry								
22	28/05/2012	DR	0.5				1					0.9	0.1	0.5	1.7	Dry	Dry								
23	06/06/2012	DR	0.9				1					1	0.1	0.6	2	Dry	Dry								
24	15/06/2012	AOF	0.8				1.2					0.9	0.1	0.5	1.9	Dry	Dry								
25	20/06/2012	DR	0.8				1.2					0.9	0.1	0.5	2	Dry	Dry								
26	27/06/2012	DR	0.8	1.2		0.5	1.2	1.5	1.8	0.8	0.1	0.9	0.1	0.6	1.9	Dry	Dry								
Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7b	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW 1	GW 2	GW 3	GW4	GW 5	GW 6	GW7	GW8
	na No Access																								
Heights of	monitoring wells	s were adju	usted fr	om 07	7/03/08	onwa	rds due to	o upda	ted G	PS loo	cations	3													
Height of L	.T5 & BH2 adjus	sted in Oct	2008																						
Height of a	II monitoring we	ells within L	andfill a	area a	djusted	from	02/05/09	onwar	ds due	e to re	placer	ment of v	vell pl	atform	ns and	borew	ell co	vers							

Table 4.2 Tramore Landfill Leachate & Groundwater Levels Q2 2012

Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7b	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW1	GW 2	GW 3	GW4	GW 5	GW 6	GW7	GW 8
27	04/07/2012	DD	0.0				1.4					1.1	0.1	0.6	1.0	D	Dura								
	04/07/2012	DR	0.9				1.4					1.1	0.1	0.6	1.9	Dry	Dry	-	-	-	-	-	-	-	-
28	10/07/2012	DR	0.8				1.4					0.9	0.2	0.6	1.9	Dry	Dry								
29	16/07/2012	DR	0.8				1.2					1	0.2	0.6	1.9	Dry	Dry								
30	27/07/2012	DR	0.8	1.2		0.5	1	1.5	1.7	0.6	0.1	1	0.1	0.5	1.9	Dry	Dry	1.1	1.9	1.1		1.5			
31	02/08/2012	DR	0.9	1.2		0.5	1.1	1.5	1.7	0.5	0.2	0.9	0.1	0.5	1.9	Dry	Dry	0.2	0.9	0.1		0.1			
32	06/08/2012	DR	0.9				1					1	0.1	0.5	1.9	Dry	Dry								
33	15/08/2012	DR	1				1					1	0.2	0.5	2.2	Dry	Dry								
34	20/08/2012	DR	0.8				1.2					1	0.1	0.5	2	Dry	Dry								
35	27/08/2012	LA	0.6				1.2					1	0.1	0.5	1.9	Dry	Dry								
36	07/09/2012	DR	0.6				1.2					1	0.2	0.5	1.9	Dry	Dry								
37	12/09/2012	DR	0.5				1.1					1	0.2	0.5	1.9	Dry	Dry								
38	17/09/2012	DR	0.5				1.1					1	0.3	0.5	2.1	Dry	Dry								
39	26/09/2012	DR	0.4	1		0.5	1.1	1.4	1.5	1.2	0.2	1	0.2	0.5	2.1	Dry	Dry	0.1	0.9	0.1		0.1			
Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7b	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW1	GW 2	GW 3	GW4	GW 5	GW 6	GW7	GW 8

Table 4.3 Tramore Landfill Leachate & Groundwater Levels Q3 2012

na No Access

Heights of monitoring wells were adjusted from 07/03/08 onwards due to updated GPS locations

Height of LT5 & BH2 adjusted in Oct 2008

Height of all monitoring wells within Landfill area adjusted from 02/05/09 onwards due to replacement of well platforms and borewell covers

Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7b	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW 1	GW 2	GW 3	GW4	GW 5	GW 6	GW7	GW 8
																									i i
40	01/10/2012	DD	0.4				1.1					1	0.2	0.5	2.1	Des	Dura								
	01/10/2012	DR	0.4				1.1					1	0.2	0.5	2.1	Dry	Dry	-	-	-	-	-	-	-	-
41	09/10/2012	DR	0.5	0.9		0.5	1.1	1.3	1.7	0.9	0.2	0.9	0.2	0.5	2	Dry	Dry	0.1	0.9	0.1		0.1			
42	19/10/2012	DR	0.6				0.9					0.9	0.2	0.5	2	Dry	Dry								
43	26/10/2012	DR	0.6				0.9					0.9	0.2	0.5	2	Dry	Dry								
44	02/11/2012	DR	0.9				0.9					0.9	0.1	0.5	1.9	Dry	Dry								
45	08/11/2012	DR	0.9				0.9					0.9	0.1	0.5	1.8	Dry	Dry								
46	14/11/2012	DR	0.8				0.9					0.9	0.1	0.5	1.9	Dry	Dry								
47	22/11/2012	DR	0.7				0.9					1	0.1	0.5	1.9	Dry	Dry								
48	26/11/2012	DR	0.7	1.2		0.4	1	1.3	1.6	0.9	0.2	1	0.1	0.5	2	Dry	Dry	0.1	0.9	0.1		0.1			
49	03/12/2012	DR	0.7				0.9					1	0.1	0.5	1.9	Dry	Dry								
50	14/12/2012	DR	0.6	1.2		0.4	1	1.3	1.6	1	0.2	1	0.1	0.5	2	Dry	Dry	0.1	0.9	0.1		0.1			
51	20/12/2012	DR	0.8				1					1.1	0.1	0.5	2	Dry	Dry								
52	28/12/2012	DR	0.7				1					1	0.1	0.5	2	Dry	Dry								
Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7b	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW 1	GW 2	GW 3	GW4	GW 5	GW6	GW7	GW 8

Table 4.4 Tramore Landfill Leachate & Groundwater Levels Q4 2012

na No Access

Heights of monitoring wells were adjusted from 07/03/08 onwards due to updated GPS locations

Height of LT5 & BH2 adjusted in Oct 2008

Height of all monitoring wells within Landfill area adjusted from 02/05/09 onwards due to replacement of well platforms and borewell covers

7.5. Landfill Gas

7.5.1 Introduction

The main landfill gases, Methane and Carbon dioxide, as well as Oxygen, were measured in monitoring boreholes within [BH1/1, BH2, BH7, BH10, RC4, L1, L2, L3, L4, L5] and outside [BH8, BH9, RC5] the landfill area, and in the site hut.

7.5.2 Results

Results are presented in tables 7.5.1 to 7.5.4 and figure 7.5.1.

Key parameter – methane

Methane is a product of the breakdown of biodegradable material in the landfill. The methane levels detected during 2012 are presented in figs. 7.5.1a and 7.5.1b below.

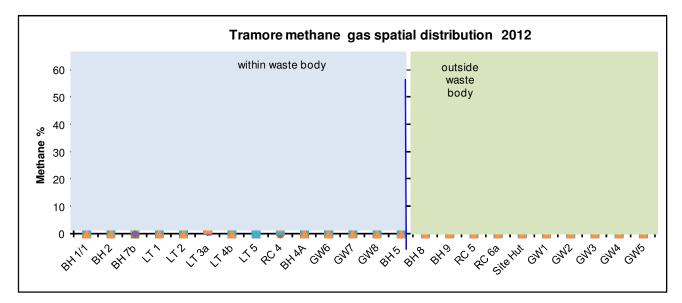


Fig 7.5.1a Methane spatial distribution 2012

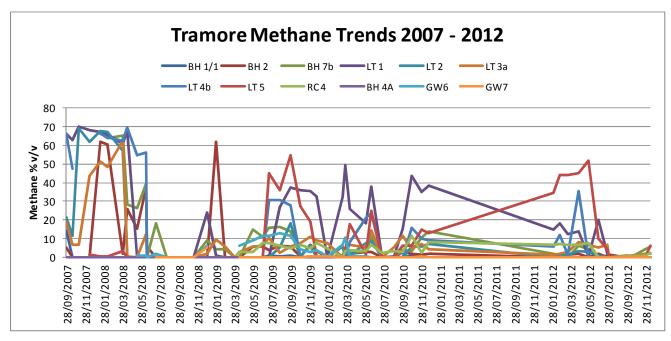


Fig 7.5.1b Methane temporal trends 2007 - 2012

7.5.3 Discussion

Spatial distribution (Fig 7.5.1a): Methane, consistent with the breakdown or organic waste, was present in some boreholes within the landfill area at levels up to 6.2% v/v (in LT5). This was lower than in previous two quarters. There was no landfill gas detected in the site building or at boreholes outside the waste body area.

Temporal trends (fig 7.5.1b): There was decrease in measured methane towards the end of the year. In general, across the landfill, there is a trend of decreasing methane since 2007, and further monitoring will indicate ongoing trends.

Table 7.5.1Gas Levels Q1 2012

Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7B	BH 8	BH 9	RC 4	RC 5	RC 6A	LT 1	LT 2	LT 3A	LT4B	LT5	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8
1	04/01/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.6 1011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	12/01/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1017																							
3	19/01/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1018																							
4	24/01/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1017																							
5	31/01/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1034	0 0 20.9 1036	0 0 20.9 1036	0 0 20.9 1036	0 0 20.9 1036	2.1 1.0 20.1 1036	0 0 20.9 1036	0 0 20.4 1036	6.5 2.1 16.4 1036	0 0 20.9 1036	0 0 20.9 1036	15.0 7.8 15.7 1034	0 0 20.9 1034	1.5 0.8 20.3 1036	5.7 2.7 18.2 1036	34.5 17.5 4.9 1034	0 0 20.9 1036	0 0 20.9 1036	0 0 20.9 1036	0 0 20.9 1034	0 0 20.9 1034	0 0 20.9 1036	0 0 20.9 1036	0 0 20.9 1036
6	09/02/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1035																							
7	17/02/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1024																							
8	23/02/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1023	0 0 20.9 1023	1.0 0.5 20.7 1023	0 0 20.9 1023	0 0 20.9 1023	0.8 0.8 20.4 1023	0 0 20.9 1023	0 0 20.9 1023	7.1 3.1 15.8 1023	0 0 20.9 1023	0 0 20.9 1023	18.2 13.7 9.7 1023	0.3 0.4 20.6 1023	1.7 0.8 20.4 1023	11.8 5.7 17.0 1023	44.2 21.8 6.4 1023	0 0 20.9 1023							
9	29/02/2012	DR	$\begin{array}{c} \mathrm{CH}_{4,}\\ \mathrm{CO}_{2,}\\ \mathrm{O}_{2} \end{array}$	0 0 20.9 1024																							
10	06/03/2012	DR	Air Pressure CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1024																							
11	16/03/2012	DR	CH _{4,} CO _{2,} O ₂	0 0 20.9 1030																							
12	20/03/2012	DR	Air Pressure CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1031	0 0 20.9 1031	1.2 0.6 20.1 1031	0 0 20.9 1031	0 0 20.9 1031	0 0 20.9 1031	0 0 20.9 1031	0.5 0.3 20.7 1031	6.8 3.0 16.5 1031	0 0 20.9 1031	0 0 20.9 1031	12.5 9.0 13.4 1031	1.4 1.3 19.8 1031	2.8 1.3 19.8 1031	1.3 0.2 19.8 1031	44.2 21.8 6.5 1031	0 0 20.9 1031							
13	29/03/2012	AOF	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1026																							
Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT 1	LT 2	LT 3A	LT4A	LT5	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8

Table 7.5.2 Gas Levels Q2 2012

Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7B	BH 8	BH 9	RC 4	RC 5	RC 6A	LT1	LT 2	LT 3A	LT4B	LT 5	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8
14	02/04/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1018																							
15	12/04/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1018																							
16	16/04/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1017																							
17	24/04/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 996	0 0 20.9 996	2.1 1.2 20.3 996	0 0 20.9 996	0 0 20.9 996	6.2 3.1 19.2 996	0 0 20.9 996	0.5 0.3 20.7 996	6.8 3.0 16.5 996	0 0 20.9 996	0 0 20.9 996	14.1 11.2 11.4 996	3.1 2.8 18.3 996	7.9 3.8 18.8 996	35.5 25.4 0.6 996	45.3 23.1 3.2 996	0 0 20.9 996							
18	04/05/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1001																							
19	08/05/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1010																							
20	14/05/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1012																							
21	24/05/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1025	0 0 20.9 1025	0 0 20.9 1025	0 0 20.9 1025	0 0 20.9 1025	4.1 1.9 19.4 1025	0 0 20.9 1025	0 0 20.9 1025	7.6 3.8 16.4 1025	0 0 20.9 1025	0 0 20.9 1025	0.5 0.3 20.6 1025	2.7 1.5 19.3 1025	6.5 2.9 18.8 1025	0 0 20.9 1025	52.0 24.7 3.9 1025	0 0 20.9 1025							
22	28/05/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1015																							
23	06/06/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1021																							
24	15/06/2012	AOF	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1003																							
25	20/06/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1017																							
26	27/06/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1015	0 0 20.9 1015	2.0 1.1 20.2 1015	0 0 20.9 1015	0 0 20.9 1015	0 0 20.9 1015	0 0 20.9 1015	0.2 0.6 20.9 1015	0 0 20.9 1015	0 0 20.9 1015	0 0 20.9 1015	20.2 15.3 6.7 1015	0.7 0.6 19.9 1015	5.2 3.2 19.0 1015	0 0 20.9 1015	10.0 14.5 1.5 1015	0 0 20.9 1015							
Week No	Date	O perator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT1	LT 2	LT 3A	LT4A	LT 5	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8

Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7B	BH 8	BH 9	RC 4	RC 5	RC 6A	LT1	LT 2	LT 3A	LT 4B	LT 5	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8
27	04/07/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1006	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28	10/07/2012	DR	$\begin{array}{c} \mathrm{CH}_{4,}\\ \mathrm{CO}_{2,}\\ \mathrm{O}_{2}\\ \mathrm{AirPressure} \end{array}$	0 0 20.9 1011																							
29	16/07/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1014																							
30	27/07/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1010	1.1 1.0 19.8 1010	0 0 20.9 1010	0 0 20.9 1010	0 0 20.9 1010	0 0 20.9 1010	0 0 20.9 1010	0 0 20.9 1010	0 0 20.9 1010	0 0 20.9 1010	0 0 20.9 1010	2.1 0.9 19.7 1010	0 0 20.9 1010	6.9 3.1 18.5 1010	0 0 20.9 1010	4.1 3.2 16.6 1010	0 0 20.9 1010							
31	02/08/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1007	0 0 20.9 1007	1.2 0.7 20.0 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007	0 0 20.9 1007
32	06/08/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1012																							
33	15/08/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 992																							
34	20/08/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1018																							
35	27/08/2012	LA	CH ₄ , CO ₂ , O ₂	0 0 20.9 1019																							
36	07/09/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1025																							
37	12/09/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1005																							
38	17/09/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1006																							
39	26/09/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0.7 0.4 19.9 995	0 0 20.9 995	0 0 20.9 995	0.2 0.7 19.2 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	1.1 1.9 19.4 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995	0 0 20.9 995
Week No	Date	Operator	Air Pressure Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT1	LT2	LT 3A	LT 4A	LT 5	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8

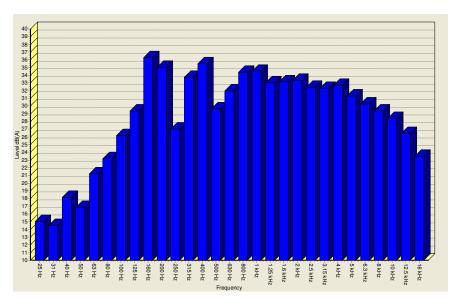
Table 7.5.3Gas Levels Q3 2012

Table 7.5.4Gas Levels Q4 2012

Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7B	BH 8	BH 9	RC 4	RC 5	RC 6A	LT 1	LT 2	LT 3A	LT4B	LT5	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8
40	01/10/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
41	09/10/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0.3 0.9 19.1 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0.8 1.6 19.6 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014	0 0 20.9 1014
42	19/10/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1006																							
43	26/10/2012	DR	$\begin{array}{c} \mathrm{CH}_{4,}\\ \mathrm{CO}_{2,}\\ \mathrm{O}_{2}\\ \mathrm{AirPressure} \end{array}$	0 0 20.9 1017																							
44	02/11/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 989																							
45	08/11/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1019																							
46	14/11/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1026																							
47	22/11/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1001																							
48	26/11/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	4.2 3.1 14.9 1011	0 0 20.9 1011	0 0 20.9 1011	1.1 2.3 17.2 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	1.7 1.5 18.8 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011
49	03/12/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1001																							
50	14/12/2012	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 987	0 0 20.9 987	0 0 20.9 987	0 0 20.9 987	0 0 20.9 987	5.8 4.2 11.0 987	0 0 20.9 987	0 0 20.9 987	2.5 1.4 17.0 987	0 0 20.9 987	0 0 20.9 987	0 0 20.9 987	0 0 20.9 987	1.7 1.5 18.8 987	0 0 20.9 987	6.2 4.5 11.6 987	0 0 20.9 987							
51	20/12/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1002																							
52	28/12/2012	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1011																							
Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT 1	LT 2	LT 3A	LT4A	LT5	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8

7.6 NOISE

7.6.1 Introduction


Daytime noise levels were recorded on 13/4/12 at two locations at Tramore Landfill Site, B1 and B2, as specified in the licence monitoring schedule D. These locations are shown in appendix 1. There are limits of 55 dB Leq(30) daytime, and 45 dB Leq(30) night-time imposed as a condition of the licence. A Cirrus 800A Sound Level Meter was used. The meter was calibrated and checked with a 94 dB calibrator before and after each measurement. Broadband and Frequency Band analysis measurements were conducted at each location. A summary of results is presented in table 7.6.1, below.

7.6.2 Summary of Results / Discussion

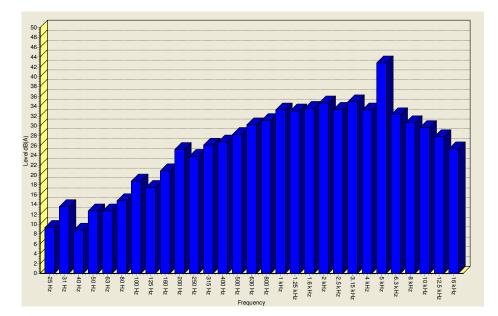

Site	Date of	Time of	L(A)eq[30mins]dB
	Monitoring	commencement of	
		monitoring	
B1	13/4/12	11.18	52.7
B2	13/4/12	12.05	44.8

Table 7.6.1 Summary of noise measurements at Tramore landfill 18/5/11.

Average noise levels, LAEQ(30), at sites B1 and B2 were within the daytime limits of 55dB. Night-time measurements were not made, as the landfill is not operational outside of daytime hours.

B1 1/3 Octave Noise Analysis, (A weighting) 13/4/12

B2 1/3 Octave Noise Analysis, (A weighting) 13/4/12

Frequency analysis at sites B1 and B2 indicated a broad range of frequencies, consistent with a variety of noise sources, such as wind and machinery and traffic. Some low frequency noise, of unknown origin but perhaps the noise from the seashore, at location B1 was evident. A single tone at 5hz at B2 was detected, source unknown.

7.6.a DUST MONITORING

Dust deposition was measured at monitoring sites B1 and B2 over a 27 day period 13/4/12 to 9/5/12 at locations B1 and B2, using the Bergerhoff gauge method.

Results are presented in table below.

		Dust Monit	toring Tramor	e Landfill		
Monitoring	o interval		13/04/2012	to	09/05/2012	
No Of Da			27	10	07/03/2012	
Location	Weight 1	Weight 2	No of Days	Depositio	on Rate mg/sq. m/day	
B1	0.3316	0.3319	27		5.1	
B2	0.3337	0.3344	27		11.8	

Dust deposition levels were low at 5.1 to 11.8 mg/m2/day. This is negligible compared to a general nuisance dust deposition limit of 350 mg/m2/day.

7.7 ANALYSIS OF ESTUARINE BENTHIC MACROFAUNA

7.7.1 CHEMICAL ANALYSIS

7.7.1.1 METHODS

Shellfish samples – cockles (*Ceracostaderma edule*) and mussels (*Mytilis edulis*) were taken from the backstrand, within 200 metres of the landfill, on 7/12/2011.

Approximately 50 adult individuals of each type were sampled along the sampling zone, figure 7.8.1. These individuals were mixed well and a subset of 15 individuals of each type was taken for processing and testing.

Shellfish were depurated overnight in clean aerated seawater, before de-shelling. The flesh was blotted dry, and dried at 60degC for 3 days. The dried flesh was ground to powder at Waterford County Council's laboratory and portions were analysed for metals at Environmental Laboratory Services, Cork. QUASIMEME³ reference materials were processed with the samples. Only results which satisfied the QUASIMEME criteria for accuracy are included in this report.

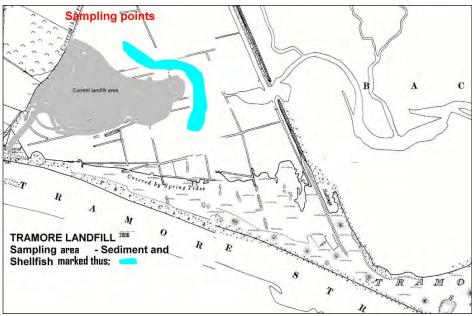


Fig 7.8.1. Tramore backstrand shellfish and sediment sampling areas

7.7.1.2 RESULTS

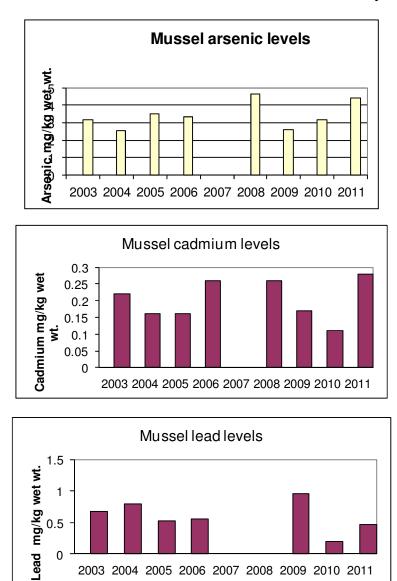
Results of analysis are presented in table 1.

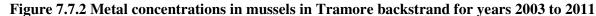
PARAMETER	Cockle flesh Cardium edule	Mussel flesh Mytilis edulis	Shellfish Stand	
mg/Kg wet weight *	December 2011	December 2011	EU Regulation 221/2002/EC	SI No. 268 of 2006
Arsenic	2.8	4.4		5.6
Cadmium	0.098	0.279	1	0.93
Lead	0.294	0.465	1.5	1.4
Zinc	40.5	49.9		744

Table 7.8.1. Trace metal concentrations in shellfish samples from Tramore inner backstrand, December 2011 mg/Kg wet weight

7.7.1.3 COMPARISON WITH STANDARDS

*EU Commission Regulation 466/2001/EC (as amended by Regulation 221/2002/EC) came into effect on 5^{th} April 2002. This set maximum levels for mercury, cadmium and lead in bivalve molluscs of 0.5mg kg⁻¹, 1mg kg⁻¹, and 1.5mg kg⁻¹ wet weight respectively.


The EC (Quality of shellfish waters) Regulations, SI No. 268 of 2006 contains guidelines values for heavy metals in shellfish flesh. These standards are specified as dry weight and corresponding wet weight values have been calculated for inclusion in table 7.8.1 above.


Discussion

The metals levels in mussel and cockle samples from Tramore backstrand in December 2011 complied with EU and national shellfish quality standards.

7.7.1.4 TRENDS AND COMPARISON WITH PREVIOUS RESULTS

The results obtained for mussels and cockles in the 2011 survey are presented in figure 7.7.2 below for comparison with previous results for this site.

7.7.1.5 Discussion

Results for 2011 were similar to previous years. Some minor fluctuations from year to year are apparent, but there is no clear trend and the differences are likely due to natural variations.

7.7.1.6 COMPARISON WITH OTHER SITES

Trace metal concentrations in mussel samples from Tramore inner backstrand are compared in table 7.8.2 with levels found in the following surveys;

- a) Marine Institute survey of 25 shellfish growing areas around the Irish coast, sampled 2004 and 2005.
- b) EPA surveys of Waterford and Wexford Harbours, 2004 and 2005.

Table 7.7.2. Trace metal concentrations in mussels from Tramore backstrand, and at other estuarine and coastal sites

	Tramore inner backstrand	Wexford Harbour,	Waterford Harbour	from 25	els in musso locations on coast, e Institute S	the Irish
mg/kg wet weight		EPA survey, Ref 3	EPA survey, Ref 3		2004 - 2005 Refs 1 and 2	
		2004	2005			
	07 December 2011	Mean of 4	Mean of 4	Mean	90% ile	Max
		samples	samples			
Arsenic	4.43	3.6	2.6			
Cadmium	0.28	0.3	0.25	0.15	0.2	0.35
Chromium	0.93	4	1.4	0.18	0.33	0.66
Copper	NR	2.2	2.9	1.39	1.57	1.97
Lead	0.47	1.3	2.1	0.23	0.52	0.85
Zinc	49.98	15.6	25.4	15.69	19.1	27

7.7.1.7 Discussion

Metals levels recorded in Tramore backstrand mussels in December 2011 were similar to that found at other estuarine and coastal sites around the country.

7.7.2 MICROBIOLOGICAL ANALYSIS

7.7.2.1 Methods

Samples of cockles and mussels were collected as described in section 7.8.1.1 above. Testing of intervalvular fluids for faecal coliforms was carried out atWaterford County Council Adamstown Laboratory. Results are compared with EC (Quality of Shellfish Waters) Regulations No. 268 of 2006, schedule 4.

7.7.2.2 Results

Sample	Faecal coliforms per 100 mls	EC (Quality of Shellfish Waters)
		Regulations No. 268 of 2006
Tramore backstrand Cockles	<100	≤300 per 100 mls in intervalvular
Tramore backstrand Mussels	<100	liquid

7.7.2.3 Discussion

The faecal coliform counts in cockles and mussels intervalvular liquid were in compliance with regulatory guidelines.

7.8.2. Sediment.

7.8.2.1 Introduction

A composite sample of sediment (approx 2 kg) was taken on 7/12/11 at ten sampling points along a sampling zone adjacent to Tramore landfill, see fig 7.8.1 above. This was hand mixed on-site, and a portion (approx 200g) taken for analysis. The composite sample was dried at 105 deg for two days, and powdered with mortar and pestle in Waterford County Council's laboratory. Portions of the powdered samples were analysed for metals at Environmental Services Laboratory, Cork. QC and reference materials were processed with the samples.

7.8.2.2 Results

Parameter	Units	Tramore inner	S	ediment Qual	ity Standard	S
		backstrand, December 2010	Baseline *	Threshold **	ERL ***	Proposed Irish sediment guidance levels ****
Arsenic	mg/Kg dry wt.	5.8				
Cadmium	mg/Kg dry wt.	<0.5	0.5	1.5	5	1
Chromium	mg/Kg dry wt.	21.5	5	50	80	100
Copper	mg/Kg dry wt.	9.85	5	50	70	50
Iron	mg/Kg dry wt.	15,975				
Lead	mg/Kg dry wt.	13				50
Zinc	mg/Kg dry wt.	55.8	20	100	120	400

Table 4. Trace metal concentrations in sediment from Tramore inner backstrand, and comparison with environmental standards

7.8.2.3 Comparison with Standards.

Based on field investigations and literature data, Jeffrey et al (1995) ref 4, established <u>baseline</u> and <u>threshold</u> values for organic matter and heavy metals in estuarine sediments.

* The baseline concentration is defined as "that of the natural unpolluted estuary and corresponds to the authors views of the pre-industrial situation for sediments".

** The threshold is "the pollutant concentration beyond which deleterious environmental change is observable".

*** The National Oceanic and Atmospheric administration in USA (Long and Man, 1995) also established sediment quality guidelines. The guidelines are based on a review of numerous studies of the correlation between the toxicity of sediments and the content of pollutants. The ERL limits shown represent the concentration above which there may be a risk of deleterious impacts on fauna.

**** Proposed new Irish sediment guidance levels. Cronin et al, *Guidelines for the assessment of dredge material for disposal in Irish waters*. Marine Institute, 2006

Discussion

Chromium, Copper and Zinc at Tramore were above baseline levels. However, all values were below threshold and ERL limits, and proposed Irish standards for non-contaminated sediment, and were well below concentration where deleterious impacts on fauna can be expected.

7.8.2.4 Comparison with previous surveys and other sites

					Tran Backs						Waterford Estuary ref 3	Wexford Hbr ref 3
Parameter	Units	2011	2010	2008	2006	2005	2004	2003	2002	1998	2001	2004
Arsenic	mg/kg dry wt	5.8	8.5	6.1	4.96	5.2	5.2	7.1	5.6		8	10
Cadmium	mg/kg dry wt	<0.5	0.2	<0.5	0.063	0.1	<0.44	<0.04	0.123	0.42	0.04	0.3
Chromium	mg/kg dry wt	21.5	27.5	16.4	16.4	14.3				65.6	35	31
Copper	mg/kg dry wt	9.85	2.1	10.6	6.98	8.1	10.7	8.6	5.4	11	9.8	13
Iron	mg/kg dry wt	15975	15245	13094	12,880	9721	13106	14048	15500		17466	24689
Lead	mg/kg dry wt	13	14.7	19.4	9.6	11.3	14.5	11	15.1		26	20
Manganese	mg/kg dry wt		258	242	225	215	263	398	270		622	385
Zinc	mg/kg dry wt	55.8	54.8	52.6	41.2	34	48.5	35	51.4	55.3	141	83

 Table 5. Trace metal concentration in sediment from

 Tramore inner backstrand and other estuarine and coastal sites

7.8.2.5 Discussion

December 2011 Tramore backstrand sediment metal levels were similar to levels found at that site in previous

years.

The majority of sediment metal levels at Tramore backstrand were lower than that found in samples from

Waterford and Wexford Estuaries.

7.9 CONCLUSIONS – Impact of Tramore Landfill on Surrounding Environment

There is no indication of any effect from the landfill on the surface water sites SW1 to SW6.

The results of groundwater monitoring are in line with results from previous rounds of testing carried out since 1999. As indicated in previous reports, it appears that groundwater quality within the current working area is impacted by leachate from the landfill, with elevated ammonia and iron. However heavy metals and organic concentrations are low at all boreholes. Groundwater outside the landfill site was generally satisfactory.

Leachate quality was as expected for a landfill accepting mainly domestic and inert waste. Heavy metal and organic content were low. Based on chemical analysis, and available dilution, no significant environmental effect from landfill leachate is expected. Leachate boreholes appear to be drying up, most likely as an effect of landfill capping.

No noise nuisance was indicated during the annual noise survey.

The metal concentrations and microbial quality in shellfish from Tramore inner backstrand complied with relevant shellfish quality standards and were similar to that found at other estuarine and coastal sites around the country. Monitoring results indicate that the landfill is having no significant impact on adjacent sediment and shellfish.

The environmental monitoring carried out during 2012 indicates that the landfill had no detrimental impact on the surrounding environment.

7.10 Ecological Report and Survey

An Ecological Report and Survey is included in Appendix G

8. Topographic Survey

As there was little or no works carried out within the body of the landfill during the reporting period is was felt that it was not necessary to carry out a further topographical survey from that previously submitted. The licensee will formally apply to the Agency to have the requirement to have a topographical survey carried out on an annual basis changed. The most recent topographic survey is included in this report. This is attached in Appendix F

9. Slope Stability Assessment

As no significant works were carried out on the main landfill body during the reporting period there was no significant slope slippage in 2012. The licensee will formerly apply to the Agency to have the frequency at which the Slope Stability Assessment carried out reduced. The most recent Assessment (2010) is included in Appendix M

10. Proposed Development of the Facility and Timescales for such development

a) Landfill Capping and Restoration

A Closure Restoration and Aftercare Plan was sent to the EPA during 2009 and capping was completed in 2009.

b) Landfill Gas Management

Under condition 3.12.1 of the Waste Licence "infrastructure for the active collection and flaring of landfill gas has been installed at the facility. The flare compound is an enclosed type design". The gas collection system was installed in tandem with the final capping of the landfill. Gas wells were bored in 2006 and the quantity of gas in these boreholes was recorded. The permanent flare was installed in April 2009. Gas field balancing is now carried out at regular intervals and a telemetry system to alert the licensee of flare irregularities has also been installed. The licensee has now reached an agreement with the flare manufacturers Uniflare Ltd to carry out monitoring of the flare unit in accordance with Condition 6.1 and Schedule C.1.2 of the licence. Details of Flare Monitoring and Landfill Gas Survey for the reporting period are included in Appendix L

11. Volume of leachate produced and volume of leachate transported / discharged offsite.

The annual volume of leachate generated was estimated for the Waste Licence Application in 1998 to be in the order of 14087m³. A saline intrusion study was conducted on the Landfill in 2005 and submitted to the Agency. A leachate extraction system has been installed in tandem with the final capping of the landfill. Leachate extraction wells were bored in 2006 and wells were monitored. These wells are now connected and pumping trials began in early 2009. A leachate

55

tank was installed which collects leachate pumped from these wells. This leachate will be transported to Tramore Waste Water Treatment Plant. Leachate levels, which were generally low appear to have been reduced further due to the capping works, which will keep rainwater from entering the landfill, also the pumping of the leachate wells will reduce the leachate head. Leachate will be brought to the Tramore Waste Water Treatment plant under agreement in accordance with Condition No. 5.8.1 of the facility licence.

Details of the volume of leachate removed from the site during the reporting period can be found in Appendix I

12. Report on Development works undertaken during the Reporting Period Remediation of Landfill

Works carried out on remediation during the reporting period consisted mainly of snagging works in relation to the leachate abstraction system. The contract handover to the licensee has now been finalised as remediation works capping works are complete. Maintenance agreement for both the Flare compound and Leachate system are now in place.

13. Annual Water Balance Calculation and Interpretation

The annual water balance could not be determined as the site is subject to saline intrusion. Meteorological data from Johnstown Castle weather station is collected for the facility on a daily basis. (Appendix E).

14. Report on the progress towards achievement of the Environmental Objectives and Targets contained in the previous year's report. (*Pleases refer to the* ^{AER} 2008 for the previous year's Objectives and Targets).

- All site infrastructures have been maintained to the standards outlined in Condition 3 of the Waste Licence.
- 2. The effect of environmental nuisances was kept to a minimum during the reporting period. There has been an increase in unauthorised dumping in and around the site boundaries since the closure of the Civic Amenity site but our litter wardens have remained on top of this. In a further effort to prevent these occurrences it is now proposed to relocate the bottle banks and clothes banks at the site entrance and to close the access roadway to the public. Additional CCTV cameras have been installed at the facility entrance to serve as a deterrent to unauthorised dumping in this area and have been successful in this regard.

- 3. Periodically relatively high levels of methane, consistent with the breakdown or organic waste, were present at boreholes BH7, LT1, LT2, LT3, LT4 and LT5, within the landfill area. Other monitoring sites within the landfill area, had none or only trace levels of methane and carbon dioxide (<1%). The parameters specified in Condition 6 and Schedule C of the licence had been exceeded periodically at Borehole GW07 in 2009 as this borehole has been drilled through landfill material. However this has not been an issue during the current reporting period.</p>
- 4. The Monitoring Programme as outlined under condition 8 and Schedule D of the Waste Licence has been maintained during the reporting period and all reports have been submitted to the Agency.
- 5. There is a comprehensive set of records for 2005, 2006, 2007, 2008, 2009, 2010, 2011 and 2012 held at the Facility Office.
- 6. No emergency or significant complaint occurred on site during the reporting period
- 7. A Closure Restoration and Aftercare plan has been approved by the Agency, and works were completed in April 2009 along with Gas Management and Leachate Management.

