Rilta Environmental Ltd.

Annual Environmental Report (AER), Site 402, Greenogue Business Park.

January 1st – December 31st 2012

March 2013

TOBIN CONSULTING ENGINEERS

REPORT

PROJECT:

Rilta Environmental Ltd. Site 402 – Environmental Monitoring

CLIENT:

Rilta Environmental Ltd, Block 402, Greenogue Business Park, Rathcoole, County Dublin

COMPANY:

TOBIN Consulting Engineers Block 10-4 Blanchardstown Corporate Park Dublin 15

www.tobin.ie

DOCUMENT AMENDMENT RECORD

 Client:
 Rilta Environmental Ltd.

 Project:
 Greenogue Monitoring

 Title:
 Annual Environmental Report Rilta Environmental Ltd.

	PROJECT NUMBER	: 3084		DOCUMENT REF:			
FINAL	Annual Environmental Report	JQ	27/03/13	ST	28/03/13	DG	28/03/13
Revision	Description & Rationale	Originated	Date	Checked	Date	Authorised	Date
TOBIN Consulting Engineers							

Table of Contents

1	П	NTRODUCTION5	5
1	1.1	WASTE ACTIVITIES AND RECORDS	5
2	Е	MISSIONS FROM THE FACILITY	3
	2.1 2. 2. 2.2 2.2 2.3 2.3	GROUNDWATER EMISSIONS 8 1.1 Groundwater Monitoring (BH1) 8 1.2 Groundwater monitoring point 2 (BH2) 9 1.3 Groundwater monitoring point 3 (BH3) 10 SURFACE WATER EMISSIONS 11 2.1 Surface Water Monitoring 11 WASTEWATER EMISSIONS 16 3.1 Wastewater Monitoring 16	3 7 7 1 1 5 5
3	A	MBIENT MONITORING)
	3.1 3.2	DUST)
4	Ν	OISE MONITORING	
5	R	ESOURSE CONSUMPTION SUMMARY	3
6	Е	NVIRONMENTAL MANAGEMENT	3
e	5.1 5.2	SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS23 ENVIRONMENTAL MANAGEMENT PROGRAMME	3
7	Ρ	OLLUTANT RELEASE AND TRANSFER REGISTER (PRTR)	3
8	Т	ANK AND PIPELINE TESTING AND INSPECTION REPORT	3
9	V	ATER DEMAND AND TRADE EFFLUENT DISCHARGE	3
1C Ge) E N I	EFFICIENCY OF USE OF RAW MATERIALS/ REDUCTION IN WASTE	Ξ 1
11		DEVELOPMENT/INFRASTRUCTURAL WORKS	1
12	2	COMPLAINTS SUMMARY	1
13	3	FINANCIAL PROVISION	1

1 MANAGEMENT AND STAFFING STRUCTURE	13.1
2 PROGRAMME FOR PUBLIC INFORMATION24	13.2
DECOMMISSIONING MANAGEMENT PLAN	14 D
1 PREVENTION OF ENVIRONMENTAL DAMAGE AND REMEDIAL ACTIONS	14.1
VIRONMENTAL LIABILITIES)	(ENV
2 ENVIRONMENTAL LIABILITIES RISK ASSESSMENT (ELRA)25	14.2

List of Tables

Table 1.1 Waste Acceptance Tonnages as per Waste Licence 192–03	6
Table 2.1 Surface Water pH Results - 2012	12
Table 2.2 Surface Water COD Results - 2012	13
Table 2.3 Surface Water Total Suspended Solids Results - 2012	14
Table 2.4 Surface Water Mineral Oil Results - 2012	15
Table 2.5 Wastewater Results - 2012	17
Table 3.1 Dust Monitoring Results – 2012	20
Table 4.1 RILTA Daytime Noise – 2012	21
Table 4.2 RILTA Night Time Noise – 2012	21
Table 5.1 Resource and Energy Consumption 2008-2012	23
Table 10.1 Raw Material usage 2012	24

List of Figures

Figure 2.1 Surface Water pH Results - 20121	2
Figure 2.2 Surface Water COD Results - 20121	3
Figure 2.3 Surface Water Total Suspended Solids Results - 2012 1	4
Figure 2.4 Surface Water Mineral Oil Results – 2012 1	5
Figure 2.5 Wastewater – pH Trend Data 2012 1	8
Figure 2.6 Wastewater – Mineral Oil Trend Data 20121	8
Figure 2.7 Wastewater – Metals and BTEX Trend Data 20121	9
Figure 2.8 Wastewater – Miscellaneous Parameter Trend Data 2012 1	9

Appendices

Appendix A	Site Maps
------------	-----------

- Appendix B Environmental Management Programme 2012 & 2013
- Appendix C Dust Analysis Laboratory Results
- Appendix D Annual Noise Monitoring Report
- Appendix E OMI Emissions Report
- Appendix F Pollutant Release and Transfer Register (PRTR)
- Appendix G Environmental Management and Staffing Structure

1 INTRODUCTION

The Environmental Protection Agency (EPA) issued Rilta Environmental Ltd. (RILTA) with Waste Licence Reg. No. W0192-03 for its site at Block 402, Greenogue Business Park, Rathcoole, County Dublin on 22nd July 2010. The facility is located within an industrial estate approximately 2 km east of Newcastle village and approximately 2.5km west of Rathcoole village. The facility has been in operation since 2004. RILTA retained Tobin Consulting Engineers (TOBIN) to prepare the Annual Environmental Report (AER) for the reporting period January 2012 to December 2012. This report has been prepared in accordance with Condition 11.10 and Schedule E of the waste licence.

This report addresses Condition 11.10 of the waste licence for the facility.

Condition 11.10 states: 'The licensee shall submit to the Agency by the 31st March of each year an AER covering the previous calendar year. This report which shall be to the satisfaction of the Agency shall include as a minimum the information specified in Schedule E: Annual Environmental Report, of this licence and shall be prepared in accordance with any relevant guidelines issued by the Agency'.

The format of the report follows guidelines set in the "Guidance Note for Annual Environmental Report" issued by the Environmental Protection Agency. Account is also taken of the AER Draft Guidance Document and AER Information Templates issued by the Agency in January 2013.

1.1 WASTE ACTIVITIES AND RECORDS

The RILTA facility is a fully engineered and contained industrial site. It is licensed to accept 111,000 tonnes of waste material per annum, as set out in Schedule A of the waste licence. Table1.1 below summarises the tonnes of waste RILTA is licensed to accept and compares it to waste tonnages accepted in 2012.

	Waste Type	Maximum (Tonnes Per Annum) ^{Note 3}	2012 Tonnages
Non-	Commercial Waste	500	0
Hazardous	Construction & Demolition Waste	500	361.5
Wastes Note	Industrial Sludges	1,000	0
1,2	Other Industrial Waste	3,000	49959.8
Non Hazardo	us Waste Total	5000	50321.3
Hazardous			
Wastes	Description *		
EWC Code		10,000	
13 05 03*	Interceptor sludges	10,000	757.9
16 07 08*	Waste containing oil	2,000	1,259
16 10 01*	Aqueous liquid waste containing dangerous substances	1,500	1,838.8
17 05 03*	Soil and stones containing dangerous substances	60,000	6,478.3
17 06 01* 17 06 05*	Insulation materials and construction Materials containing asbestos.	8,000	2,812.2
	Other Note 4	24,400	26,613.5
Hazardous W	aste Total	106,000	39,759.7
Total		111,000	90,081

Table 1.1 Waste Acceptance Tonnages as per Waste Licence 192–03

- Note 1: Any proposals to accept other compatible non-hazardous waste types must be agreed in advance with the Agency.
- Note 2: Excluding putrescible waste.
- Note 3: The limitations on individual hazardous and non-hazardous waste types may be varied with the agreement of the agency subject to the individual total limits for hazardous and non-hazardous waste staying the same.
- Note 4: Hazardous waste types as detailed in Attachment H.1 of the review application for this licence Reg No: 192-03 or may be otherwise agreed in advance with the agency.

Waste activities at the facility are restricted to those outlined in Part 1 – Schedule of Activities Licensed.

Licensed Waste Disposal Activities, in accordance with the 3rd Schedule of the Waste Management Act, 1996 to 2010:

Class 7: Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination), which results in final compounds or mixtures, which are disposed of by means of any activity referred to in

paragraphs 1 to 10 of this Schedule (including evaporation, drying and calcination);

- Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule;
- Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule; and
- Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced.

Licensed Waste Disposal Activities, 4th Schedule of the Waste Management Acts 1996 to 2010:

- Class 2: Recycling or reclamation of organic substances, which are not used as solvents (including composting and other biological transformation processes);
- Class 3: Recycling or reclamation of metals and metal compounds;
- Class 4: Recycling or reclamation of other inorganic materials;
- Class 6: Recovery of components used for pollution abatement;
- Class 8: Oil re-refining or other re-uses of oil; and
- Class 13: Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced.

2 EMISSIONS FROM THE FACILITY

Schedule C of Waste Licence 192-03 requires RILTA to carry out noise, air, dust, surface water, groundwater and wastewater emissions monitoring. The locations of these monitoring points are shown on Drawing 1250/01/1002, as submitted to the Environmental Protection Agency on the 28th of February 2005 and attached in Appendix A.

Monthly, quarterly and annual monitoring was carried out during the period 1st January 2012 to 31st December 2012. All monitoring results and reports have been submitted to the agency as required by Condition 11 and Schedule C of the waste licence. The following is a summary of the results and findings from the 2012 monitoring period.

2.1 GROUNDWATER EMISSIONS

Groundwater monitoring was conducted on a quarterly basis at 3 no. groundwater monitoring locations as set out Drawing 1250/01/1002 (see Appendix A). Results for all 4 quarterly monitoring events were furnished to the agency as part of the environmental monitoring reports sent in April, July and October 2012 and January 2013.

2.1.1 Groundwater Monitoring (BH1)

The following is a summary of the values recorded for each parameter at BH1.

pH: The pH of groundwater analysed from BH1 ranged from 7.02 to 7.50 during 2012. Results from all monitoring events had values within the normal pH range (6.5 pH 9.5) set out in the EPA Interim Guideline Values¹ (IGV) and reflects the natural background condition of the groundwater.

Conductivity: The conductivity concentrations in BH1 ranged from 595 μ S/cm to 687 μ S/cm during 2012. Results from all monitoring events were within the normal electrical conductivity range and were considerably lower than the IGV limit (1000 μ S/cm), reflecting normal background groundwater concentrations.

Heavy metals: Concentrations of mercury in BH1 were below the laboratory limit of detection (LOD) (1), during all monitoring events in 2012. Concentrations of arsenic in BH1 ranged from 0.138µg /I to 0.595µg /I, during 2012. Copper, chromium, cadmium, boron, nickel, iron, lead and zinc were all analysed as part of the annual groundwater suite of parameters for BH1

¹ From the EPA Interim Report – 'TOWARDS SETTING GUIDELINE VALUES FOR THE PROTECTION OF GROUNDWATER IN IRELAND'

during Q1 2012. All concentrations of heavy metals at BH1 during 2012 were below the required limit levels set out in the EPA.

I norganic: The following inorganic parameters were analysed at BH1 during Q1 2012, as part of the annual groundwater suite: total alkalinity, cyanide, chloride, sulphate, potassium, sodium, calcium and magnesium. These parameters all had results within the limit values specified in the EPA IGVs, with the exception of chloride (64.41mg/l) which exceeded the EPA IGV (30mg/l) and potassium (5.296mg/l) which exceeded slightly the EPA IGV (5mg/l).

Pesticide: No concentrations of pesticides were detected during any monitoring event at BH1 during 2012.

List 1/11 Organic Substances, Mineral Oil, BTEX: Concentrations of list 1/11 organic substances (VOCs & SVOCs), mineral oil and BTEX were below the laboratory LOD² during all groundwater monitoring events at BH1 during 2012.

2.1.2 Groundwater monitoring point 2 (BH2)

The following is a summary of the values recorded for each parameter at BH2.

pH: The pH of groundwater analysed from BH2 ranged from 8.28 to 9.52 during 2012. Results from all monitoring events had values within the normal pH range set out in the IGVs (6.5 pH 9.5) and reflects the natural background condition of the groundwater.

Conductivity: The conductivity concentrations in BH2 ranged from 210μ S/cm to 331μ S/cm during 2012. Results from all monitoring events were within the normal electrical conductivity range and were considerably lower than the IGV limit (1000 μ S/cm), reflecting normal background groundwater concentrations.

Heavy metals: Concentrations of arsenic at BH2 ranged from 2.23 – 5.50 μ g/l during 2012. This concentration is within the IGV limit of 10 μ g/l. Concentrations of mercury at BH2 ranged from 0.068-0.33 μ g/l. This concentration is within the IGV limit of 1 μ g/l.

Copper, chromium, cadmium, boron, nickel, iron, lead and zinc were all analysed as part of the annual groundwater suite of parameters for BH2, during Q1 2012. All concentrations of metals tested at BH2 during 2012 were below the required limit levels set out in the EPA IGVs, with the exception of iron (316µg/l) which exceeded the EPA IGV (200µg/l).

² TPG CWG - Limit of Detection

I norganic: The following inorganic parameters were analysed at BH2 during Q1 2012, as part of the annual groundwater suite: total alkalinity, cyanide, chloride, sulphate, potassium, sodium, calcium and magnesium. These parameters all had results within the limit values specified in the EPA IGVs.

Pesticide: No concentrations of pesticides were detected during any monitoring event at BH2 during 2012.

List 1/11 Organic Substances, Mineral Oil, BTEX: All groundwater sampled at BH2 from January to December 2012 had concentrations of BTEX below the laboratory LOD. Mineral oil concentrations were also below laboratory LOD during all quarters with the exception of Q1 when mineral oil of 5.68µg/l was detected. This level of mineral oil is below the EPA IGV of $(10\mu g/l)$.

List1/11 substances were detected at BH2 during monitoring events in 2012. Volatile organic compounds (VOCs) were during 2012 – 37.9µg/l during Q3. Concentrations of semi volatile organic compounds (SVOC) were not detected (were all below their respective laboratory LODs) at BH2 during 2012.

