# Rilta Environmental Limited - Site 14-A1 Environmental Monitoring Programme



# Annual Environmental Report January 1<sup>st</sup> – December 31<sup>st</sup> 2010

May 2011 Revision: Final

TOBIN CONSULTING ENGINEERS







# REPORT

### **PROJECT:**

Rilta Environmental Ltd, Site 14-A1

#### **CLIENT:**

#### **Rilta Environmental Ltd.**

Site No. 14A1, Greenogue Business Park, Rathcoole, County Dublin.

### **COMPANY:**

### **TOBIN Consulting Engineers** Block 10-4, Blanchardstown Corporate Park,

Dublin 15.

www.tobin.ie



#### DOCUMENT AMENDMENT RECORD

| Client:  | Rilta Environmental Ltd.                                                                |
|----------|-----------------------------------------------------------------------------------------|
| Project: | Rilta Site 14-A1                                                                        |
| Title:   | Annual Environmental Report – January 1 <sup>st</sup> to December 31 <sup>st</sup> 2010 |

|          | PROJECT NUMBER:                      | DOCUMENT REF: 5965 - 04 - 01 |          |         |          |            |          |  |  |
|----------|--------------------------------------|------------------------------|----------|---------|----------|------------|----------|--|--|
|          |                                      |                              |          |         |          |            |          |  |  |
|          |                                      |                              |          |         |          |            |          |  |  |
|          |                                      |                              |          |         |          |            |          |  |  |
|          |                                      |                              |          |         |          |            |          |  |  |
|          |                                      |                              |          |         |          |            |          |  |  |
| Final    | Annual Environmental<br>Report (AER) | DC                           | 04/05/11 | ST      | 04/05/11 | DG         | 04/05/11 |  |  |
| Revision | <b>Description &amp; Rationale</b>   | Originated                   | Date     | Checked | Date     | Authorised | Date     |  |  |
|          | TOBIN Consulting Engineers           |                              |          |         |          |            |          |  |  |





# TABLE OF CONTENTS

| 1  | IN   | ITRODU  | CTIC        | <b>N</b> |        |       |             |      |       |     |                 |      |      |      |      |     | 1    |
|----|------|---------|-------------|----------|--------|-------|-------------|------|-------|-----|-----------------|------|------|------|------|-----|------|
| 2  | W    | ASTE A  | <b>CTIV</b> | ITIES    | AND    | RECO  | RDS         |      |       |     |                 |      |      | •••• |      |     | 2    |
| 3  | W    | ASTES I | MAN         | AGED     |        |       |             |      |       |     |                 |      |      |      |      |     | 4    |
|    | 3.1  | WASTE   | RECI        | EIVED    |        |       |             |      |       |     |                 |      |      |      |      |     | 4    |
| 4  | RE   | PORT    | ON          | EMIS     | SION   | S/RE  | SULT        | S /  | AND   | I   | NTE             | RPR  | SE.  | ΤΑ   | ΓΙΟ  | NS  | OF   |
| E٢ | IVI  | RONME   | NTAL        | . MON    | IITOR  | [NG   |             |      |       |     |                 |      |      |      |      |     | 4    |
| 4  | 4.1  | SURFA   | CE W        | ATER     | MONIT  | ORINO | G           |      |       |     |                 |      |      |      |      |     | 4    |
| 4  | 4.2  | WASTE   | WATE        | ER MO    | NITOR  | ING   |             |      |       |     |                 |      |      |      |      |     | 5    |
| 4  | 4.3  | GROUN   | IDWA        |          | IONITO | RING  |             |      |       |     |                 |      |      |      |      |     | 5    |
| 4  | 4.4  | NOISE   | MON         | ITORI    | NG     |       |             |      |       |     |                 |      |      |      |      |     | 8    |
| 4  | 4.5  | DUST N  | MONI        | TORIN    | IG     |       |             |      |       |     |                 |      |      |      |      |     | 9    |
| 4  | 4.6  | AIR EM  | ISSI        | ON MC    | NITOR  | ING   |             |      |       |     |                 |      |      |      |      |     | 9    |
| 5  | OE   | BJECTIV | /ES         | AND      | TARG   | ETS   | OF I        | ENV  | IROI  | NM  | EN <sup>-</sup> | TAL  | N    | 1A1  | NAG  | EMI | ENT  |
| S١ | (ST  | EM      |             |          |        |       |             |      |       |     |                 |      |      |      |      |     | 9    |
| ļ  | 5.1  | SCHED   | ULE (       | OF EN    | VIRON  | MENTA | AL OB       | JEC  | TIVES | 5 A | ND              | TAR  | GE   | TS   |      |     | 9    |
| ļ  | 5.2  | ENVIRG  | ONME        | NTAL     | MANAG  | GEMEN | IT PR       | OGR  | AMM   | E   |                 |      |      |      |      |     | 9    |
| 6  | PC   | DLLUTA  |             | ELEAS    | SE ANI | D TRA | NSFE        | ER R | REGIS | ST  | ER (            | (PRT | ۲R   | )    |      |     | . 10 |
| 7  | PR   | ROCEDU  | RES         |          |        |       |             |      |       |     |                 |      |      |      |      |     | . 10 |
| 8  | RE   | PORTI   | NG II       |          | ENTS A | AND C | ОМР         | LAI  | NTS   | SU  | IMM             | IARY | (    |      |      |     | . 10 |
| 9  | DF   | VIEW (  |             | ITSAN    |        | NTD   |             |      |       |     |                 |      |      |      |      |     | 10   |
|    |      |         |             |          |        |       |             |      |       |     |                 |      |      |      |      |     |      |
| 10 | ) F  | RESOUR  |             |          | NERGY  | ( CON | SUM         | PTI  | ON S  | SUN | MMA             | ARY  | •••• | •••• |      |     | . 10 |
| 11 |      | DEVELO  | PME         |          | ID INF | RAST  | RUC         | TUR  | AL V  | VO  | RKS             | 5    |      | •••• |      |     | . 10 |
| 12 | 2 F  | REPORT  | 'S ON       | I FIN/   | ANCIA  | L PRC | <b>VIS</b>  | ON   | MAC   | DE  | UNI             | DER  | T    | HIS  | 5 LI | CEN | ICE, |
| M  | ANA  | AGEMEN  | IT AI       | ND S     | TAFFIN | NG ST | <b>FRUC</b> | TUR  | RE O  | F   | THE             | FA   | CI   | LI   | ΓY,  |     | DA   |
| PF | ROG  | RAMME   | E FOR       | R PUB    | LIC IN | IFORM | <b>1ATI</b> | ON.  |       |     |                 |      |      |      |      |     | . 11 |
|    | 12.1 | . MANA  | AGEM        | ENT A    | ND ST  | AFFIN | G STF       | RUCT | FURE  |     |                 |      |      |      |      |     | 11   |





| 12 | .2 PROGRAMME FOR PUBLIC INFORMATION     |
|----|-----------------------------------------|
| 13 | FOUL WATER11                            |
| 14 | ANY OTHER ITEMS SPECIFIED BY THE AGENCY |

# List of Tables

| Table 3-1Waste ReTable 4-1In-situ ReTable 4-2LaboratorTable 4-3In-situ GeTable 4-4In-situ LaTable 4-5GroundweTable 4-6Annual DTable 4-7Annual NTable 4-8Dust Mon | ceptance - Categories and Quantities.2eceived - 2010.4esults for SW Discharge Location SW-1 - 20105ry Results from Surface Water Discharge Location SW-1 - 20105W Monitoring Results - 20106aboratory Results <sup>[]</sup> - 20106ater Levels - 20107aytime Noise Monitoring Survey - 20108ight Time Noise Monitoring Survey - 20108itoring Results 20109e Consumption Summary - 201010 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# List of Figures

| Figure 4-1 | Groundwater Levels - | 2010 | 7 |
|------------|----------------------|------|---|

# **APPENDICES**

| Appendix A | - | Site | La | yout | map |
|------------|---|------|----|------|-----|
|            |   |      |    |      |     |

- Appendix B Waste Managed
- Appendix C Laboratory Results
- Appendix D Annual Noise Monitoring Report
- Appendix E Dust Monitoring Results
- Appendix F Environmental Management Plan (EMP)
- Appendix G Pollutant Release and Transfer Register (PRTR)
- Appendix H Staffing Structure





### **1 INTRODUCTION**

The Environmental Protection Agency (EPA) issued Rilta Environmental Ltd. (Rilta) with Waste Licence Reg. No. W0185-01 for its facility at Site 14-A1, Greenogue Business Park, Rathcoole, County Dublin on 09<sup>th</sup> February 2010. (transfer of waste license). The facility is located within an industrial estate approximately 2 km east of Newcastle village and approximately 2.5km west of Rathcoole village. Rilta have been operating at the facility since 2009. Rilta retained Tobin Consulting Engineers (TOBIN) to prepare the Annual Environmental Report (AER) for the reporting period January 2010 to December 2010. This report has been prepared in accordance with Condition 11.6 and Schedule E of the waste licence and a site layout map is provided in Appendix A.

This report addresses Condition 11.6 of the waste licence for the facility.

Condition 11.6 states:

11.6.1 - The licensee shall submit to the Agency for its agreement, by 31st March each year an Annual Environmental Report (AER).

11.6.2 - The AER shall include as a minimum the information specified in *Schedule F: Content of Annual Environmental Report* and shall be prepared in accordance with any relevant written guidance issued by the Agency.





# 2 WASTE ACTIVITIES AND RECORDS

The RILTA facility at Site 14-A1 is a fully engineered and contained industrial site. It is licensed to accept 111,000 tonnes per annum as set out in Schedule A and summarised in Table 2-1 below.

| Waste Type Note 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum<br>(Tonnes Per Annum) <sup>Note 2</sup>                  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|
| Household                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,000                                                            |  |  |  |  |  |
| Sewage Sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,000                                                            |  |  |  |  |  |
| Construction and Demolition (C&D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,000                                                            |  |  |  |  |  |
| Industrial Sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,000                                                            |  |  |  |  |  |
| Commercial and Industrial Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15,000                                                           |  |  |  |  |  |
| Hazardous Waste as listed in Table E.2.2<br>entitled `Hazardous waste Types and Quantities'<br>of the application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33,000                                                           |  |  |  |  |  |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60,000                                                           |  |  |  |  |  |
| Note 1: Other waste types compatible with facility operation mathematical structures and the structure of th | ay be accepted subject to prior written agreement by the Agency. |  |  |  |  |  |

#### Table 2-1 Waste Acceptance - Categories and Quantities

**Note 1:** Other waste types compatible with facility operation may be accepted subject to prior written agreement by the Agency.

Note 2: There shall be no increase or variation in any of the waste types accepted without prior written agreement by the Agency.

*Licensed Waste Disposal Activities, in accordance with the Third Schedule of the Waste Management Act,* 1996:

Class 7: Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination), which results in final compounds or mixtures, which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule (including evaporation, drying and calcination);

This activity relates to the shredding of waste materials, including, household hazardous waste containers and metals, plastics, card and paper. Physico-chemical treatment may be carried out on effluents to meet discharge criteria.

# Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule;

This activity relates to bulking-up of waste on-site prior to shipment of waste for disposal off-site.





# Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule;

*This activity relates to the baling and repackaging of various waste types prior to disposal off-site.* 

Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced;

This activity relates to the storage of hazardous and non-hazardous waste at the facility prior to disposal off-site.

Licensed Waste Disposal Activities, Fourth Schedule of the Waste Management Act, 1996.

# Class 2: Recycling or reclamation of organic substances, which are not used as solvents (including composting and other biological transformation processes);

This activity relates to the recycling of various organic substances including, wood, paper/cardboard, textile materials and vegetable oils.

#### Class 3: Recycling or reclamation of metals and metal compounds;

This activity relates to the dismantling, shredding, baling and recycling of various metal wastes.

#### Class 4: Recycling or reclamation of other inorganic materials;

This activity is limited to the reclamation of refrigerator gasses.

# Class 11: Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule:

This activity is to make provision for the acceptance on-site for transfer to an appropriate facility of waste that has been obtained from any activity referred to previously in the Schedule.

# Class 12: Exchange of waste for submission to any activity referred to in a preceding paragraph of this Schedule;

This activity refers to the exchange of certain waste types and their packaging for further processing off-site

Class 13: Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced;

This activity is limited to the storage of waste at the facility prior to off-site recovery.





## **3 WASTES MANAGED**

### 3.1 WASTE RECEIVED

Waste Data received for Rilta Site 14-A1 is summarised in Table 3-1 below.

#### Table 3-1 Waste Received - 2010

| Waste Type   | Tonnes  | EWC Code |
|--------------|---------|----------|
| Transformers | 2219.67 | 16 02 13 |
| Transformers | 10.0    | 16 02 09 |
| WEE          | 913.48  | 16 02 11 |

A full list of waste acceptance and transfer data is contained in Appendix B.

# 4 REPORT ON EMISSIONS/RESULTS AND INTERPRETATIONS OF ENVIRONMENTAL MONITORING

TOBIN implements a comprehensive environmental monitoring programme at Site 14-A1. This monitoring programme includes the assessment of:

- Surface Water;
- Groundwater;
- Wastewater;
- Noise; and
- Dust.

All monitoring locations are indicated on Drawing 569-42-G006 in Appendix A.

#### 4.1 SURFACE WATER MONITORING

Surface water monitoring was conducted on a quarterly basis during 2010. The monitoring point is shown on Drawing Drawing 569-42-G006 in Appendix A. Surface water runoff from the facility is dependent on rainfall, therefore surface water sampling was only possible if precipitation occurred during or shortly before a quarterly monitoring event.

The surface water monitoring point (SW1) was dry during 3 of the 4 quarterly monitoring events (Q1, Q2 & Q3) in 2010. However a sample was obtained during the Q4 (November) monitoring event and this sample was submitted for chemical analysis as per Schedule D of the waste licence.

Schedule D of the waste license requests that pH, electrical conductivity and chemical oxygen demand are analysed, however no emission limit values (ELV) have been set out in the licence. As no ELVs are set out comparison was made to the relevant drinking water standards (S.I 278 of 2007). The results for both laboratory and field analysis of surface water during 2010 are summarised in Table 4-1 & 4-2 below.



| Parameter               | Units    | S.I. No. 278 of 2007<br>(Limit Values) | SW-1<br>Results |
|-------------------------|----------|----------------------------------------|-----------------|
| рН                      | pH units | ≥ 6.5 pH 9.5 ≤                         | 8.67            |
| Electrical Conductivity | mS/cm    | 2.5                                    | 0.184           |
| Temperature             | °C       | -                                      | 8.7             |
| Dissolved Oxygen        | %        | -                                      | 82              |

#### Table 4-1 In-situ Results for SW Discharge Location SW-1 – 2010

#### Table 4-2 Laboratory Results from Surface Water Discharge Location SW-1 – 2010

| Parameter               | Units    | S.I. No. 278 of 2007<br>(Limit Values) | SW-1<br>Results |
|-------------------------|----------|----------------------------------------|-----------------|
| Chemical Oxygen Demand  | mg/l     | -                                      | 16.9            |
| Electrical Conductivity | mS/cm    | 2.5                                    | 0.16            |
| рН                      | pH Units | ≥ 6.5 pH 9.5 ≤                         | 7.62            |

#### 4.2 WASTEWATER MONITORING

The facility is designed to collect wastewater from floor wash downs in the warehouse building and discharge to it to the municipal sewer which serves the industrial estate. However, as putrescible wastes are not accepted at the facility and floor wash downs are not required there is no wastewater discharge to sewer from the facility.

#### 4.3 GROUNDWATER MONITORING

Groundwater monitoring was conducted quarterly at two monitoring points (GW1 & GW2) as shown on Drawing 569-42-G006 (*see Appendix A*), during 2010. Monitoring was conducted in accordance with Schedule D of the waste licence.

Schedule D of the waste license requests that groundwater is analysed for pH, electrical conductivity, dissolved oxygen, total organic carbon, sulphate and chloride on a quarterly basis and that List 1 & 2 organic substances and metals are analysed on an annual basis.

However no groundwater ELVs have been set out in the licence. As no ELVs are set out comparison has been made to the relevant interim guideline values<sup>1</sup> (IGV) as published by the Agency. The results for both laboratory and field analysis of the groundwater during 2010 are summarised in Table 4-3 and Table 4-4 below.

<sup>&</sup>lt;sup>1</sup> EPA Interim Report – 'Towards setting guideline values for the protection of groundwater in Ireland'.





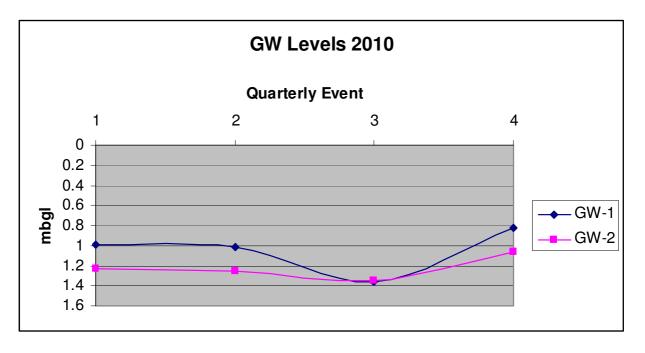
#### Table 4-3In-situ GW Monitoring Results - 2010

| Parameter        | Units    | IGV       | SI No. 9 of 2010 | Q1    |       | Q2    |       | Q3    |       | Q4    |       |
|------------------|----------|-----------|------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  |          |           |                  | GW-1  | GW-2  | GW-1  | GW-2  | GW-1  | GW-2  | GW-1  | GW-2  |
| рН               | pH units | 6.5 - 9.5 | -                | 7.80  | 7.84  | 7.07  | 7.13  | 7.34  | 7.09  | 7.48  | 7.35  |
| Conductivity     | mS/cm    | 1.000     | 1.875            | 0.675 | 0.766 | 0.495 | 0.626 | 0.602 | 0.641 | 0.698 | 0.758 |
| Temperature      | °C       | 25        | -                | 6.6   | 6.9   | 8.3   | 7.5   | 14.9  | 11.5  | 10.1  | 10    |
| Dissolved Oxygen | mg/l     | -         | -                | 3.61  | 3.31  | 4.08  | 4.97  | 47.4  | 48.9  | 5.52  | 7.57  |

## Table 4-4 In-situ Laboratory Results <sup>[2]</sup> – 2010

| Parameter            | Units    | IGV     | SI No. 9 of 2010 | (                                                                                                                                                                                                                                                                                                                  | 21                                                                              | C     | 2     | G     | )3    | C     | Q4   |  |
|----------------------|----------|---------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------|-------|-------|-------|-------|------|--|
|                      |          |         |                  | 7.96         7.95         7.99         7.92         7           0.701         0.811         0.687         0.863         0.           11         13         5.68         6.28         5           19.7         24.2         19.8         28.9         1           124         146         122         165         1 | GW1                                                                             | GW 2  | GW1   | GW 2  |       |       |      |  |
| рН                   | pH units | 6.5-9.0 | -                | 7.96                                                                                                                                                                                                                                                                                                               | 7.95                                                                            | 7.99  | 7.92  | 7.99  | 7.83  | 8.22  | 8.08 |  |
| Conductivity         | mS/cm    | 1.000   | 1.875            | 0.701                                                                                                                                                                                                                                                                                                              | 0.811                                                                           | 0.687 | 0.863 | 0.660 | 0.820 | 0.662 | 0.8  |  |
| Dissolved Oxygen     | mg/l     | -       | -                | 11                                                                                                                                                                                                                                                                                                                 | 13                                                                              | 5.68  | 6.28  | 5.29  | 4.27  | 5.52  | 7.57 |  |
| Chloride             | mg/l     | 30      | 187.5            | 19.7                                                                                                                                                                                                                                                                                                               | 24.2                                                                            | 19.8  | 28.9  | 19.4  | 28.5  | 21.9  | 17.6 |  |
| Sulphate             | mg/l     | 200     | 187.5            | 124                                                                                                                                                                                                                                                                                                                | 146                                                                             | 122   | 165   | 111   | 119   | 89.3  | 89.9 |  |
| Total Organic Carbon | mg/l     | -       | -                | 3.1                                                                                                                                                                                                                                                                                                                | 3.91                                                                            | 3.9   | 4.38  | <3    | 5.97  | <3    | 5.4  |  |
| SVOCs                | µg/l     | -       | -                | <lod< th=""><th><lod< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></lod<></th></lod<>                                                                                                                                                                                                        | <lod< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></lod<> | -     | -     | -     | -     | -     | -    |  |
| VOC                  | µg/I     | -       | -                | <lod< th=""><th><lod< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></lod<></th></lod<>                                                                                                                                                                                                        | <lod< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></lod<> | -     | -     | -     | -     | -     | -    |  |
| Metals               | µg/l     | Note 1  | Note 1           | <lv< th=""><th><lv< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></lv<></th></lv<>                                                                                                                                                                                                            | <lv< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></lv<>   | -     | -     | -     | -     | -     | -    |  |

**Note 1:** A full set of results for tested metals is available in Appendix C


**<LOD:** Below Laboratory Limit of Detection.

**<LV:** Below required limit values (LV) set out in the IGVs and SI No. 9 of 2010 for all parameters.

<sup>2</sup> A full set of Laboratory Results are contained in Appendix C.









**Groundwater Levels - 2010** 

|      |   | Units | Q1    | Q2   | Q3   | Q4    |
|------|---|-------|-------|------|------|-------|
| GW-1 |   | mbtc  | 0.99  | 1.01 | 1.36 | 0.82  |
| GW-2 | 2 | mbtc  | 1.235 | 1.25 | 1.35 | 1.065 |





#### 4.4 NOISE MONITORING

Daytime and night time noise monitoring was carried out at approved noise monitoring locations (see Drawing 569-42-G006) on 1<sup>st</sup> September 2010. The full noise monitoring report from 2010 detailing the noise environment at Site 14-A1 is contained in Appendix D. Noise monitoring results obtained from the day and night time surveys carried out at the RILTA facility during 2010 are summarised in Table 4-6 and Table 4-7 below.

| Table 4-6 | Annual Daytime Noise | Monitoring Survey - 2010 |
|-----------|----------------------|--------------------------|
|           |                      |                          |

|          | DAY TIME |      |      |      |                                                                                                                        |  |  |  |  |
|----------|----------|------|------|------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Receptor | Time     | Leq  | L10  | L90  | Notes                                                                                                                  |  |  |  |  |
| N1       | 17:00    | 61.5 | 65.4 | 48.3 | Rush hour road traffic on adjacent road is dominant source.<br>Aircraft audible, RILTA site is inaudible – no activity |  |  |  |  |
| N2       | 12:57    | 49.8 | 53.3 | 43.0 | Passing road traffic is dominant noise source, overhead aircraft and helicopters,                                      |  |  |  |  |
| N3       | 13:59    | 59.0 | 61.0 | 48.4 | Alarms offsite, aircraft overhead, activity in neighbouring facility is the dominant source.                           |  |  |  |  |

| Table 4-7 | Annual Night Time Noise Monitoring Survey - 2010 |
|-----------|--------------------------------------------------|
|-----------|--------------------------------------------------|

|          | NIGHT TIME |      |      |      |                                                                                                       |  |  |  |  |
|----------|------------|------|------|------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| Receptor | Time       | Leq  | L10  | L90  | Notes                                                                                                 |  |  |  |  |
| N1       | 01:36      | 53.4 | 49.1 | 38.4 | Passing traffic, aircraft. Site inactive                                                              |  |  |  |  |
| N2       | 00:26      | 49.5 | 45.7 | 36.4 | Passing traffic and distant traffic, aircraft, alarm sounding in adjacent site. Rilta site inaudible. |  |  |  |  |
| N3       | 01:03      | 45.8 | 47.5 | 36.4 | Passing road traffic, aircraft in training overhead, fighter aircraft doing circuits.                 |  |  |  |  |

The noise emission limits as per Schedule C of Waste Licence 0185 - 01 are 55 dB(A) for daytime and 45 dB(A) for night time. These levels specifically relate to noise emissions arising from the facility, measured at any noise sensitive location.