15. Schedule of Environmental Objectives and Targets for the forthcoming year

Objective 1 – To maintain site infrastructure to the standards outlined in Condition 3 of the Waste Licence

Target 1.1 - Any defect to the existing infrastructure will be repaired / replaced as quickly as possible on an ongoing basis.

Objective 2 – To minimise the effect of environmental nuisances

Target 2.1 – To implement the procedures outlined in Condition 7 of the Waste Licence on an ongoing basis throughout the year. Waterford County Council have endeavoured to achieve compliance with this condition and have to date been successful.

Objective 3 – That no specified emissions from the facility, shall exceed the limit values, set out in Condition 6 and Schedule C of the Waste Licence.

Objective 4 – To maintain the Monitoring Programme as outlined in Condition 8 and Schedule D of the Waste Licence.

Target 4.1 – To carry out the monitoring programme as outlined in Condition 8 and Schedule D of the Waste Licence.

Target 4.2 – To submit Monitoring Reports to the Agency within the timescale as outlined in Schedule E of the Waste Licence.

Objective 5 – To establish good record keeping and that all records are held at the facility office to comply with Condition 10 of the Waste Licence.

Objective 6 – That no emergency situation occurs on the site.

Target 6.1 – Ensure the contingency arrangements as outlined in Condition 9 of the Waste Licence are implemented throughout the year and to follow the procedure set out in the Emergency Response Procedures.

Objective 7 – Ensure the there is sufficient funds available to comply with Condition 12 of the Waste Licence.

The gate fee was the only avenue available to Waterford County Council to raise funds to ensure financial stability of the facility. As the Civic Amenity Facility has now been enclosed indefinitely the licensee will endeavour to identify other means of funding the facility.

16. Reported Incidents and Complaints Summary

16.1 Incidents

With regard to Condition 11.3 of the issued licence no incidents took place during the reporting period.

16.2 Complaints

No complaints were received during the reporting period.

17. Reports on Financial Provisions

Waterford County Council is responsible for providing annual fees to the Agency for monitoring and inspection of the site. The annual fee for 2012 for monitoring was \notin 21,316 and \notin 14,079 for the licence. With regard to the details of financial provisions required under Condition 12.2.1 which are to be set aside in relation to the prevention of environmental damage and in order to underwrite the costs for remedial actions following anticipated events or incidents the licensee will establish, through consultation with the Agency, a timeframe for the provision and value of the required fund.

18. Management and Staffing Structure of the Facility

This can be viewed in Appendix H – Management Structure of Waterford County Council.

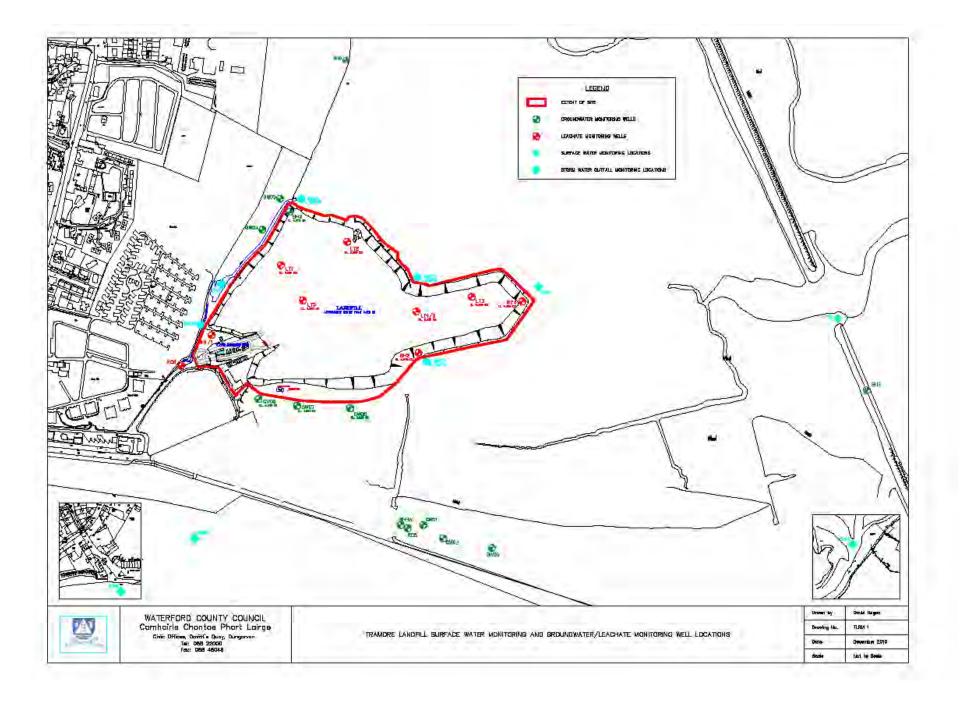
19. Programme for Public Information

A record of all monitoring results and reports are maintained both at the facility office and within the Environment Section of Waterford County Council at the Civic Offices in Dungarvan Co. Waterford.

20. Reports on Training of Staff

Both the Facility Manager and Deputy Manager have completed the Fás Waste Management Training Course and Fás Safe Pass program along with the IOSS Safety Managers course.

21. Maintenance Program


The licensee had adopted an electronic Preventative Maintenance Program (PEMAC by MJM Technologies). This Program covers all aspects of site maintenance and include monitoring and reporting, health and safety, maintenance and all training. All records and schedules are also maintained using the Project Vision maintenance system.

22. Statement of Financial Provisions in Relation to Prevention of Environmental Damage and Remedial Actions

An Environmental Liability Risk Assessment is included in Appendix K

<mark>Appendix A</mark>

Monitoring Locations

Appendix B Surface Water Results

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Environmental Management And Planning Division, EPA.
Report date:	10/05/12
Licensee:	Waterford County Council
Facility:	Tramore Waste Disposal Site

Tramore Intake & Tramore Burrows, Tramore, Co. Waterford Reference No: W0075-01

Date received:	07/02/2012

Date	e collected: 07/	02/2012	Date receiv	ved: 07/02	/2012	
		Start/En	Laboratory Ref: Type of sample: Location code: Sampling point: Sampled by: Time Sampled: d - Dates of Analysis: Status of results:	1200569 Surface Water WST-W0075-01-SW4 clear Jim McGarry 11:20 06-02-12/05-04-12 Final Report	1200573 Surface Water WST-W0075-01-SW2 clear Jim McGarry 15:15 06-02-12/05-04-12 Final Report	1200601 Surface Water WST-W0075-01-SW Jim McGarry 15:05 07-02-12/05-04-12 Final Report
Para	ameter	Units	Limits	the second second		
F	Temperature	°C		8.9	10.4	9.6
FI	Dissolved Oxygen (as %Sat)	% Saturation		106.0	102.0	129.0
F	H	рН		8.1	8.3	8.1
F	Conductivity @25°C	µS/cm		NM	NM	1226
-	Salinity	%0) III	14.6	21.2	
- /	Ammonia	mg/I N		0.05	0.16	0.12
L (Chloride	mg/l Cl	7	2		191
- 0	ortho-Phosphate (as P)	mg/I P	·	0.04	0.03	<0.01
-	Total Oxidised Nitrogen (as N)	mg/i N	1	- 19	nr	NR
- 1	Biochemical Oxygen Demand	mg/I O2		1.8	1.5	1.0
- 0	Chemical Oxygen Demand	mg/I 02			Terrar Marcala II.	29
- 1	Fluoride	mg/l F		1.1	1,4	<0.25
-	Sulphate	mg/I SO4		1000	12000	57
-	Suspended Solids	mg/l		17	NM	51
	Total coliforms	No/100 ml		1200	630	12000
- 1	E Coli	per 100ml		82	100	<10
- /	Aluminium	ug/l		<250	<250	96
L /	Antimony	ug/l		<5	<5	<5
L /	Arsenic	ug/l		35	58	<5
L	Barium	ug/l		48	63	150
L	Beryllium	υgΛ		<5	<5	<5

Report number:KK1200217/1

Page 1 of 2

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Test Report

Report of: Report to: Report date:	Analysis of la Waterford Co 18/04/12	ndfill site sample(s) unty Council	
Facility:		e Disposal Site	ramore, Co. Waterford
Reference No:	W0075-01	a trainere barrene, t	
Date collected:	06/02/2012	Date received:	06/02/2012

Report number:KK1200212/1

Page 1 of 4

			Laboratory Ref:	1200569	1200570	1200571	1200572	1200573
			Type of sample:	Surface Water				
			Location code:	WST-W0075-01-SW4	WST-W0075-01-SW3	WST-W0075-01-SW5	WST-W0075-01-SW6	WST-W0075-01-SW2
			Sampling point:	clear	clear	clear	clear	clear
			Sampled by:	Jim McGarry				
			Time Sampled:	11:20	12:00	13:30	13:40	15:15
		Start/E	nd - Dates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12
			Status of results:	Final Report				
Pa	rameter	Units	Limits					
F	Temperature	°C		8.9	9.9	9.5	9.2	10.4
F	Dissolved Oxygen (as %Sat)	% Saturation		106.0	97.0	100.0	100.0	102.0
F	pН	pН		8.1	8.0	8.0	8.0	8.3
F	Conductivity @25°C	µS/cm		NM	NM	NM	NM	NM
L	Salinity	‰		14.6	11.4	32.1	32.3	21.2
L	Ammonia	mg/IN		0.05	0.11	<0.01	<0.01	0.16
L	ortho-Phosphate (as P)	mg/l P		0.04	0.03	0.02	0.03	0.03
L	Total Oxidised Nitrogen (as N)	mg/IN		-	nr	nr	nr	nr
L	Biochemical Oxygen Demand	mg/I 02		1.8	1.3	<1.0	<1.0	1.5
L	Fluoride	mg/IF		1.1	0.95	2.5	2.5	1.4
L	Sulphate	mg/I SO4		1000	820	2200	2400	12000
L	Suspended Solids	mg/l		17	24	15	13	NM
L	Total coliforms	No/100 ml		1200	2200	60	100	630
L	E Coli	per 100ml		82	73	<20	62	100
L	Aluminium	ug/l		<250	<250	<250	<250	<250
L	Antimony	ug/l		<5	<5	<5	<5	<5
L	Arsenic	ug/l		35	29	76	79	58
L	Barium	ug/l		48	55	39	41	63
L	Beryllium	ug/l		<5	<5	<5	<5	<5
Ľ	Cadmium	ug/l		<5	<5	<5	<5	<5
L	Calcium	mg/l		240	190	470	500	430
L	Chromium	ug/l		5.9	<5	6.6	7.9	7.4
L	Cobalt	ug/l		<5	<5	<5	<5	<5

Report number:KK1200212/1

Page 2 of 4

			Laboratory Ref:	1200569	1200570	1200571	1200572	1200573
				Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
			Type of sample:	WST-W0075-01-SW4	WST-W0075-01-SW3	WST-W0075-01-SW5	WST-W0075-01-SW6	WST-W0075-01-SW2
			Location code:	NAMES OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.		and a second		
			Sampling point:	clear	clear	clear	clear	clear
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry
			Time Sampled:	11:20	12:00	13:30	13:40	15:15
		Start/E	nd - Dates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report
Pai	ameter	Units	Limits					
	Copper	ug/l		52	26	73	78	59
	Iron	ug/l		<250	<250	<250	<250	530
	Lead	ug/l		<5	<5	<5	<5	<5
l.	Magnesium	mg/l		600	430	1300	1400	950
	Manganese	ug/l		<250	<250	<250	<250	<250
	Mercury	ug/l		<5	<5	<5	<5	<5
-	Molybdenum	ug/l		<5	<5	8.8	9.2	6.3
<u>.</u>	Nickel	ug/l		<5	<5	5	5.4	6.3
	Potassium	mg/l		220	160	460	500	350
	Selenium	ug/l		130	100	280	280	210
L	Sodium	mg/l		5400	3900	12000	13000	8800
L)	Thallium	ug/l		<5	<5	<5	<5	<5
L	Uranium	ug/l		<5	<5	<5	<5	<5
L.	Vanadium	ug/l		47	36	93	100	77
Ľ	Zinc	ug/l		<30	<30	<30	<30	<30

Report number:KK1200212/1

Page 3 of 4

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	29/08/12

Facility:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford					
Reference No:	W0075-01					
Date collected:	14/05/2012	Date received:	14/05/2012			

Report number:KK1200761/1

Page 1 of 3

			Laboratory Ref:	1202117	1202118	1202119	1202120	1202121	1202122	
			Type of sample:	Surface Water						
			Location code:	WST-W0075-01- SW5	WST-W0075-01- SW6	WST-W0075-01- SW3	WST-W0075-01- SW4	WST-W0075-01- SW1	WST-W0075-01- SW2	
			Sampling point:	Clear	Clear	Clear	Clear	Clear	Clear	
5			Sampled by:	DB/JS	DB/JS	DB/JS	DB/JS	DB/JS	DB/JS	
			Time Sampled:	08:55	09:05	09:50	10:30	11:50	13:20	
		Start/End - D	ates of Analysis:	14-05-12/21-05-12	14-05-12/21-05-12	14-05-12/21-05-12	06-05-12/20-05-12	14-05-12/21-05-12	14-05-12/21-05-12	
		5	Status of results:	Final Report						
Par	ameter	Units	Limits	8						
F	Temperature	°C		10.4	10.3	10.8	12.2	15.1	13.7	
F	Dissol∨ed Oxygen (as %Sat)	% Saturation		101.0	102.0	97.9	150.9	126.0	110.0	
F	pН	pН		8.0	8.1	8.1	8.7	8.2	7.9	
F	Salinity	‰		34.6	34.8	29.7	31.0	nm	33.0	
F	Conductivity @25°C	μS/cm		nm	nm	nm	nm	1018	nm	
L	Ammonia	mg/l N		0.02	0.02	0.05	0.02	0.18	0.02	
L	Chloride	mg/l Cl		nm	nm	nm	nm	179	nm	
L	Biochemical Oxygen Demand	mg/l O2		<1.0	<1.0	1.6	3.6	3.0	<1.0	
L	Chemical Oxygen Demand	mg/l O2		nm	nm	nm	nm	34	nm	
L	Suspended Solids	mg/l		17	11	50	20	12	9	
L,	Total coliforms	No/100 ml		40	40	290	40	530	10	
L	E Coli	per 100ml		<20	<20	20	20	20	<5	

Report number:KK1200761/1

Page 2 of 3

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	22/01/13
and the second se	has an include

 Facility:
 Tramore Waste Disposal Site

 Tramore Intake & Tramore Burrows, Tramore, Co. Waterford

 Reference No:
 W0075-01

Da	te collected: 13/	/11/2012	Date receiv	/ed: 13/11/	2012	
-			Laboratory Ref:	1204941	1204942	
			Type of sample:	Surface Water	Surface Water	
			Location code:	WST-W0075-01-SW	WST-W0075-01-SW4	
			Sampling point:	SW04, no sample,flow too low.		
			Sampled by:	Diarmuid Berry	Diarmuid Berry	
			Time Sampled:	nm	13:30	
		Start/En	d - Dates of Analysis:	13-11-12/13-11-12		
			Status of results:	Final Report	Final Report	
Pa	rameter	Units	Limits			
F	Temperature	°C		5 - F - 13	12.0	
F	Dissolved Oxygen (as %Sat)	% Saturation			108.0	
F	pН	рН			8.1	
F	Salinity	%0			27.4	
F	Conductivity @25°C	µS/cm		2	nm	-
L	Ammonia	mg/l N		· · · · · · · · · · · · · · · · · · ·	0.34	
L	Chloride	mg/l Cl		÷	>10838	
L	Biochemical Oxygen Demand	mg/I O2		2. 0	nr	
	Suspended Solids	mg/l		100	27	
L		No/100 ml			620	
L	Total coliforms	a service inter-				

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	22/01/13

Facility:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford					
Reference No:	W0075-01					
Date collected:	13/11/2012	Date received:	13/11/2012			

Report number:KK1201935/1

Page 1 of 3

			Type of sample: Location code:	Surface Water WST-W0075-01-	Surface Water	Surface Water	a a b b b b b b b b b b		a second s	construction of the second sec
			Location code:	MOT MOOTE OF		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
				SW5	WST-W0075-01- SW3	WST-W0075-01- SW	WST-W0075-01- SW2	WST-W0075-01- SW02	WST-W0075-01- SW	WST-W0075-01- SW1
			Sampling point:			SW03	no sample tide out		SW01	
			Sampled by:	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry
			Time Sampled:	10:40	11:25	12:15	12:20	12:35	12:40	12:50
		Start/End - Da	ates of Analysis:				13-11-12/13-11-12			1
		S	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Parame	eter	Units	Limits							
F Tem	nperature	°C		11.8	11.8	11.5	141	10.8	11.8	11.4
F Diss	sol∨ed Oxygen (as %Sat)	% Saturation		99.0	98.0	86.0	121	85.0	110.0	91.0
F pH		pН		8.1	8.0	7.6		7.5	8.1	7.9
F Sali	inity	‰		34.2	27.7	5	121	174	5	5
F Con	nductivity @25°C	μS/cm		nm	nm	1164		1290	1012	1040
L Amr	monia	mg/l N		0.7	0.95	0.51	3)	0.260.277	0.05	1.2
L Chlo	oride	mg/l Cl		>14710	>12840	271	(=)	114	783	169
L Biod	chemical Oxygen Demand	mg/I O2		nr	nr	nr	-	nr	nr	nr
L Sus	spended Solids	mg/l		24	30	6	-	<5	<5	5
L Tota	al coliforms	No/100 ml		10	1500	9200	141	16000	3700	2800
L E C	Coli	per 100ml		<10	280	<10	-	20	<10	86

Report number:KK1201935/1

Page 2 of 3

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	22/01/13
and the second se	has an include

 Facility:
 Tramore Waste Disposal Site

 Tramore Intake & Tramore Burrows, Tramore, Co. Waterford

 Reference No:
 W0075-01

Date collected: 13		/11/2012	Date receiv	/ed: 13/11/	/2012	
			Laboratory Ref:	1204941	1204942	
			Type of sample:	Surface Water	Surface Water	
Location code:			WST-W0075-01-SW	WST-W0075-01-SW4		
			Sampling point:	SW04, no sample,flow too low.		
Sampled by: Time Sampled:			Diarmuid Berry	Diarmuid Berry		
			nm	13:30		
	Start/End - Dates of Analysis:			13-11-12/13-11-12		
			Status of results:	Final Report	Final Report	
Parameter		Units	Limits			
F	Temperature	°C			12.0	
F	Dissolved Oxygen (as %Sat)	% Saturation			108.0	
F	pН	pН			8.1	
F	Salinity	%			27.4	
F	Conductivity @25°C	µS/cm		2	nm	-
L	Ammonia	mg/l N			0.34	-
	Chloride	mg/l Cl		÷	>10838	
-	Biochemical Oxygen Demand	mg/l O2		2 0	nr	
L	Guerranded Calida	mg/l			27	
L	Suspended Solids					
	Total coliforms	No/100 ml		~	620	

Report number:KK1201936/1

Test Report

Report of: Report to: Report date:	Analysis of la Waterford Co 22/01/13	ndfill site sample(s) unty Council	
Facility:	Tramore Wast	e Disposal Site	1
	Tramore Intake	& Tramore Burrows, T	ramore, Co. Waterford
Reference No:	W0075-01		
Date collected:	13/11/2012	Date received:	13/11/2012

Report number:KK1201935/1

			Laboratory Ref:	1204934	1204935	1204936	1204937	1204938	1204939	1204940
			Type of sample:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
			Location code:	WST-W0075-01- SW5	WST-W0075-01- SW3	WST-W0075-01- SW	WST-W0075-01- SW2	WST-W0075-01- SW02	WST-W0075-01- SW	WST-W0075-01- SW1
			Sampling point:			SW03	no sample tide out		SW01	,
			Sampled by:	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry
			Time Sampled:	10:40	11:25	12:15	12:20	12:35	12:40	12:50
		Start/End - D	ates of Analysis:				13-11-12/13-11-12			
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Par	ameter	Units	Limits			6				
F	Temperature	°C		11.8	11.8	11.5	140	10.8	11.8	11.4
F	Dissolved Oxygen (as %Sat)	% Saturation		99.0	98.0	86.0	-	85.0	110.0	91.0
F	рН	pН		8.1	8.0	7.6	-	7.5	8.1	7.9
F	Salinity	‰ 0		34.2	27.7	72	152	175	5	5
F	Conductivity @25°C	μS/cm		nm	nm	1164	-	1290	1012	1040
L	Ammonia	mg/l N		0.7	0.95	0.51	200	0.260.277	0.05	1.2
L	Chloride	mg/l Cl	0	>14710	>12840	271		114	783	169
L	Biochemical Oxygen Demand	mg/I O2		nr	nr	nr	~	nr	nr	nr
L	Suspended Solids	mg/l		24	30	6	-	<5	<5	5
L	Total coliforms	No/100 ml		10	1500	9200	-	16000	3700	2800
L	E Coli	per 100ml		<10	280	<10	-	20	<10	86

Report number:KK1201935/1

Appendix C

Ground Water Results

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	18/04/12

Facility:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford					
Reference No:	W0075-01					
Date collected:	06/02/2012	Date received:	06/02/2012			

Report number:KK1200210/1

			Laboratory Ref:	1200563	1200564	1200565	1200566	1200567	1200568	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH5	WST-W0075-01- BH1/1	WST-W0075-01- RC5	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	
			Sampling point:	clear	clear	clear	clear	Darkish	dark	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:00	12:40	14:00	14:15	14:20	14:55	
		Start/End - D	ates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	rameter	Units	Limits	8						
F	Depth of Borehole	m		4.4	3.9	24.4	6.3	6.3	1.3	
F	Water Level	m		2.1	2.6	21.8	4.4	5.3	1.3	
F	Temperature	°C		10.9	10.0	12.1	11.4	10.1	7.9	
F	Dissol∨ed Oxygen (as %Sat)	% Saturation		98.0	46.0	37.0	86.0	75.0	38.0	
F	рН	pН		7.7	7.0	6.9	7.4	7.3	7.0	
F	Conductivity @25°C	µS/cm		- 1	2210	NM	NM	NM	NM	
L	Salinity	‰		27.0	NM	31.4	8.0	8.3	7.3	
L	Ammonia	mg/l N		<0.01	20	35	0.09	0.36	0.08	
L	Chloride	mg/l Cl		122	276	3	1	1978	<u>~</u>	
L	ortho-Phosphate (as P)	mg/l P		0.06	<0.01	<0.01	0.14	0.07	0.08	
L	Total Oxidised Nitrogen (as N)	mg/l N		2	<0.20	2	-	2 <u>0</u> 73	2	
L	Fluoride	mg/l F		4	0.29	<0.25	<0.25	<0.25	<0.25	
L	Sulphate	mg/I SO4		1900	47	160	520	550	420	
L	Total Organic Carbon	mg/l C		5.6	9.1	5.6	13.7	15.1	37.8	
L	Total coliforms	No/100 ml		9200	<10	<10	20	74	120	
L	E Coli	per 100ml		<10	<10	<10	<10	<10	41	
L	1,1,1,2-Tetrachloroethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1,1-Trichloroethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1,2,2-Tetrachloroethane	μg/l		<1	<1	<1	<1	<1	<1	
L	1,1,2-Trichloroethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1-Dichloroethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1-Dichloroethene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1-Dichloropropene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

Γ			Laboratory Ref:	1200563	1200564	1200565	1200566	1200567	1200568	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH5	WST-W0075-01- BH1/1	WST-W0075-01- RC5	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	
			Sampling point:	clear	clear	clear	clear	Darkish	dark	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:00	12:40	14:00	14:15	14:20	14:55	
		Start/End - D	ates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	ameter	Units	Limits							
L	1,2,3-Trichlorobenzene	μg/l		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
L	1,2,3-Trichloropropane	µg/l		<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
L	1,2,4-Trichlorobenzene	µg/l		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
L	1,2,4-Trimethylbenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L,	1,2-Dibrom o-3-Chloropropane	μg/l		<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	
L	1,2-Dibrom oethan e	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichlorobenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichloroethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichloropropane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,3,5-Trimethylbenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,3-Dichlorobenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,3-Dichloropropane	µg/l	0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,4-Dichlorobenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	2,2-Dichloropropane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	2-Chlorotoluene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	4-Chlorotoluene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	4-Isopropyltoluene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Benzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromobenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromochloromethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromodichloromethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromoform	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromomethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

Page 3 of 6

Γ			Laboratory Ref:	1200563	1200564	1200565	1200566	1200567	1200568	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH5	WST-W0075-01- BH1/1	WST-W0075-01- RC5	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	
			Sampling point:	clear	clear	clear	clear	Darkish	dark	e
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:00	12:40	14:00	14:15	14:20	14:55	
		Start/End - D	ates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits							
L	c-1,2-Dichloroethene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	c-1,3-Dichloropropene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0
L	Carbon Tetrachloride	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Chlorobenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Chloroform	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dibromochloromethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dibromomethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dichlorodifluoromethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dichloromethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Ethylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Hexachlorobutadiene	μg/l		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
L	Isopropylbenzene	µg/l	0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	m,p-Xylene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Naphthalene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	n-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	n-Propylbenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	o-Xylene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	sec-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Styrene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	t-1,2-Dichloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	t-1,3-Dichloropropene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6 6
L	tert-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Tetrachloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

Page 4 of 6

Г			Laboratory Ref:	1200563	1200564	1200565	1200566	1200567	1200568	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH5	WST-W0075-01- BH1/1	WST-W0075-01- RC5	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	
			Sampling point:	clear	clear	clear	clear	Darkish	dark	
8			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:00	12:40	14:00	14:15	14:20	14:55	
		Start/End - D	ates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	ameter	Units	Limits							
L	Toluene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Trichloroethene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Trichlorofluoromethane	μg/l		<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
L	Vinyl Chloride	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Aluminium	ug/l		<250	<250	<250	<250	<250	140	
L	Antimony	ug/l		5.1	<5	<5	<5	<5	5.2	
L	Arsenic	ug/l		70	<5	73	17	17	17	
L	Barium	ug/l		310	1700	410	640	400	130	
L	Beryllium	ug/l		<5	<5	<5	<5	<5	<5	
L	Cadmium	ug/l		<5	<5	<5	<5	<5	<5	
L	Calcium	m g/l		530	260	590	370	460	330	
L	Chromium	ug/l		11	<5	6.2	3.7	<5	<5	
L	Cobalt	ug/l		<5	<5	12	<5	<5	6.4	
L	Copper	ug/l		59	<5	62	15	16	16	
L	Iron	ug/l		440	4100	1800	150	1400	1200	
L	Lead	ug/l		<5	<5	<5	<5	<5	<5	
L	Magnesium	mg/l		1100	41	1200	290	320	230	
L	Manganese	ug/l		<250	1100	850	39	620	73	
L	Mercury	ug/l		<5	<5	<5	<5	<5	<5	
L	Molybdenum	ug/l		8.1	<5	<5	<5	<5	<5	
L	Nickel	ug/l		8.1	<5	10	13	13	9	
L	Potassium	m g/l		380	34	250	92	98	86	
L	Selenium	ug/l		250	<5	270	62	62	58	

Page 5 of 6

			Laboratory Ref:	1200563	1200564	1200565	1200566	1200567	1200568	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH5	WST-W0075-01- BH1/1	WST-W0075-01- RC5	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	
			Sampling point:	clear	clear	clear	clear	Darkish	dark	¢.
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:00	12:40	14:00	14:15	14:20	14:55	
		Start/End - D	ates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits	1						
L	Sodium	mg/l		9900	180	11000	2500	2700	2500	
L	Thallium	ug/l		<5	<5	<5	<5	<5	<5	
L	Uranium	ug/l		3.7	<5	6.1		<5	<5	
L	Vanadium	ug/l		73	<5	82	31	27	26	
L	Zinc	ug/l		<30	<30	<30	<30	<30	<30	

Comments:

1) Results highlighted and in bold are outside specified limits.

nm "Not measured"
 nd "None detected"
 nt "Notime" - Time not recorded
 thtc "Too numerous to count"
 F "Field measured parameters"
 L "Lab measured parameters"

Signed: PP Saula Book

Chemist

Caroline Bowden, Regional

18/Apr/2012 Date:

Report number:KK1200210/1

Page 6 of 6

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Environmental Management And Planning Division, EPA.
Report date:	10/05/12
Licensee:	Waterford County Council
Facility:	Tramore Waste Disposal Site

Tramore Intake & Tramore Burrows, Tramore, Co. Waterford Reference No: W0075-01

			Laboratory Df.	1200564	1200602	1200607
		Start/End	Laboratory Ref: Type of sample: Location code: Sampling point: Sampled by: Time Sampled: Dates of Analysis: Status of results:	Groundwater	Groundwater WST-W0075-01-BH2 clear Jim McGarry 12:30 07-02-12/14-02-12 Final Report	Groundwater WST-W0075-01-BH& muddy Jim McGarry 16:05 07-02-12/05-04-12 Final Report
Pa	rameter	Units	Limits			
F	Depth of Borehole	m		3.9	6.9	7.1
ŧ	Water Level	m	· · · · · · · · · · · · · · · · · · ·	2.6	3.2	6.2
-	Temperature	۵c		10.0	12.1	9.7
5	Dissolved Oxygen (as %Sat)	% Saturation	1	46.0	62.0	27.9
-	pН	pН		7.0	7.0	7.3
-	Conductivity @25°C	µS/cm		2210	11950	3520
-	Salinity	%0		NM	6.6	1.7
	Ammonia	mg/l N		20	110	0.1
-	Chloride	mg/l Cl		276		868
-	ortho-Phosphate (as P)	mg/l P		<0.01	0.02	<0.01
	Total Oxidised Nitrogen (as N)	mg/I N		<0.20	NR	-
	Fluoride	mg/l F		0.29	<0.25	<0.25
-	Sulphate	mg/I SO4		47	8.1	1500
÷	Total Organic Carbon	mg/I C		9.1		*
	Total coliforms	No/100 ml		<10	8700	41
2	E Coli	per 100ml		<10	<10	<10
	1,1,1,2-Tetrachloroethane	μgΛ		<0.5	<0.5	<0.5
÷	1,1,1-Trichloroethane	μg/l		<0.5	<0.5	<0.5
-	1,1,2,2-Tetrachloroethane	μg/l		<1	<1	<1
1	1,1,2-Trichloroethane	µg/l		<0.5	<0.5	<0.5
L	1,1-Dichloroethane	μдΛ		<0.5	<0.5	<0.5

Report number:KK1200746/1

-			Laboration Defe	1200564	1200602	1200607
			Laboratory Ref:		Groundwater	Groundwater
			Type of sample:		WST-W0075-01-BH2	WST-W0075-01-BH8
			Location code:	clear	clear	muddy
			Sampling point:	Jim McGarry	Jim McGarry	Jim McGarry
			Sampled by:	12:40	12:30	16:05
			Time Sampled:	06-02-12/05-04-12	07-02-12/14-02-12	07-02-12/05-04-12
		Start/E	nd - Dates of Analysis:			
			Status of results:	Final Report	Final Report	Final Report
Par	ameter	Units	Limits			
L	1,1-Dichloroethene	μg <i>l</i> l		<0.5	<0.5	<0.5
L	1,1-Dichloropropene	µg/l		<0.5	<0.5	<0.5
L	1,2,3-Trichlorobenzene	µg/l		<0.4	<0.4	<0.4
L	1,2,3-Trichloropropane	μgΛ		<0.6	<0.6	<0.6
L	1,2,4-Trichlorobenzene	μg/l		<0.4	<0.4	<0.4
L	1,2,4-Trimethylbenzene	μg/l		<0.5	<0.5	<0.5
L	1,2-Dibromo-3-Chloropropane	µg/l		<1.3	<1.3	<1.3
L	1,2-Dibromoethane	µgЛ		<0.5	<0.5	<0.5
L	1,2-Dichlorobenzene	μg/l		<0.5	<0.5	<0.5
L	1,2-Dichloroethane	µg/l		<0.5	<0.5	<0.5
L	1,2-Dichloropropane	µg/l		<0.5	<0.5	<0.5
L	1,3,5-Trimethylbenzene	µg/l		<0.5	<0.5	<0.5
L	1,3-Dichlorobenzene	μg <i>l</i> l		<0.5	<0.5	<0.5
L	1,3-Dichloropropane	µg/l		<0.5	<0.5	<0.5
L	1,4-Dichlorobenzene	μg/l		<0.5	<0.5	<0.5
L	2,2-Dichloropropane	µg/l		<0.5	<0.5	<0.5
L	2-Chlorotoluene	μg/l		<0.5	<0.5	<0.5
L	4-Chlorotoluene	µg/l		<0.5	<0.5	<0.5
L	4-Isopropyltoluene	µg/l		<0.5	<0.5	<0.5
L	Benzene	μg/l		<0.5	<0.5	<0.5
L	Bromobenzene	μg/l		<0.5	<0.5	<0.5
L	Bromochloromethane	μg/l		<0.5	<0.5	<0.5
L	Bromodichloromethane	μg/l		<0.5	<0.5	<0.5
L	Bromoform	μg/l		<0.5	<0.5	<0.5
L	Bromomethane	μg/l		<0.5	<0.5	<0.5
53	c-1,2-Dichloroethene	μg/l		<0.5	<0.5	<0.5
222	c-1,3-Dichloropropene	рдл µдЛ		<0.5	<0.5	<0.5
L	Carbon Tetrachloride	μg/l		<0.5	<0.5	<0.5
L	Chlorobenzene	μg/l		<0.5	<0.5	<0.5
L	Chloroform	рул µgЛ		<0.5	<0.5	<0.5
Ē	Dibromochloromethane	рдл µдЛ		<0.5	<0.5	<0.5
-	Dibromomethane	10000		<0.5	<0.5	<0.5
-	Dichlorodifluoromethane	µg/l		<0.5	<0.5	<0.5
L		μg/l		<0.5	<0.5	<0.5
	Dichloromethane	µg/l		1212000	10.0042104	050,000
L	Ethylbenzene	μg/l		<0.5	<0.5	<0.5
L	Hexachlorobutadiene	μgΛ		<0.1	<0.1	<0.1
L	Isopropylbenzene	μg/l		<0.5	<0.5	<0.5
L	m,p-Xylene	µg/l		<0.5	<0.5	<0.5
L	Naphthalene	µg/l		<0.5	<0.5	<0.5
L	n-Butylbenzene	μg/l		<0.5	<0.5	<0.5

