

Tel. [0 2 1] 4 3 2 1 5 2 1 Fax. [0 2 1] 4 3 2 1 5 2 2

## ANNUAL ENVIRONMENTAL REPORT

#### **FOR**

# GREENSTAR LTD. - BALLYNAGRAN LANDFILL LICENCE NO. W0165-02

JANUARY – DECEMBER 2012

# Prepared For: -

Greenstar Ltd., Ballynagran Landfill, Ballynagran, Co. Wicklow

# Prepared By: -

O' Callaghan Moran & Associates, Granary House, Rutland Street, Cork.

# 24<sup>th</sup> April 2013

| Project   | Annual En  | Annual Environmental Report 2012                 |                     |                       |  |  |  |  |  |  |
|-----------|------------|--------------------------------------------------|---------------------|-----------------------|--|--|--|--|--|--|
| Client    |            | Greenstar Ltd – Ballynagran Landfill<br>W0165-02 |                     |                       |  |  |  |  |  |  |
| Report No | Date       | Date Status Prepared By Reviewed By              |                     |                       |  |  |  |  |  |  |
| 0480105   | 27/03/2013 | Draft                                            | Barry<br>Sexton MSc | Michael Watson MA.    |  |  |  |  |  |  |
| 0480105   | 24/04/2013 | Final                                            | Barry<br>Sexton MSc | Michael Watson<br>MA. |  |  |  |  |  |  |
|           |            |                                                  |                     |                       |  |  |  |  |  |  |
|           |            |                                                  |                     |                       |  |  |  |  |  |  |

# **TABLE OF CONTENTS**

6.1

|    |              |                                                                   | <u>PAGE</u> |
|----|--------------|-------------------------------------------------------------------|-------------|
| 1. | INT          | FRODUCTION                                                        | 1           |
|    |              |                                                                   |             |
| 2. |              | TE DESCRIPTION                                                    |             |
|    | 2.1          | SITE LOCATION & LAYOUT                                            |             |
|    | 2.2          | SITE HISTORY                                                      |             |
|    | 2.3          | WASTE ACTIVITIES CARRIED OUT AT THE FACILITY                      |             |
|    | 2.4          | WASTE TYPES & VOLUMES                                             |             |
|    | 2.5          | WASTE RECEIVED & CONSIGNED                                        |             |
|    | 2.6          | LANDFILL CAPACITY                                                 |             |
|    | 2.7          | METHOD OF DEPOSITION OF WASTES                                    |             |
|    | 2.7.<br>2.7. | 1 Waste Acceptance                                                |             |
|    | 2.7.         | 2 Working Face                                                    |             |
|    | 2.9          | PROGRESS AND IMPLEMENTATION OF LANDSCAPING PROGRAMME              |             |
|    | 2.10         | REPORT ON MEETING THE REQUIREMENTS OF THE LANDFILL DIRECTIVE      |             |
|    | 2.10         | PROGRAMME FOR PUBLIC INFORMATION                                  |             |
|    |              |                                                                   |             |
| 3. | EN           | VIRONMENTAL MONITORING                                            | 9           |
|    | 3.1          | GROUNDWATER MONITORING                                            | 9           |
|    | 3.1.         | 1 Groundwater Levels                                              | 9           |
|    | 3.1.         | 2 Groundwater Quality                                             | 9           |
|    | 3.2          | SURFACE WATER MONITORING                                          |             |
|    | 3.2.         |                                                                   |             |
|    |              | 2 Chemical Assessment                                             |             |
|    | 3.3          | Leachate                                                          |             |
|    | 3.4          | LANDFILL GAS (LFG)                                                |             |
|    | 3.5          | Noise Surveys                                                     |             |
|    | 3.6          | DUST MONITORING                                                   |             |
|    | 3.7          | PM <sub>10</sub>                                                  |             |
|    | 3.8          | METEOROLOGICAL MONITORING.                                        |             |
|    | 3.9          | BIOLOGICAL MONITORING                                             |             |
| 1. | SIT          | TE DEVELOPMENT WORKS                                              | 17          |
|    | 4.1          | SUMMARY OF RESOURCE & ENERGY CONSUMPTION                          | 17          |
|    | 4.2          | PROPOSED SITE DEVELOPMENT WORKS 2013                              |             |
| 5. | EM           | IISSIONS                                                          |             |
|    | 5.1          | Leachate                                                          |             |
|    | 5.2          | Landfill Gas                                                      |             |
|    | 5.3          | ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMISSIONS TO |             |
|    |              | NDWATERNDWATER                                                    |             |
|    | 5.4          | SURFACE WATER                                                     |             |
| •  |              | ISANCE CONTROL                                                    |             |
| 5. | NU           | IDANCE CUNTKUL                                                    | 22          |

April 2013 (BS/KC)

| _  | 5.3   | FLIES                                                             | 22 |
|----|-------|-------------------------------------------------------------------|----|
|    |       |                                                                   | 23 |
| 6  | .4    | DUST AND MUD                                                      |    |
| 6  | 5.5   | LITTER                                                            | 23 |
| 7. | ENV   | VIRONMENTAL INCIDENTS AND COMPLAINTS                              | 24 |
| 7  | '.1   | INCIDENTS                                                         | 24 |
| 7  | .2    | REGISTER OF COMPLAINTS                                            |    |
| 8. | ENV   | VIRONMENTAL MANAGEMENT SYSTEM                                     | 25 |
| 8  | 3.1   | Management Structure                                              | 25 |
|    | 8.1.1 |                                                                   |    |
|    | 8.1.2 |                                                                   |    |
|    | 8.1.3 | <u> •</u>                                                         |    |
| 8  | 3.2   | EMP                                                               |    |
|    | 8.2.1 | Schedule of Objectives 2012                                       | 27 |
|    | 8.2.2 | Schedule of Objectives 2013                                       | 27 |
| 8  | 3.3   | COMMUNICATIONS PROGRAMME                                          |    |
| 9. | OTI   | HER REPORTS                                                       | 34 |
| 9  | 0.1   | FINANCIAL PROVISION                                               | 34 |
| 9  | 0.2   | LANDSCAPE PROGRAMME                                               |    |
| 9  | 0.3   | SURFACE WATER AND LEACHATE MANAGEMENT SYSTEM INSPECTION AND SLOPI | Ε  |
| S  | TABIL | ITY ASSESSMENT REPORT                                             | 34 |
|    | .4    | EUROPEAN POLLUTANT RELEASE AND TRANSFER REGISTER                  |    |
| 9  | 0.5   | TANK, DRUM, PIPELINE AND BUND TESTING AND INSPECTION REPORT       |    |

# **LIST OF APPENDICES**

**APPENDIX 1** - Topographic Survey with Monitoring Locations

**APPENDIX 2** - Monitoring Results Summary 2012

**APPENDIX 3** - Complaints 2012

**APPENDIX 4** - Staff Training Records

**APPENDIX 5** - Procedures Index

**APPENDIX 6** - European Pollutant Release and Transfer Register

## 1. INTRODUCTION

This is the 2012 Annual Environmental Report (AER) for Greenstar Ltd's (Greenstar) non-hazardous residual landfill at Coolbeg & Kilcandra, Ballynagran, County Wicklow. It covers the period from the 1<sup>st</sup> January 2012 to the 31<sup>st</sup> December 2012.

The content is based on Schedule B of the Waste Licence (Reg. No. W0165-02) and the report format follows guidelines set in the "Guidance Note for Annual Environmental Report" issued by the Environmental Protection Agency (Agency)<sup>1</sup>. Account is also taken of the AER Draft Guidance Document and AER Information Templates issued by the Agency in January 2013<sup>2</sup>.

\_

<sup>&</sup>lt;sup>1</sup> EPA (Environmental Protection Agency) 1999 Waste Licensing – Draft Guidance on Environmental Management Systems and Reporting to the Agency

<sup>&</sup>lt;sup>2</sup> EPA (Environmental Protection Agency) 2012 Draft AER Guidance Document

## 2. SITE DESCRIPTION

## 2.1 Site Location & Layout

The site, which encompasses approximately 128 ha, is located on the eastern side of the Wicklow Mountains in the townlands of Ballynagran, Coolbeg and Kilcandra. It is approximately 5 km to the south west of Wicklow Town and 3.5 km to the south east of Glenealy. It is on the southern side of an east-west ridge at an elevation between 52 and 147m Ordnance Datum (OD).

The site layout is shown on the topographical survey drawing included in Appendix 1 and includes: -

- Waste Reception Area;
- Weighbridges (2 No.);
- Wheel Wash;
- Waste Quarantine & Inspection Areas;
- Landfill Cells;
- Leachate Storage lagoon;
- Surface Water Pond:
- Administration Block (offices, stores, canteen, toilets and showers);
- Oil Storage Tank & Bund;
- Security Fencing.
- Landscaped Areas
- Landfill gas utilisation compound

#### 2.2 Site History

The facility was granted a Waste Licence (W0165-01) by the Agency on 5<sup>th</sup> September 2003 which was reviewed with a revised licence (W0165-02) issued on the 23<sup>rd</sup> March 2010.

The facility will be developed in five phases. The initial phase involved the provision of five (5) landfill cells (1, 2, 3, 4 and 5A/B), and the entire supporting infrastructure. In 2007 the Agency approved the development of two additional cells (Cells 6 and 7), which were constructed in 2008 and became active in 2009. An active gas abstraction and flaring system was commissioned in April 2007. Cells 9 and 10 were constructed in 2009 and 2010

respectively and despite being EPA approved for waste placement; they did not receive any waste in 2011. Waste was deposited in Cell 9 in 2012. Cell 10 did not receive any waste in 2012. A landfill gas utilisation plant was commissioned and began operating in January 2011. Waste was placed to final profile heights in Cells 1, 2 and part of 5 before approximately 6,000 m<sup>2</sup> of permanent capping was undertaken in Cells 1, 3 and 6 in 2012 in addition to 16,000 m<sup>2</sup> permanently capped in 2011. Waste was continued to be placed in Cells 3, 4, 6 and 7 while Cell 9 was entered in April 2012. Subsequent phases will involve the provision of additional landfill cells and the associated expansion of leachate, landfill gas and surface water control measures. There were no new flares added in 2012.

## 2.3 Waste Activities Carried Out at the Facility

The facility is a full containment landfill, which is designed to accept treated waste for final disposal. The licensed waste activities are summarised in Tables 2.1 and 2.2.

**Table 2.1** Licensed Waste Disposal Activities, in accordance with the Third Schedule of the Waste Management Act 1996 as amended

| Class 1  | Deposit on, in or under land (including                                                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|
|          | landfill).                                                                                                                                  |
| Class 4  | Surface impoundment, including placement of liquids or sludge discards into pits, ponds or lagoons: This activity is limited to the storage |
|          | and management of leachate and surface water at the facility.                                                                               |
| Class 5  | Specially engineered landfill, including placement into lines discrete cells which are                                                      |
|          | capped and isolated from one another and the environment:                                                                                   |
|          | This is the principal activity. This activity is limited to the construction of the landfill in                                             |
|          | distinct phases consisting of specially engineered lined cells, the deposit of non-                                                         |
|          | hazardous waste into these lined cells and the collection of leachate and landfill gas.                                                     |
| Class 6  | Biological treatment not referred to elsewhere in this Schedule which results in final                                                      |
|          | compounds or mixtures which are disposed of by means of any activity referred to in                                                         |
|          | paragraphs 1 to 10 of this Schedule:                                                                                                        |
|          | This activity is limited to the treatment of leachate at the facility.                                                                      |
| Class 13 | Storage prior to submission to any activity                                                                                                 |
|          | referred to in a preceding paragraph of this                                                                                                |
|          | Schedule, other than temporary storage,                                                                                                     |
|          | pending collection, on the premises where the                                                                                               |
|          | waste concerned is produced.                                                                                                                |
|          | This activity is limited to the storage of                                                                                                  |
|          | unacceptable waste prior to its transport off-                                                                                              |

site to another facility.

**Table 2.2** Licensed Waste Recovery Activities, in accordance with the Fourth Schedule of the Waste Management Act 1996 as amended

| Class 4  | Recycling or reclamation of other inorganic     |
|----------|-------------------------------------------------|
|          | materials.                                      |
|          | This activity is limited to the use of recycled |
|          | construction and demolition waste as cover      |
|          | and/or construction material at the facility.   |
| Class 9  | Use of any waste principally as a fuel or other |
|          | means to generate energy:                       |
|          | This activity is limited to the utilisation of  |
|          | landfill gas at the facility.                   |
| Class 11 | Use of waste obtained from any activity         |
|          | referred to in a preceding paragraph of this    |
|          | Schedule:                                       |
|          | This activity is limited to the use of recycled |
|          | construction and demolition waste at the        |
|          | facility.                                       |
| Class 13 | Storage of waste intended for submission to     |
|          | any activity referred to in a preceding         |
|          | paragraph of this Schedule, other than          |
|          | temporary storage, pending collection, on the   |
|          | premises where such waste is produced:          |
|          | This activity is limited to the storage of      |
|          | recycled construction and demolition waste      |
|          | prior to reuse.                                 |

# 2.4 Waste Types & Volumes

Only non-hazardous, solid, residual waste is accepted for disposal. Hazardous and liquid wastes are not accepted. All wastes delivered to the facility are subject to Waste Acceptance Procedures that have been approved by the Agency, as specified in Condition 5.3 of the Waste Licence.

The facility is licensed to accept 175,000 tonnes of waste per annum for disposal. The following waste types and volumes, as specified in Schedule A of the Waste Licence, can be accepted: -

- Household (62,500 tonnes),
- Commercial (67,500 tonnes),
- Industrial (45,000 tonnes),

# 2.5 Waste Received & Consigned

A breakdown of the different types and quantities of wastes received, consigned & recovered from the facility in 2012 are shown in Tables 2.3, 2.4 and 2.5.

**Table 2.3** Waste Received 2012

| European Waste Code<br>Categories | Description                                                                     | Tonnes     |  |  |
|-----------------------------------|---------------------------------------------------------------------------------|------------|--|--|
| 06 13 99                          | Carbon granules                                                                 | 21.9       |  |  |
| 07 05 14                          | Filter Cake                                                                     | 87.78      |  |  |
| 08 03 15                          | Solid Sludge                                                                    | 21         |  |  |
| 17 05 04                          | Soil and Stones                                                                 | 7204.12    |  |  |
| 17 09 04                          | Soil and Stones                                                                 | 38.74      |  |  |
| 18 01 04                          | Health care non-infectious                                                      | 7.9        |  |  |
| 19 05 99                          | Biostabilised waste                                                             | 6026.75    |  |  |
| 19 08 01                          | Screening from Waste water treatment                                            | 1364.98    |  |  |
| 19 08 02                          | Waste from desanding                                                            | 94.78      |  |  |
| 19 09 02                          | Filter cake from water treatment                                                | 5151.59    |  |  |
| 19 09 05                          | Ion exchange resin                                                              | 4.98       |  |  |
| 19 10 06                          | Frag from ELV's (non-metallic ELV residues i.e. shredded seats, dashboards etc) | 8648.01    |  |  |
| 19 12 07                          | Woodchip                                                                        | 6906.32    |  |  |
| 19 12 09                          | C&D fines                                                                       | 55695.45   |  |  |
| 19 12 12                          | C&I Dry Mixed                                                                   | 17698.77   |  |  |
| 20 03 01                          | MSW                                                                             | 120,575.57 |  |  |
| 20 03 03                          | Street cleanings                                                                | 635.6      |  |  |
| _                                 | Total                                                                           | 230,184.24 |  |  |

Table 2.4Waste Consigned 2012

| EWC                   | Description       | Tonnes    | Destination                     |  |  |  |
|-----------------------|-------------------|-----------|---------------------------------|--|--|--|
| 19 07 03              | Leachate          | 471.54    | Enniskerry WWTP                 |  |  |  |
| 19 07 03              | 19 07 03 Leachate |           | ENVA U/GROUND SER DIV<br>DUBLIN |  |  |  |
| 19 07 03              | Leachate          | 2,643.21  | EPS Ltd/                        |  |  |  |
| 19 07 03              | Leachate          | 3,341.5   | Leixlip WWTP                    |  |  |  |
| 19 07 03              | Leachate          | 3,028.561 | RILTA ENVIRONMENTAL LTD         |  |  |  |
| 19 07 03              | Leachate          | 738.36    | KTK LANDFILL                    |  |  |  |
| 19 07 03              | Leachate          | 6,860.85  | Ringsend WWTP                   |  |  |  |
| 19 07 03              | Leachate          | 11,853.05 | Veolia WWTP                     |  |  |  |
| Total waste consigned |                   |           | 29,898                          |  |  |  |

Table 2.5Waste Recovered 2012

| European Waste Code<br>Categories | Description                                | Tonnes    |  |  |
|-----------------------------------|--------------------------------------------|-----------|--|--|
| Waste for recovery                |                                            |           |  |  |
| 17 05 04                          | Soil and Stones                            | 3,474.82  |  |  |
| 17 09 04                          | Soil and stones                            | 38.74     |  |  |
| 19 05 99                          | Biostabilised Waste                        | 4,893.61  |  |  |
| 19 09 02                          | Filtercake                                 | 5,151.59  |  |  |
| 19 12 07                          | Shredded wood used on site for engineering | 6,906.32  |  |  |
| 19 12 09                          | Stones and fines used for engineering      | 55,695.45 |  |  |
| Total waste for recovery          |                                            | 76,160.53 |  |  |

## 2.6 Landfill Capacity

The most recent topographic survey for the landfill cell footprint is included in Appendix 1. The facility has a design capacity of approximately 2,770,000 m<sup>3</sup>. It is estimated that the void space consumed since the site opened up until 31<sup>st</sup> December 2012 is approximately 1,091,820m<sup>3</sup>.

## 2.7 Method of Deposition of Wastes

## 2.7.1 Waste Acceptance

The waste accepted for disposal is residual waste from County Wicklow and adjoining counties from household, commercial and industrial sources. At present the majority of waste is delivered to the facility by waste contractors based in County Wicklow. Waste contractors have systems in place whereby the recyclable fraction is either collected separately, or else separation is carried out mechanically at their facilities.

All waste is delivered to the site in Heavy Goods Vehicles (HGV) and small refuse trucks provided with the appropriate covers to prevent loss of load. Each vehicle first proceeds to the incoming weighbridge where it is weighed. The weighbridge operator and/or the facility manager may at their own discretion request the load to be tipped in the Waste Inspection Area.

The vehicles then proceed to the active waste disposal area where waste is deposited under the direction of a banks man. The vehicles weigh out at the outgoing weighbridge and receive an individual weighbridge docket before exiting the site. Each landfill cell is divided into a number of grids, which are used to identify the areas where waste is deposited. Each load is assigned the relevant grid number.

# 2.7.2 Working Face

Waste is deposited close to and above the advancing tipping face. In accordance with Condition 5.6.1 the active face is confined to a height of 2.5 metres after compaction, a width of 25 metres and a slope no greater than 1 in 3. Deposited waste is spread in shallow layers on the inclined surface and compacted. Steel-wheeled compactors operate on the gradient of the more shallow face, pushing thin layers of waste and applying compaction pressure to them. The site operatives inspect the deposited waste for items that are not acceptable under the Waste Licence, such as tyres, gas bottles, batteries etc. These are removed and stored in appropriate areas for later removal from the facility to appropriately licence facilities. Each day waste is deposited to form a block, which is compacted and covered as described above. The following day a new block of waste is deposited adjacent to the existing block. The waste is covered at the end of each day with a covering of fines and woodchip.

This ordered method of waste deposition enables areas, which have been filled and are to be left for a period to be progressively restored over the site life, minimising the areas of active waste deposition.

## 2.8 Report on Development and Restoration at the Site

Waste was placed to final profile heights in Cells 1, 2 and part of 5 before approximately 6,000 m<sup>2</sup> of permanent capping was undertaken in Cells 1, 3 and 6 in 2012. Waste was continued to be placed in Cells 3, 4, 6 and 7 in 2012 while Cell 9 was entered in April 2012. There were no new flares added in 2012.

## 2.9 Progress and Implementation of Landscaping Programme

There was no additional tree planting at the facility during the reporting period. There was maintenance carried out on all existing tress planted, in terms of weeding and pruning.

## 2.10 Report on Meeting the Requirements of the Landfill Directive

The site is fully compliant with the requirements of the Landfill Directive.

Greenstar, as a highly sophisticated integrated waste management company fully appreciates the requirement to comply with the landfill directive and the obligations with regards to the diversion of biodegradable waste from landfill. The company has invested heavily in state of the art material recycling systems in Greenstar Sarsfieldcourt and Greenstar Millennium Park with the aim of utilising a once landfill bound resource as solid refuse fuel which can used as an alternative in fuelling cement kilns in Ireland or abroad. Black bin waste collected by the company is stabilised at innovative composting facilities. Greenstar has helped Ireland comply with its biodegradable waste diversion targets for 2010 and will assist in meeting future targets in 2013 and 2016.

## **2.11 Programme for Public Information**

During 2012 the site accommodated all requests for site visits and tours. Greenstar accommodated a number of tours including one for the Croatian EPA in November 2012.

## 3. ENVIRONMENTAL MONITORING

Greenstar implements a comprehensive environmental monitoring programme to assess the significance of emissions from site activities. The programme includes groundwater, surface water, leachate, landfill gas, noise, dust and particulate monitoring and a biological assessment of the of the three streams (Ballynagran, Ford and Killandra) as well as the Three Mile Water River, Ballynagran Co. Wicklow. The monitoring locations are shown in Appendix 1.

The monitoring results, including the full laboratory reports, were submitted to the Agency at quarterly intervals in the reporting period. This section presents a summary of the monitoring with summary graphs showing trends. A summary of all monitoring data is included in Appendix 2.

## 3.1 Groundwater Monitoring

#### 3.1.1 Groundwater Levels

Up until June 2011 groundwater levels were measured monthly in the sixteen (16 No.) groundwater wells on site. Following approval by the Agency on the 1<sup>st</sup> June 2011, the monitoring frequency was reduced from monthly to quarterly (Ref Agency Letter W0165-02/AP26DM). There are eight groundwater monitoring locations with one deep and one shallow well at each location. The monitoring confirms that the direction of groundwater flow in the bedrock aquifer is from the north west to the south east.

During 2012, fourteen (14 No.) private groundwater well samples were collected and analysed. These sampling events took place in Q-3 and Q-4 of 2012. The results of the analysis were reported in the Q-3 and Q-4 quarterly reports. All residents received copies of the results from their respective wells. Quality of private wells was consistent with previous monitoring.

## 3.1.2 Groundwater Quality

Groundwater quality was monitored in the on-site monitoring wells and reported to the Agency at quarterly intervals. The sampling was carried out in accordance with internationally accepted techniques and control procedures and the analyses were completed by a laboratory using standard and internationally accepted procedures.

The groundwater analysis is compared to the licence specific trigger levels as well as the Interim Guideline Values (IGVs) for groundwater published by the Agency and the

Groundwater Regulations Threshold Value (GTV) which were introduced in 2010 (S.I. 9 of 2010).

The IGV represent typical background or unpolluted conditions; however levels higher than the IGV may occur naturally depending on the local geological and hydrogeological conditions. While the GTV's are more appropriate for large scale abstraction wells used for potable supply, they can be used to assess the significance of contamination where present in non potable groundwater supplies. Because GTVs have not been established for all of the parameters monitored, the relevant IGV was used for comparative purposes.

The 2012 results were generally consistent with those obtained during the monitoring completed before the start of site development works. The monitoring programme confirms that the site activities are not impacting on groundwater quality. The monitoring detected elevated pH levels in groundwater wells, MW1d, MW2s and MW7d. There were slightly elevated levels of ammonia in MW-3s in Q-2 2012 with the levels falling in Q-4 2012. There was a slight increase in the levels of conductivity measured in M-3d in 2012. The trend of key indicator parameters analysed for in 2011 including pH, EC, chloride and ammonia are presented in Figures 3.1 to 3.4 below.

Figure 3.1 Groundwater pH trend data

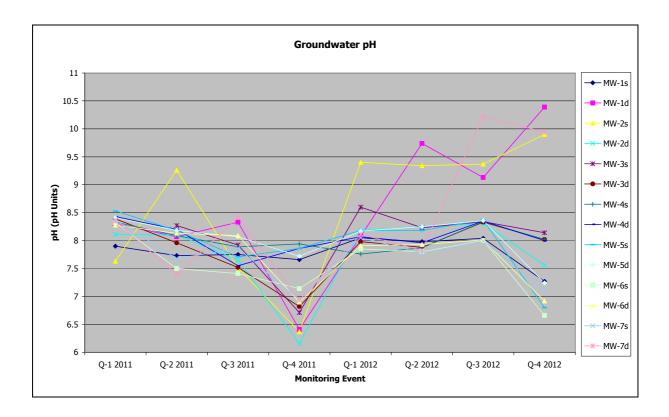



Figure 3.2 Groundwater Electrical Conductivity trend data

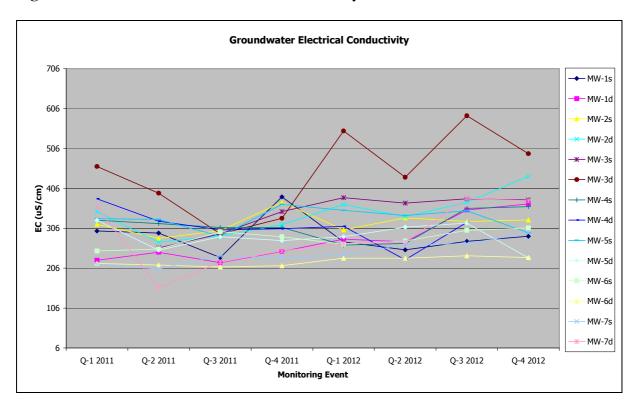
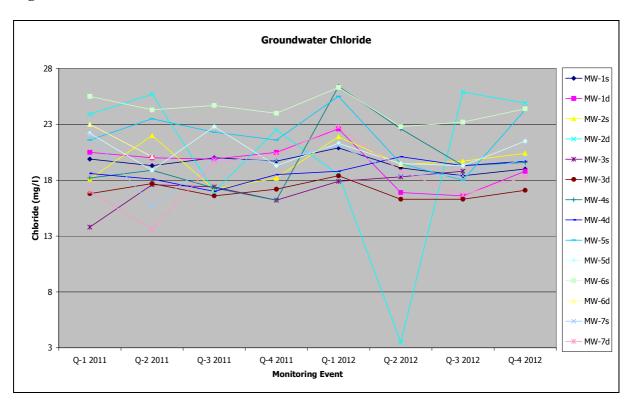




Figure 3.3 Groundwater Chloride trend data



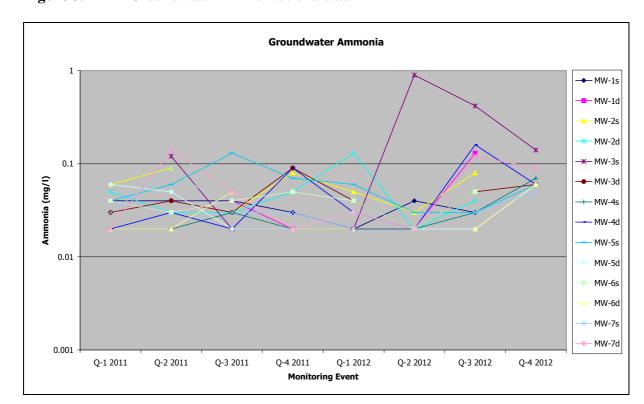



Figure 3.4 Groundwater Ammonia trend data

## 3.2 Surface Water Monitoring

The site is within the catchment of three streams (Ballynagran, Ford and Killandra) as well as the Three Mile Water River. The catchments are characterised by sudden high flows coinciding with high rainfall periods and particularly low flows in the drier summer months.

