Facility Information Sumn	nary
Licence Register Number	W0014-01
Name of site	Silliot Hill Integrated Waste Management Facility
Site Location	Brownstown, Kilcullen, Co. Kildare
NACE Code	brownstown, kilednen, co. kildare
Class of Activity	e WMA: Class 4, 6, 7, 11, 12, 13. Foruth Schedule WMA: Class 2, 3, 4
RBME risk category	A 3
National Grid Reference (6E, 6 N)	285834 211426
National Grid Reference (6E, 6 N)	203034 211420
A brief description of the activities/process	
at the site for the reporting year. This should	
include information such as production	
increases or decreases on site, any	
infrastructural changes, environmental	
performance improvements which were	The site comprises a WTS, Civic Amenity Site and a Closed Landfill. The In-Vessel Composting Facility and the
measured during the reporting year;	Sludge Treatment Facility have not been in operation for several years. A concession contract for the operation
	of the WTS and Civic Amenity was awarded to Oxigen Environmental in 2011. Oxigen Environmental took over
	the operations of these areas on the 8th December 2011. There was a decrease in waste volumes coming into

the WTS. The Kildare County Council bin collection was sold during 2011 to AES, therefore the bin collections were not coming through the site.

Declaration:

All the data and information presented in this report has been checked and certified as being accurate. The quality of the information is assured to meet licence requirements.

Signature Date
Group/Facility manager
(or nominated, suitably qualified and experienced deputy)

Complaints		
		Additional information
Have you received any environmental complaints in the current reporting year? If yes please complete summar		
details of complaints received on site in table 1 below	No	

Table 1	Complaints summary	·					
			Brief description of				
			complaint (Free txt <20	Corrective action< 20			Further
Date	Category	Other type (please specify)	words)	words	Resolution status	Resolution date	information
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
Total complaints							
open at start of							
reporting year							
Total new							
complaints received							
during reporting							
year							
Total complaints							
closed during							
reporting year							
Balance of							
complaints end of							
reporting year							

	Incidents									
Additional informa										
Have any incidents occurred on site in the current repo	rting year? Please list all incid	lents for current reporting								
year in Tab	e 2 below	_	Yes							
*For information on how to report and what constitutes										
an incident	What is an incident									

Table 2 Incidents sur	mmary													
						Other					Preventative			
			Incident category*please			cause(please	Activity in progress	;		Corrective action<20	action <20		Resolution	Liklihood of
Date of occurrence	Incident nature	Location of occurrence	refer to guidance	Receptor	Cause of incident	specify)	at time of incident	Communication	Occurrence	words	words	Resolution status	date	reoccurence
										LFG pumping trial &	In process of			
		Licenced discharge point								Gas Migration	procuring new			
25/01/2011	Trigger level reached	(type in reference here)	1. Minor	Ground	Operational contr	ols	Normal activities	EPA	Recurring	investigation	flare	Ongoing	NA	High
										LFG pumping trial &	In process of			
		G103, G104D, G104S, G105,								Gas Migration	procuring new			
25/02/2011	Trigger level reached	G400-07	1. Minor	Ground	Operational contr	ols	Normal activities	EPA	Recurring	investigation	flare	Ongoing	NA	High
										LFG pumping trial &	In process of			
		G103, G104D, G104S, G105,								Gas Migration	procuring new			
29/03/2011	Trigger level reached	G109S, G400-07	1. Minor	Ground	Operational contr	ols	Normal activities	EPA	Recurring	investigation	flare	Ongoing	NA	High

									LFG pumping trial &	In process of			
									Gas Migration	procuring new			
21/04/2011	Trigger level reached	G103, G104D, G104S, G105	1. Minor	Ground	Operational controls	Normal activities	EPA	Recurring	investigation	flare	Ongoing	NA	High
									LFG pumping trial &	In process of			
		G103, G104D, G104S, G105,							Gas Migration	procuring new			
24/05/2011	Trigger level reached	G106G, G109S	1. Minor	Ground	Operational controls	Normal activities	EPA	Recurring	investigation		Ongoing	NA	High
									LFG pumping trial &	In process of			1
		G103, G104D, G105, G400-							Gas Migration	procuring new			
28/06/2011	Trigger level reached	07	1. Minor	Ground	Operational controls	Normal activities	EPA	Recurring	investigation		Ongoing	NA	High
									LFG pumping trial &	In process of			1
		G75, G103, G104D,							Gas Migration	procuring new			
27/07/2011	Trigger level reached	G104S,G105	1. Minor	Ground	Operational controls	Normal activities	EPA	Recurring	investigation	flare	Ongoing	NA	High
									LFG pumping trial &	In process of			
		G103, G104D, G104S, G105,							Gas Migration	procuring new			
31/08/2011	Trigger level reached	G400-07	1. Minor	Ground	Operational controls	Normal activities	EPA	Recurring	investigation	flare	Ongoing	NA	High
									LFG pumping trial &	In process of			
									Gas Migration	procuring new			
27/09/2011	Trigger level reached	G103, G104D, G104S,G105	1. Minor	Ground	Operational controls	Normal activities	EPA	Recurring	investigation	flare	Ongoing	NA	High
									LFG pumping trial &	In process of			
									Gas Migration	procuring new			
18/10/2011	Trigger level reached	G104D, G104S	1. Minor	Ground	Operational controls	Normal activities	EPA	Recurring	investigation	flare	Ongoing	NA	High
									LFG pumping trial &	In process of			
									Gas Migration	procuring new			
24/11/2011	Trigger level reached	G104S, G105	1. Minor	Ground	Operational controls	Normal activities	EPA	Recurring	investigation	flare	Ongoing	NA	High
									LFG pumping trial &	In process of			
									Gas Migration	procuring new			
21/12/2011	Trigger level reached	G104S, G105	1. Minor	Ground	Operational controls	Normal activities	EPA	Recurring	investigation	flare	Ongoing	NA	High
										Review of H &			
										S and Risk			
01/12/2011	Fire	TEG Building	2. Limited	Air	SELECT	Dismantling of con	EPA	New	NA	Assessments	Complete	14/12/2011	Low

Total number of incidents current year 13

Total number of incidents previous year 12
% reduction/ increase 8%

Groundwater / Contaminated land summary report

- Are you required to carry out groundwater monitoring as part of your licence requirements?
- 2 Are you required to carry out soil monitoring as part of your licence requirements?
- $^{\mathbf{3}}$ Do you extract groundwater for use on site? If yes please specify use in comment section
- 4 Is there contaminated land and /or groundwater on site? If yes please answer q's 5-12
- 5 Is the contamination related to operations at the facility (either current and/or historic)

yes	
no	
no	
yes	
yes	
	Capping of the Landfill
was	
yes	completed March 2009. Complete
yes	Complete
no ves	
yes yes	
yes	
yes	

Comments

- 6 Have actions been taken to address contamination issues?If yes please summarise remediation strategies proposed/undertaken for the site
- 7 Please specify the proposed time frame for the remediation strategy
- 8 Is there a licence condition to carry out/update ELRA for the site?
- 9 Has any type of risk assesment been carried out for the site?
- 10 Has a Conceptual Site Model been developed for the site?
- 11 Have potential receptors been identified on and off site?
- 12 Is there evidence that contamination is migrating offsite?

