WATERFORD COUNTY COUNCIL

COMHAIRLE CHONTAE PHORTLAIRGE

ANNUAL ENVIRONMENTAL REPORT 2010 BALLYNAMUCK WASTE DISPOSAL SITE BALLYNAMUCK MIDDLE DUNGARVAN CO. WATERFORD

Waste Licence Register No. W0032-2

Report Compiled by; Mr David Regan, Facility Manager, Dungarvan Landfill Mr Paul Carroll, Executive Scientific Officer, Adamstown Laboratory

Table of Contents

Introd	uction	5
1.	Reporting Period	6
2.	Waste Activities Carried Out at the Facility	7
3.	Quantities and Composition of Material Received, Disposed of, and Recovered during 2010.	7
4.	Methods of deposition of waste.	7
5.	Environmental Monitoring	8
	Surface Water	10
	Ground Water	15
	Leachate	21
	Groundwater and Leachate Levels	26
	Gas Monitoring	27
	Noise	32
	Dust levels	34
	Ecological Survey of Landfill & Environs	35
	5.11 General Conclusions	38
	5.12 Meteorological Data.	39
6.	Sequence and timescale for development and restoration of the facility	39
7.	Topographical Survey	41
8.	Schedule of Environmental Objectives and Targets for the forthcoming year	41
9.	Full title and a written summary of any procedures	

	continued during the reporting period	42
10.	Reported Incidents and Complaints.	47
11.	Management and Staffing Structure of the Facility.	48
12.	Programme for Public Information.	48
13.	Reports of Training of Staff.	48
14.	Statement on costs of Landfill	49
15.	Reports on Financial Charges and Provisions	49
16.	Slope Stability Assessment	51

List of Appendices

Appendix A Quantities and Composition of Material Received,

Disposed of, and Recovered during 2007

Appendix B Monitoring Locations

Appendix C Surface Water Results

Appendix D Ground Water Results

Appendix E Leachate Results

Appendix F Meteorological Data

Appendix G Topographical Survey

Appendix H Management Structure

Appendix I Pollutant Release Transfer Register

Appendix J Energy Efficiency Audit

Appendix K Leachate Extraction System Details

Appendix L Environmental Liabilty Risk Assessment

Appendix L Site Slope Stability Assessment

Introduction

Waterford County Council was granted a Waste Licence (Ref 32-1) by the Environmental Protection Agency on the 29th November 2002 for the continued acceptance of municipal waste within the existing footprint of the Dungarvan Landfill Facility at Ballynamuck Middle, Dungarvan Co. Waterford. The landfill ceased to accept waste on the 30th June 2003. This licence was updated by Waste Licence (Ref 32-2) which included permission for a Transfer Station and Composting facilities. A further licence application is currently being assessed by the Agency. This is the eighth Annual Environmental Report for the Facility and includes the monitoring period 1st January 2010 – 31st December 2010. The report has been prepared in accordance with Condition 11.7 and Schedule G of the Waste Licence.

1. Reporting Period

This is the eighth Annual Environmental Report for the Dungarvan Waste Disposal Site, which covers the period 1st January 2010 to 31st December 2010.

2. Waste Activities carried out at the Facility

Part 1 of the Waste Licence details the activities authorised by the licence:

Waste Management Act 1996: Third Schedule

Class 4. Surface impoundment, including placement of liquid or sludge discards in to pits, ponds or lagoons:

This activity is limited to the storage of leachate generated within the facility in a lined leachate lagoon and the storage of surface water runoff in surface water retention (s) ponds

Class 13. Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned was produced:

This activity is limited to the storage of rejected waste in the waste Inspection and Quarantine area and the Construction and Demolition Recovery Area prior to the removal of such waste off site for the disposal at an appropriate facility

Waste Management Act, 1996, Fourth Schedule

Class 2. Recycling or reclamation of organic substances, which are not used as solvents (including composting and other biological transformation processes):

This activity is limited to recycling of organic waste including cardboard and paper at the civic waste facility only and the acceptance and storage of waste oils in appropriate containers at the civic waste facility prior to removal offsite.

Class 3. Recycling or reclamation of metals and metal compounds:

This activity is limited to the acceptance of white goods within a designated Metal Recovery Area, the acceptance and storage of beverage cans in the appropriate containers at the civic waste facility prior to removal offsite.

Class 4. Recycling or reclamation of other inorganic materials:

This activity is limited to the acceptance and storage in appropriate containers of glass bottles, batteries and fluorescent tubes and the recovery of inert waste at the facility for use in site development and restoration works.

Class 9. Use of any waste principally as a fuel or other means to generate energy

Class 11. Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule:

This activity is limited to the use of suitable inert waste in site development and restoration works.

Class 13. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than the temporary storage, pending collection, on the premises where such waste is produced:

This activity is limited to the storage of wastes within designated areas and receptacles prior to recovery offsite and the storage of inert waste prior to restoration of the facility.

3. Quantity and Composition of Waste received, disposed of and removed during the reporting period and each year previous

The quantity and composition of waste received, disposed of and removed for the reporting period 1^{st} January $2010 - 31^{st}$ December 2010 is attached in Appendix A.

4. Methods of deposition of inert waste for restoration

All capping and restoration works have now been completed.

5.0 Environmental Monitoring

Introduction

Dungarvan landfill is located in County Waterford approximately 2km north west of Dungarvan off the N25 road on the southern edge of the Colligan River. The total area of the landfill site is approximately 6.5 hectares, and has been in operation since 1968. The landfill closed on 30th June 2003, but still acts as a transfer station for recyclable material.

Monitoring of surface waters, groundwater's and leachate and landfill gas was carried out in accordance with the waste licence 32-2. EPA and Waterford County Council staff carried out sampling and field measurements. Analysis was carried out at EPA and Waterford County Council Laboratories. The ecological survey was carried out by Waterford County Council Heritage Officer.

Sampling sites are as set out in Table 1 and attached Drawing, DUN-EIS-003.

Surface water stations	Groundwat er station	Leachate station	Gas monitoring station	Noise	Dust
SW1*, SW2*,	GW1*,	L1, L2a,	L1*, L2a, L3*,	B1*, B2*,	B1, B2, B3,
EPA station	GW2a,	L3*, L4*	L4*, L5a, L6,	B3*, B4*,	B4, D1
280,	RC3a,	L5a, <mark>L6*,</mark>	RC1*, RC3,	NSL1*	
EPA station	RC4*,	Leachate	RC4*, RC6,		
300	RC6a,	tank	RC7, RC8,		
Also - Annual	RC7*,		<mark>GW1*</mark> , GW2a		
biological	RC8*				
survey					

Table 1: Monitoring locations, Dungarvan Landfill

^{*}Baseline results available for these sites

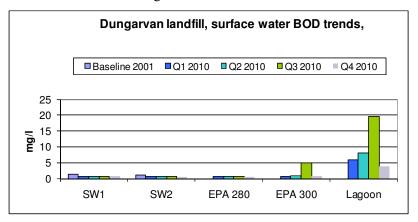
Baseline Monitoring

One of the purposes of compliance monitoring is to determine if there has been a release of contaminants to the environmental media, and to demonstrate compliance with landfill licence conditions. *Baseline monitoring* is monitoring which serves as a reference point to which later monitoring results are compared. While there is no data available preceding the landfill, for the purpose of this report, water quality results obtained during 2001 will be used as baseline monitoring data. Two new groundwater monitoring boreholes (RC7 and RC8) were installed since 2001, and results of tests carried out in 2002 at these sites are used as baseline. Noise measurements taken during the 1998 survey will also be used as comparison with this 2010 study.

5.1 SURFACE WATER.

5.1.1 Introduction

Sampling was carried out by EPA and Waterford County Council personnel at sites SW1, SW2, EPA site 300, EPA Site 280 and the landfill lagoon, as per attached map. Analysis was carried out at EPA Laboratories in Kilkenny and Dublin.


Sampling site EPA 300, at Ballyneety Bridge downstream of the landfill site, is subject to saline intrusion from Dungarvan Estuary. There are difficulties involved in monitoring surface water pollution from landfills adjacent to estuaries, as the salinity of the samples can interfere with many of the tests, (ammonia, COD, arsenic, copper). Additionally, many of the ions, which are considered indicators of leachate contamination, are also major components of sea/brackish water, (chloride, sulphate, sodium, magnesium, calcium, boron).

5.1.2 Results – see table **5.1.1** to **5.1.4** below.

River water quality was satisfactory. The lagoon had somewhat elevated levels of BOD, which may be related to algal and plant activity in this enclosed pond.

Key Parameter - BOD

The BOD test is a measure of the amount of oxygen consumed by microorganisms in breaking down organic matter in water. Respiration by phytoplankton or their decay, can also lead to oxygen depletion during the BOD test resulting in a high BOD value. Surface waters supporting fish life should have a BOD value < 4 mg/l BOD.

Discussion

BOD levels were low at river sites throughout the year and slightly elevated in the lagoon. This is not unusual for such a small confined waterbody. The river site SW3 had elevated suspended solids at times, possibly due to tidal effects. Other water quality tests were satisfactory.

Table 5.1.1 Dungarvan landfill surface water monitoring Q1 2010

	SW1	SW2	SW280	SW300	Lagoon	Drinking Water	Bathing Water	Estuarine Water	Comments	Environmental significance
Temperature deg C	7.6	7.4	7.5	7.4	5.3					
Dissolved Oxygen %	103	103	103	105	73		70 - 120 95%	70 - 130 (Brackish)	DO satisfactory	None
COD mg/l	<20	<20	<20	<20	26				,	
									BOD slightly elevated in lagoon. Satisfactory in	
BOD mg/I	<0.5	<0.5	<0.5	<0.5	6				receiving waters	None
Suspended solids mg/l	<5	<5	<5	<5	<5				SS satisfactory.	None
Sampled 28/1/2010										

Table 5.1.2 Surface water quality Dungarvan landfill Q2 2010

	SW1	SW2	SW280	SW300	Lagoon	Drinking Water	Bathing Water	Estuarine Water	Comments	Environmental significance
Temperature deg C	11.5	11.8	11.7	13.6	15.1					
Dissolved Oxygen %	109	108	108	118	108		70 - 120 95%	70 - 130 (Brackish)	DO satisfactory	None
COD mg/l	<20	<20	<20	<20	33					
BOD mg/l	0.7	0.7	0.6	0.9	>8				BOD slightly elevated in lagoon. Satisfactory in receiving waters	None
Suspended solids mg/l	<5	<5	<5	8	26				SS slightly elevated in lagoon. Satisfactory in receiving waters	None

Sampled 28/4/2010

Table 5.1.3 Surface water quality Dungarvan landfill Q3 2010

	SW1	SW2	SW280	SW300	Lagoon	Drinking Water	Bathing Water	Estuarine Water	Comments	Environmental significance
Temperature deg C	14.2	14.1	14.1	16.2	17					
							70 - 120	70 - 130		
Dissolved Oxygen %	108	107	107	127	84		95%	(Brackish)	DO satisfactory	None
COD mg/l	<20	<20	<20	111	106					
BOD mg/l	<0.5	0.5	0.5	5	19.7				BOD slightly elevated in lagoon. Satisfactory in receiving waters	None
									SS also elevated at SW300, unknown cause. Otherwise receiving waters	High SS in river not beneficial long-term. Cause is not known, long-term monitoring will provide information
Suspended solids mg/l	<7.6	<5	<5	505	106				satisfactory.	on trends.

Sampled 6/7/10

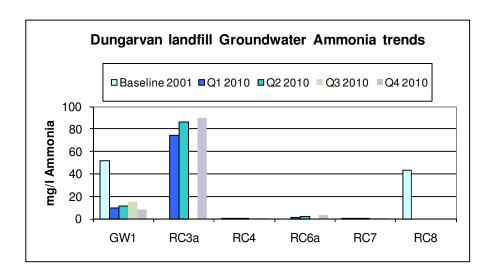
Table 5.1.4 Dungarvan landfill surface water monitoring Q4 2010

						Drinking Water	Bathing	Estuarine Water		Environmental significance
						Standard	Water	Standard		
						S	Standards	S		
						(SI 278	(SI 155	(DOELG		
	SW1	SW2	SW280	SW300	Lagoon	2007)	1992)	2001)		
Temperature deg C	7.3	7.3	7.2	7	6.3					
								70 - 130		
							70 - 120	(Brackish)		
							95%	80-120		
Dissolved Oxygen %	104	104	103	106	66		compliance	(Saline)	DO satisfactory	None
COD mg/l	<20	<20	<20	<20	30					
									BOD slightly elevated in lagoon. Satisfactory in	
BOD mg/l	0.7	0.6	<0.5	0.7	3.9				receiving waters	None
Suspended solids mg/l	< 5	< 5	\ 5	29	6				SS slightly elevated at SW300, possibly due to tidal activity.	High SS in river not beneficial long-term. Cause is not known, possibly tidal influence at this station, long-term monitoring will provide information on trends.
Sampled 15/11/2010										

5.2 Groundwater

5.2.1 INTRODUCTION

Sites GW1, GW2a, RC3a, RC4, RC6a, RC7 and RC8 were sampled during 2010. RC1 is no longer in place.


RC4 (south west of site) and RC7 (east of site) are outside the waste deposit area.

All the other ground water stations are within the site boundary, either within or immediately adjacent to waste deposit areas. Ground-water flow through the site has previously been described as south to north.

5.2.2 RESULTS

Results for 2010 are presented on tables 5.2.1 to 5.2.4 below, and appendices. High ammonia levels were detected at sites GW1, RC3a, and RC8, within the landfill site. Metals levels were generally low, although high iron levels were detected at GW1. Trace organics were not detected in groundwaters. Intermittently high conductivity levels detected at site RC7, outside the landfill boundary, and at RC8 indicate likely saline intrusion from the estuary.

Key Parameter – Ammonia

5.2.3 DISCUSSION

Ammonia was elevated at sites GW1, RC3a, RC6a, and RC8. In general, RC4 and RC7, outside the landfill area, had relatively low *ammonia*. RC7 had a high ionic content at times, possibly indicating brackish water intrusion.

Heavy metals and organics were not detected or else present in low concentrations.

The results of groundwater monitoring are in line with results from previous rounds of testing.. The sites within and closely adjacent to the working area appear to be impacted by landfill leachate in terms of ammonia and iron concentration. Site RC4 at the south-western boundary had relatively good water quality. Site RC7, 200 metres east of the facility, and outside the landfill area, had generally satisfactory water quality and appeared to be unaffected by the landfill, though saline intrusion is evident.

Table 5.2.1 Dungarvan landfill groundwater monitoring Q1 2010

						Drinking Water		
	RC4	RC3a	GW1	RC6a	RC7	Standards (SI 278 2007)	Comments	Engineers to Laioni Green
Danth of barrahala						278 2007)	Comments	Environmental significance
Depth of borehole	23.3							
Water level	16.5			-				
Temp deg C	10.7	11.8	10.9	11	11.2			
DO %	54	24	23	19	34		Quite low, reflecting reducing conditions in most boreholes	None
рН	7.3	7.1	6.7	7.2	7.3	7 to 9	normal	None
							Elevated conductivity at GW1, GW3a and RC7. May be influenced by tidal	
Conductivity us/cm	653	1987	1313	841	2010	1500	infiltration at RC7.	None
Ammonia mg/l N	0.01	74	9.5	1	0.02	0.23	Ammonia elevated at GW3a	Depends on flow rate and path and available dilution. May contribute at times to ammonia at SW300
Chloride mg/l	27	160	21	62	383	250	Elevated chloride at RC7. May be influenced by tidal infiltration.	None, as receiving environment is estuarine.
TON mg/I	12	<0.5	<0.5	13	11		Relatively low nitrogen present	None, given distance from receiving surface waters and available dilution.
Iron ug/l Samoled 28/1/2010	170	450 ping, GW2		100	270	200	Elevated at GW1. Likely source is landfill leachate.	None, given distance from receiving surface waters and available dilution.

Table 5.2.2. Groundwater quality Dungarvan landfill Q2 2010

					Drinking Water		
					(SI 278 2007)	Comments	Environmental significance
15.8	15.7						
11.3	12.4	11.3	11.8	10.7			
57	21					Quite low, reflecting reducing conditions in most boreholes	None
7.2	7.1	6.5	7.1	7.5	7 to 9	normal	None
651	2270	1278	950	4290	1500	Elevated conductivity at GW1, GW3a and RC7. May be influenced by tidal infiltration at RC7.	None
0.01	86	11	1.7	0.05	0.23	Ammonia elevated at GW3a	Depends on flow rate and path and available dilution. May contribute at times to ammonia at SW300
26	200	22	88	1181	250	Elevated chloride at RC7. May be influenced by tidal infiltration.	None, as receiving environment is estuarine.
11	<0.5	<0.5	12	2.2		Relatively low nitrogen present	None, given distance from receiving surface waters and available dilution.
<25			<25	570	200	Elevated at GW1. Likely source is landfill leachate.	None, given distance from receiving surface waters and available dilution.
	23 15.8 11.3 57 7.2 651 0.01 26	23 23 15.8 15.7 11.3 12.4 57 21 7.2 7.1 651 2270 0.01 86 26 200 11 < 0.5	23 23 10.3 15.8 15.7 2.6 11.3 12.4 11.3 57 21 28 7.2 7.1 6.5 651 2270 1278 0.01 86 11 26 200 22 11 < 0.5 < 0.5	23 23 10.3 11.7 15.8 15.7 2.6 7.8 11.3 12.4 11.3 11.8 57 21 28 29 7.2 7.1 6.5 7.1 651 2270 1278 950 0.01 86 11 1.7 26 200 22 88 11 <0.5 <0.5 12 <25 9200 57000 <25	23 23 10.3 11.7 11.8 15.8 15.7 2.6 7.8 10.4 11.3 12.4 11.3 11.8 10.7 57 21 28 29 49 7.2 7.1 6.5 7.1 7.5 651 2270 1278 950 4290 0.01 86 11 1.7 0.05 26 200 22 88 1181 11 <0.5	RC4 RC 3a GW1 RC6a RC7 Standards (SI 278 2007) 23 23 10.3 11.7 11.8 15.8 15.7 2.6 7.8 10.4 11.3 12.4 11.3 11.8 10.7 57 21 28 29 49 7.2 7.1 6.5 7.1 7.5 7 to 9 651 2270 1278 950 4290 1500 0.01 86 11 1.7 0.05 0.23 26 200 22 88 1181 250 425 9200 57000 425 570 200	RC4 RC 3a GW1 RC6a RC7 Standards (SI 278 2007) Comments 23 23 10.3 11.7 11.8 10.4

Table 5.2.3. Groundwater quality Dungarvan landfill Q3 2010

				Drinking Water		
				Standards (SI		
	RC4	GW1	RC7	278 2007)	Comments	Environmental significance
Depth of borehole	22.3	10.2				
Water level	14.6		9.1			
Temp deg C	11.5	12.1	11.3			
DO %	55	7	21		Quite low, reflecting reducing conditions in most boreholes	None
pH	7.1	6.8	7.4	7 to 9	normal	None
Conductivity us/cm	651	1334	12920	1500	Elevated conductivity at GW1, and RC7. May be influenced by tidal infiltration at RC7.	None
Conductivity do/oni			12020	1000	sy tida: williani at 11071	Depends on flow rate and
A	0.00	45	0.00	0.22	Americania alguntad et CIMO	path and available dilution. May contribute at times to
Ammonia mg/l N	0.03	15	0.03	0.23	Ammonia elevated at GW3a	ammonia at SW300
Chloride mg/l	26	28	>1130	250	Elevated chloride at RC7. May be influenced by tidal infiltration.	None, as receiving environment is estuarine.
TON mg/l	10.97	<0.5	nm		Relatively low nitrogen present	None, given distance from receiving surface waters and available dilution.
Iron ug/l	110			200	Elevated at GW1. Likely source is landfill leachate.	None, given distance from receiving surface waters and available dilution.

Sampled 6/7/2010 RC3a, RC6a unable to mount pump RC8 no tubing, GW2a dry

Table 5.2.4 Dungarvan landfill groundwater monitoring Q4 2010

						TS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
						Drinking Water		
	DO 4	D00	0)4/4	DO0.	D07	Standards	_	
	RC4	RC3a	GW1	RC6a		(SI 278 2007)	Comments	Environmental significance
Depth of borehole	22.3	17.2	10.3	NT	11.9			
Water level	15	7.3	3.2	NT	10.6			
Temp deg C	NT	11.6	11.5	10.6	11.9			
Alkalinity mg/l as CaCO3	215	1002	443	287	170		Moderate levels	None
								Depends on flow rate and
								path and available dilution.
								May contribute at times to
Ammonia mg/l N	0.02	90	8	3	0.04	0.23	Ammonia elevated at RC3a	ammonia at SW300
							Elevated chloride at RC7.	
							May be influenced by tidal	None, as receiving
Chloride mg/l	26	165	27	126	1195	250	infiltration.	environment is estuarine.
							Elevated conductivity at	
							RC7. May be influenced by	
Conductivity us/cm	646	2200	1050	1130	4290	1500	tidal infiltration.	None
							Quite low, reflecting reducing	
DO %	49	23	24	35	28		conditions in most boreholes	None
Orthophosphate mg/l P	0.03	0.05	0.06	0.04	0.06		LOW	None
pH	7.2	7.1	7.2	7.1	7.6	7 to 9	Normal range	None
								None, given distance from
							Relatively low nitrogen	receiving surface waters
TON mg/l	10.5	<0.5	<0.5	11.04	1		present	and available dilution.
Sampled 15/11/2010 RC8 no tubing,	GW2a	dry					·	

5.3 LEACHATE

5.3.1 INTRODUCTION

The leachate holding tank was sampled during 2010. No sampling was possible from individual leachate boreholes due to access difficulties due to capping and landfill remediation works. The leachate tank was dry at times and no sample was taken in the third quarter of 2010.

A series of constructed wetland ponds occurs on the landfill cap and are designed to collect and treat residual leachate from the landfill. The wetlands installed in autumn 2008 have been planted with a mix of wetland vegetation such as reeds and sedges.

Results of analysis of leachate prior to wetland treatment are presented in table 5.3.1 to 5.3.3, below, and laboratory results appendices. Values are compared with the median of typical landfill leachate, as published in the EPA document "Landfill Operational Practices" 1998.

Results for Ammonium and COD for the leachate treatment constructed wetland ponds 1 (inlet pond) and pond 5 (outlet pond) are presented in figures 5.3.2 and 5.3.3 below.

5.3.2 RESULTS

COD was high (12775 mg/l) in the leachate interception tank in the first quarter of 2010 but decreased thereafter.

Key Parameter – COD

The COD test measures the organic matter in a sample that is amenable to chemical oxidation. The COD test is usually applied to polluted waters and waste-waters.

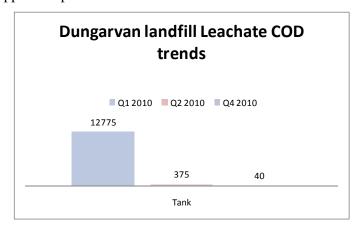


Figure 5.3.1 Leachate COD trends

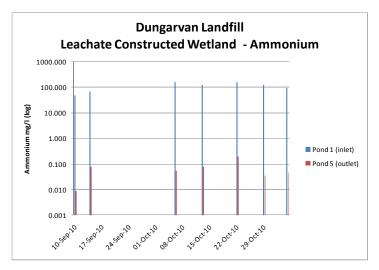


Figure 5.3.2 Constructed wetland inlet/outlet Ammonium (log)

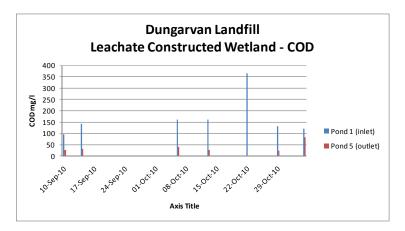


Figure 5.3.3 Constructed wetland inlet/outlet Chemical Oxygen Demand COD

DISCUSSION

A sharp decrease in COD occurred in the raw leachate manhole sample between the 1st and 4th quarters of 2010. The decrease in measured COD may be due to effects of capping. Continued monitoring will indicate any trends in leachate quality. The contents of this tank are treated subsequently treated in the on-site constructed wetland. There was a 99% decrease in ammonium and an 80% decrease in COD between pond 1 (inlet) and pond 5 (outlet). There was no flow out of the constructed wetland during the sampling period.

Table 5.3.1 Leachate quality Dungarvan landfill, Q1 2010

Test	L1	L2A	L3	L4	L5a	Leachate Tank Inteceptor	GW2a	Typical Leachate Analysis (FPA, 1997)	Comment	Environmental significance
BOD mg/l O2						>=4800		270	result in line with typical leachate	none, given expected dilution in receiving waters
COD mg/l O2						12775		954	result in line with typical leachate	none, given expected dilution in receiving waters
Temperature °C						6.2			result normal	none

Sampled 28/1/2010. L1, L2a, L3 damaged unable to sample, L4 dry, L5a borehole in reedbed, unable to sample.

Table 5.3.2 Leachate Quality Dungarvan landfill, Q2 2010

						Leachate Tank		Typical Leachate Analysis (EPA,		
Test	L1	L2A	L3	L4	L5a	Inteceptor	GW2a	1997)	Comment	Environmental significance
BOD mg/l O ₂						>120		270	result in line with typical leachate	none, given expected dilution in receiving waters
COD mg/l O ₂						375		954	result low compared with typical leachate	none, given expected dilution in receiving waters
Iron mg/l						4400			result low compared with typical leachate	none, given expected dilution in receiving waters
Temperature °C						15.5			result normal	none

Sampled 28/4/2010. L1, L2a, L3 damaged unable to sample, L4 dry, L5a borehole in reedbed, unable to sample.

Table 5.3.3 Leachate Quality Dungarvan landfill, Q4 2010

	Leachate Tank	Typical Leachate Analysis (EPA,		
Test	Inteceptor	1997)	Comment	Environmental significance
Ammonia mg/l N	24	,		9
BOD mg/l O ₂	14.9	270	Result low.	None
Chloride mg/l	71			
COD mg/l O2	40	954	Result low compared with typical leachate	None
Conductivity us/cm	1324		Result low compared with typical leachate	None
Orthophosphate mg/l	0.27		Result low compared with typical leachate	None
pН	7.7		Normal range	None
Temperature °C	11.5		Result normal	none
Total Oxidised Nitrogen mg/l as N	3.14		Result low compared with typical leachate	None
Sampled 15/11/10.	L1, L2a, l	3, L5a dan	naged unable to sample, L4 dry.	

5.4. Groundwater and Leachate Levels

5.4.1 Introduction

Groundwater and leachate levels are determined monthly, by dip meter, at boreholes GW1, RC3a, RC4, RC6a, RC7, RC8, L4, and L5a.

5.4.2 Results

Results of monitoring are presented in table 4.1.