#### 3.2.1 Visual Assessment

Greenstar carries out weekly inspections of the surface water drainage system. In May 2012 site staff noted the Longford River upstream of the site outfall was slightly green in colour and appeared to be possibly contaminated with some kind of agricultural effluent or slurry. The Agency and Wicklow County Council (Council) were informed of the observation and were supplied with a copy of the analysis. Greenstar collected a sample from the Longford Stream at SW-8 on the 10<sup>th</sup> May 2012. SW-8 is up stream of the discharge point from the on site lagoon. The analysis showed slightly elevated levels of BOD and COD when compared to the Q-4 2011, Q-1 and Q-2 2012 results. The results however do not indicate that a significant contamination event occurred.

The inspections completed in the remainder of the reporting period did not identify the presence of any impact on the drainage system associated with site activities.

## 3.2.2 Chemical Assessment

The surface water monitoring was conducted quarterly at the ten monitoring locations specified in the Licence and reported to the Agency on a quarterly basis. The sampling was carried out in accordance with internationally accepted techniques and control procedures, the analyses were completed by a laboratory using standard and internationally accepted procedures. The 2012 results confirm that site activities are not impacting on surface water quality.

#### 3.3 Leachate

The monitoring programme involves the collection and testing of leachate samples from the collection sumps and the storage lagoon. The 2012 results indicate an increase in leachate strength throughout the monitoring period, which is expected given the age of the facility. Leachate is removed off site to a Waste Water Treatment Plant (WWTP) as agreed with the Agency.

#### 3.4 Landfill Gas (LFG)

Landfill gas is monitored on a monthly basis in wells located outside the waste body. Ballynagran staff members conducted landfill gas monitoring for eleven of the twelve monitoring events, OCM staff conducted the gas monitoring on the remaining twelfth event. In total 23 no. landfill gas monitoring wells were monitored monthly at Ballynagran during 2012.

Monthly gas results are sent to OCM for inclusion in each quarterly environmental monitoring report. These were included as an appendix in each report sent to the Agency during 2012.

During 2012, methane levels were detected in levels above the licence emission limit value (ELV) of 1% at locations MG16 and MG17. The methane levels have fluctuated over the course of the year with a high of 26.3% v/v recorded in MG16 in August 2012. A high of 32.1% was detected in MG17 during the August 2012 monitoring round.

Elevated levels of Carbon Dioxide were detected in levels above the licence emission limit value of 1.5% v/v in monitoring wells in MG-2, 5, 8, 9, 10, 11, 16, 17, 18, 46 & 48 during 2012. The highest level detected was recorded in monitoring well MG17 in December 2012 at a level of 19.1% v/v.

The high CH4 and CO2 levels can be explained by the high baseline concentrations in these wells before the facility began accepting waste.

Historically, high concentrations of methane and carbon dioxide were recorded in MG15, MG16, MG17 and MG18 in October 2006, which was prior to the placement of any waste in the landfill. Background CH4 and CO2 concentrations continue be elevated outside the perimeter of the landfill active waste area. These concentrations are consistent with baseline levels recorded prior to the period of active landfilling on the site. The concentrations may be as a result of the natural degradation of organic material and historical waste having been placed in the vicinity prior to the current operators being active at the site.

Analysis carried out in the vicinity of Ballynagran on two occasions in 2007and 2010 reported by Odour Monitoring Ireland (OMI), showed a VOC profile that is significantly different when comparing perimeter gas wells with active gas wells. In their report, they state that it is highly unlikely that methane and carbon dioxide concentrations in the perimeter gas wells are the results of lateral or horizontal landfill gas migration.

The OMI report indicates that the most likely source of the high measurements is from disturbed ground from the construction phase and results represent natural degradation of organic material.

## 3.5 Noise Surveys

Noise surveys were conducted on four occasions at the locations specified in Table D.1.1 of the Waste Licence. The surveys were carried out in accordance with International Standards Organisation 1996: Acoustics-description and Measurement of Environmental Noise (Parts 1, 2 and 3).

The results at the noise sensitive locations indicate that noise from the site complied with the licence limits.

## 3.6 **Dust Monitoring**

Dust deposition is monitored monthly at seven monitoring locations (AD-6, 7, 8, 9, 10, 11 and 12) as specified in Table D.1.1 of the Waste Licence. The dust deposition limit of 350 mg/m²/day was exceeded in March 2012 at AD12 and at AD11 in April 2012. The levels detected were 1,778.34 and 596 mg/m²/day respectively. Incident reports were submitted to the Agency following the exceedances. The dust jars where the exceedances occurred were noted to have algal growth. This algal growth is what contributed to the exceedances. This is reflected by the very large portion of the dust which was organic. The quantity of algal growth inhibitor added to the dust jars was increased in the May monitoring event. All of the remaining 2012 monitoring results were less than the deposition limit set in the Licence (350 mg/m²/day) and dust is not an issue at the facility.

## $3.7 PM_{10}$

 $PM_{10}$  levels were monitored on four occasions at the locations specified in Table D.1.1 in January, June, September and November 2012. All measurements were below the trigger level of 50  $\mu$ /m<sup>3</sup>.

# 3.8 Meteorological Monitoring

Climate data for 2012 was collected from the synoptic stations at Casement Aerodrome and Ashford Climatological Station which is located 16 km to the north of the facility. The rainfall data was taken from the Ashford station as it is closer to the landfill site than Casement. Table 3.1 below details summary monthly data for 2012.

**Table 3.1** Meteorological Data: Ashford and Casement Aerodrome – 2012

|       | Ashi     | ford Sta    | tion        |                 | Casement Aerodrome Station |                                             |                                     |                                        |                                                 |  |  |
|-------|----------|-------------|-------------|-----------------|----------------------------|---------------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------------------|--|--|
| Month | Rainfall | Max<br>Temp | Min<br>Temp | Average<br>Temp | Average<br>Wind<br>Speed   | Average Wind Direction (Degrees from North) | Average<br>MSL<br>Pressure<br>(hPa) | Average<br>Relative<br>Humidity<br>(%) | Average Potential<br>Evapotranspiration<br>(mm) |  |  |
| Jan   | 74.8     | 13.6        | -1.6        | -1.6            | 13.4                       | 209.8                                       | 1018.7                              | 86.8                                   | 0.5                                             |  |  |
| Feb   | 27.8     | 17.4        | -5.4        | -5.4            | 10.1                       | 220.7                                       | 1028.8                              | 87.5                                   | 0.6                                             |  |  |
| Mar   | 28.4     | 19.4        | -1.4        | -1.4            | 8.6                        | 198.1                                       | 1026.7                              | 78.9                                   | 1.3                                             |  |  |
| Apr   | 85.2     | 14.8        | -0.2        | -0.2            | 8.9                        | 170.5                                       | 1006.2                              | 80.4                                   | 1.5                                             |  |  |
| May   | 69.2     | 21.5        | -0.6        | -0.6            | 7.2                        | 131.1                                       | 1017.0 79.8                         |                                        | 2.2                                             |  |  |
| Jun   | 190.4    | 23.8        | 5.0         | 5.0             | 8.0                        | 158.7                                       | 1008.5 83.6                         |                                        | 2.3                                             |  |  |
| Jul   | 72.4     | 25.5        | 5.0         | 5.0             | 8.1                        | 198.4                                       | 198.4 1012.3 84.                    |                                        | 2.5                                             |  |  |
| Aug   | 144.8    | 22.8        | 7.4         | 7.4             | 8.6                        | 173.1                                       | 1010.0                              | 82.7                                   | 2.1                                             |  |  |
| Sep   | 76.6     | 22.7        | 2.8         | 2.8             | 10.2                       | 215.5                                       | 1014.6                              | 84.6                                   | 1.5                                             |  |  |
| Oct   | 85.1     | 17.6        | 0.7         | 0.7             | 8.4                        | 167.3                                       | 1009.4                              | 91.4                                   | 0.7                                             |  |  |
| Nov   | 136.7    | 15.3        | -2.5        | -2.5            | 10.9                       | 209.0                                       | 1006.1                              | 91.7                                   | 0.4                                             |  |  |
| Dec   | 106.7    | 13.3        | -2.4        | -2.4            | 10.8                       | 192.6                                       | 1005.4                              | 93.5                                   | 0.2                                             |  |  |

## 3.9 Biological Monitoring

The annual biological assessment of the three streams (Ballynagran, Ford and Killandra) as well as the Three Mile Water River, Ballynagran Co. Wicklow was carried out on the 15<sup>th</sup> December 2012.

A Q Value of 3 (moderate) was assigned to all three sites in 2012. The Q values assigned in 2011 were the same as those awarded in 2010 and only slight differences in Q value have been recorded since 2008.

As there were no significant differences in results from the sites which can be considered up gradient of the landfill (SW1-SW3) and those considered down-gradient of the landfill (SW4-SW10) there are no indications that the landfill development is having a significant impact on water quality in the surrounding watercourses.

## 4. SITE DEVELOPMENT WORKS

## 4.1 Summary of Resource & Energy Consumption

The principal energy resources consumed at the site are electricity, water for potable supply oil, vehicle wheel cleaning and dust suppression, diesel fuel and hydraulic oils. All site vehicles are fuelled by diesel. Table 4.1 presents an estimate of the resources used on-site in 2012.

 Table 4.1
 Resources Used On-Site

| Resource                | Units  | Total Consumption in 2012 |
|-------------------------|--------|---------------------------|
| Electricity             | kWh    | 373,916                   |
| Diesel Oil              | Litres | 179,388                   |
| Water, potable supply   | Litres | 52,000                    |
| Water, dust suppression | Litres | 500,000                   |
| Water, wheelwash        | Litres | 100,000                   |
| Hydraulic Oils          | Litres | 1,000                     |

## **4.2** Proposed Site Development Works 2013

Further permanent capping works of Cells 3, 4, 5/2 and 6 are planned for Quarter 2 2013 as part of the facility's restoration plan. The amount of landfill gas utilised as a resource for electricity generation is to increase with the addition of a further landfill gas engines in Quarter 3 2013.

## 5. EMISSIONS

#### 5.1 Leachate

There are no direct emissions from leachate generated on-site as it is collected in the main leachate storage lagoon prior to removal off-site for treatment. The total volume of leachate tankered off-site during the reporting period January 2012 – December 20112 was 29,898.95m³. Detailed figures are presented in Table 5.1 below.

**Table 5.1** Leachate taken off site in 2012.

| <b>Month 2010</b> | Volume ( m3) |
|-------------------|--------------|
| January           | 1,179.96     |
| February          | 2,346.80     |
| March             | 1,336.04     |
| April             | 2,574.94     |
| May               | 2,236.24     |
| June              | 2,873.30     |
| July              | 4,448.26     |
| August            | 2,946.09     |
| September         | 2,232.32     |
| October           | 2,141.77     |
| November          | 2,586.56     |
| December          | 2,996.67     |
| Total             | 29,898.95    |

Water balance calculations were prepared using guidance in the Agency's Landfill Manual-Landfill Site Design and are based on total rainfall data from the Casement and Ashford Met stations and the volumes of waste deposited at the site during the reporting period. The calculations are presented in Table 5.2.

It was assumed that all of the incident rainfall on the active cells had the potential to generate leachate. An absorptive capacity of 0.025 m³/tonne was used based on a waste density of 0.8 tonnes/m³.

The calculations indicate that approximately 26,441m<sup>3</sup> of leachate was generated in 2012. The calculations take into account the placement of capping on 20,000m<sup>2</sup> of the landfill. The calculation assumes that the capping has been in place for the whole of 2012 and therefore underestimates the total amount of leachate generated. Therefore the estimated leachate volumes are slightly lower than the 29,898 m<sup>3</sup> of leachate that was removed during the reporting period.

#### 5.2 Landfill Gas

The enclosed 2500 m³/hour landfill gas flare was installed in February 2008 and is connected to 110 No. vertically drilled and constructed gas wells, 40 No. gas wells (sacrificial) and 40 No. horizontal gas wells. A landfill gas engine was connected to the Haase Flare in January 2011 and fully commissioned.

Landfill gas infrastructure such as the different variety of wells is installed progressively as the waste is placed and the different gas well types are chosen to meet the specific needs of that particular landfill area.

A Landfill Utilisation Compound was constructed in late 2010 and one Landfill Gas Engine commissioned. The facility is currently exporting 0.75 MWhr to the national grid. The Main Enclosed flare which is connected to the landfill gas engine is extracting on average 2,300m3/hour of landfill gas presently. The facility installed a further Enclosed Flare in Cell 7 in May 2010 to replace two open flares situated there since December 2008. Currently this Enclosed Flare is extracting 1,300 m3/hour similar quality landfill gas from Cells 6 and 7.

# 5.3 Estimated Annual and Cumulative Quantity of Indirect Emissions to Groundwater

The potential sources of indirect emissions to groundwater from the facility are as follows:

- Landfill Base The landfill has a composite base lining system comprising a HDPE geomembrane and a half metre thick layer of Bentonite Enhanced Soil. A leak detection survey of the HDPE geomembrane after placement of the drainage stone layer was completed and defects to the HDPE liner were repaired in accordance with industry standards.
- Surface Water Collection and Treatment System Surface water from the paved access roads and landfill cell swale drain is collected and discharged into the surface water lagoon along with groundwater collected at the interceptor sump located below the landfill cells. Water from the lagoon discharges to the reed bed which further filters the water before it is finally discharged to the Ford Stream.
- Treated Sewage Effluent There is a biocycle wastewater treatment plant located adjacent to the weighbridge which treats the canteen and office waste water prior to being pumped to the leachate holding tank via the foul-water sump. Leachate (containing foul water) is tankered off-site to a waste water treatment plant via a vacuum tanker.

In summary, as the landfill is fully contained, there are no indirect emissions to groundwater.

## **5.4** Surface Water

Rainfall run-off on the undeveloped parts of the site discharges directly to the surface water drainage system. Rainfall on active fill areas is collected in the leachate collection system. The surface drainage from all roads is directed to the surface water retention pond via an oil interceptor. Drainage from the waste inspection and quarantine bays is directed to the leachate lagoon. The retention pond design and capacity meets the requirements of the Waste Licence. The inlet to the pond is fitted with a Class 1 Full Oil interceptor.

 Table 5.1
 Annual Leachate Volume

| Yr.                                                | Active                                                 | Active         | Waste       | Active       | Intermediate | Intermediate                            | Intermediate | Final          | Restored    | Restored     | Liquid    | Total    | Absorptive  | Annual           |
|----------------------------------------------------|--------------------------------------------------------|----------------|-------------|--------------|--------------|-----------------------------------------|--------------|----------------|-------------|--------------|-----------|----------|-------------|------------------|
| 11.                                                | Cell                                                   | Hetive         | vv uste     | 7 ictive     | Intermediate | memediate                               | memediate    | Tinui          | Restored    | Restored     | Liquid    | Total    | riosorptive | 7 Hilliau        |
|                                                    | No.                                                    | Area           | Input       | Infiltration | Restoration  | Restored                                | Infiltration | Restoration    | Area        | Infiltration | Waste     | Leachate | Capacity    | Leachate         |
|                                                    |                                                        | Uncapped       |             |              |              | Area                                    |              |                |             |              |           |          |             |                  |
|                                                    |                                                        | $(m^2)$        | (t)         | $(m^3)$      | Cell No.     | $(m^2)$                                 | $(m^3)$      | Cell No.       | $(m^2)$     | $(m^3)$      | $(m^3)$   | $(m^3)$  | $(m^3)$     | Generation       |
|                                                    |                                                        |                |             |              |              |                                         |              | 1, 2, 3 &      |             |              |           |          |             |                  |
| 2012                                               | 3, 4,                                                  | 40,000         | 220 104     | 20.000       |              |                                         |              | part of 5 &    | 20,000      | 2196         | 0         | 22 106   | 5 755       | 26 441           |
| 2012                                               | 5, 6, 7                                                | 40,000         | 230,184     | 30,000       |              |                                         |              | 6              | 20,000      | 2190         | 0         | 32,196   | 5,755       | 26,441           |
|                                                    |                                                        |                |             |              |              |                                         |              |                |             |              |           |          |             |                  |
|                                                    |                                                        |                |             |              |              |                                         |              |                |             |              |           |          |             |                  |
|                                                    |                                                        |                |             |              |              |                                         |              |                |             |              |           |          |             |                  |
| G 11                                               |                                                        |                |             |              |              |                                         |              |                | 200.000     |              |           |          |             |                  |
| Cell ai                                            | Cell area (m <sup>2)</sup>                             |                |             | -            |              | Estimated maximum waste input ( t/year) |              |                | 200,000     |              |           |          |             |                  |
|                                                    |                                                        |                |             |              |              |                                         |              |                |             |              |           |          |             |                  |
| Total                                              | rainfall (n                                            | n/year)        |             |              |              | 1.098                                   |              | Liquid waste   | input (t/ye | ar)          |           |          | 0           |                  |
|                                                    | -                                                      | •              |             |              |              |                                         |              |                | •           | -            |           |          |             | 10% of           |
|                                                    |                                                        |                |             |              |              |                                         |              |                |             |              |           |          |             | Effective        |
| Ecc.                                               | . D . c                                                | 11             |             | `            |              | 0.100                                   |              | E' 11 C'1.     | .•          |              |           |          | 0.1000      | Rainfall         |
| Епест                                              | ive Kainia                                             | all post veget | tation (m/y | ear)         |              | 0.189                                   |              | Final Infiltra | tion        |              |           |          | 0.1098      | per annum 60% of |
|                                                    |                                                        |                |             |              |              |                                         |              |                |             |              |           |          |             | Effective        |
|                                                    |                                                        |                |             |              |              |                                         |              |                |             |              |           |          |             | Rainfall         |
| Density of <i>in-situ</i> waste (t/m <sup>3)</sup> |                                                        |                | 0.8         |              | Intermediate | Infiltration                            |              |                |             | 0.6588       | per annum |          |             |                  |
|                                                    |                                                        |                |             |              |              |                                         |              |                |             |              |           |          |             | _                |
| A1.                                                | Absorptive conscity (m³/t)                             |                |             | 0.025        |              |                                         |              |                |             |              |           |          |             |                  |
| Absorptive capacity (m³/t)                         |                                                        |                | 0.025       |              | -            |                                         |              |                |             |              |           |          |             |                  |
|                                                    |                                                        |                |             |              |              |                                         |              |                |             |              |           |          |             |                  |
| Effect                                             | Effective Rainfall before vegetation assumed to be (m) |                |             |              |              | 0.45                                    |              |                |             |              |           |          |             |                  |

## 6. NUISANCE CONTROL

In accordance with Condition 7 of the waste licence, Greenstar is committed to ensuring that the facility does not give rise to nuisance at the facility or in the immediate area of the facility. The potential sources of nuisance at a landfill facility are odour, vermin, birds, flies, mud, dust and litter. A procedure, (F09j - Completion of Daily Site Condition Reports) has been drawn up to comply with Condition 7 and is being carried out at the facility.

#### 6.1 Odour

In accordance with Condition 8.12.2 of the waste licence, Greenstar has submitted a programme to the Agency for the monitoring and assessment of odours emissions arising from the facility. An odour control and monitoring procedure (F 09 r) has been drawn up and carried out in 2012.

Good operational practices on site are the main controls to avoid odour nuisances. These include procedures relating to the Operation Start-Up and Shut-Down (F 09 001) and Waste Acceptance (F 09 a (IV)) (dealing with the handling, depositing and covering of waste at the facility). These procedures have been written in accordance with the Landfill Manual. Landfill Operational Practices., published by the Agency and are incorporated into the odour control and monitoring procedure onsite.

Landfill gas extraction wells and two landfill gas flares and one landfill gas engine which is connected to the national grid are currently in operation. Landfill gas drilling was carried out in February 2012 and August 2012 to supplement ongoing LFG extraction techniques such as constructed wells and horizontal wells. This active gas extraction system allows for the long term control of any potential odours. John Gibbons conducted monitoring on behalf of the Office of Environmental Enforcement in 2012 and found no non-compliances with our system. An external consultant Odour Monitoring Ireland conducted VOC survey emissions surveys in 2012. The PID/FID survey highlighted areas where there could be potential for VOC escape, by measuring VOC levels around the landfill area. Recommendations from their study of the site have been implemented.

In accordance with daily condition reports, odour inspections are carried out on a daily basis by site staff at the facility and also in response to any odour complaints. In the monitoring period there have been complaints in relation to odours and these are dealt more specifically in Reported Incidents and Complaints (Section 7).

#### 6.2 Vermin and Birds

Inspections for vermin are carried out on a weekly basis for rodents and on a daily basis for birds, in particular crows. Specialist contractors are employed by Greenstar to control vermin and birds at the facility. Vermin control measures; used as part of this programme, include internal and external bait boxes, rodenticide and insect control measures. The specialist contractor visits the site at regular intervals throughout the year to inspect the control measures and assess their effectiveness. These control measures have been found to be successful.

#### 6.3 Flies

Particularly during the warmer months, attention is paid to observations of flies. Any observations are recorded on the Daily Site Condition Report (F09(j)(i)). The Facility Manager or the Site Supervisor is notified immediately in order to take measures to eliminate any significant fly populations from establishing.

#### 6.4 Dust and Mud

The site roads are inspected on a daily basis for mud or dust and any observations recorded on the Daily Site Condition Report ((F09(j)(i))). Special attention is paid to dust during the dry months and mud during the wet months and the Site Supervisor or the Facility Manager is notified immediately in order to take measures to minimise or eliminate any potential nuisances arising from mud or dust accumulating on site roads. Some measures include the use of a wheelwash, road sweeper and the use of a water bowser to dampen access roads and stockpiles during periods of dry weather.

#### 6.5 Litter

Litter is controlled by fencing which was installed around the landfill footprint as specified in the waste licence. Portable litter fencing is also used at the working face, which can be moved to various points around the working face depending on the wind direction. Litter inspections are carried out and recorded as part of the daily inspection, which is outlined in the Completion of Daily Site Condition Reports (F09j (i)) and the Procedure for Litter Prevention & Assembly/Disassembly of Nets (F 09 g). The presence of litter is noted on the Inspection Form and removed immediately if practicable. Any litter noted at or outside the boundary fence, which appears to be illegally dumped, is inspected for any indications of identity if possible and reported to the Facility Manager.

## 7. ENVIRONMENTAL INCIDENTS AND COMPLAINTS

#### 7.1 Incidents

There were twenty three minor incidents of Non Urgent Category 3 level with regard to trigger levels specified in Condition 6.4.2 of the licence and two minor incidents of Non Urgent Category 3 level excess emissions specified in Schedule C of the licence. These were reported to the agency as soon as the licensee was notified and did not cause any environmental impacts.

# 7.2 Register of Complaints

Greenstar maintains a register of complaints in compliance with Condition 10.4. Details of all complaints received during the reporting period and the action taken by Greenstar are available at the facility.

The site received 144 complaints during 2012. All complaints received were related to odour. A table illustrating the date, the issue, the corrective action taken and date the complaint was closed is provided in Appendix 3.

Complaints were responded to via the complaints procedure.

## 8. ENVIRONMENTAL MANAGEMENT SYSTEM

## 8.1 Management Structure

The Management Structure as required by Condition 2.2.1 of the waste licence was submitted to the Agency on 14<sup>th</sup> December 2004, before the start of waste activities and updated in each AER.

## 8.1.1 Site Management Structure

The day to day management of the facility and supervision of waste activities are the responsibility of the General Manager, nominated Deputy Manager(s) and the site operatives. The positions and names of the persons who provide management and supervision are set out below: -

- Greenstar in Receivership
- Operations Director, Geoff Bailey
- General Manager Landfill Development and Management, Donal Monaghan
- Landfill Manager, Tomas Fingleton
- Assistant Landfill Manager, Robert Kirwan
- Site Foreman, Michael Macleod
- Landfill Clerk, Barry Mernagh
- General Operatives, Joseph Donohue, Joseph Moore and John Kinsella

## 8.1.2 Responsibilities

Greenstar, as the licensee, is responsible for ensuring that the requisite resources are provided to operate the facility in accordance with the objective of the EMP and the Waste Licence conditions.

The General Manager or nominated Deputy is responsible for ensuring that the day to day operation of the facility is carried out in accordance with the EMP, the Waste Licence conditions and the Operating Procedures.

The General Manager or nominated Deputy is responsible for ensuring that the environmental monitoring programme is carried out and reports submitted to the

Agency in accordance with the schedule in the EMP and the Waste Licence conditions.

The General Manager or nominated Deputy is responsible for arranging that the specified engineering works, the leachate and landfill gas management programmes and the restoration programmes are properly implemented.

The General Manager or nominated Deputy is responsible for ensuring that the Corrective Action Procedures, Emergency Response Procedures and Contingency Arrangements specified in the EMP and the Waste Licence are implemented.

The General Manager or nominated Deputy is responsible for arranging appropriate training programmes for all facility personnel and for maintaining training records.

The General Manager, nominated Deputy and designated staff are responsible for implementing the waste acceptance procedures, including the assessment of suitability of the waste for disposal and recording the data specified in the Waste Licence. They are responsible for receiving and recording complaints from members of the public at the facility and informing the General Manager or nominated Deputy of the complaints.

The General Manager, nominated Deputy, Site Foreman and designated staff are responsible for ensuring compliance with conditions relating to waste inspection, placement and nuisance control (e.g. daily cover, litter, dust, vermin, birds).

### 8.1.3 Staff Training

All training was carried out as scheduled in the training plan for 2012. A summary of all training to date can be seen in Appendix 4.

Any facility staff who performs duties which involve interpretation of monitoring results or site inspections, will receive the appropriate training by the General Manager or nominated deputy, prior to carrying out such duties.

All facility staff will receive further training in their individual areas of activity. This training will comprise theoretical sessions as well as practical training. All such training will be recorded and documented in individual training files.

#### 8.2 EMP

Greenstar have implemented an Integrated Management System (IMS) in accordance with the requirements of Occupational Health and Safety Assessment Series (OHSAS) 18001:2007 and International Standard Organisation (ISO) 14001:2004 in order to manage the Health, Safety and Environmental performance of their business and to control health and safety risk and to minimise their environmental aspects and impacts. Ballynagran Residual Landfill was the first Greenstar landfill to gain certification for both ISO14001 and ISO 18001 Environmental, Health and Safety management systems.

The IMS has been developed for the achievement of continual improvement taking into the requirements of the Waste Licence Conditions. Greenstar has prepared and effectively implemented documented procedures and instructions in accordance with the requirements of both the OHSAS 18001:2007 and ISO 14001:2004. The facility received an external ISO14001 and OHSAS 18001 audit in August 2012 from Certification Europe and the facility was found to be compliant with its conditions for standard certification for both management systems.

As part of this IMS Greenstar has developed a list of environmental, management, operating and maintenance procedures, details of which are outlined in Appendix 5. The schedule of Objectives and Targets, including their status for 2012 (Table 8.1), as well as the proposed Objectives and Targets for 2013 (Table 8.2) are presented below.

## 8.2.1 Schedule of Objectives 2012

Table 8.1 describes the implementation of the objectives and targets in the reporting period.

#### 8.2.2 Schedule of Objectives 2013

Greenstar has set a schedule of targets and objectives for 2013. These are presented in Table 8.2.

## **8.3** Communications Programme

The Communications Programme required by Condition 2.4 of the waste licence, was established three months before the start of waste activities and has been submitted to the Agency.

In December 2011, a newsletter relating to activities at Ballynagran Residual Landfill was sent out to all local householders.

Ballynagran Landfill pursues an active programme of disseminating information on its operations to all interested parties. This is undertaken through a variety of means including site tours, the company website, presentations and open days. During 2008, a short film was produced detailing how the facility was constructed and is operated. The film is shown to all those visiting the facility.