Table 1: Upgradient Groundwater monitoring results

Tubic 1.	Oppradient	- Crounawat		T Courts			1	1			•
Date of sampling	Sample location reference	Parameter/ Substance	Methodology	Monitoring frequency	Maximum Concentration++	Average Concentration+	unit	GTV's*		average concentration	Upward trend in pollutant concentration over last 5 years of monitoring data
					692	648					
		Electrical									
2011	PW 2-09	Conductivity		Quarterly			μS/cm @ 20	NA	1000	-24%	SELECT
		Ammonia as			0.105	0.034					
2011	PW 2-09	N		Quarterly			mg/l	175 ug/l		-69%	SELECT
2011	PW 2-09	Sodium		Quarterly	16	13.25	mg/l	150	150	-41%	
2011	PW 2-09	Chloride		Quarterly	33.4	26.7	mg/l	NA	30	-10%	
2011	PW 2-09	TON		Quarterly	10.14	8.43	mg/l	NA	NAC	-20%	
2011	PW 2-09	Potassium		Quarterly	2	1.2	mg/l	NA	5	-26%	

2011	PW 2-09	Phenols	Quarterly	<5	<5	ug/l	NA	0.5		
	PW 2-09	TOC	Quarterly	10.14		mg/l		NAC	-11%	
		Total		3	0.75					
2011	PW 2-09	Coliforms	Quarterly			cfu/100ml	NA	0	-114%	
		Faecal		0	0					
2011	PW 2-09	Coliforms	Quarterly			cfu/100ml	NA	0	-200%	
2011	PW 2-09	Iron	Quarterly	<10	<10	ug/l	NA	0.2	-62%	
				1408	1306					
		Electrical								
2011	BH 9D	Conductivity	Quarterly			µS/cm @ 20	NA	1000	14%	
		Ammonia as		0.518	0.174					
2011	BH 9D	N	Quarterly			mg/l	175 ug/l		41%	
2011	BH 9D	Sodium	Quarterly	91	75.5	mg/l	150	150	5%	
2011	BH 9D	Chloride	Quarterly	1850.5		mg/l	NA	30	126%	
2011	BH 9D	TON	Quarterly	7.76		mg/l	NA	NAC	-46%	
2011	BH 9D	Potassium	Quarterly	11	9.75	mg/l	NA	5	10%	
2011	BH 9D	Phenols	Quarterly	<5		ug/l	NA	0.5	-100%	
2011	BH 9D	TOC	Quarterly	2.01	1.66	mg/l	NA	NAC	-118%	
		Total		13						
2011	BH 9D	Coliforms	Quarterly			cfu/100ml	NA	0	-194%	
		Faecal		7	1.75					
2011	BH 9D	Coliforms	Quarterly			cfu/100ml	NA	0	-197%	
2011	BH 9D	Iron	Quarterly	30750	11069	ug/l	NA	0.2	196%	
										SELECT

^{.+} where average indicates arithmetic mean

Table 2: Downgradient Groundwater monitoring results

	2011g. a.a		vater mome	8							
Date of sampling	Sample location reference	Parameter/ Substance	Methodology	Monitoring frequency	Maximum Concentration	Average Concentration	unit	GTV's*		% change in average concentration	Upward trend in yearly average pollutant concentration over last 5 years of monitoring data
					2200	2147					
		Electrical									
2011	BH 4-07	Conductivity		Quarterly			μS/cm @ 20	NA	1000	-48%	SELECT
		Ammonia as			208	178.7					
2011	BH 4-07	N		Quarterly			mg/l	175 ug/l		-22%	
2011	BH 4-07	Sodium		Quarterly	214		mg/l	150	150	-58%	
2011	BH 4-07	Chloride		Quarterly	275.97	263.32	mg/l	NA	30	-6%	
2011	BH 4-07	TON		Quarterly	<0.1	<0.1	mg/l	NA	NAC	-107%	
2011	BH 4-07	Potassium		Quarterly	87		_	NA	5	-19%	
2011	BH 4-07	Phenols		Quarterly	<1.5		ug/l	NA	0.5	-170%	
2011	BH 4-07	TOC		Quarterly	74.8		mg/l	NA	NAC	-88%	
		Total			103000	36313					
2011	BH 4-07	Coliforms		Quarterly			cfu/100ml	NA	0	198%	
		Faecal			0	0					
2011	BH 4-07	Coliforms		Quarterly			cfu/100ml	NA	0	0	
2011	BH 4-07	Iron		Quarterly	12560	9160	ug/l	NA	0.2	182%	

^{.++} maximum concentration indicates the maximum measured concentration from all monitoring results produced during the reporting year

				626	437					
		Electrical								
2011	PW 11	Conductivity	Quarterly			μS/cm @ 20	NA	1000	5%	
		Ammonia as		0.16	0.094					
2011	PW 11	N	Quarterly			mg/l	175 ug/l		-6%	
2011	PW 11	Sodium	Quarterly	7	6.33	mg/l	150	150	-42%	
2011	PW 11	Chloride	Quarterly	11.8	9.8	mg/l	NA	30	-18%	
2011	PW 11	TON	Quarterly	4.69	3.01	mg/l	NA	NAC	35%	
2011	PW 11	Potassium	Quarterly	4	3.33	mg/l	NA	5	-29%	
2011	PW 11	Phenols	Quarterly	<5	2	ug/l	NA	0.5	-85	
2011	PW 11	TOC	Quarterly	1.65	1.626	mg/l	NA	NAC	-94%	
		Total		870	518					
2011	PW 11	Coliforms	Quarterly			cfu/100ml	NA	0	-148%	
		Faecal		550	185					
2011	PW 11	Coliforms	Quarterly			cfu/100ml	NA	0	173%	
2011	PW 11	Iron	Quarterly	1707	619	ug/l	NA	0.2	147%	SELECT

^{*} please note exceedance of a relevant Groundwater threshold value (GTV) at a representative monitoring point does not indicate non compliance, an exceedance triggers further investigation to confirm whether the criteria for poor groundwater chemical status are being met.