Table 5.4.1 Dungarvan landfill leachate levels 2010

Date	Operator	GW 1	GW 2A	RC 3A	RC 4	RC 6A	L1	LT 2A	L4	L5A	RC 7	RC 8
25/01/2010	DR	4.1	1.9	13.1	16	8.1	D	D	3.3	D	11.1	11.5
25/02/2010	DR	2.6	1.7	12.5	15.5	8	D	D	1.2	D	11	11.5
30/03/2010	DR	3.7	1.9	12.8	15.6	7.9	D	D	1.2	D	11.1	11.5
15/04/2010	DR	2.7	1.7	12.8	15.4	7.8	D	D	0.9	D	11	11.2
12/05/2010		2.2	1.6	12.4	15.4	7.6	D	D	1.1	D	10.5	11.2
20/06/2010	DR	2	1.5	12.4	15.2	7.8	D	D	1.1	D	10.4	12.1
19/07/2010	DR	3.6	1.9	12	15.9	8	D	D	1	D	10.6	12.1
31/08/2010	DR	2.2	1.7	12.4	15.1	7.6	D	D	1	D	10.6	11.4
28/09/2010	DR	2.1	1.8	12.4	15.2	7.9	D	D	1	D	10.6	11.6
29/10/2010	DR	4	2	12.7	15.5	8.1	D	6.4	0.5	8.2	10.7	12.4
29/11/2010	DR	3.7	1.8	12.5	15.4	8	D	6.4	0.5	D	10.7	12
30/12/2010	DR	2.8	2	12.1	15.2	8	D	6	0.6	D	10.7	11.6
D=Damageo	d											

5.4.3 Discussion

There was no significant variation in levels over the monitoring period.

5.5 LANDFILL GASES

5.5.1 Introduction

Gases (mainly methane -65% and carbon dioxide - 35%) are given off by the biodegradation of organic matter within the landfill waste. The rate of gas generation is dependent on waste type, moisture content and age of waste. Gas is monitored weekly at the site building, and monthly at the groundwater and leachate boreholes. Results of gas monitoring are presented in tables 5.1 to 5.4 below.

5.5.2 Results

KEY PARAMETER -METHANE

Methane is a colourless, odourless gas generated by the biodegradation of organic matter. Landfill gas contains about 65% methane.

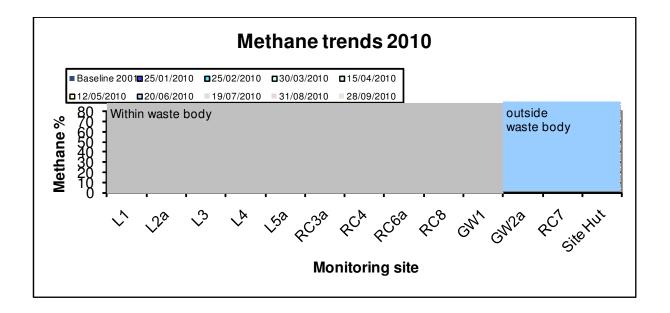


Figure 5.5.1 Methane trends 2010

Relatively low levels of methane were detected at most boreholes within the waste deposit area, and were lower compared to baseline levels in 2001.

No methane was detected in the site buildings or at monitoring points outside the landfill area.

Table 5.5.1: Dungarvan Landfill Gas monitoring Q1 2010

Week No	Date	Operator	Gas	Site Hut	GW1	GW 2A	RC 3A	RC 4	RC 6A	LT 1	LT 2A	LT 3	LT 4	LT 5A	RC 7	RC 8
			CH4,	0												
1	04/01/2010	DR	CO ₂ ,	0												1
1	04/01/2010	DK	O ₂	21.4												1
			Air Pressure	1018												
			CH4,	0												
2	11/01/2010	DR	CO ₂ ,	0												l
-	11/01/2010	DIC	O2	21.2												l
			Air Pressure	1014												
			CH4,	0												
3	20/01/2010	DR	CO_{2}	0												l
			O2	20.9 1008												l
			Air Pressure													
			CH4,	0	0	0	0	0	0	Dama	Damage		0	Damaged	0	3.2
4	25/01/2010	DR	CO ₂ ,	0 21.0	0 21.5	0 21.3	0 21.3	0 21.0	0 21.2	ged	d	d	0 21.2		0 20.3	1.2 19.8
			O ₂	1032	1032	1032	1032	1032	1032				1032		1032	1032
			Air Pressure													<u> </u>
			CH4,	0												l
5	03/02/2010	DR	CO ₂ ,	21.3												l
			O ₂	1000												l
			Air Pressure	0												
			CH ₄ , CO ₂ ,	0												l
6	09/02/2010	DR	O ₂ ,	21.5												l
				1011												l
			Air Pressure CH4,	0												
			CO ₂ ,	0												l
7	16/02/2010	DR	O ₂	21.0												l
			Air Pressure	987												l
			CH ₄ ,	0	0	0	0	0	0	Dama	Damage	Damage	0	Damaged	0	0
			CO ₂ ,	0	0	0	0	0	0	ged	d	d	0		0	0
8	25/02/2010	DR	O ₂	21.0	21.1	21.2	21.0	20.9	21.0 989	_			21.0		20.5	20.7
			Air Pressure	989	989	989	989	989					989		989	989
			CH ₄ ,	0												
_	02/02/2010	nn.	CO ₂ ,	0												l
9	02/03/2010	DR	O ₂	21.3												l
			Air Pressure	1014												
			CH4,	0												
10	09/03/2010	DR	CO ₂ ,	0												l
10	3,703,2010	DK	O2	21.1 1030												l
			Air Pressure													
			CH4,	0												l
11	15/03/2010	DR	CO ₂ ,	0 20.9												l
			O ₂	1025												l
			Air Pressure		-											ļ
			CH4,	0												l
12	22/03/2010	DR	CO ₂ ,	0 21.4												l
			O ₂	1006												l
			Air Pressure		0			0.2	0	D	D	D	_	D	0	0.4
			CH4,	0	0	0	0	0.3	0	Dama ged	Damage d	Damage d	0	Damaged	0	8.4 2.4
13	30/03/2010	DR	CO ₂ ,	21.1	21.4	21.4	21.3	20.5	21.5	geu	u	u	21.1		20.7	15.4
			O ₂	982	982	982	982	982	982				982		982	982
Week No	Date	Operator	Air Pressure Gas	Site Hut	GW 1	GW 2A	RC 3A	RC 4	RC 6A	LT 1	LT 2A	LT 3	LT 4	LT 5A	RC 7	RC 8
/100K 110	Date	Sperator	Gas	one nat	3111	J 17 2A	AC JA	AC 7	KC 0A	2.1.1	271 271	1.1.5	1.1.4	LISA	AC,	ACO

Table 5.5.2: Dungarvan Landfill Gas monitoring Q2 2010

Week No	Date	Operator	Gas	Site Hut	GW 1	GW 2A	RC 3A	RC4	RC 6A	LT 1	LT 2A	LT 3	LT 4	LT 5A	RC7	RC 8
14	08/04/2010	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.2 1027												
15	15/04/2010	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.8 1020	0 0 20.6 1020	0 0 20.7 1020	0 0 21.3 1020	0.1 0.2 20.6 1020	0 0 20.7 1020	Damaged	Damaged	Damaged	0 0 20.6 1020	2.7 1.2 20.6 1020	0 0 20.3 1020	5.3 1.5 19.6 1020
16	21/04/2010	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.6 1020												5.3 1.5 19.6 1020
17	23/04/2010	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1009												
18	06/05/2010	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1004												
19	12/05/2010	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1011	0 0 20.9 1011	0 0 20.8 1011	0 0 20.9 1011	0 0 20.8 1011	0 0 20.8 1011	Damaged	Damaged	Damaged	0 0 20.8 1011	Damaged	0 0 20.3 1020	0 0 20.9 1011
20	18/05/2010	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1021												
21	21/05/2010	DR	CH_4 , CO_2 , O_2 Air Pressure	0 0 20.9 1009												
22	31/05/2010	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1013												
23	08/06/2010	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1019												
24	16/06/2010	DR	CH ₄ , CO ₂ , O ₂	0 0 20.9 1021												
25	20/06/2010	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 984	0 0 20.9 984	0 0 20.9 984	0 0 20.9 984	0 0 20.9 984	0 0 20.9 984	Damaged	Damaged	Damaged	0 0 20.9 984	Damaged	0 0 20.9 984	0 0 20.9 984
26	29/06/2010	DR	CH ₄ , CO ₂ , O ₂ Air Pressure	0 0 20.9 1011												
Week No	Date	Operator	Gas	Site Hut	GW 1	GW 2A	RC 3A	RC 4	RC 6A	LT 1	LT 2A	LT 3	LT 4	LT 5A	RC7	RC 8

Table 5.5.3: Dungarvan Landfill Gas monitoring Q3 2010

Week No	Date	Operator	Gas	Site Hut	GW1	GW 2A	RC 3A	RC 4	RC 6A	LT 1	LT 2A	LT 3	LT 4	LT 5A	RC 7	RC 8
· · · · · · · · · · · · · · · · · · ·	Dute	Орегию	CH ₄	0	01	0112.1	AC U.I	AC.	1001	211	212.1	210		270.1	no.	- Re o
			CO ₂	0												l
27	08/07/2010	DR	O ₂	20.9												1
			Air Pressure	1021												l
		_	CH ₄	0												
			CO ₂	0												1
28	13/07/2010	DR	O ₂	20.9												1
			Air Pressure	1000												1
			CH ₄	0	0	0	0	0	0	Damag	Damaged	Damaged	0	Damaged	0	0
			CO ₂	0	0	0	0	0	0	ed			0	-	0	0
29	19/07/2010	DR	O_2	20.9	20.9	20.9	20.9	20.9	20.9				20.9		20.9	20.9
			Air Pressure	1012	1012	1012	1012	1012	1012				1012		1012	1012
			CH ₄	0												
20	27/07/2010		CO ₂	0												1
30	27/07/2010	DR	O_2	20.9												1
			Air Pressure	1012												1
			CH ₄ ,	0												
21	05/08/2010	DR	CO ₂	0						1						
31	03/08/2010	DK	O_2	20.9												1
			Air Pressure	1008												
			CH ₄ ,	0												
32	12/08/2010	DR	CO ₂ ,	0												
32	12/08/2010	DK	O_2	20.9												
			Air Pressure	1021												
			CH ₄ ,	0												
33	17/08/2010	DR	CO ₂	0												
33	17708/2010	DK.	O_2	20.2												
			Air Pressure	1012												
			CH ₄ ,	0												1
34	26/08/2010	DR	CO ₂ ,	0												
٠.	20/00/2010		O_2	20.9												
			Air Pressure	1018												
			$CH_{4,}$	0	0	0	0	0	0		Damaged	Damaged	0	Damaged	0	0
35	31/08/2010	DR	CO ₂	0	0	0	0	0	0	ed			0		0	1.1
			O ₂	20.9 1023	20.9 1023	20.9 1023	20.6 1023	20.5 1023	21.1 1023				20.6 1023		20.9 1023	18.9 1023
			Air Pressure		1023	1023	1023	1023	1023	1			1023		1023	1023
			CH ₄ , CO ₂	0												1
36	09/09/2010	DR		20.6												
			O_2	1013												1
-			Air Pressure CH ₄ ,	0						1						
			CO ₂	0												
37	16/09/2010	DR	O ₂	20.6												
				1016												
		 	Air Pressure CH ₄ ,	0												
			CO ₂	0												
38	22/09/2010	DR	O ₂	20.2												
			Air Pressure	1008												
			CH ₄	0	0	0	0	0.1	0	Damag	Damaged	Damaged	1.0	Damaged	0	2.6
			CO ₂	0	0	0	0	0	0	ed			0.5		0	0.8
39	28/09/2010	DR	O ₂	20.5	20.5	20.3	20.5	20.4	20.5				20.1		20.6	19.7
			Air Pressure	1011	1011	1011	1011	1011	1011				1011		1011	1011
Week No	Date	Operator	Gas	Site Hut	GW1	GW 2A	RC 3A	RC 4	RC 6A	LT 1	LT 2A	LT 3	LT 4	LT 5A	RC 7	RC 8
															-	

Table 5.5.4: Dungarvan Landfill Gas monitoring Q4 2010

Week No	Date	Operator	Gas	Site Hut	GW1	GW 2A	RC 3A	RC 4	RC 6A	LT 1	LT 2A	LT 3	LT 4	LT 5A	RC 7	RC 8
			CH ₄ ,	0												
40	05/10/2009	DR	CO ₂ ,	0												
70	03/10/2007	DK	O ₂	20.4 993												
		_	Air Pressure													
			CH4,	0												
41	11/10/2010	DR	CO ₂ ,	0 20.8												
			O ₂	1017												
			Air Pressure													
			CH4,	0												
42	20/10/2010	DR	CO ₂ ,	20.9												
			O ₂	1023												
			Air Pressure CH4,	0	0	0	0	0.1	0	Dama	0	Damage	0.2	0	0	6.8
			CO ₂ ,	0	0	0	0	0.1	0	ged	0	d	0.1	0	0	2.3
43	29/10/2010	DR	O ₂ ,	21.0	21.0	20.9	20.9	20.7	21.1 983	8	21.1		20.8	21.0	20.6	19.0
			Air Pressure	983	983	983	983	983			983		983	983	983	983
			CH4,	0												
		n-	CO ₂ ,	0												
44	02/11/2010	DR	O ₂	20.9												
			Air Pressure	1006												
			CH4,	0												
45	08/11/2010	DR	CO ₂ ,	0												
45	00/11/2010	DK	O_2	20.9 1006												
			Air Pressure													
			CH ₄ ,	0												
46	17/11/2010	DR	CO ₂ ,	0 20.9												
			O ₂	993												
			Air Pressure CH4,	0												
			CO ₂ ,	0												
47	22/11/2010	DR	O ₂ ,	21.2												
			Air Pressure	1013												
			CH ₄ ,	0	0	0	0	0.2	0	Dama	17.5	Damage	0.2	0.4	0	1.6
48	29/11/2010	DR	CO ₂ ,	0	0	0	0	0.2	0	ged	15.0	d	0.2	0.4	0	0.7
40	29/11/2010	DK	O_2	20.9	20.6	20.9	20.5	20.6	20.9		5.7		20.4	20.3	20.9	20.1
			Air Pressure	1017	1017	1017	1017	1017	1017		1017		1017	1017	1017	1017
			CH4,	0												
49	08/12/2010	DR	CO ₂ ,	0 20.0												
			O_2	1026												
			Air Pressure CH4,	0	-					-						
			CH4, CO ₂ ,	0												
50	16/12/2010	DR	O ₂ ,	20.6												
			Air Pressure	1016												
			CH4,	0												
		n-	CO ₂ ,	0												
51	21/12/2010	DR	O ₂	20.8												
			Air Pressure	1010					<u></u>			<u> </u>	L		<u></u>	
			CH ₄ ,	0	0	0	0	0.2	0	Dama	0	Damage	0	0	0	0
52	30/12/2010	DR	CO ₂ ,	0	0	0	0	0.1	0	ged	0	d	0	0	0	0.1
52	50/12/2010	DK	O_2	20.5 1002	20.5 1002	20.3 1002	20.5 1002	20.1 1002	20.5 1002		20.3 1002		20.4 1002	20.2 1002	20.5 1002	20.4 1002
			Air Pressure	1002	1002	1002	1002	1002	1002		1002		1002	1002	1002	1002

5.6 NOISE

5.6.1 Introduction

Daytime noise levels were recorded in July 2010 at five locations at Dungarvan Landfill Site, B1-4 and NSL1, as specified in the licence monitoring schedule D. These locations are shown in fig. DUN-EIS-003, attached. There are limits of 55 dB Leq(30) daytime, and 45 dB Leq(30) night-time imposed as a condition of the licence. Night-time measurements were not considered necessary as the landfill does not operate at night.

A Cirrus 800A Sound Level Meter was used. The meter was calibrated and checked with a 94 dB calibrator before and after each measurement. Broadband and Frequency Band analysis measurements were conducted at each location. A summary of results is presented in the table below. Octave band analysis for 5 monitoring locations are presented in figures 6.1 to 6.5 below.

5.6.2 Noise levels

Table 5.6.1 - 2009 Noise levels

1998 "Baseline" noise levels Site L(A)eq[30mins]Date of Monitoring dBB1 16/7/10 **45.2** Baseline 1998 B2 16/7/10 46.8 <mark>50</mark> Baseline 1998 В3 16/7/10 45.8 Baseline 1998 16/7/10 45.8 B4 Baseline 1998 NSL1 16/7/10 43.4 Baseline 1998

5.6.3 Discussion

Noise levels were compliant at all locations with the noise emission requirement of 55 dB(A) LAeq (30 mins). Noise levels recorded in July 2010 were generally lower than baseline levels of 1998.

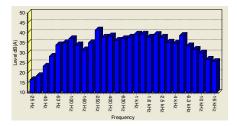


Fig 5.6.1 Dungarvan landfill noise monitoring 16/7/10, location B1, octave band analysis, A weighting

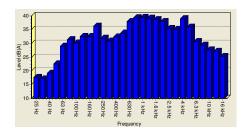


Fig 5.6.2 Dungarvan landfill noise monitoring 16/7/10, location B2, octave band analysis, A weighting

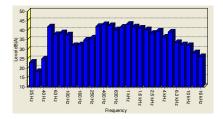


Fig 5.6.3 Dungarvan landfill noise monitoring 16/7/10, location B3, octave band analysis, A weighting

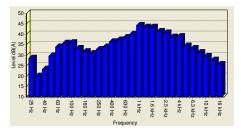


Fig 5.6.4 Dungarvan landfill noise monitoring 15/7/10, location B4, octave band analysis, A weighting

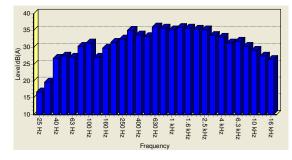


Fig 5.6.5 Dungarvan landfill noise monitoring 16/7/10, location NSL1, octave band analysis, A weighting

5.7 DUST

5.7.1 Introduction / Methodology

Dust deposition rates were measured between 16/6/10 and 15/7/10 over a period of 29 days at five locations (B1, B2, B3, B4, and D1) at Dungarvan Landfill. The measurement method was the Bergerhoff deposition method.

5.7.2 Results

Dust Monitoring Dungarvan Landfill

Monitoring interval.	16/06/2010-15/07/2010
No Of Days	29

Location	Weight 1	Weight 2	No of Days	Deposition Rate mg/sq. m/day
B1	0.3301	0.3334	29	51.7
B2	0.3326	0.3376	29	78.4
В3	0.3342	0.3451	29	170.8
B4	0.3219	0.3306	29	136.4
D1	0.3289	0.3365	29	119.1

Table 5.7.1 - Dust Deposition at Dungarvan Landfill 2010

5.7.3 Discussion

Dust deposition rates were below the limit expected to give rise to nuisance (350 mg/m2/day).

5.8 ECOLOGICAL SURVEY

5.8.1 INTRODUCTION

The results of the 2010 ecological surveys are the subject of a separate report and a summary is presented in the following sections of this report, separated into the various subject areas as required by the scope of works. Section 2 gives a general site overview, describes areas designated for nature conservation that occur in close proximity to the landfill site and reports on the habitat study undertaken in June 2010. Section 3 presents the results of a freshwater biological (freshwater macroinvertebrate) survey along the River Colligan and at a constructed wetland pond on the landfill site carried out in October 2009 by Limosa Environmental Ltd. Section 4 discusses the bird communities recorded at the landfill and reviews data for Dungarvan Harbour from the Irish Wetland Bird Survey (I-WeBS).

5.8.2 Summary Report of 2010 Habitat Survey

Habitats occurring in the Dungarvan landfill site can be categorised as either semi-natural (e.g. scrub, WS1; wet grassland, GS4; reed and large sedge swamps, FS1) or artificial and modified (e.g. recolonising bare ground, ED3, spoil and bare ground, ED2; artificial lakes and ponds Fl8; buildings and artificial surfaces, BL3). These habitats have relatively low ecological value, particularly as they are subject to intermittent disturbance. However, with succession of habitats including establishment of wetland vegetation and increasing scrub cover they may provide good feeding grounds for a variety of birds and some mammal and invertebrate species.

The natural habitats surrounding the landfill are more valuable in terms of their flora and fauna and those recorded in association with the River Colligan are of special interest. These range from freshwater to brackishwater to estuarine habitats. The diversity and ecological interest is reflected in the designation of Dungarvan Harbour as a pNHA and SPA.

The majority of plant species recorded on the site is considered abundant and widespread throughout Ireland. None of the recorded plant species are listed in the Irish Red Data Book (Curtis &Mc Gough 1988) or appear in the protected list (Flora (Protection) Order, 1999).

Comparison of 2010 survey with 2008 survey

• The lagoons are now well established in terms of wetland vegetation cover and are now in operation treating the leachate. Margins of the lagoons show full vegetation cover with mosses, grasses and vascular plant species.

- Japanese Knotweed has encroached onto the landfill cap itself and will need to be monitored and controlled as it has the potential to spread quickly where unmanaged.
- The increasing presence of Gorse on the landfill cap area was noted in the 2010 survey indicating a likely succession to scrub cover over time. The presence of Gorse provides for increasing biodiversity being an important nectar source in early spring and early winter, when little else is in flower. A number of invertebrates are dependent on it.
- Comparison of plant species recorded in 2008 and 2010 is within a context of different survey timing (22nd October 2008 vs 14th June 2010) and by different recorders. Notwithstanding, there is an increase in botanical diversity on the site which is to be expected with stabilisation of soil, colonising vegetation and the establishment of the constructed wetland vegetation.
- A wild flower and grass seed mix was sown in the south-eastern corner of the site in 2010.
 Future botanical surveys will indicate the success of the seed mix in contributing to the floral diversity of the site.

5.8.3 Summary Report of the Aquatic Biological Survey

Limosa Environmental was commissioned by Waterford County Council to conduct a biological monitoring survey at selected sites. The licence requirements for ecological / biological monitoring were amended in 2009 from the former broader monitoring requirements to that of aquatic biological quality Q rating at three locations, two on the River Colligan and one in a drainage ditch which runs along the southern boundary of the site.

The results of the 2009 biological assessment of the River Colligan sites indicated good water quality status at both river sampling sites following analysis of the surface water quality and biological water quality data recorded. As in previous years the diversity of invertebrates decreased moving downstream in the brackish water reaches of the river from sites SW2 to SW1. An increase in the macroinvertebrate diversity was noted at site SW2 compared with 2008, whereas a slight decrease in the species diversity was recorded at site SW1 compared to 2008. However, this decrease is due to the absence of two species found in 2008, that of eels and stickleback. Other than this the macro-invertebrates recorded in the current survey remained very similar to those recorded in 2008 and thus it is considered that there has been no change in water quality.

These findings coupled with the review of water quality measurements taken on site and EPA chemical water quality data between 2008 and 2009, show continued good water quality indicating that Dungarvan Landfill site is not negatively impacting the River Colligan.

Although the European Eel was not recorded within in the current survey it as been recorded previously and it is likely that they are still present in the river in the tidal reaches of the River Colligan.

Site SW4 (pond site) is a new sampling location that has been added in 2009. The pond had an average diversity of invertebrates and contained both mayfly and damselflies that are indicators of better water quality.

5.8.4 Summary Report of Birdlife Surveys

A bird survey of Dungarvan landfill and environs was undertaken in January 2011 mid way between high tide and low tide. The survey involved a survey of wetland birds of the river corridor adjacent to the Dungarvan landfill and extending downstream to approximately 500m below Ballyneety Bridge (undertaken midway between low tide and high tide high-tide).

A species list was compiled for all birds seen during a walk over survey at Dungarvan landfill. A review was undertaken of annual count data for Dungarvan Harbour, from the Irish Wetland Bird Survey (I-Webs,Birdwatch Ireland). I-WeBS data (2002/03- 2008/09) shows that Dungarvan Harbour continues to support 10 species in nationally important numbers (based on average numbers over the past five available count years). Great-crested Grebe, Golden Plover, Grey Plover, Knot, Sanderling, Dunlin, Bar-tailed Godwit, Redshank, Greenshank and Turnstone. Average numbers of Red-breasted Merganser, Oystercatcher, Ringed Plover, Lapwing and Curlew are close to the national threshold.

During the winter months, Dungarvan Harbour supports four species that are listed on Annex 1 of the EU Birds Directive; Great Northern Diver, Little Egret, Golden Plover and Bar-tailed Godwit.

The average number of total waterbirds found at Dungarvan Harbour (based on the six most recent winter counts) is 19,103. Dungarvan Harbour is currently considered the 14th most important wetland site in Ireland and the second most important wetland site in the south-east after Wexford Harbour.

While the 2008 Ecological Survey Report noted lower than average numbers for both wildfowl and waders in the winter of 2006/07 data for 2008/09 show that this trend continued for waders but numbers of wildfowl showed an increase.

The most recent I-WeBS data (2002/03-2008/09) show a possible trend for decrease in Curlew and potentially for Bar-tailed Godwits. The data also shows a trend for increase in Redshank and Little Egret, the latter having naturally colonised the south coast of Ireland and been steadily increasing in terms of both breeding and wintering numbers ever since. Similarly, Light-bellied Brent Geese have appeared to increase steadily in numbers in recent years having shown a decline in previous years.

5.11 CONCLUSIONS

Water quality at the River Colligan surface water sites in the vicinity of the landfill were satisfactory throughout 2010.

The results of groundwater monitoring are in line with results from previous rounds of testing carried out since 1999. As indicated in previous reports, some of the boreholes within the current working area appear to be impacted by leachate from the landfill in terms of ammonia and iron, however groundwater outside the landfill site was generally satisfactory.

Leachate quality was as expected for a landfill accepting mainly domestic and inert waste. Metal and trace organics concentrations were low. Based on leachate management, treatment in the on-site constructed wetlands, attenuation and dilution, no environmental effect from landfill leachate is expected.

No noise nuisance was indicated during the annual noise survey.

Dust deposition levels were below nuisance levels.

The ecological survey of the landfill and estuarine area carried out recorded a diversity of species in both terrestrial and aquatic habitats and concluded that the increase in the diversity of species at downstream sites, coupled with the review of water quality measurements taken on site and EPA chemical water quality, reflects good water quality indicating that Dungarvan Landfill site is not negatively impacting the River Colligan.

Overall, water and ecological quality in the vicinity of the landfill were satisfactory and there was no indication that the landfill was having a detrimental impact on the surrounding environment.

5.12 Meteorological Data.

Monthly meteorological data is attached in Appendix F.

6. Sequence and timescale for development and restoration of the facility

a) Landfill Capping and Restoration

A Restoration and Aftercare Plan has been approved by the EPA. Capping was completed in 2008.

b) Landfill Gas & Leachate Management

Tank and pipeline testing and inspection report

As part of the leachate and gas systems required under the licence, 1549m of leachate pipework (315mm, 225mm, 160mm, 90mm, 63mm), 3334m of gas pipework (250mm, 90mm), and 3 No. gas manifolds, were installed in 2009. All pipework was pressure tested in accordance with the contract and passed.

Two No. 25m3 Glass lined steel leachate storage tanks were erected onsite in 2009, however works onsite were suspended before final testing and commissioning. In May 2010, one of these tanks was brought into use as a leachate storage tank, and was (water) tested prior to usage. The tank on the western side of the site is now fully operational and forms part of the leachate abstraction system.

Report on progress made and proposals being developed to minimise generation of leachate for disposal

As per the information in the waste licence review submission (Dec-08), capping works were completed in mid 2008. The final capping system generally comprises of a gas collection layer, LLDPE liner, drainage layer, subsoil layer and topsoil layer as follows:

- 150-300mm layer of topsoil; underlain by
- Subsoil such that thickness of topsoil and subsoil is at least 1m thick; underlain by
- A surface water geocomposite layer; underlain by

- 1mm LLDPE liner (a low permeability geomembrane material).
- Geocomposite gas collection layer.

The capping layers will provide protection from the ingress of rain into the site and thus minimise leachate generation.

Wetland ponds were constructed in 2008 for the purpose of treating leachate. Leachate extraction wells are located strategically across the site in order to maximise collection efficiency. Furthermore, rainwater will assist in the dilution of leachate within the constructed wetlands.