The overall communications programme contains the following objectives:

- To promote public awareness of Greenstar's activities and environmental policies;
- To maintain an ongoing dialogue with authorities that have direct involvement with waste:
- To make available Environmental Performance Data to all interested parties;
- To disseminate information relating to the operation and management of the site;
- To encourage liaison between the site and local residents and those who may be affected by the site operations,
- To provide general information on waste management issues;
- To ensure all users and customers of the site are conversant with the requirements of the site waste licence;
- To ensure that all objectives are, where possible, measurable and quantifiable;

The objectives of the programme are met through the following elements as appropriate:

- Personal contact;
- Residents meetings/Liaison groups;
- Information displays;
- Information packs;
- Site visits:
- Web page;
- Educational links; and
- Published information

## **Table 8.1** Progress Report on Schedule of Objectives and Targets for 2012

## 1. Development of landfill gas infrastructure and gas utilisation plant

Ballynagran Landfill extended the 355mm ring main into Cell 9. A further 18 landfill gas wells were drilled in February 2012 and August 2012. Horizontal and constructed wells were placed in the filled areas during waste deposition.

# 2. Minimise risk of potential water pollution from generation of leachate

Ballynagran Landfill continued to transport leachate for disposal to Wicklow WWTP, Drogheda WWTP, Ringsend WWTP, Rilta, ENVA to ensure leachate cell levels were for in compliance with our licence. In 2012 we permanently caped sections of cell 6, 3, 4 and 5 to reduce leachate generation.

# 3. Reduce dust nuisance on environment and surrounding neighbours

A tractor and bowser was operated during dry periods to reduce dust nuisance.

# 4. Avoid contamination of groundwater after a spillage or emergency situation

Ballynagran Landfill carried out spillage emergency response spill training

## 5. To reduce the risk of site personnel being hit by a vehicle

This was maintained as an objective in our H&S management system

# 6. Review and assess the effectiveness of nuisance control procedures including bird, rats and mice

An external contractor Pestguard carries out quarterly checks

## 7. Minimise nuisance from vehicle movements and uploading / tipping

Ballynagran Landfill ensured noise, dust, odour from vehicle movements are minimised by correct implementation of relevant operational protocols

## 8. Continue to improve relationships with neighbouring communities / reduce environmental complaints

Ballynagran Landfill responded to queries and complaints as promptly as possible and liaised with locals regarding an concerns they may have had in 2012

# 9 Environmental monitoring

Monitoring was carried in compliance with our licence W0165-02

# 10. Monitor progress of planting programme on a regular basis

Trees were restaked in certain areas following high winds

### 11. Awareness and training programme

Awareness and training was maintained throughout 2012

## 12. H&S Policy

• Promotion of H&S amongst all employees and the generation of an ethos of continual improvement

- Diligent management of operations by employing control mechanisms, procedures and processes that are technologically proven and economically feasible
- Promotion of continual improvement, good health and safety work practices through continual review of O&Ts
- Fostering of openness, dialogue, enhanced communication and discussion with employees, clients, neighbours, suppliers, contractors and all interested parties regarding our H&S and our O&Ts
- Publication and communication of our policy internally and ensuring its availability to the public and interested parties on request so that it is understood implemented and maintained
- Measurement of performance by conducting regular audits and assessment of compliance with the OHSAS 18001:2007 standards, EHS policy, relevant legislation and regulatory requirements

**Table 8.2** Schedule of Objectives and Targets for 2013

| Originated from                                                     | Objective                                                                                 | Target including timescale                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F01 - impact<br>no. 1 / AER<br>2008, 2009,<br>2010, 2011,<br>2012   | Develop landfill gas collection infrastructure and gas utilisation plant.                 | Extend gas collection infrastructure into new cells, respond to increased gas generation by installing additional flares and engines, as required. Expand LFG utilisation plant and set up extra engines. Collect and burn approximately 100% of all landfill gas generated by the facility. In 2012 permanently cap sections of cell 6, 3, 4 and 5 to improve gas containment and increase FID surveys from biannually to quarterly. |
| F01 – impact<br>no. 3 / AER<br>2009,2010,<br>2011 & 2012            | Minimise risk of potential water pollution from generation of leachate                    | Minimise leachate generation. In 2012 permanently cap sections of cell 6, 3, 4 and 5 to reduce leachate generation.                                                                                                                                                                                                                                                                                                                   |
| F01 – impact<br>no. 5 / AER<br>2009,2010,<br>2011 & 2012            | Reduce dust nuisance on environment and surrounding neighbours                            | All dust emissions in accordance with Licence                                                                                                                                                                                                                                                                                                                                                                                         |
| F01 – impact<br>no. 4 / AER<br>2009,2010,<br>2011& 2012             | Avoid contamination of groundwater after a spillage or emergency situation                | Carry out spillage emergency response training                                                                                                                                                                                                                                                                                                                                                                                        |
| F01 – impact<br>no. 6 and<br>AER 2008,<br>2009, 2010,<br>2011& 2012 | Reduce risk of wind blown litter when the site is operating in adverse weather conditions | Ensure site remains compliant with Licence conditions which refer to wind blown litter                                                                                                                                                                                                                                                                                                                                                |
| F03a No.1<br>AER 2012                                               | To reduce the risk of site personnel being hit by a vehicle                               | To significantly reduce this type of incident on site.                                                                                                                                                                                                                                                                                                                                                                                |

| Originated from                                                          | Objective                                                                                         | Target including timescale                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F03a No.2<br>AER 2012                                                    | Reduce or eliminate the risk from tipper vehicles overturning                                     | Actively discourage tipper type vehicles from the site in favour of more stable and safer type vehicles suitable to the landfill terrain.                                                                                                                       |
| F03a No.3<br>AER 2012                                                    | Ensure edge protection is adequate on all landfill haul roads                                     | Construction of safety berms on all internal landfill site roads                                                                                                                                                                                                |
| F01 - impact<br>no. 7 / AER<br>2007, 2008,<br>2009, 2010,<br>2011 & 2012 | Review and assess the effectiveness of nuisance control procedures including bird, rats and mice  | Continually review and assess all nuisance control procedures to ensure minimal impact on surrounding area. Update reports on bird control and odour abatement measures. Prepare and implement odour nuisance management plan (for timescale see project sheet) |
| AER 2007,<br>2008, 2009,<br>2010, 2011 &<br>2012                         | Minimise nuisance from vehicle movements and uploading / tipping                                  | Ensure noise, dust, odour from vehicle movements are minimised by correct implementation of relevant operational protocols (for timescale see project sheet)                                                                                                    |
| AER 2007,<br>2008, 2009,<br>2010, 2011 &<br>2012                         | Continue to improve relationships with neighbouring communities / reduce environmental complaints | Develop communications with site neighbours and respond to queries as quickly as reasonably practicable, ensuring that any complaints are followed up in writing as soon as possible after receipt of compliant (for timescale see project sheet).              |
| AER 2007,<br>2008, 2009,<br>2010, 2011 &<br>2012                         | Environmental monitoring                                                                          | Ensure monitoring results comply with Licence limits and investigate any exceedances of emission limit value (for timescale see project sheet).                                                                                                                 |
| AER 2007,<br>2008, 2009,<br>2010, 2011 &<br>2012                         | Monitor progress of planting programme on a regular basis                                         | Regularly review planted woodland area and ensure the replacement of any failed trees to ensure visual impact of site is minimised (for timescale see project sheet).                                                                                           |

| Originated from                                                                                            | Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Target including timescale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AER 2008,<br>2009, 2010,<br>2011 & 2012<br>H&S Policy /<br>AER<br>2009/AER<br>2010/AER<br>2011/AER<br>2012 | <ul> <li>Promotion of H&amp;S amongst all employees and the generation of an ethos of continual improvement</li> <li>Diligent management of operations by employing control mechanisms, procedures and processes that are technologically proven and economically feasible</li> <li>Promotion of continual improvement, good health and safety work practices through continual review of O&amp;Ts</li> <li>Fostering of openness, dialogue, enhanced communication and discussion with employees, clients, neighbours, suppliers, contractors and all interested parties regarding our H&amp;S and our O&amp;Ts</li> <li>Publication and communication of our policy internally and ensuring its availability to the public and interested parties on request so that it is understood implemented and maintained</li> <li>Measurement of performance by conducting regular audits and assessment of compliance with the OHSAS 18001:2007 standards, EHS policy, relevant legislation and regulatory requirements</li> </ul> | <ul> <li>Carry out continued ISO and Health and Safety Training</li> <li>Improvement driven Safety Observation Audit Reports are to be undertaken bi-monthly focussing on swiftly resolving problems as they occur</li> <li>Develop H&amp;S training giving more focus on empowering employees to become safety representatives, as applicable</li> <li>Look to develop staff interaction enabling keen spotting of potential problem or hazards through training and communication</li> <li>Encourage feedback on equipment and resources including adequacy of PPE in protective properties, wear ability and durability and look at alternatives, where appropriate</li> <li>Develop neighbour relations by encouraging site visits to complainants or mediation through local groups such as the liaison committee or anti-dump group also handling complaints with higher degree of positive feedback</li> </ul> |

## 9. OTHER REPORTS

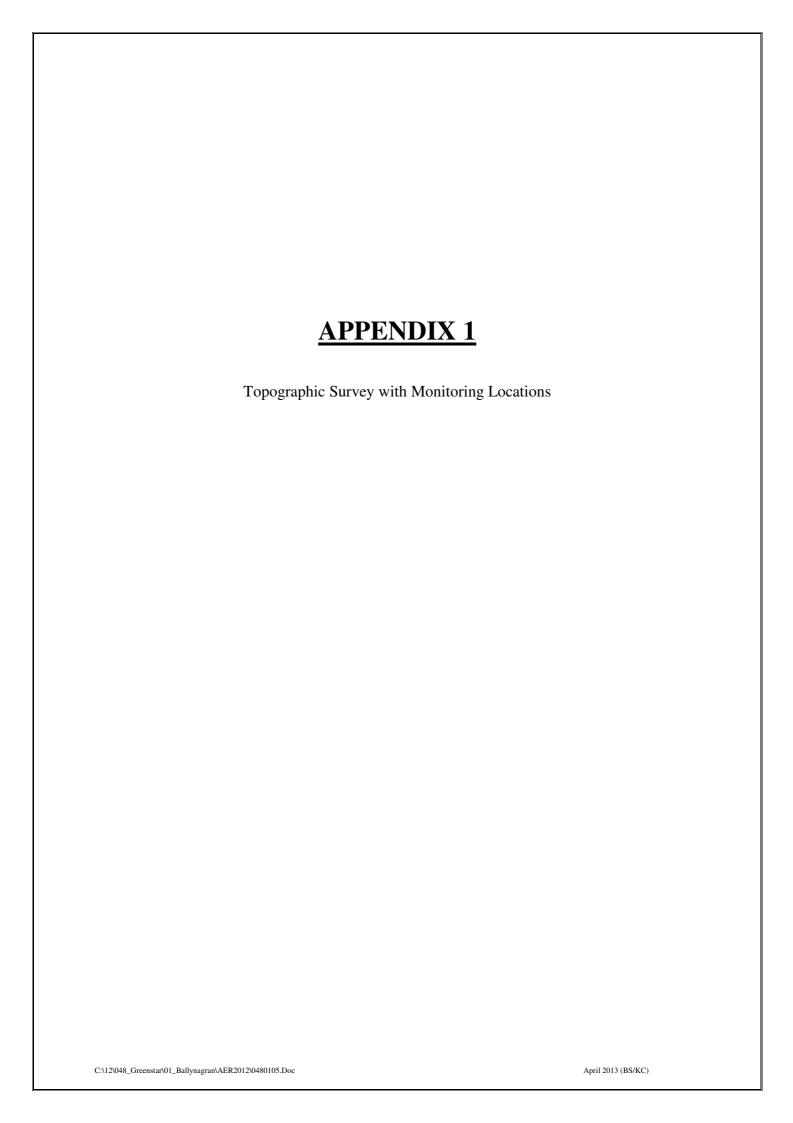
#### 9.1 Financial Provision

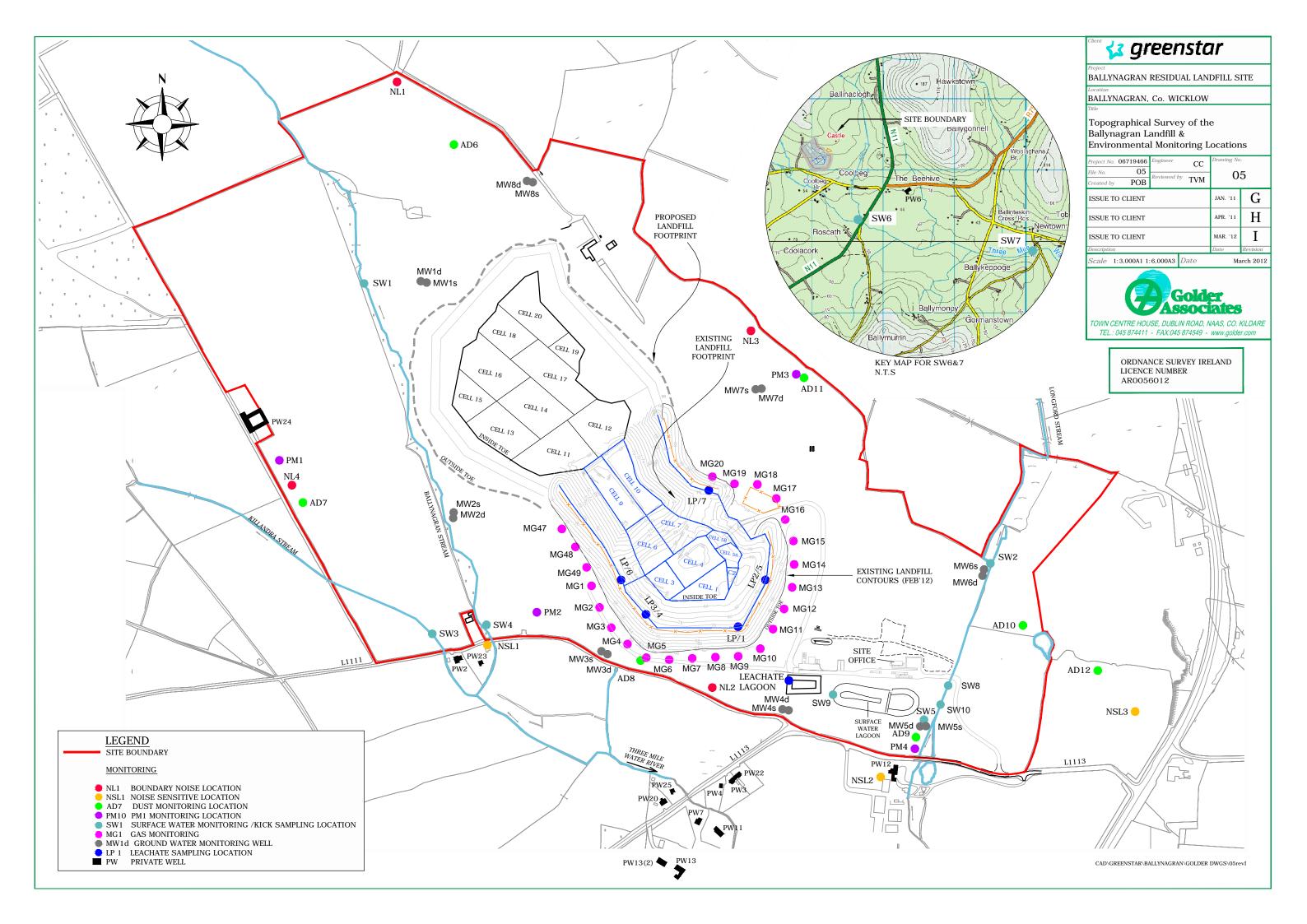
The licensee will submit the requested Section 53A Statement to the Agency in Quarter 2 of 2013

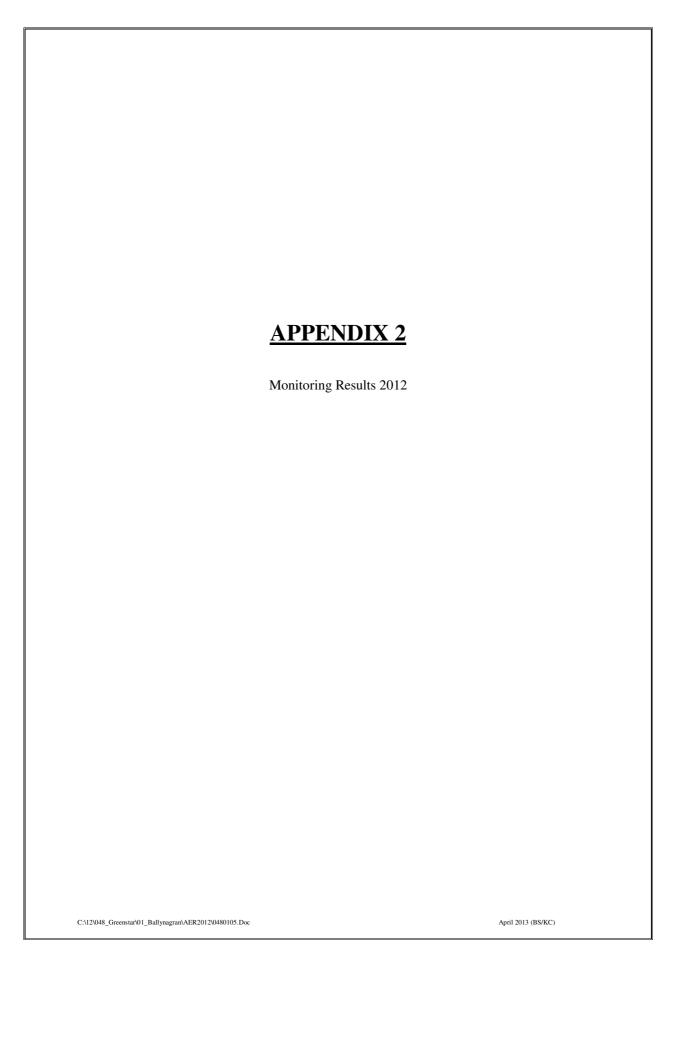
### 9.2 Landscape Programme

There was no additional tree planting at the facility during 2012. There was maintenance carried out on all existing tress planted, in terms of weeding and pruning.

# 9.3 Surface Water and Leachate Management System Inspection and Slope Stability Assessment Report


A surface water and leachate management system inspection and slope stability assessment report was prepared by Golder Associates in February 2012 and submitted to the Agency during the reporting period. The survey concluded that the slopes are not showing any signs of movement or distress and the surface water lagoon is in good condition.


### 9.4 European Pollutant Release and Transfer Register


Under the European Pollutant Release and Transfer Register Regulation (EC) No. 166/2006 Greenstar are required to submit information annually to the Agency. A copy of the information submitted to the Agency via the web-based data reporting system is included in Appendix 6.

# 9.5 Tank, drum, pipeline and bund testing and inspection report

All integrity testing is carried out on site every three years. Testing was carried out on site in 2013 and the reports are appended. The testing for all infrastructure was found to be fit for purpose.







|                                                          | Groundwater Data 2012 |                    |  |
|----------------------------------------------------------|-----------------------|--------------------|--|
|                                                          |                       |                    |  |
|                                                          |                       |                    |  |
|                                                          |                       |                    |  |
| C:\12\\048_Greenstar\01_Ballynagran\AER2012\\0480105.Doc |                       | April 2013 (BS/KC) |  |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-1S    | MW-1S    | MW-1S    | MW-1S    |
| pН                      | 8.05     | 7.98     | 8.04     | 7.27     |
| Electrical Conductivity | 272      | 252      | 273      | 286      |
| Chloride                | 20.9     | 19.1     | 18.4     | 19       |
| Ammonia                 | 0.02     | 0.04     | 0.03     | < 0.01   |
| Potassium               | 0.7      | 0.8      | 0.7      | 0.8      |
| Dissolved Oxygen        | 11       | 10       | 11       | 10       |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 9        | 8        | <2       | 4        |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | <0.5     |
| Calcium                 |          |          |          | 27.4     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 4.6      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 15.6     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | <0.3     |
| Sulphate                |          |          |          | 69.87    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 6.5      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 76       |
| Total Solids            |          |          |          | 1489     |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | <1       |
| Faecal Coliforms        |          |          |          | <1       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-1D    | MW-1D    | MW-1D    | MW-1D    |
| pН                      | 8.08     | 9.74     | 9.13     | 10.39    |
| Electrical Conductivity | 279      | 272      | 352      | 367      |
| Chloride                | 22.6     | 16.9     | 16.6     | 18.8     |
| Ammonia                 | 0.02     | 0.02     | 0.13     | < 0.01   |
| Potassium               | 0.6      | 1.1      | 1.1      | 1.2      |
| Dissolved Oxygen        | 10       | 7        | 6        | 5        |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 9        | 2        | 4        | 2        |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | <0.5     |
| Calcium                 |          |          |          | 37.8     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | <0.1     |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 20.2     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | <0.3     |
| Sulphate                |          |          |          | 35.52    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 1.2      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 68       |
| Total Solids            |          |          |          | 242      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 1        |
| Faecal Coliforms        |          |          |          | <1       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-2S    | MW-2S    | MW-2S    | MW-2S    |
| рН                      | 9.4      | 9.34     | 9.37     | 9.9      |
| Electrical Conductivity | 302      | 332      | 323      | 327      |
| Chloride                | 21.9     | 19.4     | 19.7     | 20.4     |
| Ammonia                 | 0.05     | 0.03     | 0.08     | < 0.01   |
| Potassium               | 1        | 1.2      | 1.6      | 1.2      |
| Dissolved Oxygen        | 10       | 10       | 9        | 9        |
| Total Chromium          |          |          |          | 2.2      |
| TOC                     | 11       | 4        | 3        | 5        |
| Boron                   |          |          |          | 16       |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 17.3     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 0.8      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 41.4     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | < 0.3    |
| Sulphate                |          |          |          | 70.91    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 0.9      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 70       |
| Total Solids            |          |          |          | 294      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 19.7     |
| Faecal Coliforms        |          |          |          | 10       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-2D    | MW-2D    | MW-2D    | MW-2D    |
| pН                      | 8.19     | 8.24     | 8.31     | 7.56     |
| Electrical Conductivity | 366      | 335      | 371      | 436      |
| Chloride                | 18.5     | 3.5      | 25.9     | 24.9     |
| Ammonia                 | 0.13     | 0.02     | 0.04     | < 0.01   |
| Potassium               | 1        | 1.2      | 1        | 0.7      |
| Dissolved Oxygen        | 10       | 10       | 9        | 9        |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 14       | 14       | <2       | 8        |
| Boron                   |          |          |          | 40       |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 61.4     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 8.6      |
| Manganese               |          |          |          | 4        |
| Mercury                 |          |          |          | 2        |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 10.9     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | <0.3     |
| Sulphate                |          |          |          | 9.92     |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 3        |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 182      |
| Total Solids            |          |          |          | 458      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 1732.9   |
| Faecal Coliforms        |          |          |          | 30       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-3S    | MW-3S    | MW-3S    | MW-3S    |
| pН                      | 8.6      | 8.23     | 8.34     | 8.14     |
| Electrical Conductivity | 383      | 369      | 380      | 377      |
| Chloride                | 16.2     | 17.9     | 18.3     | 18.8     |
| Ammonia                 | 0.02     | 0.9      | 0.42     | 0.14     |
| Potassium               | 1.9      | 4.3      | 4.1      | 2.6      |
| Dissolved Oxygen        | 7        | 4        | 9        | 8        |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | <2       | 10       | <2       | 9        |
| Boron                   |          |          |          | 100      |
| Cadmium                 |          |          |          | 2.2      |
| Calcium                 |          |          |          | 38.6     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 6.4      |
| Manganese               |          |          |          | 54       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 24.8     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | <0.3     |
| Sulphate                |          |          |          | 25.48    |
| Ortho Phosphate         |          |          |          | 0.24     |
| TON                     |          |          |          | <0.2     |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 152      |
| Total Solids            |          |          |          | 232      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 141.4    |
| Faecal Coliforms        |          |          |          | 4        |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-3D    | MW-3D    | MW-3D    | MW-3D    |
| pН                      | 7.98     | 7.88     | 8.33     | 8.02     |
| Electrical Conductivity | 550      | 434      | 588      | 493      |
| Chloride                | 18.4     | 16.3     | 16.3     | 17.1     |
| Ammonia                 | 0.04     | 0.02     | 0.05     | 0.06     |
| Potassium               | 1.9      | 1.2      | 2.6      | 1.6      |
| Dissolved Oxygen        | 9        | 4        | 8        | 7        |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 11       | 6        | <2       | 21       |
| Boron                   |          |          |          | 20       |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 65.9     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 12.5     |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 13.6     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | <0.3     |
| Sulphate                |          |          |          | 18.96    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 0.7      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 234      |
| Total Solids            |          |          |          | 319      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 1986.3   |
| Faecal Coliforms        |          |          |          | 2        |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-4S    | MW-4S    | MW-4S    | MW-4S    |
| рН                      | 7.76     | 7.87     | 8.34     | 8.02     |
| Electrical Conductivity | 264      | 268      | 356      | 360      |
| Chloride                | 26.4     | 22.6     | 19.3     | 19.6     |
| Ammonia                 | 0.02     | 0.02     | 0.03     | 0.07     |
| Potassium               | 0.8      | 0.7      | 1.2      | 1.1      |
| Dissolved Oxygen        | 9        | 8        | 7        | 7        |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 11       | 5        | <2       | 7        |
| Boron                   |          |          |          | 25       |
| Cadmium                 |          |          |          | 0.9      |
| Calcium                 |          |          |          | 41.3     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 8.4      |
| Manganese               |          |          |          | 160      |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 15.2     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | <0.3     |
| Sulphate                |          |          |          | 16.67    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 1.1      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 196      |
| Total Solids            |          |          |          | 242      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 3        |
| Faecal Coliforms        |          |          |          | <1       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-4D    | MW-4D    | MW-4D    | MW-4D    |
| pН                      | 8.07     | 7.96     | 8.35     | 8        |
| Electrical Conductivity | 311      | 227      | 321      | <2       |
| Chloride                | 18.8     | 20.1     | 19.3     | 19.7     |
| Ammonia                 | 0.03     | 0.02     | 0.16     | 0.06     |
| Potassium               | 1.5      | 0.5      | 1.1      | 1        |
| Dissolved Oxygen        | 9        | 7        | 3        | 8        |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 6        | 5        | 6        | 7        |
| Boron                   |          |          |          | 14       |
| Cadmium                 |          |          |          | 1.1      |
| Calcium                 |          |          |          | 41       |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 8.3      |
| Manganese               |          |          |          | 173      |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 15       |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | <0.3     |
| Sulphate                |          |          |          | 16.78    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 1.2      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 178      |
| Total Solids            |          |          |          | 255      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | <1       |
| Faecal Coliforms        |          |          |          | <1       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-5S    | MW-5S    | MW-5S    | MW-5S    |
| рН                      | 8.18     | 8.18     | 8.37     | 6.8      |
| Electrical Conductivity | 351      | 338      | 350      | 295      |
| Chloride                | 25.5     | 19.5     | 18       | 24.3     |
| Ammonia                 | 0.06     | 0.03     | 0.03     | 0.06     |
| Potassium               | 1.2      | 1.1      | 1.2      | 0.7      |
| Dissolved Oxygen        | 8        | 5        | 7        | 9        |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 8        | 5        | 4        | 16       |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 26.3     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 7.4      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 14.6     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | < 0.3    |
| Sulphate                |          |          |          | 7.73     |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 6.1      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 92       |
| Total Solids            |          |          |          | 461      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 16500    |
| Faecal Coliforms        |          |          |          | <1       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-5D    | MW-5D    | MW-5D    | MW-5D    |
| pН                      | 8.17     | 8.25     | 8.36     | 7.24     |
| Electrical Conductivity | 285      | 309      | 319      | 232      |
| Chloride                | 21.3     | 19.5     | 19.3     | 21.5     |
| Ammonia                 | 0.03     | 0.02     | 0.02     | 0.06     |
| Potassium               | 1.3      | 1.1      | 1.2      | 0.6      |
| Dissolved Oxygen        | 7        | 6        | 3        | 10       |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 9        | 4        | 3        | 4        |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 15.7     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 6        |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 16.8     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | < 0.3    |
| Sulphate                |          |          |          | 4.34     |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 3.8      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 128      |
| Total Solids            |          |          |          | 187      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 344.8    |
| Faecal Coliforms        |          |          |          | <1       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-6S    | MW-6S    | MW-6S    | MW-6S    |
| рН                      | 7.85     | 7.8      | 8        | 6.66     |
| Electrical Conductivity | 266      | 274      | 301      | 307      |
| Chloride                | 26.3     | 22.8     | 23.2     | 24.4     |
| Ammonia                 | 0.04     | 0.02     | 0.05     | < 0.01   |
| Potassium               | 0.9      | 0.6      | 0.8      | 0.8      |
| Dissolved Oxygen        | 9        | 7        | 6        | 10       |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 5        | 5        | 3        | 4        |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 28.6     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 7.8      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 15.2     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | <0.3     |
| Sulphate                |          |          |          | 8.43     |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 6        |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 94       |
| Total Solids            |          |          |          | 576      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 5910     |
| Faecal Coliforms        |          |          |          | 50       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-6D    | MW-6D    | MW-6D    | MW-6D    |
| pН                      | 7.91     | 7.93     | 8.01     | 6.92     |
| Electrical Conductivity | 231      | 231      | 237      | 233      |
| Chloride                | 23       | 20.1     | 20.3     | 21.2     |
| Ammonia                 | 0.02     | < 0.01   | 0.02     | 0.06     |
| Potassium               | 0.7      | 0.5      | 0.6      | 0.5      |
| Dissolved Oxygen        | 10       | 7        | 6        | 9        |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 7        | 4        | 5        | 4        |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 15.3     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 5.8      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 16.5     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | < 0.3    |
| Sulphate                |          |          |          | 4.81     |
| Ortho Phosphate         |          |          |          | 0.11     |
| TON                     |          |          |          | 3.7      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 84       |
| Total Solids            |          |          |          | 176      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 8.3      |
| Faecal Coliforms        |          |          |          | <1       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-7S    | MW-7S    | MW-7S    | MW-7S    |
| pН                      | 8.05     | 7.78     | 7.99     | 7.09     |
| Electrical Conductivity | 239      | 265      | 267      | 294      |
| Chloride                | 21.1     | 18.5     | 18.4     | 19.9     |
| Ammonia                 | 0.02     | < 0.01   | 0.03     | 0.05     |
| Potassium               | 0.7      | 0.5      | 0.7      | 0.8      |
| Dissolved Oxygen        | 11       | 9        | 9        | 10       |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 8        | 6        | 4        | <2       |
| Boron                   |          |          |          | 22       |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 28.3     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 4.9      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 15.5     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | <0.3     |
| Sulphate                |          |          |          | 11.04    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 6.8      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 82       |
| Total Solids            |          |          |          | 962      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | 1        |
| Faecal Coliforms        |          |          |          | <1       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-7D    | MW-7D    | MW-7D    | MW-7D    |
| рН                      | 8.11     | 7.83     | 10.22    | 9.94     |
| Electrical Conductivity | 268      | 271      | 381      | 375      |
| Chloride                | 22.8     | 18.8     | 16.7     | 18.3     |
| Ammonia                 | 0.03     | 0.02     | 0.12     | 0.09     |
| Potassium               | 0.7      | 0.6      | 1.4      | 1.2      |
| Dissolved Oxygen        | 10       | 10       | 5        | 6        |
| Total Chromium          |          |          |          | <1.5     |
| TOC                     | 9        | 6        | 3        | <2       |
| Boron                   |          |          |          | 21       |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 41.8     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | <0.1     |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Sodium                  |          |          |          | 21.2     |
| Zinc                    |          |          |          | <3       |
| Fluoride                |          |          |          | <0.3     |
| Sulphate                |          |          |          | 41.54    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| TON                     |          |          |          | 1.6      |
| Total Cyanide           |          |          |          | < 0.01   |
| Alkalinity              |          |          |          | 110      |
| Total Solids            |          |          |          | 302      |
| VOCs                    |          |          |          | ND       |
| sVOCs                   |          |          |          | ND       |
| Pesticides              |          |          |          | ND       |
| Total Coliforms         |          |          |          | <1       |
| Faecal Coliforms        |          |          |          | <1       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-8S    | MW-8S    | MW-8S    | MW-8S    |
| рН                      | Dry      | Dry      | Dry      | Dry      |
| Electrical Conductivity | Dry      | Dry      | Dry      | Dry      |
| Chloride                | Dry      | Dry      | Dry      | Dry      |
| Ammonia                 | Dry      | Dry      | Dry      | Dry      |
| Potassium               | Dry      | Dry      | Dry      | Dry      |
| Dissolved Oxygen        | Dry      | Dry      | Dry      | Dry      |
| Total Chromium          | Dry      | Dry      | Dry      | Dry      |
| TOC                     | Dry      | Dry      | Dry      | Dry      |
| Boron                   |          | -        | -        | Dry      |
| Cadmium                 |          |          |          | Dry      |
| Calcium                 |          |          |          | Dry      |
| Copper                  |          |          |          | Dry      |
| Iron                    |          |          |          | Dry      |
| Lead                    |          |          |          | Dry      |
| Magnesium               |          |          |          | Dry      |
| Manganese               |          |          |          | Dry      |
| Mercury                 |          |          |          | Dry      |
| Nickel                  |          |          |          | Dry      |
| Sodium                  |          |          |          | Dry      |
| Zinc                    |          |          |          | Dry      |
| Fluoride                |          |          |          | Dry      |
| Sulphate                |          |          |          | Dry      |
| Ortho Phosphate         |          |          |          | Dry      |
| TON                     |          |          |          | Dry      |
| Total Cyanide           |          |          |          | Dry      |
| Alkalinity              |          |          |          | Dry      |
| Total Solids            |          |          |          | Dry      |
| VOCs                    |          |          |          | Dry      |
| sVOCs                   |          |          |          | Dry      |
| Pesticides              |          |          |          | Dry      |
| Total Coliforms         |          |          |          | Dry      |
| Faecal Coliforms        |          |          |          | Dry      |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | MW-8D    | MW-8D    | MW-8D    | MW-8D    |
| рН                      | Dry      | Dry      | Dry      | Dry      |
| Electrical Conductivity | Dry      | Dry      | Dry      | Dry      |
| Chloride                | Dry      | Dry      | Dry      | Dry      |
| Ammonia                 | Dry      | Dry      | Dry      | Dry      |
| Potassium               | Dry      | Dry      | Dry      | Dry      |
| Dissolved Oxygen        | Dry      | Dry      | Dry      | Dry      |
| Total Chromium          | Dry      | Dry      | Dry      | Dry      |
| TOC                     | Dry      | Dry      | Dry      | Dry      |
| Boron                   |          | -        |          | Dry      |
| Cadmium                 |          |          |          | Dry      |
| Calcium                 |          |          |          | Dry      |
| Copper                  |          |          |          | Dry      |
| Iron                    |          |          |          | Dry      |
| Lead                    |          |          |          | Dry      |
| Magnesium               |          |          |          | Dry      |
| Manganese               |          |          |          | Dry      |
| Mercury                 |          |          |          | Dry      |
| Nickel                  |          |          |          | Dry      |
| Sodium                  |          |          |          | Dry      |
| Zinc                    |          |          |          | Dry      |
| Fluoride                |          |          |          | Dry      |
| Sulphate                |          |          |          | Dry      |
| Ortho Phosphate         |          |          |          | Dry      |
| TON                     |          |          |          | Dry      |
| Total Cyanide           |          |          |          | Dry      |
| Alkalinity              |          |          |          | Dry      |
| Total Solids            |          |          |          | Dry      |
| VOCs                    |          |          |          | Dry      |
| sVOCs                   |          |          |          | Dry      |
| Pesticides              |          |          |          | Dry      |
| Total Coliforms         |          |          |          | Dry      |
| Faecal Coliforms        |          |          |          | Dry      |

