Comhairle Contae Chorcaí Cork County Council

Halla an Chontae, Corcaigh, Éire. Fón: (021) 4276891 • Faics: (021) 4276321 Suíomh Gréasáin: www.corkcoco.ie County Hall, Cork, Ireland. Tel: (021) 4276891 • Fax: (021) 4276321 Web: www.corkcoco.ie

Administration, Environmental Licensing Programme, Office of Climate, Licensing & Resource Us Environmental Protection Agency, headquaters, POBox3000, Johnstown,Castle Estate, County Wexford. Your Ref.:D0433-01 Our Ref. : MS /RS/11	e, The Environmental Protection Agency 04 JAN 2012 CORM
	- LOBK

Sub.: Riverstick Agglomeration (Register No. 20433-01) Regulation 16 of the Waste Water Discharge (Authorisation) Regulations 2007

Dear Sir/Madam,

ownetrec With reference to your letter of the 22 of September 2010, please find the corê following attached:

- 1 Original of the <u>Riverstick</u> Agglomeration (Register No. D0433 -01) Regulation 18(3)(b) Further Information Response & attachments.
- 1 Copy of the <u>Riverstick</u> Agglomeration (Register No. D0 433 -01) Regulation 18(3)(b) Further Information Response & attachments.
- 1 CDROM with the Further Information Response & attachments in PDF Format.

Yours faithfully

Noel O'Keeffe, County Engineer & Director of Water Services, Cork County Council, County Hall, Cork. 22/12/2011

EPA Export 05-01-2012:04:42:19

STATUS/IMPACTS	
Overall status	There are 36 river water bodies in this WMU -2 High, 11 Good, 8 Moderate, 15 Poor Status.
Status elements	Q score dictates overall status for wbs with less than good status, physchem dictates 2 moderate wbs and fish status dictates 1 poor wb. The moderate lake status is dictated by macrophytes or chlorophyll.
Possible Impacts - EPA Water Quality	 Status is utuated by inaction by the optimized of the optimized o
	WB Status 2009 : Moderate status dictated by physchem status

PRESSURES/RISKS	
Nutrient sources	90% of TP comes from unsewered industry and 2% from WWTP, 7% from Agriculture
Point pressures	10 WWTP Ballineen Sewerage Scheme, Ballinspittle, Bandon WWTP, Belgooly, Kilbrittain, Kinsale, Minane Bridge, Nohoval, Riverstick WWTP, Innishannon WWTP
	5 WTP -Bandon Water Supply Scheme, Ballinspittle New Pws; Inishannon, Ballineen, & Curraghlicky Lake WTP.
	9 IPPC licensed activities and 9 Section 4 licensed activities.
	1 contaminated site - AIBP Limited T/A AIBP Bandon.
Wastewater Treatment Plants (WWTP) and Industrial Discharges	Bandon WWTP - Non-compliant frequency of monitoring or non-compliant effluent standard where sufficient capacity is available Bandon WWTP - Insufficient future (2015) assimilative capacity (BOD), discharge not to a protected area Innishannon WWTP - Insufficient existing capacity, no evidence of impact, discharge to a protected area Kinsale - PE >2,000, discharge to non-coastal water, no secondary treatment or PE > 10,000, discharge to coastal water, no secondary treatment Kinsale - Insufficient existing capacity, no evidence of impact, discharge to a protected area Minane Bridge - Sufficient existing capacity of treatment plant, evidence of impact, discharge not to protected area Riverstick WWTP - Insufficient existing capacity, evidence of impact, not a protected area Riverstick WWTP - Insufficient future (2015) assimilative capacity (BOD), discharge not to a protected area Ballineen Sewerage Scheme - Sufficient existing capacity, evidence of impact, protected area 5 IPPC licensed activities are causing risk.
Quarries, Mines & Landfills	6 Quarries and 5 Landfills. 1 WB at risk from 2 quarries and 10 and 11 - SW_20_2230.
Agriculture	32 WBs at risk - SW_20_2216, SW_20_147, SW_20_2214, SW_20_2236, SW_20_2218, SW_20_1050, SW_20_2011, SW_20_2166, SW_20_2212, SW_20_2240, SW_20_2242, SW_20_2132, SW_20_1947, SW_20_1454, SW_20_1209, SW_20_643, SW_20_753, SW_20_2108, SW_20_2202, SW_20_1319, SW_20_2116, SW_20_2109, SW_20_1344, SW_20_1498, SW_20_620, SW_20_1533, SW_20_1587, SW_20_1534, SW_20_1946, SW_20_2230, SW_20_2094, SW_20_2244.
On-site systems	There are 9764 septic tanks in this WMU, 559 of these are located in areas of very high or extreme risk.
Forestry	None at risk
Dangerous substances	None at risk
Morphology	None at risk
Abstractions	None at risk
Other	

SELECTED ACTION PROGR	AMME s and general supplementary measures/surveys apply
Point Sources	See point source pressures table below for WWTP action programme.
	IPPC licensed activities – review licenses
	Section 4s - Review Discharge Licenses
Diffuse Sources	AGRICULTURE - Good Agricultural Practice Regulations and Enforcement
	Septic Tanks: At Risk septic tanks are to be prioritised for inspections. Subsequent upgrade or connection to municipal systems depends on inspection and economic tests.
Sub-basin plans	1 x Freshwater Pearl Mussel Plans – Bandon Caha – Apply prescribed measures. 2 x Shellfish Waters Pollution Reduction Programmes – Oyster Haven and Kinsale – Apply prescribed measures.
Other	Ensure licensing of quarries under Section 4 of Water Pollution Act 1977. Investigate landfill.

