

Limerick Gasworks Dock Road, Limerick

Site Investigation Factual
Report
Volume 1A

October 2001

Parkman Environment, Parkman House, Lloyd Drive Ellesmere Port, South Wirral CH65 9HQ

Report No: **25837/OR/03B**

Copy No:

REPORT CONTROL SHEET

PROJECT NAME:

Limerick Gasworks

REPORT TITLE:

Site Investigation Report

Volume 1A

REPORT REFERENCE: 25837/OR/03B

Version Date	Detail	Prepared by Date 29/10/01	Checked by Date 29 10 01	Approved by Date 24/6/61
А	Draft for Client Comment	D Watts	T Brown	် Crowther
В	Final	D Watts for the D-Watts	Brown	J Crowther

CONTENTS

	The state of the s	
VOL	UME 1A	No.
	EXECUTIVE SUMMARY	1
1.0	INTRODUCTION	2
1.1 1.2 1.3	TERMS OF REFERENCE	2
2.0	DESK STUDY ASSESSMENT	4
2.1 2.2 2.3 2.4 2.5	SITE LOCATION AND DESCRIPTION STATUTORY AUTHORITIES/SERVICES GEOLOGY, HYDROLOGY AND HYDROGEOLOGY SITE HISTORY	4 6 9
3.0	SITE INVESTIGATION	14
3.1 3.2 3.3	FIELD AND LABORATORY WORK HEALTH AND SAFETY ASPECTS QUALITY ASSURANCE 3.3.1 General 3.3.2 Chemical Testing 3.3.3 Geotechnical Testing	14 15 15 16
4.0	REFERENCES	17

TABLES

Table 2.4 **Summary of Historical Site Features** Table 2.5.2 **Summary of Ground Conditions**

FIGURES

Figure 1 Site Location Plan **Topographical Survey** Figure 2 Service Location Plans Figures 3 a-e

DRAWINGS

Illustrating Exploratory Hole Locations 25837/OB/01

VOLUME 1B

APPENDICES

Exploratory Hole Logs
Gas/Water Monitoring Results
Geotechnical Test Results
Health and Safety Hazard
Replies from States
Phot Appendix A Appendix B Appendix C Appendix D Appendix E Cousett of cookingth, Appendix F Appendix G **Photographs**

> Report No. 25837/OR/03B Finàl Report

0.0 EXECUTIVE SUMMARY

Appointment	Darkman Environment were appointed by Bord Cair Fireagn in a letter
Appointment	Parkman Environment were appointed by Bord Gais Eireann in a letter dated 30 th May 2000 to provide Engineering Consultancy Services for the decontamination / remediation of the former gasworks sites at Limerick and Waterford. This document comprises Volume 1 (factual information) of the Phase II (intrusive investigation) report for the Limerick Gasworks site.
Location	The site lies to the south-east of the Dock Road in the City of Limerick, approximately 100m from the River Shannon; the approximate National Grid Co-ordinates are E 157600 N 157200.
Site History	A limestone quarry extended over most of the eastern quadrant of the site prior to 1840. The gasworks was established to the north-west of the quarry in the 1830's. Several generations of gasworks producing 'town' gas occupied the site until gas manufacture was converted to oilgas production in the late 1960's / early 1970's. The arrival of natural gas to Limerick in 1986 made the generating process redundant and most above ground structures were demolished by 1988.
Geology & Hydrogeology	The site is underlain by various thickness of Made Ground, overlying Lower Carboniferous Limestone (Visean Limestone); thin layers of Alluvium deposits have been identified in some locations overlying the bedrock. The Limestone is considered to be a locally important aquifer and due to limited drift cover could be considered vulnerable. The nearest recorded abstraction is 6 km to the south-east of the site.
Previous Site Investigations & Results	Two previous site investigations have been carried out on site in 1990 and 1995 comprising a total of 27 trial pits and 12 boreholes. Visual and olfactory evidence of organic contaminations was noted in a large number of exploratory holes, particularly over the south-western part of the site. Tarry staining was identified in the bedrock joints in four boreholes. Groundwater was contaminated with heavy oils and oozing tarry liquid particularly on the western side of the site. The results of leachate testing showed that the potential for leaching was low.
Recent Site Investigation	A total of 17 trial pits and 4 rotary boreholes were excavated between 26 February and 6 March 2001. Samples of soil and water were selected and sent to City Analytical Services plc (CAS) in Coventry, UK for subsequent chemical analysis. Samples were also taken for geotechnical analysis. Gas/water monitoring standpipes with taps were fitted to all 4 boreholes.
Services	All main services are present in Dock Road, St. Alphonsus Street and O'Curry Street; some gas services enter the site along the north-west boundary of the site and an electricity cable is shown running into the electricity sub-station from O'Curry Street. Private services may also exist on the site.
Development Issues	Three development options have been indicated for the site namely light commercial, residential (excluding townhouses with gardens), or car parking.

1.0 INTRODUCTION

1.1 Terms of Reference

Parkman Environment were appointed by Bord Gáis Éireann in a letter dated 30 May 2000 (ref. No. 00/004) to provide engineering consultancy services for the decontamination/remediation of the former gasworks sites at Limerick and Waterford. These services include the preparation of Phase 1 (Document Review) and Phase II (Intrusive Investigation) reports. This document comprises Volume 1 (factual report) of the the Phase II report for the Limerick gasworks site. Interpretation of the factual information is presented in Volume 2.

Bord Gáis propose to either dispose of the sites in their current condition or alternatively, remediate them ready for development.

The site reviewed in this report is based on the boundaries as defined by Bord Gáis Éireann at the time of the review. Parkman Environment prepared this Report based on the available information obtained during the study period. Every reasonable effort has been made to obtain all relevant information. Sources examined are listed in section 1.2 and particular references are listed at the end of this report.

Further details of statutory consultees service companies etc can be found in the Phase I Desk Study Report No.25837 OR 01B.

This Report has been prepared and written for the exclusive benefit of Bord Gáis for the purpose of providing environmental information relevant to the existing potential environmental liabilities associated with the site in accordance with the Brief. The Report contents should not be used out of that context. Furthermore, new information, changed practices or new legislation may necessitate revised interpretation of the Report after the date of its submission.

1.2 Methodology

The preparation of the Phase II report involves a review of all current available site information, a review of the information collected during the recent site investigation and discussion of available remediation techniques.

In undertaking the study, the following sources have been consulted: -

Limerick Corporation - Environment, Community & Sport Department - City Engineer's Department

Environmental Protection Agency
The National Library of Ireland
Geological Survey of Ireland
The Map Library, Trinity College, Dublin
Eircom Ireland
ESB
Bord Gais Eireann
GVA Donal O'Buachalla (Estate Agents)

Other references used in completing this report are provided in Section 4.0.

A walkover survey was undertaken on 13 July 2000 and Mr Michael Shouldice, the Site Manager for Bord Gais was interviewed by Parkman.

Site investigation works were carried out between 26 February 2001 and 6 March 2001.

GVA Donal O' Buachalla (Estate Agents) were also consulted with respect to potential future uses for the site.

1.3 Report Format

This Report (Volume 1) is sub divided into three sections. Following this Introduction [Section 1], the findings of the Phase I Desk Study are reviewed in detail [Section 2]. The information gathered during the recent site investigation is then presented [Section 3]. Finally, any relevant references are collated [Section 4]. All of these sections are summarised in tabular form in the Executive Summary [Section 0].

2.0 DESK STUDY ASSESSMENT

2.1 Site Location and Description

Limerick gasworks lies to the south-east of the Dock Road in the City of Limerick, approximately 100m from the River Shannon. The Shannon Bridge lies approximately 400m to the south-east of the site. The approximate National grid co-ordinates of the site are E157600 N157200.

Access to the site is either from Dock Road, which forms the north-western site boundary, or from O'Curry Street forming the north-eastern boundary.

The site is approximately rectangular, 130m x 110m, and covers an area of 1.4 hectares (3.5 acres), including the "house pound" area in the northern corner, adjacent to the junction of Dock Road and O'Curry Street. Part of the site was a former limestone quarry and rock faces are evident in the north-eastern and southeastern boundaries.

The main area of the site is generally level at about 5.00m OD [Malin Head Datum] but it rises to approximately 8.00m OD towards the site boundaries to the south and east.

The site is used as a depot for Bord Gais, and includes a two-storey office adjacent to the south-west boundary. Other buildings on site include a derelict former store building constructed of stone in the eastern corner and various other smaller brick buildings including the former No.'s 3 & 4 Store, the former Naphtha Process Control building (two-storey), ESB sub-station and the former Governor House.

In addition, high stone walls remain around the location of the former gasholder No 2 (T12) whilst the concrete bund walls and slab are present around the former Tank No 1 (T31). An above ground installation [AGI] remains towards the north west corner of the site adjacent to the site access from Dock Road.

The north-eastern boundary along O'Curry Street comprises a 2m high limestone block wall that becomes higher (3.5m) halfway along the boundary towards the south-east. The south-eastern boundary comprises a 6m high limestone block wall that retains the adjacent Garda training centre, at a level some 2m above the Bord Gais site level. This wall becomes a 3m high brick retaining wall (which retains limestone fill on the site side) in its south-western end adjacent to residential properties. The south-western boundary comprises a 2.5m high brick wall, which retains fill to 2.5m on the site side. The north-western boundary along Dock Road comprises a 2.5m high limestone block wall.

A recent survey of the boundary walls was undertaken by Parkman in March 2001; the findings are presented in report no.25837/OR/02 (see section 2.6.4).

2.2 Statutory Authorities/Services

Limerick Corporation report that they are not aware of any other substantial sources of contamination within 500m of the gasworks site.

There are no known landfills or cases of statutory nuisance within 500m of the site. Limerick Corporation sewers presently discharge into the River Shannon although a new main drainage scheme is currently being constructed and will subsequently collect all such discharges and route them to a new sewage treatment facility. No other discharges are made into the river. Correspondence with Limerick Corporation is included in Appendix F.

All main services are provided along the Dock Road, St. Alphonsus Street and O'Curry Street. Electricity cables are shown running into the electricity sub-station from O'Curry Street. Bord Gais pipelines are shown entering the AGI in the western corner of the site. Low pressure 180mm PE gas pipes also exist in the site along the eastern end of the Dock Road boundary. Private services may also exist on the site.

Figures 3a-e show the layout of services in relation to the site at a scale of 1:1000

2.3 Geology, Hydrology and Hydrogeology

The Geological Survey of Ireland, Sheet 17, Limerick, 1:100,000 Scale (ref. 7), the "Geology of the Shannon Estuary" (ref. 8) and the local geological memoir were consulted and indicated that the bedrock beneath the site comprises the Visean Limestones of the Lower Carboniferous Period. These limestones are 'oolitic' (small (≤1mm diameter) carbonaceous accretionary bodies cemented together, resembling fish eggs) in places, representing a shallow marine carbonaceous shelf depositional environment. These deposits occasionally contain clay 'wayboards' which formed when the limestone was periodically exposed above sea level. The limestone often contains chart nodules (siliceous concretions) and thin interbedded shales. The Visean Limestone is also known as 'Clean Shelf Limestone'. It is over 800m thick and lies conformably on the Waulsartion Limestone, described as a massive unbedded lime mudstone representing a deeper marine depositional environment.

Beneath the site, the beds dip 8° to the north. The site is located on the southern limb of an east-west trending syncline.

The rockhead is close to the surface with little or no drift cover. Should any be present, it is likely to comprise very recent fill [made ground used as backfill in the construction of the gasworks and infilling of the quarry] or Recent alluvium associated with the River Shannon flood plain.

Previous site investigations (section 2.5) and the recent investigation (section 3.0) identify that Alluvial material is present although its thickness does not exceed 4.4m.

The site is situated on the southern bank of the Shannon River, which flows westwards towards the Atlantic Ocean. The Shannon River will be tidally affected at this point.

The site comprises approximately 60% hard cover and 40% free draining material (with many underground structures that may impinge on the flow of water through

the made ground). There is a slight fall in the site level from the south-east (3m OD) to the north-west (5m OD), and so any surface infiltration that does not enter the surface drainage system will tend to flow in the fill materials towards the north-west corner, i.e. towards the River Shannon. The River Shannon water level is typically 3m OD near the site.

Drainage of the site is to the city's sewers, which discharge directly into the river. The 'Site Investigation Report - Limerick Gasworks Site' (ref 2) records that storm water flooding has occurred in the past along the Dock Road at its junctions with O'Curry Street and Alphonsus Street, i.e. close to the site.

The maximum recorded flood level for the City is reported as 4.25m OD. (Malin Head)

The Groundwater Protection Maps for County Limerick (Maps 1-6) (ref. 6) indicate that the Clean Shelf Limestone is a 'Locally Important Aquifer' that is generally Moderately Productive (40-100m³/d). The aquifer is controlled by fissure flow and well-developed karst features have been observed in the area. The nearest abstraction well is 6 km to the south-east of the site. The oolitic limestones of the Limerick Syncline are known to have relatively high permeabilities. The aquifer is considered 'Vulnerable' due to the lack of impermeable cover.

The majority of the ground water is hard, containing calcium bicarbonate (Ca (HCO₃)₂). Iron and manganese have been found in elevated concentrations west of Limerick. Elevated nitrates have been encountered in some locations due to agricultural activities. Groundwater quality of smaller, shallower sources is generally poorer than the larger, deeper sources.

There are no recorded active wells or boreholes in the vicinity of the site although the historical site plan dated 1977 shows a well 5m to the north west of Gasholder No3 (T11).

It is likely that hydraulic continuity exists between the Made Ground/Alluvial deposits and the bedrock.

The recent investigation has identified that there is a shallow hydraulic gradient to the north west towards the River Shannon.

The proximity of the site to the tidal inlet of the River Shannon would suggest the potential for groundwater on site to be tidally affected. The recent investigation has found little evidence of tidal influence.

2.4 Site History

An extract from the Autumn 1987 Limerick Journal entitled "150 Years of Limerick Gas" (ref.10) provided a background history to the site.

The article states "In 1826, the London-based United General Gas Company took over the Hibernian Gas Company in Dublin and soon began to spread its operations to the large urban areas throughout the country. It set up businesses in Limerick in the 1830's and became the sole manufacturer of gas in the city. But the service

was very poor and the people's patience became so exhausted that in the year 1837 a public protest meeting was convened in the City Courthouse.... shortly afterwards, the newly reformed Corporation purchased premises in Watergate for the manufacture of gas, with the aid of a loan of £24,000. In 1878 following a Parliamentary enquiry and the passing of the Corporation Gas Act, the Local Authority took over the private firm and in 1884 moved from Watergate to the more spacious premises at the Dock Road."

Coal based gas manufacture is reported to have continued on site until the early 1970's and the article also states that "it was only in 1974 that the new catalytic oil-gas plant was finally completed in the city......in 1986, natural gas was piped to Limerick on a spur line from the main Dublin-Cork pipeline. In early 1987, new natural gas pipelines were laid throughout the city and the change over from 'town' gas was complete. The old manufacturing process has been rendered obsolete and the plant at the Dock Road is nothing more that a relic of industrial archaeology."

The following table overleaf summarises the history of the site:

Report No. 25837/OR/03B Final Report

Table 2.4 - Summary of Historical Site Features

Date of Historical Map

Feature	1840	1844	1872	1902	1919	1938	1943	1954	1977	1982	1988	1991	1995
Lime Stone Quarry													
Tank T13	No. of London												
Tanks T14-T19													
Tank T23			u saysii i										
Tank T28							all sec						
Lime Kilns (2 no.)								e.					
Tanks T29 & T30						10 11 11	other						
Tank T11						1	. do				Wale Mark		
Cattle Pens				i i i v		S Office	10						
Electricity Station						obsider.							
Tanks T20-T22					a Pi	Colly							
Tank T7					ectionie								
Tank T25				<u>.</u>	15Phlon								
Tanks T1 & T2				Fot	Tie								
Tank 31				800									
Tank T24, T26, T27, T32, T33, T3-				Insent of									
T6, T8-T10, (associated with oil-				3A									
gas plant)													
Tank 12 *													
Bord Gais Offices													

• Tank T12 is known to have been constructed in 1978 although it is not shown on the 1982 map.

Feature Present
Feature Not Present

2.5 Assessment of Previous Site Investigations

2.5.1 Description of Works Undertaken

Two site investigations have been carried out previously to assess the level of contamination on site.

The first was carried out in 1990 by Gibb Environmental (environmental sampling) and Irish Geotechnical Services Limited (trial pitting and borehole excavation) under the direction of O'Connor Sutton Cronin and Associates Limited (ref.1) and comprised ten trial pits to between 1.4m and 2.3m deep and six boreholes to between 4m and 7.6m depth; the latter to prove rock.

Twenty-one soil samples were analysed for pH, sulphate, sulphide, cyanide (total & free), phenols, and toluene extractable material, with four also analysed for speciated PAH's and calorific value. Four water samples were analysed for pH, ammoniacal nitrogen, sulphate, total organic carbon (T.O.C), total cyanide and total phenols as tar acids. One sample of water and one sludge sample were analysed for speciated PAH's.

The second investigation was carried out by K T Cullen and Company and Glover Site Investigations Limited under the direction of Ove Arup & Partners in 1995 (ref.2) and comprised 17 trial pits to between 0.15 m and 3.7m deep and 6 boreholes to between 5m and 11.8m deep and 5 surface (scraped) samples.

Fifty-five soil samples were analysed for pH, sulphates, total cyanide, toluene extractable material and total phenols. Based on the results obtained, selected samples were then subjected to analysis for dependant options comprising PAH'S, BTEX, free & complex cyanide, thiocyanate and water soluble sulphate.

In addition, selected samples were also analysed in respect of metals, mineral oils and total VOC's and a further two were the subject of a leachability test.

Twenty-three water samples were taken and analysed for a suite comprising total phenols, sulphide, ammoniacal nitrogen, total cyanide, speciated PAH's, pH, temperature and conductivity. Eleven samples were also subjected to a suite of tests including organic and inorganic determinands.

Monitoring was carried out subsequently on two occasions in respect of groundwater levels and gas levels.

The results of both investigations are reported and discussed in Ove Arup's April 1996 Site Investigation Report on Limerick Gasworks Site (ref. 3).

2.5.2 Details of Ground Conditions

The following succession of strata was identified from the two previous investigations: -

Table 2.5.2 Summary of ground conditions

	Thickr	ness (m)
Stratum	Range	Average
Made Ground	0.2 - 7.3	2.6
Alluvium	0.0 - 4.4	1.8
Limestone	4.2m proven	

The Made Ground was found to be variable in nature and consistency. The exploratory holes describe the made ground as variable but predominately granular.

The Made Ground contains sand, gravels, cobbles, clays, brick rubble, spent oxides, ash, concrete etc. and was often contaminated with tarry liquid and occasionally has a strong phenolic odour. The deepest thicknesses of made ground are associated with either the old quarry or torner tanks that extended underground.

The Alluvial deposits were found in at least three excavations (BH11, TP7 and TP27) towards the northern end of the site beneath the Made Ground, and were described as soft to firm brown plastic silty clays. Some materials encountered in other excavations, may have also been Alluvial deposits although it was unclear from the descriptions provided.

The top 0.5m to 1.0mcof the bedrock was generally weathered and comprised of gravel to boulder size fragments of angular limestone. Below this level the bedrock comprises strong dark to medium grey coarse grained fresh, bedded Limestone. Total Core Recoveries (TCR) were in the range 14% to 100% with an average of 76%. Rock Quality Designation (RQD) values were also in range 14% to 100% with an average of 64%. The rockhead was often described as "stained with black tar" over a depth of upto 3m.

The bedrock surface was found to be very uneven due to previous quarrying activities and excavation for underground tanks and tank foundations. The natural slope of the bedrock is from approximately 7m OD at the southern boundary to 3m OD at the northern boundary.

Groundwater was encountered in all of the trial pits and boreholes at depths between 0.3m and 2.8m in the Made Ground. The general direction of groundwater flow was found to be north/north-west towards the River Shannon from a level of approximately 7m OD on the southern side of the site to approximately 4m OD on the northern side of the site (The River Shannon water level is typically 3m OD near the site).

2.5.3 Details of Analysis

Initial screening of the site investigation data has been undertaken using the UK ICRCL Threshold Trigger Values (least sensitive end use), for soils (where available), with the Dutch Intervention Values considered for soil contaminants not covered by the ICRCL list. The only exception to this is in the case of PAH where screening assessment criteria has been set at the Acton Trigger Level for the most sensitive end use.

This screening provides a basic assessment of the areas of site requiring remedial action, although it is recommended that a site specific quantitative risk assessment be carried out to establish remedial action values.