Noise levels recorded at the 3 no. EPA agreed noise monitoring locations contain noise emissions from adjacent industrial sites, low flying aircraft and traffic on the internal road network of the industrial estate. Noise emissions from the RILTA facility were inaudible during both the daytime and night time monitoring. Note that the EPA agreed noise monitoring locations are all on site and do not reflect emissions at noise sensitive locations.

The A-weighted equivalent continuous sound pressure level (LAeq, 30 min) recorded at the RILTA facility was less than 55 dB(A) at noise monitoring location N2 only, during the daytime monitoring event. Noise levels at N1 and N3 exceeded the 55 dB(A) limit due to noise from external sources such as low flying aircraft from nearby Baldonnell Airport, passing traffic on the internal roads of the industrial estate, distant traffic on the N7 and activities in adjacent sites.

No noise emissions due to the RILTA facility were generally audible during the night time monitoring period. During the night time monitoring period the A-weighted equivalent continuous sound pressure level (LAeq, 30 min) was more than 45 dB(A) (night time) at all monitoring locations. As the RILTA





facility was inaudible the recorded exceedances are attributed to extraneous noise sources such as traffic on the internal industrial estate road network or low flying aircraft from nearby Baldonnell Airport.

There were no impulsive noise emissions audible at any of the monitoring locations during the daytime or night time monitoring period. With regard to tonal emissions, a pure tone was detected during the day at Location N2 (31.5Hz). This tone was not audible and was not detected at the same location during the night survey, and as such is thought to be from a mobile or off site source. No further pure tones were detected during the daytime or night time surveys. Full 1/3 octave frequency band analysis of all surveys is presented in Appendix D to this report.

#### 4.5 DUST MONITORING

Dust monitoring was carried out on 3 occasions at 4 no. monitoring locations (*see Drawing 569-42-G006*) during 2010. Dust monitoring was conducted over periods during April, May and July 2010. The dust results for all 4 no. monitoring locations were below the required ELV (350mg/m<sup>2</sup>/day) set out in waste licence 185-02, during all monitoring events in 2010. A full set of laboratory dust results from 2010 are contained in Appendix E. Dusts results from Site 14-A1 during 2010 are summarised in Table 4-8 below.

#### Table 4-8 Dust Monitoring Results 2010

|    | <b>April – May</b><br>(mg/m²/day) | <b>May – June</b><br>(mg/m²/day) | <b>July – August</b><br>( <i>mg/m²/day</i> ) |
|----|-----------------------------------|----------------------------------|----------------------------------------------|
| D1 | 75                                | 98.2                             | 116                                          |
| D2 | 72                                | 189                              | 127                                          |
| D3 | 92                                | 169                              | 123                                          |

#### 4.6 AIR EMISSION MONITORING

The air emission point TfA1 (as per drawing 569-42-G006), is no longer in use and as such does not have a monitoring requirement.

### 5 OBJECTIVES AND TARGETS OF ENVIRONMENTAL MANAGEMENT SYSTEM

#### 5.1 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS

Details of the Environmental Management Programmes (EMP) for the RILTA Site 14-A1 facility are contained in Appendix F.

#### 5.2 ENVIRONMENTAL MANAGEMENT PROGRAMME

Details of the 2010 and 2011 EMPs for the RILTA Site 14-A1 facility are contained in Appendix F.



### 6 POLLUTANT RELEASE AND TRANSFER REGISTER (PRTR)

Details of the 2010 Pollutant Release Transfer Register (PRTR) for the RILTA facility 14-A1 are contained in Appendix G.

### 7 **PROCEDURES**

An application was submitted to the Agency in 2009 requesting a transfer of licence to Rilta Environmental Ltd. and this transfer was granted on the 9<sup>th</sup> February 2010. Two new procedures requested by RILTA comprise:

- Management of PCB Holdings
- Management of Waste Transformers

## 8 REPORTING INCIDENTS AND COMPLAINTS SUMMARY

There were no incidents or complaints reported for Site 14-A1 during 2010.

### 9 REVIEW OF NUISANCE CONTROLS

There were no nuisance emissions were reported for Site 14-A1 during 2010. This will continue to be closely monitored going forward into 2011.

## **10 RESOURCE AND ENERGY CONSUMPTION SUMMARY**

Resource consumption at the Rilta Site 14-A1 facility during 2010 is summarised in Table 10-1 below.

#### Table 10-1 Resourse Consumption Summary - 2010

| Resource    | Quantity Used | Units                 |
|-------------|---------------|-----------------------|
| Electricity | 183,200       | KwH                   |
| Diesel      | 1,060         | L                     |
| Water       | 2,020         | <i>m</i> <sup>3</sup> |

# **11 DEVELOPMENT AND INFRASTRUCTURAL WORKS**

No additional development or infrastructural works were carried out or proposed during 2010.





## 12 REPORTS ON FINANCIAL PROVISION MADE UNDER THIS LICENCE, MANAGEMENT AND STAFFING STRUCTURE OF THE FACILITY, AND A PROGRAMME FOR PUBLIC INFORMATION

A proposal in respect of financial provision was submitted to the agency as part of W185-02 licence transfer to RILTA.

#### 12.1 MANAGEMENT AND STAFFING STRUCTURE

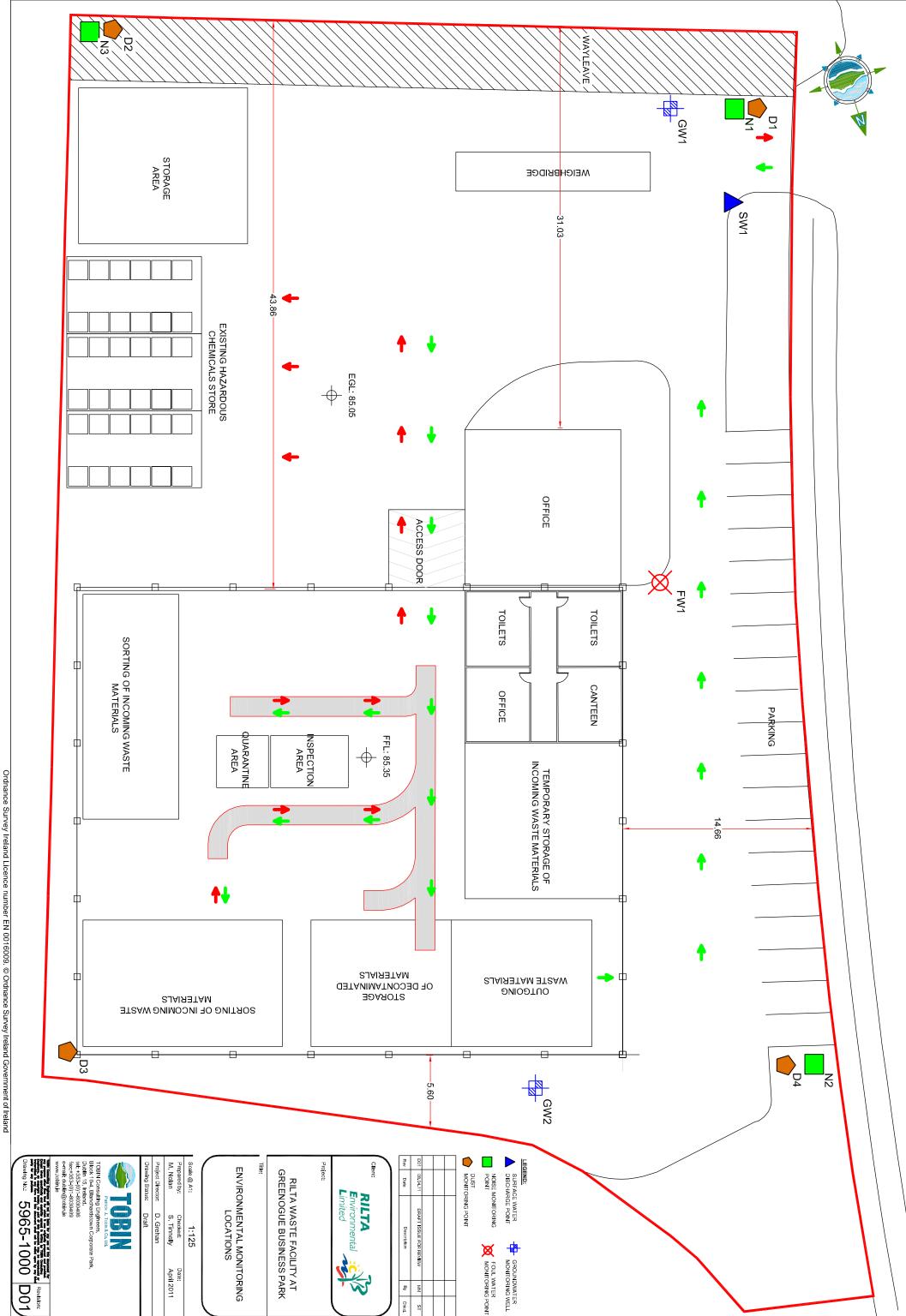
Details of the management and staffing structure are contained in Appendix H.

### 12.2 PROGRAMME FOR PUBLIC INFORMATION

RILTA maintains a 'Public File' which contains all correspondence between RILTA and the Agency, all waste data and monitoring data as required by waste licence W0185-01. This file is available for viewing during normal office hours.

### **13 FOUL WATER**

There has been no foul water produced for discharge or disposal during the reporting period 1<sup>st</sup> January to 31<sup>st</sup> December 2010.


# 14 ANY OTHER ITEMS SPECIFIED BY THE AGENCY

No additional requirements were specified by the agency during 2010.



# **APPENDIX A**

Monitoring Location Map



# **APPENDIX B**

Waste Managed

| Waste Type   | Tonnes  | EWC Code |
|--------------|---------|----------|
| Transformers | 2219.67 | 16 02 13 |
| Transformers | 10.0    | 16 02 09 |
| WEE          | 913.48  | 16 02 11 |

|                     | Ferrous    | Non Ferrous   | Oil out | Total in |
|---------------------|------------|---------------|---------|----------|
|                     | Metal out  | Metal out kgs | kgs     | kgs      |
| Month               | kgs 191202 | 191203        | 130307  | 160213   |
| Jan                 | 123048     | 18552         | 51770   | 193370   |
| Feb                 | 120600     | 17259         | 91120   | 228980   |
| Mar                 | 181300     | 29014         | 62880   | 273200   |
| Apr                 | 91300      | 21359         | 47000   | 210780   |
| May                 | 87780      | 16284         | 45000   | 227600   |
| Jun                 | 81800      | 15220         | 38000   | 162100   |
| Jul                 | 80040      | 14508         | 12000   | 119650   |
| Aug                 | 100940     | 23320         | 11000   | 74460    |
| Sep                 | 115500     | 24210         | 20000   | 105970   |
| Oct                 | 136260     | 17228         | 46000   | 301620   |
| Nov                 | 165220     | 42150         | 29000   | 179480   |
| Dec                 | 55800      | 11840         | 15000   | 42460    |
| Totals              | 1339588    | 250944        | 468770  | 2119670  |
|                     |            |               |         |          |
| Stock on 31/12/2010 |            | 60368         |         |          |

# **APPENDIX C**

Laboratory Results



Tobin Block 10 - 4 Blanchardstown Corporate Park Dublin

Attention: David Corrigan

# **CERTIFICATE OF ANALYSIS**

 Date:
 15 March 2011

 Customer:
 D\_TOBIN\_DUB

 Sample Delivery Group (SDG):
 100312-108

 Your Reference:
 Location:

 Report No:
 120758

This report directly supersedes report 120757 in its entirety.

We received 2 samples on Friday March 12, 2010 and 2 of these samples were scheduled for analysis which was completed on Tuesday March 15, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

<u>Sonia McWhan</u> Operations Manager



| ALcontrol L                       | aboratories                 | CEF                                  |                         | ANALYSIS   |                                                       |                  | Validated    |
|-----------------------------------|-----------------------------|--------------------------------------|-------------------------|------------|-------------------------------------------------------|------------------|--------------|
| SDG:<br>Job:<br>Client Reference: | 100312-108<br>D_TOBIN_DUB-5 | Location:<br>Customer:<br>Attention: | Tobin<br>David Corrigan |            | Order Number:<br>Report Number:<br>Superseded Report: | 120758<br>120757 |              |
|                                   |                             | Receiv                               | ved Sample              | e Overviev | V                                                     |                  |              |
| Lab Sample No(s                   |                             | Sample Ref.                          |                         | AGS Ref.   | Depth (m                                              | )                | Sampled Date |
| 1210184                           | GW                          | /-1-C                                |                         |            |                                                       |                  | 12/03/2010   |
| 1210218                           | GW                          | /-2-C                                |                         |            |                                                       |                  | 12/03/2010   |

Only received samples which have had analysis scheduled will be shown on the following pages.

|                                   | l Laboratori            | 00                   | C                                | ERT                                   | IFI                 | СА                             | TE OF ANALYSIS |                                                       |                  |
|-----------------------------------|-------------------------|----------------------|----------------------------------|---------------------------------------|---------------------|--------------------------------|----------------|-------------------------------------------------------|------------------|
| SDG:<br>Job:<br>Client Reference: | 100312-108<br>D_TOBIN_I |                      | Location<br>Custome<br>Attention | :<br>r: Т                             | obir                | ı                              | C              | Order Number:<br>Report Number:<br>Superseded Report: | 120758<br>120757 |
| LIQUID<br>Results Legend          |                         | Lab Sample           | No(s)                            |                                       | 1210184             | 1210218                        |                |                                                       |                  |
| No Determ<br>Possible             | -<br>nination           | Custom<br>Sample Ref |                                  |                                       | GW-1-C              | GW-2-C                         |                |                                                       |                  |
|                                   |                         | AGS Refer            | ence                             |                                       |                     |                                |                |                                                       |                  |
|                                   |                         | Depth (              | m)                               |                                       |                     |                                |                |                                                       |                  |
|                                   |                         | Contain              | er                               | 60g VOC Dublin<br>11 glass bottle (D) | 1l glass bottle (D) | PLAS BOT (D)<br>60g VOC Dublin |                |                                                       |                  |
| Anions by Kone (w)                |                         | All                  | NDPs: 0<br>Tests: 2              |                                       | x                   | X                              |                |                                                       |                  |
| Conductivity (at 20 dec           | g.C)                    | All                  | NDPs: 0<br>Tests: 2              |                                       | x                   | X                              |                |                                                       |                  |
| Dissolved Metals by IC            | CP-MS                   | All                  | NDPs: 0<br>Tests: 2              |                                       | x                   | x                              |                |                                                       |                  |
| Mercury Dissolved                 |                         | All                  | NDPs: 0<br>Tests: 2              | x                                     | X                   |                                |                |                                                       |                  |
| OC, OP Pesticides and<br>Herb     | d Triazine              | All                  | NDPs: 0<br>Tests: 2              | x                                     | X                   |                                |                |                                                       |                  |
| pH Value                          |                         | All                  | NDPs: 0<br>Tests: 2              |                                       | x                   | ×                              |                |                                                       |                  |
| SVOC MS (W) - Aqueo               | DUS                     | All                  | NDPs: 0<br>Tests: 2              | x                                     | x                   |                                |                |                                                       |                  |
| Total Organic and Inor<br>Carbon  | ganic                   | All                  | NDPs: 0<br>Tests: 2              | x                                     | x                   |                                |                |                                                       |                  |
| VOC MS (W)                        |                         | All                  | NDPs: 0<br>Tests: 2              | x                                     |                     | x                              |                |                                                       |                  |

#### **CERTIFICATE OF ANALYSIS**

Validated

| Results Legend                                                             | 0               |                          |                          |                          | _ |  | <br> |
|----------------------------------------------------------------------------|-----------------|--------------------------|--------------------------|--------------------------|---|--|------|
| # ISO17025 accredited.<br>M mCERTS accredited.<br>§ Non-conforming work.   | Cu              | stomer Sample R          | GW-1-C                   | GW-2-C                   |   |  |      |
| aq Aqueous / settled sample.<br>diss.filt Dissolved / filtered sample.     |                 | Depth (m)<br>Sample Type | Water(GW/SW)             | Water(GW/SW)             |   |  |      |
| tot.unfilt Total / unfiltered sample.<br>* subcontracted test.             |                 | Date Sampled             | 12/03/2010               | 12/03/2010               |   |  |      |
| ** % recovery of the surrogate standar                                     | d to            | Date Received<br>SDG Ref | 12/03/2010<br>100312-108 | 12/03/2010<br>100312-108 |   |  |      |
| check the efficiency of the method.<br>results of the individual compounds |                 | ab Sample No.(s)         | 1210184                  | 1210218                  |   |  |      |
| within the samples are not corrected<br>this recovery.                     | i for           | AGS Reference            |                          |                          |   |  |      |
| Component                                                                  | LOD/Units       | Method                   |                          |                          |   |  |      |
| Organic Carbon, Total                                                      | <3 mg/l         | TM090                    | 3.1<br>#                 | 3.91                     | # |  |      |
| Conductivity (at 20 deg.C)                                                 | <0.005<br>mS/cm | TM120                    | 0.701<br>#               | 0.811                    | # |  |      |
| Arsenic Dissolved                                                          | <0.75<br>µg/l   | TM152                    | 0.648<br>#               | 2.06                     | # |  |      |
| Cadmium Dissolved                                                          | <0.22<br>µg/l   | TM152                    | <0.1<br>#                | <0.1                     | # |  |      |
| Chromium Dissolved                                                         | <1 µg/l         | TM152                    | 8.03<br>#                | 9.3                      | # |  |      |
| Copper Dissolved                                                           | <1.6 µg/l       |                          | <0.85<br>#               | <0.85                    | # |  |      |
| Lead Dissolved                                                             | <0.4 µg/l       |                          | 0.04 #                   | 0.031                    | # |  |      |
| Manganese Dissolved                                                        | <1 µg/l         | TM152                    | 0.335 #                  | 9.54                     | # |  |      |
| Nickel Dissolved                                                           | <1.5 µg/l       |                          | 3.04 #                   | 3.14                     | # |  |      |
| Zinc Dissolved                                                             | <5 µg/l         | TM152                    | 1.52 #                   | 1.39                     | # |  |      |
| Mercury Dissolved Sulphate                                                 | <0.01<br>µg/l   | TM183<br>TM184           | 0.0149<br>#<br>124       | <0.01                    | # |  |      |
| Chloride                                                                   | <2 mg/l         | TM184                    | 124<br>#<br>19.7         | 24.2                     | # |  |      |
| pH value                                                                   | <2 mg/l         | TM164                    | 7.96                     | 7.95                     | # |  |      |
|                                                                            | Units           | 101230                   | 7.96                     | 7.95                     | # |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          | _ |  |      |
|                                                                            |                 |                          |                          |                          | _ |  |      |
|                                                                            |                 |                          |                          |                          | _ |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |
|                                                                            |                 |                          |                          |                          |   |  |      |