Discharge					Measures	<u>~</u> 0.			Waterbo	ody
Point Source Discharge	County	Plants Requiring Capital Works	Agglomerations Requiring Further Investigation Prior to Capital Works	Plants Required to Commence Implementation of Pollution Reduction Programmes for	Plants, Requiring the Implementation of an Appropriate Performance Management System	A Plants Requiring the Investigation of CSO's	Plants Required to Ensure Capacity of Treatment Plant is not Exceeded	Extended Timescale for Measure Implementation	Waterbody Code	Extended Deadline to Achieve Waterbody Objective
Ballineen Sewerage Scheme	Cork West			insh		Yes		Yes	SW_20_2230_1	Yes
Bandon WWTP	Cork South			FOLVILE	Yes		Yes	No	SW_20_2230_2	
Innishannon WWTP	Cork South		Yes	COR				Yes	SW_080_0300	Yes
Kinsale	Cork South	Yes		Ves				No	SW_080_0100	
Minane Bridge	Cork South			Celle		Yes		No	SW_050_0000	
Riverstick WWTP	Cork South	Yes	É	on			Yes	Yes	SW_20_1209	

OBJECTIVES	
Good status 2015	Protect 13 waterbodies.
Alternative Objectives	Restore 23 waterbodies by 2021 (SW_20_1344, SW_20_1454, SW_20_147, SW_20_1533, SW_20_1534, SW_20_1946, SW_20_1947, SW_20_2094, SW_20_2116, SW_20_2166, SW_20_2202, SW_20_2212, SW_20_2214, SW_20_2216, SW_20_2218, SW_20_2230_1, SW_20_2236, SW_20_2240, SW_20_2242, SW_20_2244, SW_20_620, SW_20_753, SW_20_770) – extended for nitrogen losses to surface waters via groundwaters (one of which is also extended for wastewater infrastructure to be put in place - SW_20_2230_1) Restore 1 waterbody (SW_20_2230_1) – extended for recovery of Freshwater Pearl Mussel populations.

Future Pressures and Developments

Throughout the river basin management cycle future pressures and developments will need to be managed to ensure compliance with the objectives of the Water Framework Directive and the Programme of Measures will need to be developed to ensure issues associated with these new pressures are addressed.

							IE_SW	_Bandor	n/Stick								
			Bio	ologica	I Eleme	nts	Suppo	rting Ele	ments			Р	rotected	Areas			
Member State Code	Monitored Y (Extrapolated N)	Donor Waterbody	Macroinvertebrate s (Q)	FreshWater Pearl Mussel	Fish	Phytobenthos (Diatoms)	Morphology	Specific Polutants	Physio-chemical	Ecological Status	Chemical Status	Special Area of Conservation	Special Protection Area	Nu trient Sensitive Waters	Drinking Water	Objective	Date objective to be achieved
SW_20_1050	Y		G		G					G						GES	2009
SW_20_1140	Ν	SW_20_760								G						GES	2009
SW_20_1209	Y									G						GES	2009
SW_20_1319	Y		G							G						GES	2009
SW_20_1344	Ν	SW_20_1799								М						GES	2021
SW_20_1454	Ν	SW_20_1947								Р						GES	2021
SW_20_147	Ν	SW_20_1947								Р						GES	2021
SW_20_1498	Y		G		G				G	Geo.						GES	2009
SW_20_1533	Ν	SW_20_1534								MOM						GES	2021
SW_20_1534	Y		М						as. at	о ^с М						GES	2021
SW_20_1587	Ν	SW_20_1498							officiat	G						GES	2009
SW_20_1946	Ν	SW_20_1947						en e	e d'r	Р						GES	2021
SW_20_1947	Y		G		Р			our Poli	4	Р						GES	2021
SW_20_2011	Ν	SW_20_1498						ion the re		G						GES	2009
SW_20_2094	Y		Р				Solo Solo	t with		Р						GES	2021
SW_20_2108	N	SW_20_1498					inst	K.		G						GES	2009
SW_20_2109	Ν	SW_20_2132					For the			G						GES	2009
SW_20_2116	Ν	SW_20_2094					SCOT			Р						GES	2021
SW_20_2132	Y		G			-			Н	G						GES	2009
SW_20_2166	Y		Р			OIS			G	Р						GES	2021
SW_20_2202	Y		G			0			М	М						GES	2021
SW_20_2212	Ν	SW_20_2166								Р						GES	2021
SW_20_2214	Y		G						М	М						GES	2021
SW_20_2216	Ν	SW_20_2166								Р						GES	2021
SW_20_2218	N	SW_20_2166								Р						GES	2021
SW_20_2230_1	Y		М						Н	М		Y				GES	2021
SW_20_2230_2	Y		G						Н	G					Y	GES	2009
SW_20_2236	N	SW_20_1947								Р						GES	2021
SW_20_2240	N	SW_20_1947								Р						GES	2021
SW_20_2242	N	SW_20_1947								Р						GES	2021
SW_20_2244	Ν	SW_20_1947								Р						GES	2021
SW_20_620	Ν	SW_20_2214								М						GES	2021
SW_20_643	Y		Н							Н						HES	2009
SW_20_753	Ν	SW_20_2094								Р						GES	2021
SW_20_760	Y		Н						G	Н						HES	2009
SW_20_770	Y		М							М						GES	2021

						IE_S	SW_Ban	don/Sti	ck								
			Biolog	ical Ele	ements	Suppo	orting Ele	ements				Prote	ected Ar	eas			
Member State Code	Name	Monitored Y (Extrapolated N)	Macrophytes	Chlorophyll	Fish	Morphology	Nutrient Enrichment	Physico Chemical	Ecological Status	Chemical Status	Special Area of Conservation	Special Protection Area	Nutrient Sensitive Waters	Bathing Water	Drinking Water	Objective	Date objective to be achieved
SW_20_158	Curraghalicky Lake	Y	М	М			G	G	M							GES	2015

Consent of copyright owner required for any other use.

Register Numb	er D043	3-01 R	iverstic	ck Outl	et Tab	le E4		
Sample Date	21/01/2010	05/05/2010	03/06/2010	12/08/2010	14/12/2010	16/12/2010		
Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Mean value	Urban WW
Sample Code	GU009	GU302	GU373	GU587	GU948	GU981	2010	Reg Limits
Flow M ³ /Day	*	*			*	*		
Suspended Solids mg/L	17	65	110	19	55	63	54.833333	35
3OD mg/L	52	131	108	63	204	212	128.33333	25
COD mg/L	97	328	366	212	380	416	299.83333	125

breach of UWW reg Limits

Consent for inspection purposes only, any other use.