2.1.3 Groundwater monitoring point 3 (BH3)

The following is a summary of the values recorded for each parameter at BH3.

pH: The pH of the analysed groundwater from BH3 ranged from 9.11 to 10.10 during 2012. The reported pH values for BH3 were outside the pH range (6.5 pH 9.5) set out in the EPA IGV during monitoring eventsQ1 and Q2 (10.10 and 10.04, respectively). As discussed in the previous AERs, pH levels at BH3 are assumed to be elevated due to the use of alkaline cements and backfill construction material, which was used during the installation of underground tanks at the facility.

Conductivity: The conductivity within BH3 ranged from 276μ S/cm to 309μ S/cm during 2012. Electrical conductivity at BH3 during all monitoring events was below the EPA IGV (1000μ S/cm).

Heavy metals: Concentrations of arsenic at BH3 ranged from 4.91- $8.69\mu/l$ during 2012. Concentrations of mercury in BH3 was below the laboratory LOD (<1 μ g/l) at all monitoring events, with the exception of Q1 when the mercury concentration was 1.34μ g/l.

Copper, chromium, cadmium, boron, nickel, iron, lead and zinc were all analysed at BH3 during Q1 2012, as part of the annual groundwater testing suite of parameters. All concentrations of metals tested at BH3 during 2012 were below the required limit levels set out in the EPA IGVs.

Inorganic: The following inorganic parameters were analysed at BH3 during Q1 2012 as part of the annual groundwater suite: total alkalinity, cyanide, chloride, sulphate, potassium, sodium, calcium and magnesium. These parameters all had results within the limit values specified in the EPA IGVs, with the exception of chloride (38.2mg/l) which exceeded the EPA IGV (30mg/l), potassium (5.4mg/l) which slightly exceeded the IGV (5mg/l) and cyanide (13µg/l) which also exceeded the IGV (10µg/l).

Pesticide: No Pesticide concentrations were detected during any monitoring event at BH3 during 2012.

List 1/11 Organic Substances, Mineral Oil, BTEX: BTEX3 and Mineral oil concentrations were below the laboratory limit of detection during all monitoring events at BH3 in 2012.

List1/11 substances were detected at BH3 during 2012. VOCs were detected at BH3 during Q3 (18.1 μ g/I). Concentrations of semi volatile organic compounds were not detected (were all below their respective laboratory LODs) at BH3 during 2012.

2.2 SURFACE WATER EMISSIONS

Surface water monitoring was conducted on a quarterly basis at 3 no. surface water monitoring locations, as set out Drawing 1250/01/1002 (see Appendix A). Results for all 4 quarterly monitoring events were furnished to the agency as part of the environmental monitoring reports sent in April, July and October 2012 and January 2013.

2.2.1 Surface Water Monitoring

Results from all surface water monitoring locations indicate that surface water quality at the RILTA facility is within normal chemical range and is consistent with natural uncontaminated surface waters. The following is a summary of parameter concentrations at all surface water monitoring locations.

³ TPG CWG - Limit of detection

pH: The pH values at all surface water monitoring locations were within the normal range in 2012 (6.5 pH 9.5) set out in SI No. 278 of 20074 and reflect the natural conditions of this surface water feature.

Figure 2.1 Surface Water pH Results - 2012

|--|

pН	Q1	Q2	Q3	Q4
SW1	8.0	7.8	7.3	7.8
SW2	8.0	7.8	7.4	8.1
SW3	8.0	7.9	7.5	8.1

Chemical Oxygen Demand: The chemical oxygen demand for at all monitoring locations was consistent with historic monitoring results from the site. Concentrations were slightly elevated in Q2 with a peak concentrations of 14mg/l and 8mg/l at SW2 and SW3 respectively. There is no limit for surface water COD set out in waste licence 192-03 or SI No. 278 of 2007. COD results from 2012 are summarised in Table 2.2 below.

⁴ SI No 278 of 2007 – European Communities (Drinking Water) (No. 2) Regulations

Figure 2.2 Surface Water COD Results - 2012

COD (mg/l)	Q1	Q2	Q3	Q4
SW1	<5	<5	8	<5
SW2	<5	14	<5	<5
SW3	<5	9	<5	<5

Table 2.2 Surface Water COD Results - 2012

Suspended Solids: The concentrations of suspended solids at all surface water monitoring locations were below the limit levels set out in waste licence 192–03 (35mg/l) for all monitoring events during 2012.

Figure 2.3 Surface Water Total Suspended Solids Results - 2012

TSS (mg/l)	Q1	Q2	Q3	Q4
SW1	11	4	3	7
SW2	19	2	4	10
SW3	10	2	5	9

Table 2.3 Surface Water Total Suspended Solids Results - 2012

Mineral Oils: Concentrations of Mineral Oil were below the laboratory detection limit (<2.5ug/l) during all monitoring events during 2012, with the exception of Q4. Although SW3 had concentrations above the laboratory LOD (10.6ug/l) in Q4, it remained significantly below the limit value set out in W192-03 (5000ug/l).

Figure 2.4 Surface Water Mineral Oil Results – 2012

Table 2.4 Surface Water Mineral Oil (mg/l) Results - 2012

Mineral Oil (µg/l)	Q1	Q2	Q3	Q4
SW1	<2.5	<2.5	<2.5	<2.5
SW2	<2.5	<2.5	<2.5	<2.5
SW3	<2.5	<2.5	<2.5	10.6

2.3 WASTEWATER EMISSIONS

Waste water monitoring was conducted on a monthly basis at 1 no. monitoring location, as per Schedule C of the waste licence 192-03 and illustrated on Drawing 1250/01/1002 (see Appendix A). Results for all 12 no. monitoring events were furnished to the agency as part of the quarterly environmental monitoring reports sent to the Agency in April, July and October 2012, and January 2013.

2.3.1 Wastewater Monitoring

The concentration of pH was within the required licence limit (6.5 pH 10) during all monitoring events in 2012. A summary of the reported monthly pH concentrations is contained in Table 2.5 and Figure 2.5 below.

The concentration of mineral oil at WW1 was below the required licence limit during all monitoring events in 2012. A summary of the reported monthly mineral oil concentrations is contained in Table 2.5 and illustrated in Figure 2.6 below.

Concentrations of zinc, copper, chromium, lead, nickel, arsenic, benzene, toluene, ethylbenzene and total xylene were all below respective licence limits during 2012. The reported monthly WW1 concentrations for these parameters are summarised in Table 2.5 and illustrated in Figure 2.7 below.

Concentrations of BOD, COD, sulphate, surfactants, suspended solids and ammonical nitrogen⁵ were all below respective licence limits during 2012. A summary of the reported monthly WW1 concentrations for these parameters is contained in Table 2.5 and illustrated in Figure 2.8 below.

The total wastewater volume emitted during 2012 was 58,265m³ (58265000 litres).

⁵ Ammonical nitrogen was added to the WW1 monthly parameters in 2010, as part of licence 192-03.

		W0192-												
Parameter	Units	Grab Sample Limits	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sep	Oct	Nov	Dec
рН	pH units	6>pH<10	7.4	7.4	7.4	8.0	7.8	7.8	7.7	7.7	7.8	7.8	8.1	6.77
BOD	mg/l	2000	93	7	14.0	70	110	15	50	45	120	52	120	260
COD	mg/l	4000	346	77	131	536	992	293	810	805	965	840	1680	760
Sulphate SO ₄	mg/l	1000	50.02	28.3	31.23	97.70	<0.82	57.58	5.81	<0.82	13.70	0.92	6.84	62.78
Surfactants	mg/l	100	0.66	<0.05	9	0.152	0.872	0.190	0.791	0.053	0.391	5.796	0.322	0.364
Zinc Zn	g/l	3000	93.34	14.59	26.2	75.84	67.27	69.85	103.2	111	128.1	63.07	57.56	61.68
Copper Cu	g/l	1000	75.91	19.95	31.57	130.6	32.29	26.33	79.36	58.6	87.39	45.44	56.63	27.56
Chromium	g/l	1000	16.06	8.98	8.2	67.97	96.94	29.22	79.36	89.18	80.47	89.37	249.4	3.84
Lead	g/l	200	3.69	3.72	3.31	8.876	9.78	1.77	99.46	10.76	10.83	45.44	10.78	1.518
Nickel	g/l	1000	69.29	13.46	14.51	53.33	80.93	30.39	106.3	97.06	77.95	83.62	150.8	234.4
Arsenic	g/l	500	6.78	1.90	2.11	25.28	26.65	9.278	39.24	32.74	27.48	29.29	91.26	1.746
Benzene	g/l	1000	12.5	< 0.47	< 0.47	<0.47	<0.47	< 0.47	<0.47	<0.47	< 0.47	1.308	<0.47	27.262
Toluene	g/l	1000	31.49	<0.54	< 0.54	4.17	10.7	< 0.54	15.99	3.59	20.096	5.39	5.571	65.58
Ethylbenzene	g/l	1000	16.659	< 0.45	< 0.45	3.40	9.967	< 0.45	8.70	<0.45	< 0.45	<0.45	2.05	25.46
Total Xylene	g/l	1000	72.72	< 0.7	< 0.7	6.306	6.304	< 1.18	23.64	2.69	< 1.18	19.96	7.394	213.06
Suspended Solids	mg/l	500	48	6	9	17	35	24	50	38	34	34	61	120
Ammonical Nitrogen	mg/l	-	84.79	45.82	55.76	274.79	516.2	204.21	<0.01	555	<0.01	581.57	38.83	102.4
Mineral Oil	g/l	10000	37.53	< 2.5	5.69	44.52	7.68	< 2.5	28.11	5	10.51	<2.5	<2.5	149.41

Figure 2.5 Wastewater – pH Trend Data 2012

Figure 2.6 Wastewater – Mineral Oil Trend Data 2012

Figure 2.7 Wastewater – Metals and BTEX Trend Data 2012

Figure 2.8 Wastewater – Miscellaneous Parameter Trend Data 2012

3 AMBIENT MONITORING

3.1 DUST

According to Schedule E of the waste licence, dust monitoring is required at the facility three times a year (twice between May and September), at monitoring locations illustrated on Drawing 1250/01/1002 (see Appendix A). Dust monitoring was carried out at four separate locations at the 4 no. corner boundaries of the RILTA facility. The samples were delivered to the laboratory of Fitz Scientific for analysis.

The results for each sample location D1, D2, D3 and D4 are included in Appendix C. In summary the air quality at all monitoring locations was good, with no exceedances of the dust deposition limit ($350mg/m^2/day$) recorded during the 2012 monitoring period.

	D1	D2	D3	D4			
Monitoring Period	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d	Source of Dust		
January 2012	161	58	26	103	No Exceedance		
May 2012	*	228	305	241	No Exceedance		
July 2012	28	56	142**	148	No Exceedance		

Table 3.1 Dust Monitoring Results – 2012

*Note: In May, Dust jar D1 was broken following submission to the laboratory and the laboratory could not undertake analysis for gauge D1

**Note: Dust jar D3 was missing at the time of collection following the July monitoring event, the result shown is therefore from a replacement gauge which was set out in August.

3.2 VOC EMISSIONS

Odour Monitoring Ireland were commissioned by Rilta Environmental Limited to perform volatile organic compound (VOC) monitoring of the three licensed emission points located within the facility on a biannual basis. Monitoring was carried out on the 6th of June (Round 1) and the 28th of November 2012 (Round 2). With the exception of Volume flow for location A2, all results from the 2012 monitoring were in compliance with required limits. Measured volumetric airflow rate at A2 was 6,490Nm³/hr during the June monitoring event and 6,490 Nm³/hr during the November monitoring event, which exceeded the limit volumetric airflow rate of 5,292 Nm³/hr.

The full report from OMI detailing ambient emissions from the RILTA facility is contained in Appendix E.

4 NOISE MONITORING

The noise emission limits given in Waste Licence 192-03 are 55 dB(A) for daytime and 45 dB(A) for night time. These levels specifically relate to noise emissions arising from the facility, measured at any noise sensitive location. A more detailed noise monitoring report for this period is contained in Appendix D.

The noise emissions from RILTA Environmental Ltd. are given in Table 4.1 and Table 4.2 below.

DAY TIME								
Receptor	Time	Leq	L10	L90	Notes			
N1	08:56	60.6	62.9	56.2	Noise at this location was dominated by internal industrial estate traffic, distant traffic and vehicle movements at adjacent premises. Site activity was occasionally audible at this location during daytime monitoring.			
N2	09:02	58.8	60.2	56.6	Noise from activities and vehicles at the adjacent premises were the dominant sources. The fast flowing stream, bird song, passing aircraft and on-site activities also contributed to recorded daytime noise levels at N2.			
N3	09:42	59.8	63.4	52.0	Activity from adjacent facilities was the dominant noise source. Onsite activity, passing aircraft and bird song also contributed to daytime noise.			
N4	10:23	70.6	70.0	63.8	Onsite activity and passing road traffic were the dominant noise sources during daytime monitoring at N4. Passing aircraft and activity at surrounding premises also contributed to noise levels.			

Table 4.1 RILTA Daytime Noise – 2012

NIGHT LIME							
Receptor	Time	Leq	L10	L90	Notes		
N1	01:49	43.8	45.5	38.5	Noise at this location was dominated by distant traffic. Passing traffic and a dog barking occasionally also contributed to noise levels. The facility was not in operation or audible.		
N2	00:40	44.0	46.7	40.7	Distant traffic, the flowing stream and a dog occasionally barking. Site machinery was audible at N2 during night time monitoring as a shed door was open and this noise contributed to recorded levels.		
N3	00:05	51.1	51.9	49.6	Night time noise at this location was dominated by an adjacent fast flowing stream. Distant traffic, noise from adjacent premises and passing aircraft also contributed to recorded noise levels. The site was not audible at this location during night time monitoring.		
N4	01:15	43.1	43.5	37.1	Dominated by noise from surrounding premises (including an alarm) and distant traffic. The site was not audible at this location during night time monitoring.		

Table 4.2 RILTA Night Time Noise – 2012

Noise levels recorded at the four EPA agreed noise monitoring locations contain noise emissions from adjacent industrial sites, low flying aircraft and traffic on the internal road network of the industrial estate. Noise emissions from the RILTA facility were audible only during daytime monitoring and not audible during the night time monitoring, with the exception of at site N2 when the facility was audible due to a shed door being left open. Note that the EPA agreed noise monitoring locations are all on site and do not reflect emissions at noise sensitive locations.