The leachate and gas collection pipework and ancillary items was completed in 2009.

Work on the completion of the Landfill Gas and Leachate Management system were hindered by financial restrictions encountered by the licensee during the previous reporting period, however a temporary leachate extraction system is now operational, with initial results proving to be successful.

A report on the operation of the leachate extraction system, along with a layout drawing and laboratory analysis results of treated leachate to date are included in Appendix K

Development / Infrastructural works summary (completed in previous year or prepared for current year)

In 2009, as part of the leachate and gas systems required under the licence, 1549m of leachate pipework (315mm, 225mm, 160mm, 90mm, 63mm), 3334m of gas pipework (250mm, 90mm), and 3 No. gas manifolds, were installed. Two No. 25m3 Glass lined steel leachate storage tanks were erected.

A flare trial was carried out in 2009 to confirm the size of permanent flare required. A closed permanent flare of 100 m3/hr capacity was assessed as required, and was installed.

Following the tender and recommendations in the Gas Flare Tender Assessment Report (May 2008), AFS was awarded the tender for the flare and associated works. The gas collection system was completed in June 2009, but the project was then put on hold due to funding issues. The

permanent flare was installed and commissioned by AFS in July 2010, and intensive field balancing over a three month period was completed.

The telemetry system associated with the flare is fully operational and monitoring data referred to in Schedule C.1.2 of the licence can be furnished to the Agency as required. However no data was downloaded during the reporting period. The first set of results will be forwarded to the Agency as part of the Landfill Gas Survey. The licensee will agree a period for residence time also in accordance with Schedule C.1.2

7. Topographical survey

A Topographical survey is attached in Appendix G.

8. Schedule of Environmental Objectives and Targets for the forthcoming year

Objective 1 – To maintain site infrastructure to the standards outlined in Condition 3 of the Waste Licence

Target 1.1 - Any defect to the existing infrastructure will be repaired / replaced as quickly as possible on an ongoing basis.

Objective 2 – That no specified emissions from the facility, shall exceed the limit values, set out in Condition 6 and Schedule C of the Waste Licence.

Objective 3 – To maintain the Monitoring Programme as outlined in Condition 8 and Schedule D of the Waste Licence.

Target 3.1 – To carry out the monitoring programme as outlined in Condition 8 and Schedule D of the Waste Licence.

Target 3.2 – To submit Monitoring Reports to the Agency within the timescale as outlined in Schedule E of the Waste Licence.

Objective 4 – To establish good record keeping and that all records are held at the facility office to comply with Condition 10 of the Waste Licence.

Objective 5 – That no emergency situation occurs on the site.

Target 5.1 – Ensure the contingency arrangements as outlined in Condition 9 of the Waste Licence are implemented throughout the year. A document entitled 'Emergency Response Procedures' forms the nucleus of the contingency arrangements and is currently with the Agency.

Objective 6 – To restore the landfill on an ongoing basis in such a way that final works have a minimal impact on the surrounding environment.

Objective 7 – To carry out regular maintenance of the Gas Management System including gas field balancing, telemetry maintenance and temperature control.

Objective 8 – To complete Leachate Management System (permanent system)

Objective 9 – To complete Landscaping and Seeding of Landfill Cap (wildflower planting)

Objective 10 – Finalise tenders for SCADA dilution system

Objective 11 - Install leachate dilution tanks by direct labour and bring tanks into use as part of permanent leachate extraction system.

Objective 12 – Complete Contract for SCADA system

9. Full title and a written summary of any procedures continued during the reporting period

The European Council Directive 90/313/EEC on the *Freedom of Access to Information on the Environment* recognises the significance of the public's access to information relating to the environment. At present, copies of all documents and correspondence relating to Waste Licence 32-2 are on display at the Civic Offices, Dungarvan.

A communications programme will be put in place as required under condition 2.4.1 of the Waste Licence to ensure that members of the public can obtain information concerning the environmental performance of Ballynamuck Landfill. This in turn will address any local community concerns and allow the public the opportunity to provide feedback on the facility.

The Facility Manager will be responsible for the implementation of this programme, which shall form part of the routine operation and management of the facility. Further support will be provided from the Environment Section of Waterford County Council if required.

Programme

Information to be provided at the Facility

- 1. The following information will be available for inspection at the Site Office, and will be maintained by the Facility Manager.
- Map of the Facility showing all environmental monitoring points
- Current Waste Licence for the Facility
- All records relating to the Facility
- Civic Waste Records
- Nuisance Inspection
- Integrity Tests of Bunds
- Complaints Register
- Incidents Register
- Environmental Monitoring Records (Groundwater, Surface water, Leachate, Landfill Gas, Noise and Meteorological Data).
- Emergency Response Procedure
- Programme for the control and Eradication of Vermin and Flies
- The current EMS for the Facility
- Annual Environmental Report
- Visitors Book

This documentation will also be maintained as part of compliance requirements with Waterford County Council Environment Section's EMAS (Environmental Management and Audit Scheme) Certificate which was obtained in 2009.

2. The Waste Acceptance hours under condition 1.7.1.2 of the Waste Licence are

Monday – Friday 9.00am – 1.00pm and 1.30pm – 5.00pm,

Saturday's 9.00am - 1.00pm.

3. All visitors are required to sign a Visitors Book at the site office outlining their reason for visiting. Unauthorised personnel are not allowed access to the site.

- 4. Members of the public may arrange a site visit by contacting the Facility Manager prior to their visit. For Health and Safety reasons all visitors must have appropriate clothing (High Vis-jacket, Walking boots/Wellingtons). The Facility Manager or Caretaker shall accompany all visitors on site visits. A number of school visits to the facility took place during the reporting period
- 5. If information is requested that is not available at the site, the interested party will be directed to the Environment Section of Waterford County Council at the Civic Offices in Dungarvan.

6. Written Requests for Information

All requests concerning the environmental performance of the facility should be made in writing to:

Facility Manager

Ballynamuck Waste Disposal Site

Dungarvan, Co. Waterford.

7. The Facility Manager shall copy all requests to:

Senior Engineer

Environment Section

Waterford County Council

Civic Offices

Dungarvan

Co. Waterford

- **8.** Each request should indicate the name, address and contact telephone number of the concerned party, an outline of the required information and the manner in which they require the information i.e. copy of record, e-mail etc.
- **9.** Waterford County Council shall make replies in writing within twenty working days of receiving the written request.
- 10. The information required shall be issued in paper format unless otherwise requested by the concerned party. Requests that require information in digital format may require more time than the twenty working days as outlined previously.

- 11. If requested Waterford County Council will provide a clear explanation of the information provided.
- 12. If the concerned party requests the examination of a particular report/document relating to the facility, then it will be made available for viewing at the Landfill site office.

13. Media Requests

The Director of Services within the Environment Section of Waterford County Council shall nominate a liaison person to respond to requests made by the media for information relating to the environmental performance of the facility.

14. Feedback from the public

The Facility Manager will record any comments or suggestions made by the public during their visits and the opportunity will also be available to submit a written comment to the landfill site office. Copies of such minutes or submissions will be kept in a register by the Facility Manager and will also be copied to the Environment Section, for the attention of the Senior Engineer. If requested a reply will be provided by the Council within twenty working days.

Emergency Response Procedures

Scope

The Emergency Response Procedures apply but is not limited to the following incidents occurring:

- Fire / Explosions
- Spillages
- Migration of Landfill Gas
- Environmental Pollution
- Injury or serious accident to persons
- Any other incident, which may pose a significant threat to persons or the environment.

Responsibility

- 1. The Facility Manager is responsible for the implementation of the Emergency Response Procedure and for the training of all landfill personnel and contractors in effective emergency response procedures.
- 2. In the event of a major fire or an explosion the Senior Rostered Fire Officer will be notified immediately via the Regional Fire

- **3.** In the event of a serious accident or injury to a person the Ambulance service should be contacted
- **4.** In the event of other incidents e.g. spillages or environmental pollution the Senior Environment Engineer will be notified and will assume responsibility along with the Facility Manager.

Procedure

In the event of an accident occurring the following procedure will be adopted:

- Evacuate the immediate area within the site if necessary
- Inform other site users
- Remain upwind of any hazard area
- Contact site office and advise in detail of the emergency
- Ensure entrance/exit gate is not obstructed
- Contact fire Brigade, Ambulance, Gardaí, and / or Senior Engineer, Waterford County Council as required by dialing 999 or 112
- If incident occurs outside office hours an emergency telephone contact number will be provided on the site notice board
- Personnel shall report to the designated assembly point at the site office
- All areas affected by the incident shall remain closed until given the all-clear by an authorised person

In the event of landfill gas being detected in the site office the following procedure will be followed:

- Raise the alarm
- Evacuate the site office
- Notify relevant senior personnel in Waterford County Council or emergency services if necessary
- Immediately conduct gas survey to identify source
- Remedy cause of problem
- Document incident properly

In the event of a spillage, the Facility Manager shall apply a suitable absorbent material to contain and absorb any spillage at the facility. Once contained the Facility Manager shall have regard to the Corrective Action Procedure.

In the event of a serious threat to the environment, the Facility Manager shall take all necessary short-term action to minimise any further impact and allow the Corrective Action Procedure.

Records

Details of any incident will be recorded in a written register, which will be maintained at the site office

Waste Characterisation & Acceptance Procedures for the Acceptance, Storage and Segregation of Waste

The Civic Waste Facility at Dungarvan Landfill accepts waste from Domestic Householders only. The following items are accepted:

Waste Electronic and Electrical Equipment – Cages are provided for the collection and storage of small electrical goods. Members of the public are instructed to place all items into these cages by Waterford County Council Employees.

Paint – A 20ft container allows for the collection and storage of paint cans. Members of the public are instructed to place all items on the floor of the container where they are later packed in to steel drums by Waterford County Council Employees.

White Goods (Cookers, washing machines, driers, fridges, freezers) - A 20 ft container allows for the collection and storage of all White goods. Members of the public are instructed to leave all items near the door of the container where they are later double stacked by Waterford County Council Employees.

Glass – Bottle banks are in place to facilitate the disposal of green, brown and clear glass bottles. There is also a small skip in place for the collection of flat glass where it is removed off site for recovery at a later stage.

Hazardous Materials (These are collected and stored in a 40ft container)

Cooking Oil – Waterford County Council employees place all cooking oil in steel drums.

Car oil – Members of the public are instructed to leave all cans beside the oil collection unit where it is later emptied in to the unit by Waterford County Council employees.

Fluorescent tubes – Are collected and stored in a specifically made timber coffin.

Domestic Batteries – These are collected and stored in plastic barrels.

Car Batteries – These are collected are stored in specifically designed battery receptacles.

Obsolete medicines - These are collected and stored in plastic barrels.

Aerosols – These are collected and stored in plastic barrels (all aerosols are separated in to flammable, non – flammable, toxic prior to packing. The aerosols are stacked in layers and covered with vermiculite which is a fire proofing material)

Pesticides - These are collected and stored in plastic barrels.

Scrap metal – Members of the public are instructed to place all metal items in to an open skip where it is later removed off site for recovery

Bulky Items (Beds, Carpets, Mattresses, etc) - Members of the public dispose of these items in to a 20ft container where they are later disposed of to the tip head.

Household Waste – Members of the Public place domestic waste in to a closed skip where it is later disposed of to the tip head.

Rubble - Members of the Public place rubble waste in to an open skip. This is kept on site for use in the haul roads

Clay & Top soil - Members of the Public place clay & topsoil in to an open skip. This is kept on site for use in restoration works.

Household Dry Recyclables – Members of the public dispose of recycling material in to a closed skip where it is later removed off site for recovery.

Timber - Members of the Public place timber products in to an open skip where it is later removed off site for recovery.

10. Reported Incidents and Complaints

There were no reported incidents or complaints for the reported period.

11. Management and Staffing of the Facility

Management and staffing of the facility is attached in Appendix H.

12. Programme for Public Information

All files are held at the site office and at the Civic Offices Dungarvan Co. Waterford

13. Report on training of staff

Both the Facility Manager and Deputy Manager have attended the Fás Waste Management Training Course. Site personnel have attended the Fás Safe Pass program, Waste Facility Operative Course and site operatives attended a course in the handling, storage and removal of

Waste from the Civic Amenity Site. All staff have received manual handling training, Waste Facility Operative Course, Fire Fighting and fire extinguisher training and a refresher First Aid Course. All staff have also undertaken EMAS Certification training during the reporting period.

14. Statement on the costs of Landfill

The project budget as submitted to the Department of the Environment and Local Government (but not yet approved) as at the end of 2010 was €4,048,195 including VAT. The spend to end of year 2010 was €3,471,415

15. Reports on Financial Charges and Provisions

Waterford County Council is responsible for providing annual fees to the Agency for monitoring and inspection of the site. The annual fee for 2010 for monitoring was €20,954 and €15,571 for the licence. With regard to the details of financial provisions required under Condition 12.1.1 and 12.1.2 which are to be set aside in relation to the prevention of environmental damage and in order to underwrite the costs for remedial actions following anticipated events or incidents the following information is relevant.

Final closure Phase

Regarding capital works, the only remaining item is the expansion of the leachate abstraction and treatment system in 2011, at an estimated cost of between €150,000 and €300,000 excl. VAT (€170,000 and €360,000 incl. VAT), depending on the option chosen and tender return.

At the end of 2010, the total project spend was $\[\le 3,471,415 \]$ (incl. VAT), and $\[\le 447,411 \]$ is due for payments outstanding and various committed costs in 2011 (contract payments due, pond flowmeters, consulting fees, RE fees, etc.). Therefore a total of $\[\le 3,918,826 \]$ is committed to date compared to a budget of $\[\le 4,048,195 \]$, leaving a remaining budget of $\[\le 129,369 \]$ (incl. VAT).

Aftercare Phase (30yrs)

The original estimates for long term liabilities were contained in the CRAMP and detail €80,000, €70,000, and €20,000 for general management, leachate, and gas systems, respectively (as per extracted Table 7.3 below). The Environmental Liabilities Risk Assessment is included in Appendix L

Costs of aftercare management proposals

Environmental Liability	Description	Cost Estimate
General Management and maintenance of site during aftercare phase (30 yrs – includes for 20 years of aftercare).	€ 80,000 per annum– monitoring contract with Laboratory, small maintenance works.	€ 2,400,000
Management and maintenance of Leachate Abstraction & Treatment Process and pumping system during aftercare phase (30 yrs – includes for 20 years of aftercare)	€ 70,000 per annum- maintain Leachate Abstraction & treatment Process and SCADA system and replace pumps, lines etc. where required; Power supply; Testing	€ 2,100,000
Management and maintenance of Gas Management System during aftercare phase (30 yrs – includes for 20 years of aftercare)	€ 20,000 per annum – Maintain & operate landfill gas extraction system	€ 600,000
	Total for 30 year period	€ 5,100,000
	Contingency set at 15% for increased scope on last three items.	€ 765,000
	Total for 30 years with contingency	€ 5,865,000

Dungarvan landfill Maintenance costs

Item	Description	Details	Cost
1	Flare maintenance	As per contract	€3,400
2	Flare maintenance	Allow for 4 days callouts at contract rate	€3,000
3	Flare maintenance	Allow for parts replacement	€3,000
4	Leachate system maintenance	Current contract (to Oct-11, new contract needed thereafter)	€3,600
5	Leachate system maintenance	Allow for 4 days callouts at contract rate	€3,000
6	Leachate system maintenance	Allow for parts replacement	€1,500
7	Subtotal		€17,500
8	Contingencies at 15%		€2,625
9	Subtotal		€20,125
10	VAT		€2,717
11	Total		€22,842

16. Slope Stability Assessment

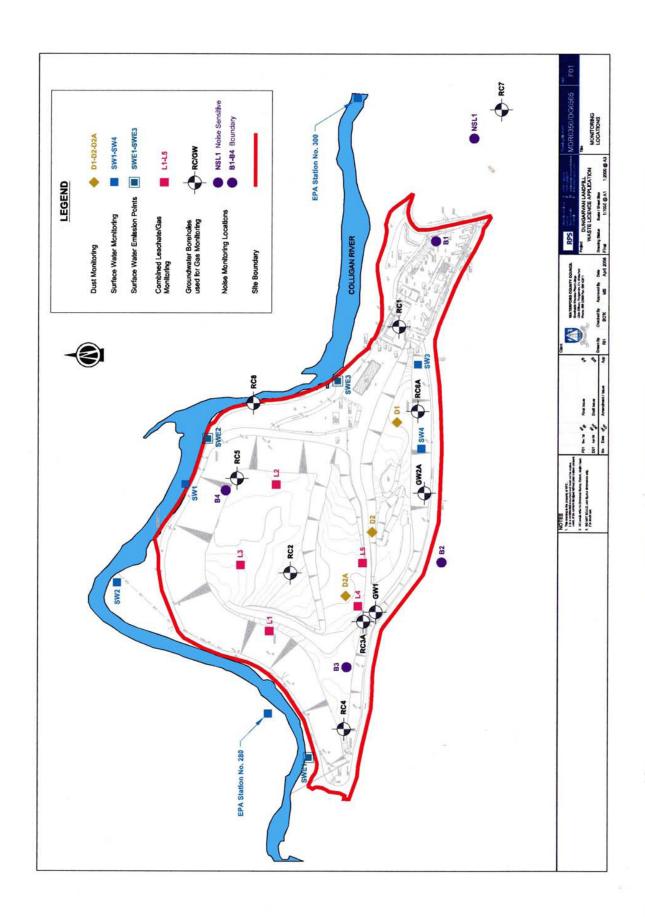
A Slope Stability Assessment is included in Appendix M

51

APPENDIX A

Quantity & Composition of Waste Received, Disposed of & Recovered during the reporting period.

Dungarvan Civic Amenity Site – Waste Accepted between January 1st 2010 – December 31st 2010


Waste Disposed	Type	EWC Code	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	Total
Domestic	Domestic Bulky CoCo	20 03 01	4.92	6.48	5.92	4.64	3.32	5.12	4.58	7.18	5.1	2.18	3.76	1.84	55.04
	Bulky CoCo	20 03 01	3.5	0	8.9	0.24	1.22	0	0	5.68	8.56	0	0	2.56	30.66
	Domestic Bulky UDC	20 03 01	61.98	12.64	3.44	13.24	0	18.78	18.36	9.46	5.66	9.1	9.86	20.26	182.78
	Civic Skip	20 03 99	8.72	7.3	9.16	9.68	10.42	9.98	10.44	6.4	11.26	8.22	8.32	10.82	110.72
	WCC Housing	20 03 99	1.54	0.28	0.82	1.30	1.46	0.96	0.78	0.86	1.34	0.6	1.18	0	11.12
	Clean Up	20 03 99	0	0	0	16.72	2	0	0	0	0	0	0	0	18.72
	Domestic CoCo	20 03 99	143.08	104.14	202.12	134.42	191.96	93.28	178.4	92.62	208.86	106.22	138.52	285.1	1878.72
	Dom CoCo by DTC	20 03 99	17.38	13.28	27.94	13.04	22.84	11.54	20.26	11.06	11.44	14.02	11.62	15	189.42
	Film Farm Plastics	02 01 04	0	0	0	0	0	0	29.32	0	0	0	0	0	29.32
	UDC Domestic	20 03 99	56.14	41.78	78.3	44.86	80.3	39.8	71.54	33.38	43.84	40.66	51.7	59.08	641.38
MRF Plant	MRF Plant	20 03 99	0	3.52	1.36	0.00	0	0	5.86	0	0	0	0	0	10.74
Litter	Roadsweeper	20 03 99	33.4	32.56	34.3	37.28	33.42	25.84	38.06	51.58	48.02	62.14	55.78	40.12	492.5
	RoadsweeperUDC	20 03 99	0	0	0	0.00	0	0	0	0	0	0	0	0	0
	Litterbins	20 03 99	13.68	17.68	23.74	29.28	23.2	22.64	26.46	23.5	23.6	21.4	17.26	16.06	258.5
	LitterbinsUDC	20 03 99	23.74	18.68	21.48	18.52	11.46	19.5	13.86	16.24	17.32	12.88	18.1	19.28	211.06
Total Disposed			368.08	258.34	417.48	323.22	381.6	247.44	417.92	257.96	385	277.42	316.1	470.12	4120.68
	,														0
Recycling	Dry Material	15 01 01	9.92	9.26	10.66	8.64	7.1	7.76	14.96	7.56	10.08	6.06	7.5	10.4	109.9
· · · · · · · · · · · · · · · · · · ·	Textiles	04 02 22	0.14	0.58	1	0.44	0.26	0.28	0.84	0.74	0.46	0.36	0.32	0.34	5.76
	Fridges	16 02 11	0	0	0	0	0	0	0	0	0	0	0	30.26	30.26
	Large Household	16 02 13		, i					,	,	,			99.58	99.58
	Small Household	16 02 13	0	0	0	0	0	0	0	0	0	0	0	101.6	101.6
	TV's Monitors	16 02 13	0	0	0	0	0	0	0	0	0	0	0	36.47	36.47
Scrapmetal	Scrap metal	17 04 07	0	2.26	3.64	3.62	4.48	3	2.14	1.7	1.9	1.5	0	1.72	25.96
Recovery	Clay	17 05 04	0	0	0	0	0	0	0	0	0	9.58	0	0	9.58
	Rubble	17 01 07	0	8.06	0	9.42	0	8.7	0	7.88	7.72	0	7.32	0	49.1
	Cooking Oil	02 02 99	0	0	0	0	0	0	0	0	0	0	0.66	0	
Glass	Flat Glass	17 02 02	0	0	0	0	2.1	0	0	1.38	0	2.46	0	0	5.94
Compost	Compost	02 01 07	0	0	0	0	0	0	0	0	0	0	0	0	C
	Brown Bin	02 01 07	97.56	189.8	79.12	207.44	88.12	168.9	152.28	150.57	148.32	99.16	180.5	48.52	1610.29
	WCC Brown by DTC	02 01 07	8.48	13.94	4.7	18.5	8.16	13.06	12.34	9.3	13.7	7.66	14.12	7.44	131.4
	Brown Bin UDC	02 01 07	26.56	43.36	17.98	52.1	39.82	42.92	38.38	33.24	42.2	24.78	44.02	20.64	426
	Brown Bin Commercial	02 01 07	0	0	0	0	0	0	0	0	0	0	0	0	(
	Garden CoCo	02 01 07	0	0	0	0	0	0	0	0	0	0	0	0	(
	Garden UDC	02 01 07	0	0	0	0	0	0	0	0	0	0	0	0	C
	Garden Private	02 01 07	0	0	0	0	0	0	0	0	0	0	0	0	C
	Garden waste Lismore	02 01 07	0	0	0	0	0	0	0	0	0	0	0	0	C
	Garden waste Tramore	02 01 07	0	0	0	0	0	0	0	0	0	0	0	0	C
Timber	Timber	17 02 01	4.18	1.54	6.02	6.72	3.16	5.48	5.48	1.54	3.22	4.5	1.28	1.76	44.88
Hazardous	Aerosols	16 05 04	0	0	0	0	0	0.14	0	0.04	0	0	0	0	0.18
	Flourescent Lamps	16 02 11	0	0	0	0	0	0	0	0	0	0	0	0.93	0.93
	Engine Oil	13 02 06	0	0	0	0	0	1.06	0	0	0	0	0	0	1.06
	Paint	08 01 21	0	0.56	0	0.64	0	0.38	0	0.42	0.4	0	0.1	0	2.5
Total Accepted			146.84	269.36	123.12	307.52	153.2	251.68	226.42	214.37	228	156.06	255.82	359.66	2691.39

Dungarvan Civic Amenity Site – Waste Transferred between January 1st 2010 and December 31st 2010

Waste Transfe	ered	EWC Code													0
Compost	Compost	02 01 07	0	0	0	0	0	0	0	0	0	0	0	0	0
	CompostUDC	02 01 07	0	0	0	0	0	0	0	0	0	0	0	0	C
	Brown Bins	02 01 07	89.52	216.7	107.62	196.52	181.44	182.3	180.96	157.68	182.7	107.16	198.9	55.6	1857.1
	Fridges	16 02 11	0	0	0	0	0	0	0	0	0	0	0	30.26	30.26
	Large Household	16 02 13												99.58	99.58
	Small Household	16 02 13	0	0	0	0	0	0	0	0	0	0	0	101.6	101.6
	TV's Monitors	16 02 13	0	0	0	0	0	0	0	0	0	0	0	36.47	36.47
Recycling*	Dry Materials	15 01 01	11.8	9.32	10.66	8.76	7.18	7.9	12.8	7.6	9.98	6.16	7.54	10.62	110.32
	Textiles	04 02 22	0.14	0.54	1.04	0.46	0.54	0.28	0.78	0.74	0	0.36	0.34	0.24	5.46
	Timber	17 02 01	4.22	1.56	6.04	6.72	3.18	5.54	5.52	1.54	3.14	4.58	1.32	1.84	45.2
Scrapmetal	Scrapmetal	17 04 07	0	2.36	3.52	3.62	4.5	3	2.14	1.7	0	1.5	0	1.64	23.98
Recovery	Clay	17 05 04	0	0	0	0	0	0	0	0	0	9.58	0	0	9.58
	Rubble	17 01 07	0	8.08	0	9.44	0	8.7	0	7.9	0	0	7.32	0	41.44
	Dom CoCo	20 03 99	417.88	285.24	457.76	321.42	398.38	334.7	367.52	311.36	396.26	300.32	285.26	518.04	4394.14
	Garden CoCo	02 01 07	0	0	0	0	0	0	0	0	0	0	0	0	0
	Cooking Oil	02 02 99	0	0	0	0	0	0	0	0	0	0	0.68	0	0.68
	Film Farm Plastics	02 01 04	0	0	0	0	0	0	0	0	0	0	0	0	0
Glass	Flat Glass	17 02 02	0	0	0	0	2.1	0	0	1.4	0	2.46	0	0	5.96
Hazardous	Aerosols	16 05 04	0	0	0	0	0	0.14	0	0.04	0	0	0	0	0.18
	Flourescent Lamps	16 02 11	0	0	0	0	0	0	0	0	0	0	0	0	C
	Engine Oil	13 02 06	0	0	0	0	0	1.06	0	0	0	0	0	0	1.06
	Paint	08 01 21	0	0.58	0	0.64	0	0.38	0	0.3	0.34	0	0.1	0	2.34
Total			523.56	524.38	586.64	547.58	597.32	544	569.72	490.26	592.42	432.12	501.46	855.89	6765.35

Appendix B

Monitoring Locations

Appendix C

Surface Water Results

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Facility:	Dungarvan Waste Disposal Site
	Ballynamuck Middle, Dungarvan, Co. Waterford
Reference No:	VV0032-01
:	

			1		1000322	1000323	1000324	1000325
_						Surface Water	Surface Water	Surface Water
					7.	WST-W0032-01-SW280	WST-W0032-01-SW	WST-W0032-01-SW300
_							lagoon	
			Sampling pour		əldur	Clear sample	Clear sample	Clear sample
			Sampled by:	Jim McGarry	Jun McGarry	Jim McGarry	Jim McGarry	Jim McGarry
			Time Sampled:	13:55	14:16	14:25	15:45	16:30
		Start/Ei	Start/End - Dates of Analysis: Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report
			:					
Par	Parameter	Units	Limits			1	6.3	7.4
L	Temperature	ပံ		7.6	7.4	¢:/	9.3	ŧ;
щ	Dissolved Oxygen (as %Sat)	% Saturation		103.0	103.0	103.0	73.0	105.0
Ī	Chemical Oxygen Demand	mg/I 02		<20	<20	<20	26	<20
	Biochemical Oxygen Demand	mg/I 02		<0.5	<0.5	<0.5	6.0	<0.5
	Suspended Solids	l/6m		\$>	<5	<5	<5	<5

Comments:

Results highlighted and in bold are outside specified limits.