Groundwater Drinking water

<u>Surface</u> regulations water EQS GTV's

(private supply) <u>standards</u>

<u>Drinking water (public</u> <u>Interim Guideline</u> supply) standards

Values (IGV)

^{**}Depending on location of the site and proximity to other sensitive receptors alternative Receptor based Water Quality standards should be used in addition to the GTV e.g. if the site is close to surface water compare to Surface Water Environmental Quality Standards (SWEQS), If the site is close to a drinking water supply compare results to the Drinking Water Standards (DWS)

Table 3: Soil results

Date of sampling	Sample location reference	Parameter/ Substance	Methodology	Monitoring frequency	Maximum Concentration	Average Concentration	unit
							SELECT
							SELECT

Where additional detail is required please enter it here in 200 words or less

Environmental Liability Risk Assessment

		•	C
			Commentary
1	Is it a requirement of your licence to complete an ELRA?		
-	is it a requirement of your notation to complete an Early.	No	
2	Has an initial ELRA been submitted to and approved by the Agency?	No	
		_	
_			
3	Please enter the date of submission of the initial ELRA		
4	Date of most recent substantial ELRA update		
_	What fire end in the county is the county in		
5	What financial instrument/s do you have in place to cover unknown liabilities?	Insurance	
6	Has this financial instrument/s been verified by the Agency?	No	
7	What is the date of expiry of this financial instrument?		
′	What is the date of expiry of this infalled instrument.		
_			
8	Date of next required review of the ELRA?		

⁹ Please list the top 10 risks assessed on your site in table 1 below

Table 1 **ELRA** summary information

Click here to access EPA guidance on ELRA	Operational Risk Assessment Category	SELECT							
				Mitigat	ion measures to red Date of implementation of mitigation		ELR Revised Risk score for		Does the current financial provision (FP) cover the risk
Risk ID	Potential hazards	Environmental effect	Previous risk score	Action	measures		current reporting year		score?
Chemical storage	Bund failure resulting in spillage of hazardous chemicals on site	Surface water /soil/groundwater contamination	6	Infrastructural improvements	31/05/2009	Relined all bunds >10years old on site	3	€10,000	Yes
SELECT			SELECT	SELECT			SELECT		SELECT
SELECT			SELECT	SELECT			SELECT		SELECT
SELECT			SELECT	SELECT			SELECT		SELECT
SELECT			SELECT	SELECT			SELECT		SELECT
SELECT			SELECT	SELECT			SELECT		SELECT
SELECT			SELECT	SELECT			SELECT		SELECT
SELECT			SELECT	SELECT			SELECT		SELECT
SELECT			SELECT	SELECT			SELECT		SELECT
SELECT			SELECT	SELECT			SELECT		SELECT
SELECT			SELECT	SELECT			SELECT		SELECT
SELECT			SELECT	SELECT			SELECT		SELECT
Total			SELECT	SELECT			SELECT		SELECT

Closure Restoration Aftercare Management Plan/ Restoration plan (CRAMP/RP)

1	Was a closure or restoration plan a requirement of the licence?	Yes	
2	Has a closure plan submission been approved by the Agency?	Yes	
3	What is the timescale for submission?		
4	What financial instrument do you have in place to cover known liabilities?	Insurance	
5	What is the date of expiry of this financial instrument?		
6	What is the status of implementation of the plan?	Completed	

	Table 2 CRAMP summary information (NON Landfill)							
					Change in Risk		Does the current	Value of current
				Restoration Aftercare	category since		financial provision	financial provision
Date of submission of plan	Risk category	Closure plan in place	Clean closure	Management Plan	previous year	Increase in risk category	cover the risk score?	for site
	SELECT	SELECT	SELECT	SELECT	SELECT	SELECT	SELECT	

Environmental Management Programme (EMP)/Continuous Improvement Programme
Environmental Management Frogramme (EMF)/ Continuous improvement Frogramme

	Highlighted cells contain dropdown menu click to view		Additional Information	
1	Do you maintain an Environmental Mangement System for the site. If yes, please detail in additional information	Yes		
2	Does the EMS reference the most significant environmental aspects and associated impacts on-site	Yes		
_	Does the EMS maintain an Environmental Management Programme (EMP) as required in accordance			
3	with the licence requirements	Yes		
	Do you maintain an environmental documentation/communication system to inform the public on			
4	environmental performance of the facility, as required by the licence	Yes		

Environmental Management Programme (EMP) report						
Objective Category Target Stat		Status (% completed)	How target was progressed	Responsibility	Intermediate outcomes	
	Increase throughput of					
	domestic customers, where		Privatisation of WTS & CA			
Materials Handling/Storage/Bunding	possible	50	resulting in reduced charges	Section Head	SELECT	
	Increase awareness of				Improved Environmental	
Materials Handling/Storage/Bunding	recycling	70	Advertising & pamphlets	Section Head	Management Practices	
	Endeavour to reduce				Improved Environmental	
Energy Efficiency/Utility conservation	energy consumption	50	Staff awareness	Section Head	Management Practices	

			LFG pumping trial, awaiting		
	Procurement of low		guidance from the Agency		Increased compliance with
Reduction of emissions to Air	calorific, enclosed flare	10	before going to tender	Section Head	licence conditions
	Minimisation of gas		LFG pumping trial and		Increased compliance with
Additional improvements	migration	50	improved flare control	Section Head	licence conditions
	Review of Groundwater risk				
Groundwater protection	assement	50	Ongoing	Section Head	Reduced emissions

Noise Monitoring Report Summary

1 Was noise monitoring a licence requirement for the AER period?	Yes
If yes please fill in table 1 noise summary below	
2 Was noise monitoring carried out using the EPA Guidance note including completion of the "Checklist for noise measurement report" included in the guidance note as table 6? Guidance	
3 Does your site have a noise reduction plan	No
4 When was the noise reduction plan last updated?	
Have there been changes relevant to site noise emissions (e.g. plant or operational changes) since the last no survey?	No

Table 1: Noise	e monitoring su	ımmary									
Date of monitoring	Time period	Noise location (on site)	Noise sensitive location -NSL (if applicable)	LA _{eq}	LA ₉₀	LA ₁₀	LA _{max}	Tonal or Impulsive noise* (Y/N)	If tonal /impulsive noise was identified was 5dB penalty applied?	Comments (ex. main noise sources on site, & extraneous noise ex. road traffic)	Is <u>site</u> compliant with noise limits (day/evening/night)?
20/09/2011	30 mins	N 1	NA	60.6	49	65		No	SELECT	Traffic on the R448	No
19/09/2011	30 mins	N 2	NA	51	44.2	54		No		Road traffic off-site, dog barking	Yes
19/09/2011	30 mins	N 3	NA	48	44	50		No		Electricity pylon, capping works on KTK Landfill	Yes
20/09/2011	30 mins	N4	NA	60.8	48	54		No		Traffic on the R448, traffic accessing KTK Landfill	No
19/09/2011		N 5	NA	53	45	56		No		Tractor in adjacent field, traffic on Carnalway road	Yes
19/09/2011		N 6	NA	52	46	55.3		No		Traffic on the R448	Yes
20/09/2011		N 7	NA	56.4	46.5	60.3		No		Heavy traffic on Carnalway Rd	No

^{*}Please ensure that a tonal analysis has been carried out as per guidance note NG4. These records must be maintained onsite for future inspection

If noise limits exceeded as a result of noise attributed to site activities, please choose the corrective action from the following options?