Register Number D0433 Table E4	-01 Attachment E4 R	iverstick Upstream		
Sample Date	16/10/2008	07/05/2009	Recorded	
Sample	River	River	Value below	
Sample Code	GS1103	GT641	LOD	
Hq	*	7.3	n/a	
Cond 20°C	*	211	n/a	
SS mg/L	*	<2.5	n/a	
NH ³ mg/L	*	<0.1	n/a	
BOD mg/L	*	1	n/a	
COD mg/L	*	<21	n/a	
TN mg/L	*	5.01	C n/a	
Nitrite mg/L	*	<0.10	e/use	
Nitrate mg/L	*	4.88	A SH	
TP mg/L	* .	<0.05	n/a color	
0-P04-P mg/L	<0.05	<0.05	Stiel	
0-P04-P mg/L	0.015	0.00	0.0075 00.00	
SO4 mg/L	*	<30	bot to	0
Phenols µg/L	*	<0.10	n/a	050
Atrazine µg/L	*	<0.01	n/a	eo'
Dichloromethane	*	<1	n/a	
Simazine µg/L	*	<0.01	n/a	
Toluene µg/L	*	<0.28	n/a	
Tributyltin µg/L	*	not required	n/a	
Xylenes µg/L	*	<1	n/a	
Arsenic µg/L	*	<0.96	n/a	
Chromium ug/L	*	<20	<1	
Copper ug/L	¥	<20	<1	
Cyanide µg/L	*	<5	n/a	
Fluoride µg/L	*	<100	n/a	
Lead ug/L	*	<20	4.75	
Nickel ug/L	*	<20	1.10	
Zinc ug/L	*	<20	4	
Boron ug/L	*	<20	~1	

Jotion ont EA Divio Register Number D0433-01 Attach

OI ALLACIMIENT ET RIVEISUCK	16/10/2008 07/05/2009 Rect	River River Value	GT640 L(* 7.4 n	* 216 n	* <2.5 n	* 0.2 n	* *	* <21 n	* 5.2 n	* <0.10 h	* 3.7 n	* 0.05 n	<0.05 <0.05 n	0.02 0.02 0.	* <30 n	* <0.10 n	* <0.01 n	*	* <0.01 h	* <0.28 n.	* not required n	* [*]	* <0.96 n	* <20 *	* <20	ч <22 *	* <100 n	* <20 1.5	* <20 2.3	* <20 1.8
ownstream Table E4	Sample Date	Sample	Sample Code	РН	Cond 20°C	SS mg/L	NH ₃ mg/L	BOD mg/L	COD mg/L	TN mg/L	Nitrite mg/L	Nitrate mg/L	TP mg/L	O-PO4-P mg/L	O-PO4-P mg/L	SO4 mg/L	Phenols µg/L	Atrazine µg/L	Dichloromethane	Simazine µg/L	Toluene µg/L	Tributyltin µg/L	Xylenes µg/L	Arsenic µg/L	Chromium ug/L	Copper ug/L	Cyanide µg/L	Fluoride µg/L	Lead ug/L	Nickel ug/L	Zinc ug/L

nium ug/L	*	<20	<1
cury µg/L	*	<0.2	n/a
nium µg/L	*	1.5	n/a
ium ug/L	*	25.85	n/a

4

n/a n/a n/a

1.3 34.225

*

Cadmium ug/L Mercury µg/L Selenium µg/L Barium ug/L

value of 0 below LOD

1

v

<20 <0.2

				C	mse		
value of 0	below LOD						
<1							
			.4				
						0	

Register Number I	00433-01 At	tachment E	4 Riverstick	C Discharge	Outlet -200	9	26/11/2009	01/12/2009	Mean value
Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	2009
Sample Code	GS1105	GT639	GT928	GT1029	GT1296	GT1383	GT1424	GT1449	
Flow M ³ /Day	*	*	*	*	*	*	*	*	
Н	7.3	7.2	*	*	*	*	*	*	7.25
Temperature °C	*	*	*	*	*	*	*	*	
Cond 20°C	*	772	*	*	*	*	*	*	772
SS mg/L	13	29	25	25	22	9	10	20	19.125
NH ₃ mg/L	*	42.8	*	*	26.5	*	*	*	34.65
BOD mg/L	*	83	65	9 <mark>6</mark> 9	66	54	53	69	64
COD mg/L	103	194	125	182	124	123	135	170	144.5
TN mg/L	26	49.1	*	*	*	*	*	*	37.55
Nitrite mg/L	*	<0.10	*	*	* *	*	*	*	<0.10
Nitrate mg/L	*	<0.50	*	*	es offer	*	*	*	<0.50
TP mg/L	2.9	7.23	*	*	rpo creation	*	*	*	5.065
O-PO4-P mg/L	*	5.62	*	*	3:34 13	*	*	*	4.48
SO4 mg/L	*	32	*	*	ectil	*	*	*	32
Phenols µg/L	*	<0.10	*	*	ANS A	Da.	*	*	<0.10
Atrazine µg/L	*	<0.01	*	*	*	\$0 51	*	*	<0.01
Dichloromethane	*	~	*	*	*	pent	*	*	~
Simazine µg/L	*	<0.01	*	*	*	cor	*	*	<0.01
Toluene µg/L	*	48.53	*	*	*	*	*	*	48.53
Tributyltin µg/L	*	not required	*	*	*	*	*	*	not required
Xylenes µg/L	*	<1	*	*	*	*	*	*	4
Arsenic µg/L	*	<0.96	*	*	*	*	*	*	<0.96
Chromium ug/L	*	<20	*	*	*	*	*	*	<20
Copper ug/L	*	<20	*	*	*	*	*	*	<20
Cyanide µg/L	*	<5	*	*	*	*	*	*	<5
Fluoride µg/L	*	390	*	*	*	*	*	*	390
Lead ug/L	*	<20	*	*	*	*	*	*	<20
Nickel ug/L	*	<20	*	*	*	*	*	*	<20
Zinc ug/L	*	23	*	*	*	*	*	*	23

						Barium ug/L	Selenium µg/L	Mercury µg/L	Cadmium ug/L	Boron ug/L
						*	*	*	*	*
					breach of UW	<20	0.8	<0.2	<20	32
					/W reg Limit	*	*	*	*	*
			N. Nother	çe.	S	*	*	*	*	*
		spection purposes	alfor all			*	*	*	*	*
	Consent of copy	Hear.				*	*	*	*	*
						*	*	*	*	*
						*	*	*	*	*
						<20	0.8	<0.2	<20	32

