DUNSINK LANDFILL ANNUAL ENVIRONMENTAL REPORT 2011

REPORTING PERIOD: JANUARY TO DECEMBER 2011

WASTE LICENCE REGISTER NO. W0127-01

FINGAL COUNTY COUNCIL COUNTY HALL MAIN STREET SWORDS COUNTY DUBLIN

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	REPORTING PERIOD	1
1.2	FACILITY LOCATION	1
1.3	ENVIRONMENTAL POLICY FOR DUNSINK LANDFILL	1
2.0	SITE DESCRIPTION	2
2.1	LICENCED WASTE ACTIVITIES AT THE FACILITY	3
3.0	EMISSIONS AND INTERPRETATION OF MONITORING RESULTS	5
3.1	GROUNDWATER	5
3.1.1	Methodology	7
312	Groundwater Monitoring Quality - Findings (See Appendix I)	7
3.1.2	SURFACE WATER	
321	Mathodolow	
3.2.1	Surface Water Monitoring Quality Findings (See Annandix II)	12
2.2	IEACUATE	12
2.2 2.21	Leachate Methodology	10
2.2.1	Leachate - Methodology	10
3.3.2	Leachaie Monitoring – Results of Quarterly Sampling (See Appenaix II)	10
3.3.3	Continuous monitoring of Dissolved Methane in Leachate	
3.3.4	Discussion of Results from Continuous Sampling of Dissolved Methane	
3.4	NOISE	
3.5	DUST	
3.6	PM ₁₀ MONITORING.	
3.7	Biological Assessment of the Scribblestown Stream	
3.7.1	Biological Assessment of Scribblestown Stream – Methodology	
3.7.2	Macroinvertebrates	23
3.7.3	Discussion	23
3.8	Landfill Gas	25
3.8.1	Landfill Gas Monitoring – Methodology	25
3.8.2	Landfill Gas Facility Monitoring	25
3.8.3	Landfill Gas Utilisation Plant Monitoring Equipment and Sampling points	29
3.8.4	Results from Continuous sampling of parameters at outlets Landfill Gas Combustion	n Plant.
	30	
3.8.5	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant	
3.8.5 3.9	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING	<i>33</i> 33
3.8.5 3.9 3.9.1	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month	33 33 34
3.8.5 3.9 3.9.1 3.9.2	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011	33 33 34 34
3.8.5 3.9 3.9.1 3.9.2 3.9.3	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011	33 33 34 34 35
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011	33 33 34 34 35 35
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011	33 34 34 35 35 36
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011	33 33 34 35 35 36 37
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011	33 33 34 34 35 35 36 37 37
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION	33 34 34 35 35 36 37 37 37 38
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Relative Humidity By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council	33 34 34 34 35 35 36 37 37 38 38 38 38
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFE-SITE	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations	33 33 34 34 34 35 35 36 37 38 38 38 38 39 39 39 39
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1 5.1.1 5.1.2	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Someria Puilding	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1 5.1.1 5.1.2 5.1.2	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Powelts	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1 5.1.1 5.1.2 5.1.3 5.1.4	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Princement	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1 5.1.1 5.1.2 5.1.3 5.1.4	METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion Consclusion	
$\begin{array}{c} 3.8.5\\ 3.9\\ 3.9.1\\ 3.9.2\\ 3.9.3\\ 3.9.4\\ 3.9.5\\ 3.9.6\\ 3.9.7\\ 4.0\\ 4.1\\ 4.2\\ 4.3\\ 5.0\\ 5.1\\ 5.1.2\\ 5.1.3\\ 5.1.4\\ 5.1.5\\ 5.1.5\end{array}$	METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion Conclusion	
$\begin{array}{c} 3.8.5\\ 3.9\\ 3.9.1\\ 3.9.2\\ 3.9.3\\ 3.9.4\\ 3.9.5\\ 3.9.6\\ 3.9.7\\ 4.0\\ 4.1\\ 4.2\\ 4.3\\ 5.0\\ 5.1\\ 5.1.2\\ 5.1.3\\ 5.1.4\\ 5.1.5\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5$	METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion Conclusion ANNUAL WATER BALANCE CALCULATIONS AND INTERPRETATIONS	
$\begin{array}{c} 3.8.5\\ 3.9\\ 3.9.1\\ 3.9.2\\ 3.9.3\\ 3.9.4\\ 3.9.5\\ 3.9.6\\ 3.9.7\\ 4.0\\ 4.1\\ 4.2\\ 4.3\\ 5.0\\ 5.1\\ 5.1.2\\ 5.1.3\\ 5.1.4\\ 5.1.5\\ 5.2\\ 5.2.1\\ 5.2.$	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion Conclusion ANNUAL WATER BALANCE CALCULATIONS AND INTERPRETATIONS Introduction	
$\begin{array}{c} 3.8.5\\ 3.9\\ 3.9.1\\ 3.9.2\\ 3.9.3\\ 3.9.4\\ 3.9.5\\ 3.9.6\\ 3.9.7\\ 4.0\\ 4.1\\ 4.2\\ 4.3\\ 5.0\\ 5.1\\ 5.1.2\\ 5.1.3\\ 5.1.4\\ 5.1.5\\ 5.2\\ 5.2.1\\ 5.2.2\\ 5.2.1\\ 5.2.2\\ 5.2.1\\ 5.2.2\\ 5.2.2\\ 5.2.1\\ 5.2.2\\ 5.2.$	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion Conclusion. ANNUAL WATER BALANCE CALCULATIONS AND INTERPRETATIONS Introduction. Discussion and Interpretation	
$\begin{array}{c} 3.8.5\\ 3.9\\ 3.9.1\\ 3.9.2\\ 3.9.3\\ 3.9.4\\ 3.9.5\\ 3.9.6\\ 3.9.7\\ 4.0\\ 4.1\\ 4.2\\ 4.3\\ 5.0\\ 5.1\\ 5.1.2\\ 5.1.3\\ 5.1.4\\ 5.1.5\\ 5.2\\ 5.2.1\\ 5.2.2\\ 5.2.3\\ \end{array}$	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion Conclusion. ANNUAL WATER BALANCE CALCULATIONS AND INTERPRETATIONS Introduction Discussion and Interpretation	
$\begin{array}{c} 3.8.5\\ 3.9\\ 3.9.1\\ 3.9.2\\ 3.9.3\\ 3.9.4\\ 3.9.5\\ 3.9.6\\ 3.9.7\\ 4.0\\ 4.1\\ 4.2\\ 4.3\\ 5.0\\ 5.1\\ 5.1.2\\ 5.1.3\\ 5.1.4\\ 5.1.5\\ 5.2\\ 5.2.1\\ 5.2.2\\ 5.2.3\\ 5.3\\ \end{array}$	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION. Fingal County Council Contractors Bioverda Power Systems. VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations. Scenario Building Results. Discussion Conclusion. ANNUAL WATER BALANCE CALCULATIONS AND INTERPRETATIONS Introduction. Discussion and Interpretation Conclusion. ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMIS	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 5.2.1 5.2.2 5.2.3 5.3 TO GRU	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Relative Humidity By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion ANNUAL WATER BALANCE CALCULATIONS AND INTERPRETATIONS Introduction Discussion and Interpretation Conclusion ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMIS OUNDWATER	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 5.2.1 5.2.2 5.2.3 5.3 TO GRC 5.3.1	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Relative Humidity By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion Conclusion ANNUAL WATER BALANCE CALCULATIONS AND INTERPRETATIONS Introduction Discussion and Interpretation Conclusion ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMIS OUNDWATER Emissions to Groundwater - Introduction	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 5.2.1 5.2.2 5.2.3 5.3 TO GRC 5.3.1 5.3.2	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind Speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Atmospheric Pressure By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion Conclusion. ANNUAL WATER BALANCE CALCULATIONS AND INTERPRETATIONS Introduction Discussion and Interpretation Conclusion. ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMIS OUNDWATER Emissions to Groundwater - Introduction Bedrock Geology of the site and Aquifer Status	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 5.2.1 5.2.2 5.2.3 5.3.1 5.3.2 5.3.3	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind Speed by Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evapotranspiration by Month 2011 Average Daily Atmospheric Pressure By Month 2011 Resource & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion Conclusion	
3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 4.0 4.1 4.2 4.3 5.0 5.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 5.2.1 5.2.2 5.2.3 5.3 TO GRU 5.3.1 5.3.2 5.3.3 6.0	Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant METEOROLOGICAL MONITORING Total Precipitation Volume by Month Average Daily Temperatures (minimum /maximum) By Month 2011 Average Daily Wind Speed and Direction by Month 2011 Total Evaporation and Potential Evaportanspiration by Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Relative Humidity By Month 2011 Average Daily Relative Humidity By Month 2011 RESOURCE & ENERGY CONSUMPTION Fingal County Council Contractors Bioverda Power Systems. VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE METHODS FOR ESTIMATING LEACHATE PRODUCTION Water Balance Calculations Scenario Building Results Discussion Conclusion. ANNUAL WATER BALANCE CALCULATIONS AND INTERPRETATIONS Introduction Discussion and Interpretation Conclusion. ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMIS OUNDWATER Emissions to Groundwater - Introduction Bedrock Geology of the site and Aquifer Status Conclusion. WORKS PROPOSED AND UNDERTAKEN & TIMESCALE FOR THOSE PRO	

TABLE OF CONTENTS

6.1	WORKS UNDERTAKEN DURING 2011
7.0	SITE SURVEY INDICATING EXISTING LEVELS OF THE FACILITY
8.0	ESTIMATED ANNUAL & CUMULATIVE OUANTITY OF LANDFILL GAS EMITTED
	48
8.1	LANDFILL GAS CONSUMED BY UTILISATION PLANT 2011
8.2	LANDFILL GAS CONSUMED BY UTILISATION PLANT AND GENERATED BY
FACILI	TY 1996-PRESENT
9.0	REPORT ON PROGRESS TOWARDS ACHIEVEMENT OF ENVIRONMENTAL
OBJEC	TIVES AND TARGETS CONTAINED IN PREVIOUS YEAR'S REPORT52
10.0	SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS 2011
11.0	PROCEDURES DEVELOPED RELATING TO THE FACILITY OPERATION
12.0	TANK, PIPELINE AND BUND TESTING AND INSPECTION REPORT
12.1	Lagoon
12.2	Oil Bund IPS Compound- Dunsink
13.0	REPORTED INCIDENTS AND COMPLAINTS SUMMARIES
13.1	REPORTED ENVIRONMENTAL INCIDENTS
13.2	REPORTED ENVIRONMENTAL COMPLAINTS
14.0	REVIEW OF NUISANCE CONTROLS
15.0	FINANCIAL PROVISION, MANAGEMENT, STAFFING STRUCTURE & PROGRAMME
FOR PU	JBLIC INFORMATION
15.1	FINANCIAL PROVISION
15.2	MANAGEMENT AND STAFFING STRUCTURE
15.3	PROGRAMME FOR PUBLIC INFORMATION
16.0	STAFF TRAINING REport

TABLES

Table 2: Groundwater Nampling Programme 2011 7 Table 3: Groundwater boreholes water levels in metres below ground level (mbgl) 9 Table 4: Surface Water Monitoring Locations 11 Table 5: Surface Water Monitoring Programme 2011 12 Table 6: Ammoniacal Nitrogen Concentrations in SW17 and SW18 15 Table 7: Leachate Monitoring Locations 2011 18 Table 8: Leachate Monitoring Programme 2011 18 Table 9: Landfill Gas monitoring Locations and Programme 2011 26 Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation plant 30 Table 11: Average Daily Wind Speed by Month 2011. 35 Table 12: Summary of Resources used on site for the reporting period. 38 Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin Airport 2011 40 Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP. 55	Table 1: Groundwater Monitoring Locations	5
Table 3: Groundwater boreholes water levels in metres below ground level (mbgl) 9 Table 4: Surface Water Monitoring Locations 11 Table 5: Surface Water Monitoring Programme 2011 12 Table 6: Ammoniacal Nitrogen Concentrations in SW17 and SW18. 15 Table 7: Leachate Monitoring Programme 2011 18 Table 8: Leachate Monitoring Programme 2011 18 Table 9: Landfill Gas monitoring Locations and Programme 2011 26 Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation plant 30 Table 11: Average Daily Wind Speed by Month 2011 35 Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin Airport 2011 40 Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site 41 Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	Table 2: Groundwater Sampling Programme 2011	7
Table 4: Surface Water Monitoring Locations 11 Table 5: Surface Water Monitoring Programme 2011 12 Table 6: Ammoniacal Nitrogen Concentrations in SW17 and SW18 15 Table 7: Leachate Monitoring Locations 2011 18 Table 8: Leachate Monitoring Programme 2011 18 Table 9: Landfill Gas monitoring Locations and Programme 2011 26 Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation plant 30 Table 11: Average Daily Wind Speed by Month 2011 35 Table 12: Summary of Resources used on site for the reporting period 38 Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin Airport 2011 40 Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site 41 Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	Table 3: Groundwater boreholes water levels in metres below ground level (mbgl)	9
Table 5: Surface Water Monitoring Programme 2011 12 Table 6: Ammoniacal Nitrogen Concentrations in SW17 and SW18 15 Table 7: Leachate Monitoring Locations 2011 18 Table 8: Leachate Monitoring Programme 2011 18 Table 9: Landfill Gas monitoring Locations and Programme 2011 26 Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation plant 30 Table 11: Average Daily Wind Speed by Month 2011 35 Table 12: Summary of Resources used on site for the reporting period 38 Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin Airport 2011 40 Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site 41 Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	Table 4: Surface Water Monitoring Locations	11
Table 6: Ammoniacal Nitrogen Concentrations in SW17 and SW18. 15 Table 7: Leachate Monitoring Locations 2011. 18 Table 8: Leachate Monitoring Programme 2011. 18 Table 9: Landfill Gas monitoring Locations and Programme 2011 26 Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation plant 30 Table 11: Average Daily Wind Speed by Month 2011. 35 Table 12: Summary of Resources used on site for the reporting period. 38 Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin Airport 2011 40 Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site 41 Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	Table 5: Surface Water Monitoring Programme 2011	12
Table 7: Leachate Monitoring Locations 2011 18 Table 8: Leachate Monitoring Programme 2011 18 Table 9: Landfill Gas monitoring Locations and Programme 2011 26 Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation plant 30 Table 11: Average Daily Wind Speed by Month 2011 35 Table 12: Summary of Resources used on site for the reporting period 38 Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin Airport 2011 40 Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site 41 Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	Table 6: Ammoniacal Nitrogen Concentrations in SW17 and SW18	15
Table 8: Leachate Monitoring Programme 2011 18 Table 9: Landfill Gas monitoring Locations and Programme 2011 26 Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation plant 30 Table 11: Average Daily Wind Speed by Month 2011 30 Table 12: Summary of Resources used on site for the reporting period 38 Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin Airport 2011 40 Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site 41 Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	Table 7: Leachate Monitoring Locations 2011	
Table 9: Landfill Gas monitoring Locations and Programme 2011 26 Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation plant 30 Table 11: Average Daily Wind Speed by Month 2011 35 Table 12: Summary of Resources used on site for the reporting period 38 Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin Airport 2011 40 Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site 41 Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	Table 8: Leachate Monitoring Programme 2011	
Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation plant	Table 9: Landfill Gas monitoring Locations and Programme 2011	
30 Table 11: Average Daily Wind Speed by Month 2011	Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation	on plant
Table 11: Average Daily Wind Speed by Month 2011		
Table 12: Summary of Resources used on site for the reporting period	Table 11: Average Daily Wind Speed by Month 2011	35
Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin Airport 2011 (Source: Met Éireann) 40 Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site 41 Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	Table 12: Summary of Resources used on site for the reporting period	
(Source: Met Éireann)	Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin Airpo	ort 2011
Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site 41 Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	(Source: Met Éireann)	40
Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011 51 Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site	41
Table 16: Summary of reported incidents during 2011 53 Table 17 - Dunsink RMP/CRAMP 55	Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011	51
Table 17 - Dunsink RMP/CRAMP	Table 16: Summary of reported incidents during 2011	53
	Table 17 - Dunsink RMP/CRAMP	55

FIGURES

Figure 1: Dunsink Landfill Site Location	2
Figure 2: Ammoniacal Nitrogen Levels at SW Monitoring Locations SW17 & SW18 (2011)	16
Figure 3: Conductivity Data Trends '06-'11 at SW Monitoring Locations SW2, SW7, SW10 &	2 SW11
	16
Figure 4: Conductivity Data Trends '06-'10 at SW Monitoring Locations SW17 & SW18	17
Figure 5: Landfill Gas Borehole Monitoring Locations	
Figure 6: Dunsink Landfill Gas Utilisation Plant	
Figure 7: Total Precipitation mm by Month 2011	34
Figure 8: Average Daily Temperatures (Minimum/Maximum) by Month 2011	34
Figure 9: Average Daily Windspeed by Month 2011	
Figure 10 - Rose Diagram of Average Daily Wind Direction at Dublin Airport	
Figure 11 - Average Daily Evaporation and Potential Evapotranspiration by Month 2011	
Figure 12 - Average Daily Relative Humidity by Month 2011	
Figure 13 - Average Daily Atmospheric Pressure by Month 2011	

TABLE OF CONTENTS

Figure 14: Simplified Topographical Map of Dunsink 2007	47
Figure 15 - MWhr exported per month at Dunsink.	49

APPENDICES

Appendix I: Groundwater Monitoring Results Appendix II: Surface water and leachate monitoring results Appendix III: Landfill gas monitoring results Appendix IV: Weekly Nuisance Inspection Sheets Appendix V: Annual PRTR Submission

1.0 INTRODUCTION

The Environmental Protection Agency (EPA) granted a waste licence (register no. 127-1) to Fingal Council in respect of the above facility on 9th January 2004. From July 2006 the register number was changed to W0127-01. This licence is for the closure and restoration of areas previously landfilled. Under its terms, the Council is required to restore and remediate the facility, to install infrastructure to monitor and manage landfill gas and leachate emissions, and to cap previously filled areas using inert materials. These works are to be completed within three years of the date of grant of the licence. In accordance with the requirements of condition 11.6 of the Waste Licence, an Annual Environmental Report (AER) for the facility must be submitted to the Environmental Protection Agency.

1.1 REPORTING PERIOD

The reporting period for the AER is 1^{st} January to 31^{st} December 2011. This is the eighth AER for the facility as required by the waste licence.

1.2 FACILITY LOCATION

Fingal County Council has responsibility for the management and operation of the facility. The facility is located at:

Dunsink Landfill, Dunsink Lane, Finglas, County Dublin.

Access to the landfill is now from the Forest Road end of Dunsink Lane only, Irish National Grid 238886 (Northings) 311766 (Eastings). Figure 1 presents a map of the facility and the surrounding locations.

1.3 ENVIRONMENTAL POLICY FOR DUNSINK LANDFILL

- Comply with the terms of waste licence 127-1 and all other relevant legislation and codes of practice.
- Strive for continuous improvement in the running of the facility; in order to minimise the effects of the landfill on the environment.
- Create better awareness and training for all staff involved in the running of the landfill.

Develop a good relationship with local residents around Dunsink for the betterment of the surrounding area.

FIGURE 1: DUNSINK LANDFILL SITE LOCATION AND SITE ACCESS

Figure 1: Dunsink Landfill Site Location

2.0 SITE DESCRIPTION

Dunsink Landfill is situated in Finglas, County Dublin (National Grid Reference 239500E, 310500N). It is bounded by Dunsink Lane to the south, Rathoath Road to the east, the M50 motorway to the Northwest and Cappagh Hospital to the North. It is approximately 61ha. The most elevated point of the site (as measured in 2010) lies at 100m on the western side of the site. The base of the landfill varies topographically but is estimated to average from 65-70m.

The landfill opened in 1976. Approximately 4,400,000 tonnes of waste is estimated to have been deposited at the facility to June 1996. The landfill subsequently phased to closure, culminating in the closure of the civic amenity in 2003. A landfill gas utilisation plant was installed on site in 1996.

An original application for a waste licence was submitted to the Environmental Protection Agency in September 1999. An amendment to the original application was sought in February 2003. A Proposed Decision was issued in August 2003. Waste Licence 127-1 was issued in January 2004.

2.1 LICENCED WASTE ACTIVITIES AT THE FACILITY

On January 9th 2004 Fingal County Council was licensed to carry out the following waste activities at Dunsink Landfill, Finglas, County Dublin subject to twelve conditions.

Licensed Waste Disposal Activities, in accordance with the Third Schedule of the Waste Management Act 1996.

Class 4 Surface impoundment, including placement of liquid or sludge discards into pits, ponds or lagoons:

This activity is limited to:

- The provision and use of a leachate lagoon to temporarily store leachate generated in the landfill, prior to discharge to the public foul sewer; and
- The provision and use of a surface water attenuation pond to control the quality and quantity of the surface water run off from the site.

Licensed Waste Recovery Activities, in accordance with the Fourth Schedule of the Waste Management Act 1996.

Class 2 Recycling or reclamation of organic substances, which are not used as solvents (including composting and other biological transformation processes): This activity is limited to the composting of green waste, the recycling / reclamation of cardboard, paper and waste oil at the facility.

Class 3 Recycling or reclamation of metals and metal compounds: This activity is limited to the recycling of ferrous / non-ferrous metals and white goods.

Class 4 Recycling or reclamation of other inorganic materials: This activity is limited to the recycling or reclamation of subsoil and topsoil (for the restoration of the site) and dry recyclables at the bring centre.

Class 9 Use of any waste principally as a fuel or other means to generate energy: This activity is limited to the utilisation of landfill gas for the generation of electricity.

Class 11 The use of waste obtained from any activity referred to in a preceding paragraph of this Schedule:

This activity is limited to the use of suitable subsoil and topsoil and composted material for the restoration programme.

Class 13 Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced:

This activity is limited to the storage of recyclable waste prior to recovery off site and the storage of soil on site for the restoration programme.

3.0 EMISSIONS AND INTERPRETATION OF MONITORING RESULTS

3.1 GROUNDWATER

There are eight groundwater stations (BH3, BH4, BH16, BH18, BH28, BH-29, BH31 and BH32) listed in Schedule D.1 of the waste licence. BH28 listed in Table D.1.1 of the licence was not installed however; BH27 was added to the monitoring infrastructure under agreement with the *Environmental Protection Agency*. Borehole monitoring recorded leachate characteristics from BH29 suggesting that it was a potential migration pathway to groundwater for leachate. It was therefore decommissioned on 14th March 2005, upon agreement with *The Agency*. Two additional groundwater stations (BH33 and BH34) were added to the sampling programme upon agreement with *The Agency*, these were installed on Dunsink Observatory land between the 14th and 16th March 2005. BH18 was destroyed during slope stability work in August 2006 and was replaced as BH18_R on 7th September 2006. BH18_R was decommissioned during the Q1 of 2011 and replaced with BH35 during the same quarter. The grid references for these are shown in Table 1. The sample locations are illustrated in Figure 2.

Condition 6.4.1 requires the licensee to submit to the EPA for its agreement, groundwater monitoring trigger levels in accordance with the requirements of Directive 1999/31/EC for one upgradient and two downgradient monitoring Boreholes. This analysis was conducted and trigger levels were proposed to the EPA in February 2005 (Reference: FCC-127-1-2005-006), Appendix I. These were reviewed at the end of 2006, along with an analysis of control and trigger levels for BH33 & BH34.

Groundwater Borehole Monitoring Location	Eastings	Northings	Classification	
BH3	310665	239505	Deep Groundwater	
BH4	310650	239490	Shallow Groundwater	
BH16	311340	239085	Deep Groundwater	
BH18_R	Decommission	ed		
BH27	310030	238720	Deep Groundwater	
BH28	Not Installed			
BH29	Decommission	ed		
BH31	311765	238820	Shallow Groundwater	
BH32	311770	238800	Deep Groundwater	
BH33	310735	238724	Deep Groundwater	
BH34	310719	238725	Shallow Groundwater	
BH35	311158	239456	Deep Groundwater	

Table 1: Groundwater Monitoring Locations

Detailed analysis reports are contained in Appendix I. The results obtained have been compared to the Interim Guideline Values of EPA document "Towards Setting Guideline Values for the Protection of Groundwater Ireland", 2003 and proposed trigger levels. The following analysis was completed in 2011 (Table 2).

Figure 2 - Groundwater Monitoring Map

Groundwater Borehole Monitoring Location	Q1 Jan-March	Q2 April- June	Q3 July-	Q4 October - December	
			September		
BH3	Sampled	Sampled	Sampled	Sampled	
BH4	Sampled	Sampled	Sampled	Sampled	
BH16	Sampled	Sampled	Sampled	Sampled	
BH18_R	Decommissioned				
BH27	Sampled Sampled Sampled Sampled		Sampled		
BH28	Not Installed				
BH29	Decommissione	d 14 th March 200	5		
BH31	Sampled	ed Sampled Sampled Sampled		Sampled	
BH32	Sampled	Sampled	Sampled	Sampled	
BH33	Sampled	Sampled	Sampled Sampled Sampled		
BH34	Sampled	Sampled	Sampled	Sampled	
BH35	Sampled	Sampled	Sampled	Sampled	

Table 2: Groundwater Sampling Programme 2011

3.1.1 Methodology

Refer to Schedule D.5 of WL 127-1.

3.1.2 Groundwater Monitoring Quality - Findings (See Appendix I)

Q1 January - March 2011 – Sampling dated 15th March 2011

Results from groundwater sampling during the 1st quarter of 2011 indicated good groundwater quality at BH3, BH4, BH16, BH27, BH31, BH32, BH33 & BH34.

An elevated level of ammoniacal nitrogen (0.433mg/l) was recorded at BH35 in excess of the threshold value. Control and trigger levels have not yet been established for BH35.

Results at all remaining boreholes were below their respective control and trigger levels during this quarter.

Q2 April - June 2011- Sampling dated 11th May 2011

Results from groundwater sampling during the 2nd quarter of 2011 indicated generally good groundwater quality. Slightly elevated levels of pH were recorded at BH3 and BH4 above their respective control values but within the threshold values. Slightly elevated levels of conductivity were recorded at BH3 and BH4 in excess of their respective control and trigger values but less than the threshold value. Elevated levels of ammoniacal nitrogen were recorded at BH33 in excess of the control value and IGV. Elevated ammoniacal nitrogen was also recorded in BH35 above the IGV.

Results at all remaining boreholes were below their respective control and trigger levels during this quarter.

Q3 July – September 2011- Sampling dated 14th September 2011

Results from the annual round of groundwater sampling during September 2011, indicated moderate quality groundwater beneath the landfill site and environs.

Elevated levels of pH were recorded in BH3, BH16 and BH27 above their respective control values and an elevated level was recorded in BH32 above the control and trigger values.

Elevated levels of conductivity were recorded in BH3 and BH4 above their respective control and trigger values but less than the Groundwater Regulations threshold value.

Elevated levels of chloride were recorded at BH3 and BH4 in excess of control, trigger levels and threshold values. An elevated level of sodium was also recorded at BH4 above the control and trigger values but less than the threshold value.

Elevated levels of total organic carbon, ammoniacal nitrogen, manganese at BH32 were recorded in excess of the control, trigger and threshold values and elevated iron was recorded in excess of the control and trigger value.

Elevated ammoniacal nitrogen and manganese was recorded at BH31 above the threshold values but less than the control and trigger values.

Elevated levels of manganese were recorded at BH16, BH27 and BH34 in excess of threshold, control and trigger values and in excess of the threshold value in BH35. The level of fluoride in BH35 was also elevated above the threshold value.

List I/List II Analysis of Groundwaters

In accordance with the requirements of Waste Licence W0127-01, a number of monitoring boreholes were also analysed for concentrations of List I/List II dangerous substances e.g. volatile and semi volatile organic compounds. Samples for organic analysis were collected from BH3, BH4, BH31, BH32, BH33 and BH34.

All VOCs and SVOCs were recorded below their respective laboratory detection limits during the annual sampling round of 2011.

Q4 October - December 2011- Sampling dated 23rd November 2011

Results from groundwater sampling during the 4th quarter of 2011 indicated good groundwater quality. Elevated levels of total organic carbon were recorded in BH4, BH27 and BH34 above their respective control and trigger values.

Results at all remaining boreholes were below their respective control and trigger levels during this quarter.

Groundwater Levels

Groundwater levels were recorded from each borehole during each quarter and the results are displayed in Table 3.

Groundwater Borehole Monitoring Location	Q1 2011 (mbgl)	Q2 2011 (mbgl)	Q3 2011 (mbgl)	Q4 2011 (mbgl)
BH3	3.55	3.25	14.5	4.15
BH4 Shallow	3.37	3.62	3.78	3.3
BH16	0.37	0.75	0.7	-
BH27	1.12	3.42	3.42	2.14
BH31 Shallow	3.7	3.85	4.12	3.92
BH32	0.92	1.20	1.07	0.66
BH33	3.43	4.55	5.24	3.95
BH34 Shallow	1.48	2.32	2.98	1.05
BH35	1.45	1.95	2.31	2.01

Table 3: Groundwater boreholes water levels in metres below ground level (mbgl)

Groundwater – Discussion

A hydrogeological Assessment of the facility was forwarded to the Agency in November 2004 (FCC-127-1-2004-065). It determined an up gradient / down gradient trending of groundwater from West-North-West to East-South-East beneath the landfill and surrounds. This pattern is generally consistent with the regional drainage pattern.

Results from groundwater sampling during 2011 indicated generally good quality groundwater beneath the landfill site and environs though some boreholes recorded elevated levels of ammoniacal nitrogen, total organic carbon, chloride, conductivity, manganese and pH during the year.

Bedrock Groundwater Quality

Results during 2011 indicated generally good groundwater quality in bedrock monitoring wells with occasionally elevated parameters to the north, south and east of the site, mainly ammoniacal nitrogen, pH and manganese.

North of the site elevated levels of ammoniacal nitrogen were recorded at BH35 during Q1 and Q2 2011, and elevated fluoride and manganese were recorded in Q3 2011.

Conductivity and pH was also elevated in Q2 and Q3 at BH3 along with elevated chloride in Q3 2011. The south west of the site had elevated TOC recorded in BH27 in Q4 and elevated pH and manganese in Q3. BH33 to the south of the site had elevated ammoniacal nitrogen in Q2 2011. Elevated pH and manganese were recorded in BH16 in Q3. To the east of the site, BH32 recorded elevated pH during Q2 and Q3 along with elevated ammoniacal nitrogen, TOC and manganese during Q3.

Overburden Groundwater Quality

Shallow groundwater at BH4 of the site was of moderate quality during 2011 with elevated levels of conductivity and pH recorded in Q2, conductivity, chloride and sodium during Q3 and elevated TOC during Q4.

Groundwater quality east and south of the facility at BH34 was generally good with elevated manganese recorded in Q3 and elevated TOC recorded in Q4 2011.

Elevated ammoniacal nitrogen was recorded in Q3 at BH31, elevated manganese was recorded in Q3 at the same location.

Using ammoniacal nitrogen as a guide to trends in groundwater quality, a pattern of improved groundwater quality is discernable from 2005 onwards.

Conclusion & Annual Assessment

The annual assessment of groundwater quality suggests there has been a continued improvement in groundwater quality at Dunsink Landfill in 2011. The landfill however, still appears to be having a slight impact on deep groundwater quality close to the waste body itself as evidenced by results at BH35.

3.2 SURFACE WATER

Schedule D.1 of the waste licence requires the monitoring of surface water at six locations (SW1, SW2, SW4, SW7, SW9 & SW10). Biological sampling was required at three locations (KS1, KS2, KS3); samples were collected at an additional three locations in 2011 (KS3a, KS4 and KS6) (See Table 4 and Figure 3).

SW11 was incorporated as an additional sampling location under instruction from *The Agency* following Q1 Monitoring Report 2004. A Biological Sampling Assessment was undertaken on 29th September 2011.

Surface water sampling points were established at the discharge from the wheelwash to the open channel WWSW1 and from the open channel to the Scribblestown Stream WWSW2.

