CORK CITY COUNCIL

KINSALE ROAD LANDFILL SITE

Waste Licence Register No: W0012-02

Annual Environmental Report

January 2010 – December 2010

Prepared by:-

Cork City Council, Kinsale Road Landfill Site, Cork.

28th January 2011

DOCUMENT CONTROL SHEET

Kinsale Road Landfill Site Annual Report

Reporting Period January 2010 to December 2010

User is Responsible for the Revision Status of this Document

Rev. Nr.	Description of Changes:	Prepared by:	Checked by:	Approved by:	Date:	No. of Copies:
0	First Draft for comment	KR	JT, KR, EB, MOB			1
1	Final Version	KR/JT	JT, KR EB, MOB	МОВ	28/01/11	7

Main Menu

- 1 Introduction
- 2 <u>Site Description and Activities</u>
- 3 <u>Site Development Works</u>
- 4 <u>Environmental Incidents & Complaints</u>
- 5 Environmental Management Programme
- 6 Effects of Emissions and Significance of Monitoring Data
- 7 <u>Other Information</u>

1 INTRODUCTION

1.1 Scope and Purpose of the Report

Cork City Council holds a Waste Licence (Register No. W0012-02) to operate a landfill site at the Kinsale Road, Cork. The aim of this Annual Environmental Report is to provide a review of activities at Kinsale Road landfill site within the past 12 months.

1.2 Background to the Report

The Landfill site at Kinsale Road has been in operation since the 1960's. The site was issued with a waste licence by the Environmental Protection Agency (EPA) on 2nd February 2000 (Register No. 12-1), with a new licence issued on 29th November 2002 (Register No. W0012-02). Cork City Council applied for a review of the licence in 2009. A Proposed Decision (PD W 0012-03) was issued by the Agency in December 2010. Cork City Council has made a submission to the Agency regarding the Proposed Decision.

In accordance with Condition 11.6 of the Waste Licence, Cork City Council is required to submit to the Agency for its agreement, an Annual Environmental Report for its activities during the previous 12 months.

The first Annual Environmental Report covering the period February 2nd 2000 to February 1st 2001 was submitted to the Agency in March 2001 and this report covers the period from January 2010 to December 2010.

1.3 Site Location and Operator details

The landfill is owned and operated by Cork City Council, City Hall, Cork. The address of the facility is as follows.

Kinsale Road Landfill Site, Ballyphehane, Curraghconway, Inchisarsfield, South City Link Road, Cork.

The National Grid Reference for the site is 168033E 069658N.

The facility contact details are as below

•	Facility Manger: Contact No: Fax No:	John Twomey 021 4705913 021 4319930
•	Deputy Facility Manger: Contact No: Fax No:	Kevin Ryan 021 4705911 021 4319930
•	Landfill Technician: Contact No:	Patrick Foley 021 4705914
•	Supervisor:	Pascal Cooney
•	Junior Foreman:	Michael Reck
•	Weighbridge Operator Contact No:	021 4705920
•	Environment Department City Hall, Cork	.,
•	Contact No: Fax No:	021 4924726 021 4924054
•	City Hall Contact No.	021 4924000 / 4966222

2 SITE DESCRIPTION AND ACTIVITIES

2.1 Description of the Site

The facility is a municipal solid waste and non-hazardous industrial waste disposal facility. The site (including former land filling areas) is approximately 72 hectares. Landfilling at the site ceased on the 15th July 2009.

Up to the 15th July 2009, the facility accepted domestic and commercial MSW and limited quantities of approved non-hazardous industrial sludges. The facility also includes a Civic Amenity Site and a Landfill Gas Combustion plant that operates on site.

The facility is located within 3 km of Cork City at the South City Link Road, in the townlands of Ballyphehane, Curraghconway and Inchisarsfield. The site occupies a large expanse of low-lying peat bog, bounded by the north and east by the Trabeg River, to the west by the South City Link Road and on the south by the Tramore River and South Ring Road.

The site has been operational since the early 1960's. The majority of the developments (commercial and residential) within 500m of the landfill have occurred subsequent to the commencement of waste disposal operations.

Works are ongoing at the site to upgrade the facility in accordance with the conditions of the Waste Licence. These works include leachate collection and treatment system, surface water collection, road infrastructure as well as final capping and restoration of the site.

2.2 Waste Management activities at the Facility

Waste Activities Licensed at the Kinsale Road Landfill Site are restricted to those outlined in Part 1 of the Waste Licence as outlined below: -

Licensed Waste Disposal Activities, in accordance with the Third Schedule of the Waste Management Acts 1996 – 2003.

Class 1	Deposit on, in or under land (including landfill):
	This activity is limited to the disposal of the waste types specified in this licence up to a maximum of 100,000 tonnes per annum.
Class 2	Land treatment, including biodegradation of liquid or sludge discards in soils:
	This activity is limited to the disposal of non hazardous sludge at the landfill up to a maximum of 7,500 tonnes per annum.
Class 4	Surface impoundment, including placement of liquid or sludge discards into pits, ponds or lagoons:
	This activity is limited to the operation of leachate and stormwater retention ponds.
Class 5	Specially engineered landfill, including placement into lined discrete cells which are capped and isolated from one another and the environment:
	This activity is limited to the disposal of the certain wastes in exceptional circumstances into lined discrete cells.
Class 7	Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule:
	This activity is limited to the operation of the leachate treatment plant.
Class 11	Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule:
	This activity is limited to the processing and mixing of construction and demolition waste prior to disposal at the facility.
Class 12	Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule:
	This activity is limited to repackaging waste in an accident/emergency situation.
Class 13	Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced:
	This activity is limited to the storage of waste prior to its disposal.

Licensed Waste Recovery Activities, in accordance with the Fourth Schedule of the Waste Management Acts 1996 - 2003.

Class 2	Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes):
	This activity is limited to the composting of green waste accepted subject to a limit of 1000m ³ at any one time at the facility and the storage of waste oils at the civic waste facility.
Class 3	Recycling or reclamation of metals and metal compounds:
	This activity is limited to the recovery of metal and metal compounds at the construction and demolition facility and at the civic waste facility.
Class 4	Recycling or reclamation of other inorganic materials:
	This activity is limited to the recovery of inorganic materials at the construction and demolition facility and the storage of inorganic materials at the civic waste facility.
Class 10	The treatment of any waste on land with a consequential benefit for an agricultural activity or ecological system:
	This activity is limited to the use of various suitable wastes as intermediate cover and in the closure/restoration stage of the landfill subject to the agreement of the Agency.
Class 11	Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule:
	This activity is limited to the use of processed wastes in roadways, drains etc. at the facility.
Class 12	Exchange of waste for submission to any activity referred to in a preceding paragraph of this Schedule:
	This activity is limited to the possible exchange of waste being delivered to the facility in exchange for processed waste subject to the agreement of the Agency.
Class 13	Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced:
	This activity is limited to the temporary storage of waste prior to inspection, recycling, recovery and /or reuse at the facility or elsewhere.

2.3 Quantities and Composition of Waste Received, Disposed of and Recovered.

Kinsale Road landfill site is licensed to deposit up to a maximum of 100,000 tonnes of waste per annum. The waste types and quantities allowed for disposal as per Schedule A of the Waste Licence and are as per Table 2.3 below.

Table 2.3	Waste Types.
-----------	--------------

Waste Type	Maximum (tonnes per annum)
Household & Commercial waste	98,000
Industrial non-hazardous sludge	1,500
Construction Materials containing asbestos - EWC 17/06/05*	500 ^{Note 1}
TOTAL FOR DISPOSAL	100,000
Construction & Demolition Waste	300,000 Note 2
Waste to be imported for restoration purposes	100,000
Green waste for composting	Note 3
Wastes accepted for storage at the civic waste	5,000
facility prior to recycling, reuse or reclamation	
TOTAL FOR RECOVERY	405,000

Note 1: Subject to restrictions in Condition 5.

Note 2: Construction and demolition waste may be accepted for recovery for use as daily cover, in site construction works and landfill restoration.

Note 3: Limited to 1000m³ at any one time.

Table 2.3.1Quantities of Waste received prior to reporting period.

	Non-Hazardous Waste	Hazardous Waste
Deposited in landfill	2.737 million tonnes	
prior to report period.	estimated	Not known if any
C&D waste stored at		
C&D facility prior to	15,000 tonnes	Nil
report period.		

No waste was landfilled at the site during the reporting period.

Month	Waste transferred off site (tonnes)
Jan-10	127
Feb-10	171
Mar-10	251
Apr-10	209
May-10	228
Jun-10	219
Jul-10	175
Aug-10	162
Sep-10	154
Oct-10	149
Nov-10	87
Dec-10	122
Total	2055

Table 2.3.2Quantities of Waste transferred offsite during the reporting period
(monthly).

 Table 2.3.3
 Classes of Waste received for recovery / recycling off site.

Waste Description	EWC Code	Name of Recovery Company				
Paper	20 01 01	Indaver				
		Cork Recycling				
Metal	20 01 06	Pouladuff Dismantlers				
Timber	20 01 07	CTO Environmental				
Plastic	20 01 03	Cork Recycling				
Glass Bottles	20 01 02	Rehab Recycling Partnership				
Aluminium Cans	20 01 05	Rehab Recycling Partnership				
Oil	13 00 00	ENVA				
Green Waste	20 02 01	CTO Environmental Solutions				
Cardboard	20 01 01	Cork Recycling				
WEEE	20 01 35	КМК				
Aerosols	16 05 04	Eco Safe Systems				
Paints	20 01 27	Eco Safe Systems				
Car Batteries	16 06 01	КМК				
Household Batteries	16 06 01 / 16 06 02	КМК				
	16 06 04 / 20 01 34					

2.3.4 Landfill Inputs and Outputs (Waste and Recycling) {click for hyperlink}

2.4 Landfill Capacity

2.4.1 The landfilling of waste at the facility ceased as of 15th July 2009.

2.5 Economic Contribution

Provision made for Landfilling Operations expenditure in the reporting period was €1,672,500

This can be broken down as:

Landfilling Operations expenditure	2010 Provision (€)			
Salaries & Wages	334,800			
City Council Plant	81,700			
Plant Hired	20,000			
Materials - Cover Soil	10,000			
- Road Making Materials	15,000			
Maintenance of Buildings	40,000			
Site Security	50,000			
Materials / Chemicals	45,000			
E.P.A. Licence and Monitoring	180,000			
Maintenance of Mechanical and Electrical Plant	180,000			
Vermin Control	12,000			
ESB, Telephone, Water charges	50,000			
Miscellaneous	65,000			
Sampling & External Testing at Lab.	140,000			
Landscaping of capped areas	15,000			
Sewer Connection - County Council Levy	14,000			
Transport of Waste	420,000			
Total	1,672,500			

A figure of €1,400,000 in respect of Loan Charges for capital works including final restoration was included in the 2010 Adopted Budget.

Provision made for Recycling Facilities expenditure in the reporting period was €346,500. This can be broken down as:

Recycling Facilities expenditure	2010 Provision (€)
Salaries & Wages	261,500
C.A.S. Recycling	60,000
WEEE Management	25,000
Total	346,500

Waste Totals for Kinsale Road Landfill Site - 2010

All weights in tonnes

Commodity	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	Total
Municipal	103	116	143	138	115	129	113	117	89	87	80	74	1,304
Rubble	4	10	10	12	12	19	12	13	4	11	4	5	116
Non Levy	20	46	97	58	102	71	50	33	62	51	3	43	635
Total Transferred Off Site	127	171	251	209	228	219	175	162	154	149	87	122	2,055
Commodity	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	Total
Soil imported for capping	76	1,921	888	235	990	6,218	14,179	17,075	1,300				42,883
			•	•									
Domestic Recycling	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	Total
WEEE Out	67.24	77.76	76.34	80.28	66.26	89.34	79.04	82.66	82.54	61.62	58.70	44.10	865.88
Plastic	3.8	2.46	3.46	2.36	3.06	5.9	3.84	2.96	2.70	2.80	2.62	3.08	39.04
Cardboard	5.82	5.7	5.52	5.72	5.5	4.48	6.84	6.34	5.50	4.78	5.72	5.72	67.64
Paper	11.08	9.92	10.14	14.92	10.92	11.56	14.6	13.52	7.70	11.56	10.00	9.88	135.80
Metal	4.92	9.24	7.02	12.66	11.56	7.36	10.02	10.02	10.62	7.38	3.94	2.76	97.50
Green Waste (CA)	5.76	8.12	11.2	25.5	26.1	28.94	29.5	22.98	15.20	16.08	3.40	5.84	198.62
Christmas Trees	57.64	7.14											64.78
Timber (CA)	6.72	13.56	20.56	19.34	17.92	19.56	15.92	18.36	15.28	12.94	9.94	4.18	174.28
Glass	5.44	3.72	4.94	0.08	5.94	5.56	3.46		4.78	3.88	4.06	2.10	43.96
	1 1	1			1			1				1	

01000	0.11	0.12	1.0 1	0.00	0.01	0.00	0.10		1.70	0.00	1.00	2.10	10.00
Drink Cans	0.22	0.18	0.1		0.2	0.12	0.06	0.06			0.12		1.06
Oil			1.68		1.58		3.98	0.96					8.20
Paint		2.22	1.02	3.3	2.16	1.26		2.92	1.30				14.18
Clothes	0.84	0.78	0.84	1.02	0.98	0.84	1.08	0.94	0.70	1.20	0.40	0.60	10.22
CA Site Recycling Total inc. WEEE Out	169.48	140.80	142.82	165.18	152.18	174.92	168.34	161.72	146.32	122.24	98.90	78.26	1721.16

Commercial Recycling	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	Total
Timber Waste	308.4	455.4	439.96	587.18	414.2	389.3	652.9	542.22	652.74	577.06	550.14	218.36	5787.86
Green Waste	67.58	64.62	97.34	117.38	81.16	112.32	130.52	150.40	95.62	83.04	101.02	33.12	1134.12

Total (inc CA Site)	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	Total
Timber	315.12	468.96	460.52	606.52	432.12	408.86	668.82	560.58	668.02	590.00	560.08	222.54	5962.14
Green (inc Xmas Trees)	130.98	79.88	108.54	142.88	107.26	141.26	160.02	173.38	110.82	99.12	104.42	38.96	1397.52

3 SITE DEVELOPMENT WORKS

3.1 Site Development Works during the Reporting Period.

The Waste Licence sets out conditions relating to the completion of certain works within the designated periods following the date of grant of the licence. The works referred to generally formed part of site development works.

Wind measuring mast.

A mast, approximately 70 metres high with attachments at three different height levels to measure and record the strength and direction of the wind was erected in the high central area of the Landfill Site. This study was carried out in conjunction with UCC to determine if it would be feasible to construct a wind turbine on the landfill site.

The mast was taken down in October 2010 after 13 months of data collection.

The data is now being analysed and a report on the feasibility of erecting a wind turbine will follow in due course.

M&E works for landfill gas and leachate management

M & E works are ongoing. These include maintenance of the Leachate Conditioning Plant and the continuing installation of the landfill gas collection network.

MISCELLANEOUS WORKS:

- 1. Ongoing maintenance of Site Roads.
- **2.** Regular cleaning of Gravel Trap at Leachate Conditioning Plant with replacement of gravel as required.
- **3.** Ongoing sampling & testing with respect to the trial project for the treatment of leachate using natural systems in association with UCC.
- 4. CTO Environmental Solutions Ltd. operates a timber reprocessing facility and green waste composting facility on behalf of Cork City Council at the Landfill Site. Shredded timber is sent exclusively to Eirebloc Ltd, Lisarda, Macroom, Co. Cork where it is it is further processed and utilised to manufacture inserts for pallets. 35 staff are employed by Eirebloc Ltd. manufacturing approx. 30 million units per annum.

ONGOING INVESTIGATIVE WORKS:

- a) Feasibility Study by Consultants appointed by Cork City Council, for the provision of a South City Maintenance Depot on a 4.5 hectare area of the north-western corner of the Landfill Site, bounded on the northern side by the E.S.B. pitch and putt course and on the western side by the South City Link Road.
- **b**) Site investigation carried out by a third party on a site being transferred from Cork City Council to Blue Demons, on which the Landfill Site Boundary passes through. This site is bounded by Woodies Hardware Store on the northern side, and by the road linking the South City Link Road (Mick Barry road) to the Kinsale Road on the southern side.

Capping Works for 2010 / 2011

Design and execution of further Capping Works (Contract 10)

These works will involve construction of a final engineered cap over an area of approximately 8.65 hectares within the area bounded by the swale, and will be carried out over a period of approximately 18 months. The works will include:

- 1. Mobilisation to site by the Contractor (in place July 2010)
- 2. Regrading including some cut and fill to achieve the required cap profile (complete)
- 3. The installation of new gas wells (complete)
- 4. The installation of a subliner gas collection system (including pipework and drainage geocomposite) (ongoing)
- 5. The installation of an LLDPE liner (ongoing)
- 6. The installation of a subsurface water collection layer (i.e. a drainage geocomposite) (ongoing)
- 7. The placement of approximately 850 mm of imported subsoil above the liner (ongoing)
- 8. The placement of approximately 150 mm of imported topsoil (June 2011)
- 9. Grass seeding (July 2011)
- 10. The construction of an access road including pedestrian walkway and cycle way (September 2011)

- (September 2011)

As of January 2011 approximately $53,000m^2$ of the area for capping in Contract 10 has been completed.

Capping works are expected to be completed by October 2011

Waste Licence Review application – W0012-03

A Proposed Decision on the City Councils application for a Waste Licence Review (W0012-03) was issued by the Agency in December 2010. Cork City Council have sought clarification on some items, and lodged an objection to a number of conditions contained in the Proposed Decision.

Other planned works for 2011 are:

- SCADA system upgrades (reporting/management system).
- Installation /renewal of control valves and systems to optimise gas collection.
- Installation /renewal of control valves and systems to optimise storm water treatment.
- Reed beds further planting and replacement of ineffective plants as required.
- Provision of new gas monitoring wells and gas extraction wells as required.
- Upgrading of site roadways.
- Miscellaneous minor capital works and works arising from Operational Procedures.
- Further experimental works and production of final report into the treatment of leachate using natural systems (trial project) in association with UCC.
- Investigate the potential of constructing a recharge point for electric vehicles in association with Electricity Suppliers.
- Investigate the potential of constructing a recharge point for Compressed Natural Gas (CNG) powered vehicles in association with Bord Gais.
- Investigate the potential of constructing a Renewable Energy Park, including the installation of a photo voltaic array as well as a wind turbine.

The estimated cost of the Site Development Works Programme to be carried out in 2011 is approximately 5.0 million (subject to the availability of funding).

4 ENVIRONMENTAL INCIDENTS AND COMPLAINTS

4.1.1 Incidents

(An Incident is defined in Condition 1.7 of Waste Licence W0012-02).

Condition 10 and 11 of the Waste Licence requires Cork City Council to make written records of environmental incidents and complaints. Operational Procedure 0P/17 "Recording of Complaints and Suggestions" describes the internal reporting of Non Conformances and incidents relating to the facility. Cork City Council documents all non-conformances and incidents on an internal Non Conformance Report Form SF/05.

The following Registers are attached:

A register of <u>Incidents</u>	– 55 in 2010
A register of <u>Non-Conformances</u>	– 0 in 2010
A register of <u>Non–Compliances</u>	– 2 in 2010

4.2 Complaints

Condition 10.4 of the Waste Licence requires Cork City Council to make written records of all complaints relating to the operation of the facility.

Complaints are dealt with in accordance with the Operational Procedure OP/17 "Recording of Complaints / Suggestions".

4.3 Analysis of Complaints

Total number of complaints was 2 (99 in 2009) in this reporting period. Both were odour incidents were related to composting activities.

4.4 **Review of Nuisance Controls**

In accordance with Condition 7 of the Waste License Cork City Council are required to ensure that vermin, birds, flies, mud, dust and litter do not give rise to nuisances at the facility or in the immediate area of the facility.

Cork City Council ensures that the activities are carried out in a manner such that odours do not result in significant impairment or interference with amenities or the environment beyond the facility boundary.

The road network in the vicinity of the facility is kept free from any debris caused by vehicles entering or leaving the facility. Any such debris or deposited materials is removed without delay.

Litter Control

Litter fencing is no longer required at the facility as landfilling has ceased (July 2009). Litter picking teams are organised as required to collect any wind blown litter or other waste, placed on or in the vicinity of the facility.

All vehicles removing waste and materials from the facility (Civic Amenity Site and Timber Processing & Green Waste Composting facilities) are appropriately covered.

Dust Control

In dry weather, site roads and any other areas used by vehicles are sprayed with water as and when required to minimise airborne dust nuisance.

Prior to exiting the facility, all waste vehicles use the vehicle wash.

Bird Control

This is no longer an issue as all the waste has been covered and final capping of the site is ongoing.

<u>Odour</u>

Odour from the landfill site is minimised through the extraction of landfill gas and through the application of odour control substances as required.

In 2010, 2 no. odour complaints were received. These complaints were related to composting activities on site.

Flies

Flies are controlled through the use of control substances as deemed necessary by the pest control experts.

<u>Vermin</u>

Vermin are controlled through the use of baiting as deemed necessary by the pest control experts.

<u>Noise</u>

Noise is minimised / controlled by operating the facility between the hours of 8am - 4pm. Contractors may operate between the hours of 8am - 6pm in agreement with the City Council.

Incident Lo	og: 2010										
Date	Log No.	Originat or	Incident	Status	Suggestion	Completion Target Date	Responsibility	Actions	Resolved Date	Sign.	Supplier / Contractor / Consultancy involved
12/01/2010	652	СН	gas well exceedences 01-12/01/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
14/01/2010	653	СН	TOC out of operation 19/12/09-14/01/10	4	frozen pipes due to extreme cold weather	14/01/2010	СН	thaw in pipes put TOC back in operation	14/01/2010	СН	CCC/CEMS/Kmac
19/01/2010	654	СН	flare & engine shutdown dec 09	4	water problems in pipes	31/12/2009	JT/KR/CH	repaired pipes	31/12/2009	СН	CCC/BPS
19/01/2010	655	СН	carbon monoxide overlimit 15/01/10	4	contact BPS to find out problem	15/01/2010	JT/KR/CH	overspeed fault - fixed	15/01/2010	JT/KR/C H	CCC/BPS
19/01/2010	656	СН	carbon monoxide overlimit 18/01/10	4	contact BPS to find out problem	18/01/2010	JT/KR/CH	start up of engines	18/01/2010	JT/KR/C H	CCC/BPS
19/01/2010	657	СН	flare & engine shutdown 18/01/10	4	contact BPS to find out problem	18/01/2010	JT/KR/CH	maintenance	18/01/2010	JT/KR/C H	CCC/BPS
21/01/2010	658	СН	gas well exceedences 13-21/01/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
26/01/2010	659	СН	PM10 overlimit 8&13/01/10	4	check any unisual activities going on	26/01/2010	СН	extreme cold weather increased fuel burning	26/01/2010	СН	CCC
29/01/2010	660	СН	CO overlimit 21/01/10	4	contact BPS to find out problem	21/01/2010	СН	gas quality, water in system	21/01/2010	СН	CCC/BPS
01/02/2010	661	СН	gas well exceedences 22-31/01/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
02/02/2010	662	СН	PM10 overlimit 26/01/10	4	check any unusual activities going on	02/02/2010	СН	increased fuel burning due to cold weather	02/02/2010	СН	CCC
10/02/2010	663	СН	gas well exceedences 01-09/02/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
18/02/2010	664	СН	gas well exceedences 10-18/02/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
01/03/2010	665	СН	gas well exceedences 19-28/02/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
22/03/2010	666	СН	gas well exceedences 01-21/03/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
29/03/2010	667	СН	PM10 overlimit 05/03/10	4	investigate any unusual activities on site	29/03/2010	СН	nothing unusual possible high level of fuel burning	29/03/2010	СН	CCC
01/04/2010	668	СН	gas well exceedences 22-31/03/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
13/04/2010	669	СН	gas well exceedences 01-13/04/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
21/04/2010	670	СН	gas well exceedences 14-21/04/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
04/05/2010	671	СН	gas well exceedences 22-30/04/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
11/05/2010	672	СН	gas well exceedences 01-11/05/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS

18/05/2010	673	СН	gas well exceedences 12-18/05/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
27/05/2010	674	СН	gas well exceedences 19-27/05/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
03/06/2010	675	СН	gas well exceedences 28/05-03/06/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
14/06/2010	676	СН	gas well exceedences 04-13/06/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
15/06/2010	677	СН	leachate conditioning plant out of op for cleaning 14-15/06/10	4	kmac / munster drain cleaning pipes	15/06/2010	JT/KR/CH	pipes cleaned	15/06/2010	JT/KR/C H	kmac/munster drain
22/06/2010	678	СН	gas well exceedences 14-22/06/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
29/06/2010	679	СН	carbon monoxide over limit 19/06/10	4	contact BPS to find out problem	19/06/2010	СН	battery problem, resolved	19/06/2010	СН	CCC/BPS
30/06/2010	680	СН	Carbon monoxide overlimit 24/06/10	4	contact BPS to find out problem	24/06/2010	СН	start up of engines	24/06/2010	СН	CCC/BPS
01/07/2010	681	СН	gas well exceedences 23-30/06/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
07/07/2010	682	СН	Carbon monoxide monitor out of operation 01-06/07/10	4	CEMs organised to come in and repair	06/07/2010	СН	repaired pump of monitor	06/07/2010	СН	ccc/kmac/cems
13/07/2010	683	СН	gas well exceedences 01-13/07/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
26/07/2010	684	СН	gas well exceedences 14-26/07/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
03/08/2010	685	СН	gas well exceedences 27/07-02/08/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
10/08/2010	686	СН	leachate conditioning plant out of operation 10-11/08/10	4	scheduled cleaning of gravel trap	11/08/2010	JT/KR/CH	cleaning gravel trap	13/08/2010	JT/KR/C H	ccc/kmac
11/08/2010	687	СН	gas well exceedences 03-10/08/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
23/08/2010	688	СН	gas well exceedences 11-23/08/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
01/09/2010	689	СН	gas well exceedences 24-31/08/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
07/09/2010	690	СН	gas well exceedences 01-07/09/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
24/09/2010	691	СН	gas well exceedences 08-23/09/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
01/10/2010	692	СН	gas well exceedences 24-30/09/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
08/10/2010	693	СН	gas well exceedences 01-08/10/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS

15/10/2010	694	СН	gas well exceedences 09-15/10/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
26/10/2010	695	СН	gas well exceedences 16-25/10/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
01/11/2010	696	СН	gas well exceedences 26-31/10/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
08/11/2010	697	СН	gas well exceedences 01-08/11/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
16/11/2010	698	СН	noise overlimit 05/01/10	4	due to circumstances outside landfill control	ongoing	JT/KR/CH	due to traffic on link rd etc	05/10/2010	JT/KR/C H	ССС
17/11/2010	699	СН	gas well exceedences 09-16/11/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
23/11/2010	700	СН	gas well exceedences 17-23/11/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
02/12/2010	701	СН	gas well exceedences 24-30/11/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
07/12/2010	702	СН	gas well exceedences 01-07/12/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
14/12/2010	703	СН	gas well exceedences 08-14/12/10	2	ongoing measures being put in place	ongoing	JT/KR/CH	ongoing gas measures being implemented	ongoing	JT/KR/C H	CCC/FTC/BPS
15/12/2010	704	СН	PM10 overlimit 04&06/12/10 at heatherton	4	investigated	15/12/2010	СН	increased fuel burning due to cold weather	15/12/2010	СН	CCC/FTC/BPS
15/12/2010	705	СН	conductivity at SRP1 overlimit 09/12/10	4	investigated	15/12/2010	JT/KR/CH	reedbed reduced conductivity unsure as to reason for high cond at inlet	15/12/2010	JT/KR/C H	CCC
21/12/2010	706	СН	PM10 overlimit at heatherton 18/12/10	4	investigated	21/12/2010	СН	increased fuel burning due to cold weather	21/12/2010	СН	CCC
		-		+	+						
		1	-	1	+						

Non Compliance Log: 2010

Date	Log I	No. Originator	Incident	Status	Suggestion	Completion Target Date	Responsibility	Actions	Resolved Date	Sign.	Supplier / Contractor / Consultancy involved
11- May-10	1	EPA	financial capability for restoration & aftercare, dissolved methane at discharge	4	finance available for restoration and aftercare, dissolved methane now within limits since installation of splash plate	05-Jul-10	JT/KR	finance details given and splash plate installed	05-Jul-10	JT/KR	
27- Sep-10	2	EPA	pdf version of aer 2008	4	report submitted	12-Nov-10	JT/KR	report submitted	12-Nov-10	JT/KR	

5.1 Environmental Objectives

1 **Environmental Objective 1:** Operation of the Facility in accordance with the Conditions of the Waste Licence W0012-02

Objective 1: Operate the facility in accordance with the Waste Licence W0012-02										
Respo	nsibility:		Start I	Date: 29 th N	lov 2002					
	Facility Management		Revise	d Date: Janua	ary 2011					
Target	To operate the landfill site in accordance v associated conditions as laid down by the	with th EPA	e waste	licence and al	l the					
Ranki	ng:			Score:						
Task	Details	Du	e Date	By Whom	Status					
1	Waste Licence W0012-02 was granted on the 29 th November 2002	NA		EPA	Done					
2	All deviations from the Licence in the form of Non Compliances, Non Conformances, Incidents and Complaints are reported to the Agency as they arise	As th arise	ney	Facility Management	On going					
3	In the event of the City Council not being able to meet the time constraints of a given Licence Condition, the Facility Management will contact the EPA with respect to extending the deadline.	As they arise		Facility Management	On going					
4	Landfilling of waste has ceased at the facility as of 15 th July 2009. Cork City Council has applied to the Agency for a Licence Review.	Done	2	Facility Management	Done					
	Proposed Decision (W0012-03) announced in December 2010.	Dec	2010	Facility Management	Done					
5	City Council has reviewed the PD and have submitted a number of objections to some of the Licence Conditions and have sought clarity on some issues.	Awa respo from Ager	iting onse the ncy	EPA						
Object	Objectives Completed:									
Signat	Signature: Date:									

2 <u>Environmental Objective 2</u>: Establish infrastructure at the facility in accordance

with the timeframe of the Licence W0012-02

Objective 2: Establish infrastructure at the facility in accordance with the timeframe of the Waste Licence W0012-02										
			Star	t Date: 29 th Nov 2	2002					
Respon	nsibility: Facility Management		Revi	sed Date: January 2	011					
Target	:: Establish infrastructure at the facility in ac Waste Licence – initiate proceedings for t	ccordan he new	ice wi cappi	th the timeframe of t ing Contract 10 –	he					
	(Final Phase Capping Works)			Γ						
Task	Details	Du Da	ue ite	By Whom	Status					
1	Preliminary discussions held with appointed consultants to discuss the size & scope of the project	Sept	09	FTC (Project Manager PM) & Facility Mgt	Done					
2	Contract documents for Phase 4 Capping to be prepared end 09	Dec ()9	FTC (PM) & Env. Dept.	Done – Feb 2010					
3	Following revisions & finalisation of plans Invite submissions of interest for tenders from contractors – area of site ~ 1 hectare			FTC (PM) & Env. Dept.	Done – March 2010					
4	Assess tenders and seek clarifications from most economically advantageous contractor			FTC (PM) & RE (Resident Engineer)	Done – May 2010					
6	Inform successful contractor			CCC	Done					
7	Issue construction drawings Contract 10			Facility						
8	Mobilise Contractor for Contract 10			Management / FTC	Contractor Mobilised					
9	Advise EPA of Infrastructure development status.			Facility Management	July 2010					
	Specified Works Supervision									
	As of January 2011 contract approximately 50% complete 53,000 m2 of Contract 10 area for capping substantially complete									
Object	Objectives Completed:									
Signat	Signature: Date:									

3 <u>Environmental Objective 3</u>: Control of Litter

Object	Objective 3: Control of litter									
			Start L	Date: Janua	ry 01					
Respor	nsibility: Facility Management		Revise	d Date: Janua	ary 2011					
Target	Target: To control litter on the landfill site									
Task	Details	Due	e Date	By Whom	Status					
1	No Active areas remaining – netting was erected during period of waste excavation for capping works – Sept 2010	As re	equired	Mgt team	Ongoing					
2	As of July 15 th 2009, waste is no longer accepted at the facility for landfilling. There is no longer any need for litter netting however litter patrols shall continue to assess the need for cleanups. Future litter collection shall be organised on an as required basis.	As re	equired	Mgt team	Ongoing					
Object	ives Completed:									
Signati	Signature: Date:									

4 <u>Environmental Objective 4</u>: Continue composting of biodegradable waste

Objective 4: Composting of biodegradable waste									
Respon	sibility Eacility Management		Start I	Date: Febru	ary 01				
Respon	sionity. Facincy management		Revise	d Date: Janua	ary 2011				
Target	: To set up a sustainable on site composting	opera	tion that	will allow for	r the				
- T 1	diversion of 100% of segregated green wa	ste fro	<u>m landfi</u>	ll.	G ()				
Task	Details	Du	e Date	By Whom	Status				
1	Promote segregated waste collection and delivery of green material to Landscaping Contractors	Ongo	oing	Env. Dept.	Ongoing				
2	Compost green waste at the facility	As re	equired	СТО	Ongoing				
3	Increase public awareness of the timber and green waste processing facility at the Civic Amenity Site	Ongoing		Env. Dept.	Ongoing				
4	Continue to improve quality of compost with the aim of achieving Class I compost	Ongo	oing	Facility Mgt.	Ongoing				
5	Investigate possible use of compost for the top soiling of the capping contract - compost shall be in to soil during final stage of capping	Sumn	ner 2011	Contractor					
6	Investigate the possibility of street sweepings with compost – reducing waste sent to landfill	Sept	: 09	CTO & Facility Mgt.	Done & ongoing				
Object	ives Completed:	1		1	1				
Signat	ure:		Date	e:					

Objective 5: Control of odours							
Start Data: Eabrage 01							
Respo	nsibility: Facility Management		Revised Date: January 2011				
	-						
Target	: To ensure that the activities shall be carrie not result in significant impairment or inte environment beyond the facility boundary.	d out i rferend	n a mani ce with a	ner such that od menity areas of	lours do r the		
Task	Details	Due	e Date	By Whom	Status		
1	Landfilling of waste has ceased at the facility as of 15 July 2009 – 300 mm of soil has been placed over the waste upon achieving final contours	As cells are filled		Contractors	Ongoing		
2	Install additional gas extraction wells as cells are closed off	As required		Contractors or as directed by Facility Management	Done		
3	Connect new gas extraction wells to combustion plant – 18 new wells connected to collection network in August 09	Done		BPS	Done		
4	Additional air sampling at odour sensitive locations if requested	As re	equired	Facility Mgt	Ongoing		
5	Review programme & Operational practices versus complaints	As required		BPS & Facility Mgt	Ongoing		
6	Complete 'Odour Control Form' when deemed appropriate as requested by the EPA	As issues arise		PF	Ongoing		
7 Object	Currently in middle of final capping works – due to continue until October 2011 Contractors have odour suppressing materials on site in the event of an odour issue arising during waste excavations / gas well drilling or other activities associated with capping works ives Completed:	As is arise	sues	Facility Management & Contractor			
Signature: Date:							

6 <u>Environmental Objective 6</u>: Continue with the operation of the WEEE collection

area

Objective 6: Continue with the operation of the WEEE collection area						
Pacpansibility Sonior Engineer Environment &			Start Date: January 03			
Facility Management			Revise	d Date: Janua	ary 2011	
Target	To increase the availability and accessibili	ty of t	he WFF	F recycling fa	cilities at	
Target	the Civic Amenity Site	ty Of t		L'iccyching ia	cinties at	
Task	Details	Du	e Date	By Whom	Status	
1	All waste electrical and electronic items are stored in the WEEE compound - WEEE can be delivered to the CA Site by domestic users and by registered EEE retailers			Facility Management	Done & ongoing	
2	Set up register of EEE retailers who may avail of the drop off facility	Dec	05	Env. Dept. & Facility Management	Done	
3	Inputs from EEE retailers are recorded on the Weighbridge Computer All WEEE outputs to 'KMK Metals are recorded on the WB computer also	Done		Facility Management	Done	
4	Assess storage needs with regard to smaller items of WEEE (computers & TVs)	Done		Facility Management	Done & ongoing	
5	Advertise the availability of the WEEE drop off facility to the public with the aim of diverting WEEE from the waste stream and to reduce indiscriminate disposal of such materials			Env. Dept	Done & ongoing	
6	Apply new safety procedure with respect to manual handling of WEEE	Jan 08		Facility Mgt.	Ongoing	
7	New Battery Collection Scheme introduced in Sept 08 – all batteries now accepted free of charge from members of the public & from retailers	Sept	08	Facility Mgt.	Ongoing	
Object	ives Completed:					
Signature: Date:						

7 <u>Environmental Objective 7</u>: Commission a feasibility study for the South City

Maintenance Depot for Cork City Council on the site of the old C & D area

Objective 7: Commission a feasibility study for the South City Maintenance Depot for Cork City Council on the site of the old C & D area							
D		Start I	t Date: March 06				
Responsibility: Facility Manager & appointed consultants		Revised Date: January 2011					
Target	: Commission a feasibility study for the built	lding o	of a Sout	h City Mainte	enance		
Tack	Depot for Cork City Council on the site of	the ol	d C & D Data	area By Whom	Status		
1.45K	Details	Du	e Date	by whom	Status		
1	Invite tenders for the study	March 06		Env. Dept & Facility Management	Done		
2	Appoint successful consortium	M	ay 06	Facility Management	Done		
3	Carry out feasibility study – starting with site investigation work etc.	June 06		Consultants & Site Investigation Contractor	Done		
4	Report due from Consultants in Feb 07	Feb 07		RPS / MCOS	Report received – June 07		
5	Based on report - decide as to feasibility of the construction of the South City Maintenance depot on the site	Spring 08		Inter- departmental group	Still in discussions regarding next course		
6	Appointed consultants have recommended further site investigations	Spring 09			of action		
	Awaiting decision from City Manager						
Objectives Completed:							
Signature: Date:							

8 <u>Environmental Objective 8</u>: Assess the potential for the treatment of landfill

leachate using natural systems

Objective 8: Assess the potential for the treatment of landfill leachate using natural						
systems						
			-			
Respon	nsibility:		Start E	Date: Oct 04		
	KR		Revise	d Date: Janua	ary 2011	
Torget	To develop & construct a means of tractin	aland	fill looob	oto voina noti	rol avatoma	
Target	incorporating reeds beds and peat /compos	g fand st cells		ate using nati	arai systems	
Task	Details	Du	e Date	By	Status	
				Whom		
1	Commence desktop survey & background reading on the project	Jan ()5	KR	Done	
2	Design the infrastructure for the project	Sprin	ng 05	KR	Done	
3	Seek quotations & build infrastructure Quotations received August 05 – building work delayed	Summer 05		KR	Done	
4	Building of project commenced January 06 Pumps & pipework installed	Jan 06 - Feb 07		Appointed contractors	Done	
5	Commence sampling & allow project to run its course	April 07		KR	Done & Ongoing	
6	Project showing promising results Ongoing quarterly updates & presentations given to Senior Engineer & Facility Manager Presented report at Environ 08 Conference in Dundalk in Feb 08				Ongoing	
7	Produce report on finding & assess potential for use on a large scale	Project due to run until Autumn 2010		KR	Lab testing finished – Oct 2010 – write up underway	
Object	ives Completed:					
Signature: Date:						

9 <u>Environmental Objective 9</u>: Rehabilitation & Restoration of the Site with a view

to the development of an Amenity Park

	·						
Respo	nsibility:		Start Date:January 2011Revised Date:				
	Facility Manager						
Target	:						
Task	Details	Du	e Date	By Whom	Status		
1	As of January 2011 the facility has been substantially capped and rehabilitated. To date 15 hectares have been capped and grassed over. Contract 10 (current capping contract) involves the capping of a further 9 ha – of which 5.3ha has been substantially completed.						
2	 Further rehabilitation of the facility includes the following: Development of a playing pitch (completed 2009) Planned events area Planned walkway, cycle tracks and jogging routes Planed orienteering course through the park Development of walkway through the wetland areas Proposed sustainable energy demonstration projects 						
Objectives Completed: Signature:							

Objective 10: Development of North-Central Area						
Respor	nsibility:		Start D	ate: Nov 08		
	Facility Management 9 appointed control	ton	Revised	l Date: Janua	ary 2011	
T	Facinty Management & appointed contract			• • 1	1 '	
Target	: 10 restore & cap the North-Central area of events area for the provision of amenities	the si	te with a	n aim to deve	sloping an	
Task	Details	Du	e Date	By Whom	Status	
1	Preliminary discussions held with appointed consultants to discuss the size & scope of the project	Sept	08	MOB / JT / FTC	Done	
2	Contract documents to be prepared for Spring 2010 – currently on hold	Curr hold	ently on	FTC		
3	Following revisions & finalisation of plans Invite submissions of interest for tenders from contractors – area of site ~ 1 hectare	Dates to yet to be finalised				
4	Assess tenders and seek clarifications from most economically advantageous contractor					
5	Inform successful contractor					
6	Issue construction drawings Contract 09					
7	Mobilise Contractor for Contract 09					
8	Advise EPA of Infrastructure development status.					
9	Specified Works Supervision					
Object	ives Completed:					
Signature: Date:						

11 Environmental Objective 11: Continue with the tree planting regime around site perimeter

Objective 11: Continue with the tree planting regime around site perimeter						
Respor	nsibility:		Star	t Date: Oct 05		
				ised Date: Janua	ary 2011	
T		• ,	C	(1	1.	
Target	romote natural habitats	erimete	er for a	aestnetic purpos	es and to	
Task	Details	Da Da	ue ate	By Whom	Status	
1	Identify suitable areas and species for planting	Oct -	05	JG	Done	
2	Seek quotations from suitable contractors	Nov	05	JG	Done	
3	Plant trees in agreement with contractor, with consideration of trees species (willow, alder, poplar), age and stand height.	Dec - Marc 05/06	– ch 5	KR	Done	
4	Continue with tree planting regime as required – Trees along SW corner of site – along the leachate trench require re-planting due to capping works	January 08		Appointed contractor	Done	
5	Investigate areas for replanting with respect to trees / saplings removed for construction purposes during the current capping contract Tree planting on hold for the present time until contract works have been completed	March 08		Facility Mgt		
6	Christmas trees along NE perimeter are inspected & cleared of weeds on an ongoing basis by landscaping contractor	Ongoing				
Objectives Completed:						
Signature: Date:						

Environmental Objective 12: Investigate the possibility of holding a rally sprint around the site perimeter road

Objective 12: Investigate the possibility of holding a rally sprint around the site perimeter road						
Responsibility:			Start Date: Nov 2010			
			Revised Date: January 2011			
	Site Management					
Target	To promote the facility as a future amenity	area	D	D	C4. 4	
Task	Details	Du	e Date	By Whom	Status	
	Following on from the very successful rally sprint in June 2010 – Cork City Council shall investigate the possibility of holding a similar event in 2011					
1	Make initial contacts with Cork Rally Club	December 2010		CCC & Cork Rally Club	Done	
2	Produce a plan & set a provisional date for the rally sprint	December 2010		CCC & Cork Rally Club Emergency	Done	
3	Meet with security and emergency personnel for preliminary discussions (Fire Brigade, Gardai, St. John's Ambulance etc.)	March 2011		services personnel, CRC & CCC		
4	Set a date & apply for planning permission	Marc	ch 2011			
5	Depending on the outcome of the planning permission rally sprint will be held in May 2011	May 2011				
6	Advertise event in local media – April 2011					
Object	ives Completed:					
Signature: Date:						

5.2 Site Management Structure

The Staff Management Structure for the facility is detailed in the Organisational Chart. The responsibilities of the site staff are listed below.

Facility Manager

The Facility Manager has overall responsibility for operation of the facility in accordance with the conditions of the Waste Licence and best operational practices.

The Facility Manager co-ordinates all of the activities and contractors on site and implements procedures and practices in accordance with the Environmental Management Programme.

Deputy Facility Manager

The Deputy Facility Manager assists the Facility Manager in the management in the facility, acts as Facility Manager in his absence and is responsible for the daily operation of the landfill site.

Site Supervisor and Junior Foreman

The Supervisor and Junior Foreman are responsible for ensuring that the site staff carry out their designated duties, and liaises with the Facility Manager in the implementation of procedures and practices at the facility. They have completed the FAS "Waste Management" course.

Relief Site Supervisor

The Relief Site Supervisor performs the functions of the Site Supervisor in the event of his / her absence. The Relief Site Supervisor has also completed the FAS "Waste Management" course.

Weighbridge Operator

The Weighbridge Operator records incoming waste and controls access to the facility.

Senior Executive Chemist

The Senior Executive Chemist co ordinates the surface water, ground water and leachate sampling at the facility. Duties include the interpretation of monitoring carried out by Cork City Council and by outside contractors and the preparation of the quarterly reports on environmental monitoring.

Landfill Technicians

The Environmental Technicians carry out monitoring, sampling and analysis at the facility under the supervision of the Senior Executive Chemist and are based at the landfill site.

Staff Officer Environment

The Staff Officer Environment (not based on site) is responsible for the maintenance of the Waste Licence public file including dealing with queries from the public. Duties also include liaising with waste contractors regarding acceptance of waste and accounts etc.

5.2.1 Organisational Chart

The Management Structure of Kinsale Road Landfill Site, including Environmental Monitoring (Laboratory) and Administration (City Hall).

6 (a)

Summary Report on Emissions
Noise Emissions

Monitoring Locations

Within the Landfill B1-B4

B1 is located just north of the reception area or west perimeter.B2 is located to the north perimeter.B3 is located to the east perimeter.B4 is located to the south perimeter.

Outside the Landfill A1-A4

A4 is located north of landfill in Secondary School Grounds (Christ King). A1 is located at the end of Greenhills.

Monitoring Details

Monitoring was carried out on the 5th January 2011 (OB1, OB2, OB3) by S E Chemist.

The instrument used was the Cell 495, Type 1.

Monitoring Results

The results (day-time) are presented below. The 1/3 octave results are at end of section. Previous years results are in brackets.

	Leq(A)	L10	L90
B1	60 (62) (64)	62	53
B2	54 (55) (53)	54	53
B3	47 (48) (54)	49	46
B4	59 (62) (63)	60	56
A1	57 (46) (56)	60	44
A4	45 (57) (58)	46	44

Interpretation

Limits

The dB(A) Leq 30 minutes should not exceed 55 during the day and 45 at night at the sensitive locations A1 and A4.

Results and Interpretation.

It was cold with a light easterly wind.

There were some Landfill capping operations and timber recycling operations.

The over riding noise source at each location was traffic.

B1 was about same as last year.

B2 was about same as last year. The impacts here are traffic, Garage depot and ESB transformer station outside Landfill. The Landfill is over the brow of the hill and the timber shredder is shielded.

B3, towards Greenhills, was much lower than previously. The major impact at B3 is traffic which was lighter than other years and wind was from a different direction. The works operations around the landfill and construction at the playing fields were not contributing.

B4 was impacted by proximity of South Ring Road approximately 100 metres away.

It would not be possible to separate landfill impact from traffic and other sounds in order to check compliance with the licence. The nearest outside station A4 (Christ King School) was about same as last year. Subjectively, sound levels here are always due to traffic and birds rather than landfill.

A1 (end of Greenhills) was much lower than last year. Traffic was lighter and wind from a different direction.

The landfill does not operate at night.

One third Octave Band Analysis

The charts are in the Appendix.

The one-third-octave band analysis shows that the noise regime in the landfill and surrounding areas is dominated by traffic. The B4 position (South) is clearly dominated by traffic and the profile is similar to A1. B2 (North) had a peak at 100 Hz that may be attributed to the ESB Transformer. B2 and B3 lose some of the higher pitched levels due to distance. The overall pattern at each station is similar indicating the predominant traffic influence from surrounding roads.

Landfill Gas

<u>Buildings</u>

<u>Limits</u>

The limits in the licence are 1% v/v (20% LEL) for methane and 1.5% v/v for carbon dioxide.

Monitoring Details

Six buildings are monitored on a weekly basis. The instrument used was the Gasdata GFM Series and the monitoring was carried out by the Landfill Technicians.

Summary of the Results

No methane was detected and only minute traces of CO2. The Park and Ride administration building had no methane shows.

<u>Interpretation</u> No landfill gases are entering the buildings.

Gas Monitoring Wells

Trigger Levels

These are 1.0 % v/v for methane and 1.5% v/v for carbon dioxide "measured in any service duct or manhole on at or immediately adjacent to the facility and/or at any point located outside the body of the waste."

Monitoring Details

The instrument used was the Gasdata GFM Series and the monitoring was carried out by the Landfill Technicians.

The wells (DP) in the old landfill area across the South Link Road are into the body of the waste and were designed to check for gas generation not migration. They could not be expected to comply with the trigger levels.

DP1 and DP2 are not being monitored any more. There are 15 other wells drilled around the periphery of the old landfill site and along the South Link Road - 137 to 175; these would most likely be drilled into some waste.

Most of the wells to the north, east and south and west of the landfill LG1-LG19 are drilled into soil surrounding the landfill and are designed to check for migration of methane laterally to surrounding areas.

Due to shows of gas, in the eastern and north eastern periphery; approximately fifty new wells have been installed off site in the green area

between Greenhills and the landfill. Many of these new wells were designed to function as venting wells/monitoring wells. From 2005, the wells closest to the landfill periphery (LG) have been used as monitoring wells and the middle wells for venting purposes (two weeks venting and one week capped). Wells are drilled to different depths and have different sensitivities. There are local soil factors that make it difficult to assess trends and comparisons. In addition weather plays a role in gas migration through soil.

Monitoring Results (2009 Results in brackets)

Old Landfill Area

Park and Ride

The 15 periphery wells that are monitored on a daily or weekly basis around the old landfill site and along the South Link Road show the presence of gas on the odd occasion.

In 2010 wells numbered 137, 138, 139 and 140 showed gas on the odd occasion (less than 2% of the time) most likely linked to the flare going down.

141-146 had no gas. The wells 171-175, monitored weekly, showed no gas - same as last year.

Trials have shown that there is insufficient gas in this sector for power generation although gas is pulled for destruction by flaring.

The Park and Ride building showed no evidence of gas in 2010.

Present Landfill Area

There are no shows of gas in the wells monitored in the **southern** and **western** perimeters of the landfill.

Northern Sector LG1-LG4:

LG1 could not be monitored in 2010. LG2 had one small show at 1.1% methane. LG3 and LG4 had no exceedances.

Eastern Sector

LG5-LG8

In the **eastern sector** of the landfill, methane levels began exceeding trigger levels in 2002 and this led to increased monitoring on a daily and weekly basis in addition to the monthly monitoring normally undertaken up to then.

The interception trench (constructed in 2004) and venting procedures have stabilised gas levels in the eastern perimeter wells and reduced if not eliminated gas shows in wells further east although the situation in LG9A and LG10A is anomalous.

The situation needs further investigation as these wells (LG9A and 10A) are most likely drilled into waste and therefore are not suitable for monitoring potential gas migration.