٦

Γ

|                                                                                                                                                                                                                                                                                                                                                                             | Jatones                       |                                                                                                                                 | CERTI                                                                       | FICATE OF A                                                                 | NALYSIS | Validated        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                             | 0312-108<br>Fobin_dui         | B-5                                                                                                                             |                                                                             | bin<br>avid Corrigan                                                        |         | 120758<br>120757 |
| OC, OP Pesticides and                                                                                                                                                                                                                                                                                                                                                       | l Triazine                    |                                                                                                                                 |                                                                             |                                                                             | ÷       |                  |
| Results Legend     ISO17025 accredited.     M mCERTS accredited.     S Non-conforming work.     aq Aqueous / settled sample.     diss.filt Dissolved / filtered sample.     subcontracted test.     " % recovery of the surrogate stat     check the efficiency of the meth     results of the individual compou-     within the samples are not correct     this recovery. | od. The<br>unds<br>acted for  | Customer Sample R<br>Depth (m)<br>Sample Type<br>Date Sampled<br>Date Received<br>SDG Ref<br>Lab Sample No.(s)<br>AGS Reference | GW-1-C<br>Water(GW/SW)<br>12/03/2010<br>12/03/2010<br>100312-108<br>1210184 | GW-2-C<br>Water(GW/SW)<br>12/03/2010<br>12/03/2010<br>100312-108<br>1210218 |         |                  |
| Component<br>Atrazine                                                                                                                                                                                                                                                                                                                                                       | LOD/Ur<br><1 μί               |                                                                                                                                 | <1                                                                          | <1                                                                          |         |                  |
| Simazine                                                                                                                                                                                                                                                                                                                                                                    | <1 µ                          | g/l TM231                                                                                                                       | <1                                                                          | <1                                                                          |         |                  |
| Dichlorvos                                                                                                                                                                                                                                                                                                                                                                  | <0.0                          |                                                                                                                                 | <0.01                                                                       | <0.01                                                                       |         |                  |
| Mevinphos                                                                                                                                                                                                                                                                                                                                                                   | µg/l<br><0.0                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Tecnazene                                                                                                                                                                                                                                                                                                                                                                   | μg/l<br><0.0                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                           | <u>µg/l</u><br><0.0><br>µg/l  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Trifluralin                                                                                                                                                                                                                                                                                                                                                                 | μg/l<br><0.0<br>μg/l          | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Alpha-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                         | μ <u>μ</u> η/<br><0.0<br>μg/l | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Quintozene (PCNB)                                                                                                                                                                                                                                                                                                                                                           | μg/I<br><0.0<br>μg/I          | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Diazinon                                                                                                                                                                                                                                                                                                                                                                    | -0.0<br>μg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Triallate                                                                                                                                                                                                                                                                                                                                                                   | وير<br>0.0><br>µg/l           | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Etrimphos                                                                                                                                                                                                                                                                                                                                                                   | 0.0><br>µq/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                         | 0.0><br>μg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Disulphoton                                                                                                                                                                                                                                                                                                                                                                 | 0.0><br>ارپر                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Propetamphos                                                                                                                                                                                                                                                                                                                                                                | 0.0><br>μg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Heptachlor                                                                                                                                                                                                                                                                                                                                                                  | 0.0><br>اروبر                 | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Chlorpyriphos methyl                                                                                                                                                                                                                                                                                                                                                        | 0.0><br>ا/µg                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Dimethoate                                                                                                                                                                                                                                                                                                                                                                  | 0.0><br>اروبر                 | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                      | 0.0><br>µg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Chlorothalonil                                                                                                                                                                                                                                                                                                                                                              | 0.0><br>ا/پµ                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Pirimiphos-methyl                                                                                                                                                                                                                                                                                                                                                           | 0.0><br>ا/µg                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Beta-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                          | 0.0><br>ا/وµ                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Chlorpyriphos                                                                                                                                                                                                                                                                                                                                                               | <0.0<br>μg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Telodrin                                                                                                                                                                                                                                                                                                                                                                    | <0.0<br>µg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Methyl Parathion                                                                                                                                                                                                                                                                                                                                                            | 0.0><br>µg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Isodrin                                                                                                                                                                                                                                                                                                                                                                     | <0.0<br>μg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Malathion                                                                                                                                                                                                                                                                                                                                                                   | 0.0><br>μg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Fenthion                                                                                                                                                                                                                                                                                                                                                                    | 0.0><br>µg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Fenitrothion                                                                                                                                                                                                                                                                                                                                                                | 0.0><br>µg/l                  |                                                                                                                                 | <0.01                                                                       | <0.01                                                                       |         |                  |
| Heptachlor Epoxide                                                                                                                                                                                                                                                                                                                                                          | 0.0><br>µg/l                  |                                                                                                                                 | <0.01                                                                       | <0.01                                                                       |         |                  |
| Triadimefon                                                                                                                                                                                                                                                                                                                                                                 | 0.0><br>μg/l                  |                                                                                                                                 | <0.01                                                                       | <0.01                                                                       |         |                  |
| Pendimethalin                                                                                                                                                                                                                                                                                                                                                               | 0.0><br>µg/l                  | 1 TM231                                                                                                                         | <0.01                                                                       | <0.01                                                                       |         |                  |
| Parathion                                                                                                                                                                                                                                                                                                                                                                   | 0.0><br>µg/l                  |                                                                                                                                 | <0.01                                                                       | <0.01                                                                       |         |                  |
| o,p'-DDE                                                                                                                                                                                                                                                                                                                                                                    | 0.0><br>ا/µg                  |                                                                                                                                 | <0.01                                                                       | <0.01                                                                       |         |                  |
| Chlorfenvinphos                                                                                                                                                                                                                                                                                                                                                             | 0.0><br>ا/µµ                  |                                                                                                                                 | <0.01                                                                       | <0.01                                                                       |         |                  |

#### **CERTIFICATE OF ANALYSIS**

Validated

#### OC, OP Pesticides and Triazine Herb

| OC, OP Pesticides and 1                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Results Legend     ISO17025 accredited.     M mCERTs accredited.     Son-conforming work.     aq Aqueous / settled sample.     diss.fitt Dissolved / fittered sample.     tot.unfit trotal / unfittered sample.     * subcontracted test.     ** % recovery of the surrogate standa     check the efficiency of the method.     results of the individual compound     within the samples are not correcte | rrd to<br>The I<br>s I | ustomer Sample R<br>Depth (m)<br>Sample Type<br>Date Sampled<br>Date Received<br>SDG Ref<br>Lab Sample No.(s)<br>AGS Reference | GW-1-C<br>Water(GW/SW)<br>12/03/2010<br>12/03/2010<br>100312-108<br>1210184 | GW-2-C<br>Water(GW/SW)<br>12/03/2010<br>12/03/2010<br>100312-108<br>1210218 |  |  |
| this recovery.                                                                                                                                                                                                                                                                                                                                                                                             | LOD/Units              | Method                                                                                                                         |                                                                             |                                                                             |  |  |
| Endosulphan I                                                                                                                                                                                                                                                                                                                                                                                              | <0.01                  | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Trans-chlordane                                                                                                                                                                                                                                                                                                                                                                                            | μ <u>q/l</u><br><0.01  | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Cis-chlordane                                                                                                                                                                                                                                                                                                                                                                                              | μg/l<br><0.01<br>μg/l  | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| p,p'-DDE                                                                                                                                                                                                                                                                                                                                                                                                   | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                   | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| o,p'-TDE(DDD)                                                                                                                                                                                                                                                                                                                                                                                              | <0.01<br>μg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                     | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| o,p'-DDT                                                                                                                                                                                                                                                                                                                                                                                                   | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| p,p'-TDE(DDD)                                                                                                                                                                                                                                                                                                                                                                                              | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Ethion                                                                                                                                                                                                                                                                                                                                                                                                     | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Endosulphan II                                                                                                                                                                                                                                                                                                                                                                                             | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| p,p'-DDT                                                                                                                                                                                                                                                                                                                                                                                                   | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Carbophenothion                                                                                                                                                                                                                                                                                                                                                                                            | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| o,p'-Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                          | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Triazophos                                                                                                                                                                                                                                                                                                                                                                                                 | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| p,p'-Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                          | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Endosulphan Sulphate                                                                                                                                                                                                                                                                                                                                                                                       | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Permethrin I                                                                                                                                                                                                                                                                                                                                                                                               | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Phosalone                                                                                                                                                                                                                                                                                                                                                                                                  | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Permethrin II                                                                                                                                                                                                                                                                                                                                                                                              | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Azinphos-methyl                                                                                                                                                                                                                                                                                                                                                                                            | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
| Azinphos-ethyl                                                                                                                                                                                                                                                                                                                                                                                             | <0.01<br>µg/l          | TM231                                                                                                                          | <0.01                                                                       | <0.01                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                |                                                                             |                                                                             |  |  |

| this recovery.              |           |        |    |    |  |       |
|-----------------------------|-----------|--------|----|----|--|-------|
| Component                   | LOD/Units | Method |    |    |  |       |
| 1,2,4-Trichlorobenzene      | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 1,2-Dichlorobenzene         | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 1,3-Dichlorobenzene         | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 1,4-Dichlorobenzene         | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2,4,5-Trichlorophenol       | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2,4,6-Trichlorophenol       | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2,4-Dichlorophenol          | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2,4-Dimethylphenol          | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2,4-Dinitrotoluene          | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2,6-Dinitrotoluene          | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2-Chloronaphthalene         | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2-Chlorophenol              | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2-Methylnaphthalene         | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2-Methylphenol              | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2-Nitroaniline              | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 2-Nitrophenol               | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 3-Nitroaniline              | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 4-Bromophenylphenylether    | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 4-Chloro-3-methylphenol     | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 4-Chloroaniline             | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 4-Chlorophenylphenylether   | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 4-Methylphenol              | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 4-Nitrophenol               | <1 µg/l   | TM176  | <1 | <1 |  |       |
| 4-Nitroaniline              | <1 µg/l   | TM176  | <1 | <1 |  |       |
| Azobenzene                  | <1 µg/l   | TM176  | <1 | <1 |  |       |
| Acenaphthylene              | <1 µg/l   | TM176  | <1 | <1 |  |       |
| Acenaphthene                | <1 µg/l   | TM176  | <1 | <1 |  |       |
| Anthracene                  | <1 µg/l   | TM176  | <1 | <1 |  |       |
| Bis(2-chloroethyl)ether     | <1 µg/l   | TM176  | <1 | <1 |  |       |
| Bis(2-chloroethoxy)methan e | <1 µg/l   | TM176  | <1 | <1 |  |       |
| Bis(2-ethylhexyl) phthalate | <2 µg/l   | TM176  | <2 | <2 |  |       |
| Benzo(a)anthracene          | <1 µg/l   | TM176  | <1 | <1 |  |       |
| Butylbenzyl phthalate       | <1 µg/l   | TM176  | <1 | <1 |  |       |
| Benzo(b)fluoranthene        | <1 µg/l   | TM176  | <1 | <1 |  |       |
| Benzo(k)fluoranthene        | <1 µg/l   | TM176  | <1 | <1 |  |       |
|                             |           |        | L  | 1  |  | <br>I |

#### **CERTIFICATE OF ANALYSIS**

Validated

#### SVOC MS (W) - Aqueous

| SVOC MS (W) - Aqueous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                                                                                                                |                                                                             |                                                                              |  | <br> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|--|------|
| Results Legend           #         ISO17025 accredited.           M         mCERTS accredited.           §         Non-conforming work.           aq         Aqueous / settide sample.           diss.filt         Dissolved / filtered sample.           tot.unfilt         Total / unfiltered sample.           *         subcontracted test.           *         % recovery of the surrogate standa check the efficiency of the method.           results of the individual compound, within the samples are not correcte this recovery. | rd to<br>The<br>s I | Istomer Sample R<br>Depth (m)<br>Sample Type<br>Date Sampled<br>Date Received<br>SDG Ref<br>Lab Sample No.(s)<br>AGS Reference | GW-1-C<br>Water(GW/SW)<br>12/03/2010<br>12/03/2010<br>100312-108<br>1210184 | GW-2-C<br>Water (GW/SW)<br>12/03/2010<br>12/03/2010<br>100312-108<br>1210218 |  |      |
| Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOD/Units           |                                                                                                                                |                                                                             |                                                                              |  |      |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Benzo(ghi)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1 µg/l             | TM176                                                                                                                          | <2                                                                          | <2                                                                           |  |      |
| Dibenzo(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Di-n-Octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <5 µg/l             | TM176                                                                                                                          | <5                                                                          | <5                                                                           |  |      |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| N-nitrosodi-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Hexachlorocyclopentadien<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Indeno (1,2,3-cd) Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1 µg/l             | TM176                                                                                                                          | <1                                                                          | <1                                                                           |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                |                                                                             |                                                                              |  |      |

#### **CERTIFICATE OF ANALYSIS**

|                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                                                                                                                                 | CERTI                                                             | FICATE O                                                                   | FA | NALYSIS                                 |             |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|----|-----------------------------------------|-------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                        | 100312-108<br>D_TOBIN_DU                                 | IB-5                                                                                                                            |                                                                   | obin<br>avid Corrigan                                                      |    | Order Numb<br>Report Numl<br>Superseded | ber: 120758 |   |
| VOC MS (W)                                                                                                                                                                                                                                                                                                                                                                             |                                                          |                                                                                                                                 |                                                                   | g                                                                          |    |                                         |             |   |
| Results Legend<br># ISO17025 accredited.<br>M mCERTS accredited.<br>§ Non-conforming work.<br>aq Aqueous / settled sample.<br>diss.filt Dissolved / filtered sample.<br>tot.unfilt Total / unfiltered sample.<br>* subcontracted test.<br>* % recovery of the surrogat<br>check the efficiency of the<br>results of the individual co.<br>within the samples are not<br>this recovery. | e standard to<br>method. The<br>mpounds<br>corrected for | Customer Sample R<br>Depth (m)<br>Sample Type<br>Date Sampled<br>Date Received<br>SDG Ref<br>Lab Sample No.(s)<br>AGS Reference | Water(GW/SW)<br>12/03/2010<br>12/03/2010<br>100312-108<br>1210184 | GW-2-C<br>Water(GW/SW<br>12/03/2010<br>12/03/2010<br>100312-108<br>1210218 | n  |                                         |             |   |
| Component<br>Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                   | LOD/U<br><1.3                                            |                                                                                                                                 | <1.3                                                              | <1.3                                                                       |    |                                         |             |   |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                          | <1.7                                                     | μg/l TM208                                                                                                                      | #<br><1.7                                                         | <1.7                                                                       | #  |                                         |             |   |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                         | <1.2                                                     | μg/l TM208                                                                                                                      | #<br><1.2                                                         | <1.2                                                                       | #  |                                         |             |   |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                           | <2 µ                                                     | ıg/l TM208                                                                                                                      | #<br><2                                                           | <2                                                                         | #  |                                         |             |   |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                           | <2.5                                                     | μg/l TM208                                                                                                                      | #<br><2.5                                                         | <2.5                                                                       | #  |                                         |             | _ |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                 | <1.3                                                     | μg/l TM208                                                                                                                      | #<br><1.3                                                         | <1.3                                                                       | #  |                                         |             |   |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                     | <1.2                                                     |                                                                                                                                 | #<br><1.2                                                         | <1.2                                                                       | #  |                                         |             |   |
| Carbon disulphide                                                                                                                                                                                                                                                                                                                                                                      | <1.3                                                     | μg/l TM208                                                                                                                      | #<br><1.3                                                         | <1.3                                                                       | #  |                                         |             |   |
| Dichloromethane                                                                                                                                                                                                                                                                                                                                                                        | <3.7                                                     | μg/l TM208                                                                                                                      | <b>4</b>                                                          | <3.7                                                                       | #  |                                         |             |   |
| Methyl Tertiary Butyl Eth                                                                                                                                                                                                                                                                                                                                                              | er <1.6                                                  | μg/l TM208                                                                                                                      | #<br><1.6                                                         | <1.6                                                                       | #  |                                         |             |   |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                               | <1.9                                                     | μg/l TM208                                                                                                                      | #<br><1.9                                                         | <1.9                                                                       | #  |                                         |             |   |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                     | <1.2                                                     | μg/l TM208                                                                                                                      | #<br><1.2                                                         | <1.2                                                                       | #  |                                         |             |   |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                 | <2.3                                                     | μg/l TM208                                                                                                                      | #<br><2.3                                                         | <2.3                                                                       | #  |                                         |             |   |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                    | <3.8                                                     | μg/l TM208                                                                                                                      | <b>4</b>                                                          | <3.8                                                                       | #  |                                         |             |   |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                     | <1.9                                                     | μg/l TM208                                                                                                                      | #<br><1.9                                                         | <1.9                                                                       | #  |                                         |             |   |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                             | <1.8                                                     | µg/l TM208                                                                                                                      | #<br><1.8                                                         | <1.8                                                                       | #  |                                         |             |   |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                  | <1.3                                                     | µg/l TM208                                                                                                                      | #<br><1.3                                                         | <1.3                                                                       | #  |                                         |             |   |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                    | <1.3                                                     | µg/l TM208                                                                                                                      | // #<br><1.3                                                      | <1.3                                                                       | #  |                                         |             |   |
| Carbontetrachloride                                                                                                                                                                                                                                                                                                                                                                    | <1.4                                                     | µg/l TM208                                                                                                                      | #<br><1.4<br>#                                                    | <1.4                                                                       | #  |                                         |             |   |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                     | <3.3                                                     | µg/l TM208                                                                                                                      | <3.3                                                              | <3.3                                                                       | #  |                                         |             |   |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                | <1.3                                                     | µg/I TM208                                                                                                                      | <1.3                                                              | <1.3                                                                       | #  |                                         |             |   |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                        | <2.5                                                     | µg/I TM208                                                                                                                      | <2.5<br>#                                                         | <2.5                                                                       | #  |                                         |             |   |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                    | <3 µ                                                     | ıg/l TM208                                                                                                                      | <3<br>#                                                           | <3                                                                         | #  |                                         |             |   |
| Dibromomethane                                                                                                                                                                                                                                                                                                                                                                         | <2.7                                                     | µg/l TM208                                                                                                                      |                                                                   | <2.7                                                                       | #  |                                         |             |   |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                   | <0.9                                                     | µg/l TM208                                                                                                                      | <0.9<br>#                                                         | <0.9                                                                       | #  |                                         |             |   |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                | <1.9                                                     | μg/l TM208                                                                                                                      | <1.9<br>#                                                         | <1.9                                                                       | #  |                                         |             |   |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                | <1.4                                                     | µg/l TM208                                                                                                                      |                                                                   | <1.4                                                                       | #  |                                         |             |   |
| trans-1,3-Dichloropropen                                                                                                                                                                                                                                                                                                                                                               | e <3.5                                                   | μg/l TM208                                                                                                                      | <3.5<br>#                                                         | <3.5                                                                       | #  |                                         |             |   |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                  | <2.2                                                     | μg/l TM208                                                                                                                      | <2.2<br>#                                                         | <2.2                                                                       | #  |                                         |             |   |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                    | <2.2                                                     | μg/l TM208                                                                                                                      | <2.2<br>#                                                         | <2.2                                                                       | #  |                                         |             |   |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                      | <1.5                                                     | μg/l TM208                                                                                                                      | <1.5<br>#                                                         | <1.5                                                                       | #  |                                         |             |   |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                   | <1.7                                                     | μg/l TM208                                                                                                                      | <1.7<br>#                                                         | <1.7                                                                       | #  |                                         |             |   |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                      | <2.3                                                     | μg/l TM208                                                                                                                      | <2.3<br>#                                                         | <2.3                                                                       | #  |                                         |             |   |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                          | <3.5                                                     | μg/l TM208                                                                                                                      | <3.5<br>#                                                         | <3.5                                                                       | #  |                                         |             |   |
| 1,1,1,2-Tetrachloroethan                                                                                                                                                                                                                                                                                                                                                               | e <1.3                                                   | µg/l TM208                                                                                                                      | <1.3<br>#                                                         | <1.3                                                                       | #  |                                         |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                                                                                                                                 | #                                                                 | 1                                                                          | #  | I                                       |             |   |

#### **CERTIFICATE OF ANALYSIS**

Validated

#### VOC MS (W)

| VUCI                                              | VIS (W)                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                |                                                                             |                                                                             | <br> | <br> |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|------|------|
| #<br>M<br>§<br>aq<br>diss.filt<br>tot.unfilt<br>* | Results Legend<br>ISO17025 accredited.<br>mCERTS accredited.<br>Non-conforming work.<br>Aqueous / sottled sample.<br>Dissolved / filtered sample.<br>Total / unfiltered sample.<br>Subcontracted test.<br>% recovery of the surrogate standar<br>check the efficiency of the method.<br>results of the individual compounds<br>within the samples are not corrocted<br>this recovery. | d to<br>The L | Istomer Sample R<br>Depth (m)<br>Sample Type<br>Date Sampled<br>Date Received<br>SDG Ref<br>.ab Sample No.(s)<br>AGS Reference | GW-1-C<br>Water(GW/SW)<br>12/03/2010<br>12/03/2010<br>100312-108<br>1210184 | GW-2-C<br>Water(GW/SW)<br>12/03/2010<br>12/03/2010<br>100312-108<br>1210218 |      |      |
| Compo                                             |                                                                                                                                                                                                                                                                                                                                                                                       | LOD/Units     |                                                                                                                                |                                                                             |                                                                             |      |      |
| Ethylb                                            | enzene                                                                                                                                                                                                                                                                                                                                                                                | <2.5 µg/l     | TM208                                                                                                                          | <2.5<br>#                                                                   | <2.5<br>#                                                                   |      |      |
| p/m-X                                             | ylene                                                                                                                                                                                                                                                                                                                                                                                 | <2.5 µg/l     | TM208                                                                                                                          | <2.5<br>#                                                                   | <2.5<br>#                                                                   |      |      |
| o-Xyle                                            | ne                                                                                                                                                                                                                                                                                                                                                                                    | <1.7 µg/l     | TM208                                                                                                                          | <1.7                                                                        | <1.7                                                                        |      |      |
| Styren                                            | le                                                                                                                                                                                                                                                                                                                                                                                    | <1.2 µg/l     | TM208                                                                                                                          | <1.2<br>#                                                                   | <1.2<br>#                                                                   |      |      |
| Bromo                                             | oform                                                                                                                                                                                                                                                                                                                                                                                 | <3 µg/l       | TM208                                                                                                                          | <3<br>#                                                                     | <3<br>#                                                                     |      |      |
| Isopro                                            | pylbenzene                                                                                                                                                                                                                                                                                                                                                                            | <1.4 µg/l     | TM208                                                                                                                          | <1.4<br>#                                                                   | <1.4<br>#                                                                   |      |      |
| 1,1,2,2                                           | 2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                   | <5.2 µg/l     | TM208                                                                                                                          | <5.2                                                                        | <5.2                                                                        |      |      |
| 1,2,3-                                            | Trichloropropane                                                                                                                                                                                                                                                                                                                                                                      | <7.8 µg/l     | TM208                                                                                                                          | <7.8<br>#                                                                   | <7.8<br>#                                                                   |      |      |
| Bromo                                             | benzene                                                                                                                                                                                                                                                                                                                                                                               | <2 µg/l       | TM208                                                                                                                          | <2 #                                                                        | <2 #                                                                        |      |      |
| Propyl                                            | benzene                                                                                                                                                                                                                                                                                                                                                                               | <2.6 µg/l     | TM208                                                                                                                          | <2.6                                                                        | <2.6                                                                        |      |      |
| 2-Chlo                                            | protoluene                                                                                                                                                                                                                                                                                                                                                                            | <1.9 µg/l     | TM208                                                                                                                          | <1.9                                                                        | <1.9                                                                        |      |      |
| 1,3,5-                                            | Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                      | <1.8 µg/l     | TM208                                                                                                                          | <1.8                                                                        | <1.8                                                                        |      |      |
| 4-Chlo                                            | protoluene                                                                                                                                                                                                                                                                                                                                                                            | <1.9 µg/l     | TM208                                                                                                                          | <1.9<br>#                                                                   | <1.9<br>#                                                                   |      |      |
| tert-Bu                                           | ıtylbenzene                                                                                                                                                                                                                                                                                                                                                                           | <2 µg/l       | TM208                                                                                                                          | <2 #                                                                        | <2 #                                                                        |      |      |
| 1,2,4-                                            | Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                      | <1.7 µg/l     | TM208                                                                                                                          | <1.7<br>#                                                                   | <1.7<br>#                                                                   |      |      |
| sec-Bi                                            | utylbenzene                                                                                                                                                                                                                                                                                                                                                                           | <1.7 µg/l     | TM208                                                                                                                          | <1.7<br>#                                                                   | <1.7<br>#                                                                   |      |      |
| 4-Isop                                            | ropyltoluene                                                                                                                                                                                                                                                                                                                                                                          | <2.6 µg/l     | TM208                                                                                                                          | ~2.6<br>#                                                                   |                                                                             |      |      |
| 1,3-Di                                            | chlorobenzene                                                                                                                                                                                                                                                                                                                                                                         | <2.2 µg/l     | TM208                                                                                                                          | <2.2<br>#                                                                   | <2.2<br>#                                                                   |      |      |
| 1,4-Di                                            | chlorobenzene                                                                                                                                                                                                                                                                                                                                                                         | <2.7 µg/l     | TM208                                                                                                                          | <2.7 #                                                                      | <2.7 #                                                                      |      |      |
| n-Buty                                            | lbenzene                                                                                                                                                                                                                                                                                                                                                                              | <2 µg/l       | TM208                                                                                                                          | <2<br>#                                                                     | <2<br>#                                                                     |      |      |
| 1,2-Di                                            | chlorobenzene                                                                                                                                                                                                                                                                                                                                                                         | <3.7 µg/l     | TM208                                                                                                                          | <3.7                                                                        | <3.7                                                                        |      |      |
| 1,2-Di<br>ne                                      | bromo-3-chloropropa                                                                                                                                                                                                                                                                                                                                                                   | <9.8 µg/l     | TM208                                                                                                                          | <9.8                                                                        | <9.8                                                                        |      |      |
|                                                   | Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                      | <2.3 µg/l     | TM208                                                                                                                          | <2.3                                                                        | <2.3                                                                        |      |      |
| Hexac                                             | hlorobutadiene                                                                                                                                                                                                                                                                                                                                                                        | <2.5 µg/l     | TM208                                                                                                                          | <2.5                                                                        | <2.5                                                                        |      |      |
| Tert-a                                            | myl methyl ether                                                                                                                                                                                                                                                                                                                                                                      | <1 µg/l       | TM208                                                                                                                          | <1<br>#                                                                     | <del>//</del><br><1<br>#                                                    |      |      |
| Napht                                             | halene                                                                                                                                                                                                                                                                                                                                                                                | <3.5 µg/l     | TM208                                                                                                                          | <3.5 #                                                                      | <3.5 #                                                                      |      |      |
| 1,2,3-                                            | Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                      | <3.1 µg/l     | TM208                                                                                                                          | <3.1 #                                                                      | <3.1<br>#                                                                   |      |      |
| 1,3,5-                                            | Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                      | <10 µg/l      | TM208                                                                                                                          |                                                                             | <10                                                                         |      |      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                |                                                                             |                                                                             |      |      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                |                                                                             |                                                                             |      |      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                |                                                                             |                                                                             |      |      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                |                                                                             |                                                                             |      |      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                |                                                                             |                                                                             |      |      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                |                                                                             |                                                                             |      |      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                |                                                                             |                                                                             |      |      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                |                                                                             |                                                                             | <br> |      |

