Annual Environmental Report 2010

Licence Registration No.: W0198-01

Licencee: Bord na Móna Plc.

Location of Activity: Kilberry, Athy, Co. Kildare.

Attention: Office of Environmental Enforcement

Environmental Protection Agency

P.O. Box 3000 Johnstown Castle

Co. Wexford

CONTENTS

SECTION 1: INTRODUCTION

- 1.1 Introduction
 - 1.1.2 Policy
- 1.2 Site Description
 - 1.2.1 General
 - 1.2.2 Method of Working
 - 1.2.2.1 Composting Process

SECTION 2: DATA

- 2.1 Summary Data
 - 2.1.1 Waste Recovery Data
 - 2.1.2 Summary Reports on Emissions
 - 2.1.3 Summary reports on Environmental Monitoring
 - 2.1.3 (A) Surface Water Analysis Results
 - 2.1.3 (B) Ground Water Analysis Results
 - 2.1.3 (C) Dust Analysis Results
 - 2.1.3 (D) Odour Analysis Results
 - 2.3.1 (E) Noise Emissions
 - 2.1.4 Environmental Incidents and Complaints
 - 2.1.5 Environmental Spending
 - 2.1.6 Resource and Energy Consumption

SECTION 3: ENVIRONMENTAL MANAGEMENT SYSTEM

Objectives and Targets 2011

- 3.1 Environmental Management Programme Review 2010
- 3.2 Environmental Management Programme Description 2011

SECTION 4: OTHER REPORTS

Appendix 1 – Monthly Analysis of Windrows

Appendix 2 - PRTR Scan

SECTION 1

Introduction

1.1 INTRODUCTION

The following document represents the Annual Environmental Report (AER) for Bord na Móna Kilberry Compost facility for the period January 2009-December 2009. Detailed within this report is a summary of all monitoring, and any activities and on-going improvements at the facility during this period that has had an influence on the environmental performance of the company.

Through the continued compliance with the conditions of their Waste licence register No. W0198-01, Bord na Móna continues to express their commitment of environmental improvement through out the site.

An Environmental and Quality Management System is established at the facility, which incorporates procedures of operational activities on site, emergency preparedness and response, reporting, dealing with unacceptable wastes and an public access to the site and site's environmental performance. Through the on-going achievement and reviewing of the objectives and targets, Bord na Móna facilitate on-going environmental improvements.

Bord na Móna's commitment is expressed in the company's Environmental Management policy, as given overleaf.

1.1.2 – Environmental Policy

Environmental Policy

Introduction

A licence from the Environmental Protection Agency (WI 198-1) was granted on the 16th of December 2004. This licence is for the construction and operation of a Composting Facility at Kilberry, Athy, Co. Kildare. The quantity of waste to be accepted is 50,000 tonnes in the first year rising to 96,000 tonnes by the 5th year. Non-hazardous biodegradable wastes (Shredded Green waste, Brewery By-Product, Sawdust, Bark and Cocoa Husk) will be accepted at this facility.

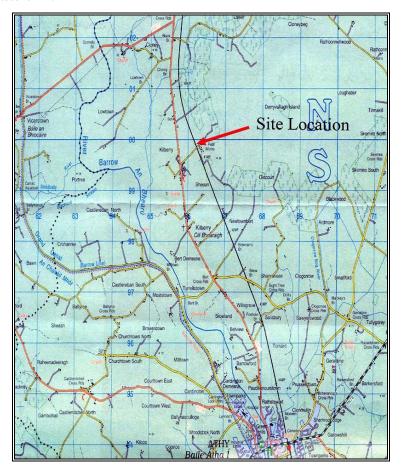
The process leading to the production of usable, composted material will require the completion of a series of stages as follows, acceptance procedures and tipping, mixing and formulation of windrows, turning / composting, screening of stabilised material and shredding and re-use of oversize material. The wastes are combined together to form windrows for composting. The average composting period will be 10 weeks during which time the composting process will stabilise a range of organic waste materials / by-products which will then be incorporated into horticultural growing media produced on the adjoining site.

Policy

Environmental care is a Bord na Móna core value. BnM seeks to be recognised in the compost supply business as a leader in terms of environmental care. Bord na Móna's environmental programmes shall be an integrated approach focused on continuous improvement. The environmental programmes in Bord na Móna will seek to achieve the following:

- Ensure compliance with the requirements of the EPA Waste Licence and National/European legislation.
- Review Environmental performance and establish environmental objectives and targets on an annual basis to improve the environmental performance of our composting facility
- Minimise potential negative environmental impacts through activities that are designed for the prevention of pollution
- Encourage the involvement of employees through training and awareness programmes to promote and ensure an environmentally friendly workplace.
- Audit practices and programmes to help ensure continuous improvement

The company values and promotes environmental leadership, responsibility and innovation in the management of all company facilities and operations. Management team are expected to provide sound environmental leadership, to maintain appropriate records and demonstrate compliance with programmes and practices.