SELECT

** please explain the reason for not taking action/resolution of noise issues?
Any additional comments? (less than 200 words)

AER summary template-AIR emissions

Does your site have licensed air emissions? If yes please complete table 1, 2 and 3 below for the current reporting year and answer further questions. If you do not have licenced emissions and do not complete a solvent management plan (table 5 and 6) you only need to complete table 1 fugitive emissions on site below

	Additional information
	Flare stack emissions monitoring could not be carried out ir
	2011 as an open flare was being used onsite as part of the
SELECT	LFG pumping trial

Table 1 Fugitive emissions

3

Parameter /Substance	Annual fugitive emission (kg/annum)	Quantificaton method M/C/E
Methane (CH4)	3798811	E

Periodic/Non-Continuous Monitoring

Are there any results in breach of licence requirements? If yes please provide brief details in the comment section of Table 2 below

Was all monitoring carried out in accordance with EPA guidance note AG2 and using the basic air monitoring checklist?

monitoring checklist

AGN2

SELECT				
SELECT				

Table 2: Licensed Mass Emissions/Ambient data-periodic monitoring (non-continuous)

Emission reference no:	Parameter/ Substance		ELV in licence or any revision therof		Measured value	Unit of measurement	Compliant with licence limit	Method of analysis	Annual mass	% change in mass load from previous year +/-	Comments
		J						,	(0)	,	
	SELECT			SELECT		SELECT	SELECT	SELECT			
	SELECT			SELECT		SELECT	SELECT	SELECT			

Note 1: Volumetric flow shall be included as a reportable parameter

	Continuous Monitoring			
4	Does your site carry out continuous air emissions monitoring?		SELECT	
	If yes please review your continuous monitoring data and report the required fiel compare it to its relevant Emission Limit Value (ELV)	lds below in Table 3 and		
5	Did continuous monitoring equipment experience downtime? If yes please record do	owntime in table 3 below	SELECT	
6	Do you have a proactive service agreement for each piece of continuous monitoring e	equipment?	SELECT	
7	Did your site experience any abatement system bypasses? If yes please detail t	them in table 4 below	SELECT	

Table 3: Summary of average emissions -continuous monitoring

Emission reference no:		Averaging Period	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Units of measurement	Annual Emission	Equipment	% compliance current reporting year	Comments
	SELECT		SELECT	SELECT				

note 1: Volumetric flow shall be included as a reportable parameter.

Table 4: Abatement system bypass reporting table Bypass protocol

Date*	Duration** (hours)	Location	Reason for bypass	Corrective action

^{*} this should include all dates that an abatement system bypass occurred

^{**} an accurate record of time bypass beginning and end should be logged on site and maintained for future

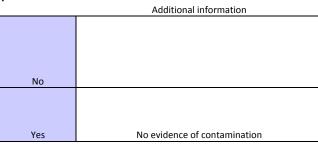
Agency inspections please refer to bypass protocol link

8 Do you have a total Emission Limit Value of direct and fugitive emissions on site? if yes please fill out table 5

	nt Management Plan ssion limit value	Summary	Solvent regulations	Please refer to linked solvent regulations to complete table 5 and 6		
Reporting year	Total solvent input on site (kg)		Total VOC emissions as %of solvent input	Total Emission Limit Value (ELV) in licence or any revision therof		
					SELECT	
					SELECT	

SELECT	
SELECT	

Table 6: Solvent I	Mass Balan	ce summarv
--------------------	------------	------------


	(I) Inputs (kg)		(O) Outputs (kg)						
Solvent	(I) Inputs (kg)	_	water (kg)	Collected waste solvent (kg)	Solvent (kg)	other ways e.g. by- passes (kg)	Solvents destroyed onsite through physical reaction e.g. incineration(kg)	Solvent to air (kg)	
							Total		

AER Monitoring returns summary template-WATER/WASTEWATER(SEWER)

Does your site have licensed emissions direct to surface water or direct to sewer? If yes please complete table 3 and 4 below for the current reporting year and answer further questions. If you do not have licenced emissions you only need to complete table 1 and /table 2 below for ambient monitoring and visual inspections

Was it a requirement of your licence to carry out visual inspections on any surface water

discharges or watercourses on or near your site? If yes please complete table 2 below summarising only any evidence of contamination noted during visual inspections

Table 1 Ambient monitoring

Tab	le 1 Ambient ı	monitoring								
Location reference	Location relative to site activities	PRTR Parameter	Licenced Parameter	Monitoring date	ELV or trigger level in licence or any revision thereof*	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence	Comments
SW 1	downstream	SELECT	рН	20/09/2011	8.5	SELECT	8.1	pH units	yes	
SW 1	downstream		Conductivity	20/09/2011	1000		1180	μS/cm @20oC	no (if no please enter details in comments box)	Surface Water Regs MAC
SW 1	downstream		Ammonia (as N)	20/09/2011	0.23		0.061	mg/L	yes	
SW 1	downstream		BOD	20/09/2011	5		<1	mg/L	yes	
SW 1	downstream		COD	20/09/2011	40		<10	mg/L	yes	
SW 1	downstream		Iron	20/09/2011	0.2		98	μg/L	no (if no please enter details in comments box)	Surface Water Regs MAC
								,		
SW 1	downstream		Magnesium	20/09/2011			19	mg/L	yes	
SW 1	downstream		Manganese (as Mn)	20/09/2011	0.05		32	μg/L	no (if no please enter details in comments box)	Surface Water Regs MAC
SW 1	downstream		Sulphate	20/09/2011	200		19.9	mg/L	yes	
SW 1	downstream		Suspended Solids	20/09/2011	50		44	mg/L	yes	
SW 1	downstream	Cadmium and compounds (as Cd)		20/09/2011	5		<0.5	μg/L	yes	
SW 1	downstream	Chlorides (as Cl)		20/09/2011	250		147	mg/L	yes	
SW 1	downstream	Copper and compounds (as Cu)		20/09/2011	50		1	μg/L	yes	
SW 1	downstream	Chromium and compounds (as Cr)		20/09/2011	50		<0.5	μg/L	yes	
SW 1	downstream	Lead and compounds (as Pb)		20/09/2011	10		0.6	μg/L	yes	
SW 1	downstream	Mercury and compounds (as Hg)		20/09/2011	1		<0.05	μg/L	yes	
SW 1	downstream	Total phosphorus		20/09/2011			0.11	mg/L		
SW 1	downstream	Zinc and compounds (as Zn)		20/09/2011	3000		<5	μg/L	yes	
SW 2	downstream		рН	20/09/2011	8.5		8	pH units	yes	
SW 2	downstream		Conductivity	20/09/2011	1000		917	μS/cm @20oC	yes	
SW 2	downstream		Ammonia (as N)	20/09/2011	0.23		0.097	mg/L	yes	
SW 2	downstream		BOD	20/09/2011	5		<1	mg/L	yes	
SW 2	downstream		COD	20/09/2011	40		15	mg/L	yes	
SW 2	downstream		Iron	20/09/2011	0.2		41	μg/L	no (if no please enter details in comments box)	Surface Water Regs MAC
SW 2	downstream		Magnesium	20/09/2011			15	mg/L	yes	
SW 2	downstream		Manganese (as Mn)	20/09/2011	0.05		19	μg/L	no (if no please enter details in comments box)	Surface Water Regs MAC
SW 2	downstream		Sulphate	20/09/2011	200		21.3	mg/L	yes	
SW 2	downstream		Suspended Solids	20/09/2011	50		9	mg/L	yes	
SW 2	downstream	Cadmium and compounds (as Cd)		20/09/2011	5		<0.5	μg/L	yes	
SW 2	downstream	Chlorides (as Cl)		20/09/2011	250		95.4	mg/L	yes	
SW 2	downstream	Chromium and compounds (as Cr)		20/09/2011	50		<0.5	μg/L	yes	

omments
Surface Water Regs MAC
Surface Water Regs MAC
Surface Water Regs MAC
Surface Water
Regs MAC
Surface Water Regs MAC