| CERTIFICATE | OF ANALYSIS |
|-------------|-------------|
|             |             |

Validated

|                        |                       |                                                                                       |                                   | CEF                                      | RTIFICATE OF A                      | NALYSIS                                                  |                                       |                                   |                  |
|------------------------|-----------------------|---------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------|-------------------------------------|----------------------------------------------------------|---------------------------------------|-----------------------------------|------------------|
| SDG:<br>Job:<br>Client | t Reference:          | 100312-108<br>D_TOBIN_DUB-5                                                           |                                   | Location:<br>Customer:<br>Attention:     | Tobin<br>David Corrigan             | Repor                                                    | Number:<br>t Number:<br>seded Report: | 120758<br>120757                  |                  |
| EPO                    | RT KEY                |                                                                                       |                                   | Table                                    | of Results -                        | Appendix                                                 | Results expressed a                   | ıs (e.g.) 1.03E-07 is equivale    | ent to 1.03x10-7 |
| NDP                    | No Determination      | Possible                                                                              | #                                 | ISO 17025 Accredited                     | *                                   | Subcontracted Test                                       | м                                     | MCERTS Accred                     | lited            |
| NFD                    | No Fibres Detecte     |                                                                                       | PFD                               | Possible Fibres Detecte                  | "                                   | Result previously reported<br>(Incremental reports only) | EC                                    | Equivalent Carb<br>(Aromatics C8- |                  |
| ote: Meth              | od detection limits a | re not always achievable d                                                            | ue to vario                       | us circumstances beyond                  | l our control                       |                                                          |                                       | Wet/Dry                           | Surrogate        |
| N                      | lethod No             |                                                                                       | Refe                              | ence                                     |                                     | Description                                              |                                       | Sample <sup>1</sup>               | Corrected        |
|                        | TM061                 | Method for the Dete<br>EPH,Massachusett                                               |                                   |                                          | Determination or<br>GC-FID (C10-C4  | Extractable Petroleum Hydro<br>40)                       | carbons by                            |                                   |                  |
|                        | TM090                 | Method 5310, AWM<br>Modified: US EPA M                                                |                                   | , ,                                      | Determination or<br>in Water and Wa | Total Organic Carbon/Total I<br>aste Water               | norganic Carbon                       |                                   |                  |
|                        | TM120                 | Method 2510B, AW<br>BS 2690: Part 9:19                                                |                                   | IA, 20th Ed., 1999 /                     | Determination or<br>Meter           | Electrical Conductivity using                            | a Conductivity                        |                                   |                  |
|                        | TM152                 | Method 3125B, AW                                                                      | WA/APH                            | IA, 20th Ed., 1999                       | Analysis of Aque                    | eous Samples by ICP-MS                                   |                                       |                                   |                  |
|                        | TM172                 | Analysis of Petroleu<br>Environmental Med<br>Hydrocarbon Criteri                      | ia – Tota                         |                                          | EPH in Waters                       |                                                          |                                       |                                   |                  |
|                        | TM176                 | EPA 8270D Semi-V<br>by Gas Chromatogr<br>(GC/MS)                                      |                                   | 0 1                                      | Determination o                     | SVOCs in Water by GCMS                                   |                                       |                                   |                  |
|                        | TM183                 | BS EN 23506:2002<br>0 580 38924 3                                                     | , (BS 60                          | 68-2.74:2002) ISBN                       |                                     | Trace Level Mercury in Wate                              |                                       | 3                                 |                  |
|                        | TM184                 | EPA Methods 325.7                                                                     | & 325.3                           | 2,                                       |                                     | on of Anions in Aqueous Matr<br>otometric Analysers      | ices using the                        |                                   |                  |
|                        | TM208                 | Modified: US EPA                                                                      | Aethod 8                          | 3260b & 624                              |                                     | Volatile Organic Compounds                               | by Headspace /                        |                                   |                  |
|                        | TM231                 | Agilent 6890 Gas C<br>an Agilent 5973 Ma                                              |                                   | • • • •                                  |                                     | Organochlorine and Organor<br>riazine Herbicides by GCMS | bhosphorus                            |                                   |                  |
|                        | TM256                 | The measurement of<br>the Laboratory dete<br>Natural, Treated an<br>1978. ISBN 011 75 | of Electri<br>rminatio<br>d Waste | cal Conductivity and<br>n of pH Value of | ,                                   | pH in Water and Leachate us                              | sing the GLpH p⊦                      | 1                                 |                  |

Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

#### **CERTIFICATE OF ANALYSIS**

Validated

| SDG:              | 100312-108    | Location:                 | Order Number:             |
|-------------------|---------------|---------------------------|---------------------------|
| Job:              | D_TOBIN_DUB-5 | Customer: Tobin           | Report Number: 120758     |
| Client Reference: |               | Attention: David Corrigan | Superseded Report: 120757 |

# **Test Completion Dates**

| Lab Sample No(s)                    | 1210184     | 1210218     |
|-------------------------------------|-------------|-------------|
| Customer Sample Ref.                | GW-1-C      | GW-2-C      |
| AGS Ref.                            |             |             |
| Depth                               |             |             |
| Туре                                | LIQUID      | LIQUID      |
| Anions by Kone (w)                  | 07-Apr-2010 | 07-Apr-2010 |
| Conductivity (at 20 deg.C)          | 17-Mar-2010 | 17-Mar-2010 |
| Dissolved Metals by ICP-MS          | 16-Mar-2010 | 16-Mar-2010 |
| Mercury Dissolved                   | 16-Mar-2010 | 16-Mar-2010 |
| Mineral Oil C10-40 Aqueous (W)      | 16-Mar-2010 | 16-Mar-2010 |
| OC, OP Pesticides and Triazine Herb | 17-Mar-2010 | 17-Mar-2010 |
| pH Value                            | 23-Mar-2010 | 17-Mar-2010 |
| SVOC MS (W) - Aqueous               | 24-Mar-2010 | 24-Mar-2010 |
| Total Organic and Inorganic Carbon  | 07-Apr-2010 | 07-Apr-2010 |
| VOC MS (W)                          | 18-Mar-2010 | 18-Mar-2010 |

|                | trol Laboratories | CERTIFIC            | ATE OF ANALYSIS            | Validated |
|----------------|-------------------|---------------------|----------------------------|-----------|
| SDG:           | 100312-108        | Location:           | Order Number:              |           |
| Job:           | D_TOBIN_DUB-5     | Customer: Tobin     | Report Number:             | 120758    |
| Client Referen | ice:              | Attention: David Co | orrigan Superseded Report: | 120757    |

#### **CERTIFICATE OF ANALYSIS**

| SDG:              | 100312-108    | Location:  |                |
|-------------------|---------------|------------|----------------|
| Job:              | D_TOBIN_DUB-5 | Customer:  | Tobin          |
| Client Reference: |               | Attention: | David Corrigan |

### Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

12. Results relate only to the items tested

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

 Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.

19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: 120758 Superseded Report: 120757

#### SOLID MATRICES EXTRACTION SUMMARY

| ANALYSIS                                 | D/C<br>OR<br>WET | EXTRACTION<br>SOLVENT | EXTRACTION<br>METHOD | ANALYSIS    |
|------------------------------------------|------------------|-----------------------|----------------------|-------------|
| SOLVENT EXTRACTABLE<br>MATTER            | D&C              | DOM                   | SOXTHERM             | GRAVIMETRIC |
| CYCLOHEXANE EXT.<br>MATTER               | D&C              | CYCLOHEXANE           | SOXTHERM             | GRAVIMETRIC |
| THIN LAYER<br>CHROMATOGRAPHY             | D&C              | DOM                   | SOXTHERM             | ATROSCAN    |
| ELEMENTALSULPHUR                         | D&C              | DOM                   | SOXTHERM             | HPLC        |
| PHENOLSBYGOMS                            | WET              | DOM                   | SOXTHERM             | GC-MS       |
| HERBICIDES                               | D&C              | HEXANEACETONE         | SOXTHERM             | GC-MS       |
| PESTICIDES                               | D&C              | HEXANEACETONE         | SOXTHERM             | GC-MS       |
| EPH (DRO)                                | D&C              | HEXANEACETONE         | END OVEREND          | GCFID       |
| EPH (MINOL)                              | D&C              | HEXANEACETONE         | END OVEREND          | GC-FID      |
| EPH (OLEANED UP)                         | D&C              | HEXANEACETONE         | END OVEREND          | GC-FID      |
| EPH CMG BYGC                             | D&C              | HEXANEACETONE         | END OVEREND          | GC-FID      |
| POB TOT / POB CON                        | D&C              | HEXANEACETONE         | END OVEREND          | GC-MS       |
| POLYAROMATIC<br>HYDROCARBONS (MS)        | WET              | HEXANEACETONE         | MCROWAVE<br>TM218.   | GC-MS       |
| 08-040(06-040) EZ<br>FLASH               | WET              | HEXANEACETONE         | SHAVER               | GCFZ        |
| POLVAROMATIC<br>HYDROCARBONS RAPID<br>GC | WET              | HEXANEACETONE         | SHAVER               | GCEZ        |
| SEM VOLATILEORGANIC<br>COMFOUNDS         | WET              | DOMACETONE            | SONICATE             | GC-MS       |

#### LIQUID MATRICES EXTRACTION SUMMARY

| ANALYSIS             | EXTRACTION<br>SOLVENT | EXTRACTION<br>METHOD        | ANALYSIS |
|----------------------|-----------------------|-----------------------------|----------|
| PAHMS                | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCMS     |
| BPH                  | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCFID    |
| EPHCWG               | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCFID    |
| MINERALOIL           | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCFID    |
| PCB 7 CONGENERS      | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCMS     |
| PCB TOTAL            | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCMS     |
| SVOC                 | DOM                   | LIQUID/LIQUID SHAKE         | GCMS     |
| FREESULPHUR          | DOM                   | SOLD PHASE EXTRACTION       | HPLC     |
| PEST OCP/OPP         | DOM                   | LIQUID/LIQUID SHAKE         | GCMS     |
| TRIAZINE HERBS       | DOM                   | LIQUID/LIQUID SHAKE         | GCMS     |
| PHENOLSMS            | DOM                   | SOLID PHASE EXTRACTION      | GCMS     |
| TIH by INFRARED (IR) | TCE                   | LIQUID/LIQUID SHAKE         | HPLC     |
| MINERAL OIL by IR    | TCE                   | LIQUID/LIQUID SHAKE         | HPLC     |
| GLYCOLS              | NONE                  | DIRECT NJECTION             | GCMS     |

#### Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

| Asbestos Type        | Common Name   |
|----------------------|---------------|
| Chrysofile           | WhiteAsbestos |
| Amoste               | BrownAsbestos |
| Crodidaite           | Blue Asbestos |
| Fibrous Adindite     | -             |
| Florous Anthophylite | -             |
| Fibrous Trendile     | -             |

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.



Attention: David Corrigan

## **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: 20 April 2010 D\_TOBIN\_GWY-42 100416-87 5965 Rialta Site 14A1

Report No.: 80943

We received 2 samples on Friday April 16, 2010 and 2 of these samples were scheduled for analysis which was completed on Tuesday April 20, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

enton

Iain Swinton Operations Director - Land UK & Ireland



| Validated         | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |  |
|-------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|--|
| SDG:              | 100416-87                                  | Customer:  | Tobin          |  |  |  |  |  |  |
| Job:              | D_TOBIN_GWY-42                             | Attention: | David Corrigan |  |  |  |  |  |  |
| Client Reference: | 5965                                       | Order No.: | 1735           |  |  |  |  |  |  |
| Location:         | Rialta Site 14A1                           | Report No: | 80943          |  |  |  |  |  |  |

## Received Sample Overview

| Lab Sample No(s) | Customer Sample Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|-----------|--------------|
| 1408173          | GW1                  |           | 16/04/2010   |
| 1408182          | GW2                  |           | 16/04/2010   |

Only received samples which have had analysis scheduled will be shown on the following pages.

| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|--|
| SDG:                     | 100416-87                                  | Customer:  | Tobin          |  |  |  |  |  |  |
| Job:                     | D_TOBIN_GWY-42                             | Attention: | David Corrigan |  |  |  |  |  |  |
| <b>Client Reference:</b> | 5965                                       | Order No.: | 1735           |  |  |  |  |  |  |
| Location:                | Rialta Site 14A1                           | Report No: | 80943          |  |  |  |  |  |  |

### LIQUID

|                                    |                         |                 | _                   |              |                     |              |        |
|------------------------------------|-------------------------|-----------------|---------------------|--------------|---------------------|--------------|--------|
| Results Legend                     | La                      | ab Sample No(s) |                     | 1408173      |                     | 1408182      |        |
| X Test                             |                         |                 |                     |              |                     |              |        |
| No Determination<br>Possible       | Customer Sample<br>Ref. |                 |                     | GW1          |                     | GW2          |        |
|                                    |                         | Depth (m)       |                     | _            |                     |              | Total  |
|                                    |                         | Container       | 1I glass bottle (D) | PLAS BOT (D) | 1I glass bottle (D) | PLAS BOT (D) |        |
| Anions by Kone (w)                 |                         | All             |                     | X            |                     | X            | 0<br>2 |
| Conductivity (at 20 deg.C)         |                         | All             |                     | X            |                     | X            | 0<br>2 |
| Dissolved Oxygen by Probe          |                         | All             |                     | X            |                     | X            | 0<br>2 |
| pH Value                           |                         | All             |                     | X            |                     | X            | 0<br>2 |
| Total Organic and Inorganic Carbon |                         | All             | x                   |              | X                   |              | 0<br>2 |

| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|--|
| SDG:                     | 100416-87                                  | Customer:  | Tobin          |  |  |  |  |  |  |
| Job:                     | D_TOBIN_GWY-42                             | Attention: | David Corrigan |  |  |  |  |  |  |
| <b>Client Reference:</b> | 5965                                       | Order No.: | 1735           |  |  |  |  |  |  |
| Location:                | Rialta Site 14A1                           | Report No: | 80943          |  |  |  |  |  |  |

## **Test Completion dates**

SDG reference: 100416-87

| Lab Sample No(s)            | 1408173    | 1408182    |
|-----------------------------|------------|------------|
| Customer Sample Ref.        | GW1        | GW2        |
| Depth                       |            |            |
| Туре                        | LIQUID     | LIQUID     |
| Anions by Kone (w)          | 19/04/2010 | 19/04/2010 |
| Conductivity (at 20 deg.C)  | 20/04/2010 | 20/04/2010 |
| Dissolved Oxygen by Probe   | 19/04/2010 | 19/04/2010 |
| pH Value                    | 19/04/2010 | 19/04/2010 |
| Total Organic and Inorganic | 20/04/2010 | 20/04/2010 |

| Validated ALcontrol Laboratories Analytical Services                                                                                                                                                                                                                                |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|---------------------------|--|------|
| SDG:<br>Job:<br>Client Reference:                                                                                                                                                                                                                                                   | 100416-8<br>D_TOBIN<br>5965 | 87<br>N_GWY-4                                                                    |                                                                  |                                                             | Customer:<br>Attention:<br>Order No.: | Tobin<br>David Co<br>1735 |  |      |
| Location:                                                                                                                                                                                                                                                                           | Rialta Site                 | e 14A1                                                                           |                                                                  |                                                             | Report No:                            | 80943                     |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  | <br> |
| Results Legend # ISO17025 accredited.                                                                                                                                                                                                                                               | Customer                    | Sample Ref.                                                                      | GW1                                                              | GW2                                                         |                                       |                           |  |      |
| Morrise accounted.     Morrise accounted.     Aqueous / settled sample.     diss.fit Disolved / filtered sample.     subcontracted test.     % recovery of the surrogate     standard to check the efficiency     of the method. The results of the     individual compounds within | Da<br>Da                    | Depth (m)<br>ample Type<br>ate Sampled<br>te Received<br>SDG Ref<br>imple No.(s) | Water(GW/SW)<br>16/04/2010<br>16/04/2010<br>100416-87<br>1408173 | Water(GW/S<br>16/04/201<br>16/04/201<br>100416-8<br>1408182 | 0<br>0<br>7                           |                           |  |      |
| the samples are not corrected<br>for this recovery.                                                                                                                                                                                                                                 |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
| Component                                                                                                                                                                                                                                                                           | LOD/Units                   | Method                                                                           |                                                                  |                                                             |                                       |                           |  |      |
| Dxygen, dissolved                                                                                                                                                                                                                                                                   | <1 mg/l                     | TM046                                                                            | 5.68<br>#                                                        | 6.28                                                        | #                                     |                           |  |      |
| Organic Carbon, Total                                                                                                                                                                                                                                                               | <3 mg/l                     | TM090                                                                            | 3.9                                                              | 4.38                                                        | #                                     |                           |  |      |
| Conductivity @ 20 deg.C                                                                                                                                                                                                                                                             | <0.014                      | TM120                                                                            | # 0.687                                                          | 0.863                                                       | #                                     |                           |  |      |
|                                                                                                                                                                                                                                                                                     | mS/cm                       |                                                                                  | #                                                                | E                                                           | #                                     |                           |  | <br> |
| ulphate                                                                                                                                                                                                                                                                             | 3 mg/l                      | TM184                                                                            | 122<br>#                                                         | 165                                                         | #                                     |                           |  |      |
| Chloride                                                                                                                                                                                                                                                                            | <2 mg/l                     | TM184                                                                            | 19.8                                                             | 28.9                                                        |                                       |                           |  |      |
| H                                                                                                                                                                                                                                                                                   | <1 pH Units                 | TM256                                                                            | 7.99                                                             | 7.92                                                        | #                                     |                           |  |      |
|                                                                                                                                                                                                                                                                                     | si pri Units                | 1912.00                                                                          | 7.99                                                             |                                                             | #                                     |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  | <br> |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             | 1                                                                                |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  | <br> |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  | <br> |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             | l I                                                                              |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |
|                                                                                                                                                                                                                                                                                     |                             |                                                                                  |                                                                  |                                                             |                                       |                           |  |      |



## Table of Results - Appendix

| DG N                                                                                                  | umber : 1004          | 16-87         Client : Tobin         Client Ref : 5965                             |                                    |                                    | Client : Tobin                                                                           |             |                                                          | <b>Client Ref</b> : 5965 |                                          |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------|--------------------------|------------------------------------------|--|--|
| POF                                                                                                   |                       |                                                                                    |                                    |                                    |                                                                                          |             | R                                                        | esults expressed as (    | e.g.) 1.03E-07 is equivalent to 1.03x10- |  |  |
| NDP                                                                                                   | No Determination Poss | sible                                                                              | #                                  | ISO 17025 Accredited               |                                                                                          | *           | Subcontracted Test                                       | м                        | MCERTS Accredited                        |  |  |
| NFD                                                                                                   | No Fibres Detected    |                                                                                    | PFD                                | Possible Fibres Detected           |                                                                                          | »           | Result previously reported<br>(Incremental reports only) | EC                       | Equivalent Carbon<br>(Aromatics C8-C35)  |  |  |
| te: Method detection limits are not always achievable due to various circumstances beyond our control |                       |                                                                                    |                                    |                                    |                                                                                          |             |                                                          |                          |                                          |  |  |
| ľ                                                                                                     | Method No             | l i i i i i i i i i i i i i i i i i i i                                            | Refere                             | nce                                |                                                                                          |             | Description                                              |                          | Wet/Dry<br>Sample <sup>1</sup>           |  |  |
|                                                                                                       | TM046                 | Method 4500G<br>1999                                                               | , AWWA/                            | APHA, 20th Ed.,                    | Measurement of Dissolved Oxygen by Oxygen Meter                                          |             |                                                          |                          |                                          |  |  |
|                                                                                                       | TM090                 | Method 5310, /<br>1999 / Modified<br>9060                                          |                                    | PHA, 20th Ed.,<br>A Method 415.1 & | Determination of Total Organic Carbon/Total Inorganic Carbon in Water<br>and Waste Water |             |                                                          | r                        |                                          |  |  |
|                                                                                                       | TM120                 | Method 2510B,<br>1999 / BS 2690                                                    |                                    | APHA, 20th Ed.,<br>1970            | Determinat                                                                               | ion of Elec | trical Conductivity using a Cond                         | luctivity Meter          |                                          |  |  |
|                                                                                                       | TM184                 | EPA Methods 325.1 & 325.2,                                                         |                                    |                                    |                                                                                          |             | Anions in Aqueous Matrices usi<br>tometric Analysers     | ing                      |                                          |  |  |
|                                                                                                       | TM256                 | The measurem<br>Conductivity ar<br>determination<br>Treated and W<br>ISBN 011 7514 | nd the La<br>of pH Val<br>astewate | boratory                           | Determinat                                                                               | ion of pH   | in Water and Leachate using the                          | e GLpH pH Meter          |                                          |  |  |

Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH<sub>4</sub> by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- Surrogate recoveries Most of our organic methods include surrogates, the recovery of which is monitored and reported.
   For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

| LIQUID MATRICES EXTRACTION SUMMARY  |                    |                                                    |               |  |  |  |  |  |
|-------------------------------------|--------------------|----------------------------------------------------|---------------|--|--|--|--|--|
| ANALYSIS                            | EXTRACTION SOLVENT | ЕХТКАСТІОN МЕТНОD                                  | SISATNA       |  |  |  |  |  |
| PAH MS                              | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |  |
| EPH                                 | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |
| EPH CWG                             | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |
| MINERAL OIL                         | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |
| PCB 7 CONGENERS                     | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |  |
| PCB TOTAL                           | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GS MS         |  |  |  |  |  |
| SVOC                                | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |
| FREE SULPHUR                        | DCM                | SOLID PHASE EXTRACTION                             | HPLC          |  |  |  |  |  |
| PEST OCP/OPP                        | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |
| TRIAZINE HERBS                      | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |
| PHENOLS MS<br>TPH by INFRA RED (IR) | DCM<br>TCE         | SOLID PHASE EXTRACTION<br>LIQUID/LIQUID EXTRACTION | GC MS<br>HPLC |  |  |  |  |  |
| MINERAL OIL by IR                   | TCE                | LIQUID/LIQUID EXTRACTION                           | HPLC          |  |  |  |  |  |
| GLYCOLS                             | NONE               | DIRECT INJECTION                                   | GC FID        |  |  |  |  |  |

| ANALYSIS                              | D/C OR WET | EXTRACTION SOLVENT | EXTRACTION METHOD           | ANALYSIS    |
|---------------------------------------|------------|--------------------|-----------------------------|-------------|
| Solvent Extractable Matter            | D&C        | DCM                | SOXTHERM                    | GRAVIMETRIC |
| Cyclohexane Ext. Matter               | D&C        | CYCLOHEXANE        | SOXTHERM                    | GRAVIMETRIC |
| Thin Layer Chromatography             | D&C        | DCM                | SOXTHERM                    | IATROSCAN   |
| Elemental Sulphur                     | D&C        | DCM                | SOXTHERM                    | HPLC        |
| Phenols by GCMS                       | WET        | DCM                | SOXTHERM                    | GC-MS       |
| Herbicides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| Pesticides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| EPH (DRO)                             | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| EPH (Min oil)                         | D&C        | HEXANE:ACETONE     | END                         | GC-FID      |
| EPH (Cleaned up)                      | D&C        | HEXANE:ACETONE     | END OVER<br>END             | GC-FID      |
| EPH CWG by GC                         | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| PCB tot / PCB con                     | D&C        | HEXANE:ACETONE     | END                         | GC-MS       |
| Polyaromatic Hydrocarbons<br>(MS)     | WET        | HEXANE:ACETONE     | Microwave<br>TM218.         | GC-MS       |
| C8-C40 (C6-C40)EZ Flash               | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Polyaromatic Hydrocarbons<br>Rapid GC | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Semi Volatile Organic<br>Compounds    | WET        | DCM:ACETONE        | SONICATE                    | GC-MS       |

### **Identification of Asbestos in Bulk Materials**

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

#### Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in

#### MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

#### Asbestos Type

#### Common Name

Chrysotile Amosite Crocidolite Fibrous Actinolite Fibrous Anthophyllite Fibrous Tremolite White Asbestos Brown Asbestos Blue Asbestos --



Attention:

David Corrigan

## **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: 07 July 2010 D\_TOBIN\_DUB-21 100705-60 **Report No.:** 89567 Water Samples 02/07/10 Water Samples 02/07/10

We received 2 samples on Friday July 02, 2010 and 2 of these samples were scheduled for analysis which was completed on Wednesday July 07, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

enton

Iain Swinton Operations Director - Land UK & Ireland



| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|--|
| SDG:                     | 100705-60                                  | Customer:  | Tobin          |  |  |  |  |  |  |
| Job:                     | D_TOBIN_DUB-21                             | Attention: | David Corrigan |  |  |  |  |  |  |
| <b>Client Reference:</b> | Water Samples 02/07/10                     | Order No.: | 1798           |  |  |  |  |  |  |
| Location:                | Water Samples 02/07/10                     | Report No: | 89567          |  |  |  |  |  |  |

## Received Sample Overview

| Lab Sample No(s) | Customer Sample Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|-----------|--------------|
| 1779695          | GW1 Z                |           | 02/07/2010   |
| 1779706          | GW2 Z                |           | 02/07/2010   |

Only received samples which have had analysis scheduled will be shown on the following pages.

| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|
| SDG:                     | 100705-60                                  | Customer:  | Tobin          |  |  |  |
| Job:                     | D_TOBIN_DUB-21                             | Attention: | David Corrigan |  |  |  |
| <b>Client Reference:</b> | Water Samples 02/07/10                     | Order No.: | 1798           |  |  |  |
| Location:                | Water Samples 02/07/10                     | Report No: | 89567          |  |  |  |

#### LIQUID

| •                                  |                         |                |   |         |                     |              |        |
|------------------------------------|-------------------------|----------------|---|---------|---------------------|--------------|--------|
| Results Legend                     | La                      | b Sample No(s) |   | 1779695 |                     | 1779706      |        |
| X Test                             |                         |                |   |         |                     |              |        |
| No Determination<br>Possible       | Customer Sample<br>Ref. |                |   | GW1     |                     | GW2          |        |
|                                    |                         | Depth (m)      |   |         |                     |              | Total  |
|                                    |                         | Container      |   |         | 1l glass bottle (D) | PLAS BOT (D) |        |
| Anions by Kone (w)                 |                         | All            |   | X       |                     | X            | 0<br>2 |
| Conductivity (at 20 deg.C)         |                         | All            |   | X       |                     | X            | 0<br>2 |
| Dissolved Oxygen by Probe          |                         | All            |   | X       |                     | X            | 0<br>2 |
| pH Value                           |                         | All            |   | X       |                     | X            | 0<br>2 |
| Total Organic and Inorganic Carbon |                         | All            | x |         | X                   |              | 0<br>2 |

| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|--|
| SDG:                     | 100705-60                                  | Customer:  | Tobin          |  |  |  |  |
| Job:                     | D_TOBIN_DUB-21                             | Attention: | David Corrigan |  |  |  |  |
| <b>Client Reference:</b> | Water Samples 02/07/10                     | Order No.: | 1798           |  |  |  |  |
| Location:                | Water Samples 02/07/10                     | Report No: | 89567          |  |  |  |  |

## **Test Completion dates**

SDG reference: 100705-60

| Lab Sample No(s)            | 1779695    | 1779706    |
|-----------------------------|------------|------------|
| Customer Sample Ref.        | GW1        | GW2        |
| Depth                       |            |            |
| Туре                        | LIQUID     | LIQUID     |
| Anions by Kone (w)          | 07/07/2010 | 07/07/2010 |
| Conductivity (at 20 deg.C)  | 07/07/2010 | 07/07/2010 |
| Dissolved Oxygen by Probe   | 06/07/2010 | 06/07/2010 |
| pH Value                    | 07/07/2010 | 07/07/2010 |
| Total Organic and Inorganic | 06/07/2010 | 06/07/2010 |

| Validated                                                                                                                                                                                                                                                                                                                                                                   | ALcontrol Laboratories Analytical Services  |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|----------------------------|------------------|------|
| SDG:<br>Job:<br>Client Reference:<br>Location:                                                                                                                                                                                                                                                                                                                              | 100705-6<br>D_TOBIN<br>Water Sa<br>Water Sa | N_DUB-2<br>amples 02                                                                             | 2/07/10                                  |                                                                    | Customer:<br>Attention:<br>Order No.:<br>Report No: | Tobi<br>Dav<br>1798<br>895 | id Corrigan<br>8 |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
| Results Legend     ISO17025 accredited.     M mCERTS accredited.     Gata Aqueous / settled sample.     diss.filt Dissolved / filtered sample.     subcontracted test.     " % recovery of the surrogate     standard to check the efficiency     of the method. The results of th     individual compounds within     the samples are not corrected     for this recovery. | S<br>Da<br>Da                               | Sample Ref.<br>Depth (m)<br>sample Type<br>ate Sampled<br>te Received<br>SDG Ref<br>ample No.(s) | Water(GW/SW)<br>02/07/2010<br>02/07/2010 | GW2<br>Water(GW/5<br>02/07/201<br>02/07/201<br>100705-6<br>1779706 | 0<br>0<br>0                                         |                            |                  |      |
| Component                                                                                                                                                                                                                                                                                                                                                                   | LOD/Units                                   | Method                                                                                           |                                          |                                                                    |                                                     |                            |                  |      |
| Oxygen, dissolved                                                                                                                                                                                                                                                                                                                                                           | <1 mg/l                                     | TM046                                                                                            | 5.29<br>#                                | 4.27                                                               | #                                                   |                            |                  |      |
| Organic Carbon, Total                                                                                                                                                                                                                                                                                                                                                       | <3 mg/l                                     | TM090                                                                                            | <3                                       | 5.97                                                               |                                                     |                            |                  |      |
| Conductivity @ 20 deg.C                                                                                                                                                                                                                                                                                                                                                     | <0.014                                      | TM120                                                                                            | # 0.66                                   | 0.82                                                               | #                                                   |                            |                  |      |
| Sulphate                                                                                                                                                                                                                                                                                                                                                                    | mS/cm<br><3 mg/l                            | TM184                                                                                            | # 111                                    | 119                                                                | #                                                   |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             | _                                           |                                                                                                  | #                                        |                                                                    | #                                                   |                            |                  |      |
| Chloride                                                                                                                                                                                                                                                                                                                                                                    | <2 mg/l                                     | TM184                                                                                            | 19.4<br>#                                | 28.5                                                               | #                                                   |                            |                  |      |
| рН                                                                                                                                                                                                                                                                                                                                                                          | <1 pH Units                                 | TM256                                                                                            | 7.99<br>#                                | 7.83                                                               | #                                                   |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  | <br> |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  | 1    |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                                                                  |                                          |                                                                    |                                                     |                            |                  |      |



## Table of Results - Appendix

| DG N                                                                                                    | umber: 1007           | 05-60                                                                              |                                     | Client : T                       | obin                                                                                     | n Client Ref : Water Samples 02/07/10 |                                                          |                        |                                           |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|------------------------|-------------------------------------------|--|--|
| EPOF                                                                                                    |                       |                                                                                    |                                     |                                  |                                                                                          |                                       | F                                                        | Results expressed as ( | e.g.) 1.03E-07 is equivalent to 1.03x10-7 |  |  |
| NDP                                                                                                     | No Determination Poss | sible                                                                              | #                                   | ISO 17025 Accredited             |                                                                                          | *                                     | Subcontracted Test                                       | м                      | MCERTS Accredited                         |  |  |
| NFD                                                                                                     | No Fibres Detected    |                                                                                    | PFD                                 | Possible Fibres Detected         |                                                                                          | »                                     | Result previously reported<br>(Incremental reports only) | EC                     | Equivalent Carbon<br>(Aromatics C8-C35)   |  |  |
| Note: Method detection limits are not always achievable due to various circumstances beyond our control |                       |                                                                                    |                                     |                                  |                                                                                          |                                       |                                                          |                        |                                           |  |  |
| ľ                                                                                                       | lethod No             | l                                                                                  | Refere                              | nce                              |                                                                                          |                                       | Description                                              |                        | Wet/Dry<br>Sample <sup>1</sup>            |  |  |
|                                                                                                         | TM046                 | Method 4500G<br>1999                                                               | , AWWA/                             | APHA, 20th Ed.,                  | Measureme                                                                                | ent of Diss                           | olved Oxygen by Oxygen Meter                             |                        |                                           |  |  |
|                                                                                                         | TM090                 | Method 5310, 4<br>1999 / Modified<br>9060                                          |                                     | PHA, 20th Ed.,<br>Method 415.1 & | Determination of Total Organic Carbon/Total Inorganic Carbon in Water<br>and Waste Water |                                       |                                                          |                        |                                           |  |  |
|                                                                                                         | TM120                 | Method 2510B,<br>1999 / BS 2690                                                    |                                     | APHA, 20th Ed.,<br>1970          | Determinat                                                                               | ion of Elec                           | trical Conductivity using a Cond                         | ductivity Meter        |                                           |  |  |
|                                                                                                         | TM184                 | EPA Methods 3                                                                      | 325.1 & 3                           | 25.2,                            |                                                                                          |                                       | Anions in Aqueous Matrices us<br>tometric Analysers      | ing                    |                                           |  |  |
|                                                                                                         | TM256                 | The measurem<br>Conductivity ar<br>determination<br>Treated and W<br>ISBN 011 7514 | nd the La<br>of pH Val<br>/astewate | poratory                         | Determinat                                                                               | ion of pH                             | in Water and Leachate using th                           | e GLpH pH Meter        |                                           |  |  |

Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH<sub>4</sub> by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- Surrogate recoveries Most of our organic methods include surrogates, the recovery of which is monitored and reported.
   For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

| LIQUID MATRICES EXTRACTION SUMMARY  |                    |                                                    |               |  |  |  |  |  |  |
|-------------------------------------|--------------------|----------------------------------------------------|---------------|--|--|--|--|--|--|
| ANALYSIS                            | EXTRACTION SOLVENT | ЕХТКАСТІОN МЕТНОD                                  | SISATNA       |  |  |  |  |  |  |
| PAH MS                              | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |  |  |
| EPH                                 | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |  |
| EPH CWG                             | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |  |
| MINERAL OIL                         | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |  |
| PCB 7 CONGENERS                     | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |  |  |
| PCB TOTAL                           | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GS MS         |  |  |  |  |  |  |
| SVOC                                | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |  |
| FREE SULPHUR                        | DCM                | SOLID PHASE EXTRACTION                             | HPLC          |  |  |  |  |  |  |
| PEST OCP/OPP                        | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |  |
| TRIAZINE HERBS                      | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |  |
| PHENOLS MS<br>TPH by INFRA RED (IR) | DCM<br>TCE         | SOLID PHASE EXTRACTION<br>LIQUID/LIQUID EXTRACTION | GC MS<br>HPLC |  |  |  |  |  |  |
| MINERAL OIL by IR                   | TCE                | LIQUID/LIQUID EXTRACTION                           | HPLC          |  |  |  |  |  |  |
| GLYCOLS                             | NONE               | DIRECT INJECTION                                   | GC FID        |  |  |  |  |  |  |

| ANALYSIS                              | D/C OR WET | EXTRACTION SOLVENT | EXTRACTION METHOD           | ANALYSIS    |
|---------------------------------------|------------|--------------------|-----------------------------|-------------|
| Solvent Extractable Matter            | D&C        | DCM                | SOXTHERM                    | GRAVIMETRIC |
| Cyclohexane Ext. Matter               | D&C        | CYCLOHEXANE        | SOXTHERM                    | GRAVIMETRIC |
| Thin Layer Chromatography             | D&C        | DCM                | SOXTHERM                    | IATROSCAN   |
| Elemental Sulphur                     | D&C        | DCM                | SOXTHERM                    | HPLC        |
| Phenols by GCMS                       | WET        | DCM                | SOXTHERM                    | GC-MS       |
| Herbicides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| Pesticides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| EPH (DRO)                             | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| EPH (Min oil)                         | D&C        | HEXANE:ACETONE     | END                         | GC-FID      |
| EPH (Cleaned up)                      | D&C        | HEXANE:ACETONE     | END OVER<br>END             | GC-FID      |
| EPH CWG by GC                         | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| PCB tot / PCB con                     | D&C        | HEXANE:ACETONE     | END                         | GC-MS       |
| Polyaromatic Hydrocarbons<br>(MS)     | WET        | HEXANE:ACETONE     | Microwave<br>TM218.         | GC-MS       |
| C8-C40 (C6-C40)EZ Flash               | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Polyaromatic Hydrocarbons<br>Rapid GC | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Semi Volatile Organic<br>Compounds    | WET        | DCM:ACETONE        | SONICATE                    | GC-MS       |

### **Identification of Asbestos in Bulk Materials**

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

#### Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in

#### MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

#### Asbestos Type

#### Common Name

Chrysotile Amosite Crocidolite Fibrous Actinolite Fibrous Anthophyllite Fibrous Tremolite White Asbestos Brown Asbestos Blue Asbestos --



Attention: Da

David Corrigan

## **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: 24 November 2010 D\_TOBIN\_DUB-10 101110-80 5965 Rialta Site 14A1

**Report No.:** 104504

We received 3 samples on Wednesday November 10, 2010 and 3 of these samples were scheduled for analysis which was completed on Friday November 12, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

enton

Iain Swinton Business Director - Land, UK & Ireland



| Validated         | ALcontrol Laboratories Analytical Services |            |                |  |  |  |
|-------------------|--------------------------------------------|------------|----------------|--|--|--|
| SDG:              | 101110-80                                  | Customer:  | Tobin          |  |  |  |
| Job:              | D_TOBIN_DUB-10                             | Attention: | David Corrigan |  |  |  |
| Client Reference: | 5965                                       | Order No.: | 1943           |  |  |  |
| Location:         | Rialta Site 14A1                           | Report No: | 104504         |  |  |  |

## Received Sample Overview

| Lab Sample No(s) | Customer Sample Ref. | AGS Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|----------|-----------|--------------|
| 2379625          | GW1                  |          |           | 10/11/2010   |
| 2379702          | GW2                  |          |           | 10/11/2010   |
| 2379768          | SW1                  |          |           | 10/11/2010   |

Only received samples which have had analysis scheduled will be shown on the following pages.

| Validated                              | ALcontrol Lal   | bora                 | to                                   | ri                                                  | es                  | Analy          | ytical Services                           |  |
|----------------------------------------|-----------------|----------------------|--------------------------------------|-----------------------------------------------------|---------------------|----------------|-------------------------------------------|--|
| Client Reference: 5965                 | D_TOBIN_DUB-10  |                      |                                      | Customer:<br>Attention:<br>Order No.:<br>Report No: |                     |                | Tobin<br>David Corrigan<br>1943<br>104504 |  |
| LIQUID<br>Results Legend               | Lab Sample No   | (s)                  | 2379625                              | 2379768                                             | 2010102             |                |                                           |  |
| X Test<br>No Determination<br>Possible | Customer Sample | Customer Sample Ref. |                                      | SW1                                                 | 3442                |                |                                           |  |
|                                        | AGS Ref.        |                      |                                      |                                                     |                     |                |                                           |  |
| Dept                                   |                 |                      |                                      |                                                     |                     |                |                                           |  |
|                                        | Container       |                      | רבאס פטרו (ש)<br>11 glass bottle (D) | PLAS BOT (D)                                        | 11 glass bottle (D) |                |                                           |  |
| Anions by Kone (w)                     |                 | NDPs: 0<br>Tests: 2  | ×                                    | <mark>د</mark>                                      |                     | <b>(</b>       |                                           |  |
| COD Unfiltered                         |                 | NDPs: 0<br>Tests: 1  |                                      | x                                                   |                     |                |                                           |  |
| Conductivity (at 20 deg.C)             |                 | NDPs: 0<br>Tests: 3  | ×                                    | ( <mark>x</mark>                                    |                     | <mark>(</mark> |                                           |  |
| Dissolved Oxygen by Probe              |                 | NDPs: 0<br>Tests: 2  | ×                                    | <b>(</b>                                            |                     | <mark>c</mark> |                                           |  |
| pH Value                               |                 | NDPs: 0<br>Tests: 3  | ×                                    | ( <mark>x</mark>                                    | 2                   | <mark>c</mark> |                                           |  |
| Total Organic and Inorganic Carbon     |                 | NDPs: 0<br>Tests: 2  | x                                    |                                                     | x                   |                |                                           |  |

| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|
| <b>Client Reference:</b> | 101110-80                                  | Customer:  | Tobin          |  |  |  |  |  |
|                          | D_TOBIN_DUB-10                             | Attention: | David Corrigan |  |  |  |  |  |
|                          | 5965                                       | Order No.: | 1943           |  |  |  |  |  |
|                          | Rialta Site 14A1                           | Report No: | 104504         |  |  |  |  |  |

## **Test Completion Dates**

| Lab Sample No(s)                   | 2379625    | 2379702    | 2379768    |
|------------------------------------|------------|------------|------------|
| Customer Sample Ref.               | GW1        | GW2        | SW1        |
| AGS Ref.                           |            |            |            |
| Depth                              |            |            |            |
| Туре                               | LIQUID     | LIQUID     | LIQUID     |
| Anions by Kone (w)                 | 12/11/2010 | 12/11/2010 |            |
| COD Unfiltered                     |            |            | 11/11/2010 |
| Conductivity (at 20 deg.C)         | 12/11/2010 | 12/11/2010 | 12/11/2010 |
| Dissolved Oxygen by Probe          | 11/11/2010 | 11/11/2010 |            |
| pH Value                           | 11/11/2010 | 11/11/2010 | 11/11/2010 |
| Total Organic and Inorganic Carbon | 11/11/2010 | 11/11/2010 |            |

| Validated                                                                                                                                                                                                                                                                                                                                                                                                                                         | ]                                         | ALco                                                                                                                           | ntrol Lab                                                               | oratorie                                                               | es          | Analyt                                                             | ica                      | I Services        | 5 |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|-------------|--------------------------------------------------------------------|--------------------------|-------------------|---|---|
| SDG<br>Job:<br>Client Reference:<br>Location:                                                                                                                                                                                                                                                                                                                                                                                                     | 101110-8<br>D_TOBIN<br>5965<br>Rialta Sit | N_DUB-10                                                                                                                       | D                                                                       |                                                                        | Atte<br>Orc | stomer:<br>ention:<br>der No.:<br>port No:                         | Tob<br>Dav<br>194<br>104 | vid Corrigan<br>3 |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
| Results Lagend     SO17025 accredited.     M     mCERTS accredited.     aq     Aqueous / sottled sample.     diss.fitt Dissolved / fittered sample.     tot.unfitt     Total / unfittered sample.     subcontracted test.     *     % recovery of the surrogate     standard to check the efficiency     of the method. The results of the     individual compounds within     the samples are not corrected     for this recovery.     Component | Lab                                       | Sample Ref.<br>Depth (m)<br>Sample Type<br>Date Sampled<br>Date Received<br>SDG Ref<br>Sample No.(s)<br>GS Reference<br>Method | GW1<br>Water(GW/SW)<br>10/11/2010<br>10/11/2010<br>101110-80<br>2379625 | GW2<br>Water(GW/SW<br>10/11/2010<br>10/11/2010<br>101110-80<br>2379702 |             | SW1<br>Water(GW/S<br>10/11/201<br>10/11/201<br>101110-8<br>2379768 | 0<br>0<br>0              |                   |   |   |
| Oxygen, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1 mg/l                                   | TM046                                                                                                                          | 5.52                                                                    | 7.57                                                                   |             |                                                                    |                          |                   |   |   |
| Organic Carbon, Total                                                                                                                                                                                                                                                                                                                                                                                                                             | <3 mg/l                                   | TM090                                                                                                                          | <b>#</b>                                                                | 5.4                                                                    | #           |                                                                    |                          |                   |   |   |
| COD, unfiltered                                                                                                                                                                                                                                                                                                                                                                                                                                   | <7 mg/l                                   | TM107                                                                                                                          | #                                                                       |                                                                        | #           | 16.9                                                               |                          |                   |   |   |
| Conductivity @ 20 deg.C                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.014                                    | TM120                                                                                                                          | 0.662                                                                   | 0.8                                                                    |             | 0.16                                                               | #                        |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mS/cm                                     |                                                                                                                                | #                                                                       |                                                                        | #           |                                                                    | #                        |                   |   |   |
| Sulphate                                                                                                                                                                                                                                                                                                                                                                                                                                          | <3 mg/l                                   | TM184                                                                                                                          | 89.3<br>#                                                               | 89.9                                                                   | #           |                                                                    |                          |                   |   |   |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                          | <2 mg/l                                   | TM184                                                                                                                          | 21.9<br>#                                                               | 17.6                                                                   | #           |                                                                    |                          |                   |   |   |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1 pH Units                               | TM256                                                                                                                          | 8.22<br>#                                                               | 8.08                                                                   | #           | 7.62                                                               | #                        |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | 1                                                                                                                              |                                                                         |                                                                        |             |                                                                    |                          |                   |   | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                |                                                                         |                                                                        |             |                                                                    |                          |                   |   |   |