The A-weighted equivalent continuous sound pressure level (Laeq, 30 min) recorded at the RILTA facility was above 55 dB(A) at all noise monitoring locations during the daytime monitoring event. It is noted that Greenogue Business Park is a busy industrial estate and noise from external sources including adjacent premises, passing and distant road traffic and passing aircraft contributed to recorded noise levels at all monitoring locations during daytime hours.

During the night time monitoring period the A-weighted equivalent continuous sound pressure level

(LAeq, 30 min) exceeded 45 dB(A) (night time) limit at N3 only. This exceedance at N3 was directly attributable to extraneous noise sources such as the fast flowing stream adjacent, distant traffic and low flying aircraft from nearby Baldonnell Airport. Site activities were not audible at N3 during night time monitoring.

There were no impulsive noise emissions audible at any of the monitoring locations during the daytime or night time monitoring period. With regard to tonal emissions, two tonal components were present at during daytime monitoring at locations N3 and N4 (16000Hz). However, no tonal emissions at these frequencies were recorded at any other monitoring location during the daytime monitoring event, despite the facility being audible at these locations; therefore it is unlikely that this pure tone originated due to RILTA activities.

During the night time monitoring there was a pure tone recorded at 2.5KHz at location N1. No tonal emissions at this frequency were recorded at any other monitoring location and the site was not audible at N1 during recording. This tone did not originate due to RILTA activities. A pure tone at 125Hz was recorded at monitoring location N2 during night time monitoring. Site machinery was audible at this location as a shed door was open. Similar noise sources were recorded throughout the four no. monitoring locations but N2 was the only location that site machinery was audible. As such is it considered this tone is a result of RILTA site machinery noise.

The 5dB penalty has not been applied to the N3 and N4 day monitoring event or the N1 night time monitoring event as these tones are likely to have been derived from an off-site source.

The 5dB penalty has however been applied to the N2 night time monitoring event and as such increases the LAeq at this location to 49.0dB(A) which exceeds the 45dB(A) limit set in Waste Licence No. 192-03. It is noted that other industrial estate noises and external sources contributed to recorded noise levels at N2 and that this location does not reflect emissions at noise sensitive locations.

Full 1/3 octave frequency band analysis of both day and night time surveys is presented in Appendix D.

5 RESOURCE CONSUMPTION SUMMARY

The main energy use at RILTA includes:

- Gas
- Electricity
- Water
- Diesel

A review of electricity and gas bills for the period from 01/01/08 to 31/12/12 shows that RILTA used the following quantities.

Table 5.1	Resource	and Ene	ergy Consi	umption	2008-	2012

Energy	Units	2010	2011	2012
Gas	KwH	175,932	52,240	60,266
Electricity	KwH	422,560	422,566	418,766
Water	m ³	13132	19,420*	17,020
Diesel	L	9888	75,800	62,800

*Water loss due to leaks caused by frost in late 2010 has now been rectified.

6 ENVIRONMENTAL MANAGEMENT

6.1 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS

Details of the Environmental Management Programmes (EMP) for the RILTA facility are contained in Appendix B.

6.2 ENVIRONMENTAL MANAGEMENT PROGRAMME

Details of the 2012 and 2013 EMPs for the RILTA facility are contained in Appendix B.

7 POLLUTANT RELEASE AND TRANSFER REGISTER (PRTR)

Details of the 2012 Pollutant Release Transfer Register (PRTR) for the RILTA facility are included in Appendix F.

8 TANK AND PIPELINE TESTING AND INSPECTION REPORT

As per Condition 11 of waste licence 192-03, any reports on integrity testing of bunds or tanks will be furnished to the agency upon completion. Bund Integrity Testing was carried out at the RILTA facility in August 2012 and February 2013. The results will be submitted following feedback from a recent Agency audit.

9 WATER DEMAND AND TRADE EFFLUENT DISCHARGE

The trade effluent discharged in 2012 was 58265m³, of this 1095m³ of water was re-used; an increase of 650m³ when compared to 2011. This increase was due largely to significant volumes of water being used in carrying out bund testing in 2012.

10 EFFICIENCY OF USE OF RAW MATERIALS/ REDUCTION IN WASTE GENERATED

The main raw material used on site is paint. In 2012 RILTA moved away from using 56% solids paint and is instead using only 65% solids paint, which will further reduce solvent use at the facility. Paint use overall decreased by 1,500L in 2012 when compared to 2011, while Xylene use increased by 40L.

	2011	2012
56% Solids Paint	2,200 L	Nil
65% Solids Paint	6,100L	6,800L
Xylene	200L	240L
Acetone	25L	25L

Table 10.1 Raw Material usage 2012

11 DEVELOPMENT/INFRASTRUCTURAL WORKS

In 2012, 3 no. hardstanding concrete slabs located in the yard of the RILTA facility were replaced. It is hoped that a further two slabs will be replaced in 2013 and that any remaining damaged slabs will be replaced by 2014.

12 COMPLAINTS SUMMARY

There were no complaints received during 2012.

13 FINANCIAL PROVISION

A proposal in respect of financial provision was updated and furnished to the Agency in 2011 and no amendments have been made in the interim.

13.1 MANAGEMENT AND STAFFING STRUCTURE

Details of the management and staffing structure are contained in Appendix G.

13.2 PROGRAMME FOR PUBLIC INFORMATION

RILTA maintains a 'Public File' which contains all correspondence between RILTA and the Agency, all waste data and monitoring data as required by waste licence 0192-03. This file is available for viewing during normal office hours.

14 DECOMMISSIONING MANAGEMENT PLAN

This was submitted to the Agency in April 2011 and no amendments have been made in the interim.

14.1 PREVENTION OF ENVIRONMENTAL DAMAGE AND REMEDIAL ACTIONS (ENVIRONMENTAL LIABILITIES)

This was submitted to the Agency in April 2011 and no amendments have been made in the interim.

14.2 ENVIRONMENTAL LIABILITIES RISK ASSESSMENT (ELRA)

This was submitted to the Agency in April 2011 and no amendments have been made in the interim.

APPENDIX A

Site Map

APPENDIX B

Environmental Management Programme 2012 & 2013

RILTA ENVIRONMENTAL Ltd.

ENVIRONMENTAL MANAGEMENT SYSTEM

ENVIRONMENTAL MANAGEMENT PLAN

ER-003

In accordance with **ISO 14001**

RILTA ENVIRONMENTAL	Issue No. 008
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: Jan 2012
Environmental Management Programme	Page 1 of 8

ENVIRONMENTAL MANAGEMENT PROGRAMME FOR THE ACHIEVEMENT OF OBJECTIVES AND <u>TARGETS</u>

EMP Ref.	Objective	Target	Environmental Management Programme for the implementation of objectives.	Responsible Person	Completion Date	Completed (Y/N)
1	Increase environmental awareness	Develop and issue quarterly e- mail environmental bulletin.	Confirm content	CH ONE51 IT	June 12 June 12	Ν
	among RILTA staff.		Input information	СК	August 12	
			Distribute	СН	August 12	
2	Promote best	Change current method of	Confirm most suitable site	RS/SC	Mar 12	Y
	practice in the processing of waste	disposing dry sludge to prevent leachate production	Assess most suitable method of transport	RS/SC	Apr 12	Y
	site.		Assess most suitable method of storage prior to transport which doesn't allow for leachate accumulation	EI/CH	May 12	Y
			1 st load exported	DG	June 12	Y

Issue No.	008	Compiled by: Name/Position	Colm Hussey Facility & Environmental Manager
Date:	Jan 2012	Reviewed by:	Eftim Ivanoff
		Name/Position	Operations Director

RILTA ENVIRONMENTAL	Issue No. 008
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: Jan 2012
Environmental Management Plan	Page 2 of 8

EMP	Objective	Target	Environmental Management Programme for	Responsible	Completion	Completed
Ref.			the implementation of objectives.	Person	Date	(Y/N)
3	Improve site	Implement weekly	Draw up groupings to share tidy up	СН	Feb 12	У
	housekeeping.	'Friday tidy up'	responsibility between sections.			
			Assign a responsible person for each group and post the rota.	СН	Feb 12	У
			Assess effectiveness and meet with responsible persons	СН	Apr 12	У
4	Reduce trade effluent sent	Install a treated effluent re-use tank	Further investigate treated effluent polishing system	EI/CH	June 12	У
	to four sewer		Implement system if approved.	EI/DG	Sept 12	
			Assess polished effluent for general site use	EI/CH	Oct 12	
			Install Tank if approved	EI/CH	Feb 13	Yes
			Expand use through the whole site	EI	June 13	У

Issue No.	008	Compiled by:	Colm Hussey
		Name/Position	Facility & Environmental Manager
Date:	Jan 2012	Reviewed by:	Eftim Ivanoff
		Name/Position	Operations Director

RILTA ENVIRONMENTAL	Issue No. 008
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: Jan 2012
Environmental Management Plan	Page 3 of 8

EMP Ref.	Objective	Target	Environmental Management Programme for the implementation of objectives.	Responsible Person	Completion Date	Completed (Y/N)
5	Reduce use of hazardous raw materials used	Implement the 'treat waste with waste' best practice method on an ongoing basis	Source suitable waste streams for treatment		Ongoing	у
	on site.		Laboratory approval for the usage of wastes for treatment		Ongoing	У
		Reduce volume of Xylene by 5%	Investigate the possible usage of waste solvents in instead of product.		Dec 2012	у
6	Optimize the quality of effluent discharged to sewer	As No. 4	As No. 4			

Issue No.	008	Compiled by:	Colm Hussey
		Name/Position	Facility & Environmental Manager
Date:	Jan 2012	Reviewed by:	Eftim Ivanoff
		Name/Position	Operations Director

RILTA ENVIRONMENTAL	Issue No. 008
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: Jan 2012
Environmental Management Plan	Page 4 of 8

EMP Ref.	Objective	Target	Environmental Management Programme for the implementation of	Responsible Person	Completion Date	Completed (Y/N)
7	To be a good and	No complaints	Complete noise monitoring.	СН	Ongoing	У
	considerate neighbour.		Monitor adjoining river on a yearly basis.	СН	Ongoing	Yes
			Maintain a 'complaints register' and review annually.	СН	Ongoing	Yes
			Liaise with industrial neighbours on a quarterly basis	СН	Ongoing	Yes
			Implement 'closed door' policy system	CM/DG	Ongoing	Yes
			Cold cutting at the cedar site to take place inside with	DG	Ongoing	У

Issue No.	008	Compiled by:	Colm Hussey
		Name/Position	Facility & Environmental Manager
Date:	Jan 2012	Reviewed by:	Eftim Ivanoff
		Name/Position	Operations Director
RILTA ENVIRONMENTAL	Issue No. 008		
---------------------------------	----------------		
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: Jan 2012		
Environmental Management Plan	Page 5 of 8		

			doors close			
EMP Ref.	Objective	Target	Environmental Management Programme for the implementation of objectives.	Responsible Person	Completion Date	Completed (Y/N)
8	To Be Energy Efficient	Reduce Water and electricity usage	Complete targeted energy audit.	СН	Apr 12	n
			Assess findings of audit.	CH/EI	May 12	
			Implement findings of audit if economically and practically feasible.	CH/EI	Dec 12	

Issue No.	008	Compiled by:	Colm Hussey
		Name/Position	Facility & Environmental Manager
Date:	Jan 2012	Reviewed by:	Eftim Ivanoff
		Name/Position	Operations Director

RILTA ENVIRONMENTAL Ltd.

ENVIRONMENTAL MANAGEMENT SYSTEM

ENVIRONMENTAL MANAGEMENT PLAN

In accordance with ISO 14001

RILTA ENVIRONMENTAL	Issue No. 009
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: Mar 2013
Environmental Management Programme	Page 1 of 8

ENVIRONMENTAL MANAGEMENT PROGRAMME FOR THE ACHIEVEMENT OF OBJECTIVES AND <u>TARGETS</u>

EMP Ref.	Objective	Target	Environmental Management Programme for the implementation of objectives	Responsible Person	Completion Date	Completed (Y/N)
1	Increase environmental awareness	Develop and issue quarterly e- mail environmental bulletin.	Confirm content	CH ONE51 IT	June 13	
	among RILTA staff.		Input information	СН	August 13	
			Distribute	СН	August 13	
2	Promote best practice in the	Ensure all pallets are recovered	Maintain current pallet storage area to maximize capacity.	СМ	May 13	
	waste generated on		Ensure broken pallets are not thrown in the skip	СМ	May 13	
	She.		Have clean and broken pallets collected once a month	СМ	May 13	

Issue No.	009	Compiled by: Name/Position	Colm Hussey Facility & Environmental Manager
Date:	Jan 2013	Reviewed by: Name/Position	Eftim Ivanoff Operations Director

RILTA ENVIRONMENTAL	Issue No. 009
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: Mar 2013
Environmental Management Plan	Page 2 of 8

EMP	Objective	Target	Environmental Management Programme for	Responsible	Completion	Completed
Ref.			the implementation of objectives.	Person	Date	(Y/N)
3	Improve site	Empty Drums loading	1 person one Saturday per month to shred	AR	May 13	
	housekeeping.	Bay	washed IBCs currently on loading bay.			
		Remove all drums from back of drum division	1 person one Saturday per month to crush drums at back of drum division	AR	May 13	
4	Ensure only clean water released to the	No ELV breaches	Implement thorough cleaning of attenuation tank and repeat on a 3 year basis	СН	June 13	
	river		Skim storm water interceptor on a monthly basis	СН	Ongoing	
			Replace damaged concrete on a rota basis to ensure no damaged areas by 2015	СН	Dec 14	

Issue No.	009	Compiled by:	Colm Hussey
		Name/Position	Facility & Environmental Manager
Date:	Jan 2013	Reviewed by:	Eftim Ivanoff
		Name/Position	Operations Director

RILTA ENVIRONMENTAL	Issue No. 009
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: Mar 2013
Environmental Management Plan	Page 3 of 8

EMP Ref.	Objective	Target	Environmental Management Programme for the implementation of objectives.	Responsible Person	Completion Date	Completed (Y/N)
5	Reduce use of hazardous raw materials used on site.	Implement the 'treat waste with waste' best practice method on an ongoing basis	Source suitable waste streams for treatment Laboratory approval for the usage	RS TMc	Ongoing Ongoing	
			of wastes for treatment			
6	Optimize the quality of effluent	Have re-usable water on tap	Investigate possibility of final effluent polish system	EI	Sept 13	
	discharged to sewer		Get approval from EPA	СН	Dec 13	