SW1 is located downstream of the facility and sampling at this point monitors the effect of the facility on water quality. SW1 is located some distance downstream of the facility and a breakers yard lies adjacent to the stream and illegal waste tipping occurs between the facility and SW1. A case was put to *The Agency* to move SW1 further upstream to avoid these potential sources of surface water contamination and provide a truer picture of the effect of the facility on surface water quality. During the annual audit of the licence *The Agency* agreed and from 15th August 2005 a new downstream monitoring point, SW17, was used instead of SW1.

SW4 was replaced on 27/2/2006 by SW18 as the upstream sampling point as agreed with *The Agency* (127-1/AK11EM).

In 2010 two additional sampling points were added for the biological monitoring sampling, KS3a and KS6 and in 2011 an additional sampling point, KS4, was included, all of which are presented in Tables 4 & 5 and Figure 3.

	ig Locatio	10
Surface Water Monitoring Location	_Eastings_	_Northings_
SW1	311800	238460
SW2	311380	238980
SW4	310480	239365
SW7	311120	239220
SW9	310885	238795
SW10	311350	239100
SW11*	311360	238915
SW12**	310424	239410
SW13**	310829	239356
SW14**	311173	239277
SW15**	311417	239069
SW16**	311410	238926
SW17***	311687	238826
SW18****	310464	239394
KS1****	310781	239373
KS2****	311145	239242
KS3****	311739	238812
KS3a****	311600	238840
KS4****	311415	239052
KS6****	311590	238994

 Table 4: Surface Water Monitoring Locations

WWSV	W1*****	311616	238921
WWSV	W2*****	311644	238835
*	Additional sampling location	for monitori	ng programme

** Enhanced monitoring programme undertaken 30th July 2004.

*** New downstream sampling point agreed during EPA audit August 2005.

**** New upstream sampling point agreed with *The Agency*.

***** Biological Sampling Programme.

****** Sampling points at discharge from wheelwash to open channel and from open channel to Scribblestown Stream. Only sampled when clay is imported onto the Landfill.

See Table 5 for analysis completed in 2011.

3.2.1 Methodology

Refer to Schedule D.5 of waste licence 127-1

3.2.2 Surface Water Monitoring Quality - Findings (See Appendix II)

Surface water quality was monitored in the drainage network within the landfill and its immediate environs throughout 2011. All the surface water sampling locations stipulated in the waste licence were sampled throughout 2011 (Table 5). The results of the biological sampling programme are discussed later in the report.

The water quality results have been compared to SI 293 of 1988 European Communities (Quality of Salmonid Waters) Regulations 1988 (Appendix II).

Surface Water	Q1	Q2	Q3	Q 4	Weekly	Monthly	Annual	Once-Off
Monitoring Location					Visual			
SW2	Y	Y	Y	Y	Y	Ν	Y	Ν
SW4	N	N	N	N	Ν	N	Ν	N
SW7	Y	Y	Y	Y	Y	Ν	Y	Ν
SW9	Y	Y	Ν	Ν	Y	Ν	Ν	Ν
SW10	Y	Y	Y	Y	Y	Ν	Y	Ν
SW11*	Y	Y	Y	Y	Y	Ν	Y	Ν
SW12**	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
SW13**	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
SW14**	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
SW15**	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
SW16**	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
SW17****	Y	Y	Y	Y	Y	Ν	Y	Ν
SW18****	Y	Y	Y	Y	Y	Ν	Y	Ν
SW19	Ν	Y	Ν	Ν	Y	Ν	Ν	Ν
WWSW1*****	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν
WWSW2*****	Ν	Y	Ν	Y	Y	Ν	Ν	Ν
KS1****	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν
KS2****	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν
KS3****	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν
KS3a ^{*****}	N	Ν	Y	N	Ν	N	N	N
KS4****	Ν	Ν	Y	N	Ν	Ν	Ν	Ν
KS6****	N	N	Y	N	Ν	N	Ν	N

 Table 5: Surface Water Monitoring Programme 2011

* Additional sampling location for monitoring programme.

** Enhanced monitoring programme undertaken 30th July 2004.

*** New downstream sampling point agreed during EPA audit August 2005.

**** New upstream sampling point agreed with The Agency.

***** Biological Sampling Programme.

****** Sampling points at discharge from wheelwash to open channel and from open channel to Scribblestown Stream when wheelwash becomes operational. Sampling at the two wheelwash locations ceased in November 2007 and will continue only on a needs be basis.

Figure 3 - Surface Water Monitoring Locations

The Environmental Protection Agency's document "Parameters of Water Quality – Interpretation and Standards" details concentrations of total ammonia NH4 in fresh water which contain an unionised ammonia concentration of 0.02mg/l at their given pH and temperature. Unionised ammonia is the component of total ammonia which at "the value of 0.02 mg/l is a long term toxic effect level for fish both salmonid and cyprinid. Lethal levels are about ten times greater".

Using this data, concentrations of ammoniacal nitrogen determined during sampling in 2011 indicated that the concentrations of unionized ammonia at the majority of surface water locations, as required by the licence, would have been below 0.02mg/l throughout the year. The following exceptions were recorded; In Q2, ammoniacal nitrogen concentrations sampled at SW11, SW17 and SW18 exceeded 0.02mg/l. In Q3 and Q4 all of the licence monitoring locations would have been below 0.02mg/l with the exception of SW18.

Q1 January - March 2011 – Sampling dated 15th March 2011

Surface water results indicated generally moderate water quality at most locations during Q1 2011 with elevated conductivity recorded in SW2, SW7, SW10, SW11, SW17 and SW18 above the surface water EQS ($1,000\mu$ S/cm). BOD was elevated above the EQS of 1.5mg/l in each of the seven surface water locations with values ranging from 1.55mg/l to 3.49mg/l. Total suspended solids was elevated above the Salmonid Regulations in SW2 at a concentration of 146mg/l. Dissolved oxygen was outside of the EQS limit in SW10, SW17 and SW18.

Q2 April - June 2011 Sampling dated 11th May 2011

Surface water results indicated generally moderate to good water quality at most locations during Q2 2011. Ammoniacal Nitrogen was elevated in SW11 (6.95mg/l), SW17 (7.58mg/l) and SW18 (6.05mg/l). Elevated conductivity was recorded in SW11 on 11th May (1.087mS/cm) and 31st May 2011 (1.057mS/cm). An elevated conductivity was also recorded in WWSW2 (1.09mS/cm). An elevated BOD at SW11 (7mg/l) was recorded. Elevated levels of total suspended solids were recorded at SW2 (32 mg/l), SW7 (43mg/l) and SW9 (310mg/l). Subsequent samples were retrieved from SW18 on 31st May, 15th June and 21st June 2011 and the level of ammoniacal nitrogen in SW18 remained elevated but decreased to 1.27mg/l by 21st June 2011. Ammoniacal Nitrogen at SW11 and SW17 had returned to ambient levels in the samples taken on the 31st May 2011.

Q3 July – September 2011- Sampling dated 14th September 2011

Surface water results indicated generally good water quality at most locations during Q3 2011. A slightly elevated conductivity was only recorded at one location SW11 (1.083mS/cm). Ammoniacal nitrogen was elevated in SW18 (5.31mg/l) above the salmonid regulations. An increase in the alkalinity concentration was noted at SW11 (318mg/l).

Q4 October - December 2011- Sampling dated 23rd November 2011

Surface water results indicated generally good water quality at most locations during Q4 2011. Sampling point SW9 was dry and therefore a sample could not be retrieved. Elevated parameters were only recorded at one location, SW18. An elevated conductivity was recorded at SW18 above the EQS. An elevated ammoniacal

nitrogen level was recorded above the Salmonid regulations and an elevated BOD was recorded above the EQS but below the Salmonid regulations in SW18.

Due to the regularly elevated levels of ammoniacal nitrogen recorded at SW18, weekly samples were taken at SW18 and SW17 and sent for analysis during Q3 and Q4. Readings stayed elevated at SW18 throughout the second part of the year, but readings at SW17 (downstream of the landfill) showed normal levels of ammoniacal nitrogen as surface water exited the landfill site. Table 6 and Figure 4 below shows ammoniacal nitrogen levels at SW18 and SW17 at various dates in the second part of 2011. Investigations into the source of the ammoniacal nitrogen are ongoing and initial observations suggest the source of the ammoniacal nitrogen is outside of the landfill.

Table 6: Ammoniacal Nitrogen Concentrations in SW17 and SW18

Ammoniacal Nitrogen Levels		
Date	SW17	SW18
11/05/2011	7.58	6.05
31/05/2011	0.32	5.37
15/06/2011	-	4.65
21/06/2011	-	1.27
29/06/2011	-	0.298
05/07/2011	<0.2	0.239
14/07/2011	<0.2	4.36
24/08/2011	0.49	4.67
21/09/2011	0.09	6.6
29/09/2011	0.05	7.42
04/10/2011	0.15	2.55
12/10/1011	0.07	4.17
18/10/2011	0.09	1.72
26/10/2011	0.23	0.53
03/11/2011	0.09	1.37
09/11/2011	0.09	1.51
16/11/2011	0.12	1.98
23/11/2011	0.05	1.75
02/12/2011	0.08	1.67
07/12/2011	0.08	1.5
13/12/2011	0.09	0.73
21/12/2011	0.16	1.17

Figure 2: Ammoniacal Nitrogen Levels at SW Monitoring Locations SW17 & SW18 (2011)

Quarterly Electrical Conductivity measurements for a number of surface water monitoring points are shown in Figures 4 and 5 below.

Figure 3: Conductivity Data Trends '06-'11 at SW Monitoring Locations SW2, SW7, SW10 & SW11

Figure 4: Conductivity Data Trends '06-'10 at SW Monitoring Locations SW17 & SW18

Weekly sampling

Weekly visual inspections are carried out at the various monitoring points and include sampling of pH, temperature and conductivity. Elevated concentrations in conductivity were measured in January, February and March 2011 generally at locations SW18, SW7, SW10, SW2, SW11 and SW17. This coincided with the severe cold weather and it is likely that the conductivity levels were caused by the treatment of the roads around the landfill (M50) with salt and grit. On each occasion when elevated conductivity was encountered, an incident report was issued to the EPA and ERFB.

Elevated ammoniacal nitrogen was encountered particularly at SW18

Monthly Wheelwash Sampling

Monthly sampling ceased in November 2007 as it was agreed with *the Agency* that future sampling of WWSW1 and WWSW2 will occur on a needs be basis.

Conclusion & Annual Assessment

The 2011 annual assessment suggests that there was a continuation in the overall trend of improvement in surface water quality at Dunsink Landfill during 2011 though elevated levels of ammoniacal nitrogen upstream of the facility were persistent at SW18 in Q2, 3 and 4. Results from SW17 (from samples collected simultaneously) indicated the issue does not appear to be impacting further downstream. Conductivity levels have also fluctuated, as with the elevated ammoniacal nitrogen, it is considered this is related to contamination by off-site sources.

In general the surface water sampling indicated good water quality over the 4 quarters of the year. New leachate pumping infrastructure (pumps, sump and leachate valve configuration) was commissioned in June 2005. Leachate interceptor drains are

established to the West and South of the Lagoon, to intercept leachate seepages from the landfill. It is believed that these initiatives have been responsible for the general improvement in water quality at the facility.

3.3 LEACHATE

Schedule D of the waste licence requires the monitoring of leachate at the station "north-east lagoon", Table 6. A monitoring station which facilitates the obtaining of representative grab and / or continuous samples in accordance with Condition 8.4 is provided at the sump.

Table 7: Leachate Monitoring Locations 2011		
Leachate Monitoring Location	Eastings	Northings
Northeast Lagoon	311323	239031
Sump	311417	238895

Table 7: Leachate Monitoring Locations 2	2011
---	------

Table D.5.1 of Schedule D of the waste licence sets down the parameters and frequency for leachate monitoring. Table 7 below outlines the sampling programme for leachate undertaken in 2011.

Table 8: Leachate Monitoring Programme 2011

Leachate Location	Monitoring	Q1	Q2	Q3	Q4	Annual
North East Lagoon		Sampled	Sampled	Sampled	Sampled	Sampled
Sump		Sampled	Sampled	Sampled	Sampled	Sampled

3.3.1 Leachate - Methodology

Refer to Schedule D.5 of waste licence 127-1

3.3.2 Leachate Monitoring – Results of Quarterly Sampling (See Appendix II)

Q1 January - March 2011 – Sampling dated 15th March 2011

Results from the lagoon recorded pH of 8.44 and conductivity of 1.2mS/cm. Results from the sump recorded pH of 7.16 and conductivity of 1.92mS/cm

Q2 April - June 2011- Sampling dated 11th May 2011

Results from leachate sampling at the lagoon on 11th May 2011 recorded pH of 9.23, conductivity of 0.974mS/cm and dissolved Methane levels of <0.001mg/l.

Results from leachate sampling at the leachate sump on 11th May 2011 recorded pH of 7.91, conductivity of 3.431mS/cm and dissolved Methane levels of <0.001mg/l.

Table C.6. of the waste licence dictates that Emission Limits for Dissolved Methane in Leachate Being Discharged to Sewer as 0.14mg/l. The results indicate that emission limit values for dissolved methane are compliant for leachate in the sump and lagoon.

Q3 July – September 2011- Sampling dated 14th September 2011

Results from leachate sampling at lagoon on 14th September 2011 recorded pH of 8.67, conductivity of 3.471mS/cm and dissolved methane levels of 0.007mg/l. Results for other parameters tested as part of the annual suite of parameters for leachate indicated levels of ammoniacal nitrogen (35.62mg/l), chloride (438.5mg/l), and potassium (123.9mg/l) amongst others.

Results from leachate sampling at leachate sump on 14th September 2011 recorded pH of 8.13, conductivity of 2.517mS/cm and Dissolved Methane levels of <0.001 mg/l. Elevated levels of ammoniacal nitrogen (149.47mg/l), potassium (170mg/l), sodium (382.5mg/l), manganese (0.731mg/l), and nickel (0.038mg/l) were recorded. These results are typical of leachate from a municipal landfill.

Table C.6. of the waste licence dictates that Emission Limits for Dissolved Methane in Leachate Being Discharged to Sewer as 0.14mg/l. The results indicate that emission limit values for dissolved methane are not exceeded for leachate in the lagoon or for leachate in the sump.

Q4 October - December 2011- Sampling dated 23rd November and 7th December 2011

Results from leachate sampling at the lagoon on 23rd November 2011 recorded pH of 8.00, conductivity of 0.723mS/cm and dissolved Methane levels of <0.001 mg/l.

Results from leachate sampling at the leachate sump on 7th December 2011 recorded pH of 7.89, conductivity of 3.59mS/cm and dissolved Methane levels of 2.738mg/l.

Table C.6. of the waste licence dictates that Emission Limits for Dissolved Methane in Leachate Being Discharged to Sewer as 0.14mg/l. The results indicate that emission limit values for dissolved methane is not exceeded for the leachate in the lagoon, however it is exceeded for leachate in the sump.

Leachate – Discussion.

The results from quarterly visual inspections and annual monitoring of metals for the leachate lagoon and sump are typical of leachate quality. The lagoon is naturally lower for many parameters due to the diluting effect of rainwater and passive aeration associated with the fall of leachate into the lagoon.

Weekly monitoring of Methane, Carbon dioxide and Oxygen is being carried out at the headspace of the sump and the point of discharge to public sewer in Finglas (See Figure 1). The results are being sent to The Agency through weekly notifications and are also being compiled for Dublin City Council. Dublin City Council may require further mitigation measures following a review of the results of these monitoring rounds.

3.3.3 Continuous monitoring of Dissolved Methane in Leachate

Continuous monitoring of dissolved methane at the sump commenced during Q1 2006. Table C.6.of the waste licence dictates that Emission Limits for Dissolved Methane in Leachate Being Discharged to Sewer as 0.14mg/l.

A dissolved methane probe was installed in the leachate sump during the last quarter of 2005. It was not connected to a datalogger until the second quarter of 2006 and when results emerged the probe was deemed to be faulty. A warranty replacement was installed during the last quarter of 2006.

Continuous monitoring of dissolved methane has been in operation from 3rd October 2006 to present.

3.3.3.1 Results from Continuous monitoring of Dissolved Methane in Leachate

Reporting of continuous monitoring of dissolved methane throughout 2011 was as per protocols specified in condition 6.3.3.1. While compiling the data for Q4 2010 the USB stick recording all the data of the probe had been found to be missing. A new stick was installed in January 2011 and data recording re-started from 18th January 2011. Resulting from the annual audit of October 2010 (Audit W0127-01AR10EM), a new methane probe has been purchased and was installed on Wednesday 5th January 2011. The new probe takes readings in the range 0.016 to 1mg/L.

Q1 January- March 2011

Reporting is as per protocols specified in condition 6.3.3.1.

- a. No 24 hour mean value shall exceed the ELV; 100% of 24 hour mean values exceeded the ELV.
- b. 97% of all 30 minute mean values taken continuously over an annual period shall not exceed 1.2 times the emission limit value.

100% of all 30 minute mean values taken continuously over an annual period exceeded 1.2 times the emission limit value.

c. No 30-minute mean value shall exceed twice the emission limit value. 100% of 30 minute mean values exceeded 2 times the ELV (0.28mg/L).

Q2 April - June 2011

- a. No 24 hour mean value shall exceed the ELV;
 100% of 24 hour mean values exceeded the ELV of 0.14mg/L.
- b. 97% of all 30 minute mean values taken continuously over an annual period shall not exceed 1.2 times the emission limit value.

99.4% of 30 minute mean values exceeded 1.2 times the ELV (0.168mg/L).

c. No 30-minute mean value shall exceed twice the emission limit value. 97.5% of 30 minute mean values exceeded 2 times the ELV (0.28mg/L).

Q3 July- September 2011

a. No 24 hour mean value shall exceed the ELV;

100% of 24 hour mean values exceeded the ELV of 0.14mg/L

b. 97% of all 30 minute mean values taken continuously over an annual period shall not exceed 1.2 times the emission limit value.

100% of 30 minute mean values exceeded 1.2 times the ELV (0.168mg/L)

c. No 30-minute mean value shall exceed twice the emission limit value. 96.8% of 30 minute mean values exceeded 2 times the ELV (0.28mg/L).

Q4 October- December 2011

- a. No 24 hour mean value shall exceed the ELV;
 100% of 24 hour mean values exceeded the ELV of 0.14mg/L
- b. 97% of all 30 minute mean values taken continuously over an annual period shall not exceed 1.2 times the emission limit value.
 - 100% of 30 minute mean values exceeded 1.2 times the ELV (0.168mg/L)
- c. No 30-minute mean value shall exceed twice the emission limit value. 96.8% of 30 minute mean values exceeded 2 times the ELV (0.28mg/L).

3.3.4 Discussion of Results from Continuous Sampling of Dissolved Methane

The results indicate that the ELV is exceeded almost continuously at high levels. The accuracy of the probe readings was questioned, partly due to the discrepancy between probe readings and the results of the quarterly spot sampling.

Expert advice was sought from ENVIROS, and an on site test was carried out using a technique developed by ENVIROS that allows determination of on the spot levels of dissolved methane in the leachate. The on the spot levels recorded on the 14/11/2011 were at an average of 3.357mg/L. As a result of these elevated readings, a replacement probe was ordered to continuously monitor the dissolved methane, with a range of 0.016 to 5 mg/L. This probe was installed in early January 2012.

An exercise was carried out in conjunction with Dublin City Council to measure methane gas in the headspace of the sewer at various locations of the sewer downstream of the discharge point – during a scenario of pumping high flow of leachate. No methane gas was detected during this exercise.

Fingal County council is preparing a report on this matter.

In the meantime, weekly monitoring of Methane, Carbon dioxide and Oxygen is being carried out at the headspace of the sump and the point of discharge to public sewer in Finglas (See Figure 6 and Appendix III). The results are being sent to *The Agency* through weekly notifications and are also being compiled for Dublin City Council.

3.4 NOISE.

No noise survey was undertaken at Dunsink Landfill in 2011. This was addressed in Licence Audit Report for 2008 from the Agency W1027-01/08/AR08EM, observation No.5, on Environmental Monitoring.

3.5 DUST

No dust monitoring surveys were carried out at Dunsink Landfill in 2011. This was addressed in Licence Audit Report for 2008 from the Agency W1027-01/08/AR08EM, observation No.5, on Environmental Monitoring.

3.6 PM₁₀ MONITORING

The Agency in correspondence referenced 127-1/GEN01EM stated that "The Agency, in accordance with Condition 8.2, does not require monitoring of PM_{10} as listed in Table D.3.1 of the waste licence unless otherwise instructed by the Agency."

3.7 BIOLOGICAL ASSESSMENT OF THE SCRIBBLESTOWN STREAM

A biological assessment of the Scribblestown Stream was undertaken at KS1, KS2 & KS3 (Figure 3 / Tables 4 & 5) on 29th September 2011. In 2009, a subsequent biological assessment was conducted in December due to poor biological quality results at the three locations on Scribblestown stream. Therefore kick sampling was conducted at two tributaries to the stream that are present on the landfill. In 2011 three additional locations (KS3a, KS4 & KS6) were included in the standard monitoring round to determine whether any improvement was noted in water quality at Unnamed stream 2 (which flows into the landfill from the Dunsoghly Housing estate adjacent to the landfill).

3.7.1 Biological Assessment of Scribblestown Stream – Methodology.

Freshwater ecological assessments were conducted at five sites on the Scribblestown stream in the vicinity of Dunsink landfill site, Dunsink, Co Dublin. One additional sample was taken from the unnamed Stream 2 which flows into Scribblestown stream from the Dunsoghly Housing estate.

These assessments comprised the following investigations:

- Survey of macroinvertebrate fauna using kick sampling, sweep net, stone and vegetation washing methods at each location to produce Q-index values in addition to species diversity indices for each site.
- Aquatic macrophytes survey recording vegetation and describing habitats at each site.
- Recording of standard physico-chemical parameters at each site. These include pH, oxygen (% saturation and mg/l) and conductivity (μS/cm).

3.7.2 Macroinvertebrates

One macroinvertebrate sample was taken at each location, KS1, KS2, KS3, KS3a, KS4 and KS6. Samples were normally collected by kick sampling at riffle sites or sweep sampling at slow flowing vegetated areas as appropriate. Kick sampling involves disturbing sediment/ vegetation etc for 2 minutes upstream of a standard sweep net (1mm mesh, 250mm width). However as there was a low flow at the majority of sampling locations Sweep sampling was undertaken instead of kick sampling which involved sweeping through vegetation/ substrate.

Macroinvertebrates were collected and stored in 70% industrial methylated spirits and returned to the laboratory for identification and counting.

3.7.3 Discussion

The overall macroinvertebrate community shows Scribblestown stream to be exposed to pollution. No rare macroinvertebrates species or species of conservation concern were recorded.

Conductivity values ranged between 366μ S/cm in KS2 to 857μ S/cm in KS4. The pH values are of a range between 7.86 in KS4 to 8.41 in KS1 which is within the typical pH range of between 6 and 9. Temperature values varied slightly at all six locations (13.4°C in KS4 to 17.9°C in KS1) and is likely to be caused by level of direct sunlight on the water body.

Comparison to Previous Surveys.

In Sept 2011, the Q-value rating for **KS1** was **Q3** (moderate pollution) representing **no significant change** to the score from 2010 and 2009.

- The sample was dominated by group C & D taxa which demonstrated a relatively pollution (organic) tolerant environment.
- The sampling location showed the presence of filamentous algae
- Shannon Weiner index 1.17, which is similar to the 2010 sampling round.
- The SSRS score is 0.8 which indicates that the section of the stream is 'at risk'.

The Q-value rating at **KS2** was **Q3** (moderate pollution) which indicated no significant change in water quality conditions from 2010 and 2009.

• This is based on the dominance of Group C taxa.

- The physico-chemical parameters were all within their relevant standard and at similar levels to previous rounds.
- Shannon Weiner index 1.86 which is a slight decrease on the 2010 sampling round.
- The SSRS score is 1.6 which indicates that the section of the stream is 'at risk'

The Q-value rating at **KS3** was **Q3** (moderate pollution) which represented no significant change to water quality in comparison to the 2010 results and a sustained improvement compared to the 2009 results (Q2).

The river channel was clogged with vegetation (fools watercress and watercress), indicative of excessive nutrients though the presence of stickleback fish was noted in the stream and Group B taxa dominated the sample.

- DO was slightly lower than in the other upstream locations.
- Shannon Weiner index 1.5 which is a decrease on the 2010 sampling round.
- The SSRS score is 3.2 which indicates that this stretch of the channel is "at risk" which is consistent with the Q-value rating

The Q-value rating at **KS3a was Q3** indicating **moderately polluted** water. This sample was taken upstream of the weir and upstream of the confluence culvert pipe from Unnamed stream 2. The results indicate that there has been no change at the location since 2010.

- Group C taxa dominated the sample (mainly Potamopgyrgus, Gammarus and Baetis spp).
- The Shannon-Weiner (H') diversity index value was 1.91.
- The SSRS score is 4.8 which indicates that this stretch of the channel is "at risk" which is consistent with the Q-value rating.

The Q-value rating at **KS4 was Q3** indicating **moderately polluted** water. This sample was taken upstream from the confluence of Unnamed Stream 1 and Scribblestown Stream. The channel was completely overgrown with fool's water cress in the water column. The results indicated that there has been no deterioration at this location since it was last sampled in December 2009.

- Group C taxa dominated the sample (mainly polycentropodidae, Gammarus and Baetis spp)
- The Shannon-Weiner (H') diversity index value was 1.7.
- The SSRS score is 3.2 which indicates that this stretch of the channel is "at risk" which is consistent with the Q-value rating.

A Q3 classification was assigned to KS6 indicating moderately polluted water which indicates an improvement compared to September 2010 when the stream was classified as Q1-2, seriously polluted.

- The Shannon-Weiner (H') diversity index value was 1.94.
- The SSRS score is 4 which indicates that the river is at risk of pollution which is consistent with the Q-value score.

In summary, all of the locations (KS1, KS2, KS3, KS3a, KS4 and KS6) were assigned a Q-value of 3 which corresponds with Class C i.e. moderately polluted.

The results of the biological assessment indicate that no significant change was observed in water quality since the previous monitoring event in 2010, with the exception of an improvement noted in KS6. KS6 has improved from seriously polluted to moderately polluted. There has been a slight improvement in water quality in KS3 improving from Q2-3 in 2010 to Q3 in 2011.

3.8 LANDFILL GAS

3.8.1 Landfill Gas Monitoring – Methodology.

Refer to Schedule D.2. of waste licence 127-1.

3.8.2 Landfill Gas Facility Monitoring

Since the 4th Quarter (Q4) of 2006 measurements of landfill gas were carried out at twenty four locations at the perimeter of the landfill (See Figure 6 and Table 8).

During November 2007 (Q4) in agreement with the *Agency*, weekly gas monitoring decreased to six monitoring locations (G35 to G40) and the leachate sump and sewer, with the monthly monitoring round still consisting of all accessible gas monitoring locations (24 locations). From September 2010 and during 2011 monitoring location G23 was also included in the weekly gas monitoring.

Gas levels were monitored using an LMSxi landfill gas analyser. The boreholes were monitored for Methane (CH₄), Carbon dioxide (CO₂), Oxygen (O₂), temperature and atmospheric pressure.

Landfill Gas - Proximity of Buildings and Developments to the Site

There are a number of buildings and developments on site, which are identified in the risk analysis of the site from landfill gas, which have potential to expose receptors to risk from landfill gas (See Figure 6). These include the former Irish Power Systems (IPS) compound (now FCC) at the southern boundary to the site along Dunsink lane. The Equipment yard and shed (which will also house the site offices) is close to the southern boundary of the site, immediately east of the IPS compound.

There are a number of buildings and developments close to the site which have potential to expose receptors to risk from landfill gas. Cappagh Hospital is located to the north of the landfill boundary. Dunsoghly estate lies to the east of Cappagh Hospital and north east of the landfill boundary. A halting site is established along the south-east boundary of the landfill (Figure 6).

South of Dunsink Lane, which marks the southern boundary of the site, there are a number of developments. From west to east these include; Elm Green Golf Course, Dunsink Observatory and a series of unauthorised halting sites (Figure 6).

Figure 5: Landfill Gas Borehole Monitoring Locations

Historical Monitoring (1998-2000).

The landfill gas-monitoring programme during the period 1998-2000 involved thirty-four landfill gas-monitoring boreholes.

Monitoring during this period indicated consistent and elevated levels of Methane at landfill gas monitoring boreholes G30 west of the "sports grounds", G25 and G26 immediately north of the IPS compound. The borehole logs for G25 and G26 indicate that these are within the waste body.

Landfill gas monitoring during this period, indicates a more widespread pattern for carbon dioxide trigger level exceedances. Elevated levels were recorded at G1, G2, G30 ("sports grounds"), G4, G6 & G9 (northern boundary of the site); G11 and G32 (M50); G14 & G15 (Dunsink Observatory); G25, G26 & G27 (IPS compound area) and G33 (within waste body).

Landfill Gas Monitoring	Monitoring Frequency	Eastings	Northings
Locations.			
G3**	Monthly	311270	238670
G6**	Monthly	311180	239425
G7**	Monthly	311230	239375
G8**	Monthly	311300	239320
G9**	Monthly	311360	239260
G10**	Monthly	311410	239170
G12	Monthly	310040	238850
G13	Monthly	310560	238795
G18	Monthly	311150	238630
G21	Monthly	311380	238990

 Table 9: Landfill Gas monitoring Locations and Programme 2011

G23	Weekly	310325	239265
G32	Monthly	310540	239420
G35	Weekly	311265	238740
G36	Weekly	311210	238740
G37	Weekly	311290	238875
G38	Weekly	311245	238880
G39	Weekly	311195	238835
G40	Weekly	311520	239090
G41**	Monthly	311580	239020
G42**	Monthly	311410	238805
G43**	Monthly	311524	239088
G44**	Monthly	311516	239100
IPS inlet	Weekly	310515	238849
Leachate Sump	Weekly	311417	238895
Finglas Manhole*	Weekly	311909	238733

** (Changed to monthly monitoring during November 2007)

Locations of Trigger Level Exceedances

During Quarter 1 2011, elevated levels of carbon dioxide were recorded at a number of the sportsfield boreholes including G37, G38 and G39. Elevated levels of carbon dioxide were also regularly recorded at G40, G43 and G44. Elevated levels of carbon dioxide were recorded at G3, G9, G10, G21, and G23 occasionally.

Elevated levels of methane were recorded at G37 on 7th January 2011 (4.2% v/v) and the 2nd February (1.2% v/v) and at the Leachate Sump on 16th of February (1.6% v/v). No other significant concentrations of methane were recorded during the 1st Quarter of 2011.

During Quarter 2 2011, elevated levels of carbon dioxide continued to be recorded at a number of the sportsfield boreholes including G36, G37, G38, G39 and G40. Elevated levels of carbon dioxide were also regularly recorded at G40, G43 and G44. Elevated levels of carbon dioxide were recorded at G3, G9, G10, and G23 occasionally.

Elevated levels of methane were recorded at G23 on 31^{st} May 2011 (1.3%v/v) and the 8^{th} of June 2011 (3.5%v/v). No other significant concentrations of methane were recorded during the 2^{nd} Quarter of 2011.

During Quarter 3 2011, elevated levels of carbon dioxide were recorded at a number of the sportsfield boreholes including G3, G36, G37 and G38. Elevated levels of carbon dioxide were also regularly recorded at G23, G10, G40, G43 and G44. Elevated levels of carbon dioxide were recorded at G9 occasionally. There were no elevated concentrations of methane recorded at any of the boreholes locations during the 3rd Quarter of 2011.

During Quarter 4 2011, elevated levels of carbon dioxide continued to be recorded at a number of the sportsfield boreholes including G36, G37, G38, G39 and at G40. Elevated levels of carbon dioxide were also occasionally recorded at G9, G10, G23, G43 and G44.