2)

All Melais Analysed in the EPA Dublin Laboratory, Cyanida Analysed in the EPA Cork Laboratory. Phenois Analysed in the EPA Castlebar Laboratory.

"Not measured"

<u>8466</u>5

"None detected"
"No time" - Time not recorded
"Too numerous to count"
"Field measured parameters" E to the second

Date: $| l_{\nu} | \gamma | \omega$

Michael Neill, Regional Chemist

Signed:

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Analysis of landfill site sample(s)	Waterford County Council	24/08/10
Report of:	Report to:	Report date:

Facility:	Dungarvan Waste Disposal Site Ballynamuck Middle, Dungarvan, (Dungarvan Waste Disposal Site Ballynamuck Middle, Dungarvan, Co. Waterford	Vaterford
Reference No:	W0032-01		
Date collected:	28/04/2010	Date received:	28/04/2010

				4004673	1001674	1001675	1001676
		Laboratory Ref:	1001072 2019/01	Surface Water	Surface Waler	Surface Water	Surface Waler
		Type of sample:	WST	WST-W0032-01-SW2	WST-W0032-01-SW1	WST-W0032-01-SW	WST-W0032-01-SW300
			Clear samole	Clear sample	Clear sample	Light brown colour	Clear sample
		Sampling point.		Jim McGarry	Jim McGarry	Jim McGarry	Jım McGarry
		Time Sampled:	14.00	14:15	14:20	15.05	16 30
	Start/En	Start/End - Dates of Analysis: Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report
Parameter	Units	imits	11.7	11.8	11.5	15.1	13.6
F Temperalure)				0	0 804	1180
F Dissolved Oxygen (as %Sal)	% Saturation		108.0	108.0	0.601	0.001	0.01
Chemical Oxygen Demand	mg/l O2		<20	<20	<20	33	<20
Biochemical Oxygen Demand	+		9.0	0.7	2.0	8.	6.0
Suspended Solids	+		\$	<5	<5	26	80

Comments:

1) Results highlighted and in bold are outside specified limits.

23

All Metals Analysed in the EPA Dublin Laboratory. Cyanute Analysed in the EPA Cork Laboratory. Phenols Analysed in the EPA Castlebar Laboratory.

"Not measured" 84005

E to to to to

"None detected"
"No time" - Time not recorded
"Too numerous to count"
"Field measured parameters"

Date:

Michael Neill, Regional Chemist

Report number KK1000693/1

Comments:

Results highlighted and in bold are outside specified limits.
 All Metals Analysed in the EPA. Dublin Laboratory Cyanide Analysed in the EPA Cork Laboratory.
 Phenois Analysed in the EPA Castlebar Laboratory.

3) nm "Not measured"
4) nd "Note delected"
5) nt "No time" - Time not recorded
6) tntc "Too numerous to count"
7) F "Field measured parameters"

Signed: Nichael Neill. Regional

Date:

Report number.KK1000694/1

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

· () · () · ()

ブライニのアンとう

していりく こひりいりし

Report of: Analysis of landfill site sample(s)

Report to: Waterford County Council

Report date: 21/10/10

Facility: Dungarvan Waste Disposal Site

Ballynamuck Middle, Dungarvan, Co. Waterford

Reference No: W0032-01

Date received: 06/07/2010

06/07/2010

Date collected:

5

150 857675

			Laboratory R.	1003021	1003022	303023	1003024	1003025
	Y 1		Type of sample:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
			Location code:	Location code: WST-W0032-01-SW300	WST-W0032-01-SW280	WST-W0032-01-SW2	WST-W0032-01-SW1	WST-W0032-01-SW lagoon
			Sampling point:	Light brown colour	Clear sample	Clear sample	Clear sample	Brown colour
			Sampled by:	Jim McGarry	Jint McGarry	Jim McGarry	Jim McGarry	Jim McGarry
			Time Sampled:	13.15	14:40	15:00	15:10	15.30
		Start/Er	Start/End - Dates of Analysis:	07-07-10/12-07-10	07-07-10/12-07-10	07-07-10/12-07-10	07-07-10/12-07-10	07-07-10/12-07-10
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report
á		Inite	limite					
T IT	F Temperature	ပ္		16.2	14.1	14.1	14.2	17.0
ш	Dissolved Oxygen (as %Sat)	% Saturation		127.0	107.0	107.0	108.0	84.0
	Chemical Oxygen Demand	mg/I 02		111	<20	<20	<20	106
	Biochemical Oxygen Demand	mg/I 02		5.0	0.5	0.5	<0.5	19.7
	Suspended Solids	l/gm		505	<5	<5	<7.6	106
				1				

Tide is in at time of sample SW300 and SW280. Water at SW300 has scum floating on the top.

Comments:

Results highlighted and in bold are outside specified limits

6.59.53.5

"Not measured"
"None detected"
"No time" - Time not recorded
"Too numerous to count"
"Freld measured parameters" nd rad tritc

Date:

Cafoline Bowden, A/Regional Chemist

Signed: Www

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Report of: Analysis of landfill site sample(s)

Report to: Waterford County Council

Report date: 15/03/11

Facility: Dungarvan Waste Disposal Site

Ballynamuck Middle, Dungarvan, Co. Waterford

Reference No: W0032-01

Date collected: 15/11/2010 Date received: 15/11/2010

		Laboratory Ref:	1005626	1005627	1005628	1005629	1005630
		Type of sample:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
		Location code:	Location code: WST-W0032-01-SW300	WST-W0032-01-SW lagoon	WST-W0032-01-SW1	WST-W0032-01-SW2	WST-W0032-01-SW280
		Sampling point:	Clear Sample	Clear Sample	Clear Sample	Clear Sample	Clear Sample
		Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry
		Time Sampled:	13:40	14:00	14:20	14:30	
	Start/E	Start/End - Dates of Analysis:	13-11-10/22-11-10	13-11-10/22-11-10	13-11-10/22-11-10		13-11-10/22-11-10
		Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report
Parameter	Units	Limits					
F Temperature	ပ္		7.0	6.3	7.3	7.3	7.2
Dissolved Oxygen (as %Sal)	.) % Saturation		106.0	96.0	104.0	104.0	103.0
Chemical Oxygen Demand	mg/I 02		<20	30	<20	<20	<20
Biochemical Oxygen Demand	nd mg/l O2		7.0	3.9	0.7	9.0	<0.5
Suspended Solids	mg/l		29	9	<5	\$>	<5
						ı	

Comments:

1) Results highlighted and in bold are outside specified limits.

All Metals Analysed in the EPA Dublin Laboratory.
 Cyanide Analysed in the EPA Cork Laboratory.
 Phenots Analysed in the EPA Castlebar Laboratory.

ଳ କ ଓ ଓ ୮

"Not measured"
"None detected"
"No time" - Time not recorded
: "Too numerous to count"
"Field measured parameters" 돌 두 분 교

Caroline Bowden, Regional Chemist

Date:

Signed:

Appendix D

Ground Water Results

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Report to: Waterford County Council

Analysis of landfill site sample(s)

Report of:

Report date: 16/03/10

Facility: Dungarvan Waste Disposal Site

Ballynamuck Middle, Dungarvan, Co. Waterford

Reference No: W0032-01

Date collected: 28/01/2010 Date received: 28/01/2010

Report number: KK1000148/1

1000332	Groundwater	WST-W0032-01- GW2a	Dry - no sample	Jim McGarry	12:00	28-01-10/28-01-10	Final Report				•		·	•		1		•	•	
1000331	Groundwater	WST-W0032-01- RC3a	Clear sample	Jim McGarry	15:30		Final Report	60	57	13.9	11.8	24.0	1.7	1987	74	160	4 0	co.0>	450	
1000330	Groundwater	WST-W0032-01- GW1	Muddy sample	Jim McGarry	15:15		Final Report		10.3	5.2	10.9	23.0	6.7	1313	9.5	21	Ç	c.u>	14000	
1000329	Groundwater	WST-W0032-01- RC4	Clear sample	Jim McGarry	14:47		Final Report		23.3	16.5	10.7	54.0	7.3	653	0.01	27	i	12	170	
1000328	Groundwater	WST-W0032-01- RC8	No sample - no tubing	Jim McGarry	13:55	28-01-10/28-01-10	Final Report		,		,				,	•		ø	į	
1000327	Groundwater	WST-W0032-01- RC7	Muddy brown colour	Jim McGarry	13:40		Final Report		11.8	10.8	11.2	34.0	7.3	2010	0.02	283	CO I	F	270	
1000326	Groundwater	Location code: WST-W0032-01-	Clear sample	Jim McGarry	12:24		Final Report		11.6	7.9	11.0	19.0	7.2	841	-	. 6	70	13	100	
l aboratory Ref.	Type of sample:	Location code:	Sampling point:	Sampled by:	Time Sampled:	Start/End - Dates of Analysis:	Status of results:	Limits												
						Start/End - Da	S	Units	٤	Ε	Ç	% Saturation	Ha	mo/Sin	N TO SERVICE S	N Wall	mg/l Ci	N I/6m	l/bn	,
								Farallieter	Mater Level		\neg	$\neg \top$	Pril	Collinación (CA)	Аттопіа	Chloride	Total Oxidised Nitrogen (as	(X)		

Comments:

Results highlighted and in bold are outside specified limits.
 All Metals Analysed in the EPA, Dublin Laboratory.
Cyanide Analysed in the EPA Cork Laboratory.
Phenols Analysed in the EPA Castlebar Laboratory.

"Not measured" **ಅಕ್**ಡಿ

"None detected"
"No time" - Time not recorded
"Too numerous to count"
"Field measured parameters" nd at thtc

Date:

Mighael Neill, Regional

-

Signed:

Report number: KK1000148/1

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Report of: Analysis of landfill site sample(s)

Report to: Waterford County Council

Report date: 24/08/10

Facility: Dungarvan Waste Disposal Site

Ballynamuck Middle, Dungarvan, Co. Waterford

Reference No: W0032-01

Date collected: 28/04/2010 Date received: 28/04/2010

1001683	Groundwater	WST-W0032-01- RC8	Damaged - no sample	Jim McGarry	13.50	•	Final Report	1	•	1	t		•	•	•	-	,	- ;	
1001682	Groundwaler	WST-W0032-01- GW2a	Dry - no sample	Jim McGarry	12.00	,	Final Report	•	1	t		1	1	-	à	à	1	3	
1001681	Groundwaler	WST-W0032-01- RC7	Light brown colour	Jım McGarry	16 15		Final Report	11.8	10.4	10.7	49.0	2.2	7.5	4290	0.05	1181	2.2	570	
1001680	Groundwaler	WST-W0032-01- RC6a	Lighl brown colour- no signage	Jim McGarry	15 46		Final Report	11.7	7.8	11.8	29.0	,	7.1	950	1.7	88	12	<25	
1001679	Groundwater	WST-W0032-01- GW1	Muddy sample - dangerous access	Jim McGarry	13 40		Final Report	10.3	2.6	11.3	28.0		6.6	1278	11	22	<0.5	57000	
1001678	Groundwaler	WST-W0032-01- RC3a	Clear sample - no signage-	dangerous access Jim McGarry	13·27		Final Report	23	15.7	12.4	21.0	1	7.1	2270	98	200	<0.5	9200	
1001677	Groundwaler	_ <	Clear sample - no label on well	Jim McGarry	13:05		Final Report	23	15.8	11.3	57.0	1	7.2	651	0.01	26	11	<25	
Lahoratory Ref:	Type of sample:	Location code:	Sampling point: Clear sample - no label on well	Sempled by:	Time Sampled:	Start/End - Dates of Analysis:	Status of results:												
						Start/End - Da	0)	ε	٤	ပွ	% Saturation	900	Hd	µ5/cm	Mg/l N	mg/l Cl	N I/Bm	1/6n	
								F Depth of Borehole	F Water Level	F Temperature	F Dissolved Oxygen (as %Sat)	F Salinty	Ha	Conductivity @25°C	Ammonia	Chloride	Tolal Oxidised Nitrogen (as	N)	

Report of: Analysis of landfill site sample(s)

Report to: Waterford County Council

Report date: 21/10/10

Facility: Dungarvan Waste Disposal Site

Ballynamuck Middle, Dungarvan, Co. Waterford

Reference No: W0032-01

06/07/2010

Date collected:

Date received: 06/07/2010

								$\overline{}$	т-	7	1	$\overline{}$	$\overline{}$	_			_	_	_		_		_	_	_						
										ll.																					
1003031	Groundwater	WST-W0032-01- RC6a	No sample - unable to mount	Jim McGarry	15:35	•	Final Report				,	,			,	,	1	ı		,		,		,			,			-	
1003030	Groundwater	WST-W0032-01-	No sample - no tubing	Jim McGarry	15:15	,	Final Report				,	,		,				,	·	,	,		,	,	,			,			
1,1,3029	Groundwater	WST-W0032-01- RC4	Clear sample	Jim McGarry	14:26		Final Report	22.3	14.6	11.5	55.0	7.1	651	0.03	26	10.97	<25	<0.5	<0.5	o	<0.5	19	<0.5	84	-	\$0.5	<0.5	110	<0.5	6.8	
1003028	Groundwater	WST-W0032-01- RC3a	No sample - unable to mount	Jim McGarry	13:55	,	Final Report			,								,				,	,	,		,	,	,		ı	
1003027	Groundwater	WST-W0032-01- GW1	Dark brown colour	Jim McGarry	14:10		Final Report	10.2	-	12.1	7.0	6.8	1334	15	28	<0.50	36	<0.5	3.9	120	<0.5	45	<0.5	200	11	4.8	2.0	25000	<0.5	15	
920300	Groundwater	WST-W0032-01-	Light brown colour	Jim McGarry	13.20		Final Report	11.8	9.1	11.3	21.0	7.4	12920	0 03	>1130	mu	150	<0.5	14	38	<0.5	740	<0.5	140	4 1	0.5	22	310	<0.5	220	
- phomoton, Dof.	Type of sample:	Location code:	Sampling point: Light brown colour	Sampled by:	Time Sampled:	Start/End - Dates of Analysis:	Status of results:																								
						Start/End - Da	S	Е	٤	ပ့	% Saturation	Hd	ms/srd	N I/6w	mg/I CI	N I/bm]/bn	l/6n	l/bn	l/bn	V6u	l/gu	1/6n	l/gm	l/gn	l/6n	l/6n	l/gu	l/6n	l/gm	
								Depth of Borehole	Waler Level	Temperature	Dissolved Oxygen (as %Sat)	Hd	Conductivity @25°C	Ammonia	Chloride	Total Oxidised Nitrogen (as	Aluminium	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Мадлезіит	
								и.	ш,	ıı	<u>.</u>	Ī	1	1	Ť	ĺΪ	<u> </u>	-	-	1		_	Ĕ-	٦	٦	۲	<u>٠</u>	=	广	٣	

	1003031	Groundwater	WST-W0032-01- RC6a	No sample - unable to mount	dwnd :	Jim McGarry	15:35	1	Final Report		-	ı	ı		,	•		-		,	•	
	1003030	Groundwater	WST-W0032-01- RC8	No sample - no tubing	:	Jim McGarry	15:15	1	Final Report		1	,	,		,			1	•		•	
Đ.	8703	Groundwater	WST-W0032-01- RC4	Clear sample	:	Jim McGarry	14:26		Final Report	<25	<0.5	<0.5	7.0	+	1.4	10	<0.5	<1	0.5	<0.5	20	
	1003028	Groundwater	WST-W0032-01- RC3a	oN dan	dwnd	Jim McGarry	13:55	1	Final Report	ţ				1	Ť	•		-				
	1003027	Groundwater	WST-W0032-01- GW1	Dark brown colour	;	Jim McGarry	14:10		Final Report	14000	<0.5	<0.5	14	6.3	33	17	<0.5	<1	<0.5	0.7	18	
1		Groundwater	Location code: WST-W0032-01-	Sampling point: Light brown colour Dark brown colour	:	Jim McGarry	13:20		Final Report	78	<0.5	1.3	1.5	62	44	2100	<0.5	<1	9:0	11	18	
	Laboratory Ref:	Type of sample:	Location code:	Sampling point:		Sampled by:	Time Sampled:	Start/End - Dates of Analysis:	Status of results:													
								Start/End - D		l/gu	l/6n	l/6n	l/Bn	l/6m	l/6n	1/6w	ng/l	l/6n	l/gu	l/6n	l/6n	
										Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Sodium	Thallium	Tin	Uranium	Vanadium	Zinc	

- Results highlighted and in bold are outside specified limits

- 2) nm "Not measured"
 3) nd "None detected"
 4) nt "No time" Time not recorded
 5) tntc "Too numerous to count"
 6) F "Field measured parameters"

Caroline Bowden, A/Regional
Chemist

Report number KK1001192/1

Report of: Analysis of landfill site sample(s)

Report to: Waterford County Council

Report date: 15/03/11

Facility: Dungarvan Waste Disposal Site

Ballynamuck Middle, Dungarvan, Co. Waterford

Reference No: W0032-01

Date collected: 15/11/2010 Date received: 15/11/2010

			Laboratory Ref:	1005631	1005632	1005633	1005634	1005635	1005636	1005637
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwaler	Groundwaler	Groundwater	Groundwater
			Location code:	WST-W0032-01- RC7	WST-W0032-01- RC8	WST-W0032-01- RC4	WST-W0032-01- GW2a	WST-W0032-01- GW1	WST-W0032-01- RC3a	WST-W0032-01- RC6a
			Sampling point:	Muddy Brown sample	No sample, no tubing in place	cloudy sample	dry	Rusty brown colour	Brown sample	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim МсGату
			Time Sampled:	13:35	14:15	15:00	15:20	15:55	16:20	16:45
		Start/End - D.	Start/End - Dates of Analysis:	15-11-10/29-11-10	15-11-10/28-11-10		15-11-10/15-11-10	15-11-10/29-11-10	15-11-10/29-11-10	15-11-10/29-11-10
		J,	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Parameter	neter	Units	Limits							
r.	Depth of Borehole	E		11.9	15.7	22.3	•	10.3	17.2	,
ž.	Waler Level	E		10.6	12	15	1	3.2	7.3	
	Temperature	၁့		11.9	,			11.5	11.6	10.6
ī.	Dissolved Oxygen (as %Sat)	% Saturation		28.0	,	49.0		24.0	23.0	35.0
Ā	Ammonia	M l/gm		0.04	1	0.02	1	8	06	e
ਹ	Chloride	mg/l Cl		1195	,	26	1	27	165	126
5	ortho-Phosphate (as P)	mg/l P		90.0	1	0.03		90'0	0.05	0.04
₽ĝ 	Total Oxidised Nitrogen (as N)	N I/bm		1	,	10.5		<0.50	<0.50	11.04
Ŕ	Alkalinity-total (as CaCO3)	mg/I СаСО3		170		215	•	443	1002	287
-	1,1,1,2-Tetrachloroethane	/вп		<0.5		<0.5		<0.5	<0.5	<0.5
<u>+</u>	1,1,1-Trichloroelhane	√вч		<0.5	-	<0.5	•	<0.5	<0.5	<0.5
-	1,1,2,2-Tetrachloroethane	l/grl		<1	1	<1	1	٧	₽	۲
-	1,1,2-Trichloroethane	рду		<0.5	-	<0.5	1	<0.5	<0.5	<0.5
÷.	1,1-Dichloroethane	l/g⊔		<0.5	-	<0.5	t	<0.5	<0.5	<0.5
- -	1,1-Dichloroethene	ľв́п		<0.5	•	<0.5	1	<0.5	<0.5	<0.5
<u>-</u>	1,1-Dichloropropene	μgγ		<0.5	1	<0.5	1	<0.5	<0.5	<0.5
7-	1,2,3-Trichlorobenzene	ľВd		<0.4	-	<0.4	-	<0.4	4.0>	4 .0>
1,	1,2,3-Trichloropropane	l/84		<0.6	í	9.0>	_	>0.6	>0.6	<0.6
7,	1,2,4-Trichlorobenzene	l/gri		<0.4	*	4 .0>	-	<0.4	<0.4	<0.4
, <u>,</u>	1,2,4-Trimethylbenzene	l/grl		<0.5	-	<0.5	•	<0.5	<0.5	<0.5
7,	1,2-Dibromo-3-Chloropropane	Vвd		<1.3	-	<1.3	•	<1,3	<1.3	<1.3
,,, ,,,	1,2-Dibromoethane	l/Brl		<0.5	-	<0.5	1	<0.5	<0.5	<0.5
7	1,2-Dichlorobenzene	hg/l		<0.5	•	<0.5	_	<0.5	<0.5	<0.5

Type of sample: Coundwaler		Groundwater WST-W0032-01- V RC8 No sample, no tubing in place Jim McGarry 14:15 15-11-10/28-11-10 Final Report	Groundwaler WST-W0032-01- RC4 cloudy sample Jim McGarry 15:00 15:00 <0.5 <0.5 <0.5 <0.5	Groundwater WST-W0032-01- GW2a No Sample, dry Jim McGarry 15:20 15-11-10/15-11-10 Final Report	Groundwaler WST-W0032-01- GW1 Rusly brown colour Jim McGarry 15:55 15-11-10/29-11-10 Final Report <0.5 <0.5	Groundwater WST-W0032-01- RC3a Brown sample Jim McGarry 16:20 15-11-10/29-11-10 Final Report <0.5	Groundwaler WST-W0032-01- RC6a Jim McGarry 16:45 15-11-10/29-11-10 Final Report
Cocation code: WST-W0032-01-RC7			vST-W0032-01- RC4 cloudy sample Jim McGarry 15:00 15:00 <0.5 <0.5 <0.5 <0.5		WST-W0032-01- GW1 Rusty brown colour Jim McGarry 15:55 15-11-10/29-11-10 Final Report <0.5 <0.5	WST-W0032-01- RC3a Brown sample Jim McGarry 16:20 15-11-10/29-11-10 Final Report <0.5	WST-W0032-01- RC6a Jim McGarry 16:45 15-11-10/29-11-10
Nuddy Brown sample Sampled by: Jim McGarry Time Sampled Jim McGarry Time Sampled 13:35			cloudy sample Jim McGarry 15:00 15:00 <0.5 <0.5 <0.5 <0.5 <0.5		Rusly brown colour Jim McGarry 15:55 15-11-10/29-11-10 Final Report <0.5 <0.5	Brown sample Jim McGarry 16:20 15-11-10/29-11-10 Final Report <0.5	Jim McGarry 16:45 15-11-10/29-11-10 Final Report
Sampled by: Jim McGarry Time Sampled: 13:35 13:35 Start/End - Dates of Analysis: 15-11-10/29-11-10 Status of results: Final Report Units			Jim McGarry 15:00 Final Report <0.5 <0.5 <0.5 <0.5 <0.5	Jim McGarry 15:20 15-11-10/15-11-10 Final Report	Jim McGarry 15:55 15-11-10/29-11-10 Final Report <0.5 <0.5	Jim МсGапу 16:20 15-11-10/29-11-10 Final Report <0.5	Jim McGarry 16:45 15-11-10/29-11-10 Final Report
Time Sampled: 13:35 Start/End - Dates of Analysis: 15-11-10/29-11-10 Status of results: Final Report			15:00 Final Report <0.5 <0.5 <0.5	15:20 15-11-10/15-11-10 Final Report	15:55 15-11-10/29-11-10 Final Report <0.5 <0.5	16:20 15-11-10/29-11-10 Final Report <0.5	16:45 15-11-10/29-11-10 Final Report
Start/End - Dates of Analysis: 15-11-10/29-11-10 Status of results: Final Report		- - 	Final Report <0.5 <0.5 <0.5 <0.5 <0.5	Final Report	15-11-10/29-11-10 Final Report <0.5 <0.5 <0.5	15-11-10/29-11-10 Final Report <0.5	15-11-10/29-11-10 Final Report
Status of results: Final Report			Final Report<0.5<0.5<0.5<0.5<0.5	Final Report	Final Report <0.5 <0.5 <0.5	Final Report	Final Report
loroethane µg/l Limits loropropane µg/l imethylbenzene µg/l	40.540.540.540.540.540.5		40.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.540.5<		<0.5	<0.5	4
hgu hgu	<0.5 <0.5 <0.5 <0.5 <0.5	, , , ,	<0.5<0.5<0.5<0.5		<0.5 <0.5 <0.5	<0.5	400
//6п	<0.5 <0.5 <0.5 <0.5				<0.5	<0.5	0.0
Vвн	<0.5 <0.5 <0.5 <0.5		40.540.540.5		<0.5		<0.5
	<0.5 <0.5 <0.5		40.540.540.5			<0.5	<0.5
/вп	<0.5	,	<0.5		<0.5	<0.5	<0.5
//6п	<0.5		30/		<0.5	<0.5	<0.5
/bd/		ı	0.07	•	<0.5	<0.5	<0.5
2,2-Dichloropropane µg/l <0,5	<0.5		<0.5		<0.5	<0.5	<0.5
l/6ri	<0.5		<0.5	,	<0.5	<0.5	<0.5
4-Chloroluene µg/l <0.5	<0.5		<0.5		<0.5	<0.5	<0.5
yttoluene µg/l	<0.5		<0.5		<0.5	<0.5	<0.5
Benzene µg/l <0.5	<0.5	ı	<0.5		<0.5	<0.5	<0.5
Иви	<0.5	•	<0.5		<0.5	<0.5	<0.5
μβη	<0.5	t	<0.5	,	<0.5	<0.5	<0.5
Bromodichloromethane µg/l <0.5	<0.5	1	<0.5	,	<0.5	<0.5	<0.5
Vвн	<0.5	-	<0.5		<0.5	<0.5	<0.5
_	<0.5	1	<0.5	1	<0.5	<0.5	<0.5
l/gri	<0.5		<0.5	t	<0.5	<0.5	<0.5
c-1,3-Dichloropropene µg/l <0.5	<0.5	-	<0.5	,	<0.5	<0.5	<0.5
lloride µg/l	<0.5	-	<0.5	,	<0.5	<0.5	<0.5
Chlorobenzene µg/l <0.5	<0.5	-	<0.5	,	<0.5	<0.5	<0.5
hgn	<0.5	-	<0.5	-	<0.5	<0.5	<0.5
lhane µg/l	5.0>	-	<0.5	,	<0.5	<0.5	<0.5
Dibromomethane µg/l <0.5	<0.5	ı	<0.5	-	<0.5	<0.5	<0.5