Report number:KK1200746/1

—			Laboratory Ref:	1200564	1200602	1200607
			Type of sample:	Groundwater	Groundwater	Groundwater
			Location code:	WST-W0075-01-BH1/1	WST-W0075-01-BH2	WST-W0075-01-BH8
			Sampling point:	clear	clear	muddy
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry
			Time Sampled:	12:40	12:30	16:05
		Start/E	nd - Dates of Analysis:	06-02-12/05-04-12	07-02-12/14-02-12	07-02-12/05-04-12
		Start/E	Status of results:	Final Report	Final Report	Final Report
				Tina Report	Ппа Кероп	
Par	ameter	Units	Limits	<0.5	<0.5	<0.5
L.	n-Propylbenzene	μg/l				
L.	o-Xylene	µg/l		<0.5	<0.5	<0.5
-	sec-Butylbenzene	μg/l		<0.5	<0.5	<0.5
L	Styrene	µg/l		<0.5	<0.5	<0.5
L	t-1,2-Dichloroethene	µg/l		<0.5	<0.5	<0.5
L	t-1,3-Dichloropropene	µg/l		<0.5	<0.5	<0.5
L	tert-Butylbenzene	µg/l		<0.5	<0.5	<0.5
L	Tetrachloroethene	μg/l		<0.5	<0.5	<0.5
L	Toluene	μg/l		<0.5	<0.5	<0.5
L	Trichloroethene	μg/l		<0.5	<0.5	<0.5
L	Trichlorofluoromethane	μg <i>l</i> l		<0.6	<0.6	<0.6
L	Vinyl Chloride	μg/l		<0.5	<0.5	<0.5
L	Aluminium	ug/l		<250	-	340
L	Antimony	ug/l		<5	-	<5
L	Arsenic	ug/l		<5	-	<5
L	Barium	ug/l		1700	-	440
L	Beryllium	ug/l		<5	2	<5
L	Cadmium	ug/l		<5	8	<5
L	Calcium	m g/l		260	5	170
L	Chromium	ug/l		<5	-	<5
L	Cobalt	ug/l		<5	-	<5
L	Copper	ug/l		<5	-	<5
L	Iron	ug/l		4100	-	680
L	Lead	ug/l		<5	-	<5
L	Magnesium	mg/l		41	-	65
L	Manganese	ug/l		1100	8	<250
L	Mercury	ug/l		<5	-	<5
L	Molybdenum	ug/l		<5	-	<5
L	Nickel	ug/l		<5	5	<5
L	Potassium	m g/l		34	5	19
L	Selenium	ug/l		<5	-	13
L	Sodium	mg/l		180	-	560
L	Thallium	ug/l		<5	-	<5
L	Uranium	ug/l		<5	-	<5
L	Vanadium	ug/l		<5	-	7.6
L	Zinc	ug/l		<30	-	<30
-						

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	18/04/12

Facility:		e Disposal Site	
Reference No:	Tramore Intake W0075-01	& Tramore Burrows, 1	ramore, Co. Waterford
Date collected:	06/02/2012	Date received:	06/02/2012

Report number:KK1200210/1

—			Laboratory Ref:	1200563	1200564	1200565	1200566	1200567	1200568	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH5	WST-W0075-01- BH1/1	WST-W0075-01- RC5	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	
			Sampling point:	clear	clear	clear	clear	Darkish	dark	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:00	12:40	14:00	14:15	14:20	14:55	
		Start/End - D	ates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	rameter	Units	Limits	1						
F	Depth of Borehole	m		4.4	3.9	24.4	6.3	6.3	1.3	
F	Water Level	m		2.1	2.6	21.8	4.4	5.3	1.3	
F	Temperature	°C		10.9	10.0	12.1	11.4	10.1	7.9	
F	Dissolved Oxygen (as %Sat)	% Saturation		98.0	46.0	37.0	86.0	75.0	38.0	
F	pН	pН		7.7	7.0	6.9	7.4	7.3	7.0	
F	Conductivity @25°C	µS/cm		-	2210	NM	NM	NM	NM	
L	Salinity	‰		27.0	NM	31.4	8.0	8.3	7.3	
L	Ammonia	mg/l N		<0.01	20	35	0.09	0.36	0.08	
L	Chloride	mg/l Cl		-	276	-	-	-	-	
L	ortho-Phosphate (as P)	mg/l P		0.06	<0.01	<0.01	0.14	0.07	0.08	
L	Total Oxidised Nitrogen (as N)	mg/l N		127	<0.20	2	-		0	
L	Fluoride	mg/l F		4	0.29	<0.25	<0.25	<0.25	<0.25	
L	Sulphate	mg/I SO4		1900	47	160	520	550	420	
L	Total Organic Carbon	mg/l C	-	5.6	9.1	5.6	13.7	15.1	37.8	
L	Total coliforms	No/100 ml		9200	<10	<10	20	74	120	
L	E Coli	per 100ml		<10	<10	<10	<10	<10	41	
L	1,1,1,2-Tetrachloroethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1,1-Trichloroethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1,2,2-Tetrachloroethane	μg/l		<1	<1	<1	<1	<1	<1	
L	1,1,2-Trichloroethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1-Dichloroethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1-Dichloroethene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1-Dichloropropene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

Γ			Laboratory Ref:	1200563	1200564	1200565	1200566	1200567	1200568	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH5	WST-W0075-01- BH1/1	WST-W0075-01- RC5	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	
			Sampling point:	clear	clear	clear	clear	Darkish	dark	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:00	12:40	14:00	14:15	14:20	14:55	
		Start/End - D	ates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	ameter	Units	Limits							
L	1,2,3-Trichlorobenzene	μg/l		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
L	1,2,3-Trichloropropane	µg/l		<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
L	1,2,4-Trichlorobenzene	µg/l		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
L	1,2,4-Trimethylbenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L,	1,2-Dibrom o-3-Chloropropane	μg/l		<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	
L	1,2-Dibrom oethan e	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichlorobenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichloroethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichloropropane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,3,5-Trimethylbenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,3-Dichlorobenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,3-Dichloropropane	µg/l	0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,4-Dichlorobenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	2,2-Dichloropropane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	2-Chlorotoluene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	4-Chlorotoluene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	4-Isopropyltoluene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Benzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromobenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromochloromethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromodichloromethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromoform	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromomethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

Page 3 of 6

Γ			Laboratory Ref:	1200563	1200564	1200565	1200566	1200567	1200568	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH5	WST-W0075-01- BH1/1	WST-W0075-01- RC5	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	
			Sampling point:	clear	clear	clear	clear	Darkish	dark	e
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:00	12:40	14:00	14:15	14:20	14:55	
		Start/End - D	ates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits							
L	c-1,2-Dichloroethene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	c-1,3-Dichloropropene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0
L	Carbon Tetrachloride	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Chlorobenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Chloroform	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dibromochloromethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dibromomethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dichlorodifluoromethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dichloromethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Ethylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Hexachlorobutadiene	μg/l		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
L	Isopropylbenzene	µg/l	0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	m,p-Xylene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Naphthalene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	n-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	n-Propylbenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	o-Xylene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	sec-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Styrene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	t-1,2-Dichloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	t-1,3-Dichloropropene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6 6
L	tert-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Tetrachloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

Page 4 of 6

			Laboratory Ref:	1200563	1200564	1200565	1200566	1200567	1200568	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH5	WST-W0075-01- BH1/1	WST-W0075-01- RC5	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	
			Sampling point:	clear	clear	clear	clear	Darkish	dark	
8			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:00	12:40	14:00	14:15	14:20	14:55	
		Start/End - D	ates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	ameter	Units	Limits	1						
L	Toluene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Trichloroethene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0
L	Trichlorofluoromethane	μg/l		<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
L	Vinyl Chloride	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Aluminium	ug/l		<250	<250	<250	<250	<250	140	
L	Antimony	ug/l		5.1	<5	<5	<5	<5	5.2	
L	Arsenic	ug/l		70	<5	73	17	17	17	
L	Barium	ug/l		310	1700	410	640	400	130	
L	Beryllium	ug/l	0	<5	<5	<5	<5	<5	<5	
L	Cadmium	ug/l		<5	<5	<5	<5	<5	<5	
L	Calcium	m g/l		530	260	590	370	460	330	
L	Chromium	ug/l		11	<5	6.2	3.7	<5	<5	
L	Cobalt	ug/l	-	<5	<5	12	<5	<5	6.4	
L	Copper	ug/l		59	<5	62	15	16	16	
L	Iron	ug/l		440	4100	1800	150	1400	1200	
L	Lead	ug/l		<5	<5	<5	<5	<5	<5	
L	Magnesium	mg/l		1100	41	1200	290	320	230	
L	Manganese	ug/l		<250	1100	850	39	620	73	
L	Mercury	ug/l		<5	<5	<5	<5	<5	<5	
L	Molybdenum	ug/l		8.1	<5	<5	<5	<5	<5	
L	Nickel	ug/l		8.1	<5	10	13	13	9	
L	Potassium	m g/l		380	34	250	92	98	86	
L	Selenium	ug/l		250	<5	270	62	62	58	

Page 5 of 6

			Laboratory Ref:	1200563	1200564	1200565	1200566	1200567	1200568	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH5	WST-W0075-01- BH1/1	WST-W0075-01- RC5	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	
			Sampling point:	clear	clear	clear	clear	Darkish	dark	¢.
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:00	12:40	14:00	14:15	14:20	14:55	
		Start/End - D	ates of Analysis:	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	06-02-12/05-04-12	
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits	1						
L	Sodium	mg/l		9900	180	11000	2500	2700	2500	
L	Thallium	ug/l		<5	<5	<5	<5	<5	<5	
L	Uranium	ug/l		3.7	<5	6.1		<5	<5	
L	Vanadium	ug/l		73	<5	82	31	27	26	
L	Zinc	ug/l		<30	<30	<30	<30	<30	<30	

Comments:

1) Results highlighted and in bold are outside specified limits.

Report number:KK1200210/1

nm "Not measured"
 nd "None detected"
 nt "Notime" - Time not recorded
 thtc "Too numerous to count"
 F "Field measured parameters"
 L "Lab measured parameters"

Signed: PP Saula Book

18/Apr/2012 Date:

Caroline Bowden, Regional Chemist

Page 6 of 6

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	18/04/12

Facility:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford						
Reference No:	W0075-01						
Date collected:	07/02/2012	Date received:	07/02/2012				

Report number:KK1200218/1

Г			Laboratory Ref:	1200602	1200603	1200604	1200605	1200606	1200607	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH2	WST-W0075-01- RC4	WST-W0075-01- GW5a	WST-W0075-01- GW4	WST-W0075-01- BH9	WST-W0075-01- BH8	
			Sampling point:	clear	slightly cloudy	muddy	GW4A-muddy	muddy	muddy	
5			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:30	12:55	14:40	15:20	15:45	16:05	
		Start/End - D	ates of Analysis:	07-02-12/14-02-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits	8						
F	Depth of Borehole	m		6.9	15.5	4.3	8.1	7	7.1	
F	Water Level	m		3.2	10.9	2.7	6.9	5.6	6.2	
F	Temperature	°C		12.1	11.5	9.4	10.5	11.3	9.7	
F	Dissolved Oxygen (as %Sat)	% Saturation		62.0	57.0	48.0	38.0	19.0	27.9	
F	pН	pН		7.0	7.1	7.3	7.2	7.1	7.3	
F	Conductivity @25°C	µS/cm		11950	nm	1113	1047	931	3520	
L	Salinity	‰		6.6	33.1	-	-		1.7	7
L	Ammonia	mg/l N		110	4.8	0.07	0.02	0.26	0.1	
L	Chloride	mg/l Cl		-	÷	104	134	110	868	
L	ortho-Phosphate (as P)	mg/IP		0.02	<0.01	<0.01	<0.01	<0.01	<0.01	
L	Total Oxidised Nitrogen (as N)	mg/l N		NR	NR	2	2		2	
L	Fluoride	mg/l F		<0.25	0.98	<0.25	<0.25	<0.25	<0.25	
L	Sulphate	mg/I SO4		8.1	2200	65	40	24	1500	
L	Total coliforms	No/100 ml		8700	<10	1500	290	52	41	
L	E Coli	per 100ml		<10	<10	<10	<10	<10	<10	
L	1,1,1,2-Tetrachloroethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1,1-Trichloroethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1,2,2-Tetrachloroethane	µg/l		<1	<1	<1	<1	<1	<1	-
L	1,1,2-Trichloroethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1-Dichloroethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1-Dichloroethene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,1-Dichloropropene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2,3-Trichlorobenzene	μg/l		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	

			Laboratory Ref:	1200602	1200603	1200604	1200605	1200606	1200607	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH2	WST-W0075-01- RC4	WST-W0075-01- GW5a	WST-W0075-01- GW4	WST-W0075-01- BH9	WST-W0075-01- BH8	
			Sampling point:	clear	slightly cloudy	muddy	GW4A-muddy	muddy	muddy	<i>.</i>
8			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:30	12:55	14:40	15:20	15:45	16:05	
		Start/End - D	ates of Analysis:	07-02-12/14-02-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	ameter	Units	Limits							
L	1,2,3-Trichloropropane	μg/l		<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
L	1,2,4-Trichlorobenzene	μg/l		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
L	1,2,4-Trimethylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2-Dibrom o-3-Chloropropane	µg/l		<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	
L	1,2-Dibrom oethan e	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichlorobenzene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichloroethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichloropropane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,3,5-Trimethylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,3-Dichlorobenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,3-Dichloropropane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	1,4-Dichlorobenzene	μg/l	0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	2,2-Dichloropropane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	2-Chlorotoluene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	4-Chlorotoluene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	4-Isopropyltoluene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Benzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromobenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromochloromethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromodichloromethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromoform	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Bromomethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	c-1,2-Dichloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

Page 3 of 6

			Laboratory Ref:	1200602	1200603	1200604	1200605	1200606	1200607	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH2	WST-W0075-01- RC4	WST-W0075-01- GW5a	WST-W0075-01- GW4	WST-W0075-01- BH9	WST-W0075-01- BH8	
			Sampling point:	clear	slightly cloudy	muddy	GW4A-muddy	muddy	muddy	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:30	12:55	14:40	15:20	15:45	16:05	
		Start/End - D	ates of Analysis:	07-02-12/14-02-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	ameter	Units	Limits							
L	c-1,3-Dichloropropene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Carbon Tetrachloride	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Chlorobenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Chloroform	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dibromochloromethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dibromomethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dichlorodifluoromethane	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Dichloromethane	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Ethylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Hexachlorobutadiene	µg/l		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
L	Isopropylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	m,p-Xylene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Naphthalene	μg/l	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
L	n-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	n-Propylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	o-Xylene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	sec-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Styrene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	t-1,2-Dichloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	t-1,3-Dichloropropene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	tert-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Tetrachloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Toluene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

Page 4 of 6

			Laboratory Ref:	1200602	1200603	1200604	1200605	1200606	1200607	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH2	WST-W0075-01- RC4	WST-W0075-01- GW5a	WST-W0075-01- GW4	WST-W0075-01- BH9	WST-W0075-01- BH8	
			Sampling point:	clear	slightly cloudy	muddy	GW4A-muddy	muddy	muddy	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:30	12:55	14:40	15:20	15:45	16:05	
		Start/End - D	ates of Analysis:	07-02-12/14-02-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	ameter	Units	Limits							
L	Trichloroethene	µg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Trichlorofluoromethane	µg/l		<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
L	Vinyl Chloride	μg/l		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
L	Aluminium	ug/l	-	121	150	180	460	1200	340	
L	Antimony	ug/l		-	<5	<5	<5	<5	<5	
L	Arsenic	ug/l		-	85	<5	<5	<5	<5	
L	Barium	ug/l		-	230	200	220	270	440	
L	Beryllium	ug/l			<5	<5	<5	<5	<5	
L	Cadmium	ug/l		-	<5	<5	<5	<5	<5	
L	Calcium	m g/l			610	130	130	89	170	
L	Chromium	ug/l		-	7.7	<5	2	<5	<5	
L	Cobalt	ug/l		-	8.4	<5	<5	<5	<5	
L	Copper	ug/l			71	<5	<5	<5	<5	
L	Iron	ug/l		-	2600	430	910	1900	680	
L	Lead	ug/l		-	<5	<5	<5	<5	<5	
L	Magnesium	mg/l		-	1300	32	29	31	65	
L	Manganese	ug/l			6100	940	310	1100	<250	
L	Mercury	ug/l			<5	<5	<5	<5	<5	
L	Molybdenum	ug/l		-	<5	<5	<5	<5	<5	
L	Nickel	ug/l		- 1	9.4	<5	3	<5	<5	
L	Potassium	m g/l		-	470	12	11	15	19	
L	Selenium	ug/l		-	300	<5	<5	<5	13	
L	Sodium	mg/l		122	12000	180	98	140	560	

Page 5 of 6

			Laboratory Ref:	1200602	1200603	1200604	1200605	1200606	1200607	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- BH2	WST-W0075-01- RC4	WST-W0075-01- GW5a	WST-W0075-01- GW4	WST-W0075-01- BH9	WST-W0075-01- BH8	
	Sampling point:		clear	slightly cloudy	muddy	GW4A-muddy	muddy	muddy	¢.	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	12:30	12:55	14:40	15:20	15:45	16:05	
	Start/End - Dates of Analysis:		07-02-12/14-02-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12	07-02-12/05-04-12		
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits	1						
L	Thallium	ug/l		-	<5	<5	<5	<5	<5	
L	Uranium	ug/l	8	-	8.1	<5	<5	<5	<5	
L	Vanadium	ug/l		~	97	9.8	5.7	6.5	7.6	
L	Zinc	ug/l		1-11	150	<30	<30	<30	<30	

Comments:

1) Results highlighted and in bold are outside specified limits.

new "Not measured"
 nd "None detected"
 nt "None detected"
 nt "None detected"
 nt "Too numerous to count"
 F "Field measured parameters"
 L "Lab measured parameters"

Signed: PP Saula Back

Date: 18/Apr/2012

Chemist

Caroline Bowden, Regional

Report number:KK1200218/1

Page 6 of 6

Test Report

Report of:	the second s	ndfill site sample(s)				
Report to: Report date:	Waterford Co 29/08/12	unty Council				
Facility:	Tramore Wast	e Disposal Site				
	Tramore Intake & Tramore Burrows, Tramore, Co. Waterford					
Reference No:	W0075-01					
Date collected:	14/05/2012	Date received:	14/05/2012			

Report number:KK1200760/1

			Laboratory Ref:	1202113	1202114	1202115	1202116	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01-BH9	WST-W0075-01-BH8	WST-W0075-01- GW5a	WST-W0075-01- GW4	
			Sampling point:	Muddy	Brown	Brown	Brown	
			Sampled by:	DB/JS	DB/JS	DB/JS	DB/JS	
			Time Sampled:	12:00	12:25	14:30	14:40	
		Start/E	nd - Dates of Analysis:	14-05-12/21-05-12	14-05-12/21-05-12	14-05-12/21-05-12	14-05-12/21-05-12	
			Status of results:	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits					
F	Depth of Borehole	m		7	7.1	4.3	8	
F	Water Level	m		5.5	6.1	3	7	
F	Temperature	°C		11.3	11.6	11.2	11.6	
F	Dissolved Oxygen (as %Sat)	% Saturation		41.2	54.1	28.2	44.6	
F	pН	pН		7.3	7.3	7.0	7.1	
F	Conductivity @25°C	µS/cm		1368	2850	1075	1032	
F	Salinity	‰		0.5	1.3	0.3	0.3	
L	Ammonia	mg/IN		0.31	0.11	0.04	0.04	
L	Chloride	mg/l Cl		108	672	99	126	
L	Total Oxidised Nitrogen (as N)	mg/IN		<0.20	<0.20	0.3	1.05	
L	Total Organic Carbon	mg/IC		5.3	2.6	2.7	2.3	
L	Total coliforms	No/100 ml		200	<10	160	<10	
L	E Coli	per 100ml		52	<10	<10	<10	
					-			

Test Report

Report of:	Analysis of landfill site sample(s)	
Report to:	Waterford County Council	
Report date:	29/08/12	

Facility:

Tramore Waste Disposal Site

Tramore Intake & Tramore Burrows, Tramore, Co. Waterford Reference No: W0075-01

Da	te collected: 15/	05/2012	Date receiv	red: 15/05/2	2012	
		Start/End	Laboratory Ref: Type of sample: Location code: Sampling point: Sampled by: Time Sampled: I - Dates of Analysis: Status of results:	1202143 Groundwater WST-W0075-01-BH1/1 Clear Diarmuid Berry 10:40 15-05-12/23-05-12 Final Report	1202144 Groundwater WST-W0075-01-BH2 Clear Diarmuid Berry 11:30 15-05-12/21-05-12 Final Report	1202145 Groundwater WST-W0075-01-RC4 Clear Diarmuid Berry 11:50 15-05-12/21-05-12 Final Report
Pa	rameter	Units	Limits			
F	Depth of Borehole	m		3.9	6.9	15.5
	Water Level	m		2.6	3.7	12.7
-	Temperature	°C		10.2	12.0	12.5
F	Dissolved Oxygen (as %Sat)	% Saturation	1	28.0	64.3	50.5
F	рH	pН		6.7	7.0	7.1
F	Conductivity @25°C	µS/cm		2130	nm	nm
-	Salinity	%0		0.9	5.7	33.1
	Ammonia	mg/I N		19	98	5,1
Ļ	Chloride	mg/l Cl		251	NR	NR
4	Nitrite (as N)	mg/I N		NM	-	-
Ļ	ortho-Phosphate (as P)	mg/l P		NM	14 C	
-	Total Oxidised Nitrogen (as N)	mg/I N		<0.20	<0.20	<0.20
Ļ	Total Organic Carbon	mg/i C		11.2	145.1	3.0
5	E Coli	per 100ml		<10	<10	<10
-	Total coliforms	No/100 ml		52	180	<10

Test Report

Report of: Report to: Report date:	Analysis of la Waterford Co 29/08/12	ndfill site sample(s) unty Council	
Facility:		e Disposal Site & Tramore Burrows, 1	Framore, Co. Waterford
Reference No:	W0075-01		
Date collected:	14/05/2012	Date received:	14/05/2012

Report number:KK1200759/1

Γ			Laboratory Ref:	1202107	1202108	1202109	1202110	1202111	1202112	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0075-01- RC6a	WST-W0075-01- BH5	WST-W0075-01- GW2	WST-W0075-01- GW3	WST-W0075-01- GW1	WST-W0075-01- RC5	1
			Sampling point:	Sediment	Clear	Grey	Lot of mud	Grey	Clear	6
8			Sampled by:	DB/JS	DB/JS	DB/JS	DB/JS	DB/JS	DB/JS	
			Time Sampled:	09:25	09:55	10:20	10:45	11:10	11:20	
		Start/End - D	ates of Analysis:	14-05-12/21-05-12	14-05-12/21-05-12	14-05-12/21-05-12	14-05-12/21-05-12	14-05-12/21-05-12	14-05-12/21-05-12	
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits	3						
F	Depth of Borehole	m		5	4.4	6.3	2.6	6.3	24.4	
F	Water Level	m		3.9	2.1	5.3	1.3	4.6	21.9	
F	Temperature	°C		10.9	10.2	10.3	10.9	11.8	12.5	
F	Dissolved Oxygen (as %Sat)	% Saturation		37.5	90.0	94.0	48.0	75.0	26.2	
F	pН	pН		7.1	7.7	7.5	7.3	7.5	7.0	
F	Conductivity @25°C	μS/cm		1078	nm	nm	11900	13950	nm	
F	Salinity	‰		nm	27.1	8.7	6.7	7.9	31.0	
L	Ammonia	mg/l N	-	0.48	0.02	0.67	0.2	0.01	33	
L	Chloride	mg/l Cl		112	NR	NR	NR	NR	nr	
L	Total Oxidised Nitrogen (as N)	mg/l N		<0.20	<0.20	<0.20	<0.20	0.52	<0.20	
L	Total Organic Carbon	mg/l C		4.5	5.3	22.7	128.3	23.1	5.5	
L	Total coliforms	No/100 ml		31	<10	1300	86	<10	<10	
L	E Coli	per 100ml		<10	<10	<10	10	<10	<10	

Report number:KK1200759/1

Test Report

Report of: Report to: Report date:	Analysis of la Waterford Co 22/01/13	ndfill site sample(s) unty Council			
Facility:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford : W0075-01				
Reference No:					
Date collected:	12/11/2012	Date received:	12/11/2012		

Report number:KK1201917/1

		Laboratory Ref:	1204892	1204893	1204894	1204895	1204896
		Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
		Location code:	WST-W0075-01-BH2	WST-W0075-01-BH9	WST-W0075-01- GW5	WST-W0075-01- GW4	WST-W0075-01-BH8
		Sampling point:	Clear	muddy brown	muddy sandy brown	sandy brown	sandy brown
		Sampled by:	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry
		Time Sampled:	12:00	12:50	13:00	13:05	13:45
	Start/E	nd - Dates of Analysis:	12-11-12/18-01-13	12-11-12/18-01-13	12-11-12/18-01-13	12-11-12/18-01-13	12-11-12/18-01-13
		Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report
Parameter	Units	Limits					
F Depth of Borehole	m		6.9	7	8	4.3	7.1
F Water Level	m		3.8	5.9	7.2	3.2	6.9
F Temperature	°C		13.3	12.4	12.3	12.2	12.2
F Dissolved Oxygen (as %	Sat) % Saturation		53.0	14.0	33.0	32.0	75.0
F Salinity	‰		3.7	0.9	-	-	6.7
L pH	pН		6.8	7.0	7.1	7.1	7.2
L Conductivity @25°C	µS/cm		6820	2120	989	1043	11920
L Ammonia	mg/IN		82	0.35	0.07	0.06	0.49
L Chloride	mg/l Cl		1525	495	157	98	>3398.640
L Total Oxidised Nitrogen (asN) mg/IN		<0.20	<0.20	1.99	<0.20	<0.20
L Total coliforms	No/100 ml		>24192	1600	1500	1500	660
L E Coli	per 100ml		<10	<10	10	<10	<10
L Iron	ug/l		4100	1700	2100	5900	1100
L Potassium	mg/l		130	11	<0.5	<0.5	46
L Sodium	mg/l		650	240	60	78	1300

Report number:KK1201917/1

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	22/01/13

Facility:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford					
Reference No:	W0075-01					
Date collected:	12/11/2012	Date received:	12/11/2012			

Report number:KK1201916/1

			Laboratory Ref:	1204885	1204886	1204887	1204888	1204889	1204890	1204891
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			Location code:	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	WST-W0075-01- GW06	WST-W0075-01- GW07	WST-W0075-01- GW8	WST-W0075-01- BH1/1
			Sampling point:	Brown	Brown	Brown	Black	Black	no tubing-no sample	Clear
			Sampled by:	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry
			Time Sampled:	10:00	10:05	10:15	10:30	10:45	11:10	11:30
		Start/End - D	ates of Analysis:						12-11-12/12-11-12	C
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Pa	rameter	Units	Limits							
F	Depth of Borehole	m		6.3	6.3	2.6	6.7	8.1	-	3.9
F	Water Level	m		5.5	6	1.8	4.8	7.3	0	2
F	Temperature	°C		12.0	11.7	10.9	12.5	12.7	5	11.5
F	Dissolved Oxygen (as %Sat)	% Saturation		51.0	63.0	58.0	12.0	18.0	5	27.0
F	рН	pН		7.4	7.1	7.1	6.7	6.8	-	6.8
F	Conductivity @25°C	µS/cm		7090	1285	1374	2090	1806	-	1808
F	Salinity	‰		3.8	7.3	7.8	0.9	-9	-	-
L	Ammonia	mg/l N		0.51	1.2	0.4	2.6	10	-	15
L	Chloride	mg/l Cl		1790	>3451	>3451	273	216	-	190
L	Total Oxidised Nitrogen (as N)	mg/l N		0.3	<0.20	<0.20	<0.20	<0.20	-	<0.20
L	Total Organic Carbon	mg/I C		nm	nm	nm	nm	nm	-	nm
L	Total coliforms	No/100 ml		16000	4000	3900	1600	110	2	6900
L	E Coli	per 100ml		160	52	1200	<10	20	8	<10
L	Iron	ug/l		3200	20000	25000	12000	7500	5	17000
L	Potassium	mg/l		60	83	84	9.6	20	E.	22
L	Sodium	mg/l		1000	1700	1800	99	89	-	92
						0) 				

Report number:KK1201916/1

Test Report

Report of: Report to: Report date:	Analysis of la Waterford Co 22/01/13	ndfill site sample(s) unty Council	
Facility:		e Disposal Site	ramara Ca Matafard
Reference No:	W0075-01	e & Tramore Burrows, T	ramore, Co. Waterford
Date collected:	12/11/2012	Date received:	12/11/2012

Report number:KK1201917/1

				100 (000	100,1000	1001001	100 (005	100,000
			Laboratory Ref:	10. 10. 10.	1204893	1204894	1204895	1204896
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			Location code:	WST-W0075-01-BH2	WST-W0075-01-BH9	WST-W0075-01- GW5	WST-W0075-01- GW4	WST-W0075-01-BH8
			Sampling point:	Clear	muddy brown	muddy sandy brown	sandy brown	sandy brown
			Sampled by:	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry
			Time Sampled:	12:00	12:50	13:00	13:05	13:45
		Start/Er	nd - Dates of Analysis:	12-11-12/18-01-13	12-11-12/18-01-13	12-11-12/18-01-13	12-11-12/18-01-13	12-11-12/18-01-13
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report
Pai	rameter	Units	Limits					
F	Depth of Borehole	m		6.9	7	8	4.3	7.1
F	Water Level	m		3.8	5.9	7.2	3.2	6.9
F	Temperature	°C		13.3	12.4	12.3	12.2	12.2
F	Dissolved Oxygen (as %Sat)	% Saturation		53.0	14.0	33.0	32.0	75.0
F	Salinity	‰		3.7	0.9			6.7
L	pН	pН		6.8	7.0	7.1	7.1	7.2
L	Conductivity @25°C	µS/cm		6820	2120	989	1043	11920
L	Ammonia	mg/IN		82	0.35	0.07	0.06	0.49
L	Chloride	mg/l Cl		1525	495	157	98	>3398.640
L	Total Oxidised Nitrogen (as N)	mg/IN		<0.20	<0.20	1.99	<0.20	<0.20
L	Total coliforms	No/100 ml		>24192	1600	1500	1500	660
L	E Coli	per 100ml		<10	<10	10	<10	<10
L	Iron	ug/l		4100	1700	2100	5900	1100
L	Potassium	mg/l		130	11	<0.5	<0.5	46
L	Sodium	mg/l		650	240	60	78	1300

Report number:KK1201917/1

Test Report

Report of:Analysis of landfill site sample(s)Report to:Waterford County CouncilReport date:22/01/13

Facility: Tramore Waste Disposal Site

Reference No:	Tramore Intake & Tramore Burrows, Tramore, Co. Waterfo W0075-01					
Date collected:	12/11/2012	Date received:	12/11/2012			

Report number:KK1201916/1

			Laboratory Ref:	1204885	1204886	1204887	1204888	1204889	1204890	1204891
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			Location code:	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	WST-W0075-01- GW06	WST-W0075-01- GW07	WST-W0075-01- GW8	WST-W0075-01- BH1/1
			Sampling point:	Brown	Brown	Brown	Black	Black	no tubing-no sample	Clear
			Sampled by:	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry
			Time Sampled:	10:00	10:05	10:15	10:30	10:45	11:10	11:30
		Start/End - D	ates of Analysis:						12-11-12/12-11-12	C
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Pa	rameter	Units	Limits							
F	Depth of Borehole	m		6.3	6.3	2.6	6.7	8.1	-	3.9
F	Water Level	m		5.5	6	1.8	4.8	7.3	0	2
F	Temperature	°C		12.0	11.7	10.9	12.5	12.7	8	11.5
F	Dissolved Oxygen (as %Sat)	% Saturation		51.0	63.0	58.0	12.0	18.0	5	27.0
F	рН	pН		7.4	7.1	7.1	6.7	6.8	-	6.8
F	Conductivity @25°C	µS/cm		7090	1285	1374	2090	1806	-	1808
F	Salinity	‰		3.8	7.3	7.8	0.9	-	-	-
L	Ammonia	mg/l N		0.51	1.2	0.4	2.6	10	-	15
L	Chloride	mg/l Cl		1790	>3451	>3451	273	216	-	190
L	Total Oxidised Nitrogen (as N)	mg/l N		0.3	<0.20	<0.20	<0.20	<0.20	÷.	<0.20
L	Total Organic Carbon	mg/I C		nm	nm	nm	nm	nm	6	nm
L	Total coliforms	No/100 ml		16000	4000	3900	1600	110	<u> </u>	6900
L	E Coli	per 100ml		160	52	1200	<10	20	8	<10
L	Iron	ug/l		3200	20000	25000	12000	7500	5	17000
L	Potassium	mg/l		60	83	84	9.6	20	-	22
L	Sodium	mg/l		1000	1700	1800	99	89	-	92
						9) 				

Appendix D Leachate Results

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Test Report

Report of: Report to:	Analysis of la Waterford Co	ndfill site sample(s) untv Council	
Report date:	18/04/12		
Facility:		e Disposal Site	
	Tramore Intake	e & Tramore Burrows, T	ramore, Co. Waterford
Reference No:	W0075-01		
Date collected:	07/02/2012	Date received:	07/02/2012

Report number:KK1200219/1

			Laboratory Ref:	1200608	1200609	1200610	1200611	1200612	1200613	
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	
			Location code:	WST-W0075-01- BH7b	WST-W0075-01- LT3a	WST-W0075-01- LT4B/B	WST-W0075-01- LT2	WST-W0075-01- LT1	WST-W0075-01- LT5	
			Sampling point:	black	black	dry, no sample	dry, no sample	brown	dry, no sample	
5			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	11:55	13:10	13:30	13:35	13:45	13:55	
		Start/End - D	ates of Analysis:	07-02-12/05-04-12	07-02-12/14-02-12	07-02-12/07-02-12	07-02-12/07-02-12	07-02-12/05-04-12	07-02-12/07-02-12	
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits							
F	Depth of Borehole	m		7.5	NM	2	-	7.5	-	
F	Leachate Level	m		0.3	NM	-	-	2.3	÷	
F	Temperature	°C		12.6	12.2	72	100	14.4		
F	pН	pН		6.6	7.5	-		6.8	-	
F	Conductivity @25°C	µS/cm		2410	23870	-	1.00	5060	-	
L	Ammonia	mg/I N		31	1700	-	1.00	180	-	
L	Chloride	mg/l Cl		201	-		(1 1)	446	-	
L	ortho-Phosphate (as P)	mg/IP		<0.01	4.5	-		<0.01	-	
L	Biochemical Oxygen Demand	mg/I O2		48.0	135.0	-	-	20.0	-	
L	Chemical Oxygen Demand	mg/l O2		370	1930	2	127	210	2	
L	Fluoride	mg/l F		2	9.6	-	121	0.39	-	
L	Sulphate	mg/I SO4		<2.5	17	3	-	7	8	
L	Total coliforms	No/100 ml		>20000	nr	51	100	>20000	5	
L	E Coli	per 100ml		63	<10	-)		<10	-	
L	1,1,1,2-Tetrachloroethane	μg/l		<0.5	<0.5	-	1.01	<0.5	-	
L	1,1,1-Trichloroethane	μg/l		<0.5	<0.5	-	(x)	<0.5	-	
L	1,1,2,2-Tetrachloroethane	μg/l		<1	<1	-		<1	-	
L	1,1,2-Trichloroethane	µg/l		<0.5	<0.5	-	-	<0.5	-	
L	1,1-Dichloroethane	μg/l		<0.5	<0.5	-	-	<0.5	-	
L	1,1-Dichloroethene	μg/l		<0.5	<0.5	2	12	<0.5	-	
L,	1,1-Dichloropropene	μg/l		<0.5	<0.5	-	-	<0.5	5	
L	1,2,3-Trichlorobenzene	μg/l		<0.4	<0.4	71	10	<0.4		
L	1,2,3-Trichloropropane	μg/l		<0.6	<0.6	2	10	<0.6	5	