An elevated level of methane was recorded at G37 on 7^{th} December 2011 (1.0% v/v) and 13th December 2011 (3.9% v/v). No other significant concentrations of methane were recorded during the 4^{th} Quarter of 2011.

Landfill Gas Monitoring – Discussion.

A review of the landfill gas sampling network and programme was undertaken during Q3 (July-September) 2004 in response to potential landfill gas migration issues. The review included an analysis of potential receptors and results of a spike-monitoring programme. The review culminated in the alteration of the landfill gas monitoring infrastructure and monitoring programme from that stated in Schedule D and G of the waste licence during 2005. This involved the recruitment of old landfill gas monitoring wells and the addition of three new monitoring wells (G40-G42) into the monitoring infrastructure during 2005 and five new monitoring locations during 2006 (IPS compound, G43, G44, Leachate Sump and Finglas Sewer) (See Figure 6).

The locations for elevated levels of landfill gas emissions of methane at this time included the "sports grounds" area, and the northern boundary to the site, the boundary towards Dunsoghly estate and the offices of the IPS compound area.

A venting trench was proposed and agreed by the Agency for the remediation of landfill gas migration on the "sports-ground". These works went to public tender and the venting trench was commissioned during Q2 2005. A landfill gas spike monitoring report conducted in September 2004 suggested that the Scribblestown Stream may well be acting as an effective natural barrier/vent to landfill gas migration towards Cappagh Hospital and the Northern Boundary of the site and implies that these areas are not at risk. With the extension of the gas extraction network at Dunsink, considerable reductions in levels of methane and carbon dioxide were noted in the sports fields boreholes throughout 2006 & 2007. However, elevated methane and carbon dioxide levels above the trigger values were recorded once in Quarter 3 of 2008 and then consistently through Quarter 4. Borehole G37 in the "sportsfield" recorded the most elevations while Boreholes G35 and G36 recorded no exceedances in this reporting period. Borehole G38 recorded elevated levels of Carbon Dioxide on a number of occasions in the second half of 2008. A proposal to carry out a series of excavations in the areas of G37 and G38 to detect any local methane sources and follow-up monitoring was accepted by the Agency (FCC-127-1-2009-004). The offices of the IPS compound area are continuously monitored for elevated levels of methane and carbon dioxide.

Two additional boreholes were placed between G40 and Dunsoghly Estate (G43 and G44). Since installation no methane was recorded at either of these boreholes. Nevertheless, G40 itself continued to register methane above trigger level throughout 2007, although methane levels decreased in 2008 and no methane was recorded at G40 during 2009.

Landfill gas monitoring at Dunsink Landfill during 2011 indicated a further improvement on results of previous years however the "sports field" area remains an issue (though improvements were noted in methane exceedances).

Landfill Gas Monitoring – Conclusion

Landfill gas monitoring undertaken at Dunsink landfill in 2011 indicated continued improvement in methane and carbon dioxide concentrations. The sports field area – namely G37 shows the presence of elevated CH_4 however the frequency of CH_4 exceedances has dropped considerably over the year. Elevated CO_2 readings are generally found in the sports field area. The Dunsoghly area and the sports field continue to be monitored closely. DCC continue to be notified of the results and mitigation measures will be proposed in the event that there is any further deterioration in results during 2012.

3.8.3 Landfill Gas Utilisation Plant Monitoring Equipment and Sampling points

Weekly monitoring at the inlet and continuous monitoring at the outlet commenced during Q1 2006. It was agreed by the Agency that reporting of incidents under this system could be done through the quarterly and annual environmental reports.

Inlet to Landfill Gas Utilisation Plant

A gas sampling system to include chilling and filtration for the protection of the portable infrared analyser was installed. This facilitates weekly monitoring of methane, carbon dioxide and oxygen using an LMSXi landfill gas analyser, which is used for borehole monitoring. It also provides a sampling location for annual monitoring of Total Sulphur, Total Chlorine and Total Fluorine. The results from the weekly sampling at the inlet are reported in the weekly landfill gas monitoring round sheets. See Appendix III.

Outlet from Landfill Gas Utilisation Plan.

Carbon monoxide and nitrogen oxides are monitored continuously. Continuous monitors on the outlets of the two gas engines were installed. The analysers are proven to be effective on other landfill gas utilisation plants. An appropriate data management system has been installed. This provides for data logging and data storage.

Additionally, a gas sampling system to allow for annual monitoring of total VOCs as carbon, total non-methane VOCs and Particulates, Hydrochloric acid and Hydrogen fluoride, and, quarterly monitoring of nitrogen oxides has been installed.

Emission limit values for Landfill Gas Plant

The emission point reference numbers are proposed to be:

- UP1 Utilisation Plant Input 1
- UP2 Utilisation Plant Output Engine 1
- UP3 Utilisation Plant Output Engine 2

The analysers are able to measure and report at a sufficient resolution to register the emission limit for Carbon monoxide (CO) (1400mg/m3).

Figure 6: Dunsink Landfill Gas Utilisation Plant

3.8.4 Results from Continuous sampling of parameters at outlets Landfill Gas Combustion Plant.

Continuous monitoring of outlet parameters at the Landfill Gas Combustion Plant was undertaken throughout 2011. The source of these emissions is the engines identified as UP2, Engine #2 was removed and UP3 is no longer used (see Figure 7 above).

Limit values as per Schedule C.5 of the governing waste licence 127-1 are outlined in the table below;

Table 10: Emission Limit Values for continuously monitoring parameters at outlets for utilisation plant

Parameter	Utilisation Plant	
	Emission Limit Value	
Nitrogen oxides (No _x)	500mg/m ³	
СО	1400mg/m ³	
Note 1: Dry gas referenced to 5% oxygen by volume for utilisation plants.		

As per condition 1.6 b) of the waste licence 127-1, and Schedule C.5, specifying the Emission Limits Values (ELV) for Landfill Gas Plant (see Table 9 above) the following incidents occurred during 2011 at the IPS compound in Dunsink.

Condition 6.3.2 has been complied with in full as of 27-09-2006; "The concentration limitsshall be based on gas volumes under standard conditions of:-

In the case of landfill gas combustion plant: Temperature 273K, pressure 101.3kPa, dry gas; 5% oxygen". Throughout 2011 reporting of continuous landfill gas monitoring was as per protocols specified in condition 6.3.3.1.

1st Quarter 2011

When the data was downloaded for Q4 of 2010, a fault became apparent with the recording equipment and no data was available after the 14th October 2010. Automatic Flare Solutions (AFS) was contacted to repair the equipment and a new controller was ordered and has been installed back in the engine on 14th March 2011. When this was installed back the AFS engineer advised of another fault – the pump bringing the gas to the monitoring station was broken and a replacement has been ordered. No data was available until the repair was completed.

No results from continuous monitoring of the outlet from the landfill gas combustion plant were available during Q1 2011 due to faulty equipment being repaired.

The following incidents occurred during Quarter 1, 2011 at the former IPS compound in Dunsink.

This quarter reporting is as per protocols specified in condition 6.3.3.1.

(a) No 24 hour mean value shall exceed the ELV; No data available

(b) 97% of all 30 minute mean values taken continuously over an annual period shall not exceed 1.2 times the emission limit value. No data available

(c) No 30-minute mean value shall exceed twice the emission limit value. No data available

2nd Quarter 2011

As explained in the previous quarter, a fault with the data logger resulted in no data being available for Q1 2011. The repairs were completed on 27th April 2011 and emission levels have been available since then.

This quarter reporting is as per protocols specified in condition 6.3.3.1.

(a) No 24 hour mean value shall exceed the ELV;

For the 65 days of data available, no 24 hours means exceeded 500mg/m^3 for Nitrogen Oxides and one 24 hours mean exceeded 1400mg/m^3 for Carbon Monoxide. The result exceeding the 24hours means was on the 27th April 2011 when the sampling restarted at 12.44 pm – and therefore is a 12 hours mean value rather than a 24 hours mean value.

(b) 97% of all 30 minute mean values taken continuously over an annual period shall not exceed 1.2 times the emission limit value.

For the 65 days of data available, 9 no. 30 minute mean values or 0.3% of samples taken continuously for Carbon Monoxide exceeded 1.2 times the 1400mg/m^3 ELV at

the engine. No 30 minute mean values taken continuously over this period for Nitrogen Oxides exceeded 1.2 times the 500mg/m3 ELV at the engine.

(c) No 30-minute mean value shall exceed twice the emission limit value.

For the 65 days of data available, no 30 minute mean values taken continuously for Carbon Monoxide exceeded two times the 1400mg/m³ ELV at the engine. No 30 minute mean values taken continuously over this period for Nitrogen Oxides exceeded two times the 500mg/m³ ELV at the engine.

Data was only available from the 27th April 2011 following repairs carried on the data logger and pump of the gas analyser. For the 65 days of data available the results from continuous monitoring of the outlet from the landfill gas combustion plant present a general picture of compliance with the Emission Limit Values.

3rd Quarter 2011

Continuous monitoring of outlet parameters at the Landfill Gas Combustion Plant was undertaken during this quarter from 01/07/2011.

The following incidents occurred during Quarter 3, 2011 at the former IPS compound in Dunsink.

This quarter reporting is as per protocols specified in condition 6.3.3.1.

(a) No 24 hour mean value shall exceed the ELV;

No 24 hour means exceeded 500 mg/m^3 for Nitrogen Oxides and no 24 hour means exceeded 1400 mg/m^3 for Carbon monoxide at engine number 1.

(b) 97% of all 30 minute mean values taken continuously over an annual period shall not exceed 1.2 times the emission limit value.

No 30 minute mean values or 0% of samples taken continuously over this quarter for Carbon monoxide exceeded 1.2 times the 1400mg/m³ ELV at engine number 1. No 30 minute mean values or 0% taken continuously over this quarter for Nitrogen Oxides exceeded 1.2 times the 500mg/m³ ELV at engines number 1.

No 30-minute mean value shall exceed twice the emission limit value.
 No 30 minute mean values taken continuously over this guarter for Carbon monoxide

exceeded twice the 1400mg/m^3 ELV at engine number 1. No 30 minute mean values taken continuously over this quarter for Nitrogen Oxides exceeded twice the 500mg/m^3 ELV at engine number 1.

4th Quarter 2011

Continuous monitoring of outlet parameters at the Landfill Gas Combustion Plant was undertaken during this quarter from 01/10/2011.

This quarter reporting is as per protocols specified in condition 6.3.3.1.
(a) No 24 hour mean value shall exceed the ELV;

No 24 hour means exceeded 500 mg/m³ for Nitrogen Oxides and no 24 hour means exceeded 1400 mg/m³ for Carbon monoxide at engine number 1.

(b) 97% of all 30 minute mean values taken continuously over an annual period shall not exceed 1.2 times the emission limit value.

No 30 minute mean values or 0% of samples taken continuously over this quarter for Carbon monoxide exceeded 1.2 times the 1400mg/m^3 ELV at engine number 1.9 no. 30 minute mean values or 0.2% taken continuously over this quarter for Nitrogen Oxides exceeded 1.2 times the 500mg/m^3 ELV at engine number 1.

(c) No 30-minute mean value shall exceed twice the emission limit value.

No 30 minute mean values taken continuously over this quarter for Carbon monoxide exceeded twice the 1400mg/m^3 ELV at engine number 1. No 30 minute mean values taken continuously over this quarter for Nitrogen Oxides exceeded twice the 500mg/m^3 ELV at engine number 1.

3.8.5 Summary of Continuous Sampling of Emissions at Landfill Gas Combustion Plant

The results from continuous sampling of parameters from outlets at landfill gas combustion plant throughout 2011 presented a general picture of compliance with emission limit values.

3.9 METEOROLOGICAL MONITORING

Condition 8.6 and Schedule D.6 require daily monitoring of precipitation volume, temperature (min/max), wind force and direction, evapotranspiration, humidity and atmospheric pressure. This data is obtained from Met. Éireann's Dublin Airport Weather Station and the data are illustrated by month in the following tables / figures. The data is presented in the form of monthly averages which masks much of its complexity. The data is available in full tabular format at the facility offices.

3.9.1 Total Precipitation Volume by Month

Figure 7: Total Precipitation mm by Month 2011

3.9.2 Average Daily Temperatures (minimum /maximum) By Month 2011

Figure 8: Average Daily Temperatures (Minimum/Maximum) by Month 2011

3.9.3 Average Daily Wind speed by Month 2011

Figure 9: Average Daily Windspeed by Month 2011

3.9.4 Average Daily Wind Speed and Direction by Month 2011

Month	Speed (knots)
Jan	9.8
Feb	11.6
Mar	8.4
Apr	8.9
May	14.9
Jun	9.5
Jul	8.6
Aug	8.6
Sept	12.9
Oct	12.8
Nov	11.8
Dec	16.3

 Table 11: Average Daily Wind Speed by Month 2011

Figure 11 shows a Rose Diagram of average daily wind direction measured at Dublin Airport. The figure shows the winds during 2011 are predominantly West to South Westerly in direction.

Figure 10 - Rose Diagram of Average Daily Wind Direction at Dublin Airport

Figure 11 - Average Daily Evaporation and Potential Evapotranspiration by Month 2011

Figure 12 - Average Daily Relative Humidity by Month 2011

3.9.7 Average Daily Atmospheric Pressure By Month 2011

Figure 13 - Average Daily Atmospheric Pressure by Month 2011

4.0 **RESOURCE & ENERGY CONSUMPTION**

Resources consumed at Dunsink Landfill include diesel fuel, electricity and hydraulic oil. There were three main consumer entities operating on site:

- Fingal County Council (FCC)
- Contractors
- Bioverda Power Systems (BPS)

4.1 FINGAL COUNTY COUNCIL

The compound offices were connected to the national electricity grid in March 2005. The compound offices are no longer occupied, and FCC at Dunsink consumes electricity at the pump house. FCC did not consume hydraulic oil. The main component of FCC's resource and energy consumption was electricity. (Table 11).

4.2 CONTRACTORS

Contractors on site consumed diesel fuel in the operation of their plant, which comprises; mainly one JCB (Table 11)

4.3 **BIOVERDA POWER SYSTEMS**

BPS on site consumed more electricity and lubricant oil when compared to 2010. They consumed less diesel and landfill gas than in previous years (Table 11). This reflects the downturn in landfill gas utilisation.

FCC	Contractors	BPS	Total 2011	Total 2010	Total 2009
69*	Nil	87	156*	132*	399
3,00	8,100*	Nil	11,100*	11,100*	11,100*
0*					
Nil	Nil	Nil	Nil	Nil	Nil
Nil	60*	Nil	60*	60*	60*
Nil	200*	2,800	3,000*	2,180*	5,875* L
	FCC 69* 3,00 0* Nil Nil Nil	FCC Contractors 69* Nil 3,00 8,100* 0* Nil Nil Nil Nil 60* Nil 200*	FCC Contractors BPS 69* Nil 87 3,00 8,100* Nil 0* Nil Nil Nil Nil Nil Nil 08* Nil Nil Nil Nil Nil 60* Nil Nil 200* 2,800	FCC Contractors BPS Total 2011 69* Nil 87 156* 3,00 8,100* Nil 11,100* 0* Nil Nil 11,100* Nil Nil Nil 60* Nil 60* Nil 60* Nil 200* 2,800 3,000*	FCC Contractors BPS Total 2011 Total 2010 69* Nil 87 156* 132* 3,00 8,100* Nil 11,100* 11,100* 0* Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil 60* Nil 60* 60* Nil 200* 2,800 3,000* 2,180*

 Table 12: Summary of Resources used on site for the reporting period

*Estimates

5.0 VOLUME OF LEACHATE PRODUCED AND DISCHARGED OFF-SITE

A flow metre measuring volumes of leachate produced from the facility or volumes of leachate discharged off-site was installed with the new pump house in June 2005. However, during 2004 efforts were made to get estimates for leachate production in Dunsink to determine the appropriate capacity of current and proposed leachate infrastructure. It was considered important in view of the daily discharge limit of 1,400m³ imposed by the Sanitary Authority (Dublin City Council) to determine responses should this limit be breached.

5.1 METHODS FOR ESTIMATING LEACHATE PRODUCTION

An annual water balance calculation was performed to estimate leachate production in Dunsink. This figure is compared with figures measured as discharged offsite (See Table 12).

5.1.1 Water Balance Calculations

In calculating the water balance for Dunsink the formula used was taken from Environmental Protection Agency (EPA) guidelines (EPA 2000)¹. Rainfall data from Dublin airport Meteorological station are used in this calculation. Data from 2011 is used in the average and scenario calculations.

Lo = [ER(A) + LW + IRCA + ER(l)] - [aW]Whereby; ER = effective rainfall (m). Α = Area of cell (m^2) . = Liquid waste (also includes excess water from LW sludges) M³. **IRCA** = Infiltration through restored and capped areas (m^3) . = Surface area of lagoons (m^2) . l =absorptive capacity of waste M^3/t . a W = weight of waste deposited.

ER = Total Rainfall (R) minus Actual Evapotranspiration (AE). For Dunsink landfill, following the guidance given in the EPA guidelines the ER is

taken as R.

Total rainfall (R) for Dunsink in 2011 was 671.8mm or **0.6718m**.

A= The landfill area is 154 acres or 62.3 hectares or $623000m^2$. No area is active, there has been no dumping of municipal waste for over seven years.

ER(A)=0

¹ Environmental Protection Agency (2000). Landfill Manuals; Landfill Site Design. EPA, Ireland. ISBN 1 84095 026 9

LW = Liquid waste is not deposited in Dunsink. $0m^3$.

IRCA = In areas that have been temporarily capped / restored an infiltration rate of 25-30% of the annual rainfall should be used. In areas which have been restored an infiltration rate of 2-10% should be applied. Given that the landfill is now restored 10% will be used as the infiltration rate through restored and capped areas. 10% of ER = 0.06718. 623,000m2 X 0.06718m

IRCA= $41,853.14m^3$ l = In Dunsink the area of the lagoon is $6,000m^2$, ER=0.6718ER(1) = $4,030.8m^3$

aW = The total volume of waste has been calculated roughly, as 3.3 million m^3 on the basis of volume of three phases of landfill. It has also been roughly estimated that approximately 5,000,000 tonnes of waste have been deposited in Dunsink based on figures available from 1994 for annual inputs to the site. On this basis the roughly estimated waste density is $1.5t/m^3$. This is very high and may be due to compaction by its overburden of subsoil or fill. The absorptive capacity of waste falls to negligible or none per tonne of waste before leachate is generated at densities greater than $1.2t/m^3$, **aW=0 m³/tonne**

Lo = [ER(A) + LW + IRCA + ER(l)] - [aW]

Lo = [0 + 0 + 41,853.14 + 4,030.8] - [0]

Lo = 45,883.94m³ pa Lo = 125.71m³ /d Lo = 5.24m³ /hr

5.1.2 Scenario Building

This rough estimate should be viewed in the context of varying annual rainfall over a year period. Water balance calculations should be carried out for a number of scenarios such as average monthly leachate volumes to be generated (See Table 12).

2011 Rain (mm) **Rainfall % Total** Estimated Monthly Leachate Production M³ 29.1 4.33 January 1987.5 76.2 11.34 5204.5 February March 19.2 2.86 1311.4 28.6 4.26 1953.4 April May 37 5.51 2527.1 June 64.3 9.57 4391.7 July 42.6 6.34 2909.6 39.7 5.91 August 2711.5 65 9.68 September 4439.5 25.26 11590.5 October 169.7 3305.7 48.4 7.20 November 52 7.74 December 3551.6 Total 2011 671.8 100.0 45883.9

 Table 13: Estimates of Leachate Production: Average Monthly rainfall recorded at Dublin

 Airport 2011 (Source: Met Éireann)

The EPA guidelines (EPA, 2000) suggest a peak flow factor of 3 to 5 times the predicted average flow rate should be used when sizing plant / pipe work. Therefore using 2011 rain data and allowing for the now completed restoration of Dunsink, an adequate pump station should be able to handle about $(5.24m^3 * 3)$ to $(5.24m^3 * 5)$ or 15.72 m³/hr to 26.2 m³/hr during wet weather flow. During 2011, the volume of leachate discharged to public sewer was 147,693m³ which equates to 16.86m³/hr.

5.1.3 Results

Water balance calculations from EPA guidelines for Dunsink during peak wet conditions suggest that leachate production / discharge could be in the range of $378-630m^3$ /day.

5.1.4 Discussion

The results presented above are estimates only. The results from this exercise (EPA model), indicate that Dublin City Council's discharge limit of $1,400m^3/day$ would not be breached and the leachate lagoon would not ordinarily be needed to deal with any excess leachate generated. The lagoon has a capacity of $26,700m^3$. The pump house design facilitates pumping a maximum of 20 litres/s or $72m^3 / hr$ or $1,728m^3 / day$ and the modelled leachate production is well below this.

The new pumping arrangements installed during June 2005 provide data for the volume of leachate generated at the facility (Table 13).

2011	Rain	%	Estimated Monthly	Volume Discharged as
	mm		Leachate Production M ³	Measured By Flow
				Metre
January	29.1	4.33	1987.5	20,938
February	76.2	11.34	5204.5	26,022
March	19.2	2.86	1311.4	14,748
April	28.6	4.26	1953.4	8,425
May	37	5.51	2527.1	5,869
June	64.3	9.57	4391.7	6,162
July	42.6	6.34	2909.6	6,363
August	39.7	5.91	2711.5	7,695
September	65	9.68	4439.5	7,575
October	169.7	25.26	11590.5	10,468
November	48.4	7.20	3305.7	14,482
December	52	7.74	3551.6	18,945
Total	671.8	100.0	45,883.9	147,692

Table 14: Estimates of Leachate Production and Volumes Measures as Discharged from site

The estimated monthly leachate production is significantly and substantially less than the actual volumes measured as discharged from site. There maybe a groundwater influence in leachate generation at the site which accounts for this anomaly. The EPA water balance calculation is based on rainfall contribution to leachate generation.

Since 2006 a significant rise in leachate pumped off-site has occurred and it is considered that this is partially explained by the emplacement of two major leachate interception drains at the north and south of the facility. These leachate interception

drains are obviously harnessing significant amounts of leachate and contributing to the leachate load at Dunsink.

5.1.5 Conclusion

Given all the results presented above (the varied estimates for leachate production and the actual volumes discharged offsite), it is suggested that the pump house design, in conjunction with the option to use the lagoon periodically provides sufficient capacity for dealing with the estimated leachate generated in the landfill. The completion of the restoration of the site during 2008 and 2009 has led to a reduced estimate of the amount of leachate generated by the facility through the water balance calculations. However the progress in landfill restoration has ultimately resulted in greater leachate collection and consequent increased volumes of leachate being discharged offsite. Nevertheless, the data provided by the leachate flow metre continues to vindicate the capacity designed into the leachate infrastructure.

5.2 ANNUAL WATER BALANCE CALCULATIONS AND INTERPRETATIONS

5.2.1 Introduction

The actual water balance calculations are outlined in detail in Section 5.1.

5.2.2 Discussion and Interpretation

It must be stated that the results are estimates only and based on many assumptions, which may or may not be correct. Furthermore data from key variables, such as depth of waste, proximity of groundwater table and effect of springs within waste body, are unavailable.

(i) Previous estimates of the wet weather flow and dry weather flows for leachate were prepared by FCC in 2003 on the basis of direct measurements. These estimates calculated Wet Weather Flow leachate volumes in the range of $1242-1656m^3/day$ and $414m^3/day$ during dry weather flow.

(ii) Water balance calculations are presented in Section 5.1.1 from EPA guidelines for Dunsink during peak wet conditions. They suggest that peak leachate production / discharge could be $630m^3/day$ during wet weather and $378m^3/day$ during Dry Weather Flow.

(iii) During 2011, the volume of leachate discharged to public sewer was $147,693m^3$ which equates to $16.86m^3$ /hr. (See Table 13). This suggests that average leachate production/discharge over the year is $404m^3$ /day.

These figures must be seen in the context of the bedrock geology and aquifer status of the site. The regional view of the vicinity of the Dunsink Landfill is of a low yielding aquifer.

5.2.3 Conclusion

The results from water balance calculations and from the pump house flow-metre are very different in terms of leachate modelled as generated on site and leachate volumes pumped off-site. However both sets of results validate the choice of leachate pump house design, which was based on empirical measurements of leachate flowing through the existing infrastructure. The pump house design facilitates pumping a maximum of 20 litres/s or $72m^3$ / hr or $1728m^3$ / day. Dublin City Council allows a maximum discharge of 1400 m³ / day.

The worst case scenario for Dunsink from wet weather flows derived from previous estimates at $1,656m^3/day$ exceeds this limit. In instances when the pump-house cannot pump away volumes as they are generated from the facility the system is self regulating. During Wet Weather Flow peak flows in excess of the limit are rare and short in duration. When they do occur the automatic valve opens and closes to regulate the level of leachate in the sump and facilitate controlled discharge of leachate to public sewer or the lagoon. The lagoon has additional capacity of 26,700m³ and if empty would have capacity for 16+ days pumping to lagoon during wet weather flow. This contingency provides for scenarios whereby pumping to the public sewer would not be feasible for any reason.

The results suggest that the pump house design, in conjunction with the option to use the lagoon periodically may provide sufficient capacity for dealing with the estimated leachate generated in the landfill.

5.3 ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMISSIONS TO GROUNDWATER

5.3.1 Emissions to Groundwater - Introduction

At present there are no estimates for annual and cumulative quantities of indirect emissions of leachate to groundwater.

Inferences are made from estimates in Sections 5.1.1 (estimates of leachate going through leachate management infrastructure during Wet Weather Flow) and 5.1.2 (estimates of leachate generated at the facility based on water balance calculations). At the outset, it must be stated that this is an exercise fraught with difficulties in that these estimates are based upon many assumptions, which may or may not be correct. Furthermore; data from key variables such as depth of waste, proximity of groundwater table and effect of springs within the facility; are unavailable.

Nevertheless the volumes of leachate discharged from the facility consistently and substantially exceed those estimated from water balance calculations.

5.3.1.1 Dry weather flow

The leachate infrastructure and discharge consents from Dublin City Council are more than adequate to deal with the volumes of leachate generated in Dunsink during dry

weather flow. This suggests that there may be no indirect emissions to groundwater during Dry Weather Flow conditions.

5.3.1.2 Wet weather flow

The leachate infrastructure system seems to be "flashy" i.e. the amount of leachate going through the system rapidly increases following rainfall events. For all but the highest peaks in wet weather flow the leachate infrastructure and discharge consents from Dublin City Council are more than adequate to deal with the volumes of leachate generated in Dunsink and there is little risk of contamination of groundwater.

In instances when the pump-house cannot pump away volumes as they are generated from the facility the system is self regulating. Peak discharges during Wet Weather Flow are rare and short in duration, the automatic valve opens and closes to regulate the level of leachate in the sump and facilitate controlled discharge of leachate to public sewer or the lagoon.

5.3.2 Bedrock Geology of the site and Aquifer Status

The western half of the landfill is underlain by Waulsortian Limestones. The GSI classify the County Meath Waulsortian Limestones as L1, bedrock which is moderately productive only in local zones and this can be assumed to be the case for Dunsink.

The central part of the landfill is underlain by the Tober Colleen formation. The thinly bedded mudstones of the Tober Colleen formation which underlie the Calp Limestone have been classified by the GSI as Pu, bedrock which is generally unproductive due to the low permeability of the bedrock.

The eastern part of the site is underlain by basinal limestones consisting of limestone turbidites with bioclastic and calcareous mudstones. The GSI classify the County Meath Waulsortian Limestones as L1, bedrock which is moderately productive only in local zones and this can be assumed to be the case for Dunsink.

There is a minor faulting in the vicinity of the site and there is a minor fault running in a north-west south-east direction through the site.

A number of boreholes have been drilled into the bedrock on the site and a visual inspection of the drill chips from the monitoring boreholes indicated the site to be generally underlain by the soft black basinal (Calp) limestones and mudstones. These were recorded at all boreholes that were drilled to bedrock. The hardness and shade of the rock varied between boreholes between different depths within the same borehole. The Calp Limestone of County Dublin has been classified in the GSI Groundwater Protection Scheme as a L1 aquifer, bedrock which is generally moderately productive.

The monitoring well drilling programme confirmed the regional view of the vicinity of the Dunsink Landfill as generally low yielding aquifer.

5.3.3 Conclusion

On the basis that

- (1) The underlying geology and overburden have produced a localised classification of the aquifer as generally low yielding.
- (2) Measured volumes of leachate discharged from the facility are consistently and substantially higher than those calculated through water balance calculations.
- (3) The groundwater monitoring programme indicates that groundwater around the facility is generally good;

It is considered that indirect discharges to groundwater are not significant in volumes or effect.

6.0 WORKS PROPOSED AND UNDERTAKEN & TIMESCALE FOR THOSE PROPOSED DURING THE COMING YEAR

6.1 WORKS UNDERTAKEN DURING 2011.

The phased handover of the landfill and surrounding areas to the Parks Department was completed by December 2009. The Environment Department continued with all monitoring obligations as set out in the landfill license.

In 2011, Fingal County Council Operations Department have been working closely with the Irish Horse Welfare Trust and local horse owners in Dunsink in an effort to address and regulate the situation with regard to the wandering horses in Dunsink.

The Council, the Irish Horse Welfare Trust and the owners have now formed a club, which regulates the numbers of animals on the site, all of the horses are now microchipped and passported, and traceable to their owners.

Temporary stables have been installed to provide shelter for the horses for the winter season.

7.0 SITE SURVEY INDICATING EXISTING LEVELS OF THE FACILITY

Fingal County Council sought approval from the Environmental Protection Agency on the 13/08/2009, (letter Ref FCC-127-1-2009-010) not to undertake a topographic survey in 2009. This was due to the fact that there was no importation of soil into the restored landfill and no subsidence was anticipated. Approval was given by the EPA on the 20/08/2009 by telephone from Mr Eamonn Merriman. Figure 15 below shows the topographic status of the landfill as established by the most recent topographic survey completed in 2007.

© Ordnance Survey Ireland. All rights reserved. Licence number 2003/07/CCMA/Fingal County Council.

Figure 14: Simplified Topographical Map of Dunsink 2007

8.0 ESTIMATED ANNUAL & CUMULATIVE QUANTITY OF LANDFILL GAS EMITTED

In early 1996 a gas collection network was first configured throughout the whole landfilled portion of Dunsink. In 1999 the collection network was replaced by a larger more extensive arrangement.

It is comprised of a high-density polyethylene (HDPE) ring main around the site with a number of branch lines, which contains manifolds that connect to individual gas extraction wells.

There are approximately eighty-five gas extraction wells currently connected to manifolds throughout the site. Some of the wellheads are buried so it is not physically possible to confirm their condition or truly assess their performance. An additional thirteen gas wells were installed in Zone A and six additional gas wells were installed in Zone C during 2006.

There are ten branch lines off the main collection ring. These branches are 250mm in diameter and have multi-outlet manifolds configured to collect the gas from the wells in their vicinity. Each branch can be isolated where it connects to the main line. The manifold arrangement allows the line from the individual wells to be sampled and controlled. This has the effect of balancing the "good gas" with the bad to maintain the optimum quality to the utilisation plant.

The mainline ring is a 355mm HDPE pipe that completely encircles the landfill and finishes back at the utilisation plant compound. It has two dewatering chambers, one next to the old main landfill entrance and the other adjacent to the IPS compound, where the collected condensate is returned to the waste body via a disused extraction well. This ring main can be isolated in a number of locations to permit maintenance operations and still maintain operation of the utilisation plant.

The extraction pump which feeds the remaining generator (one was removed from site during 2006) is capable of collecting three thousand cubic metres of gas per hour at a maximum suction pressure of -150mbar. It is currently delivering approximately three hundred and fourty cubic metres per hour at a quality of 49%CH₄. In the unlikely event the engine is out of service for an extended duration, the integral flare can be run to maintain negative pressure on the landfill.