			Laboratory Ref:	1005631	1005632	1005633	1005634	1005635	1005636	1005637
			Type of sample:	Groundwaler	Groundwater	Groundwater	Groundwater	Groundwater	Groundwaler	Groundwater
			Location code:	WST-W0032-01- RC7	WST-W0032-01- RC8	WST-W0032-01- RC4	WST-W0032-01- GW2a	WST-W0032-01- GW1	WST-W0032-01- RC3a	WST-W0032-01- RC6a
			Sampling point:	Muddy Brown sample	No sample, no lubing in place	cloudy sample	dry	Rusty brown colour	Brown sample	
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry
			Time Sampled:	13:35	14:15	15:00	15:20	15:55	16:20	16:45
		Start/End - D	Start/End - Dates of Analysis:	15-11-10/29-11-10	15-11-10/28-11-10		15-11-10/15-11-10	15-11-10/29-11-10	15-11-10/29-11-10	15-11-10/29-11-10
		-,	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Paramete	Parameter	Units	Limits							
Dichlo	rodifluoromethane	μg/l		<0.5	•	<0.5	•	<0.5	<0.5	<0.5
Dichlo	Dichloromethane	увп		<0.5	1	<0.5	,	<0.5	<0.5	<0.5
Ethylb	Ethylbenzene	hgл		<0.5		<0.5	t	<0.5	<0.5	<0.5
Hexac	Hexachlorobutadiene	l/gu		<0.1		<0.1	1	<0.1	<0.1	<0.1
Isopro	Isopropylbenzene	ИgИ		<0.5	,	<0.5	t	<0.5	<0.5	<0.5
m,p-Xylene	ylene	l⁄Brl		<0.5		<0.5	,	0.5	<0.5	9.0
Napht	Naphthalene	μg/I		<0.5	1	<0.5	,	<0.5	<0.5	<0.5
n-Buty	n-Butylbenzene	hg/l		<0.5	,	<0.5	,	<0.5	<0.5	<0.5
n-Prop	n-Propylbenzene	hgΛ		<0.5	1	<0.5	,	<0.5	<0.5	<0.5
o-Xylene	ne	√вп		<0.5		<0.5	ı	<0.5	<0.5	<0.5
H		Hd		7.6	,	7.2		7.2	7.1	7.1
sec-Br	sec-Butylbenzene	√вп		<0.5		<0.5	1	<0.5	<0.5	<0.5
Styrene	ē	/вп		<0.5	î	<0.5	,	<0.5	<0.5	<0.5
I-1,2-C	I-1,2-Dichloroethene	l/grl		<0.5	•	<0.5	t	<0.5	<0.5	<0.5
1-1,3-C	I-1,3-Dichloropropene	l/grl		<0.5		<0.5	,	<0.5	<0.5	<0.5
tert-Bu	tert-Butylbenzene	µg∕l		<0.5	•	<0.5	,	<0.5	<0.5	<0.5
Tetrac	Tetrachloroethene	/bd/		<0.5	,	<0.5		<0.5	<0.5	<0.5
Toluene	er.	hg/J		<0.5	,	<0.5	'	<0.5	<0.5	9.0
Trichlo	Trichloroethene	l/grl		<0.5	1	<0.5	,	<0.5	<0.5	<0.5
Trichla	Trichlorofluoromethane	hg√l		<0.6	•	<0.6	,	<0.6	9.0>	<0.6
Vinyl C	Vinyl Chloride	μg/l		<0.5		<0.5	t	<0.5	<0.5	<0.5
Condu	Conductivity @25°C	mS/cm		4290	ı	646	,	1050	2200	1130
Salinity		Sec.		2.1	,	1	,	0.3	0.8	0.3

						Date:	en, Regional
5 5 5						led:	Caroline Bowden, Regional Chemist
	ecified limits.	atory. y. ratory.				Signed:	
	n bold are outside sp	e EPA, Dublin Labor EPA Cork Laborator EPA Castlebar Labo		not recorded	count" arameters"		
Comments:	 Results highlighted and in bold are outside specified limits. 	 All Metals Analysed in the EPA, Dublin Laboratory. Gyanide Analysed in the EPA Cork Laboratory. Phenols Analysed in the EPA Castrebar Laboratory. 	m "Not measured"	"No lime" - Time n	tntc Too numerous to Field measured pa		
Con	₹	77 ₹	ਰ ਦ		36 7		

Appendix E

Leachate Results

Report of: Analysis of landfill site sample(s)

Report to: Waterford County Council

Report date: 16/03/10

Facility: Dungarvan Waste Disposal Site

Ballynamuck Middle, Dungarvan, Co. Waterford

Reference No: W0032-01

Date collected: 28/01/2010 Date received: 28/01/2010

		-					t				
1000338	Leachale	WST-W0032-01 L5a	Unable to sample - in reed bed	Jim McGarry	12:00	28-01-10/28-01-10	Final Report	1	,	•	
1000337	Leachale	WST-W0032-01-L3	no sample - dry	Jim McGarry	12:00	28-01-10/28-01-10	Final Report	•	•	•	
1000336	Leachate	WST-W0032-01- L2a	no sample - lost in capping	Jim McGarry	12:00	28-01-10/28-01-10	Final Report	•	-	-	
1000335	Leachate	Location code: WST-W0032-01-L4 WST-W0032-01-L WST-W0032-01-L1 WST-W0032-01- WST-W0032-01-L3 WST-W0032-01-L2a L2a	no sample - lost in no sample - lost in capping capping	Jim McGarry	12:00	28-01-10/28-01-10	Final Report		•		
1000334	Leachate	WST-W0032-01-L	Manhole sample - brown colour	Jim McGarry	16:00		Final Report	6.2	12775	>=4800	
1000333	Leachate	WST-W0032-01-L4	no sample - Dry	Jim McGarry	15:40	28-01-10/28-01-10	Final Report		,	1	
Laboratory Ref:	Type of sample:	Location code:	Sampling point: no sample - Dry	Sampled by:	Time Sampled:	Start/End - Dates of Analysis:	Status of results:				
						Start/End - D	U,	ာ့	тв/1 02	mg/l 02	
								Temperature	Chemical Oxygen Demand	Biochemical Oxygen Demand	

Comments:

Results highlighted and in bold are outside specified limits.

2)

All Metals Analysed in the EPA, Dublin Laboratory Cyanide Analysed in the EPA Cork Laboratory Phenols Analysed in the EPA Castlebar Laboratory.

8400C

"Not measured"
"None delected"
"No time" - Time not recorded
"Too numerous to count"
"Field measured parameters" E to to to to

Date:

Signed: Michael Neill, Regional

Kilkenny

Report of: Analysis of landfill site sample(s)

Report to: Waterford County Council Report date: 24/08/10

Facility: Dungarvan Waste Disposal Site

Ballynamuck Middle, Dungarvan, Co. Waterford

Reference No: W0032-01

28/04/2010

Date collected:

Date received: 28/04/2010

Report number.KK1000695/1

							_						
1001689	Leachate	WST-W0032-01- L5a	No access - in reed bed		Jim McGarry	12.00	_	Final Report	·		t		
1001688	Leachale	WST-W0032-01- L3a	No sample - Borehole	damaged/los(Jım МсGаггу	12 00		Final Report	_	•		,	
1001687	Leachate	WST-W0032-01- L2a	No sample - Borehole	damaged/lost	Jim McGarry	12:00	,	Final Report		ı	-	1	
1001686	Leachate	Location code: WST-W0032-01-L4 WST-W0032-01-L WST-W0032-01-L1 WST-W0032-01-L1 Interceptor	No sample - Borehole	damaged/lost	Jim McGarry	12:00	`	Final Report	ı	1	,	,	
1001685	Leachate	WST-W0032-01-L	Black colour		Jım McGarry	15:25		Final Report	15.5	375	>120	4400	
1001684	Leachate	WST-W0032-01-L4	No sample -	signage	Jim McGarry	13.10	~	Final Report	ı				
Laboratory Ref:	Type of sample:	Location code:	Sampling point: No sample -		Sampled by:	Time Sampled:	Start/End - Dates of Analysis:	Status of results:					
							Start/End - Da	S	္မ	mg/l 02	mg/I 02	l/Bn	
									Temperature	Chemical Oxygen Demand	Biochemical Oxygen Demand	Iron	

Comments:

Results highlighted and in bold are outside specified limits

2) All Meials Analysed in the EPA, Dublin Laboratory Cyanide Analysed in the EPA Cork Laboratory. Phenols Analysed in the EPA Casilebar Laboratory

"Not measured"

투 문 눈 로 로

"None detected"
"No time" - Time not recorded
"Too numerous to count"
"Field measured parameters"

Date: 34 (8 100

Michael Neill, Regional Chemist

Signed:

Report of: Analysis of landfill site sample(s)

Report to: Waterford County Council

Report date: 21/10/10

Facility: Dungarvan Waste Disposal Site

Ballynamuck Middle, Dungarvan, Co. Waterford

Reference No: W0032-01

Date collected: 06/07/2010 Date received: 06/07/2010

		_									
1003037	Leachate	WST-W0032-01- L5a	No sample	Jim McGarry	12:00	_	Final Report			-	
1003036	Leachate	WST-W0032-01-L WST-W0032-01-L1 WST-W0032-01- WST-W0032-01-L3 WST-W0032-01- Interceptor	No sample	Jim McGarry	12:00	****	Final Report		-	-	
10,0035	Leachate	WST-W0032-01- L2a	No sample	Jim McGarry	12:00	,	Final Report			•	
1003034	Leachate	WST-W0032-01-L1	No sample	Jim McGarry	12:00	**	Final Report		,		
1003033	Leachate	WST-W0032-01-L	No sample -	Jim McGarry	15.20	,	Final Report		t	,	
103032	Leachate	Location code: WST-W0032-01-L4	Unsufficient	Jim McGarry	14:10	,	Final Report		10.6	6.0	
Laboratory Ref:	Type of sample:	Location code:	Sampling point:	Sampled by:	Time Sampled:	Start/End - Dates of Analysis:	Status of results:	Limits			
						Start/End - Da	S	Units	E	Ε	
								Darameter	F Depth of Borehole	F Leachate Level	

No samples from boreholes L1, L2a, L3 or L5a as the boreholes are damaged, lost or inaccessible.

Comments:

1) Results highlighted and in bold are outside specified limits

E z z z z

25422

"Not measured"
"None detected"
"No lime" - Time not recorded
"Too numerous to count"
"Field measured parameters"

Date: MI I P

Carbline Bowden, A/Regional

Signed:

Report of: Analysis of landfill site sample(s)

Report to: Waterford County Council

Report date: 15/03/11

Facility: Dungarvan Waste Disposal Site

Ballynamuck Middle, Dungarvan, Co. Waterford

Reference No: W0032-01

Date collected: 15/11/2010 Date received: 15/11/2010

								_											
1005643	Leachate	WST-W0032-01- L1	No sample, borehole damaged, tubing	Jim McGarry	15:45	15-11-10/15-11-10	Final Report	•		·	•	,		•	1	-	t	1	
1005642	Leachaie	WST-W0032-01- L4	No sample, dry	Jim McGarry	15:40	15-11-10/15-11-10	Final Report	10.2	0.3	1	E	1	1		, 	1	-		
1005641	Leachate	WST-W0032-01- L5a	No sample, lubing sluck fast in well	Jim McGarry	15:25	15-11-10/15-11-10	Final Report			•	•			,	•	-	ı	 -	
1005640	Leachate	WST-W0032-01-	No sample, no tubing	Jlm McGarry	15:15	15-11-10/15-11-10	Final Report	ţ	,	t	,	t	,		-	_	•		
1005639	Leachate	WST-W0032-01- L3	No sample, not available	Jim McGarry	15:10	15-11-10/15-11-10	Final Report	,	•		•				1	-	1	١	
1005638	Leachate	Location code: WST-W0032-01-L	Clear Sample	Jim МсGату	14:10	13-11-10/28-11-10	Final Report	,		11.5	7.7	1324	24	71	0.27	3.14	40	14.9	
Laboratory Ref:	Type of sample:	Location code:	Sampling point:	Sampled by:	Time Sampled:	Start/End - Dates of Analysis:	Status of results:												
						Start/End - Do	0)	E	٤	ာ့	Hd	m2/сш	N l/gm	mg/I Cl	mg/l P	Mg/l N	mg/I 02	mg/1 O2	
								Depth of Borehole	Leachate Level	Temperature	Hd	Conductivity @25°C	Ammonía	Chloride	ortho-Phosphate (as P)	Total Oxidised Nitrogen (as N)	Chemical Oxygen Demand	Biochemical Oxygen Demand	
								LL,	LL.	ш									

Comments:

1) Results highlighted and in bold are outside specified limits.
2) All Metals Analysed in the EPA, Dublin Laboratory.
Cyanide Analysed in the EPA Cork Laboratory.
Phenois Analysed in the EPA Cork Laboratory.
3) nm "Not measured"
4) nd "None detected"
5) nt "No time" - Time not recorded
5) nt "No measured so count"
7) F "Frield measured parameters"

Date:

Caroline Bowden, Regional Chemist

Appendix F

Meteorological Data

		Joh	nstown Ca	stle		
			Max.	Min.		
			Temp.	Temp.	Wind	
			(Degrees	(Degrees	Speed	Rainfall
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)
2010	1	1	2.5	-1.5	5.7	3.4
2010	1	2	4.1	-3.3	4.4	0.0
2010	1	3	3.9	1.5	9.1	0.1
2010	1	4	2.5	-1.5	4.9	0.0
2010	1	5	1.5	-1.2	9.8	0.0
2010	1	6	0.3	-2.5	10.2	4.6
2010	1	7	1.3	-3.7	6.6	0.1
2010	1	8	3.6	-3.2	5.9	0.4
2010	1	9	2.8	-3.2	8.3	0.1
2010	1	10	3.7	1.1	9.8	4.4
2010	1	11	5.0	1.5	6.4	2.6
2010	1	12	5.6	2.3	16.2	23.5
2010	1	13	5.9	2.8	n/a	5.3
2010	1	14	8.0	-1.3	n/a	0.2
2010	1	15	10.6	7.0	15.4	24.9
2010	1	16	10.0	3.0	7.3	8.3
2010	1	17	9.0	3.0	6.3	0.2
2010	1	18	8.5	5.9	5.6	0.4
2010	1	19	7.5	6.2	11.5	3.9
2010	1	20	9.4	1.4	3.9	3.7
2010	1	21	10.1	3.2	10.7	18.5
2010	1	22	10.6	3.3	3.1	0.2
2010	1	23	6.4	-0.7	5.3	0.3
2010	1	24	6.5	-2.9	2.7	0.0
2010	1	25	6.8	0.6	4.7	0.0
2010	1	26	6.1	2.4	2.7	0.0
2010	1	27	9.9	3.3	6.0	0.0
2010	1	28	8.9	4.5	6.1	0.0
2010	1	29	8.2	2.0	10.1	0.7
2010	1	30	4.5	-1.6	4.5	0.0
2010	1	31	5.0	-2.4	5.5	0.0

		Joh	nstown Ca	stle		
			Max.	Min.		
			Temp.	Temp.	Wind	
			(Degrees	(Degrees	Speed	Rainfall
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)
2010	2	1	7.0	0.9	5.2	0.0
2010	2	2	9.0	5.2	7.0	2.3
2010	2	3	9.5	2.5	3.8	10.6
2010	2	4	9.1	3.4	8.9	25.1
2010	2	5	9.7	5.1	7.9	0.9
2010	2	6	9.0	3.8	5.1	0.1
2010	2	7	6.5	3.8	6.2	0.0
2010	2	8	4.9	3.2	9.1	0.6
2010	2	9	6.0	0.9	7.2	0.6
2010	2	10	6.1	0.3	6.5	0.0
2010	2	11	5.5	-0.4	5.6	0.0
2010	2	12	8.0	1.4	6.9	0.6
2010	2	13	5.8	0.9	5.0	1.5
2010	2	14	7.9	1.0	6.3	0.0
2010	2	15	9.1	2.7	5.3	0.2
2010	2	16	7.4	-1.0	3.5	0.0
2010	2	17	6.2	-0.6	5.2	0.2
2010	2	18	5.7	-0.4	6.2	0.0
2010	2	19	5.7	-1.5	4.6	0.0
2010	2	20	5.3	-2.8	3.6	3.9
2010	2	21	6.1	-0.9	3.0	0.0
2010	2	22	5.1	-0.9	7.1	0.0
2010	2	23	7.8	1.9	10.9	20.2
2010	2	24	9.9	3.7	5.5	0.7
2010	2	25	3.9	0.2	4.4	3.1
2010	2	26	8.5	0.8	8.3	0.0
2010	2	27	7.8	2.0	4.0	0.0
2010	2	28	9.3	1.1	5.8	0.1

	Johnstown Castle						
	Max. Min.						
			Temp.	Temp.	Wind		
			(Degrees	(Degrees	Speed	Rainfall	
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)	
2010	3	1	9.5	-0.4	2.9	0.0	
2010	3	2	7.8	-0.6	4.7	0.0	
2010	3	3	6.8	2.3	6.4	1.9	
2010	3	4	6.4	0.4	5.8	0.0	
2010	3	5	8.1	-1.4	4.3	0.0	
2010	3	6	8.3	2.1	5.7	0.0	
2010	3	7	6.0	-0.5	6.1	0.0	
2010	3	8	5.9	-1.3	5.9	0.0	
2010	3	9	8.0	0.4	5.6	0.0	
2010	3	10	8.2	1.0	5.9	0.0	
2010	3	11	7.2	0.4	5.3	0.0	
2010	3	12	9.9	3.4	5.2	0.0	
2010	3	13	8.5	5.0	3.8	0.0	
2010	3	14	12.1	3.3	5.3	0.0	
2010	3	15	11.2	4.1	5.5	0.0	
2010	3	16	8.5	1.1	7.5	0.1	
2010	3	17	11.0	8.0	10.1	0.1	
2010	3	18	10.0	7.3	11.3	4.2	
2010	3	19	9.6	4.4	5.2	6.4	
2010	3	20	11.4	4.7	8.0	8.5	
2010	3	21	11.0	3.1	7.4	0.8	
2010	3	22	11.2	3.5	9.0	4.2	
2010	3	23	8.7	4.1	6.4	1.2	
2010	3	24	11.5	7.7	8.0	6.5	
2010	3	25	11.1	6.7	8.6	9.9	
2010	3	26	11.3	6.6	6.9	0.1	
2010	3	27	11.6	5.0	5.5	0.0	
2010	3	28	11.2	3.9	3.6	1.0	
2010	3	29	9.7	4.9	7.4	16.0	
2010	3	30	8.8	0.7	10.9	12.0	
2010	3	31	7.2	1.7	10.7	2.1	

Johnstown Castle						
			Max.	Min.		
			Temp.	Temp.	Wind	
			(Degrees	(Degrees	Speed	Rainfall
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)
2010	4	1	9.1	-0.1	6.8	0.1
2010	4	2	10.1	2.4	6.6	3.5
2010	4	3	9.9	2.4	4.1	0.8
2010	4	4	9.6	1.4	8.4	2.5
2010	4	5	11.8	8.2	16.3	0.5
2010	4	6	10.7	6.0	10.2	12.6
2010	4	7	13.1	3.7	4.9	0.1
2010	4	8	12.7	3.1	5.1	0.0
2010	4	9	12.5	5.3	4.2	0.1
2010	4	10	15.2	3.7	3.6	0.0
2010	4	11	13.9	7.5	5.9	0.0
2010	4	12	10.9	6.3	5.4	0.0
2010	4	13	11.4	5.5	6.8	0.0
2010	4	14	9.4	5.4	7.8	0.0
2010	4	15	11.0	4.2	8.0	0.0
2010	4	16	11.0	4.7	5.6	0.0
2010	4	17	14.4	2.5	4.5	0.0
2010	4	18	12.6	4.1	4.5	0.0
2010	4	19	11.0	4.4	4.3	0.0
2010	4	20	11.4	3.0	4.6	0.0
2010	4	21	8.7	3.2	5.8	0.0
2010	4	22	10.8	2.3	4.5	0.0
2010	4	23	13.7	1.6	4.3	0.0
2010	4	24	12.5	5.5	7.0	2.6
2010	4	25	14.5	10.0	8.0	0.9
2010	4	26	15.9	7.6	6.5	0.0
2010	4	27	13.2	8.9	7.2	0.0
2010	4	28	13.0	10.3	8.8	0.4
2010	4	29	14.2	8.4	6.0	0.0
2010	4	30	13.9	6.4	5.0	3.8

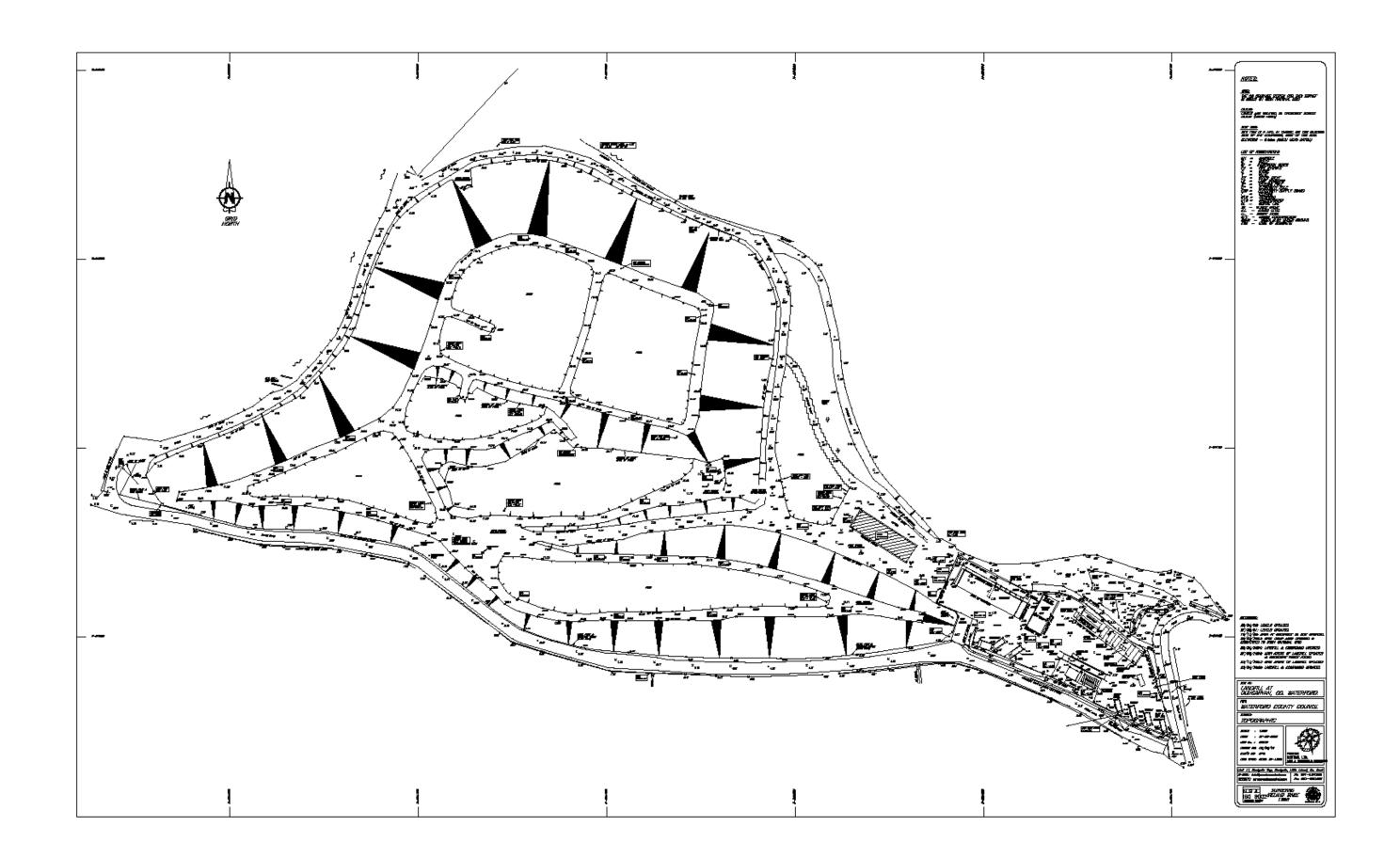
	Johnstown Castle						
			Max.	Min.			
			Temp.	Temp.	Wind		
			(Degrees	(Degrees	Speed	Rainfall	
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)	
2010	5	1	12.5	7.0	4.3	0.7	
2010	5	2	11.3	4.2	6.7	0.8	
2010	5	3	10.9	3.9	6.2	0.0	
2010	5	4	12.4	4.5	4.9	0.0	
2010	5	5	14.7	8.4	3.9	1.5	
2010	5	6	13.2	9.2	5.8	7.8	
2010	5	7	10.8	7.6	8.8	0.8	
2010	5	8	11.9	6.8	10.2	0.0	
2010	5	9	10.9	5.3	7.2	0.0	
2010	5	10	12.3	4.5	6.3	0.0	
2010	5	11	10.5	2.2	6.8	0.7	
2010	5	12	9.6	4.2	4.7	0.7	
2010	5	13	12.4	2.4	7.5	4.9	
2010	5	14	15.5	7.4	4.9	0.5	
2010	5	15	14.1	6.1	6.2	0.2	
2010	5	16	14.4	7.0	5.0	0.7	
2010	5	17	14.4	4.5	5.2	0.0	
2010	5	18	14.7	9.6	7.4	3.9	
2010	5	19	15.9	10.5	6.7	0.4	
2010	5	20	16.2	9.9	5.7	0.3	
2010	5	21	18.7	8.7	2.8	0.2	
2010	5	22	21.2	10.6	3.8	0.0	
2010	5	23	22.0	13.2	5.0	0.0	
2010	5	24	14.9	9.9	6.2	0.0	
2010	5	25	14.6	7.5	7.6	0.0	
2010	5	26	13.6	6.7	7.5	0.0	
2010	5	27	13.3	6.3	5.5	5.6	
2010	5	28	14.1	6.2	5.9	0.5	
2010	5	29	18.4	10.4	6.2	25.8	
2010	5	30	16.6	8.6	5.0	0.0	
2010	5	31	16.1	9.9	5.7	15.5	

	Johnstown Castle						
			Max.	Min.			
			Temp.	Temp.	Wind		
			(Degrees	(Degrees	Speed	Rainfall	
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)	
2010	6	1	19.5	10.6	5.2	11.4	
2010	6	2	19.1	9.5	4.4	0.0	
2010	6	3	19.2	9.5	5.3	0.0	
2010	6	4	18.3	10.5	5.4	0.0	
2010	6	5	20.3	11.8	3.7	0.0	
2010	6	6	18.7	11.8	4.4	9.4	
2010	6	7	14.2	11.6	7.0	11.1	
2010	6	8	18.3	12.2	3.4	0.1	
2010	6	9	16.7	12.3	7.7	0.0	
2010	6	10	16.5	11.7	10.1	0.0	
2010	6	11	19.2	9.1	5.5	0.0	
2010	6	12	16.5	10.2	5.2	0.0	
2010	6	13	18.1	10.6	6.5	2.3	
2010	6	14	16.2	9.6	7.9	0.0	
2010	6	15	17.5	9.7	4.2	0.0	
2010	6	16	18.1	10.0	3.7	0.0	
2010	6	17	19.2	13.0	5.2	0.0	
2010	6	18	18.9	12.4	4.2	0.0	
2010	6	19	15.5	9.1	7.1	0.0	
2010	6	20	18.0	8.7	5.2	0.0	
2010	6	21	18.6	10.2	6.5	0.0	
2010	6	22	18.7	11.5	6.4	0.1	
2010	6	23	18.8	13.1	8.5	0.3	
2010	6	24	19.6	11.6	5.4	0.0	
2010	6	25	19.1	13.3	5.2	0.0	
2010	6	26	20.1	12.9	6.2	0.0	
2010	6	27	19.4	13.1	9.2	0.2	
2010	6	28	17.5	12.9	7.6	6.6	
2010	6	29	19.7	13.1	4.0	0.1	
2010	6	30	20.2	12.9	6.0	0.0	