Issue No.	009	Compiled by:	Colm Hussey
		Name/Position	Facility & Environmental Manager
Date:	Jan 2013	Reviewed by:	Eftim Ivanoff
		Name/Position	Operations Director

RILTA ENVIRONMENTAL	Issue No. 009
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: Mar 2013
Environmental Management Plan	Page 4 of 8

EMP Ref.	Objective	Target	Environmental Management Programme	Responsible Person	Completion Date	Completed (Y/N)
ncy.			for the implementation of objectives.	i croon	Duit	(1)(1)
7	To be a good and considerate	No complaints	Complete noise monitoring.	СН	Ongoing	
	neighbour.		Monitor adjoining river on a quarterly basis.	СН	Ongoing	
			Implement 'closed door' policy system when unloading liquid waste tankers where possible	CM/DG	Ongoing	
			Cold cutting at the cedar site to take place inside with doors close	DG	Ongoing	

Issue No.	009	Compiled by:	Colm Hussey
		Name/Position	Facility & Environmental Manager
Date:	Jan 2013	Reviewed by:	Eftim Ivanoff
		Name/Position	Operations Director

RILTA ENVIRONMENTAL	Issue No. 009
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: Mar 2013
Environmental Management Plan	Page 5 of 8

EMP Ref.	Objective	Target	Environmental Management Programme for the implementation of objectives.	Responsible Person	Completion Date	Completed (Y/N)
8	To Be Energy Efficient	Reduce Water and electricity usage	Complete targeted energy audit at both 402 and 14A1 sites.	СН	Aug 13	
			Assess findings of audit.	CH/EI	July 13	
			Implement findings of audit if economically and practically feasible.	CH/EI	Dec 13	

Issue No.	009	Compiled by:	Colm Hussey
		Name/Position	Facility & Environmental Manager
Date:	Jan 2013	Reviewed by:	Eftim Ivanoff
		Name/Position	Operations Director

APPENDIX C

Dust Analysis Laboratory Results

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Claire Walsh	Lab Report Ref. No.	1102/005/02
	Tobin Consulting Engineers TES	Date of Receipt	01/03/2012
	Block 10-4	Sampled On	29/02/2012
	Blanchardstown Corp PK	Date Testing Commenced	01/03/2012
	Dublin 15	Received or Collected	Courier: DPD
	Dublin	Condition on Receipt	Acceptable
Customer PO		Date of Report	12/03/2012
Customer Ref	Rilta (Site 402) D1 , 31/01/12 - 29/02/12	Sample Type	Water

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Dust	144	Gravimetry	0.0308	g	
Dust (mg/m2/day)	144	Gravimetry	161.46	mg/m2/day	

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 12/03/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Claire Walsh	Lab Report Ref. No.	1102/005/03
	Tobin Consulting Engineers TES	Date of Receipt	01/03/2012
	Block 10-4	Sampled On	29/02/2012
	Blanchardstown Corp PK	Date Testing Commenced	01/03/2012
	Dublin 15	Received or Collected	Courier: DPD
	Dublin	Condition on Receipt	Acceptable
Customer PO		Date of Report	12/03/2012
Customer Ref	Rilta (Site 402) D2 , 31/01/12 - 29/02/12	Sample Type	Water

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Dust	144	Gravimetry	0.0111	g	
Dust (mg/m2/day)	144	Gravimetry	58.19	mg/m2/day	

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 12/03/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Claire Walsh	Lab Report Ref. No.	1102/005/04
	Tobin Consulting Engineers TES	Date of Receipt	01/03/2012
	Block 10-4	Sampled On	29/02/2012
	Blanchardstown Corp PK	Date Testing Commenced	01/03/2012
	Dublin 15	Received or Collected	Courier: DPD
	Dublin	Condition on Receipt	Acceptable
Customer PO		Date of Report	12/03/2012
Customer Ref	Rilta (Site 402) D3 , 31/01/12 - 29/02/12	Sample Type	Water

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Dust	144	Gravimetry	0.0050	g	
Dust (mg/m2/day)	144	Gravimetry	26.21	mg/m2/day	

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 12/03/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Claire Walsh	Lab Report Ref. No.	1102/005/05
	Tobin Consulting Engineers TES	Date of Receipt	01/03/2012
	Block 10-4	Sampled On	29/02/2012
	Blanchardstown Corp PK	Date Testing Commenced	01/03/2012
	Dublin 15	Received or Collected	Courier: DPD
	Dublin	Condition on Receipt	Acceptable
Customer PO		Date of Report	12/03/2012
Customer Ref	Rilta (Site 402) D4 , 31/01/12 - 29/02/12	Sample Type	Water

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Dust	144	Gravimetry	0.0197	g	
Dust (mg/m2/day)	144	Gravimetry	103.27	mg/m2/day	

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 12/03/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Claire Walsh	Lab Report Ref. No.	1102/010/01
	Tobin Consulting Engineers TES	Date of Receipt	04/07/2012
	Block 10-4	Sampled On	27/06/2012
	Blanchardstown Corp PK	Date Testing Commenced	04/07/2012
	Dublin 15	Received or Collected	By Fitz:Paul
	Dublin	Condition on Receipt	Acceptable
Customer PO		Date of Report	09/07/2012
Customer Ref	Greenogue Site - D2 (30/05/12 - 27/06/12)	Sample Type	Other

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Dust	144	Gravimetry	0.0249	g	
Dust (mg/m2/day)	144	Gravimetry	228.4	mg/m2/day	

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 09/07/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Claire Walsh	Lab Report Ref. No.	1102/010/02
	Tobin Consulting Engineers TES	Date of Receipt	04/07/2012
	Block 10-4	Sampled On	27/06/2012
	Blanchardstown Corp PK	Date Testing Commenced	04/07/2012
	Dublin 15	Received or Collected	By Fitz:Paul
	Dublin	Condition on Receipt	Acceptable
Customer PO		Date of Report	09/07/2012
Customer Ref	Greenogue Site - D3 (30/05/12 - 27/06/12)	Sample Type	Other

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Dust	144	Gravimetry	0.0330	g	
Dust (mg/m2/day)	144	Gravimetry	305.1	mg/m2/day	

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 09/07/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Claire Walsh	Lab Report Ref. No.	1102/010/03
	Tobin Consulting Engineers TES	Date of Receipt	04/07/2012
	Block 10-4	Sampled On	27/06/2012
	Blanchardstown Corp PK	Date Testing Commenced	04/07/2012
	Dublin 15	Received or Collected	By Fitz:Paul
	Dublin	Condition on Receipt	Acceptable
Customer PO		Date of Report	09/07/2012
Customer Ref	Greenogue Site - D4 (30/05/12 - 27/06/12)	Sample Type	Other
Customer PO Customer Ref	Greenogue Site - D4 (30/05/12 - 27/06/12)	Condition on Receipt Date of Report Sample Type	Acceptable 09/07/2012 Other

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Dust	144	Gravimetry	0.0224	g	
Dust (mg/m2/day)	144	Gravimetry	241.15	mg/m2/day	

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 09/07/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Orla McAlister	Lab Report Ref. No.	1102/013/01
	Tobin Consulting Engineers TES	Date of Receipt	04/08/2012
	Block 10-4	Sampled On	02/08/2012
	Blanchardstown Corp PK	Date Testing Commenced	04/08/2012
	Dublin 15	Received or Collected	Courier: DPD
	Dublin	Condition on Receipt	Unacceptable
Customer PO		Date of Report	14/08/2012
Customer Ref	Greenogue Site - D1 28 Days Exposure	Sample Type	Other
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units Acc.
Dust	144	Gravimetry	0.0055	g
Dust (mg/m2/day)	144	Gravimetry	27.78	mg/m2/day

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 14/08/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Orla McAlister	Lab Report Ref. No.	1102/013/02
	Tobin Consulting Engineers TES	Date of Receipt	04/08/2012
	Block 10-4	Sampled On	02/08/2012
	Blanchardstown Corp PK	Date Testing Commenced	04/08/2012
	Dublin 15	Received or Collected	Courier: DPD
	Dublin	Condition on Receipt	Unacceptable
Customer PO		Date of Report	14/08/2012
Customer Ref	Greenogue Site - D2 28 Days Exposure	Sample Type	Other
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units Acc.
Dust	144	Gravimetry	0.0106	g
Dust (mg/m2/day)	144	Gravimetry	55.57	mg/m2/day

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 14/08/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email: info@fitzsci.ie

Customer	Orla McAlister	Lab Report Ref. No.	1102/014/02
	Tobin Consulting Engineers TES	Date of Receipt	07/09/2012
	Block 10-4	Sampled On	06/09/2012
	Blanchardstown Corp PK	Date Testing Commenced	07/09/2012
	Dublin 15	Received or Collected	Courier: DPD
	Dublin	Condition on Receipt	Acceptable
Customer PO		Date of Report	02/10/2012
Customer Ref	D3	Sample Type	Other
Ref 2	Rilta Greenogue (Block 402) Ref: 3084		

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units Acc	с.
Dust	144	Gravimetry	0.0271	g	
Dust (mg/m2/day)	144	Gravimetry	142.07	mg/m2/day	

Signed : <u>A Horecons</u> Aoife Harmon - Technical Supervisor

Date : 02/10/2012

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Orla McAlister	Lab Report Ref. No.	1102/013/03
	Tobin Consulting Engineers TES	Date of Receipt	04/08/2012
	Block 10-4	Sampled On	02/08/2012
	Blanchardstown Corp PK	Date Testing Commenced	04/08/2012
	Dublin 15	Received or Collected	Courier: DPD
	Dublin	Condition on Receipt	Unacceptable
Customer PO		Date of Report	14/08/2012
Customer Ref	Greenogue Site - D4 28 Days Exposure	Sample Type	Other
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units Acc.
Dust	144	Gravimetry	0.0282	g
Dust (mg/m2/day)	144	Gravimetry	147.83	mg/m2/day

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 14/08/2012

APPENDIX D

Annual Noise Monitoring Report

RILTA ENVIRONMENTAL LTD.

Annual Noise Survey 2012

November 2012

TOBIN CONSULTING ENGINEERS

REPORT

PROJECT:

Annual Noise Survey at the Rilta Integrated Waste Management Facility

CLIENT:

RILTA Environmental Ltd.

Greenogue Business Park, Rathcoole, D24

COMPANY:

TOBIN Consulting Engineers Block 10-4, Blanchardstown Corporate Park

Blanchardstown Corporate Park, Dublin 15

www.tobin.ie

DOCUMENT AMENDMENT RECORD

Client: Rilta Environmental Ltd

Project: Annual Noise Survey at the Rilta Integrated Waste Management Facility

Title: November 2012 Noise Monitoring

PROJECT NUMBER: 3084			DOCUMENT REF: 3084 – 01				
A	Noise Report	AAM	05/11/12	OMA	06/11/12	DG	07/11/12
Revision	Description & Rationale	Originated	Date	Checked	Date	Authorised	Date
	TOBIN Consulting Engineers						

TABLE OF CONTENTS

1	IN	TRODUCTION	. 1
2	NC	DISE MONITORING SURVEY	. 1
	2.1	INSTRUMENTATION USED	1
	2.2	MEASUREMENT PROCEDURE	1
	2.3	RESULTS OF NOISE SURVEY	2
3	СО	NCLUSION	. 3

LIST OF TABLES

Table 2-1	Noise Monitoring Locations	2
Table 2-2	Noise Monitoring Results – dB(A) and 30 minute intervals	3

APPENDICES

Appendix A: Map of Noise Monitoring Locations

•••	•	
Appendix I	B: 1/3 Octave Frequency Analysis	
Figure 1	N1 Daytime Frequency Analysis	
Figure 2	N1 Night Time Frequency Analysis	
Figure 3	N2 Daytime Frequency Analysis	
Figure 4	N2 Night Time Frequency Analysis	
Figure 5	N3 Daytime Frequency Analysis	
Figure 6	N3 Night Time Frequency Analysis	
Figure 7	N4 Daytime Frequency Analysis	
Figure 8	N4 Night Time Frequency Analysis	

1 INTRODUCTION

This report deals with the noise monitoring requirement conditions of RILTA Environmental Ltd. (RILTA) hazardous waste facility at Greenogue Business Park, Rathcoole, Co. Dublin, Waste Licence No. 192-03.

2 NOISE MONITORING SURVEY

TOBIN Consulting Engineers (TOBIN) was commissioned by RILTA to carry out an annual day and night time noise survey at their facility in Greenogue Business Park. The noise survey was carried out within the site boundary of the waste facility at four no. locations agreed with the EPA (see Appendix A). Weather conditions during monitoring event were dry and calm with an occasional slight breeze. The following conditions were adhered to in undertaking the survey:

- Measurement of noise levels was undertaken using Type 1 instrumentation;
- Cognisance was taken of the EPA's 'Guidance Note for Noise: Licence Applications, Surveys and Assessments in relation to Scheduled Activities (NG4); and
- The survey was carried out in accordance with ISO 1996 Acoustics Description and Measurement of Environmental Noise: Parts 1/2/3.

2.1 INSTRUMENTATION USED

The following instrumentation was used in the environmental noise monitoring survey:

- One Larson Davis 824 Precision Integrating Sound Level Analyser/Data logger with *Real-Time* Frequency Analyser Facility;
- Wind Shield Type: Larson Davis 2120 Windscreen; and
- Calibration Type: Larson Davis Precision Acoustic Calibrator Model CA200.

2.2 MEASUREMENT PROCEDURE

Daytime noise monitoring was carried out on 2nd November 2012 and night time noise monitoring was carried out on the 6th November 2012 by TOBIN. Noise monitoring was undertaken for 30 minute intervals at four agreed EPA locations. All the environmental noise analysers had data logging facilities were set on real-time, the logged data was later downloaded via a personal computer using software. One third octave frequency analysis was taken at the locations using the 824 Precision Integrating Sound Level Analyser/Data logger with real-time frequency analyser facility.

The measurement locations were all away from reflecting surfaces and at 1.5m height above local ground.