## Table of Results - Appendix

| SDG N     | lumber : 1011           | 10-80                                                                           |                | Client :                  | D_TOBIN_DUB                       |               |                                                          | Client Ref :        | 5965                              |                        |
|-----------|-------------------------|---------------------------------------------------------------------------------|----------------|---------------------------|-----------------------------------|---------------|----------------------------------------------------------|---------------------|-----------------------------------|------------------------|
| REPOR     | RT KEY                  |                                                                                 |                |                           |                                   |               |                                                          | Results expressed a | as (e.g.) 1.03E-07 is equivale    | nt to 1.03x10-7        |
| NDP       | No Determination Po     | ssible                                                                          | #              | ISO 17025 Accredited      |                                   | *             | Subcontracted Test                                       | м                   | MCERTS Accred                     | lited                  |
| NFD       | No Fibres Detected      |                                                                                 | PFD            | Possible Fibres Detected  |                                   | »             | Result previously reported<br>(Incremental reports only) | EC                  | Equivalent Carb<br>(Aromatics C8- |                        |
| ote: Meth | od detection limits are | not always achievable                                                           | due to vario   | us circumstances beyond o | our control                       |               |                                                          |                     |                                   |                        |
|           | Method No               |                                                                                 | Refere         | nce                       |                                   |               | Description                                              |                     | Wet/Dry<br>Sample <sup>1</sup>    | Surrogate<br>Corrected |
|           | TM046                   | Method 4500G, AWW                                                               | A/APHA, 20th   | Ed., 1999                 | Measurement of Diss               | olved Oxygen  | by Oxygen Meter                                          |                     |                                   |                        |
|           | TM090                   | Method 5310, AWWA<br>Modified: US EPA Met                                       |                |                           | Determination of Tot              | al Organic Ca | bon/Total Inorganic Carbon in Water and                  | d Waste Water       |                                   |                        |
|           | TM107                   | ISO 6060-1989                                                                   |                |                           | Determination of Che              | emical Oxygen | Demand using COD Dr Lange Kit                            |                     |                                   |                        |
|           | TM120                   | Method 2510B, AWW/<br>2690: Part 9:1970                                         | A/APHA, 20th   | Ed., 1999 / BS            | Determination of Elec             | trical Conduc | tivity using a Conductivity Meter                        |                     |                                   |                        |
|           | TM184                   | EPA Methods 325.1 &                                                             | 325.2,         |                           | The Determination of<br>Analysers | Anions in Aq  | ueous Matrices using the Kone Spectroph                  | notometric          |                                   |                        |
|           | TM256                   | The measurement of<br>Laboratory determinal<br>Treated and Wastewa<br>751428 4. | tion of pH Val | ue of Natural,            | Determination of pH               | in Water and  | Leachate using the GLpH pH Meter                         |                     |                                   |                        |

<sup>1</sup> Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

| Valid     | ated             | ALcontrol Laboratories Analytical Services |                |  |  |  |  |  |
|-----------|------------------|--------------------------------------------|----------------|--|--|--|--|--|
| SDG       | 101110-80        | 0 Customer:                                | Tobin          |  |  |  |  |  |
| Job:      | D_TOBIN_DUB-1    | O Attention:                               | David Corrigan |  |  |  |  |  |
| Client    | 5965             | Order No.:                                 | 1943           |  |  |  |  |  |
| Location: | Rialta Site 14A1 | Report No:                                 | 104504         |  |  |  |  |  |

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH<sub>4</sub> by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- Surrogate recoveries Most of our organic methods include surrogates, the recovery of which is monitored and reported.
   For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

| LIQUID MATRICES EXTRACTION SUMMARY  |                    |                                                    |               |  |  |  |  |
|-------------------------------------|--------------------|----------------------------------------------------|---------------|--|--|--|--|
| ANALYSIS                            | EXTRACTION SOLVENT | EXTRACTION METHOD                                  | SISATANA      |  |  |  |  |
| PAH MS                              | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |
| EPH                                 | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |
| EPH CWG                             | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |
| MINERAL OIL                         | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |
| PCB 7 CONGENERS                     | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |
| PCB TOTAL                           | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GS MS         |  |  |  |  |
| SVOC                                | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |
| FREE SULPHUR                        | DCM                | SOLID PHASE EXTRACTION                             | HPLC          |  |  |  |  |
| PEST OCP/OPP                        | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |
| TRIAZINE HERBS                      | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |
| PHENOLS MS<br>TPH by INFRA RED (IR) | DCM<br>TCE         | SOLID PHASE EXTRACTION<br>LIQUID/LIQUID EXTRACTION | GC MS<br>HPLC |  |  |  |  |
| MINERAL OIL by IR                   | TCE                | LIQUID/LIQUID EXTRACTION                           | HPLC          |  |  |  |  |
| GLYCOLS                             | NONE               | DIRECT INJECTION                                   | GC FID        |  |  |  |  |

| ANALYSIS                              | D/C OR WET | EXTRACTION SOLVENT | EXTRACTION METHOD   | ANALYSIS    |
|---------------------------------------|------------|--------------------|---------------------|-------------|
| Solvent Extractable Matter            | D&C        | DCM                | SOXTHERM            | GRAVIMETRIC |
| Cyclohexane Ext. Matter               | D&C        | CYCLOHEXANE        | SOXTHERM            | GRAVIMETRIC |
| Thin Layer Chromatography             | D&C        | DCM                | SOXTHERM            | IATROSCAN   |
| Elemental Sulphur                     | D&C        | DCM                | SOXTHERM            | HPLC        |
| Phenols by GCMS                       | WET        | DCM                | SOXTHERM            | GC-MS       |
| Herbicides                            | D&C        | HEXANE:ACETONE     | SOXTHERM            | GC-MS       |
| Pesticides                            | D&C        | HEXANE:ACETONE     | SOXTHERM            | GC-MS       |
| EPH (DRO)                             | D&C        | HEXANE:ACETONE     | END OVER<br>END     | GC-FID      |
| EPH (Min oil)                         | D&C        | HEXANE:ACETONE     | END OVER<br>END     | GC-FID      |
| EPH (Cleaned up)                      | D&C        | HEXANE:ACETONE     | END OVER<br>END     | GC-FID      |
| EPH CWG by GC                         | D&C        | HEXANE:ACETONE     | END OVER<br>END     | GC-FID      |
| PCB tot / PCB con                     | D&C        | HEXANE:ACETONE     | END OVER<br>END     | GC-MS       |
| Polyaromatic Hydrocarbons<br>(MS)     | WET        | HEXANE:ACETONE     | Microwave<br>TM218. | GC-MS       |
| C8-C40 (C6-C40)EZ Flash               | WET        | HEXANE:ACETONE     | SHAKER              | GC-EZ       |
| Polyaromatic Hydrocarbons<br>Rapid GC | WET        | HEXANE:ACETONE     | SHAKER              | GC-EZ       |
| Semi Volatile Organic<br>Compounds    | WET        | DCM:ACETONE        | SONICATE            | GC-MS       |

### **Identification of Asbestos in Bulk Materials**

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

#### Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in

#### MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

#### Asbestos Type

#### Common Name

Chrysotile Amosite Crocidolite Fibrous Actinolite Fibrous Anthophyllite Fibrous Tremolite White Asbestos Brown Asbestos Blue Asbestos --

## **APPENDIX D**

Annual Noise Monitoring Report

## Rilta Environmental Limited - Site 14-A1 Environmental Monitoring Programme



## Annual Noise Survey Report October 2010

October 2010 Revision: Final

## TOBIN CONSULTING ENGINEERS







# REPORT

## **PROJECT:**

Rilta Environmental Ltd, Site 14-A1

### **CLIENT:**

#### **Rilta Environmental Ltd.**

Site No. 14A1, Greenogue Business Park, Rathcoole, County Dublin.

## **COMPANY:**

## **TOBIN Consulting Engineers** Block 10-4, Blanchardstown Corporate Park,

Dublin 15.

www.tobin.ie



#### DOCUMENT AMENDMENT RECORD

Client: Rilta Environmental Ltd

Project: Rilta Site 14-A1

Title: 2010 Annual noise survey

|          | PROJECT NUMBER:                    | DOCUMENT REF: 5965 - 04 - 01 |          |         |          |            |          |
|----------|------------------------------------|------------------------------|----------|---------|----------|------------|----------|
|          |                                    |                              |          |         |          |            |          |
|          |                                    |                              |          |         |          |            |          |
|          |                                    |                              |          |         |          |            |          |
|          |                                    |                              |          |         |          |            |          |
|          |                                    |                              |          |         |          |            |          |
| Final    | 2010 Annual Noise Survey           | DC/BS                        | 19/10/10 | BS      | 19/10/10 | DG         | 19/10/10 |
| Revision | <b>Description &amp; Rationale</b> | Originated                   | Date     | Checked | Date     | Authorised | Date     |
|          | TOBIN Consulting Engineers         |                              |          |         |          |            |          |





## **TABLE OF CONTENTS**

| 1 |     |                         |   |  |  |  |  |
|---|-----|-------------------------|---|--|--|--|--|
| 2 | AN  | INUAL NOISE SURVEY      | 1 |  |  |  |  |
| 2 | 2.1 | INSTRUMENTATION USED    | 1 |  |  |  |  |
| 2 | 2.2 | MEASUREMENT PROCEDURE   | 1 |  |  |  |  |
| 2 | 2.3 | RESULTS OF NOISE SURVEY | 2 |  |  |  |  |
| 3 | со  | ONCLUSION               | 3 |  |  |  |  |

## **TABLES & APPENDICES**

| Table 2-1 | Noise Monitoring Locations                               | . 2 |
|-----------|----------------------------------------------------------|-----|
| Table 2-2 | Noise Monitoring Results – dB(A) and 30 minute intervals | . 2 |

## **APPENDICES**

Appendix A – Noise Monitoring Locations map Appendix B – 1/3 Octave band Frequency Analysis Results



#### **1** INTRODUCTION

Rilta Environmental Ltd. (hereafter referred to as RILTA) retained TOBIN Consulting Engineers (TOBIN) to conduct annual noise monitoring at its Site 14-A1 facility, as per Schedule D of Waste Licence 185-01. Site 14-A1 is located in Greenogue Business Park, Rathcoole, County Dublin. This report includes details of the noise monitoring conducted during the annual survey which was conducted on 1<sup>st</sup> September 2010.

#### 2 ANNUAL NOISE SURVEY

The noise survey was carried out within the site boundary at 3 no. monitoring locations agreed with the EPA as per drawing 569 - 42 - 108 (see Appendix A). Weather conditions during monitoring were dry and calm with no breeze. The following conditions were adhered to in undertaking the survey:

- Measurement of noise levels was undertaken using Type 1 instrumentation;
- Cognisance was taken of the EPA's 'Environmental Noise Survey Guidance Document, 2003; and
- The survey was carried out in accordance with ISO 1996 Acoustics Description and Measurement of Environmental Noise: Parts 1/2/3.

#### 2.1 INSTRUMENTATION

The following instrumentation was used in the environmental noise monitoring survey:

- One Larson Davis 824 Precision Integrating Sound Level Analyser/Data logger with *Real-Time* Frequency Analyser Facility;
- Wind Shield Type: Larson Davis 2120 Windscreen; and
- Calibration Type: Larson Davis Precision Acoustic Calibrator Model CA200.

#### 2.2 MEASUREMENT PROCEDURE

Daytime and night time noise monitoring was carried out on 1<sup>st</sup> September 2010. Noise monitoring was undertaken for 30 minute intervals at 3 no. agreed EPA locations, as per Schedule D of Waste Licence 185-01. All the environmental noise analysers had data logging facilities set on real-time, the logged data was later downloaded via a personal computer using software. One third octave frequency analysis was taken at the locations using the 824 Precision Integrating Sound Level Analyser/Data logger with *real-time* frequency analyser facility.

The measurement locations were all away from reflecting surfaces and at 1.5m height above local ground.

All acoustic instrumentation was calibrated before and after the survey period and no drift of calibration was observed (calibration level 114dB at 1000Hz).

#### 2.3 RESULTS OF NOISE SURVEY

The noise monitoring locations are described in Table 2-1 and illustrated in drawing 569 -42 -108 (see Appendix A). The results of the noise survey are summarised in Table 2-2 and the 1/3 octave frequency analysis data is given in graphical format in Appendix B.

#### **Table 2-1 Noise Monitoring Locations**

| Monitoring<br>Location | Description                    |
|------------------------|--------------------------------|
| N1                     | South western boundary of site |
| N2                     | North western boundary of site |
| N3                     | South eastern boundary of site |

#### **Location N1**

Noise monitoring location N1 is located at the site entrance, at the southwestern site boundary. Noise at this location was dominated in both the day and night period by Baldonnel air traffic and passing traffic on the internal industrial estate roads.

#### Location N2

N2 is located in the northwestern corner of the site. Aircraft, road traffic and adjacent facilities were the main noise contributors at N2.

#### **Location N3**

N3 is located at the southeastern site boundary. At this location, activity from neighbouring facilities, truck movements and aviation traffic dominated the noise sources.

| Receptor | Time  | Leq  | L10  | L90  | Notes                                                                                                                                                         |
|----------|-------|------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |       |      |      |      | DAY TIME                                                                                                                                                      |
| N1       | 17:00 | 61.5 | 65.4 | 48.3 | Rush hour road traffic on adjacent road is the dominant noise source. Overhead aircraft were also audible. The RILTA Facility was inaudible.                  |
| N2       | 12:57 | 49.8 | 53.3 | 43.0 | Passing road traffic is the dominant noise source, overhead<br>aircraft and helicopters were also audible. The RILTA Facility was<br>inaudible.               |
| N3       | 13:59 | 59.0 | 61.0 | 48.4 | Alarms offsite, aircraft overhead, activity in neighbouring site is the dominant noise source. The RILTA Facility was inaudible                               |
|          |       |      |      |      | NIGHT TIME                                                                                                                                                    |
| N1       | 01:36 | 53.4 | 49.1 | 38.4 | Passing traffic & aircraft is the dominant noise source. The RILTA<br>Facility was inaudible.                                                                 |
| N2       | 00:26 | 49.5 | 45.7 | 36.4 | Passing traffic and distant traffic, aircraft, alarm sounding in adjacent site is the dominant noise sources. The RILTA Facility was inaudible.               |
| N3       | 01:03 | 45.8 | 47.5 | 36.4 | Passing road traffic, aircraft in training overhead and fighter<br>aircraft doing circuits is the dominant noise source. The RILTA<br>Facility was inaudible. |

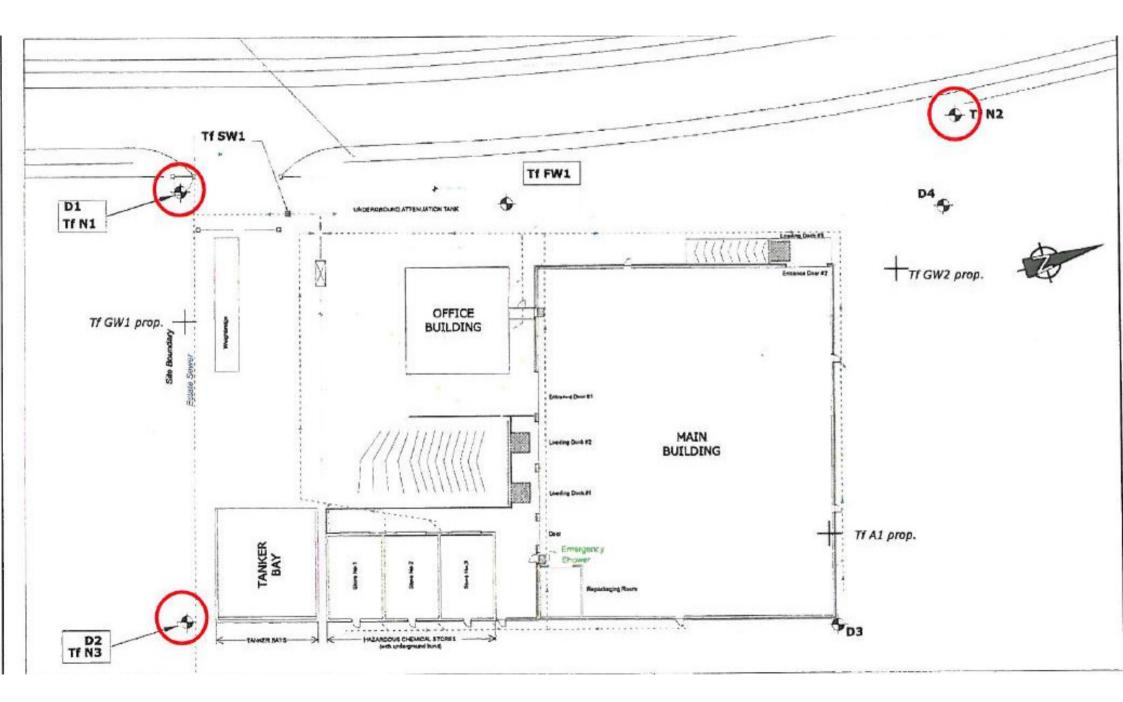
#### Table 2-2 Noise Monitoring Results – dB(A) and 30 minute intervals

#### **3** CONCLUSION

The noise emission limits as per Schedule C of Waste Licence 0185 - 01 are 55 dB(A) for daytime and 45 dB(A) for night time. These levels specifically relate to noise emissions arising from the facility, measured at any noise sensitive location.

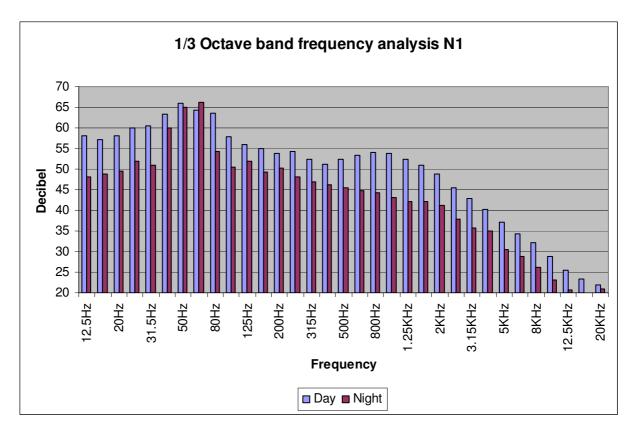
The noise emissions from RILTA Environmental Ltd. are given in Table 2-2 above.

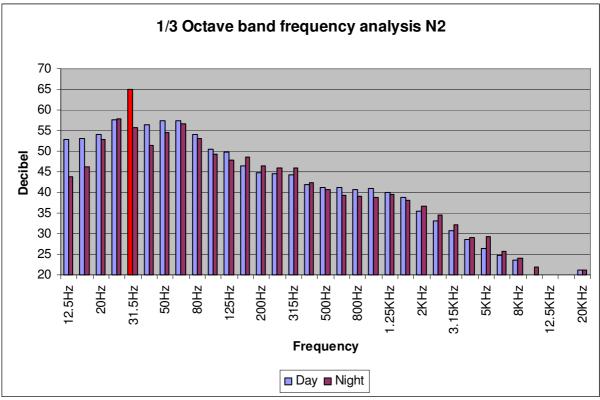
Noise levels recorded at the 3 no. EPA agreed noise monitoring locations contain noise emissions from adjacent industrial sites, low flying aircraft and traffic on the internal road network of the industrial estate. Noise emissions from the RILTA facility were inaudible during both the daytime and night time monitoring. Note that the EPA agreed noise monitoring locations are all on site and do not reflect emissions at noise sensitive locations.

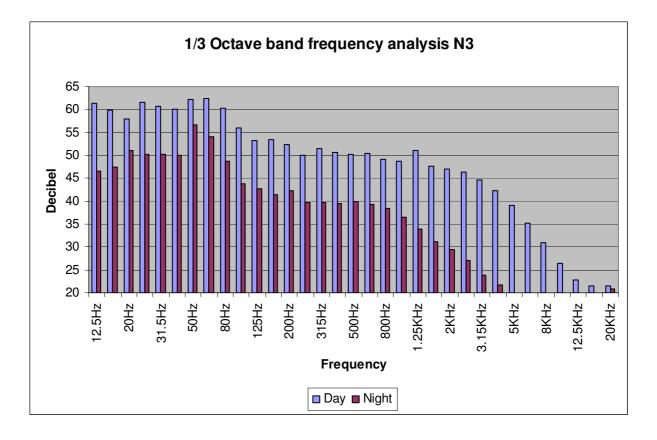

The A-weighted equivalent continuous sound pressure level (LAeq, 30 min) recorded at the RILTA facility was less than 55 dB(A) at noise monitoring location N2 only, during the daytime monitoring event. Noise levels at N1 and N3 exceeded the 55 dB(A) limit due to noise from external sources such as low flying aircraft from nearby Baldonnell Airport, passing traffic on the internal roads of the industrial estate, distant traffic on the N7 and activities in adjacent sites.