Authorised as of November 25th 2009

Michael Delaney General Manager

1.2 <u>SITE DESCRIPTION</u>

1.2.1 Site Location

The proposed development is located on the eastern portion of Kilberry townland, approximately 4 km north of Athy, Co. Kildare. It is located along the R417 between Athy and Monasterevin.

Regional Location of Bord na Mona Kilberry Compost Site

The total area the site occupies is ca. 2.5 hectares. The topography of the area is flat peat land and agricultural land with a gradual rise to the north. The land on the site is relatively level with a fall of 1:200 over the total site from south to north. The surrounding land is a mixture of agricultural, forestry and peat land with the southern boundary adjoining the Bord na Móna Moss Peat production site.

1.2.1 General

A licence from the Environmental Protection Agency (W0198-01) was granted on the 16th of December 2004. This licence was for the construction and operation of a Composting Facility at Kilberry, Athy, Co. Kildare. The quantity of waste to be accepted was 50,000 tonnes in the first year rising to 96,000 tonnes by the 5th year. Non-hazardous biodegradable wastes (Shredded Green waste, Brewery By-Product, Sawdust, Bark and Cocoa Husk) were the initial waste types accepted at this facility. In the intervening five years a number of additional waste streams have been identified and added to the waste licence with agreement from the EPA. The current waste list is as follows:

Shredded / Unshredded Green Waste

Brewery By-Product

Sawdust

Bark

Cocoa Husk

Spent Mushroom Compost

Christmas Trees

Wood Pulp Sludge

Fruit and Vegetables

Dairy Products Sludge

1.2.2 Method of Working

1.2.2.1 Composting Process

The process leading to the production of usable, composted material requires the completion of a series of stages as follows:

- 1. Acceptance procedures and tipping
- 2. Mixing and formulation of windrows
- 3. Turning / Composting
- 4. Screening of stabilised material
- 5. Shredding and re-use of oversize material

1. Acceptance Procedures:

All vehicles entering the site firstly report to compost coordinator. A delivery note will accompany each vehicle detailing:

- Vehicle registration number
- Driver / Company
- Material type and origin
- Quantity of waste

These details will be entered on to the Bord na Móna MRP system along with the recorded weight of the vehicle. A hard copy of this information will be issued to the driver as a POD (Proof of Delivery).

2. Discharge/Mixing and formation of windrows.

On completion of acceptance procedures vehicles will be directed to a specific tipping area in the composting facility. Where they will tip the feedstock in such a fashion as to provide a linier strip of material. Unshredded material is directed to the shredder in phase 2.

3. Turning / Composting

The current average composting period is 12 weeks, during which time the piles are turned approximately 20 times as follows:

Week 1 - 2 4 times per week
Week 3 - 6 2 times per week
Week 7-10 1 turn per week

A series of parameters are monitored during the composting cycle as follows:

- Temperature (using deep probes)
- CO₂ evolution (an index of microbial activity)
- Moisture content

The results of ongoing monitoring can trigger a number of interactions such as:

- Increased turning frequency
- Addition of water. Lagoon water is used as the source of this water.

4. Screening

Following the completion of composting the material is transported from the stockpile to the screening area, which is located in Phase 2 using the Volvo loader.

The composted material is screened, material below 10mm will be stockpiled for use in growing media plants, whilst material over this size will be set aside for shredding and composting.

5. Shredding:

Oversized material is collected at the screening plant and is reincorporated into the new windrows.

Working Hours

Composting activities (Turning / Screening) will normally be undertaken during the hours of 08:00 and 18:00; Monday to Friday inclusive.

Delivery hours are confined to the hours of 08:00 to 18:00; Monday to Friday inclusive.

Reduced site activities such as maintenance and cleaning proceed until 22:00 Monday to Friday inclusive.

SECTION 2

DATA

2.1 SUMMARY DATA

2.1.1 Waste Recovery Data:

Waste Type	EWC Code	Annual Intake (Tonnes)
Greenwaste	20 02 01	9917
Bark	03 03 01	1455
Brewery by-Product	02 07 01	18185
Fruit and Vegetables	02 01 03	1655
Dairy Sludge	02 05 02	4694
Brewery Sludge	02 07 05	1532

2.1.2 Summary Report on Emissions:

There are no emission points within the facility.

2.1.3 Summary Reports on Environmental Monitoring:

2.1.3 (A) Surface Water Analysis Results – Tables A.1 – A.4 below show results of 2010 Surface water analysis.