			Laboratory Ref:	1200608	1200609	1200610	1200611	1200612	1200613	
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	
			Location code:	WST-W0075-01- BH7b	WST-W0075-01- LT3a	WST-W0075-01- LT4B/B	WST-W0075-01- LT2	WST-W0075-01- LT1	WST-W0075-01- LT5	
			Sampling point:	black	black	dry, no sample	dry, no sample	brown	dry, no sample	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	11:55	13:10	13:30	13:35	13:45	13:55	
		Start/End - D	ates of Analysis:	07-02-12/05-04-12	07-02-12/14-02-12	07-02-12/07-02-12	07-02-12/07-02-12	07-02-12/05-04-12	07-02-12/07-02-12	
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	ameter	Units	Limits							
L	1,2,4-Trichlorobenzene	μg/l		<0.4	<0.4	-	(=)	<0.4	-	
L	1,2,4-Trimethylbenzene	μg/l	2	<0.5	6	-		3.4	-	
L	1,2-Dibrom o-3-Chloropropane	μg/l	-	<1.3	<1.3	-	-	<1.3	-	
L	1,2-Dibromoethane	μg/l		<0.5	<0.5	-	1.2	<0.5	-	
L	1,2-Dichlorobenzene	μg/l		<0.5	<0.5	2	121	<0.5	2	
L	1,2-Dichloroethane	μg/l		<0.5	<0.5	-	121	<0.5	-	
L	1,2-Dichloropropane	μg/l		<0.5	<0.5	-	-	<0.5	Ξ	
L	1,3,5-Trimethylbenzene	μg/l		<0.5	1.9	51	172	<0.5	5	
L	1,3-Dichlorobenzene	μg/l		<0.5	<0.5	-		0.5		
L	1,3-Dichloropropane	μg/l		<0.5	<0.5	-	()	<0.5	-	
L	1,4-Dichlorobenzene	μg/l		<0.5	<0.5	-		0.5	-	
L	2,2-Dichloropropane	μg/l		<0.5	<0.5	-	100	<0.5	-	
L	2-Chlorotoluene	μg/l		<0.5	<0.5	-	-	<0.5	-	
L	4-Chlorotoluene	μg/l		<0.5	<0.5	-		<0.5	=	
L	4-Isopropyltoluene	μg/l		<0.5	80	-	-	2.1	2	
L,	Benzene	μg/l		1.8	1.4	8	-	3.7	8	
L	Bromobenzene	μg/l		<0.5	<0.5	73	100	<0.5		
L	Bromochloromethane	μg/l		<0.5	<0.5	5		<0.5	5	
L	Bromodichloromethane	μg/l	5	<0.5	<0.5	=	-	<0.5	5	
L	Bromoform	μg/l	8	<0.5	<0.5	-	10	<0.5	-	
L	Bromomethane	μg/l	8	<0.5	<0.5	-	-	<0.5	-	
L	c-1,2-Dichloroethene	μg/l		<0.5	<0.5	-		<0.5	-	
L	c-1,3-Dichloropropene	μg/l		<0.5	<0.5	-	100 M	<0.5	-	

Page 3 of 6

			Laboratory Ref:	1200608	1200609	1200610	1200611	1200612	1200613	
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	
			Location code:	WST-W0075-01- BH7b	WST-W0075-01- LT3a	WST-W0075-01- LT4B/B	WST-W0075-01- LT2	WST-W0075-01- LT1	WST-W0075-01- LT5	
			Sampling point:	black	black	dry, no sample	dry, no sample	brown	dry, no sample	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	11:55	13:10	13:30	13:35	13:45	13:55	
		Start/End - D	ates of Analysis:	07-02-12/05-04-12	07-02-12/14-02-12	07-02-12/07-02-12	07-02-12/07-02-12	07-02-12/05-04-12	07-02-12/07-02-12	
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits							
L	Carbon Tetrachloride	µg/l		<0.5	<0.5		(.)	<0.5	-	
L	Chlorobenzene	µg/l	8	<0.5	<0.5	-	(1)	0.6	-	e
L	Chloroform	µg/l	-	<0.5	<0.5	-	1	<0.5	-	
L	Dibromochloromethane	µg/l		<0.5	<0.5	-	120	<0.5	-	
L	Dibromomethane	µg/l		<0.5	<0.5	2	-	<0.5	2	
L	Dichlorodifluoromethane	µg/l		<0.5	<0.5	-	121	<0.5	-	
L	Dichloromethane	µg/l		<0.5	<0.5	-		<0.5	5	
L	Ethylbenzene	µg/l		0.8	7.7	51	10	<0.5	5	
L	Hexachlorobutadiene	µg/l		<0.1	<0.1	-		<0.1	-	
L	l sop rop ylbenz ene	µg/l		<0.5	0.8	-	1.00	1.5	-	
L	m,p-Xylene	µg/l		0.9	10	-	(H)	1.1	-	
L	Naphthalene	µg/l		<0.5	0.8		1.0	<0.5	-	
Ŀ	n-Butylbenzene	µg/l		<0.5	<0.5	-	-	0.5	-	
L	n-Propylbenzene	µg/l		<0.5	0.7	-	141	0.6	-	
L	o-Xylene	µg/l		1.1	8.1	-	12	0.6	<u>.</u>	
L	sec-Butylbenzene	µg/l		<0.5	<0.5	1	-	<0.5	8	
L	Styrene	µg/l		<0.5	<0.5	5	10	<0.5	5	
L	t-1,2-Dichloroethene	µg/l		<0.5	<0.5	5	12	<0.5	5	
L	t-1,3-Dichloropropene	µg/l	5	<0.5	<0.5	=		<0.5	5	
L	tert-Butylbenzene	µg/l	8	<0.5	<0.5	-	1-1	0.9	-	
L	Tetrachloroethene	µg/l	8	<0.5	<0.5	-	(F)	<0.5	-	
L	Toluene	µg/l		11	56	-		<0.5	-	
L	Trichloroethene	µg/l		<0.5	<0.5	-	-	<0.5	-	

Page 4 of 6

			Laboratory Ref:	1200608	1200609	1200610	1200611	1200612	1200613]
1			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	
			Location code:	WST-W0075-01- BH7b	WST-W0075-01- LT3a	WST-W0075-01- LT4B/B	WST-W0075-01- LT2	WST-W0075-01- LT1	WST-W0075-01- LT5	
			Sampling point:	black	black	dry, no sample	dry, no sample	brown	dry, no sample	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	11:55	13:10	13:30	13:35	13:45	13:55	
		Start/End - D	ates of Analysis:	07-02-12/05-04-12	07-02-12/14-02-12	07-02-12/07-02-12	07-02-12/07-02-12	07-02-12/05-04-12	07-02-12/07-02-12	
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits	1						
L	Trichlorofluoromethane	µg/l		<0.6	<0.6	-	(<0.6	-	
L	Vinyl Chloride	µg/l	8	<0.5	<0.5	-	(1)	<0.5	-	
L	Aluminium	ug/l		840	-	-		130	-	
L	Antimony	ug/l		<5	-	-		<5	-	
L	Arsenic	ug/l		34	0	2	121	6.9	2	
L	Barium	ug/l		1800	0	2	127	2300	2	
L	Beryllium	ug/l		<5	8	5	-	<5	8	
L	Cadmium	ug/l		<5		51	100	<5		
L	Calcium	m g/l		270	-	-	-	350	-	
L	Chromium	ug/l		10	-	-	(.)	9.8	-	
L	Cobalt	ug/l		<5	-	-	1940	<5	-	
L	Copper	ug/l		17	-	-	(-)	<5	-	
L	Iron	ug/l		65000	-	-		40000	-	
L	Lead	ug/l		<5	-	-	-	<5	-	
L	Magnesium	m g/l		52	0	2	10	91	2	
L	Manganese	ug/l		3800		8	-	1900	E	
L	Mercury	ug/l		<5		12	100	<5		
L	Molybdenum	ug/l		<5		51	100	<5	-	
L	Nickel	ug/l		12	-	-		5.7	-	
L	Potassium	mg/l		60	-	-	1.00	190	-	
L	Selenium	ug/l	5	8.7	-	-	(1)	13	-	
L	Sodium	mg/l		150	-	-		390	-	
L	Thallium	ug/l		<5	-	-	12	<5	-	
-										

Page 5 of 6

			Laboratory Ref:	1200608	1200609	1200610	1200611	1200612	1200613	
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	
			Location code:	WST-W0075-01- BH7b	WST-W0075-01- LT3a	WST-W0075-01- LT4B/B	WST-W0075-01- LT2	WST-W0075-01- LT1	WST-W0075-01- LT5	
			Sampling point:	black	black	dry, no sample	dry, no sample	brown	dry, no sample	¢.
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	
			Time Sampled:	11:55	13:10	13:30	13:35	13:45	13:55	
		Start/End - D	ates of Analysis:	07-02-12/05-04-12	07-02-12/14-02-12	07-02-12/07-02-12	07-02-12/07-02-12	07-02-12/05-04-12	07-02-12/07-02-12	
		3	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	rameter	Units	Limits	1						
L	Uranium	ug/l		<5	-	-	(.)	<5	-	
L	Vanadium	ug/l		9.2	-		-	10	-	8
L	Zinc	ug/l		1100	~	-		650	-	
_		1								-

Comments:

1) Results highlighted and in bold are outside specified limits.

results regimered and in bold are out
 nm "Not measured"
 nd "None detected"
 nt "No time". Time not recorded
 thte "Foo numerous to count"
 F "Field measured parameters"
 L "Lab measured parameters"

Signed: PP Sach Back

Date: 18/Apr/2012

Caroline Bowden, Regional Chemist

Report number:KK1200219/1

Page 6 of 6

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Test Report

Report of: Report to: Report date:	Analysis of la Waterford Co 29/08/12	ndfill site sample(s) unty Council	
Facility:	Tramore Wast	e Disposal Site	
	Tramore Intake	& Tramore Burrows, T	ramore, Co. Waterford
Reference No:	W0075-01		
Date collected:	14/05/2012	Date received:	14/05/2012

Report number:KK1200762/1

Laboratory Ref:	1202123	1202124	1202125	1202126	1202127	1202128	
Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	
Location code:	WST-W0075-01- LT3a	WST-W0075-01- LT4B/B	WST-W0075-01- BH7b	WST-W0075-01- LT1	WST-W0075-01- LT2	WST-W0075-01- LT5	
Sampling point:	Dry, no sample	Dry, no sample	Dry, no sample	Dry, no sample	Dry, no sample	unable to get sample as no tubing in borehole	
Sampled by:	DB/JS	DB/JS	DB/JS	DB/JS	DB/JS	DB/JS	
Time Sampled:	13:30	13:35	13:40	13:42	13:45	13:55	
Start/End - Dates of Analysis:	14-05-12/14-05-12	14-05-12/14-05-12	14-05-12/14-05-12	14-05-12/14-05-12	14-05-12/14-05-12	14-05-12/14-05-12	
Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
L Time sampled	13:30						

Comments:

1) Results highlighted and in bold are outside specified limits.

- nm "Not measured"
 nd "None detected"
 nd "None detected"
 nt "No time" Time not recorded
 tntc "Too numerous to count"
 F "Field measured parameters"
 L "Lab measured parameters"

Signed: PP

Date: 29/Aug/2012

Caroline Bowden, Regional Chemist

Report number:KK1200762/1

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Test Report

Report of:Analysis of landfill site sample(s)Report to:Waterford County CouncilReport date:22/01/13

Facility: Tramore Waste Disposal Site

Reference No:	Tramore Intake W0075-01	& Tramore Burrows, 1	ramore, Co. Waterford
Date collected:	12/11/2012	Date received:	12/11/2012

Report number:KK1201918/1

Page 1 of 3

			Laboratory Ref:	1204897	1204898	1204899	1204900	1204901	1204902	1204903
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate
			Location code:	WST-W0075-01- RC6a	WST-W0075-01- RC4	WST-W0075-01- LT3a	WST-W0075-01- LT2	WST-W0075-01- LT4B/B	WST-W0075-01- LT5	WST-W0075-01- LT1
			Sampling point:	brown	clear	Dry, no sample	Dry, no sample	Dry, no sample	Dry, no sample	Dry, no sample
			Sampled by:	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry
2			Time Sampled:	11:30	12:15	12:30	12:35	12:37	12:39	12:45
		Start/End -	Dates of Analysis:	12-11-12/28-11-12	12-11-12/18-11-12	12-11-12/12-11-12	12-11-12/12-11-12	12-11-12/12-11-12	12-11-12/12-11-12	12-11-12/12-11-12
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Par	rameter	Units	Limits							
F	Depth of Borehole	m		5	15.5	-	-	-	-	-
F	Leachate Level	m		4	12.1	2	-	100	0	-
F	Temperature	°C		12.6	12.6	3	-	150	5	3
L	pН	pН		7.3	7.1	5	152	.52		5
L	Conductivity @25°C	µS/cm		1061	5110	-				-
L	Ammonia	mg/l N		0.4	4.1	-	()	-	-	-
L	Chloride	mg/l Cl		139	>8221	-	-	-	-	-
Ľ	Total Oxidised Nitrogen (as N)	mg/l N		<0.20	<0.20	Ξ.	-	-	-	Ξ.
L	Chemical Oxygen Demand	mg/l O2		31	840	-		-2	-	-
L	Biochemical Oxygen Demand	mg/l O2		1.6	<1.0	-		20	-	-

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Test Report

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	22/01/13

Facility:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford					
Reference No:						
Date collected:	12/11/2012	Date received:	12/11/2012			

Page 1 of 3

			Laboratory Ref:	1204897	1204898	1204899	1204900	1204901	1204902	1204903
	Type of sample:		Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	
			Location code:	WST-W0075-01- RC6a	WST-W0075-01- RC4	WST-W0075-01- LT3a	WST-W0075-01- LT2	WST-W0075-01- LT4B/B	WST-W0075-01- LT5	WST-W0075-01- LT1
			Sampling point:	brown	clear	Dry, no sample	Dry, no sample	Dry, no sample	Dry, no sample	Dry, no sample
			Sampled by:	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry	Diarmuid Berry
2			Time Sampled:	11:30	12:15	12:30	12:35	12:37	12:39	12:45
		Start/End -	Dates of Analysis:	12-11-12/28-11-12	12-11-12/18-11-12	12-11-12/12-11-12	12-11-12/12-11-12	12-11-12/12-11-12	12-11-12/12-11-12	12-11-12/12-11-12
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Par	rameter	Units	Limits							
F	Depth of Borehole	m		5	15.5	-	-	-	-	-
F	Leachate Level	m		4	12.1	-	-	100	0	-
F	Temperature	°C		12.6	12.6	3	-	150	5	3
L	pН	pН		7.3	7.1	5	152	.52		5
L	Conductivity @25°C	µS/cm		1061	5110	-				-
L	Ammonia	mg/l N		0.4	4.1	-	()	-	-	-
L	Chloride	mg/l Cl		139	>8221	-	-	-	-	-
Ľ	Total Oxidised Nitrogen (as N)	mg/l N		<0.20	<0.20	Ξ.	-	-	-	Ξ.
L	Chemical Oxygen Demand	mg/l O2		31	840	-		-2	-	-
L	Biochemical Oxygen Demand	mg/I O2		1.6	<1.0	-		20	-	-

Appendix E Meteorological Data

		Johnsto	own Castle, Co.	Wexford	
(\mathfrak{S})					
				Maximum	Minimum
		Rainfall	Mean Wind	Temperature	Temperature
MET	date	(mm)	speed (kt)	(deg. C)	(deg. C)
éireann	01/01/2012 00:00	3.8	11.5	10.3	2.9
	02/01/2012 00:00	6.7	12.7	9.0	1.7
	03/01/2012 00:00	6.1	19.5	11.6	4.2
	04/01/2012 00:00	1.0	16.0	10.7	4.7
	05/01/2012 00:00	0.2	17.1	11.8	5.3
	06/01/2012 00:00	0.2	8.5	10.6	3.9
	07/01/2012 00:00	0.0	8.5	10.7	6.3
	08/01/2012 00:00	0.2	6.6	12.1	6.5
	09/01/2012 00:00	0.5	6.0	11.9	7.3
	10/01/2012 00:00	0.8	10.7	9.9	5.0
	11/01/2012 00:00	0.1	11.3	10.5	8.8
	12/01/2012 00:00	0.9	7.1	10.8	4.1
	13/01/2012 00:00	0.2	3.7	7.9	2.7
	14/01/2012 00:00	0.0	10.4	7.5	4.4
	15/01/2012 00:00	0.0	11.5	6.8	5.3
	16/01/2012 00:00	0.0	7.7	7.3	4.6
	17/01/2012 00:00	1.0	10.5	10.2	7.1
	18/01/2012 00:00	2.6	7.4	10.8	6.6
	19/01/2012 00:00	2.9	10.5	8.8	5.1
	20/01/2012 00:00	0.0	13.5	11.9	5.2
	21/01/2012 00:00	0.2	16.5	12.0	6.3
	22/01/2012 00:00	0.0	10.9	9.9	5.4
	23/01/2012 00:00	0.4	5.5	8.9	3.6
	24/01/2012 00:00	2.9	10.3	11.5	6.2
	25/01/2012 00:00	6.5	13.8	10.1	2.1
	26/01/2012 00:00	2.5	11.7	6.3	0.9
	27/01/2012 00:00	0.1	10.2	7.2	1.6
	28/01/2012 00:00	0.3	3.3	6.6	0.9
	29/01/2012 00:00	22.7	5.5	8.9	5.4
	30/01/2012 00:00	5.3	8.8	6.4	4.3
	31/01/2012 00:00	0.1	9.2	5.1	3.2

		Johnsto	own Castle, Co.	Wexford	
	date	Rainfall	Mean Wind	Maximum Temperature	Minimum Temperature
	01/02/2012 00:00	<u>(mm)</u> 0.0	speed (kt) 7.6	(deg. C) 4.1	(deg. C) 1.4
éireann	02/02/2012 00:00	0.0	4.2	3.4	-1.2
	03/02/2012 00:00	0.0	5.3	6.7	-0.2
		8.7	8.7	9.0	5.0
	04/02/2012 00:00				
	05/02/2012 00:00	1.5	4.4	7.5	3.1
	06/02/2012 00:00	0.4	2.2	8.0	5.3
	07/02/2012 00:00	0.2	5.4	7.4	2.5
	08/02/2012 00:00	0.0	10.1	5.2	3.3
	09/02/2012 00:00	1.8	7.3	9.4	4.7
	10/02/2012 00:00	3.6	5.9	9.6	6.0
	11/02/2012 00:00	5.4	8.1	6.2	5.1
	12/02/2012 00:00	0.0	5.4	9.7	6.1
	13/02/2012 00:00	0.1	9.2	9.0	4.8
	14/02/2012 00:00	0.0	12.3	9.2	5.7
	15/02/2012 00:00	0.0	9.2	10.4	6.7
	16/02/2012 00:00	0.0	9.3	10.8	5.2
	17/02/2012 00:00	0.0	11.4	11.1	8.2
	18/02/2012 00:00	1.7	14.1	8.8	1.5
	19/02/2012 00:00	0.0	7.8	8.4	1.1
	20/02/2012 00:00	0.7	11.1	8.7	3.2
	21/02/2012 00:00	0.8	14.2	10.5	8.5
	22/02/2012 00:00	6.5	15.6	13.0	9.0
	23/02/2012 00:00	0.0	11.2	13.4	9.7
	24/02/2012 00:00	0.1	6.4	12.2	8.1
	25/02/2012 00:00	0.0	3.6	11.2	3.8
	26/02/2012 00:00	0.2	5.8	9.7	3.1
	27/02/2012 00:00		7.7	10.4	8.4
	28/02/2012 00:00	0.0	5.6	11.7	8.5
	29/02/2012 00:00	0.0	9.1	10.6	8.1

		Johnsto	own Castle, Co.	Wexford	
S				Maximum	Minimum
		Rainfall	Mean Wind	Temperature	Temperature
MET	date	(mm)	speed (kt)	(deg. C)	(deg. C)
éireann	01/03/2012 00:00	0.0	8.1	12.7	9.0
	02/03/2012 00:00	0.0	8.9	9.1	7.8
	03/03/2012 00:00	5.7	9.9	11.1	4.9
	04/03/2012 00:00	0.8	9.7	8.0	0.2
	05/03/2012 00:00	0.0	8.4	9.9	2.5
	06/03/2012 00:00	2.3	10.0	9.8	2.4
	07/03/2012 00:00	4.4	13.7	10.1	3.5
	08/03/2012 00:00	0.1	10.0	11.3	3.1
	09/03/2012 00:00	0.0	11.4	11.9	8.5
	10/03/2012 00:00	0.2	7.0	14.0	7.6
	11/03/2012 00:00	0.0	4.1	13.8	8.1
	12/03/2012 00:00	0.0	3.0	8.5	6.5
	13/03/2012 00:00	0.0	2.4	8.4	5.9
	14/03/2012 00:00	0.0	4.2	7.6	6.2
	15/03/2012 00:00	0.0	6.9	10.7	6.2
	16/03/2012 00:00	5.8	10.3	10.2	6.9
	17/03/2012 00:00	6.1	5.0	9.6	3.3
	18/03/2012 00:00	0.3	8.0	11.2	3.4
	19/03/2012 00:00	0.0	8.6	10.5	2.2
	20/03/2012 00:00	0.0	7.8	11.1	6.9
	21/03/2012 00:00	0.0	5.2	10.0	5.2
	22/03/2012 00:00	5.8	7.8	10.9	5.3
	23/03/2012 00:00	0.2	6.9	11.9	5.9
	24/03/2012 00:00	0.1	8.8	15.1	7.2
	25/03/2012 00:00	0.0	4.5	14.0	8.3
	26/03/2012 00:00	0.1	5.5	13.3	7.2
	27/03/2012 00:00	0.0	5.4	14.1	7.1
	28/03/2012 00:00	0.0	5.3	14.9	6.7
	29/03/2012 00:00	0.0	5.8	18.1	7.5
	30/03/2012 00:00	0.0	6.5	12.1	6.2
	31/03/2012 00:00	0.0	8.5	10.5	5.2

		Johnsto	own Castle, Co.	Wexford	
		Rainfall	Mean Wind	Maximum Temperature	Minimum Temperature
MET	date	(mm)	speed (kt)	(deg. C)	(deg. C)
éireann	01/04/2012 00:00	0.0	4.4	10.2	4.9
	02/04/2012 00:00	0.3	3.7	9.9	7.0
	03/04/2012 00:00	0.2	10.8	9.9	1.1
	04/04/2012 00:00	2.0	16.9	6.5	0.7
	05/04/2012 00:00	0.0	13.5	7.6	1.9
	06/04/2012 00:00	0.0	7.5	11.6	1.9
	07/04/2012 00:00	0.0	7.1	13.7	8.5
	08/04/2012 00:00	0.3	8.5	12.7	6.9
	09/04/2012 00:00	7.7	11.0	10.5	3.8
	10/04/2012 00:00	0.9	9.5	11.0	1.7
	11/04/2012 00:00	1.8	7.7	12.2	2.6
	12/04/2012 00:00	0.2	6.5	12.3	3.1
	13/04/2012 00:00	0.0	5.6	8.9	3.9
	14/04/2012 00:00	4.5	10.2	9.1	3.1
	15/04/2012 00:00	0.0	6.6	9.4	1.3
	16/04/2012 00:00	6.1	10.0	9.7	4.2
	17/04/2012 00:00	14.8	13.6	10.1	4.6
	18/04/2012 00:00	3.0	10.3	10.9	4.9
	19/04/2012 00:00	1.1	9.3	13.0	3.8
	20/04/2012 00:00	7.6	8.7	11.2	4.2
	21/04/2012 00:00	1.7	10.8	12.4	3.9
	22/04/2012 00:00	2.7	7.3	12.9	4.7
	23/04/2012 00:00	0.2	8.7	11.2	4.9
	24/04/2012 00:00	5.5	5.7	11.0	4.3
	25/04/2012 00:00	16.9	14.6	7.8	5.9
	26/04/2012 00:00	2.5	9.6	9.3	6.4
	27/04/2012 00:00	0.1	10.9	9.7	4.1
	28/04/2012 00:00	0.0	15.1	9.8	3.5
	29/04/2012 00:00	9.4	18.3	7.2	4.5
	30/04/2012 00:00	4.2	14.1	11.6	7.2

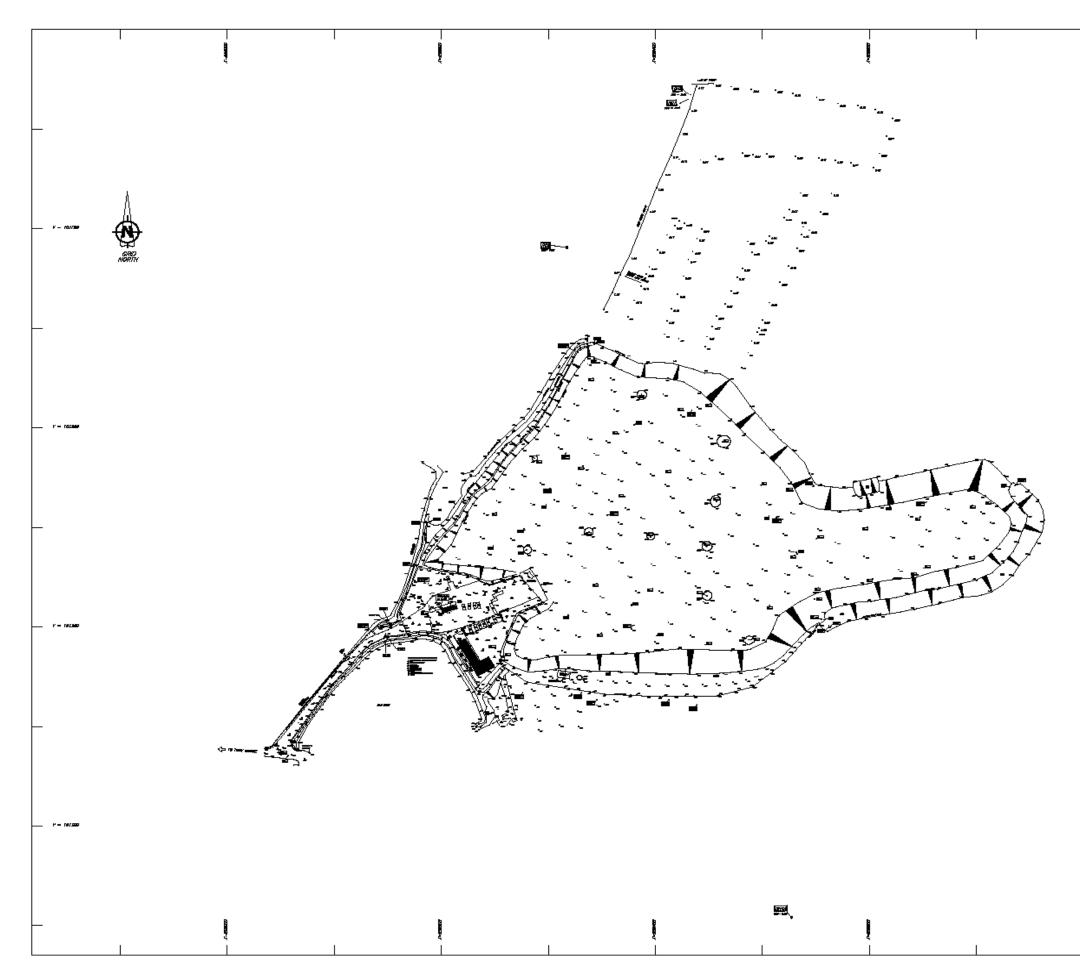
		Johnsto	own Castle, Co.	Wexford	
				Maximum	Minimum
		Rainfall	Mean Wind	Temperature	Temperature
MET	date	(mm)	speed (kt)	(deg. C)	(deg. C)
éireann	01/05/2012 00:00	19.0	12.2	11.1	8.1
	02/05/2012 00:00	0.3	8.4	12.8	7.7
	03/05/2012 00:00	2.2	8.0	10.6	7.5
	04/05/2012 00:00	0.0	8.3	11.0	6.3
	05/05/2012 00:00	0.0	9.5	8.3	2.7
	06/05/2012 00:00	0.0	6.8	9.6	1.4
	07/05/2012 00:00	8.1	11.4	12.7	6.9
	08/05/2012 00:00	0.0	7.6	13.2	7.7
	09/05/2012 00:00	14.9	8.6	9.5	4.9
	10/05/2012 00:00	7.9	8.7	13.0	8.2
	11/05/2012 00:00	1.1	9.2	13.1	5.2
	12/05/2012 00:00	0.1	6.9	13.4	1.6
	13/05/2012 00:00	1.0	13.7	11.8	4.0
	14/05/2012 00:00	0.7	11.2	13.5	5.6
	15/05/2012 00:00	0.0	9.8	13.2	3.0
	16/05/2012 00:00	0.0	5.8	12.4	2.5
	17/05/2012 00:00	0.1	6.4	11.4	7.6
	18/05/2012 00:00	8.5	11.6	11.2	8.3
	19/05/2012 00:00	0.6	9.4	9.7	6.9
	20/05/2012 00:00	0.1	5.1	13.9	6.6
	21/05/2012 00:00	0.0	5.5	15.8	7.6
	22/05/2012 00:00	0.3	5.7	13.9	9.5
	23/05/2012 00:00	0.7	5.6	14.2	11.3
	24/05/2012 00:00	0.0	6.0	16.2	9.5
	25/05/2012 00:00	0.0	9.7	20.1	13.7
	26/05/2012 00:00	0.0	10.9	18.9	12.2
	27/05/2012 00:00	0.0	6.2	17.1	9.6
	28/05/2012 00:00	0.0	7.0	16.4	9.8
	29/05/2012 00:00	0.0	5.1	15.7	9.6
	30/05/2012 00:00	1.1	7.5	16.8	11.5
	31/05/2012 00:00	2.1	7.3	17.0	12.3

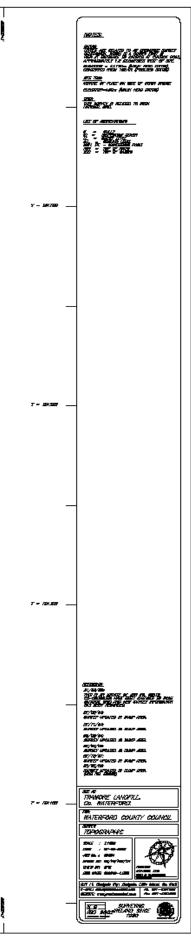
		Johnsto	own Castle, Co.	Wexford	
	date	Rainfall	Mean Wind	Maximum Temperature	Minimum Temperature
	01/06/2012 00:00	<u>(mm)</u> 0.0	speed (kt) 5.5	(deg. C) 18.4	(deg. C) 10.7
eireann	02/06/2012 00:00	21.0	8.7	14.6	10.7
	03/06/2012 00:00	5.7	10.5	13.0	8.5
	03/06/2012 00:00	0.0	6.7	13.0	6.4
		7.2	6.5	12.7	9.1
	05/06/2012 00:00				_
	06/06/2012 00:00	8.0	5.4 9.7	15.8	9.5
	07/06/2012 00:00	24.4		14.6	10.8
	08/06/2012 00:00	9.5	17.7	12.9	9.3
	09/06/2012 00:00	0.0	9.1	15.1	7.2
	10/06/2012 00:00	0.0	3.4	15.6	8.7
	11/06/2012 00:00	0.0	3.6	15.9	9.7
	12/06/2012 00:00	16.6	3.6	14.2	9.2
	13/06/2012 00:00	3.3	4.0	16.6	9.4
	14/06/2012 00:00	12.0	11.0	12.8	10.3
	15/06/2012 00:00	19.4	16.3	12.9	11.5
	16/06/2012 00:00	8.1	12.3	16.2	10.6
	17/06/2012 00:00	0.0	5.6	15.2	8.6
	18/06/2012 00:00	0.0	7.1	15.1	7.2
	19/06/2012 00:00	0.1	6.5	16.0	8.8
	20/06/2012 00:00	13.3	5.2	15.5	9.9
	21/06/2012 00:00	7.8	7.7	15.1	11.7
	22/06/2012 00:00	2.6	13.5	17.0	10.3
	23/06/2012 00:00	4.8	11.3	15.0	10.6
	24/06/2012 00:00	0.1	8.6	18.1	10.2
	25/06/2012 00:00	0.0	5.8	15.7	10.6
	26/06/2012 00:00	5.7	10.2	17.4	12.4
	27/06/2012 00:00	5.7	8.2	16.0	13.5
	28/06/2012 00:00	17.2	10.9	16.1	12.9
	29/06/2012 00:00	0.5	14.0	16.9	12.2
	30/06/2012 00:00	3.3	10.0	15.9	8.4

		Johnsto	own Castle, Co.	Wexford	
(\mathfrak{S})					
				Maximum	Minimum
		Rainfall	Mean Wind	Temperature	Temperature
MET	date	(mm)	speed (kt)	(deg. C)	(deg. C)
éireann	01/07/2012 00:00	2.6	10.8	15.2	8.5
	02/07/2012 00:00	5.5	10.1	16.3	13.5
	03/07/2012 00:00	6.5	8.8	14.4	13.4
	04/07/2012 00:00	0.4	7.5	16.6	11.7
	05/07/2012 00:00	0.8	5.3	17.3	11.1
	06/07/2012 00:00	29.9	8.3	16.0	10.4
	07/07/2012 00:00	0.1	10.2	18.3	13.0
	08/07/2012 00:00	0.0	7.3	16.8	12.5
	09/07/2012 00:00	2.0	5.4	15.0	10.8
	10/07/2012 00:00	7.4	9.4	18.0	10.2
	11/07/2012 00:00	1.5	7.3	16.6	9.0
	12/07/2012 00:00	5.4	6.4	13.5	7.4
	13/07/2012 00:00	5.0	5.3	14.9	10.8
	14/07/2012 00:00	0.0	7.4	16.6	11.6
	15/07/2012 00:00	0.2	9.7	16.4	10.0
	16/07/2012 00:00	3.7	11.4	20.9	12.2
	17/07/2012 00:00	0.4	11.0	17.4	11.9
	18/07/2012 00:00	7.3	9.9	20.7	11.8
	19/07/2012 00:00	0.0	7.7	17.2	11.2
	20/07/2012 00:00	0.0	4.9	16.7	10.1
	21/07/2012 00:00	0.0	5.9	17.6	8.7
	22/07/2012 00:00	0.4	11.2	16.9	13.0
	23/07/2012 00:00	0.6	11.6	17.3	15.4
	24/07/2012 00:00	3.9	7.6	17.2	15.4
	25/07/2012 00:00	0.3	7.1	18.1	14.3
	26/07/2012 00:00	0.0	5.3	18.8	12.3
	27/07/2012 00:00	0.0	8.4	19.1	10.5
	28/07/2012 00:00	6.2	8.5	17.8	8.3
	29/07/2012 00:00	5.4	7.0	16.5	8.1
	30/07/2012 00:00	5.0	7.5	15.9	8.8
	31/07/2012 00:00	8.0	8.4	16.4	11.9