|                                                        | Surface Water Data 2012 |                    |  |
|--------------------------------------------------------|-------------------------|--------------------|--|
|                                                        |                         |                    |  |
|                                                        |                         |                    |  |
| C:\12\048_Greenstar\01_Ballynagran\AER2012\0480105.Doc |                         | April 2013 (BS/KC) |  |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | SW-1     | SW-1     | SW-1     | SW-1     |
| pН                      | 6.74     | 7.65     | 7.68     | 7.72     |
| Electrical Conductivity | 241      | 165.2    | 233      | 259      |
| Chloride                | 18.6     | <50      | 17.24    | 27       |
| Ammoniacal Nitrogen     | 0.06     | <1       | 0.25     | < 0.03   |
| Total Suspended Solids  | <10      | <2       | 3        | <10      |
| Dissolved Oxygen        | 12       | 8        | 10.4     | 10       |
| BOD                     | <1       | <2       | <2       | <1       |
| COD                     | 13       | <8       | 18       | <7       |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 20.2     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 6.2      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Potassium               |          |          |          | 1.9      |
| Sodium                  |          |          |          | 14.3     |
| Zinc                    |          |          |          | <3       |
| Total Chromium          |          |          |          | <1.5     |
| Sulphate                |          |          |          | 11.48    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| Total Oxidised Nitrogen |          |          |          | 4.5      |
| Total Alkalinity        |          |          |          | 62       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | SW-2     | SW-2     | SW-2     | SW-2     |
| pН                      | 7.28     | 7.54     | 7.58     | 6.79     |
| Electrical Conductivity | 261      | 270      | 239      | 246      |
| Chloride                | 29.1     | <50      | 29.27    | 27.3     |
| Ammonia                 | 0.06     | <1       | 0.19     | 0.13     |
| Potassium               | <10      | 3        | 3        | <10      |
| Dissolved Oxygen        | 12       | 9        | 10.1     | 10       |
| Total Chromium          | <1       | <2       | <2       | <1       |
| TOC                     | 14       | <8       | 13       | <7       |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 20.4     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 6.2      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Potassium               |          |          |          | 1.9      |
| Sodium                  |          |          |          | 14.4     |
| Zinc                    |          |          |          | <3       |
| Total Chromium          |          |          |          | <1.5     |
| Sulphate                |          |          |          | 11.74    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| Total Oxidised Nitrogen |          |          |          | 4.1      |
| Total Alkalinity        |          |          |          | 54       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | SW-3     | SW-3     | SW-3     | SW-3     |
| pН                      | 7.41     | 7.41     | 7.61     | 6.74     |
| Electrical Conductivity | 199      | 193.9    | 196      | 200      |
| Chloride                | 18.1     | <50      | 19.98    | 17.7     |
| Ammonia                 | 0.11     | <1       | 0.34     | 0.19     |
| Potassium               | <10      | 2        | 2        | <10      |
| Dissolved Oxygen        | 12       | 11       | 10.1     | 10       |
| Total Chromium          | <1       | <2       | <2       | 3        |
| TOC                     | 12       | 10       | 13       | 14       |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 14.4     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | 48       |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 6.7      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Potassium               |          |          |          | 2.5      |
| Sodium                  |          |          |          | 9.6      |
| Zinc                    |          |          |          | <3       |
| Total Chromium          |          |          |          | <1.5     |
| Sulphate                |          |          |          | 10.33    |
| Ortho Phosphate         |          |          |          | 0.08     |
| Total Oxidised Nitrogen |          |          |          | 4.3      |
| Total Alkalinity        |          |          |          | 50       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | SW-4     | SW-4     | SW-4     | SW-4     |
| рН                      | 7.41     | 7.41     | 7.7      | 6.64     |
| Electrical Conductivity | 174      | 182      | 159      | 168      |
| Chloride                | 18.2     | <50      | 16.53    | 17.3     |
| Ammonia                 | 0.18     | <1       | 0.28     | 0.03     |
| Potassium               | <10      | <2       | 4        | <10      |
| Dissolved Oxygen        | 12       | 12       | 10.2     | 10       |
| Total Chromium          | <1       | <2       | <2       | <1       |
| TOC                     | 17       | <8       | 23       | 10       |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 12.9     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | 73       |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 4.6      |
| Manganese               |          |          |          | 7        |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Potassium               |          |          |          | 1.1      |
| Sodium                  |          |          |          | 9.6      |
| Zinc                    |          |          |          | <3       |
| Total Chromium          |          |          |          | <1.5     |
| Sulphate                |          |          |          | 10.25    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| Total Oxidised Nitrogen |          |          |          | 2.5      |
| Total Alkalinity        |          |          |          | 36       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | SW-5     | SW-5     | SW-5     | SW-5     |
| pН                      | 7.68     | 7.56     | 7.65     | 6.78     |
| Electrical Conductivity | 273      | 279      | 237      | 250      |
| Chloride                | 25.6     | <50      | 29.07    | 27       |
| Ammonia                 | 0.09     | <1       | 0.28     | 0.05     |
| Potassium               | 11       | 8        | <2       | <10      |
| Dissolved Oxygen        | 12       | 12       | 10       | 10       |
| Total Chromium          | <1       | <2       | <2       | <1       |
| TOC                     | 14       | 12       | 14       | 9        |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 20.6     |
| Copper                  |          |          |          | <7       |
| Iron                    | 70       |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 6.2      |
| Manganese               | 2        |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Potassium               |          |          |          | 1.8      |
| Sodium                  |          |          |          | 14.5     |
| Zinc                    |          |          |          | <3       |
| Total Chromium          |          |          |          | <1.5     |
| Sulphate                |          |          |          | 11.32    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| Total Oxidised Nitrogen |          |          |          | 4        |
| Total Alkalinity        |          |          |          | 52       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | SW-6     | SW-6     | SW-6     | SW-6     |
| pН                      | 7.76     | 7.73     | 7.83     | 6.81     |
| Electrical Conductivity | 250      | 256      | 227      | 236      |
| Chloride                | 22.1     | <50      | 24.49    | 22.7     |
| Ammonia                 | 0.1      | <1       | 0.13     | 0.14     |
| Potassium               | <10      | 2        | 3        | <10      |
| Dissolved Oxygen        | 12       | 13       | 10.1     | 10       |
| Total Chromium          | 2        | <2       | <2       | 1        |
| TOC                     | 19       | 12       | 13       | 9        |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 18.8     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 6.4      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Potassium               |          |          |          | 2.2      |
| Sodium                  |          |          |          | 12.3     |
| Zinc                    |          |          |          | <3       |
| Total Chromium          |          |          |          | <1.5     |
| Sulphate                |          |          |          | 10.68    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| Total Oxidised Nitrogen |          |          |          | 3.7      |
| Total Alkalinity        |          |          |          | 52       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | SW-7     | SW-7     | SW-7     | SW-7     |
| pН                      | 7.97     | 7.78     | 7.93     | 7.18     |
| Electrical Conductivity | 280      | 367      | 320      | 309      |
| Chloride                | 23.3     | <50      | 26.28    | 27.5     |
| Ammonia                 | 0.15     | <1       | 0.1      | 0.11     |
| Potassium               | 11       | <2       | <2       | <10      |
| Dissolved Oxygen        | 12       | 12       | 10       | 10       |
| Total Chromium          | <1       | <4       | <2       | 1        |
| TOC                     | 20       | 8        | 15       | <7       |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 35.5     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 7.4      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Potassium               |          |          |          | 2.2      |
| Sodium                  |          |          |          | 15.4     |
| Zinc                    |          |          |          | <3       |
| Total Chromium          |          |          |          | <1.5     |
| Sulphate                |          |          |          | 13.33    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| Total Oxidised Nitrogen |          |          |          | 4.8      |
| Total Alkalinity        |          |          |          | 94       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | SW-8     | SW-8     | SW-8     | SW-8     |
| pН                      | 7.85     | 7.56     | 7.68     | 6.76     |
| Electrical Conductivity | 254      | 274      | 245      | 247      |
| Chloride                | 29.1     | <50      | 30.27    | 26.7     |
| Ammonia                 | 0.06     | <1       | 0.08     | 0.03     |
| Potassium               | <10      | 5        | <2       | <10      |
| Dissolved Oxygen        | 12       | 11       | 10.1     | 10       |
| Total Chromium          | <1       | <4       | <2       | 1        |
| TOC                     | 15       | <8       | 14       | <7       |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 20.4     |
| Copper                  |          |          |          | <7       |
| Iron                    |          |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 6.2      |
| Manganese               |          |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Potassium               |          |          |          | 1.8      |
| Sodium                  |          |          |          | 14.5     |
| Zinc                    |          |          |          | <3       |
| Total Chromium          |          |          |          | <1.5     |
| Sulphate                |          |          |          | 11.23    |
| Ortho Phosphate         |          |          |          | 0.07     |
| Total Oxidised Nitrogen |          |          |          | 3.9      |
| Total Alkalinity        |          |          |          | 54       |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | SW-9     | SW-9     | SW-9     | SW-9     |
| pН                      | 8.12     | 7.53     | 7.43     | 8.02     |
| Electrical Conductivity | 429      | 601      | 293      | 890      |
| Chloride                | 16.6     | <50      | 14.06    | 67.4     |
| Ammonia                 | 0.77     | <1       | 0.2      | 21.17    |
| Potassium               | 19       | 13       | 2        | <10      |
| Dissolved Oxygen        | 11       | 12       | 8.1      | 9        |
| Total Chromium          | 2        | <4       | 2        | 40       |
| TOC                     | 16       | 29       | 34       | 89       |
| Boron                   |          |          |          | 197      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 76.9     |
| Copper                  |          |          |          | <7       |
| Iron                    | <20      |          |          | 54       |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 13.1     |
| Manganese               | 4        |          |          | 3        |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | 11       |
| Potassium               |          |          |          | 17.1     |
| Sodium                  |          |          |          | 50.9     |
| Zinc                    |          |          |          | 8        |
| Total Chromium          |          |          |          | 3.9      |
| Sulphate                |          |          |          | 74.76    |
| Ortho Phosphate         |          |          |          | 0.09     |
| Total Oxidised Nitrogen |          |          |          | 1.3      |
| Total Alkalinity        |          |          |          | 306      |

| Parameter               | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|
|                         | SW-10    | SW-10    | SW-10    | SW-10    |
| pН                      | 8.04     | 7.54     | 7.65     | 6.75     |
| Electrical Conductivity | 265      | 282      | 246      | 175      |
| Chloride                | 15.1     | <50      | 29.88    | 26.9     |
| Ammonia                 | 0.1      | <1       | 0.08     | 0.04     |
| Potassium               | 41       | 6        | <2       | <10      |
| Dissolved Oxygen        | 11       | 13       | 9.9      | 10       |
| Total Chromium          | 2        | <4       | <2       | <1       |
| TOC                     | 17       | 11       | 12       | <7       |
| Boron                   |          |          |          | <12      |
| Cadmium                 |          |          |          | < 0.5    |
| Calcium                 |          |          |          | 20       |
| Copper                  |          |          |          | <7       |
| Iron                    | 22       |          |          | <20      |
| Lead                    |          |          |          | <5       |
| Magnesium               |          |          |          | 6.1      |
| Manganese               | <2       |          |          | <2       |
| Mercury                 |          |          |          | <1       |
| Nickel                  |          |          |          | <2       |
| Potassium               |          |          |          | 1.9      |
| Sodium                  |          |          |          | 14.1     |
| Zinc                    |          |          |          | <3       |
| Total Chromium          |          |          |          | <1.5     |
| Sulphate                |          |          |          | 11.99    |
| Ortho Phosphate         |          |          |          | < 0.06   |
| Total Oxidised Nitrogen |          |          |          | 4.2      |
| Total Alkalinity        |          |          |          | 56       |

|                                                        | Leachate Data 2012 |                    |  |
|--------------------------------------------------------|--------------------|--------------------|--|
|                                                        |                    |                    |  |
|                                                        |                    |                    |  |
|                                                        |                    |                    |  |
| C:\12\048_Greenstar\01_Ballynagran\AER2012\0480105.Doc |                    | April 2013 (BS/KC) |  |

| D .                     | T        | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|----------|
| Parameter               | Units    | LP-1     | LP-1     | LP-1     | LP-1     |
| рН                      | pH Units | 8.7      | 8.01     | 8.73     | 8.3      |
| Electrical Conductivity | μS/cm    | 25405    | 24,154   | 22063    | 23833    |
| Chloride                | mg/l     | 2030.2   | 1,810.00 | 1635.5   | 2670.8   |
| Ammoniacal Nitrogen     | mg/l     | 2982.3   | 2,580.92 | 2750.95  | 2893.6   |
| BOD                     | mg/l     | 1124     | 1032     | 1031     | 1069     |
| COD                     | mg/l     | 6660     | 5790     | 4900     | 5685     |
| Boron                   | ug/l     |          | 3972     |          |          |
| Cadmium                 | ug/l     |          | < 0.5    |          |          |
| Calcium                 | mg/l     |          | 11.1     |          |          |
| Copper                  | ug/l     |          | 172      |          |          |
| Iron                    | ug/l     |          | 521      |          |          |
| Lead                    | ug/l     |          | 6        |          |          |
| Magnesium               | mg/l     |          | 20.3     |          |          |
| Manganese               | ug/l     |          | 259      |          |          |
| Mercury                 | ug/l     |          | <1       |          |          |
| Nickel                  | ug/l     |          | 95       |          |          |
| Potassium               | mg/l     |          | 877.3    |          |          |
| Sodium                  | mg/l     |          | 1720     |          |          |
| Zinc                    | ug/l     |          | 44       |          |          |
| Total Chromium          | ug/l     |          | 250.7    |          |          |
| Fluoride                | mg/l     |          | <3.0     |          |          |
| Sulphate                | mg/l     |          | 87.32    |          |          |
| Orthophosphate          | mg/l     |          | 38.52    |          |          |
| Total Oxidised Nitrogen | mg/l     |          | < 0.2    |          |          |
| Total Cyanide           | mg/l     |          | 0.07     |          |          |

|                         |          | O-1 2012 | Q-2 2012 | O-3 2012 | O-4 2012 |
|-------------------------|----------|----------|----------|----------|----------|
| Parameter               | Units    | LP-2/5   | LP-2/5   | LP-2/5   | LP-2/5   |
| рН                      | pH Units | 8.66     | 8.09     | 8.86     | 8.18     |
| Electrical Conductivity | μS/cm    | 24092    | 25,571   | 29153    | 27570    |
| Chloride                | mg/l     | 1895.2   | 2,254.10 | 2525.2   | 2460.3   |
| Ammoniacal Nitrogen     | mg/l     | 2904.19  | 2,638.55 | 2730.26  | 2441.27  |
| BOD                     | mg/l     | 1126     | 442      | 848      | 353      |
| COD                     | mg/l     | 7240     | 5070     | 6370     | 4290     |
| Boron                   | ug/l     |          | 12240    |          |          |
| Cadmium                 | ug/l     |          | < 0.5    |          |          |
| Calcium                 | mg/l     |          | < 0.2    |          |          |
| Copper                  | ug/l     |          | 427      |          |          |
| Iron                    | ug/l     |          | 1808     |          |          |
| Lead                    | ug/l     |          | 11       |          |          |
| Magnesium               | mg/l     |          | 0.2      |          |          |
| Manganese               | ug/l     |          | 546      |          |          |
| Mercury                 | ug/l     |          | <1       |          |          |
| Nickel                  | ug/l     |          | 148      |          |          |
| Potassium               | mg/l     |          | 1.4      |          |          |
| Sodium                  | mg/l     |          | 2090     |          |          |
| Zinc                    | ug/l     |          | 136      |          |          |
| Total Chromium          | ug/l     |          | 359.3    |          |          |
| Fluoride                | mg/l     |          | <3.0     |          |          |
| Sulphate                | mg/l     |          | 18.96    |          |          |
| Orthophosphate          | mg/l     |          | 37.78    |          |          |
| Total Oxidised Nitrogen | mg/l     |          | <0.2     |          |          |
| Total Cyanide           | mg/l     |          | 0.06     |          |          |

| D.                      | T.T. 1   | Q-1 2012 | Q-2 2012 | Q-3 2012 | O-4 2012 |
|-------------------------|----------|----------|----------|----------|----------|
| Parameter               | Units    | LP-3     | LP-3     | LP-3     | LP-3     |
| рН                      | pH Units | 8.64     | 8.17     | 8.87     | 8.37     |
| Electrical Conductivity | μS/cm    | 24331    | 30,082   | 27253    | 30006    |
| Chloride                | mg/l     | 2311.5   | 2,699.10 | 2327     | 2663.5   |
| Ammoniacal Nitrogen     | mg/l     | 2585.83  | 3,076.66 | 2657.98  | 2981.36  |
| BOD                     | mg/l     | 328      | 1033     | 457      | 296      |
| COD                     | mg/l     | 5960     | 1435     | 5940     | 5295     |
| Boron                   | ug/l     |          | 23080    |          |          |
| Cadmium                 | ug/l     |          | < 0.5    |          |          |
| Calcium                 | mg/l     |          | < 0.2    |          |          |
| Copper                  | ug/l     |          | 217      |          |          |
| Iron                    | ug/l     |          | 578      |          |          |
| Lead                    | ug/l     |          | 16       |          |          |
| Magnesium               | mg/l     |          | < 0.1    |          |          |
| Manganese               | ug/l     |          | 270      |          |          |
| Mercury                 | ug/l     |          | <1       |          |          |
| Nickel                  | ug/l     |          | 154      |          |          |
| Potassium               | mg/l     |          | 0.3      |          |          |
| Sodium                  | mg/l     |          | 0.2      |          |          |
| Zinc                    | ug/l     |          | 146      |          |          |
| Total Chromium          | ug/l     |          | 280.7    |          |          |
| Fluoride                | mg/l     |          | <3.0     |          |          |
| Sulphate                | mg/l     |          | 42.35    |          |          |
| Orthophosphate          | mg/l     |          | 68.71    |          |          |
| Total Oxidised Nitrogen | mg/l     |          | < 0.2    |          |          |
| Total Cyanide           | mg/l     |          | 0.07     |          |          |

|                         |          | O-1 2012 | Q-2 2012 | O-3 2012 | O-4 2012 |
|-------------------------|----------|----------|----------|----------|----------|
| Parameter               | Units    | LP-6     | LP-6     | LP-6     | LP-6     |
| рН                      | pH Units | 8.69     | 8.02     | 8.83     | 8.36     |
| Electrical Conductivity | μS/cm    | 29615    | 22,964   | 27663    | 31501    |
| Chloride                | mg/l     | 2593.8   | 1,877.50 | 2276.6   | 2719.5   |
| Ammoniacal Nitrogen     | mg/l     | 3191.8   | 2,272.95 | 2600.13  | 3026.89  |
| BOD                     | mg/l     | 1126     | 1050     | 1027     | 1081     |
| COD                     | mg/l     | 10270    | 7075     | 9660     | 9375     |
| Boron                   | ug/l     |          | 11670    |          |          |
| Cadmium                 | ug/l     |          | <1.0     |          |          |
| Calcium                 | mg/l     |          | < 0.2    |          |          |
| Copper                  | ug/l     |          | 166      |          |          |
| Iron                    | ug/l     |          | 1424     |          |          |
| Lead                    | ug/l     |          | 19       |          |          |
| Magnesium               | mg/l     |          | < 0.1    |          |          |
| Manganese               | ug/l     |          | -        |          |          |
| Mercury                 | ug/l     |          | <2       |          |          |
| Nickel                  | ug/l     |          | 222      |          |          |
| Potassium               | mg/l     |          | 0.4      |          |          |
| Sodium                  | mg/l     |          | 1901     |          |          |
| Zinc                    | ug/l     |          | 187      |          |          |
| Total Chromium          | ug/l     |          | 733.4    |          |          |
| Fluoride                | mg/l     |          | <3.0     |          |          |
| Sulphate                | mg/l     |          | 525.27   |          |          |
| Orthophosphate          | mg/l     |          | 49.66    |          |          |
| Total Oxidised Nitrogen | mg/l     |          | < 0.2    |          |          |
| Total Cyanide           | mg/l     |          | 0.06     |          |          |