Johnstown Castle						
			Max.	Min.		
			Temp.	Temp.	Wind	
			(Degrees	(Degrees	Speed	Rainfall
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)
2010	7	1	18.4	14.3	9.6	12.5
2010	7	2	18.5	12.1	9.5	0.0
2010	7	3	18.1	10.5	7.4	0.0
2010	7	4	21.2	11.4	10.4	1.6
2010	7	5	19.8	9.7	5.1	0.4
2010	7	6	16.7	9.4	8.5	1.0
2010	7	7	17.9	13.6	10.6	2.9
2010	7	8	17.2	12.5	6.4	7.6
2010	7	9	17.1	14.2	9.5	7.5
2010	7	10	18.1	12.7	10.2	6.7
2010	7	11	17.6	10.2	5.6	0.0
2010	7	12	17.5	11.5	4.8	0.0
2010	7	13	15.4	12.5	5.6	10.2
2010	7	14	18.7	13.0	7.6	2.7
2010	7	15	17.2	10.7	9.2	31.4
2010	7	16	17.9	10.6	7.1	6.9
2010	7	17	17.3	9.3	8.4	2.9
2010	7	18	18.0	14.2	12.0	18.7
2010	7	19	16.9	13.7	8.1	19.5
2010	7	20	19.1	12.6	5.5	0.0
2010	7	21	19.0	11.2	3.7	0.8
2010	7	22	17.6	12.7	5.3	7.7
2010	7	23	19.1	10.9	5.0	0.0
2010	7	24	17.5	13.8	6.6	1.9
2010	7	25	22.9	13.8	4.3	0.0
2010	7	26	23.9	16.5	5.9	0.0
2010	7	27	20.8	13.4	4.8	0.0
2010	7	28	19.9	11.3	4.4	0.0
2010	7	29	19.0	12.5	4.9	0.0
2010	7	30	20.9	13.2	7.1	0.5
2010	7	31	19.3	12.7	6.2	0.9

Johnstown Castle						
			Max.	Min.		
			Temp.	Temp.	Wind	
			(Degrees	(Degrees	Speed	Rainfall
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)
2010	8	1	18.6	11.8	3.8	0.0
2010	8	2	18.3	11.8	4.3	0.0
2010	8	3	19.7	13.2	4.6	0.8
2010	8	4	19.5	12.8	6.6	0.1
2010	8	5	19.5	11.6	5.3	0.3
2010	8	6	17.0	13.9	7.4	2.3
2010	8	7	20.1	11.6	5.1	0.0
2010	8	8	18.7	10.5	5.9	0.0
2010	8	9	19.7	12.1	7.2	0.9
2010	8	10	21.3	10.4	5.0	0.0
2010	8	11	20.5	10.8	4.5	0.0
2010	8	12	17.9	12.0	5.5	0.0
2010	8	13	19.0	11.9	7.3	0.0
2010	8	14	17.5	9.2	6.7	0.0
2010	8	15	19.0	11.7	5.1	0.0
2010	8	16	19.8	13.2	6.2	1.8
2010	8	17	19.5	13.7	5.7	0.2
2010	8	18	18.1	11.1	6.4	0.1
2010	8	19	17.4	11.2	7.1	11.0
2010	8	20	18.7	12.9	10.8	2.5
2010	8	21	19.0	12.1	6.3	0.1
2010	8	22	18.5	11.3	5.6	1.7
2010	8	23	18.7	10.3	5.8	2.8
2010	8	24	18.7	10.5	7.6	0.0
2010	8	25	16.5	10.5	6.7	5.1
2010	8	26	17.0	10.7	7.0	0.0
2010	8	27	19.2	9.9	5.2	0.0
2010	8	28	19.2	8.8	5.4	0.0
2010	8	29	18.8	8.6	6.2	0.0
2010	8	30	16.0	7.3	4.0	0.0
2010	8	31	18.7	7.2	3.8	0.0

	Johnstown Castle						
			Max.	Min.			
			Temp.	Temp.	Wind		
			(Degrees	(Degrees	Speed	Rainfall	
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)	
2010	9	1	18.4	10.9	4.4	0.1	
2010	9	2	19.0	10.3	4.6	0.3	
2010	9	3	18.8	11.8	4.6	0.0	
2010	9	4	16.0	13.9	6.0	1.8	
2010	9	5	17.1	15.0	8.6	11.5	
2010	9	6	16.6	11.6	8.1	60.5	
2010	9	7	17.3	11.5	5.0	1.3	
2010	9	8	19.0	12.3	4.4	6.5	
2010	9	9	18.7	10.4	7.0	5.5	
2010	9	10	18.0	14.9	10.0	10.4	
2010	9	11	18.7	10.9	5.8	4.3	
2010	9	12	17.2	9.1	4.8	0.6	
2010	9	13	18.3	13.7	11.9	0.3	
2010	9	14	18.4	9.0	9.0	1.8	
2010	9	15	18.5	8.4	7.2	0.0	
2010	9	16	16.1	9.2	3.8	0.0	
2010	9	17	15.4	7.2	5.0	0.0	
2010	9	18	14.9	6.6	7.2	0.0	
2010	9	19	16.1	13.8	10.3	0.0	
2010	9	20	18.3	13.6	6.9	0.0	
2010	9	21	17.6	14.2	7.4	0.1	
2010	9	22	17.1	14.4	8.9	3.0	
2010	9	23	16.8	11.4	5.8	0.7	
2010	9	24	13.8	7.0	6.7	0.1	
2010	9	25	13.7	5.8	5.7	0.0	
2010	9	26	13.8	6.2	3.1	0.0	
2010	9	27	14.7	4.9	2.5	0.0	
2010	9	28	16.1	7.4	5.4	8.2	
2010	9	29	17.2	9.1	4.4	0.1	
2010	9	30	15.8	8.5	6.5	2.0	


Johnstown Castle						
			Max.	Min.		
			Temp.	Temp.	Wind	
			(Degrees		Speed	Rainfall
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)
2010	10	1	17.3	8.4	7.9	7.7
2010	10	2	16.1	10.5	7.3	8.0
2010	10	3	15.8	10.1	3.8	5.2
2010	10	4	15.7	6.7	8.2	3.6
2010	10	5	15.3	10.8	8.7	4.6
2010	10	6	15.5	7.6	7.2	1.1
2010	10	7	16.1	11.6	9.7	1.0
2010	10	8	19.5	15.0	8.7	0.0
2010	10	9	16.3	14.3	8.9	0.0
2010	10	10	15.5	11.9	7.5	0.0
2010	10	11	16.6	10.1	7.0	0.3
2010	10	12	14.9	8.5	6.1	0.4
2010	10	13	12.9	7.7	4.3	0.3
2010	10	14	11.8	9.4	5.5	0.0
2010	10	15	14.7	8.9	6.4	0.0
2010	10	16	13.6	7.3	5.9	0.0
2010	10	17	13.8	5.8	4.4	0.0
2010	10	18	14.0	9.9	5.7	0.0
2010	10	19	13.0	4.6	5.6	0.5
2010	10	20	9.5	3.0	5.0	0.0
2010	10	21	12.7	5.8	4.7	0.0
2010	10	22	13.3	4.2	7.5	7.3
2010	10	23	11.8	4.4	5.1	0.7
2010	10	24	10.7	4.1	6.0	0.0
2010	10	25	12.0	4.2	7.7	1.1
2010	10	26	15.0	10.6	13.1	12.1
2010	10	27	14.5	9.5	8.9	2.1
2010	10	28	14.3	8.6	11.1	3.5
2010	10	29	14.4	6.9	11.6	8.8
2010	10	30	13.7	5.0	5.0	3.0
2010	10	31	13.1	8.5	7.7	17.8

Johnstown Castle						
			Max.	Min.		
			Temp.	Temp.	Wind	
			(Degrees	(Degrees	Speed	Rainfall
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)
2010	11	1	13.6	5.1	7.2	3.7
2010	11	2	13.5	10.4	12.2	2.9
2010	11	3	16.2	9.1	7.6	4.4
2010	11	4	14.6	13.9	14.6	0.1
2010	11	5	14.0	8.4	3.5	2.2
2010	11	6	10.6	4.4	5.0	1.7
2010	11	7	10.2	3.8	10.2	16.3
2010	11	8	10.1	5.2	6.0	5.2
2010	11	9	10.5	4.3	10.3	3.3
2010	11	10	10.5	1.8	6.8	1.2
2010	11	11	12.8	8.6	14.0	9.7
2010	11	12	10.2	6.6	8.0	0.2
2010	11	13	10.3	3.4	5.0	2.9
2010	11	14	8.6	0.1	2.9	0.1
2010	11	15	9.9	0.7	2.6	2.4
2010	11	16	10.6	1.1	9.4	12.9
2010	11	17	11.5	7.7	10.4	20.2
2010	11	18	11.3	4.6	6.9	0.6
2010	11	19	10.0	3.3	3.8	6.8
2010	11	20	10.1	6.1	7.3	0.2
2010	11	21	8.0	3.2	6.7	3.1
2010	11	22	6.7	2.9	6.5	1.7
2010	11	23	7.6	1.9	5.9	0.5
2010	11	24	5.9	1.1	6.1	0.4
2010	11	25	4.1	-0.2	8.5	0.4
2010	11	26	4.6	0.3	8.1	0.0
2010	11	27	1.3	-2.7	7.9	9.5
2010	11	28	-1.5	-4.4	6.0	7.0
2010	11	29	4.1	-4.6	5.6	0.6
2010	11	30	4.2	-1.9	9.5	1.7

		Joh	nstown Ca	stle		
			Max.	Min.		
			Temp.	Temp.	Wind	
			(Degrees	(Degrees	Speed	Rainfall
Year	Month	Day	Celsius)	Celsius)	(Knots)	(mm)
2010	12	1	2.7	-2.6	8.3	6.8
2010	12	2	0.5	-3.0	9.0	7.6
2010	12	3	3.9	-4.5	5.1	3.3
2010	12	4	3.8	-1.1	5.0	0.2
2010	12	5	1.7	-4.5	6.6	0.0
2010	12	6	4.9	-2.4	4.1	0.0
2010	12	7	2.4	-0.2	5.4	10.8
2010	12	8	1.6	-2.6	8.8	0.0
2010	12	9	5.4	-1.4	4.6	0.0
2010	12	10	7.6	3.0	3.4	0.0
2010	12	11	5.6	1.8	3.8	0.0
2010	12	12	7.5	2.4	5.8	0.0
2010	12	13	6.0	2.4	4.1	0.1
2010	12	14	5.8	2.0	6.1	0.0
2010	12	15	5.5	3.8	5.8	0.0
2010	12	16	7.7	-0.9	7.6	1.0
2010	12	17	1.7	-1.7	6.3	0.0
2010	12	18	1.5	-3.8	4.3	0.0
2010	12	19	2.8	-2.8	6.4	0.0
2010	12	20	2.4	-2.5	6.3	0.0
2010	12	21	-0.6	-4.4	7.6	2.8
2010	12	22	0.1	-3.1	7.2	0.6
2010	12	23	0.6	-2.9	7.5	2.0
2010	12	24	0.9	-3.8	8.5	0.1
2010	12	25	3.4	-1.8	4.2	0.0
2010	12	26	7.3	1.6	10.8	4.2
2010	12	27	10.0	6.6	11.3	38.2
2010	12	28	10.7	9.3	7.1	0.9
2010	12	29	9.9	8.5	4.2	1.8
2010	12	30	8.7	7.3	4.1	0.6
2010	12	31	7.6	5.4	3.3	0.0

Appendix G

Topographical Survey

Appendix H

Management Structure

Management Structure of Waterford County Council

County Manager Mr Ray O' Dwyer

 \prod

Director of Services

Environment & Planning Mr. Brian White

 \prod

Senior Engineer Mr. Gabriel Hynes

 \prod

Senior Executive Engineer

Д

Consultants

Mr. Paul Carroll Ms. Aoife O Flaherty MCOS

Civic Amenity Manager

Mr. David Regan

.

Caretaker 3 – Site Operatives

Mr. Bill O Keeffe

Appendix 1

Pollutant Release Transfer Register

Guidance to completing the PRTR workbook

AER Returns Workbook

Version 1.1.

REFERENCE YEAR 2010

1. FACILITY IDENTIFICATION

Parent Company Name	Waterford County Council
Facility Name	Dungarvan Waste Disposal Site
PRTR Identification Number	W0032
Licence Number	W0032-02

Waste or IPPC Classes of Activity

Waste or IPPC Classes of Activity	
N -	class_name
	Storage prior to submission to any activity referred to in a
	preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where the waste
3.13	concerned is produced.
	Surface impoundment, including placement of liquid or sludge
3.4	discards into pits, ponds or lagoons.
	Use of waste obtained from any activity referred to in a preceding
4.11	paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred
	to in a preceding paragraph of this Schedule, other than
	temporary storage, pending collection, on the premises where
4.13	such waste is produced.
	Recycling or reclamation of organic substances which are not
	used as solvents (including composting and other biological
4.2	transformation processes).
	Recycling or reclamation of metals and metal compounds.
4.4	Recycling or reclamation of other inorganic materials.
	Use of any waste principally as a fuel or other means to generate
	energy.
	Ballynamuck Middle
	Dungarvan
	Co. Waterford
Address 4	
Country	
Coordinates of Location	
River Basin District	-
NACE Code	
	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	
AER Returns Contact Email Address	
AER Returns Contact Position	
AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number Production Volume	
Production Volume Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	-
Number of Operating Hours in Year Number of Employees	
User Feedback/Comments	
Web Address	
web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	T	Activity Name
50.1		General
50.1		General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

ls it applicable?	No
Have you been granted an exemption?	Yes
If applicable which activity class applies (as per	
Schedule 2 of the regulations)?	
Is the reduction scheme compliance route being	
used ?	

SECTION A: SECTOR SPECIFIC PRTR POLLUTANTS

	RELEASES TO AIR	Please enter all quantities in this section in KGs						
POLLUTANT		METHOD		ADD EMISSION POINT	QUANTITY			
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
				•	0.0) (0.0	0.0

ADD NEW ROW DELETE ROW * Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Link to previous years emissions data

SECTION B : REMAINING PRTR POLLUTANTS

		RELEASES TO AIR	Please enter all quantities in this section in KGs							
		POLLUTANT	METHOD			ADD EMISSION POINT		QUANTITY		
				Method Used						
No	o. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					USEPA LANDGEM					
01		Methane (CH4)	С	OTH	MODEL	669300.0	669300.0	0.0	0.0	
					USEPA LANDGEM					
03		Carbon dioxide (CO2)	С	OTH	MODEL	1836000.0	1836000.0	0.0	0.0	
					USEPA LANDGEM					
07		Non-methane volatile organic compounds (NMVOC)	С	OTH	MODEL	28770.0	28770.0	0.0	0.0	
		* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button								
ADD NEW ROW	DELETE ROW *									
		EMISSIONS (As required in your Licence)								
·	,	RELEASES TO AIR	Please enter all quantities in this section in KGs							

	RELEASES TO AIR					Please enter all quantities in this section in KGs			
	POLLUTANT		METHOD			ADD EMISSION POINT	QUANTITY		
				Method Used					
Polli	utant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
						0.0		0.0	0.0
ADD NEW ROW	DELETE ROW *	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button							

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KGyr for Section A: Sector specific PRTR pollutants above. Please complete the table below:

above. Please complete the table below:											
Landfill:											
Please enter summary data on the											
quantities of methane flared and / or utilised			Meti	hod Used							
				Designation or	Facility Total Capacity						
	T (Total) kg/Year	M/C/E	Method Code	Description	m3 per hour						
Total estimated methane generation (as per				USEPA LANDGEM							
site model)	669300.0	С	LANDGEM	MODEL	N/A						
Methane flared	0.0				0.0	(Total Flaring Capacity)					
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)					
Net methane emission (as reported in				USEPA LANDGEM							
Section A above)	669300.0	С	LANDGEM	MODEL	N/A						

SECTION A: SECTOR SPECIFIC PRTR POLITITANTS

Data on ambient monitoring of storm/surface water or groundwater, conducted as part of your licence requirements, should NOT be submitted under AER/PRTF

SECTION A . SECTION SE ECH TO FIRM	OLLOTANIS	Data on a	mbient monitorin	g of Storiii/Surface water or gr	oundwater, conducted as par	or your licerice require	ments, snould NOT be sub	IIIILlea ullaet AEN/Phi h		
	RELEASES TO WATERS	Please enter all quantities in this section in KGs								
	POLLUTANT				ADD EMISSION POINT	SION POINT QUANTITY				
				Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
					0.0	0.0	0.0	0.0		
ADD NEW ROW DELETE ROW *	* Select a row by double-clicking on the Pollutant Name (Colur	nn B) then c	lick the delete buttor	ı						

SECTION B: REMAINING PRTR POLLUTANTS

	Please enter all quantities in this section in KGs							
POLLUTANT					ADD EMISSION POINT		QUANTITY	
		,		Method Used	`			,
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0	0.0	0.0	0.0

ADD NEW ROW DELETE ROW * Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Link to previous years emissions data

SECTION C: REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES TO WATERS						Please enter all quantities in this section in KGs			
POLLUTANT						ADD EMISSION POINT		QUANTITY		
					Method Used				,	
Poll	utant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
						0.0	0.0	0.0	0.0	
ADD NEW ROW	DELETE ROW *	* Select a row by double-clicking on the Pollutant Name (Colun	n B) then c	ick the delete button						

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

| PRTR# : W0032 | Facility Name : Dungarvan Waste Disposal Site | Filename : W0032_2010(1).: 27/04/2011 12:29

SECTION A - PRTR POLITITANTS

SECTION A . FRITT FOLLOTAN	13					_		
OFF	SITE TRANSFER OF POLLUTANTS DESTINED F	OR WASTE-WATER TR	REATMENT OR SEWE	R	Please enter all quantities in this section in KGs			
POLLUTANT			METH	IOD	ADD EMISSION POINT	QUANTITY		
			Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0	l control of the cont	0.0 0.0	0.0

ADD NEW ROW DELETE ROW * Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMA	INING POLLUTANT E	MISSIONS (as required in your Licence)									
OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER						Please enter all quantities in this section in KGs					
POLLUTANT METHOD)D	ADD EMISSION POINT	QUANTITY							
		Method Used		hod Used							
Pollutant No.		Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
						0.0	0.0	0.0	0.0		
ADD NEW ROW	DELETE ROW *	* Select a row by double-clicking on the Pollutant Name (Column B) then cick the delete button									

4.4 RELEASES TO LAND

Link to previous years emissions data

PRTR#: W0032 | Facility Name: Dungarvan Waste Disposal Site | Filename: W0032_2010(1).xls | Return Year: 2010 |

27/04/2011 12:29

SECTION A: PRTR POLLUTANTS

	RELEASES TO LAND PIG						Please enter all quantities in this section in KGs			
POLLUTANT			METHO	D	ADD EMISSION POINT		QUANTITY			
		Method Used								
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year			
					0.0	0	0.0			
ADD NEW ROW DELETE ROW *	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button									

SECTION B: REMAINING POLLUTANT EMISSIONS (as required in your Licence)

SECTION B. REIVIA	AINING FOLLOTAINT E	MISSIONS (as required III your Licence)								
	RELEASES TO LAND						Please enter all quantities in this section in KGs			
	POLLUTANT		METHOD			ADD EMISSION POINT	QUANTITY			
				Method Used						
Pollutant No.		Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year		
						0.0	0.	0.0		
ADD NEW ROW	DELETE ROW *	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button								

			Please ente	r all quantities on this sheet in Tonnes								;
			Quantity (Tonnes per Year)				Method Used		Haz Waste: Name and Licence/Permit No of Next Destination Facility Non Haz Waste: Name and Licence/Permit No of Recover/Disposer	Haz Waste: Address of Next Destination Facility Non Haz Waste: Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination	European Waste Code	Hazardous	. oai,	Description of Waste	Waste Treatment Operation	M/C/E	Method Used	Location of Treatment	i iecovei / Dia posei	riecover/bisposer	GIVET)	WASTEGNETY
mansici Destination	Oode	i iazaidous		Description of Waste	Орегалоп	IVI/O/L	Wicthod Osca	Heatment		Holmestown Waste		
Within the Country	20 03 99	No	3822.88	3 municipal wastes not otherwise specified	D1	М	Weighed	Offsite in Ireland	Wexford County Council,W0191-02	Management Facility,Bamtown,Co. Wexford,.,Ireland Holmestown Waste Management		
Within the Country	20 03 01	No	268.48	3 mixed municipal waste	D1	М	Weighed	Offsite in Ireland	Wexford County Council,W0191-02	Facility, Barntown, Co. Wexford,.,Ireland Waverly Office Park,Old		
Within the Country	02 01 04	No	29.32	2 waste plastics (except packaging)	R5	М	Weighed	Offsite in Ireland	Irish Film Farm Plastics Group,WMP044B	Naas Road, Dublin 12,., Ireland		
Within the Country	15 01 01	No	109.9	9 paper and cardboard packaging	R3	М	Weighed	Offsite in Ireland	01	Materials Recovery Facility, Shandon, Dungarvan, Co. Waterford, Ireland		
Within the Country	04 02 22	No	5.76	6 wastes from processed textile fibres	R5	М	Weighed	Offsite in Ireland	Cookstown Textile Recyclers,ROC 1929 Carrier Broker	Antrim,,,Ireland		
				FRIDGES discarded equipment containing						Cappincur Industrial Estate, Daingean Road, Tullamore, Co.	Varies, Varies, Varies, Contac t Laurence Kieran WEEE Ireland, EPA Auditor Dermot	Kieran WEEE Ireland,EPA Auditor Dermot
To Other Countries	16 02 11	Yes	30.25	LARGE HOUSEHOLD discarded equipment containing hazardous	R4	M	Weighed	Abroad	06 KMK Metals	Offaly, Ireland Cappincur Industrial Estate, Daingean	Burke,.,Ireland Varies,Varies,Contac t Laurence Kieran WEEE	Kieran WEEE Ireland,EPA
To Other Countries	16 02 13	Yes	99.56	components (16) other than those 5 mentioned in 16 02 09 to 16 02 12 SMALL HOUSEHOLD discarded equipment containing hazardous	R4	М	Weighed	Abroad	Recycling,WCP/KK/069(A)/ 06 KMK Metals	Road, Tullamore, Co. Offaly, Ireland Cappincur Industrial Estate, Daingean	Ireland, EPA Auditor Dermot Burke,.,Ireland Varies, Varies, Varies, Contac t Laurence Kieran WEEE	Burke,.,Ireland
To Other Countries	16 02 13	Yes	101.6	components (16) other than those	R4	М	Weighed	Abroad		Road, Tullamore, Co. Offaly, Ireland Cappincur Industrial Estate, Daingean	Ireland, EPA Auditor Dermot Burke,.,Ireland Varies, Varies, Varies, Contac	Auditor Dermot Burke,.,Ireland
To Other Countries	16 02 13	Yes	36.47	other than those mentioned in 16 02 09 to	R4	М	Weighed	Abroad		Road, Tullamore, Co. Offaly, Ireland Cappincur Industrial	Ireland, EPA Auditor Dermot Burke, ,, Ireland Varies, Varies, Varies, Contac	Auditor Dermot Burke,.,lreland
T 011 0 11	40.00.44	v		FLOURESCENT TUBES discarded equipment containing chlorofluorocarbons,	Dr				KMK Metals Recycling,WCP/KK/069(A)/	Estate, Daingean Road, Tullamore, Co.	t Laurence Kieran WEEE Ireland,EPA Auditor Dermot	Kieran WEEE Ireland,EPA Auditor Dermot
To Other Countries		Yes			R5	М	Weighed	Abroad	06 Mr.	Offaly, Ireland Luddenmore, Grange , Kilmalock, Co.	Burke,.,Ireland	Burke,.,Ireland
Within the Country	17 04 07	No	25.96	6 mixed metals soil and stones other than those mentioned	R5	М	Weighed		Binman,WCP/KK/069(A)/06 Mr.	Luddenmore, Grange ,Kilmalock, Co.		
Within the Country	17 05 04	No	9.58	3 in 17 05 03 mixture of concrete, bricks, tiles and ceramics other than those mentioned in 17	R3	М	Weighed	Offsite in Ireland	Binman, WCP/KK/069(A)/06 Mr.	Limerick, Ireland Luddenmore, Grange .Kilmalock, Co.		
Within the Country	17 01 07	No	49.1		R3	М	Weighed	Offsite in Ireland	Binman,WCP/KK/069(A)/06			
Within the Country	17 02 02	No	5.94	4 glass	R5	М	Weighed	Offsite in Ireland	Binman,WCP/KK/069(A)/06 Rehab Recyling,Reg No.			
Within the Country		No		B BOTTLES glass GARDEN WASTE/BROWN BIN waste	R5	М	Weighed		635 Permit no. 03/07 Miltown Composting	Road,Cork,.,,lreland Fethard,Co.		
Within the Country	02 01 07	No	2167.69	9 from forestry	R3	М	Weighed	Offsite in Ireland	Systems, W0270-01 Mr.	Tipperary,,,,,lreland Luddenmore,Grange ,Kilmalock,Co.		
Within the Country	17 02 01	No	44.88	3 wood	R3	М	Weighed	Offsite in Ireland	Binman,WCP/KK/069(A)/06		ENVA Ireland, WCP/KK/059 (A) 06, Clonmanim Industrial	Clonmanim Industrial
Within the Country	16 05 04	Yes	0.18	gases in pressure containers (including 3 halons) containing dangerous substances	R5	М	Weighed	Offsite in Ireland	ENVA Ireland,WCP/KK/059(A)/07	Estate,Portlaoise,Co. Laois,.,Ireland	Estate,Portlaoise,Co. Laois,,Ireland ENVA Ireland,WCP/KK/059 (A) 06,Clonmanim Industrial	Estate, Portlaoise, Co. Laois,., Ireland
Within the Country	13 02 06	Yes	1.06	6 synthetic engine, gear and lubricating oils	R9	М	Weighed	Offsite in Ireland	ENVA Ireland,WCP/KK/059(A)/07	Estate,Portlaoise,Co. Laois,.,Ireland Clonmanim Industrial	(A) 0, Glorimanian industrial Estate, Portlaoise, Co. Laois, , Ireland ENVA Ireland, WCP/KK/059 (A) 06, Clonmanim Industrial	Estate, Portlaoise, Co. Laois, ., Ireland
Within the Country	08 01 21	Yes	2.5	5 waste paint or varnish remover	D5	М	Weighed	Offsite in Ireland	ENVA Ireland,WCP/KK/059(A)/07	Estate,Portlaoise,Co. Laois,,,Ireland	Estate, Portlaoise, Co. Laois, ., Ireland	Estate, Portlaoise, Co. Laois, ,, Ireland
,	*											

Appendix J

Energy Efficiency Audit

Dungarvan Landfill & Civic Amenity Site Energy Audit Report

15 April 2011

Client: Waterford County Council, Civic Offices, Dungarvan

Carried Out by Waterford Energy Bureau
Civic Offices,
Tankfield,
Tramore,
Co. Waterford

Energy Audit Contents

- 1. Summary
- 2. Electrical Tariff Analysis
- 3. Break Down in Electrical Consumption
- 4. Land Fill Gas Potential
- 5. Wind Turbine Installation & upgrade to installation
- 6. Recommendations

1. Summary

Waterford Energy Bureau as part of its role for Waterford County Council Environment Dept. has carried out an energy audit of the Civic Amenity site / landfill in Dungarvan. The purpose of the energy Audit is to meet requirements set out in "Annual Environmental Report" (AER) by the Environmental Protection Agency & meet the Climate Change Strategy of Waterford County Council.