All acoustic instrumentation was calibrated before and after the survey period and no drift of calibration was observed (calibration level 114dB at 1000Hz).

2.3 RESULTS OF NOISE SURVEY

The noise monitoring locations are summarised in Table 2-1 below and shown in Appendix A. The results of the noise survey are given in Table 2-2. The 1/3 octave frequency analysis data is given in graphical format in Appendix B.

Table 2-1 Noise Monitoring Locations

Monitoring Location	Description
N1	South western boundary of site
N2	North western boundary of site
N3	North eastern boundary of site
N4	South eastern boundary of site

Location N1

Noise monitoring location N1 is located at the south-western boundary of the site, adjacent to the site car park and to the access road to RILTA within Greenogue Business Park. Noise at this location during daytime monitoring was dominated by internal industrial estate traffic passing the site, distant traffic and also by activity and vehicle movements at adjacent premises. Site activity was occasionally audible at this location during daytime monitoring.

Noise at this location during night time monitoring was dominated by distant traffic. Noise from the surrounding premises also contributed to recorded levels along with a dog occasionally barking and passing vehicles on internal estate roads. The site was not audible at this location during night time monitoring.

Location N2

N2 is located in the north-western corner of the site. Noise from activities and vehicles at the adjacent premises were the dominant sources of noise during daytime monitoring. The fast flowing stream, bird song, passing aircraft and on-site activities also contributed to recorded daytime noise levels at N2.

Night time noise sources included distant traffic, the flowing stream and a dog occasionally barking. Site machinery was audible at N2 during night time monitoring as a shed door was open and this noise contributed to recorded levels.

Location N3

N3 is located at the north-eastern site boundary, adjacent to the tank farm. At this location, activity from adjacent facilities was the dominant noise source. Onsite activity, passing aircraft and bird song also contributed to daytime noise levels at N3.

Night time noise at this location was dominated by an adjacent fast flowing stream. Distant traffic, noise from adjacent premises and passing aircraft also contributed to recorded noise levels. The site was not audible at this location during night time monitoring.

Location N4

Noise monitoring location N4 is located in the south-eastern corner of the site adjacent to the access road to RILTA within Greenogue Business Park. Onsite activity and passing road traffic were the dominant noise sources during daytime monitoring at N4. Passing aircraft and activity at surrounding premises also contributed to noise levels.

Noise at location N4 during night time monitoring was dominated by noise from surrounding premises (including an alarm) and distant traffic. The site was not audible at this location during night time monitoring.

	Daytime Results							
Receptor	Time	Leq	L10	L90				
N1	08.56	60.6	62.9	56.2				
N2	09.02	58.8	60.2	56.6				
N3	09.42	59.8	63.4	52.0				
N4	10.23	70.6	70.0	63.8				
	Nigh	t Time Res	sults					
Receptor Time		Leq	L10	L90				
N1	01:49	43.8	45.5	38.5				
N2	00:40	44.0	46.7	40.7				
N3	00:05	51.1	51.9	49.6				

Table 2-2 Noise Monitoring Results – dB(A) and 30 minute intervals

3 CONCLUSION

The noise emission limits given in Waste Licence 192-03 are 55 dB(A) for daytime and 45 dB(A) for night time. These levels specifically relate to noise emissions arising from the facility, measured at any noise sensitive location.

The daytime and night time noise emissions from RILTA Environmental Ltd are summarised in Table 2-2 above.

Noise levels recorded at the four EPA agreed noise monitoring locations contain noise emissions from adjacent industrial sites, low flying aircraft and traffic on the internal road network of the industrial estate. Noise emissions from the RILTA facility were audible at all monitoring locations during daytime monitoring and only at location N2 during the night time monitoring. Note that the EPA agreed noise monitoring locations are all on site and do not reflect emissions at noise sensitive locations.

The A-weighted equivalent continuous sound pressure level (LAeq, 30 min) recorded at the RILTA facility was above 55 dB(A) at all noise monitoring locations during daytime monitoring. It is noted that Greenogue Business Park is a busy industrial estate and noise from external sources including adjacent premises, passing and distant road traffic and passing aircraft contributed to recorded noise levels at all monitoring locations during daytime hours.

During the night time monitoring period the A-weighted equivalent continuous sound pressure level (LAeq, 30 min) exceeded 45 dB(A) (night time) limit at N3 only. This exceedance at N3 was directly attributable to extraneous noise sources such as the fast flowing stream adjacent, distant traffic and low flying aircraft from nearby Baldonnell Airport. Site activities were not audible at N3 during night time monitoring.

There were no impulsive noise emissions audible at any of the monitoring locations during the daytime or night time monitoring period.

During the daytime monitoring there was a pure tone at 16000Hz measured at monitoring locations N3 and N4. Both these locations are situated to the east of the site. The tone at N3 and N4 (16000Hz) was not recorded at monitoring locations N1 or N2 in which site activities were also audible during the day and as such is unlikely to have originated due to RILTA activities.

During the night time monitoring there was a pure tone recorded at 2.5KHz at location N1. No tonal emissions at this frequency were recorded at any other monitoring location and the site was not audible at N1 during recording. This tone did not originate due to RILTA activities. A pure tone at 125Hz was recorded at monitoring location N2 during night time monitoring. Site machinery was audible at this location as a shed door was open. Similar noise sources were recorded throughout the four no. monitoring locations but N2 was the only location that site machinery was audible. As such is it considered this tone is a result of RILTA site machinery noise.

The 5dB penalty has not been applied to the N3 and N4 day monitoring event or the N1 night time monitoring event as these tones are likely to have been derived from an off-site source.

The 5dB penalty has however been applied to the N2 night time monitoring event and as such increases the LAeq at this location to 49.0dB(A) which exceeds the 45dB(A) limit set in Waste Licence No. 192-03. It is noted that other industrial estate noises and external sources contributed to recorded noise levels at N2 and that this location does not reflect emissions at noise sensitive locations.

Full 1/3 octave frequency band analysis of both day and night time surveys is presented in Appendix B.

APPENDIX A

Noise Monitoring Locations

APPENDIX B

1/3 Octave Frequency Analysis Day & Night Noise Surveys

Figure 1 N1 Daytime Frequency Analysis

Figure 3 N2 Daytime Frequency Analysis

Figure 5 N3 Daytime Frequency Analysis

Figure 8 N4 Night Time Frequency Analysis

INTERNATIONAL NETWORK

Galway Fairgreen House, Fairgreen Road, Galway. Ph +353 (0)91 565211 Fax +353 (0)91 565398 E-mail galway@tobin.ie Dublin Block 10-4, Blanchardstown Corporate Park, Dublin 15. Ph +353 (0)1 803 0406 Fax +353 (0)1 803 0409 E-mail dublin@tobin.ie Castlebar Market Square, Castlebar, Co. Mayo. Ph +353 (0)94 902 1401 Fax +353 (0)94 902 1534 E-mail castlebar@tobin.ie

visit us @ www.tobin.ie

Krakow (Poland) Ul. Cystersow 9, 31-553, Krakow, Poland. Ph +4812353 8646 Fax +48123537329 E-mail poland@tobin.ie Oxfordshire (UK) CAB International Nosworthy Way, Wallingford, Oxfordshire. Ph +441491829327 Fax +441491833508 E-mail uk@tobin.ie
APPENDIX E

Emissions Report

ODOUR & ENVIRONMENTAL ENGINEERING CONSULTANTS

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

ROUND 1 2012-MONITORING OF VOC EXHAUST STACKS CONCENTRATIONS AT RILTA LTD, BLOCK 402, GREENOGUE BUSINESS PARK, RATHCOOLE, CO. DUBLIN

PERFORMED BY ODOUR MONITORING IRELAND ON BEHALF OF RILTA ENVIRONMENTAL LIMITED

PREPARED BY:	Dr. John Casey
ATTENTION:	Mr. Colm Hussey
LICENCE NUMBER:	WL00192-03
LICENCE HOLDER:	Rilta Environmental Limited
FACILITY NAME:	Block 402, Grants's Drive
DATE OF MONITORING VISIT:	06 th June 2012
NAME AND ADDRESS OF CLIENT ORGANISATION:	Rilta Environmental Ltd., Block 402, Grants's Drive, Greenogue Business Park, Rathcoole, Co. Dublin
NAME AND ADDRESS OF MONITORING ORGANISATION:	Odour Monitoring Ireland, Unit 32 DeGranville Court, Dublin Road, Trim, Co. Meath
DATE OF REPORTING:	28 th June 2012
NAME AND THE FUNCTION OF THE PERSON APPROVING THE REPORT:	Dr. Brian Sheridan, Managing Partner, Odour Monitoring Ireland
REPORT NUMBER:	2012264(1)
REVIEWERS:	

TABLE OF CONTENTS

Sectio	n	Page number			
TABLE	TABLE OF CONTENTS				
Docu	ment Amendment Record	II			
Part 1	- Executive Summary	1			
1.1	Monitoring Objectives	2			
1.2	Special Monitoring Requirements	2			
1.3	The substances to be monitored at each emission point	2			
2.	Monitoring Results	3			
2.1	Operating Information	3			
2.2	Monitoring Result Reference Conditions	3			
2.3.	Sampling Location Summary	3			
2.4.	Sampling time runs	4			
4.	Conclusion	6			
5.	Appendix I-Sampling, analysis	6			

Document No. 2012264 (ver.1) Visit No: 01 Year: 2012 WL0192-03 Rilta Environmental Limited Greenogue Business Park

This document is submitted as part of environmental monitoring carried out by Odour Monitoring Ireland. The results reported are representative of actual conditions on the day of monitoring.

Respectively submitted,

levu

Brian Sheridan B.Sc. M.Sc. (Agr) Ph.D (Eng).

For and on behalf of Odour Monitoring Ireland™

www.odourireland.com

Document No. 2012264 (ver.1) Visit No: 01 Year: 2012 WL0192-03 Rilta Environmental Limited Greenogue Business Park

DOCUMENT AMENDMENT RECORD

Client: Rilta Environmental Limited

Title: Round 2 2011 - Monitoring of VOC concentrations at Rilta Environmental Ltd., Block 402, Greenogue Business Park, Rathcoole, Co. Dublin

Project Number: 2012264(1)			Document Reference: 2012264(1)		
2012264(1)	Document for review	JMC	BAS BAS 2		28/06/2012
Revision	Purpose/Description	Originated	Checked	Authorised	Date
		O D D U R monitoring IRELAND			

Part 1 - Executive Summary

Location	Date and Time	Flow (m ³ N/hr)	Compliance	Mass flow (kgN/hr)	Expanded Uncertainty as % limit value	Compliance
A1	06/06/12 10.00 to 10.30	2,314	Yes	0.006	1.47	Yes
A2	06/06/12 11.00 to 11.30	6,490	No	0.015	2.41	Yes
A3	06/06/12 11.30 to 12.00	1,924	Yes	0.22	2.14	Yes

The results of the monitoring exercise are contained in Section 2 of this report.

1.1 Monitoring Objectives

Odour Monitoring Ireland were commissioned by Rilta Environmental Limited to perform Volatile Organic Compound (VOC) monitoring of three licensed emission points located within the facility. The survey was carried out on the 06th June 2012. The monitoring was carried out at this facility as part of compliance monitoring with the requirements of Waste licence W0192-03. The emissions testing was carried out by Odour Monitoring Ireland on behalf of Rilta Environmental Limited.

1.2 Special Monitoring Requirements

There were no special monitoring requirements for this campaign.

1.3 The substances to be monitored at each emission point

The parameters listed in *Table 1.1* were monitored using the appropriate instrumentation as illustrated in *Table 1.1*. All monitoring was carried out in accordance with Environmental Protection Agency Office of Environmental Enforcement (OEE) Air Emission Monitoring Guidance Note 2 (AG2).

Sample location	Analytical method	
A1, A2, A3	Volumetric airflow rate & Temperature (⁰ C)	Pitot in accordance with EN13284-1:2002. MGO coated K type thermocouple and PT100
A1, A2, A3	Total Organic Carbon (TOC)	EN13649:2002 analysis via Gas Chromatography in an UKAS accredited lab.

Table 1.1. Monitored parameters and techniques

This report presents details of this monitoring programme. This environmental monitoring was carried out Dr. John Casey, Managing Partner, Odour Monitoring Ireland on the 06th June 2012. Results and Conclusions are presented herein.

2. Monitoring Results

This section will present the results of the monitoring exercise.

Emission Point Reference	Date	Process Type	Process Duration	Fuel	Feedstock	Abatement	Load
A1	06/06/2012	Drum washer	Continuous	N/A	Air emission from washing processes	No	Air emission from washing processes
A2	06/06/2012	Drum painter	Continuous	N/A	Air emission from paint processes	No	Air emission from paint processes
A3	06/06/2012	Drum dryer	Continuous	N/A	Air emission from drying processes	No	Air emission from drying processes

2.1 Operating Information

2.2 Monitoring Result Reference Conditions

Emission Point Reference	Temperature (K)	Pressure	Pressure Moisture Correction	
A1	К	101.3	Yes	None
A2	К	101.3	Yes	None
A3	К	101.3	Yes	None

2.3. Sampling Location Summary

Comment	Yes/No
Recommended 5 hydraulic diameters straight length before sampling plane	Yes*
Recommended 2 hydraulic diameters straight length after sampling plane	Yes*
Ports number <1.5m - 2 ports >1.5m - 4 ports	2 ports
Appropriate port size	Yes
Suitable working platform	Yes

Note: *Airflow rate in accordance with EN13284 with exception of location A1 due to access issues airflow rate was performed at one plane on the base of the stack.