		Johnsto	own Castle, Co.	Wexford	
				Maximum	Minimum
		Rainfall	Mean Wind	Temperature	Temperature
MET	date	(mm)	speed (kt)	(deg. C)	(deg. C)
éireann	01/08/2012 00:00	4.6	13.3	17.8	12.6
	02/08/2012 00:00	0.2	8.1	17.5	11.2
	03/08/2012 00:00	33.9	10.3	17.6	13.2
	04/08/2012 00:00	10.7	9.2	17.9	13.0
	05/08/2012 00:00	11.3	4.9	17.9	12.6
	06/08/2012 00:00	0.7	6.5	17.0	11.5
	07/08/2012 00:00	2.1	4.8	16.3	12.4
	08/08/2012 00:00	1.4	2.6	18.8	13.3
	09/08/2012 00:00	0.0	3.2	22.1	13.6
	10/08/2012 00:00	0.0	5.6	20.5	13.2
	11/08/2012 00:00	0.6	7.6	21.3	15.2
	12/08/2012 00:00	7.2	8.2	19.2	15.5
	13/08/2012 00:00	6.0	10.0	19.1	14.3
	14/08/2012 00:00	1.6	7.2	19.2	14.6
	15/08/2012 00:00	17.1	16.6	18.2	14.8
	16/08/2012 00:00	16.2	14.5	18.5	14.6
	17/08/2012 00:00	12.0	9.3	17.4	15.3
	18/08/2012 00:00	0.7	7.1	18.7	14.8
	19/08/2012 00:00	1.5	6.8	17.6	14.4
	20/08/2012 00:00	0.5	9.3	18.8	14.3
	21/08/2012 00:00	1.8	9.1	18.1	11.9
	22/08/2012 00:00	0.8	8.5	18.6	12.0
	23/08/2012 00:00	0.2	5.3	16.9	12.2
	24/08/2012 00:00	14.3	6.5	15.4	12.6
	25/08/2012 00:00	2.7	8.5	18.8	11.7
	26/08/2012 00:00	0.1	8.6	16.5	9.5
	27/08/2012 00:00	30.0	14.0	16.9	12.9
	28/08/2012 00:00	3.3	10.1	17.4	10.6
	29/08/2012 00:00	6.9	11.5	17.0	12.2
	30/08/2012 00:00	0.0	9.8	16.9	10.4
	31/08/2012 00:00	0.0	6.3	16.0	9.5

		Johnsto	own Castle, Co.	Wexford	
	date	Rainfall	Mean Wind	Maximum Temperature	Minimum Temperature
	01/09/2012 00:00	<u>(mm)</u> 0.0	speed (kt) 11.4	(deg. C) 17.6	(deg. C) 11.2
eireann	02/09/2012 00:00	0.6	6.0	22.4	11.2
	03/09/2012 00:00	0.0	8.4	17.7	13.3
	03/09/2012 00:00	0.0	6.0	19.8	11.4
				19.8	
	05/09/2012 00:00	0.0	5.5		9.0
	06/09/2012 00:00	0.1	8.1	17.5	8.7
	07/09/2012 00:00	0.1	7.0	18.1	10.6
	08/09/2012 00:00	0.0	6.3	16.4	12.5
	09/09/2012 00:00	2.8	10.4	17.3	13.9
	10/09/2012 00:00	5.2	8.5	16.9	9.7
	11/09/2012 00:00	0.1	10.2	14.5	8.0
	12/09/2012 00:00	0.0	7.6	19.2	7.4
	13/09/2012 00:00	0.0	9.5	17.1	6.3
	14/09/2012 00:00	0.4	9.4	18.2	10.3
	15/09/2012 00:00	0.0	6.5	15.7	10.1
	16/09/2012 00:00	2.3	9.4	17.1	9.2
	17/09/2012 00:00	0.1	8.2	15.2	7.7
	18/09/2012 00:00	0.0	9.5	14.8	7.4
	19/09/2012 00:00	0.0	8.4	15.2	6.7
	20/09/2012 00:00	0.6	8.5	14.9	10.9
	21/09/2012 00:00	0.6	6.9	13.3	7.0
	22/09/2012 00:00	0.0	6.0	13.6	5.9
	23/09/2012 00:00	0.1	8.2	13.2	9.5
	24/09/2012 00:00	0.1	10.4	12.9	8.3
	25/09/2012 00:00	8.9	10.6	11.0	8.1
	26/09/2012 00:00	1.7	12.5	14.9	9.4
	27/09/2012 00:00	0.4	7.6	14.4	7.7
	28/09/2012 00:00	3.4	9.1	14.6	8.3
	29/09/2012 00:00	0.0	9.4	15.5	6.2
	30/09/2012 00:00	5.3	13.3	14.8	12.0


		Johnsto	own Castle, Co.	Wexford	
(\mathfrak{S})					
				Maximum	Minimum
		Rainfall	Mean Wind	Temperature	Temperature
MET	date	(mm)	speed (kt)	(deg. C)	(deg. C)
éireann	01/10/2012 00:00	0.1	9.8	14.8	10.4
	02/10/2012 00:00	6.1	12.2	14.2	8.0
	03/10/2012 00:00	1.3	9.6	13.3	6.5
	04/10/2012 00:00	8.4	7.5	13.5	5.1
	05/10/2012 00:00	0.8	5.0	11.7	8.2
	06/10/2012 00:00	0.0	5.8	14.0	5.8
	07/10/2012 00:00	0.9	6.9	13.6	6.8
	08/10/2012 00:00	14.4	8.9	12.3	10.1
	09/10/2012 00:00	0.7	5.3	12.6	11.0
	10/10/2012 00:00	6.5	7.7	14.2	11.3
	11/10/2012 00:00	3.8	12.2	14.7	6.7
	12/10/2012 00:00	0.8	8.3	12.3	5.6
	13/10/2012 00:00	0.0	7.2	12.5	4.1
	14/10/2012 00:00	1.1	6.9	11.4	3.4
	15/10/2012 00:00	7.5	7.1	11.4	7.5
	16/10/2012 00:00		10.7	13.7	6.2
	17/10/2012 00:00	24.1	17.1	13.2	9.8
	18/10/2012 00:00	6.3	8.6	13.4	8.6
	19/10/2012 00:00	0.2	3.3	13.6	5.2
	20/10/2012 00:00	0.1	4.8	15.0	9.0
	21/10/2012 00:00	0.1	4.6	13.7	8.8
	22/10/2012 00:00	0.1	5.6	13.4	10.0
	23/10/2012 00:00	0.5	6.5	13.3	11.3
	24/10/2012 00:00	0.8	11.3	13.2	12.3
	25/10/2012 00:00	1.6	11.1	13.6	10.0
	26/10/2012 00:00	1.2	13.3	10.2	2.1
	27/10/2012 00:00	0.0	9.2	7.5	1.0
	28/10/2012 00:00	3.1	10.3	9.4	5.4
	29/10/2012 00:00	0.1	7.0	10.2	5.0
	30/10/2012 00:00	0.0	8.0	9.5	2.6
	31/10/2012 00:00	13.4	9.2	10.2	3.0


	Johnstown Castle, Co. Wexford							
	date	Rainfall (mm)	Mean Wind speed (kt)	Maximum Temperature (deg. C)	Minimum Temperature (deg. C)			
	01/11/2012 00:00	0.2	10.6	7.8	1.3			
elleann	02/11/2012 00:00	0.0	9.1	10.0	2.4			
	03/11/2012 00:00	0.6	8.8	8.4	1.1			
	04/11/2012 00:00	14.2	11.3	10.2	6.0			
	05/11/2012 00:00	2.5	9.9	9.8	3.8			
	06/11/2012 00:00	0.0	8.9	11.0	4.4			
	07/11/2012 00:00	0.0	9.2	11.5	6.8			
	08/11/2012 00:00	0.1	6.8	11.2	7.5			
	09/11/2012 00:00	13.0	9.9	10.6	5.6			
	10/11/2012 00:00	0.2	6.8	8.6	1.5			
	11/11/2012 00:00	2.3	6.7	9.8	1.5			
	12/11/2012 00:00	7.4	12.5	12.7	7.1			
	13/11/2012 00:00	1.1	14.3	12.2	11.5			
	14/11/2012 00:00	0.0	6.0	11.8	10.2			
	15/11/2012 00:00	0.0	2.7	11.6	5.6			
	16/11/2012 00:00	0.1	3.5	10.2	5.2			
	17/11/2012 00:00	0.1	7.1	8.8	2.9			
	18/11/2012 00:00	9.6	10.5	11.0	0.4			
	19/11/2012 00:00	12.5	16.8	11.9	10.4			
	20/11/2012 00:00	4.5	12.0	12.2	7.2			
	21/11/2012 00:00	0.8	8.3	11.4	5.9			
	22/11/2012 00:00	22.0	13.6	12.0	5.0			
	23/11/2012 00:00	0.2	7.6	9.4	3.0			
	24/11/2012 00:00	13.6	8.2	8.4	1.8			
	25/11/2012 00:00	31.3	7.1	8.9	-0.5			
	26/11/2012 00:00	2.8	16.0	7.7	3.4			
	27/11/2012 00:00	0.0	13.6	6.7	2.9			
	28/11/2012 00:00	0.0	9.3	5.2	1.1			
	29/11/2012 00:00	0.0	5.6	5.6	1.6			
	30/11/2012 00:00	0.1	3.5	6.2	-0.4			

	Johnstown Castle, Co. Wexford							
(\mathfrak{S})								
				Maximum	Minimum			
		Rainfall	Mean Wind	Temperature	Temperature			
MET	date	(mm)	speed (kt)	(deg. C)	(deg. C)			
éireann	01/12/2012 00:00	0.1	6.5	6.1	0.8			
	02/12/2012 00:00	6.9	6.2	10.2	2.3			
	03/12/2012 00:00	0.5	10.1	10.0	2.7			
	04/12/2012 00:00	0.6	11.3	6.6	2.0			
	05/12/2012 00:00	0.0	8.1	5.1	-1.7			
	06/12/2012 00:00	2.6	11.6	7.3	-2.0			
	07/12/2012 00:00	0.2	14.3	7.8	2.2			
	08/12/2012 00:00	0.0	6.7	8.0	-0.4			
	09/12/2012 00:00	0.2	6.8	8.1	2.3			
	10/12/2012 00:00	0.1	6.2	6.6	1.2			
	11/12/2012 00:00	0.1	5.4	6.3	2.3			
	12/12/2012 00:00	0.4	9.7	7.3	2.3			
	13/12/2012 00:00	0.1	9.5	8.2	2.9			
	14/12/2012 00:00	10.8	13.0	9.6	5.7			
	15/12/2012 00:00	0.7	8.7	9.1	6.1			
	16/12/2012 00:00	0.4	8.8	10.2	5.6			
	17/12/2012 00:00	0.0	10.2	8.8	4.9			
	18/12/2012 00:00	0.1	5.7	8.5	3.9			
	19/12/2012 00:00	11.3	10.6	10.5	7.9			
	20/12/2012 00:00	0.5	5.3	8.8	6.1			
	21/12/2012 00:00	5.0	6.9	9.1	3.8			
	22/12/2012 00:00	15.6	14.5	11.7	8.6			
	23/12/2012 00:00	0.0	11.3	11.5	7.2			
	24/12/2012 00:00	7.0	8.7	9.5	6.5			
	25/12/2012 00:00	6.4	8.2	8.2	3.6			
	26/12/2012 00:00	5.6	11.7	9.9	4.8			
	27/12/2012 00:00	9.0	8.7	8.6	4.6			
	28/12/2012 00:00	9.8	18.2	11.5	6.8			
	29/12/2012 00:00	6.4	12.3	9.9	3.0			
	30/12/2012 00:00	0.6	16.1	10.5	3.1			
	31/12/2012 00:00	2.6	13.0	10.4	2.8			

Appendix F

Topographical Survey

<mark>Appendix G</mark>

Ecological Report and Survey

Ecological Survey of Tramore Landfill and Environs

Waterford County Council Comhairle Chontae Phort Láirge

2012 Reporting Period

TABLE OF CONTENTS

- 1.0 General Introduction
 - 1.2 Study Area
 - 1.3 Report Format
- 2.0 Habitat Survey
 - 2.1 General Site Overview
 - 2.2 Designated sites for Nature Conservation
 - 2.3 Habitat Survey
 - 2.3.1 Habitats within Landfill
 - 2.3.2 Habitats outside Landfill
 - 2.4 Discussion
- 3.0 Intertidal Survey of Tramore Backstrand
- 4.0 Avian Fauna of Tramore Backstrand
 - 4.1 Bird Usage of Tramore Landfill
 - 4.2 Bird data from Tramore Back Strand
 - 4.3 Discussion
- 5.0 References
 - Appendices Flora Species List from Tramore Dunes Site Synopsis Tramore Dunes cSAC Site Synopsis Tramore Backstrand SPA

EXECUTIVE SUMMARY

Tramore Landfill site is located to the east of Tramore town at the south-western boundary of the Backstrand. The site encompasses an area of approximately 14 ha. The principal land use around the landfill site is recreational with a caravan and camping park located in Riverstown to the east, the promenade and Tramore Burrows to the south. The Ecological Study comprised the following elements: habitat and fauna survey, biological survey of Tramore Back Strand, and the assessment of the avian fauna of the area around the landfill.

The dominant habitat on the landfill is amenity grassland. The site was seeded in 2008 and the surface has completely vegetated over. The sloping edge of the site consists of spoil and bare ground. A botanical survey of the site indicates increasing floral diversity of the site since 2008. Wild Asparagus, a vascular plant listed under the Flora Protection Order (1999) was recorded during the June 2011 survey.

Tramore Back Strand continues to be a site of high ornithological importance and recent high counts of Light bellied-Brent Geese would now rank Tramore as being one of the most ten important sites in Ireland for this species. In terms of impacts of the landfill on bird usage of the area the site now attracts less scavenger species such as gulls, hooded crow and rooks and with the establishment of a grassland vegetation cover is providing habitat for birds such as Meadow Pippit and other passerine species. The closure and re-vegetation of the landfill site has now added another 11ha of grassland habitat to the wider site providing feeding and cover along with the dune areas. The now undisturbed nature of the site will also enhance use of the site by birdlife.

1. Introduction

An Ecological Study of Tramore Landfill has been prepared by Waterford County Council, in fulfilment of the requirements of Condition 8.10.1 of the Tramore Landfill waste licence (Reg. No. 75-1) and current licence Reg. No. W0075-02 (2007).

After 60 years of operation, Tramore landfill was closed and capped in 2005. The site operated as an integrated waste management facility until 2010 and is now closed along with the landfill site.

Under the EPA licence ongoing ecological survey and assessment is required involving the following elements;

- 1. Habitat quality at landfill and environs. Mapping of main habitat types and identification of main flora and fauna present. Interpretation of findings with regard to previous studies.
- 2. Faunal analysis of the Back Strand. Sampling, identification and enumeration of fauna at sample sites along two transects as per previous survey. Interpretation of results with regard to previous surveys.
- 3. Interpretation and comment on bird count-data from annual IWeBs counts by Birdwatch Ireland.

1.2 Study Area

Tramore Landfill site is located to the east of Tramore town at the south-western boundary of the Back Strand. The site encompasses an area of approximately 14ha. (Figure 1). The principal land use around the landfill site is recreational with a caravan and camping park located in Riverstown to the east, the promenade and Tramore Burrows to the south.

1.3 Report Format

The results of the 2013 ecological survey are presented in the following sections of this report, separated into the various subject areas as required by the scope of works. Section 2 gives a general site overview, describes areas designated for nature conservation that occur in close proximity to the landfill site and reports on the habitat study undertaken in June 2011. Section 3 presents the results of a faunal analysis of the Back Strand. Section 4 discusses the bird communities recorded at the landfill and reviews data for Tramore Back Strand from the Irish Wetland Bird Survey (I-WeBS).

2.0 TERRESTRIAL ECOLOGY

2.1 General Site Overview

Tramore lies about 13km south of Waterford City and is a popular seaside town with extensive coastal cliffs, bay, dunes and strand.

Tramore Bay is an almost rectangular basin of 1,000 ha. lying between cliffs on either side. The outer extent of the bay is bounded by Newtown Head to the west and Brownstown Head to the East.

Behind a shingle embankment and dune system is an intertidal area known as Tramore Back Strand. The Back Strand is connected to the open sea by a channel known as Rinnashark and dries out completely at low tide to reveal c500 hectares of intertidal sand and mud flats (Figure 1).

Tramore Landfill lies at the inner western reaches of the back strand. The landfill commenced operations in the 1940s and closed on 31st December 2005. The capping procedure has been completed and the site was re-seeded in 2008.

Figure 1. Tramore Bay showing the Back Strand, Dunes and Strand. Landfill site is located to the south west of the Back Strand

Figure 2. Landfill site boundary

2.2 Sites Designated for Nature Conservation

The Tramore Landfill site lies adjacent to areas recognised for their ecological conservation interest. Areas designated under national and/or European law in order to conserve habitats and species of national or international importance include the following:

Proposed Natural Heritage Areas (NHA): a national designation given legal status by the Wildlife (Amendment) Act 2000.

Special Areas of Conservation (SAC): areas considered of international and national importance whose legal basis is the EU Habitats Directive (92/43/EEC), transposed into Irish law through the European Union (Natural Habitats) Regulations, 1997.

Special Protection Areas (SPA) sites of international conservation importance for birds whose legal basis is the EU Birds Directive (79/409/EEC).

Tramore Dunes and Backstrand is a candidate **Special Area of Conservation** (cSAC) under the EU Habitats Directive (92/43/EEC) (Site Code 0671). The site supports several habitats that are listed on Annex I of the Directive including mudflats and sandflats not covered by seawater at low tide (Code 1140). The fixed dunes are listed as a priority habitat under this Directive (Code 2130). Several rare and protected plant species have also been recorded in the area. The SAC site synopsis (National Parks and Wildlife Service) is detailed in Appendix 2.

Tramore Backstrand is designated a **Special Protection Area (SPA)** under the EU Birds Directive (79/409/EEC) (Site Code 27). This designation is in recognition of the importance of this habitat for wintering waterbirds (waders and wildfowl). The SPA covers an area of c367 ha. And a similar area is also designated as a Ramsar site (Wetlands of international importance). The SPA site synopsis (National Parks and Wildlife Service) is detailed in Appendix 3.

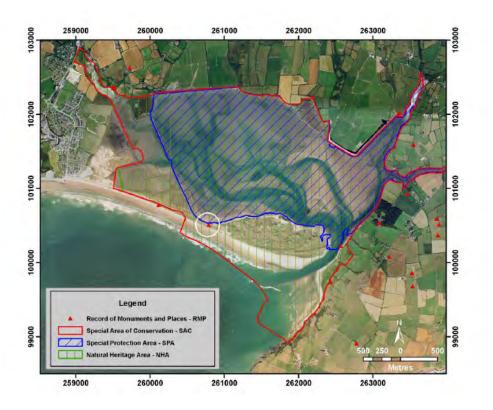


Figure 3. Boundaries of pNHA, cSAC and SPA designations at Tramore Dunes and Backstrand

2.3 Habitat Survey

A site visit to Tramore Landfill in 2013 confirmed the occurrence of four habitat types – buildings and artificial surfaces (BL3), spoil and bare ground (ED2), recolonising bare ground (ED3) and amenity grassland (GA2). The study area comprises the landfill site plus all habitats falling within the surrounding inner Back Strand of Tramore Bay- that area between the seawall at the eastern edge, Tramore Strand and the terrestrial habitats to the north and west.

Overall, the habitat on the landfill cap fits the category amenity grassland (GA2). The site was seeded in 2008 and the surface has completely vegetated over. The sloping edge of the site consists of spoil and bare ground (ED2). A concreted and tarmacadamed area supports the civic amenity site (closed 2010) and is classed as buildings and artificial surfaces (BL3).

The landfill is surrounded by lower saltmarsh (CM1) and littoral sediments (L) with upper saltmarsh (CM2) spoil and bare ground (ED2) and artificial surfaces (BL3) nearby. To the southeast of the site lie fixed dunes (CD3) with small areas of marram dune (CD2) and shingle and gravel banks (CB1) vegetation. To the west of the landfill are a caravan park and an industrial estate surrounded by disturbed ground.

The mudflat and saltmarsh areas surrounding the landfill, as well as the dunes, are included in the designated area of Tramore Dunes and Backstrand SAC and SPA. The habitat map of the area has slightly changed from the previous survey in 2008 (detailed in Figure 3) due to the addition of constructed wetland cells on the eastern edge of the landfill. These were installed in 2011 with the aim of improving treatment of water quality in the environs of the landfill site to intercept existing overflow from Tramore CWW pumping station.

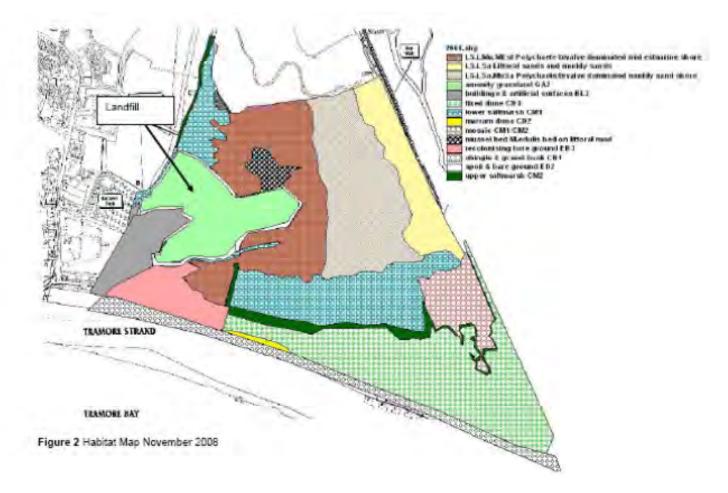
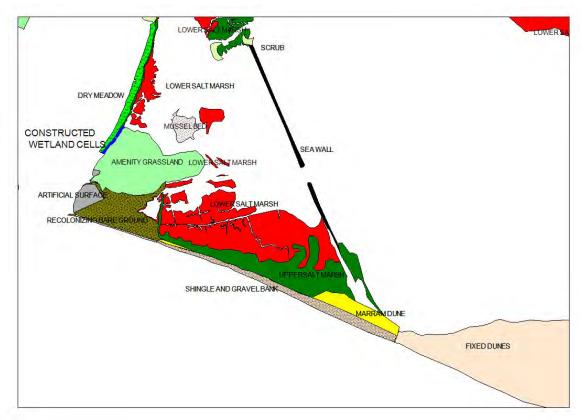



Figure 4. Habitat Map of Tramore Landfill site 2008

Figure 5. Habitat Map of Tramore landfill site 2013 2.3.1 Landfill Habitats Amenity Grassland (GA2)

Amenity Grassland now covers the entire landfill cap and is the dominant habitat. Main grassland species are *Agrostis stolonifera* (Common Bent), *Holcus lanatus* (Yorkshire Fog), *Festuca rubra* (Red Fescue), *Anthoxanthum odoratum* (Sweet Vernal Grass), *Alopecurus geniculatus* (Marsh Foxtail), *Lolium Perennae* (Perennial Rye-Grass) and *Bromus hordeaceus* (Soft Brome) with a high occurrence of both Red and White Clover. Other species present include Birds Foot Trefoil, Silverweed, Vetch and Pineappleweed. Table 1 presents a flora species list from 2008 and 2011 and indicates an increase in botanical diversity since the site was seeded in 2008.

Figure 5. Amenity Grassland Habitat Tramore Landfill

Table 1. Flora species list for Tramore Landfill

2008 2011 Latin name **Common Name** Х Achillea millefolium Yarrow Х Х х Agrostis stolonifera **Creeping Bent** Х Alopecurus geniculatus Marsh Foxtail Ammophila arenaria Marram Grass х Х х Anagallis arvensis subsp. arvensis Scarlet Pimpernel Х Anthoxanthum odoratum Sweet Vernal-grass Х Anthyllis vulneraria Kidney Vetch Х Х Armeria maritima subsp. maritima Thrift х Х Arrhenatherum elatius False Oat-Grass х х Х Aster tripolium Sea Aster Х Atriplex portulacoides Sea-purslane х Х Spear-leaved Orache х Atriplex prostrate Х Avena fatua Wild-oat

Barbarea verna	American Winter-cress		Х
Bellis perennis	Daisy	х	Х
Beta vulgaris subsp. maritima	Sea Beet	х	Х
Bolboschoenus maritimus	Sea Clubrush	х	
Brassica rapa subsp. campestris	Wild Turnip		Х
Brassica napus	Rape	х	
Bromus hordeaceus	Soft-brome		Х
Cakile maritime	Sea Rocket	х	
Calystegia sepium subsp. sepium	Hedge Bindweed	х	Х
Calystegia soldanella	Sea Bindweed	х	
Capsella bursa-pastoris	Shepherd's Purse	х	
Carex arenaria	Sand Sedge	х	
Carex flacca	Glaucous Sedge		Х
Carex otrubae	False Fox-sedge		Х
Carex pendula	Pendulous Sedge		Х
Centaurea nigra	Common Knapweed	x	Х
Cerastium fontanum	Common Mouse-ear	x	Х
Cerastium glomeratum	Sticky Mouse-ear		Х
Chamerion angustifolium	Rosebay Willowherb	х	Х
Chenopodium album agg.	Fat-hen	х	
Cichorium intybus	Chicory		Х
Cirsium arvense	Creeping Thistle	х	Х
Cirsium vulgare	Spear Thistle	х	Х
Cochlearia anglica	English Scurvygrass		Х
Cochleria officinale	Common Scurvygrass	х	
Convovulvus arvensis	Field Bindweed	х	
Coronopus didymus	Lesser Swine-cress		Х
Crepis capillaries	Smooth Hawk's-beard		Х
Crithmum maritimum	Rock Samphire	х	
Crocosmia x crocosmiiflora	Montbretia (C. aurea x pottsii)	х	Х
Cymbalaria muralis subsp. muralis	Ivy-leaved Toadflax	х	Х
Dactylis glomerata	Cock's foot	х	
Daucus carota subsp. carota	Wild Carrot	х	Х
Dipsacus fullonum	Wild Teasel		Х
Elytrigia juncea	Sand Couch	х	
Elytrigia repens	Common Couch	х	Х
Epilobium ciliatum	American Willowherb		Х
Epilobium hirsutum	Great Willowherb		Х
Epilobium montanum	Broad-leaved Willowherb	х	Х
Epilobium obscurum	Short-fruited Willowherb		Х
Epilobium parviflorum	Hoary Willowherb		Х
Equisetum arvense	Field Horsetail		Х
Equisetum telmateia	Great Horsetail		Х
Eryngium maritimum	Sea-holly	х	
Euphorbia helioscopa	Sun-spurge	х	
Euphorbia paralisas	Sea-spurge	х	
Fallopia japonica	Japanese Knotweed	х	Х
Festuca arundinacea	Tall Fescue		Х
Festuca rubra agg.	Red Fescue	х	Х

F		Y	х
Filipendula ulmaria	Meadowsweet	x x	X X
Fumaria muralis subsp. boraei	Common Ramping-fumitory	А	X
Galium aparine	Cleavers		X
Galium palustre subsp. palustre	Common Marsh-bedstraw	Y	Λ
Galium verum	Lady's Bedstraw	Х	Х
Geranium dissectum	Cut-leaved Crane's-bill	v	X
Glaux maritime	Sea-milkwort	X	X
Heracleum sphondylium	Hogweed	X	X
Holcus lanatus	Yorkshire-fog	X	Λ
Honckenya peploides	Sea Sandwort	х	Х
Hypericum humifusum	Trailing St John's-wort		X X
Hypericum perforatum	Perforate St John's-wort	_	
Hypochaeris radicata	Cat's-ear	x	Х
Inula crithmoides	Golden-samphire	х	v
Iris pseudacorus	Yellow Iris		X
Isolepis setacea	Bristle Club-rush		X
Juncus articulates	Jointed Rush		X
Juncus conglomeratus	Compact Rush		X
Juncus effuses	Soft-rush		X
Juncus gerardii	Saltmarsh Rush	х	X
Juncus inflexus	Hard Rush		X
Juncus maritimus	Sea Rush	Х	Х
Lamium purpureum	Red Dead-nettle	х	
Lapsana communis subsp. Communis	Nipplewort		X
Lathyrus pratensis	Meadow Vetchling	Х	X
Leontodon autumnalis	Autumn Hawkbit		X
Leontodon saxatilis	Lesser Hawkbit		Х
Lepidium heterophyllum	Smith's Pepperwort		X
Leucanthemum vulgare	Oxeye Daisy		Х
Limonium humile	Lax-flowered Sea-lavender	Х	Х
Lolium perennae	Perennial Rye-Grass	Х	
Lotus corniculatus	Common Bird's-foot-trefoil	Х	Х
Lotus pedunculatus	Greater Bird's-foot-trefoil		Х
Lythrum salicaria	Purple-loosestrife		Х
Malva sylvestris	Common Mallow	X	Х
Matricaria discoidea	Pineappleweed		Х
Medicago lupulina	Black Medick		Х
Mentha aquatic	Water Mint	Х	
Odontites vernus	Red Bartsia		Х
Ononis repens	Rest-harrow	X	
Perscicaria maculosa	Redshank	Х	
Petasites fragrans	Winter Heliotrope		Х
Petasites hybridus	Butterbur	х	
Phalaris arundinacea	Reed Canary-grass		Х
Phragmites australis	Common Reed	х	
Picris echioides	Bristly Oxtongue		Х
Plantago coronopus	Buck's-horn Plantain	х	Х
Plantago lanceolata	Ribwort Plantain	х	Х
Plantago major	Greater Plantain	х	Х

Plantago maritime	Sea Plantain	х	Х
Poa annua	Annual Meadow-grass		Х
Poa trivialis	Rough Meadow-grass		Х
Polygonum aviculare	Knotgrass	х	Х
Potentilla anserine	Silverweed	х	Х
Potentilla reptans	Creeping Cinquefoil	х	Х
Puccinellia maritime	Common Saltmarsh-grass	х	Х
Pulicaria dysenterica	Common Fleabane	х	Х
Ranunculus acris	Meadow Buttercup		Х
Ranunculus repens	Creeping Buttercup	х	Х
Ranunculus sceleratus	Celery-leaved Buttercup		Х
Reseda luteola	Weld	х	Х
Rosa pimpinellifolia	Burnet Rose	х	
Rubus caesius	Dewberry		Х
Rubus fruticosus agg.	Bramble	х	Х
Rubus ulmifolius	Elm-leaved Bramble		Х
Rumex acetosa	Common Sorrel	х	Х
Rumex conglomeratus	Clustered Dock		Х
Rumex crispus subsp. crispus	Curled Dock	х	Х
Rumex obtusifolius	Broad-leaved Dock	х	Х
Rumex sanguineus	Wood Dock		Х
Rumex x pratensis	R. crispus x obtusifolius		Х
Sagina apetala subsp. erecta	Upright Pearlwort		Х
Sagina maritime	Sea Pearlwort		Х
Sagina procumbens	Procumbent Pearlwort		Х
Salicornia agg.	Glasswort	х	Х
Salix cinerea subsp. oleifolia	Rusty Willow		Х
Scrophularia auriculata	Water Figwort	х	Х
Scrophularia nodosa	Common Figwort	х	
Senecio jacobaea	Common Ragwort	х	Х
Senecio vulgaris	Groundsel	х	Х
Sinapis arvensis	Charlock	х	Х
Sonchus arvensis	Perennial Sow-thistle		Х
Sonchus asper	Prickly Sow-thistle		Х
Sonchus oleraceus	Smooth Sow-thistle	х	Х
Spartina anglica	Common Cord-grass	х	Х
Spergularia marina	Lesser Sea-spurrey		Х
Spergularia media	Greater Sea-spurrey		Х
Stachys palustris	Marsh Woundwort	х	Х
Stachys sylvatica	Hedge Woundwort		Х
Stellaria graminea	Lesser Stitchwort	х	
Stellaria media	Common Chickweed	х	Х
Suaeda maritime	Annual Sea-blite		Х
Taraxacum officinale	Dandeloin	х	
Trifolium dubium	Lesser Trefoil		Х
Trifolium pretense	Red Clover	х	Х
Trifolium repens	White Clover	х	Х
Triglochin maritimum	Sea Arrowgrass	х	Х
Tripleurospermum inodorum	Scentless Mayweed	х	Х

Tripleurospermum maritimum	Sea Mayweed	Х	Х
Tussilago farfara	Colt's-foot		Х
Ulex europaeus	Gorse	Х	Х
Urtica dioica	Common Nettle	Х	Х
Veronica persica	Common Field-speedwell	Х	Х
Veronica serpyllifolia subsp. Serpyllifolia	Thyme-leaved Speedwell		Х
Vicia cracca	Tufted Vetch	Х	Х
Vicia sativa subsp. segetalis	Common Vetch		Х
Viola arvensis	Field Pansy		Х
Үисса	Yucca	х	
Total No. of Species		102	138

Spoil and Bare Ground (ED2)

This habitat occurs in a ring around the outer edge of the landfill sloping down to meet the mudflat or saltmarsh at the bottom. It includes the rock armour that has been placed at the bottom of the slope and the gravel path that runs around the perimeter of the site between the emission pipes. This habitat accounts for 4% of the entire site.

Figure 6. Gravel pathway around perimeter of Landfill Site

Recolonising Bare Ground (ED3)

Patches of recolonising bare ground occur throughout the site as a result of workings of machinery on the site. Most of these patches are in the process of re-vegetating and the 2013 site visit noted a decrease in bare ground since 2011. Use of scrambler bikes is deterring revegetation in some spots. This habitat accounts for <1% of the entire site.

Figure 7. Recolonising Bare Ground Buildings and artificial surfaces (BL3)

This habitat category is used for areas covered with artificial materials such as concrete, gravel, tarmac, and all built areas. Within the landfill it includes sites such as the civic amenity yard and buildings that are devoid of vegetation cover. This category accounts for 22% of the overall landfill site area.

2.3.2 Habitats surrounding the landfill site

Constructed wetland (FL8 other artificial lakes and ponds)

In 2011 two wetland cells were constructed on the eastern edge of the landfill. These were installed with the aim of improving treatment of water quality in the environs of the landfill site to intercept existing overflow from Tramore CWW pumping station. Cells were planted with a range of rush, reed, sedge and emergent plant species.

In 2013 22ha of compensatory wetland is being completed at Kilmacleague on former polder land to compensate for saltmarsh lost within the SAC at the landfill site. The lands will be subject to tidal inundation and it is hoped that saltmarsh vegetation will regenerate within 5-7 years.

Figure 8. Site of compensatory wetland habitat to be completed at Kilmacleague in 2013 Buildings and artificial surfaces (BL3)

This category includes the road leading to the landfill, a carpark with an embankment around it, and the long and narrow un-surfaced car park area extending eastwards behind a shingle embankment separating it from the beach. **Upper Saltmarsh (CM2)**

Saltmarshes are coastal and estuarine areas of land that are periodically immersed by the sea. They support vascular

plants that are adapted to the saline environment. Saltmarsh development is characterized by a series of vegetated zones determined by their height above sea level, and consequently the frequency of submergence and exposure.

At Tramore, upper saltmarsh exists as a narrow zone above larger areas of lower saltmarsh and is subject to less frequent and less prolonged inundation by the sea. This habitat also occurs on raised areas within the lower saltmarsh where sufficient sediment has built up- the area classified as a mosaic of upper and lower saltmarsh is an example of this. Red Fescue dominates these areas along with a mixture of terrestrial and saltmarsh plants such as Creeping Bent and Sea Plantain. Clumps of Sea Rush and Sea Aster are characteristic. Sea Purslane, usually considered a species of lower saltmarshes, is also found on the raised areas (it prefers creek banks that also tend to be drier). In the southeast corner of the site, dune species such as Marram Grass and Sand couch have colonized the drier raised areas. Other species of fixed dunes such as Bird's-foot Trefoil and Sea Mayweed also occur occasionally.