|                         |          | O-1 2012 | Q-2 2012 | O-3 2012 | O-4 2012 |
|-------------------------|----------|----------|----------|----------|----------|
| Parameter               | Units    | LP-7     | LP-7     | LP-7     | LP-7     |
| рН                      | pH Units | 8.47     | 7.89     | 8.82     | 8.08     |
| Electrical Conductivity | μS/cm    | 21592    | 22,558   | 29106    | 30290    |
| Chloride                | mg/l     | 2070.7   | 2,142.70 | 2746.4   | 2096.6   |
| Ammoniacal Nitrogen     | mg/l     | 2057.09  | 1,982.61 | 3096.31  | 2058.61  |
| BOD                     | mg/l     | 358      | 324      | 875      | 331      |
| COD                     | mg/l     | 4260     | 3900     | 6950     | 3380     |
| Boron                   | ug/l     |          | 2551     |          |          |
| Cadmium                 | ug/l     |          | < 0.5    |          |          |
| Calcium                 | mg/l     |          | 125.4    |          |          |
| Copper                  | ug/l     |          | 233      |          |          |
| Iron                    | ug/l     |          | 523      |          |          |
| Lead                    | ug/l     |          | 10       |          |          |
| Magnesium               | mg/l     |          | 141.9    |          |          |
| Manganese               | ug/l     |          | 454      |          |          |
| Mercury                 | ug/l     |          | <1       |          |          |
| Nickel                  | ug/l     |          | 120      |          |          |
| Potassium               | mg/l     |          | 1151     |          |          |
| Sodium                  | mg/l     |          | 2191     |          |          |
| Zinc                    | ug/l     |          | 182      |          |          |
| Total Chromium          | ug/l     |          | 208.6    |          |          |
| Fluoride                | mg/l     |          | <3.0     |          |          |
| Sulphate                | mg/l     |          | 33.86    |          |          |
| Orthophosphate          | mg/l     |          | 49.58    |          |          |
| Total Oxidised Nitrogen | mg/l     |          | < 0.2    |          |          |
| Total Cyanide           | mg/l     |          | 0.03     |          |          |

| D                       | TI       | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|----------|
| Parameter               | Units    | LP-9     | LP-9     | LP-9     | LP-9     |
| рН                      | pH Units |          | 7.56     | 7.59     | 8.21     |
| Electrical Conductivity | μS/cm    |          | 6,431    | 28040    | 26610    |
| Chloride                | mg/l     |          | 419      | 2782     | 2674.4   |
| Ammoniacal Nitrogen     | mg/l     |          | 245.93   | 1750.36  | 2104.17  |
| BOD                     | mg/l     |          | 1060     | 1038     | 907      |
| COD                     | mg/l     |          | 7880     | 43550    | 4775     |
| Boron                   | ug/l     |          | 1169     |          |          |
| Cadmium                 | ug/l     |          | 2.5      |          |          |
| Calcium                 | mg/l     |          | 876.2    |          |          |
| Copper                  | ug/l     |          | <7       |          |          |
| Iron                    | ug/l     |          | 53980    |          |          |
| Lead                    | ug/l     |          | 8        |          |          |
| Magnesium               | mg/l     |          | 136      |          |          |
| Manganese               | ug/l     |          | 16930    |          |          |
| Mercury                 | ug/l     |          | <1       |          |          |
| Nickel                  | ug/l     |          | 202      |          |          |
| Potassium               | mg/l     |          | 300      |          |          |
| Sodium                  | mg/l     |          | 412.8    |          |          |
| Zinc                    | ug/l     |          | 24       |          |          |
| Total Chromium          | ug/l     |          | 58.8     |          |          |
| Fluoride                | mg/l     |          | <3.0     |          |          |
| Sulphate                | mg/l     |          | 463      |          |          |
| Orthophosphate          | mg/l     |          | 0.93     |          |          |
| Total Oxidised Nitrogen | mg/l     |          | < 0.2    |          |          |
| Total Cyanide           | mg/l     |          | 0.04     |          |          |

| Parameter               | Units    | Q-1 2012 | Q-2 2012 | Q-3 2012 | Q-4 2012 |
|-------------------------|----------|----------|----------|----------|----------|
| r ai aiiletei           | Units    | Lagoon   | Lagoon   | Lagoon   | Lagoon   |
| рН                      | pH Units | 8.57     | 8.1      | 8.89     | Lagoon   |
| Electrical Conductivity | μS/cm    | 23936    | 26,405   | 24594    | 8.3      |
| Chloride                | mg/l     | 2204.5   | 2,301.40 | 2170.1   | 23242    |
| Ammoniacal Nitrogen     | mg/l     | 2461.48  | 2,540.94 | 2627.7   | 2089.1   |
| BOD                     | mg/l     | 950      | 1055     | 1045     | 2057.57  |
| COD                     | mg/l     | 5960     | 6375     | 8330     | 926      |
| Boron                   | ug/l     |          | 12930    |          | 4390     |
| Cadmium                 | ug/l     |          | <1.0     |          |          |
| Calcium                 | mg/l     |          | < 0.2    |          |          |
| Copper                  | ug/l     |          | 60       |          |          |
| Iron                    | ug/l     |          | 2783     |          |          |
| Lead                    | ug/l     |          | 20       |          |          |
| Magnesium               | mg/l     |          | < 0.1    |          |          |
| Manganese               | ug/l     |          | 749      |          |          |
| Mercury                 | ug/l     |          | <2       |          |          |
| Nickel                  | ug/l     |          | 242      |          |          |
| Potassium               | mg/l     |          | < 0.1    |          |          |
| Sodium                  | mg/l     |          | < 0.1    |          |          |
| Zinc                    | ug/l     |          | 743      |          |          |
| Total Chromium          | ug/l     |          | 702.3    |          |          |
| Fluoride                | mg/l     |          | <3.0     |          |          |
| Sulphate                | mg/l     |          | 19.14    |          |          |
| Orthophosphate          | mg/l     |          | 54.8     |          |          |
| Total Oxidised Nitrogen | mg/l     |          | <0.2     |          |          |
| Total Cyanide           | mg/l     |          | 0.06     |          |          |

|                                                        | Landfill Gas Data 2012 |                    |  |
|--------------------------------------------------------|------------------------|--------------------|--|
|                                                        |                        |                    |  |
|                                                        |                        |                    |  |
|                                                        |                        |                    |  |
|                                                        |                        |                    |  |
|                                                        |                        |                    |  |
|                                                        |                        |                    |  |
|                                                        |                        |                    |  |
|                                                        |                        |                    |  |
|                                                        |                        |                    |  |
|                                                        |                        |                    |  |
| C:\12\048_Greenstar\01_Ballynagran\AER2012\0480105.Doc |                        | April 2013 (BS/KC) |  |

Landfill Gas Results 2012 Ballynagran W0165-02

|                | Jan             | Feb             | Mar     | Apr     | May             | Jun             | Jul             | Aug             | Sep             | Oct     | Nov             | Dec     |
|----------------|-----------------|-----------------|---------|---------|-----------------|-----------------|-----------------|-----------------|-----------------|---------|-----------------|---------|
| Sample Station | CH <sub>4</sub> | CH <sub>4</sub> | $CH_4$  | $CH_4$  | CH <sub>4</sub> | $CH_4$  | CH <sub>4</sub> | $CH_4$  |
| Number         | (% v/v)         | (% v/v)         | (% v/v) | (% v/v) | (% v/v)         | (% v/v)         | (% v/v)         | (% v/v)         | (% v/v)         | (% v/v) | (% v/v)         | (% v/v) |
| MG000001       | 0               | 0.1             | 0.1     | 0.1     | 0.2             | 0               | 0               | 0.4             | 0.4             | 0.3     | 0.3             | 0.3     |
| MG000002       | 0               | 0               | 0       | 0       | 0.3             | 0.1             | 0.3             | 0.2             | 0.3             | 0.2     | 0.4             | 0.1     |
| MG000003       | 0               | 0.1             | 0       | 0       | 0.2             | 0.1             | 0.2             | 0.3             | 0.2             | 0.2     | 0.2             | 0.2     |
| MG000004       | 0               | 0               | 0.1     | 0.1     | 0.2             | 0               | 0               | 0.3             | 0.2             | 0.2     | 0.2             | 0.3     |
| MG000005       | 0               | 0.1             | 0.1     | 0.1     | 0.2             | 0.1             | 0.2             | 0.4             | 0.4             | 0.3     | 0.3             | 0.3     |
| MG000006       | 0               | 0               | 0.1     | 0.1     | 0.3             | 0               | 0.2             | 0.5             | 0.6             | 0.4     | 0.6             | 0.8     |
| MG000007       | 0               | 0.1             | 0.1     | 0.1     | 0.2             | Flooded         | Flooded         | Flooded         | Flooded         | Flooded | Flooded         | Flooded |
| MG000008       | Flooded         | 0.1             | 0       | 0       | 0.2             | Flooded         | Flooded         | Flooded         | Flooded         | Flooded | Flooded         | Flooded |
| MG000009       | 0               | 0.1             | 0       | 0       | 0.1             | 0.1             | 0.2             | 0.1             | 0.3             | 0.2     | 0.3             | 0.6     |
| MG000010       | 0               | 0               | 0       | 0       | 0.2             | 0               | 0               | 0.2             | 0.2             | 0.2     | 0.2             | 0.3     |
| MG000011       | 0               | 0               | 0.1     | 0.1     | 0.2             | 0               | 0               | 0.2             | 0.2             | 0.3     | 0.3             | 0.3     |
| MG000012       | 0               | 0               | 0.1     | 0.1     | 0.2             | 0               | 0.2             | 0.2             | 0.5             | 0.4     | 0.4             | 0.5     |
| MG000013       | 0               | 0               | 0.1     | 0.1     | 0.3             | 0               | 0.2             | 0.4             | 0.3             | 0.2     | 0.5             | 0.5     |
| MG000014       | 0               | 0.1             | 0.1     | 0.1     | 0.2             | 0               | 0               | 0.1             | 0.3             | 0.2     | 0.6             | 0.7     |
| MG000015       | 0               | 0               | 0.1     | 0.1     | 0.2             | 0.1             | 0.3             | 0.3             | 0.3             | 0.2     | 0.2             | 0.3     |
| MG000016       | 0.1             | 11.2            | 17.8    | 15.4    | 19.4            | 0.1             | 7.6             | 26.3            | 16.3            | 12.3    | 16.3            | 19.3    |
| MG000017       | 5.9             | 6.5             | 9.7     | 8.6     | 8.3             | 0.1             | 3.2             | 32.1            | 22.1            | 20.1    | 22.1            | 23.1    |
| MG000018       | 0               | 0.4             | 0.1     | 0.1     | 0.2             | 0               | 0.2             | 3               | 0.7             | 0.9     | 0.6             | 0.7     |
| MG000019       | 0               | 0.1             | 0.1     | 0.1     | 0.3             | 0               | 0.1             | 0.2             | 0.2             | 0.4     | 0.6             | 0.6     |
| MG000020       | Flooded         | 0.1             | 0.6     | 0.5     | 0.4             | Flooded         | Flooded         | Flooded         | Flooded         | Flooded | Flooded         | Flooded |
| MG000046       |                 |                 |         |         | 0.2             | 0               |                 | 0.1             | 0.2             | 0.4     | 0.3             | 0.4     |
| MG000047       | 0               | 0.1             | 0.1     | 0.1     | 0.2             | 0               | 0               | 0.3             | 0.3             | 0.2     | 0.3             | 0.3     |
| MG000048       | 0               | 0               | 0.1     | 0.1     | 0.3             | 0               | 0               | 0.2             | 0.4             | 0.4     | 0.3             | 0.3     |
| MG000049       | 0               | 0.1             | 0.1     | 0.1     | 0.2             | 0.1             | 0               | 0.1             | 0.1             | 0.2     | 0.2             | 0.4     |

<sup># -</sup> Problem with gas meter therefore it was not possible to take

Landfill Gas Results 2012 Ballynagran W0165-02

|                | Jan             | Feb     | Mar     | Apr     | May     | Jun     | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     |
|----------------|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Sample Station | CO <sub>2</sub> | $CO_2$  |
| Number         | (% v/v)         | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) |
| MG000001       | 0.4             | 0.5     | 0.4     | 0.4     | 0.4     | 0.1     | 0.3     | 0.5     | 0.7     | 0.7     | 0.7     | 0.7     |
| MG000002       | 0.1             | 1.3     | 0.1     | 0.2     | 1.3     | 2.7     | 1.4     | 1.4     | 1.4     | 1.1     | 1.2     | 1.3     |
| MG000003       | 0.3             | 0.5     | 0.4     | 0.3     | 0.3     | 0.1     | 0.3     | 0.4     | 0.8     | 0.7     | 0.7     | 0.6     |
| MG000004       | 0.3             | 0.5     | 0.5     | 0.4     | 0.4     | 0.3     | 0.2     | 0.7     | 0.6     | 0.8     | 1.1     | 1       |
| MG000005       | 1.3             | 2.2     | 2.3     | 2.1     | 2.1     | 3       | 1.4     | 0.3     | 0.2     | 0.3     | 0.3     | 0.4     |
| MG000006       | 0.5             | 0.8     | 0.4     | 0.5     | 0.5     | 0.5     | 0.4     | 0.3     | 0.2     | 0.2     | 0.6     | 0.7     |
| MG000007       | 1.1             | 0.1     | 0.4     | 0.4     | 0.6     | Flooded |
| MG000008       | Flooded         | 0.1     | 4.3     | 2.1     | 2.3     | Flooded |
| MG000009       | 0.8             | 0.2     | 0.1     | 0.1     | 0.1     | 4       | 3.5     | 1.9     | 1.5     | 1.2     | 1.1     | 1.2     |
| MG000010       | 5.6             | 0.1     | 0.1     | 0.2     | 0.2     | 4.9     | 4.4     | 3.2     | 2.1     | 1.3     | 1.4     | 1.3     |
| MG000011       | 1.3             | 1.2     | 0.6     | 0.5     | 2.4     | 3.9     | 3.2     | 1.9     | 1.6     | 1.1     | 1.2     | 1.2     |
| MG000012       | 0.5             | 0.4     | 0.3     | 0.4     | 0.4     | 0.8     | 0.9     | 0.6     | 0.5     | 0.5     | 0.5     | 0.6     |
| MG000013       | 0.2             | 0.2     | 0.2     | 0.3     | 0.3     | 0       | 0.2     | 0.3     | 0.6     | 0.5     | 0.7     | 0.8     |
| MG000014       | 0.6             | 0.3     | 0.3     | 0.4     | 0.4     | 1       | 1.1     | 1.1     | 1.3     | 1       | 1       | 1.1     |
| MG000015       | 0.1             | 0.5     | 0.4     | 0.5     | 0.5     | 0.1     | 0.2     | 0.4     | 0.8     | 0.9     | 1.1     | 0.8     |
| MG000016       | 1.3             | 3.1     | 3.1     | 2.9     | 3.8     | 0       | 4.5     | 6.7     | 12.7    | 13.8    | 16.7    | 18.7    |
| MG000017       | 15.6            | 8.9     | 9.3     | 10.3    | 12.3    | 0       | 4.5     | 13.4    | 15.4    | 17.9    | 18.1    | 19.1    |
| MG000018       | 4.6             | 2.3     | 1.3     | 1.2     | 1.2     | 0.9     | 0.7     | 0.5     | 0.6     | 0.8     | 0.8     | 0.7     |
| MG000019       | 0.4             | 0.4     | 0.4     | 0.3     | 0.3     | 0       | 0.1     | 0.3     | 0.4     | 0.5     | 0.6     | 0.9     |
| MG000020       | Flooded         | 0.1     | 0.1     | 0.1     | 0.2     | Flooded |
| MG000046       |                 |         |         |         | 0.4     | 2.1     |         | 1.9     | 1.1     | 0.9     | 0.8     | 0.9     |
| MG000047       | 1.4             | 0.4     | 0.4     | 0.5     | 0.5     | 1.4     | 1.1     | 1.4     | 1.1     | 0.8     | 0.8     | 0.8     |
| MG000048       | 0.1             | 0.1     | 0.1     | 0.2     | 0.2     | 0.9     | 1.2     | 3.1     | 0.9     | 0.6     | 0.8     | 0.7     |
| MG000049       | 0.1             | 0.1     | 0.1     | 0.1     | 0.2     | 0       | 0.7     | 0.4     | 0.5     | 0.6     | 0.5     | 0.5     |

<sup># -</sup> Problem with gas meter therefore it was not possible to take

Landfill Gas Results 2012 Ballynagran W0165-02

|                | Jan            | Feb     | Mar     | Apr     | May     | Jun     | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     |
|----------------|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Sample Station | $\mathbf{O_2}$ | $O_2$   |
| Number         | (% v/v)        | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) | (% v/v) |
| MG000001       | 20.9           | 21.5    | 20.9    | 20.5    | 20.6    | 21.5    | 21.1    | 20.9    | 20.5    | 20.5    | 20.5    | 20.7    |
| MG000002       | 20.8           | 18.5    | 21.1    | 20.9    | 20.1    | 16.5    | 18.5    | 19.8    | 19.6    | 19.9    | 20.6    | 20.6    |
| MG000003       | 21.2           | 21.5    | 20.9    | 20.8    | 20.3    | 21.1    | 20.4    | 20.1    | 20.1    | 20.2    | 20.3    | 20.4    |
| MG000004       | 21             | 21.3    | 20.7    | 20.6    | 20.4    | 21      | 20.8    | 20.6    | 20.2    | 20.2    | 20.3    | 20.3    |
| MG000005       | 20.6           | 20.3    | 19.8    | 20.1    | 19.9    | 16.1    | 19.4    | 20.2    | 20.4    | 20.4    | 20.5    | 20.6    |
| MG000006       | 18.5           | 15.5    | 18.5    | 18.7    | 20.3    | 15.2    | 18.2    | 20.4    | 20.6    | 20.6    | 20.4    | 20.5    |
| MG000007       | 20.1           | 21.2    | 20.9    | 20.6    | 20.3    | Flooded |
| MG000008       | Flooded        | 21.2    | 17.1    | 18.3    | 19.5    | Flooded |
| MG000009       | 20.7           | 21.6    | 21.1    | 20.9    | 20.9    | 17.5    | 16.9    | 17.8    | 18.8    | 19.8    | 20.8    | 20.9    |
| MG000010       | 15.9           | 21.5    | 21.2    | 21.1    | 20.7    | 15.9    | 17.1    | 18.2    | 19.2    | 19.2    | 19.9    | 20.5    |
| MG000011       | 20.3           | 20.5    | 20.6    | 20.5    | 20.4    | 17.5    | 17.8    | 18.3    | 19.3    | 19.4    | 19.8    | 20.3    |
| MG000012       | 20.3           | 20.7    | 20.7    | 20.6    | 20.6    | 19.8    | 19.5    | 20.1    | 20.4    | 20.5    | 20.5    | 20.6    |
| MG000013       | 21.1           | 21.4    | 21.1    | 21      | 20.5    | 21.5    | 20.9    | 20.7    | 20.6    | 20.7    | 20.6    | 20.6    |
| MG000014       | 18.1           | 20.8    | 21      | 20.9    | 20.5    | 17.2    | 17.6    | 18.3    | 18.5    | 20.5    | 20.6    | 20.7    |
| MG000015       | 21             | 21.3    | 21      | 21      | 20.5    | 21.2    | 21      | 16.9    | 17.4    | 20.4    | 20.5    | 20.4    |
| MG000016       | 19.7           | 15      | 13.7    | 14.5    | 12.9    | 20.1    | 15.9    | 17.9    | 18.9    | 17.9    | 16.9    | 18.3    |
| MG000017       | 7.9            | 15.1    | 9.3     | 10.1    | 12.8    | 21.1    | 17.8    | 16.5    | 16.2    | 17.2    | 17.6    | 18      |
| MG000018       | 12             | 15.4    | 18.5    | 18.9    | 19.5    | 20.1    | 20.3    | 20.8    | 20.6    | 20.2    | 20.3    | 20.4    |
| MG000019       | 21.1           | 21.4    | 21      | 20.9    | 20.2    | 21      | 20.9    | 20.3    | 20.5    | 20.5    | 20.6    | 20.4    |
| MG000020       | Flooded        | 21.5    | 21.3    | 20.8    | 19.9    | Flooded |
| MG000046       |                |         |         |         | 20.1    | 18.1    |         | 19.8    | 19.9    | 20      | 20.4    | 20.2    |
| MG000047       | 20.4           | 21.9    | 20.7    | 20.6    | 20.4    | 20.5    | 19.7    | 20.1    | 20.2    | 20.1    | 20.2    | 20.2    |
| MG000048       | 21.1           | 21.7    | 20.9    | 20.8    | 20.7    | 20.2    | 20.7    | 20.6    | 20.5    | 20.5    | 20.5    | 20.6    |
| MG000049       | 21             | 21.7    | 21.1    | 21      | 20.9    | 21.1    | 20.3    | 20.6    | 20.4    | 20.2    | 20.3    | 20.3    |

<sup># -</sup> Problem with gas meter therefore it was not possible to take

Landfill Gas Results 2012 Ballynagran W0165-02

| Sample Station | Jan<br><b>Barome</b> t | Feb<br><b>Baromet</b> | Mar<br><b>Baromet</b> | Apr<br><b>Baromet</b> | May<br><b>Baromet</b> | Jun<br><b>Barome</b> t | Jul<br><b>Baromet</b> | Aug<br><b>Baromet</b> | Sep<br><b>Barome</b> t | Oct<br><b>Baromet</b> | Nov<br><b>Baromet</b> | Dec<br><b>Baromet</b> |
|----------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|
| Number         | ric                    | ric                   | ric                   | ric<br>Pressure       | ric                   | ric                    | ric                   | ric                   | ric                    | ric                   | ric                   | ric                   |
| MG000001       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000002       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000003       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000004       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000005       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000006       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000007       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000008       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000009       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000010       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000011       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000012       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000013       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000014       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000015       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000016       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000017       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000018       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000019       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000020       | Flooded                | 1028                  | 1002                  | 1002                  | 1004                  | Flooded                | Flooded               | Flooded               | Flooded                | Flooded               | Flooded               | Flooded               |
| MG000046       |                        |                       |                       |                       | 1004                  | 994                    |                       | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000047       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000048       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |
| MG000049       | 1020                   | 1028                  | 1002                  | 1002                  | 1004                  | 994                    | 994                   | 999                   | 1001                   | 1006                  | 1013                  | 990                   |

measurement

| Noise Data 2012                                        |                    |
|--------------------------------------------------------|--------------------|
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
| C:\I2\048_Greenstar\01_Ballynagran\AER2012\0480105.Doc | April 2013 (BS/KC) |

|          |           | Measured Noise Levels (dB re. 2x10-5<br>Pa) |           | re. 2x10-5       |                 |                                                                                                                                                                                                                                                                               |
|----------|-----------|---------------------------------------------|-----------|------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location | Time      | $L_{ m Aeq}$                                | $L_{A10}$ | L <sub>A90</sub> | Specific level* | Comments                                                                                                                                                                                                                                                                      |
| NL1      | 1034-1049 | 49                                          | 53        | 43               | <43             | No facility emissions audible. Distant traffic to S faintly audible. Rustling vegetation and wind noise more significant here due to exposure. Bird song/calls and aircraft.                                                                                                  |
| NL2      | 0949-1004 | 44                                          | 46        | 39               | 39              | Tracked excavator operating in active cell continuously audible at low level, not significant. No other onsite emissions audible. Distant road traffic continuously slightly audible to S. Sporadic road traffic audible outside site boundary. Bird song/calls and aircraft. |
| NL3      | 1012-1027 | 56                                          | 59        | 48               | 56              | Tracked excavator and wheeled compactor in active cell area continuously clearly audible. Emissions from sporadic trucks accessing cell also audible. Ejector trailer donkey engines significant 1012-1020. Bird song/calls and aircraft. Offsite traffic noise not audible.  |
| NL4      | 0910-0925 | 43                                          | 44        | 40               | <40             | No facility emissions audible. Distant traffic to S slightly audible continuously. Dog barking several hundred metres SW frequently audible. Bird song/calls and aircraft.                                                                                                    |
| NSL1     | 0849-0904 | 44                                          | 45        | 36               | <36             | No facility emissions audible. Distant road traffic to S continuously audible at low level. Sporadic local traffic dominant when present. Bird song/calls and aircraft. Lightly rustling vegetation and nearby watercourse audible slightly audible.                          |
| NSL2     | 0829-0844 | 60                                          | 65        | 46               | <46             | No facility emissions audible apart from sporadic truck movements on facility access road. N11 traffic to E and SE continuously audible and significant. Intermittent local road traffic dominant when present. Bird song/calls and aircraft.                                 |

<sup>\*</sup> Specific level: Sound pressure level contribution considered attributable to facility, determined from field notes, time history profiles, statistical analysis, frequency spectra and other parameters.