Table A.1 - Surface Water Q1 2010									
Parameter	SW1 SW2 SW3 SW4 SW5								
pН	7.7	7.4	6.9	7.5	7.9				
Suspended Solids (mg/l)	7	144	93	8	5				
DRO (mg/l)	<10	11	249	<10	<10				
Mineral Oil (mg/l)	<10	<10	<10	<10	<10				

Table A.2 - Surface Water Q2 2010									
Parameter	SW1 SW2 SW3 SW4 SW5								
pН	7.7	7.7	7.8	7.9	8.2				
Suspended Solids (mg/l)	24	8	11	15	<5				
BOD (mg/l)	4	3	2	<2	<2				
DRO (mg/l)	<10	<10	<10	<10	<10				
Mineral Oil (mg/l)	<10	<10	<10	<10	<10				

Table A.3 - Surface Water Q3 2010									
Parameter	SW1 SW2 SW3 SW4 SW5								
рН	7.4	7.4	7.5	7.3	8.0				
Suspended Solids (mg/l)	6	5	<5	<5	<5				
BOD (mg/l)	3	<2	<2	<2	<2				
DRO (mg/l)	<10	<10	<10	<10	<10				
Mineral Oil (mg/l)	<10	<10	<10	<10	<10				

Table A.4 - Surface Water Q4 2010									
Parameter	SW1	SW2	SW3	SW4	SW5				
pН	7.4	7.2	7.3	7.3	7.7				
Suspended Solids (mg/l)	<5	<5	<5	<5	7				
BOD (mg/l)	5	2	2	<2	<2				
DRO (mg/l)	<10	<10	<10	<10	<10				
Mineral Oil (mg/l)	<10	<10	<10	<10	<10				

2.1.3 (B) <u>Ground Water Analysis Results</u>

Groundwater Results Q1 2010								
Laboratory ID.	MW1	MW2	MW3	MW4	MW5			
pН	7.4	7.2	7.3	7.0	6.9			
Conductivity µS/cm	481	578	665	1571	1860			
Ammonia as N mg/l	2.0	5.9	6.1	18	18			
Chloride mg/l	18.27	17.71	15.85	10.39	24.13			
Sulphate mg/l	0.52	<0.5	<0.5	<0.5	<0.5			
Nickel ug/l	6	6	17	34	12			
Manganese ug/l	487	161	155	890	812			

Groundwater Results Q2 2010								
Laboratory ID.	MW1	MW2	MW3	MW4	MW5			
pH	7.5	7.1	7.0	7.1	7.0			
Conductivity µS/cm l	519	590	676	1672	1393			
Ammonia as N mg/l	1.94	5.90	6.10	24.00	15.00			
Chloride mg/l	19.27	18.21	16.39	11.96	14.94			
Sulphate mg/l	8.27	< 0.50	< 0.50	< 0.50	< 0.50			
Nickel ug/l	7	7	19	46	23			
Manganese ug/l	543	185	174	1245	699			

Groundwater Results Q3 2010								
Laboratory ID.	MW1	MW2	MW3	MW4	MW5			
pH	7.4	7.2	7.1	6.7	6.7			
Conductivity µS/cm 1	601	619	663	1971	1056			
Ammonia as N mg/l	1.87	6.3	6.2	24.0	11.0			
Chloride mg/l	23.05	18.65	16.74	40.01	24.78			
Sulphate mg/l	43.42	4.93	<0.50	< 0.50	< 0.50			
Nickel ug/l	8	7	18	59	25			
Manganese ug/l	563	202	224	1235	744			

	Groundwater Q4 2010								
Parameter	MW-01	MW-02	MW-03	MW-04	MW-05				
рН	7.4	7.2	7.2	6.9	6.8				
Ammonia as N mg/l	1.87	7.60	6.1	26	18				
Chloride mg/l	19.62	17.96	17.70	31.35	79.13				
Orthophosphate mg/l	<0.16	<0.16	<0.16	<0.16	17.74				
Nitrate as N mg/l	0.05	< 0.05	0.05	0.05	< 0.05				
Total Phosphorous mg/l	0.24	0.15	0.14	2.7	19.96				
Antimony μg/l	<2	<2	<2	<2	<2				
Arsenic μg/l	43	84	90	12	3				
Aluminium μg/l	14	<2	2	37	47				
Berylium µg/l	<2	<2	<2	<2	<2				
Barium µg/l	462	369	484	466	185				
Calcium mg/l	80	94	112	286	233				
Chromium µg/l	<2	<2	<2	<2	<2				
Cadmium µg/l	<2	<2	<2	<2	<2				
Cobalt µg/l	3	2	2	<2	<2				
Copper µg/l	<2	<2	<2	<2	<2				
Iron mg/l	9.9	5.4	6.4	39	6.7				
Potassium mg/l	1.1	1.3	1	47	171				
Manganese μg/l	518	93	151	1135	868				
Silver µg/l	<2	<2	<2	<2	<2				
Sodium mg/l	8	7	7	18	37				
Nickel µg/l	7	8	17	49	9				
Lead μg/l	<2	<2	<2	<2	<2				
Selenium µg/l	<2	<2	<2	<2	<2				
Tin µg/l	<2	<2	<2	<2	<2				
Zinc µg/l	13	31	11	16	26				
Mercury μg/l	<1	<1	<1	<1	<1				
Total Coliforms cfu/100mls	2	40	<1	35	1				
E.Coli cfu/100mls	<1	<1	<1	30	<1				