In areas where there is less tidal change in sea level, such as along the western boundary of the Inner Backstrand, plants of upper and lower saltmarsh occur together in a narrow strip. The dominant species here include Sea Rush, Sea Club-rush and Saltmarsh Rush, with Sea Arrow Grass, Sea- milkwort, Sea Aster, Sea Purslane, Lax-flowered Sea Lavender, Common Scurvy-grass, Sea Beet and Creeping Bent all occurring. A small stand of the invasive non-native Japanese Knotweed occurs on the landward side of this strip, just north of the landfill site boundary.

A more diverse habitat occurs south of the landfill that grades into recolonising bare ground where Fleabane and Water Figwort occur along with Red Fescue, Sea Aster and rushes as well as small amounts of Common Reed.

A mosaic of upper and lower saltmarsh occurs in the east (near the gap in the sea wall). Here a mixture of species occurs including Sea Rush, Saltmarsh Rush, Sea Arrowgrass and Creeping Bent.

Lower Saltmarsh (CM1)

Lower Saltmarsh is subject to longer periods of inundation by seawater and therefore supports species adapted to this environment. At Tramore, this takes the form of a low sward of Thrift, Sea Purslane, Sea Aster, Lax-flowered Sea Lavender, Glasswort and common Slatmarsh-grass. Sea Purslane often dominates along creek banks. Lower areas and creeks within this sward are colonized by Glasswort, Common Saltmarsh-grass and Common Cord-grass. Common Cord-grass extends as a dense mono dominant sward over the mudflats at the lower end of the saltmarsh and also grows higher up the shore.

The tidal creek flowing northwards along the western boundary of the landfill supports lower saltmarsh vegetation along its banks, including a small pool where an outfall enters the creek.

Several plants of the scarce Golden-samphire known from only seventeen 10km squares in Ireland were recorded from the lower saltmarsh southeast of the landfill in November 2008 and also noted in 2011 site visits.

Marram Dune (CD2)

Marram dunes are partially stabilized ridges of sand that occur along the seaward edge of a dune system. They lie seaward of fixed dunes. Marram dunes are dominated by Marram Grass which is a tussocky-forming species that consolidates the free-blowing sand that characterizes these dunes. They are not fully vegetated. Wind and tide erosion continually impact on Marram Dunes presenting blow outs and reducing the extent of this habitat.

Fixed Dune (CD3)

Fixed dunes are defined as stabilized ridges of sand with more or less complete vegetation cover. Where humus has accumulated in the soil a diverse mixture of dune and grassland species often occurs.

Fixed dunes occur in the south and east of the survey are between the saltmarsh habitats and Tramore Strand. The fixed dune vegetation also extends most of the way along the eastern sea wall. Grasses such as Red Fescue and Common Couch dominate with herbs typically of this habitat, including Lady's Bedstraw, Sea Mayweed and Rest-harrow. There is a progressively greater diversity of plant species further east along the dunes. Marram Grass occurs sporadically in this habitat, but does not dominate. Trampled paths through the dunes support plants typical of disturbed , nutrient-rich environments, including perennial Rye-Grass, White Clover and Scarlet Pimpernel. Sand Sedge, Sea Spurge and Sea Holly occur on areas of eroded dunes such as pathways. These have become wider and more extensive in recent years as a result of recreational use. Waterford County Council has carried out some dune conservation measures including fencing of blow outs, sand trapping using hessian mats and transplanting of Marram on bare dune surfaces. A section of the fixed dunes was subject to burning in May 2011 and has created a more diverse mix of species through succession.

Shingle and Gravel banks (CB1)

Shingle and gravel banks are generally formed by wave action in the sea. In the case of Tramore McGrath (2001)

notes the historical presence of a shingle bar above the beach prior to dune formation, and therefore the shingle bank possibly pre-dates the dune system.

This habitat is characteristically species poor, but several typical species occur especially Rock Samphire and Sea Sandwort, with Sea Mayweed, Sea Beet, Sand Couch and Sea Plantain. Orache species also occurs just above the tideline. This habitat is continuously subject to erosion where winter storms wash away material only to deposit again during calmer weather conditions.

2.3 Discussion

Grassland vegetation is now well established on the landfill cap and the flora survey indicates a good botanical mix of vascular plants with 138 species recorded in 2011 compared to 102 in 2008. However this is likely due the difference in recording times (November in 2008 vs June 2011). Due to the coastal nature of the site the vegetation may be influenced by maritime conditions and future monitoring will be interesting to see how the species mix develops with potential for colonization by maritime species. As the grassland sward develops, consideration will need to be given to the management regime as without some grazing or mowing, the habitat will tend to more dominant grass species and will lose the current wider botanical diversity. Some stands of gorse are encroaching on the northern end of the site and will likely spread further through the site. Gorse is a good plant for increasing biodiversity in terms of attracting insect life and passerine birds. Japanese Knotweed was also recorded form the site and this will need to sprayed in order to keep it under control.

The habitats surrounding the landfill comprise littoral sediments, saltmarshes and dunes of high ecological importance within the Tramore Dunes and Backstrand SAC and SPA designations. Six terrestrial habitats listed on Annex 1 of the Habitats Directive are present. These include the priority habitat of fixed coastal dunes with herbaceous vegetation as well as the Annex 1 habitats, Atlantic salt meadows, Mediterranean salt meadows, *Spartina* swards, *Salicornia* mudflats and perennial vegetation of stony banks. These habitats are generally in good condition. However the dunes are suffering some erosion from both storm related and recreational usage. A vascular plant, Wild Asparagus listed under the Flora Protection Order (1999) was recorded during the June 2011 survey. The scarce Golden- Samphire has also been recorded from the area including amidst dry grassland along the Riverstown relief road to the west of the landfill.

Mammals within the study area

Previous surveys of the site found evidence of Brown Rat and Otter. Otter are a protected species under the Wildlife Act 1976 (as amended in 2000), Annex 1 of the 1992 Habitats Directive and Appendix 11 of the Bern Convention. An INTERREG project called Mammals in a Sustainable Environment in which Waterford County Council are a partner with Waterford Institute of Technology is involved in surveying coastal habitats for Otter in County Waterford which will contribute useful data to the County Waterford Habitat Map and indicate otter usage of the coast and adjacent water corridors e.g. the Glen River and the Back Strand in Tramore.

SECTION 3 INTERTIDAL SURVEY OF TRAMORE BACKSTRAND For Completion

4. AVIAN FAUNA OF TRAMORE BACKSTRAND AND BAY

4.1 Bird usage of Tramore Landfill

When Tramore landfill site was active, gulls and crows were the prevalent species present. Now that the site is closed and has been capped and re-seeded these species are no longer in abundance at the site. A walk–over of the site in February 2013 noted several Meadow Pipits in the grassland habitat. Species noted in the immediate vicinity of the landfill on the Back Strand included Brent Goose, Oystercatcher, Mallard, Golden Plover Snipe, Little Egret and Grey Heron. The grassland habitat of the Landfill Site will be an attractive feeding site for passerine birds. As the site is subject to little disturbance it will also provide good cover for birdlife.

4.2 Bird data from Tramore Back Strand

Tramore Back Strand SPA is of high ornithological importance for wintering waterfowl with one species having a population of International Importance⁴ and a further seven species having populations of National Importance⁵. In addition, three of the species are listed on Annex 1 of the EU Birds Directive. i.e. Golden Plover, Bar-tailed Godwit and Little Egret.

The site is not designated specifically for the protection of any Birds Directive Annex 1 species but rather for regularly occurring migratory species.

The Back Strand is an important site for wintering waterfowl, providing both feeding and roosting areas. Of particular importance is that the site supports an internationally important population of Light-bellied Brent Geese. The NPWS Site Synopsis for the SPA states that the site supports a further seven species in nationally important numbers : Golden Plover, Grey Plover, Lapwing, Dunlin, Sanderling, Bar-tailed Godwit and Black-tailed Godwit. However Irish Wetland Bird Survey (IWeBS) data from the period 199-8/99 to 2008/09 indicate a somewhat different situation with a somewhat different assemblage of seven species occurring regularly in numbers of national importance: Golden Plover, Grey Plover, Dunlin, Bar-tailed Godwit, Black-tailed Godwit, Curlew and Redshank; and a further five species occasionally doing so: Red-throated Diver, Little Egret, Lapwing, Knot and Greenshank.

⁴Species occurring in numbers that correspond to 1% or more of the individuals in a population of a species or subspecies.

⁵ Species occurring in numbers that correspond to 1% or more of the individuals in the national population of a species

There is no evidence that Sanderling has occurred in nationally important numbers during the period. IWeBS data also indicates that Black-tailed Godwit occasionally occurs in numbers of international importance at the site. The IWeBS count area covers a somewhat larger area than the SPA which is likely to account for much of this discrepancy, and it is also likely that the status at the site of some species may have changed since the NPWS Site Synopsis was written in the 1990s.

Within the SPA boundary, the key habitats used by these species are the intertidal mudflats including the Eel-grass beds which provide an important food source for Light-bellied Brent Geese. There is overlap between the important ecological resources within the SPA and the cSAC.

Many bird species use grassland habitats outside the SPA boundary to the north of the Back Strand. Species include Light-bellied Brent Goose, Golden Plover, Lapwing and Curlew.

The population of Light-bellied Brent Goose at Tramore Back Strand is of international importance and has increased greatly in recent years. The mean peak from the period 1996 to 2000 of 344 birds ranked the site 19th in Ireland (Crowe, 2005) however more recent higher counts of up to 1,080 birds (RPS 2010)⁶ would rank Tramore as now being one of the ten most important sites in Ireland for this species.

Table 2. IWeBS and RPS (2009/10) data on light- bellied Brent Goose Numbers at Tramore Backstrand

Period	5–year mean peak			2004/05	2005/06	2006/07	2007/08	2009/10
	1994-	1995-	1996-	peak	peak	peak	peak	peak (RPS)
	98	99	2000					
Number	418	393	344	751	883	713	911	1,080
of birds								

Table 3. IWeBS Data for Tramore Back Strand wader species

Species	Peak count for Tramore Back Strand 204-
	2008
Golden Plover	4,500
Lapwing	1,880
Curlew	677
Black-tailed Godwit	530
Bar-tailed Godwit	300
Greenshank	24
Redshank	411

A review of IWeBS data over the past 10 years gives a good indication of population trends in the range of waterfowl species present at the site. Two species show an apparent trend for increase- Light bellied Brent Goose and Shelduck. Numbers of Golden Plover are indicating a trend towards decrease. However numbers can be highly variable between seasons reflecting the need for review of long term data to deduce an accurate trend direction.

Table 4. Trends in mean peak counts of selected waterbirds at Tramore Bay 1998-20011
Blue indicates apparent increase. Red indicates apparent decrease

Species	2010/ 2011	2008/ 2009	2006/07	2005/06	2004/05	2002/03	2001/02	1999/00	1998/99
Light-bellied	814	850	713	883	751	562	414	375	313
Brent Goose									
Shelduck	40	70	51	48	44	22	19	37	24
Wigeon	249	77	46	108	109	53	87	51	82
Teal	67	40	20	30	71	16	67	75	115
Mallard	209	115	94	102	100	42	111	3	29
Oystercatcher	398	396	346	520	492	310	662	425	236
Golden	350	1,750	2900	4000	4500	1	2500	2800	2420
Plover									

⁶ Bird Count carried out by RPS for Waterford County Council as part of the AA Screening for the Kilmacleague Compensatory Wetlands Project.

Lapwing	715	1,780	834	1880	1350	1342	633	3500	1605
Knot	95	184	26	210	70	62	12	37	28
Sanderling	25	10	56	48	35	58	10	30	48
Dunlin	600	1,000	688	697	790	1043	725	1790	1640
Black-tailed	322	176	238	343	530	391	151	377	303
Godwit									
Bar-tailed	195	205	210	247	300	318	271	405	227
Godwit									
Curlew	477	397	677	443	674	415	395	680	835
Redshank	99	165	165	411	304	334	314	201	215
Turnstone	17	30	35	49	27	51	9	25	20

4.3 Discussion

Tramore Back Strand continues to be a site of high ornithological importance and recent high counts of Light bellied-Brent Geese would now rank Tramore as being one of the most ten important sites in Ireland for this species. In terms of impacts from the landfill on bird usage of the area the site now attracts less scavenger species such as gulls, hooded crow and rooks and with the establishment of a grassland vegetation cover is providing habitat for birds such as Meadow Pippit and other passerine species. The closure and re-vegetation of the landfill site has now added another 11ha of grassland habitat to the wider site providing feeding and cover along with the dune areas. The now undisturbed nature of the site will also enhance use of the site by birdlife.

5. REFERENCES

Birdwatch Ireland IWeBS data for Tramore Backstrand 2008/09- 2011 Limosa Environmental Ecological and Environmental Consultancy *Ecological Survey of Tramore Landfill and Environs* Report for Waterford County Council (2008) NPWS Site Synopsis for Tramore Dunes cSAC (1999) NPWS Site Synopsis for Tramore Dunes SPA (2002) RPS Consultants Tramore Wetland Restoration Project Appropriate Assessment Screening Report of Design Option 1A (2011)

Appendices

Vernacular

Marram

Thrift

Daisy

Sea Beet Yellow-wort

Soft-brome

Sand Sedge Carline Thistle

Sea Fern-grass Common Centaury

Sea Mouse-ear

Spear Thistle

Creeping Thistle

Danish Scurvygrass

Creeping Bent

Silver Hair-grass

Pyramidal Orchid

Scarlet Pimpernel

Kidney Vetch

False Oat-Grass Wild Asparagus

Sweet Vernal-grass

Thyme-leaved Sandwort

Flora Species List for Tramore Dunes June 2011

Taxon Agrostis stolonifera Aira caryophyllea Ammophila arenaria Anacamptis pyramidalis Anagallis arvensis Anthoxanthum odoratum Anthyllis vulneraria Arenaria serpyllifolia subsp. serpyllifolia Armeria maritima subsp. maritima Arrhenatherum elatius var. bulbosum Asparagus officinalis subsp. prostratus Bellis perennis Beta vulgaris subsp. maritima Blackstonia perfoliata Bromus hordeaceus Carex arenaria Carlina vulgaris Catapodium marinum Centaurium erythraea Cerastium diffusum Cirsium arvense Cirsium vulgare Cochlearia danica

Convolvulus arvensis Crataegus monogyna Crithmum maritimum Dactylis glomerata Daucus carota subsp. carota Elytrigia juncea Erodium cicutarium Erophila verna sens. lat. Eryngium maritimum Euonymus europaeus Euphorbia paralias Euphorbia portlandica Euphrasia officinalis agg. Euphrasia tetraquetra Festuca rubra agg. Galium verum Glechoma hederacea Helictotrichon pubescens Heracleum sphondylium Holcus lanatus Honckenya peploides Hyacinthoides non-scripta Hypochaeris radicata Lathyrus pratensis Leontodon hispidus Leontodon saxatilis Ligustrum vulgare Linum catharticum Lolium perenne Lotus corniculatus Luzula campestris **Ononis** repens Phleum arenarium Pilosella officinarum Plantago coronopus Plantago lanceolata Plantago major subsp. major Poa pratensis Poa trivialis Polygala vulgaris Pteridium aquilinum Ranunculus acris Ranunculus bulbosus Raphanus raphanistrum subsp. maritimus Rosa pimpinellifolia Rubia peregrina Rubus caesius Rubus fruticosus agg. Rumex acetosa subsp. acetosa Sagina maritima

Field Bindweed Hawthorn **Rock Samphire** Cock's-foot Wild Carrot Sand Couch Common Stork's-bill Common Whitlowgrass Sea-holly Spindle Sea Spurge Portland Spurge Eyebright Red Fescue Lady's Bedstraw Ground-ivy Downy Oat-grass Hogweed Yorkshire-fog Sea Sandwort Bluebell Cat's-ear Meadow Vetchling Rough Hawkbit Lesser Hawkbit Wild Privet Fairy Flax Perennial Rye-grass Common Bird's-foot-trefoil Field Wood-rush Common Restharrow Sand Cat's-tail Mouse-ear-hawkweed Buck's-horn Plantain **Ribwort Plantain** Greater Plantain Smooth Meadow-grass Rough Meadow-grass Common Milkwort Bracken Meadow Buttercup **Bulbous Buttercup** Sea Radish Burnet Rose Wild Madder Dewberry Bramble Common Sorrel Sea Pearlwort

Sambucus nigra Sedum acre Senecio jacobaea Senecio jacobaea var. flosculosus Solanum dulcamara Sonchus arvensis Sonchus oleraceus Stellaria holostea Succisa pratensis Taraxacum agg. Thymus polytrichus Trifolium dubium Trifolium pratense Trifolium repens Tripleurospermum maritimum Veronica arvensis Veronica chamaedrys Vicia sativa subsp. nigra Viola canina subsp. canina Viola riviniana Viola tricolor subsp. curtisii

Elder Biting Stonecrop Common Ragwort Bittersweet

Perennial Sow-thistle Smooth Sow-thistle Greater Stitchwort Devil's-bit Scabious Dandelion Wild Thyme Lesser Trefoil Red Clover White Clover Sea Mayweed Wall Speedwell Germander Speedwell Narrow-leaved Vetch Heath Dog-violet Common Dog-violet

SITE SYNOPSIS

SITE NAME : TRAMORE DUNES AND BACKSTRAND

SITE CODE : 000671

This composite coastal site lies at the head of Tramore Bay, east of Tramore, County Waterford. The Tramore dunes (Burrow) are the result of a classic inshore process - the growth of a spit of shingle and sand across a shallow bay. Behind the spit lies the Back Strand which dries out at low tide and is connected to the open sea by narrows at Rinneshark. The Burrow has a narrow neck and expands eastwards. Longshore drift is from the west so any loose material accumulates at the tip, which is hooked, and on the opposing spit at Bass Point.

The dunes here are well-developed and contain several habitats listed on Annex I of the EU Habitats Directive, including the priority habitat fixed dune. There are high ridges and valleys, old stabilised surfaces and new foredunes at shore level. Consequently all the major vegetation types are found from the strand flora, through mobile embryonic and marram dunes to stable fixed dunes, with saltmarsh on the northern fringe and slacks at Bass Point.

The flora of the fixed dunes is not as species-rich as at other systems, due mainly to the absence of grazing. This has led to the development of a tall, rank dune grassland and in places the development of dune scrub. Nevertheless, most of the characteristic dune species of the south-east are found, including Marram (*Ammophila arenaria*), which is dominant over much of the system, Wild Thyme (*Thymus praecox*), Common Bird's-foot-trefoil (*Lotus corniculatus*), Lady's Bedstraw (*Galium verum*), Rest Harrow (*Ononis repens*), Fairy Flax (*Linum catharticum*) and Red Fescue (*Festuca rubra*). The moss *Tortula ruraliformis*, which is characteristic of fixed dune areas, is common in the dune turf. In some areas there is a shrubby community, with Wild Privet (*Ligustrum vulgare*) and Dewberry (*Rubus caesius*) being dominant. Bee Orchid (*Ophrys apifera*), a Red Data Book species, has been recorded recently from the fixed dune grassland, while there are isolated patches of Wild Asparagus (*Asparagus officinalis* ssp. *prostratus*), a species protected under the Flora (Protection) Order 1999.

Salt marsh, another habitat on Annex I of the EU Habitats Directive, is well developed and fairly extensive in the sheltered inner part of the site. It is the lagoon type of salt marsh, which is the rarest type in Ireland. The communities found are characteristic of both Atlantic and Mediterranean salt marshes. The main species include Thrift (Armeria maritima), Common Saltmarsh-grass (Puccinellia maritima), Sea Lavender (Limonium humile), Sea Plantain (Plantago maritima), Sea Aster (Aster trifolium), Sea Puslane (Halimione portulacoides) and Sea Rush (Juncus maritimus). The scarce Hard-grass (Parapholis strigosa) occurs and a feature of this salt marsh is the presence of Golden Samphire (Inula crithmoides), a species rarely found on salt marshes in Ireland. Glasswort (Salicornia spp.) and other annuals such as Sea Blite (Suaeda maritima) occur in channels and pans and also onto the mudflats. Cord-grass (Spartina anglica) is frequent on parts of the salt marshes and on the mudflats. The intertidal mud flats and sand flats are another important habitat listed on Annex I of the EU Habitats Directive. The macrofauna is well developed, with Lugworm (Arenicola marina), Furrow Shell (Scrobicularia plana), Ragworm (Hediste diversicolor) and Cockle (Cerastoderma edule) being common, and with large patches of Mussel (Mytilus edulis) and Periwinkles (Littorina littorea) also present. A feature of this habitat is the presence of Eelgrass (Zostera noltii and Z. angustifolia). Several rare plants have been recorded from Tramore. It is the only site in the country where the Red Data Book plant Sea Knotgrass (Polygonum maritimum) has grown,

though it is sporadic in appearance. Other Red Data Book species which have been reported include Lesser Centaury (*Centaurium pulchellum*) and Cottonweed (*Otanthus maritimus*), both of which are listed on the Flora (Protection) Order, 1999, Sharp-leaved Fluellen (*Kickxia elatine*), Sea-kale (*Crambe maritima*) and Spring Vetch (*Vicia lathyroides*).

The Back Strand is a area of great importance for waterfowl on the south coast and is a designated SPA. The following figures are the average counts obtained during three seasons between 1994/95 and 1996/97. Brent Geese (482) occur in numbers which are of international significance. Six further species occur in nationally important numbers: Golden Plover (3,100), Grey Plover (261), Dunlin (1,970), Sanderling (53), Black-tailed Godwit (271) and Bar-tailed Godwit (405). Both Golden Plover and Bartailed Godwit are listed on Annex I of the EU Birds Directive.

The main threat to the stability of the dune habitats is from recreational pressures, with heavy usage of the site due to its proximity to Tramore. Already some large blow-outs and areas of bare sand are present. Driftline and shingle vegetation is also under pressure from heavy usage of the beach area. The intertidal and saltmarsh habitats are not under significant threat though possible seepage from the landfill site is a potential threat.

Tramore is of major ecological importance for the range of good quality coastal habitats which occur, including fixed dunes, which are listed as a priority habitat on Annex I of the European Habitats Directive. The site has a remarkably rich flora, featuring a number of rare and protected species, and the intertidal area is important for wintering waterfowl.

SITE SYNOPSIS

SITE NAME : TRAMORE BACK STRAND SPA

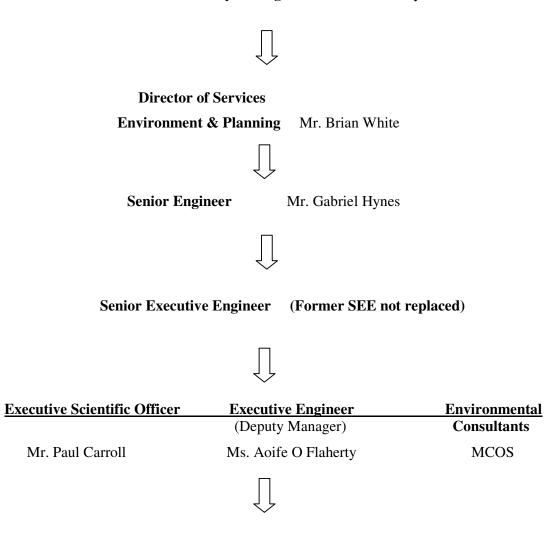
SITE CODE : 004027

This site lies a little east of Tramore town in County Waterford. It comprises a medium sized estuary sheltered from the open sea by a long, shingle spit, with high dunes. The area of the SPA, known as the Back Strand, empties almost completely at low tide. It is connected to the outer bay and sea by narrows at Rinneshark. The intertidal mud flats and sand flats are an important habitat and are listed on Annex I of the E.U. Habitats Directive. The macrofauna is well developed, with Lugworm (Arenicola marina), Furrow Shell (Scrobicularia plana), Ragworm (Hediste diversicolor) and Common Cockle (Cerastoderma edule) being common, and with large patches of Common Mussel (Mytilus edulis) and Edible Periwinkles (Littorina littoralis) also present. A feature of this habitat is the presence of Eelgrass (Zostera noltii and Z. angustifolia), an important food item for herbivorous wildfowl. Salt marsh, another habitat on Annex I of the E.U. Habitats Directive, is well developed and fairly extensive in the sheltered inner part of the site. It is the lagoon type of salt marsh, the rarest type in Ireland. The communities found are characteristic of both Atlantic and Mediterranean salt marshes. The main species include Thrift (Armeria maritima), Common Saltmarsh-grass (Puccinellia maritima), Lax-flowered Sea-lavender (Limonium humile), Sea Plantain (Plantago maritima), Sea Aster (Aster tripolium), Sea-purslane (Halimione portulacoides) and Sea Rush (Juncus maritimus). The scarce Hard-grass (Parapholis strigosa) occurs and a feature of this salt marsh is the presence of Golden-samphire (Inula crithmoides), a species rarely found on salt marshes in Ireland. Glasswort (Salicornia spp.) and other annuals such as Annual Sea Blite (Suaeda maritima) occur in channels and pans and also on the mudflats. Common Cord-grass (Spartina anglica) is frequent on parts of the salt marshes and on the mudflats.

The Back Strand is an important site for wintering waterfowl, providing both feeding and roosting areas. Counts are available for the 1970s and 1980s and for the 5 winters 1995/96 to 1999/00 (figures given are average peaks for the 90s). Of particular importance is that the site supports an Internationally Important population of Brent Geese (393). A further seven species occur in Nationally Important numbers: Golden Plover (2,924), Grey Plover (299), Lapwing (3,308), Dunlin (1,723), Sanderling (46), Black-tailed Godwit (289) and Bar-tailed Godwit (367). A range of other species also occur in significant numbers, including Wigeon (77), Teal (135), Red-breasted Merganser (18), Oystercatcher (347), Ringed Plover (55), Knot (75), Snipe (83), Curlew (620), Redshank (223), Greenshank (12) and Turnstone (24). In recent times Little Egret has become a regular visitor, with an average peak of six for the period. The regular occurrence of Little Egret, Golden Plover and Bar-tailed Godwit is of particular note as these are listed on Annex I of the E.U. Birds Directive. A potential threat to the intertidal habitat is seepage of leachate from a landfill site adjacent to the estuary.

Tramore Back Strand SPA is of high ornithological importance for wintering waterfowl, with one species having a population of International Importance and a further seven species having populations of National Importance. In addition, three of the species are listed on Annex I of the E.U. Birds Directive i.e. Golden Plover, Bar-tailed Godwit and Little Egret.

Tramore Back Strand


National 110 150 820 20 450 360 25 370 20 35 25	280 3,000 15,000 5,000 20,000 400 12,000 20,000	30 883 48 108 90 90 90 90 90 90 90 90 90 90 90 90 90	22 719 51 48 20	37 911 52 39 23	25 850 70 77 2	51 814 40 249	2006/07 2010/11 34 822 53	2010/11 51 911 70
150 820 20 450 360 25 370 20 35	3,000 15,000 900 5,000 400 12,000 12,000 20,000	883 48 108	719 51 48 20	911 52 39	850 70 77	814 40	34 822 53	51 911
820 20 450 360 25 370 20 35	3,000 15,000 900 5,000 400 12,000 12,000 20,000	48 105 30	51 46 20	52 39	70 77	40	53	
820 20 450 360 25 370 20 35	15,000 600 5,000 400 400 12,000 20,000	108 30	46 20	39	17			70
20 450 360 25 370 20 35	600 5.000 20,000 400 12,008 20,000	30	20			249	and the second se	
450 360 26 370 20 35	5,000 20,000 400 12,000 20,000		-	23	2		103	249
340 25 370 20 35	20,000 400 12,000 20,000		-	23		82	16	62
26 370 20 35	400 12,000 20,000	102	in.		40	67	38	67
370 20 35	12,000			157	115	206	344	209
20 35	20,000					5	- 1	6
35							1	
				1	3	2	. 2	
25	1.700	12	5	10	34	7	9	14
25	50				1		0	1
	4,000	2		22	2	5	7	22
55	3.600	2	2				1	2
140	1,200	7	28	15	15	.35	23	35
	2,000	12	4		5	12	7	13
	1,300	28	17	11	12	2	11	17
- 60	2,700	5	1	4	1		2	4
20	20.000							5
350	17,500						0	
ERG.	10.200	100	340	404	354	1108	367	408
150	730	41	71	C. T. Market	37	27	34	71
1 700	9.800	4.000	2 000		1750	340	1.350	2,000
			the second se	122	the second			233
			834					1,780
			241	346	100 100 100			346
65	1,200	45	56	25	10	25	29	50
660	13,300	447	688	150	1.000	600	610	1.000
	They are a							1
	20.000	105		0			j	0
340	and the second s	141		466		-900	-975	356
160			and the second se	100			174	210
550				304			487	677
								16
			185				151	173
								41
1.0.0								
								175
								3
	and the second se							27
	13,000			40				
							10	40
	20 330 680 150 1,700 65 2,100 190 65 660 140	20 20,000 330 17,500 880 10,200 150 730 1,700 9,300 e5 2,500 2,100 20,000 100 4,500 e5 1,200 860 13,500 20,000 140 470 100 1,200 550 8,500 20,000 120 1,500 6,800 20,000 120 1,500 6,800 20,000 16,000 4,500 4,500 6,800 20,000 120 1,500 6,800 20,000 16,000 4,500 6,800 20,000 120 1,500 6,800 140,000 150 1,500 1	20 20,000 330 17,500 880 10,200 529 150 730 51 1,700 9,500 4,000 65 2,500 245 2,100 20,000 1,880 190 4,500 210 65 1,200 48 860 13,300 6607 1 20,000 105 140 470 348 160 1,200 247 550 8,500 443 20 2,500 13 310 3,000 411 120 1,500 46 6,600 20,000 1 18,000 1 18,000 1	20 20,000 330 17,500 880 10,200 520 348 150 730 51 71 1,700 9,508 4,000 2,900 65 2,500 245 140 2,100 20,000 1,850 834 190 4,500 270 28 65 1,200 48 56 860 13,500 667 668 1 20,000 105 8 140 470 348 238 160 1,200 247 210 550 8,505 443 677 20 2,300 13 11 310 3,900 411 165 120 1,500 49 25 6,600 1 20,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 20,000 330 17,500 880 10,200 520 346 408 150 730 51 71 1,700 9,300 4,000 2,900 65 2,500 245 140 122 2,100 20,000 1,880 834 1,628 190 4,500 270 25 346 65 1,200 48 56 25 860 13,300 667 688 150 10 4,500 270 25 346 65 1,200 48 56 25 860 13,300 667 688 150 1 1 10 106 55 900 1,205 247 210 106 550 8,505 443 677 386 20 2,303 13 11 13 310 3,9000 4111	20 20,000 330 17,500 880 10,200 525 346 408 296 150 730 51 71 37 1,700 9,300 4,000 2,000 1,750 65 2,503 245 140 122 223 2,100 20,000 1,880 834 1,628 1,780 190 4,500 275 26 346 184 65 1,200 48 56 25 10 860 13,300 660 688 150 1,000 1 20,000 105 6 0 6 20,000 105 6 0 6 1000 20,000 105 6 0 6 140 470 343 238 356 178 100 1,200 247 210 106 205 550 8,505 443	20 20,000 5 330 17,500 1 880 10,200 520 348 408 398 398 150 730 51 71 37 27 1,700 9,300 4,000 2,000 1,750 550 65 2,500 245 140 122 233 150 2,100 20,000 1,880 834 1,628 1,780 715 190 4,500 270 28 346 184 95 95 1,200 48 56 25 10 25 960 13,300 6607 688 150 1,000 600 1 1 1 1 1 1 20,000 105 6 0 6 1 20,000 105 6 0 6 1 1 20,000 105 6 0 6 1 1 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

<mark>Appendix H</mark>

Management Structure

Management Structure of Waterford County Council

County Manager Mr Denis McCarthy

Landfill Manager Mr. David Regan

<mark>Appendix I</mark>

Leachate Removal Records and Leachate Analysis

Leachate Removal Record - Tramore Landfill									
	(Complia	ance with C	Conditio	ns 8.2, 11.9 and	11.10 of Lic	ence W	0075-02	
Date of Removal	Time of Removal Amount Removed		Name and Address of Approved Carrier	Carrier Permit Number	Vehicle Reg	Final Destination of Leachate	Spillages during Removal/ Transportation		
16/07/2012	11:00:00	Tonnes 37.75	Cubic Meters 35.649	Gallons 7922	Power Waste Disposal, Curraghduff, Carrick on Suir, Co. Waterford	WCP-KK-10-127- 02	N/A	Tramore Waste Water Treatment Plant, Crobally Upper, Tramore, Co. Waterford	No
17/09/2012	14:00:00	36.25	34.223625	7605.25	Power Waste Disposal, Curraghduff, Carrick on Suir, Co. Waterford	WCP-KK-10-127- 02	N/A	Tramore Waste Water Treatment Plant, Crobally Upper, Tramore, Co. Waterford	No
08/11/2012	11:00:00	36.15	34.48	7585	Power Waste Disposal, Curraghduff, Carrick on Suir, Co. Waterford	WCP-KK-10-127- 02	N/A	Tramore Waste Water Treatment Plant, Crobally Upper, Tramore, Co. Waterford	No
24/12/2012	11:00:00	37	34.9317	7762.6	Power Waste Disposal, Curraghduff, Carrick on Suir, Co. Waterford	WCP-KK-10-127- 02	N/A	Tramore Waste Water Treatment Plant, Crobally Upper, Tramore, Co. Waterford	No

Laboratory Reference	20120668
Date Of Sampling	28/06/2012
Sampled By	DR
	Grab sample from leachate collection
Sample Description	tank, Tramore Landfilll.
COD mg/L	58
BOD mg/L	7.8
Total Suspended Solids	81
Ammonia Nitrogen mg/L	6.26
Nitrite Nitrogen mg/L	1.61
Nitrate Nitrogen mg/L	<0.2
MRP mg/L	0.04
Chlorides	196.9
Iron mg/L	0.98
Manganese mg/L	2.38
Susan Cook	
Environmental Technician.	
09/07/2012	

Laboratory Reference	20120849
Date Of Sampling	10/09/2012
Sampled By	DR
	Grab sample from leachate collection
Comple Description	1
Sample Description	tank, Tramore Landfilll.
COD mg/L	54
Conductivity µS/cm	2220
Turbidity N.T.U.	25.1
Ammonia Nitrogen mg/L	52.4
Nitrite Nitrogen mg/L	0.17
Nitrate Nitrogen mg/L	3.9
MRP mg/L	0.014
Chlorides	200
Sulphate mg/L SO ₄	73
Iron mg/L	2.85
Manganese mg/L	1.26
Susan Cook	
Environmental Technician.	
11/09/2012	

Laboratory Reference	20121063
Date Of Sampling	06/11/2012
Sampled By	DR
	Grab sample from leachate collection
Sample Description	tank, Tramore Landfill.
COD mg/L	93
Total Suspended Solids	NT
Ammonia Nitrogen mg/L	98.15
Nitrite Nitrogen mg/L	0.09
Nitrate Nitrogen mg/L	0.681
MRP mg/L	0.055
Chlorides	215.3
Susan Cook	
Environmental Technician.	
14/11/2012	

Laboratory Reference	20121207
Date Of Sampling	10/12/2012
Sampled By	DR
	Grab sample from leachate collection
Sample Description	tank, Tramore Landfill.
COD mg/L	79
Total Suspended Solids	NT
Ammonia Nitrogen mg/L	68.015
Nitrite Nitrogen mg/L	0.046
Nitrate Nitrogen mg/L	<0.2
MRP mg/L	0.043
Chlorides	189.7
Susan Cook	
Environmental Technician.	
13/12/2012	