8.1 LANDFILL GAS CONSUMED BY UTILISATION PLANT 2011

Figures for landfill gas emitted from the facility are derived from data submitted by Bioverda Power Systems for the utilisation plant in Dunsink. The migration issues of previous years are largely resolved and the utilisation plant controls the vast majority of the landfill gas emitted. The figures for 2011 are presented in Table 14.

8.2 LANDFILL GAS CONSUMED BY UTILISATION PLANT AND GENERATED BY FACILITY 1996-PRESENT

The amount of landfill gas utilised by the plant has continued to trend downwards as would be expected but utilisation is dropping less sharply in recent years than the period 2003-2005.

It was reported last year that the rate of landfill gas generation at the facility is continuing to drop but the generation shows that the amount of gas being consumed at the facility is less than the GasSim model in 2009. In 2009 and 2010 the gas engine would occasionally 'run out of gas' at viable concentrations indicating that the gas field production is decreasing at an increasing rate. That trend continued in 2011 with the engine regularly 'running out of gas' and having to be restarted after giving the field an opportunity to recover, typically 48-60 hours.

Figure 15 - MWhr exported per month at Dunsink.

Bioverda are reporting that supply of gas has dropped sharply. It is considered that landfill gas migration is not an overwhelming issue at Dunsink and it is suggested that these figures reflect a downward pattern over time of landfill gas emitted from the facility.

The landfill gas network was extended during 2006. Given the definite pattern and direction in landfill gas generation and utilisation there appeared to be enough data to provide for the specification of an enclosed flare. The enclosed flare should cater for the needs of Landfill Gas Management in Dunsink for the next twenty years. The enclosed flare was delivered to site in December 2007 and was installed and commissioned during the first quarter of 2008 and is now operated by Fingal County Council

Bioverda POWER SYSTEMS LTD

	Units	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Diesel	Litres	0	0	0	0	0	0	0	0	0	0	0	0	0
Electricity Consumed	Kwhrs	8973	7220	6743	6160	7849	6125	7737	7383	7536	7726	5133	8992	87577
Oil (Lubrication)	Litres	0	350	0	350	300	250	250	0	300	350	350	300	2800
Landfill Gas	1000' Cubic metres	226	207	256	225	216	243	228	254	210	221	279	213	2778
Average Monthly Ch4	% by Volume	48	50	50	50	49	48	48	49	50	50	49	49	49
Electrical units exported (power output)	MWhrs	323	296	365	321	308	347	326	363	300	316	398	304	3967

Table 15 - Landfill Gas Consumed by BPS utilisation plant in Dunsink during 2011

Data compiled and verified by: Simon Kelly, Greenstar GDA and BPS Engineering Manager

9.0 REPORT ON PROGRESS TOWARDS ACHIEVEMENT OF ENVIRONMENTAL OBJECTIVES AND TARGETS CONTAINED IN PREVIOUS YEAR'S REPORT.

This is the eighth AER under this Licence. In 2011 the majority of objectives for the facility nearing completion were fully completed and the Enclosed Flare was commissioned and handed over to Fingal County Council.

- The Phased Handover of the landfill and surrounding areas to the Parks Department which began in 2008 was completed as of December 2009
- Capping works, final landscaping and slope stability maintenance were completed in 2009.
- Environmental Infrastructure Inspection, Maintenance and Monitoring were ongoing in 2011

10.0 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS 2011

The schedule of environmental objectives is complete and has now been withdrawn from the AER.

11.0 PROCEDURES DEVELOPED RELATING TO THE FACILITY OPERATION

No new Standard operating procedures (SOP's) were introduced in 2011.

12.0 TANK, PIPELINE AND BUND TESTING AND INSPECTION REPORT

The leachate lagoon and bund tests were last conducted in October 2007. Conditions 3.10.5 and 5.10.2 of the licence require that the test be carried out every three years by an independent and appropriately qualified chartered engineer.

12.1 LAGOON

An integrity test is currently being conducted on the Lagoon in Dunsink. The previous integrity test was completed during October 2007. A new integrity test was carried out in late January 2012 – the results of which are not available at time of printing this report. The results of the integrity test will be submitted to the Agency shortly.

12.2 OIL BUND IPS COMPOUND- DUNSINK

An integrity test was conducted during October 2007 on the oil bund on the IPS compound. The bund integrity was found to be good, it was watertight and found fit for its intended use. Oil is no longer stored in the compound – it is therefore proposed not to carry out further integrity test on the disused bund.

13.0 REPORTED INCIDENTS AND COMPLAINTS SUMMARIES

13.1 REPORTED ENVIRONMENTAL INCIDENTS

There were 98 reported incidents last year reported under condition 1.6 c) "Any trigger level specified in this licence which is attained or exceeded"; and d) "Any indication that environmental pollution has, or may have, taken place." Forty of these were notified to the Eastern Regional Fisheries Board during 2011.

	EPA Notified					ERFB [*] Notified
	Surface	Groundwater	Landfill	Dissolved	Noise	Surface Water
	Water		Gas	Methane		& Groundwater
Month	2011	2011	2011	2011	2011	2011
January	4		4			4
February	4		4			4
March	5	1	5			5
April	4		4			4
May	6	1	5	1		6
June	2		4			2
July	1		4			1
August	1		5			1
September	2	2	4			2
October	2		4			2
November	5		4			5
December	4	1	4	1		4
Total	40	5	51	2	0	40

Table 16: Summary of reported incidents during 2011

* Eastern Regional Fisheries Board.

A summary of the environmental incidents distributed by month and thematic area is provided in Table 15.

Table 15 indicates an increase in the number of incidents in 2011 compared to 2010. The number of landfill gas incidents is similar to last year. They primarily relate to regular breaches of trigger levels for carbon dioxide at the Sports field and on the monthly rounds at Dunsoghly and Cappagh boundaries.

Surface water incidents have increased since 2010, and the incidents primarily related to elevated levels of conductivity and ammoniacal nitrogen which are unlikely to relate to the landfill. These were discussed in section 3.2.2.

There were two exceedances of the ELV for Dissolved Methane in 2011 which was at the Leachate Sump in Q2 and Q4.

The EPA was notified of all incidents. The ERFB were notified on all incidents pertaining to surface water and Dublin City Council continues to be informed in relation to Dissolved Methane.

13.2 REPORTED ENVIRONMENTAL COMPLAINTS

Condition 10.4 of Licence 127-1 requires that the licensee shall maintain a written record of all complaints relating to the operation of the facility. No complaints were received by FCC during 2011.

It is considered that with the closure and completed restoration and improvements to landfill infrastructure since the end of 2009, the landfill is now less of an issue for its surroundings. This is a continuation of the trend in recent years. There were no complaints in 2009 while in 2008 there were just two complaints, compared with five for 2004, one for 2005 and two for 2006.

14.0 **REVIEW OF NUISANCE CONTROLS**

Condition 7 of Waste Licence 127-1 requires that vermin, birds, flies, mud, dust, litter, noise and odours do not give rise to nuisance at the facility or in the immediate area of the facility.

To this end a Nuisance Monitoring Programme was instigated. This involves weekly inspection of the nuisances stated in Condition 7.1, but also includes those associated with security, surface water and leachate. The nuisance inspection is conducted in conjunction with the weekly Surface Water Visual Inspection. The facility and some adjoining areas are separated into seven zones. A checklist was designed and is filled in weekly since inspections were formalised in August 2004. The nuisance-monitoring programme feeds into the Environmental Management System, in that if nuisances are detected which are not considered incidents under Condition 1.6 of the licence – Corrective Action Procedures are invoked. If nuisances are detected which are considered incidents under Condition 1.6 of the licence, procedures listed under condition 9.1 are adhered to. The records for weekly inspections are available in the facility office. A template of the nuisance inspection form is attached in Appendix IV.

15.0 FINANCIAL PROVISION, MANAGEMENT, STAFFING STRUCTURE & PROGRAMME FOR PUBLIC INFORMATION

15.1 FINANCIAL PROVISION

With regard to the uptake of Environmental Liability Risk Assessment (ELRA), Residuals Management Plans (RMP), Closure Remediation and Aftercare Plans (CRAMP) and Financial Provision (FP), please find the following information in relation to Dunsink Landfill.

Risk Category as derived using the system set out in the Guidance Document. This specific exercise has not been carried out to date. However on looking at the guidance document it appears similar to the "Methodology for Determining Enforcement Category of Licences". This exercise gave Dunsink an A2 enforcement category which would probably equate to a **Risk Category 3** classification.

The facility's RMP/CRAMP was the culmination of a series of proposals beginning in June 2005 and was agreed by *the Agency* during 2005. The series of proposals are referenced and detailed below and *the Agency* would have received copies in triplicate.

		=
FCC-127-1-2005-	LETTER	POST TO EPA 127-1
	DATED	REGARDING
FCC-127-1-2005-015	09/06/2005	Restoration and aftercare plan
FCC-127-1-2005-022	28/07/2005	Restoration and aftercare plan & SEW Leachate Management & Drainage
FCC-127-1-2005-025	13/09/2005	Restoration and Aftercare Plans and achievement of final profile
FCC-127-1-2005-026	19/09/2005	Slope Stability Survey
FCC-127-1-2005-027	23/09/2005	Restoration & Aftercare plans Drilling Wells

Table 17 - Dunsink RMP/CRAMP

Fingal County Council's position to date with regard to financial provision currently in place for Dunsink and Balleally has been stated as follows; "In accordance with Condition 12.2 of the Waste Licence, Fingal County Council shall establish and maintain a fund or other form of approved security, that is adequate to assure the financial capability of implementing the Restoration and Aftercare Plan as agreed with *The Agency*. Financial provision is made on an annual basis at Fingal County Council budgeting meetings.

As the CRAMP/RMP predates the Guidance Document (2006), there are some differences in content and methodology. The contents of the CRAMP/RMP broadly reflect the suggested contents in the guidance document. It is also worth stating that *The Agency* approved of the CRAMP/RMP at the time of submission. The restoration programme is now complete and the facility is now in its aftercare phase. The financial provision is considered adequate.

15.2 MANAGEMENT AND STAFFING STRUCTURE

The following comprise the current management structure for Dunsink Landfill in 2011.

Licence Compliance	
Senior Engineer:	John Daly.
Waste Infrastructure	
and Enforcement:	John Daly. B.E. (Civil Engineering), M.Sc (Environmental Engineering), MIEI
Assistant Scientist:,	
	Mr. A. Kerveillant. Management of waste licence conditions & License Compliance. M.S.c Environment
Landfill Management	
Senior Engineer:	Mr. Gary O'Brien.
	Manager of Castleknock / Mulhuddart
	Operational Area,
Senior Executive Parks	•
Superintendant:	Ruairi O'Dulaing.
•	Responsibility For Parks Development and
	transition
District Supervisor:	Ted Lynch Coolmine Depot District Supervisor.
	Responsibility for overseeing Landfill
	management operations
Assistant Foreman:	Paul Rattigan,
	Management of Landfill,

15.3 PROGRAMME FOR PUBLIC INFORMATION.

Public information can be viewed at the **Council's Headquarters** between 9.30 a.m. and 12.45 p.m. and 2.00 p.m. and 4.00 p.m. Monday to Friday (excluding public holidays), unless otherwise arranged by prior appointment.

• Facilities for viewing information from a computer or files are provided at Dunsink Facility office by prior arrangement with the Landfill Manager

- The website (www.fingalcoco.ie) was last updated in November 2010. It informs that the remediation and restoration phase is now complete, and also has the licence available for download.
- Site visits to **Dunsink Landfill** can be arranged by applying in writing to the Landfill Manager requesting a date and time for the proposed visit and indicating the number of visitors and the purpose of such a visit and whether any presentation is required. The use of cameras and video equipment during the visit must be agreed in advance with Fingal County Council. Such requests will be accommodated where possible. Operational and security matters will take precedence and visits may be cancelled at short notice.
- The work undertaken by Fingal County Council, the Irish Horse Welfare Trust and the local horse owners has been publicised through the media during the year, including a report on the RTE "Ear to the Ground" show.

16.0 STAFF TRAINING REPORT

As activities at the landfill have gradually decreased since the closure and restoration phases during 2008 and 2009, training requirements have also decreased. Manual Handling training of the site operatives took place in 2009. No training took place in 2011.

GLOSSARY

Aftercare	Any measures that are necessary to be taken in relation to the facility for the purposes of preventing
	environmental pollution following the cessation of the
	activity in question at a facility.
Annually	At approximately twelve monthly intervals.
Aquifer	A formation (e.g. body of rock, gravel or sand stratum)
	that is capable of storing significant quantities of water
	and through which groundwater moves.
Baseline monitoring	Monitoring in and around the location of a proposed
	facility so as to establish background environmental
	conditions prior to any development of the proposed
	facility.
Borehole	A shaft installed outside a waste area for the monitoring
	of and/or extraction of fanding gas/groundwater.
	boring. If installed within the waste area, it is called a
	well
Bunding / Berm	A dike or mound usually of clay or other inert material
g /	used to define limits of cells or phases or roadways; or
	to screen the operation of a landfill from adjacent
	properties; reducing noise, visibility, dust and litter
	impacts.
Capping	The covering of a landfill, usually with low
	permeability material (landfill cap).
Condensate	The liquid which forms within the gas pipe work due to
	the condensation of water vapour from landfill gas.
Detection limit.	The concentration of the determinant for which there is
	a 95% probability of detection when a single analytical result is obtained, detection being defined as obtaining a
	result is obtained, detection being defined as obtaining a result which is significantly greater $(n=0.05)$ than zero
	Also referred to as Limit of Detection.
Direct discharge	The introduction into groundwater of List I or II
0	substances without percolation through the ground or
	subsoil.
Downgradient	The direction towards which groundwater or surface
	water flows.
Emission	Meaning assigned by the EPA Act of 1992.
Flare unit	A device used for the combustion of landfill gas thereby
	Converting its methane content to carbon dioxide.
Gas wens	the waste area for the monitoring of and/or removal of
	landfill gas either actively through an extraction system
	or passively by venting
Groundwater	Groundwater is that part of the subsurface water which
	is in the saturated zone.
Hydrogeology	The study of the interrelationships of the geology of
	soils and rocks with groundwater.

Indirect discharge	The introduction into groundwater of List I or II
	substances after percolation through the ground or
	subsoil.
Inert landfill	A landfill that accepts only inert waste that fulfils the
	criteria set out in the Agency's draft manual "Waste
	Acceptance".
Lagoon	A land area used to contain liquid, e.g.leachate collected
	from landfill.
Landfill	Waste disposal facility used for the deposit of waste on
	to or in to land.
Landfill gas (LFG)	All gases generated from the landfilled waste.
Leachate	Any liquid percolating through the deposited waste and
	emitted from or contained within a landfill as defined in
	Section 5(1) of the Waste Management Act.
Leachate Well	Well installed within the waste area for the monitoring
	and/or extraction of leachate as opposed to borehole,
	which is the term, used when located outside the waste
	deposition area.
List I/II substances	Substances referred to in the EU Directives on
	Dangerous Substances (76/464/EEC) and Groundwater
	(80/68/EC).
Lower explosive limit (LE	L)The lowest percentage concentration by volume of a
	mixture of flammable gas with air which will propagate
	a flame at 25°C and atmospheric pressure.
Macroinvertebrate	Larger invertebrate animals visible to the eye. Usually
	defined as those that are retained by a net or sieve of
	mesh size 0.6mm.
Minimum reporting value	This is the lowest concentration of a substance that can
	be determined with a known degree of confidence. It is
	a matrix dependent and not necessarily equivalent to the
	Limit of Detection of the analytical system but is
	generally a multiple of that value which reflects the
	robustness and reproducibility of the test method as
	applied to the specific matrix. Also referred to as the
	limit of quantitation or practical reporting limit.
Noise Sensitive Location	(NSL) Any dwelling-nouse, notel or nostel, health
	building, educational establishment, place of worship of
	entertainment, or any other facility of area of mgn
	amenity which for its proper enjoyment requires the
Quantanly	At approximately three monthly intervale
Quarterly Bossiving water	At approximately three monthly intervals.
Neverving water	river lake estuary or see into which water or
	nivel, lake, estuary of sea, linto which water of
Restoration	Works carried out on a landfill site to allow planned
NUSIUI AUUII	oftenise
Substrata	River hed or bottom on or in which invertebrates live
Tava	Nemod toxonomia ground Lloyally family or apaging
	Namen laxonomic onome inclianto familio di chamae

Trigger level	A parameter value specified in the licence, the												
	achievement or exceedance of which requires certain												
	actions to be taken by the licensee.												
Upper explosive limit (LEL) The highest percentage concentration by volume of a													
	mixture of flammable gas with air which will propagate												
	a flame at 25°C and atmospheric pressure.												
Void space	Space available to deposit waste.												
Water balance	A calculation to estimate a volume of liquid generated.												
	In the case of landfills, water balance normally refers to												
	leachate generation volumes.												

APPENDIX I

Q1 - Dunsink Groundwater March 2011

Parameter	Unit	Threshold Value	внз	BH3 Control Values	BH3 Trigger Values	BH4	BH4 Control Values	BH4 Trigger Values	BH16	BH16 Control Values	BH16 Trigger Values	BH27	BH27 Control Values	BH27 Trigger Values
pН	pH Units	6.5 - 9.5 ¹	7.3	8	8.38	7.22	8.2	8.59	7.58	8.24	8.64	7.17	8.18	8.57
Conductivity	mS/cm	1.875	1.21	1.231	1.289	1.25	1.352	1.414	0.670	0.8379	0.8778	1.010	1.282	1.343
Temperature	°C	-	11.2	-	-	9.4	-	-	9.7	-	-	10.8	-	-
Ammoniacal Nitrogen	mg/l	0.175	<0.2	0.42	0.44	<0.2	0.31	0.33	<0.2	0.21	0.22	<0.2	1.89	1.98
Total Organic Carbon	mg/l	N-A-C ¹	<3.0	6.3	6.6	3.04	6.3	6.6	3.12	6.3	6.3	3.42	5.25	5.5

Parameter	Unit	Threshold Value	BH31	BH31 Control Values	BH31 Trigger Values	BH32	BH32 Control Values	BH32 Trigger Values	BH33	BH33 Control Values	BH33 Trigger Values	BH34	BH34 Control Values	BH34 Trigger Values	BH35	BH35 Control Values	BH35 Trigger Values
рН	pH Units	6.5 - 9.5 ¹	7.65	8.39	8.79	7.44	8.18	8.6	7.68	8.58	8.99	7.1	8.61	9.02	7.75		
Conductivity	mS/cm	1.875	0.650	0.791	0.828	0.690	1.227	1.286	0.640	0.852	0.892	0.860	0.998	1.045	0.760	Control 8	& Triaaer
Temperature	°C	-	11.0	-	-	11.1	-	-	10.1	-	-	7.1	-	-	11.6	values	not yet
Ammoniacal Nitrogen	mg/l	0.175	<0.2	1.575	1.65	<0.2	0.735	0.77	<0.2	0.21	0.22	<0.2	0.21	0.22	0.433	deter	mined
Total Organic Carbon	mg/l	N-A-C ¹	<3.0	8.4	8.8	<3	5.25	6	<3	5.25	5.5	4.83	6.3	6.6	<3		

Threshold value = Groundwater regulations SI 9 of 2010

¹ = Where no threshold value exists results are compared to EPA I.G.V. from Table 3.1 of EPA document "Towards Setting Guideline Values for the protection of Groundwater in Ireland"

Shading & Bold = Value has exceeded threshold value

Shading = Value has exceeded the Control Value

Shading = Value has exceeded Trigger Value

Sampled on 15th March 2011

Analysis conducted by Alcontrol Laboratories Ltd.

Q2 - Dunsink Groundwater May 2011

Parameter	Unit	Threshold Value	внз	BH3 Control Values	BH3 Trigger Values	BH4	BH4 Control Values	BH4 Trigger Values	BH16	BH16 Control Values	BH16 Trigger Values	BH27	BH27 Control Values	BH27 Trigger Values
pН	pH Units	6.5 - 9.5 ¹	8.01	8	8.38	8.28	8.2	8.59	7.87	8.24	8.64	7.9	8.18	8.57
Conductivity	mS/cm	1.875	1.41	1.231	1.289	1.499	1.352	1.414	0.572	0.8379	0.8778	0.769	1.282	1.343
Temperature	°C	-	11.5	-	-	13.1	-	-	11.3	-	-	12	-	-
Ammoniacal Nitrogen	mg/l	0.175	0.12	0.42	0.44	0.07	0.31	0.33	0.09	0.21	0.22	0.09	1.89	1.98
Total Organic Carbon	mg/l	N-A-C ¹	3	6.3	6.6	4	6.3	6.6	3	6.3	6.3	2	5.25	5.5

Parameter	Unit	Threshold Value	BH31	BH31 Control Values	BH31 Trigger Values	BH32	BH32 Control Values	BH32 Trigger Values	BH33	BH33 Control Values	BH33 Trigger Values	BH34	BH34 Control Values	BH34 Trigger Values	BH35	BH35 Control Values	BH35 Trigger Values
рН	pH Units	6.5 - 9.5 ¹	8.05	8.39	8.79	8.28	8.18	8.6	7.9	8.58	8.99	7.69	8.61	9.02	7.97		
Conductivity	mS/cm	1.875	0.581	0.791	0.828	0.566	1.227	1.286	0.495	0.852	0.892	0.555	0.998	1.045	0.612	Control 8	k Triaaer
Temperature	°C	-	11.3	-	-	11.3	-	-	11.2	-	-	10	-	-	12.6	values	not yet
Ammoniacal Nitrogen	mg/l	0.175	0.11	1.575	1.65	0.12	0.735	0.77	0.22	0.21	0.22	0.17	0.21	0.22	0.22	deteri	minea
Total Organic Carbon	mg/l	N-A-C ¹	4	8.4	8.8	3	5.25	6	3	5.25	5.5	5	6.3	6.6	2		

Threshold value = Groundwater regulations SI 9 of 2010

¹ = Where no threshold value exists results are compared to EPA I.G.V. from Table 3.1 of EPA document "Towards Setting Guideline Values for the protection of Groundwater in Ireland"

Shading & Bold = Value has exceeded threshold value

Shading = Value has exceeded the Control Value

Shading = Value has exceeded Trigger Value

Sampled on 11th May 2011

Analysis conducted by Alcontrol Laboratories Ltd.

Dunsink Q3 2011 GW

											Groundwa																
				BH3	BH3		BH4	BH4		BH16	BH16		BH27	BH27		BH31	BH31		BH32	BH32		BH33	BH33		BH34	BH34	
PARAMETER	UNIT	Threshold Value	BH3	Control	Trigger	BH4	Control	Trigger	BH16	Control	Trigger	BH27	Control	Trigger	BH31	Control	Trigger	BH32	Control	Trigger	BH33	Control	Trigger	BH34	Control	Trigger	BH35
				Values	Values		Values	Values		Values	Values		Value	Values		Values	Values		Values	Values		Values	Values		Values	Values	
pH Value	units	6.5 - 9.5	8.03	8	8.38	8.06	8.2	8.59	8.38	8.24	8.64	8.43	8.18	8.57	7.95	8.39	8.79	8.61	8.18	8.6	8.29	8.58	8.99	8.54	8.61	9.02	8.54
Conductivity	mS/cm	1.875	1.454	1.231	1.289	1.421	1.352	1.414	0.595	0.838	0.878	0.816	1.282	1.343	0.571	0.791	0.828	0.586	1.227	1.286	0.522	0.852	0.892	-	0.998	1.045	0.645
Ammonical Nitrogen as NH4-N	N mg/l	0.175	<0.03	0.42	0.44	0.14	0.315	0.33	0.05	0.21	0.22	<0.03	1.89	1.98	0.26	1.575	1.65	1.46	0.735	0.77	<0.03	0.21	0.22	-	0.21	0.22	<0.03
Dissolved Oxygen (O2)	O2 mg/l	N-A-C	6	-	-	7	-	-	6	-	-	6	-	-	7	-	-	7	-	-	6	-	-	5	-	-	8
Chloride (Cl)	Cl mg/l	187.5	221	76.65	80.3	200	91.35	95.7	22	40.95	42.9	48.2	75.6	79.2	25.6	32.55	34.1	25.2	26.25	27.5	16.5	28.35	29.7	18	32.55	34.1	25.2
Potassium (K)	K mg/l	5 ¹	3.7	5.25	5.5	4.1	7.77	8.14	1.5	3.78	3.96	1.9	3.36	3.52	1.7	4.41	4.62	2.8	6.72	7.04	2	5.25	5.5	2.5	3.99	4.2	1.8
Sodium (Na)	Na mg/l	150	15.5	51.24	53.68	111.7	37.8	39.6	15	21	22	26.1	47.25	49.5	15.9	25.2	26.4	16.4	21.31	22.33	15.5	82.95	86.9	25.7	64.58	67.7	23.1
Fluoride (F)	F mg/l	1 ¹	<0.3	0.315	0.33	<0.3	0.315	0.33	0.5	0.74	0.77	0.5	0.74	0.77	<0.3	0.945	0.99	<0.3	0.315	0.33	0.7	0.945	0.99	<0.3	0.32	0.3	1.2
Total Organic Carbon	C mg/l	N-A-C	<2	6.3	6.6	<2	6.3	6.6	<2	6.3	6.6	5	5.25	5.5	5	8.4	8.8	7	5.25	6	4	5.25	5.5	-	6.3	6.6	3
Total Oxidised Nitrogen (water)	N mg/l	N-A-C	<0.2	-	-	1.3	-	-	1.6	-	-	<0.2	-	-	<0.2	-	-	<0.2	-	-	<0.2	-	-	<0.2	-	-	<0.2
Calcium (Ca)	Ca mg/l	200 ¹	179.3	-	-	168.8	-	-	81	-	-	110.4	-	-	99.1	-	-	90.5	-	-	79.6	-	-	120.6	-	-	84.5
Cadmium (Cd)	Cd mg/l	0.003	< 0.0005	-	-	<0.0005	-	-	< 0.0005	-	-	< 0.0005	-	-	< 0.0005	-	-	<0.0005	-	-	<0.0005	-	-	<0.0005	-	-	<0.0005
Chromium (Cr)	Cr mg/l	0.037	< 0.0015	-	-	<0.0015	-	-	< 0.0015	-	-	< 0.0015	-	-	< 0.0015	-	-	< 0.0015	-	-	<0.0015	-	-	<0.0015	-	-	<0.0015
Copper (Cu)	Cu mg/l	1.5	< 0.007	-	-	<0.007	-	-	<0.007	-	-	<0.007	-	-	<0.007	-	-	<0.007	-	-	<0.007	-	-	<0.007	-	-	<0.007
Total Cyanide (Cn)*	Cn mg/l	0.037	< 0.01	-	-	<0.01	-	-	< 0.01	-	-	<0.01	-	-	< 0.01	-	-	< 0.01	-	-	< 0.01	-	-	0.01	-	-	< 0.01
Iron (Fe)	Fe mg/l	0.2 ¹	<0.02#	0.018	0.019	<0.02#	0.019	0.02	<0.02#	0.03	0.028	<0.02#	0.03	0.032	<0.02#	0.0441	0.0462	<0.02#	0.01365	0.0143	<0.02#	0.0147	0.0154	<0.02#	0.0304	0.0319	<0.02#
Lead (Pb)	Pb mg/l	0.018	< 0.005	-	-	< 0.005	-	-	< 0.005	-	-	< 0.005	-	-	< 0.005	-	-	< 0.005	-	-	< 0.005	-	-	<0.005	-	-	<0.005
Magnesium (Mg)	Mg mg/l	50 ¹	22.5	22.73	23.82	12.2	19.08	19.99	23.9	29.23	30.62	32.9	51.07	53.5	12.9	18.76	19.66	17.7	25.074	26.268	21.5	21.95	23.001	14.7	23.247	24.354	27
Manganese (Mn)	Mn mg/l	0.05 1	0.087	0.151	0.158	0.006	0.0294	0.0308	0.182	0.169	0.177	0.087	0.077	0.08	0.636	0.9135	0.957	0.071	0.0672	0.0704	<0.002	0.0483	0.0506	1.016	0.391	0.4103	0.107
Nickel (Ni)	Ni mg/l	0.015	0.005	0.0116	0.0121	< 0.002	0.042	0.044	< 0.002	0.0021	0.0022	0.003	0.063	0.066	<0.002	0.0105	0.011	<0.002	0.0105	0.011	<0.002	0.021	0.022	0.003	0.00525	0.0055	0.002
Mercury (Hg)	Hg mg/l	0.00075	< 0.001*	-	-	<0.001*	-	-	< 0.001*	-	-	< 0.001*	-	-	< 0.001*	-	-	<0.001*	-	-	<0.001*	-	-	<0.001*	-	-	<0.001*
Residue on Evaporation	mg/l	-	1147	-	-	981	-	-	417	-	-	646	-	-	481	-	-	446	-	-	395	-	-	-	-	-	491
Sulphate (soluble) (SO4)	SO4 mg/l	187.5	162.19	-	-	90.13	-	-	32.51	-	-	61.73	-	-	43.95	-	-	42.81	-	-	25.69	-	-	33.74	-	-	63.41
Zinc (Zn)	Zn mg/l	0.1 ¹	0.004	-	-	0.014	-	-	< 0.003	-	-	0.005	-	-	<0.003	-	-	0.003	-	-	<0.003	-	-	0.003	-	-	0.004
Boron (B)	B mg/l	0.75	0.085	-	-	0.04	-	-	0.074	-	-	0.086	-	-	0.042	-	-	0.054	-	-	0.036	-	-	0.039	-	-	0.085
Alkalinity (as CaCO3)	CaCO3 mg/l	N-A-C	240	-	-	272	-	-	242	-	-	382	-	-	240	-	-	236	-	-	246	-	-	352	-	-	272
Ortho Phosphate	P04 mg/l	-	<0.06	-	-	< 0.06	-	-	< 0.06	-	-	< 0.06	-	-	<0.06	-	-	<0.06	-	-	<0.06	-	-	< 0.06	-	-	<0.06

Threshold value = Groundwater regulations SI 9 of 2010 ¹ = Where no threshold value exists results are compared to EPA I.G.V. from Table 3.1 of EPA document "Towards Setting Guideline Values for the protection of Groundwater in Ireland" Shading = Value has exceeded threshold value Shading = Value has exceeded threshold value * Laboratory level of Detection is above IGV recommended level # Laboratory level of Detection is in excess of trigger/control value