In general, the most significant soil contamination at Limerick gasworks was organic, with evidence of heavy staining by tars and tarry liquid with a phenolic odour being encountered in most of exploratory holes, particularly over the south western part of the site. Tarry staining penetrated into the bedrock joints in BH's 7, 8, 10 and 11. Elevated levels of organic contaminants were encountered in TP's1, 2, 8, 15, 19, 22, 23 and 24, mostly in the vicinity of former tanks. The contamination is most likely due to spillages and leaks from the tanks. Visual evidence of spent oxide ("blue billy") was encountered in the central area of the site (old quarry area).

Elevated sulphate levels occurred throughout the site except in the western part of the site where cleaner fill had been placed in recent years. Elevated cyanide levels occurred mostly along the central strip of the site. Elevated sulphur and sulphide levels occurred randomly but mostly around the central part of the site.

Generally there were no significantly elevated metal levels found at the site with the exception of the area around the chimney of the original gasworks (in the vicinity of T12), the elevated levels apparently being associated with ash from burning.

The groundwater encountered in the trial pits on the western side of the site were contaminated with heavy oils and oozing tarry liquid. Floating product with globules of tarry material was detected in three of sixteen trial pits, these are associated with buried structures (e.g. tar tanks). Tarry liquid was discovered to have penetrated downwards into the joints of the bedrock across the central area of the site.

Elevated levels of contaminants in groundwater occurred in generally the same areas as elevated levels of soil contamination, possibly suggesting that the groundwater is not very mobile. Generally, no significantly high metal concentrations were detected in the ground water except in trial pits in the area of the old gasworks (near T12).

The results of chemical testing on the surface samples scraped from the masonry walls around the site showed elevated levels of sulphates and various organics.

The results of leachate testing showed that the potential for leaching was low, the

measured concentrations being less than 0.1% of the original value. The exception was that 28% of the phenol in TP15 was extractable following leaching.

A second set of groundwater samples were taken about six weeks after the initial sampling. There was no significant difference in the results, one possible exception was BH8, where there was a significant increase in the concentration of phenol and a decrease in the concentration of PAH's. These results were associated with a significant decrease in temperature of the sample.

Elevated levels of methane (>1%) were recorded within borehole monitoring installations during a total of seven visits in BH's 7, 8 and 10 although the most significant levels (upto 90%) were recorded in BH12. The levels of methane recorded were generally significantly higher than the explosive limit (5 - 15%). The velocity of the gas flow was measured and found to be negligible. A tube sample of gas was taken from BH12 and analysed using GCMS. Traces of Kinsale Natural Gas were detected, suggesting that the elevated methane levels may have been due to a leak in a nearby gas main. During the recent site investigation BH33 was drilled approximately 30m from the location of BH12. A methane level of 0.3% was recorded at BH33 during the first monitoring visit.

Levels of carbon dioxide ranged between 1.7 3.2% in BH's 7, 8, 10 and 12. Levels of oxygen were reduced significantly in all boreholes and were accompanied by elevated levels of carbon dioxide and methane. No hydrogen sulphide was found in any of the standpipes.

Please refer to Figure 6 in the Desk Study Phase I Report (Report No. 25837/OR/01B) for previous exploratory hole locations.

2.6 Development

2.6.1 Development Options

GVA Donal O'Buachalla have indicated in correspondence that the site may be suitable for three potential uses as listed below: -

- i. Commercial offices, retail, leisure, car sales etc.
- ii. Residential, but excluding townhouses with gardens.
- iii. Car park, either a surface or multi-storey.

It is noted that storm water flooding has occurred in the past along the Dock Road at its junctions with O'Curry Street and Alphonsus Street and consequently Limerick Corporation require a minimum floor level of 4.7m OD for any new development. The maximum recorded flood level for the City is reported as 4.25m OD (Malin Head).

It is likely that the No. 5 Stores building in the eastern corner of the site will remain as a part of any proposed development.

2.6.2 Access

Current site access is either via Dock Road, which forms the north-western site boundary, or from O'Curry Street forming the north-eastern boundary. The site access from O'Curry Street was not secured, at the time of the site visit and does not appear to be generally locked. The access gate off Dock Road is the main access to the site for Bord Gais personnel and is kept locked and secure when the site is not in use.

The current site access off Dock Road would be considered most suitable with respect to the proposed uses of the site although the access from O'Curry Street may be appropriate for small vehicles such as cars.

2.6.3 Services

All main services (gas, electricity, telecommunications, water and sewerage) are present in the Dock Road and O'Curry Street. Electricity cables are shown running into the electricity sub-station from O'Curry Street. Bord Gais pipelines are shown entering the AGI located in the western corner of the site. Low pressure 180mm PE gas pipes also exist in the site along the eastern end of the Dock Road boundary.

In view of the above and further to initial discussions with the statutory utilities, there should be no problems in providing these services at the site. However, detailed discussions will be required to determine the most appropriate For install connections to existing services, once the precise requirements of the development are known.

2.6.4 Boundary Conditions

Existing site boundaries comprise a 2m high limestone block wall (which becomes higher (3.5m) halfway along the boundary towards the south-east) along the northeastern boundary along O'Curry Street. The south-eastern boundary comprises a 6m high limestone block wall that retains the adjacent Garda training centre at a level some 2m above the Bord Gais site level. This wall becomes a 3m high brick retaining wall (which retains limestone fill on the site side) along its south-western end, adjacent to residential properties. The south-western boundary comprises a 2.5m high brick wall, which retains fill to 2.5m on the site side. The north-western boundary along Dock Road comprises a 2.5m high limestone block wall. The boundaries are considered generally secure at present, although trespassers can gain access over a low wall along O'Curry Street or via the gates on O'Curry Street which do not appear to be generally locked.

A survey of the boundary walls has been carried out by Parkman (report No. 25837/OR/02) on the 6th and 7th March 2001. The report concludes that in places the walls are in a poor state of repair and it is recommended that they are demolished prior to remediation, especially in areas when excavation is required close to the walls.

3.0 SITE INVESTIGATION

3.1 Field and Laboratory Work

The recent site investigation was planned and supervised full-time by Parkman Environment who also scheduled the analysis of soil, water and leachate samples. The ground investigation was carried out by Geotech Specialists Limited. A total of 17 trial pits and 4 rotary boreholes were excavated between 26 February and 6 March 2001. Trial pitting was conducted using a JCB 3CX excavator. Rotary holes were drilled using a Soil Mech 215 rig. These exploratory holes were set out to identify the location of underground structures associated with building foundations, various former tanks, the depth and nature of made ground and the underlying natural strata and to allow construction of gas/water monitoring installations. The locations of the exploratory holes are shown on Drawing No. 25837/OB/01.

Samples of soil and water were selected and sent to City Analytical Services plc (CAS) in Coventry, UK for subsequent analysis. Analyses were carried out in accordance with British Gas Property "Guidance" for Assessing the Potential Contamination on Gasworks Sites" Version 2.4. The results of contamination analyses are included in Appendix A; trial pit and borehole logs are presented in Appendix B, and photographs taken during the investigation are included in Appendix G. Bulk samples were taken for geotechnical analysis. The results of the geotechnical testing carried out are included in Appendix D.

Gas monitoring standpipes with taps were fitted to all four boreholes. These took the form of slotted pipes surrounded with gravel, sealed at the surface with bentonite clay and covered with vandal proof covers.

Monitoring of water devels within all installations (including boreholes from previous investigations that still remain) has been undertaken on one occasion to date, on 5 April 2001.

On-site monitoring of gas by GA-90 infrared detector from the recent installations has been undertaken on one occasion to date, on 2 April 2001.

Groundwater samples were also taken from the gas/water monitoring installations. Samples were sent to CAS plc for analysis.

Details of the water and gas monitoring are included in Appendix C.

Samples were obtained from two local quarries and sent to CAS for analysis. The samples were taken to provide information on potential sources of backfill during any future remediation works. The results of the chemical analysis are included in Appendix A.

3.2 Health and Safety Aspects

With respect to the Ground Investigation Works the site was classified as "Red" in accordance with "Guidelines for the Safe Investigation by Drilling of Landfills and Contaminated Land", published by Thomas Telford. A Health and Safety Hazard

Report No. 25837/OR/3B Final Report Assessment was prepared by Parkman Environment as part of a Pre-Tender Stage Health and Safety Plan (Report No. 25837/OU/01 dated December 2000) in connection with the site investigation works. The Health and Safety Hazard Assessment is included in Appendix E.

With respect to the planned Site Remediation works, a Safety Plan should be produced including a hazard assessment of the site, a consideration of the management of safety on the site and specific measures to be observed during the works including the following:

- * Site development personnel, especially those in direct contact with fills, should observe a reasonable standard of personal hygiene, washing facilities being made available.
- * Boots, overalls and gloves should be worn by persons working in close proximity to fill materials (Excavation, trenches etc). In addition to these protective measures, full filter masks should be worn and monitoring of volatile organic compounds should take place wherever tar, ammoniacal liquor etc. is encountered.
- * To eliminate any risk of hand to mouth transfer of potentially harmful material, smoking, eating and drinking should be prohibited for on-site personnel.
- * It is important that dust should be minimised by utilising appropriate suppression measures. If dust should arise, the wearing of simple dust masks is recommended.
- * As with any site containing contaminated fills, no matter how thorough the investigation, there is a finite risk of encountering previously unidentified hot spots of highly contaminated material. Site development personnel should be made aware of this, and any suspect material, tanks, etc be treated with some circumspection. If necessary, the advice of a senior environmental chemist should be sought.

A Project Supervisor (Design) must also be appointed for the Remediation Works in accordance with the Safety Health and Welfare at Work Regulations 1995. It is the responsibility of the Project Supervisor (Design) to co-ordinate Health and Safety aspects of the design and planning phase and for the early stages of both the Safety Plan and Safety and Health File.

3.3 Quality Assurance

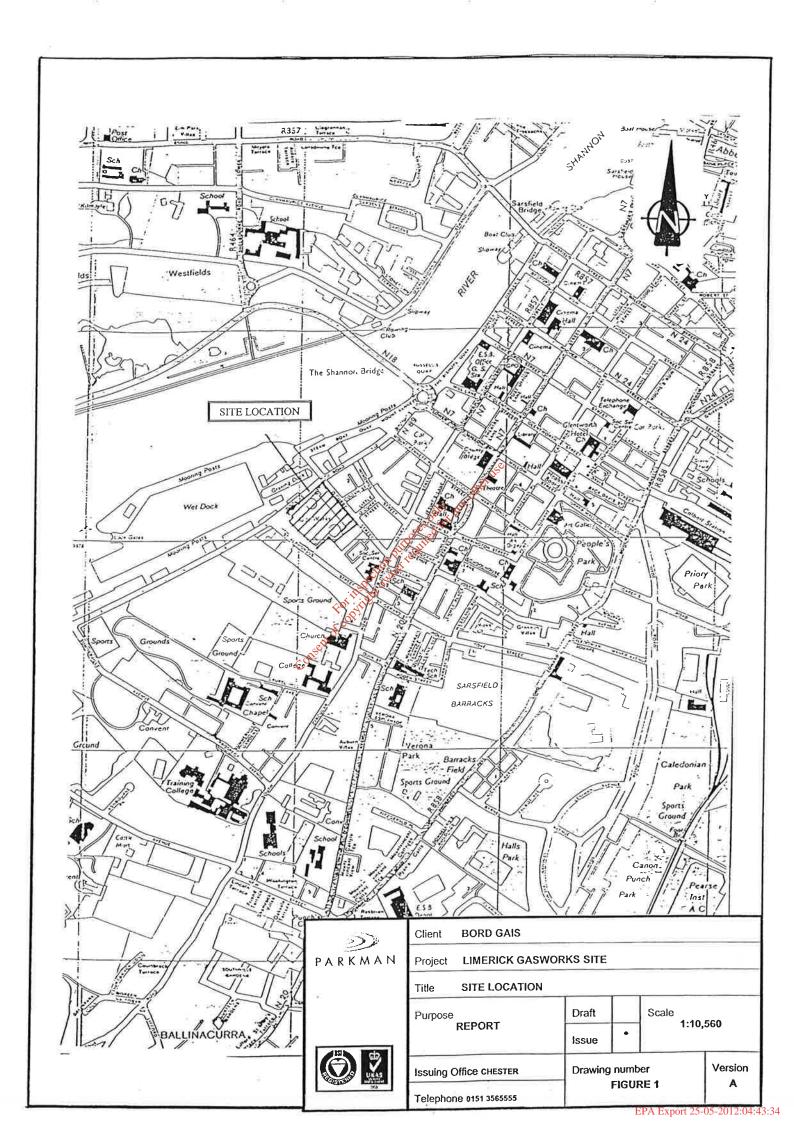
3.3.1 General

All site work was specified and carried out in accordance with "Guidance for the Safe Investigation by Drilling on Landfills and Contaminated Land" published by Thomas Telford (Site Designation - Red).

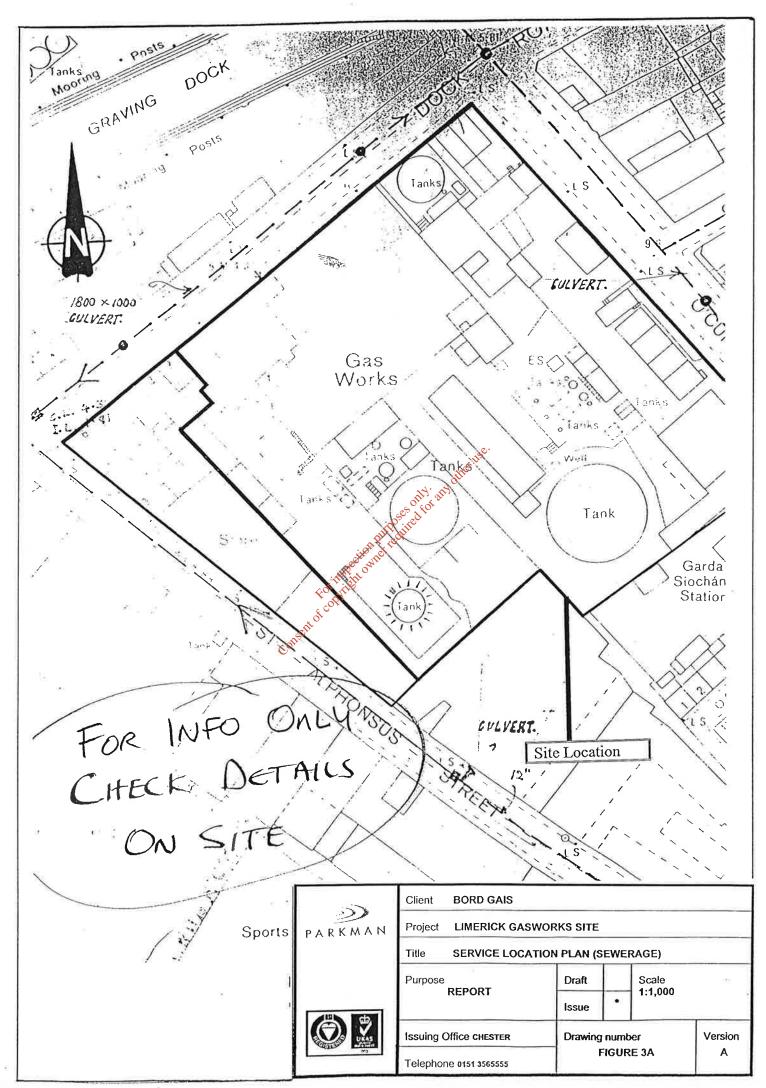
3.3.2 Chemical Testing

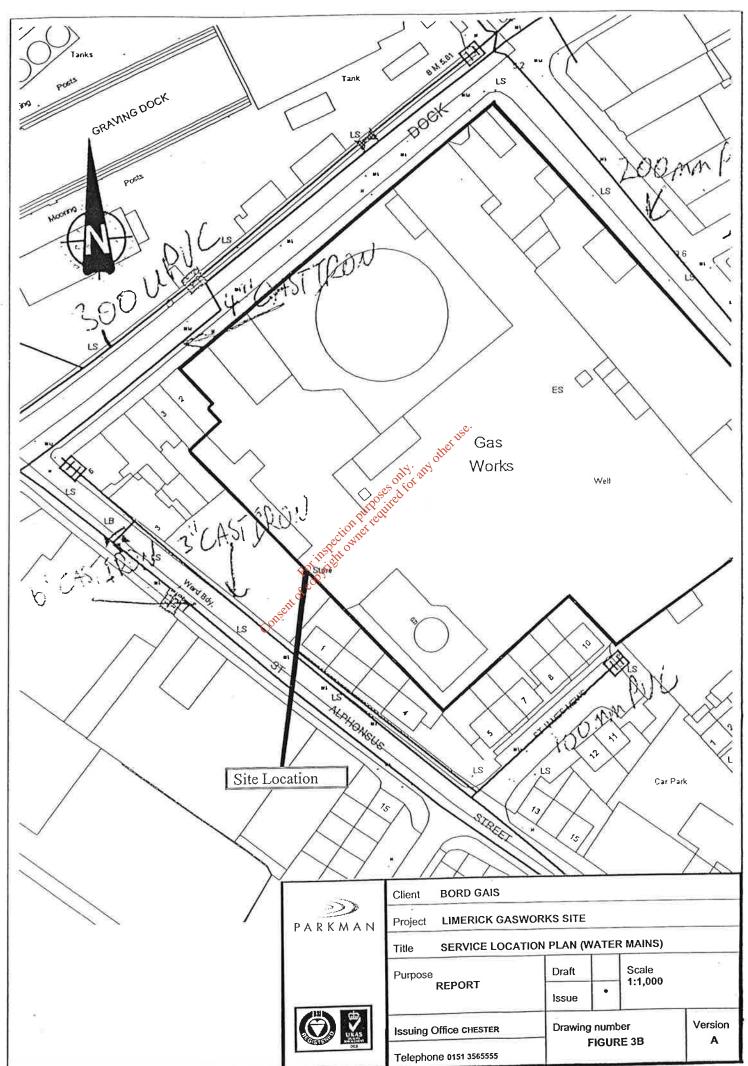
Samples were taken during the excavation of exploratory holes for chemical analysis. Samples were given identification codes and submitted to the laboratory operated by City Analytical Services (CAS) plc, UK for chemical analysis in accordance with British Gas Property "Guidance for Assessing the Potential Contamination on Gasworks Sites" Version 2.4. CAS is a NAMAS accredited laboratory and is approved by British Gas Property. The following quality assurance procedures were implemented in the laboratory for the analysis of the samples from the Limerick Gasworks site.