Charts showing methane concentrations over the years at the eastern landfill periphery wells LG5A, LG6A and LG8A are in the attached Appendix.

These wells are some of the few monitoring wells on the landfill perimeter still showing some gas and they are steadily decreasing in gas with time (see Chart in Appendix). It is interesting to examine the reasons for the fluctuations with time for gas concentrations.

LG5A is a well on generally dry ground while the other three wells are progressively more on wetter ground. It is the landfill technicians' experience that gas levels are higher in the wells after rain. LG5A has a pattern of increased gas levels in summer time probably due to increased biological activity promoting increased gas production and drier soil facilitating the lateral passage of gas. If there is rain on the surface layers in summer then gas transmission to the air is inhibited and lateral passage increased. The pattern is repeated in LG6A but not to the same extent because it is in more boggy soil where lateral passage of gas is slow. There is also less gas in LG6A. There is less consistency in the pattern for LG8A.

Interpretation of gas presence and passage through soil is inherently difficult; there is a range of confounding factors.

LG5 had no gas in 2010 but LG5A showed gas consistently in the range of 4-48% v/v CH4.

The gas levels in LG5A are decreasing: the average in 2008 was 27%, 2009 was 21% and 2010 was 17% v/v CH4.

LG6 had no gas but LG6A showed gas consistently in the range of 1-17% v/v CH4.

LG6A is decreasing: the average in 2008 was 24%, 12% in 2009 and 9.2% in 2010.

LG7A and LG8 had no gas but LG8A showed a few small exceedances.

These wells are in a line nearest the landfill; wells that are further out towards Greenhills show far lower levels of gas and most show no gas.

TP1 has decreased from 10% (1999) to 1% in v/vCH4 last year.

LG9, LG10 and LG11 have become inoperative and have been replaced by the new wells, LG9A and LG10A. These new wells are much closer to the landfill and are possibly contaminated by leachate. They are showing very high levels of gas and this needs further investigation.

Some of the new wells, with the tag A, drilled in proximity to the older wells generally show a stronger presence of gas than the original wells. This may be due to the greater depth drilled, the variability of the gas in the area, differing gas well construction methods or soil disturbance.

There are very many other wells east of the LG5-11 line but these are being used for venting as well as monitoring so more variations in monitored trends would be expected. Gas readings are taken in the following manner: two weeks venting and one week capped

In the intermediate line, TP3 is in range 0-6% and LG52 is in range of 0-1.6%v/v CH4 - these wells show some exceedances but all the other wells are clear.

In the line farthest from the Landfill, there were no exceedances.

The shallow gas wells in Greenhills Estate that are monitored on a monthly basis gave no show of gas as in other years. Other wells such as at Nemo Rangers Gate also show no gas.

Interpretation

The wells to the south and west show no evidence of methane migration. Gas concentrations in the eastern periphery wells began to decline in 2005 and decreased further in 2008, 2009 and 2010. The decline could be due to the installation of the interception trench in late 2004 preventing the flow of gas eastward. It could also be due to the venting measures in the green area to the east. The wells east of the landfill periphery have reduced considerably in gas. The shallow gas wells in Greenhills were free of gas in 2007, 2008, 2009, and 2010.

Interpretation of gas presence and passage through soil is inherently difficult and there are extraneous confounding factors such as atmospheric pressure, temperature, soil water saturation, biological processes and soil disturbance. The consistent decline in average levels in wells in the eastern sector over the last few years is very encouraging.

Measures to Control Gas

The analysis of trace components in the gas did not conclusively establish the origin of the gas. Consultants who examined the data suggested that the gas could be derived from the landfill, historical private waste deposits in the area east of the landfill or from the peat itself.

A programme of measures to control gas from the possible sources listed above is in place since early 2005. These measures incorporate an intensive monitoring regime at stations inside and outside the Landfill, suction and flaring of gas on 36 wells constructed on the eastern periphery of the landfill, a 700 metre long interception trench along the eastern periphery and vent pits.

The measures being taken are controlling the situation. The advice received was to initiate a slow and steady reduction.

The situation in LG9A and 10A needs further investigation and remedial works will follow.

<u>Carbon Dioxide</u>

The carbon dioxide levels were exceeded in most wells.

Where there is presence of carbon dioxide in preference to methane, it may be due to aerobic landfill conditions. The presence of oxygen will also be more noticeable in these wells (as is the case). Aerobic conditions are more likely to occur at shallow, uncapped landfill sites or any other condition that allows air into the refuse - such as at perimeter locations. Carbon dioxide has asphyxiate but no explosive properties.

The majority of the wells have increased levels of carbon dioxide in the summer time probably due to warmer conditions promoting microbiological activity.

Gas Combustion Plant Intake

There are no limits in the licence.

The instrument used was the Gasdata GFM Series and the monitoring was carried out by the Landfill Technician on a weekly basis.

Summer concentrations are generally higher than winter.

Emissions from Landfill Gas Combustion Plant

Monitoring Requirements

Inlet

Methane	weekly monitoring	as %v/v
Carbon dioxide	weekly monitoring	as %v/v
Oxygen	weekly monitoring	as %v/v
Total Sulphur	Annually	
Total Chlorine	Annually	
Total Fluorine	Annually	

Outlet

SO2	Annually
NOx	Annually
CO	Continuous
Particulates	Annually
TA Luft Cl I, II, III organics	Annually
HCL	Annually
HF	Annually

Carbon Monoxide Continuous Monitoring of the Burner TV01

Limits for Carbon Monoxide Continuous Monitoring (last year results in brackets)

The limits in the licence are 1300 mg/m3 for 30-minute average and 650 for daily average.

The Agency by letter dated 17/07/03 has asked that concentrations exceeding 2800 mg/m3 for the 30-minute averages and concentrations exceeding 1400mg/m3 for the daily averages be regarded as incidents and reported.

TVO1

The 30-minute average varied from 0-12,620 (7127) mg/m3. Daily averages varied from 0-1260 (0-1001) mg/m3. TV01 had numerous exceedances in the first half of the year for different reasons and these have been detailed in correspondence to EPA

Emission Limits on Outlet

The license limits on the emissions are as follows.

NOx as NO2	500 mg/m3
CO	650 mg/m3
Particulates	130 mg/m3
TA Luft CLI	20 mg/m3 (at mass flows>0.1kg/hr)
TA Luft CLII	100 mg/m3 (at mass flows>2 kg/hr)
TA Luft CLIII	150 mg/m3 (at mass flows>3 kg/hr)
HCL	50 mg/m3 (at mass flows>0.3kg/hr)
HF	5 mg/m3 (at mass flows>0.05kg/hr)

Monitoring Results

Report in Appendix.

All results of the exhaust from the engine TVO1 and landfill flare are within the emission limit values for the parameters NOx, CO, particulates, TNMVOC, TOC, HCl/HF. While no limits are given in license for SO2, results were low.

The Report estimates that the methane destruction in the landfill flare is 99%.

Emissions to Sewer

<u>Methane</u> (Results in brackets are for previous year)

Headspace and aqueous probe methane measurements that are automatic and continuous have been discontinued because they are very inaccurate.

Grab samples sent to outside laboratories are also not accurate. A standard that was sent to an outside private laboratory was returned at 10% of the true value. This reflects the loss of the volatile gas in transit and is not a reflection on the accuracy of the outside laboratory.

The replacement monitoring system in operation is based on samples taken from the discharge and subjected to GC analysis in the Cork City Laboratory. In the second half of 2009, a new splash plate was installed in the conditioning plant and was very effective in reducing methane levels in the leachate to well within the license limit.

Flow

Leachate is collected, conditioned and discharged to the sewer. Stormwater from capped areas is directed to reed beds via the swale and stormwater ponds. The temporary leachate treatment plant was upgraded and made operational at the end of 2008. This plant is designed to treat potential contaminated storm water from the temporary capped areas of the site within the swale.

The flow through the main conditioning plant recorded through the 150 mm (6 inch) discharge line varied from 0-14 (0-25) m3 per hour. There was 0 exceedance (0). The licence limit is 25 m3/hr.

The cumulative flow, recorded by the Scada system, in 2010 was 79,857 (55,000), (68,000), (104,243) (122,627) (121,454) m3. The flow recorded was up this year.

<u>рН</u>

The pH results are in required range 7-9.

<u>24 Hour Composite Concentrations (Results in brackets are for previous year)</u>

Samples are taken every month.

BOD values are always low, 17-64mg/l, probably due to ammonia suppression in the test.

The ammonium results varied from 130-280 (140-320) mg/l. The limit for ammonium is 600mg/l for 95% of the samples. All the samples taken complied with the license.

The other parameters: pH, sulphate and suspended solids are well within the limits.

24 Hour Composite Loads

There are **no limits** in the licence.

All the parameters are low in concentration and load except for ammonium. The ammonium load varied from 9-76 (11-93) kg/day.

Discharge from the Stormwater Retention Pond / Reed beds

<u>Status</u>

This facility has been constructed and reeds planted in 2004. It was commissioned in 2005

Results

Reedbed Discharge

One sample from 17 (0) exceeded the suspended solids limit of 35 mg/l.

Dust Deposition

Monitoring Locations

Dust

D1 is located towards the western perimeter on the present landfill.

D2 is located towards the northern perimeter.

D3 is located towards the eastern perimeter.

D4 is located towards the southern perimeter.

D5 is located in the old landfill across the South Link Road.

Dust Monitoring Results

The five stations are monitored every quarter (20 samples/year) The **limit** in the licence is 350mg/m2/day. There was 1 exceedance from the 5 stations taken every quarter, twenty samples in all, (0) due to capping of the site.

6 (b)

Summary of Results and Interpretation of

Environmental Monitoring

Asbestos in Soil

Monitoring Locations

The locations are Heatherton Park, NW of lab, north perimeter, near reed bed and south perimeter.

Monitoring Details

The samples were taken by City Council personnel from the topsoil. The analysis is by an outside agency (ACS) and the Report is attached.

Monitoring Results

No asbestos was found in any of the five samples (same as all previous years).

Groundwater Monitoring

Limits

There are no limits on the licence.

Monitoring Locations

A map of the approximate locations is at the end of this section. The groundwater flow is from west to east.

BR1 and OB1 are bedrock and overburden wells on the northern perimeter of the landfill.

BR2 and OB2 are located on the north-east perimeter.

BR3 and OB3 are located on the eastern perimeter (down gradient).

BR7 and OB7 are located on the southern perimeter. OB7 is located in an area where refuse was deposited and is contaminated with leachate.

The wells NW1 to NW9 are designed to check the efficiency of the leachate collection system. NW1 is in the south west corner just north of the Tramore stream and just east of the South City Link. The wells move in numbered order, anti clockwise, to the north east corner (NW9). The wells are on the landfill side of the streams. The well NW9 has been re-drilled outside the collection drain in 2001.

Monitoring Details

All samples were taken and analysed by City Council laboratory personnel. The analysis for pesticides, PAH, organochlorines was undertaken in the U.K.

Monitoring Results and Discussion

Monitoring Results (Results in brackets are for last year)

Ammonium in Wells

Overburden Wells

The overburden wells show no pollution in OB1 and OB2 but very high ammonium levels in OB3, 340 (440) mg/l and less so in OB7, 69 (52) mg/l. These shallow wells are drilled into or very near the body of the waste and at peripheral locations and would be expected to show pollution.

Metals were at or below limits of detection except for manganese 1 (1.6) mg/l. Manganese is generally high in groundwaters in the Cork area.

Cyanide concentrations were below 0.005 (0.005) mg/l.

Mercury was below 0.00002 (<0.00002) mg/1

Bedrock Wells

Groundwater to the southwest, west and north show no pollution but the wells to the north east show trace values and the well to east (BR3) is heavily contaminated with ammonium concentrations up to 520 (550) mg/l.

The results indicate very high concentrations of pollutants in this well, the highest values quoted below are from this well.

Recent investigations have shown that this well is inside the sheet pile wall where leachate is collected for return to conditioning plant and sewer discharge. The well is being impacted directly by leachate and is not a proper representation of the downgradient impact of the landfill. A more suitable location for this well is being sought (onsite or offsite).

Conductivity varies 390-6900 (367-6990) uS/cm.

Chloride levels are normal except for BR3, 922 (680) mg/l.

The other parameters of Visibility/Odour, oxygen, TOC, TON did not show any remarkable trends or concentrations except for BR3.

TOC varies 2-500 (1-109) mg/l.

TON varies 1-11 (1-18) mg/l.

Cyanide was below detection limit of 0.005mg/l. Chromium was below detection limit of 0.002 mg/l. Mercury was below 0.00002 except at BR2, 0.00007 mg/l. Pesticides and herbicides were below detection - generally 0.03 ug/l. PAH's were below detection- generally <0.03ug/l. Chlorinated hydrocarbons were below detection limits (generally 0.5-10 ug/l) Benzene was below detection limits (0.1 ug/l)

NW Wells

The wells NW1 to NW9 are designed to check the efficiency of the leachate collection system consisting of the collection drain and the sheet pile wall in front of NW 1 and 2.

The average concentrations over time is shown in Table 1.

Table 1

Mean Total Ammonium (mg/l)

NW1 NW2 NW3 NW4 NW5 NW6 NW7 NW8 NW9 01-02 0.5 _ 0.2 _ dry 0.1 dry dry 0.3 0.3 3.3 0.3 0.1 7.5 0.2 0.3 2.1 1.9

The table shows that ammonia concentrations are high particularly around NW6. The levels in this well increased in 2004.

The wells comply with the trigger levels.

The mean water well levels show no major change over the years.

Biological Surveys of Streams

Monitoring Locations

Tramore Stream

Sample sites listed are in downstream order as follows:

Samples were taken at the beginning of the old landfill (E) roughly equivalent to EM1, just below the South City Link roughly EM2 (C), halfway along landfill near OB7 (D) and near EM6 (F) below all landfill and downstream of confluence with Trabeg.

Trabeg

Samples were taken at farthest possible upstream point although still in landfill near EM7 (A) and, before confluence with Tramore, near EM8 (B).

Monitoring Details

These surveys were undertaken by the Aquatic Services Unit at UCC in July. The Report is attached.

The licence conditions specify an annual kick sampling biological assessment of the Tramore and Trabeg streams. This was not possible for the Trabeg because of its structure.

Landfill leachate is now going to sewer and further on to Carrigrenan treatment plant.

Interpretation

Biological quality is graded from Q1 (bad) to Q5 (good). The Report states: "All of the sites showed similar results to 2009"

Tramore Stream

The Tramore site upstream of the landfill remained at Q2 level (moderately or seriously polluted). The sites within the landfill were of same quality to last year, Q2. The sites remain moderately or seriously polluted again. The downstream station on the Tramore shows the impact of the Trabeg in addition. The station had the same rating as last year (Q2).

Trabeg stream

The sites are unsuited to kick sampling and difficult to assign a Q rating. The upstream is probably Q2 and downstream not better than Q2. This rating is due to the influence of overflowing combined storm & sewer chambers further upstream of the Landfill Site.

Surface Water Monitoring

<u>Limits</u>

There are no limits on the licence.

Monitoring Locations

Tramore River:

The Tramore River flows to the south of the landfill.

EM0 is about one km upstream of all landfill.

EM1 is just upstream of the bridge on the Kinsale Road and just above all landfill.

EM9 is upstream of the bridge over the South Link Road - at the end of the old landfill across the South Link Road and just before the present landfilling area.

EM2 is at the beginning of the present landfill and just below the bridge over the South Link Road. It is almost in the same location as EM9.

EM10, as shown in the licence documents, has been moved from the point of confluence of the Tramore and Trabeg to about 20 yards upstream of the Tramore and has been renamed EM11. Sampling at a confluence is not good practice - samples taken could represent either the Tramore or the Trabeg or a varying mixture of the two. This EM11 site is also too near the landfill to ensure adequate mixing of the discharges and receiving waters. Mixing is not complete at this site and the sample may not always fully represent the dilution in the stream.

EM6 is about 300 yards downstream of the confluence of the Tramore and Trabeg. At this point, discharges from the landfill are adequately mixed with the receiving waters. This was the historical sampling point for the downstream sample. Possibly at times it may be affected by the back up of tidal waters but it remains the best option for a downstream sample

Trabeg Stream

EM7 and EM8 are on the Trabeg stream that skirts around the north and east of the landfill and then joins the Tramore. EM7 is upstream and EM8 is downstream.

Monitoring Details

The samples were taken and analysed by Cork City Council laboratory personnel

The stations are listed in downstream order (the first station- EM0 is furthest upstream)

Interpretation

Surface water monitoring is very variable with time and little significance can be placed on comparison between annual quarters.

Ammonium and BOD

There can be some contamination of the upstream waters on occasion and this has been noticed in the ecological report.

Because of the variability to be expected in surface waters there is no clear trend over the quarters.

There are four attached charts portraying the quality results for BOD and NH4 at upstream (EM 1) and downstream (EM6-10) for Tramore river locations and also upstream (EM7) and downstream (EM8) for the Trabeg river. These charts span the period 2000-2010.

<u>Tramore</u>

Generally, upstream Tramore (EM1) has BOD values varying from 0-6 mg/l over the 2000-2006 period but have declined since 2006 to values about 3mg/l and below.

Downstream values (EM6-10) ranged from 1-27mg/l over the 2000-2006 period but have declined since 2006 to values about 5mg/l and below.

Generally, EM1 has ammonium values ranging from 0-2 mg/l over the 2000-2010 period but have declined since 2006 to values below 0.4 mg/l.

Downstream values (EM6-10) ranged from 0-22 mg/l over the 2000-2006 period but have declined since 2006 to values below 0.44mg/l.

Trabeg

Generally, upstream Trabeg (EM7) has BOD values varying from 1-14 mg/l over the 2000-2010 period. The downstream values (EM8) have BOD ranging from 1-14 mg/l.

EM7 has ammonium values varying from 0.01-20mg/l in the period 2000-2010. The higher values were observed prior to 2007 and have declined substantially since then to values below 1mg/l. Since landfill leachate is much higher in ammonium values than sewage, this may indicate that pollution from landfill activities has decreased substantially but sewage pollution upstream has remained.

EM8 is similar. Ammonium values varied from 0.02- 37 mg/l in the period 2000-2006 but have declined substantially since 2006 to values below 1mg/l.

The waters upstream and downstream show severe pollution (as also in ecological studies).

Other Parameters

The more extended annual list of heavy metals, pesticides, PAH, organochlorines etc. does not show any remarkable trend or concentrations. Generally these are at or below limits of detection as in the past.

There is generally little difference between upstream and downstream values for these parameters.

Weekly Visual Inspections

Normally there is nothing unusual reported. The most common observation over the stretch of waters inspected is muddy. EM8 (downstream- Trabeg) is generally described as stagnant and greenish. Algae are occasionally observed at the downstream locations and this is not surprising because they are relatively stagnant, at the top of the tide.

EM7 (upstream in the Trabeg) occasionally displays sewage fungus indicating pollution upstream of landfill.

Particulates and Odour

<u>Particulates</u> (Results for previous year in brackets)

Particulates as measured by the total suspended particulate parameter were below the EU limits and guide values in 2010 as in 2009.

Particulates as measured by the PM10 parameter are measured outside and within the landfill. There is a trigger level of 50 ug/m3 for boundary monitoring. It would not be possible to separate ambient levels and the contribution from the facility.

The station outside the landfill, where samples are being taken daily for PM10, had 6 days (10 days) in the year when concentrations exceeded 50 ug/m3. These were most likely were due to domestic fuel burning in the very cold weather experienced in 2010 and not landfill. The main contributor at this station is domestic fuel burning and not landfill. There needs to be 35 daily samples exceeding the 50ug/m3 figure to breach the EU standard.

Within the landfill PM10 samples are taken quarterly and 1 sample (1) exceeded the 50 ug/m3 level.

<u>Odour</u>

Odour Monitoring Ireland Ltd carried out the odour monitoring.

There are no limits in the licence.

Some small increases in downwind odour threshold concentrations were observed across the data set but these increases are not statistically significant due to the inherent difficulties in interpretation of ambient-based olfactometry results (i.e. impossible to take account for the dilutional aspects of the atmosphere, etc.). The highest odour threshold concentration was detected at monitoring location O9 (alongside former active area). A landfill gas odour was detected in the vicinity of this monitoring location. Landfill gas odour was also detected at monitoring location O8 (compost area). Hydrogen sulphide concentrations recorded at each monitoring location were less than 3ppb in ambient air. GCMS screens illustrated a large array of volatile organic compounds present in the air stream at all monitoring locations. All ambient air concentrations were low and well within any respective exposure threshold concentrations. Monitoring location O9 recorded the highest TVOC concentration, which was located closest to the former active area. It would appear that traffic based emissions have a significant effect on the profile of compounds detected during TD GCMS based surveys for odours.

<u>Nuisances</u>

Monitoring Locations

Weekly visual inspections describe the appearance of the landfill from Amberly Heights (south of the landfill), Greenhills Estate (north east) and Heatherton Park (north).

<u>Results (last years in brackets)</u> There were 129 (156) observations. Rodents were observed on 0 occasions (0). Flies were observed on 0 occasion (1). Odour was observed on 1 (6) occasions. Birds were noticed on 0 (4) occasions. Noise was observed on 0 (0) occasions. Loose litter was seen on 0 (2) occasions.

<u>Compost</u>

The compost as analysed satisfies the limits for heavy metals in a Grade 1 compost.

<u>Appendix</u>

Graphs

- Noise Monitoring
- Landfill Gas
- <u>Surface Water</u>

Reports

- Biological Survey of Streams Report
- Asbestos Monitoring Report
- Air Emissions testing of the Flare Unit & Gas Utilisation Engine
- PRTR Table for Flare Unit & Gas Utilisation Engine

Noise Monitoring Graphs

Landfill Gas Graphs

Surface Water Monitoring Graphs

AN ASSESSMENT OF THE WATER QUALITY STATUS OF SELECTED SITES ON THE TRAMORE AND TRABEG RIVERS USING BIOLOGICAL METHODS

(August - 2010)

Commissioned by: Cork City Council **Carried out by:** Aquatic Services Unit – UCC. (December 2010)

Introduction

As part of the their waste licence conditions for the Kinsale Road Landfill, Cork City Council commissioned the Aquatic Services Unit, to undertake a biological assessment of the water quality status of selected sites on the Tramore and Trabeg rivers. Both rivers flow adjacent to or through the site of the landfill and have in the past, at least, been impacted by leachate from the landfill. The fieldwork for the 2010 monitoring was undertaken in late August.

Methods

Two samples (combined as one composite) were taken at each site using a kicksample technique, where this was possible. Each sample was collected in areas of moderate to shallow swift current in coarse substrate usually comprising small to large stones and cobbles. The samples were then sieved to remove silt and poured into a white sorting tray. There the macroinvertebrates present are identified and their notional abundance estimated. The macroinvertebrate data arising is then assessed using the same biotic index system used by the Environmental Protection Agency (EPA) in their on going monitoring of biological quality in Irish rivers. The index assigns a score to the macroinvertebrate collection at a given site depending on the relative proportion of pollution sensitive and pollution tolerant organisms present. The greater the number and diversity of pollution sensitive types present (particularly, certain mayflies, stoneflies and cased caddis flies) the higher the score or quality class assigned to a given site. The highest score category is Q5 which indicates pristine water quality conditions and is recognised by having a high proportion of pollution sensitive species and very few or any pollution tolerant forms, whereas Q1 at the other end of the scale indicates gross pollution. The table below indicates the Q-value scores, which can be assigned and the corresponding degree of pollution associated with them.

Q-Value	Degree of Pollution
Q5, Q4-5, Q4	Unpolluted
Q3-4	Slightly Polluted
Q3, Q2-3	Moderately Polluted
Q2, Q 1-2, Q1	Serious to Gross Pollution

It's important to point out that few sites on the Tramore and Trabeg rivers have sites, which could be said to be ideal for this system of biological monitoring, and some are completely un-suitable (e.g. Sites A and B). In the latter cases the flow is very sluggish and the bottom material consists mainly of mud or peaty mud. In these cases, general observations and experience were used in order to gauge the likely biological water quality status. Furthermore, the second most upstream site on the Tramore River at the 'ford' within the landfill was partially modified since the last survey in 2009 by the installation of a crump weir for discharge gauging. This weir has resulted in the water upstream becoming stiller and more sluggish than usual.

Results

Samples were taken on August 30th 2010 at sites the positions for which were agreed with the EPA and listed in the conditions of the licence.

Site A (Trabeg River: Upstream Site)

There was no perceptible flow at the site, which was completely chocked with water Starwort (Callitriche sp.), which covered the entire water surface across the channel. Diatom scum was also in evidence on the plants (Plate 1). These conditions are similar or slightly improved on last year. Conditions at the time were quite dry and run-off probably quite low, which probably helped the water quality. Net-sweeps through the floating vegetation were dominated by *Asellus*, with juvenile gammarid species also common (for the first time). Flatworms (*Dugesia* sp?) were numerous as were tanypod chironomid larvae; one water beetle was collected. Overall, while the flow conditions and substrate were not suitable for assigning a Q-value, the conditions would point to a Q-rating of around Q2 or 2-3, i.e. an improvement on last year.