Ground	Groundwater Q4 2008-VOC Analysis								
VOC's (µg/l)	MW-01	MW-02	MW-03	MW-04	MW-05				
Dichlorodifluoromethane	<10	<10	<10	<10	<10				
Chloromethane	<10	<10	<10	<10	<10				
Vinyl chloride	<10	<10	<10	<10	<10				
Bromomethane	<10	<10	<10	<10	<10				
Chloroethane	<10	<10	<10	<10	<10				
Trichlorofluoromethane	<10	<10	<10	<10	<10				
1,1-Dichloroethene	<10	<10	<10	<10	<10				
Dichloromethane	<10	<10	<10	<10	<10				
trans-1,2-Dichloroethene	<10	<10	<10	<10	<10				
1,1-Dichloroethane	<10	<10	<10	<10	<10				
2,2-Dichloropropane	<10	<10	<10	<10	<10				
cis-1,2-Dichloroethene	<10	<10	<10	<10	<10				
Bromochloromethane	<10	<10	<10	<10	<10				
Chloroform	<10	<10	<10	<10	<10				
1,1,1-Trichloroethane	<10	<10	<10	<10	<10				
Carbon Tetrachloride	<10	<10	<10	<10	<10				
1,1-Dichloropropene	<10	<10	<10	<10	<10				
Benzene	<10	<10	<10	<10	<10				
1,2-Dichloroethane	<10	<10	<10	<10	<10				
Trichloroethene	<10	<10	<10	<10	<10				
1,2-Dichloropropane	<10	<10	<10	<10	<10				
Dibromomethane	<10	<10	<10	<10	<10				
Bromodichloromethane	<10	<10	<10	<10	<10				
Toluene	<10	<10	<10	<10	<10				
1,1,2-Trichloroethane	<10	<10	<10	<10	<10				
1,1,1,2-Tetrachloroethane	<10	<10	<10	<10	<10				
m,p-Xylene	<10	<10	<10	<10	<10				
Styrene	<10	<10	<10	<10	<10				
Isopropylbenzene	<10	<10	<10	<10	<10				
n-propylbenzene	<10	<10	<10	<10	<10				

Groundwater Q4 2008 - Cont'd VOC Analysis							
VOC's (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05		
2-Chlorotoluene	<10	<10	<10	<10	<10		
4-Chlorotoluene	<10	<10	<10	<10	<10		
1,2,4-Trimethylbenzene	<10	<10	<10	<10	<10		
4-Isopropyltoluene	<10	<10	<10	<10	<10		
1,4-Dichlorobenzene	<10	<10	<10	<10	<10		
1,2-Dichlorobenzene	<10	<10	<10	<10	<10		
Naphthalene	<10	<10	<10	<10	<10		
1,3-Dichloropropane	<10	<10	<10	<10	<10		
cis-1,3-Dichloropropene	<10	<10	<10	<10	<10		
trans-1,3-Dichloropropene	<10	<10	<10	<10	<10		
Dibromochloromethane	<10	<10	<10	<10	<10		
Chlorobenzene	<10	<10	<10	<10	<10		
Ethyl Benzene	<10	<10	<10	<10	<10		
o-Xylene	<10	<10	<10	<10	<10		
Bromoform	<10	<10	<10	<10	<10		
1,2,3-Trichloropropane	<10	<10	<10	<10	<10		
Bromobenzene	<10	<10	<10	<10	<10		
Tert-Butylbenzene	<10	<10	<10	<10	<10		
Sec-Butylbenzene	<10	<10	<10	<10	<10		
1,3,5-Trimethylbenzene	<10	<10	<10	<10	<10		
1,2- Dibromo-3-chloropropane	<10	<10	<10	<10	<10		
Hexachlorobutadiene	<10	<10	<10	<10	<10		
1,2,3-Trichlorobenzene	<10	<10	<10	<10	<10		
1,3-Dichlorobenzene	<10	<10	<10	<10	<10		
Tetrachloroethene	<10	<10	<10	<10	<10		
n-butylbenzene	<10	<10	<10	<10	<10		
1,2,4-Trichlorobenzene	<10	<10	<10	<10	<10		