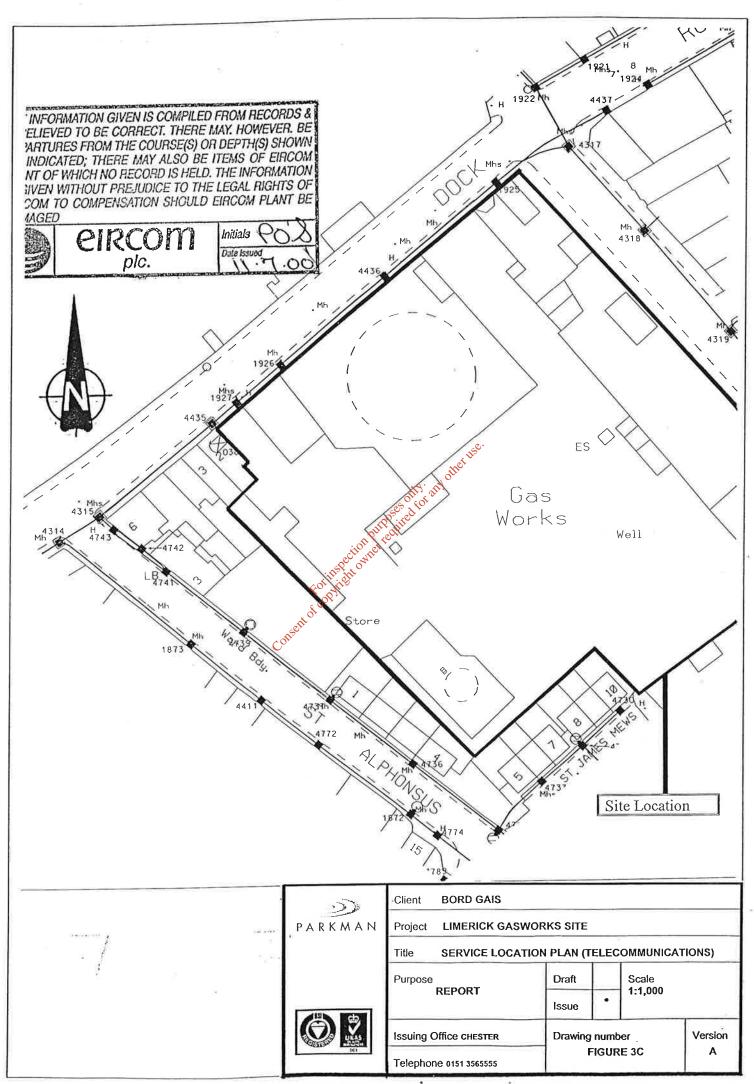
- i. One in every twenty samples were duplicated.
- ii. A reagent blank is included in each batch of samples.
- iii. Laboratory standards are run with each batch. If the lab standard fails, all samples in that batch are re-analysed.
- iv. Quality control charts are maintained for all parameters.
- v. External certified reference materials are analysed at regular intervals, one being from the 'Community Bureau of Reference' (BCR 144), the other from the 'Laboratory of the Government Chemist' (LGC 6138).
- vi. The lab participates in the following external proficiency schemes
 - a) CONTEST-soils
 - b) LEAP-waters
 - c) WASP-filters

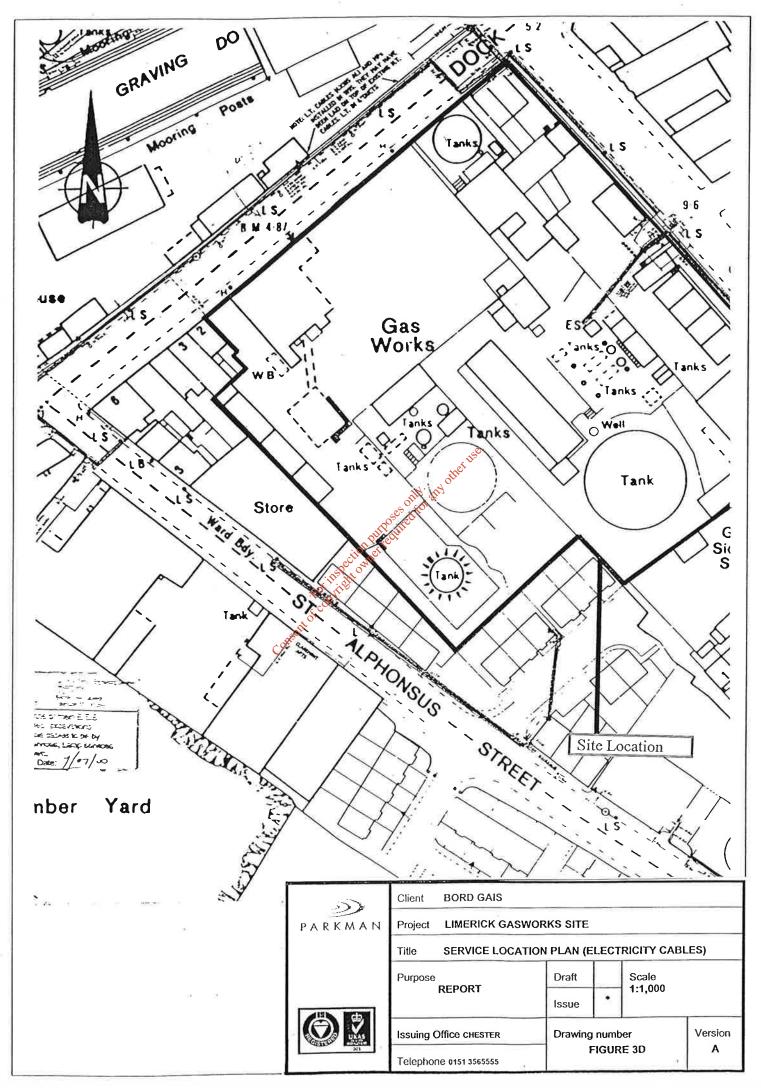

3.3.3 Geotechnical Testing

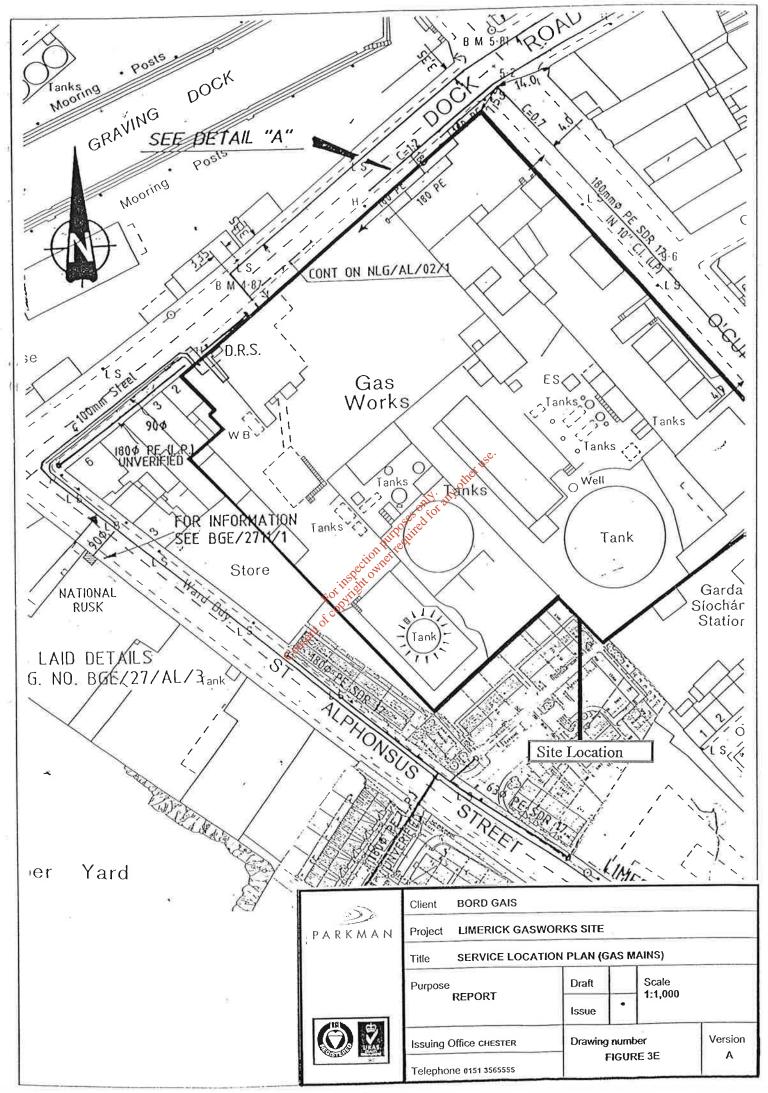
Samples were taken during the excavation of the exploratory holes for geotechnical analysis. All samples were taken in accordance with British Standard 5930. Samples were analysed by Geotech Specialists Limited's laboratory in Castlemartyr, Co. Cork. Geotechnical tests included Undrained Multistage 106mm Triaxials, Permeability in Triaxial Cells, Moisture Content, Atterberg Limits, and Particle Size Distribution on soil samples. Testing was conducted in accordance with British Standard 1377.




4.0 REFERENCES


- 1. O' Connor Sutton Cronin (1995), "Summary Report on Limerick Site", ref. B87, August 1995.
- 2. Ove Arup &Partners (1996), "Site Investigation Report Limerick Gasworks Site", ref. D1078/3, Volumes 1 (Report) and Volume 2 (Factual Site Investigation Data). April 1996.
- 3. Ove Arup & Partners (1996), "Report on Site Remediation Options", ref. D1078, April 1996.
- 4. Ove Arup & Partners (1996), "Report on Contamination Guidelines", ref. D1078, April 1996.
- 5. Charles J.O' Sullivan (1987), The Gasmakers Historical Perspectives on the Irish Gas Industry", Irish Gas Association.
- 6. Groundwater Protection Maps For County Limerick (Maps 1-6)
- 7. Geological Survey of Ireland, Sheet 7. Limerick, 1:100,000 Scale.
- 8. Geological Survey of Ireland, "Geology of the Shannon Estuary"
- 9. British Gas Property Holdings Ltd, "Guidance for Assessing and Managing Potential Contamination on Former Gasworks and Associated Sites (Version 2.5)" (May 2000)
- 10. Extract from Limerick Journal, Autumn 1987, "150 Years of Limerick Gas".
- 11. Parkman Environment (2000), Limerick Gasworks, Dock Road, Limerick, Preliminary Safety and Health Plan
- 12. Parkman Environment (2000), Limerick Gasworks, Dock Road, Limerick, Desk Study-Phase I Report





Soil

Consent of copyright owner required for any other use.

All analytical results to be reported as mg/kg ONLY

Laboratory:	City	Anal	ytical	Services	Plc
-------------	------	------	--------	----------	-----

Borehole / Trial Pit Number Depth	BH32 0.50m	BH32 1.20m	TP31 0.60m	TP31 1.10m	TP31 2,20m	TP32 0.20m	TP32 2.40m	TP32 3.40m	TP33 0,60m	TP33 1,50m	TP33 2.40m	TP34 0.30m	TP34 1.20m
рН	7.2	7.3	7.4	7.4	7.2	6.7	7.2	7.0	7.3	7.2	7.5	6.8	7.1
% Loss on Ignition	3.5	1.7	1.5	2.4	4.2	5.7	7,1	2.1	11	4.0	3.0	9.4	12
% Moisture	9.1	12	9.9	12	11	8.4	13	20	15	13	14	25	18
% Stones	49	54	57	35	44	38	46	38	17	23	21	25	31
	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	0.93	< 0.10	< 0.10	< 0.10	< 0.10
Cresols Xylenols & Ethylphenols	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.87	< 0.10	< 0.10	< 0.10	< 0.10
Naphthols	0110												
Phenol	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.32	< 0.10	< 0.10	< 0.10	< 0.10
Trimethylphenol	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0,35 2,5	< 0.10 < 0.50	< 0.10 < 0.50	< 0.10 < 0.50	< 0.10 < 0.50
Total Phenols	< 0.50	< 0.50	< 0.50	< 0.50	< 0,50	< 0.50	< 0.50	< 0.50	2,3	V 0.30	V 0.30	· 0.30	- 0,50
Napthalene	14	1.6	4.1	2.4	18	34	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	5.8	62
Acenaphthylene	5	0.86	0,55	0.61	4.6	76	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.4	31
Acenaphthene	4.6	0.82	0.48	0.91	13	12	< 1.0	< 1.0	< 1.0	< 1.0	0.91	1.2	11 10
Fluorene	1.4	0.47	0.59	0.79 3.5	8 6.5	70 370	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 5.8	< 1.0 < 1.0	< 1.0 2.1	1.1 2.2	33
Phenanthrene	22 7.8	1.3 0.51	6.6 1.5	0.73	2.2	180	< 1.0	< 1.0	2.4	< 1.0	< 1.0	3.2	18
Anthracene Fluoranthene	50	2	9.2	9.1	3.1	560	< 1.0	< 1.0	19	< 1.0	4.8	6.2	75
Pyrene	45	1.7	8.5	6.7	3.1	480	< 1.0	< 1.0	21	< 1.0	2.3	5.7	62
Benzo(a)anthracene	31	0.9	4.8	3.2	0.85	260	< 1.0	< 1.0	15	< 1.0	1.7	2.4	36 40
Chrysene	28	1.8	5.9	3.9	2 0.6	330 250	< 1.0 < 1.0	< 1.0 < 1.0	17 16	< 1.0 < 1.0	1.6 < 1.0	3.2 3.8	49
Benzo(b)fluoranthene Benzo(k)fluoranthene	21 22	1.7 1.4	4.1 4.1	2.6 1.7	0.8	150	< 1.0	< 1.0	21	< 1.0	< 1.0	3.3	35
Benzo(k)rtuorantnene Benzo(a)pyrene	20	1.4	4.1	2.4	0.6	240	< 1.0	< 1.0	16	< 1.0	2.4	4.1	42
Indeno(1,2,3-cd)pyrene	13	< 1.0	3.3	< 1.0	< 1.0	280	< 1.0	< 1.0	16	< 1.0	< 1.0	6.7	31
Di-benz(a,h,)anthracene	1.3	< 1.0	0.85	< 1.0	< 1.0	47	< 1.0 < 1.0 < 1.0	· < 1.0	4.6	< 1.0 < 1.0	< 1.0 < 1.0	2.5 5.3	12 16
Benzo(g,h,l)perylene	13	< 1.0 < 1.0	3.5 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	200 27	< 1.60° <21.00°	< 1.0 < 1.0	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Anthanthrene Benzo(e)pyrene	1.1 15					400	1.0	< 1.0	14	< 1.0	< 1.0	3.9	35
Cyclopenta(cd)pyrene	18	< 1.0	0.96	1.7	< 1.0	A 9.3	< 1.0	< 1.0	1.4	< 1.0	< 1.0	<1.0	16
Total PAH	330	18	6 6	42	65	11 3800 TY	< 10	< 10	180	< 10	18	65	620
		0.53	0.40	4.5	م جوي	50,	1.2	<1.0	<1.0	< 1.0	< 1.0	3.0	<1.0
Easily-liberatable Cyanide	0.56 1.1	0.53 3.7	1.4	3	2.53e	11	1.9	14	120	410	23	10	120
Complex Cyanide Total Cyanide	1.7	4.2	1.9	4.5	A CONTRACTOR	11	3.1	15	120	410	23	13	120
Thiocyanate				, on 1	Cho								100
Elemental Sulphur	< 100	< 100	< 100	1001	85	640	150	< 100	< 100 3100	< 100 240	640 55	<100 940	190 1600
Water Soluble Sulphate as SO4	< 25	38 6.6	240	2 40	17	7.6	89 31	69 4.0	13	15	11	7.4	9.4
Water Soluble Chloride Exchangeable Ammonlum	0.55 17	6.9	F030 1	34	33	6.5	9.9	<5.0	13	16	21	< 5.0	25
Exchangeable Anniomain	.,		\$0.24	1.3 1.7 42 1.5 3 4.5 100 110 10 10 10 10 10 10 10 10 10 10 1									
Arsenic	6.9	5.1	€ C®3	6.7	3.8	8.7	5,2	9.5	6.5	3.2	2.5 < 0.50	26 < 0.50	24 < 0,50
Cadmium	< 0.50	< 0.50	o.50	< 0.50	< 0.50 4	< 0.50 6.4	< 0.50 6.6	<0.50 6.9	< 0.50 8.8	< 0.50 5.1	6.2	18	11
Chromium	6.4 55	5.17	3.7 41	5.2 91	47	93	8.5	21	34	61	46	180	1100
Lead Mercury	0.55	~ OO.21	0.1	0.21	0.1	0.25	< 0.10	< 0.10	< 0.10	0.42	0.99	0.57	0.39
Selenium	0.26	0.086	< 0.10	0.073	0.085	0.23	<0.10	<0.10	< 0.10	0.20	< 0.10	0.61	0.81
Copper	16	11	13	59	55	19	4.7	13	27	8.1	9.1 6.2	94 30	81 17
Nickel	13	9 22	6.3 21	7.3 60	6.5 41	23 40	7.5 19	15 27	11 18	4.6 19	17	38	160
Zinc Boron	34 0.13	0.1	< 0.10	< 0.10	0.085	0.44	0.47	0.24	0,47	0.48	0.50	< 0.10	0,26
BOTON	0.110	•											
Analytes below to be determined if their presence on site is suspected.													
Cobalt				3.07									
Yanadium Molybdenum													
Motyboenum Germanium													
Hex Cr													
Silver													
Antimony													
Beryllium													
				_				0.10			-040		
Benzene	< 0.10		5.5	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10		< 0.10 < 0.10			< 0.10 < 0.10	20	334 574
Toluene Ethylbenzene	< 0.10 < 0.10	*	- 3	< 0.10	< 0.10	< 0.10		< 0.10			< 0.10	*1	
Xylene's	€ 0.10	8	9	< 0.10	< 0.10	< 0.10		< 0.10			< 0.10	*:	2
Mineral OII Asbestos	94	9 =	302	ND	67							ND	327
ADDITIONAL ANALYTES Coal Tar													
Sulphide													
Toluene Extractable Matter	FC			97	300	220		< 50			≤ 50	- 2	740
TPH by GC (C ₁₀ to C ₂₀)	< 50 38	35	5	34	50	440		€ 50			< 50	91	267
TPH by GC (C ₂₀ to C ₃₉) TPH by GC (C ₁₀ to C ₃₉)	38	18	5	130	350	640		< 50			< 50		333
Organic Matter	30		-	• • •									
Total Sulphate as 504													

All analytical results to be reported as mg/kg ONLY

Laboratory:	City	Analyti	cal Services	Plc
-------------	------	---------	--------------	-----

Borehole / Trial Plt Number Depth	TP34 2,00m	TP34 3.00m	TP35 1.00m	TP35 2.00m	TP35 3.00m	TP36 0.50m	TP36 2.30m	TP37 0.20m	TP37 1.10m	TP38 0.50m	TP38 1.50m	TP39 0.50m	TP39 1_50m
	7.4	7.7	8.2	7.3	7.7	8.1	7.8	7.9	7.8	7.2	7.6	6.3	12.0
pH % Loss on Ignition	3.8	1.6	8.5	6.6	4.9	0,14	0.050	1.0	0.081	9.0	3.1	28 .	3.8
% Moisture	23	15	12	19	15	3.6	3.5	5.0	2,9	11	11	17	23
% Stones	34	36	41	27	22	82	87	66	87	27	43	32	22
							0.40	0.40	. 0.40	- 0.10	< 0.10	12	< 0.10
Cresols	0.11	< 0.10	210	< 0.10	0.16	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	46	< 0.10
Xylenols & Ethylphenols	0.20	0.50	250	< 0.10	< 0.10	< 0.10	< 0.10	₹ 0.10	V 0.10	V 0,10	10,10		
Naphthols	< 0.10	< 0.10	60	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.8	< 0.10
Phenol Trimethylphenol	0.20	0.23	110	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0,10	< 0.10	24	< 0.10
Total Phenols	0.56	0.76	620	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	90	< 0.50
					0.0	0	< 1.0	< 1.0	< 1.0	12	4.9	370	3.9
Napthalene	15 5.6	<1.0 < 1.0	1400 490	5.5 6.1	8.8 2.4	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	23	3.2	140	2.0
Acenaphthylene	5.1	< 1.0	130	1.8	1.3	< 1.0	< 1.0	< 1.0	< 1.0	6.0	< 1.0	48	< 1.0
Acenaphthene Fluorene	8.5	< 1.0	430	2.9	1.9	< 1.0	< 1.0	< 1.0	< 1.0	11	1.1	100	< 1.0
Phenanthrene	9.6	< 1.0	960	9.3	7.4	< 1.0	< 1.0	< 1.0	< 1.0	40	7.3	620	3.6
Anthracene	5.6	< 1.0	370	4.1	1.9	< 1.0	< 1.0	< 1.0	< 1.0	14 61	2.4 15	150 510	1.1 5.7
Fluoranthene	16	< 1.0	690	28 24	5.2 5.2	0.22 < 1.0	0.11 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	50	13	360	4.9
Pyrene	13 6.2	< 1.0 < 1.0	530 300	15	2.9	< 1.0	< 1.0	< 1.0	< 1.0	27	7.8	150	2.6
Benzo(a)anthracene	6.8	< 1.0	290	19	4.7	< 1.0	< 1.0	< 1.0	< 1.0	36	9.3	200	4.1
Chrysene Benzo(b)fluoranthene	5.4	< 1.0	150	17	1.8	< 1.0	< 1.0	< 1.0	< 1.0	41	7.3	92	5.6
Benzo(k)fluoranthene	5.6	< 1.0	140	16	2.0	< 1.0	< 1.0	< 1.0	< 1.0	30	7.8	100 74	4.4 5.7
Benzo(a)pyrene	6.8	< 1.0	180	13	2.7	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	29 35	6.7 4.1	49	6.4
Indeno(1,2,3-cd)pyrene	9.6	< 1.0	210	11 2.4	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	4.8	1.3	13	1.6
Dí-benz(a,h,)anthracene	2.0 6.8	< 1.0 < 1.0	35 170	10	< 1.0	< 1.0	< 1.05	< 1.0	< 1.0	25	3.4	36	7.0
Benzo(g,h,l)perylene Anthanthrene	< 1.0	< 1.0	19	1.5	< 1.0	< 1.0	~d).0	< 1.0	< 1.0	1.5	< 1.0	< 1.0	< 1.0
Benzo(e)pyrene	6.2	< 1.0	130	12	2.7	< 1.0	1.0	< 1.0	< 1.0	32	5.2	62	6.0
Cyclopenta(cd)pyrene	1.0	< 1.0	15	<1.0	< 1.0	J. 1.0	< 1.0	< 1.0	< 1.0	12 500	< 1.0 99	6,0 3100	1.9 68
Total PAH	140	< 10	6900	200	52	CO 10	< 10	< 10	< 10	500	99	3100	00
	<1.0	<1.0	13	73	-600	0.19	0.14	< 1.0	0.14	0.82	0.64	470	2.0
Easily-liberatable Cyanide	6.9	1.5	45	170	20.21°	0.56	0.42	2.5	0.14	51	45	15000	200
Complex Cyanide Total Cyanide	7.7	2.3	46	180 🕎	71, 202	0.74	0.56	2.5	0.27	52	45	15000	200
Thlocyanate				.00.	K TO								70
Elemental Sulphur	1500	120	1300	5400	640	< 100	< 100	< 100	⊯ 100	690	160 830	2200 31	79 1200
Water Soluble Sulphate as 504	150	25	2000	4100	170	< 25	6.3 5.9	< 25 3.6	5.5 4.1	1700 9.0	6,2	28	26
Water Soluble Chloride	4.3	5.2	1311	33	43	2.2	3.8	3.3	3.8	5.2	7.7	140	41
Exchangeable Ammonium	24	67	19 130 15 6900 1.3 45 46 1300 2000 136 15 6900	,0 33	43	2.2	3.0	3.3	310				
Arsenic	8.5	3.6	8.0	13	2.8	0.9	0.55	2.7	0.32	11	5.1	21	12
Cadmium	<0.50	< 0.50	o < 0.50	< 0.50	< 0.50	0,10	- 0130	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Chromium	7.9	2001	8.0	11	<5.0	< 5.0	< 5.0	3.6	< 5.0	25	36 38	5.1 260	7.2 34
Lead	96	2086	130	160	38 0,18	3.4 < 0.10	0.84 < 0.10	26 0.054	1 < 0.10	110 0.39	0.078	1.0	< 0.10
Mercury	0.12 0.35	○0.46 < 0.10	0.64	0.50 0.49	0.11	< 0.10	< 0.10	< 0.10	< 0.10	0.39	< 0.10	0.61	0,27
Selentum Copper	15	16	18	18	5.5	0.86	0.44	5.7	0.34	41	27	1.2	21
Nickel	11	23	12	6.4	5.6	1.8	1	7.8	0.73	29	25	< 1.0	13
Zinc	23	33	49	64	23	7.8	2.4	30	1.6	76	47 0.16	74 < 0.10	47 < 0.10
Boron	0.14	0.26	0.16	<0.10	0.16	< 0.10	< 0.10	< 0.10	< 0.10	0.32	0.10	· 0.10	. 0.10
Analytes below to be determined if their presence on site is suspected. Cobalt													
Vanadlum Molybdenum Germanlum													
Hex Cr Silver													
Antimony													
Beryllium													
	0.46	-	62		0.24	-	< 0.10	ä	< 0.10			23	200
Benzene Toluene	0.25	**	110		< 0.10		< 0.10		< 0.10			20	560
Ethylbenzene	0.65	*	23		< 0.10	- 8	< 0.10		< 0.10			90	0.00
Xylene's	0.95		260		0.26		< 0.10		< 0.10			8.1	(8)
Mineral Oil		35			211	ND		1591	-			ND	
Asbestos													
ADDITIONAL ANALYTES Coal Tar Sulphide													
Toluene Extractable Matter													
TPH by GC (C ₁₀ to C ₂₀)	960	96	12000	9.8	49		38	- 6	< 50			(R)	*00
TPH by GC (C ₂₀ to C ₁₉)	230	×	4000	0.7	< 50	35.0	15		< 50			5 4 5	#1: 10
TPH by GC (C ₁₀ to C ₃₉)	1200	28	16000	::+	49	590	54	N:	< 50				
Organic Matter													
Total Sulphate as SO4												72.	