SW 2 Commission Compounds Compound	00		Copper and		20/00/2011		_	1.		
SW 2	SW 2	downstream	compounds (as Cu)		20/09/2011	50	<1	μg/L	yes	
SW 2 downstream Compounds last Help Compounds Compounds	SW 2	downstream	(as Pb)		20/09/2011	10	<0.5	mg/L	yes	
SW 2 downstream	SW 2	downstream			20/09/2011	1	<0.05	μg/L	yes	
SW 2 Consisteration Consisteration Consisteration Part Consisteration Consist	SW 2	downstream			20/09/2011		0.08	mg/L	yes	
SW 3 downstream SW 2009/2011 S 5 T 9	SW 2	downstream			20/09/2011	3000	<5	μg/L	yes	
SW 3 downstream	SW 3	downstream		pН	20/09/2011	8.5	7.9	pH units	yes	
SW 3 downstream	SW 3	downstream		Conductivity	20/09/2011	1000	646	μS/cm @20oC	yes	
SW 3 downstream	SW 3	downstream		Ammonia (as N)	20/09/2011	0.23	0.054	mg/L	yes	
SW 3 downstream	SW 3	downstream		BOD	20/09/2011	5	<1	mg/L	yes	
SW 3 downstream No	SW 3	downstream		COD	20/09/2011	40	<10	mg/L	yes	
SW 3 downstream Supended solids 20/09/2011 200 12.7 mg/L m	SW 3	downstream		Iron	20/09/2011	0.2	16	μg/L	enter details in	Surface Water Regs MAC
SW 3 downstream	SW 3	downstream		Magnesium	20/09/2011		13	mg/L	yes	
SW3 downstream Cadmium and compounds (as Cd) 20/09/2011 5	SW 3	downstream			20/09/2011	0.05	< 5	μg/L	enter details in	Surface Water Regs MAC
SW3 downstream Cadmium and compounds (as Cd) 20/09/2011 5 3 4.0.5 19/L 7 7 7 7 7 7 7 7 7	SW 3	downstream		Sulphate	20/09/2011	200	12.7	mg/L	yes	
SW 3 downstream compounds (as Cd) 20/09/2011 5 -0.5 µg/L yes	SW 3	downstream		Suspended Solids	20/09/2011	50	235	mg/L	enter details in	Surface Water Regs MAC
SW3 downstream Chlorides (as Cl) 20/09/2011 50 16.2 mg/L yes Chromium and compounds (as Cr) 20/09/2011 50 16.0 16.0 mg/L yes Chromium and compounds (as Cr) 20/09/2011 50 1 mg/L yes Chromium and compounds (as Cu) 20/09/2011 10 1 mg/L yes Chromium and compounds (as Su) 20/09/2011 10 1 mg/L yes Chromium and compounds (as Hg) 20/09/2011 10 1 mg/L yes Chromium and compounds (as Hg) 20/09/2011 10 1 mg/L yes Chromium and compounds (as Hg) 20/09/2011 10 0.05 mg/L yes Chromium and chromium and chromium and chromium and compounds (as Hg) 20/09/2011 10 0.05 mg/L yes Chromium and chr	SW 3	downstream			20/09/2011	5	<0.5	μg/L	yes	
SW3 downstream Compounds (as Cr) 20/09/2011 50 1	SW 3	downstream			20/09/2011	250	18.2	mg/L	yes	
SW3 downstream	SW 3	downstream			20/09/2011	50	0.6	μg/L	yes	
SW 3 downstream (as Pb) 20/09/2011 10 1 16/14 17 18/14 17 18/14	SW 3	downstream	Copper and		20/09/2011	50	1	μg/L	yes	
SW 3 downstream	SW 3	downstream			20/09/2011	10	1	μg/L	yes	
SW 3 downstream	SW 3	downstream			20/09/2011	1	<0.05	μg/L	yes	
SW 7 downstream (as Zn)	SW 3	downstream	Total phosphorus		20/09/2011		0.05	mg/L	yes	
SW 7 downstream Conductivity SW 7 downstream Conductivity Conductiv	SW 3	downstream			20/09/2011	3000	9	mg/L	yes	
SW 7 downstream Ammonia (as N) 20/09/2011 0.23 0.012 mg/L yes 0.012 mg/L	SW 7	downstream		рН	20/09/2011	8.5	8.2	mg/L	yes	
SW 7 downstream SOD 20/09/2011 5	SW 7	downstream		Conductivity	20/09/2011	1000	249	μS/cm @20oC	yes	
SW 7 downstream COD 20/09/2011 40 <10 mg/L yes	SW 7	downstream		Ammonia (as N)	20/09/2011	0.23	0.012	mg/L	yes	
SW 7 downstream SW 7 downstream SW 7 downstream Cadmium and compounds (as Cd) COpper and copper and copper and copper and copper and copper	SW 7	downstream		BOD	20/09/2011	5	<1	mg/L	yes	
SW 7 downstream Magnesium 20/09/2011 0.05 14 mg/L yes 0 (if no please enter details in comments box) Surface Wate Regs MAC SW 7 downstream Sulphate 20/09/2011 200 8.6 mg/L yes SW 7 downstream Suspended Solids 20/09/2011 50 <2 mg/L yes SW 7 downstream Cadmium and compounds (as Cd) 20/09/2011 50 <2 mg/L yes SW 7 downstream Chlorides (as Cl) 20/09/2011 50 30 30 30 30 30 30 30	SW 7	downstream		COD		40	<10		yes	
SW 7 downstream Manganese (as Mn) 20/09/2011 0.05 14 µg/L no (if no please enter details in comments box) Surface Wate Regs MAC	SW 7	downstream				0.2	54		yes	
SW 7 downstream Sulphate 20/09/2011 0.05 14 µg/L enter details in comments box Sulphate 20/09/2011 200 8.6 mg/L yes	SW 7	downstream		Magnesium	20/09/2011		4	mg/L	yes	
SW 7 downstream Suspended Solids 20/09/2011 50 <2	SW 7	downstream			20/09/2011	0.05	14	μg/L	enter details in	Surface Water Regs MAC
SW 7 downstream Cadmium and compounds (as Cd) 20/09/2011 5	SW 7	downstream		Sulphate	20/09/2011	200	8.6	mg/L	yes	
SW 7 downstream Compounds (as Cd) 20/09/2011 5	SW 7	downstream		Suspended Solids	20/09/2011	50	<2	mg/L	yes	
SW 7 downstream Chlorides (as Cl) 20/09/2011 250 11.4 mg/L yes SW 7 downstream Chromium and compounds (as Cr) 20/09/2011 50 <0.5	SW 7	downstream			20/09/2011	5	<0.5	μg/L	yes	
SW 7 downstream Chromium and compounds (as Cr) 20/09/2011 50 <0.5	SW 7	downstream	Chlorides (as Cl)		20/09/2011	250	11.4	mg/L	yes	
SW 7 downstream Copper and compounds (as Cu) 20/09/2011 50 7 μg/L yes SW 7 downstream Lead and compounds (as Pb) 20/09/2011 10 5 mg/L yes SW 7 downstream Mercury and compounds (as Hg) 20/09/2011 1 <0.05	SW 7	downstream			20/09/2011	50	<0.5	μg/L	yes	
SW 7 downstream (as Pb) 20/09/2011 10 5 mg/L yes SW 7 downstream Mercury and compounds (as Hg) 20/09/2011 1 <0.05	SW 7	downstream	Copper and compounds (as Cu)		20/09/2011	50	7	μg/L	yes	
SW 7 downstream compounds (as Hg) 20/09/2011 1 <0.05 mg/L yes SW 7 downstream Total phosphorus 20/09/2011	SW 7	downstream	(as Pb)		20/09/2011	10	5	mg/L	yes	
SW 7 downstream Total phosphorus 20/09/2011 <0.05 mg/L yes	SW 7	downstream			20/09/2011	1	<0.05	mg/L	yes	
7 inc and compounds	SW 7	downstream			20/09/2011		<0.05	mg/L	yes	
SW / downstream 20/09/2011 3000 27 mg/L yes	SW 7	downstream	Zinc and compounds		20/09/2011	3000	27	mg/L	yes	