Areas examined during the audit includes;

- To assess the current energy consumption trends of the Civic Amenity Site.
- To examine alternative's energy efficiency technology that could be used to reduce
- energy consumption.
- To examine better means of operation to reduce energy consumption at the Civic Amenity Site.
- To assess the feasibility of installing alternative renewable technology.
- To examine the feasibility of utalising the land fill gas resource.

Items highlighted within the energy audit noted that energy cost savings can be made through improving the operational efficiency of the Civic Amenity Site which includes change in tariff structure & improved operational efficiency. The changing of the tariff will proceed following the installation of lechate pumping equipment. Further savings can be made through the installation of a large wind 3-phase 30 KW wind turbine.

Mechanisms are currently not available to facilitate the utilisation of the landfill gas, the methane volumes, have not made it feasible and calculations have shown that concentrations and grid access issues will inhibited the installation of a large scale CHP Plant where by electricity would be sold to the grid & excess heat would be dumped. The expected landfill gas rates will be too small to justify any form of capital expenditure on equipment that can be used for energy purposes. Other areas that were examined which turned out not to be feasible included the upgrading of methane for inclusion in converted vehicles or for pressurisation & export to the gas grid.

Waste Cooking oil is collected at the Civic Amenity site for conversion into biodiesel etc. This item requires further promotion among hotels / restaurants & school in order to maximise the collection of the oil. Eco-Ola collects the waste cooking oil periodically for processing into biodiesel.

The installation of a three phase wind turbine & improved operational efficiency are the most feasible option to saving energy at the Civic Amenity Site.

2. Electrical Tariff Analysis

The Dungarvan Landfill is supplied with a General Purpose Night Saver Tariff, which meets the electrical demand of the whole site, electrical demand of flare, public lighting & Porto cabin electrical demand. The current General Purpose Account Tariff is more than sufficient to meet electrical requirements of the site. However the installation of leachate pumping systems & permanent gas flare will result in the upgrading of tariff from general purpose night saver to low voltage maximum demand.

The purchasing of electricity in the deregulated electrical market has resulted in significant cost savings to Waterford County Council. Currently Waterford County Councils contracted price with Energia has an average unit cost of € 0.20 per KWh which includes standing charges etc. Electrical consumption is expected to double upon installation of lechate pumps & gas flare.

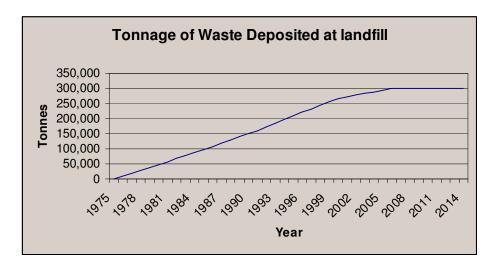
Dungarvan Landfill Electrical Consumption Analysis Bord Gais Old Rate 2010								
	Jan - Feb 09	Mar- April 09	May- June 08	July- August 08	Sept- Oct 09	Nov-dec 09	Total	
Day Units Consumed High Rate	4000	2251	3100	771	2300	4600	17022	
Day Units Consumed Low Rate				0				
Night Units	1200	3600	1150	514	750	1400	8614	
Total Units	5200	5851	4250	1285	3050	6000	25636	
Day Unit Cost	€716	€403	€555	€138	€412	€823	€3,047	
Night Unit Cost	€101	€304	€97	€43	€63	€118	€727	
Section 58 Tax	€15	€0	€0	€0	€0	€0	€15	
Standing Charge	€195	€195	€195	€195	€195	€195	€1,170	
VAT 13.5%	€139	€122	€114	€51	€90	€153	€669	
Total	€1,166	€1,024	€961	€427	€760	€1,290	€5,628	
		The a	average cost	per KWH=	€5628 / 256	36 = € 0.22		

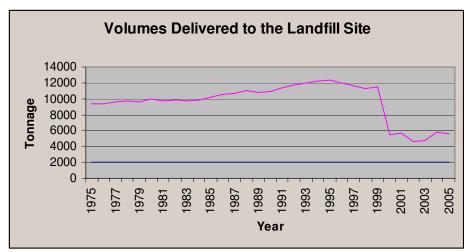
Dungarvan Landfill Electrical Consumption Analysis Bord Gais Revised Rate 2010								
	Jan - Feb 09	Mar- April 09	May- June 08	July- August 08	Sept- Oct 09	Nov-dec 09	Total	
Day Units Consumed High Rate	4000	2251	3100	771	2300	4600	17022	
Day Units Consumed Low Rate				0				
Night Units	1200	3600	1150	514	750	1400	8614	
Total Units	5200	5851	4250	1285	3050	6000	25636	
Day Unit Cost	€650	€366	€504	€125	€374	€748	€2,766	
Night Unit Cost	€97	€304	€97	€43	€63	€118	€723	
Section 58 Tax	€15	€0	€0	€0	€0	€0	€15	
Standing Charge	€195	€195	€195	€195	€195	€195	€1,170	
VAT 13.5%	€129	€117	€107	€49	€85	€143	€631	
Total	€1,086	€981	€903	€413	€717	€1,204	€5,305	
		The average cost per KWH= €5305 / 25636 = € 0.20						

Dungarvan La	Dungarvan Landfill Electrical Consumption Analysis Energia								
	Rate 2010								
	Jan - Feb 09	Mar- April 09	May- June 08	July- August 08	Sept- Oct 09	Nov-dec 09	Total		
Day Units Consumed High Rate	4000	2251	3100	771	2300	4600	17022		
Day Units Consumed Low Rate				0					
Night Units	1200	3600	1150	514	750	1400	8614		
Total Units	5200	5851	4250	1285	3050	6000	25636		
Day Unit Cost	€646	€363	€500	€124	€371	€742	€2,815		
Night Unit Cost	€105	€314	€100	€45	€65	€122	€751		
Section 58 Tax	€15	€0	€0	€0	€0	€0	€15		
Standing Charge	€195	€195	€195	€195	€195	€195	€1,170		
VAT 13.5%	€130	€118	€107	€49	€85	€143	€641		
Total	€1,089	€990	€903	€413	€717	€1,203	€5,393		
	The average cost per KWH= €5393 / 25636 = € 0.20								

Dungarvan Landfill Electrical Consumption Analysis ESB Rate Pre MAY 2010							
	Jan - Feb 09	Mar- April 09	May- June 08	July- August 08	Sept- Oct 09	Nov-dec 09	Total
Day Units Consumed High Rate	4000	2251	3100	771	2300	4600	17022
Day Units Consumed Low Rate				0			
Night Units	1200	3600	1150	514	750	1400	8614
Total Units	5200	5851	4250	1285	3050	6000	25636
Day Unit Cost	€778	€438	€603	€150	€448	€895	€3,312
Night Unit Cost	€105	€314	€100	€45	€65	€122	€751
Section 58 Tax	€15	€0	€0	€0	€0	€0	€15
Standing Charge	€195	€195	€195	€195	€195	€195	€1,170
VAT 13.5%	€148	€128	€121	€53	€96	€164	€709
Total	€1,240	€1,075	€1,020	€442	€804	€1,376	€5,957
		The average cost per KWH= €5957 / 25636 = € 0.23					

3. Break Down in Electrical Consumption


D	Dungarvan Landfill Electrical Consumption Breakdown for Office Area								
	Number of Items	Hours per year	Electrical Loading in Watts	Total electrical Load KWh.YR	% of Total	Note			
External Site Lighting	11	1800	400	7920	30.89	metal halide lights			
Computers	1	3000	270	810	3.16				
Compost Facility Fan	1	8769	800	7015.2	27.36				
Compaction Building	3	1000	350	1050	4.10				
Storage Heaters	2	1665	2000	6660	25.98				
Immersion Heaters	1	400	1500	600	2.34				
Lighting Internal	3	1250	57	213.75	0.83				
Fax Machine	1	8760	60	525.6	2.05				
				24794.55					


The installation of high pressure sodium bulbs to replace the current site light bulbs within the site lighting can have significant cost savings & a payback of 2/3 yrs.

4. Land Fill Gas Potential

The volume of waste that was disposed at the Dungarvan Landfill since 1975 is estimate at approximately 300,000 tonnes. A pumping trial has yet to take place however gas will be recorded for purposes of purchasing permanent gas flaring equipment. The percentage of the methane within the land fill gas will be clarified by pumping trial results.

Dungarvan landfill is located in County Waterford approximately 2km north west of Dungarvan off the N25 road on the southern edge of the Colligan River. The total area of the landfill site is approximately 6.5 hectares, and has been in operation since 1968. The landfill closed on 30th June 2003, but still acts as a transfer station for recyclable material.

Landfill Gas Energy utilisation Options

- The installation of a CHP Plant for the exporting of generated electricity to the grid is not known at this time however the expected methane content low gas flowrate may not be a viable option for utilisation in the generate electricity using reciprocating engines. The feasibility of increasing the low methane content by CO2 washing and limiting the O2 mix in the engine combustion (allowing for the high O2 content already present in the landfill gas), will be examined however this may not be feasible. Typical percentages of methane and flow rates to the minimum levels required (50% and 200kW/hour respectively) to support gas engine power generation.
- The capital cost of investing in infrastructure to up grade the land fill gas from its current level of 30%-50% methane to 95% methane for inclusion in specially converted vehicles is not economically feasible as the cost of the kit to up grade the gas including dryers etc. is approximately € 700,000 − € 1,000,000.
- The capital cost of investing in infrastructure to up grade the land fill gas from its current level of 30%-50% methane to 100% methane, which is then pressurised & upgraded for exported into the gas network at an alternative location is economically prohibitive. The approximate cost of such equipment including pressurisation cylinder system is approximately € 900,000 − € 1,200,000.
- The technology that supports the installation of a Micro-CHP unit that would power the land fill site & dump excess capacity onto the grid via the micro renewable program is not feasible as such technology is not available in Ireland.

5. Wind Turbine Installation & upgrade to installation

The installation of a 3-phase wind turbine to power the requirements of the landfill & export any excess electricity generated to the grid represents a credible option as the site location is significantly exposed.

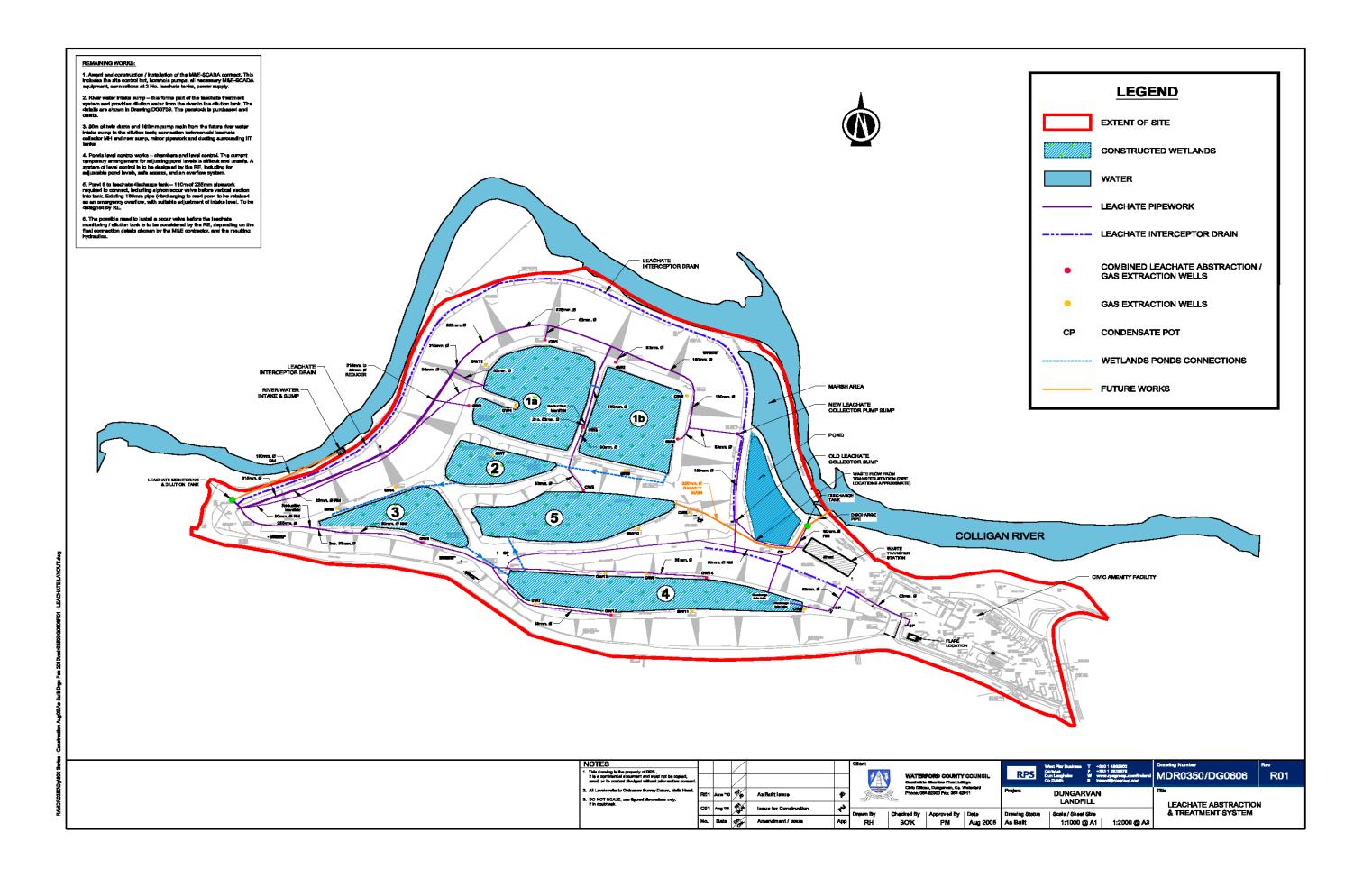
The first 4,000 installations of small-scale wind turbines, photovoltaic, hydro and combined heat and power, will be offered 19 cent per kilowatt hour for the first 3,000 kWh generated per annum, and 9 cent above 3,000 kWh. For any surplus energy sold back into the grid over the next three years under a five years contract.

Traditionally, the electricity network was designed to accommodate the flow of electricity from large centralised plants to costumers dispersed throughout the country. Micro-generation at local level now introduces two-way flows to the electricity system. Local generators will have the ability to be paid by the ESB for electricity that is surplus to their own requirements and exported. This Government measures includes grant assistance for 40% of the cost of 50 trial units (of up to 50 kW) countrywide. Applications are being accepted by SEI.

It is estimated that setting-up a micro-generated unit costs between € 15,000 and €30,000 for a single-phase unit. A pay-back is estimated on 5 to 10 years period. The initiative could change the nature of electricity generation in Ireland and help reduce the State's €6 billion a year spend on fossil fuels. For a three-phase unit, typical costs for setting-up range from € 40,000-€ 60,000. A pay-back is estimated on 5 to 10 years period. The maximum limit for the three-phase generator is 11kW, while the maximum limit for the single-phase generator is 5.75 kW. The ESB will not charge connection a micro-generator to the ESB network provided that turbine complies with EN50438.

Three Phase Turbine Installation at Civic Amenity Site									
Turbine Type	Output per year KWh	Cost	Unit Cost of Electricity displaced	Unit Cost of Electricity exported	Electric Cost Savings	Payback on installation Yrs			
Aircon 10 S 9.8 KW	20000	65,000	0.23	0.19	€ 4600	14			

Note: The unit cost of electricity also includes a factor for vat, & savings made for reduced maximum import capacity & maximum demand.


The installation of a wind turbine at the Dungarvan landfill is less favourable to that of Tramore as the site is significantly less exposed and the resulting output a wind turbine installation would be significantly less.

Recommendations

	Dungarvan Land	dfill Energy Audit	
Item	Cost	Payback	Note
Install wind turbine	€65,000	€ 4,600 annual cost saving, will have a resulting payback of 12/13 years	Note: significant wind speed at site however site exposed to sea conditions
Purchase Electricity in deregulated electrical market	7-10 % electrical cost savings	immediate	Item Currently being implemented
Replace light bulbs with high pressure sodium bulbs which use 50% of electrical demand of the site	€ 500	1-2 yrs	
Examine feasibility of utilising land fill gas			Item to be further examined
Further maximise the collection of waste cooking oil			Item to be further advertised among restaurants / hotels etc.

Appendix K

Leachate Extraction System Details

Dungarvan Landfill Capping Works – Proposed Temporary Leachate Extraction / Treatment

It is proposed to operate a temporary leachate abstraction and treatment system at Dungarvan Landfill. The following describes the technical aspects to setup the temporary system

Existing setup:

The landfill infrastructure includes leachate boreholes, collector pipework, 2 No. leachate system tanks (25m3 each), and the multi-pond wetland treatment system (5 ponds). As construction was not completed, these are in various stages of completion. There are no borehole pumps or other system pumps, no river water extraction, and various connections and lengths of pipework are still to be completed. Refer to sketch DSK003 enclosed. Currently, leachate is extracted from the old leachate drain collector sump only, by tractor and tanker, approximately every three weeks, and discharged to Pond 1. In addition, all 5 ponds are 'topped up' with river water at the same time. The wetland treatment system is operational on this basis, with gravity overflows allowing detention and flow from pond 1 down to pond 5, and then to the existing reed pond.

Proposed Temporary Leachate Extraction / Treatment

In order to set up a temporary leachate extraction/ treatment system, a suitable borehole to extract leachate would be chosen based on monitoring to date, a pump would be installed and set up to discharge to the existing leachate collector pipework. A final connection would be made to the Dilution and Monitoring Tank (westward tank). A suitable groundwater monitoring borehole, e.g. RC8, will be used to provide dilution water, by equipping and connecting to the system, relaying dilution water to the tank. Leachate from the old leachate drain collector sump, still to be extracted by tractor-tanker, would be added to the tank every 2 weeks. Leachate and the dilution well water will be tested for ammonia and pH, and setup so that dilution to less than 100 mg/l ammonia is achieved in the tank. A pump will be setup in the tank and will discharge daily to pond 1A (via the existing rising main).

An estimated 1-2 m3/day would be extracted from the leachate borehole, and approximately 5 m3 from the old collector sump (every 2-4 weeks). Pending testing, it is expected that 4-

5m3/day will be extracted from the groundwater borehole, to dilute water in the tank to less than 100 mg/l ammonia. Treated water will be re-circulated from the final pond, Pond 5, back to Pond 1A, at all times when evapotranspiration equals or exceeds rainfall and inputs. Persistent or heavy rainfall will dilute the ponds and overflow from Pond 5 to the lower pond and marsh area adjacent the river.

Instant and grab sample monitoring would be carried out at Pond 5. Although it is noted that no treated leachate/water will normally discharge from Pond 5, it is expected that the treated leachate will comply with the following limits proposed in the *Response to EPA Request for Information on Leachate Treatment (Waste licence review application, Dec 08)*:

Parameter	Emission Limit (all units in mg/l except pH)
PH	6 - 9
BOD	45
Suspended Solids	50
Orthophosphate (mg/l P)	2
Total Ammonia (as N)	5

It is proposed that ammonia and pH be tested weekly onsite by portable meter, at both Pond 5 and in the dilution tank, with the remaining tests carried out in the laboratory monthly (Pond 5 sample only). There is also an annual monitoring proposal for additional parameters included in the waste licence review application which can be adhered to, this is attached. It is noted that it is possible to shutoff flow from each wetland pond for a period if results are unsatisfactory, and return to Pond 1A or/and the dilution tank if necessary.

	Deste			Molybdate Reactive	Total	NIL.	NEL	Total	Suspend	005	BOD	Oblicati	0	Non- purgeabl e organic	
no. Old Code	Date sampled	рН	Ammonium mg/l N		e mg/l P	Nitrite mg/IN	Nitrate mg/l N	Nitrogen mg/l N	ed solids mg/l	COD mg/l	mg/l	mg/l Cl	Conducti vity	carbon mg/l	Comment
20100702 Dungarvan Landfill Pond 1	10-Sep-10	7.44				0.052	<0.2		18.5	96	9			28.90	
20100703 Dungarvan Landfill Pond 2	10-Sep-10	7.47				< 0.003	<0.2		<2	39		92.211	611	14.18	
20100704 Dungarvan Landfill Pond 3	10-Sep-10	7.52				< 0.003	<0.2		1.0	27		48.598		11.05	
20100705 Dungarvan Landfill Pond 4	10-Sep-10	7.43				< 0.003	<0.2		2.2	21		40.994		9.91	
20100706 Dungarvan Landfill Pond 5 IN	10-Sep-10	7.30				< 0.003	< 0.2		5.4	27		17.962		11.32	
20100701 Dungarvan Landfill Leachate Pond	10-Sep-10	7.67		0.029		0.171	0.334		6.0	23 27	1 2		468 337	10.20 11.79	
20100707 Dungarvan Landfill Pond 5 OUT	10-Sep-10	7.82		0.002		< 0.003	<0.2		<2						
20100699 RC8 20100700 RC8A	10-Sep-10 10-Sep-10	7.46 7.67	76.440 276.565	0.240 1.507		0.024	<0.2 0.585		27.4 107.5	87 262	23			16.56 62.18	
20100700 RCSA 20100711 Dungarvan Landfill Pond 1	14-Sep-10	7.90		0.280		0.075	<0.2	87.560		141	13				Total N meas
20100711 Dungarvan Landill Pond 1	14-Sep-10	7.38		0.280		0.029	<0.2			50	13	92.113			Total N meas
20100712 Dungarvan Landfill Pond 3	14-Sep-10	7.71		0.003		< 0.024	<0.2			27		49.430			Total N meas
20100714 Dungarvan Landfill Pond 4	14-Sep-10	8.26		0.002		0.000	<0.2			27		41.888			Total N meas
20100714 Bungarvan Landfill Pond 5 IN	14-Sep-10	7.71		0.002		< 0.003	<0.2			27		24.664	355		Total N meas
20100710 Dungarvan Landfill Leachate Pond	14-Sep-10	7.83		0.020		0.215	0.172			50		24.738			Total N meas
20100716 Dungarvan Landfill Pond 5 OUT	14-Sep-10	7.90		0.020		< 0.003	<0.2			33	2				Total N meas
20100715 BC8	14-Sep-10	7.97				0.051	<0.2			109		113.981	2020		Total N meas
20100719 RC8A	14-Sep-10	7.52				0.002	<0.2			116		374.041	4000		Total N meas
20100709 ROSA 20100807 Dungarvan Landfill Pond 1	6-Oct-10	7.34		0.724		0.002	<0.2		12.7	160		530.030		100.30	Total IN Illeas
20100808 Dungarvan Landfill Pond 2	6-Oct-10	7.58				0.005	<0.2		8.8	136		413.254		41.25	
20100809 Dungarvan Landfill Pond 3 20100810 Dungarvan Landfill Pond 4	6-Oct-10 6-Oct-10	7.72 7.61	15.419 0.049	< 0.02		0.013	<0.2 <0.2		1.4	70 39		266.175 109.706		22.24 12.04	
20100810 Dungarvan Landfill Pond 5 IN	6-Oct-10	7.34				0.003	0.199			39		32.144		10.80	
20100806 Dungarvan Landfill Leachate Pond	6-Oct-10	7.52				0.014	0.265			39		21.064		11.02	
20100812 Dungarvan Landfill Pond 5 OUT 20100804 RC8	6-Oct-10	7.49 7.48		< 0.02 1.032		0.002 0.022	0.164 <0.2		6 4.6	39 229		21.756	382 3330	11.21 38.67	
	6-Oct-10														
20100805 RC8A	6-Oct-10	7.26				0.004	<0.2		7.6	117	10	369.884	4040	63.32 85.47	
20100827 Dungarvan Landfill Pond 1	13-Oct-10	7.40				0.007	<0.2		10	160	10				
20100828 Dungarvan Landfill Pond 2	13-Oct-10	7.80		0.182		0.084	<0.2			121		443.415		38.02	
20100829 Dungarvan Landfill Pond 3	13-Oct-10	7.84				0.028	<0.2		1.5	70		290.895		27.34	
20100830 Dungarvan Landfill Pond 4	13-Oct-10	7.87				0.004	<0.2		<2	39		99.488		15.26	
20100831 Dungarvan Landfill Pond 5 IN	13-Oct-10	7.70				0.005	<0.2		13	33		40.549		13.47	
20100826 Dungarvan Landfill Leachate Pond	13-Oct-10	7.55		0.011		0.015	0.078			27		22.632		12.82	
20100832 Dungarvan Landfill Pond 5 OUT	13-Oct-10	7.71		0.002		0.004	<0.2		1.33	27	2			13.27	
20100824 RC8	13-Oct-10	7.40	91.187	0.740		0.009	<0.2		10.33	119		165.602		34.79	
20100825 RC8A	13-Oct-10	7.35		0.440		0.002	<0.2		1	148		389.074		83.38	
20100852 Dungarvan Landfill Pond 1	22-Oct-10		154.480	0.184		0.328	0.276		7.8	366		634.410			
20100853 Dungarvan Landfill Pond 2	22-Oct-10		66.074			0.916	1.013		9.8	356		464.985			
20100854 Dungarvan Landfill Pond 3	22-Oct-10		6.926	0.073		0.326	<0.2		18	40		316.502			
20100855 Dungarvan Landfill Pond 4	22-Oct-10		0.037	0.005		< 0.003	<0.2		1.6	24		99.656			
20100856 Dungarvan Landfill Pond 5 IN	22-Oct-10		0.853			0.002	<0.2		24.4	28		44.527			
20100851 Dungarvan Landfill Leachate Pond	22-Oct-10		0.256	0.019		0.009	<0.2		12.8	19		21.910			
20100857 Dungarvan Landfill Pond 5 OUT	22-Oct-10		<0.2			< 0.003	<0.2		<2	0		22.777			
20100849 RC8	22-Oct-10		94.505	1.081	1.112	0.018	<0.2		10.2	338		195.499			
20100850 RC8A	22-Oct-10		157.730			0.013	<0.2		18.4	365		778.740			
20100883 Dungarvan Landfill Pond 1	29-Oct-10	7.54	122.110	0.393		0.152	0.707		25.67	131		266.587	2436		
20100884 Dungarvan Landfill Pond 2	29-Oct-10	7.94	52.056	0.124	0.279	0.377	0.423		16	127		414.192	2422		
20100885 Dungarvan Landfill Pond 3	29-Oct-10	7.93				0.127	<0.2		9	62		270.180			
20100886 Dungarvan Landfill Pond 4	29-Oct-10	7.94	1.726	0.002	0.049	0.020	< 0.2		11.75	45		196.577	958		
20100887 Dungarvan Landfill Pond 5 IN	29-Oct-10	7.65	0.018	0.011	0.061	0.001	<0.2		11.5	30		52.926	419		
20100882 Dungarvan Landfill Leachate Pond	29-Oct-10	7.80	0.143	0.027	0.173	0.006	0.008		25.75	34		21.661	363		
20100888 Dungarvan Landfill Pond 5 OUT	29-Oct-10	7.69	0.035	0.003	0.032	< 0.003	< 0.2		0	23		23.010	314		
20100880 RC8	29-Oct-10	7.34	9.820	0.037	0.099	0.178	2.045		51	36		26.223	506		
20100881 RC8A	29-Oct-10	7.08	11.344	0.164	0.243	0.049	1.568		15.25	53		28.210	588		
20100902 Dungarvan Landfill Pond 1	4-Nov-10	7.76	93.740	0.301	0.599	0.369	0.759	117.400		121	8			34.60	
20100903 Dungarvan Landfill Pond 2	4-Nov-10	8.06		0.150	0.284	0.337	0.401	42.470	3.5	143		342.966		34.47	
20100904 Dungarvan Landfill Pond 3	4-Nov-10	7.92	28.993	0.026	0.295	0.389	0.197	39,170	9.2	84		345.189	2080	25.37	
20100905 Dungarvan Landfill Pond 4	4-Nov-10	7.91		0.012		0.135	<0.2	22.550		64		307.765		20.29	
20100906 Dungarvan Landfill Pond 5 IN	4-Nov-10	7.39		0.022		< 0.003	<0.2			85		161.900		21.23	
20100901 Dungarvan Landfill Leachate Pond	4-Nov-10	7.81		0.013		0.013	0.070	0.723		68		30.605		10.58	
20100907 Dungarvan Landfill Pond 5 OUT	4-Nov-10	7.47		0.007		< 0.003	<0.2			82	2			11.04	
20100899 RC8	4-Nov-10	6.93				< 0.003	<0.2		98	187		76.990		30.12	
20100900 RC8A	4-Nov-10	7.06				0.010	0.438		2.75	70		42.726		10.10	
20100929 RC8	18-Nov-10	7.37				0.039	<0.2			140		145.478			
20100930 RC8A	18-Nov-10	7.20		0.197		0.053	<0.2			127		86.345		36.95	
20100931 Dungarvan Landfill Leachate Pond	18-Nov-10	7.71		0.026		0.043	0.116			27		60.043		11.39	
20100932 Dungarvan Landfill Pond 1	18-Nov-10	7.84				0.176	4.53			103	15			30.22	
20100933 Dungarvan Landfill Pond 2	18-Nov-10	7.73				0.258	2.122			181		278.159		26.41	
20100934 Dungarvan Landfill Pond 3	18-Nov-10	7.58		0.041		0.868	3.485			164		254.528		23.62	
20100935 Dungarvan Landfill Pond 4	18-Nov-10	8.06				0.158	0.86			157		280.807		17.4	
20100936 Dungarvan Landfill Pond 5 IN	18-Nov-10	7.77				0.044	<0.2			39		179.863		15.76	
20100937 Dungarvan Landfill Pond 5 OUT	18-Nov-10	7.85		0.006		0.035	<0.2			27	0			14.84	
20100938 RC8	24-Nov-10	7.00	21.465	0.16		0.041	<0.2			32		374.026		11.01	
20100939 RC8A	24-Nov-10		63.65			0.054	<0.2			119		100.166			
20100939 NGA 20100940 Dungarvan Landfill Leachate Pond	24-Nov-10		0.064	0.030		0.034	0.104			20		72.208			
20100940 Dungarvan Landill Leachate Pond 20100941 Dungarvan Landfill Pond 1	24-Nov-10		53.522			0.04	7.418			88	5				
20100941 Dungarvan Landfill Pond 1 20100942 Dungarvan Landfill Pond 2	24-Nov-10 24-Nov-10		16.68			0.377				70	5	236.201			
20100942 Dungarvan Landfill Pond 2 20100943 Dungarvan Landfill Pond 3	24-Nov-10 24-Nov-10		16.68			0.183	1.756 5.479			70 75		240.448			
20100943 Dungarvan Landfill Pond 3 20100944 Dungarvan Landfill Pond 4											_				
AN LINEARY LANGUAGE PARTY AND A STATE OF THE P	24-Nov-10		12.803			0.202				38	0				
	24-Nov-10		4.185			0.047	<0.2			36		205.954			
20100945 Dungarvan Landfill Pond 5 IN	24-Nov-10		0.093			0.032				33		128.151			
20100945 Dungarvan Landfill Pond 5 IN 20100946 Dungarvan Landfill Pond 5 OUT			128.049			< 0.003				97		538.56			
20100945 Dungarvan Landfill Pond 5 IN 20100946 Dungarvan Landfill Pond 5 OUT 20100947 RC8	13-Dec-10			0.104	0.68	< 0.003	<0.2			137		87.834			
20100945 Dungarvan Landfill Pond 5 N 20100946 Dungarvan Landfill Pond 5 OUT 20100947 RC8 20100948 RC8A	13-Dec-10		60.553												
20100945 Dungarvan Landfill Pond 5 IN 20100946 Dungarvan Landfill Pond 5 OUT 20100947 RC8 20100948 RC8A 20100949 Dungarvan Landfill Leachate Pond	13-Dec-10 13-Dec-10		0.035	0.006		< 0.003	<0.2			59		81.784			
20100945 Dungarvan Landfill Pond 5 IN 20100946 Dungarvan Landfill Pond 5 OUT 20100947 RC8 20100948 RC8A 20100949 Dungarvan Landfill Leachate Pond 20100950 Dungarvan Landfill Pond 1	13-Dec-10 13-Dec-10 13-Dec-10		0.035 128.047	0.006	0.351	0.004	< 0.2			108		535.689	3600		
20100945 Dungarvan Landfill Pond 5 N 20100946 Dungarvan Landfill Pond 5 OUT 20100947 PC8 20100948 RC8A 20100949 Dungarvan Landfill Leachate Pond 20100950 Dungarvan Landfill Pond 1 20100950 Dungarvan Landfill Pond 2	13-Dec-10 13-Dec-10 13-Dec-10 13-Dec-10		0.035	0.006	0.351	0.004 0.057						535.689 221.068	3600 1558		
2010945 Dungarvan Landfill Pond 5 N 2010946 Dungarvan Landfill Pond 5 OUT 2010947 RG2 2010948 RG8A 2010949 Bungarvan Landfill Leachate Pond 2010959 Dungarvan Landfill Pond 1 2010955 Dungarvan Landfill Pond 2 20109595 Dungarvan Landfill Pond 3	13-Dec-10 13-Dec-10 13-Dec-10 13-Dec-10 13-Dec-10		0.035 128.047	0.006 0.266 0.067 0.082	0.351 0.169 0.293	0.004 0.057 0.062	<0.2 1.266 7.382			108		535.689 221.068 122.221	3600 1558 779		
2010945 Dungaren Landfill Pond 5 N 20109946 Dungaren Landfill Pond 5 OUT 20109947 RC8 20109948 RC8A 20109949 Dungaren Landfill Leachate Pond 20109950 Dungaren Landfill Pond 1 20109950 Dungaren Landfill Pond 2 20109952 Dungaren Landfill Pond 3 20109952 Dungaren Landfill Pond 3	13-Dec-10 13-Dec-10 13-Dec-10 13-Dec-10 13-Dec-10 13-Dec-10		0.035 128.047 25.56 2.342 5.062	0.006 0.266 0.067 0.082 0.006	0.351 0.169 0.293 0.04	0.004 0.057 0.062 0.017	<0.2 1.266 7.382 0.613			108 98 61 14		535.689 221.068 122.221 108.891	3600 1558 779 685		
2010945 Dungarvan Landfill Pond 5 N 2010946 Dungarvan Landfill Pond 5 OUT 2010947 RG2 2010948 RG8A 2010949 Bungarvan Landfill Leachate Pond 2010959 Dungarvan Landfill Pond 1 2010955 Dungarvan Landfill Pond 2 20109595 Dungarvan Landfill Pond 3	13-Dec-10 13-Dec-10 13-Dec-10 13-Dec-10 13-Dec-10		0.035 128.047 25.56 2.342	0.006 0.266 0.067 0.082	0.351 0.169 0.293 0.04 0.25	0.004 0.057 0.062	<0.2 1.266 7.382			108 98 61		535.689 221.068 122.221	3600 1558 779 685 903		