All analytical results to be reported as mg/kg ONLY

Laborator	v: City	/ Analy	tical/	Services	Plc
-----------	---------	---------	--------	----------	-----

Borehole / Trial Pit Number Depth		TP39 2,80m	TP40 0,70m	TP40 2.20m	TP41 0.50m	TP41 0.80m	TP42 0,30m	TP43 0.40m	TP47 1.00m	TP47 2.00m	TP48 1.50m	TP48 2.50m	TP49 0,30m	TP49 1,50m
all.		8,9	7.0	6.9	8.6	7.0	7.5	7.5	7.6	6.8	7.2	8.3	6.9	7.5
pH % Loss on Ignition		8.0	1.6	1.2	4.5	2.9	0.63	1.0	4.3	1.7	3.4	37	3.3 📧	3.6
% Moisture		31	9.0	8.8	17	22	6.3	11	8.6	11	14	13	20	19
% Stones		32	44	52	38	49	76	36	45	43	42	0	34	43
N Jeones														
Cresols		< 0.10	< 0,10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	140	< 0.10	67	590	< 0.10	< 0.10
Xylenols & Ethylphenols		≤ 0.10	< 0.10	< 0.10	< 0,10	< 0.10	< 0.10	0.22	170	< 0.10	170	790	< 0.10	< 0.10
Naphthols														
Phenol		< 0.10	< 0,10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	41	< 0.10	12	230	< 0.10	< 0,10
Trimethylphenol		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	52	< 0.10	120	290	< 0.10	< 0.10
Total Phenols		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	400	< 0.50	370	1800	< 0.50	< 0.50
								4.7	"	47	200	7600	5.0	6.6
Napthalene		37	0.78	2.2	< 1.0	1.4	0.8	1.7	660	17 8.8	280 110	1900	2.8	6.1
Acenaphthylene		53	< 1.0 < 1.0	1.8 0.69	< 1.0 1.6	1.5 1.3	1.4 0.19	1.4 < 1.0	240 43	4.1	21	280	0.92	1.1
Acenaphthene Fluorene		45 86	< 1.0	0.78	1.5	2.2	0.53	2.4	170	7.2	81	1400	0.69	0.85
Phenanthrene		170	< 1.0	1.7	6	4.7	1.7	7.7	380	18	190	3300	2.5	2.7
Anthracene		59	< 1.0	1.3	1.9	1.2	0.78	1.6	150	5.7	76	1200	1.1	1.9
Fluoranthene		130	0.57	9.9	4.6	6.6	4.2	5.2	280	16	140	2500	6.9	14
Pyrene		97	< 1.0	9.0	4.3	6.9	3.8	4.3	210	14	120	1800	7.4	14
Benzo(a)anthracene		50	< 1.0	3.7	2.4	3.3	2.3	1.6	120	6.2	27	1000	5.1	12
Chrysene		43	< 1.0	4.7	2.1	3.5	2.1	3.6	130	7.8	41	940	6.3	14
Benzo(b)fluoranthene		31	< 1.0	3.7	1.5	2.5	2.7	1,1	61	4.7	14	610	9.2	19
Benzo(k)fluoranthene		24	< 1.0	3.3	0,92	1.9	1.9	1	56	4.6	16	630	8.0	17
Benzo(a)pyrene		30	< 1.0	3.8	1.2	3.5	2.7	0.77	71	4.6 2.3	15 9.1	770 800	11 4.6	21 14
Indeno(1,2,3-cd)pyrene		11	< 1.0	2.6	< 1.0	2.3	1.3	< 1.0	61	2.3 < 1.0	1.9	270	1.0	5.7
D(-benz(a,h,)anthracene		3.8	< 1.0	0.60	< 1.0 < 1.0	< 1.0 2.5	0.32 1.4	< 1.0 < 1.0 < 50	49	1.8	9.7	700	4.2	18
Benzo(g,h,l)perylene		11 2.3	< 1.0 < 1.0	2.8 < 1.0	< 1.0 < 1.0	< 1.0	-10	50 NO	7.1	< 1.0	1.8	130	0,63	3.3
Anthanthrene		19						others	56	3.5	11	570	9.7	17
Benzo(e)pyrene Cyclopenta(cd)pyrene		8.6	< 1.0	< 1.0	< 1.0	1.7	Q.84.4	< 1.0	9.6	0.67	0.56	210	2.6	5.7
Total PAH		910	< 10	56	30	51	My soll	34	2700	130	1200	27000	92	190
TOTAL I FILL		-,-				_ ္ဝ	, sot							
Easily-liberatable Cyanide		0.98	< 1.0	0.53	< 1.0	0.65	< 1.0	0.72	0.60	< 1.0	< 1.0	1.2	1.6	5.6
Complex Cyanide		120	4.9	2.6	1.5	263.820	0.77	2.2	4.8	5.1	1.3	38	150	390
Total Cyanide		120	4.9	3.2	1.5 🚫	7. O.	0.77	2.9	5.4	5.1	1.3	39	150	400
Thiocyanate					.01 x	K CO			2		400	2.0	400	430
Elemental Sulphur	90	340	< 100	< 100	C154 11	290	< 100	< 100	< 100	< 100	< 100	340	< 100 740	130 300
Water Soluble Sulphate as 504		250	88	210	0	51	6.3	65	61	47	86 42	110 110	6.9	5.7
Water Soluble Chloride		5.9	8.3	1/1/2	1118.7	4.4	4.0	14 72	15 19	14 7.7	15	210	4.8	18
Exchangeable Ammonium		38	21	COMMIC	9 11	2.1 1.2 51 3.9 4.4 14 2.7 < 0.50 2.9 40	4.7	12	17	7.7	1,5	210	-7.0	
Arsenic		5.9	4.8	, ⁶	3.9	2.7	1.8	6.5	4.8	4.8	6.6	25	7.4	10
Cadmium		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.32	< 0.50	< 0.50	0.35	< 0.50	< 0.50	0.27
Chromium		4.8	5.2	4.7	7.6	2.9	1.1	5.8	6.6	6.2	7.1	8.4	9.2	14
Lead		48	18/11	26	41	40	9.9	11	30	26	37	1100	92	280
Mercury		0.19	× 60.10	0.056	< 0.10	0.04	0.025	< 0.10	0.14	0.072	0,24	1.3	0.18	0.46
Selenium		0.54	< 0.10	0.047	< 0.10	0.051	< 0.10	< 0.10	0.056	0.19	0.15	0.73	0.20	0.31
Copper		11	5.7	5.6	12	6.2	2.5	8.3	8.6	10	18	49	17	29
Nickel		9.1	9.3	7.8	15	5.1	1.9	13	10	10	13	19	13	26 71
Zinc		14	22	29	26	12	5	19	22	33	29	160	32 0.19	71 0.25
Boron		< 0.10	< 0.10	0.22	0.12	0.047	< 0.10	< 0.10	0.24	0.19	0.18	0.22	0.19	0.23
Analytes below to be determined if their presence on site is suspected.														
5.1.4														
Cobalt														
Vanadium Molybdenum														
Germanlum														
Hex Cr														
Silver														
Antimony														
Beryllium														
											4.4	200		
Benzene		0.25	-	< 0.10	•	< 0.10		1165	23 50		11 23	200 240	e0	100
Toluene		0.33	411	< 0.10		< 0.10		1965	11		4.4	37	20	28
Ethylbenzene V. ('-		0.37	12 00	< 0.10 < 0.10	82	< 0.10	**		130		50	450	75	85
Xylene's		3.5	\$0.	< 0.10	*.	₹ 0.10			130		50	450	50	ńΤ
Mineral Off														
Mineral Oil Asbestos		38	ND	9	ND	353	ND	딍			ND	9	ND	9
ADDITIONAL ANALYTES														
Coal Tar														
Sulphide														
Toluene Extractable Matter									44000		440	80000	07	
TPH by GC (C ₁₀ to C ₂₀)		1400	4	130		110	34	\$2	11000		110	80000	97	231
TPH by GC (C ₂₀ to C ₃₉)		350		170		340	10	\$2	4500		130	38000	300	2900
TPH by GC (C ₁₀ to C ₃₉)	196	1700	71	300		440		27	16000		240	120000	390	(9):
Organic Matter														
Total Sulphate as SO4														

Organic Matter Total Sulphate as SO4

All analytical results to be reported as mg/kg ONLY

Laboratory: City Analytical Services Pic

Borehole / Trial Pit Number Depth	TP49 2.60m	TP49WELL 0.50m	TP51 0.30m	TP51 1.00m	Barrigone Quarry	Ballyneety Quarry
рН	7.3	8.3	8.2	9.3	7.1	7.2
% Loss on Ignition	14	10	45	4.7	0.17	0.25
% Moisture	36	19	8.2	16	2.9	1.9
% Stones	21	54	0	51	69	59
Cresols	0.17	68	900	4.6	< 0.10	< 0.10
Xylenols & Ethylphenols	< 0.10	57	1500	9.8	< 0.10	< 0.10
Naphthols Phenol	0.21	25	160	1.2	< 0.10	< 0.10
Trimethylphenol	< 0.10	27	1000	7.5	< 0.10	< 0.10
Total Phenois	< 0.50	180	3700	23	< 0.50	< 0.50
Napthalene	1.9	310	380	90	< 1.0	< 1.0
Acenaphthylene	2.7	68	140	31	< 1.0	< 1.0
Acenaphthene	2.5	51	32	12	< 1.0	< 1.0
Fluorene	4.1	68	110	29	< 1.0	< 1.0
Phenanthrene	3.4	140	210	58	< 1.0	0.64
Anthracene	1.1	47 98	150	23 43	< 1.0 < 1.0	< 1.0 0.89
Fluoranthene	22 22	81	120	33	< 1.0	0.52
Pyrene Benzo(a)anthracene	20	37	66	18	< 1.0	0.44
Chrysene	26	34	74	19	< 1.0	0.48
Benzo(b)fluoranthene	19	20	31	12	< 1.0	< 1.0
Benzo(k)fluoranthene	17	16	30	11	< 1.0	< 1.0
Benzo(a)pyrene	20	20	29	14	< 1.0	< 1.0
Indeno(1,2,3-cd)pyrene	< 1.0	10	18	15	< 1.0	< 1.0
Di-benz(a,h,)anthracene	< 1.0	1.7	4.4	1.9	< 1.0	< 1.0
Benzo(g,h,l)perylene	< 1.0	11	17	1.3	< 1.0 < 1.0	< 1.0 < 1.0
Anthanthrene	< 1.0 11	0.78	4.7			
Benzo(e)pyrene	8.8	16	4.9	3.1	< 1.0	9.0
Cyclopenta(cd)pyrene Total PAH	180	1000	1500	430	1.0 100 100 20.60 204 100 87 4.4	ATT 10
Process recommendate electrical	3.7	5.7	1.1	0.58	Sign SC	0.84
Easily-liberatable Cyanide	640	25	11	9.3	205. POL	0.84
Complex Cyanide Total Cyanide	640	31	12	9,80	Lally 3	1.7
Thiocyanate			0.000	. of Y	CONTRACTOR OF THE PARTY OF THE	10702422
Elemental Sulphur	140	20000	< 100	10 100	< 100	< 100
Water Soluble Sulphate as 504	430	1300	31,00	0 21	01	< 25 6.0
Water Soluble Chloride Exchangeable Ammonium	6.6 26	16 19	W. S. O.	10 4100 23 13	10	5.5
Arsenic	16	4,4	CO 216	4.3	0.82	1.7
Cadmium	< 0.50	0.25	< 0.50	< 0.50	< 0.50	< 0.50
Chromium	20	500	8.9	5.1	« 5.0	< 5.0
Lead	390	2	48	30	< 5.0	13
Mercury	0.52	01151.4	0.86	0.082	< 0.10	< 0.10
Selenium	0.32	0.57	0.46	0.078	< 0.10	< 0.10
Copper	41	9.8	60	9.7	0.35	2.1 3.5
Nickel	32 110	6.1 27	27 59	7.4	1.2	6.8
Zinc Boron	0.35	0.041	0.64	0.16	< 0.10	< 0.10
Analytes below to be determined if						
their presence on site is suspected.						
Cobalt						
Vanadium						
Molybdenum						
Germanium						
Hex Cr Silver						
Antimony						
Beryllium						
Benzene	198	15	150	1.9	< 0.10	< 0.10
Tolunne		19	200	4.6	< 0.10	< 0.10
Ethylbenzene	1.60	3.5	38	1.7	< 0,10	< 0.10
Xylene's	163	37	410	16	< 0.10	< 0.10
Mineral Oil Asbestos			*	ND	20	-
ADDITIONAL ANALYTES						
Coal Tar						
Sulphide						
Toluene Extractable Matter TPH by GC (C ₁₀ to C ₂₀)	•	20000	87000	1200	< 50	< 50
TPH by GC (C ₁₀ to C ₁₁)	** **	6400	48000	350	< 50	< 50
TPH by GC (C ₁₀ to C ₂₀)		26000	140000	1500	< 50	< 50
1 140	300					

Water

Consent of copyright owner required for any other use.

All analytical results to be reported as stated units.

Laboratory: City Analytical Services Plc

Borehole / Trial Pit Number		BH 7	BH10	TP33	TP34	TP35	TP35	TP36	TP37	TP38	TP39	TP42	TP47
Depth		1.00m	2,00m	2.50m	2.05m	1.50m	3.00m	2.20m	1.00m	1,55m	2,60m	0.40m	2.75m
Hardstanding at surface (Y/N)	Units												
рН	pH Units	11	9.5	7.8	7.2	9,9	6.7	7.6	7.9	7.5	8	7.7	8.9
Suspended Solids	mg/l	240	6900	20000	620	530	280	20000	2600	3900	790	160000	14000
Conductivity (µs/cm)	µs/cm	530	2300	1300	1700	1100	2400	1200	680	1500	1600	380	5100
Cresols	μg/l	11000	130000	63	24	380000	11 89	15000 520	35 370	< 0.50 < 0.50	3600 13000	3.1 580	550000 270000
Xylenols & Ethylphenols Catechol	μg/l μg/l	8200 620	66000 7900	31 < 0.50	520 < 0.50	200000 13000	< 0.50	270	< 0.50	< 0.50	110	5.4	270000
Phenol	μg/l	3300	110000	31	23	190000	12	1500	4.1	< 0.50	950	4.1	360000
Trimethylphenol	µg/l	7600	38000	< 0.50	730	71000	77	1800	220	< 0.50	5100	540	67000
Total Phenols	μg/l	31000	350000	120	1300	850000	190	19000	620	< 2.5	22000	1100	130000
Napthalene	ng/l	330000	360000	190	40000	360000	3400	140000	99000	2000	470000	89000	340000
Acenaphthylene	ng/l	22000	< 20	160	12000	2900	460	1900	5200	470	16000	12000	7400
Acenaphthene Fluorene	ng/l ng/l	6900	3400	59	5100	4300	230	18000	3800	2200	43000	3800	3700
Phenanthrene	ng/l	6600	7300	62	6300	8400	730	59000	4100	6500	140000	4600	6000
Anthracene	ng/l	1300	25	23	2000	73	300	1400	1200	510	860	1200	260
Fluoranthene	ng/l	1200	570	67	6500	500	340	11000	1300	5200	22000	1300	230
Pyrene	ng/l	1100	2000	71	5400	1300	350	36000	1300	17000	54000	1100	670
Benzo(a)anthracene	ng/l	210	450	30	1600	250	110	8700	340	27000	1700	180	80
Chrysene	ng/l	230	470	31	1900	290	130	9500	390	27000	16000	240 220	71 66
Benzo(b)fluoranthene	ng/l	150 91	370 270	40 23	1500 780	140 130	140 77	10000 7200	280 160	30000 19000	11000 10000	100	51
Benzo(k)fluoranthene Benzo(a)pyrene	ng/l ng/l	< 20	630	26	1500	330	110	13000	620	32000	23000	390	69
Indeno(1,2,3-cd)pyrene	ng/l	200	280	76	2200	340	250	6400	< 20	23000	11000	330	< 20
DI-benz(a,h,)anthracene	ng/l	43	47	< 20	550	26	45	< 20	130	< 20	1900	65	< 20
Benzo(g,h,l)perylene	ng/l	94	340	24	880	240	74 2010	S 5600	240	21000	11000	130	< 20
Anthanthrene	ng/l	62	< 20	< 20	250	< 20	< 20	5100	< 20	13000	13000	57	< 20
Benzo(e)pyrene	ng/l	410	340	52	2000	< 20	Olizen	5400	480	22000	15000	440	< 20
Cyclopenta(cd)pyrene	ng/l	270000	270000	050	00000	· abanca l	7000 -	330000	120000	350000	870000	120000	350000
Total PAH	ng/l	370000	370000	930	90000	Magnoth.	7000	330000	120000	250000	670000	120000	330000
Easily-liberatable Cyanide	mg/l	0.4	0.2	< 0.10	0.26	8,80	0.10	0.1	< 0.10	0.20	< 0.10	0.1	0.10
Complex Cyanide	mg/l	0.9	1	0.70	080 ~	270	1.8	0.2	0.2	5.3	4.7	0.5	2.9
Total Cyanide	mg/l	1.3	1.2	0.70	110,80	270	1.9	0,3	0.2	5.5	4.7	0.6	3.0
Thlocyanate	mg/l			~8	100x								
Sulphate	mg/l	1000	280	(480)	5 400	1100	1000	110	61	840	390	8.2	1300
Sulphide	μg/l		1961	CC 5017	< 50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Chloride	mg/l		Con Si		22	45	0.7	7.5	2.1	< 0.64	3.9	2.6	490
Total Ammonium	mg/l	32	370000 0.2 1 1.2 280	0.70 0.70 0.70 50 10 50 10 50 6 0.020 < 0.0050 0.030	23	13	9.6	7.5	2.1	< 0.04	3.7	2.0	470
Arsenic	mg/l	< 0.01	40.60	0.020	0.020	0.050	0.020	< 0.01	< 0.01	0.020	< 0.01	< 0.01	0.090
Cadmium	mg/l	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0,0050	< 0,0050	< 0.0050
Chromlum	mg/l	< 0.01	0.08	0.030	0.010	0.060	0.010	< 0.01	< 0.01	< 0.01	0.020	< 0.01	0.050
Lead	mg/l	< 0.00	0,03	< 0.01	0.19	0.90	0.12	< 0.01	< 0.01	< 0.01	0.020	< 0.01	0.020
Mercury	mg/l	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Selentum	mg/l	6.0020	< 0,0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020 < 0.01	< 0.0020 < 0.01	0.027 < 0.01
Copper	mg/l	< 0.01 < 0.01	< 0.01 0.06	< 0.01 0.020	< 0.01 0.030	< 0.01 0.13	< 0.01 0.040	< 0.01 0.28	< 0.01 0.07	< 0.01 0.030	0.030	0.01	0.10
Nickel Zinc	mg/l mg/l	< 0.01	0.78	0.020	0.030	0.30	0.21	< 0.20	< 0.01	0.19	0.030	< 0.01	0.15
Iron	mg/l	5.7	40	21	16	70	64	0.29	0,07	2.0	21	0.09	68
	-												
Analytes below to be determined if their presence on site is suspected.													
Cabala	ma /l												
Cobalt	mg/l												
Vanadium Molybdenum	mg/l mg/l												
Germanium	mg/l												
Hex Cr	mg/l												
Benzene	μg/l	1600	17000	< 10	1600	13000	13	490	310	< 10	1100	330	18000
Toluene	μg/l	360	7500	< 10	81	4400	< 10 < 10	120 15	150 18	< 10 < 10	250 54	320 36	5200 210
Ethylbenzene	µg/l	24 300	320 3800	< 10 < 10	93 230	210 2100	< 10	140	220	< 10	420	410	2500
Xylene's	μ g/l	300	Javo	- 10	210	2100	- 10	1-10	220	, ,	120	,,,,	
TPH by GC (C ₁₀ to C ₂₀)	μg/l	7000	13000	< 100	4500	22000	250	63000	1800	< 100	6300	4000	27000
TPH by GC (C ₂₀ to C ₃₉)	μg/l	250	730	< 100	530	240	< 100	14000	₹ 100	< 100	890	670	260
TPH by GC (C ₁₀ to C ₃₉)	µg/l	7200	14000	< 100	5100	22000	250	77000	1800	< 100	7200	4700	27000
										5.			
ADDITIONAL ANALYTES													
BOD	mg/l												
COD (filtered	mg/l												
Boron (B)	mg/l	74	E70	75	100	7600	100	87	53	110	61	75	2000
Total Organic Carbon	mg/l	74	570	25	100	2600	100	0/	23	110	UI	13	2000
Toluene Extractable Matter	mg/l												