2.4. Sampling time runs

Parameter	Approx. Sampling period per location
Volumetric air flow rate	Manually calculated
Stack gas temp	30 minutes
T A Luft Organics	38 minutes

Table 2.5. Measurement results and emission limit values within Waste licence 192-03 - Schedule ${\sf B}$

Emission Point	Temperature (Kelvin)	Limit Volumetric airflow rate (Nm ³ hr ⁻¹)	Measured Volumetric airflow rate (Nm ³ hr ⁻¹)
A1	285.15	5,292	2,314
A2	285.15	5,292	6,490
A3	301.15	2,520	1,924

Table 2.6. Results of monitoring at Emission Point A1

Library/ID	Conc. of VOC (mgC/ Nm ³)	Expanded uncertainty as % of limit value	Mass Flow of Speciated VOC (kg/hr)
Total Organic Carbon (TOC as carbon)	3.5 mgC/Nm ³	1.47	0.006 kg/hr
Total Organic Carbon (TOC as carbon) Limit value	-	-	1.0 kg/hr

Table 2.7. Results of monitoring at Emission Point A2

Library/ID	Conc. of VOC (mgC/Nm³)	Expanded uncertainty as % of limit value	Mass Flow of Speciated VOC (kg/hr)
Total Organic Carbon (TOC as carbon)	6.16 mgC/Nm ³	2.41	0.015 kg/hr
Total Organic Carbon (TOC as carbon) Limit value	-	-	0.10 kg/hr

Table 2.8.Results of VOC Monitoring at Emission Point A3.

Library/ID	Conc. of Speciated VOC (mg Nm ⁻³ as C)	Expanded uncertainty as % of limit value	Mass Flow of Speciated VOC (kg/hr)
Total Organic Carbon (TOC as carbon)	32 [*] mgC/Nm ³	2.14	0.22 kg/hr
Total Organic Carbon (TOC as carbon) Limit value	-		0.30 kg/hr

* Note compounds identified on GCMS screen were Ethylbenzene 2.52 mg/m³, m&p xylene 10.8 mg/m³ and o-xylene 3.43 mg/m³.

Mass emissions for location A1, A2, A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03. Volume flow for locations A1 and A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03. Volume flow for location A2 was not in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.

4. Conclusions

The following conclusions were drawn from the study:

- Mass emissions for location A1, A2, A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.
- Volume flow for locations A1 and A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.
- Volume flow for location A2 was not in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.

5. Appendix I-Sampling, analysis

5.1.1 Location of Sampling

Rilta Environmental Ltd., Block 402, Grants's Drive, Greenogue Business Park, Rathcoole, Co. Dublin

5.1.2 Date & Time of Sampling 06th Jun. 2012

5.1.3 Personnel Present During Sampling Dr. John Casey, Odour Monitoring Ireland, Trim, Co. Meath.

5.1.4 Instrumentation check list

Federal Method 2 S type pitot and MGO coated thermocouple; L type pitot tube Testo 400 handheld and appropriate probes. SKC sample pumps and Bios Primary calibrator and glass impingers.

ODOUR & ENVIRONMENTAL ENGINEERING CONSULTANTS

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

ROUND 2 2012-MONITORING OF VOC EXHAUST STACKS CONCENTRATIONS AT RILTA LTD, BLOCK 402, GREENOGUE BUSINESS PARK, RATHCOOLE, CO. DUBLIN

PERFORMED BY ODOUR MONITORING IRELAND ON BEHALF OF RILTA ENVIRONMENTAL LIMITED

PREPARED BY:	Dr. John Casey
ATTENTION:	Mr. Colm Hussey
LICENCE NUMBER:	WL00192-03
LICENCE HOLDER:	Rilta Environmental Limited
FACILITY NAME:	Block 402, Grants Drive
DATE OF MONITORING VISIT:	28 th Nov 2013
NAME AND ADDRESS OF CLIENT ORGANISATION:	Rilta Environmental Ltd., Block 402, Grants Drive, Greenogue Business Park, Rathcoole, Co. Dublin
NAME AND ADDRESS OF MONITORING ORGANISATION:	Odour Monitoring Ireland, Unit 32 DeGranville Court, Dublin Road, Trim, Co. Meath
DATE OF REPORTING:	19 th Jan 2013
NAME AND THE FUNCTION OF THE PERSON APPROVING THE REPORT:	Dr. Brian Sheridan, Managing Partner, Odour Monitoring Ireland
REPORT NUMBER:	2013666(1)
Reviewers:	

TABLE OF CONTENTS

Sectio	on	Page number	
TABLE	TABLE OF CONTENTS		
Docu	ment Amendment Record	II	
Exec	cutive Summary	v	
1.1	Monitoring Objectives	1	
1.2	Special Monitoring Requirements	1	
1.3	The substances to be monitored at each emission point	1	
2.	Monitoring Results	2	
2.1	Operating Information	2	
2.2	Monitoring Result Reference Conditions	2	
2.3.	Sampling Location Summary	2	
2.4.	Sampling time runs	3	
3.	Conclusion	4	
4.	Appendix I-Sampling, analysis	4	

This document is submitted as part of environmental monitoring carried out by Odour Monitoring Ireland. The results reported are representative of actual conditions on the day of monitoring.

Respectively submitted,

Sleve

Brian Sheridan B.Sc. M.Sc. (Agr) Ph.D (Eng).

For and on behalf of Odour Monitoring Ireland™

DOCUMENT AMENDMENT RECORD

Client: Rilta Environmental Limited

Title: Round 2 2012 - Monitoring of VOC concentrations at Rilta Environmental Ltd., Block 402, Greenogue Business Park, Rathcoole, Co. Dublin

Project Number: 2013666(1)			Document Monitoring Rilta Enviro Greenogue Co. Dublin	Reference: Ro of VOC conc onmental Ltd., Business Park	und 2 2012 - entrations at Block 402, k, Rathcoole,
2013666(1)	Document for review	JWC	BAS	BAS	19/01/2013
Revision	Purpose/Description	Originated	Checked	Authorised	Date

Executive Summary

The results of the monitoring exercise are contained in Section 2 of this report.

Location	Date and Time	Parameter	Value	Emission limit value	Expanded Uncertainty as % limit value	Compliance
	28/11/2012 - 12.00 to 12.10PM	Flow (Nm ³ /hr)	2,428	5,292		Yes
A1	28/11/2012 - 12.25 to 12.55PM	TaLuft Organics (mg/Nm ³)	0.10 kg/hr	20 mg/Nm ³ (>0.1 kg/hr)	2 80	Yes
28/11/2012 - 12.25 to 12.55PM		TOC as C (mgC/Nm ³)	0.194	1.0	3.09	Yes
	28/11/2012 - 12.20 to 12.30PM	Flow (Nm ³ /hr)	6,240	5292		No
A2	28/11/2012 – 12.35 to 13.05PM	TaLuft Organics (mg/Nm ³)	0.009 kg/hr	20 mg/Nm ³ (>0.1 kg/hr)	4 10	Yes
	28/11/2012 – 12.35 to 13.05PM	TOC as C (mgC/Nm ³)	1.60	0.10 kg/hr	4.12	Yes
	28/11/2012 - 12.40 to 12.48PM	Flow (Nm ³ /hr)	1,914	2520		Yes
A3	28/11/2012 – 12.45 to 13.15PM	TaLuft Organics (mg/Nm ³)	0.071	20 mg/Nm ³ (>0.1 kg/hr)	2.59	Yes
	28/11/2012 – 12.45 to 13.15PM	TOC as C (mgC/Nm ³)	0.112	0.30 kg/hr	5.50	Yes

1.1 Monitoring Objectives

Odour Monitoring Ireland was commissioned by Rilta Environmental Limited to perform Volatile Organic Compound (VOC) monitoring of three licensed emission points located within the facility. The survey was carried out on the 28th Nov 2012. The monitoring was carried out at this facility as part of compliance monitoring with the requirements of Waste licence W0192-03. The emission testing was carried out by Odour Monitoring Ireland on behalf of Rilta Environmental Limited.

1.2 Special Monitoring Requirements

There were no special monitoring requirements for this campaign.

1.3 The substances to be monitored at each emission point

The parameters listed in *Table 1.1* were monitored using the appropriate instrumentation as illustrated in *Table 1.1*. All monitoring was carried out in accordance with Environmental Protection Agency Office of Environmental Enforcement (OEE) Air Emission Monitoring Guidance Note 2 (AG2).

Sample location	Parameter	Analytical method
A1, A2, A3	Volumetric airflow rate & Temperature (⁰ C)	Pitot in accordance with EN13284- 1:2002. PT100 type thermocouple
A1, A2, A3	Total Organic Carbon (TOC)	EN13649:2002 analysis via Gas Chromatography in an UKAS accredited lab.
A1, A2, A3	TaLuft Organics	EN13649:2002 analysis via Gas Chromatography in an UKAS accredited lab.

Table 1.1. Monitored parameters and techniques

This report presents details of this monitoring programme. This environmental monitoring was carried out Dr. Brian Sheridan, Odour Monitoring Ireland on the 28th Nov 2012. Results and Conclusions are presented herein.

2. Monitoring Results

This section will present the results of the monitoring exercise.

Emission Point Reference	Date	Process Type	Process Duration	Fuel	Feedstock	Abatement	Load
A1	28/11/2012	Drum washer	Continuous	N/A	Air emission from washing processes	No	Air emission from washing processes
A2	28/11/2012	Drum painter	Continuous	N/A	Air emission from paint processes	No	Air emission from paint processes
A3	28/11/2012	Drum dryer	Continuous	N/A	Air emission from drying processes	No	Air emission from drying processes

2.1 Operating Information

2.2 Monitoring Result Reference Conditions

Emission Point Reference	Temperature (K)	Pressure	Moisture Correction	Oxygen Correction (%)
A1	К	101.3	Yes	None
A2	К	101.3	Yes	None
A3	К	101.3	Yes	None

2.3. Sampling Location Summary

Comment	Yes/No
Recommended 5 hydraulic diameters	Yes*
Recommended 2 hydraulic diameters straight length after sampling plane	Yes*
Ports number <1.5m - 2 ports >1.5m - 4 ports	2 ports [*]
Appropriate port size	Yes
Suitable working platform	No

Note: *Airflow rate in accordance with EN13284 with exception of location A1 due to access issues airflow rate was performed at one plane on the base of the stack.

2.4. Sampling time runs

Parameter	Approx. Sampling period per location	
Stack gas flow and temp	10 minutes	
T A Luft Organics	30 minutes	

Table 2.5. Measurement results and emission limit values within Waste licence 192-03 - Schedule B.

Emission Point	Temperature (Kelvin)	Limit Volumetric airflow rate (Nm ³ /hr)	Measured Volumetric airflow rate (Nm ³ /hr)
A1	286.15	5,292	2428
A2	287.15	5,292	6240
A3	312.15	2,520	1914

Table 2.6. Results of monitoring at Emission Point A1.

ldentity	Air phase conc. (mg/Nm³)	Expanded uncertainty as % of limit value
Ethyl benzene	9.64	3.89
Limonene	3.60	
Xylene isomers	31.54	
Total Organic Carbon (TOC as C)	80	

Table 2.7. Results of monitoring at Emission Point A2.

Identity	Air phase conc. (mg/Nm³)	Expanded uncertainty as % of limit value
Limonene	1.24	4.12
Total Organic Carbon (TOC as C)	1.60	-

Table 2.8.Results of VOC Monitoring at Emission Point A3.

Identity	Air phase conc. (mg/Nm³)	Expanded uncertainty as % of limit value
Ethyl benzene	6.28	3.58
Limonene	4.26	
Xylene isomers	30.58	
Total Organic Carbon (TOC as C)	59	

3. Conclusions

The following conclusions were drawn from the study:

- Mass emissions for location A1, A2, A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.
- Volume flow for locations A1 and A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.
- Volume flow for location A2 was not in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.

4. Appendix I-Sampling, analysis

4.1.1 Location of Sampling

Rilta Environmental Ltd., Block 402, Grants Drive, Greenogue Business Park, Rathcoole, Co. Dublin

- 4.1.2 Date & Time of Sampling 28/11/2012
- **4.1.3** Personnel Present During Sampling Dr. Brian Sheridan, Odour Monitoring Ireland, Trim, Co. Meath.

4.1.4 Instrumentation check list

S type pitot and PT100 thermocouple; Testo 400 handheld and appropriate probes. SKC sample pumps and Bios Primary calibrator and glass impingers. Dry gas metres.

APPENDIX F

Pollutant Release and Transfer Register (PRTR)

[PRTR#_W0192] Facility Name_Rita Environmental Limited | Filenarize W0192_2012.xis.[Return Year_2012]

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2012

1. FACILITY IDENTIFICATION

1. FACILITY IDENTIFICATION	
Parent Company Name	Rilta Environmental Limited
Facility Name	Rilta Environmental Limited
PRTR Identification Number	W0192
Licence Number	W0192-03
	· · · · · · · · · · · · · · · · · · ·

Waste or IPPC Classes of Activity	
No.	class_name
	Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is
4.13	produced. Blending or mixture prior to submission to any activity referred to in
3.11	a preceding paragraph of this Schedule.
3.12	preceding paragraph of this Schedule.
3.13 3.7	Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced.
4.2	transformation processes).
4.3	Recycling or reclamation of metals and metal compounds.
4.4	Recycling or reclamation of other inorganic materials.
4.6	Recovery of components used for pollution abatement.
4.8	Oil re-refining or other re-uses of oil.
Address 1	Block 402, Grant's Drive
Address 2	Greenogue Business Park
Address 3	Rathcoole
Address 4	County Dublin
	Dublin
Country	Ireland
Coordinates of Location	-8.48281 51.8695
River Basin District	IEEA
NACE Code	3832
Main Economic Activity	Recovery of sorted materials
AER Returns Contact Name	Colm Hussey
AER Returns Contact Email Address	colm.hussey@rilta.ie
AER Returns Contact Position	Facility Manager
AER Returns Contact Telephone Number	014018024
AER Returns Contact Mobile Phone Number	0879176264
AER Returns Contact Fax Number	014018080
Production Volume	0.0
Production Volume Units	
Number of Installations	0
Number of Operating Hours in Year	0
Number of Employees	68
User Feedback/Comments	

| PRTR# : W0192 | Facility Name : Rilta Environmental Limited | Filename : W0192_2012.xls | Return Year : 2010 + 1 of 2

Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5(a)	Installations for the recovery or disposal of hazardous waste
5(c)	Installations for the disposal of non-hazardous waste
50.1	General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

Is it applicable?	No
Have you been granted an exemption ?	
If applicable which activity class applies (as per Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being used ?	

4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	
site treatment (either recovery or disposal	
activities) ?	