Sampling was undertaken on the 14th September 2011. N-A-C= No abnormal change

Analysis conducted by Jones Laboratories, UK CE05977

Volatile Organic Compounds Dunsink

Units - µg/l

Job Number: CE05977 3rd Quarter 2011

Compound	Unit	LOD	BH3	BH4	BH31	BH32	BH33	BH34
Toluene-d8**	%	<0	92	96	96	98	91	94
4-Bromofluorobenzene**	%	<0	108	111	108	112	106	106
Dichlorodifluoromethane	µg/l	<2	<2	<2	<2	<2	<2	<2
Chloromethane	µg/l	<3	<3	<3	<3	<3	<3	<3
Vinyl chloride	µg/l	<2	<2	<2	<2	<2	<2	<2
Bromomethane	µg/l	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ua/l	<3	<3	<3	<3	<3	<3	<3
Trichlorofluoromethane	ua/l	<3	 <3	<3	<3	<3	<3	<3
1.1-Dichloroethene	µ=3,1 ⊔a/l	< 3	 <3	<3	< 3	<3	<3	<3
Dichloromethane	µ=3,1 ⊔a/l	< 3	 <3	<3	< 3	<3	<3	<3
Methyl tertiary butyl ether (MTBE)	µ9/!	<1	 <1	<1	<1	<1	<1	<1
trans-1 2-Dichloroethene	ua/l	< 3	 <3	<3	< 3	<3	<3	<3
1 1-Dichloroethane	ug/l	<3	 <3	<3	< 3	<3	< 3	<3
cis-1 2-Dichloroethene	ug/l	~3	 <3	<3	<3	<3	<3	<3
2 2-Dichloropropane	ug/l	<1	 <1	<1	<1	<1	<1	<1
Bromochloromethane	µg/1	<2	 <1	<1	<1	<1	<2	<2
Chloroform	µg/i	<2	 <2	<2	<2	<2	<2	<2
1 1 1-Trichloroothano	µg/1	~2	 <2	<2	<2	<2	<2	<2
	µg/i	~2	 <2	<2	<2	<2	<2	<2
Carbontotrachlarida	µg/i	<2	 < 2	~ ~ ~	< 2	< 2	< 2	<2
1 2 Disbloroothana	µg/i	<2	 <2	<2	<2	<2	<2	<2
1,2-Dichioroeuliane	µg/i	<z< td=""><td> <2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td></z<>	 <2	<2	<2	<2	<2	<2
Denzene	µg/i	<1	 <1	<1	<1	<1	<1	<1
	µg/i	<3	 <3	<3	<3	<3	<3	<3
1,2-Dichloropropane	µg/I	<2	 <2	<2	<2	<2	<2	<2
Dibromomethane	µg/I	<3	 <3	<3	<3	<3	<3	<3
Bromodichloromethane	µg/l	<2	 <2	<2	<2	<2	<2	<2
cis-1,3-Dichloropropene	µg/l	<2	 <2	<2	<2	<2	<2	<2
Toluene	µg/l	<2	 <2	<2	<2	<2	<2	<2
trans-1,3-Dichloropropene	µg/l	<2	<2	<2	<2	<2	<2	<2
1,1,2-Trichloroethane	µg/l	<2	<2	<2	<2	<2	<2	<2
1,3-Dichloropropane	µg/l	<2	<2	<2	<2	<2	<2	<2
Tetrachloroethene	µg/l	<3	<3	<3	<3	<3	<3	<3
Dibromochloromethane	µg/l	<2	<2	<2	<2	<2	<2	<2
1,2-Dibromoethane	µg/l	<2	<2	<2	<2	<2	<2	<2
Chlorobenzene	µg/l	<2	<2	<2	<2	<2	<2	<2
1,1,1,2-Tetrachloroethane	µg/l	<2	<2	<2	<2	<2	<2	<2
Ethylbenzene	µg/l	<2	<2	<2	<2	<2	<2	<2
m,p-Xylene	µg/l	<3	<3	<3	<3	<3	<3	<3
o-Xylene	µg/l	<2	<2	<2	<2	<2	<2	<2
Styrene	µg/l	<2	<2	<2	<2	<2	<2	<2
Bromoform	µg/l	<2	<2	<2	<2	<2	<2	<2
Isopropylbenzene	µg/l	<3	<3	<3	<3	<3	<3	<3
1,1,2,2-Tetrachloroethane	µg/l	<4	<4	<4	<4	<4	<4	<4
1.2.3-Trichloropropane	ua/l	<3	<3	<3	<3	<3	<3	<3
Bromobenzene	ua/l	<2	<2	<2	<2	<2	<2	<2
Propylbenzene	ua/l	<3	<3	<3	<3	<3	<3	<3
2-Chlorotoluene	ua/l	<3	<3	<3	<3	<3	<3	<3
1.3.5-Trimethylbenzene	ua/l	<3	<3	<3	<3	<3	<3	<3
4-Chlorotoluene	ua/l	<3	 <3	<3	<3	<3	<3	<3
tert-Butylbenzene	ua/l	< 3	 <3	<3	<3	<3	<3	<3
1 2 4-Trimethylbenzene	ua/l	< 3	 < 3	< 3	< 3	< 3	< 3	<3
sec-Butylbenzene	ua/l	< 3	 < 3	< 3	< 3	<3	< 3	<3
4-iso-Pronyltoluene	µ9/1	~3	 <3	<3	<3	<3	<3	<3
1 3-Dichlorobenzene	19/1 110/l	<3	 <3	<7	<3	-,-j 	<3	رې د ۲
1 4-Dichlorobenzene	P9/1	<3	 ~ ~ ~	~~	~3	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~3	~3
	µy/1	~3	 ~	~ 3	~3	~ 3	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
1 2-Dichlorobenzeno	µy/1	~3	 ~	~ 3	~3	~ >	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
1.2-Dibromo-2-chloropropone	µ9/1	<.>	 < <u>,</u>	< 3	< 3	< 3	< 3	< <u>、</u>
	µy/I	< <u>2</u>	<2	<2	<2	<2	<2	<2
	µy/I	<.>	< 3	< 3	< 3	< 3	<3	<3
	µg/i	< 3	< 3	< 3	<3	< 3	< 3	<3
	µg/I	<2	 <2	<2	<2	<2	<2	<2
1,2,3-Trichloropenzene	µy/I	< 3	<3	<3	<3	<3	<3	<3

Semivolatiles Dunsink

Units - µg/l

White Young Green Ireland

Job Number: CE05977 3rd Quarter 2011

Compound	Unit	LOD	BH3	BH4	BH31	BH32	BH33	BH34
1,2,4-Trichlorobenzene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
1,2-Dichlorobenzene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
1,3-Dichlorobenzene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
1,4-Dichlorobenzene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2,4,5-Trichlorophenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2,4,6-Trichlorophenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2,4-Dichlorophenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2,4-Dimethylphenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2,4-Dinitrotoluene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2,6-Dinitrotoluene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2-Chloronaphthalene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2-Chlorophenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2-Methylnaphthalene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2-Methylphenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2-Nitroaniline (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
2-Nitrophenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
3-Nitroaniline (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
4-Bromophenylphenylether (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
4-Chloro-3-methylphenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
4-Chloroaniline (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
4-Chlorophenylphenylether (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
4-Methylphenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
4-Nitrophenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
4-Nitroaniline (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Azobenzene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Acenaphthylene (aq)	µg/I	<10	<10	<10	<10	<10	<10	<10
Acenaphthene (aq)	µg/I	<10	<10	<10	<10	<10	<10	<10
Anthracene (aq)	µg/I	<10	<10	<10	<10	<10	<10	<10
bis(2-Chloroethyi)ether (aq)	µg/i	<10	<10	<10	<10	<10	<10	<10
bis(2-Chioroethoxy)methane (aq)	µg/i	<10	<10	<10	<10	<10	<10	<10
Dis(2-Ethylnexyl) phthalate (aq)	µg/i	<10	<10	<10	<10	<10	<10	<10
Delizo(d)dillilideelle (dq)	µg/i	<10	<10	<10	<10	<10	<10	<10
BulyiDelizyi pillididle (dq) Banza(b)fluoranthana (ag)	µg/i	<10	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene (aq)	µg/i	<10	<10	<10	<10	<10	<10	<10
Benzo(a)pyrene (aq)	µg/i	<10	<10	<10	<10	<10	<10	<10
Benzo(a h i)pervlene (aq)	µg/i	<10	<10	<10	<10	<10	<10	<10
Carbazole (ag)	ug/l	<10	<10	<10	<10	<10	<10	<10
Chrysene (ag)	μg/1 μα/Ι	<10	<10	<10	<10	<10	<10	<10
Dibenzofuran (ag)	μg/1 μα/Ι	<10	<10	<10	<10	<10	<10	<10
n-Dibutyl phthalate (ag)	μg/1 μα/Ι	<10	<10	<10	<10	<10	<10	<10
Diethyl phthalate (ag)	ua/l	<10	<10	<10	<10	<10	<10	<10
Dibenzo(a , h)anthracene (aq)	ua/l	<10	<10	<10	<10	<10	<10	<10
Dimethyl phthalate (ag)	ua/l	<10	<10	<10	<10	<10	<10	<10
n-Dioctyl phthalate (ag)	ua/l	<10	<10	<10	<10	<10	<10	<10
Fluoranthene (ag)	µg/l	<10	<10	<10	<10	<10	<10	<10
Fluorene (ag)	ua/l	<10	<10	<10	<10	<10	<10	<10
Hexachlorobenzene (ag)	µg/l	<10	<10	<10	<10	<10	<10	<10
Hexachlorobutadiene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Pentachlorophenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Phenol (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
n-Nitroso-n-dipropylamine (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Hexachloroethane (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Nitrobenzene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Naphthalene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Isophorone (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Hexachlorocyclopentadiene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Phenanthrene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Indeno(1,2,3-cd)pyrene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10
Pyrene (aq)	µg/l	<10	<10	<10	<10	<10	<10	<10

Q4 - Dunsink Groundwater November 2011

Parameter	Unit	Threshold Value	внз	BH3 Control Values	BH3 Trigger Values	BH4	BH4 Control Values	BH4 Trigger Values	BH16	BH16 Control Values	BH16 Trigger Values	BH27	BH27 Control Values	BH27 Trigger Values
pН	pH Units	6.5 - 9.5 ¹	7.96	8	8.38	8.05	8.2	8.59	8.07	8.24	8.64	7.93	8.18	8.57
Conductivity	mS/cm	1.875	1.159	1.231	1.289	0.748	1.352	1.414	0.433	0.8379	0.8778	0.705	1.282	1.343
Temperature	°C	-	11.5	-	-	11.1	-	-	12.5	-	-	11.5	-	-
Ammoniacal Nitrogen	mg/l	0.175	0.02	0.42	0.44	0.03	0.31	0.33	0.06	0.21	0.22	0.04	1.89	1.98
Total Organic Carbon	mg/l	N-A-C ¹	4	6.3	6.6	8	6.3	6.6	6	6.3	6.3	14	5.25	5.5

Parameter	Unit	Threshold Value	BH31	BH31 Control Values	BH31 Trigger Values	BH32	BH32 Control Values	BH32 Trigger Values	внзз	BH33 Control Values	BH33 Trigger Values	BH34	BH34 Control Values	BH34 Trigger Values	BH35	BH35 Control Values	BH35 Trigger Values
рН	pH Units	6.5 - 9.5 ¹	8.02	8.39	8.79	7.38	8.18	8.6	7.79	8.58	8.99	7.73	8.61	9.02	7.95		
Conductivity	mS/cm	1.875	0.483	0.791	0.828	0.496	1.227	1.286	0.455	0.852	0.892	0.543	0.998	1.045	0.556	Control 8	& Triager
Temperature	°C	-	11.7	-	-	11.7	-	-	10.9	-	-	11.2	-	-	11.3	values	not yet
Ammoniacal Nitrogen	mg/l	0.175	0.56	1.575	1.65	0.08	0.735	0.77	0.05	0.21	0.22	0.12	0.21	0.22	0.15	deteri	mined
Total Organic Carbon	mg/l	N-A-C ¹	5	8.4	8.8	6	5.25	6	4	5.25	5.5	19	6.3	6.6	4		

Threshold value = Groundwater regulations SI 9 of 2010

¹ = Where no threshold value exists results are compared to EPA I.G.V. from Table 3.1 of EPA document "Towards Setting Guideline Values for the protection of Groundwater in Ireland"

Shading & Bold = Value has exceeded threshold value

Shading = Value has exceeded the Control Value

Shading = Value has exceeded Trigger Value

Sampled on 23rd November 2011

Analysis conducted by Jones Environmental Laboratory

APPENDIX II
Parameter	Unit	SI 272 of 2009	Salmonid Regs	SW2	SW7	SW9	SW10	SW11	SW17	SW18
рН	pH Units	6-9 (note 1)	≥6≤9	8.04	8.28	7.83	7.64	7.25	7.77	7.97
Conductivity	mS/cm	1 (note 2)	-	1.200	1.380	0.790	1.290	1.270	1.120	2.22
Temperature	°C	-	<10°C*	9.3	9.2	14.3	8.6	8.0	10.1	9
Dissolved Oxygen	%	80-120% saturation	50%>9	95.6	96.1	114.6	69.9	88.5	77.4	70.9
Ammoniacal Nitrogen#	mg/l	-	<1	0.279	<0.2	<0.2	<0.2	<0.2	1.01	0.599
BOD	mg/l	<=1.5 mean (note 3)	5	2.55	2.41	1.87	1.55	2.17	2.39	3.49
Total Suspended Solids	mg/l	-	25	146	6	12	4.5	9.5	2.5	22

Q1 - Dunsink Surface Water March 2011

SI 272 of 2009 = European Communities Environmental Objectives (Surface Water) Regulations 2009

Bold = Value has exceeded Surface Water Regulations

Salmonid Regs= European Communities (Quality of Salmonid Waters) Regulation , SI 293 of 1988.

Shading = Value has exceeded Salmonid Regulations

Standard for Ionised Ammonia = <1, Ionised Ammonia= total ammonium x 1.28-Results stated should be converted before being compared to the standard.

*=Second Schedule of Salmonid Regulations states " temperature must not exceed 10 degrees celsius during the period from 1 November to 30 April where species which need cold water for reproduction are present

Note 1 : Hard water - >100mg/I CACO3

Note 2 : In the absence of a standard for conductivity under SI 272 of 2009 or the Salmonid

Regulations SI 293 of 1988, a threshold value from SI 294 of 1989 (Quality of SW Intended for

Abstraction of Drinking Water) has been used

Note 3 : For waters achieving good status

Sampled on 15th March 2011 Analysis conducted by Alcontrol Laboratories Ltd.

Q1 - Dunsink Leachate Results March 2011

Parameter	Units	Leachate Sump	Lagoon
		15/03/2011	15/03/2011
рН	pH units	7.16	8.44
Conductivity	mS/cm	1.92	1.2
Temperature	°C	10.7	8.3
Ammoniacal Nitrogen#	mg/l	0.911	15.6
BOD	mg/l	<1	2.57
Total Suspended Solids	mg/l	<2	3.0
Dissolved Oxygen	mg/l	-	69.7
Dissolved methane CH4	mg/l	-	-

Sampled on 15th March 2011

Analysis conducted by Alcontrol Laboratories Ltd.

Q2 - Dunsink Surface Water May 2011

Parameter	Unit	SI 272 of 2009	Salmonid Regs	SW2	SW7	SW9	SW10	SW11	SW11 ⁽²⁾	SW17	SW17 ⁽²⁾	SW18	SW18 ⁽²⁾	SW18 ⁽³⁾	SW18 ⁽⁴⁾	SW19 ⁽²⁾	WWSW2 ⁽²⁾
рН	pH Units	6-9 (note 1)	≥6≤9	8.16	8.11	8.13	8.19	7.99	8.02	8.51	8.09	8.24	8.16	7.85	8.35	8.04	8.48
Conductivity	mS/cm	1 (note 2)	-	0.810	0.742	0.691	0.869	1.087	1.057	0.804	0.836	0.76	0.776	0.643	0.45	0.873	1.09
Temperature	°C	-	<10°C*	13.5	18	17.2	12.8	13.7	11.2	16.8	12.5	11.9	11.5	13.4	13.6	11	11
Dissolved Oxygen	%	80-120% saturation	50%>9	9.0	10.0	9.0	9.0	3.0	-	8.0	-	8.0	-	-	-	-	-
Ammoniacal Nitrogen#	mg/l	-	<1	0.09	0.27	0.18	0.5	6.95	0.03	7.58	0.32	6.05	5.37	4.65	1.27	0.1	0.628
BOD	mg/l	<=1.5 mean (note 3)	5	<1	<1	<1	<1	7	4	1	-	1	-	-	-	-	-
Total Suspended Solids	mg/l	-	25	32	43	310	15	<10	-	21	-	25	-	-	-	-	-

SI 272 of 2009 = European Communities Environmental Objectives (Surface Water) Regulations 2009

Bold = Value has exceeded Surface Water Regulations

Salmonid Regis European Communities (Quality of Salmonid Waters) Regulation , SI 293 of 1988. Shading = Value has exceeded Salmonid Regulations

* Standard for Ionised Ammonia = <1, Ionised Ammonia= total ammonium x 1.28-Results stated should be converted before being compared to the standard. *=Second Schedule of Salmonid Regulations states " temperature must not exceed 10 degrees celsius during the period from 1 November to 30 April where species

which need cold water for reproduction are present Note 1 : Hard water - >100mg/I CACO3

Note 2 : In the absence of a standard for conductivity under SI 272 of 2009 or the Salmonid Regulations SI 293 of 1988, a threshold value from SI 294 of 1989 (Quality of SW Intended for

Abstraction of Drinking Water) has been used

Note 3 : For waters achieving good status

Sampled on 11th May 2011

(2) Sampled on 31st May 2011

(3) Sampled on 15th June 2011

(4) Sampled on 21st June 2011 Analysis conducted by Jones Environmental Forensics

Dunsink Q3 2011 SW

		Sur	face Water Re	esults						
PARAMETER	UNIT	SI 272 of 2009	Salmonid	SW2	SW7	SW9	SW10	SW11	SW17	SW18
pH Value	units	6-9 (note 1)	6-9	8.18	7.51	-	8.13	7.91	8.51	8.53
Conductivity	mS/cm	1	-	0.619	0.3	-	0.591	1.083	0.571	0.669
Ammonical Nitrogen as NH4-N	N mg/l	-	1	0.04	0.05	-	0.07	0.05	0.06	5.31
Dissolved Oxygen (O2)	O2 mg/l	80-120% saturation	50% >9	8	5	-	8	7	8	6
Chloride (Cl)	Cl mg/l	-	-	37.4	34.4	-	35.7	72.1	31.6	34
Potassium (K)	K mg/l	-	-	2.7	2.7	-	2.9	1.2	1.9	4.3
Sodium (Na)	Na mg/l	-	-	27.2	26.5	-	27.4	39	22.7	25.1
COD	02 mg/l	-	-	14	17	-	13	17	9	8
BOD	02 mg/l	<=1.5 mean (note 2)	5	<1	1	-	<1	1	1	3
Total Oxidised Nitrogen (water)	N mg/l	-	-	<0.2	<0.2	-	0.3	<0.2	1.3	1.9
Total Suspended Solids	mg/l	-	25	<10	<10	-	<10	<10	<10	<10
Calcium (Ca)	Ca mg/l	-	-	59	23.1	-	60	162.4	85.8	78.6
Cadmium (Cd)	Cd mg/l	0.15	-	<0.0005	<0.0005	-	<0.0005	<0.0005	<0.0005	<0.0005
Chromium (Cr)	Cr mg/l	0.0047	-	<0.0015	0.0021	-	0.0027	<0.0015	<0.0015	<0.0015
Copper (Cu)	Cu mg/l	0.03 (Note 3)	-	<0.007	<0.007	-	<0.007	<0.007	<0.007	<0.007
Iron (Fe)	Fe mg/l	-	-	0.03	0.053	-	0.03	<0.02	<0.02	0.025
Lead (Pb)	Pb mg/l	0.0072	-	<0.005	<0.005	-	<0.005	< 0.005	<0.005	< 0.005
Magnesium (Mg)	Mg mg/l	-	-	5.9	4.6	-	5.9	14.4	6.2	6.3
Manganese (Mn)	Mn mg/l	-	-	<0.002	0.005	-	<0.002	0.175	<0.002	0.003
Nickel (Ni)	Ni mg/l	0.02	-	0.004	0.004	-	0.004	0.008	0.002	0.004
Mercury (Hg)	Hg mg/l	0.00005	-	<0.001	< 0.001	-	<0.001	< 0.001	<0.001	< 0.001
Sulphate (soluble) (SO4)	SO4 mg/l	-	-	52.28	21.6	-	43.59	96.06	71.22	50.59
Zinc (Zn)	Zn mg/l	0.1	-	0.004	0.004	-	0.003	0.005	0.005	0.021
Alkalinity (as CaCO3)	CaCO3 mg/l	N-A-C	-	140	60	-	148	318	180	198
Boron (B)	B mg/l	-	-	0.04	0.031	-	0.04	0.07	0.04	0.03
ortho - phosphate	PO4 mg/l	-	-	<0.06	<0.06	-	<0.06	<0.06	<0.06	0.27

Legend: SI 272 of 2009 = European Communities Environmental Objectives (Surface Water) Regulations 2009 Bold = Value has exceeded Surface water Regulations Salmonid Regs= European Communities (Quality of Salmonid Waters) Regulation, 1988 Shading = Value has exceeded Salmonid Water Quality Standard Sampling was undertaken on 14th September 2011 Note 1 : Hard water - >100mg/I CACO3 Note 2 : For waters achieving good status Note 3 : The standard of 0.005mg/I applies where hardness <100mg/I CACO3; 0.03mg/I applies where hardness >100mg/I CACO3 N-A-C= No abnormal change

White Young Green Environmental

Analysis conducted by Jones Laboratories, UK

CE05977

Dunsink Q3 2011 Leachate

	Leachate Monito	ring	
PARAMETER	UNIT	LAG	LSP
pH Value	units	8.67	8.13
Conductivity	mS/cm	3.471	2.517
Ammonical Nitrogen as NH4-N	N mg/l	35.62	149.47
Dissolved Methane	CH4 mg/l	0.007	< 0.001
Chloride (Cl)	Cl mg/l	438.5	2.747
Potassium (K)	K mg/l	123.9	170
Sodium (Na)	Na mg/l	276.5	382.5
COD	02 mg/l	169	164
BOD	02 mg/l	16	13
Total Oxidised Nitrogen (water)	N mg/l	1.5	<0.2
Calcium (Ca)	Ca mg/l	31.1	118.6
Cadmium (Cd)	Cd mg/l	<0.0005	<0.0005
Chromium (Cr)	Cr mg/l	0.0017	0.0035
Copper (Cu)	Cu mg/l	<0.007	<0.007
Fluoride (F)	F mg/l	<0.3	<0.3
Iron (Fe)	Fe mg/l	0.152	0.525
Lead (Pb)	Pb mg/l	<0.005	<0.005
Magnesium (Mg)	Mg mg/l	45.5	46.6
Manganese (Mn)	Mn mg/l	0.006	0.731
Nickel (Ni)	Ni mg/l	0.027	0.038
Mercury (Hg)	Hg mg/l	<0.001	<0.001
Sulphate (soluble) (SO4)	SO4 mg/l	25.99	62.28
Zinc (Zn)	Zn mg/l	<0.003	<0.003
Boron (B)	B mg/l	1.159	1.271
ortho-phosphate	PO4 mg/l	<0.06	<0.06

Analysis conducted by Jones Laboratories, UK CE05977

Q4 - Dunsink Surface Water November 2011

Parameter	Unit	SI 272 of 2009	Salmonid Regs	SW2	SW7	SW9	SW10	SW11	SW17	SW18	wwsw2
рН	pH Units	6-9 (note 1)	≥6≤9	8.21	8.66		7.86	8.44	8.24	7.85	8.26
Conductivity	mS/cm	1 (note 2)	-	0.869	0.807		0.930	0.945	0.905	1.115	0.831
Temperature	°C	-	<10°C*	10.6	9.4	Drak	10.5	9.5	10.7	12.4	11.5
Dissolved Oxygen	%	80-120% saturation	50%>9	89.1	92.5	Diy	69.1	85.8	89.1	68.5	88.6
Ammoniacal Nitrogen#	mg/l	-	<1	0.04	0.05		0.05	0.05	0.05	1.75	0.1
BOD	mg/l	<=1.5 mean (note 3)	5	<1	1		<1	<1	<1	2	<1
Total Suspended Solids	mg/l	-	25	<10	<10		<10	16	<10	<10	<10

SI 272 of 2009 = European Communities Environmental Objectives (Surface Water) Regulations 2009

Bold = Value has exceeded Surface Water Regulations

Salmonid Regs= European Communities (Quality of Salmonid Waters) Regulation , SI 293 of 1988.

Shading = Value has exceeded Salmonid Regulations

Standard for Ionised Ammonia = <1, Ionised Ammonia= total ammonium x 1.28-Results stated should be converted before being compared to the standard.

*=Second Schedule of Salmonid Regulations states " temperature must not exceed 10 degrees celsius during the period from 1 November to 30 April where species which need cold water for reproduction are present

Note 1 : Hard water - >100mg/I CACO3

Note 2 : In the absence of a standard for conductivity under SI 272 of 2009 or the Salmonid

Regulations SI 293 of 1988, a threshold value from SI 294 of 1989 (Quality of SW Intended for

Abstraction of Drinking Water) has been used

Note 3 : For waters achieving good status

Sampled on 23rd November 2011

Analysis conducted by Jones Environmental Laboratory

Parameter	Units	Leachate Sump	Lagoon
		07/12/2011	23/11/2011
рН	pH units	7.89	8.00
Conductivity	mS/cm	3,590	723
Temperature	°C	-	-
Ammoniacal Nitrogen#	mg/l	116.17	5.64
Dissolved Methane	mg/l	2.738	<0.001

Q4 - Dunsink Leachate Results November/December 2011

Sampled on 23rd November and 7th December 2011 Analysis conducted by Jones Environmental Laboratory FINGAL COUNTY COUNCIL-DUNSINK LANDFILL ANNUAL ENVIRONMENTAL REPORT 2011

APPENDIX III

LANDFILL GAS MONITORING FORM (Baseline []

	Site Name	:	Site Addre	ess :				
	Dunsink Land	lfill		Dun	sink Long Dungin	k Co Dublin		
Operator	T.		Dunsink Lane, Dunsink., Co. Dublin					
Operator :	Fingal Cou Comhairte Co	nty Council ntae Fhine Gall	National Grid Reference :					
Site Status :	Operational		Date :	07/01/11		Time:	am	
Instrumer	nt Used :	Normal Analytical Range			Nex	t Calibration du	e:	
GA2000 Plus G	Gas Analyser	0-100%	0-100% CH ₄ , CO ₂ .			-		
Monitoring Personnel :			Weather :			Barometric Pressure :		
		NI / FN	Cold Cloudy		See individual readings			

Ambient [x])

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G35		0.1	0.1	20.8		985		0.2
G36		0.1	0.1	20.9		984		0.2
G37		<u>4.2</u>	<u>4.3</u>	0.2		984		8.3
G38		0.1	0.9	19.7		984		0.2
G39		0.1	<u>5.6</u>	10.5		984		0.2
G40		0.1	<u>7.4</u>	7.2		985		0.2
G23		0.1	0.1	20.3		989		0.1
Leachate Sump		0.3	<u>2.3</u>	20.3		985		0.6
Sewer		0.1	<u>2.0</u>	20.3		984		0.2
IPS INLET*		<u>40.5</u>	<u>34.5</u>	1.7				>>>

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFILL GAS MONITORING FORM

	Site Name	:	Site Address :						
	Dunsink Land	Ifill		Dun	sink Long Dunsin	k Co Dublin			
Operator	T.		Dunsink Lane, Dunsink., Co. Dublin						
Operator :	Fingal Cou Comhairte Co	nty Council ntae Fhine Gall	National Grid Reference :						
Site Status :	Operational		Date : 13/01/11			Time:	am		
Instrumer	nt Used :	Normal Ana	lytical Range N			Next Calibration due:			
GA2000 Plus G	Gas Analyser	0-100%	CH ₄ , CO ₂ .		-				
Monitoring Personnel :			Weather :			Barometric Pressure :			
		KF/FK	Cold Cloudy		See individual readings				

(Baseline []

Ambient [x])

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G35		0.0	0.1	50.6	0.0	995		0.0
G36		0.0	0.2	20.5	0.0	995		0.0
G37		0.0	1.0	18.3	0.0	995		0.1
G38		0.0	0.1	20.5	0.0	995		0.0
G39		0.1	<u>5.9</u>	10.3	0.0	995		0.1
G40		0.0	<u>7.3</u>	6.0	0.0	995		0.1
G23		0.0	0.0	19.0	0.0	995		0.0
Leachate Sump		0.1	0.3	20.5	0.0	996		0.2
Sewer		0.1	0.7	20.5	0.0	996		0.1
IPS INLET*		<u>39.6</u>	<u>24.4</u>	1.9	-	-		>>>

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFILL GAS MONITORING FORM

	Site Name	:	Site Addre	ess :						
	Dunsink Land	Ifill		Dun	sink Long Dunsir	lk Co Dublin				
Operator	3	Z!		Dunsink Lane, Dunsink., Co. Dublin						
Operator :	Fingal Cou Comhairte Co	Inty Council Intae Fhine Gall	National Grid Reference :							
Site Status :	Operational		Date :	20/01/11		Time:	am			
Instrume	nt Used :	Normal Ana	lytical Ran	ge	Nex	t Calibration du	ie:			
GFM430 Gas	s Analyser	0-100%	CH ₄ , CO ₂ .	CO ₂						
Monitoring Personnel :		DE/EV	Weather	Weather :		Barometric Pressure :				
		κΓ/ΓΚ	Cold Cloudy		See individual readings					

(Baseline []

Ambient [x])

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G35		0.0	0.1	20.6	0.0	1036	5.0	0.0
G36		0.0	0.6	50.5	0.0	1034	3.5	0.0
G37		0.0	<u>2.2</u>	14.7	0.0	1034	4.5	0.0
G38		0.0	<u>4.2</u>	15.3	0.0	1033	4.0	0.0
G39		0.0	<u>5.1</u>	12.2	0.0	1034	3.5	0.0
G40		0.0	<u>6.6</u>	9.2	0.0	1034	4.0	0.0
G23		0.0	0.0	18.4	0.0	1034	5.0	0.0
Leachate Sump		0.0	<u>3.6</u>	19.6	0.0	1035	4.4	2.2
Sewer		0.0	0.9	20.4	0.0	1036	5.5	0.0
IPS INLET*		<u>39.5</u>	<u>29.5</u>	1.7	-			>>>

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

Creative minds safe hands

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	A	mbient [x])		
	Site Name	:	Site Addre	SS :					
	Dunsink Land	fill		Dunsink Lane Dunsink, Co. Dublin					
Omeratori	Operator : Fingal County Council								
Operator :	Fingal Cou Comhairte Co	Inty Council Intae Fhine Gall	National Grid Reference :						
Site Status :	Operational		Date : 26/01/11		Time:	am			
Instrume	nt Used :	Normal Ana	lytical Rang	ge	Nex	Next Calibration due:			
LMSx Multigas La	MSx Multigas Landfill Analyser 0-100%		CH ₄ , CO ₂ .		Sep-11				
Monitoring Personnel · PE/CD		Weather:		Barome		Pressure :			
monitoring	Monitoring Personnel : RF/SD			Cloudy/Cool See individual readir			adings		

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	02 % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G3		0.0	0.0	20.4	0.0	1012	4.5	0.0
G6		0.0	1.2	20.1	0.0	1010	5.0	0.0
G7		0.0	0.0	20.6	0.0	1010	5.0	0.0
G8		0.0	0.0	20.5	0.0	1009	5.0	0.0
G9		0.0	1.0	19.2	0.0	1010	4.5	0.0
G10		0.0	1.5	18.3	0.0	1011	5.0	0.0
G12		0.0	0.1	20.2	0.0	1011	5.5	0.0
G13		0.0	0.6	19.7	0.0	1011	5.0	0.0
G18		0.0	0.0	19.5	0.0	1011	5.0	0.0
G21		0.0	0.3	20.2	0.0	1012	4.5	0.0
G23		0.0	0.0	20.1	0.0	1010	4.5	0.0
G35		0.0	0.4	20.0	0.0	1012	4.5	0.0
G36		0.0	<u>3.2</u>	19.0	0.0	1012	4.5	0.0
G37		0.5	<u>5.7</u>	0.6	0.0	1012	4.5	12.2
G38		0.0	<u>5.1</u>	12.5	0.0	1012	4.5	0.0
G39		0.0	<u>5.3</u>	11.2	0.0	1012	4.5	0.0
G40		0.0	<u>6.8</u>	8.6	0.0	1011	4.5	0.0
G41		0.0	0.0	20.4	0.0	1011	5.0	0.0
G42		0.0	0.0	20.4	0.0	1012	5.0	0.0
G43		0.0	<u>2.1</u>	16.8	0.0	1010	4.5	0.0
G44		0.0	<u>5.6</u>	12.8	0.0	1010	5.5	0.0
Leachate Sump		0.0	0.9	20.2	0.0	1012	5.5	0.0
Sewer		0.0	0.6	20.1	0.0	1013	8.5	0.0
IPS INLET*								

⁶ Note monitoring completed manually with a portable gas analyser while the continuous gas analyser is being repaired