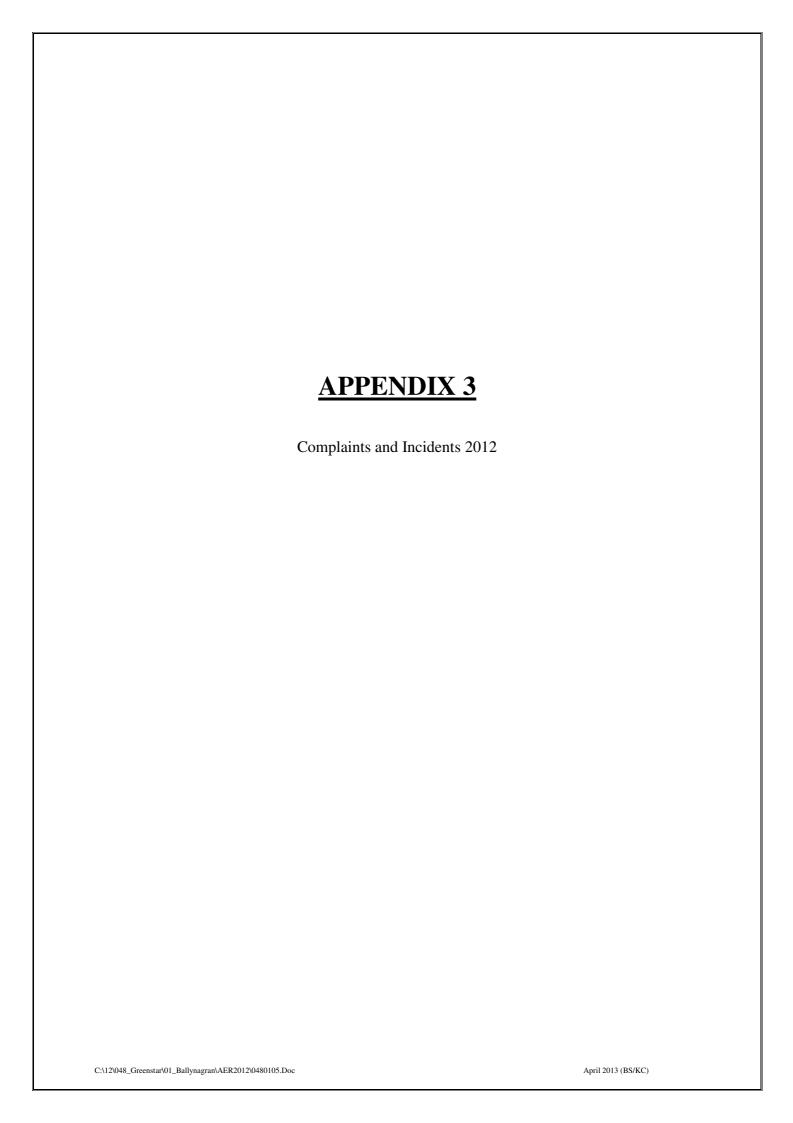
| 140130 1103 | ults 2012 |                                             |           |            |          |                                                                                                              |
|-------------|-----------|---------------------------------------------|-----------|------------|----------|--------------------------------------------------------------------------------------------------------------|
|             |           | Measured Noise Levels (dB re. 2x10-5<br>Pa) |           | re. 2x10-5 |          |                                                                                                              |
|             |           |                                             |           |            |          |                                                                                                              |
|             |           | _                                           |           |            | Specific |                                                                                                              |
| Location    | Time      | $L_{Aeq}$                                   | $L_{A10}$ | $L_{A90}$  | level*   | Comments                                                                                                     |
| NL1         | 1314-1329 | 45                                          | 46        | 38         | <<38     | No Greenstar emissions audible apart from slightly audible reversing alarms on occasion. Distant road        |
|             |           |                                             |           |            |          | traffic continuously significant in background from several directions. Bird song/calls.                     |
| NL2         | 1227-1242 | 52                                          | 54        | 42         | 52       | Emissions audible from occasional trucks and dump trucks passing on haul road. No other site emissions       |
|             |           |                                             |           |            |          | audible. Sporadic road traffic audible outside boundary. Distant road traffic to SE continuously audible.    |
|             |           |                                             |           |            |          | Bird song/calls and aircraft.                                                                                |
| NL3         | 1251-1306 | 47                                          | 49        | 45         | 47       | Site emissions from plant in and above active cell, from gas flare plant, and from mobile plant near latter, |
|             |           |                                             |           |            |          | continuously audible and dominant. N11 traffic continuously audible in background. Bird song/calls and       |
|             |           |                                             |           |            |          | aircraft.                                                                                                    |
| NL4         | 1157-1212 | 51                                          | 53        | 37         | <<37     | No Greenstar emissions audible apart from occasionally audible faint reversing alarms. Local bird calls      |
|             |           |                                             |           |            |          | and bird song significant. Distant traffic audible to E and S. Aircraft.                                     |
| NSL1        | 1134-1149 | 45                                          | 47        | 40         | <40      | 6x6 dump truck emissions sporadically audible at low level when passing on nearest onsite haul road. No      |
|             |           |                                             |           |            |          | other site emissions audible. Sporadic local traffic dominant, distant local road traffic significant, and   |
|             |           |                                             |           |            |          | distant N11 traffic audible. Bird song/calls and aircraft.                                                   |
| NSL2        | 1115-1130 | 61                                          | 56        | 44         | 45       | No emissions audible from Greenstar facility apart from occasional trucks on access road and through         |
|             |           |                                             |           |            |          | weighbridge. However, from 1124, continuous emissions clearly audible from bowser near weighbridge,          |
|             |           |                                             |           |            |          | codominant with N11. N11 traffic continuously audible and significant along long corridor. Intermittent      |
|             |           |                                             |           |            |          | local traffic dominant when present. Bird song/calls and aircraft. Agricultural or quarry plant slightly     |
|             |           |                                             |           |            |          | audible to S occasionally.                                                                                   |
| NSL3        | 1055-1110 | 63                                          | 66        | 53         | <<53     | No facility emissions audible. N11 traffic along corridor continuously audible to N, S and E. No other       |
|             |           |                                             |           |            |          | noise audible apart from intermittent traffic on side road, and local birdsong.                              |
|             |           |                                             |           |            |          | and total of description.                                                                                    |

|          |           | Measured Noise Levels (dB re. 2x10-5<br>Pa) |           | re. 2x10-5       |                 |                                                                                                                                                                                                                                              |
|----------|-----------|---------------------------------------------|-----------|------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location | Time      | $L_{Aeq}$                                   | $L_{A10}$ | L <sub>A90</sub> | Specific level* | Comments                                                                                                                                                                                                                                     |
| NL1      | 1449-1504 | 45                                          | 48        | 41               | <41             | No emissions audible from site apart from faint reversing alarms on occasion, and sporadic donkey engines. Offsite, tractor continuously audible in field and yard nearby. Bird song/calls and aircraft. Rustling vegetation.                |
| NL2      | 1350-1405 | 49                                          | 50        | 35               | 49              | Operations in active cell area not audible. Intermittent truck movements on adjacent haul road dominant when present. Extraneous noise audible from public road traffic outside boundary, bird song/calls, aircraft and rustling vegetation. |
| NL3      | 1420-1435 | 48                                          | 51        | 43               | 43              | Emissions from trucks and plant in cell audible at low level, screened by intervening mound. Gas flare plant faintly audible. Bird song/calls and aircraft.                                                                                  |
| NL4      | 1238-1253 | 42                                          | 46        | 33               | <33             | Truck movements on W haul road at Greenstar facility occasionally faintly audible. No other noise audible apart from rustling vegetation, aircraft and bird song/calls.                                                                      |
| NSL1     | 1215-1230 | 51                                          | 46        | 34               | <34             | Site emissions audible at low level occasionally from truck and dump truck movements on nearest haul road, not significant. Sporadic local road traffic dominant when present. Bird song/calls and aircraft. Rustling vegetation.            |
| NSL2     | 1155-1210 | 64                                          | 63        | 44               | <44             | Site emissions audible occasionally at low level, from truck movements on access road and haul road.  Offsite, passing road traffic intermittently dominant. Bird song/calls and aircraft. Rustling vegetation.                              |
| NSL3     | 1520-1535 | 61                                          | 63        | 54               | <<54            | No Greenstar emissions audible. N11 traffic continuously audible and dominant. Side road traffic and bird song also audible.                                                                                                                 |

| Noise nes |           | ,,        |           |           |          |                                                                                                              |
|-----------|-----------|-----------|-----------|-----------|----------|--------------------------------------------------------------------------------------------------------------|
|           |           |           | P         | a)        |          |                                                                                                              |
|           |           |           |           |           | Specific |                                                                                                              |
| Location  | Time      | $L_{Aeq}$ | $L_{A10}$ | $L_{A90}$ | level*   | Comments                                                                                                     |
| NL1       | 1600-1615 | 48        | 48        | 44        | <44      | Onsite excavator bucket occasionally slightly audible. No other site emissions audible. Distant road traffic |
|           |           |           |           |           |          | continuously dominant. Aircraft. Cattle occasionally lowing at nearby yard.                                  |
| NL2       | 1515-1530 | 48        | 50        | 46        | 43       | Onsite excavator on mound continuously audible at low level. No other site emissions audible. N11 traffic    |
|           |           |           |           |           |          | to E and SE continuously audible and significant. Sporadic traffic outside site boundary clearly audible     |
|           |           |           |           |           |          | when present. Bird song/calls and aircraft.                                                                  |
| NL3       | 1538-1553 | 51        | 49        | 46        | 43       | Onsite excavator on mound continuously slightly audible. Gas engine also slightly audible. Distant road      |
|           |           |           |           |           |          | traffic to S and SE significant. Bird song decreasing. Aircraft.                                             |
| NL4       | 1446-1501 | 41        | 42        | 39        | <39      | Excavator at site continuously slightly audible. Distant traffic, dog barking, bird song/calls and aircraft. |
|           |           |           |           |           |          |                                                                                                              |
| NSL1      | 1424-1439 | 51        | 47        | 41        | 38       | Facility excavator continuously audible at low level. No other site emissions audible. Sporadic local        |
|           |           |           |           |           |          | traffic dominant when present. Distant road traffic to SE also continuously audible in background. Bird      |
|           |           |           |           |           |          | song/calls and aircraft. Occasional dog barking at nearby dwelling.                                          |
| NSL2      | 1403-1418 | 63        | 57        | 46        | <46      | Occasional emissions from excavator near maintenance garage audible at low level, not significant.           |
|           |           |           |           |           |          | Sporadic local road traffic dominant when passing. N11 traffic to SE and S continuously significant in       |
|           |           |           |           |           |          | background. Bird song/calls and aircraft.                                                                    |
| NSL3      | 1343-1358 | 65        | 67        | 58        | <<58     | No site emissions audible. N11 traffic continuously intrusive. No other noise audible other than local road  |
|           |           |           |           |           |          | traffic and local birdsong.                                                                                  |
|           |           |           |           |           |          |                                                                                                              |

| <u>Dust Data 2012</u>                                                     |  |
|---------------------------------------------------------------------------|--|
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
| C:\12\048_Greenstar\01_Ballynagran\AER2012\0480105.Doc April 2013 (BS/KC) |  |

**Dust Results 2012 Ballynagran W0165-02** 


|      | Jan  | Feb   | Mar      | Apr | May | Jun  | Jul  | Aug   | Sep    | Oct   | Nov   | Dec    |
|------|------|-------|----------|-----|-----|------|------|-------|--------|-------|-------|--------|
| AD6  | 9.5  | 34.45 | 41.49    | 159 | 169 | *    | 18.2 | 50.91 | 34.37  | 59.64 | 124.3 | 18.22  |
| AD7  | 13.2 | 29.86 | 18.15    | 183 | 345 | 22   | 24.2 | 21.43 | 64.86  | 108.9 | 61.1  | 36.98  |
| AD8  | 11.5 | 35.03 | 33.19    | 131 | 143 | 13   | 9.8  | 58.95 | 130.83 | 50.31 | 57.3  | 43.94  |
| AD9  | 57.4 | 41.34 | 60.16    | 104 | 267 | 17.6 | 23.4 | 26.26 | 76.51  | 53.94 | 60    | 66.99  |
| AD10 | 27.6 | 32.73 | 19.71    | 320 | 52  | 36   | 41.3 | *     | 87.59  | 57.57 | 16.1  | 19.29  |
| AD11 | 36.7 | 37.9  | 29.56    | 596 | 305 | *    | 35.7 | 35.91 | 44.35  | 59.12 | 20.4  | 80.92  |
| AD12 | 14.4 | 26.41 | 1,778.34 | 211 | 109 | 54   | 68.2 | 127   | 242.82 | 64.83 | 13.4  | 105.57 |

<sup>\*</sup>Sample Contaminated - Analysis Not Completed NS - denoted not sampled

| <u>PM10 Data 2012</u>                                  |                    |
|--------------------------------------------------------|--------------------|
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
| C:\12\048_Greenstar\01_Ballynagran\AER2012\0480105.Doc | April 2013 (BS/KC) |

PM10 Results 2012 Ballynagran W0165-02

| Location     | January PM <sub>10</sub> Concentration (µg/m³) | June PM <sub>10</sub><br>Concentration<br>(µg/m³) | September PM <sub>10</sub> Concentration (µg/m <sup>3</sup> ) | November PM <sub>10</sub> Concentration (µg/m³) |
|--------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|
| Location PM1 | 12                                             | 13                                                | 15                                                            | 8                                               |
| Location PM2 | 15                                             | 8                                                 | 16                                                            | 10                                              |
| Location PM3 | 13                                             | 9                                                 | 21                                                            | 8                                               |
| Location PM4 | 9                                              | 12                                                | 14                                                            | 11                                              |
| Limit Value  | 50                                             | 50                                                | 50                                                            | 50                                              |



| Document Type | FORM                |
|---------------|---------------------|
| Title         | Complaints register |
| Document No.  | F06b(i)             |



# **Complaints Register**

| 266 | 09.01.12                      | Mrs. Liz<br>Hayden       | 1 | Odour | F |
|-----|-------------------------------|--------------------------|---|-------|---|
| 267 | 13.01.12                      | Mrs. Liz<br>Hayden       | 1 | Odour | F |
| 268 | 16.01.12                      | Mr. Pat King             | 1 | Odour | F |
| 269 | 23.01.12                      | Mrs. Liz<br>Hayden       | 1 | Odour | F |
| 270 | 04.02.12 & 06.02.12           | Mr. Michael<br>Mulvihill | 2 | Odour | F |
| 271 | 01.02.12 - 08.02.12           | Mr. Mark<br>Doyle        | 1 | Odour | ı |
| 272 | 13.02.12                      | Mrs. Liz<br>Hayden       | 1 | Odour | F |
| 273 | 13.02.12 & 14.02.12           | Mr. Michael<br>Mulvihill | 2 | Odour | F |
| 274 | 24.02.12                      | Mrs. Liz<br>Hayden       | 1 | Odour | F |
| 275 | 01.03.12                      | Mr. Pat King             | 1 | Odour | F |
| 276 | 05.03.12 & 06.03.12           | Mr. Michael<br>Mulvihill | 2 | Odour | F |
| 277 | 18.03.12, 21.03.12 & 22.03.12 | Mr. Michael<br>Mulvihill | 3 | Odour | F |
| 278 | 18.03.12 & 26.03.12           | Mrs. Liz<br>Hayden       | 2 | Odour | F |
| 279 | 28.03.12, 29.03.12 & 02.04.12 | Mr. Michael<br>Mulvihill | 2 | Odour | F |
| 280 | 30.03.12 & 31.03.12           | Mrs. Liz<br>Hayden       | 2 | Odour | F |
| 281 | 30.03.12 & 31.03.12           | Mrs. Joanne<br>Verdes    | 2 | Odour | F |
| 282 | 12.04.12 & 14.04.12           | Mr. Michael<br>Mulvihill | 2 | Odour | F |
| 283 | 18.04.12                      | Mr. Michael<br>Mulvihill | 1 | Odour | F |

|  |  | Issue Date | 03.07.08 | Revision No. | 2 | Page 1 of 4 | Authorised by | JJ |
|--|--|------------|----------|--------------|---|-------------|---------------|----|
|--|--|------------|----------|--------------|---|-------------|---------------|----|

| Document Type | FORM                |
|---------------|---------------------|
| Title         | Complaints register |
| Document No.  | F06b(i)             |

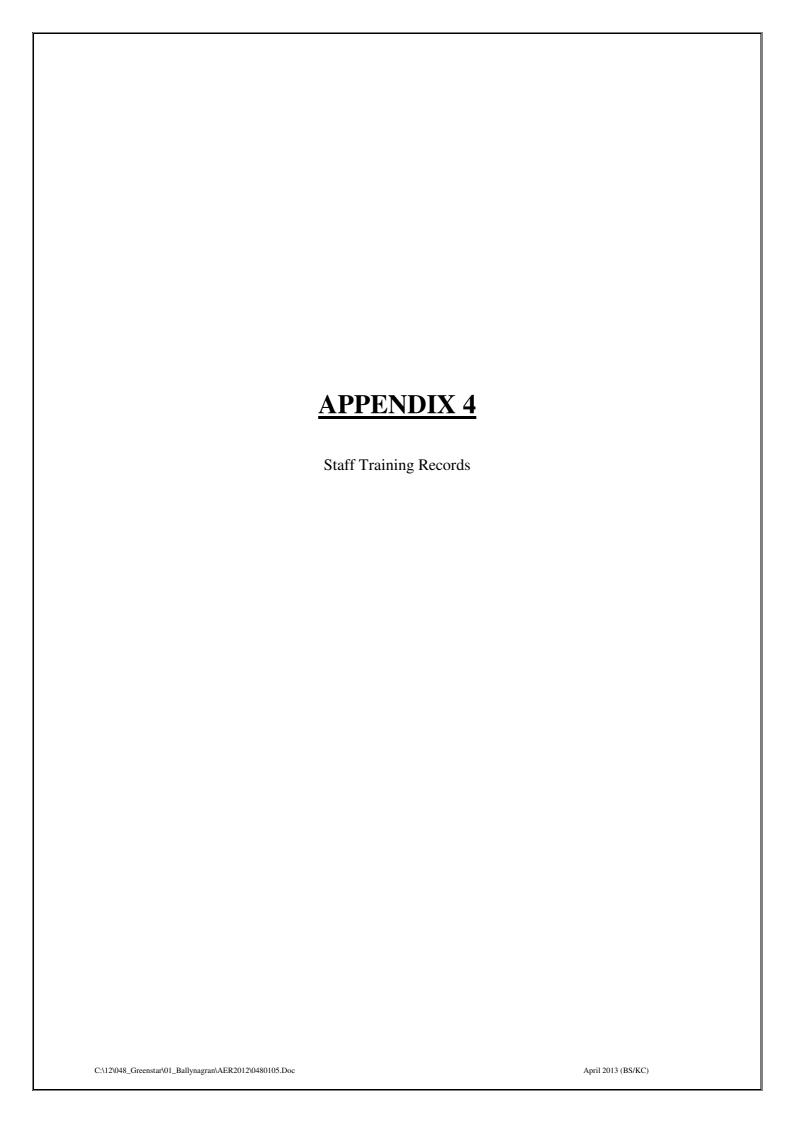


| 284 | 25.04.12 & 26.04.12                                                                                              | Mr. Michael<br>Mulvihill | 2 | Odour | F |
|-----|------------------------------------------------------------------------------------------------------------------|--------------------------|---|-------|---|
| 285 | 02.05.12 & 03.05.12                                                                                              | Mr. Michael<br>Mulvihill | 2 | Odour | F |
| 286 | 15.05.12                                                                                                         | Mr. Michael<br>Mulvihill | 2 | Odour | F |
| 287 | 15.05.12                                                                                                         | Mrs. Liz<br>Hayden       | 1 | Odour | F |
| 288 | 17.05.12                                                                                                         | Mrs. Liz<br>Hayden       | 1 | Odour | F |
| 289 | 17.05.12, 19.05.12 & 24.05.12                                                                                    | Mr. Michael<br>Mulvihill | 3 | Odour | F |
| 290 | 25.05.12                                                                                                         | Mr. Michael<br>Mulvihill | 1 | Odour | F |
| 291 | 26.05.12                                                                                                         | Mrs. Liz<br>Hayden       | 1 | Odour | F |
| 292 | 05.06.12 & 07.06.12                                                                                              | Mr. Michael<br>Mulvihill | 2 | Odour | F |
| 293 | 11.06.12                                                                                                         | Mrs. Liz<br>Hayden       | 1 | Odour | F |
| 294 | 11.06.12 & 12.06.12 x<br>2 (am & pm)                                                                             | Mr. Michael<br>Mulvihill | 2 | Odour | F |
| 295 | 17.06.12                                                                                                         | Mr. Michael<br>Mulvihill | 1 | Odour | F |
| 296 | 27.06.12                                                                                                         | Mrs.<br>Fidelma<br>King  | 1 | Odour | F |
| 297 | 06.07.12, 08.07.12 & 09.07.12                                                                                    | Mr. Michael<br>Mulvihill | 3 | Odour | F |
| 298 | 04.07.12                                                                                                         | Mrs.<br>Fidelma<br>King  | 1 | Odour | F |
| 299 | 06.07.12                                                                                                         | Mrs. Liz<br>Hayden       | 1 | Odour | F |
| 300 | 13.07.12 x 2<br>(0809hrs and<br>1543hrs), 15.07.12<br>(1418hrs, 16.07.12<br>(1118hrs & 1620hrs)<br>x 2, 17.07.12 | Mrs. Liz<br>Hayden       | 6 | Odour | F |

| Issue Date 03.07.08 Revision No. | 2 | Page 2 of 4 | Authorised by | JJ |  |
|----------------------------------|---|-------------|---------------|----|--|
|----------------------------------|---|-------------|---------------|----|--|

| Document Type | FORM                | T |
|---------------|---------------------|---|
| Title         | Complaints register |   |
| Document No.  | F06b(i)             | ٦ |




|     | (0941hrs)                                  |                               |   |       |   |
|-----|--------------------------------------------|-------------------------------|---|-------|---|
| 301 | 13.07.12 x 2 &<br>18.07.12                 | Mr. Michael.<br>Mulvihill     | 3 | Odour | F |
| 302 | 20.07.12                                   | Mrs. Joanne<br>Verdes         | 1 | Odour | ı |
| 303 | 20.07.12 & 25.07.12<br>& 26.07.12          | Mr. Michael.<br>Mulvihill     | 2 | Odour | F |
| 304 | 20.07.12 & 25.07.12 x<br>4 & 26.07.12      | Mrs. Liz<br>Hayden            | 6 | Odour | F |
| 305 | 25.07.12 & 26.07.12                        | Mrs.<br>Delphine<br>Geoghegan | 2 | Odour | F |
| 306 | 20.07.12 & 21.07.12<br>& 24.07.12          | Mrs.<br>Fidelma<br>King       | 3 | Odour | F |
| 307 | 27.07.12                                   | Mr. Michael.<br>Mulvihill     | 1 | Odour | F |
| 308 | 27.07.12 & 30.07.12                        | Mrs. Pauline. 2 Delahunt      |   | Odour | F |
| 309 | 05.08.12                                   | Mr. Michael.<br>Mulvihill     | 1 | Odour | F |
| 310 | 08.08.12                                   | Mrs.<br>Fidelma<br>King       | 1 | Odour | F |
| 311 | 10.08.12 x 2                               | Mrs. Liz<br>Hayden            | 2 | Odour | F |
| 312 | 10.08.12 & 11.08.12                        | Ms. Jennifer<br>Cope          | 2 | Odour | F |
| 313 | 13.08.12                                   | Mr. Robert<br>Sally           | 1 | Odour | F |
| 314 | 24.08.12, 25.08.12,<br>30.08.12 & 30.08.12 | Mr. Michael.<br>Mulvihill     | 4 | Odour | F |
| 315 | 30.08.12                                   | Mrs. Liz<br>Hayden            | 1 | Odour | F |
| 316 | 30.08.12                                   | Mrs. Joanne<br>Verdes         | 1 | Odour | F |
| 317 | 04.09.12 x 2 & 05.09.12 & 07.09.12         | Mr. Michael.<br>Mulvihill     | 4 | Odour | F |

| Issue Date   U3.U7.U8   Revision No.   2   Page 3 of 4   Authorisec | Issue Date | 03.07.08 | Revision No. | 2 | Page 3 of 4 | Authorised by | JJ |
|---------------------------------------------------------------------|------------|----------|--------------|---|-------------|---------------|----|
|---------------------------------------------------------------------|------------|----------|--------------|---|-------------|---------------|----|

| Document Type | FORM                |  |
|---------------|---------------------|--|
| Title         | Complaints register |  |
| Document No.  | F06b(i)             |  |



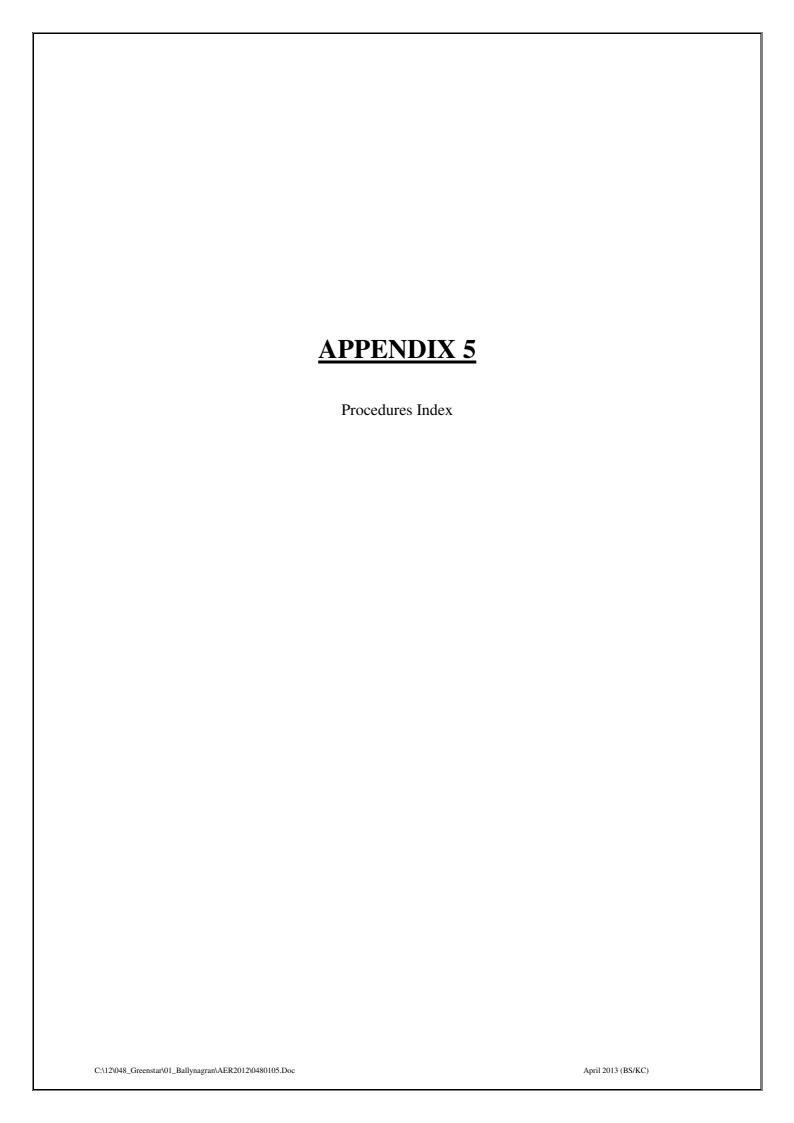
|     |                                                                                |                           |   | T     |   |
|-----|--------------------------------------------------------------------------------|---------------------------|---|-------|---|
| 318 | 05.09.12                                                                       | Mrs. Liz<br>Hayden        | 1 | Odour | F |
| 319 | 10.09.12,15.09.12,<br>18.09.12 & 21.09.12                                      | Mrs. Liz<br>Hayden        | 4 | Odour | F |
| 320 | 21.09.12 & 24.09.12<br>& 25.09.12 x 2                                          | Mr. Michael.<br>Mulvihill | 4 | Odour | F |
| 321 | 26.09.12 & 08.10.12<br>& 09.10.12                                              | Mrs. Liz<br>Hayden        | 3 | Odour | F |
| 322 | 08.10.12 & 09.10.12                                                            | Mr. Michael<br>Mulvihill  | 2 | Odour | F |
| 323 | 01.11.12, 27.10.12,<br>26.10.12, 23.10.12 &<br>22.10.12, 21.10.12,<br>19.10.12 | Mrs. Liz<br>Hayden        | 7 | Odour | F |
| 324 | 19.10.12 x 2,<br>22.10.12, 26.10.12,<br>27.10.12 & 29.10.12                    | Mr. Michael<br>Mulvihill  | 6 | Odour | F |
| 325 | 05.11.12 & 19.11.12                                                            | Mr. Michael<br>Mulvihill  | 2 | Odour | F |
| 326 | 23.11.12, 24.11.12,<br>25.11.12 & 27.11.12                                     | Mr. Michael<br>Mulvihill  | 4 | Odour | F |
| 327 | 29.11.12, 04.12.12,<br>09.12.12 & 11.12.12                                     | Mr. Michael<br>Mulvihill  | 4 | Odour | F |
| 328 | 10.12.12                                                                       | Mrs. Liz<br>Hayden        | 1 | Odour | F |
| 329 | 11.12.12                                                                       | Mrs. David<br>Tyrell      | 1 | Odour | F |
| 330 | 18.12.12, 20.12.12 x<br>3                                                      | Mrs. Liz<br>Hayden        | 4 | Odour | F |
| 331 | 16.12.12 & 18.12.12                                                            | Mrs.<br>Fidelma<br>King   | 2 | Odour | F |
| 332 | 19.12.12 & 20.12.12                                                            | Mr. Michael<br>Mulvihill  | 2 | Odour | F |



| Document type | FORM              | . ر |
|---------------|-------------------|-----|
| Title         | Training Schedule |     |
| Document No.  | F05               |     |