Sample Date	07/05/2009	
Sample	Influent	Average
Sample Code	GT638	
Flow M ³ /Day	*	*
рН	7.4	7.4
Temperature °C	*	*
Cond 20°C	529	529
SS mg/L	286	286
NH ₃ mg/L	8.1	8.1
BOD mg/L	738	738
COD mg/L	1270	1270
TN mg/L	23	23
Nitrite mg/L	0.207	0.207
Nitrate mg/L	1.873	1.873
TP mg/L	1.94	1.94
O-PO4-P mg/L	1.1	1.1
SO4 mg/L	91.1	91.1
Phenols µg/L	<0.10	<0.10
Atrazine µg/L	<0.01	<0.01
Dichloromethane µg/L	<1	<1
Simazine µg/L	<0.01	<0.01
Toluene µg/L	<0.28	< 0.28 mly 217
Tributyltin µg/L	not required	not required
Xylenes µg/L	<1	ALIN TUNC
Arsenic µg/L	<0.96	01-20.96
Chromium ug/L	<20	pectown <20
Copper ug/L	67	of intent 67
Cyanide µg/L	<5	r 005 <5
Fluoride µg/L	580	580
Lead ug/L	<20 50	<20
Nickel ug/L	<20 0	<20
Zinc ug/L	104	104
Boron ug/L	54	54
Cadmium ug/L	<20	<20
Mercury µg/L	<0.2	<0.2
Selenium µg/L	1.7	1.7
Parium ua/l	<20	<20

Flow Diagram for Riverstick

Conclusion: No assessment is required at this Agglomeration

Riverstick Regulation 18 Further Information Response

Question 1 Assess the likelihood of significant effect of the waste water discharges from the above applomerations on the relevant European sites by referring to Circular L8/08 "Water Services Investment and Rural Water Programmes – Protection of Natural Heritage and National Monuments" issued by the Department of Heritage and Local Government. In particular, the flow diagram in Appendix 1 should be completed and the results of each section recorded. Provide details of the results of this assessment within one month of the date of this notice and provide a reasoned response for the decision. If significant effects are likely then and appropriate assessment must be carried out and a report of this assessment forwarded to the Agency by the date specified below. You are advised to provide the requested information in accordance with the "Note on Appropriate Assessments for the purposes of the Waste Water Discharge (Authorisation) Regulations, 2007 (S.I. 684 of 2007)".

Wastewater Discharge Licence Application: D0433-01 Riverstick

Circular L8/08 2 September 2008 Water Services Investment and Rural Water Programmes – Protection of Natural Heritage and National Monuments

For new projects and significant changes to any existing operations, if the answer is 'yes' to any of the following, the project (i.e. construction, operation and maintenance) must be screened for its impacts:	NO
1. Is the development in or on the boundary of a nature conservation site NHA/SAC/SPA?	NO
2. Will nationally protected species be directly impacted? Wildlife Acts (1976 and 2000), Flora Protection order (S.I. 94 of 1999)?	NO
3. Is the development a surface water discharge or abstraction in the surface water catchment, or immediately downstream of a nature conservation site with water dependant qualifying habitats/ species?	NO
4. Is the development a groundwater discharge or abstraction in the ground water catchment or within 5 km of a nature conservation site with water-dependant qualifying habitats/species2?	NO
5. Is the development in the surface water or groundwater catchment of salmonid waters?	NO
6. Is the treatment plant in an active or former floodplain or flood zone of a river, lake, etc?	NO

7. Is the development a surface discharge or abstraction to or from marine waters and within 3km of a marine nature conservation site?	NO
8. Will the project in combination with other projects (existing and proposed) or changes to such projects affect the hydrology or water levels of sites of nature conservation interest or the habitats of protected species?	NO

Flow Diagram for Riverstick Agglomerations

Conclusion: No assessment is required at this Agglomeration

Question 2 Review the assessment of the impact of the discharge in relation to the requirements of the Environmental Quality Objectives regulations (S.I. No. 272 of 2009) and resubmittand update where relevant

The River Stick (20S03) is contained within Hydrometric Area 20 and is located entirely in County Cork. The River Stick rises near Coolkirky and flows in a southerly direction past Riverstick continuing on towards Belgooly. At Belgooly River Stick discharges to Oyster Haven, water becomes transitional at this point. There is no water quality management plan or catchment management plan in place for the River Stick.

The River Stick has been classified as 'at risk' of not achieving 'good' status by 2015 under the Water Framework Directive Article 5 Characterisation (2004). Oyster Haven Bay has been classified as 'expected' to achieve 'good' status by 2015.

The 1998 Phosphorus Regulations set targets for phosphorus levels and biological quality (Q-values) for rivers and lakes. Where water quality is satisfactory it must be maintained and where water quality is unsatisfactory it must be improved. For levels of phosphorus the baseline Q-value determines the median molybdate-reactive phosphorus (MRP) to be achieved.

The discharge point from Riverstick WWTP is not located within a European designated site. The Sovereign Islands is a designated Natural Heritage Area (NHA) and Special Protection Area (SPA) and are located approximately 14km down-stream of the discharge point. It is not suspected that effluent from the WWTP will impact on the site.

The ambient sampling results for 2009 at aSW-1a were compared to the relevant EQR/S from the surface water regulations in the following tables. The sample results and the EQR/S were included only if there were values for both, to allow comparison.

The ambient sample results incorporated in the following tables are those laid out in the ambient column of the Revised Table E. However many of these results are at the limit of detection, or are based on averages that include assumed figures. Therefore an additional ambient table, which incorporates actual results for analysis below the Limit of Detection have been included. This "Analysis below the Limit of Detection" is laid out on a separate column in the Revised Table E.