Groundwater Q4 2008 – SVOC Analysis								
SVOC's (µg/l)	MW-01	MW-02	MW-03	MW-04	MW-05			
Phenol	<1	<1	<1	<1	<1			
2-Chlorophenol	<1	<1	<1	<1	<1			
2-Methylphenol	<1	<1	<1	<1	<1			
4-Methylphenol	<1	<1	<1	<1	<1			
2-Nitrophenol	<1	<1	<1	<1	<1			
4-Nitrophenol	<1	<1	<1	<1	<1			
2,4-Dichlorophenol	<1	<1	<1	<1	<1			
2,4-Dimethylphenol	<1	<1	<1	<1	<1			
4-Chloro-3-methylphenol	<1	<1	<1	<1	<1			
2,4,6-Trichlorophenol	<1	<1	<1	<1	<1			
2,4,5-Trichlorophenol	<1	<1	<1	<1	<1			
Pentachlorophenol	<1	<1	<1	<1	<1			
1,3-Dichlorobenzene	<1	<1	<1	<1	<1			
1,4-Dichlorobenzene	<1	<1	<1	<1	<1			
1,2-Dichlorobenzene	<1	<1	<1	<1	<1			
1,2,4-Trichlorobenzene	<1	<1	<1	<1	<1			
Nitrobenzene	<1	<1	<1	<1	<1			
Azobenzene	<1	<1	<1	<1	<1			
Hexachlorobenzene	<1	<1	<1	<1	<1			
Naphthalene	<1	<1	<1	<1	<1			
Acenaphthalene	<1	<1	<1	<1	<1			
Acenaphthene	<1	<1	<1	<1	<1			
Flourene	<1	<1	<1	<1	<1			
Phenanthrene	<1	<1	<1	<1	<1			
Anthracene	<1	<1	<1	<1	<1			
Fluoranthrene	<1	<1	<1	<1	<1			
Pyrene	<1	<1	<1	<1	<1			
Benzo(a)anthracene	<1	<1	<1	<1	<1			
Chrysene	<1	<1	<1	<1	<1			
Benzo(b)fluoranthrene	<1	<1	<1	<1	<1			
Benzo(k)fluoranthrene	<1	<1	<1	<1	<1			

Groundwater Q4 2008 - Cont'd SVOC Analysis					
SVOC's (µg/l)	MW1	MW2	MW3	MW4	MW-05
Benzo(a)pyrene	<1	<1	<1	<1	<1
Indenol(1,2,3-cd)pyrene	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	<1	<1	<1	<1	<1
Benzo(ghi)perylene	<1	<1	<1	<1	<1
2-Chloronaphthalene	<1	<1	<1	<1	<1
Carbazole	<1	<1	<1	<1	<1
2-Methylnaphthalene	<1	<1	<1	<1	<1
Isophorone	<1	<1	<1	<1	<1
Dibenzofuran	<1	<1	<1	<1	<1
Dimethyl phthalate	<1	<1	<1	<1	<1
Diethyl phthalate	<1	<1	<1	<1	<1
Di-butylphthalete	<1	<1	<1	<1	<1
Di-octylphthalate	<1	<1	<1	<1	<1
Bis(2-ethylhexyl)phthalate	<1	<1	<1	<1	<1
Butylbenzylphthalate	<1	<1	<1	<1	<1
4-Chloroaniline	<1	<1	<1	<1	<1
2-Nitroaniline	<1	<1	<1	<1	<1
3-Nitroaniline	<1	<1	<1	<1	<1
4-Nitroaniline	<1	<1	<1	<1	<1
2,4-Dinitroaniline	<1	<1	<1	<1	<1
2,6-Dinitroaniline	<1	<1	<1	<1	<1
Bis(2-Chloroethyl)ether	<1	<1	<1	<1	<1
4-Bromophenylphenylether	<1	<1	<1	<1	<1
4-Chlorophenylphenylether	<1	<1	<1	<1	<1
Hexachloroethane	<1	<1	<1	<1	<1
Hexachlorobutadiene	<1	<1	<1	<1	<1
Hexachlorocyclopentadiene	<1	<1	<1	<1	<1
Bis(2-chloroethoxy)methane	<1	<1	<1	<1	<1
N-nitrosodi-n-propylamine	<1	<1	<1	<1	<1

Groundw	Groundwater Q4 2007 – Pesticide Suite						
Pesticides (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05		
Dichlorvos	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Mevinphos	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Alpha - BHC	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Gamma - BHC	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Diazinon	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Delta - BHC	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Ethyl Parathion	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Heptachlor	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Fenitrothion	<0.01	<0.01	< 0.01	<0.01	<0.01		
Aldrin	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Malathion	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Heptachlor Epoxide	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Endosulphan I	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Dieldrin	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
4, 4' - DDE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Endosulphan II	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
4, 4' - DDD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Ethion	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Endrin	<0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Endosulfan Sulphate	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
4, 4' - DDT	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Methoxychlor	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Azinphos Methyl	<0.01	<0.01	< 0.01	<0.01	<0.01		

2.1.3 (C) <u>Dust Analysis Results</u>

2010 Dust Results						
Location	Q1 Dust (mg/m²/day)	Q2 Dust (mg/m²/day)	Q3 Dust (mg/m²/day)	Q4 Dust (mg/m²/day)		
AM-01	200	488	282	1735*		
AM-02	35	312	59	102		
AM-03	112	449	154	23		
AM-04	364	477	65	96		

^{* -} These dust bottles were all heavily contaminated with bird droppings and the result is therefore not considered to be representative of the dust generation at the site.