Sheet : Releases to Air

Link to previous years emissions data 4.1 RELEASES TO AIR

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

And the second se	RELEASES TO AIR		Please enter all quantitie	s in this section in KGs		A NAME OF A DATE
	POLLUTANT	METHOD			QUANTITY	
		Method Used				
No. Annex II	Name	M/C/E Method Code Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
			0	0	0.0	0.0
	 A transmission of the state of					

	RELEASES TO AIR			Please enter all quantitie	es in this section in KGs		
	POLLUTANT	W	AETHOD			QUANTITY	
			Method Used			Approximation of the second	
No. Annex II	Name	M/C/E Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
				C		0.0	C

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES IO AIN	The second		Licese cirici an Anannina			and the other distances in the local distance in the local distanc		
	POLLUTANT	ME	THOD			The second s	and the second se	QUANTITY	
			Method Used						
Pollutant No.	Name	M/C/E Method Code	Designation or Description	Emission Point 1	Emission Point 2	Emission Point 3	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
	Total Organic Carbon (as C)	C MAB	biannual measured result measured by 1000hrs operation	4.0	27.5	155.0	186.5	5 0.0	0.0
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button								

Additional Data Requested from Landfill operators

fill: e enter summary data on the tities of methane flared and / or od	Rilla Environmental Limited			Metho	od Used	4	
	T (Total) kg/Year	W	VICIE	Method Code	Designation or Description	Facility Total Capacity m3 per hour	
al estimated methane generation (as pe site model		0.0				NIA	
Methane flared		0.0				0.0	(Total Flaring Capacity)
Methane utilised in engine/s		0.0				0.0	(Total Utilising Capacity)
lethane emission (as reported in Section		0.0				N/A	

Sheet : Releases to Wastewater or Sewer

AER Returns Workbook

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

SECTION A : PRTR POLLUTANTS	OFFORTE TOANGEED OF DOI 111ANTS DESTINED FOD WASTE WATED THEAT	MENT OR	SEMER	the second s	Please enter all quanti	ties in this section in KG	8	A DESCRIPTION OF THE OWNER.	A ROAD AND A ROAD AND A
	OFFSILE INMUSTER OF FOLLOLANIS DESTINED FOR WASTE-WALEN INCAU		ME	THOD			QUANTITY		
				Method Used					
No. Annex II	Name	MICIE	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental)	KG/Year F (Fugitive) KG/Year
				Average measured result					
				multiplied by the					
17	Arsenic and compounds (as As)	M	MAB	discharged volume		1.75	1.75	0.0	0.0
				Average measured result					
				multiplied by the					
10	Chromium and compounds (as Cr)	M	MAB	discharged volume	4	1.07	4.07	0.0	0.0
				Average measured result					
				multiplied by the					
20	Copper and compounds (as Cu)	M	MAB	discharged volume		3.5	3.5	0.0	0.0
				Average measured result					
				multiplied by the					
23	Lead and compounds (as Pb)	W	MAB	discharged volume		1,17	1.17	0.0	0.0
				Average measured result					
				multiplied by the					
22	Nickel and compounds (as Ni)	W	MAB	discharged volume	~	3.16	8,16	0.0	0.0
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button								

ECTION B : REMAINING POI	LLUTANT EMISSIONS (as required in your Licence) OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATM	MENT OR	SEWER	And the state of t	Please enter all quantit	es in this section in KGs	and the second second	A DESCRIPTION OF THE OWNER.	1000
Non- New York and the second state of the seco	POLLUTANT		ME	THOD			QUANTITY		
				Method Used					
ollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Ye	ar F (Fugitive) KG/Year	
				Average measured result					
				multiplied by the					
03	BOD	W	MAB	discharged volume	464	3.7 464:	3.7	0.0	422
				Average measured result					
				multiplied by the					
38	Ammonia (as N)	W	MAB	discharged volume	1194	4.3 1194	4.3	0.0	-
				Average measured result					
				multiplied by the					
06	Benzene & totuene & xviene (combined)	W	MAB	discharged volume	3	.56 3.	56	0.0	22
				Average measured result					
				multiplied by the					
06	COD	N	MAB	discharged volume	3998	1.4 3998	1.4	0.0	-
				Average measured result					
				multiplied by the					
08	Detergents (as MBAS)	W	MAB	discharged volume	81	.57 81.	.57	0.0	20
				Average measured result					
				multiplied by the					
24	Mineral oils	W	MAB	discharged volume	-	17	17	0.0	1
				Average measured result					
				multiplied by the					12
40	Suspended Solids	W	MAB	discharged volume	231	3.1 231	3.1	0.0	2
				Average measured result					
				multiplied by the			-		07
43	Sulphate	M	MAB	discharged volume	1730	47 1730.	.47	0.0	-

Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

f Waste	
ers o	
Transf	
Treatment	
Sheet :	

AER Returns Workbook

	11
	-
	ກ
1.1	ď
	s
	s
- 12	
- 24	-
14	0
	_
1	5
15	Ý
11	
1	1
- 24	ŝ
1	
1.8	<u> </u>
	∢
-1	r
1	
1	111
	-
	m
	~
	-
	u_
	Ó
	_
	තේ
	1
	-
	2
	111
	-
	2
	-
	1
	-
	w
	Ŷ
	-
	111
	2
	rn
	3
	≤
	0
	-

48	site (Y)			8,0					≥	0	B,n	۶Ľ	e	34,
	Actual Address of Fmal Destin i.e. Fmal Recevery / Disposal: (HAZARDOUS WASTE ONL			Zoning l'Industrial D'Ehei 4480 ENGIS,Belgium		Unit 12,Dales Industrial Estate,Peterhead,AB42 3JF,United Kingdom	Industrieterrein - Seapor M152,Vlasweg 12.,4782 PW Moerdijk,Netherland	Brunnenstrasse 138,DE 44536,Lunen.,Germany	3-7+31 Gottlieb-Daimler Strasse, DE 33334, Guterslo,., Germar	rue Marcel Demonque,500,Zone du Põle Technologique Agr Parc,F-84915 Avignon Cedex 9,France	Zoning l'Industrial D'Ehe 4480 ENGIS,Belgium	3-7+31 Gottlieb-Daimler Strasse, DE 33334, Guterslo,,, Germa	Westvaartdijk,97,Grimb⊧ n,1850,Netherlands	Rue des Fabriques,2,Obourg,B70 Beloium
	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)			REVATECH SA,,,Zoning I'Industrial D'Ehein,B 4480 ENGIS,,Belgium		TWMA Ltd., EA, Unit 12, Dales Industrial Estate, Peterhead, AB42 3JF, United Kingdom Atvatstoffen Terminal	Moerdijk B. V. 821780. Industrieterrein - Seaport M152, Vlasweg 12,4782 PW Moerdijk., Netherlands	Remonals Production GmbH,WML/0707M01,Brun nenstrasse 138,DE 74536,LunenGermany	Sommerurant Verwertung & Co KG Verwertung & Co KG Fessioffkonditionierung, 783/ 24046,3-7-31 Gottlieb- Daimler Strasse, DE 33334, Guterslo Germany	Lafarge Activité Plâtre,rue Marcel Demonque,500,Zone du Pôle Technologique Agro Parc,F-84915 Avignon Cedex 9,France	REVATECH SA., Zoning l'Industrial D'Ehein, B 4480 ENGIS,, Belgium	Sonderabfallentsorgung und Verwertung & Co KG Fessioffkonditionierung, 783/ 240406,3-7431 Gottlieb- Daimler Strasse, DE Daimler Strasse, DE 33334, Guterslo, Germany	BILA Decontamination, D/PMVC/0 1F28/33629, Westvaartdijk, 9 7, Grimbergen, 1850, Netherla nds	des Fabriques,2,0bourg,87034, Belnium
	Haz Waste : Address of Next Destination Facility Non Haz Waste, Address of Recover/Disposer	2	Industriepark 6,D-27777, Ganderkesee,Germany	Zoning l'Industrial D'Ehein,B 4480 ENGIS,,Belgium	3-7+31 Gottlieb-Daimler Strasse, DE 33334, Guterslo, , Germany	Unit 12, Dales Industrial Estate, Peterhead, AB42 3JF, United Kingdom	Industrieterrein - Seaport M152,Vlasweg 12,4782 PW Moerdijk., The Netherlands	Brunnenstrasse 138,DE 44536, Lunen,.,Germany	3-7+31 Gottlleb-Daimler Strasse, DE 33334, Guterslo, Germany	29 Sandholes Road., Cookstown, BT80 9AR, United Kingdom	Zoning l'Industrial D'Ehein,B 4480 ENGIS,Belgium	3-7+31 Gottlieb-Daimler Strasse, DE 33334, GutersioGermany	Westvaardijk,97,Grimberge n,1850,Netherlands	Rue des Fabriques,2,Obourg,B7034,
	Haz Waste : Name and LicencerPermit No of Next Destination Facility Haz Waste Name and LicencerPermit No of Recover/Disposer		Kompostsysteme Nord GmbH,108ZEB026	REVATECH SA.	Zimmermann Sonderabfallentsorgung und Verwertung & Co KG Fesstoffkonditionierung,783/ 240406	TWMA,EA	Afvalstoffen Terminal Moerdijk B.V.,821780	Remondis Production GmbH,WML/0707M01	Zimmermann Sonderabrählentisorgung und Verwertung & Co KG Fesstoffkonditionierung,783/ 240406	Lafarge Cement UK P0052/04A	REVATECH SA.	Zimmermann Zimmermann Sonderaballentsorgung und Verwertung & Co KG Fesstoffkonditionierung, 783/ 240406	SITA Decontamination, D/PMVC/0 1F28/33629	RATETOTOR AN ALLER
		Location of Treatment	Abroad	Abroad	Abroad	Abroad	Abroad	Abroad	Abroad	Abroad	Abroad	Abroad	Abroad	
	Method Used	Method Used	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Mainhed	Weighed	Weighed	Weighed	
		M/C/E	×	Σ	×	Σ	×	Σ	Σ	Σ	Σ	×	×	:
		Waste Treatment Operation	210	9	ي پ	. <u>6</u>	2	24	S.	r.	84	22 C	010	2
All quantities on this sheet in Tonnes		Description of Waste	materials unsuitable for consumption or processing	other acids	solid selts and solution other than those mentioned in 06 03 11 and 06 03 13	oil-containing drilling muds and wastes	waste paint and vamish containing organic solvents or other dangerous substances	bleach solutions and bleach fixer solutions	oil fly ash and boiler dust	μ 	pickling acids	sludges and filler cakes containing dangerous substances	insulating or heat transmission oils containing PCBs	1. The second
Please enter a	Quantity (Tonnes per Year)		187.36	283.84	0 581	433.0	497.18	94.68	11.86	0.000	82.0	35.38	11.82	0 0 0
		Hazardous	No	Yes	Q	Yes	Yes	Yes	ses Yes	, and a second se	Yes	Yes	Yes	
		, European Waste	02 07 04	06 01 06	06.03.14	01 05 05	08 01 11	09 01 05	10 01 04	10,000	11 01 05	11 01 09	13 03 01	
		Transfer Destination	To Other Countries	To Other Countries	Po Other Countries	To Other Countries	To Other Countries	To Other Countries	To Other Countries		To Other Countries	To Other Countries	To Other Countries	