^{*}trigger values may be agreed by the Agency outside of licence conditions

Table 2 Visual inspections-Please only enter details where contamination was observed.

Location Reference	Date of inspection	Description of contamination	Source of contamination	Corrective action	Comments
			SELECT		
			SELECT		

Licensed Emissions to water and /or wastewater(sewer)-periodic monitoring (non-continuous)

3 Was there any result in breach of licence requirements? If yes please provide brief details in the comment section of Table 3 below	SELECT	Additional information
Was all monitoring carried out in accordance with EPA		
guidance and checklists for Quality of Aqueous Monitoring External /Internal		
Data Reported to the EPA? If no please detail what areas <u>Lab Quality</u> <u>Assessment of</u>		
4 require improvement in additional information box <u>checklist</u> <u>results checklist</u>	SELECT	

Table 3: Licensed Emissions to water and /or wastewater (sewer)-periodic monitoring (non-continuous)

Emission reference	Emission released to	Parameter/ SubstanceNote 1	Type of sample	Date of Monitoring	Averaging period	Licence Compliance criteria	Measured value		Compliant with licence		Procedural	Procedural reference standard number	Annual mass load	% change in mass load from previous year +/-	
	SELECT	SELECT	SELECT		SELECT	SELECT		SELECT	SELECT	SELECT	SELECT				

Note 1: Volumetric flow shall be included as a reportable parameter

Note 2: Where Emission Limit Values (ELV) do not apply to your licence please compare results against EQS for Surface water or relevant receptor quality standards

Continuous monitoring		Additional Information
5 Does your site carry out continuous emissions to water/sewer monitoring?	SELECT	
If yes please summarise your continuous monitoring data below in Table 4 and compare it to its relevant Emission Limit Value (ELV)		
$^{$ Did continuous monitoring equipment experience downtime? If yes please record downtime in table 4 below	SELECT	
Do you have a proactive service contract for each piece of continuous monitoring equipment on $\boldsymbol{7}$ site?	SELECT	
Did abatement system bypass occur during the reporting year? If yes please complete table 5 below	SELECT	

Table 4: Summary of average emissions -continuous monitoring

		Emission released to			Averaging	•	Units of	for current	Monitoring	% compliance current reporting	Comments
Ľ	ererence no.	released to	rarameter/ Jubstance	thereof	renou	Criteria	measurement	(NB)	downtime (nodis)	year	Comments
		SELECT	SELECT		SELECT	SELECT	SELECT				
		SELECT	SELECT		SELECT	SELECT	SELECT				
Γ											

note 1: Volumetric flow shall be included as a reportable parameter.

Table 5: Abatement system bypass reporting table

Ī	Date	Duration (hours)	Location	Resultant	Reason for	Corrective	Was a report	When was this
				emissions	bypass	action*	submitted to the	report
							EPA?	submitted?
							SELECT	
I								

^{*}Measures taken or proposed to reduce or limit bypass frequency

Was surface emissions monitoring performed during the reporting

Gas Captured&Treated
by LFG System m3 Power generated (MW / KWh) Used on-site or to national grid

291189

			Additional information
1	When did the site carry out the most recent energy efficiency audit? Please list the recommendations in table 3 below		
	SEAI - Large Industry		
	Is the site a member of any accredited programmes for reducing energy usage/water conservation such Energy Network		
2	as the SEAI programme linked to the right? If yes please list them in additional information (LIEN)	no	
	Where Fuel Oil is used in boilers on site is the sulphur content compliant with licence conditions? Please state percentage in		
3	additional information	SELECT	N/A

Resource usage/ Energy Efficiency

Table 1 Energy usage	e on site			
			Production +/- %	
			compared to	Energy Consumption
			previous reporting	+/- % vs overall site
Energy Use	Previous year kWh	Current year kWh	year**	production*
Total				
Electricity	175000	175000	0	
Fossil Fuels:				
Heavy Fuel Oil				
Light Fuel Oil	12000	12000	0	
Natural gas				
Coal/Solid fuel				
Renewable energy generated on site				

^{*} where consumption of energy can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

** where site production information is available please enter percentage increase or decrease compared to previous year

Table 2 Water usage	on site			
			Production +/- %	
			compared to	Energy Consumption
			previous reporting	+/- % vs overall site
Water use	Previous year m3/yr.	Current year m3/yr.	year**	production*
Groundwater				
Surface water				
Public supply	1000	1000	0	
Total				

^{*} where consumption of water can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

Table 3: Energy Au	Table 3: Energy Audit finding recommendations						
Date of audit	Recommendations	Description of Measures proposed		Predicted energy savings %	Implementation date	Responsibility	Status and comments
			SELECT				
			SELECT				
			SELECT	_			

^{**} where site production information is available please enter percentage increase or decrease compared to previous year

| PRTR# : W0014 | Facility Name : Silliot Hill Landfill | Filename : PRTR W0014_2011.xis | Return Year : 2011 |

Guidance to completing the PRTR workbook

AER Returns Workbook

08/05/2012 16:24

1. FACILITY IDENTIFICATION

Parent Company Name Kildare County Counci
Facility Name Silliot Hill Landfil
PRTR Identification Number Wool 4

PRTR Identification Number	W0014
Licence Number	W0014-01
Waste or IPPC Classes of Activity	
No.	class_name
	Specially engineered landfill, including placement into lined discret
	cells which are capped and isolated from one another and the
3.5	environment.
	Blending or mixture prior to submission to any activity referred to in
3.11	preceding paragraph of this Schedule.
	Repackaging prior to submission to any activity referred to in
3.12	preceding paragraph of this Schedule.
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
3.13	collection, on the premises where the waste concerned is produced
	Surface impoundment, including placement of liquid or sludge
3.4	discards into pits, ponds or lagoons.
0.4	Biological treatment not referred to elsewhere in this Schedule which
	results in final compounds or mixtures which are disposed of by
	means of any activity referred to in paragraphs 1. to 10. of this
3.6	Schedule.