2.1.3 (D) Odour Analysis Results

Odour Sampling Results Q1 - 9 th March 2010					
Locations On site observations Results					
OD 1	No smell detected	<60	ou _E /m ³		
(Upwind)	No smen detected	<00	Ou <u>r</u> /III		
OD 2	No smell detected	<60	ou _E /m ³		
(Sensitive Receptor)	No sinch detected	\00	Ou _E /III		
OD 3	No smell detected	<60	ou _E /m ³		
(Downwind)	No smen detected	<00	Ou _E /III		

Odour Sampling Results Q2 – 24 th May 2010					
Locations On site observations Results					
OD 1	No smell detected	<60	ou _E /m ³		
(Upwind)	No smen detected	<00	Ou _E /III		
OD 2	No smell detected	<60	ou _E /m ³		
(Sensitive Receptor)	No shieli detected	<00	Ou _E /III		
OD 3	No smell detected	149	ou _E /m ³		
(Downwind)	No smen detected	149	Ou _E /III		

Odour Sampling Results Q3 – 29 th July 2010					
Locations On site observations Results					
OD 1	Strong Odour noticeable	814	ou _E /m ³		
(Downwind)	Strong Odour noticeable	014	Ou _E /III		
OD 2	Medium Odour	465	ou _E /m ³		
(Sensitive Receptor)	noticeable	403	Ou _E /III		
OD 3	No smell detected	<60	ou _E /m ³		
(Upwind)	no smen detected	<00	Ou _E /III		

Odour Sampling Results Q4 – 24 th Novemeber 2010					
Locations On site observations Results					
OD 1	No smell detected	<60	ou _E /m ³		
(Downwind)	No smen detected	<00	Ou _E /III		
OD 2	No small datastad	-60	ou _E /m ³		
(Sensitive Receptor)	No smell detected	<60	Ou _E /III		
OD 3	Clight adour	<60	ou _F /m ³		
(Upwind)	Slight odour	<00	Ou _E /III		

2.1.4 (E) <u>Air Emissions Results</u>

Air Analysis Q1 2010					
Location	Amines	Ammonia	Hydrogen	Mercaptens	
	(ppm)	(ppm)	Sulphide (ppm)	(ppm)	
Centre of Site	<2	<5	<0.2	<0.5	

Air Analysis Q2 2010					
Location	Amines	Ammonia	Hydrogen	Mercaptens	
	(ppm)	(ppm)	Sulphide (ppm)	(ppm)	
Centre of Site	<2	<5	<0.2	<0.5	

Air Analysis Q3 2010					
Location	Amines	Ammonia	Hydrogen	Mercaptens	
	(ppm)	(ppm)	Sulphide (ppm)	(ppm)	
Centre of Site	<2	<5	<0.2	<0.5	

Air Analysis Q4 2010				
Location	Amines	Ammonia	Hydrogen	Mercaptens
	(ppm)	(ppm)	Sulphide (ppm)	(ppm)
Centre of Site	<2	<5	<0.2	<0.5

2.3.1 (E) <u>Noise Emissions</u>

Noise:

The annual noise-monitoring programme was carried out on the 1st and 2nd December 2009. The results of same are presented in Table E.1 and E.2.

TABLE E.1: NOISE MEASUREMENT RESULTS (DAYTIME) 24 th May 2010						
Location No.	Measurement	Time	L_{eq}	L_{10}	L ₉₀	L _{AFMax}
Location No.	Period (minutes)	Time	dB(A)	dB(A)	dB(A)	dB(A)
N1	30	09:58 - 10:28	60	60	53	78
N2	30	10:54 – 11:24	51	55	41	63
N3	30	11:29 – 11:59	59	63	46	83
N4	30	12:37 – 13:07	47	50	42	62
NSL 1	30	12:04 – 12:34	59	59	48	84

TABLE E.2: NOISE MEASUREMENT RESULTS (NIGHT TIME) 25 th May 2010						
Location	Measurement	Time	L_{eq}	L_{10}	L ₉₀	L _{AFMax}
No.	Period (minutes)	Time	dB(A)	dB(A)	dB(A)	dB(A)
N1	10	06:54 - 07:04	59	62	37	72
N2	10	07:07 - 07:17	44	47	36	66
N3	10	07:20 - 07:30	66	70	54	83
N4	10	07:44 – 07:54	47	49	41	61
NSL 1	10	07:32 – 07:42	53	54	46	77

2.1.4 Environmental Incidents & Complaints

All environmental incidents and complaints are recorded and actioned upon in accordance with the specific procedures as outlined in the Bord na Móna Kilberry Compost facility documented environmental management system.

Environmental Complaints	Number of complaints
Complaints received	Two
Complaints requiring corrective action	None - New Odour Management
	Plan commenced August 2010
Categories of complaint	
Odour	Two
Noise	
Water	
Air	
Procedural	
Miscellaneous	

2.1.5 Environmental Spending

The itemised spend on environmental issues at Bord na Móna Kilberry are listed below.