No noise emissions due to the RILTA facility were generally audible during the night time monitoring period. During the night time monitoring period the A-weighted equivalent continuous sound pressure level (LAeq, 30 min) was more than 45 dB(A) (night time) at all monitoring locations. As the RILTA facility was inaudible the recorded exceedances are attributed to extraneous noise sources such as traffic on the internal industrial estate road network or low flying aircraft from nearby Baldonnell Airport.

There were no impulsive noise emissions audible at any of the monitoring locations during the daytime or night time monitoring period. With regard to tonal emissions, a pure tone was detected during the day at Location N2 (31.5Hz). This tone was not audible and was not detected at the same location during the night survey, and as such is thought to be from a mobile or off site source. No further pure tones were detected during the daytime or night time surveys. Full 1/3 octave frequency band analysis of all surveys is presented in Appendix B to this report.


# **APPENDIX A**


**Monitoring Location Map** 




# **APPENDIX B**

1/3 Octave Band Frequency Analysis







# **APPENDIX E**

**Dust Monitoring Results** 



Attention: Da

David Corrigan

## **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: 19 May 2010 D\_TOBIN\_DUB-12 100510-37 **Report No.:** 84177 5965 Rilta Environmental Site 14 A1

We received 4 samples on Friday May 07, 2010 and 4 of these samples were scheduled for analysis which was completed on Wednesday May 19, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

enton

Iain Swinton Operations Director - Land UK & Ireland

| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|--|
| SDG:                     | 100510-37                                  | Customer:  | Tobin          |  |  |  |  |  |  |
| Job:                     | D_TOBIN_DUB-12                             | Attention: | David Corrigan |  |  |  |  |  |  |
| <b>Client Reference:</b> | 5965                                       | Order No.: | 1756           |  |  |  |  |  |  |
| Location:                | Rilta Environmental Site 14 A1             | Report No: | 84177          |  |  |  |  |  |  |

# Received Sample Overview

| Lab Sample No(s) | Customer Sample Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|-----------|--------------|
| 1517922          | D1                   |           |              |
| 1517929          | D2                   |           |              |
| 1517932          | D3                   |           |              |
| 1517937          | D4                   |           |              |

Only received samples which have had analysis scheduled will be shown on the following pages.

| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|--|
| SDG:                     | 100510-37                                  | Customer:  | Tobin          |  |  |  |  |  |  |
| Job:                     | D_TOBIN_DUB-12                             | Attention: | David Corrigan |  |  |  |  |  |  |
| <b>Client Reference:</b> | 5965                                       | Order No.: | 1756           |  |  |  |  |  |  |
| Location:                | Rilta Environmental Site 14 A1             | Report No: | 84177          |  |  |  |  |  |  |

#### LIQUID

| Results Legend                         | Lab Sample No(s)        | 1517922         | 1517929         | 1517932         | 1517937         |        |       |
|----------------------------------------|-------------------------|-----------------|-----------------|-----------------|-----------------|--------|-------|
| X Test<br>No Determination<br>Possible | Customer Sample<br>Ref. | Ď               | D2              | D3              | D4              |        |       |
|                                        | Depth (m)               |                 |                 |                 |                 |        | Total |
|                                        | Container               | 2l glass bottle | 2l glass bottle | 2l glass bottle | 2l glass bottle |        |       |
| Dust in Water                          | All                     | X               | X               | X               | X               | 0<br>4 |       |

| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|--|
| SDG:                     | 100510-37                                  | Customer:  | Tobin          |  |  |  |  |  |  |
| Job:                     | D_TOBIN_DUB-12                             | Attention: | David Corrigan |  |  |  |  |  |  |
| <b>Client Reference:</b> | 5965                                       | Order No.: | 1756           |  |  |  |  |  |  |
| Location:                | Rilta Environmental Site 14 A1             | Report No: | 84177          |  |  |  |  |  |  |

# **Test Completion dates**

| Lab Sample No(s)     | 1517922    | 1517929    | 1517932    | 1517937    |
|----------------------|------------|------------|------------|------------|
| Customer Sample Ref. | D1         | D2         | D3         | D4         |
| Depth                |            |            |            |            |
| Туре                 | LIQUID     | LIQUID     | LIQUID     | LIQUID     |
| Dust in Water        | 19/05/2010 | 19/05/2010 | 19/05/2010 | 19/05/2010 |

| Validated                                                                                                                                                                                     | ALcontrol Laboratories Analytical Services |                                        |                                    |                                    |                                            |                                          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|------------------------------------|------------------------------------|--------------------------------------------|------------------------------------------|--|--|
| SDG:<br>Job:<br>Client Reference:<br>Location:                                                                                                                                                | 100510-3<br>D_TOBIN<br>5965                | 37<br>N_DUB-1:                         |                                    | Cus<br>Atte<br>Ord                 | stomer:<br>ention:<br>ler No.:<br>port No: | Tobin<br>David Corrigan<br>1756<br>84177 |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
| Results Legend<br># ISO17025 accredited.<br>M mCERTS accredited.<br>aq Aqueous / settled sample.                                                                                              | Customer                                   | Sample Ref.<br>Depth (m)               | D1                                 | D2                                 | D3                                         | D4                                       |  |  |
| diss.filt Dissolved / filtered sample.<br>tot.unfilt Total / unfiltered sample.<br>* subcontracted test.                                                                                      | Da                                         | ample Type<br>ate Sampled              | Water(GW/SW)                       | Water(GW/SW)                       | Water(GW/S                                 |                                          |  |  |
| ** % recovery of the surrogate<br>standard to check the efficiency<br>of the method. The results of the<br>individual compounds within<br>the samples are not corrected<br>for this recovery. | Lab Sa                                     | te Received<br>SDG Ref<br>imple No.(s) | 07/05/2010<br>100510-37<br>1517922 | 07/05/2010<br>100510-37<br>1517929 | 07/05/2010<br>100510-33<br>1517932         | 7 100510-37                              |  |  |
| Component<br>Total volume received                                                                                                                                                            | LOD/Units<br>ml                            | Method<br>TM253                        | 174                                | 188                                | 180                                        | 178                                      |  |  |
| Dust, Total                                                                                                                                                                                   | <0.026                                     | TM253                                  | 75                                 | 98.2                               | 70.2                                       | 116                                      |  |  |
|                                                                                                                                                                                               | mg/m2/day                                  |                                        |                                    |                                    |                                            |                                          |  |  |
| Dust, Organic                                                                                                                                                                                 | mg/m2/day                                  | TM253                                  | 17.9                               | 31                                 | 44                                         | 46.4                                     |  |  |
| Dust, Inorganic                                                                                                                                                                               | mg/m2/day                                  | TM253                                  | 57.1                               | 67.3                               | 26.2                                       | 69.6                                     |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |
|                                                                                                                                                                                               |                                            |                                        |                                    |                                    |                                            |                                          |  |  |

# Table of Results - Appendix

| DG Number : 10                                                                                                                                                                                                                        | 00510-37   |     | Client : Tok             | oin |  | CI                                                       | ient Ref : {  | 5965                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|--------------------------|-----|--|----------------------------------------------------------|---------------|---------------------------------------------|
| PORT KEY                                                                                                                                                                                                                              |            |     |                          |     |  | Result                                                   | s expressed a | s (e.g.) 1.03E-07 is equivalent to 1.03x10- |
| DP No Determination                                                                                                                                                                                                                   | n Possible | #   | ISO 17025 Accredited     |     |  | Subcontracted Test                                       | М             | MCERTS Accredited                           |
| IFD No Fibres Detect                                                                                                                                                                                                                  | ed         | PFD | Possible Fibres Detected |     |  | Result previously reported<br>(Incremental reports only) | EC            | Equivalent Carbon<br>(Aromatics C8-C35)     |
| te: Method detection limits are not always achievable due to various circumstances beyond our control                                                                                                                                 |            |     |                          |     |  |                                                          |               |                                             |
| Method No Reference                                                                                                                                                                                                                   |            |     |                          |     |  | Description                                              |               | Wet/Dry<br>Sample <sup>1</sup>              |
| TM253       Dust is collected either using a "Frisbee"       The Determination of Dust         collector this is the "Stockholm" method       or using a "jam jar" collector, this is the         "Berghoff" method.       "Berghoff" |            |     |                          |     |  |                                                          |               |                                             |

<sup>1</sup> Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

# APPENDIX

#### **APPENDIX**

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH<sub>4</sub> by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- Surrogate recoveries Most of our organic methods include surrogates, the recovery of which is monitored and reported.
   For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

| LIQUID MATRICES EXTRACTION SUMMARY  |                    |                                                    |               |  |  |  |  |  |  |
|-------------------------------------|--------------------|----------------------------------------------------|---------------|--|--|--|--|--|--|
| ANALYSIS                            | EXTRACTION SOLVENT | ЕХТКАСТІОN МЕТНОD                                  | SISATNA       |  |  |  |  |  |  |
| PAH MS                              | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |  |  |
| EPH                                 | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |  |
| EPH CWG                             | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |  |
| MINERAL OIL                         | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |  |
| PCB 7 CONGENERS                     | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |  |  |
| PCB TOTAL                           | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GS MS         |  |  |  |  |  |  |
| SVOC                                | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |  |
| FREE SULPHUR                        | DCM                | SOLID PHASE EXTRACTION                             | HPLC          |  |  |  |  |  |  |
| PEST OCP/OPP                        | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |  |
| TRIAZINE HERBS                      | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |  |
| PHENOLS MS<br>TPH by INFRA RED (IR) | DCM<br>TCE         | SOLID PHASE EXTRACTION<br>LIQUID/LIQUID EXTRACTION | GC MS<br>HPLC |  |  |  |  |  |  |
| MINERAL OIL by IR                   | TCE                | LIQUID/LIQUID EXTRACTION                           | HPLC          |  |  |  |  |  |  |
| GLYCOLS                             | NONE               | DIRECT INJECTION                                   | GC FID        |  |  |  |  |  |  |

| ANALYSIS                              | D/C OR WET | EXTRACTION SOLVENT | EXTRACTION METHOD           | ANALYSIS    |
|---------------------------------------|------------|--------------------|-----------------------------|-------------|
| Solvent Extractable Matter            | D&C        | DCM                | SOXTHERM                    | GRAVIMETRIC |
| Cyclohexane Ext. Matter               | D&C        | CYCLOHEXANE        | SOXTHERM                    | GRAVIMETRIC |
| Thin Layer Chromatography             | D&C        | DCM                | SOXTHERM                    | IATROSCAN   |
| Elemental Sulphur                     | D&C        | DCM                | SOXTHERM                    | HPLC        |
| Phenols by GCMS                       | WET        | DCM                | SOXTHERM                    | GC-MS       |
| Herbicides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| Pesticides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| EPH (DRO)                             | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| EPH (Min oil)                         | D&C        | HEXANE:ACETONE     | END                         | GC-FID      |
| EPH (Cleaned up)                      | D&C        | HEXANE:ACETONE     | END OVER<br>END             | GC-FID      |
| EPH CWG by GC                         | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| PCB tot / PCB con                     | D&C        | HEXANE:ACETONE     | END                         | GC-MS       |
| Polyaromatic Hydrocarbons<br>(MS)     | WET        | HEXANE:ACETONE     | Microwave<br>TM218.         | GC-MS       |
| C8-C40 (C6-C40)EZ Flash               | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Polyaromatic Hydrocarbons<br>Rapid GC | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Semi Volatile Organic<br>Compounds    | WET        | DCM:ACETONE        | SONICATE                    | GC-MS       |

#### **Identification of Asbestos in Bulk Materials**

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

#### Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in

#### MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

#### Asbestos Type

#### Common Name

Chrysotile Amosite Crocidolite Fibrous Actinolite Fibrous Anthophyllite Fibrous Tremolite White Asbestos Brown Asbestos Blue Asbestos --



Attention: David Corrigan

### **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: 17 June 2010 D\_TOBIN\_DUB-16 100608-46 **Report No.:** 87501 5965 Rilta Site 14A1

We received 4 samples on Friday June 04, 2010 and 4 of these samples were scheduled for analysis which was completed on Thursday June 17, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

iton

Iain Swinton Operations Director - Land UK & Ireland

| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|
| SDG:                     | 100608-46                                  | Customer:  | Tobin          |  |  |  |  |  |
| Job:                     | D_TOBIN_DUB-16                             | Attention: | David Corrigan |  |  |  |  |  |
| <b>Client Reference:</b> | 5965                                       | Order No.: | 1776           |  |  |  |  |  |
| Location:                | Rilta Site 14A1                            | Report No: | 87501          |  |  |  |  |  |

# Received Sample Overview

| Lab Sample No(s) | Customer Sample Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|-----------|--------------|
| 1657758          | D1 1                 |           | 04/06/2010   |
| 1657766          | D2 1                 |           | 04/06/2010   |
| 1657772          | D3 1                 |           | 04/06/2010   |
| 1657776          | D4 1                 |           | 04/06/2010   |

Only received samples which have had analysis scheduled will be shown on the following pages.

| Validated                | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |
|--------------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|
| SDG:                     | 100608-46                                  | Customer:  | Tobin          |  |  |  |  |  |
| Job:                     | D_TOBIN_DUB-16                             | Attention: | David Corrigan |  |  |  |  |  |
| <b>Client Reference:</b> | 5965                                       | Order No.: | 1776           |  |  |  |  |  |
| Location:                | Rilta Site 14A1                            | Report No: | 87501          |  |  |  |  |  |

#### LIQUID

| ¥ -                                    |                         | _                   |                     |                     |                     |        |
|----------------------------------------|-------------------------|---------------------|---------------------|---------------------|---------------------|--------|
| Results Legend                         | Lab Sample No(s)        | 1657758             | 1657766             | 1657772             | 1657776             |        |
| X Test<br>No Determination<br>Possible | Customer Sample<br>Ref. | D1                  | D2                  | D3                  | D4                  |        |
|                                        | Depth (m)               |                     |                     |                     |                     | Total  |
|                                        | Container               | 11 glass bottle (D) | 11 glass bottle (D) | 11 glass bottle (D) | 1I glass bottle (D) |        |
| Dust in Water                          | All                     | X                   | x                   | X                   | X                   | 0<br>4 |

| Validated         | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |
|-------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|
| SDG:              | 100608-46 <b>Customer:</b> Tobin           |            |                |  |  |  |  |  |
| Job:              | D_TOBIN_DUB-16                             | Attention: | David Corrigan |  |  |  |  |  |
| Client Reference: | 5965                                       | Order No.: | 1776           |  |  |  |  |  |
| Location:         | Rilta Site 14A1                            | Report No: | 87501          |  |  |  |  |  |

### **Test Completion dates**

| SDG reference: | 100608-46 |
|----------------|-----------|
|----------------|-----------|

| Lab Sample No(s)     | 1657758    | 1657766    | 1657772    | 1657776    |
|----------------------|------------|------------|------------|------------|
| Customer Sample Ref. | D1         | D2         | D3         | D4         |
| Depth                |            |            |            |            |
| Туре                 | LIQUID     | LIQUID     | LIQUID     | LIQUID     |
| Dust in Water        | 17/06/2010 | 17/06/2010 | 17/06/2010 | 17/06/2010 |

| Validated                                                                                                                                                                                                                                                                                                   | ]                                         | ALco                                                                 | ontrol Lab                                     | oratories                                      | Analytica                                      | I Services                                     | 5 |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---|---|
| SDG<br>Job:<br>Client Reference:<br>Location:                                                                                                                                                                                                                                                               | 100608-4<br>D_TOBIN<br>5965<br>Rilta Site | 16<br>N_DUB-10                                                       |                                                | Cus<br>Atte<br>Orc                             | stomer: Tob                                    | oin<br>vid Corrigan<br>′6                      |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           | 1 17 (1                                                              |                                                |                                                |                                                |                                                |   | 1 |
| Results Legend           #         ISO17025 accredited.           M         mCERTS accredited.           aq         Aqueous / settled sample.           diss.fit         Disolved / filtered sample.           tot.unfit         Total / unfiltered sample.           *         % recovery of the surrogate | S                                         | Sample Ref.<br>Depth (m)<br>ample Type<br>ate Sampled<br>te Received | D1<br>Water(GW/SW)<br>04/06/2010<br>04/06/2010 | D2<br>Water(GW/SW)<br>04/06/2010<br>04/06/2010 | D3<br>Water(GW/SW)<br>04/06/2010<br>04/06/2010 | D4<br>Water(GW/SW)<br>04/06/2010<br>04/06/2010 |   |   |
| standard to check the efficiency<br>of the method. The results of the<br>individual compounds within<br>the samples are not corrected<br>for this recovery.<br>Component                                                                                                                                    | Lab Sa                                    | SDG Ref<br>imple No.(s)<br>Method                                    | 100608-46<br>1657758                           | 100608-46<br>1657766                           | 100608-46<br>1657772                           | 100608-46<br>1657776                           |   |   |
| Dust, Total                                                                                                                                                                                                                                                                                                 | <0.026<br>mg/m2/day                       | TM253                                                                | 72                                             | 189                                            | 122                                            | 127                                            |   |   |
| Dust, Organic                                                                                                                                                                                                                                                                                               | mg/m2/day                                 | TM253                                                                | 26.2                                           | 97                                             | 66.7                                           | 50.6                                           |   |   |
| Dust, Inorganic                                                                                                                                                                                                                                                                                             | mg/m2/day                                 | TM253                                                                | 45.8                                           | 92.3                                           | 55.4                                           | 76.2                                           |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |
|                                                                                                                                                                                                                                                                                                             |                                           |                                                                      |                                                |                                                |                                                |                                                |   |   |



### **Table of Results - Appendix**

| SDG N        | umber :                                                                                                                                                           | 100608-46                              |                | Client :                 | obin        |      | Cli                                                      | ent Ref : | 5965                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|--------------------------|-------------|------|----------------------------------------------------------|-----------|--------------------------------------------------------|
| REPOI        | RT KEY                                                                                                                                                            |                                        |                |                          |             |      |                                                          | Results e | xpressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7 |
| NDP          | No Determin                                                                                                                                                       | nation Possible                        | #              | ISO 17025 Accredited     |             |      | Subcontracted Test                                       | м         | MCERTS Accredited                                      |
| NFD          | No Fibres D                                                                                                                                                       | etected                                | PFD            | Possible Fibres Detected |             |      | Result previously reported<br>(Incremental reports only) | EC        | Equivalent Carbon<br>(Aromatics C8-C35)                |
| Note: Method | detection limits a                                                                                                                                                | re not always achievable due to variou | s circumstance | s beyond our control     |             |      |                                                          |           |                                                        |
| I            | Method I                                                                                                                                                          | No                                     | Refere         | nce                      |             |      | Description                                              |           | Wet/Dry<br>Sample <sup>1</sup>                         |
|              | TM253 Dust is collected either using a "Frisbee"<br>collector this is the "Stockholm" method<br>or using a "jam jar" collector, this is the<br>"Berghoff" method. |                                        |                | The Determ               | nination of | Dust |                                                          |           |                                                        |

<sup>1</sup> Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

# APPENDIX

#### **APPENDIX**

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH<sub>4</sub> by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- Surrogate recoveries Most of our organic methods include surrogates, the recovery of which is monitored and reported.
   For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

| LIQUID MATRICES EXTRACTION SUMMARY  |                    |                                                    |               |  |  |  |  |  |
|-------------------------------------|--------------------|----------------------------------------------------|---------------|--|--|--|--|--|
| ANALYSIS                            | EXTRACTION SOLVENT | ЕХТКАСТІОN МЕТНОD                                  | SISATNA       |  |  |  |  |  |
| PAH MS                              | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |  |
| EPH                                 | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |
| EPH CWG                             | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |
| MINERAL OIL                         | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |
| PCB 7 CONGENERS                     | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |  |
| PCB TOTAL                           | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GS MS         |  |  |  |  |  |
| SVOC                                | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |
| FREE SULPHUR                        | DCM                | SOLID PHASE EXTRACTION                             | HPLC          |  |  |  |  |  |
| PEST OCP/OPP                        | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |
| TRIAZINE HERBS                      | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |
| PHENOLS MS<br>TPH by INFRA RED (IR) | DCM<br>TCE         | SOLID PHASE EXTRACTION<br>LIQUID/LIQUID EXTRACTION | GC MS<br>HPLC |  |  |  |  |  |
| MINERAL OIL by IR                   | TCE                | LIQUID/LIQUID EXTRACTION                           | HPLC          |  |  |  |  |  |
| GLYCOLS                             | NONE               | DIRECT INJECTION                                   | GC FID        |  |  |  |  |  |

| ANALYSIS                              | D/C OR WET | EXTRACTION SOLVENT | EXTRACTION METHOD           | ANALYSIS    |
|---------------------------------------|------------|--------------------|-----------------------------|-------------|
| Solvent Extractable Matter            | D&C        | DCM                | SOXTHERM                    | GRAVIMETRIC |
| Cyclohexane Ext. Matter               | D&C        | CYCLOHEXANE        | SOXTHERM                    | GRAVIMETRIC |
| Thin Layer Chromatography             | D&C        | DCM                | SOXTHERM                    | IATROSCAN   |
| Elemental Sulphur                     | D&C        | DCM                | SOXTHERM                    | HPLC        |
| Phenols by GCMS                       | WET        | DCM                | SOXTHERM                    | GC-MS       |
| Herbicides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| Pesticides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| EPH (DRO)                             | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| EPH (Min oil)                         | D&C        | HEXANE:ACETONE     | END                         | GC-FID      |
| EPH (Cleaned up)                      | D&C        | HEXANE:ACETONE     | END OVER<br>END             | GC-FID      |
| EPH CWG by GC                         | D&C        | HEXANE:ACETONE     | END OVER<br>END             | GC-FID      |
| PCB tot / PCB con                     | D&C        | HEXANE:ACETONE     | END OVER<br>END             | GC-MS       |
| Polyaromatic Hydrocarbons<br>(MS)     | WET        | HEXANE:ACETONE     | Microwave<br>TM218.         | GC-MS       |
| C8-C40 (C6-C40)EZ Flash               | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Polyaromatic Hydrocarbons<br>Rapid GC | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Semi Volatile Organic<br>Compounds    | WET        | DCM:ACETONE        | SONICATE                    | GC-MS       |

#### **Identification of Asbestos in Bulk Materials**

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

#### Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in

#### MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

#### Asbestos Type

#### Common Name

Chrysotile Amosite Crocidolite Fibrous Actinolite Fibrous Anthophyllite Fibrous Tremolite White Asbestos Brown Asbestos Blue Asbestos --