<mark>Appendix J</mark>

Pollutant Release Transfer Register

| PRTR# : W0075 | Facility Name : Tramore Waste Disposal Site | Filename : Tramore Landfill PRTR W0075_2012(1).xlsm | Return Year : 2012 |

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2012

4 6 4		
I. ГА	IDENTIFICATION	

Facility Name Tramore Waste Disposal Site	
PRTR Identification Number W0075	
Licence Number W0075-02	

Waste or IPPC Classes of Activity	
N 🗸	class name
	Recycling or reclamation of organic substances which are not
	used as solvents (including composting and other biological
4.2	transformation processes).
	Repackaging prior to submission to any activity referred to in a
3.12	preceding paragraph of this Schedule.
	Storage prior to submission to any activity referred to in a
	preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where the waste
3.13	concerned is produced.
	The treatment of any waste on land with a consequential benefit for
4.10	an agricultural activity or ecological system.
	Use of waste obtained from any activity referred to in a preceding
4.11	paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred to
	in a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4.13	produced.
4.3	Recycling or reclamation of metals and metal compounds.
4.4	Recycling or reclamation of other inorganic materials.
Address 1	Tramore Intake & Tramore Burrows
Address 2	
	Co. Waterford
Address 4	
	Waterford
Country	
Coordinates of Location	
River Basin District	
NACE Code	
	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	
AER Returns Contact Email Address AER Returns Contact Position	
AER Returns Contact Position AER Returns Contact Telephone Number	
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number	
Production Volume	
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	
Number of Employees	
User Feedback/Comments	
	www.waterfordcoco.ie
Web Address	

Activity Number Activity Name 50.1 General 50.1 General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2	2002)
ls it applicable?	No
Have you been granted an exemption ?	Yes
If applicable which activity class applies (as per	r
Schedule 2 of the regulations) ?	?
Is the reduction scheme compliance route being	1
used ?	? ?
4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	-
site treatment (either recovery or disposal	1
activities) ?	? No

This question is only applicable if you are an IPPC or Quarry site

4.1 RELEASES TO AIR

Link to previous years emissions data

17/04/2013 16:10

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

	Please enter all quantities in this section in KGs							
	POLLUTANT	METHOD			ADD EMISSION POINT	POINT QUANTITY		
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0		0.0 0.0	0.0

ADD NEW ROW DELETE ROW * Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

RELEASES TO AIR				Please enter all quantities in this section in KGs					
POLLUTANT				METHOD	ADD EMISSION POINT	QUANTITY			
			Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
				Estimated from Landgem					
01	Methane (CH4)	E	ESTIMATE	model and flare data	585493.0	585493.0	0.0	0.0	
				Estimated from landgem					
03	Carbon dioxide (CO2)	E	ESTIMATE	model	2200000.0	2200000.0	0.0	0.0	
07	Non-methane volatile organic compounds (NMVOC)	E	ESTIMATE	USA Landgem model	34500.0	34500.0	0.0	0.0	
ADD NEW ROW DELETE ROW *	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button								

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

RELEASES TO AIR			Please enter all quantities in this section in KGs						
POLLUTANT				METHOD	ADD EMISSION POINT	QUANTITY			
				Method Used					
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.0)	0.0 0.0	0.0	

ADD NEW ROW DELETE ROW * * Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KG/yr for Section A: Sector specific PRTR pollutants above. Please complete the table below :

Landfill:	Tramore Waste Disposal Site					
Please enter summary data on the						
quantities of methane flared and / or						
utilised			Met	thod Used		
				Designation or	Facility Total Capacity	
	T (Total) kg/Year	M/C/E	Method Code	Description	m3 per hour	
Total estimated methane generation (as per						
site model)	80000.0	E	ESTIMATE	Estimated from flare data	N/A	
Methane flared	214507.0	E	ESTIMATE	Estimated from flare data	250.0	(Total Flaring Capacity)
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)
Net methane emission (as reported in						
Section A above)	585493.0	E	ESTIMATE	Estimated from flare data	N/A	

4.2 RELEASES TO WATERS

Link to previous years emissions data

| PRTR# : W0075 | Facility Name : Tramore Waste Disposal Site | Filename : Tramore Landfill PRTR W0075_2012(1).xlsm | Return Year : 2012 |

17/04/2013 16:10

SECTION A : SECTOR SPECIFIC PRTR POI	g of storm/surface water or gi	roundwater, conducted as part	of your licence require	ments, should NOT be sub	mitted under AER / PRTF			
RELEASES TO WATERS					Please enter all quantitie	s in this section in K	Gs	
POLLUTANT					ADD EMISSION POINT	QUANTITY		
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0	0.0	0.0	0.0

ADD NEW ROW DELETE ROW * Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	Please enter all quantities in this section in KGs							
PC				ADD EMISSION POINT	QUANTITY			
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0	0.0	0.0	0.0

ADD NEW ROW DELETE ROW * Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES TO WATERS	Please enter all quantities in this section in KGs						
POL				ADD EMISSION POINT	QUANTITY			
				Method Used				
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0	0.0	0.0	0.0

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

| PRTR# : W0075 | Facility Name : Tramore Waste Disposal Site | Filename : Tramore Landfill PR 17/04/2013 16:10

SECTION A : PRTR POLLUTANTS

OFFSITE TRANS	SFER OF POLLUTANTS DESTINED FOR WASTE-W	Please enter all quantities in this section in KGs						
POLLUTANT			METHO	סכ	ADD EMISSION POINT	QUANTITY		
			Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0	0.0) 0.0	0.0

ADD NEW ROW DELETE ROW * * Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

OFFSITE TRAN	Please enter all quantities in this section in KGs							
POLLUTANT			METH	OD	ADD EMISSION POINT	QUANTITY		
			Method Used					
Pollutant No.	Name	M/C/E	Method Code Designation or Description		Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0	(0.0	0.0

4.4 RELEASES TO LAND

Link to previous years emissions data

PRTR# : W0075 | Facility Name : Tramore Waste Disposal Site | Filename : Tramore Landfill PRTR W0075_2012(1).xlsm | Return Year : 2012 17/04/2013 16:10

SECTION A : PRTR POLLUTANTS

	RELEASES TO LAND	Please enter all quantities in this section in KGs						
PO	METHOD			ADD EMISSION POINT	QUANTITY		NTITY	
			Met	hod Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Ad	ccidental) KG/Year
					0.0		0.0	0.0

ADD NEW ROW DELETE ROW * *Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RE	Please enter all quantities in this section in KGs					
POLLUTANT			MET	HOD	ADD EMISSION POINT	QUANTITY	
			Ν	Nethod Used			
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year
					0.0	(0.0 0.0

5. ONSITE TREATM	5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE PRTR#: W0075 Facility Name : Tramore Waste Disposal Site Filename : Tramore Landfill PRTR W0075_2012(1).xism Peturn Year : 2012 17/04/2013 16:10 Please enter all quantities on this sheet in Tonnes 0											
	European Waste		Quantity (Tonnes per Year)		Waste Treatment		Method Used	Location of	Haz Waste : Name and Licence/Fermit No of Next Destination Facility <u>Non Haz Waste</u> : Name and Licence/Fermit No of Recover/Disposer	<u>Haz Waste</u> : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Pecoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination	Code	Hazardous		Description of Waste	Operation	M/C/E	Method Used	Treatment				
	landfill leachate other than those mentioned Sean Power,WCP-KK-10- Curraghduff,Carrick on											
Within the Country	19 07 03	No	147.15	in 19 07 02	D15	М	Volume Calculation	Offsite in Ireland	127-02	Suir,Co. Waterford, Ireland		

<mark>Appendix L</mark>

Environmental Liability Risk Assessment

Environmental Liabilities Risk Assessment Report

Draft

January 2010

Tramore Landfill W0075-02

Environmental Liabilities Risk Assessment Report

DOCUMENT CONTROL SHEET

Client	Waterford County Council								
Project Title	Tramore Landfill								
Document Title	Environmen	Environmental Liability Resk Assessment (ELRA)							
Document No.	MDR0349R	MDR0349Rp0013							
This Document Comprises	DCS	TOC	Text	List of Tables	List of Figures	No. of Appendices			
	1	2	24	1		3			

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
F01	Final Issue	J.Bennett	E Boland	LOToola	West Piler	Jan 2010
			5 T 10			1.7.1
				1		1
				1		1

TABLE OF CONTENTS

1 IN	NTRODUCTION	
2 S	STUDY METHODOLOGY	
3 S	SYSTEM DEFINITION AND OBJECTIVES	
4 R	RISK IDENTIFICATION	
4.1	METHODOLOGY	5
4.2	IDENTIFICATION OF ENVIRONMENTAL RECEPTORS	5
4.3	IDENTIFICATION OF PROCESSES	5
4.4	IDENTIFICATION OF RISKS USING FAILURE MODE EFFECT ANALYSIS FORMS	6
5 A	ASSESSMENT OF RISKS	
5.1	METHODOLOGY	8
5.2	RISK CLASSIFICATION TABLE	8
5.3	RISK RANKING	9
5.4	RISK MATRIX	
5.5	DISCUSSION OF RISK LEVELS	
6 ID	DENTIFICATION AND ASSESSMENT OF MITIGATION ACTIONS	
6.1	IDENTIFICATION OF MITIGATION ACTIONS	
6.2	EFFECTIVENESS OF MITIGATION MEASURES IN RISK REDUCTION.	12
7 R	RISK MANAGEMENT PROGRAM	
7.1	GENERAL	
7.2	RISK MANAGEMENT PROGRAMME	
7.3	RISK MANAGEMENT REVIEW	
8 A	ASSESSMENT OF POTENTIAL ENVIRONMENTAL LIABILITIES	
8.1	TYPES OF ENVIRONMENTAL LIABILITIES	
8.2	'KNOWN' ENVIRONMENTAL LIABILITIES	
8.3	'UNKNOWN' ENVIRONMENTAL LIABILITIES – CURRENT STATUS	21
8.4	'UNKNOWN' ENVIRONMENTAL LIBILITIES - POST RISK MITIGATION	
8.5	TOTAL CURRENT ENVIRONMENTAL LIABILITIES	
9 C	CONCLUSIONS AND RECOMMENDATIONS	

APPENDICES

Appendix A - Failure Mode Effect Analysis Form

Appendix B - Expected Cost Model for "Unknown" Environmental Liabilities

LIST OF TABLES

Table 4.1 – Project Risk Register	7
Table 5.1 – Risk Classification Table	8
Table 5.2 Project Risk Register – Ranked by Risk Score	9
Table 4.3 – Risk Matrix – Current Risk Status	0
Table 6.1 – Proposed Risk Mitigation Measures	4
Table 6.2 – Revised Risk Matrix – Post Recommended Mitigation Measures 10	6
Table 7.1 – Proposed Risk Owners with Mitigation Measures and Timescales	8
Table 8.1 – "Known" Environmental Liabilities and Associated Costs	1
Table 8.2 – Summary of Potential "Unknown" Environmental Liabilities	2

MDR0349Rp0013

н

1 INTRODUCTION

This report provides the results of a risk assessment and identification of environmental liabilities at Tramore Landfill, Co. Waterford. The study was undertaken in compliance with Condition 12.2.2 of the landfill's Waste Licence (W0075-02). Condition 12.2.2 is a sub-condition of Condition 12.2, which is entitled '*Environmental Liabilities*. Condition 12.2.2 is quoted below:

'The licensee shall arrange for the completion, by an independent and appropriately qualified consultant, of a comprehensive and fully costed Environmental Liabilities Risk Assessment (ELRA), which addresses the liabilities from past and present activities. The assessment shall include those liabilities and costs identified in Condition 10 for execution of the CRAMP. A report on this assessment shall be submitted to the Agency for agreement within twelve months of date of grant of this licence. The ELRA shall be reviewed as necessary to reflect any significant change on site, and in any case every three years following initial agreement: review results are to be notified as part of the AER'

RPS Consulting Engineers have completed this study for Waterford County Council (WCC).

MDR0349Rp0013

ELRA

2 STUDY METHODOLOGY

The methodology adopted for this initial risk assessment was designed to allow the identification of the major risks in the closure, remediation and aftercare of the landfill. A risk has been defined as a measure of the likelihood and severity of an occurrence that is in some way harmful to a receptor.

Each risk was assessed in terms of its current controls and the availability of additional risk controls to reduce the level of risk. Risk management measures were allocated to each risk using the following approaches: risk acceptance, risk prevention / avoidance, risk reduction, risk transfer, or risk sharing.

The cost of the potential environmental liabilities was estimated based on the environmental liabilities identified during the risk assessment, plus the "known" liabilities at the site.

The following major tasks were undertaken during the study:

Task 1: Risk Management Workshop - Risk Data Collection:

A Risk Management Workshop was held by the project team to identify and quantify the risks inherent in the operation, closure, restoration and aftercare of the landfill facility, and to identify potential risk mitigation measures. The workshop was held in Dungarvan on the 12th December 2007 and was facilitated by Ms. Eleanor Boland of RPS. The workshop was also attended by the following persons:

•	Mr. James Mansfield	Waterford County Council	Senior Executive Engineer	
•	Mr. Tom Longan	Waterford County Council	Facility Manager	
•	Mr. Micheál Spillane	RPS	Design Engineer	

The following tasks were undertaken during the workshop:

- Identification of environmental receptors;
- · Identification of processes carried out on site now and in the future;
- Identification of the environmental hazards that may arise as a direct result of the processes carried out on site using Failure Mode Effect Analysis (FMEA) forms;
- Assessment of the level of risk posed by each hazard based on it's potential severity and likelihood of occurrence, and the allocation of a Risk Score;
- Identification of risk mitigation measures;
- Identification of responsibilities for the management of each risk; and
- · Re-evaluation of the level of risk following the implementation of mitigation measures.

Rev. F01

Task 2: Interpretation and Analysis of Risk Data:

The risk data collected from the Risk Management Workshop in FMEA forms was interpreted and analysed through the following tasks:

- · Completion of Failure Mode Effect Analysis forms;
- · Creation of Risk Register and Risk Classification Table;
- Ranking of Current Risks;
- · Identification of mitigation measure(s); and
- · Ranking of risks following the implementation of mitigation measure(s)

Task 3: Assessment of Environmental Liabilities:

The environmental liabilities were identified and quantified through the following tasks:

- · Identification and quantification of known environmental liabilities;
- · Identification of potential liabilities associated with the environmental risks;
- · Quantification of potential liabilities associated with the environmental risks; and
- · Determination of the total environmental liabilities for the site.

3 SYSTEM DEFINITION AND OBJECTIVES

The Objectives and System Definition was agreed at the commencement of the study to define the limits of the risk assessment.

The Risk Assessment is being undertaken in accordance with the EPA's requirements as stated in Waste Licence W0075-02. The objectives of the study are to:

- Identify post closure risks at the landfill and risk mitigation measures where risk levels are unacceptable.
- Identify environmental liabilities at the site to allow for the making of a financial provision in accordance with the Waste Management Act 1996

The risk assessment covers current remediation works and management including the closure, restoration and aftercare phases. The risk assessment allowed for the participation of the main landfill stakeholders through the facilitated workshop during which risks were identified and quantified.

MDR0349Rp0013

4 RISK IDENTIFICATION

4.1 METHODOLOGY

Risk identification was initially undertaken during the Risk Management Workshop with the main landfill stakeholders. The risk identification process involved:

- The identification of potential environmental receptors at the site.
- The identification of landfill processes that posed potential hazards to the environmental receptors.
- The identification and quantification of the risks using Failure Mode Effect Analysis (FMEA) forms.

4.2 IDENTIFICATION OF ENVIRONMENTAL RECEPTORS

The term 'environmental receptors' describes those parts of the surroundings likely to be affected by the processes that are ongoing at Tramore Landfill. The significant environmental receptors identified at the workshop are listed below. These receptors are used as a starting point to ensure that all significant risks are identified and all major aspects of the environment are taken into account.

Environmental Receptors:

- Groundwater
- Surface water
- Adjacent Special Area of Conservation (SAC)
- Human Beings
- Air Quality

4.3 IDENTIFICATION OF PROCESSES

A number of processes associated with the operation of a public civic amenity facility, and other processes associated with the restoration and aftercare period of the Landfill site were identified during the course of the workshop and afterwards and are listed below:

Processes:

- General Facility Operations including nuisance control, traffic management, routine maintenance, monitoring and other site operations.
- Civic Amenity Facility Operations including the temporary storage and transfer of waste.
- Landfill Gas including landfill gas generation, migration, and control.
- Leachate including leachate generation, collection, storage and transfer off site.

MDR0349Rp0013

These current processes have been identified to cover all activities on site that may result in a risk to the environmental receptors. Each environmental receptor was assessed against the list of processes in order to identify potential hazards. The potential hazards identified were entered onto the FMEA forms.

4.4 IDENTIFICATION OF RISKS USING FAILURE MODE EFFECT ANALYSIS FORMS

Failure Mode Effect Analysis (FMEA) forms were used during the workshop to facilitate risk identification and quantification. The purpose of these forms is to assist in the identification and quantification the risks posed to the environmental receptors by the processes carried out at the landfill. The final FMEA form for the project is provided in **Appendix A** and a description of each aspect of the form is also provided there.

A brainstorming activity was undertaken during the Risk Management Workshop to identify the major risks at the site. The process aimed to identify the major risks through linking the processes and their potential hazards to each of the environmental receptors.

The major risks identified were transferred to the FMEA (refer **Appendix A**). A total of 24 major risks were identified in the FMEA and these risks are listed in the Project Risk Register provided in Table 4.1.

ELRA.

Table 4.1 – Project Risk Register

Risk	Potential Failure Mode / Risk
1	Improper handling of waste by staff and members of the public
2	Vehicles and/or person accidents in the Civic amenity area
3	Overfilling of storage containers in the Civic Amenity area
4	Risk of hazardous material passing inspection and being accepted at Civic Amenity
5	Member of public slipping/tripping in civic amenity area
6	Improper storage of permitted household hazardous waste
7	Escape of contaminated liquid from the Civic Amenity containment system
8	Off site migration of litter causing nuisance
9	Vermin carrying disease out of the landfill
10	Odours causing a nuisance
11	H&S Accident during environmental monitoring
12	Drowning in tidal estuarine area of staff or unauthorised member of public
13	Human exposure to leachate and /or landfill gas during general maintenance operations
14	Fire in the CA or landfill
15	Landfill gas migration off site and accumulation in structures.
16	Escape of gas to the atmosphere
17	Degradation of capping
18	Traffic accidents during off site disposal of leachate.
19	Leachate break out due to breach in liner.
20	Failure of leachate collection infrastructure leading to groundwater contamination
21	Leachate being unsuitable for treatment at local WWTP
22	Escape of leachate from leachate storage tank to ground
23	Intrusion / Vandalism at flare compound
24	Dust causing a nuisance, blown off site.

5 ASSESSMENT OF RISKS

5.1 METHODOLOGY

A significant number of risks were identified during the workshop. These risks were assessed against the risk classification table (RCT) as provided in **Table 5.1**. The risk classification table was designed to reflect the critical levels of risk appropriate to the landfill.

Risk ratings were applied to each risk in the FMEA table for severity and occurrence as taken from the RCT. The severity rating adopted for each risk reflected the highest severity rating of the severity parameters (cost, safety, environment). This was generally found to be the rating for the financial cost, since the financial cost severity was deemed to include the costs associated with any corresponding environmental or safety impact. Where a parameter other than cost was the dominant severity parameter, this was noted on the FMEA.

A risk score was calculated for each risk using the selected severity and occurrence ratings. The risks were then ranked and compared based on the risk scores. The risks were placed in a risk matrix to illustrate the ranking and level of each risk, and allow the risks to be visually prioritised. The risk matrix is a particularly useful tool for tracking changes in risk levels over time. The level of management required for each risk is identified from the risk matrix.

Risk management measures were identified for each risk during the workshop and included in the FMEA. These measures are presented in Section 6.0.

5.2 RISK CLASSIFICATION TABLE

The Risk Classification Table (RCT) has been designed to reflect the critical levels of risk appropriate to the landfill. The table is provided in **Table 4.1** below.

		Likelihood	Severity					
Rating	Description	of Occurrence (%)	Financial Cost (€'000's)	Safety	Environment			
1	Nil	0	0	No injury	No effect			
2	Very Low	0-5	0-1	First aid injury	Slight effect, temporary			
3	Low	5 - 10	1 – 10	Medically treated injury	Minor impact, temporary			
4	Medium	10 - 20	10 – 50	Lost time injury to 1 week	Local impact, recoverable losses			
5	High	20 - 50	50 - 100	Lost time injury > 1 week	Major impact, severe damage			
6	Very High	> 50	>100	Permanent disability / fatality	Massive impact, severe long-term damage			

Table 5.1 – Risk Classification Table

The RCT provides appropriate levels of probability and severity for the ranking of risks. The levels for each parameter reflect suitable levels for assessing and ranking the risks identified at the landfill, and allocating appropriate management measures. The RCT was agreed with the main landfill stakeholders at the Risk Management Workshop.

Rev. F01

5.3 RISK RANKING

Risk ratings were applied to each risk in the FMEA table for severity and occurrence as taken from the RCT. A risk score was then calculated for each risk using the ratings. The risk score is based on the product of the severity rating and the occurrence rating. This system allowed the risks to be ranked and compared.

The project risk register listing all the major risks identified at the landfill was provided in **Table 3.1**. This register has been expanded and rearranged in **Table 5.2** to include the risk scores and rank the risks in order of risk score.

Risk	Potential Failure Mode	Risk Score
2	Vehicles and/or person accidents in the Civic amenity area	20
12	Drowning in tidal estuarine area of staff or unauthorised member of public	18
21	Leachate being unsuitable for treatment at local WWTP	18
23	Intrusion / Vandalism at flare compound	18
19	Leachate break out due to breach in capping	16
18	Traffic accidents during off site disposal of leachate.	15
8	Off site migration of litter causing nuisance	15
3	Overfilling of storage containers in the Civic Amenity area	12
5	Member of public slipping/tripping in civic amenity area	12
11	H&S Accident during environmental monitoring	12
13	Human exposure to leachate and /or landfill gas during general maintenance operations	12
14	Fire in the CA or landfill	12
15	Landfill gas migration off site and accumulation in structures.	12
17	Degradation of capping	12
22	Escape of leachate from leachate storage tank to ground	12
4	Risk of hazardous material passing inspection and being accepted at Civic Amenity	9
6	Improper storage of permitted household hazardous waste	9
7	Escape of contaminated liquid from the Civic Amenity containment system	9
10	Odours causing a nuisance	9
1	Improper handling of waste by staff and members of the public	8
9	Vermin carrying disease out of the landfill	6
16	Escape of gas to the atmosphere	6
20	Failure of leachate collection infrastructure leading to groundwater contamination	6
24	Dust causing a nuisance, blown off site.	6

Table 5.2 Project Risk Register - Ranked by Risk Score

5.4 RISK MATRIX

The Risk Matrix has been developed to allow the risks to be easily displayed and prioritised. The sevenity and occurrence ratings are used in the matrix, with the level of severity forming the x-axis and the likelihood of occurrence forming the y-axis. This matrix will provide a visual tool for regular risk reviews since the success of mitigation can be easily identified. The risk matrix is displayed here in **Table 5.3**. The risks have been colour coded in the matrix to provide a broad indication of the critical nature of each risk. The colour code is as follows:

- Red (deep red and light red) These are considered to be high-level risks requiring priority
 attention. These risks have the potential to be catastrophic and as such should be addressed
 quickly.
- Amber / Yellow These are medium-level risks requiring action, but are not as critical as a red coded risk.
- Green (light and dark green) These are lowest-level risks and indicate a need for continuing awareness and monitoring on a regular basis. Whilst they are currently low or minor risks, some have the potential to increase to medium or even high-level risks and must therefore be regularly monitored and if cost effective mitigation can be carried out to reduce the risk even further this should be pursued.

			NIL	V. Low	Low	Medium	High	V. High
			1	2	3	4	5	6
	NIL	4						
	V. Low	2			9,16,20,24			in the last of the second
1.0	Low	3			4.67.10	2	(B	12,21,23
Occurrence	Medium	4		.0	1	iā		
	High	5			8	2		
- 2	V. High	6						

Table 4.3 - Risk Matrix - Current Risk Status

Severity

Rev. F01

The risk matrix indicates that there are four risks in the red zone that requires priority attention. Two risks are in the yellow/amber zone indicating that these risks require action as soon as possible. All remaining risks are located in the green zone indicating a need for continuing awareness and monitoring on a regular basis. However, assessment of the green zone risks during the preparation of the FMEA's has indicated that some of these risks can be reduced through the implementation of mitigation measures. These measures should be adopted where considered cost-effective to further reduce the risks.

5.5 DISCUSSION OF RISK LEVELS

The following risk lies in the red zone and require priority attention:

- · Risk 2 Vehicles and/or person accidents in the Civic amenity area
- Risk 12 Drowning in tidal estuarine area of staff or unauthorised member of public
- Risk 21 Leachate being unsuitable for treatment at local WWTP
- Risk 23 Intrusion / Vandalism at flare compound

The following risks lie in the amber / yellow zone and require attention as soon as possible:

- Risk 8 Off site migration of litter causing nuisance
- Risk 18 Traffic accidents during off site disposal of leachate
- Risk 19 Leachate break out due to breach in capping

All remaining risks lie in the green zone. These risks require continuing awareness and monitoring on a regular basis. As these risks may have the potential to increase to yellow or red zone risks, additional risk management measures should be put in place to manage them at their current levels, or preferably to reduce them further, if required.

6 IDENTIFICATION AND ASSESSMENT OF MITIGATION ACTIONS

6.1 IDENTIFICATION OF MITIGATION ACTIONS

Risks requiring additional mitigation actions were identified in Section 5. These are comprised of four risks located in the red zone and three risks located in the amber / yellow zone. All remaining risks were found to be in the green zone.

Additional risk mitigation measures were identified during the risk management workshop for the four risks in the red zone, reducing the risk for one to green, two to yellow, and one remains unchanged at red, but a possible future mitigation was identified for the fourth (the risk level remains unchanged until monitoring indicates the mitigation is warranted). The three risks that are still in the red zone are inherently risky, and thus procedures and monitoring is necessary on an ongoing basis. A review should be carried out regularly identifying any further opportunities to reduce these risks, and to ensure that the risk level does not increase.

Two of the three risks in the yellow zone have a certain level of risk by their nature, and the risk cannot be readily reduced as mitigation measures are already in place. These measures will reduce these risks to more acceptable levels. The third yellow zone risk was reduced to a green risk by mitigation measures. Again, a review should be carried out regularly identifying any further opportunities to reduce these risks, and to ensure that the risk level does not increase.

Additional cost-effective risk mitigation measures were also identified for 5 of the 17 green zone risks during the workshop. Since green zone risks may have the potential to increase to yellow or red zone risks, these risk mitigation measures should be implemented since they are considered cost-effective.

Additional cost-effective risk mitigation measures could not be identified for the remaining 12 of the 17 green zone risks. For these risks, the current risk management measures were considered acceptable.

The recommended risk mitigation measures identified during the workshop and included in the FMEA are provided in **Table 6.1**. This table provides the risks in descending order of risk score with the proposed mitigation measure. The current controls are also provided.

6.2 EFFECTIVENESS OF MITIGATION MEASURES IN RISK REDUCTION

The risk scores have been re-calculated on the basis that the additional mitigation measures are fully implemented. **Table 6.1** provides the revised risk scores after the implementation of the risk mitigation measures, and compares them to the current risk score. **Table 6.2** provides a revised risk matrix following the implementation of the risk mitigation measures.

Table 6.1 indicates that the risk scores for 5 of the risks are reduced by the implementation of the measures, whilst there would be no significant change to 19 of the risks. However, recommended mitigation measures have been proposed and assessed for 6 of the 19 risks which do not exhibit improved risk scores, and these measures should increase the robustness of the risk controls already in place.

In addition, the risk matrix indicates that two of red code risks have been reduced to a yellow yellow/amber code risk, and one to green. One yellow/amber code risk has been reduced to a green zone risk, and one of the green code risks have moved to the lower green zone. The recommended mitigation measures therefore show a real reduction in risk at the landfill and since they are considered cost-effective, should be implemented. Section 7.0 provides a management plan for the implementation of the recommended mitigation measures.

MDR0349Rp0013

Table 6.1 – Proposed Risk Mitigation Measures

Risk	Potential Failure Mode / Risk Current Controls Recommended Mitigation Measures		Current Risk Score	Revise d Risk Score	
2	Vehicles and/or person accidents in the Civic amenity area	Traffic Management Plan	Review procedures, and amend where appropriate	20	16
12	Drowning in tidal estuarine area of staff or unauthorised member of public	Partial fence, maintain fence	Vigilance to maintain fence, erect signage	18	12
23	Intrusion / Vandalism at flare compound	Caretaking, telemetry, security fence	Monitor situation - possible security camera to be considered	18	18
21	Leachate being unsuitable for treatment at local WWTP	Leachate monitoring	Monitor leachate and review if necessary to plan alternative in advance	18	15
19	Leachate break out due to breach in liner	SW / GW monitoring, visual monitoring	Current measures are considered adequate	16	16
18	Traffic accidents during off site disposal of leachate.	Only use licenced drivers, and traffic management procedures	Ourrent measures are considered adequate	15	15
8	Off site migration of litter causing nuisance	Litter fencing and litter pickers	Review current arrangements, increased litter collection/control	15	12
14	Fire in the CA or landfill	Emergency response procedure, waste inspection procedure	Review CA procedures	12	12
13	Human exposure to leachate and /or landfill gas during general maintenance operations	Use experienced personnel, training, documented procedures, inoculations	Ourrent measures are considered adequate	12	12
5	Member of public slipping/tripping in divic amenity area	Current C.A. procedures	Extra awareness, extra signs, information, supervision	12	12
22	Escape of leachate from leachate storage tank to ground	Groundwater monitoring, caretaking	Monitor situation - possible additional security fence to be considered	12	12
3	Overfilling of storage containers in the Civic Amenity area	Current C.A. procedures	Increased policing	12	12
11	H&S Accident during environmental monitoring	Use experienced personnel	Current measures are considered adequate	12	12
15	Landfill gas migration off site and	Gas extraction and flaring system installed	Ourrent measures are considered adequate	12	12

MDR0349Rp0013

Rev. F01

Tramore Landfill

Risk	Potential Failure Mode / Risk	Current Controls	Recommended Mitigation Measures	Current Risk Score	Revise d Risk Score	
	accumulation in structures.					
17	Degradation of capping	Monitoring	Current measures are considered adequate	12	12	
6	Improper storage of permitted household hazardous waste	Current C.A. procedures	Current measures are considered adequate	9	9	
4		Waste inspection procedure. Waste inspected at waste disposal area. If unsuitable, removed to waste quarantine area.		9	9	
10	Odours causing a nuisance	Landfill capped, gas extraction and flaring system installed	Current measures are considered adequate	9	9	
7	Escape of contaminated liquid from the Civic Amenity containment system	Design of containment system	Recording of emptying of containment system	9	9	
1	Improper handling of waste by staff and members of the public	Staff wear PPE, supervision of public on site	Extra awareness, extra signs, information, supervision	8	6	
16	Escape of gas to the atmosphere	Gas extraction and flare system	Current measures are considered adequate	6	6	
9	Vermin carrying disease out of the landfill	Nuisance control procedures	Current measures are considered adequate	6	6	
24	Dust causing a nuisance, blown off site.	cap prepared for natural colonisation	Current measures are considered adequate	6	6	
20	Failure of leachate collection infrastructure leading to groundwater contamination	System monitoring and a back-up system	Current measures are considered adequate	6	6	

		-	NIL	V. Low	Low	Medium	High	V. High
		-	4	2	3	4	5	6
	Nil	1						
	V. Low	2			9,16,20,24			11,12,13, 16,17,2
	Low	3		7	0.87.10	5	18,21	23
Occurrence	Medium	4			8,8	2,19		
	High	5						
	V. High	6						

Table 6.2 - Revised Risk Matrix - Post Recommended Mitigation Measures

Severity

MDR0349Rp0013

Rev. F01

ELRA

7 RISK MANAGEMENT PROGRAM

7.1 GENERAL

Every risk requires a certain amount of management in order to reduce the risk or manage the risk at an acceptable level. Risk owners have therefore been allocated to each risk to undertake this role. For the majority of the risks identified, the management of the risk will involve the implementation of the recommended mitigation measures and the maintenance of current controls.

Where additional risk mitigation measures have not been identified, the risk owner is required to ensure that the current levels of controls are maintained and that the level of risk does not increase.

A time scale has been applied to all proposed risk mitigation measures in order to ensure that the mitigation measures are implemented in a timely fashion.

7.2 RISK MANAGEMENT PROGRAMME

The risk owner must be competent enough to understand the risk and the recommended mitigation measures, and have the authority to implement the mitigation measure. The risk owner must also be able to be held responsible for the risk. The risk owners considered suitable for the risk management programme were:

- Licencee (Waterford County Council)
- Landfill Manager

The proposed timescales for the implementation of the mitigation measures must be realistic and appropriate to the level of risk. The timescales have been prepared in consultation with the risk owners where available.

Table 7.1 allocates risk owners to each individual risk, and provides timeframes for the completion of each risk mitigation measure. However, it should be noted that ultimately the licencee is responsible for all risks, and the allocation of risk owners is undertaken to assist the Licencee manage the risks.

Owner	Mitigation measure	Relevant Risk ID	Mitigation Measure Completion Date		
	Current measures are considered adequate	4,6,9,10,11,13,15, 16,18,19,20,24			
	Extra awareness, extra signs, information, supervision	1,5	Mar-10		
	Increased policing	3	Feb10		
	Monitor leachate and review if necessary to plan alternative in advance	21	Jan-10		
	Monitor situation - possible security camera to be considered	23	Jan-10		
Landfill Manager	Monitor situation - possible additional security fence to be considered	22	Jan-10		
	Recording of emptying of containment system	7	Feb10		
	Review CA procedures	14	Mar-10		
	Review current arrangements, increased litter collection/control	8	Feb10		
	Review procedures, and amend where appropriate	2	Mar-10		
	Vigilance to maintain fence, erect signage	12	Mar-10		
Licensee	Current measures are considered adequate	17	-		

Table 7.1 – Proposed Risk Owners with Mitigation Measures and Timescales

7.3 RISK MANAGEMENT REVIEW

Risk management at the landfill is a dynamic process. This assessment and report provides a baseline assessment of the major risks at the landfill, and provides recommendations for risk mitigation and management measures. However, landfill processes and conditions will change and this assessment should be reviewed periodically to ensure that all risks are being identified and managed.

This document should be considered to be a live document. It is recommended that the Licensee reviews the risk management at the site on a six-monthly basis and updates the risk register and risk management programme as appropriate. It is also recommended that a formal risk assessment be undertaken every three years at the landfill to assist in this process and to comply with Condition 12.2.2.

8 ASSESSMENT OF POTENTIAL ENVIRONMENTAL LIABILITIES

8.1 TYPES OF ENVIRONMENTAL LIABILITIES

The assessment of potential environmental liabilities may be broken down into two separate sections, the "known" environmental liabilities and the potential or "unknown" environmental liabilities.

The "known" environmental liabilities are understood, definable and current. These liabilities relate to costs that are currently known to be required for the protection of environmental receptors based on past and present operations at the landfill and civic amenity. These include ongoing maintenance of the capping, leachate and gas management systems and ongoing maintenance of the civic amenity area.