LANDFILL GAS MONITORING FORM

	Site Name	:	Site Addre	ess :					
	Dunsink Land	Ifill		Dunsink Lane Dunsink, Co Dublin					
Operator	Operator : Fingal County Council Comburie Contar Phine Galt		Dunsink Lane, Dunsink., CO. Dublin						
Operator :			National Grid Reference :						
Site Status :			Date :	02/02/11		Time:	am		
Instrumer	nt Used :	Normal Ana	lytical Range		Next Calibration due:				
GA2000 Plus G	GA2000 Plus Gas Analyser 0-100%		CH ₄ , CO ₂ .		-				
Monitoring Personnel · DE/EK		Weather :		Barometric Pressur		Pressure :			
Monitoring Personnel : RF/FK		KF/FK	Cold Cloudy	/		See individual readings			

(Baseline []

Ambient [x])

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G35		0.0	0.2	20.6	0.0	1006	14.0	0.0
G36		0.0	<u>4.4</u>	16.2	0.0	1006	11.5	0.0
G37		<u>1.2</u>	<u>3.9</u>	4.7	0.0	1004	10.0	28.3
G38		0.0	<u>3.4</u>	15.7	0.0	1004	11.0	0.0
G39		0.0	<u>5.5</u>	14.9	0.0	1005	12.0	0.0
G40		0.0	<u>6.8</u>	8.5	0.0	1011	14.0	0.0
G23		0.0	0.0	17.1	0.0	1006	11.5	0.0
Leachate Sump		0.0	0.3	20.6	0.0	1004	12.5	0.0
Sewer		0.0	0.5	20.6	0.0	1007	13.0	0.0
IPS INLET*		<u>42.5</u>	<u>34.5</u>	1.6	-	-		>>>

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFILL GAS MONITORING FORM

	Site Name	:	Site Addre	ess :				
	Dunsink Land	Ifill		Dun	sink Long Dungin	k Co Dublin		
Operator I	Operator : Fingal County Council Comhairic Contar Phine Gall		Durisink Lane, Durisink., CO. Dublin					
Operator :			National Grid Reference :					
Site Status :	Operational		Date :	11/02/11		Time:	am	
Instrumer	nt Used :	Normal Ana	lytical Range		Next Calibration due:		e:	
GA2000 Plus G	GA2000 Plus Gas Analyser 0-100%		CH ₄ , CO ₂ .			-		
Monitoring Personnel : RF/SD		Weather	:		Barometric Pressure :			
		NI / 3D	Warm Clou	dy		See individual readings		

(Baseline []

Ambient [x])

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G35		0.0	0.0	21.0	0.0	997	8.3	0.0
G36		0.0	0.6	20.3	0.0	997	8.3	0.0
G37		0.0	<u>1.5</u>	14.1	0.0	996	8.7	0.0
G38		0.0	<u>3.3</u>	11.9	0.0	996	8.6	0.0
G39		0.0	<u>3.4</u>	11.0	0.0	995	8.2	0.0
G40		0.0	<u>5.1</u>	8.7	0.0	995	8.0	0.0
G23		0.0	0.0	20.2	0.0	994	7.9	0.0
Leachate Sump		0.2	0.7	20.6	0.0	994	8.5	3.0
Sewer		0.0	<u>1.5</u>	20.5	0.0	997	8.8	0.7
IPS INLET*								

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFILL GAS MONITORING FORM

	Site Name	:	Site Addre	ess :					
	Dunsink Land	lfill		Dun	sink Long Dungin	k Co Dublin			
Operator	Operator : Fingal County Council								
Operator :	Fingal Cou Comhairte Co	nty Council ntae Fhine Gall	National Grid Reference :						
Site Status :	Operational		Date :	e: 16/02/11		Time:	am		
Instrumer	nt Used :	Normal Ana	lytical Range		Next Calibration due:				
GA2000 Plus G	GA2000 Plus Gas Analyser 0-100%		CH ₄ , CO ₂ .		-				
Monitoring Personnel · PE/SD		Weather :			Barometric Pressure :				
Monitoring Personnel : RF/SD		Warm Clou	dy		See individual readings				

(Baseline []

Ambient [x])

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G35		0.0	0.0	19.9	0.0	979	5.7	0.0
G36		0.0	0.0	21.0	0.0	981	8.0	0.0
G37		0.0	1.2	19.9	0.0	980	8.2	0.0
G38		0.0	0.0	21.0	0.0	981	8.2	0.0
G39		0.0	<u>2.6</u>	14.3	0.0	981	8.0	0.0
G40		0.0	<u>3.3</u>	9.6	0.0	980	8.7	0.0
G23		0.0	<u>4.7</u>	8.1	0.0	981	6.7	0.0
Leachate Sump		<u>1.6</u>	<u>4.4</u>	19.0	0.0	982	5.9	31.5
Sewer		0.1	2.0	20.4	0.0	982	10.4	1.8
IPS INLET*		<u>57.5</u>	<u>30.5</u>	1.6				

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

Creative minds safe hands

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []		Ambient [x])		
	Site Name	:	Site Addres	ss :					
	Dunsink Land	Ifill		Duncink Lane Duncink Co Dublin					
On each an i	Operator : Fingal County Council								
Operator :	Fingal Con Comhairle Co	unty Council Intae Fhine Gall	National Grid Reference :						
Site Status :	Operational		Date : 25/02/11		Time:				
Instrume	nt Used :	Normal Ana	lytical Range		Nex	Next Calibration due:			
LMSx Multigas La	MSx Multigas Landfill Analyser 0-100%		CH ₄ , CO ₂ .		Sep-11				
Monitoring Personnol · DE/E/		Weather:		Bar		c Pressure :			
monitoring	Monitoring Personnel : RF/FK			Cloudy / Cool See individual reading			eadings		

...

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G3		0.0	0.0	20.7	0.0	945	12.5	0.0
G6		0.0	<u>2.1</u>	17.9	0.0	940	12.5	0.0
G7		0.0	0.0	20.9	0.0	950	12.0	0.0
G8		0.0	0.0	20.8	0.0	943	12.5	0.0
G9		0.0	1.3	18.3	0.0	942	13.0	0.0
G10		0.0	1.0	19.1	0.0	944	13.5	0.0
G12		0.0	0.0	20.7	0.0	943	15.0	0.0
G13		0.0	0.7	19.8	0.0	930	14.0	0.0
G18		0.0	0.2	20.5	0.0	944	12.0	0.0
G21		0.0	0.6	20.5	0.0	946	11.5	0.0
G23		0.0	0.0	18.4	0.0	939	12.5	0.0
G35		0.0	0.0	20.7	0.0	946	12.0	0.0
G36		0.0	<u>2.1</u>	19.5	0.0	946	13.5	0.0
G37		0.0	0.0	20.6	0.0	948	13.0	0.0
G38		0.0	<u>2.9</u>	16.3	0.0	945	12.0	0.0
G39		0.0	<u>3.9</u>	9.6	0.0	946	13.0	0.0
G40		0.0	<u>6.6</u>	8.5	0.0	945	11.5	0.0
G41		0.0	0.0	20.7	0.0	945	12.5	0.0
G42		0.0	0.0	20.7	0.0	945	11.0	0.0
G43		0.0	1.5	19.5	0.0	949	12.0	0.0
G44		0.0	<u>5.3</u>	11.2	0.0	949	12.5	0.0
Leachate Sump		0.0	0.5	20.5	0.0	946	11.5	0.0
Sewer		0.0	1.1	20.4	0.0	947	16.0	0.0
IPS INLET*		<u>41.5</u>	<u>29.4</u>	1.7	-	-	-	-

* Note monitoring completed manually with a portable gas analyser while the continuous gas analyser is being repaired

LANDFILL GAS MONITORING FORM

	Site Name	:	Site Addre	ess :					
	Dunsink Land	Ifill		Dun	sink Long Dunsin	k Co Dublin			
Operator	Operator : Fingal County Council								
Operator :	Fingal County Council Comhairle Contae Fhine Gell		National Grid Reference :						
Site Status :	Operational		Date :	03	3/03/11	Time:	am		
Instrumer	nt Used :	Normal Ana	lytical Range		Next Calibration due:				
GA2000 Plus G	GA2000 Plus Gas Analyser 0-100%		CH ₄ , CO ₂ .		-				
Monitoring Personnel · EK/SD		Weather :		Barometric Pressur		Pressure :			
Monitoring Personnel : FK/		FN/3D	Cold Cloudy			See individual re	adings		

(Baseline []

Ambient [x])

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G35		0.0	0.0	17.7	0.0	957	7.0	0.0
G36		0.0	0.8	20.0	0.0	950	10.5	0.0
G37		0.0	<u>2.1</u>	19.5	0.0	950	7.5	0.0
G38		0.0	<u>4.3</u>	11.7	0.0	949	8.0	0.0
G39		0.0	<u>5.0</u>	13.4	0.0	949	7.5	0.0
G40		0.0	<u>6.4</u>	13.0	0.0	949	8.0	0.0
G23		0.0	<u>6.5</u>	7.6	0.0	960	11.0	0.0
Leachate Sump		0.0	<u>1.7</u>	20.2	0.0	950	12.5	0.5
Sewer		0.0	1.1	20.4	0.0	1036	17.5	0.0
IPS INLET*		<u>45.5</u>	<u>32.4</u>	1.6	-	-		>>>

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFILL GAS MONITORING FORM

	Site Name	:	Site Addre	ess :					
	Dunsink Land	Ifill		Dun	sink Long Dungin	lk Co Dublin			
Operator	Operator : Fingal Council			Dunsink Lane, Dunsink., Co. Dublin					
Operator :	Fingal County Council Comhairle Contae Fhire Gall		National Grid Reference :						
Site Status :	Operational		Date :	10	0/03/11	Time:	am		
Instrumer	nt Used :	Normal Ana	lytical Range		Next Calibration due:				
GA2000 Plus G	GA2000 Plus Gas Analyser 0-1000		CH ₄ , CO ₂ .			-			
Monitoring Personnel :		EK (SD	Weather	:		Barometric Pressure :			
		1 N/ 3D	Cold Cloudy			See individual readings			

(Baseline []

Ambient [x])

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G35		0.0	0.0	14.7	0.0	1002	9.0	0.0
G36		0.0	0.4	20.3	0.0	1003	12.0	0.0
G37		0.0	<u>4.2</u>	14.2	0.0	1003	11.5	0.0
G38		0.0	<u>3.5</u>	8.6	0.0	1003	11.0	0.0
G39		0.0	<u>1.6</u>	17.9	0.0	1003	11.0	0.0
G40		0.0	<u>5.2</u>	13.3	0.0	1002	12.0	0.0
G23		0.0	<u>6.6</u>	7.3	0.0	1002	10.0	0.0
Leachate Sump		0.0	0.3	20.5	0.0	1003	10.5	0.0
Sewer		0.0	0.5	20.5	0.0	1004	11.5	0.0
IPS INLET*		<u>41.3</u>	<u>30.4</u>	1.5	-	-		>>>

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFILL GAS MONITORING FORM

	Site Name	:	Site Addre	ess :				
	Dunsink Land	Ifill		Dun	sink Long Dungin	k Co Dublin		
Operator	Operator : Fingal Council			Dunsnik Lane, Dunsnik, Co. Dubin				
Operator :	Fingal Cou Combainte Co	Fingal County Council Comhairle Centae Fhire Gall		National Grid Reference :				
Site Status :	Operational		Date :	15	5/03/11	Time:	am	
Instrumer	nt Used :	Normal Ana	lytical Range		Next Calibration due:			
GA2000 Plus G	GA2000 Plus Gas Analyser 0-10		0% CH ₄ , CO ₂ .		-			
Monitoring Personnel -	EK/SD	Weather	:		Barometric Pressure :			
Monitoring Personnei :		FK/SD	Cold Cloudy			See individual readings		

(Baseline []

Ambient [x])

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	16.2	0.0	1012	6.0	0.0
G35		0.0	0.0	18.9	0.0	1013	7.0	0.0
G36		0.0	<u>4.4</u>	13.9	0.0	1012	7.0	0.0
G37		0.0	<u>4.4</u>	6.9	0.0	1012	7.0	0.0
G38		0.0	<u>4.1</u>	13.2	0.0	1012	6.5	0.0
G39		0.0	<u>6.0</u>	11.2	0.0	1012	7.0	0.0
G40		0.0	<u>6.8</u>	7.2	0.0	1011	6.5	0.0
Leachate Sump		0.0	<u>2.2</u>	19.6	0.0	1012	6.0	0.0
Sewer		0.0	0.7	20.2	0.0	1014	17.0	0.0
IPS INLET*		=	=	-	-	-		>>>

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFILL GAS MONITORING FORM (Baseline [] Ambient [x]) Site Name : Site Address : Dunsink Landfill Dunsink Lane, Dunsink., Co. Dublin 2 **Operator** : Fingal County Council National Grid Reference : Site Status : Operational 23/03/11 Time: Date : Instrument Used : **Normal Analytical Range** Next Calibration due: 0-100% CH₄, CO₂. LMSx Multigas Landfill Analyser Sep-11 Weather: **Barometric Pressure : Monitoring Personnel :** FK/SD Sunny/Clear See individual readings

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G3		0.0	0.0	21.0	0.0	1035	10.0	0.0
G6		0.0	2.2	18.1	0.0	1036	19.5	0.0
G7		0.0	0.0	20.8	0.0	1036	19.0	0.0
G8		0.0	0.3	20.7	0.0	1038	19.0	0.0
G9		0.0	1.9	18.0	0.0	1037	18.5	0.0
G10		0.0	2.0	16.3	0.0	1038	21.5	0.0
G12		0.0	0.0	21.0	0.0	1034	20.5	0.0
G13		0.0	0.5	20.4	0.0	1033	16.0	0.0
G18		0.0	0.3	20.7	0.0	1034	19.0	0.0
G21		0.0	0.1	21.0	0.0	1036	18.0	0.0
G23		0.0	0.0	18.7	0.0	1036	15.0	0.0
G35		0.0	0.7	20.2	0.0	1034	16.5	0.0
G36		0.0	4.3	13.8	0.0	1034	15.0	0.0
G37		0.0	<u>2.3</u>	14.7	0.0	1035	15.0	0.0
G38		0.0	<u>5.6</u>	11.1	0.0	1034	13.5	0.0
G39		0.0	5.8	12.7	0.0	1033	14.5	0.0
G40		0.0	<u>5.9</u>	7.0	0.0	1036	18.0	0.0
G41		0.0	0.0	21.0	0.0	1036	17.5	0.0
G42		0.0	0.0	20.9	0.0	1036	16.5	0.0
G43		0.0	<u>2.0</u>	15.9	0.0	1036	15.5	0.0
G44		0.0	5.5	11.7	0.0	1036	16.5	0.0
Leachate Sump		0.0	0.2	20.9	0.0	1036	19.0	0.0
Sewer		0.0	0.2	20.9	0.0	1036	18.5	0.0
IPS INLET*		41.8	23.0	1.3	-	-	-	-

* Note monitoring completed manually with a portable gas analyser while the continuous gas analyser is being repaired

LANDFILL GAS MONITORING FORM

	Site Name	:	Site Addre	ess :				
	Dunsink Land	lfill		Dun	sink Lana Dunsin	ok Co Dublin		
Operator I	Operator : Fingal Council							
Operator :	Fingal Cou Comhairte Co	Fingal County Council Comhairle Centae Fhire Gell		National Grid Reference :				
Site Status :	Operational		Date :	30	0/03/11	Time:	am	
Instrumer	nt Used :	Normal Ana	lytical Range		Next Calibration due:			
GA2000 Plus G	GA2000 Plus Gas Analyser 0-1009		CH ₄ , CO ₂ .		-			
Monitoring Personnel :		EV (DE	Weather :			Barometric Pressure :		
		FN/KF	Cloudy/Cool		See individual readings			

(Baseline []

Ambient [x])

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	13.7	0.0	998	10.5	0.0
G35		0.0	0.8	19.1	0.0	1000	14.5	0.0
G36		0.0	<u>4.4</u>	13.5	0.0	1000	14.0	0.0
G37		0.0	<u>4.1</u>	7.8	0.0	1000	12.5	0.0
G38		0.0	0.0	20.5	0.0	1000	12.0	0.0
G39		0.0	0.0	20.5	0.0	1000	14.0	0.0
G40		0.0	<u>6.4</u>	5.4	0.0	1000	13.0	0.0
Leachate Sump		0.0	0.1	20.4	0.0	1000	13.5	0.0
Sewer		0.0	0.6	20.6	0.0	1000	16.5	0.0
IPS INLET*		=	=	-	-	-		>>>

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Α	mbient [x])		
	Site Name	:	Site Address :						
	Dunsink Landfill			Dunsink Lane Dunsink Co Dublin					
Operator	Operator : Fingal County Council								
Operator .	Fingal Cou Comhairle Co	Inty Council Intae Fhine Gall	National Grid Reference :						
Site Status :	Operational		Date :	te : 05/04/11		Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Next Calibration due:		le:		
GA2000 Plus (GA2000 Plus Gas Analyser 0-100%		o CH ₄ , CO ₂ .		-				
Monitoring Personnel : EK/SD		Weather :			Barometric Pressure :				
Monitoring Personnel :		1 14 30	Dull & Clou	Dull & Cloudy		See individual readings			

.

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.6	14.3	0.0	1006	15.0	0.0
G35		0.0	0.2	20.6	0.0	1006	16.0	0.0
G36		0.0	<u>4.4</u>	13.9	0.0	1005	17.0	0.0
G37		0.0	<u>1.5</u>	18.3	0.0	1006	15.5	0.0
G38		0.0	0.0	20.7	0.0	1006	16.5	0.0
G39		0.0	<u>4.7</u>	14.8	0.0	1005	19.5	0.0
G40		0.0	<u>7.2</u>	8.6	0.0	1006	16.0	0.0
Leachate Sump		0.0	0.0	20.8	0.0	1007	15.0	0.0
Sewer		0.0	0.7	20.6	0.0	1008	16.5	0.0
IPS INLET*		<u>41.3</u>	<u>24.4</u>	2.0	-	-		>>>

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM	I	(Baseline []		Ambient [x])		
	Site Name	:	Site Address :						
	Dunsink Land	lfill	Dunsink Lane Dunsink Co Dublin						
Operator	Operator : Fingal Council								
Operator :	Derator : Fingal County Council Combarie Contas Fhine Gelt			National Grid Reference :					
Site Status :	Operational		Date : 14/04/11 Time:				am		
Instrume	nt Used :	Normal Ana	lytical Range Next (ct Calibration due:			
GA2000 Plus (GA2000 Plus Gas Analyser 0-100%		CH ₄ , CO ₂ .		-				
Monitoring	Monitoring Personnel · EK/SD		Weather :		Barometric Pressure		ic Pressure :		
Monitoring Personnel : FK/SD		Warm & Cloudy			See individual readings				

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO₂ % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	14.6	0.0	1012	14.0	0.0
G35		0.0	0.7	19.3	0.0	1014	15.0	0.0
G36		0.0	<u>4.7</u>	13.3	0.0	1013	14.5	0.0
G37		0.0	<u>1.7</u>	17.8	0.0	1014	15.0	0.0
G38		0.0	<u>6.4</u>	10.8	0.0	1014	14.0	0.0
G39		0.0	<u>6.0</u>	12.2	0.0	1012	14.0	0.0
G40		0.0	<u>7.3</u>	7.5	0.0	1015	18.5	0.0
Leachate Sump		0.0	0.5	20.3	0.0	1015	15.0	0.0
Sewer		0.0	0.5	20.6	0.0	1014	17.5	0.0
IPS INLET*					-	-		>>>

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS MO	ONITORIN	g form		(Baseline [1	Ambient [x]
	Site Name	:	Site Address				
	Dunsink Land	fill		Dur	sial. Lana D.	mainly Ca Du	- U
1							
Operator :	Operator : Fingal County Combainte Contae		National Gri	National Grid Reference :			
Site Status :	Operational		Date :	2	20/04/11 Time:		
Instrume	Instrument Used :		Analytical Range		Next Calibrati		tion due:
LMSx Multigas L	andfill Analyser	0-100	0% CH ₄ , CO ₂ .			Sep-1	1
Maaitaaina	Democratic		Weather:			Baro	metric Pressure :
Monitoring	Monitoring Personnel :	FK & SD Fine and Warm			See individua		idual readings

				Resul	ts			
Borehole Number	Survey Depth	CH₄ % v/v	CO₂ % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G3		0.0	0.0	21.0	0.0	1011	24.5	0.0
G6		0.0	<u>1.9</u>	19.4	0.0	1012	22.5	0.0
G7		0.0	0.0	20.8	0.0	1012	22.0	0.0
G8		0.0	0.4	20.6	0.0	1012	20.0	0.0
G9		0.0	<u>2.0</u>	18.7	0.0	1012	19.0	0.0
G10		0.0	<u>4.8</u>	15.0	0.0	1012	26.5	0.0
G12		0.0	0.1	21.2	0.0	1008	22.0	0.0
G13		0.0	0.6	20.5	0.0	1007	21.0	0.0
G18		0.0	0.1	20.9	0.0	1010	22.0	0.0
G21		0.0	0.0	21.1	0.0	1011	26.0	0.0
G23		0.0	0.0	16.8	0.0	1010	18.5	0.0
G35		0.0	0.8	19.4	0.0	1011	23.0	0.0
G36		0.0	<u>4.7</u>	13.6	0.0	1011	20.5	0.0
G37		0.0	<u>4.2</u>	10.5	0.0	1012	20.0	0.0
G38		0.0	<u>8.1</u>	7.6	0.0	1010	20.0	0.0
G39		0.0	<u>3.8</u>	15.0	0.0	1010	26.0	0.0
G40		0.0	<u>7.1</u>	5.8	0.0	1012	27.5	0.0
G41		0.0	0.0	20.9	0.0	1012	26.0	0.0
G42		0.0	0.0	21.0	0.0	1012	20.5	0.0
G43		0.0	<u>5.9</u>	6.5	0.0	1012	26.0	0.0
G44		0.0	<u>7.5</u>	5.8	0.0	1012	26.0	0.0
achate Sump		0.0	0.0	21.3	0.0	1010	25.0	0.0
Sewer		0.0	0.1	21.0	0.0	1012	30.0	0.0
IPS INLET*		42.2	24.7	2.0	0.0	1010	20.0	0.0

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Α	mbient [x])
	Site Name	:	Site Addro	ess :			
	Dunsink Land	lfill		Dun	sink Lane Dunsin	k Co Dublin	
Operator :	3			Dun	SINK Lane, Dunsin	K., CO. Dubiin	
operator .	Comhairle Co	unty Council ontae Fhine Gall	National	Grid Refer	ence :		
Site Status :	Operational		Date :	2	7/04/11	Time:	am
Instrume	nt Used :	Normal Ana	lytical Ran	ige	Nex	t Calibration du	le:
GA2000 Plus (Gas Analyser	0-100%	CH ₄ , CO ₂ .			-	
Monitoring	Personnel :	PE/SD	Weather	:		Barometric	Pressure :
Pionitoring		10750	Warm & Su	inny		See individual re	eadings

.

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	15.6	0.0	1017	15.4	0.0
G35		0.0	0.7	18.8	0.0	1019	20.2	0.0
G36		0.4	<u>2.8</u>	14.3	0.0	1019	24.2	8.0
G37		0.2	<u>2.4</u>	14.6	0.0	1019	22.3	0.0
G38		0.2	<u>6.0</u>	6.4	0.0	1019	25.4	0.0
G39		0.0	0.3	20.5	0.0	1019	23.7	0.0
G40		0.0	<u>6.0</u>	5.5	0.0	1019	24.3	0.0
Leachate Sump		0.0	0.0	21.0	0.0	1019	15.2	0.0
Sewer		0.0	0.0	20.3	0.0	1020	29.3	0.0
IPS INLET*		<u>40.2</u>	<u>23.8</u>	1.5	0.0	1019	22.2	0.0

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	A	mbient [x])
	Site Name	:	Site Addro	ess :			
	Dunsink Land	lfill		Dup	sink Lana Dunsin	k Co Dublin	
Operator :	3			Dun	SITIK Latte, Dutisit	ik., CO. Dubiin	
Operator :	Fingal Cou Comhairle Co	anty Council antae Fhine Gall	National	Grid Refer	ence :		
Site Status :	Operational		Date :	04	4/05/11	Time:	am
Instrume	nt Used :	Normal Ana	lytical Ran	ige	Nex	t Calibration du	ue:
GFM430 Gas	s Analyser	0-100%	CH ₄ , CO ₂ .			Dec-11	
Monitoring	Personnel :	EK/DE	Weather	:		Barometric	Pressure :
Monitoring		I N/KF	Windy & Su	unny		See individual re	eadings

. . . .

Results

Borehole Number	Survey Depth	CH4 % v/v	CO ₂ % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.5	12.9	0.0	1012	14.5	0.0
G35		0.0	1.1	19.0	0.0	1013	16.0	0.0
G36		0.0	<u>5.5</u>	13.4	0.0	1012	15.5	0.0
G37		0.1	<u>3.3</u>	11.3	0.0	1012	15.0	0.0
G38		0.0	<u>8.8</u>	6.5	0.0	1012	14.0	0.0
G39		0.0	0.0	20.7	0.0	1012	16.5	0.0
G40		0.0	<u>9.1</u>	9.9	0.0	1013	15.5	0.0
Leachate Sump		0.0	0.0	20.8	0.0	1014	15.0	0.0
Sewer		0.0	0.1	20.9	0.0	1015	22.0	0.0
IPS INLET*		<u>38.4</u>	23.3	2.2	0.0	1013	16.0	0.0

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM	l	(Baseline []	A	mbient [x])
	Site Name	:	Site Addro	ess :			
	Dunsink Land	lfill		Dup	cink Lana Duncin	lk Co Dublin	
Operator	3			Dun	SITIK Lane, Durisi	ik., CO. Dudiin	
Operator :	Fingal Cou Comhairte Co	anty Council Intae Fhine Gall	National	Grid Refer	ence :		
Site Status :	Operational		Date :	1	1/05/11	Time:	am
Instrume	nt Used :	Normal Ana	lytical Ran	ige	Nex	t Calibration du	ie:
GFM430 Ga	s Analyser	0-100%	CH ₄ , CO ₂ .			Dec-11	
Monitoring	Porconnel	EK/DE	Weather	:		Barometric	Pressure :
Pointoring		I N/KF	Windy Sun	ny Mild		See individual re	eadings

. . . .

Results

Borehole Number	Survey Depth	CH4 % v/v	CO ₂ % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.8	19.0	0.0	1015	19.5	0.0
G35		0.0	0.7	19.8	0.0	1015	16.5	0.0
G36		0.0	<u>5.8</u>	13.2	0.0	1015	16.5	0.0
G37		0.0	<u>1.9</u>	18.6	0.0	1015	16.5	0.0
G38		0.0	<u>8.3</u>	10.9	0.0	1014	18.0	0.0
G39		0.0	<u>5.3</u>	13.5	0.0	1014	16.0	0.0
G40		0.0	<u>8.4</u>	10.6	0.0	1014	16.0	0.0
Leachate Sump		0.0	0.1	19.9	0.0	1015	17.0	0.0
Sewer		0.0	0.1	20.7	0.0	1017	18.5	0.0
IPS INLET*		<u>51.7</u>	<u>28.4</u>	0.3	0.0	1015	17.2	0.0

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	A	mbient [x])
	Site Name	:	Site Addro	ess :			
	Dunsink Lanc	Ifill		Dup	sink Lana Dunsin	k Co Dublin	
Operator	3			Dun	SITIK Lane, Durisi	ik., CO. Dubiin	
Operator :	Fingal Cou Comhairte Co	Inty Council Intae Fhine Gall	National	Grid Refer	ence :		
Site Status :	Operational		Date :	18	8/05/11	Time:	am
Instrume	nt Used :	Normal Ana	lytical Ran	ige	Nex	t Calibration du	ue:
GFM430 Ga	s Analyser	0-100%	CH ₄ , CO ₂ .			Dec-11	
Monitoring	Perconnel	EK/DE	Weather	:		Barometric	Pressure :
Pointoring	reisonner:	T N/ KF	Cloudy, Wi	ndy, Mild		See individual re	eadings

. . . .

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.9	19.9	0.0	1007	15.5	0.0
G35		0.0	0.0	20.9	0.0	1007	14.0	0.0
G36		0.0	<u>5.8</u>	13.1	0.0	1006	16.5	0.0
G37		0.0	<u>3.1</u>	15.2	0.0	1008	15.5	0.0
G38		0.0	0.5	11.0	0.0	1006	18.0	0.0
G39		0.0	<u>7.0</u>	11.7	0.0	1006	16.5	0.0
G40		0.0	<u>8.1</u>	10.2	0.0	1009	21.5	0.0
Leachate Sump		0.0	0.1	20.9	0.0	1009	20.0	0.0
Sewer		0.0	0.1	21.0	0.0	1009	20.0	0.0
IPS INLET*		<u>40.7</u>	<u>24.4</u>	2.0	0.0	1007	17.5	0.0

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORIN	g form		(Baseline [1	Ambient [x]
	Site Name	:	Site Addre	ss :			
	Dunsink Land	Ifill		Dur	sink Lana Du	ncink Co Du	blip
1				Bullishik Lanc, Bullishik, Co. Bublin			DIIII
Operator :	Fingal Con Combairle Co	Inty Council Intae Fhine Gall	National (National Grid Reference :			
Site Status :	Operational		Date :	Date : 25/		Time:	
Instrume	Instrument Used :		nalytical Ran	je		Next Calibrat	tion due:
GFM 430 Landfi	ll Gas Analyser	0-100	% CH ₄ , CO ₂ .			Dec-1	1
			Weather:			Baro	metric Pressure :
Monitoring	Monitoring Personnel :	KF & FK	RF & FK Cloudy & Windy, Cool		ol See individual read		idual readings

				Resul	ts			
Borehole Number	Survey Depth	CH₄ % v/v	CO₂ % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G3		0.0	<u>1.8</u>	18.3	0.0	1009	12.5	0.0
G6		0.0	0.6	20.3	0.0	1009	12.5	0.0
G7		0.0	0.0	20.7	0.0	1009	13.0	0.0
G8		0.0	0.1	20.6	0.0	1009	13.0	0.0
G9		0.0	<u>2.1</u>	19.1	0.0	1009	12.5	0.0
G10		0.0	1.4	19.1	0.0	1010	12.5	0.0
G12		0.0	0.1	20.5	0.0	1007	15.0	0.0
G13		0.0	0.2	20.5	0.0	1006	13.0	0.0
G18		0.0	0.1	20.6	0.0	1007	12.0	0.0
G21		0.0	0.0	20.6	0.0	1010	13.0	0.0
G23		0.0	<u>1.6</u>	8.9	0.0	1009	14.0	0.0
G35		0.0	0.0	20.6	0.0	1009	12.5	0.0
G36		0.0	<u>6.0</u>	13.0	0.0	1008	12.5	0.0
G37		0.0	1.3	18.8	0.0	1009	13.5	0.0
G38		0.0	<u>6.5</u>	13.2	0.0	1008	12.5	0.0
G39		0.0	<u>6.7</u>	12.7	0.0	1007	13.0	0.0
G40		0.0	<u>7.6</u>	11.8	0.0	1009	12.5	0.0
G41		0.0	0.5	20.3	0.0	1009	13.0	0.0
G42		0.0	0.1	20.6	0.0	1010	14.0	0.0
G43		0.0	1.0	18.5	0.0	1009	12.0	0.0
G44		0.0	<u>9.2</u>	13.3	0.0	1009	12.5	0.0
achate Sump		0.0	0.1	20.6	0.0	1010	13.0	0.0
Sewer		0.0	0.1	20.6	0.0	1009	15.0	0.0
IPS INLET*		<u>52.7</u>	28.5	0.7	0.0	1009	15.0	0.0

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	A	mbient [x])		
	Site Name	:	Site Address :						
	Dunsink Land	Ifill	Duncink Lane Duncink Co. Dublin						
Operator	Operator : Fingal County Council								
Operator :	Correct Fingal County Council Comhairte Contae Fhine Gall			National Grid Reference :					
Site Status :	Operational		Date :	3	1/05/11	Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Nex	Next Calibration due:			
GFM430 Ga	GFM430 Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11				
Monitoring Personnel · EK/DE		Weather :			Barometric Pressure :				
Homeoning	Monitoring Personnel : FK/RF		Cloudy Dry			See individual readings			

. . . .