January 2010 to December 2010	
	€
EPA Fees	11,037
Consultancy & Monitoring	33,000
Equipment	350
Total Cost	

2.1.6 Resource and Energy Consumption

Fuel Usage 2010 - See table below

Machine Type	Engine Type	Total (L)
Komptech Topturn X67 Turner	Cat C9	
Komptech Crambo 6000 Shredder	Cat C16	
Komptech L3 Multistar Screen	Dieselelectric 44KVA	84,822
L110E Volvo Front Loader	Volvo D7D LB E2	
L110E Volvo Front Loader 2	Volvo D7D LB E2	

Electricity Usage 2010 – recorded at compost site metre.

28/01/2010	192676
22/03/2010	210484
13/04/2010	218329
04/06/2010	227098
21/07/2010	234587
30/09/2010	243592
04/01/2011	257988

SECTION 3

ENVIRONMENTAL MANAGEMENT

BORD NA MÓNA KILBERRY COMPOST FACILITY ENVIRONMENTAL OBJECTIVES AND TARGETS 2011

Item No	Objective	Target	Responsible Function
1	Meet Operating Capacity Requirements.	 Increase tonnage entering site – investigate new waste types. Implement new marketing strategies to increase customer base 	Horticulture (Newbridge)
2	Improve efficiency of site operations	 Ensure pumps remain clear to increase drainage of site. Install 'units' at each pump station within P1 to improve access to pumps. 	Environmental (Kilberry)
3	Water Management	 Apply to Kildare County Council for planning permission to change site boundary Undertake licence review to include excess water disposal within new site boundary 	Environmental (Kilberry)
4	Once off Projects	 Assess potential for local farmers to use excess water as a fertiliser substitute BnM Environmental to assess sewage treatment plants onsite and adjacent to site. Finalise Ammonia in GW assessment 	Environmental. (Kilberry)
5	Carry out monitoring as per Licence 198-1	 Noise – Once per annum Bioaerosols – Once per annum Dust – four times per annum SW - Quarterly GW – Quarterly 	Environmental (Newbridge / Kilberry)

3.1 Environmental Management Programme for 2011.

Review of Objectives and Targets for the period January to December 2010

Tables EMP 1.1 to 1.5 reviews the Objectives and Targets set for 2010. A number of the listed Objectives and their subsequent targets are cyclical as the company attempts to achieve continuous environmental improvement.

Tables EMP 2.1 to 2.5 set out the Objectives and Targets for 2011. A number of the listed Objectives and their subsequent targets are cyclical as the company attempts to achieve continuous environmental improvement.

Site Infrastructure EOT 1.1

Objective	Target	Target Date	2010 Review	Dept Responsible
Meet Operating Capacity	Site operational for 5 years – capacity now 96,000 tonnes per annum	2010	Tonnage increased by 2 % in 2010	Kilberry (Environmental)
Requirements.	Increase tonnage entering site – investigate new waste types.	Continuous 2010	One new waste type added 2010	Horticulture (Newbridge)

Site Management EOT 1.2

Objective	Target	Target Date	2010 Review	Dept Responsible
Improve efficiency of site operations	Install Stockpiler in phase 2 to reduce front-end loader movements.	Q2/Q3 2010	Complete Q4 2010. Stockpiler now used to transfer finished product to tippler.	Kilberry (Environmental)
	Install 'units' at each pump station within P1 and P2 to improve access to pumps.	2010	Complete for P2. All pumps on P2 have the units installed	Kilberry (Engineering)

Waste Management EOT 1.3

Objective	Target	Target Date	2010 Review	Dept Responsible
	Apply to Kildare County Council for planning permission to change site boundary	Q2 2010	This project was postponed until Q1 2011	Kilberry (Environmental)
Water Management	Undertake licence review to include excess water disposal within new site boundary	2010	Licence Review postponed till 2011	Kilberry (Environmental)

EPA Compliance EOT 1.4

Objective	Target	Target Date	2010 Review	Dept Responsible
	Carry out review of Environmental monitoring requirements.	Q2 2010	Complete. Licence review due in 2011 will request reduction in SW monitoring	Kilberry (Environmental)
Once off Projects	Investigate elevated ammonia in GW Continuous 20		Additional temporary GW wells installed in July.	Kilberry (Environmental)
	Install windsock or weather station.	Q3/Q4 2010	Windsock installed @ lagoons - Q3 2010	Kilberry (Environmental)

Licence Compliance EOT 1.5

Objective	Target	Target Date	2010 Review	Person Responsible
Carry out monitoring as per Licence W0198-1	Noise – Once per annum	2010	Complete	Newbridge (Environmental)
	Bioaerosols – Annually	2010	Complete	Newbridge (Environmental)
	Dust - Quarterly	2010	Complete	Kilberry (Environmental)
	Groundwater – Quarterly	2010	Complete	Kilberry (Environmental)
	Surface Water - Quarterly	2010	Complete	Kilberry (Environmental)