The left bank margin was dominated by Watercress (*Rorippa nasturtium-aquaticum*) and Fool's Watercress (*Apium nodiflorum*), while the right channel margin was being encroached by Reed canary-grass (*Phalaris arundinacea*). The left bank behind was dominated by Willow with Bramble and Fuschia also common. Nettle and Great Willowherb (*Epilobium hirsutum*) were also present. The Right bank by herbaceous species including Angelica (Angelica sylvestris), nettle, Hedge bindweed, Creeping Thistle and *Phalaris*. (note, a moorhen or coot was heard calling close by)

Site B (*Trabeg River:* 2nd *Site Downstream*)

This site is like Site 1 in being a very slack flow site dominated by a muddy bottom and also with clear water. There was virtually no out-gassing from the muddy sediment which had a well oxidised brown surface. 60-80% of the open water of the channel was encroached upon by Water starwort, with some Duckweed (*Lemna* sp.) interspersed (Plate 2). Apium occurred occasionally at the margins. The left bank was covered in Bramble, Nettle, occasional Great Willowherb and Bindweed, backed by scattered large Willow. The right bank had scattered small Willow along with Soft Rush, Nettle, Hedge Bindweed, Creeping Thistle and Cleavers (*Galium aparine*).

Nets-weeps were dominated by *Asellus*, occasional to frequent gammarids, 1 juvenile baetid mayfly (first time a mayfly has been recorded here) and water beetles in the overlying water and *Chironomus* and tanypodinae in the mud. Like Site A, the conditions were unsuitable for Q-ratings, because of the muddy substrate and almost standing water conditions. Nevertheless, there were signs of a very slight improvement on last year's conditions and a Q-rating of Q2 to Q2-3 is suggested.

Site C (*Tramore River: most upstream site within the landfill boundary*)

This site is at a fording point in the Tramore River within the precincts of landfill and at the same point is crossed by a kind of bridge for carrying pipes. Since the 2009 sampling, a crump weir has been built at this site for discharge gauging and this has had the effect of creating a stilling basin immediately upstream, where the substrate has become even more silted than usual (Plate 3). The bottom upstream of the weir at the 'ford' comprises heavily silted gravel and small cobble covered in filamentous green algae and diatom scum. Above the crossing point stands of *Typha latifolia* (Greater Reedmace / Bullrush) and branched Burr-reed dominate, with Willow on both banks. Below the weir, Broad-leaved Pondweed (*Potamogeton natans*) dominates in-channel with loose scattered amounts of submerged Water Starwort common. Dense stands of *Sparganium erectum* are also present here with Willow along the banks.

Kick-samples were taken in immediately downstream of the weir in a spot which was a little silted. The results are at presented in the table below. They indicate grossly polluted conditions very similar to 2009.

Common Name of Group	Scientific Name	Notional Abundance
Non-biting Midges	Chironomidae	+++
Water Beetles	Haliplid adult	+
Wandering Snail	Lymnaea peregra	++
Snail	Planorbis sp.	+/+
Snail	Potamopyrgus jenkinsi	++++D
Pea Mussels	Sphaeridae	+++
Water Hog Louse	Asellus	++
Segmented worms	Lumbriculus variegatus	+++
Water mites	Acari	++++
Stickleback		7
EPA Q-value		Q 2 (Q2-3)

Macroinvertebrates in Site C kick-samples
Site D (Tramore River: 2^{nd} site downstream of boundary)

This site is at the 2007 location. The sampling point is at a constriction in the river where the channel flows over a small rock weir immediately downstream of a sluggish stretch, which is dominated by Broad-leaved Pondweed (bank to bank) (Plate 4). Upstream the channel is occluded by dense stands of Typha with P. Natans dominant floating vegetation and Woody nightshade (*Solanum dulcamara*) also common among the *Typha* and bankside vegetation. The right bank was dominated by Great Willowherb, Nettle, Woundwort and grass backed by Alder, while the left bank was dominated Nettle and Bindweed, also backed by Alder and Willow. In-channel *Potamogeton natans* dominates downstream, while *Vaucheria* and *Cladophora* are common on the stones of the semi-submerged 'weir'.

In channel the substrate of the kick-sampling area (just on the weir) comprised angular limestone cobbles and small boulders in a moderate to swift turbulent flow. Results were very similar to 2009 (see Table below).

Common Name of Group	Scientific Name	Notional Abundance
Mayflies	Baetis	+
Non-biting Midges	Chironomidae	++++D
Water beetle larva	Coleoptera	+
Water Hoglouse	Asellus aquaticus	+++
Wandering snail	Lymnaea peregra	++
Ram's Horn snails	Planorbis sp.	+++
Jenkin's Spire shell	Potamopyrgus jenkinsi	+++
Pea mussels	Sphaeridae	+++
Leeches	Glossiphonia complanata	+
Leeches	Helobdella stagnalis	++/+
Leeches	Erpobdellid	+
Segmented worms	Tubificidae	+
Water mites	Acari	+++
Flatworms	Tricladia	+/+
Fish	Eel	1
EPA Q-value		Q2

Kick-sample results Site D:

Site E (*Tramore River upstream of the landfill: outside the boundary to the west*)

Access to the site remains very difficult despite some vegetation clearing by City Council staff in 2008. Here the channel, which has been generally over-widened upstream as a result of drainage, narrows through the eye of a small bridge (W6780 6943) – Plate 5. This site was chosen as it is the only one in this section of channel which can be sampled; the listed site (200m u/s) is pure sandy mud and therefore unsuitable. The substrate under the bridge (2-3m wide) is very coarse - angular cobbles and some boulders, and on this occasion was completed silted with virtually no water velocity. It isn't certain, but the new weir at Site C may be contributing to the dead water observed at the site on this occasion.

The site is very shaded and effectively plant free. Immediately upstream of the bridge the channel is much wider (>10m) and comprises deeply silted channel with large stands of *Typha* and *Sparganium erectum*, which are now encroaching on virtually the entire channel. Willow dominates the left bank, while the RHS bank had Willow, Alder, Bramble and a herbaceous understorey. There is also a very large growth of the alien invasive species Japanese Knotweed (*Fallopia japonica*) just upstream of the bridge. The whole system would benefit from some channel dredging and channel reinstatement to improve the geomorphology of the river. The site remains seriously polluted.

Common Name of Group	Scientific Name	Notional Abundance
Non-biting Midges	Chironomidae	++/+
Non-biting Midges	Tanypodinae	++/+
Water Hoglouse	Asellus aquaticus	+++
Pea mussels	Sphaeridae	++++
Leeches	Glossiphonia complanata	++/+
Leeches	Helobdella stagnalis	++
Fish	Stickleback	1
EPA Q-value		Q2

Kick-sample results Site E:

Site F (150m downstream of the confluence of the Tramore and Trabeg Rivers).

This site was 150m downstream of the confluence of the Tramore and Trabeg Rivers (Plate 7). Samples were taken in slightly silty fine and coarse gravel and large pebble with sand/clay. There was 50-60% cover of algae including *Cladophora*, *Enteromorpha*. Scattered clumps of the aquatic macrophyte Horned Pondweed (*Zannichellia palustris*), was locally abundant at and downstream of the site. This species is tolerant of eutrophic and brackish conditions. 2 small dead shore crab were noted upstream of the kick-sampling site. The left bank is dominated marginally by Phalaris with Nodding Bur-marigold (*Bidens cernua*), *Apium*, *Callitriche* and *Veronica* backed by Gorse, Bramble and Nettle. The right bank had *Phalaris*, *Apium*, water pepper (*Persicaria hydropiper*), Woundwort and grass, backed by Willow.

Kick-samples were taken toward the centre of the channel in suitable substrate. The water quality was very similar to that recorded in 2009 and remains seriously polluted but there seems to have been a slight improvement in quality since last year.

Common Name of Group	Scientific Name	Notional Abundance
Non-biting Midges	Chironomidae	++++D
Water beetle adult	Haliplid	+
Water Hoglouse	Asellus aquaticus	++/+
Freshwater shrimp	Gammarus sp.	++/+
Jenkin's Spire shell	Potamopyrgus jenkinsi	++
Pea mussels	Sphaeridae	++++
Leeches	Glossiphonia complanata	+
Leeches	Helobdella stagnalis	+
Leeches	Erpobdellid	+
Water mites	Acari	+++/+
Fish	Stickleback	1
EPA Q-value		Q2

Kick-sample results Site F:

Conclusion

In 2009 all of the sites showed similar results to 2009, however, at Sites A, B and F there were some signs of slight improvements, possibly due to low levels of run-off during the dry summer.

Plate 1 Trabeg River: Site A 30-08-2010

Plate 2 Trabeg River: Site B (view of channel) 30-08-2010

Plate 3 Tramore River: Site C (view upstream) 30-08-2010

Plate 4 Tramore River: Site D (view downstream to kick-sample site) 30-08-2010.

Plate 5 Tramore River: Site E (view d-s to kick-sampling point) 30-08-2010

Plate 6 Tramore River: Site F (view d-s to kick-sampling point) 30-08-2010

Plate 7Tramore River Site F: showing close-up of substrate with algae and
Zannichellia. (30-08-2010)

CONFIDENTIAL REPORT

Client: Cork City Council, Landfill Office, Kinsale Road Landfill Site, South Link Road, Cork.	Title: Analysis of Soil Samples
Attention: Ms Cathy Healy	Page 1 of 2
Report ref. ACS 10-247	Order no: TBA
Date recd: 2 nd December 2010	Report by: P. G. Byrne
Copies to:	Date: 2 nd December 2010

CONDITIONS

CLIENT WORK - TERMS AND CONDITIONS OF ACCEPTANCE

- 1. Reports issued by Asbestos Consultancy Services Limited are copyright and shall not be used, either in whole or in part, for the purposes of advertising, publicity or litigation without the prior written consent of the Directors of Asbestos Consultancy Services Limited.
- 2. This report shall only be reproduced in full.
- 3. The client is responsible for delivery to Asbestos Consultancy Services Limited of test item(s) free of any duty, VAT, freight charges etc., unless otherwise agreed in writing by Asbestos Consultancy Services Limited.
- 4. The client shall be responsible for collecting non-perishable samples received for inspection, testing or laboratory work upon completion of the work. If the client fails to collect such samples within 30 days following completion of the work, Asbestos Consultancy Services Limited shall be entitled without further notice to dispose of the samples.
- 5. Payment for work carried out shall be in accordance with the terms stated on Asbestos Consultancy Services Limited Invoices.
- 6. The laws of Ireland shall apply.

A C S Limited Page 2 of 2

ACS Report No. 10-247

INTRODUCTION

Five samples of soil taken from the landfill listed below were received for determination of the presence and type of asbestos.

TESTS

The samples were first oven dried for several hours at a temperature in excess of 110 degrees Centigrade. The lumps of clay were broken up using a pestle before the samples were brushed through a 5 mm sieve several times and both fractions weighed (the 1st weight (in grammes) in the table below is the fraction under 5 mms). The fraction larger than 5 mm (whose weight is in brackets was mainly small stones, grass and other vegetation, (sample 4 was completely different in the respect that apart from a small lump of calcite there was little in the way of small stones) was examined for the presence of asbestos containing materials and then discarded. A single layer of the finer fraction was spread on to a large glass tray and examined by stereo microscopy at a magnification of 10x. The sample was then vigorously raked with a dissecting needle (in a magnet like fashion any white asbestos fibres will adhere to the needle). In order to examine the entire fraction this operation was repeated several times for each sample. No inert fibrous material was found in any of the samples examined.

RESULTS

Sample Identification	Laboratory No.	Result
Site 1 - Heatherton park 411.9, (142.0)	10/373	No asbestos detected – three quarters of the sample was fine clay
Site 2 – OB 2 426.1, (298.3)	10/374	No asbestos detected – as site 1 with slightly more stone content
Site 3 – near EM 8 511.4, (170.5)	10/375	No asbestos detected – similar weight ratios to sample 1
Site 4 – OB7 198.9, (21.3)	10/376	No asbestos detected – calcite like stone noted in this small sample
Site 5 – near laboratory 610. 8, (213.1)	10/377	No asbestos detected – similar weight ratios to sample 1

Site :- Kinsale Road Landfill Site, Cork

Note: This report refers exclusively to the samples submitted for analysis.

ODOUR & ENVIRONMENTAL ENGINEERING CONSULTANTS

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

AIR EMISSION TESTING OF ONE LANDFILL FLARE AND ONE GAS UTILISATION ENGINE LOCATED IN KINSALE RD LANDFILL, BALLYPHEHANE, CURRAGHCONWAY, INCHISARSFIELD, SOUTH CITY LINK ROAD, CORK.

PREFORMED BY ODOUR MONITORING IRELAND ON BEHALF OR CORK CITY COUNCIL

PREPARED BY: ATTENTION: REFERENCE: DATE: REPORT NUMBER: REVIEWERS: Dr. Brian Sheridan Ms. Cathy Healy Waste licence W0012-03 02nd Dec 2010 2010A350(1) Ms. Cathy Healy

TABLE OF CONTENTS

Section		Page number
TABLE C	DF CONTENTS ENT AMENDMENT RECORD	i ii
1.	Introduction	1
2. 2.1 2.2	Materials and Methods Volumetric flow rate measurement In stack analysis	2 2 2
2.3 2.4	Total non-methane volatile organic compounds (TNMVOC) Heated Flame Ionisation Detector-Total hydrocarbon concentration (THC) determination	2
2.5 2.5.1 2.5.1.1 2.5.2.2 2.5.2.1 2.5.2.2 2.5.2.3 2.5.2.4 2.5.2.5 2.5.2.6 2.5.2.7 2.6 2.7	Particulate sampling and analysis Total Particulate matter sampling methodology Job preparation Filter selection and preparation Sampling location Leak checks Sampling Duration of sampling Cumulative sampling Repeat Velocity and temperature readings. Weighing of the sample Hydrogen chloride (HCL) and Hydrogen fluoride (HF) analysis Total Sulphur, chlorine and fluorine	3 4 4 5 5 5 5 5 6 6 6 6 6 6
3. 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Results-Emission testing. Sampling time Volumetric flow rate results Flue gas concentration results Total Hydrocarbon Concentration (THC) results Total Non-Methane Volatile Organic Compounds(TNMVOC) results Total particulates results Hydrogen chloride (HCL) and Hydrogen fluoride (HF) results Total Sulphur, chlorine and fluorine results	7 7 7 8 8 8
4.	Discussion of results	13
5.	Conclusion	13
6.	References	14
7.	Appendix I-Sampling and analysis details	15

Document Amendment Record

Client: Cork City Council

<u>Project</u>: Air emission testing of one Landfill flare and one gas utilisation engine located in Kinsale Road Landfill, Ballyphehane, Curraghconway, Inchisarsfield, South City Link Road, Cork.

Project Number: 2010A350(1)			Document Reference: Air emission testing of one Landfill flare and one gas utilisation engine located in Kinsale Road Landfill, Ballyphehane, Curraghconway, Inchisarsfield, South City Link Road, Cork.		
2010A350(1)	Document for review	B.A.S.	JMC	B.A.S	02/12/2010
Revision	Purpose/Description	Originated	Checked	Authorised	Date

1. Introduction

This report has been prepared by Odour Monitoring Ireland and contains the results of emission testing carried out on 1 No. Enclosed ground flare and 1 No. Gas utilisation engines at Kinsale Rd Landfill, Ballyphehane, Curraghconway, Inchisarsfield, South City Link Road, Cork. The emission testing was carried out in compliance with the requirements of Waste licence W012-03.

Odour Monitoring Ireland was commissioned by Ms. Cathy Healy, Environment Section, Cork City Council to perform emission testing of the 1 landfill gas flare and 1 gas utilisation engine stack located within Kinsale Rd Landfill, Ballyphehane, Curraghconway, Inchisarsfield, South City Link Road, Cork. The parameters listed in *Table 1.1* were monitored using the appropriate instrumentation as illustrated in *Table 1.1*.

Table 1.1. Monitored parameters and techniques for Kinsale Rd Landfill 1 No. Enclosed flare and 1 No. Gas utilisation engine located in Kinsale Rd Landfill, Ballyphehane, Curraghconway, Inchisarsfield, South City Link Road, Cork.

Sample location	Parameter	Analytical method		
1 Landfill Flare and 1 Gas utilisation engine TV01 outlet	Volumetric airflow rate & Temperature (⁰ C)	Pitot in accordance with EN13284-1 where possible. MGO coated K type thermocouple and PT100 Volumetric airflow rate theoretical calculated for Landfill flare.		
1 Landfill Flare and 1 Gas utilisation engine TV01 outlet	Oxides of nitrogen (NO _X as NO ₂), Carbon monoxide (CO), Carbon dioxide (CO ₂), Sulphur dioxide (SO ₂), and Oxygen (O ₂)	Flue gas analyser, Testo 350/454 MXL		
1 Gas utilisation engine TV01 outlet	Total non methane VOC's	Portable Signal 3030PM FID calibrated with Propane in accordance with EN13526:2002 non- methane hydrocarbon cutter. Charcoal tube/GCMS		
1 Landfill Flare and 1 Gas utilisation engine TV01 outlet	Total Volatile Organic Carbon	Portable Signal 3030PM FID calibrated with Propane in accordance with EN13526:2002.		
1 Gas utilisation engine TV01 outlet	Total Particulates	TCR Tecora isokinetic Particulate sampler with QMA (Quartz) high temperature filters in accordance with ISO9096:2003.		
1 Landfill Flare and 1 Gas utilisation engine TV01 outlet	Total sulphur, Hydrogen chloride and hydrogen fluoride	Impinger train containing 0.10 molar sodium hydroxide and deionised water solution in accordance EN1911, EPA 26A and EN15713:2006		

This report presents details of this monitoring programme. This environmental monitoring was carried out Dr. John Casey, Odour Monitoring Ireland on the 18th November 2010. Methodology, Results, Discussion and Conclusions are presented herein.

2. Materials and Methods

This section provides brief details of the methodology employed to perform emission testing of one landfill flare and one gas utilisation engine stacks located in Kinsale Rd Landfill, Ballyphehane, Curraghconway, Inchisarsfield, South City Link Road, Cork.

2.1 Volumetric flow rate and temperature measurement

The volumetric flow rate of the landfill flare was determined from theoretically calculated total volumetric flow rates using the assumptions presented in *Appendix II*. The inlet landfill gas velocity measurements were calculated from the CEMS monitoring system within the landfill flare control building. In addition, airflow measurement was performed on the inlet header gas main using a pitot tube and differential manometer connected to a Testo 454/350 MxL. Outlet airflow rate measurements on the gas utilisation engines stacks were carried out in accordance with EN13284-1:2002, where possible (when sufficient duct diameters upstream and downstream of the sample location). Temperature traverse measurements were performed across the stack in one plane only. Only one plane was possible due to access port issues. A magnesium oxide K type and PT100 thermocouple was used for measuring temperature in one landfill flare and one gas utilisation engine.

2.2 In stack analysis of flue gases

Flue gas analysis was performed using a pre-calibrated Testo 350 MXL/454 flue gas analyser. Concentrations of Oxygen, Sulphur dioxide, Carbon dioxide, Temperature, Carbon monoxide and Oxides of nitrogen were measured using electrochemical cells within the analyser box and all data was logged electronically in 1 minute intervals during the sampling exercise. Data was downloaded from the control handheld using the Com soft software and average concentrations calculated are presented within. All results presented are at 273.15 K, 101.3 kPa on a dry gas basis.

2.3 Total non-methane volatile organic compounds (TNMVOC)

In order to measure total non-methane VOC, a total non-methane hydrocarbon cutter was placed in line with and MCERTS certified FID whereby concentrations of total volatile organic carbon and total non-methane organic were displayed digitally upon the display. This allowed for the calculation of total non-methane VOC's. All results are presented in mg/Nm³ as propane which is in accordance with the EN13526:2002 and EN12619:1999.

Additionally in order to obtain samples for speciated VOC assessment, a static sampling method was used where air samples were collected in pre-conditioned Tedlar sampling bags using a vacuum sampling device and dynamic dilution device (i.e. Dynasampler). The sampler operates on the "lung principle" whereby the air is removed from a rigid container around the bag by a battery powered SKC vacuum pump filling the bag inside.

All sample bags were pre-flushed with sample air in order to prevent any reductions in the actual VOC due to sample bag surface binding. A leak check was preformed on the sample setup by placing a Primary flow calibrator inline. Once sample acquisition was completed, the sample bag was transferred to another location and connected to the sample pump, tube and Primary flow calibrator. A two bed sorbent was chosen to efficiently bind and pre-concentrate speciated VOC for analysis by GCMS in accordance with established and accredited methodologies. Sealed sorbent tubes were used throughout the study to maintain repeatability and integrity. All sampling for speciated VOC's was preformed in accordance with methodologies discussed within EN 13649:2002.

In order to pre-concentrate speciated VOC upon each sorbent, a pre-calibrated controlled volume of sample air was drawn through each tube by a SKC pump for a period 40 to 80 minutes. Each SKC pump was pre-calibrated with their specific sorbent using a Bios Primary

flow calibrator (NIST traceable certified). Each pump was calibrated to a flow of between 70 to 120 ml min⁻¹ depending on the sample, sample pump and sorbent tube as recommended by the sorbent manufactured, analysing laboratory and sampling/test methodology. When sampling was completed all tube were sealed and stored in flexible airtight containers and transported to the laboratory.

2.4 Heated Flame Ionisation Detector-Total hydrocarbon concentration (THC) determination

A heated portable FID (MCERT certified), heated line, controller and data logger was used to analyse the duct air stream for total hydrocarbon concentration. Once stabilised and calibrated using span gas (Propane-500 ppm), a sintered probe connected to a 181 °C heated line was place in the air stream. After stabilisation, the data logger was activated and commences reading. The FID remained analysing continuously for approximately 45 minutes in the duct air stream. Results were presented as mg [THC] m³ as propane. All sampling was performed in accordance with methodologies contained within EN 13526:2002 and EN12619:1999.

An FID operates on the principle where influent contaminated gas is mixed with hydrogen and the mixture is burned at the tip of a jet with air or oxygen. Ions and free electrons are formed in the flame and enter a gap between two electrodes, the flame jet and a collector, mounted 0.5-1.0 centimetres above the flame tip. A potential (400 volts) is applied across the two electrodes and with the help of produced ions, a very small current flows between the two electrodes. When an organic substance is introduced this is burned in the flame; a complex process takes place in which positively charged carbon species and electrons are formed. The current is greatly increased and therefore the sample is detected. The FID is a mass flow detector, its response depending directly on the flow rate of the carrier gas. Its response also varies with applied voltage and the temperature of the flame.

The following procedure was used for operating the FID:

- 1. The FID was switched on and the oven temperature and sample line temperature were allowed to stabilise. The set-point temperatures were 181 ⁰C sample line temperature and 200⁰C oven temperature. This took approximately 45 minutes.
- 2. The Hydrogen / He fuel and Propane calibration gases (500 ppm) were attached to the instrument.
- 3. Once temperatures had stabilised, the instrument was started and the ignition procedure was commenced.
- 4. Once ignited, the sample procedure was commenced and any VOC upon the sample line was baked off.
- 5. The analyser was zero calibrated and span calibrated. Zero air is supplied via the on board thermal oxidiser. There is less than 1% of range or 1.6 mg/m³ in eight hours whichever is greater (see Section 6.1 of EN12619:1999 and Section 6.2.1 EN13526:2001.
- 6. The analyser calibration procedure was rechecked and recorded,
- 7. The sample line was checked by presenting calibration gas in the sample line. The value was confirmed to be the value and recorded. This reading must be less than 5% difference from the span/zero reading.
- 8. The probe was inserted into the stack.
- 9. The datalogger was commenced (10 second intervals) and manual readings were taking and recorded (every 1 minutes).
- 10. The instrument was re-spanned every approximately 45 minutes to confirm calibration reading and to isolate any drift.
- 11. The recorded concentrations were converted for ppm TOC propane to mg/m³ TOC using the equation contained in Annex E and F of EN12619:1999 and EN13526:2002, respectively.

The analyser is MCERT and TUV approved. The MCERTS certification covers EN12619:1999 and EN13526:2002.

2.5 Particulate sampling and analysis

Particulate sampling was performed using a TCR Tecora iso-kinetic stack sampler and a range of sampling nozzles in accordance with EN113284-1:2002. Once airflow, oxygen and temperature measurements were made, the specific sampling airflow range was established using the onboard self-adjusting computer. The sample port did not obeyed the 2 & 5 requirements (i.e. that is the sampling location is 2 duct diameters upstream and 5 duct diameters downstream from the nearest disturbance). Following cleaning of the filter holder with a brush and acetone, a pre-weighed 47 mm QMA Quartz filter was placed within the filter holder. A 4-inch male insert was used to keep the sample probe positioned within the stack. The initial dry gas pump reading, temperature, pressure and start time were recorded before sampling commenced. Continuous airflow rate and pressure readings were taken over the sampling period (depending on stack process). Once airflow and temperature standard deviations were known for the area of the stack, the filter nozzle was positioned accordingly within the stack. The filter nozzle was positioned at each location (i.e. the sample points used were located at the centre of equal areas in the sampling plane and not located within 3% of the inner duct wall) for at least 5 minutes. Once sampling was finished, the finish time and dry gas pump volume was recorded. The filter was removed from the filter holder and placed within its laboratory holder and transported to the lab. The filter holder was again washed with acetone and a brush. The particulate filters were pre-weighed in the laboratory before despatch. On return, these used filters were re-weighed and the difference in weight minus blank corrections was calculated as total particulate. This filter weighing method is based on MDHS14/3. The particulate concentration was calculated from the sample volume in mg/Nm³. Results are presented as at standard conditions of 273 K and 101.3 kPa.

2.5.1 Total Particulate matter sampling methodology

2.5.1.1 Job preparation

A pre-site survey must first be taken to obtain the following information. Client details (name and address), description of stack to include name and location), sample platform/access, Hazards, Power supply and location, additional PPE required.

The Iso stack TCR Tecora automatic isokinetic particulates measurement equipment is fully inspected prior to use and its calibration stats observed. This includes:

Pitot tube-All pitot tubes are checked for damage/burrs, paying particular attention to the inlet holes. All dirt and blockages are removed.