	Ecological quality ratio/standard	2009 upstream ambient
Physico-chemical conditions	Good boundary	aSW01u
	Rivers (All Types)	
Oxygenation conditions Table 9	River water body	Ambient sampling results
Biochemical Oxygen Demand (BOD) (mgO ₂ /l)	Good status≤1.5 (mean) or \$2.6(95%ile)	1.00 based on one result only
Acidification Status Table 9	River Water Body	Ambient sampling results
pH (individual values)	്റ്റoft Water 4.5 <ph<9.0 ് Hard Water 6.0<ph<9.0< td=""><td>7.30</td></ph<9.0<></ph<9.0 	7.30
Nutrient conditions Table 🔊	River Water body	Ambient sampling results
Total Ammonia (mg N/I)	Good status≤0.065(mean) or ≤0.140(95%ile)	0.2 based on one result only
Molybdate Reactive Phosphorus (MRP) (mg P/I)	Good status≤0.035(mean) or ≤0.075(95%ile)	0.02 based on one result only
Theophorae (mixi) (mg i /i)		•,
Specific pollutants Table 10	Inland surface waters AA-EQS	Ambient sampling results
Specific pollutants Table 10 Phenol	Inland surface waters AA-EQS 8	Ambient sampling results
Specific pollutants Table 10 Phenol Toulene	Inland surface waters AA-EQS 8 10	Ambient sampling results <0.1µg/L <0.28µg/L
Specific pollutants Table 10 Phenol Toulene Xylene	Inland surface waters AA-EQS 8 10 10	Ambient sampling results <0.1µg/L <0.28µg/L <1.0µg/L
Specific pollutants Table 10 Phenol Toulene Xylene Arsenic	Inland surface waters AA-EQS 8 10 10 25	Ambient sampling results <0.1μg/L
Specific pollutants Table 10 Phenol Toulene Xylene Arsenic Total Chromium	Inland surface waters AA-EQS 8 10 10 25 8.1	Ambient sampling results <0.1μg/L
Specific pollutants Table 10 Phenol Toulene Xylene Arsenic Total Chromium Copper (depending on water hardness)	Inland surface waters AA-EQS 8 10 25 8.1 5	Ambient sampling results <0.1μg/L
Specific pollutants Table 10 Phenol Toulene Xylene Arsenic Total Chromium Copper (depending on water hardness) Cyanide	Inland surface waters AA-EQS 8 10 25 8.1 5 10	Ambient sampling results <0.1µg/L
Specific pollutants Table 10 Phenol Toulene Xylene Arsenic Total Chromium Copper (depending on water hardness) Cyanide Flouride	Inland surface waters AA-EQS 8 10 25 8.1 5 10 500	Ambient sampling results <0.1µg/L
Specific pollutants Table 10PhenolTouleneXyleneArsenicTotal ChromiumCopper (depending on water hardness)CyanideFlourideZinc (depending on water hardness)	Inland surface waters AA-EQS 8 10 25 8.1 5 10 500	Ambient sampling results <0.1µg/L <0.28µg/L <1.0µg/L <0.96µg/L <20.0µg/L <20.0µg/L <5.0µg/L <100µg/L <20.0µg/L
Specific pollutants Table 10 Phenol Toulene Xylene Arsenic Total Chromium Copper (depending on water hardness) Cyanide Flouride Zinc (depending on water hardness) Priority Substances Table 11	Inland surface waters AA-EQS 8 10 10 25 8.1 5 10 50 50 Inland surface waters AA-EQS	Ambient sampling results <0.1µg/L

UPSTREAM COMPARISON TABLE

Dichloromethane	20	<1.0µg/L
Simazine	1	<0.01µg/L
Lead and its compounds	7.2	<20.0µg/L
Nickel and its compounds	20	<20.0µg/L
Priority Hazardous Substances Table 12	Inland surface waters	Ambient sampling results
Cadmium and its compounds (depending on water hardness)	≤0.08	<20µg/L

Note the following:

The black results are within the EQR/S.

The red results break the EQR/S.

The blue results may break the EQR/S.

The results highlighted grey are at the limit of detection.

UPSTREAM COMPARISON TABLE (ANALYSIS BELOW THE LIMIT OF DETECTION)

	Ecological quality ratio/standard	2009 upstream ambient
Physico-chemical conditions	Good boundary	sampling results at aSW01u
	Rivers (All Types)	
Nutrient conditions Table 9	River Water body	Ambient sampling results
Total Ammonia (mg N/I)	Good status≤0:065(mean) or ≤0.140(95%ile)	0.045mg/L (mean) 0.053mg/L (95%ile)
Molybdate Reactive Phosphorus (MRP) (mg P/I)	Good status≤0.035(mean) of ≤0.075(95%ile)	0.0098mg/L (mean) 0.0229mg/L (95%ile)
Specific pollutants Table 10	Infand surface waters	Ambient sampling results
Total Chromium రో	8.1	<1.0µg/L
Copper (depending on water hardness)	5	<1.0µg/L
Zinc (depending on water hardness)	50	<1.0µg/L
Priority Substances Table 11	Inland surface waters AA-EQS	Ambient sampling results
Lead and its compounds	7.2	<1.0µg/L
Nickel and its compounds	20	<1.0µg/L
Priority Hazardous Substances Table 12	Inland surface waters AA-EQS	Ambient sampling results
Cadmium and its compounds (depending on water hardness)	≤0.08	<1.0µg/L

Note: Actual result for Cadmium in sample was zero but <1 is recorded for reporting purposes.

Physico-chemical conditions	Ecological quality ratio/standard Good boundary	2009 Downstream ambient sampling results at aSW01d
	Rivers (All Types)	
Oxygenation conditions Table 9	River water body	Ambient sampling results
Biochemical Oxygen Demand (BOD) (mgO ₂ /l)	Good status≤1.5 (mean) or ≤2.6(95%ile)	2:00 based on one result only
Acidification Status Table 9	River Water Body	Ambient sampling results
pH (individual values)	Soft Water 4.5 <ph<9.0 Hard Water 6.0<ph<9.0< td=""><td>7.4</td></ph<9.0<></ph<9.0 	7.4
Nutrient conditions Table 9	River Water body	Ambient sampling results
Total Ammonia (mg N/I)	Good status≤0.065(mean) or ≤0.140(95%ile)	0.2 based on one result only
Molybdate Reactive Phosphorus (MRP) (mg P/I)	Good status≤0.035(mean) or ≤0.075(95%ile)	0.02 Based on one result only
Specific pollutants Table 10	Inland surface waters AA-EQS	Ambient sampling results
Phenol	8	<0.1µg/L
Toulene	10	<mark>₽[.] <0.28µg/L</mark>
Xylene	10 mer	<1.0µg/L
Arsenic	25 ^{0^v}	<0.96µg/L
Total Chromium	8.1 50 10 A	<20.0µg/L
Copper (depending on water hardness)	ion puppedin	<20.0µg/L
Cyanide	pe ^{ct} ow ¹¹ 10	<5.0µg/L
Flouride	113 6nt 500	<100.0µg/L
Zinc (depending on water hardness)	FORM 50	<20.0µg/L
Priority Substances Table 11	Inland surface waters AA-EQS	Ambient sampling results
Atrazine	0.6	<0.01µg/L
Dichloromethane	20	<1.0µg/L
Simazine	1	<0.01µg/L
Lead and its compounds	7.2	<20.0µg/L
Nickel and its compounds	20	<20.0µg/L
Priority Hazardous Substances Table 12	Inland surface waters AA-EQS	Ambient sampling results
Cadmium and its compounds (depending on water hardness)	≤0.08	<20µg/L
Mercury and its compounds	0.05	<0.2µg/L

DOWNSTREAM COMPARISON TABLE

Note the following:

The black results are within the EQR/S.