Appendix L – Environmental Liability Risk Assessment

REVIEW OF ENVIRONMENTAL LIABILITIES

1 A. IDENTIFICATION OF ENVIRONMENTAL RECEPTORS

The term 'environmental receptors' describes those parts of the surroundings likely to be affected by

the processes that are ongoing at Dungarvan Landfill. The significant environmental receptors identified are listed below. These receptors are used as a starting point to ensure that all

significant risks are identified and all major aspects of the environment are taken into account.

Environmental Receptors:

Groundwater Surface water Adjacent National Heritage Area (NHA) Human Beings Air Quality

1 B. IDENTIFICATION OF PROCESSES

A number of processes associated with the operation of a public civic amenity facility, and other

processes associated with the restoration and aftercare period of the Landfill site were identified

during the course of the workshop and afterwards and are listed below:

Processes:

General Facility Operations – including nuisance control, traffic management, routine maintenance, monitoring and other site operations.

Civic Amenity Facility Operations – including the temporary storage and transfer of waste.

Landfill Gas – including landfill gas generation, migration, and control.

Leachate – including leachate generation, collection, storage and transfer off site.

These current processes have been identified to cover all activities on site that may result in a risk to

the environmental receptors. Each environmental receptor was assessed against the list of processes

in order to identify potential hazards.

1 C. IDENTIFICATION OF RISKS ASSOCIATED WITH RECEPTORS AND PROCESSES

- 1 Improper handling of waste by staff and members of the public
- 2 Vehicles and/or person accidents in the Civic amenity area
- 3 Overfilling of storage containers in the Civic Amenity area
- 4 Risk of hazardous material passing inspection and being accepted at Civic Amenity
- 5 Member of public slipping/tripping in civic amenity area
- 6 Improper storage of permitted household hazardous waste
- 7 Escape of contaminated liquid from the Civic Amenity containment system
- 8 Off site migration of litter causing nuisance
- 9 Vermin carrying disease out of the landfill
- 10 Odours causing a nuisance
- 11 H&S Accident during environmental monitoring
- 12 Drowning in Colligan River or Leachate Wetlands System of staff or unauthorised member of public
- 13 Human exposure to leachate and /or landfill gas during general maintenance operations
- 14 Fire in the CA or landfill
- 15 Landfill gas migration off site and accumulation in structures.
- 16 Escape of gas to the atmosphere
- 17 Degradation of capping.
- 18 Leachate break out due to breach in liner
- 19 Failure of leachate collection infrastructure leading to groundwater contamination
- 20 Escape of leachate from leachate storage tank to ground
- 21 Intrusion / Vandalism at flare compound
- 22 Dust causing a nuisance, blown off site.

2.A - ASSESSMENT OF RISKS

These risks were assessed against the risk classification table below. The risk classification table was designed to reflect the critical levels of risk appropriate to the landfill. Risk ratings were applied to each risk. The severity rating adopted for each risk reflected the highest severity rating of the severity parameters (safety, environment).

A risk score was calculated for each risk using the selected severity and occurrence ratings. The risks

were then ranked and compared based on the risk scores. The risks were placed in a risk matrix to

illustrate the ranking and level of each risk, and allow the risks to be visually prioritised. The risk matrix

is a particularly useful tool for tracking changes in risk levels over time. The level of management

required for each risk is identified from the risk matrix.

Table 2 A. - RISK CLASSIFICATION TABLE

		Likelihood of	Severity				
Rating	Description	Occurance (%)	Safety	Environment			
1	Nil	0%	No injury	No Effect			
2	Very Low	0-5%	First aid injury	Slight effect, temporary			
3	Low	5-10%	Medically treated injury	Minor effect, temporary			
4	Medium	10-20%	Lost time injury to 1 week	Local impact, recoverable losses			
5	High	20-50%	Lost time injury > 1 week	Major Impact, severe damage			
6	Very High	>50	Permanent Disabilty Fatality	Massive impact, severe long term damage			

Table 2.B - RISK RANKING

Ris	Potential Failure Mode	Risk
k		Score
2	Vehicles and/or person accidents in the Civic amenity area	20
12	Drowning in Colligan River or Leachate Treatment Wetlands of staff or	18
	unauthorised member of public	
21	Intrusion / Vandalism at flare compound	18
18	Leachate break out due to breach in capping	16
8	Off site migration of litter causing nuisance	15
3	Overfilling of storage containers in the Civic Amenity area	12
5	Member of public slipping/tripping in civic amenity area	12
11	H&S Accident during environmental monitoring	12
13	Human exposure to leachate and /or landfill gas during general	12
	maintenance	

14	Fire in the CA or landfill	12
15	Landfill gas migration off site and accumulation in structures	12
17	Degradation of capping	12
20	Escape of leachate from leachate storage tank to ground	12
4	Risk of hazardous material passing inspection and being accepted	9
6	Improper storage of permitted household hazardous waste	9
7	Escape of contaminated liquid from the Civic Amenity containment	9
10	Odours causing a nuisance	9
1	Improper handling of waste by staff and members of the public	8
9	Vermin carrying disease out of the landfill	6
16	Escape of gas to the atmosphere	6
19	Failure of leachate collection infrastructure leading to groundwater	6
	contamination	
22	Dust causing a nuisance, blown off site	6

2.B RISK MATRIX

The Risk Matrix has been developed to allow the risks to be easily displayed and prioritised. The

severity and occurrence ratings are used in the matrix; with the level of severity forming the x-axis and

the likelihood of occurrence forming the y-axis. This matrix will provide a visual tool for regular risk

reviews since the success of mitigation can be easily identified. The risk matrix is displayed below. The risks have been colour coded in the matrix to provide a broad indication of the critical

nature of each risk. The colour code is as follows:

Red (deep red and light red) – These are considered to be high-level risks requiring priority

attention. These risks have the potential to be catastrophic and as such should be addressed quickly.

Amber / Yellow – These are medium-level risks requiring action, but are not as critical as a red coded risk.

Green (light and dark green) – These are lowest-level risks and indicate a need for continuing awareness and monitoring on a regular basis. Whilst they are currently low or

minor risks, some have the potential to increase to medium or even high-level risks and must

therefore be regularly monitored and if cost effective mitigation can be carried out to reduce

the risk even further this should be pursued.

Risk Matrix – Current Risk Status

	V. High	6						
	High	5			8	2		
0.000,000,000	Medium	4		1	3	18		
Occurrence	Low	3			4,6,7,10	5		21,12
	V.Low	2			9,16,19, 22			11,13,14, 15,17,20
	Nil	1						
			1	2	3	4	5	6
			Nil	V.Low	Low	Medium	High	V.High
					Severity			

The risk matrix indicates that there are three risks in the red zone that requires priority attention. Two

risks are in the yellow/amber zone indicating that these risk requires action as soon as possible. All

remaining risks are located in the green zone indicating a need for continuing awareness and

monitoring on a regular basis.

2.C - DISCUSSION OF RISK LEVELS

The following risk lies in the red zone and require priority attention:

Risk 2 - Vehicles and/or person accidents in the Civic amenity area

Risk 12 - Drowning in Colligan river or Leachate Treatment Wetlands of staff or unauthorised member of public

Risk 21 - Intrusion / Vandalism at flare compound

The following risks lie in the amber / yellow zone and require attention as soon as possible:

Risk 8 – Off site migration of litter causing nuisance

Risk 18 – Leachate break out due to breach in capping

All remaining risks lie in the green zone. These risks require continuing awareness and monitoring on a regular basis. As these risks may have the potential to increase to yellow or red zone risks, additional risk management measures should be put in place to manage them at their current levels, or preferably to reduce them further, if required.

3.A - IDENTIFICATION AND ASSESSMENT OF MITIGATION ACTIONS

Risks requiring additional mitigation actions were identified in Section 2.C. These are comprised of three

risks located in the red zone and two risks located in the amber / yellow zone. All remaining risks

were found to be in the green zone.

Additional risk mitigation measures were identified for the three risks in the red zone, reducing the risk for one to green, one to yellow, and one remains unchanged at red, but a possible future mitigation was identified for the third (the risk level remains unchanged until monitoring indicates the mitigation is warranted). The three risks that are in the red zone are inherently risky, and thus procedures and monitoring is necessary on an ongoing basis. A reviewshould be carried out regularly identifying any further opportunities to reduce these risks, and to ensure that the risk level does not increase.

One of the risks in the yellow zone have a certain level of risk by its nature, and the risk cannot

be readily reduced as mitigation measures are already in place. These measures will reduce these

risks to more acceptable levels. One yellow zone risk was reduced to a green risk by mitigation

measures. Again, a review should be carried out regularly identifying any further opportunities to

reduce these risks, and to ensure that the risk level does not increase.

Since green zone risks may have the potential to increase to yellow or red zone risks, these risk mitigation measures should be implemented since they are considered cost-effective.

3.B - EFFECTIVENESS OF MITIGATION MEASURES IN RISK REDUCTION

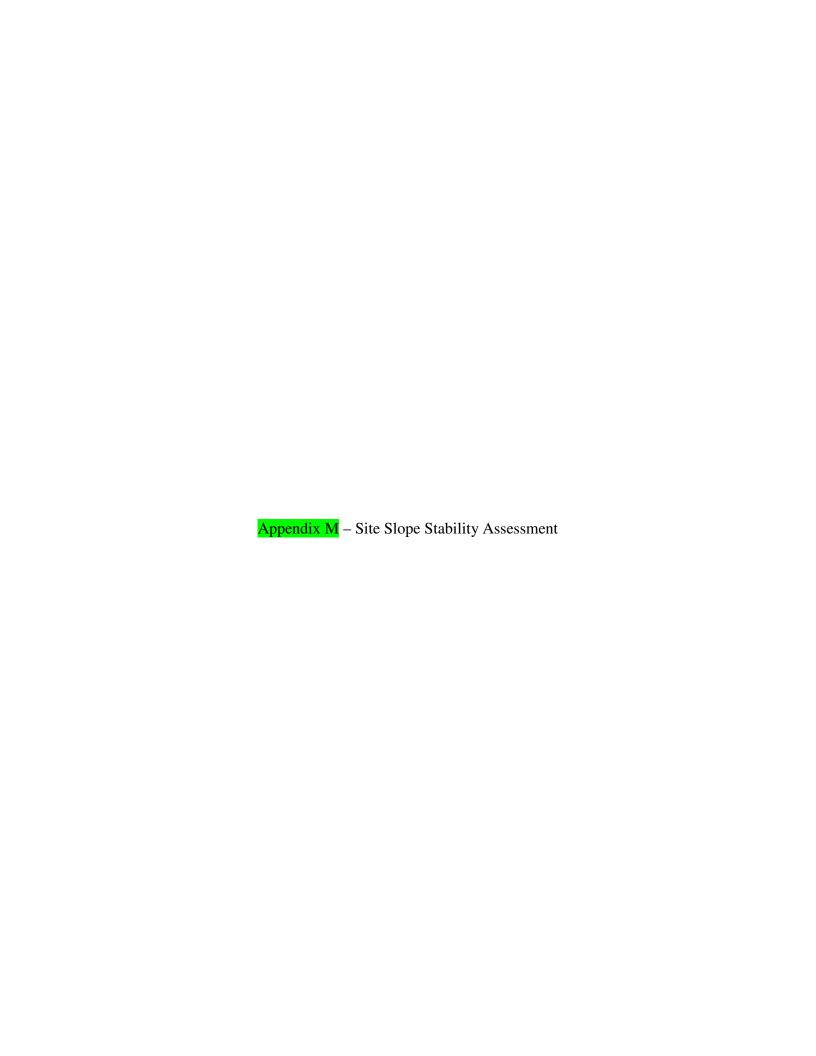
The risk scores have been re-calculated on the basis that the additional mitigation measures are fully implemented. **Table 3.1** provides the revised risk scores after the implementation of the risk mitigation measures, and compares them to the current risk score. **Table 3.2** provides a revised risk matrix following the implementation of the risk mitigation measures.

Table 3.1 indicates that the risk scores for 4 of the risks are reduced by the implementation of the measures, whilst there would be no significant change to 18 of the risks. However, recommended mitigation measures have been proposed and assessed for 6 of the 18 risks which do not exhibit improved risk scores, and these measures should increase the robustness of the risk controls already in place.

In addition, the risk matrix indicates that two of red code risks have been reduced to a yellow

yellow/amber code risk, and one to green. One yellow/amber code risk has been reduced to a green zone risk, and one of the green code risks have moved to the lower green zone.

The recommended mitigation measures therefore show a real reduction in risk at the landfill and since they are considered cost-effective, should be implemented.


Table 3.1 – Proposed Risk Mitigation Measures

Risk	Potential Failure Mode/Risk	Current Controls	Recommended Mitigation Measures	Current Risk Score	Revised Risk Score
2	Vehicles and/or person accidents in the Civic amenity area	Traffic Management Plan	Implement additional traffic management systems such as one way system and closure during skip lifts	20	16
12	Drowning in Colligan River or Leachate Treatment Wetlands of staff or unauthorised member of public	r Leachate Treatment Vetlands of staff or nauthorised member of ublic erection of additional life buoys		18	12
21	Intrusion / Vandalism at flare compound	dalism at flare		18	18
18	Leachate break out due to breach in capping	SW/GW monitoring, visual monitoring	Current measures adequate	16	16
8	Off site migration of litter causing nuisance	off site migration of litter Staff vigilance Review current arrangements, increased		15	12
3	Overfilling of storage containers in the Civic Amenity area	Current CA procedures	Increased policing	12	12
5	Member of public slipping/tripping in civic amenity area	Current CA procedures	Extra awareness, extra signs, information, supervision	12	12
11	H&S Accident during environmental monitoring	Use experienced personnel	Current measures adequate	12	12
13	Human exposure to leachate and /or landfill gas during general maintenance	Use experienced personnel, training, documented procedures, inoculations	Current measures adequate	12	12
14	Fire in the CA or landfill	Emergency Response procedure, waste inspection procedure	Review CA procedures	12	12
15	Landfill gas migration off site and accumulation in structures Gas extraction and flaring system installed		Current measures adequate	12	12
17	Degradation of capping	Monitoring	Current measures adequate	12	12
20	Escape of leachate from leachate storage tank to ground	Groundwater monitoring, caretaking, security fencing, overflow alarm	Erection of bund around tanks	12	10

4	Risk of hazardous material passing inspection and being accepted	Waste Inspection procedure, waste inspected at waste disposal area. If unsuitable remove waste to quarantine area	Current measures adequate	9	9
6	Improper storage of permitted household hazardous waste	Current CA procedures	Current measures adequate	9	9
7	Escape of contaminated liquid from the Civic Amenity containment	Design of containment system	Recording of emptying of containment system	9	9
10	Odours causing a nuisance	Landfill capped, gas extraction and flaring system installed	Current measures adequate	9	9
1	Improper handling of waste by staff and members of the public	Staff wear PPE, supervision on public site	Extra awareness, extra signs, information, supervision	8	6
9	Vermin carrying disease out of the landfill	Nuisance control procedures	Current measures adequate	6	6
16	Escape of gas to the atmosphere	Landfill capped, gas extraction and flaring system installed	Current measures adequate	6	6
19	Failure of leachate collection infrastructure leading to groundwater contamination	System monitoring and a back - up system	Current measures adequate	6	6
22	Dust causing a nuisance, blown off site	Cap prepared for natural colonisation	Current measures adequate	6	6

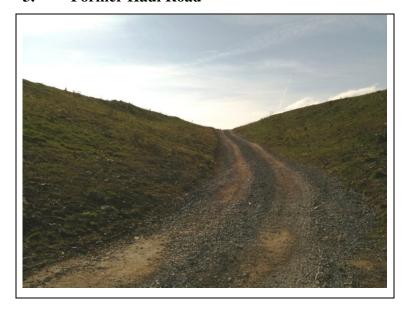
Table 3.2 – Revised Risk matrix – Post Recommended Mitigation Measures

	V. High	6						
	High	5						
Occurrence	Medium	4		1	3,8	18,2		
Occurrence	Low	3			4,6,7,10	5,12		21
	V.Low	2			9,16,19, 22		20	11,13,14, 15,17
	Nil	1						
			1	2	3	4	5	6
			Nil	V.Low	Low	Medium	High	V.High
					Severity			

Dungarvan Landfill Slope Stability Assessment 2010

A slope stability assessment was carried out for the facility during the 2010 AER reporting period, Jan 1st 2010 – December 31st 2010, by the facility manager. It was noted that generally slope stability has not been affected by construction work undertaken in the course of the remediation process and construction of the leachate treatment wetlands on site. Works to augment slope stability during the construction phase are included below. Individual slopes referred to are outlined on the attached site plan.

1. Eastern Slope, north of Haul Road


A surface water drainage channel and channel for leachate pumping have been dug along the base of this slope and a pump/sump for dilution of leachate have also been installed along with gravel pathways to the sump pump and existing monitoring well. These works have not destabilised the slope in any way. Vegetation thereon is thriving.

2. Northern Slope on eastern end of landfill, adjacent to Colligan River

A section of river gabions providing bank protection at Dungarvan landfill collapsed in October 2008, caused by heavy construction traffic during capping works. Substantial works involving the replacement of 20m length of damaged gabions, approx 4m deep, strengthening the gabions structure by deepening the extent, and raising the gabions retaining to track level were subsequently carried out. The above photos illustrate the work. The works that were undertaken have proved to be successful as No slippage has taken place in the area since the works have been carried out.

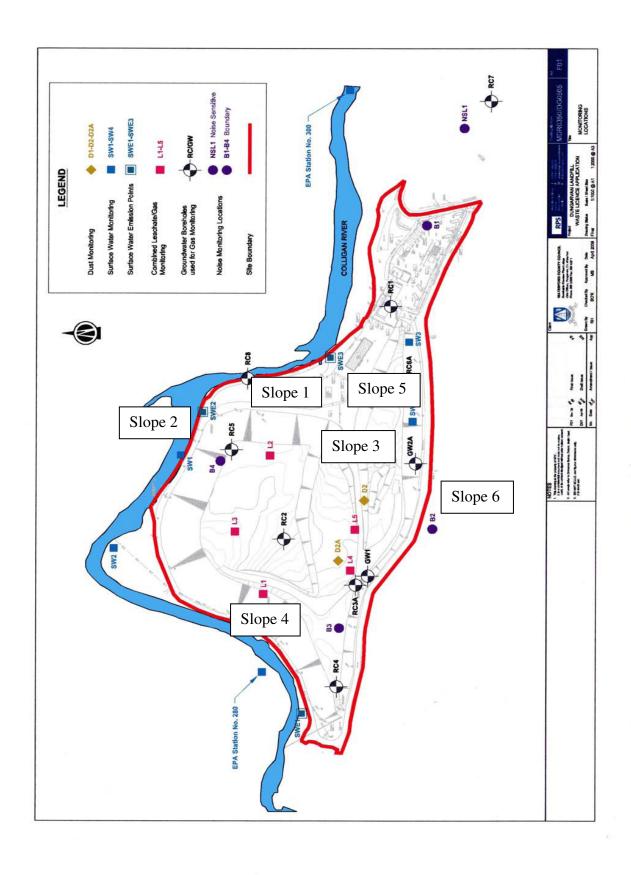
3. Former Haul Road

Slopes along both sides of the former landfill haul road remain stable and vegetation is thriving thereon. This will be augmented during the next reporting period with suitable wild flowers.

4. Northern slope at western end of landfill

A channel which forms part of the leachate extraction system has been dug along the base of this slope. The channel has had No adverse effect on the stability of the slope. Vegetation in this area is thriving.

5. Northern facing slope on southern side of haul road


This is the largest slope on the landfill. The largest wetland pond in the leachate extraction system has been formed at the top of this slope. Despite this there is No sign of shrinkage or instability as a result of the works carried out in this area. Vegetation on this slope is strong.

6. Southern Slope of Landfill

Generally there are No stability issues on this slope aside from a small area that needs attention in around monitoring points RC3A and GW1 where a gravel access path has been formed and has caused some instability. This will be addressed under the remediation contract and repair works in this area will be carried out by Waterford County Council staff.