Micro manometer-Digital differential pressure metres that are used are capable of measuring in the range of 0 Pa to 2250 Pa with a sensitivity of ± 1 Pa. The instrument is checked for physical damage, battery life test and calibration status observed.

Nozzles-All nozzles used have been constructed in accordance with EN13284-1 and ISO 9096:2003. Each nozzle is physical checked for damage and removed if necessary. The nozzle calibration status is observed.

Flow metre-The flow metre is checked for blockages and obvious physical damage. Its calibration status is also observed.

Rope kit-All lifting tackle is physical checked for cuts and contamination.

Laboratory-The gravimetric testing house selected is UKAS accredited for the particular test method.

2.5.1.2 Filter selection and preparation

Stack conditions can vary for temperature, moisture, acidity, low and heavy particulate loading. Following the pre-site survey, the stack condition should be known and the appropriate filter can be selected and prepared as described below.

Filter mediums-glass wool, quartz wool, Low ash PVC membranes and a range of thimbles can be used depending on stack characteristics. Quartz filters were used in this instance as glass fibre filters can react to SO_3 and lead to overweight measurement.

Filters are prepared by drying in an oven at 180[°]C for a period of 1 hour and placed in a dessicator to cool. The filters are weighed accurately on a 4-figure balance and then placed in clean filter holder before transport to site. Spare filters are also prepared.

2.5.2 Sampling location

2.5.2.1 Suitability of sampling location

Before sampling can commence, a preliminary velocity and temperature survey must be undertaken along the two sampling lines at nine equally concentric spaced areas in the stack. This is performed in accordance with ISO10780:1994. The procedures as set out in *Section 2.1* were followed. The stack diameter is measured using a steel rod. The angle of gas flow must be less than 15° with regard to duct axis. There should be no local negative flow. The minimum velocity should be larger than 5 Pa for Pitot tube measurement. Sampling is undertaken from either four or eight sampling points on each plane. Sampling points shall be located either more than 3% of the sampling line length or more than 5 cm whichever is the greater value from the inner wall. If the ratio of the highest to the lowest dynamic pressure exceeds 9:1 of the ratio of the highest to lowest gas velocity exceeds 3:1, another sampling plane should be used. Sampling is undertaken from either four sampling points on each plane. Temperature is also measured at nine equally spaced points along the sampling line and average temperature calculated during the initial survey. Should the temperature at any of the sampling points differ by more that $\pm 10\%$ from that of the average, then that point must not be used.

The required number of sampling points can now be calculated using the following:

8 point sampling on two planes, circular stacks 0.067 X D, 0.25 X D, 0.75 X D, 0.933 X D.

2.5.2.2 Leak checks

A leak check is undertaken before and after the isokinetic sampling is carried out. This is to make sure that all intake volume is through the sampling nozzle only.

2.5.2.3 Sampling

Once the isokinetic sampling flow rates have been calculated, the probe is inserted into the stack at 90° to the stack gas flow, as not to impinge any particulate matter on to the filter media prior to sampling. The filter head is allowed to attain stack temperature. The pump is started and the nozzle is turned into the flow and the timing device is started (automatic on TCR Tecora kit).

2.5.2.4 Duration of sampling

Duration of sampling time depends on:

• Ensuring adequate quantities of particulate matter on the filter for weighing (> 0.3% of the filter weight),

- Whether cumulative or incremental sampling is undertaken,
- The number of sampling points,
- The continuity of the plant operation.

2.5.2.5 Cumulative sampling

After the first sample is taken from the first sampling location, the probe is moved to the next position and the values recorded. This should be performed until all sampling points have been used. Sampling is continued till all locations are sampled.

2.5.2.6 Repeat Velocity and temperature readings.

Since the TCR Tecora is an automatic system, continuous velocity and temperature readings are carried out using the instrument. All data is stored upon the on board computer and recorded following the sampling event. The % DI (deviation) is also computed and recorded continuously.

2.5.2.7 Weighing of the sample

When finished, the sample filter is placed in its container and all particulate from the filter head is added to the particulate matter on the filter (i.e. filter wash).

The used filter is placed in an over at 160° C for at least 1 hour and dried thoroughly, cooled and equilibrated is a dessicator and weighed as quickly as possible so as to avoid any errors to moisture. The gross weight of the filter should be measured to within ± 0.01 to 0.10 mg. The filter weight and any of the residual particulate matter from the filter head can then be used in the final report to calculate the particulate concentration.

2.6 Hydrogen chloride (HCL) and Hydrogen fluoride (HF) analysis

Volatile chloride and fluoride gas concentrations were determined using an impinger train containing 0.10 molar sodium hydroxide and deionised water solution, in which such gases are readily soluble. The sampling methodology was based upon USEPA Method 26 and the European Standard, EN 1911. Small sorption liquid volumes were used to attain lower limits of detection. Impingers were placed in series to ensure effective trapping of chloride and fluoride gas concentrations.

The sampling probe was placed within the stack and sample air was drawn through a heated sample line and two glass midget impingers containing 0.10 molar Sodium hydroxide positioned in series. Sampled solutions were sealed and transported to the UKAS accredited laboratory for analysis via ion chromatography (RPS Analytical laboratory, Manchester, UK). The results of mg/m³ have been converted to mg Nm⁻³ at 273.15 K, 101.3 kPa.

2.7 Total Sulphur, chlorine and fluorine

Total Sulphur, chlorine and fluorine concentrations were monitored using an impinger train containing 0.10 molar sodium hydroxide and deionised water solution, in which such gases are readily soluble. Analysis of the impingement solution was performed using ion chromatography and ion selective electrode. The results of hydrogen chloride and hydrogen fluoride are presented in *Tables 3.2*. The results of mg/m³ have been converted to mg/Nm³ at 273.15 K, 101.3 kPa.

3. Results-Emission testing.

This section will present the results of the monitoring exercise.

3.1 Sampling time

Table 3.1 summarises the sampling times for stack monitoring. *Table 3.2* illustrates the inlet landfill gas parameters as characterised from the CEMS analyser system operating within the landfill flare control building. In addition, manual monitoring was performed using a GA2000 landfill gas analyser. The total volume of landfill gas utilised by the landfill flare during monitoring was 534 m³/hr.

All outlet gas samples were taken approximately 1.20 metres below the top of the stack for the landfill flare and approximately 0.35 metres for TV01. All sampling was performed through the existing 25mm and 100 mm sampling ports on the landfill flare and gas utilisation engine, respectively. A one-plane oxygen and temperature traverse was performed to assess any difference in oxygen concentrations and temperature across the sampling plane. Temperature and Oxygen differences were less than the 15% deviation level as recommended by the UK Environmental Agency (Guidance for monitoring enclosed Landfill flares, 2002).

3.2 Volumetric flow rate results

Sampling for airflow rate was not performed in accordance with EN13284-1:2002 due to sample port position and access restrictions on the landfill flare. *Table 3.3* summarises the theoretical airflow rate calculations for the Landfill gas flare. The data obtained for the one gas utilisation engines was measured using a pitot manometer. *Tables 3.4 to 3.5* includes the stack velocity, expressed in metres per second (m/s) and exhaust volumetric airflow rate expressed in m³/hr at both actual and standard reference conditions of 273.15 K, 101.3 kPa (i.e. standard temperature and pressure).

3.3 Flue gas concentration results

Flue gas concentrations were monitored using a pre-calibrated Testo 350/454 MXL flue gas analyser. The results of SO₂, NO_x as NO₂ + NO, CO, and O₂ are presented in *Tables 3.4 to 3.5*. The results of ppm have been converted to mg Nm⁻³ at 273.15 K, 101.3 kPa, on a dry gas basis with correction for oxygen content. In accordance with EPA flare/gas utilisation engine monitoring requirements, Oxygen correction to 3% and 5% should be performed for landfill gas flares and gas utilisation engines, respectively. The average temperature of the gas analyser on the day of sampling was 284.15 K.

3.4 Total hydrocarbon concentration (THC) results

THC concentrations were monitored using a pre-calibrated FID analyser. The results of THC are presented in *Tables 3.4 to 3.5.* The results of ppm have been converted to mgC/Nm³ at 273.15 K, 101.3 kPa, with correction for oxygen content. Conversion from ppm to mgC/Nm³ was performed using a 1.60 multiplication factor for propane. In accordance with EPA monitoring requirements, Oxygen correction to 5% should be performed for gas utilisation engines. The average temperature of the FID on the day of sampling was 454 K.

3.5 Total non-methane volatile organic compound (TNMVOC) results

Table 3.5 illustrates the results of the continuous non-methane volatile organic compounds (TNMVOC) the monitoring locations. The monitoring of TNMVOC was performed using a TNMVOC hydrocarbon cutter and a continuous monitoring Flame ionisation detector operated in accordance with EN13526:2002 and using sorbent tube analysis by GCMS. The monitoring

of THC will provide the total hydrocarbon concentration including any propane or methane fraction within the airstream. The use of a hydrocarbon cutter facilitates the removal of the methane and propane fraction from the airstream and the presented results therefore consist of the non-methane fraction only.

3.6 Total particulates

Total Particulates concentrations were monitored using a TCR Tecora Particulate sampling train. The results of Total Particulates are presented in *Tables 3.5 to 3.8.* The results of mg/m³ have been converted to mg/Nm³ at 273.15 K, 101.3 kPa, with correction for oxygen content. In accordance with EPA gas utilisation engine monitoring requirements, Oxygen correction to 5% should be performed for gas utilisation engines.

3.7 Hydrogen chloride (HCL) and Hydrogen fluoride (HF)

Hydrogen chloride and hydrogen fluoride concentrations were monitored using an impinger train containing 0.10 molar sodium hydroxide and deionised water solution, in which such gases are readily soluble. The results of hydrogen chloride and hydrogen fluoride are presented in *Tables 3.4 to 3.8*. The results of mg/m³ have been converted to mg/Nm³ at 273.15 K, 101.3 kPa, with correction for oxygen content. In accordance with EPA flare/gas utilisation engine monitoring requirements, Oxygen correction to 3% and 5% should be performed for landfill gas flares and gas utilisation engines, respectively.

3.8 Total Sulphur, chlorine and fluorine

Total Sulphur, chlorine and fluorine concentrations were monitored using an impinger train containing 0.10 molar sodium hydroxide and deionised water solution, in which such gases are readily soluble. Analysis of the impingement solution was performed using ion chromatography and ion selective electrode. The results of Total sulphur, hydrogen chloride and hydrogen fluoride are presented in *Tables 3.2.* The results of mg/m³ have been converted to mg/Nm³ at 273.15 K, 101.3 kPa.

Table 3.1. Sampling time runs on the 18th November 2010 for monitoring of landfill flare and 1 gas utilisation engine.

Parameter	Approx. Sampling period for 1 landfill flare	Approx. Sampling period for one gas utilisation engine
Inlet CH ₄	45 minutes	40 minutes
Inlet O ₂	45 minutes	40 minutes
Inlet Total sulphur, chlorine and fluorine	45 minutes	-
Volumetric air flow rate	Theoretically calculated	Manually calculated
SO ₂	45 minutes	45 minutes
NO _x	45 minutes	45 minutes
CO	45 minutes	45 minutes
O ₂	45 minutes	45 minutes
CO ₂	45 minutes	45 minutes
Stack gas temp	45 minutes	45 minutes
THC/TOC	45 minutes	45 minutes
Particulates	-	45 minutes
TNMVOC	-	45 minutes

Table 3.2. Characteristics of raw inlet gas to one enclosed Landfill flare gas burner and 1 No.Gas utilisation engine.

Inlet compound identity	Compound Loading Landfill Gas engine 1 and Landfill flare	Unit values
CH ₄	43.1	%
CO ₂	28	%
O ₂	0.4	%
Total Landfill gas volumetric airflow rate	673	m³/hr
Total Sulphur	48	mg/Nm ³
Total Chlorine	9	mg/Nm ³
Total Fluorine	0.45	mg/Nm ³

Table 3.3. Theoretically calculated landfill gas exhaust volume and physical characteristics from the Landfill flare.

Parameter	Enclosed flare
Total Volumetric methane loading (m ³ /hr)	290
Total Volumetric Oxygen loading (m ³ /hr)	2.6
Ratio to complete combustion of methane assuming no excess Oxygen	9.57
Oxygen concentration level in flue gas (%)	5.88
Flue gas temperature (Kelvin) ²	1318
Theoretical calculated Volumetric exhaust airflow rate (m ³ /h)	4,795
Normalised average exhaust airflow rate (Nm ³ h ⁻¹) ³	993

Notes: ¹ denotes data from 18th November 2010. ² denoted converted from degrees Celsius to Kelvin (⁰C + 273.15); ³ denotes normalised to 273.15 Kelvin and 101.3 kPa.

Landfill Flare No. 1	Conc.	Units	Adjusted units (mg/m ³)	Emission conc (mgN/m³)	Oxygen corrected emission conc for flare to 3% (mgN/m ³) ¹	Mass emission rate (kg/hr)	Emission limit Values
TOC	2	mgC/m ³	3.20	3.20	3.81	0.015	<10 mg/Nm ³
HCL	2.45	mg/m ³	2.45	3.35	3.99	0.016	<50 mg/Nm ³ (at mass flow > 0.30 kg/hr)
HF	0.75	mg/m ³	0.75	1.02	1.22	0.004	<5 mg/Nm ³ (at mass flow > 0.050 kg/hr)
Temperature	1045	degrees	1318	-	-	-	>1273 K
CO	0	ppm	0	0	0	0	<50 mg/Nm ³
O ₂	5.88	%	5.88	-	-	-	-
Total NO _X as NO ₂	49	ppm	100	100	119	0.4	<150 mg/Nm ³
SO ₂	0	ppm	0	0	0	0	-
CO ₂	7.89	%	7.89	-	-	-	-
Volumetric airflow rate (Nm ³ /hr)	993	Nm ³ /hr	-	-		833	<3,000
Inlet Methane conc	208	mg/Nm ³	-	-	-	-	-
Methane destruction efficiency	>99	%	-	-	-	-	-

 Table 3.4. Emission value results for one landfill gas flare.

Notes: ¹ denotes refer to *Appendix II* for Oxygen correction calculations.

TV 01	Conc.	Units	Adjusted units (mg/m ³)	Emission conc (mgN/m ³)	Oxygen corrected emission conc to 5% engine (mgN/m ³) ¹	Mass emission rate (kg/hr)	Emission limit Values
TNMVOC ²	2.85	mg/m ³	4.56	4.56	5.01	0.015	² 20 mg/Nm ³ (at mass flow of 0.10 kg/hr)
Average THC	364	mg/m ³ [propane]	582	582	639	1.87	
HCL	2.65	mg/m ³	2.65	3.62	3.98	0.012	50 mg/Nm ³ (at mass flows >0.3 kg/hr)
HF	0.54	mg/m ³	0.54	0.74	0.81	0.002	5 mg/Nm ³ (at mass flows >0.05 kg/hr)
Temperature	453	degrees	726	-	-	-	
CO	448	ppm	560	560	615	1.80	<650 mg/Nm ³
O ₂	6.43	%	6.43	-	-	-	
Total NOx [as NO ₂]	215	ppm	441	441	485	1.42	<500 mg/Nm ³
SO ₂	0	ppm	0	0	0	0	
CO ₂	10.9	%	10.9	-	-	-	
Particulates	19.21	mg/m ³	19.21	39.38	43.28	0.127	<130 mg/Nm ³
Volumetric airflow rate (Nm ³ /hr)	3217	-	-	-	-	2928	<3,000
Inlet Methane conc	124	mg/Nm ³	-	-	-	-	-
Methane destruction eff	98.49	%	-	-	-	-	-

 Table 3.5. Emission value results for gas utilisation engine TV01.

Notes: ¹ denotes refer to *Appendix II* for Oxygen correction calculations. ² denotes limit values TA Luft Organics Class I 20 mg/m³ (at mass flows >0.1 kg/hr), Class II 100 mg/m³ (at mass flows >2 kg/hr), Class 150 mg/m³ (at mass flows >3 kg/hr)

4. Discussion of results

Tables 3.1 to *3.5* present the results of the emission monitoring carried out on the landfill flare stack burner and one utilisation engines located in Kinsale Rd Landfill, Ballyphehane, Curraghconway, Inchisarsfield, South City Link Road, Cork.

There was very little variation at one traverse in oxygen and flue gas temperature profiles across the stack during the monitoring exercise (i.e. less than 15% as recommended by the Environment Agency, UK (Environment Agency, 2002)).

A high temperature Inconel 625 and ceramic probe (Testo, Germany) was used to prevent variations in CO emissions data. Normal stainless steel probes when subjected to temperatures above 600°C can release CO from within the structure of the material and cause the recording of erroneous results (Environment Agency, 2002).

Correction of data to 3% & 5% oxygen was performed. Due to possible inaccuracies in airflow rate measurement, it was not possible to determine the oxygen intake of the flare through the louver system using measurement. Since the volume of intake air required for complete combustion was known and the oxygen concentration in the exhaust flue gas was known, the volume of intake excess fuel air could be theoretically calculated through numerous iterations using the Solver program (i.e. Microsoft Excel). This allows for the calculation of the volume of intake excess air through the louver landfill flare intake system. These calculations were validated through use of the published Environment Agency equation (see *Eqn 8.3.1*) (Environment Agency, 2002).

Landfill methane destruction efficiency was calculated using the inlet methane loading concentration and the exhaust total methane hydrocarbon concentration as presented in *Table 3.4.* As can be observed, the landfill flare is achieving a methane destruction efficiency of greater than 99%. Typical reported concentrations of methane from landfill flare burner systems are in the order of 0.040% to 0.52%. The complete combustion of methane results in the formation of CO_2 and H_2O . The incomplete combustion of methane results in the formation of CO. CO concentration levels was low in the flue gas of the landfill flare.

5. Conclusion

The following conclusions can be drawn from this study:

- 1. A theoretically exhaust flue gas volume was calculated for the landfill flare. Actual measurements were performed on the one gas utilisation engines TV01.
- 2. NO_x as NO₂, SO₂, CO, O₂, Particulates, TNMVOC, HCL/HF and THC monitoring and analysis was carried out in accordance with specified requirements.
- 3. All data was standardised to 273.15 Kelvin, 101.3 kPa;
- 4. All data is presented as Oxygen corrected to 3% and 5% (v/v) using the appropriate equations as presented in *Section 8.2*.
- 5. NO_x as NO₂, CO, Particulates, TOC, TNMVOC and HCL/HF in the exhaust gas of the gas utilisation engines were within the emission limit values contained in Waste licence WO12-03.
- 6. NO_x as NO₂, Carbon monoxide, TOC and HF/HCL emission concentrations from the landfill flare are in compliance with the emission limit values contained in Waste licence W012-03.

6. References

- 1. Environment Agency. (2002). Guidance for Monitoring Enclosed Landfill Gas Flares. <u>www.environment-agency.co.uk</u>
- 2. McVay, M., (2003). Personal communication. Environment Agency, Wales, UK.
- 3. ISO 10780, (1984). Stationary source emissions-Measurement of velocity and volume flow rate of gas streams in ducts.
- IS EN13526:2002-Stationary source emissions-Determination of the mass concentration of total gaseous organic carbon in flue gases from solvent using processes-Continuous flame ionisation detector method.
- IS EN12619:1999-Stationary source emissions-Determination of the mass concentration of total gaseous organic carbon at low concentrations in flue gases-Continuous flame ionisation detector method.
- I.S. EN13649:2002-Stationary source emissions-Determination of the mass concentration of individual gaseous organic compounds-Activated carbon and solvent desorption method.

7. Appendix I-Sampling, analysis and calculation details

7.1.1 Location of Sampling

Kinsale Rd Landfill, Kinsale Rd, Ballyphehane, Curraghconway, Inchisarsfield, South City Link Road, Cork

7.1.2 Date & Time of Sampling 18th November 2010

7.1.3 Personnel Present During Sampling Dr. John Casey, Odour Monitoring Ireland, Trim, Co. Meath.

7.1.4 Instrumentation

Testo 350 MXL/454 in stack analyser; Federal Method 2 S type pitot and MGO coated thermocouple; L type pitot tube Testo 400 handheld and appropriate probes. Ceramic and Inconel 625 sampling probes. TCR Tecora Iso-kinetic Particulate and gas sampling train Portable Signal 3030PM FID calibrated with Propane with non-methane hydrocarbon cutter. SKC sample pumps, Bios Primary calibrator and impinger trains.

7 OTHER INFORMATION

Information is attached for the following topics:

- 7.1 <u>Meteorological Data</u>
- 7.2 <u>Resource Consumption</u>
- 7.3 <u>Compost Report</u>

7.4	Landfill Gas Modelling Report –	Section A - Report	
		Section B - Calculations	
7.5	Water Balance Report -	Section A - Report	
		Section B - Calculations	
7.6	Groundwater Emissions Report -	Section A - Report	
		Section B - Calculations	
7.7	Location of Sampling Points for Asbestos Testing		

7.8 <u>Environmental Monitoring Locations</u>

Month	Wind Direction (degrees from north)	
Jan-10		232
Feb-10		218
Mar-10		198
Apr-10		193
May-10		210
Jun-10		250
Jul-10		239
Aug-10		267
Sep-10		227
Oct-10		225
Nov-10		241
Dec-10		227

Month	wind speed (kts)
Jan-10	9
Feb-10	9
Mar-10	10
Apr-10	8
May-10	8
Jun-10	8
Jul-10	9
Aug-10	9
Sep-10	9
Oct-10	9
Nov-10	10
Dec-10	9

Date	Total Rainfall (mm)
Jan-1	0 126
Feb-1	0 43
Mar-1	0 96
Apr-1	0 41
May-1	.0 47
Jun-1	0 47
Jul-1	0 137
Aug-1	0 17
Sep-1	0 78
Oct-1	0 121
Nov-1	0 86
Dec-1	0 67
Tot	al 905

Date	Max Temperature	Min Temperature	Average Temperature
Jan-10	5	1	2.3
Feb-10	6	1	3.4
Mar-10	9	3	5.9
Apr-10	12	5	9.6
May-10	14	7	13.3
Jun-10	18	11	17.1
Jul-10	18	12	16.9
Aug-10	18	11	17
Sep-10	16	11	14.3
Oct-10	13	7	10.7
Nov-10	8	3	6
Dec-10	4	0	2.1

Date	Relative Humidity %
Jan-10	90
Feb-10	85
Mar-10	83
Apr-10	82
May-10	78
Jun-10	82
Jul-10	88
Aug-10	80
Sep-10	89
Oct-10	89
Nov-10	92
Dec-10	90

Date	Mean Pressure (hPa)
Jan-10	1015
Feb-10	1004
Mar-10	1015
Apr-10	1019
May-10	1019
Jun-10	1018
Jul-10	1014
Aug-10	1016
Sep-10	1014
Oct-10	1011
Nov-10	1006
Dec-10	1016

Date	Potential Evapotranspiration (mm)
Jan-10	0.26
Feb-10	0.66
Mar-10	1.07
Apr-10	1.86
May-10	2.51
Jun-10	3.05
Jul-10	2.46
Aug-10	2.59
Sep-10	1.48
Oct-10	0.80
Nov-10	0.30
Dec-10	0.22

Date	Evaporation (mm)
Jan-10	0.38
Feb-10	0.97
Mar-10	1.68
Apr-10	2.79
May-10	3.68
Jun-10	4.43
Jul-10	3.66
Aug-10	3.73
Sep-10	2.19
Oct-10	1.19
Nov-10	0.46
Dec-10	0.30

7.2 **Resource Consumption**

Site machinery involved in operation of the facility during the reporting period involved the following plant: –

No. Tractor;
 no. rigid truck;
 No. Water Bowser; and
 No. tractor mounted Road Brush.
 no. jeeps.

1 no. shredder, 1 no. compost turner and 1 no. manitou (with front loader) also operated on site at the Green Waste & Timber shredding facility (operated by CTO Env. Ltd.)

During the period approximately 5,000 litres of fuel was consumed on site by Cork City Council machinery.

The electricity and telephone costs for the reporting period were €37,052 and €6,150 respectively.

The majority of electricity used throughout the period was for office / canteen / weighbridge accommodation, leachate conditioning plant and pumping system, public lighting and vehicle washing operations.

services

Environmental Science & Management Water,Soil & Air Testing Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.euroenv.ie email info@euroenv.ie

Customer	Aidan Stafford	Lab Report Ref. No.	1336/001/03
	CTO Environmental Solutions	Date of Receipt	01/10/2010
	Rostellan	Date Testing Commenced	01/10/2010
	Midleton	Received or Collected	Delivered by Customer
	Co. Cork	Condition on Receipt	Acceptable
Customer PO		Date of Report	14/10/2010
Customer Ref	Kinsale Rd Aug 2010 29/9/10	Sample Type	Other

CERTIFICATE OF ANALYSIS

Test Parameter	· * •	SOP	Analytical Technique	Result	Units	Acc.
% Dry Matter		302	Drying @ 104 C	64.2	%	
% Organic Matter		127	Furnace 500C	55.9	%	
% Volatile Solids		310	Ashing @ 550 C	20.1	%	
Ammonia (Solid)		114	Colorimetry	6.77	mg/Kg as N	
Arsenic Solid (OES)		224	ICP-OES	3630	ug/Kg	
Ash		311	Ashing @ 550 C	44.1	%	
Cadmium Solid (OES)		224	ICP-OES	187.97	ug/Kg	
Carbon Nitrogen Ratio		124	Calculation	11.2	Ratio	
Chloride (Solid)		100	Colorimetry	15087.51	mg/Kg	
Chromium Solid (OES)		224	ICP-OES	7073	ug/Kg	
Conductivity (Solid)		112	Electrometry	1662	scm -1 @25C	
Copper Solid (OES)		224	ICP-OES	41667	ug/Kg	
E Coli (Solid)		157	Filtration/ Incubation 37C/ 24	600	no/100g	
Foreign Matter		126	2mm Dimension Sieve	23.5	%	
Lead Solid (OES)		224	ICP-OES	44747	ug/Kg	
Mercury (Solid)		178	ICPMS	36.9	ug/Kg	
Nickel Solid (OES)		177	ICP-OES	8961	ug/Kg	
Nitrogen (Total Kjeldahl) Solid	ł	104	Digestion/ Distillation/ Titrim	6410.88	mg/Kg as N	
pH (Solid)		110	Electrometry	8.0	pH Units	
Phosphate (Total) Solid		166	Digestion/ Colorimetry	765.207	mg/L as P	
Salmonella (Solid)		0	Filtration/ Incubation 37C/ 24	0	per 25g	
Sulphate (Solid)		119	Colorimetry	330.56	ng/Kg as SO4	
Zinc Solid (OES)		224	ICP-OES	129396	ug/Kg	

Signed : kur Que ()

Date : 14/10/10

Katherine McQuillan - Technical Manager

Acc. : Accredited Parameters by ISO 17025:2005

All organic results are analysed as received and all results are corrected for dry weight at 104 C Results shall not be reproduced, except in full, without the approval of EURO environmental services Results contained in this report relate only to the samples tested

* Subcontracted

Page 1 of 1

7.4 GAS MODEL

7.4.1 Introduction

Landfill Gas Modelling has been carried out using the Land GEM version 3.02. This is the US EPA approved model.