The red results break the EQR/S.

The blue results may break the EQR/S. The results highlighted grey are at the limit of detection.

DOWNSTREAM COMPARISON TABLE (ANALYSIS BELOW THE LIMIT OF DETECTION)

	Ecological quality ratio/standard	2009 Downstream ambient sampling results at aSW01d	
Physico-chemical conditions	Good boundary		
	Rivers (All Types)		
Nutrient conditions Table 9	River Water body	Ambient sampling results	
Total Ammonia (mg N/I)	Good status≤0.065(mean) or ≤0.140(95%ile)	0.023mg/L (mean) 0.0275mg/L (95%ile)	
Molybdate Reactive Phosphorus (MRP) (mg P/I)	Good status≤0.035(mean) or ≤0.075(95%ile)	0.0095mg/L (mean) 0.0119mg/L (95%ile)	
Specific pollutants Table 10	Inland surface waters AA-EQS	Ambient sampling results	
Total Chromium	8.1	<1.0µg/L	
Copper (depending on water hardness)	5	<1.0µg/L	
Zinc (depending on water hardness)	50	<1.0µg/L	
Priority Substances Table 11	Inland surface waters AA-EQS	Ambient sampling results	
Lead and its compounds	7.2 Net	6.0µg/L	
Nickel and its compounds	20	<1.0µg/L	
Priority Hazardous Substances Table 12	Inland surface waters AA-EQS	Ambient sampling results	
Cadmium and its compounds (depending on water hardness)	tions 0.08	<1.0µg/L	

Note: Actual result for Gadmium in sample was zero but <1 is recorded for oreporting purposes Consent of copyright owner contraction any other use.

Consent of copyright owner contraction any other use.

Consent of copyright owner contraction any other use.

Existing Environment & Impact of Discharges

The River Stick (20S03) is contained within Hydrometric Area 20 and is located entirely in County Cork. The River Stick rises near Coolkirky and flows in a southerly direction past Riverstick continuing on towards Belgooly. At Belgooly River Stick discharges to Oyster Haven, water becomes transitional at this point. There is no water quality management plan or catchment management plan in place for the River Stick.

The River Stick has been classified as 'at risk' of not achieving 'good' status by 2015 under the Water Framework Directive Article 5 Characterisation (2004). Oyster Haven Bay has been classified as 'expected' to achieve 'good' status by 2015.

The 1998 Phosphorus Regulations set targets for phosphorus levels and biological quality (Q-values) for rivers and lakes. Where water quality is satisfactory it must be maintained and where water quality is unsatisfactory it must be improved. For levels of phosphorus the baseline Q-value determines the median molybdate-reactive phosphorus (MRP) to be achieved.

Water quality in the River Stick is monitored by the EPA at four different locations. The EPA monitoring station 0300 at the Bridge east of Coolkirky is located approximately 2.2km up-stream of Riverstick WWTP primary discharge point. The sampling results show that the quality of the River Stick at this location went from 'slightly polluted' status in 2003 to 'unpolluted' in 2006. The EPA monitoring station 0240 at the bridge up-stream of the confluence with main channel is located approximately 0.7km down-stream of the discharge point. Water quality at this station has achieved unpolluted status since 2000. Sampling results from 2006 show a Q-value of 4 at this location. A Brological Quality Rating of Q4 represents satisfactory water quality. Eutrophication is unlikely to occur in water bodies with a biological quality rating of Q4 or higher. The sampling results are shown in **Table F1.1**.

Station	1989	1994	1997	2000	2003	2006
0240	-	4	3-4	4	4-5	4
0300	3	3	3	3	3-4	4

Table F1.1.

The River Stick is not designated as salmonid water under the European Communities (Quality of Salmonid Waters Regulations, 1988 (S.I. No. 293/1988)). The Sovereign Islands which are located approximately 14km downstream of the Riverstick waste water discharge point is a Special Protection Area (SPA) and a Natural Heritage Area (NHA). It is unlikely that the waste water treatment plant will have a negative impact on the site due to the distance between the discharge point and the Sovereign Islands. There are no other SPAs or NHAs down-stream of the discharge point.

The estimated 95% ile flow is $0.018430410m^3$ /s and the estimated median flow is $0.17407610m^3$ /s for Upper River Stick. These figures were obtained from the South

Western River Basin District. There is no figure provided for the Dry Weather Flow (DWF).

Provide a statement as to whether or not emissions of main polluting substances (as defined in the *Dangerous Substances Regulations S.I. No. 12 of 2001*) to water are likely to impair the environment.

Cork County Council have monitored for the main polluting substances as defined in the Dangerous Substances Regulations S.I. No. 12 of 2001. The results are presented in Table D and F.

 In circumstances where water abstraction points exist downstream of any discharge describe measures to be undertaken to ensure that discharges from the waste water works will not have a significant effect on faecal coliform, salmonella and protozoan pathogen numbers, e.g., Cryptosporidium and Giardia, in the receiving water environment.

There is no abstraction point down-stream of the Riverstick WWTP primary discharge point.