Results

Borehole Number	Survey Depth	CH4 % v/v	CO2 % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		<u>1.3</u>	<u>2.3</u>	8.1	0.0	1015	16.0	30.2
G35		0.0	0.0	21.1	0.0	1016	17.0	0.0
G36		0.0	<u>6.1</u>	13.4	0.0	1015	16.0	0.0
G37		0.0	1.5	19.1	0.0	1017	21.5	0.0
G38		0.0	<u>8.2</u>	12.2	0.0	1015	21.0	0.0
G39		0.0	<u>6.0</u>	13.4	0.0	1015	21.5	0.0
G40		0.0	<u>7.2</u>	11.4	0.0	1017	20.0	0.0
Leachate Sump		0.0	0.0	21.1	0.0	1018	20.5	0.0
Sewer		0.0	0.0	21.0	0.0	1016	19.0	0.0
IPS INLET*		<u>46.4</u>	<u>25.5</u>	1.4	0.0	1016	19.2	0.0

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Α	mbient [x])	
	Site Name	:	Site Addro	ess :				
	Dunsink Land	lfill		Dunsink Lane Dunsink Co Dublin				
Operator	Operator : Fingal County Council							
Operator :	Prator: Fingal Council Combairle Centar Phine Gall			National Grid Reference :				
Site Status :	Operational		Date :	Date : 08/06/11		Time:	am	
Instrume	nt Used :	Normal Ana	lytical Range		Nex	Next Calibration due:		
GFM430 Gas	GFM430 Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11			
Monitoring	Monitoring Porconnol · EK/DE		Weather :			Barometric Pressure :		
Monitoring	Monitoring Personnel : FK/RF		Cool Wet Cloudy See ind			See individual re	eadings	

. . . .

Results

Borehole Number	Survey Depth	CH4 % v/v	CO ₂ % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		<u>3.5</u>	<u>3.4</u>	1.7	0.0	995	14.0	78.5
G35		0.0	0.0	21.0	0.0	996	17.5	0.0
G36		0.0	<u>6.2</u>	13.7	0.0	995	17.5	0.0
G37		0.0	<u>2.2</u>	17.4	0.0	997	23.5	0.0
G38		0.0	<u>9.2</u>	8.3	0.0	995	16.5	0.0
G39		0.0	<u>2.8</u>	18.1	0.0	995	21.5	0.0
G40		0.0	<u>7.7</u>	9.4	0.0	997	16.5	0.0
Leachate Sump		0.0	0.2	20.9	0.0	998	21.0	0.0
Sewer		0.0	0.1	20.9	0.0	996	19.0	0.0
IPS INLET*		<u>49.7</u>	<u>26.8</u>	1.0	0.0	996	18.6	0.0

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	A	(mbient [x])	
	Site Name	:	Site Addro	ess :				
	Dunsink Land	lfill		Dup	cink Lane Duncin	k Co Dublin		
Operator :	Operator : Fingal Council							
Operator .	Fingal Cou Comhairle Co	unty Council Intae Fhine Gall	National Grid Reference :					
Site Status :	Operational		Date : 15/06/11		Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Nex	Next Calibration due:		
GFM430 Ga	GFM430 Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11			
Monitoring Personnel · EK/DE		Weather	:		Barometric Pressure :			
Homonitoring		i iy Ni	Sunny Mild			See individual r	eadings	

. . . .

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.6	<u>3.7</u>	3.3	0.0	1004	19.0	14.2
G35		0.0	0.0	20.9	0.0	1005	19.0	0.0
G36		0.0	<u>6.3</u>	14.1	0.0	1004	20.0	0.0
G37		0.0	<u>2.1</u>	18.2	0.0	1005	18.0	0.0
G38		0.0	<u>10.1</u>	7.8	0.0	1004	18.5	0.0
G39		0.0	<u>2.0</u>	18.7	0.0	1003	19.5	0.0
G40		0.0	<u>8.1</u>	9.9	0.0	1004	25.0	0.0
Leachate Sump		0.0	0.1	20.9	0.0	1006	19.0	0.0
Sewer		0.0	0.1	20.8	0.0	1005	20.0	0.0
IPS INLET*					0.0	1004	19.8	0.0

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORIN	g form		(Baseline []	Ambient [x]	
	Site Name	:	Site Addre	ss :				
	Dunsink Land	Ifill		Dur	sink Lana Du	unsink Co D	ublin	
Onerster :	3			Dui	ISITIK LATIE, Du	IIISIIIK., CO. D	ubiin	
Operator :	Fingal Cou Combainte Co	Inty Council Intae Fhine Gall	National	National Grid Reference :				
Site Status :	Operational		Date :	2	1/06/11 Time:			
Instrume	nt Used :	Normal A	nalytical Ran	ge		Next Calibra	ation due:	
GFM 430 Landfill Gas Analyser 0-100%			% CH ₄ , CO ₂ .	CH ₄ , CO ₂ .			11	
			Weather:	Weather:			ometric Pressure :	
Monitoring	Monitoring Personnel : RF &	KF & FK	Warm Wet	Warm Wet Cloudy			See individual readings	

Results											
Borehole Number	Survey Depth	CH₄ % v/v	CO₂ % v/v	0₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v			
G3		0.0	<u>3.1</u>	16.9	0.0	997	20.0	0.0			
G6		0.0	1.0	19.5	0.0	1000	20.0	0.0			
G7		0.0	0.0	21.0	0.0	999	17.5	0.0			
G8		0.0	0.3	20.8	0.0	998	18.0	0.0			
G9		0.0	<u>1.8</u>	19.5	0.0	998	16.0	0.0			
G10		0.0	<u>4.1</u>	14.4	0.0	997	16.5	0.0			
G12		0.0	0.2	20.8	0.0	995	18.5	0.0			
G13		0.0	0.5	20.6	0.0	995	17.5	0.0			
G18		0.0	0.3	20.8	0.0	997	20.0	0.0			
G21		0.0	0.1	20.9	0.0	998	22.5	0.0			
G23		0.0	<u>3.9</u>	12.9	0.0	997	18.0	0.0			
G35		0.0	0.2	20.7	0.0	997	20.0	0.0			
G36		0.0	<u>6.3</u>	14.6	0.0	997	20.0	0.0			
G37		0.0	<u>3.6</u>	15.6	0.0	997	20.0	0.0			
G38		0.0	<u>10.8</u>	6.6	0.0	997	19.0	0.0			
G39		0.0	1.3	19.4	0.0	997	20.0	0.0			
G40		0.0	<u>8.2</u>	7.5	0.0	997	18.5	0.0			
G41		0.0	<u>9.2</u>	10.2	0.0	997	18.5	0.0			
G42		0.0	0.1	20.8	0.0	997	17.5	0.0			
G43		0.0	<u>6.2</u>	10.0	0.0	997	16.5	0.0			
G44		0.0	0.8	19.8	0.0	997	19.0	0.0			
eachate Sump		0.0	0.6	20.4	0.0	998	20.5	0.0			
Sewer		0.0	0.2	20.8	0.0	997	20.5	0.0			
IPS INLET*		44.3	26.4	0.2	0.0	997	20.5	0.0			

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	A	mbient [x])		
	Site Name	:	Site Addro	ess :					
	Dunsink Lanc	lfill		Dunsink Lane, Dunsink., Co, Dublin					
Operator :	Operator : Fingal County Council			Durisink Lane, Durisink., Co. Dubin					
Operator :	Comhairte Centae Fhine Gall			National Grid Reference :					
Site Status :	Operational		Date :	Date : 29/06/11		Time:	am		
Instrume	nt Used :	Normal Ana	lytical Range		Nex	Next Calibration due:			
GFM430 Gas	GFM430 Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11				
Monitoring	Monitoring Personnel · EK/PE		Weather :			Barometric Pressure :			
Homeoring	reisonner:	T N/ KF	Cloudy Wa	rm		See individual re	eadings		

. . . .

Results

Borehole Number	Survey Depth	CH4 % v/v	CO ₂ % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.8	18.1	0.0	1017	20.0	0.0
G35		0.0	0.0	20.9	0.0	1018	17.0	0.0
G36		0.0	<u>6.4</u>	14.5	0.0	1018	19.0	0.0
G37		0.0	<u>2.8</u>	18.0	0.0	1018	19.0	0.0
G38		0.0	<u>11.2</u>	7.0	0.0	1018	20.5	0.0
G39		0.0	<u>2.1</u>	18.6	0.0	1017	24.0	0.0
G40		0.0	<u>8.0</u>	7.3	0.0	1018	29.5	0.0
Leachate Sump		0.0	0.1	20.7	0.0	1019	28.5	0.0
Sewer		0.0	0.0	20.9	0.0	1019	28.5	0.0
IPS INLET*		<u>38.4</u>	<u>24.8</u>	0.4	0	1018	22.9	0.0

 \ast Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	A	(mbient [x])		
	Site Name	:	Site Address :						
	Dunsink Land	lfill	Dunsink Lane Dunsink Co Dublin						
Operator :	Operator : Fingal Council								
Operator :	Fingal Cou Comhairte Co	National Grid Reference :							
Site Status :	Operational		Date : 05/07/11			Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Nex	Next Calibration due:			
GFM430 Ga	GFM430 Gas Analyser 0-100%		o CH ₄ , CO ₂ .		Dec-11				
Monitoring Personnel · EK/DE		Weather	:		Barometric Pressure :				
Homonitoring		I N/KF	Sunny Wine	dy Warm		See individual r	eadings		

Results

Borehole Number	Survey Depth	CH4 % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	1.0	18.1	0.0	999	18.5	0.0
G35		0.0	0.2	21.1	0.0	999	22.0	0.0
G36		0.0	<u>6.3</u>	14.9	0.0	999	23.0	0.0
G37		0.0	0.1	20.7	0.0	1000	19.5	0.0
G38		0.0	<u>10.2</u>	8.0	0.0	999	21.5	0.0
G39		0.0	0.2	21.0	0.0	999	22.5	0.0
G40		0.0	<u>8.5</u>	5.9	0.0	1000	20.5	0.0
Leachate Sump		0.0	0.1	20.7	0.0	1000	19.5	0.0
Sewer		0.0	0.3	20.5	0.0	1000	21.5	0.0
IPS INLET*		<u>63.1</u>	<u>31.1</u>	0.4	0	999	20.9	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFILL GAS MONITORING FORM (Baseline [] Ambient [x])												
	Site Address :											
	Duncink Lano, Duncink, Co, Dublin											
Operator :	Fingal County Council Comharie Cortas Phire Gall											
			National Grid Reference :									
Site Status :	Operational		Date :	14	4/07/11	Time:	am					
Instrument Used :		Normal Ana	Normal Analytical Range		Next Calibration due:							
GFM430 Gas Analyser		0-100% CH ₄ , CO ₂ .			Dec-11							
Monitoring Personnel :		FK/RF	Weather :		Barometric Pressure :							
			Cloudy Very Warm			See individual readings						

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	<u>1.7</u>	19.7	0.0	1016	24.5	0.0
G35		0.0	0.2	20.9	0.0	1016	22.5	0.0
G36		0.0	<u>5.3</u>	16.5	0.0	1017	23.0	0.0
G37		0.0	<u>3.9</u>	14.8	0.0	1017	21.5	0.0
G38		0.0	<u>6.0</u>	11.7	0.0	1017	21.5	0.0
G39		0.0	1.4	19.1	0.0	1016	23.0	0.0
G40		0.0	<u>7.8</u>	6.5	0.0	1017	21.0	0.0
Leachate Sump		0.0	0.0	21.2	0.0	1017	21.5	0.0
Sewer		0.0	0.3	20.5	0.0	1017	21.5	0.0
IPS INLET*		<u>43.1</u>	26.6	0.4	0	1017	22.2	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare
| LANDFIL | L GAS M | ONITORING | FORM | (Baseline [|] | Ambient [x]) |
|---------------|-----------------------------------|-----------------------------------|-----------------|--------------------|-------------------|---------------------------------------|
| | Site Name | : | Site Address : | | | |
| | Dunsink Land | lfill | | Duncink Lana D | uncink Co Duk | Nin |
| Omeneter : | 3 | | | DUIISIIK Laile, Di | JIISIIK., CO. DUL | , , , , , , , , , , , , , , , , , , , |
| Operator : | Fingal Con
Combainte Co | unty Council
ontae Fhirie Gall | National Grid I | Reference : | | |
| Site Status : | Operational | | Date : 21/07/11 | | Time: | |
| Instrume | nt Used : | Normal Ana | lytical Range | | Next Calibrat | ion due: |
| LMSX Landfill | LMSX Landfill Gas Analyser 0-100% | | CH₄, CO₂. | | Dec-11 | l |
| | | | Weather: | | Baron | netric Pressure : |
| Monitoring | Personnel : | FK & RD | | | | |

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v			
G3		0.0	<u>3.6</u>	15.9	0.0	1008	11.1	0.0			
G6		0.0	1.4	19.1	0.0	1008	13.1	0.0			
G7		0.0	0.0	20.7	0.0	1008	11.5	0.0			
G8		0.0	0.0	20.5	0.0	1008	11.5	0.0			
G9		0.0	<u>1.6</u>	19.1	0.0	1008	11.2	0.0			
G10		0.0	<u>7.4</u>	12.3	0.0	1008	11.8	0.0			
G12		0.0	0.0	20.9	0.0	1008	11.5	0.0			
G13		0.0	0.4	20.5	0.0	1006	10.6	0.0			
G18		0.0	0.0	20.7	0.0	1008	11.1	0.0			
G21		0.0	0.0	20.7	0.0	1008	11.4	0.0			
G23		0.1	<u>7.5</u>	7.5	0.0	1008	11.0	1.0			
G35		0.0	0.0	20.9	0.0	1008	11.1	0.0			
G36		0.0	<u>5.2</u>	16.8	0.0	1008	12.4	0.0			
G37		0.0	1.5	19.2	0.0	1008	10.7	0.0			
G38		0.0	<u>4.6</u>	13.7	0.0	1008	11.3	0.0			
G39		0.0	1.3	19.4	0.0	1008	11.2	0.0			
G40		0.0	<u>8.6</u>	7.9	0.0	1008	10.9	0.0			
G41		0.0	0.0	20.6	0.0	1008	10.7	0.0			
G42		0.0	1.4	19.6	0.0	1008	10.4	0.0			
G43		0.0	<u>7.1</u>	12.6	0.0	1008	10.8	0.0			
G44		0.0	11.0	9.6	0.0	1008	10.4	0.0			
eachate Sump		0.0	0.4	20.2	0.0	1008	11.2	0.0			
Sewer		0.0	0.4	20.8	0.0	1009	12.7	0.0			
IPS INLET*		38.4	25.8	0.4	0.0	1008	11.3	0.0			

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Α	mbient [x])		
	Site Name	:	Site Addro	ess :					
	Dunsink Land	Ifill		Dup	sink Lane Dunsir	k Co Dublin			
Operator :	Operator : Fingal County Council								
operator .	Fingal County Council Comhairle Centae Phine Gall			National Grid Reference :					
Site Status :	Operational		Date :	28	8/07/11	Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range Nex			xt Calibration due:			
LMSX Landfill	LMSX Landfill Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11				
Monitoring	Monitoring Porconnol . EV/DE		Weather :		Barometric Press		Pressure :		
Pointoring	Monitoring Personnel : FK/RF			Cloudy, Cool See individual reading					

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	<u>3.6</u>	14.1	0.0	1015	15.2	0.0
G35		0.0	0.0	20.8	0.0	1016	14.0	0.0
G36		0.0	<u>4.7</u>	17.1	0.0	1016	14.3	0.0
G37		0.0	<u>1.7</u>	18.9	0.0	1016	15.3	0.0
G38		0.0	<u>6.9</u>	10.9	0.0	1016	15.1	0.0
G39		0.0	1.4	18.6	0.0	1016	16.1	0.0
G40		0.0	<u>9.3</u>	5.0	0.0	1016	14.6	0.0
Leachate Sump		0.0	0.1	20.7	0.0	1017	15.7	0.0
Sewer		0.0	0.3	20.0	0.0	1017	16.5	0.0
IPS INLET*		<u>38.7</u>	<u>25.5</u>	0.3	0	1016	15.2	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Α	mbient [x])		
	Site Name	:	Site Addro	ess :					
	Dunsink Land	lfill		Dup	sink Lane Dunsir	ak Co Dublin			
Operator :	Operator : Fingal Council								
operator .	Comhairle Centae Fhine Gall			National Grid Reference :					
Site Status :	Operational		Date :	0	3/08/11	Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Nex	Next Calibration due:			
LMSX Landfill	LMSX Landfill Gas Analyser 0-100%				Dec-11				
Monitoring Porconnol . EV/DE		Weather	:		Barometric	Pressure :			
Pointoring	Monitoring Personnel : FK/RF			Cloudy, Warm See individual reading					

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	<u>1.9</u>	16.6	0.0	1003	22.1	0.0
G35		0.0	0.2	20.4	0.0	1004	24.9	0.0
G36		0.0	<u>4.3</u>	17.4	0.0	1004	25.0	0.0
G37		0.0	<u>3.6</u>	14.3	0.0	1004	21.5	0.0
G38		0.0	<u>7.4</u>	9.9	0.0	1004	26.7	0.0
G39		0.0	<u>2.1</u>	17.5	0.0	1003	25.9	0.0
G40		0.0	<u>8.7</u>	5.5	0.0	1004	27.4	0.0
Leachate Sump		0.0	0.0	20.7	0.0	1005	22.4	0.0
Sewer		0.0	0.1	20.6	0.0	1005	24.6	0.0
IPS INLET*		<u>40.0</u>	<u>25.9</u>	0.2	0	1004	24.5	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Ambient [x])
	Site Name :						
		Dun	sink Lana Du	uncink Co Du	ublin		
0	3			Dui	ISITIK LATIE, DU	IIISIIIK., CO. DU	
Operator :	Fingal Con Comhairte Co	unty Council ontae Fhire Gall	National Grid Reference :				
Site Status :	Operational		Date : 10/08/11		0/08/11	Time:	
Instrume	nt Used :	Normal Ana	lytical Range			Next Calibra	tion due:
LMSX Landfill	LMSX Landfill Gas Analyser 0-100%		CH ₄ , CO ₂ .			Dec-1	1
		514.0.00	Weather:		•	Baro	metric Pressure :

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO₂ % v/v	0₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G3		0.0	<u>7.4</u>	12.1	0.0	1007	16.2	0.0
G6		0.0	1.0	19.7	0.0	1006	16.8	0.0
G7		0.0	1.0	19.5	0.0	1006	14.9	0.0
G8		0.0	0.0	20.4	0.0	1006	14.9	0.0
G9		0.0	0.0	20.5	0.0	1006	14.9	0.0
G10		0.0	<u>4.8</u>	14.5	0.0	1007	15.9	0.0
G12		0.0	0.0	20.9	0.0	1003	17.3	0.0
G13		0.0	0.4	20.6	0.0	1005	15.8	0.0
G18		0.0	0.0	20.5	0.0	1005	15.8	0.0
G21		0.0	0.0	20.2	0.0	1007	15.7	0.0
G23		0.0	<u>4.6</u>	10.6	0.0	1005	15.2	0.0
G35		0.0	0.0	20.3	0.0	1007	15.9	0.0
G36		0.0	<u>3.6</u>	17.4	0.0	1007	16.3	0.0
G37		0.0	<u>4.5</u>	12.4	0.0	1007	15.6	0.0
G38		0.0	<u>9.5</u>	7.1	0.0	1006	16.0	0.0
G39		0.0	1.4	18.1	0.0	1006	16.8	0.0
G40		0.0	<u>8.5</u>	5.4	0.0	1006	15.7	0.0
G41				Flo	oded (No T	op)		
G42		0.0	0.5	19.7	0.0	1007	16.1	0.0
G43		0.0	<u>6.6</u>	14.0	0.0	1007	16.0	0.0
G44		0.0	<u>11.0</u>	9.0	0.0	1007	16.0	0.0
eachate Sump		0.0	0.0	20.3	0.0	1007	16.0	0.0
Sewer		0.0	0.2	20.0	0.0	1007	17.0	0.0
IPS INLET		40.2	25.0	0.2	0.0	1006	15.9	0.0

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Α	mbient [x])		
	Site Name	:	Site Addro	ess :					
	Dunsink Land	lfill		Dup	sink Lana Dunsir	lk Co Dublin			
Operator :	Operator : Fingal County Council								
operator .	Comhairle Centae Fhine Gell			National Grid Reference :					
Site Status :	Operational		Date :	17	7/08/11	Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Next Calibration due:		ue:		
LMSX Landfill (LMSX Landfill Gas Analyser 0-100%					Dec-11			
Monitoring	Monitoring Personnel . DD/DE			Weather :		Barometric Pressure :			
Profitoring	Monitoring Personnel : RD/RF			Sunny, warm See individual readings					

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	<u>4.7</u>	8.8	0.0	1010	17.0	0.0
G35		0.0	0.3	20.0	0.0	1010	17.0	0.0
G36		0.0	<u>3.5</u>	17.5	0.0	1011	17.0	0.0
G37		0.0	<u>2.9</u>	16.7	0.0	1010	17.0	0.0
G38		0.0	<u>12.0</u>	6.4	0.0	1010	17.0	0.0
G39		0.0	1.5	17.3	0.0	1010	17.0	0.0
G40		0.0	<u>7.0</u>	8.2	0.0	1010	17.0	0.0
Leachate Sump		0.0	0.0	21.0	0.0	1011	17.0	0.0
Sewer		0.0	0.0	22.0	0.0	1010	17.0	0.0
IPS INLET*		<u>3.8</u>	<u>2.8</u>	18.8	0	1010	17.0	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	4	Ambient [x])		
	Site Name	:	Site Addro	ess :					
	Dunsink Land	Ifill		Dup	sink Lane Dunsir	ak Co Dublin			
Operator :	Operator : Fingal Council								
operator .	Comhairte Centae Fhire Gall			National Grid Reference :					
Site Status :	Operational		Date :	24	4/08/11	Time:	am		
Instrume	nt Used :	Normal Ana	lytical Range N			ext Calibration due:			
LMSX Landfill	LMSX Landfill Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11				
Monitoring	Manitoring Demonstration		Weather	:	Barometric Press		c Pressure :		
Pointoring	Monitoring Personnel : KD/KF			Cloudy, warm See individual reading					

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	<u>5.7</u>	7.7	0.0	999	16.0	0.0
G35		0.0	0.0	20.3	0.0	1000	16.0	0.0
G36		0.0	<u>3.3</u>	17.5	0.0	1000	16.0	0.0
G37		0.0	<u>3.1</u>	14.6	0.0	1000	16.0	0.0
G38		0.0	<u>10.0</u>	5.6	0.0	999	16.0	0.0
G39		0.0	0.3	19.8	0.0	1000	16.0	0.0
G40		0.0	<u>7.6</u>	6.7	0.0	999	16.0	0.0
Leachate Sump		0.0	0.0	20.3	0.0	1000	16.0	0.0
Sewer		0.0	0.2	19.8	0.0	1000	16.0	0.0
IPS INLET*		<u>3.1</u>	<u>2.1</u>	19.6	0	1000	16.0	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	LANDFILL GAS MONITORING				(Baseline []	4	Ambient [x])		
	Site Name	:	Site Addro	ess :					
	Dunsink Land	Ifill		Dun	cink Lano, Dunci	ak Co Dublin			
Operator :	Operator : Fingal Council								
operator .	Fingal Cou Comhairte Co	Inty Council Intae Fhine Gall	National Grid Reference :						
Site Status :	Operational		Date :	31/08/11		Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Next Calibration due:		ue:		
LMSX Landfill	LMSX Landfill Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11				
Monitoring Personnel . PD/DE		Weather :		Barometric Pro		c Pressure :			
Pointoring	Monitoring Personnel : RD/RF		Cloudy, cool			See individual readings			

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	<u>3.2</u>	14.4	0.0	1008	16.0	0.0
G35		0.0	0.0	20.4	0.0	1007	16.0	0.0
G36		0.0	<u>3.4</u>	17.7	0.0	1007	16.0	0.0
G37		0.0	<u>3.1</u>	16.1	0.0	1007	16.0	0.0
G38		0.0	<u>12.0</u>	5.6	0.0	1007	16.0	0.0
G39		0.0	0.8	18.1	0.0	1008	16.0	0.0
G40		0.0	<u>7.2</u>	7.6	0.0	1007	16.0	0.0
Leachate Sump		0.0	0.0	20.5	0.0	1007	16.0	0.0
Sewer		0.0	0.1	20.0	0.0	1007	16.0	0.0
IPS INLET*		<u>56.5</u>	<u>31.4</u>	0.0	0	1007	16.0	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	LANDFILL GAS MONITORING				(Baseline []	A	(mbient [x])		
	Site Name	:	Site Addro	ess :					
	Dunsink Land	Ifill		Dun	cink Lana, Dunciu	ak Co Dublin			
Operator :	Operator : Fingal County Council								
operator .	Fingal Cou Comhairte Co	Inty Council Intae Fhine Gall	National Grid Reference :						
Site Status :	Operational		Date :	07/09/11		Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Next Calibration due:		ue:		
LMSX Landfill	LMSX Landfill Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11				
Monitoring Porconnol . EV/DE		Weather	:		Barometric Pressure :				
Pointoring		I IV NI	Cloudy, we	t, cold		See individual r	eadings		

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.1	<u>12.0</u>	1.8	0.0	999	11.0	1.0
G35		0.0	0.0	20.9	0.0	1000	11.0	0.0
G36		0.0	<u>3.5</u>	18.2	0.0	1000	11.0	0.0
G37		0.0	<u>4.5</u>	13.3	0.0	1000	11.0	0.0
G38		0.0	<u>10.0</u>	7.4	0.0	999	11.0	0.0
G39		0.0	1.5	18.6	0.0	999	11.0	0.0
G40		0.0	<u>9.1</u>	8.5	0.0	999	11.0	0.0
Leachate Sump		0.0	0.1	20.8	0.0	1000	11.0	0.0
Sewer		0.0	0.1	20.7	0.0	1001	11.0	0.0
IPS INLET*		<u>42.1</u>	<u>26.4</u>	0.2	0	1000	11.0	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	LANDFILL GAS MONITORIN				(Baseline []	Α	(mbient [x])		
	Site Name	:	Site Addr	ess :					
	Dunsink Land	lfill		Dun	cink Lana, Dunci	ak Co Dublin			
Operator :	Operator : Fingal County Council								
Operator .	Fingal Con Comhairte Co	anty Council antae Fhine Gall	National Grid Reference :						
Site Status :	Operational		Date :	13/09/11		Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Next Calibration due:		ue:		
LMSX Landfill	LMSX Landfill Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11				
Monitoring Porconnol . EV/DE		Weather :		Barometric Pressu		Pressure :			
Homeoning	Monitoring Personnel : FK/RF		Cloudy, wir	ndy, cold		See individual readings			

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	<u>9.1</u>	13.3	0.0	997	15.0	0.0
G35		0.0	0.0	20.9	0.0	999	15.0	0.0
G36		0.0	<u>3.3</u>	18.5	0.0	999	15.0	0.0
G37		0.0	<u>2.8</u>	16.7	0.0	999	15.0	0.0
G38		0.0	<u>10.0</u>	9.3	0.0	999	15.0	0.0
G39		0.0	0.0	20.8	0.0	998	15.0	0.0
G40		0.0	<u>8.0</u>	9.8	0.0	999	15.0	0.0
Leachate Sump		0.0	0.0	20.9	0.0	999	15.0	0.0
Sewer		0.0	0.1	20.7	0.0	999	15.0	0.0
IPS INLET*		<u>38.4</u>	<u>26.1</u>	0.2	0	999	15.0	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	LANDFILL GAS MONITORING				(Baseline []	4	Ambient [x])		
	Site Name	:	Site Addro	ess :					
	Dunsink Land	lfill		Dun	cink Lano, Dunci	ak Co Dublin			
Operator :	Operator : Fingal Council								
operator .	Fingal Cou Comhairte Co	anty Council antae Fhine Gall	National Grid Reference :						
Site Status :	Operational		Date :	Date : 21/09/11		Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Nex	Next Calibration due:			
LMSX Landfill	LMSX Landfill Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11				
Monitoring Porconnol . EV/DE		Weather :		Barometric Pre		c Pressure :			
Homeoning	reisonnei .	I NJ NI	Windy / Co	ol		See individual r	readings		

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	<u>5.7</u>	10.6	0.0	999	13.0	0.0
G35		0.0	0.0	20.8	0.0	999	13.0	0.0
G36		0.0	<u>3.3</u>	18.0	0.0	999	13.0	0.0
G37		0.0	<u>4.3</u>	9.5	0.0	1000	13.0	0.0
G38		0.0	<u>11.0</u>	6.8	0.0	999	13.0	0.0
G39		0.0	1.2	19.2	0.0	999	13.0	0.0
G40		0.0	<u>7.7</u>	7.9	0.0	999	13.0	0.0
Leachate Sump		0.0	0.2	20.7	0.0	1000	13.0	0.0
Sewer		0.0	0.1	20.6	0.0	1001	13.0	0.0
IPS INLET*		<u>44.6</u>	<u>26.9</u>	0.1	0.0	999	13.0	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Ambient [x])	
	Site Name	:	Site Address :					
		Dun	sink Lana Du	ncink Co Du	blin			
0	1			Dui	ISITIK Latte, Du	IISIIK., CO. DU		
Operator :	Fingal Con Combainte Co	unty Council ontae Fhirie Gall	National Grid Reference :					
Site Status :	Operational		Date : 29/09/11		9/09/11	Time:		
Instrume	nt Used :	Normal Ana	lytical Range			Next Calibration due:		
LMSX Landfill	LMSX Landfill Gas Analyser 0-100%		CH ₄ , CO ₂ .			Dec-11		
			Weather:		-	Baro	metric Pressure :	
Monitoring Personnel :	FK & RF	Sunny & warm			1	See individual readings		

				Resul	15			
Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G3		0.0	<u>3.1</u>	17.9	0.0	1010	20.0	0.0
G6		0.0	0.8	20.0	0.0	1010	20.0	0.0
G7		0.0	0.0	20.5	0.0	1010	20.0	0.0
G8		0.0	0.1	20.4	0.0	1010	20.0	0.0
G9		0.0	1.1	19.3	0.0	1010	20.0	0.0
G10		0.0	<u>3.3</u>	16.2	0.0	1010	20.0	0.0
G12		0.0	0.0	20.5	0.0	1009	20.0	0.0
G13		0.0	0.4	20.3	0.0	1008	20.0	0.0
G18		0.0	0.2	20.4	0.0	1008	20.0	0.0
G21		0.0	0.0	20.3	0.0	1010	20.0	0.0
G23		0.0	<u>5.1</u>	14.3	0.0	1010	20.0	0.0
G35		0.0	0.0	20.3	0.0	1010	20.0	0.0
G36		0.0	<u>3.7</u>	17.4	0.0	1010	20.0	0.0
G37		0.0	1.3	18.9	0.0	1010	20.0	0.0
G38		0.0	<u>6.9</u>	10.5	0.0	1010	20.0	0.0
G39		0.0	0.0	20.4	0.0	1010	20.0	0.0
G40		0.0	7.1	8.6	0.0	1010	20.0	0.0
G41		0.0	0.0	20.3	0.0	1010	20.0	0.0
G42		0.0	0.4	20.0	0.0	1010	20.0	0.0
G43		0.0	<u>3.5</u>	13.6	0.0	1010	20.0	0.0
G44		0.0	<u>8.5</u>	10.4	0.0	1010	20.0	0.0
eachate Sump		0.0	0.1	20.3	0.0	1010	20.0	0.0
Sewer		0.0	0.0	20.5	0.0	1010	20.0	0.0
IPS INLET		43.5	28.6	0.1	0.0	1010	20.0	0.0