|                                                                  | 1          |                     |                 |           |                    |                    |                 |                 |                                       |                  |                  |                 |           |                     |
|------------------------------------------------------------------|------------|---------------------|-----------------|-----------|--------------------|--------------------|-----------------|-----------------|---------------------------------------|------------------|------------------|-----------------|-----------|---------------------|
| Trainee                                                          |            |                     | bbie            | <u>-</u>  |                    |                    | Joseph          | ر               | John                                  | <u>8</u>         |                  |                 | ALD.      | шî                  |
| (C denotes a course where a certificate has been received        | John       | ń                   | - B             | , Neil    |                    | пĵ                 | sor             | Kevin           | ١, ر                                  | Angela           | . <u>□</u>       | <b>Ì</b> ≻      | H.        | ₹ _                 |
| and is on display in the offices)                                | ٦, ٠       |                     | ż               | ES        | ∃ ×                | ₽                  |                 | Υ΄.             | _ 5                                   | Α,               | Ž č              | <u> </u>        | ig ig     | NO Nae              |
| and is on display in the offices)                                | JONES,     | MACLEOD,<br>Michael | KIRWAN, Robbie  | MENZIES,  | POWELL,<br>Matthew | DONOHUE,<br>Joseph | MOORE,          | HEALY, I        | KINSELLA,                             | BATES, ,         | DUNN,<br>Domonic | MURPHY,<br>Noel | FITZGERAL | DONOHUE,<br>Michael |
| Course / Trainer                                                 | 9          | Σ̈́Š                | 蓋               | ME        | PC<br>Ma           | DO SO              | M               | 뿔               | 출                                     | BA               |                  | Renton          | Plant     | •                   |
| Adverse Weather / John Jones                                     | Oct-06     | Oct-06              | Oct-06          |           |                    | Oct-06             | Oct-06          | Jun-07          | Oct-06                                | Dec-05           |                  |                 |           |                     |
| Ascon Safety Induction                                           | Oct-06     | Oct-06              | Oct-06          |           |                    | Oct-06             | Oct-06          | Jun-07          | Oct-06                                | Oct-06           |                  |                 |           |                     |
| Banksman Procedures                                              | Jun-11     |                     |                 |           | Jun-11             |                    | Jun-11          | Jun-11          | Jun-11                                |                  |                  |                 |           |                     |
| Chainsaw Course / NIGEL KEANE consafe@mail.ie] - EXPIRY DATE     |            | Mar-14              |                 |           |                    | Apr-14             |                 |                 |                                       |                  |                  |                 |           |                     |
| Chemical Handling / Olivier Gardelle                             |            | May-15              | May-15          |           |                    | May-15             | May-15          |                 | May-15                                |                  |                  |                 |           |                     |
| CIWM Member                                                      | Yes        |                     | Yes C           |           |                    |                    |                 |                 |                                       |                  |                  |                 |           |                     |
| Communication Skills / LGR Training                              | Aug-08     | Aug-08              |                 |           |                    |                    |                 |                 |                                       |                  |                  |                 |           |                     |
| Compactor Operation / Safety Solutions EXPIRY DATES              |            | Oct-12 C            |                 |           |                    | Oct-12 <b>C</b>    | Oct-12 C        |                 |                                       |                  |                  |                 |           |                     |
| Complaints Procedure / John Jones                                | Oct-06     | Oct-06              | Oct-06          |           |                    |                    |                 |                 |                                       | Oct-06           |                  |                 |           |                     |
| Daily Inspections / John Jones                                   | Oct-06     | Oct-06              | Oct-06          |           |                    | Oct-06             | Oct-06          |                 | Oct-06                                | Dec-05           |                  |                 |           |                     |
| Driver qualification card EXPIRY DATE                            |            |                     |                 |           | Jan-15             |                    |                 |                 |                                       |                  |                  |                 |           |                     |
| Dumptruck / Jo Donohue                                           |            | Jun-07              |                 |           |                    | Jun-07             | Jun-07          |                 | Jun-07                                |                  |                  |                 |           |                     |
| Dumptruck Operation / T Duignan - EXPIRY DATES (CSCS)            |            | Sept-12 C           |                 |           |                    | Sept-12 <b>C</b>   | Jan-13 <b>C</b> | Jan-13 <b>C</b> | Jan-13 <b>C</b>                       |                  |                  |                 |           |                     |
| Energy Policy and awareness training / Robert Kirwan             | Mar-10     | Mar-10              | Mar-10          |           | Jul-10             | Mar-10             | Mar-10          | Mar-10          | Mar-10                                | Mar-10           |                  |                 |           |                     |
| Environmental Awareness training / Robert Kirwan                 | Jun-08     | Jun-08              | Jun-08          |           | Jun-10             | Jun-08             | Jun-08          | Jun-08          | Jun-08                                |                  | Sep-09           | Sep-09          | Sep-08    | Sep-08              |
| Excavator Operation / T Duignan - EXPIRY DATES (CSCS)            |            | Mar-15              |                 |           |                    | Dec-12 <b>C</b>    |                 |                 |                                       |                  |                  |                 |           |                     |
| FAS Waste Management Course                                      | Complete C | Complete C          | Complete C      | Autumn 07 |                    |                    |                 |                 |                                       | Winter 09        |                  |                 |           |                     |
| Fire Safety and Procedures / John Lennon                         |            | Jan-07              | ·               |           |                    | Jan-07             | Jan-07          |                 | Jan-07                                | Dec-05           |                  |                 |           |                     |
| Fire Warden                                                      |            | Apr-12              | Apr-12          |           |                    |                    |                 |                 |                                       |                  |                  |                 |           |                     |
| First Aid / NB Training Services or James Maye EXPIRY DATES      |            | May-14              | '               |           |                    |                    |                 |                 | May-14                                |                  |                  |                 |           |                     |
| First Line Supervisory Skills / Legal Island                     |            | Sept-07 <b>C</b>    |                 |           |                    |                    |                 |                 | , , , , , , , , , , , , , , , , , , , |                  |                  |                 |           |                     |
| Fleet insurance procedures training                              | Feb-11     | Feb-11              | Feb-11          |           | Feb-11             | Feb-11             |                 |                 |                                       |                  |                  |                 |           |                     |
| Gas Management / CIWM                                            | Jul-07     | Jul-08              | Mar-08 <b>C</b> | Sep-07    |                    |                    |                 |                 |                                       |                  |                  |                 |           |                     |
| Gas System Checks and Balancing / John Jones/Ciaran Geoghegan    |            | Apr-07              | Jan-08          |           |                    | Apr-07             | Apr-07          |                 |                                       |                  |                  |                 |           |                     |
| Hazard Identification & Risk Assessment Workshop / Oliver Callan |            | Mar-09 <b>C</b>     |                 |           |                    | i i                |                 |                 |                                       |                  |                  |                 |           |                     |
| Refresher Gas system check and balancing / Robert Kirwan         |            |                     | Jan-09          |           |                    |                    | Jan-09          | Jan-09          | Jan-09                                |                  |                  |                 |           |                     |
| H&S Induction / John Lennon                                      | Oct-06     | Oct-06              | Oct-06          |           |                    | Oct-06             | Oct-06          |                 | Oct-06                                | Dec-05           |                  |                 |           |                     |
| H&S Statement and Risk Assessments / Jim Duff                    |            | May-07              |                 | May-07    | Jun-10             | May-07             | May-07          |                 | May-07                                | May-07           |                  |                 |           |                     |
| Refresher H&S Statement and Risk Assessments / Jim Duff          | Apr-08     | Apr-08              | Apr-08          | ,         |                    | Apr-08             | Apr-08          | Apr-08          | Apr-08                                | ,                |                  |                 |           |                     |
| Housekeeping Procedures / J Jones                                | Nov-06     | Nov-06              | ,               |           |                    | Nov-06             | Nov-06          | 12 22           | Nov-06                                |                  |                  |                 |           |                     |
| HR Induction / Fiona Gilboy                                      | Nov-06     | Nov-06              |                 | Feb-07    |                    | Nov-06             | Nov-06          |                 | Nov-06                                | Dec-05           |                  |                 |           |                     |
| HR Discipilinary / Grievance Policy                              | Apr-09     | Mar-09              | Apr-09          |           |                    |                    |                 |                 |                                       |                  |                  |                 |           |                     |
| IOSH Managing Safety Course                                      | Jan-08     |                     | Jan-08          |           |                    |                    |                 |                 |                                       | Feb-10           |                  |                 |           |                     |
| ISO 14001 EMS internal auditors course / SGS UK Ltd              |            |                     |                 | Sep-07    |                    |                    |                 |                 |                                       | Sept-07 <b>C</b> |                  |                 |           |                     |
| ISO 18001 OH&S internal auditors course / SGS UK Ltd             |            |                     |                 |           |                    |                    |                 |                 |                                       | Oct-09           |                  |                 |           |                     |
| ISO Training / Robbie Kirwan                                     | Apr-08     | Apr-08              | Apr-08          |           |                    | Apr-08             | Apr-08          | Apr-08          | Apr-08                                | Apr-08           |                  |                 | Sep-08    | Sep-08              |
| KTK Gas System / Dominic                                         | 1 12. 22   | p                   |                 | May-07    |                    | ļ                  | May-07          |                 |                                       |                  |                  |                 |           |                     |
| KNK EMS system / R Wilkes                                        | 1          |                     | 1               | ,         |                    |                    |                 |                 |                                       | Apr-08           |                  |                 |           |                     |
| Landfill Construction / John Jones                               | Oct-06     | Oct-06              | Oct-06          |           |                    | Oct-06             | Oct-06          |                 | Oct-06                                | Dec-05           |                  |                 |           |                     |
| Licence Conditions / John Jones                                  | Oct-06     | Oct-06              | Oct-06          |           |                    | Oct-06             | Oct-06          | Jun-07          | Oct-06                                | Dec-05           |                  |                 |           |                     |


|               | Issue Date | Issue Date Constantly updated Revision 1 |  | Authorised by | JJ                             |
|---------------|------------|------------------------------------------|--|---------------|--------------------------------|
| Document type |            | FORM                                     |  |               | 7                              |
| Title         |            | Training Schedule                        |  |               | <b>S</b><br>greenstar          |
| Document No.  |            | F05                                      |  |               | greenstar setting the standard |

|                                                                    |                 | 1                   |                |          |                    |                    |                |                  | 1                |        |                   |                 |                | 1                   |
|--------------------------------------------------------------------|-----------------|---------------------|----------------|----------|--------------------|--------------------|----------------|------------------|------------------|--------|-------------------|-----------------|----------------|---------------------|
|                                                                    |                 |                     | <u>e</u>       | _        |                    |                    | ۲ <sub>۵</sub> |                  | гц               | æ      |                   |                 | Ъ,             |                     |
| Trainee                                                            | Ę               |                     | 9              | Ze:      |                    | _                  | Joseph         | Kevin            | John             | Angela |                   | <u>ب</u> ا      | FITZGERALD     | H)                  |
| (C denotes a course where a certificate has been received          | John            | D,                  | æ              |          | r                  | Щ                  |                | Ke               |                  | Αυί    | ਜ਼ੇ iS            | \(\frac{1}{2}\) | ij             | 티                   |
| and is on display in the offices)                                  | Ś               | E E                 | Ž              | Ě        | ∏ Me               | 其                  | Ę.             | ,<br>,           | ∷∷               | Ś      | 2 6               | # =             | FITZG<br>David | )NC                 |
|                                                                    | 男               | CL<br>tha           | KIRWAN, Robbie | MENZIES, | tt WE              | S S                | ğ              | AL,              | ISE              | 2      | DUNNE,<br>Domonic | MURPHY,<br>Noel | FIT            | DONOHUE,<br>Michael |
| Course / Trainer                                                   | JONES,          | MACLEOD,<br>Michael | ᄌ              | M        | POWELL,<br>Matthew | DONOHUE,<br>Joseph | MOORE,         | HEALY, I         | KINSELLA,        | BATES, |                   | Renton          | Plant          |                     |
| Licence Refresher Training (Cond. 5 and 7) / Neil Menzies          |                 | Apr-07              |                |          |                    | Apr-07             | Apr-07         |                  | Apr-07           |        |                   |                 |                |                     |
| Manual Handling Training - EXPIRY DATES                            | Jun-14          | Jun-14              | Jun-14         |          | Jun-14             | Jun-14             | •              | Jun-14           | Jun-14           |        |                   |                 |                |                     |
| Mobile elevating work platform operation - EXPIRY DATES            |                 | Aug-17              |                |          |                    | Aug-17             |                |                  |                  |        |                   |                 |                |                     |
| Off site training / KTK                                            | Oct-06          | Oct-06              | Oct-06         |          |                    | Oct-06             | Oct-06         |                  | Oct-06           |        |                   |                 |                |                     |
| Report Writing / Professional Development training                 |                 |                     |                | Nov-07   |                    |                    |                |                  |                  |        |                   |                 |                |                     |
| Safe Pass - EXPIRY DATES                                           | Jul-15          | Oct-13              | Oct-13         |          | Jun-13             | Jul-13             | Jul-15         | Nov-13           | Jun-14           |        |                   |                 |                |                     |
| Safety, Health & Welfare Programme FETEC level 5 / NISO            |                 |                     |                |          |                    |                    |                |                  |                  | Feb-10 |                   |                 |                |                     |
| Senior Management Legal Briefing / Ray Byrne NIFAST                | Nov 08 <b>C</b> |                     |                |          |                    |                    |                |                  |                  |        |                   |                 |                |                     |
| Site Induction / John Jones                                        | Oct-06          | Oct-06              | Oct-06         | Feb-07   |                    | Oct-06             | Oct-06         |                  | Oct-06           | Oct-06 |                   |                 |                |                     |
| Skid Steer / Michael Macleod                                       |                 |                     |                | Jun-07   |                    | Jun-07             | Jun-07         |                  | Jun-07           |        |                   |                 |                |                     |
| Skid Steer Certification / T Duignan - EXPIRY DATES (CSCS)         |                 | Sept-12 <b>C</b>    |                |          |                    | Sept-12 C          | Sept-12 C      | Sept-12 <b>C</b> | Sept-12 <b>C</b> |        |                   |                 |                |                     |
| Supervising Safety Course / NIFAST                                 | Nov-07          | Nov-07              |                |          |                    | Nov-07             | •              |                  |                  |        |                   |                 |                |                     |
| TBT Slips and Trips / J Jones                                      | Jan-07          | Jan-07              |                |          |                    | Jan-07             | Jan-07         |                  | Jan-07           |        |                   |                 |                |                     |
| TBT Banks Mans Procedure / John Jones                              |                 | Feb-07              |                |          |                    | Feb-07             | Feb-07         |                  | Feb-07           | Feb-07 |                   |                 |                |                     |
| TBT Weil's Disease Refresher / John Jones                          |                 | Mar-07              |                |          |                    | Mar-07             | Mar-07         |                  | Mar-07           | Mar-07 |                   |                 |                |                     |
| TBT Fire Safety DVD / J Jones                                      |                 | May-07              |                | May-07   |                    | May-07             | May-07         |                  | May-07           | May-07 |                   |                 |                |                     |
| TBT Working in Confined Spaces / Neil Menzies                      | Jun-07          | Jun-07              |                | Jun-07   |                    | Jun-07             | Jun-07         |                  | ĺ                |        |                   |                 |                |                     |
| TBT Correct use of Safety Belts / John Jones                       |                 | Jul-07              |                | Jul-07   |                    | Jul-07             | Jul-07         | Jul-07           | Jul-07           | Jul-07 |                   |                 |                |                     |
| TBT Manual handling / M Macloed                                    | Aug-07          | Aug-07              |                | Aug-07   |                    | Aug-07             | Aug-07         |                  | Aug-07           | Aug-07 |                   |                 |                |                     |
| TBT Banksmans Procedures / John Jones                              |                 | Oct-07              |                | Oct-07   |                    | Oct-07             | Oct-07         | Oct-07           | Oct-07           | Oct-07 |                   |                 |                |                     |
| TBT Material Safety Data Sheets / John Jones                       | Dec-07          | Dec-07              | Dec-07         |          |                    | Dec-07             | Dec-07         | Dec-07           | Dec-07           | Dec-07 |                   |                 |                |                     |
| TBT Safe use of Pressure Washer / Micheal Macleod                  | Feb-08          | Feb-08              | Feb-08         |          |                    | Feb-08             | Feb-08         | Feb-08           | Feb-08           | Feb-08 |                   |                 |                |                     |
| TBT Compaction of covering waste / John Jones                      | Mar-08          | Mar-08              |                |          |                    |                    | Mar-08         | Mar-08           | Mar-08           | Mar-08 |                   |                 |                |                     |
| TBT Horrific Accidents DVD / J Jones                               | Apr-08          | Apr-08              | Apr-08         |          |                    |                    | Apr-08         | Apr-08           | Apr-08           | Apr-08 |                   |                 |                |                     |
| TBT Slips, Trips and Falls / DVD Safety Media                      | Jun-08          | Jun-08              | '              |          |                    | Jun-08             | Jun-08         | Jun-08           |                  | Jun-08 |                   |                 | Jun-08         |                     |
| TBT Fire Safety DVD / J Jones                                      | Aug-08          |                     | Aug-08         |          |                    | Aug-08             | Aug-08         | Aug-08           | Aug-08           | Aug-08 |                   |                 | Aug-08         | Aug-08              |
| TBT Manual handling DVD / J Jones                                  | Sep-08          | Sep-08              | Sep-08         |          |                    | Ŭ                  | Sep-08         | Sep-08           | Sep-08           | Sep-08 |                   |                 | Ŭ              | Ŭ                   |
| TBT Banksmans Procedures / John Jones                              | Oct-08          | Oct-08              | Oct-08         |          |                    | Oct-08             | Oct-08         | Oct-08           | Oct-08           | Oct-08 |                   |                 | Oct-08         |                     |
| TBT Litter prevention and litter cages assembly / disassembly / MM | Nov-08          | Nov-08              | Nov-08         |          |                    | Nov-08             | Nov-08         | Nov-08           | Nov-08           | Nov-08 |                   |                 | Nov-08         | Nov-08              |
| TBT Suppression of dust / MM                                       | Nov-08          | Nov-08              | Nov-08         |          |                    | Nov-08             | Nov-08         | Nov-08           | Nov-08           | Nov-08 |                   |                 | Nov-08         | Nov-08              |
| TBT Vermin control / MM                                            | Nov-08          | Nov-08              | Nov-08         |          |                    | Nov-08             | Nov-08         | Nov-08           | Nov-08           | Nov-08 |                   |                 | Nov-08         | Nov-08              |
| TBT Handling tipping vehicles / MM                                 | Nov-08          | Nov-08              | Nov-08         |          |                    | Nov-08             | Nov-08         | Nov-08           | Nov-08           | Nov-08 |                   |                 | Nov-08         | Nov-08              |
| TBT Random inspection of incoming loads / MM                       | Nov-08          | Nov-08              | Nov-08         |          |                    | Nov-08             | Nov-08         | Nov-08           | Nov-08           | Nov-08 |                   |                 | Nov-08         | Nov-08              |
| TBT Lone working process / MM                                      | Nov-08          | Nov-08              | Nov-08         |          |                    | Nov-08             | Nov-08         | Nov-08           | Nov-08           | Nov-08 |                   |                 | Nov-08         | Nov-08              |
| TBT Handling and storage of batteries / MM                         | Nov-08          | Nov-08              | Nov-08         |          |                    | Nov-08             | Nov-08         | Nov-08           | Nov-08           | Nov-08 |                   |                 | Nov-08         | Nov-08              |
| TBT Record of tipping location / MM                                | Nov-08          | Nov-08              | Nov-08         |          |                    | Nov-08             | Nov-08         | Nov-08           | Nov-08           | Nov-08 |                   |                 | Nov-08         | Nov-08              |
| TBT Procedure for construction of landfill gas vents / MM          | Nov-08          | Nov-08              | Nov-08         |          |                    | Nov-08             | Nov-08         | Nov-08           | Nov-08           | Nov-08 |                   |                 | Nov-08         | Nov-08              |
| TBT Ken Woodward Complete Safety                                   | Jan-09          | Jan-09              |                |          |                    | Jan-09             | Jan-09         | Jan-09           | Jan-09           | Jan-09 |                   |                 | Jan-09         | Jan-09              |
| TBT Tractor Safety / DVD Safety Media                              | Jan-09          | Jan-09              | Jan-09         |          |                    | Jan-09             | Jan-09         | Jan-09           | Jan-09           |        |                   |                 | Jan-09         |                     |
| TBT Covering down procedure                                        | Feb-09          | Feb-09              | Feb-09         |          |                    | Feb-09             | Feb-09         | Feb-09           | Feb-09           | Feb-09 |                   |                 | Feb-09         | Feb-09              |
| TBT DVD on landfill operation and facility management / in house   | Feb-09          | Feb-09              | Feb-09         |          |                    | Feb-09             | Feb-09         | Feb-09           | Feb-09           | Feb-09 |                   |                 | Feb-09         | Feb-09              |
| TBT Risk assessment DVD / Safety Media                             | Apr-09          | Apr-09              | Apr-09         |          |                    | Apr-09             | Apr-09         | Apr-09           | Apr-09           | Apr-09 |                   |                 | Apr-09         |                     |
| TBT Computer and workstation safety DVD                            | May-09          | May-09              | May-09         |          |                    | May-09             | May-09         | May-09           | May-09           | May-09 |                   |                 | May-09         | May-09              |
| TBT Manual handling and electrical safety - farming DVD            | Jun-09          | Jun-09              | Jun-09         |          |                    | <b>1</b>           | Jun-09         | Jun-09           | Jun-09           | Jun-09 |                   |                 | Jun-09         |                     |
| TBT Procedure for handling needle stick (F09 005) / refresher      | Jul-09          | Jul-09              | Jul-09         |          |                    | Mar-10             |                | Jul 09 / Feb 10  |                  | Jul-09 |                   |                 |                |                     |

|               | Issue Date | Constantly updated | Revision 1        | Authori | sed by   | JJ                          |  |  |  |
|---------------|------------|--------------------|-------------------|---------|----------|-----------------------------|--|--|--|
| Document type |            | FORM               |                   |         | ノっ       | 7 7                         |  |  |  |
| Title         |            |                    | Training Schedule |         |          | nstar                       |  |  |  |
| Document No.  |            | F05                |                   |         | gree see | nstar<br>tting the standard |  |  |  |

|                                                                  |             |                     | oje            |                    | h             |              | E         | æ      |                    |                   |                 |                     |
|------------------------------------------------------------------|-------------|---------------------|----------------|--------------------|---------------|--------------|-----------|--------|--------------------|-------------------|-----------------|---------------------|
| Trainee                                                          | Ę           |                     | KIRWAN, Robbie | _                  | MOORE, Joseph | έ            | John      | Angela |                    |                   | <b>→</b>        | DONOHUE,<br>Michael |
| (C denotes a course where a certificate has been received        | JONES, John | MACLEOD,<br>Michael | <u></u>        | DONOHUE,<br>Joseph | ٦,            | HEALY, Kevin | Ą.        | An     | î                  | DUNNE,<br>Domonic | MURPHY,<br>Noel | E 문                 |
| and is on display in the offices)                                | လွှဲ        | <u>ы</u> <u>ы</u>   | Ä              | 통                  | 쀭             | ≻. `         | KINSELLA, | BATES, | POWELL,<br>Matthew | Z E               | E E             | Sha                 |
|                                                                  | 岁           | C cha               | €              | Sep<br>Sep         | 8             |              | IS S      | "      | M H                | 200               | ₽ã              | ΔË                  |
| Course / Trainer                                                 |             | ŽŽ                  |                | 2 8                |               |              |           |        | M <sub>S</sub>     | F                 | Renton Plant    |                     |
| TBT swine flu information                                        | Aug-09      | Aug-09              | Aug-09         |                    | Aug-09        | Aug-09       | Aug-09    | Aug-09 |                    |                   |                 |                     |
| TBT waste acceptance                                             | Sep-09      | Sep-09              | Sep-09         | Sep-09             | Sep-09        | Sep-09       | Sep-09    | Sep-09 |                    | Sep-09            |                 |                     |
| TBT accident investigation                                       | Oct-09      | Oct-09              |                | Oct-09             | Oct-09        | Oct-09       | Oct-09    |        |                    | Oct-09            | Oct-09          | Oct-09              |
| TBT Occupational H&S system awareness                            | Nov-09      | Nov-09              | Nov-09         | Nov-09             | Nov-09        | Nov-09       | Nov-09    | Nov-09 | Jul-10             | Nov-09            | Nov-09          | Nov-09              |
| TBT Safe use of lifting equipment and working in adverse weather | Jan-10      | Jan-10              | Jan-10         |                    | Jan-10        | Jan-10       | Jan-10    | Jan-10 |                    |                   |                 |                     |
| conditions                                                       | Jan-10      | Jan-10              | Jan-10         |                    | Jan-10        | Jan-10       | Jan-10    | Jan-10 |                    |                   |                 |                     |
| TBT Reversing vehicles                                           | Feb-10      | Feb-10              | Feb-10         | Feb-10             | Feb-10        | Feb-10       | Feb-10    | Feb-10 |                    |                   |                 |                     |
| TBT Vehicle and pedestrian collisions                            | Mar-10      | Mar-10              | Mar-10         |                    | Mar-10        | Mar-10       | Mar-10    | Mar-10 |                    |                   |                 |                     |
| TBT Wheelwash procedure                                          | Apr-10      | Apr-10              | Apr-10         | Apr-10             | Apr-10        | Apr-10       | Apr-10    | Apr-10 |                    |                   |                 |                     |
| TBT Hearing protection                                           | May-10      | May-10              | May-10         | Jul-10             | May-10        | May-10       | May-10    | May-10 |                    |                   |                 |                     |
| TBT Vehicle tipovers                                             | Aug-10      | Aug-10              | Aug-10         | Aug-10             | Aug-10        |              | Aug-10    | Aug-10 |                    |                   |                 |                     |
| TBT H&S whats is all about and working at heights                | Sep-10      | Sep-10              | Sep-10         | Sep-10             | Sep-10        | Sep-10       | Sep-10    | Sep-10 |                    |                   |                 |                     |
| TBT Covering down procedure                                      |             | Oct-10              | Oct-10         | Oct-10             | Oct-10        | Oct-10       |           | Oct-10 |                    |                   |                 |                     |
| TBT slips and falls                                              | Jan-11      | Jan-11              | Jan-11         | Jan-11             | Jan-11        | Jan-11       | Jan-11    | Jan-11 |                    |                   |                 | Jan-11              |
| TBT welding gas pipes                                            | Mar-11      | Mar-11              | Mar-11         | Mar-11             | Mar-11        | Mar-11       | Mar-11    |        |                    |                   |                 | Mar-11              |
| TBT lawnmower and strimmer safety                                | Apr-11      | Apr-11              |                | Apr-11             | Apr-11        | Apr-11       | Apr-11    | Apr-11 | Apr-11             |                   |                 |                     |
| TBT H&S issues concerned with capping project                    | Jul-11      | Jul-11              | Jul-11         | Jul-11             | Jul-11        | Jul-11       | Jul-11    |        |                    |                   |                 |                     |
| Tractor and Bowser / Jo Donohue                                  |             | May-07              |                |                    | Jun-07        |              | Jun-07    |        |                    |                   |                 |                     |
| VDU assessments                                                  | Jan-10      | Jan-10              | Jan-10         |                    | Jan-10        | Jan-10       |           | Jan-10 |                    |                   |                 |                     |
| Waste Acceptance Seminar / Greenstar                             |             |                     |                |                    | Apr-07        |              |           | Apr-07 |                    |                   |                 |                     |
| Weighbridge Training / on site                                   |             | Jul-07              | Jan-08         | Feb-07             |               | Jul-07       | Jun-07    |        |                    |                   |                 |                     |
| British Geomembrance Association - welding course                |             | Jul-11              |                |                    | 01-Aug-12     | Jul-11       | Jul-11    |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |
|                                                                  |             |                     |                |                    |               |              |           |        |                    |                   |                 |                     |

| ı | Issue Date | Constantly updated | Revision 1 | Authorised by | JJ |
|---|------------|--------------------|------------|---------------|----|