- Indicate whether or not emissions from the agglomeration or any plant, methods, processes, operating procedures or other factors which affect such emissions are likely to have a significant effect on -
 - (a) a site (until the adoption, in respect of the site, of a decision by the European Commission under Article 21 of Council Directive 92/43/EEC for the purposes of the third paragraph of Article 4(2) of that Directive) content
 - notified for the purposes of Regulation 4 of the Natural Habitats Regulations, subject to any amendments made to it by virtue of Regulation 5 of those Regulations,
 - details of which have been transmitted to the Commission in accordance with Regulation 5(4) of the Natural Habitats Regulations, or
 - (iii) added by virtue of Regulation 6 of the Natural Habitats Regulations to the list transmitted to the Commission in accordance with Regulation 5(4) of those Regulations,
 - (b) a site adopted by the European Commission as a site of Community importance for the purposes of Article 4(2) of Council Directive 92/43/EEC¹ in accordance with the procedures laid down in Article 21 of that Directive,
 - (c) a special area of conservation within the meaning of the Natural Habitats Regulations, or
 - (d) an area classified pursuant to Article 4(1) or 4(2) of Council Directive 79/409/EEC²;
 - ¹Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (OJ No. L 206, 22.07.1992)

²Council Directive 79/409/EEC of 2 April 1979 on the conservation of wild birds (OJ No. L 103, 25.4.1979)

The discharge point from Riverstick WWTP is not located within a European designated site. The Sovereign Islands is a designated Natural Heritage Area (NHA) and Special Protection Area (SPA) and are located approximately 14km down-stream of the discharge point. It is not suspected that effluent from the WWTP will impact on the site. The site synopses are included in **Attachment F1**.

Water Framework Directive 2000/60/EC

The objectives of the Water Framework Directive (WFD) are to protect all high status waters, prevent further deterioration of all waters and to restore degraded surface and ground water status by 2015. Cork County Council monitors the inlet and outlet flows from Riverstick WWTP to ensure compliance with the relevant standards. Up-stream and down-stream locations are also monitored.

Birds Directive 79/409/EEC

The directive aims to conserve and manage populations of wild birds throughout Europe partly through the designation of Special Protection Areas (SPA) for birds and their habitats. The discharge point is not located within an SPA.

Groundwater Directives 80/68/EEC and 2006/118/EG

Not applicable as there are no emissions to groundwater.

Urban Waste Water Treatment Directive 91/271/EEC

The Urban Waste Water Treatment Regulations, (S.I. 254 of 2001) gives effect to provisions of the Urban Wastewater Treatment Directive (91/271/EEC). The 2001 Irish Regulations in relation to the collection and treatment of urban wastewater.

Article 7 (a) states that 'Member States shall ensure that, by 31 December 2005, urban waste water entering collecting systems shall before discharge be subject to appropriate treatment as defined in Article 2 (9) in the following cases:

- for discharges to fresh-water and estuaries from agglomerations of less than 2 000 p.e.,
- for discharges to coastal waters from agglomerations of less than 10,000 p.e'.

Appropriate treatment is defined as:

...any process and/or disposal system which after discharge allows the receiving waters to meet the relevant provisions of the Directive and of other community Directives.

Relevant Community Directives have been discussed above. Where the agglomeration served is over 2000PE (10000PE if coastal) the second schedule shall not exceed 25 mg/l and 35 mg/l respectively. The limits specified in the Urban Waste Water Treatment Directive are not considered onerous, and compliance with stricter articles of legislation such as the Fisheries Directive will ensure compliance with the Urban Waste Water Treatment Directive.

Habitats Directive 92/43/EEC

There are no Special Areas of Conservation (SAC) or Special Protection Areas (SPA) under the Habitats Directive in the vicinity of the waste water discharge.

Bathing Water Directive 76/160/EEC

There are no designated bathing waters in the vicinity of the discharge.

Shellfish Waters Directive (79/923/EEC)

There are two main EU directives relating to Shellfish Waters. These are the Shellfish Directives (79/923/EEC) as implemented by the Quality of Shellfish Waters Regulations 2006 (S.I. No 268 of 2006), and the Directive on Health Conditions and the placing on the market of Live Bivalve Molluscs (91/67/EEC) and its associated amendments.

The Shellfish Waters Directive is designed to put in place concrete measures to protect waters, including shellfish waters, against pollution and to safeguard certain shellfish populations from various harmful consequences, resulting from the discharge of pollutant substances into the sea. The Directive applies to the aquatic habitat of bivalve and gastropod molluscs only.

The Directive sets physical, chemical and microbiological water quality requirements that designated shellfish waters must either comply with ('mandatory' standards) or endeavour to meet ('guideline' standards). The parameters for testing are pH, temperature, coloration (after filtration), suspended solids, salinity, dissolved oxygen, petroleum hydrocarbons, organohalogenated substances, metals (dissolved), faecal coliforms and substances affecting the taste of the shellfish, faecal coliforms are regarded as one of the most significant parameters. Waters must meet certain mandatory values based on the monitoring regime. Designated waters must conform to the set limit values for the certain parameters within six years of designation.

The Department of Communications, Marine and Natural Resources Live Bivalve Molluscs (Production Areas) Designated 2006 has confirmed that Oysterhaven is a licensed area for the cultivation of shellfish such as oysters as detailed in **Table F.1.2**.

Production Area	Boundaries	Bed Name	Species	Previous Classification	Current Classification
	Ballymacus Point				
Oysterhaven	to King Dist	All Beds	Oyster	В	В
	Kinure Point				

Table F.1.2 Designation Bivalve Molluscs Production Areas in Ireland – October 2006

In accordance with the Live Bivalve Molluscs (Production Areas) designation 2006 and Council Directive 91/492/EEC, Oysterhaven has a category B status which means that shellfish from this area have to be treated in a purification centre or a relay bed before they can be placed on the market for human consumption. The water quality standards for shellfish in Category B waters is summarised in **Table F.1.3**.

Category of Waters	Faecal Coliforms / 100g of Flesh	Compliance of Samples	Further Treatment
A- Immidiate		100%	
Human		<	Not
Consumption	< 300	300	Required
B- Human Consumption		90% <	Purification After
After Treatment	300 - 6,000	6,000	Relaying
			Relaying for
C- Human		100%	long period
Consumption	6,000 -	<	- Intensive
After Treatment	60,000	60,000	Purification

Table F.1.3 Requirements for Faecal Coliform levels for Live Bivalve Molluscs in Accordance with Directive 91/492/EEC

Riverstick WWTP primary discharge point is located approximately 8.5km up-stream of the shellfish designation at Oysterhaven.

Describe, where appropriate, measures for minimising pollution over long 0 distances or in the territory of other states required for

Not applicable

This section should also contain full details of any modelling of discharges 0 from the agglomeration.

There was no modelling study conducted for the discharges from Riverstick waste water treatment plant.