All analytical results to be reported as stated units.

Laboratory: City Analytical Services Pic

Borehole / Trial Pit Number		TP48	TP49	TP49	TP51	
Depth		3.50m	2.40m	WELLW	1.25m	
Hardstanding at surface (Y/N)						
	Units		V175/851			
pH	pH Units	9.8	7.5	11	> 12.0 30000	
Suspended Solids Conductivity (µs/cm)	mg/(µs/cm	1800 4200	140000	1300	1800	
consuctivity (pazent)	psycin	4200	900	1300	1600	
Cresols	pg/t	170000	4500	1200000	18000	
Xylenols & Ethylphenols	µg/l	100000	3000	670000	26000	
Catechol	µg/1	31000	87	33000	3500	
Phenol	μg/t	87000	2600	440000	9800	
Trimethylphenol	μg/t	34000	820	120000	27000	
Total Phenols	μg/l	420000	11000	2400000	84000	
Napthalene	ng/l	340000	5800	690000	620000	
Acenaphthylene	ng/L	34000	2000	030000	CECCAGO	
Acenaphthene	ng/l	3500	3300	< 20	6300	
Fluorene	ng/l	4300	2000	110000	13000	
Phenanthrene	ng/l	7000	5400	210000	35000	
Anthracene	ng/l	41	2900	1200	710	
Fluoranthene	ng/l	290	20000	81000	11000	
Pyrene	ng/l	920	19000	160000	11000	
Benzo(a)anthracene	ng/l	130	6700	50000	3400 4300	
Chrysene	ng/l	120 69	7400 3700	50000 38000	2600	
Benzo(b)fluoranthene Benzo(k)fluoranthene	ng/l					
Benzo(a)pyrene	ng/L	150	< 20	74000	110	
Indeno(1,2,3-cd)pyrene	ng/l	59	27000	43000	2000	
Di-benz(a,h,)anthracene	ng/l	< 20	< 20	6200	96	
Benzo(g,h,l)perylene	ng/l	59	8300	39000	1100	رچ.
Anthanthrene	ng/l	< 20	1400	40000	570	of the
Benzo(e)pyrene	ng/t	< 20	4600	63000	5100	ine.
Cyclopenta(cd)pyrene	ng/t	-andaus		THE STATE OF THE S	t. sandalimner	400
Total PAH	ng/l	350000	120000	1700000	710000	any other use.
22 - 02 - 02 - 02 - 02 - 02 - 02 - 02 -	00000	7,4720	0.20	0.00	o sof	
Easily-liberatable Cyanide	mg/l	0.1 2.9	5.40	0.20	5000	
Complex Cyanide	mg/l mg/l	3	540	15	all ite	
Total Cyanide Thiocyanate	mg/L	3	340	- O	Jr. Off	
Sulphate	mg/l	340	740	.690	58	
Sulphide	µg/I	86	< 50	COLID	(1)	
Chloride	mg/l		- 4	200		
Total Ammonium	mg/t	140	7.5	220	15	
		19451100	CO1 27		(Coeditori)	
Arsenic	mg/l	0.04	× 001,	0.42	< 0.01	
Cadmium	mg/l	< 0.0050	<0.0050	0.0054	< 0.0050	
Chromium	mg/l	0.01	< 0.01	< 0.01	< 0.01	
Lead Mercury	mg/l mg/l	< 8,0010	< 0.0010	0.0020	< 0.0010	
Selentum	mg/l	0.006	0.0030	0.0020	< 0.0020	
Copper	mg/l	0.03	< 0.01	0.020	< 0.01	
Nickel	mg/l	0.02	0.070	0.030	0.02	
Zinc	mg/t	0.08	< 0.01	< 0.01	< 0.01	
Iron	mg/l	12	1.3	29	0.45	
Analytes below to be determined if						
their presence on site is suspected.						
Cobalt	mg/L					
Vanadium	mg/l					
Molybdenum	mg/l					
Germanium	mg/l					
Hex Cr	mg/(
Benzene	pg/l	7300	66	30000	1600	
Toluene	µg/l	3100	23	7800	1800	
Ethylbenzene	µg/l	190	< 10	300 3000	240	
Xylene's	hā\r	2100	18	3000	2200	
TPH by GC (C ₁₀ to C ₂₀)	pg/t	16000	1000	410000	71000	
TPH by GC (C ₂₀ to C ₃₉)	µg/l	160	330	36000	15000	
TPH by GC (C ₁₀ to C ₁₀)	have	16000	1300	440000	86000	
1000 24 27 CTM 17 740	har.		0.112		mean51	
ADDITIONAL ANALYTES						
BOD	mg/L					
COD (filtered	mg/l					
Boron (B)	mg/l					
Total Organic Carbon	mg/L	480	95	1200	170	
Toluene Extractable Matter	mg/l					

Leachate

Consent of copyright owner required for any other use.

All analytical results to be reported as stated units.

Laboratory: City Analytical Services Pic

Borehole / Trial Pit Number Depth		BH32 0.50m	TP31 1.10m	TP31 2.20m	TP32 0.20m	TP32 3.40m	TP34 0.30m	TP34 2.00m	TP35 2.00m	TP35 3.00m	TP36 2.30m	TP37 1.10m
pH	Units pH Units	9.2	8.9	8.7	7.1	8	7.5	8.3	7.8	8.8	9.5	9.6
Suspended Solids	mg/l	***	(816)	755			AGE:		500		188	
Conductivity	µs/cm	130	42	50	320	85	3100	500	1100	76	40	31
Cresols	µg/L	< 0.50	< 0.50	1.5	< 0.50	< 0.50	< 0.50	2.5	< 0.50	< 0.50	3	1.2
Xylenols & Ethylphenols	µg/l	< 0.50	< 0.50	3.1	< 0.50	< 0.50	< 0.50	11	< 0.50	< 0.50	5.2	< 0.50
Catechol	µg/l	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Phenol	µg/l	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.82	< 0.50	< 0.50	1.7	< 0.50
Trimethylphenol	µg/l	< 0.50	< 0.50	11	< 0.50	< 0.50	< 0.50	36	< 0.50	< 0.50	40	< 0.50
Total Phenois	µg/l	< 2.5	< 2.5	16	< 2.5	< 2.5	< 2.5	51	< 2.5	€ 2.5	49	< 2.5
Napthalene	ng/l	130	43	250	20000	210	150	350	260	39	1300	180
Acenaphthylene	ng/l										3.5	250
Acenaphthene	ng/L	< 20	< 20	< 20	1900	28	< 20	250	< 2.0	< 20	< 20	26
Fluorene	ng/l	< 20	< 20	< 20	1600	30	26	150	< 20	< 20	130	36
Phenanthrene	ng/l	< 20	57	< 20	1600	52	< 20	58	< 20	< 20	49	58
Anthracene	ng/l	< 20	< 20	21	280	< 20	28	59	< 20	< 20	120	< 20
Fluoranthene	ng/t	< 20	54	77	400	31	130	280	74	30	350	58
Pyrene	ng/l	100	180	420	300	41	530	530	210	< 20	580	78
Benzo(a)anthracene	ng/l	< 20	37	30	< 20	< 20	< 20	69	< 20	< 20	33	< 20
Chrysene	ng/l	< 20	44	38	< 20	< 20	27	71	< 20	< 20	32	< 20
Benzo(b)fluoranthene	ng/l	< 20	26	< 20	< 20	< 20	< 20	74	< 20	< 20	< 20	< 20
Benzo(k)fluoranthene	ng/L	< 20	< 20	< 20	< 20	< 20	< 20	31	< 20	< 20	< 20	< 20
Benzo(a)pyrene	ng/l	< 20	22	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Indeno(1,2,3-cd)pyrene	ng/L	< 20	< 20	54	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Di-benz(a,h,)anthracene	ng/l	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Benzo(g,h,l)perylerie	ng/l	< 20	< 20	< 20	< 20	< 20	چوند 20 م	< 20	< 20	< 20	< 20	< 20
Anthanthrene	ng/l	< 20	< 2.0	< 20	< 20	< 20 < 20	< 20	< 20	< 20	< 20	< 20	< 20
Benzo(e)pyrene	ng/l	< 20	59	57	< 20	Olasi	25	99	< 20	< 20	42	< 20
Cyclopenta(cd)pyrene	ng/l					100						
Total PAH	ng/l	280	580	1100	J150000 J	420	950	2000	560	< 200	2700	480
Easily-liberatable Cyanide	mg/l	0.2	0.2	0.100	1000	0.30	0.20	0.20	0.10	0.10	0.1	0.3
Complex Cyanide	mg/l	0.2	0.2	0.8	0.60	0.60	0.40	0.50	1.2	0.40	0.3	0.3
Total Cyanide	mg/l	0.4	0.4	189.1	0.80	0.90	0.60	0.70	1.3	0.50	0.4	0.6
Sulphate	mg/l			Dr. Och			- 0	36	100		30	204
Total Ammonium	mg/l	< 0.64	-0.0	<20 57 1100 0.1 c 2 1100 0.1 c 2 100 d	< 0.64	< 0.64	< 0.71	1.9	< 0.64	1.3	< 0.64	< 0.64
		- 0.01	Sec. 4	-0.01	- 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Arsenic	mg/l	-0.000	500000	× 0.0050	c 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050
Cadmium	mg/L	- 0.0030	2000	# 0.0030	< 0.0030	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	mg/l	2000	- 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Lead	mg/l	0.0010	- 0.0010	- 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010		< 0.0010
Mercury	mg/l	00.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020
Selenium	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Copper	mg/l mg/l mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nickel	HIR LEGIC	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.010	< 0.01	0.020	0.010	< 0.01	< 0.01
Zinc	mg/l	< 0.01	< 0.01	< 0.01	0.030	0.10	0.13	0.040	0.80	< 0.01	< 0.01	< 0.01
Iron	High	S 0.01	0.01	33,0,03	0,030	WALESC.		I MARANA	19.59			
Analytes below to be determined if their presence on site is suspected.												
all Hermini	DOMESTICAL III											
Cobalt	mg/l											
Vanadium	mg/l											
Molybdenum	mg/l											
Germanlum	mg/l											
Uranium	mg/l											
Benzene	µg/t	400	(0)				67	38	20	300	35	5
Toluene	µg/t	**	.0				93		53	250	17	25
Ethylbenzene	µg/L	90		30				5.0	- 5		7	•
Xylene's	ug/I	88	8				1/3	87	9.		3	43
TPH by GC (C ₁₀ to C ₂₀)	hā/ſ	•3						39	12	121	12	12
TPH by GC (C ₂₀ to C ₃₉)	µg/l	675 467	8					-		100	-	10
TPH by GC (C ₁₀ to C ₃₀)	178/1	- 50 	: : :::				07 #H				- 2	2
11.107 30 111.00 1117	****	***		200								
ADDITIONAL ANALYTES	0232W											
BOD	mg/L											
COD (filtered	mg/l											
Boron (B)	mg/l	owner-	4.3	0.4	3.9	6.0	9.0	8.6	9.9	8.6	5.1	2.4
Total Organic Carbon	mg/l	6.6	4.3	8.1	3.9	0.0	7.0	3.0	- Me (E)	0.0	955	(2020)
Toluene Extractable Matter	mg/l											
Thiocyanate	mg/l											_
Sulphide	pg/t	90	1.00	38				(0)		Til		20
Chloride	mg/l		90									

Laboratory: City Analytical Services PIc										
Borehole / Trial Pit Number Depth		TP39 0.50m	TP39 2.80m	7P40 2.20m	TP41 0.80m	1.00m	3,00m	TP48 2.50m	TP51 0.30m	TP51 1.00m
ŧ	Units pH Units	7.5	80 4	9,	9.2	6.9	4,	8.9	9'6	F
Suspended Solids Conductivity	mg/l ps/cm	730	120	120	. 29	3	130	210	. 87	130
Cresols	hgA	110	< 0.50	< 0.50	< 0.50	23000	16000	85000	92000	3000
Xylenols & Ethylphenols Catechol	V8ri	310	, 0.50 0.50	< 0.50 < 0.50	¢ 0.50	2800	0.50	13000	1900	150
Phenol	Ngt.	22 52	< 0.50	° 0.50	0.50	20000	4600	41000	20000	1200
Total Phenois	Vån	089	4.2.5	¢ 2.5	42.5	140000	34000	250000	240000	15000
Napthalene	1/8u	46	9300	80	350	000059	52000	250000	260000	10000
Acenaphthylene Acenaphthene	ng/l ng/l	2200	13000	92	310	2400	× 20	10000	2100	11000
Fluorene	ng/t	170	8500	9 4	2 2	15000	8900	14000	4200	4400
Phenanthrene Anthracene	VSu US/I	96	2400	° 20	3 2	460	340	73	28	1100
Fluoranthene	Ngn	310	2300	110	160	450	430	069	270	780
Pyrene Benzo(a)anthracene	1/8u	44	25 55	4 20	\$ ¤	8 9	88	210	ž,	5 15
Chrysene	Ng/I	× 20	ş ;	6.20	20	278	2 2	210	30	3 %
Benzo(b)fluoranthene Benzo(k)fluoranthene	1/8u	× 20	2 2	8 8	9 0 0	28 2	0.0	9 9	2000	02,
	1/8u	< 20	¢ 20	¢ 20	< 20	65		120	< 20	20
Indeno(1,2,3-cd)pyrene Di-benz(a,b,lanthracene	1/50	¢ 20	< 20 < 20	\$ \$	¢ 50	41	2, 20	4 50	× 20	¢ 50
	E	* 20	< 20	< 20	¢ 20	8		¢ 20	22	< 20
Anthanthrene Beozolejovrene	Series Series	2 50	5 22	2,50	¢ 50 ¢ 50	7 62		20 02 0	32 26	2 2
yrene	ng/1 (-5,200.0), 37000 490 1300 690000	\$00000 \$00000	37000	480	1300	000069	-	000009	270000	34000
		ORY	171.	0,00	. 0	9			5	0.0
Easily-liberatable Cyanide Complex Cyanide	75E	3.6		0.30	0.7	13.5	0.70	0.3	0.3	0.8
	1/8m	3.8	o not	0.30	0.4	7		9.0	9.0	e 3
mondum	μĝη	× 0.64	0.64	N. C.	× 0.64	3,2	3.1	7	2.4	2.6
	Ngm	+ 0.01	× 0.01	2015	10.0 ×0.01	< 0.01	< 0.01	* 0.01	< 0.01	
	Mg/l	< 0.0050	< 0.0050	* 0.0050	· 000050	< 0.0050	200	•	< 0.0050 < 0.0050	< 0.0050
Chromium Lead	mg/l	0.0	0.0	0.0	00	< 0.01				
Ć.	Mg/l	< 0.0010	< 0.0010	< 0.0010	0.0000	* 0.0010	< 0.0010			
	Mg/A	× 0.01	c 0.01	< 0.01	c 0.01	10.0		× 0.01	< 0.01	
	Ng∕4	+ 0.01	× 0.01	< 0.01	0.01	3)		* 0.01	× 0.01	< 0.01
Zinc Iron	Ngm ∏gm	2.7	0.71	0.030	0.05	0.040	0.040	0.17	× 0.01	0.28
Analytes below to be determined if their presence on site is suspected.										
Cobalt	mg/l									
Vanadum	mg/l									
Germanlum Uranlum	Y Su									
Benzene	Ngq	Œ	38	8	E			*	G	٠
Toluene Ethylberzene	V 8 1		× •	2 0	0.0			8 ×	Ç ¥ .	5 2 3
Aylenes	181	9	*		77			6	<u>.</u> 9	ŧń.
TPH by GC (Cra to C ₂₀) TPH by GC (Cra to C ₂₀)	Ngu Len	2 4	80 3	20 V	70 0			E	las a	/80 B
TPH by GC (Cuto Car)	Ng/	2	s en	8 98	8			: £:	S 45	E 70
ADDITIONAL ANALYTES	1/am									
COD (filtered	mg/l									
Boron (B) Total Organic Carbon	mg/l mg/l	4	12	5.5	4.5	200	70	320	270	80
Toluene Extractable Matter	Mg/l									
Sulphide	hg/l	ä	.0	*	ŝ			ŧ	*	è
Chloride	mg/l									

LEACHATE RESULTS
LIMERICK GASWORKS
Apr-01
All analytical results to be reported as stated units.

Water Monitoring

Consent of copyright owner required for any other use.

All analytical results to be reported as stated units.