7.4.2 LandGem Input Data

The EPA have previously requested that specific default parameters be used at Kinsale Road Landfill, these are:

- potential methane generation capacity Lo = (inventory conventional) 100 m³/tonne
- methane generation rate k =0.04 year⁻¹ (inventory conventional)
- no known co-disposal (i.e. no hazardous waste)
- assumption that landfill gas generation is 50% methane 50% carbon dioxide by volume

The LandGEM model predictions suggest that 14,263,985 m³ of landfill gas was generated in 2010 by the landfill (14,218,909 m³ in 2009).

It should be noted that the model is designed for use as a gas *prediction* model only, and has limited capacity to generate an accurate and reliable estimate of landfill gas *generation* from landfill – particularly one as varied as Kinsale Road.

In order to estimate landfill gas generation and emissions to atmosphere, on-site data has been used. In 2010, the following quantities of landfill gas were utilised at the landfill gas compound operated by Bioverda Power Systems (formerly Irish Power Systems):

Engine Throughput	692,040 m ³
Flare Throughput	<u>5,475,000 m³</u>

Total Captured Gas 6,167,040 m³

Note: After calculating the Engine throughput for 2010 it was noted that the figure was the same for 2009. The figures were rechecked to eliminate the possibility of a calculation error – the result was the same and this is merely a coincidence.

For the purpose of this calculation, it is estimated that approximately 70% of landfill gas generated on site is captured, i.e. that 6,167,040 m³ represents 70% of the total generated volume. Therefore, it is estimated that approximately 8,810,057 m³ of landfill gas was generated by the landfill in 2010. This figure is less than the estimate given by the LandGEM model. Reasons for this may include:

- The model overestimates gas production.
- The capture rate figure of 70% is too high and that less gas is actually captured by the collection network.
- A greater quantity of gas was captured by the engines and flare than was recorded.
- The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGEM model.

7.4.3 Conclusion & Discussion

It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to atmosphere.

The following data inputs are estimates for which there is no available factual information:

- waste inputs from 1964 to late 1990's
- location of waste inputs during the period from 1964 to late 1990's
- volumes of waste under cap
- types of waste inputs
- operating efficiency of generators and gas collection system
- clay liner thickness and location across the site

Due to the number of assumptions made to complete the models, it is believed that the calculation carried out based on "on-site" data from the Bioverda Power Systems is more accurate.

Cork City Council

Landfill Gas Model Calculation 2010

Prepared for:

Cork City Council, KRSL, South Link Road, Cork

Revision: 0

Date: 11/01/11

Prepared by:

Fehily Timoney & Co. Core House, Pouladuff Road, Cork.

	DESIGNED:	AR	CHECKED:	0
F E H I L Y TIMONEY	DATE:	11/1/11	REVISION:	0
& COMPANY	JOB NUMBER:	LW11-01	1-01	
CONSULTANTS IN ENGINEERING & ENVIRONMENTAL SCIENCES	CALC NUMBER	Calc 01		
Cork : Tel 021-4964133 Fax 021-4964464	FILE			
		Q:\2011\LW11\011 Model\LW1101101_	\01\Calculations\2010 Gas Gas Model Calc Set 2010 R	lev A.xls

PROJECT:Cork City CouncilSHEETCoverDESCRIPTION:Landfill Gas Model Calculation 2010

				Page 1 of 7
Rev	Date	Purpose and Description	Prepared	Checked
Rev 0	Date 11-Jan-11	Purpose and Description The purpose of this calculation set is to prepare a gas model calculation (using the LandGem software package from the US EPA) for Kinsale Road Landfill for inclusion in the 2010 AER.	Prepared	Checked

PROJECT:	Cork City Council	
DESCRIPTION:	Landfill Gas Model Calculation 2010	
Ref.	Out Page 2 of 7	:put
i refere	ences	
	 Landgem-v302-guide by US EPA 2009 gas model calculations for Kinsale Road Landfill Q:\2010\LW10\011\01\Calculations\2009 Gas Model\LW1001101_Gas Model Calc Set 2009 Rev 0.pdf Bioverda Power Systems regarding on-site utilisation for 2010 2010 LandGem gas model Q:\2011\LW11\011\01\Calculations\2010 Gas Model\LW1101101_landgem-v302 KRLF 1964-2010.xls 	
ii List	of FTC Drawings	
iii List	of Appendices Chart 1 - Predicted LFG production volumes Appendix A - LandGEM model results	
1.0 In 2.0 In 2.1 V 2.2 M 2.2 2.2 3.0 Ca 3.1 I 3.2 I 4.0 Dis	troduction & Purpose put Data Vaste input data Addel Parameters. .1 Potential Methane Generation Capacity (Lo) .2 Non-methane Organic Compound Concentration .3 Methane Content Iculations LandGem Model Recorded Volumes scussion	

PROJECT	ECT: Cork City Council										
DESCRIP	CRIPTION: Landfill Gas Model Calculation 2010									FEHILY	
										& COMPANY	
Ref.										Output	
							Page	3 (of 7	7	
	1.0 Intr	oduction	& Purnose								
- 	The purp LandGer with the inclusion	oose of this n software on-site rea in the 201	Calc Set is package (p cords of uti 0 AER for th	to prepare roduced by lisation pro ne site.	a gas production the US EPA). vided by Biove	on model for The results erda, and pro	Kinsale Ro of this mo ovided to (ad Landfil del will be Cork City (l using the compared Council for	e 1 r	
	2.0 Inp	ut Data									
	Opening	Year:	1964								
	Closure	Year:	2009	(July 2009)						
-	2.1 Was	te input dat	ta								
-		to input do	to for the c	sito ic ac ch	own bolow. Th	acco figuros	are baced	on comm	unication	_	
2	me was with Cor	k City Cour	ncil and from	n previous d	alculations car	ried out by F	TC	on comm	lunications	5	
	Year	Input		Year	Input Units		Year	Input Un	its		
					$(t/y_{0,2}r)$			t/voor			
	1964	18,500		1982	53.000		2000	186.00	0		
	1965	18,900		1983	54,000		2001	201,00	0		
	1966	19,200		1984	57,000		2002	125,00	0		
	1967	19,600		1985	59,000		2003	125,00	0		
	1968	20,300		1986	61,000		2004	72,000			
	1969	20,500		1987	64,000		2005	61,000			
	1970	23,000		1980	67,000		2006	56 835			
	1972	25,900		1990	70,000		2007	65,932	,		
	1973	25,100		1991	70,000		2009	76,690)		
	1974	29,000		1992	80,000		2010	Ő			
	1975	32,000		1993	100,000						
	1976	35,000		1994	120,000						
	1977	38,000		1995	130,000						
	1978	41,000		1996	130,000						
	1980	47,000		1998	159,000						
	1981	50,000		1999	172,000						
-	Total wa	ste placed:		3,191,937	tonnes						
	Waste in	put for 200)9 is up to tl	he month o	f July only.						

PROJECT	•	Cork City Council			
DESCRIP	TION:	Landfill Gas Model Calculation 2010			FEHILY TIMONEY & COMPANY
Ref.			Page	4 of	Output 7
1	2.2 Mod	el Parameters			
	The Meti in the la then dec • Moi • Ava and c • pH • Ter The k va ^{1.} There conventi	nane Generation Rate, k, determines the rate of mandfill. The higher the value of k, the faster the ays over time. The value of k is primarily a function sture content of the waste mass, ilability of the nutrients for micro organisms that be arbon dioxide of the waste mass, and apperature of the waste mass. In the first-order decomposition rate are 5 k values given as options in LandGem. The provide and fills.	ethane generation for the methane generation ran on of four factors: reak down the waste to te equation, is in units of the default k value is the	ne mass of te increase form meth of 1/year, o CAA k vali	waste s and ane r year ue for
1	2.2.1 Po	tential Methane Generation Capacity (Lo)			
	The Pote placed in The defa the first megagra The defa	ntial Methane Generation Capacity, Lo, depends or a the landfill. The higher the cellulose content of ult Lo values used by LandGem are representative -order decomposition rate equation, is measured m to be consistent with the CAA. ult Lo value is the CAA Lo value for conventional la	nly on the type and com the waste, the higher of MSW. The Lo value d in metric units of c ndfills.	position of the value e, as it is us ubic metre	waste of Lo. sed in s per
1	2.2.2 No	n-methane Organic Compound Concentration			
	The NMC extent o NMOC c LandGer default i where c where c value. 1 infiltratio	DC Concentration in landfill gas is a function of the the reaction that produce various compounds from poncentration is measured in units of parts per min n only when NMOC emissions are being estimated s 4,000 ppmv as hexane. The NMOC Concentration po-disposal of hazardous waste has either not occo- po-disposal of hazardous waste has occurred. The f you use a site-specific value for NMOC concer- n.	ne types of waste in the m the anaerobic decomp illion by volume (ppmv) i. The NMOC concentra in for the Inventory def curred or is unknown default NMOC concent intration, then you mus	e landfill ar position of v) and is us ation for the ault is 600 and 2,400 ration is the st correct f	nd the vaste. ed by e CAA ppmv ppmv e CAA or air

PROJECT	: Cork City Council			ä 🍝	
DESCRIP	TION: Landfill Gas Model Calculation 2010				
Ref.		Page	5	of	Output 7
1	2.2.3 Methane Content				
	For LandGem, landfill gas is assumed to be 50 percent methane and with additional, trace constituents of NMOC's and other air pollutants complying with the CAA, methane content must remain fixed at 50 pe default value).	50 percer . When u rcent by v	nt cart sing La olume	on dioxic andGem f (the moo	le, for lel
	You can choose other methane amounts for the methane content using if data exist to support using another concentration. However, usin have methane content outside the range 40 to 60 percent is not rec decomposition rate equation used by LandGem to determine emission this range.) the User- g LandGer commendens may no	specifi n at la d. The t be v	ed selecti andfills th first-ord alid outsi	on at er de
	The production of methane is determined using the first-order decompost affected by the concentration of methane. However, the concentration calculated production of carbon dioxide. The production of carbon diox the production of methane (Q_{CH4}) and the methane content percentago overleaf.	oosition rai ation of m ide (Q _{CO2}) ge (P _{CH4}) ι	te equa ethane is calc ising th	ation and affects t ulated fro ne equati	is he om on
	$Q_{CO2} = Q_{CH4} \times \{ [1/(P_{CH4}/100)] - 1 \}$				
	This equation is derived as follows:				
	$Q_{\text{statel}} = Q_{CW4} + Q_{CO2}$				
	$Q_{CW4} = Q_{suss} \times (P_{CW4}/100)$				
	$\mathcal{Q}_{CO2} = \mathcal{Q}_{MAd} - \mathcal{Q}_{CH4} = \left[\mathcal{Q}_{CH4} / (P_{CH4} / 100)\right] - \mathcal{Q}_{CH4}$				
	$Q_{CO2} = Q_{CH4} \times \left\{ \left[\frac{1}{P_{CH4}} / 100 \right] - 1 \right\}$				
	where Q_{total} is the total production of landfill gas.				
	Where site specific data is available for the actual quantities of gas p calibrated by varying the parameters to match the predicted volume closely as possible.	produced, as to the a	the mo actual	odel can volumes	be as

Productify Cond City Council DESCRIPTION: Landfill Gas Model Calculation 2010 Image: Cond City Council City City Council City City City City City City City City	BB01507	-								
DESCRIPTION: Landfill Gas Model Calculation 2010 Ref. Page 7 of 7 Production Rates for: 2010 14,263,985 m ³ landfill gas = 1,628 m ³ /hr 7,131,993 m ³ methane = 814 m ³ /hr 3.2. Recorded Volumes Production Rates for: 2010 1,628 m ³ /hr 7,731,993 m ³ methane a 1,628 m ³ /hr 3.2. Recorded Volumes Previous AER's have compared recorded throughput volumes with the predicted volumes from the model. The recorded volumes have been provided by Bloverda and are as follows: Verimeter froughput froughput for volumes with the predicted volumes from the model. 2006 7,454,760 2,426,520 0,544,960 11,715,943 2,000 8,612,920 0,544,960 11,775,943 2,000 7,637,576 2,000 6,612,020 2,181,240 8,243,160 11,775,943 2,000 6,612,020 2,181,240 8,243,160 11,975,943 2,000 6,6	PROJECT	:	Cork City Council					🏠 🔔 🏠	\bigcirc	
Ref. Page 7 of powput Production Rates for:: 2010 14,263,985 m ³ landfill gas = 1,628 m ³ /hr 7,131,993 m ³ methane = 814 m ³ /hr 3.2 Recorded Volumes Previous AER's have compared recorded throughput volumes with the predicted volumes from the model. The recorded volumes have been provided by Bioverda and are as follows: Year (m ³ /anum) (m ³ /anum) (m ³ /anum) (m ³ /anum) 2006 7,454,760 2,426,520 9,881,280 14,116,114 2007 8,673,975 1,830,432 10,504,008 14,216,114 2008 6,661,920 2,181,240 8,243,160 11,775,943 2 1009 7,638,750 692,040 6,167,040 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 0.7 as per previous calculations. A colspan="2">A colspan="2">Output model may overestimate gas production • The model may overestimate	DESCRIP	TION:	Landfill Gas Mode	l Calculation 2010			1		FEHILY TIMONEY	
Page 7 of 7 Production Rates for: 2010 14,263,985 m ³ landfill gas = 1,628 m ³ /hr 7,131,993 m ³ methane = 814 m ³ /hr 3.2 Recorded Volumes Previous AER's have compared recorded throughput volumes with the predicted volumes from the model. Total Produced* Year Flare throughput Engine throughput volumes with the predicted volumes from the model. Total Produced* Year (m ² /annum) (m ² /annum) (m ² /annum) 2006 7,613,75 1,830,432 10,504,008 15,0037,725 2008 5,051,220 2,811,240 8,243,160 11,775,943 2001 7,633,750 632,040 8,310,790 11,901,129 2010 7,637,570 632,040 8,310,790 11,901,129 3 2010 7,637,570 632,040 8,310,790 11,901,129 *Assuming a capture rate of 70% assumed is too high, and the actual capture rate is for lower than this. <td< th=""><th>Ref.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Output</th></td<>	Ref.								Output	
Production Rates for: 2010 14,263,985 m³ landfill gas = 1,628 m³/hr 7,131,993 m³ methane = 814 m³/hr 3.2 Recorded Volumes Previous AER's have compared recorded throughput volumes with the predicted volumes from the model. The recorded volumes have been provided by Bioverda and are as follows: Year Furoughput Engine throughput Total Captured Total Produced* Vear Furoughput Total Captured Total Produced* Vear Furoughput Total Captured Total Produced* Vear Furoughput Total Captured Total Captured Total Produced* Vear Furoughput Total Captured Total Captured Total Produced* Vear Furoughput Total Captured Total Captured Total Captured Total Produced* Vear Furot Sate Producton <td cols<="" th=""><th></th><th></th><th></th><th></th><th></th><th>Page</th><th>7 of</th><th>7</th><th>7</th></td>	<th></th> <th></th> <th></th> <th></th> <th></th> <th>Page</th> <th>7 of</th> <th>7</th> <th>7</th>						Page	7 of	7	7
Production Rates for:2010 $14,263,985 m^3 landfill gas=1,628 m^3/hr7,131,993 m^3 methane=814 m^3/hr3.2 Recorded VolumesPrevious AER's have compared recorded throughput volumes with the predicted volumes from the model.The recorded volumes have been provided by Bioverda and are as follows:Year Chroughput Engine throughput Total Captured Total Produced*Year (m*/anum)$										
Production Rates for: 2010 $14,263,985$ m^3 methane= $1,628$ m^3/hr $7,131,993$ m^3 methane= 814 m^3/hr 3.2 Recorded Volumes Previous AER's have compared recorded throughput volumes with the predicted volumes from the model.The recorded volumes have been provided by Bioverda and are as follows: $\frac{var}{m}$ $\frac{m^3/annum}{m}$ $\frac{m^3/annum}{m^3/annum}$ $\frac{m^3/annum}{m^3/annum}$ 2006 $7,454,760$ $2,426,520$ $9,881,280$ $14,116,114$ 2007 $8,673,576$ $2,426,520$ $9,881,280$ $14,116,114$ 2009 $7,454,760$ $2,426,520$ $9,881,280$ $14,116,114$ 2009 $7,638,750$ $692,040$ $8,230,790$ $11,901,129$ 2009 $7,638,750$ $692,040$ $6,167,040$ $8,810,057$ * Assuming a capture rate of: 0.7 as per previous calculations. 4.0 Discussion The volumes of gas recorded on site are generally lower than those predicted by the LandGemmodel.This could be due to a number of reasons:• The model may overestimate gas production• The redure rate of 70% assumed is too high, and the actual capture rate is far lowerthat this.• A greater quantity of gas was captured by the engines and flare than was recorded.• The model may overestimate gas production• The model model.It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to the atmosphere.The f			D	2010						
14,263,985 m ⁻ landnil gas = 1,528 m ⁻ /nr 7,131,993 m ³ methane = 814 m ³ /hr 3.2 Recorded Volumes Previous AER's have compared recorded throughput volumes with the predicted volumes from the model. The recorded volumes have been provided by Bioverda and are as follows: Year Flare throughput Engine throughput Total Captured Total Produced ¹ (m ² /annum) (m ³ /a		Productio	on Rates for:	2010						
7,131,993 m ³ methane = 814 m ³ /hr 3.2. Recorded Volumes Previous AER's have compared recorded throughput volumes with the predicted volumes from the model. The recorded volumes have been provided by Bioverda and are as follows: Year (m ³ /annum) (m ³ /annum) (m ³ /annum) 2006 7,454,760 2,426,520 9,881,280 14,116,114 2007 8,673,576 18,30,432 10,504,008 15,005,726 2008 6,061,920 2,181,240 8,243,160 11,775,943 2010 5,475,000 692,040 6,167,040 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 4.00 Discussion The volumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: • The model may overestimate gas production • The model may overestimate gas production • The model may overestimate gas production • The model may overestimate gas production • The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. • The model may overestimate of gas was captured by the engines and flare than was recorded.				14,263,985 m ³ lar	ndfill gas	=	1,628 m ³ /ł	٦r		
3.2 Recorded Volumes Previous AER's have compared recorded throughput volumes with the predicted volumes from the model. The recorded volumes have been provided by Bioverda and are as follows: Year of volumes have been provided by Bioverda and are as follows: Year of volumes have been provided by Bioverda and are as follows: Year of volumes have been provided by Bioverda and are as follows: Year of volumes have been provided by Bioverda and are as follows: Year of volumes have been provided by Bioverda and are as follows: Year of volumes have been provided by Bioverda and are as follows: Year of volumes have been provided by Bioverda and are as follows: Year of volumes have been provided by Bioverda and are as follows: Year of volumes have been provided by Bioverda and are as follows: Year of volume have been provided by Bioverda and are as follows: Year of volume have been provided by Bioverda and are as follows: Year of volume have been provided by Bioverda and are as follow: Year of volume have been provided by Bioverda and are as production as participation of volume for assance of the set are generally lower than those predicted by the LandGem model. The model may oversetimate gas production Year				7,131,993 m³ me	ethane	=	814 m³/ł	٦r		
 3.2 Recorded Volumes Previous AER's have compared recorded throughput volumes with the predicted volumes from the model. The recorded volumes have been provided by Bioverda and are as follows: The recorded volumes have been provided by Bioverda and are as follows: The recorded volumes have been provided by Bioverda and are as follows: The recorded volumes have been provided by Bioverda and are as follows: The recorded volumes have been provided by Bioverda and are as follows: The recorded volumes for the resonance of the record of the recor										
Data Residuation Previous AER's have compared recorded throughput volumes with the predicted volumes from the model. The recorded volumes have been provided by Bioverda and are as follows: Year (m?/annum) (m?		3.2 Poc	orded Volumes							
Previous AER's have compared recorded throughput volumes with the predicted volumes from the model. The recorded volumes have been provided by Bioverda and are as follows: Flare throughput Engine throughput Total Captured Total Produced* Year (m2/annum) (m2/annum) (m2/annum) (m2/annum) 2006 7,454,760 2,426,520 9,881,280 14,116,114 2007 8,673,576 1,830,432 10,504,008 15,005,726 2008 6,061,920 2,181,240 8,243,160 11,775,943 2009 7,638,750 692,040 6,167,040 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 4.0 Discussion • The wolumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: • The model may overestimate gas production • The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. • A greater quantity of gas was captured by the engines and flare than was recorded. • The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methan		J.Z REC	orded volumes							
model. The recorded volumes have been provided by Bioverda and are as follows: Year Image: Introduct and the introduction of the interval of th		Previous	AER's have compar	ed recorded through	out volumes	with the predicte	d volumes fro	om the		
The recorded volumes have been provided by Bioverda and are as follows: Flare throughput Engine throughput Total Captured Total Produced* (m³/annum) (m³/annum) (m³/annum) 2006 7,454,760 2,426,520 9,881,280 14,116,114 2007 8,673,576 1,830,432 10,504,008 15,005,726 2008 6,661,920 2,181,240 8,243,160 11,075,943 2009 7,638,750 692,040 8,330,790 11,901,129 2010 5,475,000 692,040 6,167,040 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 4.0 Discussion The wolumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: • The model may overestimate gas production • The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. • A greater quantity of gas was captured by the engines and flare than was recorded. • The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to the atmosphere. The following data inputs are estimates for which there is no available factual information: • Waste input records from 1964 to the late 1990s • Location of waste inputs ore uppeare and gas collection system <		model.								
Flare throughput Engine throughput Total Captured Total Produced* Year (m³/annum) (m³/annum) (m³/annum) (m³/annum) 2006 7,454,760 2,426,520 9,881,280 14,116,114 2007 8,673,575 1,830,432 10,504,008 15,005,726 2008 6,061,920 2,181,240 8,243,160 11,775,943 2010 5,475,000 692,040 6,167,040 8,310,057 *Assuming a capture rate of: 0.7 as per previous calculations. 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. . *The wolumes of gas recorded on site are generally lower than those predicted by the LandGem model. The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. • The model may overestimate gas production • The capture rate of 70% assumed by the engines and flare than was recorded. • The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. . It is not realistic to expect a model with so many estimated input values to predict accurately the volumes an		The reco	rded volumes have	been provided by Bio	verda and a	are as follows:				
Flare throughput Engine throughput Total Captured Total Produced* Year (m³/annum) (m³/annum) (m³/annum) (m³/annum) 2006 7,454,760 2,426,520 9,881,280 14,116,114 2007 8,673,576 1,830,432 10,504,008 15,005,726 2008 6,661,920 2,181,240 8,243,160 11,775,943 2010 5,475,000 692,040 6,167,040 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 8,810,057 *Assuming a capture rate of: 0.7 de gastripadid astripadid astripadid astripadid astripadid astripadi										
Year (m2/annum) (m2/annum) (m2/annum) (m2/annum) 2006 7,454,760 2,426,520 9,881,280 14,116,114 2007 8,673,576 1,830,432 10,504,008 15,005,726 2008 6,061,920 2,181,240 8,243,160 11,797,543 2009 7,638,750 692,040 8,330,790 11,901,129 3 2010 5,475,000 692,040 6,167,040 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 4.0 Discussion The volumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: The model may overestimate gas production The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. A greater quantity of gas was captured by the engines and flare than was recorded. The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to the atmosphere. The following data inputs are estimates for which there is no available factual information: Waste input records from 1964 to the late 1990s Location of waste inputs over the years Total volume of waste under capped areas			Flare throughpu	t Engine throug	hput T	otal Captured	Total Proc	uced*		
2006 7,434,760 2,426,520 9,881,280 14,116,114 2007 8,673,576 1,830,432 10,504,008 15,005,726 2008 6,061,920 2,181,240 8,243,160 11,775,943 2 2010 5,475,000 692,040 6,167,040 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 4.0 Discussion The volumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: • The model may overestimate gas production • The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. • A greater quantity of gas was captured by the engines and flare than was recorded. • The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to the atmosphere. The following data inputs are estimates for which there is no available factual information: • Waste input records from 1964 to the late 1990s • Location of waste under capped areas • Types of waste inputs • Operating efficiency of generators and gas collection system		Year	(m ³ /annum)	(m³/annun	n)	(m ³ /annum)	(m³/ani	num)		
 2007 8,673,576 1,830,432 10,908 13,008,126 2008 6,061,920 2,181,240 8,243,160 11,775,943 2 2009 7,638,750 692,040 8,330,790 11,901,129 3 2010 5,475,000 692,040 6,167,040 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 4.0 Discussion The volumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: The model may overestimate gas production The model may overestimate gas production The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. A greater quantity of gas was captured by the engines and flare than was recorded. The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to the atmosphere. The following data inputs are estimates for which there is no available factual information: Waste input records from 1964 to the late 1990s Location of waste inputs over the years Total volume of waste under capped areas Types of waste inputs Operating efficiency of generators and gas collection system Due to the number of assumptions that were necessary to prepare the LandGem model, it is believed that the calculation carried out based on "on-site" data from Bioverda is the more accurate estimate of gas production at the site.		2006	7,454,760	2,426,520		9,881,280	14,116,	,114		
2008 6,061,920 2,181,240 6,243,160 11,77,943 2 2010 5,475,000 692,040 6,167,040 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 4.0 Discussion The volumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: • The model may overestimate gas production • The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. • A greater quantity of gas was captured by the engines and flare than was recorded. • The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to the atmosphere. The following data inputs are estimates for which there is no available factual information: • Waste input records from 1964 to the late 1990s • Location of waste under capped areas • Types of waste inputs • Operating efficiency of generators and gas collection system Due to the number of assumptions that were necessary to prepare the LandGem model, it is believed that the calculation carried out based on "on-site" data from Bioverda is the more accurate estimate of gas production at the site. <td></td> <td>2007</td> <td>8,6/3,5/6</td> <td>1,830,432</td> <td></td> <td>10,504,008</td> <td>15,005,</td> <td>,726</td> <td></td>		2007	8,6/3,5/6	1,830,432		10,504,008	15,005,	,726		
 2 2009 7,338,750 b92,040 6,167,040 8,810,057 *Assuming a capture rate of: 0.7 as per previous calculations. 4.0 Discussion The volumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: The model may overestimate gas production The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. A greater quantity of gas was captured by the engines and flare than was recorded. The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to the atmosphere. The following data inputs are estimates for which there is no available factual information: Waste input records from 1964 to the late 1990s Location of waste inputs over the years Total volume of waste under capped areas Types of waste inputs Operating efficiency of generators and gas collection system Due to the number of assumptions that were necessary to prepare the LandGem model, it is believed that the calculation carried out based on "on-site" data from Bioverda is the more accurate estimate of gas production at the site. 	2	2008	6,061,920	2,181,240		8,243,160	11,//5,	,943		
 S 2010 5,475,000 592,040 5,707,040 5,510,057 *Assuming a capture rate of: 0.7 as per previous calculations. 4.0 Discussion The volumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: The model may overestimate gas production The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. A greater quantity of gas was captured by the engines and flare than was recorded. The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to the atmosphere. The following data inputs are estimates for which there is no available factual information: Waste input records from 1964 to the late 1990s Location of waste inputs Operating efficiency of generators and gas collection system Due to the number of assumptions that were necessary to prepare the LandGem model, it is believed that the calculation carried out based on "on-site" data from Bioverda is the more accurate estimate of gas production at the site. 	2	2009	7,038,750	692,040		8,330,790	11,901,	,129		
 Assuming a captule rate of. O.7 as per previous calculations. 4.0 Discussion The volumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: The model may overestimate gas production The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. A greater quantity of gas was captured by the engines and flare than was recorded. The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to the atmosphere. The following data inputs are estimates for which there is no available factual information: Waste input records from 1964 to the late 1990s Location of waste inputs over the years Total volume of waste inputs Operating efficiency of generators and gas collection system Due to the number of assumptions that were necessary to prepare the LandGem model, it is believed that the calculation carried out based on "on-site" data from Bioverda is the more accurate estimate of gas production at the site. 	3	2010	5,475,000	092,040		0,107,040	0,010,0	057		
 4.0 Discussion The volumes of gas recorded on site are generally lower than those predicted by the LandGem model. This could be due to a number of reasons: The model may overestimate gas production The capture rate of 70% assumed is too high, and the actual capture rate is far lower than this. A greater quantity of gas was captured by the engines and flare than was recorded. The methane concentration in the gas being utilised is greater than the 50% assumed by the LandGem model. It is not realistic to expect a model with so many estimated input values to predict accurately the volumes and tonnages of landfill gas generated and methane emitted to the atmosphere. The following data inputs are estimates for which there is no available factual information: Waste input records from 1964 to the late 1990s Location of waste inputs Operating efficiency of generators and gas collection system Due to the number of assumptions that were necessary to prepare the LandGem model, it is believed that the calculation carried out based on "on-site" data from Bioverda is the more accurate estimate of gas production at the site. 		Assumi	ng a capture rate of	. 0.7 as per	previous ca					
		4.0 Disc The volu model. T It is not volumes The follo Due to t believed estimate	 cussion imes of gas records This could be due to The model may or The capture rate of than this. A greater quantity The methane control the LandGem mode realistic to expect a and tonnages of lar wing data inputs are Waste input recor Location of waste Total volume of w Types of waste in Operating efficien the number of assist that the calculation of gas production a 	ed on site are gener a number of reasons verestimate gas prod of 70% assumed is to y of gas was captured centration in the gas el. a model with so man adfill gas generated a e estimates for which ds from 1964 to the inputs over the year vaste under capped a puts cy of generators and umptions that were carried out based on t the site.	rally lower s: luction bo high, and d by the eng being utilise hy estimated nd methane there is no late 1990s s reas gas collecti necessary "on-site" d	than those predic I the actual captur gines and flare tha ed is greater than I input values to p e emitted to the at available factual i on system to prepare the L ata from Bioverda	ted by the L e rate is far l n was recorded the 50% asso predict accura mosphere. nformation:	andGem ower ed. umed by ately the del, it is accurate		