F.1 (I) Waste Assimilative Capacity of Receiving Waters

Assimilative Capacity

Receiving waters should have a capacity to assimilate effluent discharges without showing signs of pollution. It is desirable that any effluent discharge to the River Stick should not:

- increase the BOD₅ level in the water by more than 1 mg/l; •
- increase the overall BOD₅ in the water to more than 4mg/l (ideally 3mg/l); ٠
- increase the Ortho Phosphate level in the water to more than 0.03mg/l;

Assimilative Capacity of the Receiving Water

Mass Balance Equation for Orthophosphates:

Median flow of River (SWRBD) = $0.617m^3$ /sec Median oPO₄-P in River (upstream) = 0.05mg/l

Average volume of discharge = $0.001 \text{ m}^3/\text{sec}$ Median value for oPO₄-P in discharge = 5.62 mg/l

$$C_{\text{final}} = (0.617 \text{ x } 0.05) + (0.001 \text{ x } 5.62)$$

(0.617 + 0.001)

 $C_{final} = 0.059 \text{ mg/l oPO}_4\text{-P}$

The increase in Orthophosphate due to the discharge of Riverstick WWTP is 0.009 mg/l.

 $C_{final} = 2.01 \text{mg/l BOD}$

The increase in BOD due to the discharge of Riverstick WWTP is 1.01mg/l.

Mass Balance Equation for Suspended Solids:

Flow of River $(95\% ile) = 0.08 \text{m}^3/\text{sec}$ Median SS in River (upstream) = 2.5 mg/l

Average volume of discharge = $0.001 \text{ m}^3/\text{sec}$ Median value for SS in discharge = 21 mg/l

 $C_{\text{final}} = (0.08 \text{ x } 2.5) + (0.001 \text{ x } 21)$

(0.08 + 0.001)

 $C_{\text{final}} = 2.73 \text{mg/l}$ Suspended Solids

The increase in Suspended Solids due to the discharge of Riverstick WWTP is 0.73 mg/l.

Mass Balance Equation for Total Phosphates:

Median Flow of River (SWRBD) = $0.617 \text{m}^3/\text{sec}$ Median TPO₄-P in River (upstream) = 0.05 mg/l

Average volume of discharge = $0.001 \text{m}^3/\text{sec}$ Median value for TPO₄-P in discharge = 5.07mg/l

 $C_{\text{final}} = (0.617 \text{ x } 0.05) + (0.001 \text{ x } 5.07)$

(0.617 + 0.001)

 $C_{\text{final}} = 0.058 \text{ mg/l}$ Total Phosphates

The increase in Total Phosphates due to the discharge of Riverstick WWTP is 1. owner required is 0.005 g/l.

Mass Balance Equation for Total Nitrogen:

Flow of River (95% ile) = $0.08 \text{ m}^{3/3}$ sec Median Total Nitrogen in River (upstream) = 5.01mg/l

Average volume of discharge = $0.001 \text{m}^3/\text{sec}$ Median value for Total Nitrogen in discharge = 37.55mg/l

 $C_{\text{final}} = (0.08 \text{ x} 5.01) + (0.001 \text{ x} 37.55)$

(0.08 + 0.001)

 $C_{\text{final}} = 5.41 \text{mg/l}$ Total Nitrogen

The increase in Total Nitrogen due to the discharge of Riverstick WWTP is 0.40mg/l.

Mass Balance Equation for Sulphates:

Flow of River (95% ile) = $0.08 \text{m}^3/\text{sec}$ Median Sulphates in River (upstream) = 30.0mg/l Average volume of discharge = $0.001 \text{ m}^3/\text{sec}$ Median value for Sulphates in discharge = 32.0 mg/l

 $C_{\text{final}} = (0.08 \text{ x } 30.0) + (0.001 \text{ x } 32)$

(0.08 + 0.001)

 $C_{\text{final}} = 30.02 \text{mg/l Sulphates}$

The increase in Sulphates due to the discharge of Riverstick WWTP is 0.02mg/l.

Mass Balance Equation for Ammonia - N:

Flow of River (95% ile) = $0.08 \text{m}^3/\text{sec}$ Median Ammonia in River (upstream) = 0.1 mg/l

Average volume of discharge = $0.001 \text{m}^3/\text{sec}$ uposes only, any other use Median value for Ammonia in discharge = 42.8mg/l

 $C_{\text{final}} = (0.08 \text{ x } 0.1) + (0.001 \text{ x } 42.8)$

(0.08 + 0.001)

 $C_{\text{final}} = 0.63 \text{mg/l}$ Total Ammonia

The increase in Ammonia due to the discharge of Riverstick WWTP is 0.53mg/l. ofcor

Proposed Assimilative Capacity of the Receiving Water

Mass Balance Equation for BOD:

Flow of River (95% ile) = $0.08 \text{m}^3/\text{sec}$ Median BOD in River (upstream) = 1.0mg/l

Average volume of discharge = $0.003 \text{ m}^3/\text{sec}$ Median value for BOD in discharge = 10 mg/l

 $C_{\text{final}} = (0.08 \text{ x } 1.0) + (0.003 \text{ x } 10)$

(0.08 + 0.003)

 $C_{\text{final}} = 1.33 \text{ mg/l BOD}$

The increase in BOD due to the discharge of Riverstick WWTP is 0.33 mg/l.

Mass Balance Equation for Suspended Solids:

Flow of River (95% ile) = $0.08m^3/sec$ Median SS in River (upstream) = 2.5 mg/l

Average volume of discharge = $0.003 \text{ m}^3/\text{sec}$ Median value for SS in discharge = 15 mg/l

 $C_{\text{final}} = (0.08 \text{ x } 2.5) + (0.003 \text{ x } 15)$

(0.08 + 0.003)

 $C_{\text{final}} = 2.95 \text{ mg/l Suspended Solids}$

The increase in Suspended Solids due to the discharge of Riverstick WWTP is 0.45 mg/l

Mass Balance Equation for Total Phosphates:

Median TPO₄-P in River (SWRBD) = $0.617m^3/sec$ of the form of

 $C_{\text{final}} = (0.617 \text{ x } 0.05) + (0.003 \text{ x } 1.0)$ (0.617 + 0.003)

 $C_{\text{final}} = 0.055 \text{mg/l}$ Total Phosphates

The increase in Total Phosphates due to the discharge of Riverstick WWTP is 0.005 mg/l.

The figure for the 50% ile and 95% ile flow were taken from data supplied by the EPA flow statistics.