0.7	The treatment of any waste on land with a consequential benefit for
4.10	an agricultural activity or ecological system.
	Use of waste obtained from any activity referred to in a precedin
4.11	paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred t
	in a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4.13	produced.
	Recycling or reclamation of organic substances which are not use
	as solvents (including composting and other biological
42	transformation processes).
	Recycling or reclamation of metals and metal compound
	Recycling or reclamation of other inorganic material
	Use of any waste principally as a fuel or other means to general
4.9	energy.
Address 1	Silliot Hill and Brownstowr
Address 2	Co. Kildare
Address 3	
Address 4	
	Kildare
Country	Ireland
Coordinates of Location	
River Basin District	
NACE Code	
	Treatment and disposal of non-hazardous wast
AER Returns Contact Name	
AER Returns Contact Email Address	
AER Returns Contact Position	Site Technician
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number	087 2795178
AER Returns Contact Fax Number	
Production Volume	0.0
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	0
Number of Employees	0
User Feedback/Comments	
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	ACTIVITY Name
5(d)	Landfills
5(c)	Installations for the disposal of non-hazardous wast
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of	2002)
Is it applicable	e?
Have you been granted an exemption	
If applicable which activity class applies (as	pe
Schedule 2 of the regulations	
Is the reduction scheme compliance route be	in
used	?

Activity Namo

SECTION	A . SECTO	V OLECILIO	FRIREO	LUTANTO

RELEASES TO AIR			Please enter all quantities in this section in KGs					
POLLUTANT			METI	HOD			QUANTITY	
			Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
01	Methane (CH4)	E	ESTIMATE	LandGem	3798811.0	7597622.0	0.0	3798811.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

RELEASES TO AIR			Please enter all quantities	s in this section in KG	s			
POLLUTANT		METHOD		QUANTITY				
		Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
						0	0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

RELEASES TO AIR				Please enter all quantities	in this section in KGs		
POLLUTANT		METHOD		QUANTITY			
			Method Used				
Pollutant No.	Name	M/C/E Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
				0.0	(0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under Totalos) (NOT) rescent on Section Section specific PRTR pollutants above. Please complete the table below:

Link to previous years emissions data

Landfill:		Silliot Hill Landfill				_	
	summary data on the methane flared and / or utilised			Met	hod Used		
						Facility Total Capacity m3	
		T (Total) kg/Year	M/C/E	Method Code	Designation or Description	per hour	
Total estimate	d methane generation (as per site						
	model)			Estimate	LandGem	N/A	
	Methane flared	291189.0	С	Calculated	Flare Readings		(Total Flaring Capacity)
	Methane utilised in engine/s					0.0	(Total Utilising Capacity)
Net methane e	emission (as reported in Section A						
	above)	3798811.0	E	Estimate	LandGem	N/A	

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

Doto on a	 itarina af atar	 r or groundwat

	RELEASES TO WATERS			
POL	LUTANT			
				Method Used
No. Annex II	Name	M/C/E	Method Code	Designation or Description

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B: REMAINING PRTR POLLUTANTS

RELEASES TO WATERS						
PO						
			Method Used			
No. Annex II	Name	M/C/E	Method Code	Designation or Description		

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C: REMAINING POLLUTANT EMISSIONS (as required in your Licence)

RELEASES TO WATERS							
POI							
			Method Used				
Pollutant No.	Name	M/C/E	Method Code	Designation or Description			

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

er, conducted as part of your licence requirements, should NOT be submitted under AER / PRTR Reporting as this only concerns Releases from your facility

Please enter all quantities in this section in KGs								
QUANTITY								
Emission Point 1	T (Total)	KG/Year	A (Accidental)	KG/Year	F (Fugitive)	KG/Year		
	0.0	0.0		0.0		0.0		

Please enter all quantities in this section in KGs										
QUANTITY										
Emission Point 1	T (Tota	al) KG/Year	A (Accidental)	KG/Year	F (Fugitive) K	G/Year				
	0.0	0	.0	0.0		0.0				

Please enter all quantities in this section in KGs										
		QUAN	QUANTITY							
Emission Point 1	T (Total) ł	KG/Year A (Acci	dental) KG/Year	F (Fugitive) KG/Year						
	0.0	0.0	0.0	0.0						

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

| PRTR# : W0014 | Facility Name : Silliot Hill Landfill | Filename : PRTR W0014_2011.xls | Return Ye

08/05/2012 16:24

SECTION A: PRTR POLLUTANTS

	OFFSITE TRANS	SFER OF POLLUTANTS DESTINED FOR WASTE-V	Please enter all quantities in this section in KGs							
POLLUTANT			METHOD			QUANTITY				
			Method Used							
No. Annex I	II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Acci	idental) KG/Year	F (Fugitive) KG/Year
						0.0)	0.0	0.0	0.0

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B: REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	<u> </u>	ocionio (uo requireu in yeur ziconeo)										
OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER							Please enter all quantities in this section in KGs					
	PO	METHOD			QUANTITY							
			Method Used									
	Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	Α	(Accidental) KG/Year	F (Fugitive) KG/Yea		
						0.0		0.0	0.0	(

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Link to previous years emissions data Page 6 of 11

4.4 RELEASES TO LAND

Link to previous years emissions data

| PRTR# : W0014 | Facility Name : Silliot Hill Landfill | Filename : PRTR W0014_2011.xls | Return Year : 2011 |

08/05/2012 16:24

SECTION A : PRTR POLLUTANTS

	RELEASES TO LAND		Please enter all quantities in this section in KGs					
POLLUTANT			METH	IOD			QUANTITY	
			M	ethod Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	
					0.)	0.0 0.0	

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B: REMAINING POLLUTANT EMISSIONS (as required in your Licence)

OLOTION B. ILLIMATING	PLEGIANT LIMICOTORIO (USTOQUITCO III Jour Lio	51100/						
	RELEAS	SES TO LAND	Please enter all quantities in this section in KGs					
POLLUTANT			MI	THOD			QUANTITY	
			Method Used					
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	
						0.0	0.0 0.0	