Operating Requirements

EOT 2.1

Objective	Target	Target Date	Person Responsible
Meet Operating Capacity	Increase tonnage entering site – investigate new waste types	Continuous 2011	Newbridge (Horticulture)
Requirements.	Implement new marketing strategies to increase customer base	Q2 2011	Kilberry (Environmental)

Energy Management EOT 2.2

Objective	Target	Target Date	Person Responsible
Improve efficiency of site operations	Ensure pumps remain clear to increase drainage of site.	Continuous 2011	Kilberry (Environmental)
	Install 'units' at each pump station within P1 to improve access to pumps.	Q2/Q3 2011	Kilberry (Engineering)

Water Management EOT 2.3

Objective	Target	Target Date	Person Responsible		
Water Management	Apply to Kildare County Council for planning permission to change site boundary	January 2011	Kilberry (Environmental)		
Water Management	Undertake licence review to include excess water disposal within new site boundary	Q2 2011	Kilberry (Environmental)		

Once Off Projects EOT 2.4

Objective	Target	Target Date	Person Responsible
Once off Projects	Assess potential for local farmers to use excess water as a fertiliser substitute.	Q1 2011	Kilberry (Environmental)
	BnM Environmental to assess sewage treatment plants onsite and adjacent to site.	Q2 2009	Kilberry (Environmental)
	Finalise Ammonia in GW assessment	Q2 2011	Kilberry (Environmental)

EOT 2.5

Licence Compliance

Objective	Target	Target Date	Person Responsible
	Noise – Once per annum	2011	Environmental (Newbridge)
	Bioaerosols – Once per annum	2011	Environmental (Newbridge)
Carry out monitoring as per Licence 198-1	Dust - Quarterly	2011	Kilberry (Environmental)
	Groundwater – Quarterly	2011	Kilberry (Environmental)
	Surface Water - Quarterly	2011	Kilberry (Environmental)

APPENDIX 1

ERROR: undefined

OFFENDING COMMAND: f&Q0@

STACK:

| PRTR# : W0198 | Facility Name : Bord na Móna Plc | Filename : W0198_2010.xlsx | Return Year : 2010 |

4/8/2011 11:52

Guidance to completing the PRTR workbook

AER Returns Workbook

Version 1.1

REFERENCE YEAR 2010

1. FACILITY IDENTIFICATION

Parent Company Name	Bord Na Mona
Facility Name	Bord na Móna Plc
PRTR Identification Number	W0198
Licence Number	W0198-01

Waste or IPPC Classes of Activity

Waste or IPPC Classes of Activity	
No.	class_name
	Recycling or reclamation of organic substances which are not used
	as solvents (including composting and other biological
4.2	transformation processes).
	Use of waste obtained from any activity referred to in a preceding
4.11	paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred to
	in a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4.13	produced.
Address 1	Kilberry
Address 2	
	Co. Kildare
Address 4	
Country	
Coordinates of Location	
River Basin District	
NACE Code	
	Recovery of sorted materials
AER Returns Contact Name	
AER Returns Contact Email Address	ŭ
AER Returns Contact Position	
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	
Production Volume	
Production Volume Units	
Number of Installations	-
Number of Operating Hours in Year	
Number of Employees	
User Feedback/Comments	
Web Address	

2. PRTR CLASS ACTIVITIES

2. PRIN CLASS ACTIVITIES								
Activity Number	Activity Name							
50.1	General							
50.1	General							

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

Is it applicable?	•
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used ?	

5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE

| PRTR# : W0198 | Facility Name : Bord na Móna Plc | Filename : W0198_2010.xlsx | Return Year : 2010 |

4/					

			Please enter a	Il quantities on this sheet in Tonnes								3
			Quantity (Tonnes per Year)				Method Used		Haz Waste: Name and Licence/Permit No of Next Destination Facility <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	Haz Waste: Address of Next Destination Facility Non Haz Waste: Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
					Waste							
	European Waste				Treatment			Location of				
Transfer Destination	Code	Hazardous		Description of Waste	Operation	M/C/E	Method Used	Treatment				
				non-composted fraction of municipal and								
Within the Country	19 05 01	No	20.0	similar wastes	D1	E	Weighed	Offsite in Ireland	Kyletalesha WTS,W0194-01	Kyletalesha ,,,Laois,,,Ireland		
*							· ·		Rathcon Farm, WFP-WW-09-			
Within the Country	19 05 99	No	1200.0	wastes not otherwise specified	R3	M	Weighed	Offsite in Ireland	008-002	Con,Co. Wicklow,,,Ireland		
William the Country	10 00 00	140	1200.0	wastes not otherwise specified	110	141	Weighted	Official Incidend	000 002	Con,Co. Wicklow,.,irciana		

^{*} Select a row by double-clicking the Description of Waste then click the delete button

Link to previous years waste data
Link to previous years waste summary data & percentage change