Doc. No.: ControlRevision No.: As ShownIssue Date: As ShownApproved By:Malcolm Dowling - Group Environmental ManagerPage 1 of 4Oliver Callan - Group H&S Manager

| Integrated | d Procedures - IP                                         |                  |
|------------|-----------------------------------------------------------|------------------|
| IP-01      | Document & Record Control Procedure                       | Rev 01, 05/07/10 |
| IP-02      | Health & Safety Risk Assessment Procedure                 | Rev 01, 05/07/10 |
| IP-03      | Environmental Aspects & Impacts Procedure                 | Rev 01, 05/07/10 |
| IP-04      | Legal & Regulatory Requirements Procedure                 | Rev 02, 05/11/10 |
| IP-05      | Objectives, Targets & Management Programmes Procedure     | Rev 01, 05/07/10 |
| IP-06      | Competence, Training & Awareness Procedure                | Rev 01, 05/07/10 |
| IP-07      | Communication & Consultation Procedure                    | Rev 01, 05/07/10 |
| IP-08      | Monitoring, Measurement & Improvement Procedure           | Rev 01, 05/07/10 |
| IP-09      | Evaluation of Compliance Procedure                        | Rev 02, 15/09/11 |
| IP-10      | Non Conformances, Corrective/Preventive Actions Procedure | Rev 03, 01/02/11 |
| IP-11      | Internal Audit Procedure                                  | Rev 03, 28/05/12 |
| IP-12      | Management Review Procedure                               | Rev 01, 05/07/10 |
| IP-13      | Control of Contractors/Visitors Procedure                 | Rev 03, 08/06/12 |
| IP-14      | Health & Safety & Environmental Monitoring                | Rev 02, 29/10/10 |
| IP-15      | Emergency Preparedness & Response Procedure               | Rev 02, 01/02/11 |

| Safety Pr | ocedures - SP                                                             |                  |
|-----------|---------------------------------------------------------------------------|------------------|
| SP-01     | Permit to Work Procedure                                                  | Rev 02, 03/05/12 |
| SP-02     | Maintenance & Calibration Procedure                                       | Rev 03, 04/04/11 |
| SP-03     | Mobile Plant Procedure                                                    | Rev 01, 05/07/10 |
| SP-04     | Fork Truck Procedure                                                      | Rev 01, 05/07/10 |
| SP-05     | Operation of Fixed Plant Procedure                                        | Rev 01, 05/07/10 |
| SP-06     | Lock Out / Tag Out Procedure                                              | Rev 01, 05/07/10 |
| SP-07     | Health & Safety Notification Procedure                                    | Rev 01, 05/07/10 |
| SP-08     | Motor Claim Notification Procedure                                        | Rev 01, 01/02/11 |
| SP-09     | MSW Shredder routine Maintenance & Clearing of Blockages Procedure (SCGT) | Rev 01, 01/12/11 |
| SP-10     | Weighbridge & Tipping Procedure (SCGT)                                    | Rev 01, 01/12/11 |
| SP-11     | Cleaning of Washing Bay (Greenogue)                                       | Rev 01, 05/05/12 |





Doc. No.: ControlRevision No.: As ShownIssue Date: As ShownApproved By:Malcolm Dowling - Group Environmental ManagerPage 2 of 4Oliver Callan - Group H&S Manager

| Environmen | tal Procedures - EP                           |                  |
|------------|-----------------------------------------------|------------------|
| EP-01      | Office Waste & Energy Management Procedure    | Rev 01, 05/07/10 |
| EP-02      | Decommissioning and Aftercare Procedure       | Rev 02, 14/09/11 |
| EP-03      | Environment Communications Procedure          | Rev 02, 13/09/10 |
| EP-04      | Waste Permits & Licences Procedure            | Rev 01, 05/07/10 |
| EP-05      | Waste Acceptance Procedure                    | Rev 01, 05/07/10 |
| EP-06      | Unacceptable Waste Procedure                  | Rev 01, 05/07/10 |
| EP-07      | Waste & Material Storage Procedure            | Rev 01, 05/07/10 |
| EP-08      | Waste Processing Procedure                    | Rev 01, 05/07/10 |
| EP-09      | Site Infrastructure Procedure                 | Rev 01, 05/07/10 |
| EP-10      | Nuisance Management Procedure (Site Specific) | (Site Specific)  |
| EP-11      | Civic Amenity Site Procedure                  | Rev 01, 05/07/10 |





Doc. No.: Control Revision No.: As Shown Issue Date: As Shown

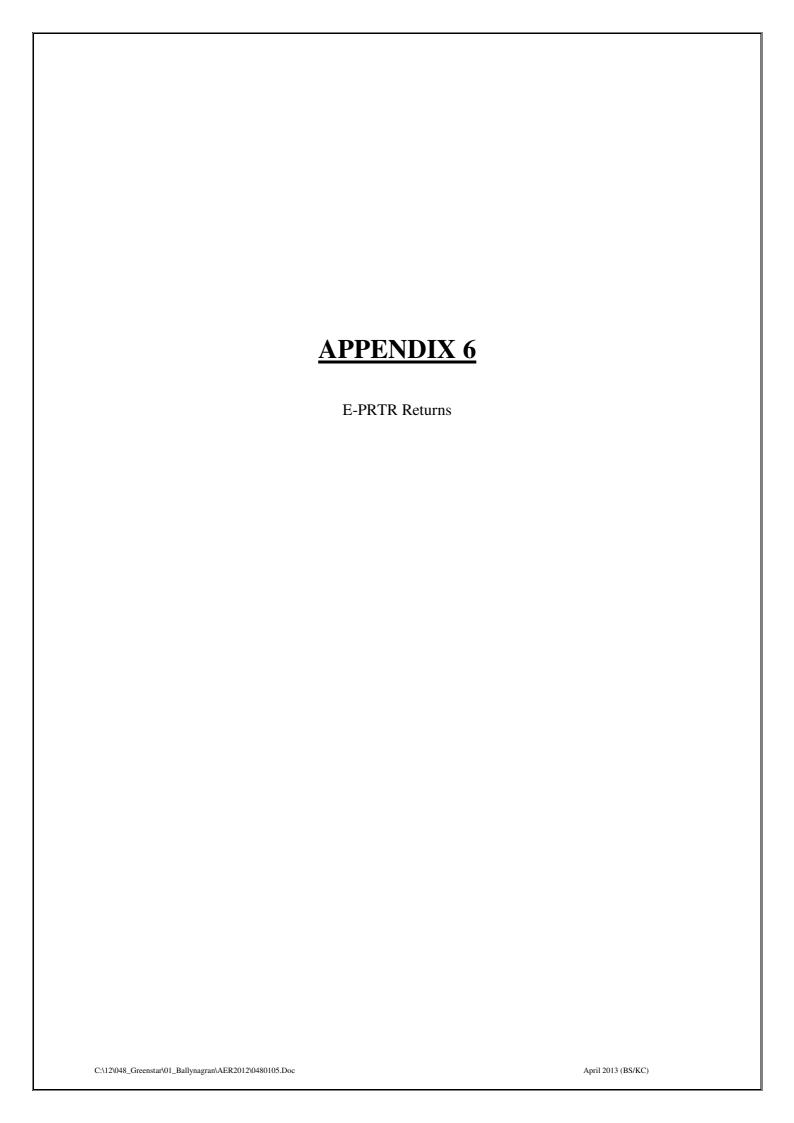
Approved By: Malcolm Dowling – Group Environmental Manager Page 3 of 4

Oliver Callan – Group H&S Manager

## Amendment History

| Date     | Amendment No. | Procedure No: | Revision<br>No:              | Comment                                                | Authorised By |
|----------|---------------|---------------|------------------------------|--------------------------------------------------------|---------------|
| 05.07.10 | 01            | All           | 01                           | Initial Issue                                          | M.D & O.C     |
| 13.09.10 | 02            | EP-03         | 02 Issue of Incident Reports |                                                        | M.D           |
| 20.09.10 | 03            | IP-10         | 02                           | Env issues not logged on WIMS Database                 | M.D           |
| 29.10.10 | 04            | IP-13         | 02                           | Use of M&M equipment by contractors                    | M.D & O.C     |
| 29.10.10 | 05            | IP-14         | 02                           | Use of M&M equipment by contractors                    | M.D & O.C     |
| 29.10.10 | 06            | SP-02         | 02                           | Inclusion of Maintenance Schedule                      | M.D & O.C     |
| 05.11.10 | 07            | IP-04         | 02                           | Inclusion of other requirements                        | S.B & O.C     |
| 01.02.11 | 08            | SP-08         | 01                           | Inclusion of new procedure                             | O.C           |
| 01.02.11 | 09            | IP-10         | 03                           | Inclusion of SP-08                                     | O.C           |
| 01.02.11 | 10            | IP-15         | 02                           | Removal of SF-022                                      | O.C           |
| 01.02.11 | 11            | Contents      | As<br>shown                  | EP-10 Site Specific                                    | M.D & O.C     |
| 01.02.11 | 12            | Circ List     | 02                           | Amendment to document control                          | M.D & O.C     |
| 04.04.11 | 13            | SP-02         | 03                           | Inclusion of Site<br>Specific Maintenance<br>schedules | O.C           |
| 07.06.11 | 14            | IP-11         | 02                           | Inclusion of H&S & Env<br>Internal Audit<br>Schedules  | M.D & O.C     |
| 14/09/11 | 15            | EP-02         | 02                           | Inclusion of decommissioning of plant/equipment        | S.B           |
| 15/09/11 | 16            | IP-09         | 02                           | Inclusion of Statutory Inspections                     | O.C           |
| 01/12/11 | 17            | SP-09         | 01                           | Inclusion of new procedure for SCGT                    | 0.C           |
| 01/12/11 | 18            | SP-10         | 01                           | Inclusion of new procedure for SCGT                    | O.C           |
| 03/05/12 | 19            | SP-01         | 02                           | Amendment to remove SF 028                             | 0.C           |
| 05/05/12 | 20            | SP-11         | 01                           | Inclusion of a new procedure for Greenogue             | 0.C           |
| 28/05/12 | 21            |               |                              | M.D & O.C                                              |               |
| 08/06/12 | 22            | IP-13         | 03                           | Grammatical amendment                                  | M.D & O.C     |






| setting the standard |                                               |                                           |
|----------------------|-----------------------------------------------|-------------------------------------------|
| Doc. No.: Control    | Revision No.: 02                              | Issue Date: 1 <sup>st</sup> February 2011 |
| Approved By:         | Malcolm Dowling – Group Environmental Manager | Page 4 of 4                               |
|                      | Oliver Callan - Group H&S Manager             |                                           |

### Circulation List

The Integrated Procedures Manual is a controlled document. Copies of the Integrated Procedures Manual are available as follows;

| Copy<br>Number        | Holder                                         |
|-----------------------|------------------------------------------------|
| 1<br>(Master<br>Copy) | Environmental, Health & Safety (EHS) Executive |
| 2                     | Greenstar Limited Intranet – Electronic Copy   |





1. FACILITY IDENTIFICATION

WASTE IMPORTED/ACCEPTED ONTO SITE
 Do you import/accept waste onto your site for onsite treatment (either recovery or disposal

activities) ?

REFERENCE YEAR 2012

### Guidance to completing the PRTR workbook

## **AER Returns Workbook**

Version 1.1.1

| . FACILITY IDENTIFICATION                                                                                                                                                               | 0                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                         | Greenstar Holdings Limited                                             |
|                                                                                                                                                                                         | Ballynagran Residual Landfill                                          |
| PRTR Identification Number<br>Licence Number                                                                                                                                            |                                                                        |
| Licence Number                                                                                                                                                                          | W0105-02                                                               |
| Waste or IPPC Classes of Activity                                                                                                                                                       |                                                                        |
|                                                                                                                                                                                         | class name                                                             |
| 110.                                                                                                                                                                                    | Specially engineered landfill, including placement into lined discrete |
|                                                                                                                                                                                         | cells which are capped and isolated from one another and the           |
| 3.5                                                                                                                                                                                     | environment.                                                           |
|                                                                                                                                                                                         | Deposit on, in or under land (including landfill).                     |
| 0.1                                                                                                                                                                                     | Sopooli on, in or and or idna (more any idnam).                        |
|                                                                                                                                                                                         | Storage prior to submission to any activity referred to in a preceding |
|                                                                                                                                                                                         | paragraph of this Schedule, other than temporary storage, pending      |
| 3 13                                                                                                                                                                                    | collection, on the premises where the waste concerned is produced      |
| Cite                                                                                                                                                                                    | Surface impoundment, including placement of liquid or sludge           |
| 3.4                                                                                                                                                                                     | discards into pits, ponds or lagoons.                                  |
|                                                                                                                                                                                         | Biological treatment not referred to elsewhere in this Schedule which  |
|                                                                                                                                                                                         | results in final compounds or mixtures which are disposed of by        |
|                                                                                                                                                                                         | means of any activity referred to in paragraphs 1. to 10. of this      |
| 3.6                                                                                                                                                                                     | Schedule.                                                              |
| 0.0                                                                                                                                                                                     | Use of waste obtained from any activity referred to in a preceding     |
| 4 11                                                                                                                                                                                    | paragraph of this Schedule.                                            |
| 7.11                                                                                                                                                                                    | Storage of waste intended for submission to any activity referred to   |
|                                                                                                                                                                                         | in a preceding paragraph of this Schedule, other than temporary        |
|                                                                                                                                                                                         | storage, pending collection, on the premises where such waste is       |
| 4 13                                                                                                                                                                                    | produced.                                                              |
|                                                                                                                                                                                         | Recycling or reclamation of other inorganic materials.                 |
|                                                                                                                                                                                         | Use of any waste principally as a fuel or other means to generate      |
| 4 9                                                                                                                                                                                     | energy.                                                                |
|                                                                                                                                                                                         | Ballynagran                                                            |
|                                                                                                                                                                                         | Coolbeg and Kilcandra                                                  |
|                                                                                                                                                                                         | Co Wicklow                                                             |
| Address 4                                                                                                                                                                               |                                                                        |
|                                                                                                                                                                                         |                                                                        |
|                                                                                                                                                                                         | Wicklow                                                                |
| Country                                                                                                                                                                                 |                                                                        |
| Coordinates of Location                                                                                                                                                                 |                                                                        |
| River Basin District                                                                                                                                                                    |                                                                        |
| NACE Code                                                                                                                                                                               | 3821                                                                   |
| Main Economic Activity                                                                                                                                                                  | Treatment and disposal of non-hazardous waste                          |
| AER Returns Contact Name                                                                                                                                                                | Robert Kirwan                                                          |
| AER Returns Contact Email Address                                                                                                                                                       | robert.kirwan@greenstar.ie                                             |
| AER Returns Contact Position                                                                                                                                                            |                                                                        |
| AER Returns Contact Telephone Number                                                                                                                                                    | +353 (0)404 25440                                                      |
| AER Returns Contact Mobile Phone Number                                                                                                                                                 |                                                                        |
| AER Returns Contact Fax Number                                                                                                                                                          | +353 (0)404 22515                                                      |
| Production Volume                                                                                                                                                                       |                                                                        |
| Production Volume Units                                                                                                                                                                 |                                                                        |
| Number of Installations                                                                                                                                                                 |                                                                        |
| Number of Operating Hours in Year                                                                                                                                                       |                                                                        |
| Number of Employees                                                                                                                                                                     |                                                                        |
| User Feedback/Comments                                                                                                                                                                  |                                                                        |
| Web Address                                                                                                                                                                             |                                                                        |
|                                                                                                                                                                                         |                                                                        |
| . PRTR CLASS ACTIVITIES                                                                                                                                                                 | [                                                                      |
| ctivity Number                                                                                                                                                                          | Activity Name                                                          |
| (d)                                                                                                                                                                                     | Landfills                                                              |
| (c)                                                                                                                                                                                     | Installations for the disposal of non-hazardous waste                  |
| (d)                                                                                                                                                                                     | Landfills                                                              |
|                                                                                                                                                                                         | General                                                                |
| 0.1                                                                                                                                                                                     | deneral                                                                |
|                                                                                                                                                                                         | General                                                                |
| 0.1                                                                                                                                                                                     |                                                                        |
| 0.1<br>. SOLVENTS REGULATIONS (S.I. No. 543 of 20                                                                                                                                       |                                                                        |
| 0.1  . SOLVENTS REGULATIONS (S.I. No. 543 of 20 Is it applicable?                                                                                                                       | 102)<br>                                                               |
| 0.1  SOLVENTS REGULATIONS (S.I. No. 543 of 20  Is it applicable?  Have you been granted an exemption?                                                                                   | 002)                                                                   |
| O.1  SOLVENTS REGULATIONS (S.I. No. 543 of 20  Is it applicable?  Have you been granted an exemption?  If applicable which activity class applies (as per                               | 02)                                                                    |
| O.1  SOLVENTS REGULATIONS (S.I. No. 543 of 20 Is it applicable?  Have you been granted an exemption? If applicable which activity class applies (as per Schedule 2 of the regulations)? | 102)                                                                   |
| O.1  SOLVENTS REGULATIONS (S.I. No. 543 of 20  Is it applicable?  Have you been granted an exemption?  If applicable which activity class applies (as per                               | 02)                                                                    |

Guidance on waste imported/accepted onto site

#### SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

| RELEASES TO AIR |              |                          |       | Please enter all quantities in this section in KGs |                            |                  |                  |                   |                |      |           |  |
|-----------------|--------------|--------------------------|-------|----------------------------------------------------|----------------------------|------------------|------------------|-------------------|----------------|------|-----------|--|
|                 | POLLUTANT    |                          |       | ME                                                 | THOD                       |                  |                  | QUANTITY          |                |      |           |  |
|                 |              |                          |       |                                                    | Method Used                | Flares           | Engine           |                   |                |      |           |  |
|                 |              |                          |       |                                                    |                            |                  |                  |                   | A (Accidental) | F (F | Fugitive) |  |
|                 | No. Annex II | Name                     | M/C/E | Method Code                                        | Designation or Description | Emission Point 1 | Emission Point 2 | T (Total) KG/Year | KG/Year        | KG/  | /Year     |  |
|                 | 03           | Carbon dioxide (CO2)     | С     | OTH                                                | GasSim2 Calculation        | 39100000.0       | 0.0              | 39100000.0        |                | 0.0  | 0.0       |  |
|                 | 01           | Methane (CH4)            | C     | OTH                                                | GasSim2 Calculation        | 8103000.0        | 0.0              | 8756790.0         |                | 0.0  | 653790.0  |  |
|                 | 05           | Nitrous oxide (N2O)      | С     | EN 14792:2005                                      | OMI Report                 | 5347.22          | 8336.58          | 13683.8           |                | 0.0  | 0.0       |  |
|                 | 11           | Sulphur oxides (SOx/SO2) | M     | EN 14791:2005                                      | OMI Report                 | 38984.9          | 17238.4          | 56223.3           |                | 0.0  | 0.0       |  |

\* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

#### SECTION B : REMAINING PRTR POLLUTANTS

| RELEASES TO AIR |      |       | Please enter all quantities in this section in KGs |                            |                  |                   |                        |                      |  |
|-----------------|------|-------|----------------------------------------------------|----------------------------|------------------|-------------------|------------------------|----------------------|--|
| POLLUTANT       |      |       |                                                    | METHOD                     | QUANTITY         |                   |                        |                      |  |
|                 |      |       | Method Used                                        |                            |                  |                   |                        |                      |  |
| No. Annex II    | Name | M/C/E | Method Code                                        | Designation or Description | Emission Point 1 | T (Total) KG/Year | A (Accidental) KG/Year | F (Fugitive) KG/Year |  |
|                 |      |       |                                                    |                            | 0.0              |                   | 0.0                    | 0.0                  |  |

<sup>\*</sup> Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

### SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

|               | RELEASES TO AIR | Please enter all quantities in this section in KGs |             |                            |                  |                   |       |                    |                      |
|---------------|-----------------|----------------------------------------------------|-------------|----------------------------|------------------|-------------------|-------|--------------------|----------------------|
|               | METHOD          |                                                    |             | QUANTITY                   |                  |                   |       |                    |                      |
|               |                 | Method Used                                        |             |                            |                  |                   |       |                    |                      |
| Pollutant No. | Name            | M/C/E                                              | Method Code | Designation or Description | Emission Point 1 | T (Total) KG/Year | A (Ad | ccidental) KG/Year | F (Fugitive) KG/Year |
|               |                 |                                                    |             |                            | 0                | 0                 | 0.0   | 0.0                | 0.0                  |

<sup>\*</sup> Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

### Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under Titotal NGVy for Section 4. Sector secific PRTP pollutants above. Please complete the table below:

|                                              | specific PRTR pollutants above. Please complete the table below: |       |             |                             |                            |                            |  |  |  |  |
|----------------------------------------------|------------------------------------------------------------------|-------|-------------|-----------------------------|----------------------------|----------------------------|--|--|--|--|
| Landfill:                                    | Ballynagran Residual Landfill                                    |       |             |                             |                            |                            |  |  |  |  |
| Please enter summary data on the             |                                                                  |       |             |                             |                            |                            |  |  |  |  |
| quantities of methane flared and / or        |                                                                  |       |             |                             |                            |                            |  |  |  |  |
| utilised                                     |                                                                  |       | Met         | hod Used                    |                            |                            |  |  |  |  |
|                                              |                                                                  |       |             | Designation or              | Facility Total Capacity m3 |                            |  |  |  |  |
|                                              | T (Total) kg/Year                                                | M/C/E | Method Code | Description                 | per hour                   |                            |  |  |  |  |
| Total estimated methane generation (as per   |                                                                  |       |             |                             |                            |                            |  |  |  |  |
| site model)                                  | 8103000.0                                                        | С     | OTH         | GasSim2 calcualtion         | N/A                        |                            |  |  |  |  |
| Methane flared                               | 6049507.0                                                        | М     | PER         | Facility on-site monitoring | 0.0                        | (Total Flaring Capacity)   |  |  |  |  |
| Methane utilised in engine/s                 | 1399703.0                                                        | М     | PER         | Facility on-site monitoring | 0.0                        | (Total Utilising Capacity) |  |  |  |  |
| Net methane emission (as reported in Section |                                                                  |       |             |                             |                            |                            |  |  |  |  |
| A above)                                     | 653790.0                                                         | С     | PER         | Modelling - Monitoring      | N/A                        |                            |  |  |  |  |
|                                              |                                                                  |       |             |                             |                            |                            |  |  |  |  |

|           | Please enter all quantities on this sheet in Tonnes 5 |                |           |                                  |                                                             |           |        |                 |                    |                                                                                                                                  |                                                                                             |                                                                                                         |                                                                                                      |
|-----------|-------------------------------------------------------|----------------|-----------|----------------------------------|-------------------------------------------------------------|-----------|--------|-----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|           |                                                       |                |           | Quantity<br>(Tonnes per<br>Year) |                                                             |           |        | Method Used     |                    | Haz Waste: Name and Licence/Permit No of Next Destination Facility Non Haz Waste: Name and Licence/Permit No of Recover/Disposer | Haz Waste : Address of Next Destination Facility Non Haz Waste: Address of Recover/Disposer | Name and License / Permit No. and<br>Address of Final Recoverer /<br>Disposer (HAZARDOUS WASTE<br>ONLY) | Actual Address of Final Destination<br>i.e. Final Recovery / Disposal Site<br>(HAZARDOUS WASTE ONLY) |
|           |                                                       |                |           |                                  |                                                             | Waste     |        |                 |                    |                                                                                                                                  |                                                                                             |                                                                                                         |                                                                                                      |
| - ,       | B                                                     | European Waste |           |                                  | Description of Monte                                        | Treatment | NA/O/E | Made at the sal | Location of        |                                                                                                                                  |                                                                                             |                                                                                                         |                                                                                                      |
| Transfer  | Destination                                           | Code           | Hazardous |                                  | Description of Waste                                        | Operation | M/C/E  | Method Used     | Treatment          |                                                                                                                                  |                                                                                             |                                                                                                         |                                                                                                      |
| Within tl | ne Country                                            | 19 07 03       | No        |                                  | landfill leachate other than those mentioned in 19 07 02    | R3        | М      | Weighed         | Offsite in Ireland | EnniskerryWWTP ,D0088-01                                                                                                         | .,,,,,ireland                                                                               | Enva,184-01                                                                                             | Clonminam Industrial<br>Estate,Portlaoise<br>,County Laois,Laois,Ireland                             |
|           |                                                       |                |           |                                  | landfill leachate other than those mentioned                |           |        |                 |                    |                                                                                                                                  | Estate.Portlaoise                                                                           |                                                                                                         |                                                                                                      |
| Within th | e Country                                             | 19 07 03       | No        | 954.6                            | in 19 07 02                                                 | R3        | M      | Weighed         | Offsite in Ireland | Enva.184-01                                                                                                                      | ,County Laois,,,Ireland                                                                     |                                                                                                         |                                                                                                      |
|           | •                                                     |                |           |                                  | landfill leachate other than those mentioned                |           |        |                 |                    |                                                                                                                                  | Drogheda ,County Louth,-,-                                                                  |                                                                                                         |                                                                                                      |
| Within th | e Country                                             | 19 07 03       | No        | 2643.21                          | in 19 07 02                                                 | R3        | М      | Weighed         | Offsite in Ireland | Drogheda WWTP,D0041-01                                                                                                           | ,ireland                                                                                    |                                                                                                         |                                                                                                      |
|           |                                                       |                |           |                                  | landfill leachate other than those mentioned                |           |        |                 |                    |                                                                                                                                  | Brownstown ,Kilcullen Co.                                                                   |                                                                                                         |                                                                                                      |
| Within th | e Country                                             | 19 07 03       | No        |                                  | in 19 07 02<br>landfill leachate other than those mentioned | R3        | М      | Weighed         | Offsite in Ireland | KTK Landfill,W0081-04                                                                                                            | Kildare ,Co. Kildare ,-,ireland                                                             |                                                                                                         |                                                                                                      |
| Within th | e Country                                             | 19 07 03       | No        |                                  | in 19 07 02                                                 | R3        | М      | Weighed         | Offsite in Ireland | Leixlip WWTP,D004-01                                                                                                             | Leixlip ,Kildare,-,-,ireland<br>Block 402 ,Grant's Drive                                    |                                                                                                         |                                                                                                      |
|           |                                                       |                |           |                                  | landfill leachate other than those mentioned                |           |        |                 |                    | Rilta Environmental                                                                                                              | ,Greenogue Business Park.                                                                   |                                                                                                         |                                                                                                      |
| Within th | e Country                                             | 19 07 03       | No        |                                  | in 19 07 02                                                 | R3        | M      | Weighed         | Offsite in Ireland | Ltd,W0192-01                                                                                                                     | Rathcoole ,Dublin,Ireland                                                                   |                                                                                                         |                                                                                                      |
|           |                                                       |                |           |                                  | landfill leachate other than those mentioned                |           |        |                 |                    | D: LIMINATE DOS OLOS                                                                                                             | B: 1 B 1 B 1 B 1 B 1                                                                        |                                                                                                         |                                                                                                      |
| within th | e Country                                             | 19 07 03       | No        |                                  | in 19 07 02<br>landfill leachate other than those mentioned | R3        | М      | Weighed         | Offsite in Ireland | Ringsend WWTP,D00-34-01<br>Veolia.D0012-01                                                                                       | Ringsend ,Dublin,-,-,ireland                                                                |                                                                                                         |                                                                                                      |
| Within th | e Country                                             | 19 07 03       | No        |                                  | in 19 07 02                                                 | R3        | М      | Weighed         | Offsite in Ireland | V GOIIA, DOO 12-01                                                                                                               | Wicklow,.,.,,Ireland                                                                        |                                                                                                         |                                                                                                      |
|           |                                                       |                |           |                                  |                                                             |           |        |                 |                    |                                                                                                                                  |                                                                                             |                                                                                                         |                                                                                                      |