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE | PRTR #: W0014 | Facility Name : Silliot Hill Landfill | Filename : PRTR W0014_2011.xls | Return Year : 2011 | 08/05/2012 16:24 Please enter all quantities on this sheet in Tonnes Haz Waste: Name and stination Facility Haz Waste: Address of Next Name and License / Permit No. ar Quantity Haz Waste: Name and Actual Address of Final Destination Destination Facility Address of Final Recoverer / (Tonnes per Disposer (HAZARDOUS WASTE Non Haz Waste: Address of i.e. Final Recovery / Disposal Site Licence/Permit No of Year) Method Used Recover/Disposer ONLY) (HAZARDOUS WASTE ONLY) Waste European Waste Treatment Location of Transfer Destination Code Hazardous Description of Waste Operation M/C/E Method Used Treatment Robinhood Industrial Estate.Robinhood Oxigen Rd,Ballymount,Dublin Within the Country 20 03 01 No 2807.2 mixed municipal waste D1 С Weighed Offsite in Ireland Environmental.W0152 22.Ireland Kilberry,.,Athy,Co. Within the Country 20 02 01 No 309.88 Green Waste R3 С Offsite in Ireland Bord na Mona Plc,W-198 kildare, Ireland Irish Packaging Recycling Ballymount Ltd T/A Panda Waste W0263 Rd Walkinstown Dublin Within the Country 15 01 01 No 171.05 paper and cardboard packaging R3 Weighed Offsite in Ireland 01 12,,,Ireland Irish Packaging Recycling Ballymount Ltd T/A Panda Waste, W0263 Rd, Walkinstown, Dublin Within the Country 20 01 01 No 17.58 paper and cardboard R3 С Offsite in Ireland 01 12,,,Ireland Irish Packaging Recycling Ballymount Ltd T/A Panda Waste, W0263 Rd, Walkinstown, Dublin Within the Country 20 01 01 No 47.4 Newspapers & Magazines R3 С Weighed Offsite in Ireland 01 12,.,Ireland Unit 4 Osberstown Business Rehab Glassco, WCP DC 08- Pk, Caragh Rd, Naas, Co. Within the Country 15 01 07 No 39.16 Bottles R5 Offsite in Ireland 1150-01 Kildare.Ireland Unit 4 Osberstown Business Rehab Glassco, WCP DC 08- Pk, Caragh Rd, Naas, Co. Within the Country 20 01 02 No 3.02 glass R5 Weighed Offsite in Ireland 1150-01 Kildare, Ireland Thorntons Recycling Unit 52B Parkwest Business Offsite in Ireland Centre,WCP DC 09-1190-01 Pk,.,Dublin,D 12,Ireland Within the Country 20 01 40 No 137.72 metals R4 C Weighed Robinhood Industrial Estate,Robinhood Oxigen Rd,Ballymount,Dublin 29.1 plastic packaging Offsite in Ireland Environmental, W0152 22,Ireland Within the Country 15 01 02 No Weighed Glen Abbey Complex,Belgard 9.74 textiles Offsite in Ireland Textile Recycling, WPR 014/2 Rd, Tallaght, Dublin 24, Ireland Within the Country 20 01 11 Nο Weighed The Recycling Village,WP batteries and accumulators included in 16 06 2007/20,Units 4 4A & 7 Units 4 4A & 7 Tinure 01, 16 06 02 or 16 06 03 and unsorted Tinure Business Rusiness Rilta Environmental, WCP 402 Greenogue Business Pk, Tinure, Monasterboice, Lou Pk, Tinure, Monasterboice, Lou batteries and accumulators containing these Within the Country 20 01 33 Yes 4.32 batteries Weighed Offsite in Ireland DC 09-1192-01 Pk,Rathcoole,Dublin,.,Ireland th,Ireland th,Ireland Enva Ireland, WCP DC 08-1116-01.Clonmainham Clonmainham Industrial Industrial Clonmainham Industrial mineral-based chlorinated engine, gear and Enva Ireland, WCP DC 08-Estate, Portlaoise, Laois, ... Irela Estate, Portlaoise, Laois, ... Irela Estate, Portlaoise, Laois, ... Irela Within the Country 13 02 04 Yes 2.6 lubricating oils Ra Weighed Offsite in Ireland 1116-01 nd nd Crumb Rubber, WCP DC 08-Mooretown, Dromiskin, Dunda 38.96 end-of-life tyres R5 Offsite in Ireland 1136-01 lk,Louth,Ireland Within the Country 16 01 03 Weighed No discarded electrical and electronic KMK Recyclig Ltd, W0113equipment other than those mentioned in 20 03,Cappincur Ind 01 21 and and 20 01 23 containing Rehab Enterprises, WPR Unit 77 ,Broomhill Est, Daingean Cappincur Ind Est, Daingean 292.61 hazardous components R4 Rd, Tallaght, Dublin 24, Ireland Rd, Tullamore, Offaly, Ireland Rd, Tullamore, Offaly, Ireland Within the Country 20 01 35 Yes Weighed Offsite in Ireland 033/2 Irish Packaging Recycling Ballymount gypsum-based construction materials other Ltd T/A Panda Waste.W0263 Rd.Walkinstown.Dublin Within the Country 17 08 02 3 42 than those mentioned in 17 08 01 Offsite in Ireland 01 12...Ireland No Weighed Ireland,W036/2,Tolka Quay Tolka Quay Rd, Dublin Tolka Quay Rd, Dublin Port Dublin Rd Dublin Rd.Dublin Port.Dublin Port.Dublin Rd.Dublin

С

Weighed

Offsite in Ireland Indaver Ireland, W036/2

1,Ireland

Rd, Dublin 1, Ireland

1,Ireland

66.84 Household Hazardous

Yes

Within the Country 20 01 27

	Transfer Destination	European Waste Code	Hazardous	Quantity (Tonnes per Year)		Waste Treatment Operation		Method Used Method Used	Location of Treatment	Haz Waste: Name and Licence/Permit No of Next Destination Facility Nor Haz Waste: Name and Licence/Permit No of Recover/Disposer	Haz Waste: Address of Next Destination Facility Non Haz Waste Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
				,	fluorescent tubes and other mercury-					The Recycling Village,WP	Units 4 4A & 7 Tinure Business		Units 4 4A & 7 Tinure Business Pk,Tinure,Monasterboice,Lou
١	Vithin the Country	20 01 21	Yes	0.34	containing waste	R4	С	Weighed	Offsite in Ireland	2007/20 Oxigen	th,Ireland Robinhood Industrial Estate,Robinhood Rd,Ballymount,Dublin	th,Ireland	th,Ireland
١	Within the Country	20 03 07	No	1167.9	bulky waste	D1	С	Weighed	Offsite in Ireland	Environmental,W0152	22,Ireland		

^{*} Select a row by double-clicking the Description of Waste then click the delete button

Link to previous years waste data
Link to previous years waste summary data & percentage change