Fehily Timoney Company

Core House Pouladuff Road Cork Ireland

Q:\2011\LW11\011\01\Calculations\2010 Gas Model\LW1101101_Gas Model Calc Set 2010 Rev A.xls App A - Results

Appendix A (Gas Model Results)

		Land	Gem		Cumulative	Cumulative	
Year	Landfill Gas	Methane	Landfill Gas	Methane	LFG	Methane	Year
	m ³ /annum	m ³ /annum	m³/hr	m³/hr	m ³	m ³	
1964	0	0	0	Ó	0	0	1964
1965	145,369	72,685	16.59	8.30	145,369	72,685	1965
1966	288,182	144,091	32.90	16.45	433,551	216,776	1966
1967	427,752	213,876	48.83	24.42	861,303	430,652	1967
1968	564,993	282,496	64.50	32.25	1,426,296	713,148	1968
1969	702.352	351,176	80.18	40.09	2,128,649	1.064.324	1969
1970	835,898	417,949	95.42	47.71	2,964,547	1,482,273	1970
1971	983.851	491,926	112.31	56.16	3,948,398	1.974.199	1971
1972	1,110,288	555,144	126.75	63.37	5,058,686	2,529,343	1972
1973	1.270.270	635,135	145.01	72.50	6.328.956	3,164,478	1973
1974	1.417.693	708.847	161.84	80.92	7,746,649	3.873.325	1974
1975	1.589.981	794,990	181.50	90.75	9,336,630	4.668.315	1975
1976	1.779.087	889.543	203.09	101.55	11.115.717	5.557.859	1976
1977	1.984.351	992,176	226.52	113.26	13,100,068	6.550.034	1977
1978	2,205,140	1.102.570	251.73	125.86	15.305.208	7.652.604	1978
1979	2,440,845	1.220.423	278.64	139.32	17.746.054	8.873.027	1979
1980	2,690,882	1.345.441	307.18	153.59	20,436,936	10.218.468	1980
1981	2,954,688	1,477,344	337.29	168.65	23,391,624	11.695.812	1981
1982	3,231,723	1.615.862	368.92	184.46	26.623.347	13,311,673	1982
1983	3,521,469	1.760.735	401.99	201.00	30,144,816	15.072.408	1983
1984	3,807,712	1,903,856	434.67	217.34	33,952,529	16.976.264	1984
1985	4,106,305	2.053.152	468.76	234.38	38.058.833	19.029.417	1985
1986	4 408 905	2 204 452	503 30	251.65	42 467 738	21 233 869	1986
1987	4 715 355	2 357 678	538.28	269 14	47 183 093	23 591 547	1987
1988	5 033 363	2 516 682	574 58	287.29	52 216 457	26 108 228	1988
1989	5 362 475	2,681,238	612 15	306.08	57 578 932	28,789,466	1989
1990	5.678.683	2,839,341	648.25	324.13	63,257,615	31,628,807	1990
1991	6,006,065	3,003,032	685.62	342.81	69,263,679	34,631,840	1991
1992	6.320.610	3,160,305	721.53	360.77	75,584,290	37,792,145	1992
1993	6 701 400	3 350 700	765.00	382 50	82 285 690	41 142 845	1993
1994	7,224,415	3,612,208	824.70	412.35	89,510,105	44,755,052	1994
1995	7 884 079	3 942 039	900.01	450.00	97 394 183	48 697 092	1995
1996	8,596,454	4.298.227	981.33	490.67	105,990,638	52,995,319	1996
1997	9,280,897	4,640,449	1.059.46	529.73	115,271,535	57.635.767	1997
1998	10.017.081	5.008.541	1,143,50	571.75	125,288,616	62,644,308	1998
1999	10 873 697	5 436 849	1 241 29	620.64	136 162 313	68 081 157	1999
2000	11,798,876	5,899,438	1.346.90	673.45	147,961,189	73,980,595	2000
2000	12,797,788	6.398.894	1,460,93	730.47	160,758,977	80.379.488	2000
2002	13,875,398	6,937,699	1.583.95	791.97	174.634.375	87,317,188	2002
2003	14,313,562	7,156,781	1,633,97	816.98	188,947,937	94 473 969	2003
2004	14.734.545	7.367.273	1.682.03	841.01	203.682.482	101.841.241	2004
2005	14 722 557	7 361 279	1 680 66	840 33	218 405 040	109 202 520	2005
2005	14 624 604	7 312 302	1 669 48	834 74	233 029 644	116 514 822	2005
2007	14.377.105	7,188,553	1.641.22	820.61	247 406 749	123,703,375	2007
2008	14,259,970	7,129,985	1.627.85	813.93	261,666,719	130,833,359	2008
2009	14,218,909	7,109,455	1.623.16	811.58	275.885.628	137,942,814	2009
2010	14,263,985	7,131,993	1.628.31	814.15	290,149,613	145.074.806	2010
2011	13,704,686	6.852.343	1.564.46	782.23	303.854.299	151,927,149	2011
2012	13,167,318	6.583.659	1.503.12	751.56	317,021,617	158,510,808	2012
2013	12,651,020	6.325.510	1,444.18	722.09	329,672,637	164,836,318	2013
2014	12,154,966	6.077.483	1.387.55	693.78	341,827,603	170,913,801	2014
2015	11,678,363	5,839,182	1.333.15	666.57	353,505,966	176,752,983	2015
2016	11,220,448	5.610.224	1,280.87	640.44	364,726,414	182,363,207	2016
2017	10,780,488	5,390.244	1,230.65	615.32	375,506.902	187,753,451	2017
2018	10,357,779	5.178.889	1,182,39	591.20	385,864,681	192,932,341	2018
2019	9.951.645	4,975,822	1.136.03	568.02	395.816.326	197,908,163	2019
2020	9,561,435	4,780,718	1.091.49	545.74	405.377.761	202,688,880	2020
2021	9 186 526	4 593 263	1 048 69	524 35	414 564 287	207 282 143	2021

		Land	Gem		Cumulative	Cumulative	
Year	Landfill Gas	Methane	Landfill Gas	Methane	LFG	Methane	Year
	m ³ /annum	m ³ /annum	m³/hr	m³/hr	m³	m³	
2022	8,826,317	4,413,159	1,007.57	503.79	423,390,604	211,695,302	2022
2023	8,480,232	4,240,116	968.06	484.03	431,870,836	215,935,418	2023
2024	8,147,718	4,073,859	930.10	465.05	440,018,553	220,009,277	2024
2025	7,828,241	3,914,120	893.63	446.82	447,846,794	223,923,397	2025
2026	7,521,291	3,760,646	858.59	429.30	455,368,086	227,684,043	2026
2027	7,226,377	3,613,189	824.93	412.46	462,594,463	231,297,231	2027
2028	6,943,027	3,471,513	792.58	396.29	469,537,490	234,768,745	2028
2029	6,670,787	3,335,393	761.51	380.75	476,208,277	238,104,138	2029
2030	6,409,222	3,204,611	731.65	365.82	482,617,498	241,308,749	2030
2031	6,157,912	3,078,956	702.96	351.48	488,775,411	244,387,705	2031
2032	5,916,457	2,958,229	675.39	337.70	494,691,868	247,345,934	2032
2033	5,684,470	2,842,235	648.91	324.46	500,376,338	250,188,169	2033
2034	5,461,578	2,730,789	623.47	311.73	505,837,916	252,918,958	2034
2035	5,247,427	2,623,713	599.02	299.51	511,085,343	255,542,671	2035
2036	5,041,672	2,520,836	575.53	287.77	516,127,015	258,063,508	2036
2037	4,843,985	2,421,993	552.97	276.48	520,971,001	260,485,500	2037
2038	4,654,050	2,327,025	531.28	265.64	525,625,051	262,812,525	2038
2039	4,471,562	2,235,781	510.45	255.23	530,096,613	265,048,306	2039
2040	4,296,230	2,148,115	490.44	245.22	534,392,843	267,196,421	2040
2041	4,127,772	2,063,886	471.21	235.60	538,520,615	269,260,307	2041
2042	3,965,920	1,982,960	452.73	226.37	542,486,535	271,243,267	2042
2043	3,810,414	1,905,207	434.98	217.49	546,296,949	273,148,474	2043
2044	3,661,005	1,830,503	417.92	208.96	549,957,954	274,978,977	2044
2045	3,517,455	1,758,728	401.54	200.77	553,475,410	276,737,705	2045
2046	3,379,534	1,689,767	385.79	192.90	556,854,944	278,427,472	2046
2047	3,247,021	1,623,510	370.66	185.33	560,101,964	280,050,982	2047
2048	3,119,703	1,559,852	356.13	178.07	563,221,667	281,610,834	2048
2049	2,997,378	1,498,689	342.17	171.08	566,219,045	283,109,523	2049
2050	2,879,849	1,439,924	328.75	164.37	569,098,894	284,549,447	2050
2051	2,766,928	1,383,464	315.86	157.93	571,865,822	285,932,911	2051
2052	2,658,436	1,329,218	303.47	151.74	574,524,258	287,262,129	2052
2053	2,554,197	1,277,098	291.57	145.79	577,078,455	288,539,227	2053
2054	2,454,045	1,227,023	280.14	140.07	579,532,500	289,766,250	2054
2055	2,357,821	1,1/8,910	269.16	134.58	581,890,321	290,945,161	2055
2056	2,265,369	1,132,685	258.60	129.30	584,155,690	292,077,845	2056
2057	2,176,543	1,088,271	248.46	124.23	586,332,233	293,166,117	2057
2058	2,091,200	1,045,600	238.72	119.36	588,423,433	294,211,716	2058
2059	2,009,202	1,004,601	229.36	114.68	590,432,635	295,216,318	2059
2060	1,930,420	965,210	220.37	110.18	592,363,056	296,181,528	2060
2061	1,854,728	927,304	211.73	105.80	594,217,783	297,108,892	2061
2062	1,782,003	891,001	203.42	101.71	595,999,780	297,999,893	2062
2063	1,712,129	822,005	195.45	97.72	597,711,915	290,000,900	2063
2064	1,044,990	700 247	107.70	93.69	600 027 406	299,070,450	2065
2065	1,500,495	790,247	172 25	90.21	602 455 028	201 227 064	2065
2000	1 / 58 080	739,201	166 55	83.28	603 014 000	301,227,904	2000
2007	1,430,300	729,490	160.03	80.01	605 316 682	302 658 341	2007
2008	1 346 809	673 404	153 75	76.87	606 663 490	303 331 745	2008
2005	1,340,003	647.000	1/7 72	73.86	607 957 490	303 078 745	2005
2070	1 243 261	621 631	141 07	70.96	609 200 751	304 600 375	2070
2071	1 194 512	597 256	136.36	68 18	610 305 263	305 107 632	2071
2072	1 147 675	573 837	131.01	65 51	611 542 038	305,137,052	2072
2075	1 102 674	551 337	125.88	62 94	612 645 611	306 322 806	2073
2075	1 059 437	529 719	120.00	60 47	613 705 040	306 852 524	2075
2075	1 017 206	508 948	116 20	58 10	614 722 045	307 361 472	2075
2070	977 984	488 997	111 64	55.20	615 700 028	307 850 464	2070
2078	939 637	469 818	107.26	53.62	616 640 565	308 320 282	2078
2070	902 793	451 396	103.06	51 53	617,543,358	308,771,679	2070
2075	867 394	433 697	99.02	49 51	618,410,752	309,205,376	2080
2081	833 383	416 691	95.12	47.57	619,244,134	309,622,067	2081
2082	800.705	400.353	91,40	45,70	620,044.840	310,022,420	2082

		Land	Gem		Cumulative	Cumulative	
Year	Landfill Gas	Methane	Landfill Gas	Methane	LFG	Methane	Year
	m ³ /annum	m ³ /annum	m³/hr	m³/hr	m³	m³	
2083	769,309	384,655	87.82	43.91	620,814,149	310,407,075	2083
2084	739,144	369,572	84.38	42.19	621,553,293	310,776,647	2084
2085	710,162	355,081	81.07	40.53	622,263,455	311,131,728	2085
2086	682,316	341,158	77.89	38.94	622,945,772	311,472,886	2086
2087	655,562	327,781	74.84	37.42	623,601,334	311,800,667	2087
2088	629,857	314,929	71.90	35.95	624,231,191	312,115,595	2088
2089	605,160	302,580	69.08	34.54	624,836,351	312,418,176	2089
2090	581,431	290,716	66.37	33.19	625,417,783	312,708,891	2090
2091	558,633	279,317	63.77	31.89	625,976,416	312,988,208	2091
2092	536,729	268,364	61.27	30.64	626,513,145	313,256,572	2092
2093	515,683	257,842	58.87	29.43	627,028,828	313,514,414	2093
2094	495,463	247,732	56.56	28.28	627,524,291	313,762,146	2094
2095	476,036	238,018	54.34	27.17	628,000,327	314,000,164	2095
2096	457,370	228,685	52.21	26.11	628,457,697	314,228,849	2096
2097	439,436	219,718	50.16	25.08	628,897,134	314,448,567	2097
2098	422,206	211,103	48.20	24.10	629,319,340	314,659,670	2098
2099	405,651	202,825	46.31	23.15	629,724,991	314,862,495	2099
2100	389,745	194,873	44.49	22.25	630,114,736	315,057,368	2100
2101	374,463	187,232	42.75	21.37	630,489,199	315,244,599	2101
2102	359,780	179,890	41.07	20.54	630,848,979	315,424,489	2102
2103	345,673	172,836	39.46	19.73	631,194,652	315,597,326	2103
2104	332,119	166,059	37.91	18.96	631,526,771	315,763,385	2104

7.5 WATER BALANCE

7.5.1 Introduction

This section will present the results of the water balance calculation carried out in FTC's Calculation Set LW11-011-01_Water Balance for Kinsale Road Landfill Site; specifically surface water run-off and leachate volumes.

7.5.2 Methodology

To calculate the water balance for Kinsale Road Landfill Site, it is necessary to divide the site into areas according to prevailing hydrological conditions. This calculation is an estimate of the site water balance, based on readily available information. Previous water balance calculations for the site divided the site into fourteen areas, (Water Balance Assessment, December 2003¹). However, due to the completion of Phase 3 capping, the construction of the access road and playing pitch, and the ongoing capping works at the site, the site is now divided into 17 areas. The format has been retained and updated for this report to reflect the ground conditions (i.e. areas being capped etc) for the reporting period, as summarised in Table 7.5.2 (a). It should be noted that the description of Area 1 as 'semi-active' does not imply that waste activities are taking place in these areas, but rather that these areas have yet to receive any formal capping.

Table 7.5.2 (a): Summary of Subdivisions for Water Balance Calculations

Description	Area (ha)	Infiltration Coefficient	Surface Water Runoff (m ³)	Infiltration as Leachate (m ³)		
Area 1 (i) [†] Semi-Active Area (Jan-Sept 2010)	9.29	0.49				
Area 1 (ii) [†] Semi-Active Area (Oct 2010)	6.99	0.49	27 544	26 001		
Area 1 (iii) [†] Semi-Active Area (Nov 2010)	5.99	0.49	37,364	30,091		
Area 1 (iv) [†] Semi-Active Area (Dec 2010)	4.49	0.49				
Area 2 Phase 1 Capped Area	5.31	0.13	41,002	6,127		
Area 3 Soil Storage Area	4.14	0.20	29,392	7,348		
Area 4 Pitch & Putt Course	2.20	0.77	4,490	15,033		
Area 5 Adjacent to C & D Facility	0.99	0.76	2,104	6,662		
Area 6 C & D Facility	4.03	0.13	31,114	4,649		
Area 7 Office/CA Area	2.36	0.00	20,971	0		
Area 8 Phase 2 Capped Area	5.49	0.005	48,493	244		
Area 9 Tramore River Bank	7.20	0.86	8,940	0		

¹ <u>Q:\2003\011\14\Reports\CCC-HA_Rpt001-C (Water Balance).doc</u>

Area 10 Lined Lagoon areas	1.43	0.0	12,653	0
Area 11 Eastern Access Road	2.35	0.86	2,918	17,922
Area 12 Marsh/Trabeg River Area	8.36	0.00	74,186	0
Area 13 Blackash Road Area	3.96	0.1	31,636	3,515
Area 14* Phase 3 Capped Area	3.31	0.005	29,227	147
Area 15* Playing Pitch Development	1.26	0.005	11,126	56
Area 16* (i) [†] Contract 10 Capped Area (Jan-Sept 2010)	0	0.005		
Area 16* (ii) [†] Contract 10 Capped Area (Oct 2010)	2.3	0.005	0 742	44
Area 16* (iii) [†] Contract 10 Capped Area (Nov 2010)	3.3	0.005	0,743	44
Area 16* (iv) [†] Contract 10 Capped Area (Dec 2010)	4.3 0.005			
Total	61.67		394,560	97,837

[†]Areas 1 and 16 are subdivided as detailed above based on onsite records of capping progress from October to December 2010.

* Infiltration coefficient for Area 14 (Phase 3 Capping Area), Area 15 (Playing Pitch) and Area 16 (Contract 10 Capped Area) was taken as the same as that for Area 8 (Phase 2 Capping Area).

Infiltration coefficients for each area are the same as those used in water balance calculations from 2004 on. These were originally calculated using the HELP programme², and validated against actual site flows in a previous water balance report¹.

Rainfall data and evapotranspiration figures for the reporting period were obtained from Met Éireann for Cork Airport, located approximately 3 km south of the site. The monthly rainfall data is provided in Table 7.5.2 (b). Table 7.5.2 (b) also shows the potential evapotranspiration (PE) for the same period, and the effective rainfall.

² Hydrologic Evaluation of Landfill Performance, HELP V3.07, developed by Environmental Laboratory, USAE Waterways Experiment Station for US EPA Risk Reduction Engineering Laboratory.

Month	Incident Rainfall (mm)	Potential Evapotranspiration (mm)	Effective Rainfall (mm)
January	126	0.26	125.4
February	43	0.66	42.0
March	96	1.07	94.4
April	41	1.86	39.4
May	47	2.51	44.6
June	47	3.05	43.4
July	137	2.46	134.2
August	17	2.59	14.5
September	78	1.48	76.8
October	121	0.80	120.5
November	86	0.30	85.3
December	67	0.22	66.7
Totals	905	17.3	887.4

Table 7.5.2 (b): Rainfall Data (in mm): Cork Airport 2010

It should be noted that the effective rainfall for this AER period (887.4 mm) was less than that recorded in the previous AER period (1,075.3 mm), i.e. during the 12 months of 2010, 17.5 % less effective rainfall fell than for the 12 months of 2009.

The fraction of effective rainfall estimated to infiltrate into the ground is represented by the infiltration coefficient. For the purposes of this water balance calculation, several infiltration values were estimated, depending on the cover nature of that area. It is noted that these coefficients are conservative estimates only, and actual values will vary locally.

7.5.3 Annual Water Balance (2010)

Table 7.5.3 represents a summary of the monthly water balance for the site in 2010. The areas and infiltration coefficients used are provided in Table 7.5.2 (a).

Month	Leachate (m ³)	Surface Water Runoff (m ³)			
January	14,432	55,171			
February	4,837	18,490			
March	10,864	41,530			
April	4,537	17,344			
Мау	5,130	19,610			
June	4,999	19,108			
July	15,444	59,040			
August	1,669	6,382			
September	8,838	33,786			
October	12,520	54,342			
November	8,448	38,880			
December	6,119	30,878			
Totals	97,838 m ³	394,560 m ³			
Average Flow	3.1 l/s	12.51 l/s			

Table 7.5.3: Summary of Monthly Water Balance

7.5.4 Leachate Volumes

The volumes of leachate produced, conditioned and discharged to sewer at the Kinsale Road Landfill are provided in Table 7.5.4.