LANDFIL	LANDFILL GAS MONITORING				(Baseline []	4	Ambient [x])		
	Site Name	:	Site Addre	ess :					
	Dunsink Land	lfill		Dun	cink Lane Dunci	ak Co Dublin			
Operator :	Operator : Fingal County Council								
operator .	Fingal Cou Comhairle Co	anty Council antae Fhine Gall	National Grid Reference :						
Site Status :	Operational		Date :	04	4/10/11	Time:	am		
Instrume	nt Used :	Normal Ana	alytical Range		Next Calibration due:		ue:		
LMSX Landfill (LMSX Landfill Gas Analyser 0-100%		CH ₄ , CO ₂ .		Dec-11				
Monitoring Porconnol . EV/DE		Weather :		Barometric Pres		c Pressure :			
Pionitoring		I IV NI	Cloudy / Co	lool		See individual r	readings		

Results

Borehole Number	Survey Depth	CH4 % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.4	19.9	0.0	1012	15.0	0.0
G35		0.0	0.0	21.0	0.0	1013	17.0	0.0
G36		0.0	<u>4.4</u>	17.0	0.0	1013	15.5	0.0
G37		0.0	<u>4.9</u>	8.3	0.0	1013	15.5	0.0
G38		0.0	<u>4.6</u>	13.3	0.0	1013	14.5	0.0
G39		0.0	<u>3.9</u>	9.7	0.0	1012	15.0	0.0
G40		0.0	<u>7.9</u>	6.9	0.0	1013	16.0	0.0
Leachate Sump		0.0	0.0	21.0	0.0	1015	15.0	0.0
Sewer		0.0	0.2	20.9	0.0	1015	17.0	0.0
IPS INLET*		<u>43.8</u>	<u>26.9</u>	0.1	0.0	1013	15.6	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM	l	(Baseline []	4	Ambient [x])
	Site Name	:	Site Addr	ess :			
	Dunsink Land	lfill		Dun	cink Lano, Dunci	ak Co Dublin	
Operator :	3			Dui	ISINK Lane, Dunsi	ik, co. Dubiin	
operator .	Fingal Con Comhairle Co	anty Council antae Fhine Gall	National	Grid Refer	ence :		
Site Status :	Operational		Date :	12	2/10/11	Time:	am
Instrume	nt Used :	Normal Ana	lytical Ran	ige	Nex	t Calibration d	ue:
LMSX Landfill (Gas Analyser	0-100%	CH ₄ , CO ₂ .			Dec-11	
Monitoring	Personnel -	EK/DE	Weather	:		Barometric	c Pressure :
monitoring		I IV NI	Cloudy / Co	loc		See individual r	readings

Results

Borehole Number	Survey Depth	CH4 % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	20.2	0.0	1014	19.0	0.0
G35		0.0	0.3	20.8	0.0	1015	19.5	0.0
G36		0.0	<u>4.4</u>	15.9	0.0	1015	18.5	0.0
G37		0.0	<u>4.1</u>	13.5	0.0	1015	20.0	0.0
G38		0.0	<u>4.1</u>	15.0	0.0	1014	20.0	0.0
G39		0.0	<u>4.9</u>	12.3	0.0	1015	18.5	0.0
G40		0.0	<u>7.6</u>	7.3	0.0	1015	20.0	0.0
Leachate Sump		0.0	0.0	21.1	0.0	1016	20.0	0.0
Sewer		0.0	0.1	21.0	0.0	1015	21.0	0.0
IPS INLET*		42.7	<u>26.5</u>	0.1	0.0	1015	19.6	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []		Ambient [x])
	Site Name	:	Site Addr	ess :			
	Dunsink Land	lfill		Dun	cink Lano, Dunci	ak Co Dublin	
Operator :	*			Dun	ISINK Lane, Dunsi	ik, co. Dubiin	
operator .	Fingal Con Comhairle Co	anty Council antae Fhine Gall	National	Grid Refer	ence :		
Site Status :	Operational		Date :	18	8/10/11	Time:	am
Instrume	nt Used :	Normal Ana	lytical Ran	ge	Nex	t Calibration o	due:
LMSX Landfill (Gas Analyser	0-100%	CH ₄ , CO ₂ .			Dec-11	
Monitoring	Personnel -	EK/DE	Weather	:		Barometri	c Pressure :
Monitoring	reisonnei.	I NJ NI	Clear skies	/ Cood		See individual	readings

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	<u>3.1</u>	13.2	0.0	1003	8.0	0.0
G35		0.0	0.0	20.7	0.0	1003	15.5	0.0
G36		0.0	<u>4.5</u>	14.5	0.0	1003	14.0	0.0
G37		0.0	<u>7.8</u>	3.2	0.0	1003	14.5	0.0
G38		0.0	<u>2.3</u>	15.8	0.0	1003	14.5	0.0
G39		0.0	<u>5.8</u>	12.1	0.0	1003	21.0	0.0
G40		0.0	<u>8.7</u>	4.5	0.0	1003	14.0	0.0
Leachate Sump		0.0	0.2	20.7	0.0	1004	8.5	0.0
Sewer		0.0	0.0	20.7	0.0	1006	15.0	0.0
IPS INLET*		<u>41.8</u>	<u>26.4</u>	0.1	0.0	1003	13.9	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORIN	g form		(Baseline []	Ambient [x])
	Site Name	:	Site Addre	ess :			
	Dunsink Land	lfill		Dur	cink Long Du	ncink Co Du	uhlin
Onerster :	Operator :			Dui	ISINK Lane, Du	IISIIIK., CO. DI	
Operator :	Fingal Con Combainte Co	unty Council enter Fhire Gall	National	Grid Refe	rence :		
Site Status :	Operational		Date :	2	26/10/11		
Instrume	strument Used : Norma		nalytical Ran	alytical Range		Next Calibration due:	
LMSX Landfill	Gas Analyser	0-100	% CH ₄ , CO ₂ .			Dec-3	11
Maniharing	Demonsul -		Weather:		•	Barc	ometric Pressure :
Monitoring Personnel :	FK & RF Sunny	Suppy & co	ol See individual reading			vidual readings	

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G3		0.0	0.0	20.7	0.0	991	13.0	0.0
G6		0.0	0.7	18.2	0.0	992	11.5	0.0
G7		0.0	0.0	20.8	0.0	991	11.5	0.0
G8		0.0	0.0	20.6	0.0	992	15.0	0.0
G9		0.0	1.2	18.6	0.0	992	12.5	0.0
G10		0.0	0.2	20.4	0.0	993	13.5	0.0
G12		0.0	0.0	20.9	0.0	993	14.0	0.0
G13		0.0	0.1	20.7	0.0	992	11.5	0.0
G18		0.0	0.0	20.6	0.0	991	11.0	0.0
G21		0.0	0.0	20.7	0.0	992	11.0	0.0
G23		0.0	0.6	16.9	0.0	991	12.5	0.0
G35		0.0	0.0	20.8	0.0	991	15.0	0.0
G36		0.0	<u>5.6</u>	14.5	0.0	991	12.0	0.0
G37		0.0	<u>7.2</u>	0.3	0.0	991	12.0	0.0
G38		0.0	<u>2.8</u>	12.9	0.0	992	11.0	0.0
G39					No	Access		
G40		0.0	<u>6.5</u>	6.0	0.0	992	14.0	0.0
G41		0.0	0.0	20.8	0.0	992	9.5	0.0
G42		0.0	0.0	20.8	0.0	991	10.5	0.0
G43		0.0	<u>3.0</u>	14.6	0.0	992	11.0	0.0
G44		0.0	<u>6.6</u>	11.9	0.0	992	10.0	0.0
eachate Sump				N	o Access. Op	en for works all day		
Sewer		0.0	0.0	20.8	0.0	993	11.0	0.0
IPS INLET		48.5	27.5	0.0	0.0	992	12.0	0.0

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Α	mbient [x])
	Site Name	:	Site Addre	ess :			
	Dunsink Land	Ifill		Dun	cink Lano, Dunci	ak Co Dublin	
Operator :	3			Dun	SIIIK LAIIE, DUIISI		
operator .	Fingal Cou Comhairte Co	Inty Council Intae Fhine Gall	National	Grid Refer	ence :		
Site Status :	Operational		Date :	03	3/11/11	Time:	am
Instrume	nt Used :	Normal Ana	lytical Ran	ge	Nex	t Calibration d	ue:
LMSX Landfill (Gas Analyser	0-100%	CH ₄ , CO ₂ .			Dec-11	
Monitoring	Perconnel	EK/DE	Weather	:		Barometric	Pressure :
Profitoring		T N/ KF	Cloudy/wet			See individual r	eadings

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	19.9	0.0	973	12.0	0.0
G35		0.0	0.0	20.7	0.0	975	12.0	0.0
G36		0.0	<u>5.7</u>	15.5	0.0	975	12.0	0.0
G37		0.0	1.1	17.9	0.0	974	12.0	0.0
G38		0.0	<u>6.6</u>	7.3	0.0	975	12.0	0.0
G39		0.0	<u>3.3</u>	16.4	0.0	974	12.0	0.0
G40		0.0	<u>8.5</u>	5.4	0.0	975	12.0	0.0
Leachate Sump		0.0	0.1	20.6	0.0	975	12.0	0.0
Sewer		0.0	0.3	20.6	0.0	975	12.0	0.0
IPS INLET*		<u>48.2</u>	<u>27.8</u>	0.0	0.0	975	12.0	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Α	mbient [x])
	Site Name	:	Site Addre	ess :			
	Dunsink Land	Ifill		Dun	cink Lano, Dunci	ak Co Dublin	
Operator :	5			Dun	SIIK Lane, Dunsi	ik, co. Dubiin	
operator .	Fingal Cou Comhairte Co	Inty Council Intae Fhine Gall	National	Grid Refer	ence :		
Site Status :	Operational		Date :	09	9/11/11	Time:	am
Instrume	nt Used :	Normal Ana	lytical Ran	ge	Nex	t Calibration d	ue:
LMSX Landfill	Gas Analyser	0-100%	CH ₄ , CO ₂ .			Dec-11	
Monitoring	Perconnel	EK/DE	Weather	:		Barometric	Pressure :
Pointoring		T N/ KF	Sunny spell	s		See individual r	eadings

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	19.8	0.0	996	12.0	0.0
G35		0.0	0.5	20.0	0.0	997	12.0	0.0
G36		0.0	<u>2.7</u>	17.3	0.0	997	12.0	0.0
G37		0.0	0.9	18.6	0.0	997	12.0	0.0
G38		0.0	0.3	19.7	0.0	997	12.0	0.0
G39		0.0	<u>4.8</u>	14.0	0.0	997	12.0	0.0
G40		0.0	<u>8.4</u>	3.6	0.0	997	12.0	0.0
Leachate Sump		0.0	0.1	20.7	0.0	997	12.0	0.0
Sewer		0.0	0.3	20.8	0.0	998	12.0	0.0
IPS INLET*		<u>45.1</u>	<u>27.0</u>	0.1	0.0	997	12.0	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	Ambient [x])	
	Site Name	:	Site Address :					
	Dunsink Land	lfill		Dur	cink Lano Du	uncink Co	Dublin	
0	Operator -			Dui	ISITIK LATIC, DU	insink, co.	Dubiin	
Operator :	Fingal Co Comhairte C	unty Council ontae Fhirie Gall	National Grid Reference : Date : 16/11/11		ence :			
Site Status :	Operational				6/11/11	Time	:	
Instrume	nt Used : Normal A		lytical Range I		Next Calibration due:			
LMSX Landfill	Gas Analyser	0-100%	CH ₄ , CO ₂ .			De	ec-11	
		514 0. 05	Weather:			Ba	arometric Pressure :	
	Monitoring Personnel :		Cloudy				See individual readings	

				Resul	ts			
Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	02 % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G3		0.0	0.0	21.0	0.0	921	12.0	0.0
G6		0.0	1.2	18.9	0.0	1009	12.0	0.0
G7		0.0	0.0	21.3	0.0	1009	11.0	0.0
G8		0.0	0.1	20.9	0.0	927	11.0	75.1
G9		0.0	<u>1.6</u>	17.6	0.0	1008	10.5	0.0
G10		0.0	0.0	21.1	0.0	1007	11.0	0.0
G12		0.0	0.0	21.0	0.0	1007	11.5	0.0
G13		0.0	0.4	20.3	0.0	1007	13.5	0.0
G18		0.0	0.0	21.0	0.0	1007	12.0	0.0
G21		0.0	0.3	20.8	0.0	1008	12.0	0.0
G23		0.0	0.0	20.7	0.0	927	11.0	77.8
G35		0.0	0.5	20.4	0.0	1007	12.0	0.0
G36		0.0	<u>6.1</u>	13.9	0.0	1007	12.0	0.0
G37		0.0	<u>3.5</u>	11.8	0.0	1007	11.0	0.0
G38		0.0	0.8	19.0	0.0	1008	12.0	0.0
G39		0.0	<u>5.7</u>	13.1	0.0	1007	11.5	0.0
G40		0.0	<u>7.9</u>	6.5	0.0	1007	11.0	0.0
G41		0.0	0.0	20.7	0.0	1007	12.0	0.0
G42		0.0	0.0	21.0	0.0	1008	12.0	0.0
G43		0.0	<u>9.0</u>	6.5	0.0	1007	10.5	0.0
G44		0.0	<u>8.7</u>	4.1	0.0	1007	11.0	0.0
eachate Sump		0.0	0.6	20.8	0	1008	12	0
Sewer		0.0	0.2	21.1	0.0	1009	15.5	0.0
IPS INLET		42.0	26.2	0.2	0.0	997	11.7	0.0

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []		Ambient [x])	
	Site Name :							
	Dunsink Land	lfill		Dun	cink Lana, Dunciu	ak Co Dublin		
Operator I								
operator .	Fingal Con Comhairle Co	Fingal County Council Comhairle Contae Fhine Gall		Grid Refer	ence :			
Site Status :	Operational		Date :	24	4/11/11	Time:	am	
Instrume	nt Used :	Normal Ana	lytical Ran	ge	Next Calibration due:		due:	
LMSX Landfill (Gas Analyser	0-100%	CH ₄ , CO ₂ .		Dec-11			
Monitoring Porconnol		EK/DE	Weather	:		Barometri	c Pressure :	
Monitoring			Cloudy and	mild		See individual	readings	

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	20.0	0.0	1007	12.0	0.0
G35		0.0	1.0	20.2	0.0	1008	12.0	0.0
G36		0.0	<u>7.4</u>	13.3	0.0	1008	12.0	0.0
G37		0.0	<u>3.1</u>	12.9	0.0	1008	12.0	0.0
G38		0.0	<u>3.3</u>	13.7	0.0	1008	12.0	0.0
G39		0.0	<u>4.5</u>	15.6	0.0	1008	12.0	0.0
G40		0.0	<u>8.1</u>	6.0	0.0	1008	12.0	0.0
Leachate Sump		0.0	0.2	20.5	0.0	1009	12.0	0.0
Sewer		0.0	0.3	20.8	0.0	1009	12.0	0.0
IPS INLET*		<u>39.5</u>	<u>25.8</u>	0.3	0.0	1008	12.0	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	A	(mbient [x])	
	Site Addr	ess :						
	Dunsink Land	lfill		Dun	cink Lana, Dunci	ak Co Dublin		
Operator :								
Operator .	Fingal Cou Comhairle Co	anty Council antae Fhine Gall	National	Grid Refer	ence :			
Site Status :	Operational		Date :	02/12/11		Time:	am	
Instrume	nt Used :	Normal Ana	lytical Ran	ige	Nex	t Calibration d	ue:	
GFM435 Landfil	l Gas Analyser	0-100%	CH ₄ , CO ₂ .		Dec-11			
Monitoring Personnel : RF/JF		Weather	:		Barometric	Pressure :		
		Wet, Cold,	Windy		See individual r	eadings		

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	20.3	0.0	1001	7.0	0.0
G35		0.0	0.0	21.0	0.0	1001	7.0	0.0
G36		0.0	<u>4.8</u>	17.0	0.0	1001	7.0	0.0
G37		0.0	<u>6.4</u>	5.4	0.0	1001	7.0	0.0
G38		0.0	<u>6.5</u>	10.0	0.0	1001	7.0	0.0
G39		0.0	<u>7.9</u>	10.6	0.0	1001	7.0	0.0
G40		0.0	<u>9.7</u>	6.5	0.0	1001	7.0	0.0
Leachate Sump		0.0	0.4	20.6	0.0	1003	7.0	0.0
Sewer		0.0			0.0	1003	7.0	0.0
IPS INLET*		<u>37.3</u>	<u>25.4</u>	0.4	0.0	1003	7.0	0.0

* Note monitoring of inlet gases undertaken at new continuous sampling point off enclosed flare

LANDFIL	L GAS M	ONITORING	FORM	(Baseline []	Ambient [x])
	Site Name	:	Site Address :			
	Dunsink Land	Ifill		Duncink Lana D	uncink Co. Dub	lin
0	3	21		DUIISIIK Lähe, Di	unsink, co. Dub	
Operator :	Fingal Con Combainte Co	unty Council entae Fhirse Gall	National Grid I	Reference :		
Site Status :	Operational		Date :	07/12/11	Time:	
Instrume	nt Used :	Normal Ana	lytical Range		Next Calibrati	ion due:
LMSX Landfill	Gas Analyser	0-100%	CH₄, CO₂.		Dec-11	
Monitoring Personnel :		514.0.05	Weather:		Baron	netric Pressure :
		FK & RF	C			See individual readings

Results

6

Borehole Number	Survey Depth	CH₄ % v/v	CO2 % v/v	O₂ % v/v	H₂S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G3		0.0	0.0	20.2	0.0	999	6.0	0.0
G6		0.0	1.3	18.9	0.0	998	6.0	0.0
G7		0.0	0.1	20.2	0.0	998	6.0	0.0
G8		0.0	0.2	20.2	0.0	998	6.0	0.0
G9		0.0	<u>2.0</u>	17.9	0.0	998	6.0	0.0
G10		0.0	<u>2.0</u>	17.8	0.0	999	6.0	0.0
G12		0.0	0.1	20.2	0.0	999	6.0	0.0
G13		0.0	0.5	19.7	0.0	998	6.0	0.0
G18		0.0	0.1	20.2	0.0	998	6.0	0.0
G21		0.0	0.1	20.2	0.0	999	6.0	0.0
G23		0.0	0.0	18.7	0.0	997	6.0	0.0
G35		0.0	0.2	20.3	0.0	999	6.0	0.0
G36		0.0	<u>5.7</u>	17.8	0.0	998	6.0	0.0
G37		<u>1.0</u>	<u>4.4</u>	9.2	0.0	999	6.0	27.0
G38		0.0	<u>6.4</u>	12.0	0.0	998	6.0	0.0
G39		0.0	<u>7.8</u>	10.3	0.0	998	6.0	0.0
G40		0.0	<u>9.4</u>	7.0	0.0	999	6.0	0.0
G41		0.0	0.0	20.3	0.0	999	6.0	0.0
G42		0.0	0.2	20.2	0.0	999	6.0	0.0
G43		0.0	0.9	19.6	0.0	999	6.0	0.0
G44		0.0	<u>7.9</u>	13.8	0.0	999	6.0	0.0
eachate Sump		0.0	1.1	20	0.0	999	6.0	0.0
Sewer		0.0	2.2	19.7	0.0	1000	6.0	0.0
IPS INLET		50.5	28.6	0.2	0.0	999	6.0	0.0

Г

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []		Ambient [x])	
	Site Addr	ess :						
	Dunsink Land	lfill		Dun	cink Lana, Dunci	ak Co Dublin		
operator .	Fingal Cou Comhairle Co	anty Council antae Fhine Gall	National	Grid Refer	ence :			
Site Status :	Operational		Date : 13/12/11			Time:	am	
Instrume	nt Used :	Normal Ana	lytical Ran	ge	Next Calibration due:		due:	
GFM435 Landfill	Gas Analyser	0-100%	CH ₄ , CO ₂ .		Dec-11			
Monitoring Personnel . DE/1E		DE/1E	Weather	:		Barometri	ic Pressure :	
Monitoring			Windy, sno	wy, cold		See individual	readings	

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	20.5	0.0	968	3.0	0.0
G35		0.0	0.0	20.9	0.0	969	3.0	0.0
G36		0.0	<u>5.5</u>	18.1	0.0	969	3.0	0.0
G37		<u>3.9</u>	<u>4.2</u>	1.8	0.0	968	3.0	0.0
G38		0.0	<u>6.8</u>	9.0	0.0	968	3.0	0.0
G39		0.0	<u>6.9</u>	7.4	0.0	968	3.0	0.0
G40		0.0	0.5	20.0	0.0	969	3.0	0.0
Leachate Sump		0.0	0.0	20.9	0.0	970	3.0	0.0
Sewer		0.0	0.0	20.9	0.0	970	3.0	0.0
IPS INLET		<u>53.1</u>	<u>29.5</u>	0.0	0.0	969	3.0	0.0

Г

LANDFIL	L GAS M	ONITORING	FORM		(Baseline []	4	Ambient [x])	
	Site Name :							
	Dunsink Lane Dunsink Co. Dublin							
Operator :								
operator .	Fingal Cou Comhairle Co	Fingal County Council Comhairle Contae Fhine Gall		Grid Refer	ence :			
Site Status :	Operational		Date :	e: 21/12/11		Time:	am	
Instrume	nt Used :	Normal Ana	lytical Range		Next Calibration due:		ue:	
GFM435 Landfil	Gas Analyser	0-100%	CH ₄ , CO ₂ .		Dec-11			
Monitoring Personnel : RF/PG		PE/PG	Weather:			Barometric	c Pressure :	
		Overcast, N	1ild		See individual r	readings		

Results

Borehole Number	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	H ₂ S (ppm)	Atmospheric Pressure (mbar)	Temperature °C	LEL % v/v
G23		0.0	0.0	20.5	0.0	1009	7.0	0.0
G35		0.0	0.0	20.8	0.0	1010	7.0	0.0
G36		0.0	<u>6.6</u>	17.0	0.0	1010	7.0	0.0
G37		0.0	<u>3.1</u>	10.0	0.0	1011	7.0	0.0
G38		0.0	<u>4.6</u>	13.9	0.0	1010	7.0	0.0
G39		0.0	<u>6.8</u>	10.2	0.0	1010	7.0	0.0
G40		0.0	<u>7.5</u>	9.2	0.0	1010	7.0	0.0
Leachate Sump		0.0	0.0	20.8	0.0	1010	7.0	0.0
Sewer		0.0	0.2	20.7	0.0	1011	7.0	0.0
IPS INLET					INAC	CESSIBLE		

FINGAL COUNTY COUNCIL-DUNSINK LANDFILL ANNUAL ENVIRONMENTAL REPORT 2011

APPENDIX IV

SURFACE WATER, LAGOON & PUMPHOUSE WEEKLY INSPECTION RECORD. DUNSINK LANDFILL W-L 127-1 – Condition 8.2 (Schedule D.5)

NUISANCES S' COLOUR (clear/tinted/cloudy) DDOUR (Clear/tinted/cloudy)	W18 SW7	SW10	SW2	033711							
COLOUR (clear/tinted/cloudy) DDOUR				SW11	SW9	SW17	SW19	WWSW 1 (Stream)	WWSW 2	Base of lagoon Covered %	N
ODOUR											W E
none/oily/leachate/organic)											
Herbaceous bank cm Herbaceous stream cm										-	
Algae %										Freeboard <u>N</u>	<u>I</u>
Flow Rate (none/low/moderate/fast)											
Depth (cm) Vegetation cover %											
	·	•		Additional	Parameters	(OPTION	AL)				
Conductivity μS					_						
			-	_					-		
OH Dissolved owner (mall)											
Dissolved oxygen (mg/l) Dissolved oxygen (%)											
Samples Taken: Yes /	/ No I	nspector's lignature:	Review	ved By:	Site Insp	ector's Com	ments:			Leachate Totalis	er (litres)
Photographs Taken: Yes /	No .		••••••							Time	
OTHER OBSERVATIONS/ A	ANY IMMEDIA	TE ACTION R	EQUIRED *	Cannot see	e base of stro	eam for vege	etation cove	r ** Canno	t see base of	f stream for cloudiness	of water

FINGAL COUNTY COUNCIL-DUNSINK LANDFILL ANNUAL ENVIRONMENTAL REPORT 2011

APPENDIX V

| PRTR# : W0127 | Facility Name : Dunsink Landfill aka Dunsink Civic Amenity | Filename : W0127_2011 DMcD 2_4_12.xls | Return Year : 2011 |

02/04/2012 15:02

Guidance to completing the PRTR workbook

Environmental Protection Agency

AER Returns Workbook

REFERENCE YEAR 2011

1. FACILITY IDENTIFICATION

Parent Company Name	Fingal County Council
Facility Name	Dunsink Landfill aka Dunsink Civic Amenity
PRTR Identification Number	W0127
Licence Number	W0127-01
Waste or IPPC Classes of Activity	
No	class name

4.4	Recycling or reclamation of other inorganic materials.
	Surface impoundment, including placement of liquid or sludge discards into
3.4	pits, ponds or lagoons.
	Use of waste obtained from any activity referred to in a preceding
4.11	paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred to in a
	preceding paragraph of this Schedule, other than temporary storage,
4.13	pending collection, on the premises where such waste is produced.
	Recycling or reclamation of organic substances which are not used as
	solvents (including composting and other biological transformation
4.2	processes).
4.3	Recycling or reclamation of metals and metal compounds.
4.9	Use of any waste principally as a fuel or other means to generate energy.
Address 1	Dunsink Lane
Address 2	Finglas
Address 3	County Dublin
Address 4	
	Dublin
Country	Ireland
Coordinates of Location	-6.33899 53.3903
River Basin District	IEEA
NACE Code	3832
Main Economic Activity	Recovery of sorted materials
AER Returns Contact Name	Alain Kerveillant
AER Returns Contact Email Address	Alain.Kerveillant@fingalcoco.ie
AER Returns Contact Position	Assistant Scientist Waste Management Division Fingal County Council
AER Returns Contact Telephone Number	01 8905000
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	
Production Volume	0.0
Production Volume Units	
Number of Installations	(
Number of Operating Hours in Year	(
Number of Employees	(
User Feedback/Comments	
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
50.1	General
50.1	General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

Is it applicable?	No
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used ?	

4.1 RELEASES TO AIR Link to previous years emissions data

| PRTR# : W0127 | Facility Name : Dunsink Landfill aka Dunsink Civic Amenity | Filename : W0127_2011 DMcD 2_4_12.xls | Return Year : 2011 |

03/04/2012 15:45

16

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

RELEASES TO AIR			Please enter all quantities in this section in KGs								
POLLUTANT		METHOD				QUANTITY					
			N	Nethod Used							
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year			
					0.0) 0.	0 0.0	0.0			

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

RELEASES TO AIR						n this section in KGs			
POLLUTANT				METHOD	QUANTITY				
			Method Used		FLARE	ENGINE DN01			
							1	A (Accidental)	F (Fugitive)
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	Emission Point 2	T (Total) KG/Year	KG/Year	KG/Year
				Total estimated methane					·
				generated minus methane					
01	Methane (CH4)	С	OTH	flared/utilised	715.81	18610.95	1081710.86	0.0	1062384.1
03	Carbon dioxide (CO2)	С	OTH	Gas Sim Data from RPS	94870.86	1541750.54	8202635.41	0.0	6566014.01

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	Please enter all quantities in this section in KGs								
POLLUTANT		METHOD			QUANTITY				
				Method Used					
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.	.0	0.0 0.	0.0	

Additional Data Requested from Lanc	Ifill operators					
For the purposes of the National Inventory on Greenho flared or utilised on their facilities to accompany the fig emission to the environment under T(total) KG/yr for S	use Gases, landfill operators are requested to provide summary data on landfill gas (Methane) jures for total methane generated. Operators should only report their Net methane (CH4) action A: Sector specific PRTR pollutants above. Please complete the table below:					
Landfill:	Dunsink Landfill aka Dunsink Civic Amenity					
Please enter summary data on the quantities						
of methane flared and / or utilised			Met	hod Used		-
				Designation or	Facility Total Capacity m3	
	T (Total) kg/Year	M/C/E	Method Code	Description	per hour	
Total estimated methane generation (as per site						
model)	2028722.864	С	Oth	Gas Sim Data from RPS	N/A	
Methane flared	35075.0	М	Oth	Data provided by Bioverda	2500.0	(Total Flaring Capacity)
Methane utilised in engine/s	911937.0	М	Oth	Data provided by Bioverda	0.0	(Total Utilising Capacity)
Net methane emission (as reported in Section A						
above)	1081710.86	С	с	Total generated- flared- utilise	N/A	

4.2 RELEASES TO WATERS Link to previous

Link to previous years emissions data

PRTR# : W0127 | Facility Name : Dunsink Landfill aka Dunsink Civic Amenity | Filename : W0127_2011 DMcD 2_4_12.xls | Return Year : 2011 |

uld NOT be submitted under AER / PRTR Reporting as this only concerns Releases from your facility SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS ing of storm/surface water or gro ted as part of vo RELEASES TO WATERS Please enter all quantities in this section in KGs QUANTITY POLLUTANT Method Used M/C/E Method Code Designation or Description Emission Point 1 No. Annex II T (Total) KG/Year A (Accidental) KG/Year F (Fugitive) KG/Year Name 0.0 0.0 0.0 0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	Please enter all quantities in this section in KGs								
POLLUTANT					QUANTITY				
				Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.0	0.0	0.0	0.0	
	* Select a row by double-clicking on the Pollutant Name (Column B								

SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)												
RELEASES TO WATERS					Please enter all quantities in this section in KGs							
POLLUTANT			QUANTITY									
				Method Used								
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year				
					0.0	0.0) 0.	0.0				

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

| PRTR# : W0127 | Facility Name : Dunsink Landfill aka Dunsink Civic Amenity | Filename : W0127_201 02/04/2012 15:02

SECTION A : PRTR POLLUTANTS

OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER					Please enter all quantities in this section in KGs				
POLLUTANT			METHO	D	QUANTITY				
			Met	hod Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.0	0.0	0.0	0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER					Please enter all quantities in this section in KGs				
POLLUTANT			METHO	D	QUANTITY				
			Met	hod Used					
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.0	0	0 00	0.0	

4.4 RELEASES TO LAND

Link to previous years emissions data

SECTION A : PRTR POLLUTANTS

RELEASES TO LAND					Please enter all quantities	in this section in KGs		
POLLUTANT			METHO	D	QUANTITY			
			Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	
					0.0	(0.0 0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

RELEASES TO LAND					Please enter all quantities in this section in KGs			
POLLUTANT		METHOD				QUANTITY		
			Met	hod Used				
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	
					0.0	(0 00	

5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE PRTR# : W0127 Facility Name : Dunsink Landfill aka Dunsink Civic Amenity Filename : W0127_2011 DMcD 2_4_12:xls Return Year: 2011 02/04/20'									02/04/2012 15:02			
			Please enter	all quantities on this sheet in Tonnes								
Transfer Destination	European Waste	Hazardous	Quantity (Tonnes per Year)	Description of Waste	Waste Treatment Operation	M/C/F	Method Used	Location of	Haz Waste : Name and Licence/Permit No of Next Destination Facility <u>Nor</u> <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	Haz Waste : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Bootanation	0000	Tidzardodo		Beconplianter Hadie	oportation	IN OIL	mothod 000d	Hoddmon	Dublin City Council Waste	1	I	ll
				landfill leachate other than those mentioned in					Water Treatment			
Within the Country	19 07 03	No	147692.0	19 07 02	D9	M	Volume Calculation	Offsite in Ireland	Facility,D0034-01	.,Ringsend,Dublin 4,.,Ireland		
		* Select a row by double-clicking the Description of Waste then click the delete button										

Link to previous years waste data Link to previous years waste summary data & percentage change