Laboratory: City Analytical Services Plc

Laboratory Sample Reference Sample ID Other ID	Units	133041 BH31	133042 BH32	133043 BH33	133044 BH34	133045 BH 7
	3,000					
рН	pH Units	6.7	7	7.3	7.2	9.8
Suspended Solids Conductivity (us/cm)	mg/l µs/cm	210 780	340 400	62 820	130 900	37 1500
considerity (parent)	pocum		100		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11,500
Cresols	μg/l	< 0.50	< 0.50	31000	18	12000
Xylenols & Ethylphenols	µg/l	< 0.50	< 0.50	31000	79 < 0.50	8200
Catechol Phenol	µg/l µg/l	< 0.50 < 0.50	< 0.50 1.5	< 0.50 20000	2.4	510 3900
Trimethylphenol	μg/l	< 0.50	< 0.50	25000	43	6500
Total Phenols	µg/l	< 2.5	< 2.5	110000	140	31000
Napthalene	ng/l	530	5300	760000	780	390000
Acenaphthylene	ng/l					
Acenaphthene	ng/l	< 20	5700	19000	2100 980	18000 7300
Fluorene Phenanthrene	ng/l ng/l	77 630	1800 730	7800 8200	200	21000
Anthracene	ng/l	120	390	1400	37	4700
Fluoranthene	ng/l	200	800	490	69	6300
Pyrene	ng/l	410	830	570	100	8100
Benzo(a)anthracene	ng/l	170	120 130	55 50	33 35	2900 33000
Chrysene Benzo(b)fluoranthene	ng/l ng/l	150 130	87	32	39	2800
Benzo(k)fluoranthene	ng/l	71	44	< 20	< 20	1200
Benzo(a)pyrene	ng/l	300	210	70	74	1200
Indeno(1,2,3-cd)pyrene	ng/l	270	94	26	95	2400
Di-benz(a,h,)anthracene	ng/l	21	21	< 20	< 20	300 <
Benzo(g,h,l)perylene Anthanthrene	ng/l ng/l	100 43	43 < 20	< 20	3∠ < 20	440
Benzo(e)pyrene	ng/l	300	190	73	67	5500
Cyclopenta(cd)pyrene	ng/l				Office	r dr.
Total PAH	ng/l	3500	17000	750000	32 < 20 67 H 67	400000
Easily-liberatable Cyanide	mg/l	0.10	0.10	0.10	1112 10 10	0.30
Complex Cyanide	mg/l	0.40	0.20	0.40	0.20	4.1
Total Cyanide	mg/l mg/l	0.50 0.26	0.30	0,50	0.30	4.4
Thiocyanate Sulphate	mg/l	550	51	SP VB	510	1100
Sulphide	μg/l	< 50	< 50	50	< 50	< 50
Chloride	mg/l		\$10	OHIL		
Total Ammonium	mg/l	2.1	1.4	57	42	33
Arsenic	mg/l	0.020	50.01	< 0.01	< 0.01	< 0.01
Cadmium	mg/l	< 0.0050	0.0050	< 0.0050	₹ 0.0030	< 0.0030
Chromium	mg/l	< 0.01 0.19	0.01 0.11	< 0.01	< 0.01	< 0.01 < 0.01
Lead Mercury	mg/l mg/l	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Selenium	mg/l	0.0050	< 0.0020	0.010	< 0.0020	0.0040
Copper	mg/l	0.030	0.020	0.020	0.010	< 0.01
Nickel	mg/l	0.020	0.020	0.010	0.020	0.010
Zinc · Iron	mg/l mg/l	0.15 3.5	0.19 3.3	0.10 1.3	0.10 2.4	0.13 5.7
h	mg/t	-3.0	3.3			3.0
Analytes below to be determined if their presence on site is suspected.						
Cobalt	mg/l					
Vanadium	mg/l					
Molybdenum	mg/l					
Germanium	mg/l					
Hex Cr	mg/l					
Benzene	μg/l	< 10	< 10	16000	18	2700
Toluene	µg/l ∵	< 10	< 10	5500	11	1000
Ethylbenzene Xylene's	μg/l ug/l	< 10 < 10	< 10 < 10	250 3000	< 10 21	99 1100
VATERIAS	µg/l	4 10	2.10	3000	21	1100
TPH by GC (C ₁₀ to C ₂₀)	μg/l	< 100	440	8900	540	12000
TPH by GC (C ₂₀ to C ₂₉)	µg/l	< 100	< 100	120	< 100	440
TPH by GC (C ₁₀ to C ₃₉)	μg/l	< 100	440	9000	540	13000
ADDITIONAL ANALYTES BOD	mg/l					
COD (filtered	mg/l					
Boron (B)	mg/l					
Total Organic Carbon	mg/l	14	5.4	15	15	110
Toluene Extractable Matter	mg/l					

Equipment and Methods
Rotary Open Hole 115 mm diameter from 0,00m to 1.85m. Rotary Cored 110 mm diameter from 1.85m to 5.25m. Drilled by TB Ground Level Logged by National Grid Coordinates Checked by Samples and Tests Strata Date Description Records Time Depth,Level Legend Casing (Thickness) 08/03/2001 MADE GROUND** (1.85)1.85 1.85 - 3,65m (3.40pen) 3,65 - 5.25m 08/03/2001 5,25 EXPLORATORY HOLE ENDS AT 5.25 m. Groundwater Hole backfill: 0.00m to 0.50m Concrete (c), 0.50m to 1.85m Bentonite (b), Surface protection: Stop Cock Cover Standpipe installed, 50mm diameter, response zone from 1.85m to 5.25m. No. Struck Behaviour Project LIMERICK GAS WORKS Borehole

2/2001 15:14:05 ES C. 24 x

Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Scale 1:50

Project no. 17101 Carried out for Mess

171016/2 Messrs. Parkman Environmental BH31

Sheet 1 of 1 PA Export 25-05-2012:04:43:34

Equipment and Methods Inspection Pit from 0.00m to 1.20m. Rotary Open Hole 110 mm diameter from 1.40m to 4.85m. **Ground Level** Logged by National Grid Checked by Coordinates Samples and Tests Strata Type & No. Records Date Description Depth,Level Legend (Thickness) Casing 04/03/2001 MADE GROUND** (1,65) 1.65 LIMESTONE** (3.20pen) EXPLORATORY HOLE ENDS AT 4.85 m. 04/03/2001 Depth Time Water Records Date Casing Groundwater Hole backfill: 0.00m to 0.85m Concrete (c), 0.85m to 1.85m Bentonite (b). Surface protection: Stop Cock Cover Standpipe installed, 50mm diameter, response zone from 1.85m to 4.85m. No. Struck Behaviour 1.75m Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Scale 1:50 LIMERICK GAS WORKS Borehole **BH32** Project no. Messrs. Parkman Environmental Carried out for Sheet 1 of 1

Equipment and Methods
Rotary Open Hole 115 mm diameter from 0.00m to 2,85m, Rotary Cored 110 mm diameter from 2.85m to 8.45m. Drilled by National Grid Coordinates Logged by Checked by Strata Samples and Tests Depth,Level Description Legend Date Time Records (Thickness) Casing Water 04/03/2001 LIMESTONE of the any other use.

Consent of copy light owner technical for the light owner techn 2.85 - 4.00m (8.45pen) 4.00 - 5.80m 5.80 - 7.40m 7.40 - 8.45m 06/03/2001 8,45 EXPLORATORY HOLE ENDS AT 8 45 m Groundwater 15:14:22 ESGLog v2.04 Hole backfill: 0,00m to 0.50m Concrete (c), 0.50m to 1.45m Bentonite (b), Surface protection: Stop Cock Cover Standpipe installed, 50mm diameter, response zone from 1.45m to 8.45m. No. Struck Behaviour Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Scale 1:50 LIMERICK GAS WORKS **BH33** 171016/2 Messrs, Parkman Environmental Sheet 1 of 1

Carried out for

EPA Export 25-05-2012:04:43:34

Equipment and Methods
Rotary Open Hole 115 mm diameter from 0.00m to 7.20m. Rotary Cored 110 mm diameter from 7.20m to 10,25m. Logged by National Grid Checked by Strata Samples and Tests Depth,Level Legend Description Records Date Time (Thickness) Casing Water Consent of copy testing but before the direction of the tree to the copy testing the tree tree to the copy testing the tree tree tree to the copy testing the tree tree tree to the copy testing testing to the copy testing testi (7.15)5 (3:10) LIMESTONE** Groundwater Hole backfill: 0,00m to 0.50m Concrete (c), 0.50m to 7,15m Bentonite (b). Surface protection: Stop Cock Cover Standpipe installed, 50mm diameter, response zone from 7.15m to 10.25m. No. Struck Behaviour 7.20m Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column.

Scale 1:50 LIMERICK GAS WORKS Project **BH34** 171016/2 Project no. Messrs. Parkman Environmental Sheet 1 of 2 Carried out for

Drilled by Logged by Checked by	гв		Equipment and Me See sheet 1	thods			Ground Lev National Gri Coordinates	d
Samples	and T	est	S			Strata		
Depth	TCR SCR RQD		Records	Date	Time	Description	Depth,Level	Legend
	RQD			Casing	Water	A should	(Thickness)	
-				06/03/200	1	As sheet 1	10,25	
						EXPLORATORY HOLE ENDS AT 10.25 m.		
							3	
							4	
						=	3	
_							-	
							=	
							=	
							-	
_	y	*						
							=	
						Specification for the first of the state of	-	
						.©·	1	
						heilis	3	
				1		14. 04.0gh	3	
						es of kot all	-	
-	1					rgo ited i	3	
		*		1		on Puredu	=	
-						gerito met	3	
					N. Carrie	dit o	=	
<u>-</u>					FOY.		3	
					a of		4	
-				A OTISE	N.		3	
_							-	
							3	
E.							=	
2							3	
			li .				_	
							=	1 11
<u> </u>		7					=	
				Í			1	
<u>-</u>							3	
						1		
/				1				
Ξ						t		
_							<u> </u>	
-							4	
							1	1 11
Ė							<u> </u>	
						1		
Groundwater				-140		Remarks		
No. Struck Be	haviour		8			~		
						ľ		
			*					
Notes : For exp	lanation o	of symb	nois and	Project		LIMERICK GAS WORKS	Borehole	•

Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column.

Scale 1:50

171016/2 Messrs. Parkman Environmental Project no. Carried out for

Borehole BH34

EPA Export 25-05-2012:04:43:34

Trial Pit Log CONSULTANT: PROJECT: TRIAL PIT: CLIENT: TP31 Limerick Gasworks Bord Gàis Parkman Environment JOB NUMBER: PIT DIMENSIONS PLANT: DATE: ORIENTATION: LOGGED BY: ок 01/03/2001 NW-SE 3 x 3 x 2.9m 25837 JCB 3CX **DEPTH** SAMPLE W DESCRIPTION LEGEND (THICKNESS) LEVEL E R Depth No. (m O.D.) (m) (m) 0.05m - Layer of vegetation (grass and roots with topsoil). 0.15m - MADE GROUND - Compact layer of bricks and sand and concrete flooring 0.5m 0.75m - MADE GROUND - Soft brown sandy gravelly clay with 0.6 occasional brick debris, slight hydrocarbon odour. 1.35m - MADE GROUND - Soft dark brown sandy gravelly clay with occasional brick debris and some sub angular to rounded limestone 1.0m cobbles, hydrocarbon or chemical odour, in particles very sandy 1,1 2 and very gravelly. MADE GROUND - Soft grey very sandy gravelly clay with many 1.5m angular sub-rounded cobbles of limestone (in places clayey and gravelly fine to coarse sand), strong hydrocarbon or chemical odour. 2.0m 2.2 3 2.5m 3.0m Trial pit abandoned at 2.9 noue to pit collapse. 4.0m 4.5m 5.0m REMARKS (pit stability / water encountered) **ELEVATION:** NW Very unstable below 0.75m / water flowing in at 2m in NW end - not enough to sample, pit collapsing Orientation constantly. SAMPLE DESCRIPTION: PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225

Trial Pit Log CLIENT: CONSULTANT: PROJECT: TRIAL PIT: Bord Gàis Parkman Environment Limerick Gasworks TP 32 LOGGED BY: PLANT: DATE: ORIENTATION: PIT DIMENSIONS JOB NUMBER: OK JCB 3CX 27/02/2001 SW - NE 1.2 x 2.3 x 3.5m 25837 SAMPLE DEPTH DESCRIPTION LEGEND (THICKNESS) LEVEL Depth No. (m) (m) (m O.D.) 0.1m - MADE GROUND. Loose grey medium to coarse angular to sub rounded gravel hardcore with some fine angular to rounded gravel of limestone. 0.5m - MADE GROUND. Loose brown/black stained sandy fine to coarse angular to rounded gravel of brick clinker, slate, limestone with a hydrocarbon 0,2m 1 0.5m odour. 0.9m MADE GROUND. Loose light brown/grey medium to coarse lime sand with some fine to coarse angular to rounded gravel of lime. 1.9m MADE GROUND. Compact dark brown clayey slightly sandy fine to 1.0m coarse angular to rounded gravel of brick with some angular cobbles of brick (demolition rubble). 1.5m 2,0m 2,6m MADE GROUND. Soft grey/mottled black silty sandy veg gravelly clay with much fine to coarse angular to rounded gravel of brick and limestone. DISTURBED GROUND. Soft grey/mottled black silty gravelly CLAY with slight organic odour and some whole and fragmented shells (disturbed natural ground). 2.4 2 2.5m 3.0m 3.4 3 3.5m Trial pit ended @ 35m 4.0m 4.5m 5.0m **ELEVATION:** REMARKS (pit stability / water encountered) SW Slightly unstable between 0.9 - 1.9m / small amount of water in base of hole. Orientation SAMPLE DESCRIPTION:

PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ

TELEPHONE: 0151 356 5555

FACSIMILE: 0151 356 4225

NE

Trial Pit Log PROJECT: TRIAL PIT: CLIENT: CONSULTANT: Parkman Environment Limerick Gasworks TP 33 Bord Gàis LOGGED BY: PLANT: DATE: ORIENTATION: PIT DIMENSIONS JOB NUMBER: oĸ NW - SE 1.4 x 2.8 x 2.7m 25837 JCB - 3CX 27/02/2001 SAMPLE DEPTH LEVEL DESCRIPTION LEGEND (THICKNESS) Depth No. (m O.D.) (m) (m) 0.1m - MADE GROUND. Mass Concrete. 0.3m - MADE GROUND - Loose brown sandy fine to coarse angular gravel of brick fragments. 1.8m - MADE GROUND - Loose light brown/grey with some minty green 0.5m patches medium to coarse lime sand with some fine to coarse angular to 0,6 1 rounded gravel of lime interbedded with soft to firm slightly clayey silt layers with occasional fine angular to rounded gravel of brick, limestone and lime fragments between 0.5 - 0.65m and 1.4 - 1.6m. 1.0m 1.5m 1.5 2 Soft grey mottled black clayey SILT with some fine to coarse angular to rounded gravel of limestone, some wood debris at top of layers below 2.6m, limestone boulders hindering excavation. 2.0m 3 2.4 2.5m 4 2.5 Trial pit ended @ 2.7m due to difficult endavation with boulders - possible rockhead?

For inspect of copyright own 3.0m 3.5m 4.0m 4.5m 5.0m REMARKS (pit stability / water encountered) **ELEVATION:** NW Orientation Sides unstable below 2m/ grey water filling in pit from 2.5m in west wall; filled to 2,5m in 10 minutes. SAMPLE DESCRIPTION: SE PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ

TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225

Trial Pit Log CLIENT: CONSULTANT: PROJECT: TRIAL PIT: Bord Gàis Parkman Environment Limerick Gasworks TP 34 LOGGED BY: PLANT: DATE: ORIENTATION: PIT DIMENSIONS JOB NUMBER: OK JCB 3CX 27-28/02/01 NW - SE 1.1 x 3.1 x 3.1m 25837 SAMPLE DEPTH DESCRIPTION LEGEND (THICKNESS) LEVEL Depth No. R (m) (m) (m O.D.) 0.5m MADE GROUND. Loose brown fine to coarse angular to sub angular gravel of ash, clinker and brick. 0.3m 0.5m 0,75m MADE GROUND. Mass Concrete. 1.3m MADE GROUND. Loose brown/dark brown medium to coarse sand with much fine to coarse angular to rounded gravel of brick, limestone and some ash 1.0m and clinker; occasional large metal pieces and whole bricks, slight hydrocarbon 1.2m2 2 odour in places. 2,7m MADE GROUND. Compact dark grey/black fine to coarse angular to sub rounded gravel of clinker ash, and brick with many clay and silt rich patches; 1.5m tarry odour and appearance. Soft grey clayey slightly sandy SILT with occasional shells, some egg shells found; in places very sandy.

Trial pit ended @ 3.1m COT in the control of the 2.0m 3 2.0m 2.05m 4 2.5m 3.0m 5 3.0m 3.5m 4.0m 4.5m 5.0m **ELEVATION:** REMARKS (pit stability / water encountered) NW Stable/black water with hydrocarbon sheen and odour entering @ 2.05m; settled to 2.65m after 10 mins. Orientation SAMPLE DESCRIPTION: SE PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225

Trial Pit Log CLIENT: CONSULTANT: PROJECT: TRIAL PIT: Limerick Gasworks Bord Gàis Parkman Environment TP35 DATE: ORIENTATION: PIT DIMENSIONS LOGGED BY: PLANT: JOB NUMBER: OK JCB 3CX 28/02/2001 N-S 1.4 x 6.2 x 3.1m 25837 SAMPLE DEPTH DESCRIPTION LEGEND (THICKNESS) Depth No. (m O.D.) (m) (m) 0.5m -MADE GROUND- Loose brown slightly clayey sandy fine to coarse, angular to rounded gravel of brick, ash, tarmac, grass at top of layer. 0.5m 2.8m - MADE GROUND - Compact to very compact brown/red m-c a sub a gravel of ash, clinks and brick with iron oxide staining. 1.0m 1.0m MADE GROUND - Loose light brown/grey m-c lime sand with some fine to coarse, angular to rounded gravel of lime. Below 2.6m water contaminating fill. INSIDE TANK: 1.5m MADE GROUND - Loose to compact dark brown slightly clayey very 1.5m 2* gravelly medium to coarse sand with many angular cobbles of limestone, strong tarry odour, black tarry water standing at 1.5m - excavation ended at 1.8m within tank. 2.0m 2.0m 3 2.5m Soft dark grey clayey slightly Sandy SILT with strong hydrogen sulphide odour 3.0m 3.0m 4 Trial pit ended at 3.1grcof 4.0m 4.5m 5.0m Samples within tank ELEVATION: REMARKS (pit stability / water encountered) Unstable/brown water standing @ 3.0m outside Orientation tank. 2.9m 0.9m* Tank wall SAMPLE DESCRIPTION: Inside tank 2.4m S

PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ

FACSIMILE: 0151 356 4225

TELEPHONE: 0151 356 5555

Trial Pit Log CLIENT: CONSULTANT: PROJECT: TRIAL PIT: **Bord Gàis** Parkman Environment Limerick Gasworks TP36 LOGGED BY: PLANT: DATE: ORIENTATION: PIT DIMENSIONS JOB NUMBER: oĸ JCB 3CX 02/03/2001 NW-SE 1.5 x 3.5 x 2.4m 25837 SAMPLE DEPTH W A T DESCRIPTION LEGEND (THICKNESS) LEVEL E R Depth No. (m) (m) (m O.D.) 0,2m - MADE GROUND - Loose slightly clayey gravelly fine to medium sand with occasional brick fragments and plastic, many rootlets and grass at top of layer. 0.5m 1 0.5m MADE GROUND - Loose to compact light brown/grey sandy medium to coarse angular to sub angular gravel of limestone 1.0m 1.5m 2.0m 2 2.2m 2.3m 3 Consent of copyright owner technical i below water line gravel becomes grey with slight hydrocarbon odour 2.5m Trial pit ended at 2,4m 3.0m 3.5m 4.0m 4.5m 5.0m REMARKS (pit stability / water encountered) **ELEVATION:** NW Orientation Unstable below 0.2m/grey water with h/c odour standing @ 2.2m Wall @ 0.7m -Concrete tank base visible to 2.2m, 0.5m thick 0,2m concrete top with brick below SAMPLE DESCRIPTION: SE PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225

Trial Pit Log CLIENT: CONSULTANT: PROJECT: TRIAL PIT: **TP37** Limerick Gasworks **Bord Gàis** Parkman Environment PIT DIMENSIONS JOB NUMBER: LOGGED BY: PLANT: DATE: ORIENTATION: OK SW-NE 1.6 x 3.6 x 1.2m 25837 JCB 3CX 02/03/2001 DEPTH SAMPLE W A T DESCRIPTION LEGEND (THICKNESS) LEVEL E R Depth No. (m O.D.) (m) (m) 0.05 - MADE GROUND - Loose slightly clayey gravelly fine to medium sand with occasional brick fragments and plastic, many rootlets and 0.2 grass at top of layer. MADE GROUND - Loose to compact light brown/grey sandy medium 0.5m to coarse angular to sub angular gravel of limestone 1.0m 2 1 3 TP abandoned @ 1.2m due to water level and pit collapse Consent of copyright owner reduced for any other use. 1.5m 2.0m 2.5m 3.0m 3.5m 4.0m 4.5m 5.0m REMARKS (pit stability / water encountered) ELEVATION: Orientation Very unstable / light brown water with slight hydrocarbon and sheen standing at 1.0m. NE SAMPLE DESCRIPTION: Brick tank wall at 0.5m, 0.4m thick Concrete tank base - 0.5m thick PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225