Month	Estimated Leachate Produced (m ³)	Volume of Treated Leachate (m ³)
January	14,432	3,108
February	4,837	5,867
March	10,864	9,243
April	4,537	7,364
May	5,130	6,002
June	4,999	6,265
July	15,444	7,513
August	1,669	7,228
September	8,838	7,133
October	12,520	7,125
November	8,448	6,669
December	6,119	6,340
Annual Total	97,838	79,857

Table 7.5.4: Leachate Conditioning and Production Volumes (2010)

Note on Table 7.5.4: Leachate is treated on site at the leachate conditioning plant.

The estimated figure of 97,838 m^3 of leachate produced in 2010 is 24.4 % less than the 2009 figure (129,343 m^3). This decrease in leachate production is likely to be due to the decreased effective rainfall. Leachate production volumes at the site should continue to fall significantly over the coming year with the completion of the final capping works.

Cork City Council

Water Balance Calculation 2010

Prepared for:

Cork City Council, KRSL, South Link Road, Cork

Revision: 0

Date: 24/01/11

Prepared by:

Fehily Timoney & Co. Core House, Pouladuff Road, Cork.

		DESIGNED:	AR	CHECKED:	ME
TIMONEY		DATE:	24/1/11	REVISION:	0
& COMPANY		JOB NUMBER	1-01		
CONSULTANTS IN ENGI	NEERING & ENVIRONMENTAL SCIENCES				
Cork : Tel 021-4	964133 Fax 021-4964464	FILE			
			Q:\2011\LW11\011 Balance\LW110110	\01\Calculations\2010 Wa 1_Water Balance 2010 rev	ater v 0.xls
PROJECT:	Cork City Council	SHEET	Cover		

DESCRIPTION: Water Balance Calculation 2010

				Page 1 of 3
Rev	Date	Purpose and Description	Prepared	Checked
Rev 0	Date 24-Jan-11	Purpose and Description The purpose of this calculation set is to prepare the annual water balance for Kinsale Road Landfill for inclusion in the 2010 AER.	Prepared	Checked ME

PROJECT:	Cork City Council											
DESCRIPTION:	Water Balance Calculation 2010		FEHILY TIMONEY & COMPANY									
Ref.	Page 2	of	Output 3									
			-									
i referer	inces											
i referen 1 2 3	nrces 1 2009 water balance calculations for Kinsale Road Landfill 2:\2010\LW10\011\01\Calculations\2009 Water Balance\LW101101_Water B 0.pdr 2 2010 Rainfall Data from Met Eireann via Cork City Council 3 2010 Leachate Treatment Data from Cork City Council 2:\2010\LW11\011\01\Calculations\2010 Water Balance\LW1101101_leachat 2010.xis troduction & Purpose	te volumes										

PROJECT		Cork City Council			à à	\bigcirc	
DESCRIP	TION:	Water Balance Calculation 2010					FEHILY TIMONEY
Ref.			Page		3 0	of	Output
	1.0.7	reduction 9 Dumpers	ruge			,	5
	1.0 110	roduction & Purpose					
	The pur Landfill in the f inclusior	rpose of this calc set is to complete the water balance cal Site for inclusion with the site's 2010 Annual Environmental following pages, and the associated reports will be issued n with the report.	culation Report. F electron	for the Results ically t	Kins are o th	sale Roa presente e site fo	d d or

Water Balance Calculation Kinsale Road AER 2010

2010									S	URFACE W	ATER VOLUM	IES (m ³)							
Month	Rainfall (mm)	ER (mm)	Area 1	Area 2	Area 3	Area 4	Area 5	Area 6	Area 7	Area 8	Area 9	Area 10	Area 11	Area 12	Area 13	Area 14	Area 15	Area 16	Totals
January	125.7	125.4	5,943	5,796	4,155	635	297	4,398	2,964	6,855	1,264	1,789	412	10,487	4,472	4,131	1,573	0	55,171
February	42.7	42.0	1,992	1,942	1,392	213	100	1,474	993	2,297	424	599	138	3,514	1,499	1,385	527	0	18,490
March	95.5	94.4	4,474	4,363	3,127	478	224	3,311	2,231	5,160	951	1,346	310	7,894	3,366	3,110	1,184	0	41,530
April	41.3	39.4	1,868	1,822	1,306	200	93	1,383	932	2,155	397	562	130	3,297	1,406	1,299	494	0	17,344
May	47.1	44.6	2,113	2,060	1,477	226	106	1,563	1,054	2,437	449	636	147	3,727	1,590	1,468	559	0	19,610
June	46.5	43.4	2,058	2,007	1,439	220	103	1,523	1,027	2,374	438	619	143	3,632	1,549	1,431	545	0	19,108
July	136.7	134.2	6,360	6,202	4,446	679	318	4,707	3,172	7,336	1,352	1,914	441	11,222	4,786	4,421	1,683	0	59,040
August	17.1	14.5	687	670	481	73	34	509	343	793	146	207	48	1,213	517	478	182	0	6,382
September	78.3	76.8	3,640	3,549	2,544	389	182	2,693	1,815	4,198	774	1,095	253	6,422	2,739	2,530	963	0	33,786
October	121.3	120.5	4,296	5,568	3,991	610	286	4,225	2,848	6,585	1,214	1,718	396	10,074	4,296	3,969	1,511	2,758	54,342
November	85.6	85.3	2,606	3,941	2,825	432	202	2,991	2,016	4,661	859	1,216	280	7,131	3,041	2,809	1,069	2,801	38,880
December	66.9	66.7	1,527	3,081	2,208	337	158	2,338	1,576	3,644	672	951	219	5,574	2,377	2,196	836	3,185	30,878
Totals	904.7	887.4	37,564	41,002	29,392	4,490	2,104	31,114	20,971	48,493	8,940	12,653	2,918	74,186	31,636	29,227	11,126	8,743	394,560

2010									GROUND	WATER/LE	ACHATE VOLU	JMES (m ³)								
Month	Area 1	Area 2	Area 3	Area 4	Area 5	Area 6	Area 7	Area 8	Area 9	Area 10	Area 11	Area 12	Area 13	Area 14	Area 15	Area 16	Totals	Absorption by waste	Total Leachate	Total Groundwat er
January	5,710	866	1,039	2,125	942	657	0	34	7,763	0	2,533	0	497	21	8	0	22,195	0	14,432	7,763
February	1,914	290	348	712	316	220	0	12	2,602	0	849	0	167	7	3	0	7,438	0	4,837	2,602
March	4,298	652	782	1,600	709	495	0	26	5,843	0	1,907	0	374	16	6	0	16,707	0	10,864	5,843
April	1,795	272	327	668	296	207	0	11	2,440	0	796	0	156	7	2	0	6,977	0	4,537	2,440
May	2,030	308	369	755	335	234	0	12	2,759	0	900	0	177	7	3	0	7,889	0	5,130	2,759
June	1,978	300	360	736	326	228	0	12	2,689	0	877	0	172	7	3	0	7,687	0	4,999	2,689
July	6,111	927	1,112	2,274	1,008	703	0	37	8,307	0	2,711	0	532	22	8	0	23,751	0	15,444	8,307
August	661	100	120	246	109	76	0	4	898	0	293	0	57	2	1	0	2,567	0	1,669	898
September	3,497	530	636	1,301	577	402	0	21	4,754	0	1,551	0	304	13	5	0	13,592	0	8,838	4,754
October	4,127	832	998	2,041	905	631	0	33	7,457	0	2,434	0	477	20	8	14	19,977	0	12,520	7,457
November	2,504	589	706	1,445	640	447	0	23	5,278	0	1,723	0	338	14	5	14	13,727	0	8,448	5,278
December	1,467	460	552	1,130	501	349	0	18	4,126	0	1,347	0	264	11	4	16	10,245	0	6,119	4,126
Totals	36,091	6,127	7,348	15,033	6,662	4,649	0	244	54,916	0	17,922	0	3,515	147	56	44	152,753	0	97,838	54,916

Name	Description	Area (ha)	Infiltration coefficient	Runoff coefficient	Waste- bearing?
Area 1 (i)	Semi-Active Area (Jan-Sept 2010)	9.29	0.49	0.51	✓
Area 1 (ii)	Semi-Active Area (Oct 2010)	6.99	0.49	0.51	✓
Area 1 (iii)	Semi-Active Area (Nov 2010)	5.99	0.49	0.51	✓
Area 1 (iv)	Semi-Active Area (Dec 2010)	4.49	0.49	0.51	✓
Area 2	Phase 1 Capped Area	5.31	0.13	0.87	~
Area 3	Soil Storage Area	4.14	0.2	0.80	✓
Area 4	Pitch & Putt Course	2.20	0.77	0.23	~
Area 5	Adjacent to C & D Facility	0.99	0.76	0.24	✓
Area 6	C & D Facility	4.03	0.13	0.87	✓
Area 7	Office/CA Area	2.36	0	1.00	✓
Area 8	Phase 2 Capped Area	5.49	0.005	0.995	✓
Area 9	Tramore River Bank	7.20	0.86	0.14	
Area 10	Lined Lagoon areas	1.43	0	1.00	✓
Area 11	Eastern Access Road	2.35	0.86	0.14	~
Area 12	Marsh/Trabeg River Area	8.36	0	1.00	
Area 13	Blackash Road Area	3.96	0.1	0.90	~
Area 14	Phase 3 Capped Area	3.31	0.005	0.995	✓
Area 15	Playing Pitch Development	1.26	0.005	0.995	~
Area 16(i)	Contract 10 Capped Area (Jan -Sept 2010)	0.00	0.005	0.995	✓
Area 16(ii)	Contract 10 Capped Area (Oct 2010)	2.30	0.005	0.995	✓
Area 16(iii)	Contract 10 Capped Area (Nov 2010)	3.30	0.005	0.995	~
Area 16(iv)	Contract 10 Capped Area (Dec 2010)	4.80	0.005	0.995	~
Total		61.67	-	-	

Total

Notes to Table No Infiltration of Leachate - 100% runoff 86% of Area 9 water infiltrates to groundwater not to leachate Capping/Semi-Active areas changed throughout 2010

Summary of Results (excluding absorption by waste)

Name	Surface Water Runoff (m ³)	Infiltration as Leachate (m ³)	Infiltration as Groundwater (m³)
Area 1	37,564	36,091	0
Area 2	41,002	6,127	0
Area 3	29,392	7,348	0
Area 4	4,490	15,033	0
Area 5	2,104	6,662	0
Area 6	31,114	4,649	0
Area 7	20,971	0	0
Area 8	48,493	244	0
Area 9	8,940	0	54,916
Area 10	12,653	0	0
Area 11	2,918	17,922	0
Area 12	74,186	0	0
Area 13	31,636	3,515	0
Area 14	29,227	147	0
Area 15	11,126	56	0
Total	385,817	97,794	54,916

Waste Deposition			
Tonnes			
0			
0			
0			
0			
0			
0			
0			
0			
0			
0			
0			
0			

Absorptive Capacity of waste 0.07

#REF!

Date 27 January 2011

Rainfall	potranspirati	Effective Rainfall
126	0.3	125.4
43	0.7	42.0
96	1.1	94.4
41	1.9	39.4
47	2.5	44.6
47	3.1	43.4
137	2.5	134.2
17	2.6	14.5
78	1.5	76.8
121	0.8	120.5
86	0.3	85.3
67	0.2	66.7

Leachate Volumes Produced and Treated Kinsale Road AER 2010

Q:\2011\LW11\011\Calculations\2010 Water Balance\LW1101101_Water Balance 2010 rev 0.xls App B Conditioning Plant calcs

Date 27 January 2011

2010 Figures

Month	Estimated	Conditioning	Difference (m³)		
Month	produced (m ³)	Main Plant	Temporary Plant	Total	Difference (iii ²)
January	14,432	2,128	980	3,108	11,324
February	4,837	5,607	260	5,867	-1,030
March	10,864	8,826	417	9,243	1,621
April	4,537	7,259	105	7,364	-2,827
May	5,130	5,613	389	6,002	-872
June	4,999	6,215	50	6,265	-1,266
July	15,444	7,402	111	7,513	7,931
August	1,669	7,228	0	7,228	-5,559
September	8,838	7,109	24	7,133	1,705
October	12,520	6,931	194	7,125	5,395
November	8,448	6,282	387	6,669	1,779
December	6,119	6,046	294	6,340	-221
Total	97,838	76,646	3,211	79,857	17,981

	Predicted Leachate produced	Conditioning Plant Treated
Average flow (I/s)	3.10	2.53

7.6 **GROUNDWATER**

7.6.1 Introduction

This section presents the result of FTC's calculation set LW11-011-01_Groundwater Emissions 2010; specifically annual emissions to groundwater from the landfill site. This calculation is not a detailed study, but rather provides an estimate of the emissions to groundwater from the site, based on readily available information.

7.6.2 Emissions to Groundwater

An estimate of emissions to groundwater can be made by either

- Assuming that the difference in the predicted leachate volume generated and that processed through the leachate conditioning plant is released into the groundwater system, or
- Using the hydrogeological properties of the underlying strata (peat), assuming a leachate head and calculating a vertical throughput flow.

From 2003 to 2008, the head of the leachate body and the associated vertical gradient has been obtained from a series of wells which were installed in 2003 for this purpose. However, due to waste placement these wells are no longer accessible.

Cork City Council have monitored leachate levels at wells SSW4 to SSW10 since 2004. The locations of these wells, relative to the wells historically used are indicated in the FTC calculation. These wells were used in the 2009 AER to provide information on the leachate head within the southern portion of the site, and are used again for this purpose in the 2010 AER.

For the purposes of this calculation, the following will be used for leachate and groundwater level in bedrock figures:

- Leachate levels for the north of the site will be based on an assumed level of 4.5 m OD as in previous years
- Leachate levels for the south of the site will be based on an average value from wells SSW4 to SSW10 for 2010, giving an average of 9.68 m OD;
- Groundwater level in the bedrock will be based on an average value from wells NW1 to NW9 for 2010 (as in previous years), giving an average of 3.32 m OD, for both the north and south of the site.

Using the parameters for the peat and silty clays given in the original waste licence application, the vertical leachate leakage is estimated, using the formula below. Because the peats and clays reduce in depth to the north, and because leachate head increases greatly to the south, calculations have been made for the northern and southern portions of the site separately.

As the hydraulic conductivity of the underlying strata varies across the site, calculations for the maximum and minimum leakage from the north and south of the site are prepared to give the range shown below.

Leakage	Minimum (m³/yr)	Maximum (m ³ /yr)
Leakage in the North Portion (m ³ /yr)	1,948	7,811
Leakage in the South Portion (m ³ /yr)	3,100	12,432
Total Leakage to the bedrock aquifer (m ³ /yr)	5,048	20,243

This compares to a figure of 5,195 m³/year calculated for the original Waste Licence Application. The difference in figures is accounted for largely by the increase in the leachate leakage calculated

for the southern area of the site. This is a result of additional data on the leachate head in the area, obtained from a 2003 site investigation.

The maximum figure calculated for the 2009 AER was 19,618 m^3 . The increase in the volume predicted for the 2010 AER is likely to be due to a marginal fall in groundwater level from 2009 to 2010 (from 3.5 to 3.32 m OD).

	DESIGNED:	AR	CHECKED:	ME
TIMONEY	DATE:	24/1/11	REVISION:	0
& COMPANY	DESIGNED: AR CHECKED: ME DATE: 24/1/11 REVISION: 0 JOB NUMBER: LW11-011-01 0 ENTAL SCIENCES CALC NUMBER: Calc 03 1-4964464 FILE Calc Ultions 2010 GW Calculations 2010 GW Calculations 2010 rev 0.xls			
CONSULTANTS IN ENGINEERING & ENVIRONMENTAL SCIENCES	CALC NUMBER:	Calc 03		
Cork : Tel 021-4964133 Fax 021-4964464	FILE			
		Q:\2011\LW11\011 Calc\LW1101101_G	\01\Calculations\2010 GV roundwater Emissions 20	V 10 rev 0.xls

PROJECT:Cork City CouncilSHEETCoverDESCRIPTION:Groundwater emissions calculation 2010

DESCRIPTION:		Groundwater emissions calculation 2010 Page 1 of			
Rev	Date	Purpose and Description	Prepared	Checked	
Rev 0	Date 24-Jan-11	Purpose of this calculation set is to calculate the annual discharge to groundwater for Kinsale Road Landfill for inclusion in the 2010 AER.	AR	ME	

PROJECT	:	Cork City Council	\bigcirc
DESCRIP	TION:	Groundwater emissions calculation 2010	
Ref.		C Page 2 of 4	Dutput
	i referer	nces	
	1 2	 2009 Groundwater calculations for AER 2009 Q:\2010\LW10\011\01\Calculations\2009 GW Calc\LW1001101_GW Calc 0.pdf Locations of wells used (and historic wells) Q:\2010\LW10\011\01\Calculations\2009 GW Calc\LW1001101_GW Calc Well Locations 	
	3	³ Monitoring data from CCC Groundwater, NW1-NW9: Leachate, SSW4-SSW10: LW1101101 NW monthly NW 1- 9 levels 2010 & 2011.xls	
	1.0 Int 2.0 Cal <u>2.1 No</u> <u>2.2 So</u>	Iculation & Purpose Iculation orthern Portion of Site outhern Portion of Site	

PROJECT:	Cork City	Council								\bigcirc
DESCRIPTION:	Groundw	ater emiss	ions calcula	tion 2010						FEHILY TIMONEY & COMPANY
Ref.							Page	4	of 4	Output I
h₁ (head	d of leachate) =								
3a 1		9.68 4.5	m OD (south, m OD (north	average leach n, assumed)	ate level ir	n wells S	SW4 to SS	W10))	
3b h 2 (grou	Indwater leve	el in bedrock) 3.32	= m OD (aver	age for site, c	btained f	from CC	C 2010 n	nonit	oring data)	
<u>2.1 Nort</u> l	hern Portion	of Site								
Leakage	9 =	2.30E-05	to	9.20E-05	m³/day values.	for th	e range	of	permeability	1
1 The area	of waste in	the northern	portion of the	site is	232,5	500 m²				
So the le	akage to be	drock ranges	from							
	or,	5.34 1,948	to to	21.40 7,811	m³/day m³/year					
<u>2.2 Sout</u>	hern Portion	of Site								
Leakage	e =	3.09E-05	to	1.24E-04	m³/day values.	for th	e range	of	permeability	/
1 The area	of waste in	the southern	portion of the	site is	274,6	530 m²				
So the le	akage to be	drock ranges 8.49	to	34.06	m³/dav					
	or,	3,100	to	12,432	m³/year					
<u>2.3 Sum</u>	mary									
The follo	owing table	summarise	s the above o	calculation:						
			Minimum (m	ı³/yr)	Maximur	m (m³/)	/r)			
Norther	n Portion		1,948		7,8	311				
Total pre	dicted leaka	ge	5,100 5,048		20,2	+32 2 43				

Fehily Timoney Company Core House Pouladuff Rd. Cork Ireland

ORIGINAL DRAWING SIZE A1 - (841 x 594)

Δ

9	10		1
· · · · ·	NOT FOR CONSTRUCTION UNLESS SPECIFICALLY STATED OTHERWISE		
	No part of this document may be reproduced or ransmitted in any form or stored in any retrieval system of any nature without the written permission of help Tamperts (Compared to the store of the store		1
	or rearry removes a company as copying in nonce except as agreed for use on the project for which the document was originally issued. Do not scale. Use figured dimensions only. If in doubt. Add		1
	some of the register transmission only. If the upper - Aste		1
			1
		A	1
			1
			1
	FACILITY BOUNDARY		1
OCATIONS		1	1
		\vdash	1
069,998			
069,330			
069,412 069,242			
069,657			
		В	
		\vdash	1
			1
			1
			1
			1
		_r	1
		ľ	
			1
			1
			1
			1
			1
			1
			<
	A # # # # # # # # # # # # # # # # # # #		
		┢	
	Revision History A	-	
	Name of Client		
	CORK CITY COUNCIL		
		E	
			1
			1
	Name of Job	+	1
			1
		\vdash	1
	2010 AER		1
			1
	Title of Demuine	$\left \right $	1
	Inne or Drawing		1
	LOCATION OF SAMPLING POINTS	F	1
	FOR ASBESTOS TESTING	ſ	l
			1
			1
	Scales Used This Drawing was printed to A3		1
	Dwg. No. Rev.	L	[
	LW11-011-01-002		1
	0;4CL0;2011(W11)01101010101002	4	1
			1
			1
	ΕΝΥΙΚΟΝΜΕΝΤΔΙ	-	1
	SCIENCES	ſ	l
E E E E E F	A COMPANY	1	l
25.001 50.001 75.001 25.001 50.001	Core House, Pouladuff Rd, Cork, Ireland.		1
	T:+353-21-4964133, F:+353-21-4964464		1
	North Park, Dublin 11, Ireland. 1:+335-1-6583500, Ft+353-1-6583501		1
9	10	1]

ORIGINAL DRAWING SIZE A1 - (841 x 594)

		0	10		1
		9	IU	ı	
			No part of this document may be reproduced or ransmitted in any form		
1	FASTING	NORTHING	or stored in any retrieval system of any nature without the written permission of Febilik Timoney & Company as convright holder event as assed foruse		
ring Station	1		on the project for which the document was originally issued.		
ing station	168013	069395	Do not scale. Use figured dimensions only. If in doubt - Ask		
	168069	069260			
	168234	069220			
	168234	069220		۱A	
	140410	069223		11	
	169646	069267			
	168646	069342			
	168636	069453			
	168617	069520	LEACHATE MONITORING STATION-(PS1)	L	
	168541	069/9/	NOISE MONITORING LOCATION-(B1/A1)	L	
	168454	069990	AIK QUALITY MONITORING STATION-(D1/S1/OT)		
			GAS MONITORING STATION-(LG1/DP1/TVO1)	⊢	-
y Location			SURFACEWATER MONITORING LOCATION-(EM1)	L	
	168081	069747	GROUNDWATER MONITORING LOCATION-		
	168373	070046	(BR1/OB1/KC8/NW1)	L	
	168600	069691	STROMWATER/REED BEDS MONITORING-(SRP1)	L	
	168178	069276	ECOLOGICAL MONITORING LOCATION-(A)	L	
	168831	069519		L	
	169070	069416	LEGEND	L	
	168824	068990		в	
	168193	070173		L	
torina Stati	on		FACILITY BOUNDARY	L	
	168081	069747		1	
	168373	070046		1	
	168600	069691		L	1
	168178	069274	$ \times \times \times \times $	1	
	167092	0072/0		1	
	10/902	067848		⊢	-
	100200	009//8		L	
	108188	069649		1	
	168570	069998		1	
	168085	069595	$ \langle \langle \rangle \rangle \rangle \rangle \rangle _{1} = 0$	1	
	168580	069463		L	
	168222	069651		L	1
	168576	069457		1	
	168575	069455		١c	1
tation	-			Ľ	
	168097	069597		1	
	167869	069663		1	
	167918	069666		L	
	168322	070044		L	
	140200	070044		L	
	100370	0/0031		L	
	168480	069994		L	
	168580	069964		L	
	168585	069844		L	
	168682	069841		L	
	168698	069752		L	
	168696	069757		L	
	168704	069679		L	
	168706	069689		L	
	168708	069607		In.	
	168706	069632		٢	Γ
	168718	069525		L	1
	168655	069446		L	
	168651	069408		L	
	149451	069413		L	
	149222	060192		1	
	100322	069163		L	
	1001/9	069181		L	
	16/898	089270			
	168027	069918		L	
	168031	069954	Revision History A	1	
	168036	069988		1	
	168044	070046	Name of Client	L	
	168048	070078		L	
	168651	069390	CORK CITY COUNCIL	L	
	168651	069389		F	
	168651	069356		۲ ^с	
	168656	069333		L	1
	168654	069312		L	1
	168648	069288		L	1
	168643	069264	Name of Jak	1	
	168639	069244	Nume of 305		
			KINSALE ROAD LANDFILL	L	1
			2010 AER	L	
				L	
	EM6	~		L	
		8		L	
			Title of Drawing	1	
			a	L	
				L	
			EXISTING ENVIRONMENTAL MONITORING	F	
			LOCATIONS	L	
				L	1
				L	
				L	
			Scales Used This Drawing was printed to	1	1
			1:5000	L	1
			Dwg. No.	1	
				\vdash	1
			LW11-011-01-001	L	
			0/WCAD/2011/0#/11/01/0#/101101_001		
				1	
				L	
			ENGINEERING &	L	
			ENVIRONMENTAL	٦	
			CIENCES	ľ	
			TIMONEY SCIENCES	L	
		e e e		L	
			C COMPANY W: www.fehilytimoney.ie, E: info@ftco.ie	L	
-100 -100	m00.	8 8 8			
100.00m 125.00m	150.00m 175.00m	200.00 225.00 250.00	Core House, Pouladuff Rd, Cork, Ireland. T:+353-21-4964133, F:+353-21-4964464		
100.00m 125.00m	150.00m 175.00m	200.00	Core House, Pouladuff Rd, Cork, Ireland. T:+353-21-4964133, F:+353-21-4964464		
100.00m	150.00m 175.00m	225.00	Core House, Pouladuff Rd, Cork, Ireland. T:+333-21-4964133, F:+333-21-4964464 Unit 16, Third Floor, North Park Offices, North Park, Dublin 11, Jenarud		
100.00m	150.00m	225.00	Core House, Pouladuff Rd, Cork, Ireland. 1:-333-21-4964133, F:-333-21-4964644 Unit 16, Third Floor, North Park Offices, North Park, Dublin 11, Ireland. 1:-333-1-6583500, F:-333-1-6583501		
100.00m	150.00m	200.00	Core House, Pouladuff Rd, Cork, Ireland. 1:+333-21-4964133, F:+333-21-4964404 Unit 16, Third Floor, North Park Offices, North Park, Dublin 11, Ireland. 1:+353-1-6583500, F:+353-1-6583501 10		