The "unknown" environmental liabilities are those liabilities that may or may not arise due to the occurrence of the environmental risks identified in the risk assessment.

8.2 'KNOWN' ENVIRONMENTAL LIABILITIES

The 'known' environmental liabilities can be broken into those arising during the operational phase of the civic amenity in order to close it, and those arising during the aftercare phase of the landfill. The 'known' environmental liabilities associated with the operational phase of the civic amenity include for closure costs. The final closure costs of the Civic Amenity site include for removal of all structures, plant and cabins. The aftercare phase of the landfill includes costs associated with the management of the leachate infrastructure, landfill gas infrastructure and environmental monitoring.

The aftercare phase liabilities are those costs that will arise during a 30 year period following the closure of the entire site. The assessment of the environmental liabilities has been limited to a 30 year period in accordance with Article 10 of the *Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste.* However, it is expected that the environmental liabilities will extend beyond the 30 years period. The aftercare phase environmental liabilities include costs for ongoing monitoring and maintenance.

Table 8.1 provides the "known" liabilities and an estimate of their approximate cost. The cost estimates have been based on 2009 rates and prices.

MDR0349Rp0013

Environmental Liability	Description	Cost Estimate		
Final closure Phase				
Capping, gas and leach ate management systems	Construction finished, cost €3.7m (ex. VAT), payments of €33k due in 2010	€ 33,000		
Civic Amenity Site ²	Demobilisation and restoration cost of €100k to close. ²	€ 100,000 ²		
	Contingency for increase scope (10%)	€ 13,300		
	Sub-total for final dosure Phase	€ 146.300		
Aftercare Phase (30yrs)				
 General maintenance and management, including monitoring programme. 	€ 50,000 per annum- monitoring contract with Laboratory, small maintenance works, licence.	€ 1,500,000		
 Management and maintenance of gas and leachate management system. 	€ 20,000 per annum- maintain LTP and SCADA system and replace pumps, lines etc. where required; power supply; testing	€ 600,000		
- Leadhate treatment.	€ 100,000 per annum – assumes offsite treatment of 260m ³ per annum x €400/m ³	€ 3,000,000		
Co	ntingency for increase scope (at 10%)	€ 510,000		
	Sub-total for Aftercare Phase	€ 5,610,000		
	Total for 30 year period	€ 5,756,300		

Table 8.1 - "Known" Environmental Liabilities and Associated Costs

Notes:

 The Civic Amenity Site was closed in 2009 indefinitely – but this report and costs assume that it is open for 30 years. In the case where the CA is closed in the period, the demobilisation cost for the CA would reduce to €50,000.

8.3 'UNKNOWN' ENVIRONMENTAL LIABILITIES - CURRENT STATUS

The 'unknown' environmental liabilities are associated with the environmental risks identified in Sections 4 and 5, and may or may not occur. The best case scenario is that none of the environmental risks occur, and hence at the end of the assessment period, the additional costs incurred by the landfill owner due to the environmental risks are zero. Alternatively, should a significant number of the risks materialise, significant additional costs could be incurred.

In order to identify an indicative level of environmental liability associated with the environmental risks for the purposes of Condition 12.2.2 of the Waste Licence, a cost model has been used to generate the expected cumulative cost of the risks. The modelling has been undertaken using specialist risk management and decision making software utilising the Monte Carlo sampling method to estimate the probability distribution for the expected costs.

The process assumes triangular distributions for the probability and cost ranges for each risk. Samples of expected costs are estimated based on random values of probability and cost for each risk. The sample expected costs are calculated using 1000 iterations of cost and probability values generated from the triangular distributions. A probability distribution for the expected cost is then generated.

The probability distribution can be converted to a cumulative probability distribution. This cumulative distribution provides the expected costs at each percentile. Therefore, the 50% percentile expected

^{1.} All cost estimates based on current 2009 prices and rates

cost represents the cost at which 50% (or 500) of the samples/iterations exceeded this cost and 50% did not exceed this cost. Similarly, the 90% percentile expected cost represents the expected cost at which 10% (or 100) of the samples / iterations exceeded this cost and 90% did not exceed this cost.

The most likely expected cost is usually taken as the 50% percentile expected cost. This amount is €220,736. However, in order to allow a contingency on the expected costs due to the environmental risks, the 90% percentile has been adopted, which is €271,708.

This figure represents an indicative cost of liabilities due to environmental risks based on the estimated cost and probability ranges for each risk. The method cannot give an accurate prediction of the final cost due to the subjective and uncertain nature of the risk data. However, it should be accurate enough to assist making judgements on the appropriate level of financial provision required for environmental liabilities at the landfill.

Table 8.2 summarises the highest cost scenario, the lowest cost scenario, the most likely (50% percentile cost scenario), and the most likely scenario with contingency (90% percentile). It is recommended that the later value be adopted as an indicative cost for the "unknown" environmental liabilities.

Description	Estimate of "Unknown" Environmental Liabilities	1 Street end and the street end of the street of the street end			
Highest Cost Scenario	€ 505,000	Assumes risks occur at their maximum cost at their maximum probability of occurrence			
Lowest Cost Scenario	€12,900	Assumes risks occur at their minimum cost at their minimum probability of occurrence			
Expected Cost - Most Likely Scenario - 50% Percentile	€ 220,736	Based on the 50% percentile of the statistical analysis of the risk costs.			
Expected Cost - Most Likely Scenario with Contingency – 90% Percentile		Based on the 90% percentile of the statistical analysis of the risk costs.			

Table 8.2 – Summary of Potential "Unknown" Environmental Liabilities

8.4 'UNKNOWN' ENVIRONMENTAL LIBILITIES – POST RISK MITIGATION

The 'unknown' environmental liabilities can be re-evaluated after the proposed mitigations for the risks have been implemented and a reduced liability should be evident. This should be undertaken during the future risk assessments, and following the implementation of the mitigation measures.

8.5 TOTAL CURRENT ENVIRONMENTAL LIABILITIES

The total current environmental liabilities at Tramore, assuming that the landfill shall remain closed and the civic amenity shall continue to operate in accordance with the current plans in the short term, is estimated to be the sum of the 'known' environmental liabilities and the 'unknown' environmental liabilities.

The 'known' environmental liabilities currently outstanding are:

€ 5,756,300

The 'unknown' environmental liabilities which may arise due to unexpected risk events is: € 271,708 (most likely scenario with contingency)

The total current environmental liability is therefore estimated to be: € 6,028,008 (most likely scenario with contingency)

It is proposed that the financial provision to cover environmental liabilities be based on this figure.

9 CONCLUSIONS AND RECOMMENDATIONS

This study has been undertaken at the request of Waterford County Council in order to comply with Condition 12.2.2 of Waste Licence 0075-02. This condition requires the completion of an Environmental Liabilities Risk Assessment at Tramore Landfill.

The landfill operations risk assessment identified 24 major risks at the landfill. These risks were quantified and potential risk mitigation measures identified. A risk management programme was prepared to manage the risks, and in particular the implementation of the risk mitigation measures. Risk owners were allocated to manage each risk and timeframes agreed for the implementation of the mitigation measures.

Through the implementation of the risk management programme, the major risks identified at the landfill will be reduced. This has been illustrated in the comparison of pre-risk levels and post-risk levels presented in Section 5.

It is noted that the risk assessment process is a dynamic and continuous process. The associated FMEA's, risk registers, and the risk mitigation programme should be regarded as live documents and subjected to regular reviews. It is therefore recommended that the landfill operators review the risk management at the site on a monthly basis and update the risk register and risk management programme as appropriate. It is also recommended that a formal risk assessment be undertaken annually at the landfill to assist in this process.

Potential environmental liabilities at the landfill have also been quantified. These were comprised of "known" environmental liabilities and "unknown" environmental liabilities. The "known" liabilities are known, well defined, and current liabilities. The "unknown" environmental liabilities are potential liabilities that may arise due to the environmental risks associated with the operation, closure and aftercare of the landfill. The "unknown" liabilities have been quantified using an expected cost model, based on the expected financial cost of each potential risk, and the expected probability of occurrence of each risk.

The current estimate of environmental liabilities at the landfill is € 6,028,008. It is proposed that the financial provision to cover environmental liabilities be based on this figure.

APPENDIX A

Failure Mode and Effect Analysis Form

					Failure Modes		Effects Analysis Form MEA)				1				
-	(Marine	Trainer La dai		10 - 11	Name of Street	n m		0.1	Flatt A (20a)	R-MC	0		-	1]
_	_		1500638-84			-		-	1914	_	The Propinsi		-		2
~ 0	Research Class	Balance () allower bases Million to be an end of the control Bre allower of	Paul d'aure	The off the second seco	Corport Cold Add The data the source particular provide and the Cold Advects of the Conserve the Conserve the Conserve t		Harmon Convergence of the Association Hilling on the Association of the Isociation are using Physical association to be and the formation of a social are when it is not the addition of the Association of	or here and it was	Balance d'anny sport foi les Maraches ann la Bonnair de angf	CIX2 100 P4	Manuar de All Calder Maria de de de alte val tr e de al al al ajaŭ al le com la tr Kalkolt a se si se rej	The same	-man-	N. S. S. S. S. D. S.	
1	Class Arran 1g.	argumper has they it would be also	Want per bendleg of the similar county	111 Ter 4 water 1 years a 24 of	Shift was "Period a section of as the	2	Status type, We lieth an island	4	Call sold give the descent	-	Sala mare na aktisto.	12 Kina pr	7	13	-
á	Landk fraier	Vertiles, annu an an an anna.	Prior 2 pHD arting static rol vom big Prior 2 pHD arting static rol vom big	ini a producti de complexidare. Antes producti a	Takadmaigachet Plan	.1	Based an associable phase and farm		Man (Mark & State Busilian & Hillington)	30	Annual of the second se	1 ² from pri	1	.a	
	Carlo Airin I (The set of an a state of state of state	Halling Links which the	The Part of Addition in which as and all	Depet C A second se		Amiliado teo far apay, tim Ame Lift	- 2	News Ret La Cig and Red.	12	Views of all inte	of transfer-	-1		
X	Carl Normal (The Case Acceptor and Ark vid has willing with ad prices a gambar and the by analysis of Case Achiever	han ar lan c an c la chira lir. I sa a s i c ca c i d chira i c c ca c	UI mane dragdes	March & section provide a clarke March (1) and the provide a clarke March (1) and the provide a realistic provide a clarke a statement of	A.	end. Menne al a lan sind in salasit it raine diny. Salas (19) it can observe it for these	w	The state of the second s	.¥	factor for pression of the designed	(the set	4	w.	31
$\dot{\mathbf{Y}}$	Care Arrien Ly	ina teriti ja di ching kipat y di tak mangi ata	And an and a second second	111 H 40	Dealth A second	10	(B) any des birds have stratistic	3	TA IN L INCOME AND INCOMENTS	ia	fait was than indication	(T Kine pr	111	1	u,
	displayed y	There are a set and the set of th	Industrial Secondar	and a strength of	Example A granular	a.	hand of our third plant. Vaplan,	a.	Oningy has to assore in success.	1	farmer sectors are caused	Chaipe .	10	a.	
1	Care Arrielly	Charge of our tay insteading left day (in Casil Average can be average)	the same at A taken of the set	FOR THE POLY INCOME. IN: 2000		2	Cold torontal Dely used where at	13.	Consumed which in consultance super-	¥	Namedia y al construction continues de	1º Kine pr	3	. 3	\mathcal{A}_{i}
\mathbf{a}_{i}	the start is	o pole O E cile e ignati di Ber conseg- consente	perturbation can be a distribution of the second	An the works when	the property and the street.	2	Contributions and the	. 11	Carbona Same in the Armoney of	15	Product California and San	C Discourse	5.	. 1	
1	Link Contract	Vewarian per diseased with	This has not take almost to many other	the track of the state	formation the ball of strends on	1	Contrady is not only in party in case that	ò.	INDER AN EXCHANGED AND IN	16	farmity and structure that identify	C Gampie	- 3 -	-a.	-4
ę	-	Constant consider a distance on	Collect & Coll, Section, Price ed. and applied	An Davallers' trailing incaries.	Las del i senser per schart des anti- fici è s police pi dellari	4	Philips in larges of an open labeling. Develop the Development of the Tank Forganis Labeling	4	this signature in the second second	¥	Tarte II was the arr can be not	C Lossier	1.1	4	14
0	a differentiate i	Part An state state (Access Low shind set	Hit Break and Wig state at the	The separate call percent.		Personal landay, Mary, Spill Restriction and	. 1	Low participation of an end of the left	12	Carlor 10 metalogically taxible with selected to	D knot pt	. 8 .	. 2	0
ò	unit control	Conserving an initial stations were as a station of the second transmit second se	Anna A. La Mana San	di awa	Parallelle an exercise terms		interaction and they into maintain a sat	à	Internety Accelerate	18	Ventering to evolve the second	U.S. maight	10°	(3	- D
.0	eres en Clark	Carrier engos pre la besti de vest las beitiki per delato piparent al bestiki per delato piparent	ingen ger an sieder nigt im gest mit mit Angener met. 1990	(11) Researcher (aller alle bie some er	Use pagetter and percentrel, beating, disconnect officer and all to provide the		New Sold also Very Ref. Bernard and		(Allowly Marcola)	1ą	faire to section to can be of	(Line pr	1		u
		The WITH CALL MILLION	Animat in straight	An Inches dir salah birte, 164 Larun margani 120-a seruh PA CA	Consequences on and many sectors and and a sector sector and the sector sectors and the sectors and the sector sector sectors and the sectors and the sectors and the sectors and the s	۰.	Realising on the unit part is easy by	3	Many Accessible States and American	īγ	Peakey CAlaustraline	(the p	э.	. 3	u
- 6-	a still a	Control of the spatial of the sec-	failure and for lighter of per-	eid maile been meine Hit Barge Mallie mehr ber	the wave is seen and the party		ANEMANDAR: Separate Instanticular	è.	On Reputation of Allepetinity	13	Carrier in the care of the tracking of	i finançai	1.8.7	à.	÷.
	Leidelle.	fallow it parts for standal loca	Preserve leg ligat	Diemine #40	the shatta and the regular	1	Vetage of our physical start (C. Vetage) is a function (and C1.	1	lated would be a second of a	10	Course (a view of on a life chard late off	C Riverian	101	٦.	14
-ur	Correct Correct	Carpente atraces	Selected Supervise on two	Sile in order in oper top front stor. An in particle up to \$1.000 styles.	become g		Now subplay is used, to cost by transmission of the second	a.	Constantiate and a state of the	12	Caracter (17 met 24 met 24 met 2003) (200 met 2010 salt te	and the second	1	a	a
*	Logita Infine spectra (Traditic established and publicate	Cardinal est pivil radionidare	HILL) HERE RESIDENT SHE TO BE	Coly size time and all res., sufficients,	. 8.	Profile der um bit ar soll be serberte - male under bally. Figt	-1	Pault additions provationed in	11	Contraction was as the contraction of the second seco	(Phone ser	- 10-		1
	Containing opener	Cartain and at a router	ten and the grant and the second	Coll (D) W und für und bir dass be-	SIP (BD all address) (and all address)	-	Group of the second sec	(m)	Day terrencie provajakanarja 3.	- 18	Carried to the close the same part of adjustments	(him)e	10	-	
	Le atta infesie agricos i	Taka da Dise dal Polek dan Kita deci un balang te	The sectors of the sector sectors	(11) (1) VC can be writed and fact for training the pathogen	findenterin bes gann einer im Anterio	3	Loss for every provident of within the coll and the souther is you blind	3	un herende anti-appaarie a		Company for parts are used and parts allocate and regard to	(I fringe		1	
±1	(and address of the second	Conception and a local statute of	the statement of sole and any size to prove that is possible	Their process in testanet inches	and the part of th		Particular on physics and an area of the second sec	14	Dealt is a provide a silver.	18	Marchine Sense Database and provides a la rest provide and part of the plane and rest provide and part of the plane and	(Index	6	- 4	-ħ-
20.	leanadocuerw)	Canadar la fascé als las arcénsits als change las isté prind é	The stress of the state of the stress state of	Strategiese	Tracinete metallity, including	4	Antipati institute segura fati	è	THE COMPANY CALL STORE	13	The same lab, where - proceeder will be and a same why had not a same unit will put .	(training in	1	÷.e	Ĥ.
x.	La saté di au Mang minet	research strategy articles	Autorit Carry	NUS Territories in gong to at the Assessment, bud to 2000 Mills (built, m., and we done	Canality, security, inside hirts	4	NAME AND ADDRESS ADDRESS OF	(a	Postally destination contractions	18	biores of all second and dy on our dy on the second to be or addy of	(Inc.)	42	14	×.
z.	unitorian.	had as any second in their d	They would be a set as a more to get and a lited of a span for part to file, and a dam.	Advite all physics, vill fair or manual-1284, feat possibil	-	à.	ractively saving a surface line is the tractice fields for the	5	The register seal (interview de star	1	farbettermann an muide til Distante	Contact.	1.0		

MARGINE STREET.

218

0.0

APPENDIX B

Expected Cost Model for 'Unknown' Environmental Liabilities

Crystal ball report D02.xls

Crystal Ball Report - Full Simulation started on 2/10/2010 at 12:31:40 Simulation stopped on 2/10/2010 at 12:31:41

Run preferences:	
Number of trials run	1,000
Monte Carlo	
Random seed	
Precision control on	
Confidence level	95.00%
Run statistics:	
Total running time (sec)	1.48
Trials/second (average)	675
Random numbers per sec	33,067
Crystal Ball data:	
Assumptions	49
Correlations	0
Correlated groups	0
Decision variables	0
Forecasts	1

Page 1

Crystal ball report D02.xls

Forecasts

Worksheet: [MDE0156Rp0011F01_AppCD02.xis]Stats

Forecast: Expected Cost

Cell: J29

Summary: Entire range is from € 114,122 to € 353,257 Base case is € 160,263 After 1,000 trials, the std. error of the mean is € 1,224

Statistics:	Forecast values
Triats	1,000
Mean	€ 221,378
Median	\$ 220,772
Mode	
Standard Deviation	€ 38,710
Variance	£ 1,498,486,991
Skewness	0.1817
Kurtosis	2.77
Coeff. of Variability	0.1749
Minimum	€ 114,122
Maximum	€ 353,257
Range Width	€ 239,136
Mean Std. Error	€ 1.224

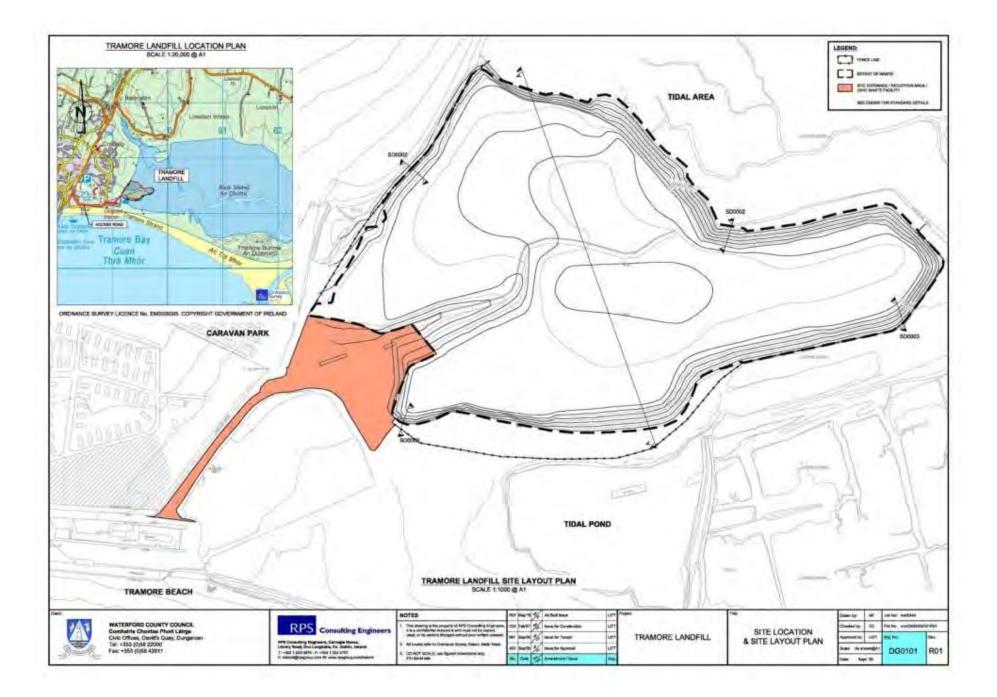
Page 2

Crystal ball report D02.xis

Forecast: Expected Cost (cont'd)

Cell: J29

Percentiles:	Forecast values
0%	€ 114,122
10%	170,868
20%	€ 187,265
30%	€ 199,255
40%	€ 209,296
50%	€ 220,736
60%	€ 230,971
70%	€ 240,986
80%	€ 253,572
90%	271,708
100%	€ 353,257


End of Forecasts

Page 3

Tramore Landfill

Forecast of Environmental Liability due to Environmental Risk

Risk ID	Severity	Occurrence	Ex	pected Cost Ra	inge	Expecte	ed Probability	/ Range	Expected Cost	Worst Case Cost	Best Case Cost
	Rating	Rating	Minimum Cost	Most Likely Cost	Maximum Cost	Minimum Probability	Most Likely Probability	and the second sec	(= most likely cost x most likely probability)	(= maximum cost x maximum probability)	(= minimum cost x minimum probability)
	2	3	€O	0.00	€ 1,000	5.0%	7.9%	10.0%	€ 38	€ 100	€0
2	-4	4	€ 10,000	0.000	€ 50,000	10.0%	15.0%	20.0%	€ 4,500	€ 10,000	€ 1,000
	3	4	€ 1,000	N 1 500	€ 10,000	10.0%	15:094	20.0%	€ 825	€ 2.000	€100
	3	3	€ 1.000	1 1 500	€ 10,000	5.0%	7.5%	10.0%	€413	€ 1.000	€ 50
5	4	3	€ 10,000	1.25.000	€ 50,000	5.0%	7.8**	10.0%	€ 1.875	€ 5,000	€ 500
3	3	3	€ 1,000	C 5.600	€ 10,000	5.0%	78 A	10.0%	€ 413	€ 1,000	€ 50
· · · · ·	3	3	€ 1,000	0 1.500	€ 10,000	5.0%	7.8%	10.0%	€ 413	€ 1,000	€ 50
5	3	4	€ 1,000	C 5.500	€ 10,000	10.0%	12,005	20.0%	€ 825	€ 2,000	€100
) 	3	2	€ 1,000	K 1 800	€ 10,000	0.0%	2.6%	5,0%	€ 138	€ 500	€0
10	3	3	€ 1,000	6.5.500	€ 10,000	5.0%	7.5%	10.0%	E 413	€ 1,000	€ 50
11	6	2	€ 100,000	€ 550,000	€ 1,000,000	0.0%	2.5%	5.0%	€ 13,750	€ 50,000	€0
12	6	2	€ 100,000	FEG.000	€ 1,000,000	0.0%	2.5%	5.0%	€ 13,750	€ 50,000	€O
13	6	2	€ 100,000	E 150,000	€ 1,000,000	0.0%	2.9%	5.0%	€ 13,750	€ 50,000	€0
4	6	2	€ 100,000	550,000	€ 1,000,000	0.0%	2.6%	5.0%	€ 13,750	€ 50,000	€0
15	6	2	€ 100,000	£ 500,000	€ 1,000,000	0.0%	2.5%	5,0%	€ 12,500	€ 50,000	€0
16	3	2	€ 1,000	C 9.500	€ 10,000	0.0%	28%	5.0%	€ 138	€ 500	€0
17	6	2	€ 100,000	C EBO DOO	€ 1,000,000	0.0%	2.5%	5.0%	€ 12,500	€ 50,000	€0
18	5	3	€ 50,000	£ 15,000	€ 100,000	5.0%	7.5%	10.0%	€ 5,625	€ 10,000	€ 2,500
19	4	4	€ 10,000	E 25.000	€ 50,000	10.0%	15.0%	20.0%	€ 3,750	€ 10,000	€ 1,000
20	3	2	€ 1,000	E 5 500	€ 10,000	0.0%	2.5%	5,0%	€ 138	€ 500	€0
21	5	3	€ 50,000	E 75,000	€ 100,000	5.0%	8 S L	10.0%	€ 5,625	€ 10,000	€ 2,500
22	6	2	€ 100,000	E 550 000	€ 1,000,000	0.0%	2.9%	5.0%	€ 13,750	€ 50,000	€0
23	6	3	€ 100,000	£ 550.000	€ 1,000,000	5.0%	7.8%	10.0%	€ 41,250	€ 100,000	€ 5,000
24	3	2	€ 1,000	E 5.500	€ 10,000	0.0%	2.6%	5.0%	€ 138	€ 500	€0

Appendix L

Flare Servicing Reports and Landfill Gas Survey

00000Directors: G. Fallon, J. Fagan, B.J. Walker, Registered Number, 455450. VAT No. IE96808650 Registered Address: #.3 Chaim Aoibiim, Craddockstown, Naas, Co. Kildare, Ireland

1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.1	Manifold 1	Flare post bal	Flare pre bal		Sample Point						
37.2	36.8	55.1	35.9	39.2	11.3	45.3	39.1	40.4	CH 4	44.1	43.4	%	CH_4						
23.5	23,4	32.9	22.9	23.5	6.5	29	26	26.7	C02	28.2	29	%	C02						
3.1	2.9	0	3.2	2	14.9	0	1.6	1.5	02	1.8	1.1	0%	02						
0	0	0	0	0	0	0	0	0	Press(pre)	-15	-5	mBar	(-) Press						
0	0	0	0	0	0	0	0	0	Press(pre) Press(post)	1020	1023	οC	Temp						
									Flow m ³	110	50	m³/hr	Flow m ³						
									Comment	Suction swinging indicating condensate in pipework	Suction swinging indicating condensate in pipework		Comment	keep the main lines clear.	smaller, only a relatively small amount of tank capacity would be required to	the volume of condensate vs the volume of leachate in the wells is much	Gas extraction would be maintained if they had thier own air supply and as	to be ran independantly of the leachate extraction pumps in the wells.	The current air line configuration does not allow for the the NOP's in the held

Unit W10C, Tougher Business Park, Naas, Co. Kildare. (RELAND. Tel: +353 (0) 45 409 314 Web: www.irishbiotechsystems.ie Fax: +353 (0)1 6865 012 Email: Info@irishbiotechsystems.ie

			1
	5	and a	
1	П	5	
	P	101	
		12	-
l	1	-	
1		0	
	N		1
		-	

Site: Tramore Landfill

Date 12/07/2012

Wet

17

189

ί.

1010

be replaced due to corrosion) we allowed the pumps to turn on for 5 mins approx. This was enough time for KOP3 to be emptied without overflowing the tank and gave us suction to manifold 4. KOP 2 was still full after 5 mins so we had no suction to manifolds 1 & 2.

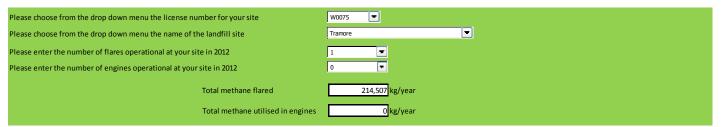
On arrival the leachate tank was full and there was no suction to manifolds 1.2 & 4. By activating the float switch in the tank (which we would recommend

Comment

Conditions Amb °C H2S ppm CO ppm Atm Press

Gas Field Balance Results

000000Drivetors: G. Fallon, J. Fagan, B.J. Walker, Registered Number, 455450, VAT No. IE08808650 Registered Address: # 3 Claim Aohbinn, Craddockstown, Nats. Co. Kildtre, Ireland


	32.9	32.9 26.7 26	32.9 26.7 26 27.7		61.8 32.9 50.1 26.7 41.2 26 39.5 27.7 45.3 27.9 30.5 28.3
	5.1	5,1 5,4	5,1 5,4 0,6	5.1 5.4 0.6	5.1 5.4 0.6 0.2
AT-	-12	-12	-10 -16 -10	-12 -16 -13	-12 -16 -13
	، بن	، دن ،	ا بن ان ان	ى ئە ئە ھ	రు ఉ ఉ రు రు క
				Suction swinging indicating condensate in conecting pipe	Suction swinging indicating condensate in conecting pipe
				بې چې چ	స ఈ ఈ సుసు

Unit W10C, Tougher Business Park, Naas, Co. Kildare. IRELAND. Tel: +353 (0) 45 409 314 Web: www.irishbiotechsystems.ie Fax: +353 (0)1 6865 012 Email: Info@irishbiotechsystems.ie

Tigled Malenn

A survey of landfill sites to determine the quantity of methane flared and or recovered in utilisation plants for 2012

Please note that the closing date for reciept of completed surveys is 31/03/2013

Introduction

The Office of Climate Licensing and Resource Use (OCLR) of the Environmental Protection Agency acts as the inventory agency in Ireland with responsibility for compiling and reporting national greenhouse gas inventories to the European Commission and the United Nations Framework Convention on Climate Change. In addition to meeting international commitments Ireland's national greenhouse gas inventory informs national agencies and Government departments as they face the challenge to curb emissions and meet Ireland's targets under the Kyoto Protocol. The national inventory also informs data suppliers, making them aware of the importance of their contributions to the inventory process and a means of identifying areas where input data may be improved.

It is on this basis that the Environmental Protection Agency is asking landfill operators to partake in this survey so that the most uptodate information on methane flaring and recovery in utilisation plants at landfills sites is used in calculating the contribution of the waste sector to national greenhouse gas emissions

The Environmental Protection Agency wishes to thank you for partaking in this survey. If you have any questions about the survey and how to complete it please view the "Help sheet" worksheet. If however, your query is not answered by viewing the "Help sheet" worksheet please contact: LFGProject@epa.ie

Once completed please send the completed file as an attachment clearly stating the name and or license number of the landfill site (e.g. W000 Xanadu landfill_2012) to: LFGProject@epa.ie

ls Me	lonth /yea lonth deco	? an open or e r comissione omissioned if function of t	d ? decomissio	•		Enclosed			lf "other" e	nter flare de	scription here		
ls Me	s the flare Ionth /yea Ionth deco	an open or e r comissione omissioned if	d ? decomissio	•		Enclosed			lf "other" e	nter flare de	scription here		
М	lonth /yea lonth deco	r comissione omissioned if	d ? decomissio	•									
	lonth deco	omissioned if	decomissio	oned in 2012				Rated flare c	apacity ?	250	➡ m3/hr		
M				oned in 2012		April	2009						
	/hat is the	function of t	he flare ?		2?	Select							
w						Extraction from		-	lf "other" ent	er flare func	tion here		
Monthly N	Method	Runtime	Runtime	Downtime	Total runtime	Average Inlet	Average Flow	Average CH₄	Average CO ₂	Average O ₂	Combustion	Total CH₄	Total CH₄
	M/C/E	days/month	hrs/day	hrs	hrs/month	Pressure (mbg)	Rate (m ³ /hr)	%v/v	%v/v	%v/v	efficiency (%)	m ³	kgs
anuary	MCE	30	24.0	0.0	720	-22	102	37.50	12.50	1.10	98.0	26,989	18,230
ebruary	MCE	27	24.0	0.0	648	-22	102	37.50	12.50	1.10	98.0	24,290	16,407
March	MCE	30	24.0	0.0	720	-22	102	37.50	12.50	1.10	98.0	26,989	18,230
April	MCE	29	24.0	0.0	696	-22	102	37.50	12.50	1.10	98.0	26,090	17,622
vlay	MCE	30	24.0	0.0	720	-22	102	37.50	12.50	1.10	98.0	26,989	18,230
une	MCE	29	24.0	0.0	696	-22	102	37.50	12.50	1.10	98.0	26,090	17,622
uly	MCE	30	24.0	0.0	720	-22	102	37.50	12.50	1.10	98.0	26,989	18,230
August	MCE	30	24.0	0.0	720	-22	102	37.50	12.50	1.10	98.0	26,989	18,230
September	MCE	29	24.0	0.0	696	-22	102	37.50	12.50	1.10	98.0	26,090	17,622
Dctober	MCE	30	24.0	0.0	720	-22	102	37.50	12.50	1.10	98.0	26,989	18,230
November	MCE	29	24.0	0.0	696	-22	102	37.50	12.50	1.10	98.0	26,090	17,622
December	MCE	30	24.0	0.0	720	-22	102	37.50	12.50	1.10	98.0	26,989	18,230
otal					8,472							317,573	214,507
Please note: Or	only fill the	e "Yearly" tal	ble if data is	s not availab	e or cannot be ca	lculated nor estir		lu le a de					

Yearly	Method	Runtime	Runtime	Downtime	Total runtime	Average Inlet	Average Flow	Average CH ₄	Average CO ₂	Average O ₂	Combustion	Total CH ₄	Total CH ₄
	M/C/E	days/year	hrs/day	hrs	hrs/year	Pressure (mbg)	Rate m ³ /hr	%v/v	%v/v	%v/v	efficiency (%)	m ³	kgs
2012					0						98.0	0	0

Appendix M

Site Slope Stability Assessment

Slope Stability Assessment

Background

The inspection in relation to the slope stability assessment was carried out on 4th January, 2010.

Slope Section 1 (North-Western boundary of the site)

This slope shows no signs of movement of cracking. The surface water drain at the foot of the slope has been cleaned out and the slope here has been flattened at the base. Fencing in this area had been in a state of disrepair and has now been removed. This slope is deemed to be in a stable condition.

Slope Section 1 looking South

Slope Section 2 (Northern Boundary of the site, western section)

Due to the gradient of the slope, a protective grid was used in portion of the slope to prevent slippage when this slope was being constructed and this has proved to be successful as there are no signs of any movement or cracking. Vegetation on the slope has thrived since the last survey was carried out in December 2007.

Slope Section 2 facing west

Slope Section 3 (Northern boundary of the site, central section)

Gabion baskets had previously installed in this area in order to facilitate a reduction of the angle of repose on this slope. The baskets were covered as part of the remediation program. The surface water drain and outfall in this area have now been completed. The outfall pipes have been surrounded by rock armour in order to protect them from the tide. Vegetation on the slope is thriving and the slope is in a stable condition, there is no evidence of any cracking or slope slippage.

Slope Section 3 showing the Surface Water drainage outfall.

Slope Section 4 (Northern boundary of the site, Eastern section)

Due to the gradient of the slope, a protective grid was used during construction and this has proved to be successful as there has been no cracking or slippage. The protective grid has been augmented by rock armour and the slope is in a stable condition. The litter fencing that was previously in place at the bottom of the slope has been removed. Vegetation in this area is thriving.

Slope Section 4

Slope Section 5 (Eastern boundary of the site)

Vegetation is now thriving on this slope and the slope remains in a stable condition following the installation of rock armour to augment the protective grid that was installed during construction.

Slope Section 5 with Rock Armour.

Slope Section 6 (Southern boundary of the site, Eastern section)

The rock armour that was installed on this slope has proved to be a success as there are no signs of movement or cracking thereon. Surface water drainage has been completed and a gravel pathway to the surface water outfall on the western end of this slope will be constructed over the rock armour. Vegetation in this area is also thriving.

Slope Section 6 showing Rock Armour

Slope Section 7 (Southern boundary of the site, Western section)

Vegetation on this slope is now thriving. Surface water drainage at the base of this slope has been completed. There are no signs of any movement or cracking. This slope is deemed to be in a stable condition.

Slope Section 7