Trial Pit Log

OLIENIT	7.		CONCLUTANT.		ial Pit Log			Trovas	
CLIENT			CONSULTANT:	4	PROJECT:	ulca.		TRIAL	PIÜ:
Bord G		37.	Parkman Environme	DATE:	CRIENTATION:		IENICIONIC	TP 38	1110
LOG OK	GED E) i :	PLANT:		ORIENTATION:	lt .	IENSIONS	JOB N	
			JCB 3CX	27/02/2001	NE - SW	1.3 x 3.3 x	1.7m	25837	1
SAM	IPLE	W A T		DESCRIF	TION		LEGEND	DEPTH (THICKNESS)	LEVE
Depth (m)	No.	E R						(m)	{m O.
			0_2m - MADE GROUND.	Reinforced Cond	crete			,	
0.5	1		1.3m - MADE GROUND. and iron oxide fragments oxide fragments.					_0.5m	
								1.0m	
. >							_	_ 1.0111	
1.5 1.55	2	3	MADE GROUND. Comp angular cobbles of limest	one with some de	molition rubble.			_1.5m	
			Trial pit abondoned @ 1,	7m due to pit colla	ipse and water obscu	ring view.			
					Othe	Hise.	Ē	_2.0m	
				ń	pse and water obscur psessonity any other		-	_2,5m	
				inspection pr	ied			_3.0m	
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	copyright Copyright				_3.5m	
			Consent					_0.0III	
								_4.0m	
							Ē	_4.5m	
, i							Ē	. 5.0m	
							-		
LEVATI	ION-					REMARKS (pit st	tability / wate	er encountered)
			NE	Orientation	,	ery unstable belo			
						SAMPLE DESCR	IPTION:		
		50	sw	J					
		P	ARKMAN ENVIRONMENT	, Parkman House	, Lloyd Drive, Ellesm	ere Port, South W	/irral CH65 9I	HQ	

Trial Pit Log CONSULTANT: PROJECT: TRIAL PIT: CLIENT: Limerick Gasworks TP 39 Bord Gàis Parkman Environment LOGGED BY: PLANT: DATE: ORIENTATION: PIT DIMENSIONS JOB NUMBER: OK SE - NW 25837 28/02/2001 1.1 x 3.8 x 3m JCB 3CX DEPTH SAMPLE DESCRIPTION LEGEND (THICKNESS) LEVEL Depth No. (m O.D.) (m) (m) 0.4m - MADE GROUND. Loose brown clayey sand with some fine to coarse angular to rounded gravel of limestone and brick with many rootlets and grass at the top. 0.5m 0.6m - MADE GROUND. Compact dark grey/black with blue staining 0.5 1 (especially between 0.4 - 0.6m in south west side) very sandy fine to coarse angular to rounded gravel of ash, brick and limestone: some patches of spent 1.2 - MADE GROUND - Compact to very compact brown/red medium 1.0m to coarse, angular to sub angular gravel of ash, clinks and brick with iron oxide staining. MADE GROUND - Loose light brown/grey medium to coarse lime sand with some fine to coarse, angular to rounded gravel of lime, 1.5m 1.5 2 Below 2.6m water contaminating fill. Trial pit ended at 3.0m copyright owner required for any other use. 2.0m 3 2.5m 2.6 2.8 4 3.0m 3.5m 4.0m 4.5m 5.0m REMARKS (pit stability / water encountered) **ELEVATION:** SE Stable/dark grey water with oily sheen and tarry odour standing at 2.6m Orientation SAMPLE DESCRIPTION: NW PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225

Trial Pit Log

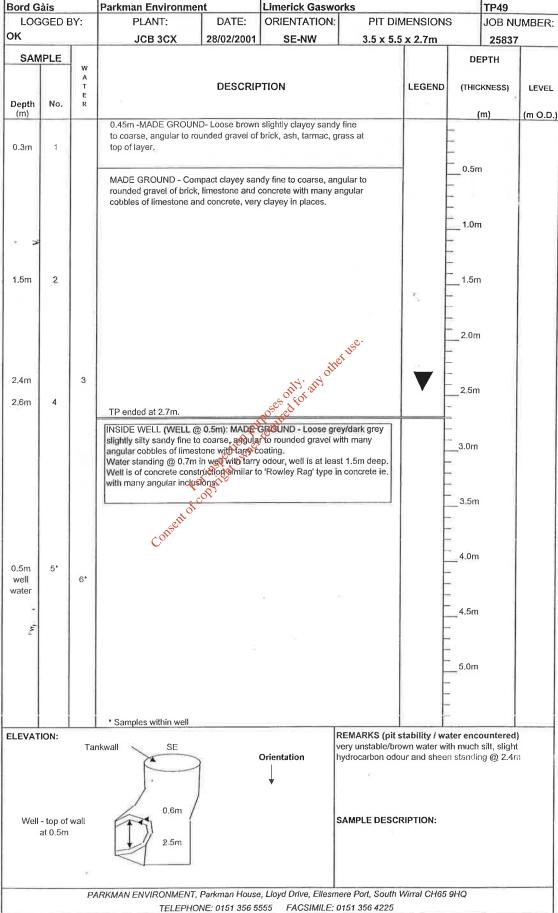
CLIENT	:		CONSULTANT:		PROJECT:			- 1	TRIAL F	PIT:
Bord G			Parkman Environme	nt	Limerick Gasw	orks		- 1	TP40	
	GED E	BY:	PLANT:	DATE:	ORIENTATION:		MENSIONS		JOB NU	JMBER
OK			JCB 3CX	28/02/2001	NW - SE	2.5 x 3.5 x	2.5m		25837	
SAM	PLE							DEF	РТН	
Depth	No.	W A T E R		DESCRIP	PTION		LEGEND	(THICK	(NESS)	LEVEI
(m)	140,		a.s. MADE ODOUND			1-64-		(n	n)	(m O.C
			0.5m - MADE GROUND. coarse angular to rounded cobbles of tarmac, limesto	gravel of brick a						
0.7m	1		1.9m - MADE GROUND. many angular cobbles of I	Compact light br imestone.	rown / brown sandy (gravelly clay with		0.5m 		
								1.0m		
* >										
						=====	¥	1.5m 		
2.2 m	2		MADE GROUND. Very co		a form the second			2.0m		
2.2 111	۷		×		any oth	y out				
			Trial pit abandoned @ 2,5	m due to possible	erockbead.			2.5m 		
				tion pu	isop.			3		
				tinspectowith				3.0m		
			\$ \$ \$ \$	OPYTE				- 25		
			Trial pit abandoned @ 2.5					3,5m - -		
								- 4.0m -		
, Jac								4.5m - -		
								5.0m		
LEVAT	IOH:					REMARKS (pit s	tahility (v	ater enco	untered	
LEVAT	IUN:		NW	ı.				ater erico	antereu)	•
				Orientation		Very unstable / n	o water			
					Tank Wall	SAMPLE DESCR	RIPTION:			
		ā	SE							
		P	ARKMAN ENVIRONMENT	, Parkman House ONE: 0151 356 5		nere Port, South V 0151 356 4225	Virral CH65	9HQ		
			TELEFTIC							

Trial Pit Log PROJECT: TRIAL PIT: CLIENT: CONSULTANT: Limerick Gasworks TP41 Bord Gàis Parkman Environment PIT DIMENSIONS ORIENTATION: JOB NUMBER: DATE: LOGGED BY: PLANT: ΟK JCB 3CX 02/03/2001 SE-NW 1.2 x 2.5 x 0.9m 25837 SAMPLE DEPTH DESCRIPTION **LEGEND** (THICKNESS) LEVEL Depth No. (m) (m O.D.) (m) 0.05m- MADE GROUND- Loose slightly clayey gravelly fine to medium sand with occasional brick fragments and plastic, many rootlets and grass at top of layer. 0.2m - MADE GROUND - Loose slightly dayey gravelly fine to medium 0.5m 0.5m 1 sand with occasional brick fragments and plastic, many rootlets and grass at top of layer. m8.0 2 Unused duct encountered at 0.4m. Gas main encountered @ 0.6m 1.0m Trial pit abandoned @ 0.9m due to gas main adjacent to excavation 1.5m 0.6m 15 cm duct at 0.4m 0.3m Puddle clay Brick tank wall 2.0m 20 cm gas main at 0.6m 2.5m 3.0m 3.5m 4.0m 4.5m 5.0m REMARKS (pit stability / water encountered) **ELEVATION:** SE Stable/grey water with hydrocarbon odour and sheen standing at 0.9m Orientation SAMPLE DESCRIPTION: NW PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225

Trial Pit Log CLIENT: CONSULTANT: PROJECT: TRIAL PIT: Bord Gàis Parkman Environment Limerick Gasworks TP42 LOGGED BY: PLANT: DATE: PIT DIMENSIONS ORIENTATION: JOB NUMBER: ок JCB 3CX 02/03/2001 NE-SW 1.7 x 3.3 x 0.5m 25837 SAMPLE DEPTH W A T E R DESCRIPTION LEGEND (THICKNESS) LEVEL Depth No. (m) (m) (m O.D.) 0.04m - MADE GROUND - compact dark grey/black sandy silty fine to coarse angular to rounded gravel and limestone 0.3m 0.4m 2 0.5m - compact brown sandy medium to course angular to rounded 0.5m GRAVEL of limestone with many angular cobbles of limestone (weathered rock), @ 0.5m rockhead encountered, traces of tar within rock. Trial pit ended @ 0.5m due to rockhead 1.0m 1.5m Consent of copyright owner reduced for any other use. 2.0m 2.5m 3.0m 3.5m 4.0m 4.5m 5.0m **ELEVATION:** REMARKS (pit stability / water encountered) ΝĒ stable/brown water with hydrocarbon sheen, slight odour and a few globules of tar Orientation standing @ 0.4m SAMPLE DESCRIPTION: SW PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225

Trial Pit Log PROJECT: TRIAL PIT: CLIENT: CONSULTANT: TP43 Limerick Gasworks Bord Gàis Parkman Environment JOB NUMBER: ORIENTATION: PIT DIMENSIONS LOGGED BY: PLANT: DATE: OK 01/03/2001 NE-SW 5 x 9 x 0.5m 25837 JCB 3CX DEPTH SAMPLE LEGEND (THICKNESS) LEVEL DESCRIPTION Depth No. (m) (m O.D.) (m) MADE GROUND - Loose to compact brown sandy, very gravelly clay fill with many angular cobbles of limestone, some patches of brown/ light brown clay, rock head @ 0.5m - tar visible in fissures in the 0.5m 0,4m 1 Trial pit ended at 0,5m due to rockhead. wall to former bunded 1.0m tank area underground brick tank wall 1.5m Consent of copyright owner required for any other use. 2.0m 2.5m 3.0m 3.5m 4.0m 4.5m Ė 5.0m REMARKS (pit stability / water encountered) **ELEVATION:** stable/no water Orientation NE Tarry blocks in tank -Brick tank wall 0,5m thick, tar within bricks 9m pniggib SAMPLE DESCRIPTION: surface ROCKHEAD 5m PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225

Trial Pit Log CLIENT: CONSULTANT: PROJECT: TRIAL PIT: Bord Gàis Parkman Environment Limerick Gasworks TP 47 LOGGED BY: PLANT: DATE: **ORIENTATION:** PIT DIMENSIONS JOB NUMBER: οк JCB 3CX N-S 27/02/2001 1.4 x 4.4 x 3.5m 25837 SAMPLE DEPTH W A T DESCRIPTION **LEGEND** (THICKNESS) LEVEL. E R Depth No. (m O.D.) (m) 0.4m MADE GROUND. Loose brown sandy gravelly clay with some rootlets. 1.1m MADE GROUND. Soft silty sand with tarry appearance and odour. 0.5m 1.0 m 1 1.0m MADE GROUND. Soft brown sandy gravelly clay with some angular cobble to boulder sized limestone fragments and some whole and fragmented bricks; hydrocarbon odour; becoming wet and tarry below 2.5m. 1.5m For its petion purposes only any other use. 2.0 m 2 2.0m 2.5m 2.75 m 3 3.0 m 4 3.0m 3.5m Trial pit ended @ 3.50 4.0m 4.5m -5.0m **ELEVATION:** REMARKS (pit stability / water encountered) Unstable throughout / black water standing @ 2.75m in Excavation continued 5 minutes. Orientation within tank SAMPLE DESCRIPTION: Tank wall @ 0.5m and below S PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225

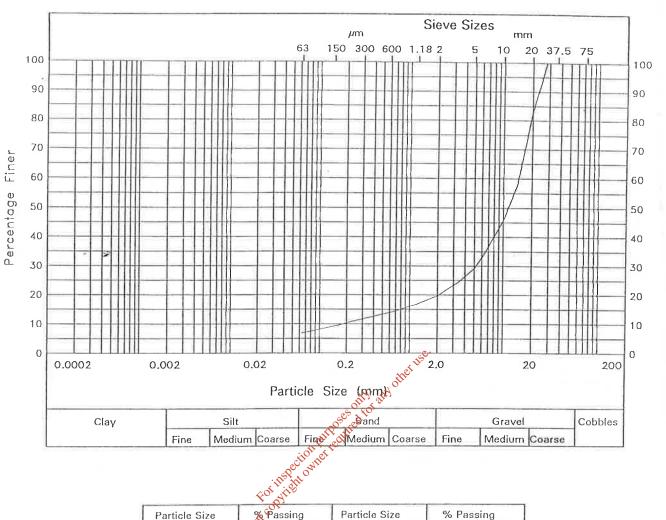

Trial Pit Log

CLIENT			CONSULTANT:		PROJECT:				TRIAL	PIT:
Bord G			Parkman Environmer	ıt	Limerick Gaswo	orks			TP48	
	GED E	BY:	PLANT:	DATE:	ORIENTATION:		MENSION:	S	JOB NU	JMBER
ок			JCB 3CX	01/03/2001	N-S	1.5 x 3.5 x	3.6m		25837	,
SAM	DIE							DE	PTH	
		W A T E		DESCRIF	PTION		LEGEND		KNESS)	LEVE
Depth (m)	No.	R						(m)	(m O.E
			MADE GROUND - soft cobbles of limestone, so tarry appearance and or places.	me pottery frag	s, brick, pipes and ca	ables,		0.5n	n	
× >								1,0m		
1.5m	1					دي ^ي .	ē,	1.5m 		
2.5m	2				es of the ary of the	et lie	∇	2.5m		
			Ç ^c	ritspection purification of the control of the cont	Poses offy any oth		•	3.0m		
3.5m		3	Consention					3.5m 4.0m		
· 40					55			4.5m		
ELEVAT	ION.					REMARKS (pit	stability / v	vater end	countered	d)
LLCVAI	TOTA:		N		Orientation	Unstable/fast, bl. end, filled to 3.0i odour and sheer	ack water e m in 5 mins 1	ntry @ 2	.2m in No	
		F	S PARKMAN ENVIRONMENT				Wirral CH6	5 9HQ	-	-
			TELEPHO	DNE: 0151 356	5555 FACSIMILE:	0151 356 4225				

Trial Pit Log PROJECT: TRIAL PIT: Limerick Gasworks ORIENTATION: PIT DIMENSIONS SE-NW 3.5 x 5.5 x 2.7m

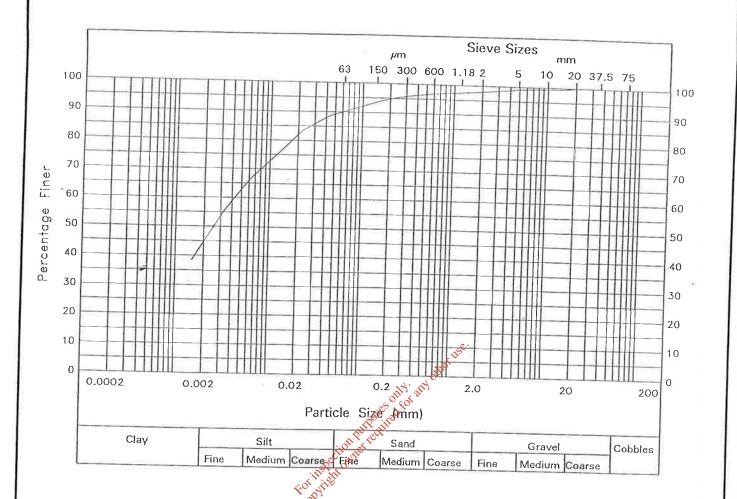
CLIENT:

CONSULTANT:



Trial Pit Log TRIAL PIT: CLIENT: PROJECT: CONSULTANT: Bord Gàis Parkman Environment Limerick Gasworks TP51 LOGGED BY: PLANT: DATE: **ORIENTATION:** PIT DIMENSIONS JOB NUMBER: JCB 3CX 03/03/2001 SE-NW 25837 1.2 x 2.5 x 1.35m SAMPLE DEPTH DESCRIPTION LEGEND (THICKNESS) LEVEL Depth No. (m) (m O.D.) 0,45m - MADE GROUND - Compact black/dark brown tarmac surfacing and sandy fine to coarse angular to rounded gravel, 0.3m 1 becoming tarry towards base with tarry odour. 0.5m MADE GROUND - Compact black sandy fine to coarse angular to rounded gravel with many angular cobbles of reinforced concrete and reinforced bar, very tarry odour and appearance, very difficult to excavate. 1.0m 2 1.0m 1.25m 3 Trial pit abandoned @ 1.35m due to difficulty of excavation 1.5m Consent of copyright owner reduced for any other use. 2.0m 2,5m 3.0m 3.5m 4.0m 4.5m 5.0m REMARKS (pit stability / water encountered) **ELEVATION:** Stable/black water with very tarry odour and Orientation appearance, and a hydrocarbon sheen standing @ 1.25m 1.6m SAMPLE DESCRIPTION: 0.9m Concrete

> PARKMAN ENVIRONMENT, Parkman House, Lloyd Drive, Ellesmere Port, South Wirral CH65 9HQ TELEPHONE: 0151 356 5555 FACSIMILE: 0151 356 4225


GAS MONITORING RESULTS

Sampling Date		05/	′04/200′			10/0	5/2001					
Gas Results	CH₄ %	CO ₂	O ₂ %	Water Level mbgl	CH ₄ %	CO ₂ %	O ₂ %	Water Level mbgl	CH₄%	CO₂%	O ₂ %	Water Level mbgl
BH31	0	0	20.3	1.9	0	0	20.6	2.8				
BH32	0	0.1	18.3	1.34	0	0	20.5	1.42				
BH33	0.3	0	15.9	0.8	0	0	20.7	0.37	æ.			
BH34	0	0.2	19.8	0	0	0	20.6	2.85	net 13			
BH11		-		3 ⊕	0.2	0	20.2	- 40				

Particle Size	% Passing 100 83	Particle Size	% Passing
28 mm	ent 100	150 μm	9
20 mm	83	75 μm	7
14 mm	58	63 μm	7
10 mm	46		
6.3 mm	34		
5 mm	29		
3.35 mm	24		1
2 mm	20		4
1.18 mm	17		1
600 μm	14		
300 μm	12	1	
212 μm	11		
Hole	Description		
TP 36	*Light brown s	l sandy GRAVEL	
Depth	1		
0.50 -0.50			
Туре			
B			
Test Performed	Uniformity C	oefficient = 77	
Wet			

		F0fm 25/4
Laboratory - Particle Size Plot	Project Limerick Gas Works	Contract 171016/2
GEOTECH	Parkman Environmental	Sheet

Particle Size % Passing Particle Size % Passing 20 mm 100 $75 \mu m$ 91 14 mm 99 63 μm 90 10 mm 99 $43 \mu m$ 88 6.3 mm 99 $22~\mu m$ 83 5 mm 99 12 µm 3.35 mm 99 2 mm98 1.18 mm 97 $600~\mu m$ 97 $300 \mu m$ 96 212 µm 95 150 μm 94 Hole

Hole
TP 41

Depth
0.50 -0.50

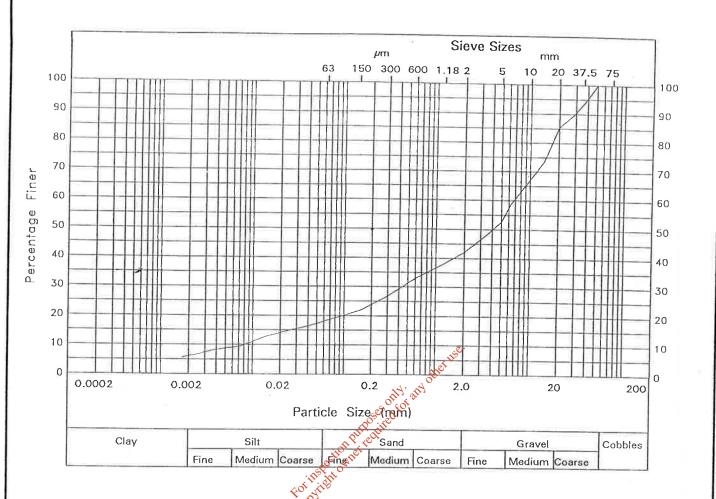
Type
B

Test Performed

Description
*Brown mottled black very sl gravelly stiff
CLAY

Uniformity Coefficient not applicable.