Sheet : Treatment Transfers of Waste

AER Returns Workbook

Actual Address of Final Destination (a. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)			Industrieterrein - Seaport M152,Vlasweg 12.,4782	PW Moerdijk, Netherlands		Industrieterrein - Seaport M152,Vlasweg 12,,,4782 PW Moerdijk,Netherlands		Industrieterrein - Seaport	M152,Vlasweg 124782 PW Moerdijk,Netherlands	Zoning l'Industrial D'Ehein,E 4480 ENGIS,,Belgium	Darley Dale Smeller, South Darley, Derbyshire, DE4 2LP, United Kingdom		Unit 4 Tinure Business Park,Monasterboice,Co. Louth,Ireland			Industrieterrein - Seaport	M152,Vlasweg 12,.,4782 PW Moerdijk,Netherlands	Zoning l'Industrial D'Ehein,E 4480 ENGISBelgium 1	Osterweute,Ce25541,Bruns buttel,Germany	74-76 Hovestrasse,20539 Hamburg ,, Germany
Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)		Afvalstoffen Terminal	Moerdijk B. V,821780,Industrieterrein - Seaport M152,Vlasweg 12,4782 PW	MoerdijkNetherlands	Afvalstoffen Terminal	woerdik B.V.,.Industrieterrein - Seaport M152,Vlasweg 12,4782 PW Moerdijk.,.Netherlands	Afvalshoffan Tarminal	Moerdijk B.V.821780,Industrieterrein - Seaport M152,Vlasweg	12,4782 PW MoerdijkNetherlands REVATECH SAZoning	l'Industrial D'Ehein B 4480 ENGIS,,Belgium H I Enthousen &	Sons, BL5598, Darley Dale Smeller, South Darley, Derbyshire, DE4 2LP, United Kingdom	The Recycling Village Ltd,WP2007/20,Unit 4	Tinure Business ParkMonasterboice,Co. Louth,Ireland			Afvalstoffen Terminal Moerdijk B.V,821780,Industrieterrein - Seaport M152,Vlasweg	12,4782 PW Moerdijk,Netherlands REVATECH SAZoning	l'Industrial D'Ehein,B 4480 ENGIS,Belgium Sava Gmbh & Co1	Osterweute, Ce25541, Bruns buttelGermany Terracon GmbH 74-76	Hovestrasse,20539 Hamburg ,, Germany
Haz Waste : Address of Next Destination Facility Non Haz Waste Address of Recover/Dispose			Industrieterrein - Seaport M152,Vlasweg 12,4782 PW	Moerdijk The Netherlands Acragar,Mountmellick,Co.		Industrieterrein - Seaport M152,Vlasweg 12,4782 PW Moerdijk., The Netherlands Jordanstown drive.Unit 648	Greenogue Business Park,Rathcoole,Co. Dublin,Ireland	Industrieterrein - Seaport	M152,Vlasweg 12,4782 PW Moerdijk The Netherlands	Zoning l'Industrial D'Ehein,B 4480 ENGIS,Belgium	Darley Dale Smelter,South Darley,Derbyshire,DE4 2LP,United Kingdom		Unit 4 Tinure Business ParkMonasterboice,Co. Louth,Ireland Unit 4 Tinure Business	Park,Monasterboice,Co. Louth,Ireland Unit 4 Tinure Business	Park,,,Monasterboice,Co. Louth,Ireland	Industrieterrein - Seaport	M152, Vlasweg 12,4782 PW Moerdijk The Netherlands	Zoning l'Industrial D'Ehein,B 4480 ENGIS,,Belgium 1	Osterweute, Ce25541, Bruns buttel,., Germany	74-76 Hovestrasse,20539 Hamburg,Germany
Haz Waste : Name and Licence/Parmit No of Next Destination Facility Mon Licence/Permit No of Recover/Disposer			Afvalstoffen Terminal	Moerdijk B.V.,821780		Afvalstoffen Terminal Moerdijk B.V.,821780	Electrical Waste Ireland, Permit No. WFP-DS- 09-0012-01		Afvalstoffen Terminal Moerdijk B.V.,821780	REVATECH SA.	HJ Enthoven & Sons,BL5598		The Recycling Village Ltd., WP2007/20	The Recycling Village Ltd., WP2007/20	The Recycling Village Ltd., WP2007/20		Afvalstoffen Terminal Moerdijk B.V.,821780	REVATECH SA,.	Sava Gmbh & Co.,	Terracon GmbH
	Location of			Abroad		Abroad	Offsite in Ireland		Abroad	Abroad	Abroad		Offsite in Ireland	Offsite in Ireland	Offsite in Ireland		Abroad	Abroad	Abroad	Abroad
Method Used	Free la breater	INIERIDO OSEO		Weighed	manginan	Weighed	Weighed		Weighed	Weighed	Weighed		Weighed	Weighed	Weighed		Weighed	Weighed	Weighed	Weighed
	t total			W M	E.	×	Σ		¥	W	Σ		Þ	Σ	W		Σ	¥	¥	W
	Waste	Operation		12 a	t.	Γ.	R4		R1	R6	R4		R4	R4	R4		D8	D8	D8	DS
tuantity mnes per Year)		Description of waste		258.66 other solvents and solvent mixtures	5.0 Intramic packaging	absorbents, filter materials (including oil filters not otherwise specified), wiping cloths, protective clothing contaminated by 56.16 dangerous substances	discarded equipment other than those 1,14 mentioned in 16 02 09 to 16 02 13	laboratory chemicals, consisting of or	containing dangerous substances, including 60.21 mixtures of laboratory chemicals	discarded inorganic chemicals consisting of 72.12 or containing dangerous substances	5239.1 lead batteries		13.5 Ni-Cd batteries	20.0 alkaline batteries (except 16 06 03)	1.0 other batteries and accumulators		aqueous liquid wastes containing 49.0 dangerous substances	aqueous liquid wastes containing 424.3 dangerous substances	aqueous liquid wastes containing 398.4 dangerous substances	soil and stones containing dangerous 1367.0 substances
0 Ě		azardous		es	0	es	0		se	es	u a		s	0	0		es	sa	es	es
	European Waste	Code		14 06 03 Y	to 10 Cl	15 02 02 Y	16 02 14 N		16 05 06 Y.	16 05 07 Y	16 06 01		16 06 02 Y	16 06 04 N	16 06 05 N		16 10 01 Y.	16 10 01 Y	16 10 01 Y	17 05 03 Y
		I ranster Destination		To Other Countries		To Other Countries	Within the Country		To Other Countries	To Other Countries	To Other Countries		Within the Country	Within the Country	Within the Country		To Other Countries	To Other Countries	To Other Countries	To Other Countries

| PRTR# : W0192 | Facility Name : Rilta Environmental Limited | Filename : W0192_2012.xls | Return Year : 2012 |

Page 2 of 4

Sheet : Treatment Transfers of Waste

AER Returns Workbook

22
-
-7
3
-
0
2
ŝ
00
N

Actual Address of Final Destination Le. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)				Blackpark,Kilkenny Rd,Athy,Co. Kildare,Ireland	Industrieterrein - Seaport M152,Vlasweg 12.,4782 PW Moerdijk,Netherlands	Neiderlassung Nehlsen- Plimp, Betriebsstatte Bremen, Louis-Krages Strasse 10, Bremen, Germany	Brooks LaneMiddlewich,CW10 0JG,United Kingdom		k Monery, Crossdoney, Co. Cavan,Ireland	De Steven,25,AX Drachten,9206,Netherlands		Block B, Western Industrial Estate, Caerphilly, CF83 1XH, United Kingdom	Z.I. De Port	Jerome, ., Lillebonne, 76170, F rance	Industrieterrein - Seaport M152,Vlasweg 12.,4782 PW Moerdijk,Netherlands
Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)				Irish Lamp RecyclingBlackpark,Kilken ny Rd.Athy,Co. Kildare,Ireland Afvalstoffen Terminal	Moerdijk B. V. 821780, Industrieterrein - Seaport M152, Vlasweg 12,4782, PW MoerdijkNetherlands MoerdijkNetherlands	Nehlsen- Nehlsen- Plimp, Betriebsstatte Bremen, Louis-Krages Strasse Contact	International, EA, Brooks Lane., Middlewich, CW10 0JG, United Kingdom	Eally Cormlau	Metals, 01/07/2015, Monery, C rossdoney, Co. Cavan., Ireland Orion B.V., 18/07/2937, De	Steven, 25, AX Drachten, 9206, Netherlands		PHS Group, LEA, Block B,Western Industrial Estate, Caerphilly, CF83 1XH, United Kingdom	Scori CentreZ.I. De Port	Jerome,.,Lillebonne,76170,F rance Afvalstoffen Terminal	Moerdijk B.V., Industrieterrein - Seaport M152, Vlasweg 12,4782 PVV MoerdijkNetherlands
Haz Waste : Address of Next Destination F acity Non Haz Waste Address of Recover/Disposer		Industrieterrein - Seaport M152,Vlasweg 12,4782 PW	Motorial, The Neurophysical Action of M152, Vlasweg 12,4782 PW	Blackpark, Kilkenny Rd., Athy, Co. Kildare, Ireland	Industrielerrein - Seaport M152,Vlasweg 12,4782 PW Moerdijk, The Netherlands	Neiderlassung Nehlsen- Plimp, Betriebsstatte Bremen, Louis-Krages Strasse 10, Bremen, Germany	The Science Park, Brooks Lane , Middlewich, CW10 0.1G, United Kingdom Gottlieb-Daimler-Strasse 22.33334	G?lersioh Germany	Monery, Crossdoney, Co. Cavan,, Ireland	De Steven,25,AX Drachten,9206,Netherlands Unit 4 Tinure Business	Park,,,Monasterboice,Co. Louth,Ireland	Block B,Western Industrial Estate,Caerphilly,CF83 1XH,United Kingdom Unit 4 Tinure Business	Park,,,Monasterboice,Co. Louth,Ireland Z.I. De Port	Jerome,Lillebonne,76170,F rance	Industrieterrein - Seaport M152, Vlasweg 12,4782 PW Moerdijk The Netherlands
Haz Waste : Name and Licence/Perimt No of Nax Destination Facilty Name and Haz Waste. Name and Licence/Permit No of Recover/Disposer		Afvalstoffen Terminal	Afvalstoffen Terminal	Irish Lamp Recycling.	Afvalstoffen Terminal Moerdijk B.V.,821780	Nehlsen Gmbh & Co.,A- 4187HH	Centec International, EA	GVE Gesellschaft GmbH,.	Felix Gormley Metals,07/01/2015	Orion B.V.,18/07/2937	The Recycling Village Ltd., WP2007/20	PHS Group,EA	The Recycling Village Ltd., WP2007/20	Scori Centre,.	Afvalstoffen Terminal Moerdijk B.V.,14/12/4149
	Location of			Offsite in Ireland	Abroad	Abroad	Abroad	Abroad	Offsite in Ireland	Abroad	Offsite in Ireland	Abroad	Offsite in Ireland	Abroad	Abroad
Method Used	Motion Hand		vveigned	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed
	II MICH		5	Σ	Σ	×	¥	¥	¥	۶	M	Σ	Σ	W	Σ
	Waste	Cherano	ē ā	2 B	12	R3	8	5	R4	D10	R4	R4	R4	D10	R5
Quantity (Tonnes per Yean)	Constraints of Martin	medicines other than those mentioned in 18	09.5 01 06 medicines other than those mentioned in 18	105.5 02.07 fluorescent tubes and other mercury- 0.84 containing waste	paint, inks, adhasives and resins containing 483.8 dangerous substances	paint, inks, adhesives and resins containing 96.68 dangerous substances	107.1 other fuels (including mixtures) acceptents, filter materials, wiping cloths and ronservice clothing other than thase	23.9 mentioned in 15 02 02	70.8 oil filters	transformers and capacitors containing 55.6 PCBs	discarded equipment other than those 4.7 mentioned in 16 02 09 to 16 02 13	gases in pressure containers (including 11.54 halons) containing dangerous substances	1.0 other batteries and accumulators	aqueous liquid wastes containing 26.5 dangerous substances	21.4 bituminous mixtures containing coal tar
		Suponazar	oz :	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes	Yes
	European Waste		80 10 81	20 01 21	20 01 27	20 01 27	13 07 03	15 02 03	16 01 07	16 02 09	16 02 14	16 05 04	16 06 05	16 10 01	17 03 01
		I ransfer Destinatio	lo Other Countries	to Other Countries Within the Country	To Other Countries	To Other Countries	To Other Countries	To Other Countries	Within the Country	To Other Countries	Within the Country	To Other Countries	Within the Country	To Other Countries	To Other Countries

| PRTR# ; W0192 | Facility Name : Ritta Environmental Limited | Filename : W0192_2012.xls | Return Year : 2012 |

Page 3 of 4

AER Returns Workbook

								I toance/Parmit No of Next			
	U	Quantity Tonnes per Year)			2	Aethod Used		Destination Facility Non Haz Waste Name and Licence/Permit No of Recover/Disposer	Haz Waste : Address of Next Destination Facility Non Haz Waste: Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destinatio 1.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
		*		Waste							
T	azardous		Description of Waste	Treatment	M/C/E	Method Used	Location of Treatment				
	s	29.0	nsulation materials containing asbestos	DS	×	Weighed	Abroad	Quinn Environmental P0145/06A	Auglish Rd,29,Tandragee,BT62 2EE,United Kingdom	Quinn Environmental P0145/06A,Auglish Rd.29,Tandragee,BT62 2EE,United Kingdom	Auglish Rd,29,Tandragee,BT62 2EE,United Kingdom
6	(es	2669.2 (construction materials containing asbestos	10	×	Weighed	Abroad	SEG mbH,EG0108	Bimohler Strasse,57a,Grossenaspe,2 4623,Germany	GEG mbH,EG0108,Bimohler Strasse,57a,Grossenaspe,2 4623,Germany Georroria S A Blue de	Bimohler Strasse,57a,Grossenaspe, 4623,Germany
	Yes	513.77 0	ludges from physicor/chemical treatment containing dangerous substances iludges from biological treatment of	R1	Σ	Weighed	Abroad	Seocycle	Rue de Courrière 49,B - 7181 Seneffe,Belgium Desoto Road,West Bank	Courrière 49,8 - 7181 Seneffe,Belgium	Rue de Courrière 49,B - 7181 Seneffe ,,Belgium
1	No	98.9 r	ndustrial waste water other than those nentioned in 19 08 11	R1	W	Weighed	Abroad	Sranox Ltd.,CP3230BE	Dock Estate, Widnes, WA8 0PB, United Kingdom Acragar Mountmellick, Co.		
100	Ло	901.2 (errous metal	R4	M	Weighed	Offsite in Ireland	A1 Metal, WMP007d	_aois,Ireland	Afvalstoffen Terminal	
	se	131.6 8	iaint, inks, adhesives and resins containing tangerous substances	2	Σ	Weighed	Abroad	Afvalstoffen Terminal Moerdijk B.V.,14/12/4149	ndustrielerrein - Seaport M152,Vlasweg 12,4782 PW Moerdijk The Netherlands	Moerdijk B.V. 141/12/4149, Industrieterr ein - Seaport M152, Vlasweg 12,4782 PW Moerdijk., Netherlands	Industrieterrein - Seaport M152,Vlasweg 12.,4782 PW Moerdijk,Netherlands
2	9	58265.0 v	vastes not otherwise specified	D8	Þ	Weighed	Offsite in Ireland	Ringsend WWTW.	Pigeon House Road,Ringsend,Dublin 4,Ireland		
	say	175.7 a	nineral-based non-chlorinated insulating and heat transmission oils	R9	×	Weighed	Abroad	Midland Oil Refinery,GP3135SD	Shelah Road, Halesowen,B63 3PN,United Kingdom	Midland Oil Refinery, GP3135SD, Shelah RoadHalesowen, B63 3PN, United Kingdom	Shelah Road,,,Halesowen,B63 3PN,United Kingdom
-	No	4681.9 it	n 17.05.03	R5	W	Weighed	Offsite in Ireland (Sreenstar,W0178-02	Galway,Ireland		
-	No	80.44 p	lastic packaging	R3	M	Weighed	Abroad	Enwaco,.	Schumanplein, 16/02/2013, L anaken, 3620, Belgium		

| PRTR# : W0192 | Facility Name : Rita Environmental Limited | Filename : W0192_2012.xls | Return Year : 2012 |

APPENDIX G

Environmental Management and Staffing Structure

<u>Rilta Environmental Management Structure</u>

NATIONAL NETWORK

Galway Fairgreen House, Fairgreen Road, Galway. Ph +353 (0)91 565211 Fax +353 (0)91 565398 Dublin Block 10-4, Blanchardstown Corporate Park, Dublin 15. Ph +353 (0)1 803 0406 Fax +353 (0)1 803 0409 E-mail dublin@tobin.ie Cork Northpoint House, New Mallow Road, Cork. Ph +353 (0)21 4308 624 Fax +353 (0)21 4308 625 E-mail cork@tobin.ie Limerick Bedford Place, Howley's Quay, Lower Shannon Street, Limerick. Ph +353 (0)61 415 757 Fax +353 (0)61 409 378 E-mail limerick@tobin.ie Castlebar Market Square, Castlebar, Co. Mayo. Ph +353 (0)94 902 1401 Fax +353 (0)94 902 1534 Dundalk 2ndFloor,Elgee Building Market Square Dundalk Co. Louth. Ph +353 (0)42 933 5107 Fax +353 (0)42 933 1715 E-mail dundalk@tobin.ie