Form 25/4


Laboratory - Particle Size Plot

GEOTECH

Project
Limerick Gas Works
Parkman Environmental

Contract 171016/2
Sheet

PA Export 25-05-2012:04:

	- Age		
Particle Size	75% Passing	Particle Size	% Passing
50 mm	100	300 μm	27
37.5 mm	94	212 μm	24
28 mm	89	150 μm	22
20 mm	85	75 μm	19
14 mm	73	63 μm	18
10 mm	67	50 μm	17
6.3 mm	59	26 μm	15
5 mm	53	14 μm	13
3.35 mm	48		
2 mm	42		
1.18 mm	38		
600 μm	33		
Hole	Description		
вн 31	*Black gravel	with pockets of b	prown CLAY
Depth			
0.00 -0.50			
Туре			
В			
Test Performed	Uniformity (Coefficient not ap	plicable.
Wet			

Laboratory - Particle Size Plot
Project
Limerick Gas Works
Parkman Environmental
Sheet
Form 25/4

Contract
171016/2
Sheet

		Clas	Classification				Strength			Other Tests		
Hole	Depth	Туре	Description	<425	Prep W _L	w _P	Water	γ _b Mg/m			C kPa	
вк 31	0.00 -	В	*Black gravel with pockets of brown CLAY								IN U	Particle Size analysis
TP 35	2.00 -	В	*Light brown sl gravelly				30					
TP 36	0.50 - 0.50	В	*Light brown sl sandy GRAVEL									Particle Size analysis
TP 41	0.50 - 0.50	В	*Brown mottled black very sl gravelly stiff CLAY			(A						Particle Size analysis
	-											
		*										
						nly at	y other w	÷6.				
		6		ction	atioding	dior	A otter to					
			Consent of con	legit or								
			Consent									
		No.										n.
			92									

		Form 10/
Laboratory - Results Summary	Project Limerick Gas Works	Contract 171016/2
GEOTECH	Parkman Environmental	Sheet

Remarks

Project name	Limerick Gasworks, Dock Road, Limerick	
Employer	Bord Gais, Eireann	
Consulting engineer / architect	Parkman Limited	
Is any of the investigation over land the	ought / known to contain hazardous materials?	Yes

If Yes

1, Do the contract documents define the area thought / known to contain hazardous materials?	Yes
2, Give details of where hazardous materials may be found.	
y - y	
In any fill materials (Made Ground) encountered on site. A degree of contamination may also be	
encountered in the underlying natural strata (Soils and rock).	
God Log Light of the Light of the Log Light of the Log Light of the Log Light of the Light of the Log Light of the Log Light of the Log Light of the Light of the Log Light of the Log Light of the Log Light of the Light of the Light of the Light of the Log Light of the Log Light	
ally, ally other	-
at Post of the state of the sta	
ection to treet	
Fol Wellto	_
Ted copyrite	
Consent of	
3, Has and hazard assessment been carried out for this site? If so, by whom?	Yes
Parkman Limited	_
4, Are details of possible hazardous materials contained in the contract documentation?	Yes
5, Is a hazard assessment available? Attached	Yes

Form completed by	
T Brown	
Date	
14.12.00	
On Behalf of	
Parkman :Limited	
Signature MUNDO	

Health & Safety Hazard Assessment

Specific details of areas where made ground / hazardous materials are expected

The following information is required for each area involved

Project Name Limerick Gasworks, Dock Road, Limerick

Location Limerick, Ireland

Exploratory Hole Bord Gais, Eireann
nos. or area
Present
owner/tenent/ Bord Gais, Eirean
operator
Prevoius owner

Prevoius use of site Quarry, Coal Gas Manufacturing and Purification, Land Reclamation

Brief description of nature of hazard expected By-products from the production and storage of 'Town Gas' (mainly spent oxides and tars) Yes Has the site ever been used for landfill / tipping? If so give details and materials thought to have been placed on site Backfilling of former underground features such as tar tanks and general raising of ground (including infilling of former quarry) No Has the site been licensed? if so give details No Is the licence current RED Assessment of this part of the site under SISG Classification Special Precautions to be taken - as SISG recommendation Additional Precautions advised Designated clean area to be provided. No eating/smoking/drinking to be permitted outside this area. Use of personal VOC. monitoring to be provided for persons working with tar. No lighting of fires. Wear appropriate PPE and RPE for 'Red Category' site. Form completed by

Checklist of hazards expected – tick as appropriate If asterisked boxes are ticked please give more details

1	Methane	V
2	Carbon dioxide	1
3	Hydrogen sulphide	
4	Other gases	1
5	Heavy metals	1
6	Polychlorinatedbiphenyls (PCB)	1
7	Hydrocarbons	1
8	Phenol	1
9	Pesticides	
10	Asbestos	/*
11	Domestic refuse	
12	Industrial waste	1
13	pH conditions	1
14	Coal tars / polynuclear aromatic hydrocarbons (PAH)	1
15	Cyanide	1
16	Combustability hazards (e,g, coal dust)	1
17	Radioactivity	
18	Weil's Disease (rats)	1
19	Other contaminants	

(Upto 90% recorded)

Hydrogen Cyanide, Phenol/Benzene Volatiles As, Cd, Cr, Hg, S, Pb, Zn, Ni, Cu, etc Associated with former sub-station Phenols, PAH's, BTEX

Tar may be acidic

(spent oxide)

Form completed by
T Brown

Date
14.12.00 authorited
On Behalford Similar

Parkmand Similar

Signature

Who

EPA Export 25-05-2012:04:43:35

Item	Site designation							
ICI	GREEN	YELLOW	RED					
Personal Protective Equipment								
Hard hat	*	*	✓					
Eye protection		*	√					
Face shield		*	√					
Hand protection	*	*	✓					
Overalls	*	*						
Disposable overalls			<i></i> √					
Waterproof	*	*						
Disposable waterproofs			√					
Industrial boots	*	*	√					
Wellington boots with sole and toe protection	*	*	√					
Respiratory equipment		*	✓					
Site equipment/services								
Mobile telephone (outside contaminated area)		*	√					
Ropes, cones and barriers			√					
Safety-warnings signs	*	*	√					
Clean water supply	*	*	√					
Changing room/washing facilities		*	✓					
Decontamination unit/washing facilities			√					
Emergency equipment		•						
Fire extinguisher	*	*	√					
Fire blanket	*	*						
First aid kit	* 1150	*	✓					

Gasdetection/gas monitoring equipment (where required)
Methane (flammable gas) Hydrogen Sulphide Carbon Dixide deficiency. Other gases and fumes

Drilling plant/safety equipment (where required)
Spark arrestors and automatic circles

Spark arrestors and automatic air intake shutdown valves

Vertical exhaust stacks and air intakes should be located not less than 1.5m above ground level

Job Number:25837	SSESSMENT IN DESIGN SC Job Title: Limerick Ga	sworks					Inve	Stage Fround Estigation		14/12/0 Checke 14/12/0	r: John ()0	Crowther	-711750	natu	10		Date:		*
Activity/ Element	Potential Hazards	Population At Risk				Risk Analysis P*S=RF			Risk Evaluation		Describe Control		Residua Ris Evaluation		sk) Residual		Refer To Person	Info Destinat	
		Cmper	Clim	Public	Tmmi			•	OK UM H	Eliginated	Committed				U	AKT A			s&H Plan/ Safety file
Trial Pitting and Borehole Excavation	Fall into Pit	√				4	3	12	М		√	Keep away from pit a excavation if possible. Stand at end pf pit. Do not enter.	12 13	3	6	Í	Personnel falling or tripping into pit accidentally.	Project Supervisor (Construction)	S&H Plan
	Hit by machinery	\				4	S	20	М		√	Wear high visibility clothing, keep away from magninery.	063 1125 1235 1235	5	5	1	Accident occurring despite controls	Project, Supervisor (Construction)	S&H Plan
	Contact with contaminated material	/				6	5	30	Н			Wear RFE & RPE for red classification site, no eating, drinking or smoking.		, (S	S	I	Damage to clothing	Project Supervisor (Construction)	S&H Plan
	Buried services	√				3	9	27	M	edicar di	edilied edilied	CAT scan location, use service location plan, liase with service companies. Dig hand excavated inspection pit (if in doubt).	新教育	9	9	Ĭ	Failure to locate services despite controls	Project Supervisor (Construction)	S&H Plan
Other personnel entering working area.	Contact with contaminated material, injury caused by tripping/ falling.	Ÿ		\ 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6.	5	30 Sent of	ON S			Public excluded from site. Tenants excluded from working areas by Contractors/Parkman Staff.	1	5 2 2 2 2 2	3	I	Breach by trespassers	Project Supervisor (Construction)	S&H Plan
Public present on site after completion of works.	Subsidence in area of exploratory holes –physical injury.			V	\	4.	3.	12	М		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Good specification of reinstatement.	100	3	3	1	Unexpected consolidation of ground after reinstatement.	Project Supervisor (Construction)	S&H Plan
	Contact with contaminated material disturbed during investigation				1	4.	5	20	М		V	Most heavily contaminated material to be replaced in excavations. Contaminated water to be stored in tank. Remaining contaminated material to be securely stored on site.	1	5 to 10 to 1	5	1	Contact with low levels of contamination.	Project Supervisor (Construction)	S&H Plan

PARKMAN

Vol 8.2 : PG 120/2/14B Issue 1 : December 1999

THE ENVIRONMENTAL CONSULTANCY

To Nocl Kiely Date 12 July 2000	
	>
Of Waterford Corporation Direct Contact fax/tel/e-mail	
Fax 00353 5 1870813 Job No 25836/2/1	
From Tony Brown	
Re: Environmental Information	

Nocl

I spoke to one of your colleagues this afternoon and understand that you may be able to supply the following information in connection with the site identified of the attached plan. The study area is bounded to the north by John's River and to the south by Johnstown Industrial Estate. The information is required in connection with a desk study which is being our rently prepared on the site.

- 1. Are you aware of any substantial sources of contamination within 500m of the site which could affect the environmental integrity of the site (except for the gasworks themselves)?
- 2. Are there any known landfills within 500m of the site?
- 3. Does the Corporation have any data on Water Quality in the vicinity of the site (particularly John's River)?
- 4. Are there any licenced groundwater abstractions within 500m of the site?
- 5. Are there any licenced discharges to the river within 500m of the site?
- 6. Are there any cases of statutory nuisances within 500m of the site which would affect the environmental integrity of the site?

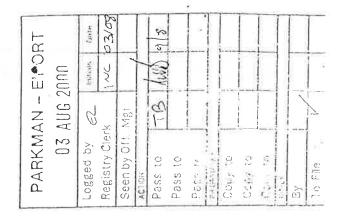
We thank you in advance for your help in this matter. If you have any queries, please do not hesitate to contact me.

Regards

· Jish

Total number of pages

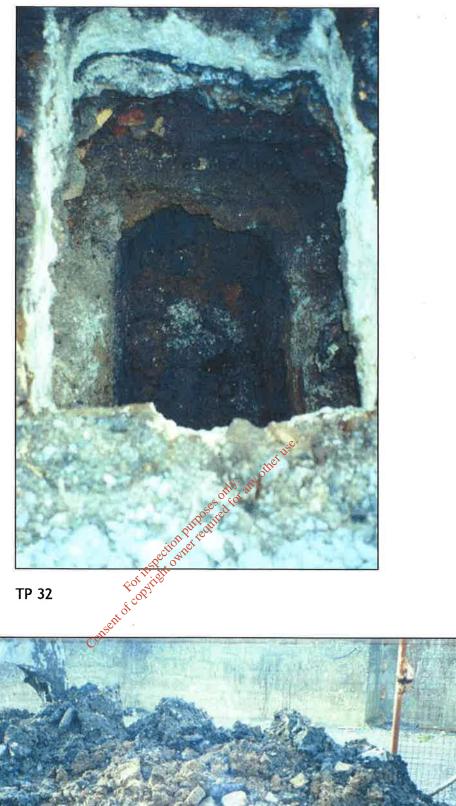
Please contact Parkman if any pages are missing or unclear,



WATERFORD CORPORATION BISHOPS PALACE, THE MALL, WATERFORD.

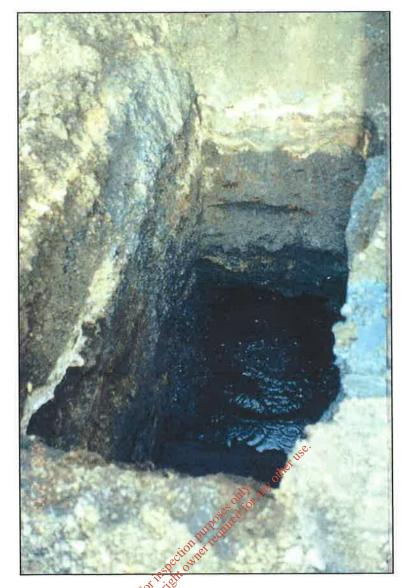
FAX NO. 051 - 870813 TEL NO. 051 - 309900

GITY ENGINEERS


,	TONY BROWN	From CHRIS O'SULLIVAN
To:		1
Faxc	0044 151 356 4255	Pages: 1
Phone:	0044 151 356 5555	Date: 218100
Re: E	ENVIRONMENTAL INFORMATION	CC:
□ Urge	JOB No. 25836/2/1	nment Nichtease Reply Please Recycle
• Com	ments. Zagets for delays	Dut I now confirm Reservedes
The	following (ie septies s	in order of your queries);
	(ii) NONE THAT W	OULD HAVE BEEN USED WITHIN
THE	PAST (40-50) YEARS	
	- (III) YES. ANALYSIS	OF JOHN'S RIVER WATER INDICATES
SERI	OUS POLLUTION BOD. AMO.	NIA, PHOSPHATE, IRON LEVELS ARE HIGH.
A 7K	ROGRAMME FOR IMPROVING THE !	WATER QUALITY IS BEING IMPLEMENTED.
	(IV) NONE KNOWN.	
	(V) No.	
	(VI) No.	
9.	trust that the above answ	sers your quereer,
	*	Rogard). Chip O Sullwan EE Santary & Environment.

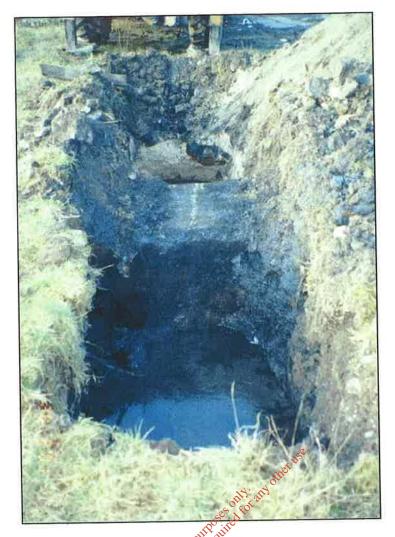
TP 31

TP 31 Spoil



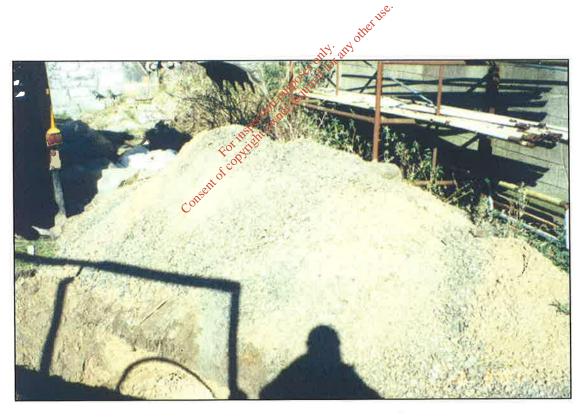
TP 32 Spoil

TP 33 Spoil


TP 34 Spoil

TP 35

TP 35 Looking North at Tank Wall

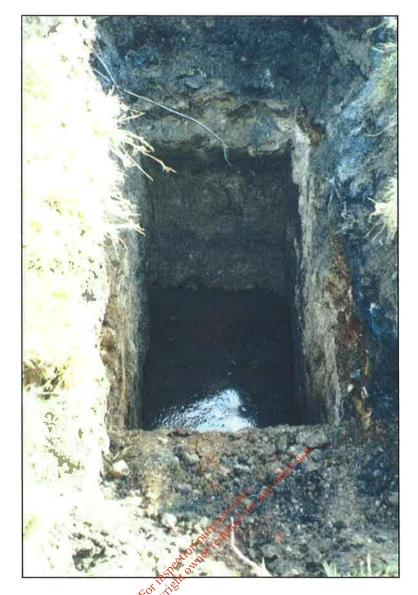

TP 35 Looking South at Tank Wall

TP 36 Looking North West Showing Brickwall on Right Hand Side

TP 36 View of 0.5m Thick Gasholder Base

TP 36 Spoil

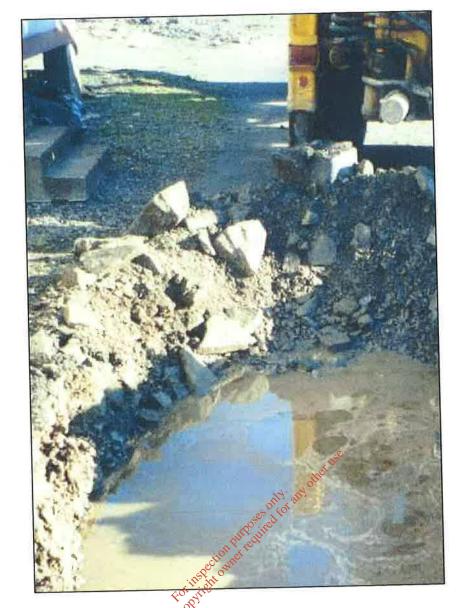
TP 37 View North Showing Brick Tank Wall



TP 37 Spoil

TP 38 Spoil

TP 39 Spoil


TP 40 Snoil

TP 41 View South East Showing Service Duct and Gas Main in Left Hand Side

TP 41 Spoil

TP 42 Spoil

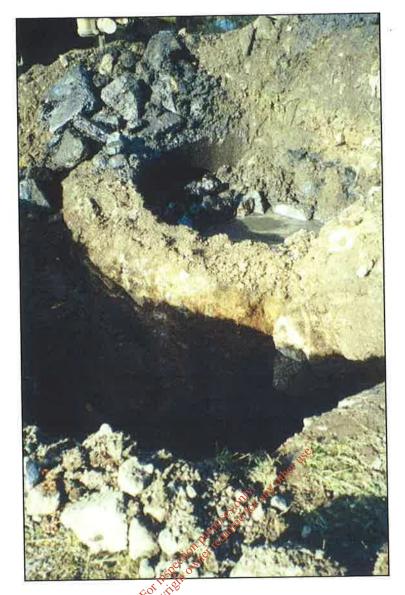
TP 43 View North East

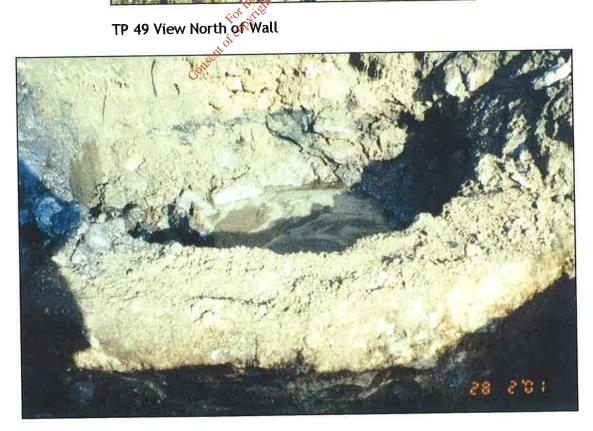
TP 43 View North East

TP 43 View SW

TP 47 Showing Tank Wall

TP 47 Spoil


TP 48 View North into Contents of Tank



TP 48 Spoil

TP 48B View into Contents of Tank

TP 49 View East of Wall

TP 49 View South Towards Tank Wall With Well Shown on Left Hand Side

TP 49 Spoil

TP 51 Spoil