Attention: David Corrigan

### **CERTIFICATE OF ANALYSIS**

Date: **Customer:** Sample Delivery Group (SDG): Your Reference: Location:

17 August 2010 D\_TOBIN\_DUB-25 100803-49

93846 Report No.:

We received 4 samples on Tuesday August 03, 2010 and 4 of these samples were scheduled for analysis which was completed on Wednesday August 11, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

5965

Site 14-A1

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

enton

Iain Swinton Operations Director - Land UK & Ireland

| Validated         | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |  |
|-------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|--|
| SDG:              | 100803-49                                  | Customer:  | Tobin          |  |  |  |  |  |  |
| Job:              | D_TOBIN_DUB-25                             | Attention: | David Corrigan |  |  |  |  |  |  |
| Client Reference: | 5965                                       | Order No.: | 1826           |  |  |  |  |  |  |
| Location:         | Site 14-A1                                 | Report No: | 93846          |  |  |  |  |  |  |

# Received Sample Overview

| Lab Sample No(s) | Customer Sample Ref. | AGS Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|----------|-----------|--------------|
| 1904181          | D1                   |          |           | 03/08/2010   |
| 1904184          | D2                   |          |           |              |
| 1904188          | D3                   |          |           | 03/08/2010   |
| 1904193          | D4                   |          |           | 03/08/2010   |

Only received samples which have had analysis scheduled will be shown on the following pages.

| Validated         | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |  |
|-------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|--|
| SDG:              | 100803-49                                  | Customer:  | Tobin          |  |  |  |  |  |  |
| Job:              | D_TOBIN_DUB-25                             | Attention: | David Corrigan |  |  |  |  |  |  |
| Client Reference: | 5965                                       | Order No.: | 1826           |  |  |  |  |  |  |
| Location:         | Site 14-A1                                 | Report No: | 93846          |  |  |  |  |  |  |

#### LIQUID

| Results Legend                   | Lab Sample No(s)        | 1904181               | 1904184               | 1904188   | 1904193               |        |
|----------------------------------|-------------------------|-----------------------|-----------------------|-----------|-----------------------|--------|
| X Test No Determination Possible | Customer Sample<br>Ref. | D1                    | D2                    | 묘         | D4                    |        |
|                                  | AGS Ref.                |                       |                       |           |                       |        |
|                                  | Depth (m)               |                       |                       |           |                       | Total  |
|                                  | Container               | 11 green glass bottle | 1l green glass bottle | 1lplastic | 1l green glass bottle |        |
| Dust in Water                    | All                     | ×                     | x                     | x         | X                     | 0<br>4 |

| Validated           | ALcontrol Laboratories Analytical Services |            |                |  |  |  |  |  |
|---------------------|--------------------------------------------|------------|----------------|--|--|--|--|--|
| SDG: 1              | 00803-49                                   | Customer:  | Tobin          |  |  |  |  |  |
| Job: D              | _TOBIN_DUB-25                              | Attention: | David Corrigan |  |  |  |  |  |
| Client Reference: 5 | 965                                        | Order No.: | 1826           |  |  |  |  |  |
| Location: S         | ite 14-A1                                  | Report No: | 93846          |  |  |  |  |  |

# **Test Completion dates**

|                      |            |            |            | SDG refe   | erence: 100803-49 |
|----------------------|------------|------------|------------|------------|-------------------|
| Lab Sample No(s)     | 1904181    | 1904184    | 1904188    | 1904193    |                   |
| Customer Sample Ref. | D1         | D2         | D3         | D4         |                   |
| Depth                |            |            |            |            |                   |
| Туре                 | LIQUID     | LIQUID     | LIQUID     | LIQUID     |                   |
| Dust in Water        | 11/08/2010 | 11/08/2010 | 11/08/2010 | 11/08/2010 |                   |

| Validated                                                                                                                                                                                                                                                                                                                                                                                                             | ]                                    | ALco                                                                                                          | ntrol Lab                                                              | oratories                                                | Analytica                                                              | al Services                                                            | 5 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|---|--|
| SDG         100803-49           Job:         D_TOBIN_DUB-25           Client Reference:         5965           Location:         Site 14-A1                                                                                                                                                                                                                                                                           |                                      |                                                                                                               | Cus<br>Atte<br>Orc                                                     | stomer: To<br>ention: Da<br>ler No.: 18                  | bbin<br>avid Corrigan<br>26<br>3846                                    |                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |
| Results Legend     ISO17025 accredited.     M m/CERTS accredited.     Aqueous / settled sample.     diss.fitt Dissolved / fittered sample.     tot.unfitt     Total / unfiltered sample.     subcontracted test.     * wrecovery of the surrogate     standard to check the efficiency     of the method. The results of the     individual compounds within     the samples are not corrected     for this recovery. | S<br>Da<br>Da<br>Da<br>Lab Sa<br>AGS | Sample Ref.<br>Depth (m)<br>ample Type<br>ite Sampled<br>te Received<br>SDG Ref<br>mple No.(s)<br>S Reference | D1<br>Water(GW/SW)<br>03/08/2010<br>03/08/2010<br>100803-49<br>1904181 | D2<br>Water(GW/SW)<br>03/08/2010<br>100803-49<br>1904184 | D3<br>Water(GW/SW)<br>03/08/2010<br>03/08/2010<br>100803-49<br>1904188 | D4<br>Water(GW/SW)<br>03/08/2010<br>03/08/2010<br>100803-49<br>1904193 |   |  |
| Component<br>Dust, Total                                                                                                                                                                                                                                                                                                                                                                                              | LOD/Units<br><0.026                  | Method<br>TM253                                                                                               | 92.2                                                                   | 169                                                      | 129                                                                    | 123                                                                    |   |  |
| Dust, Organic                                                                                                                                                                                                                                                                                                                                                                                                         | mg/m2/day                            | TM253                                                                                                         |                                                                        |                                                          | 80                                                                     |                                                                        |   |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/m2/day                            |                                                                                                               | 63.9                                                                   | 93.3                                                     |                                                                        | 83.3                                                                   |   |  |
| Dust, Inorganic                                                                                                                                                                                                                                                                                                                                                                                                       | mg/m2/day                            | TM253                                                                                                         | 28.3                                                                   | 75.6                                                     | 48.9                                                                   | 40                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                                               |                                                                        |                                                          |                                                                        |                                                                        |   |  |

# Table of Results - Appendix

| SDG Numb                                                                                                                                                                                                                                      | er: 10080                  | 3-49                     | Client : Tobin Client Ref : 5965 |                          |             |   |                                                          |            | 965                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|----------------------------------|--------------------------|-------------|---|----------------------------------------------------------|------------|-------------------------------------------------------|
|                                                                                                                                                                                                                                               | ΚEY                        |                          |                                  |                          |             |   |                                                          | Results ex | pressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7 |
| NDP No I                                                                                                                                                                                                                                      | Determination Possi        | ble                      | #                                | ISO 17025 Accredited     |             | * | Subcontracted Test                                       | м          | MCERTS Accredited                                     |
| NFD No I                                                                                                                                                                                                                                      | Fibres Detected            |                          | PFD                              | Possible Fibres Detected |             | » | Result previously reported<br>(Incremental reports only) | EC         | Equivalent Carbon<br>(Aromatics C8-C35)               |
| ote: Method detection                                                                                                                                                                                                                         | on limits are not always a | chievable due to various | circumstance                     | s beyond our control     |             | _ |                                                          |            |                                                       |
| Method No Reference                                                                                                                                                                                                                           |                            |                          |                                  |                          | Description |   | Wet/Dry<br>Sample <sup>1</sup>                           |            |                                                       |
| TM253       Dust is collected either using a "Frisbee"       The Determination of Dust         collector this is the "Stockholm" method       or using a "jam jar" collector, this is the         "Berghoff" method.       "Berghoff" method. |                            |                          |                                  |                          |             |   |                                                          |            |                                                       |

<sup>1</sup> Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

# **APPENDIX**

#### **APPENDIX**

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH<sub>4</sub> by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- Surrogate recoveries Most of our organic methods include surrogates, the recovery of which is monitored and reported.
   For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

| LIQUID MATRICES EXTRACTION SUMMARY  |                    |                                                    |               |
|-------------------------------------|--------------------|----------------------------------------------------|---------------|
| ANALYSIS                            | EXTRACTION SOLVENT | ЕХТКАСТІОN МЕТНОD                                  | SISATNA       |
| PAH MS                              | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |
| EPH                                 | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |
| EPH CWG                             | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |
| MINERAL OIL                         | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |
| PCB 7 CONGENERS                     | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |
| PCB TOTAL                           | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GS MS         |
| SVOC                                | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |
| FREE SULPHUR                        | DCM                | SOLID PHASE EXTRACTION                             | HPLC          |
| PEST OCP/OPP                        | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |
| TRIAZINE HERBS                      | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |
| PHENOLS MS<br>TPH by INFRA RED (IR) | DCM<br>TCE         | SOLID PHASE EXTRACTION<br>LIQUID/LIQUID EXTRACTION | GC MS<br>HPLC |
| MINERAL OIL by IR                   | TCE                | LIQUID/LIQUID EXTRACTION                           | HPLC          |
| GLYCOLS                             | NONE               | DIRECT INJECTION                                   | GC FID        |

| ANALYSIS                              | D/C OR WET | EXTRACTION SOLVENT | EXTRACTION METHOD           | ANALYSIS    |
|---------------------------------------|------------|--------------------|-----------------------------|-------------|
| Solvent Extractable Matter            | D&C        | DCM                | SOXTHERM                    | GRAVIMETRIC |
| Cyclohexane Ext. Matter               | D&C        | CYCLOHEXANE        | SOXTHERM                    | GRAVIMETRIC |
| Thin Layer Chromatography             | D&C        | DCM                | SOXTHERM                    | IATROSCAN   |
| Elemental Sulphur                     | D&C        | DCM                | SOXTHERM                    | HPLC        |
| Phenols by GCMS                       | WET        | DCM                | SOXTHERM                    | GC-MS       |
| Herbicides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| Pesticides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| EPH (DRO)                             | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| EPH (Min oil)                         | D&C        | HEXANE:ACETONE     | END                         | GC-FID      |
| EPH (Cleaned up)                      | D&C        | HEXANE:ACETONE     | END OVER<br>END             | GC-FID      |
| EPH CWG by GC                         | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| PCB tot / PCB con                     | D&C        | HEXANE:ACETONE     | END                         | GC-MS       |
| Polyaromatic Hydrocarbons<br>(MS)     | WET        | HEXANE:ACETONE     | Microwave<br>TM218.         | GC-MS       |
| C8-C40 (C6-C40)EZ Flash               | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Polyaromatic Hydrocarbons<br>Rapid GC | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Semi Volatile Organic<br>Compounds    | WET        | DCM:ACETONE        | SONICATE                    | GC-MS       |

#### **Identification of Asbestos in Bulk Materials**

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

#### Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in

#### MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

#### Asbestos Type

#### Common Name

Chrysotile Amosite Crocidolite Fibrous Actinolite Fibrous Anthophyllite Fibrous Tremolite White Asbestos Brown Asbestos Blue Asbestos --

#### **APPENDIX F**

Environmental Management Plan (EMP)

#### **RILTA ENVIRONMENTAL Ltd.**

#### **ENVIRONMENTAL MANAGEMENT SYSTEM**

#### ENVIRONMENTAL MANAGEMENT PLAN

#### ER-003

In accordance with **ISO 14001** 

**RILTA ENVIRONMENTAL** ENVIRONMENTAL MANAGEMENT SYSTEM Environmental Management Programme

#### <u>ENVIRONMENTAL MANAGEMENT PROGRAMME FOR THE</u> <u>ACHIEVEMENT OF OBJECTIVES AND TARGETS</u>

| EMP<br>Ref. | Objective                                                                          | Objective Environmental Management<br>Programme for the<br>implementation of objectives.         |         | Complet<br>ed<br>(Y/N) |  |
|-------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|------------------------|--|
| 1           | Increase<br>environmental<br>awareness<br>among RILTA<br>staff.                    | Develop and issue quarterly e-<br>mail environmental bulletin.                                   | June 10 | N                      |  |
| 2           | Promote best<br>practice in the<br>processing of<br>waste<br>generated on<br>site. | Assess implications of food<br>regulations and formulate waste<br>minimization plan accordingly. | Sept 10 | Y                      |  |
| 3           | Reduce<br>fugitive<br>emissions.                                                   | fugitive emissions.                                                                              |         | Y                      |  |

| Issue No. | 006        | Compiled by:  | Colm Hussey              |
|-----------|------------|---------------|--------------------------|
|           |            | Name/Position | Facility & Environmental |
|           |            |               | Manager                  |
| Date:     | March 2010 | Reviewed by:  | Nick Beale               |
|           |            | Name/Position | Managing Director        |

| RILTA ENVIRONMENTAL             | Issue No. 006    |
|---------------------------------|------------------|
| ENVIRONMENTAL MANAGEMENT SYSTEM | Date: March 2010 |
| Environmental Management Plan   | Page 2 of 8      |

| EMP<br>Ref. | Objective                                                         | Environmental Management<br>Programme for the<br>implementation of objectives.                                                                            | Completion<br>Date | Completed<br>(Y/N) |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| 4           | Improve site housekeeping.                                        | Insist that only fully and<br>correctly labeled drums/IBCs are<br>accepted on site.                                                                       | Ongoing            | Yes                |
|             |                                                                   | Investigate the possibility of<br>building a wall at the north end<br>of the site to control litter and<br>other contaminants from<br>reaching the river. |                    | No                 |
| 5           | Promote best<br>practice for<br>mixing<br>incompatible<br>wastes. | Complete re-assessment of<br>storage in Bays 4 and 7 and<br>implement findings<br>All corrosive wastes moved to<br>Bay 7.                                 | June 2010          | Yes                |

| Issue No. | 006        | Compiled by:<br>Name/Position | Colm Hussey<br>Facility & Environmental<br>Manager |
|-----------|------------|-------------------------------|----------------------------------------------------|
| Date:     | March 2010 | Reviewed by:<br>Name/Position | Nick Beale<br>Managing Director                    |

| RILTA ENVIRONMENTAL             | Issue No. 006    |
|---------------------------------|------------------|
| ENVIRONMENTAL MANAGEMENT SYSTEM | Date: March 2010 |
| Environmental Management Plan   | Page 3 of 8      |

| EMP<br>Ref. | Objective                                                        | Environmental Management<br>Programme for the<br>implementation of objectives.                                                                                                                   | Completion<br>Date | Completed<br>(Y/N) |  |
|-------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--|
| 6           | Reduce use of<br>hazardous raw<br>materials used<br>on site.     | Implement the 'treat waste with<br>waste' best practice method on<br>an ongoing basis<br>Waste Acceptance criteria<br>updated and laboratory<br>capabilities enhanced to ensure<br>best results. | Ongoing            | Yes                |  |
|             |                                                                  | Reduce volume of Xylene by 5%                                                                                                                                                                    | Dec 2010           | No                 |  |
| 7           | Optimize the<br>quality of<br>effluent<br>discharged to<br>sewer | Offer the customer free sample<br>analysis for waste in order to get<br>as much waste pre-tested as<br>possible.<br>Waste Acceptance criteria<br>updated.                                        | Ongoing            | Yes                |  |
|             |                                                                  | Investigate the JLJ reverse<br>osmosis system as a means of<br>secondary/tertiary form of<br>treatment<br>Biological Treatment plant<br>piloted in its stead                                     | Oct 2010           | No                 |  |

| Issue No. | 006        | Compiled by:<br>Name/Position | Colm Hussey<br>Facility & Environmental<br>Manager |
|-----------|------------|-------------------------------|----------------------------------------------------|
| Date:     | March 2010 | Reviewed by:<br>Name/Position | Nick Beale<br>Managing Director                    |

| RILTA ENVIRONMENTAL             | Issue No. 006    |
|---------------------------------|------------------|
| ENVIRONMENTAL MANAGEMENT SYSTEM | Date: March 2010 |
| Environmental Management Plan   | Page 4 of 8      |

| EMP<br>Ref. | Objective                          | Environmental Management<br>Programme for the<br>implementation of objectives.  | Completion<br>Date | Completed<br>(Y/N) |
|-------------|------------------------------------|---------------------------------------------------------------------------------|--------------------|--------------------|
| 8           | To be a good<br>and<br>considerate | Complete noise monitoring.                                                      | Ongoing            | Yes                |
|             | neighbour.                         | Review site landscaping project<br>to enhance the visual aspect of<br>the site. | Sept 2010          | Yes                |
|             |                                    | Plans to erect visual barrier put<br>on hold Jan 2011                           |                    |                    |
|             |                                    | Monitor adjoining river on a yearly basis.                                      | Ongoing            | Yes                |
|             |                                    | Maintain a 'complaints register'<br>and review annually.                        | Ongoing            | Yes                |
|             |                                    | Liaise with industrial neighbours<br>on a quarterly basis                       | Ongoing            | Yes                |
|             |                                    | Implement 'closed door' policy system                                           | Ongoing            | Yes                |
|             |                                    | Investigate the effectiveness of general site extraction fans                   | August<br>2010     | No                 |
| 9           | Fire Safety                        | Complete building fire safety review and implement findings.                    | September<br>2010  | Yes                |
|             |                                    | In draft form                                                                   |                    |                    |

| Issue No. | 006        | Compiled by:<br>Name/Position | Colm Hussey<br>Facility & Environmental<br>Manager |
|-----------|------------|-------------------------------|----------------------------------------------------|
| Date:     | March 2010 | Reviewed by:<br>Name/Position | Nick Beale<br>Managing Director                    |

#### **RILTA ENVIRONMENTAL Ltd.**

#### **ENVIRONMENTAL MANAGEMENT SYSTEM**

#### ENVIRONMENTAL MANAGEMENT PLAN

#### ER-003

In accordance with **ISO 14001** 

**RILTA ENVIRONMENTAL** ENVIRONMENTAL MANAGEMENT SYSTEM Environmental Management Programme

#### <u>ENVIRONMENTAL MANAGEMENT PROGRAMME FOR THE</u> <u>ACHIEVEMENT OF OBJECTIVES AND TARGETS</u>

| EMP<br>Ref. | Objective                                                                          | Environmental Management<br>Programme for the<br>implementation of objectives. | Completion<br>Date | Complet<br>ed<br>(Y/N) |
|-------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|------------------------|
| 1           | Increase<br>environmental<br>awareness<br>among RILTA<br>staff.                    | Develop and issue quarterly e-<br>mail environmental bulletin.                 | June 11            |                        |
| 2           | Promote best<br>practice in the<br>processing of<br>waste<br>generated on<br>site. | Extend Green bin system to all office and warehouse areas.                     | Sept 11            |                        |
| 3           | Reduce<br>fugitive<br>emissions.                                                   | Annual monitoring of fugitive<br>emissions.                                    | Ongoing            |                        |

| Issue No. | 007        | Compiled by:<br>Name/Position | Colm Hussey<br>Facility & Environmental<br>Manager |
|-----------|------------|-------------------------------|----------------------------------------------------|
| Date:     | March 2011 | Reviewed by:<br>Name/Position | Eftim Ivanoff<br>Operations Director               |

|                               | Issue No. 007<br>Date: March 2011 |
|-------------------------------|-----------------------------------|
| Environmental Management Plan | Page 2 of 8                       |

| EMP<br>Ref. | Objective                                      | Environmental Management<br>Programme for the<br>implementation of objectives.                                                                            | Completion<br>Date | Completed<br>(Y/N) |
|-------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| 4           | Improve site housekeeping.                     | Insist that only fully and<br>correctly labeled drums/IBCs are<br>accepted on site.                                                                       | Ongoing            |                    |
|             |                                                | Investigate the possibility of<br>building a wall at the north end<br>of the site to control litter and<br>other contaminants from<br>reaching the river. | tbc                |                    |
| 5           | Reduce trade<br>effluent sent<br>to foul sewer | Investigate tertiary treatment of<br>effluent with a view of re-using<br>treated aqueous waste.                                                           | Oct 2011           |                    |

| Issue No. | 007        | Compiled by:<br>Name/Position | Colm Hussey<br>Facility & Environmental<br>Manager |
|-----------|------------|-------------------------------|----------------------------------------------------|
| Date:     | March 2011 | Reviewed by:<br>Name/Position | Eftim Ivanoff<br>Operations Director               |

| RILTA ENVIRONMENTAL             | Issue No. 007    |
|---------------------------------|------------------|
| ENVIRONMENTAL MANAGEMENT SYSTEM | Date: March 2011 |
| Environmental Management Plan   | Page 3 of 8      |

| EMP<br>Ref. | Objective                                                        | Environmental Management<br>Programme for the<br>implementation of objectives.                                                                                     | Completion<br>Date  | Completed<br>(Y/N) |
|-------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|
| 6           | Reduce use of<br>hazardous raw<br>materials used<br>on site.     | Implement the 'treat waste with<br>waste' best practice method on<br>an ongoing basis                                                                              | Ongoing             |                    |
|             |                                                                  | Reduce volume of Xylene by 5%                                                                                                                                      | Dec 2011            |                    |
| 7           | Optimize the<br>quality of<br>effluent<br>discharged to<br>sewer | Offer the customer free sample<br>analysis for waste in order to get<br>as much waste pre-tested as<br>possible.<br>Investigate tertiary treatment of<br>effluent. | Ongoing<br>Oct 2011 |                    |
|             |                                                                  |                                                                                                                                                                    |                     |                    |

| Issue No. | 007        | Compiled by:<br>Name/Position | Colm Hussey<br>Facility & Environmental<br>Manager |
|-----------|------------|-------------------------------|----------------------------------------------------|
| Date:     | March 2011 | Reviewed by:<br>Name/Position | Eftim Ivanoff<br>Operations Director               |

| RILTA ENVIRONMENTAL             | Issue No. 007    |
|---------------------------------|------------------|
| ENVIRONMENTAL MANAGEMENT SYSTEM | Date: March 2011 |
| Environmental Management Plan   | Page 4 of 8      |

| EMP<br>Ref. | Objective                                                                                        | Environmental Management<br>Programme for the<br>implementation of objectives. | Completion<br>Date | Completed<br>(Y/N) |
|-------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|--------------------|
| 8           | To be a good<br>andComplete noise monitoring.considerate<br>neighbour.Complete noise monitoring. |                                                                                | Ongoing            |                    |
|             | in gire out                                                                                      | Monitor adjoining river on a yearly basis.                                     | Ongoing            |                    |
|             |                                                                                                  | Maintain a 'complaints register'<br>and review annually.                       | Ongoing            |                    |
|             |                                                                                                  | Liaise with industrial neighbours<br>on a quarterly basis                      | Ongoing            |                    |
|             |                                                                                                  | Implement 'closed door' policy<br>system                                       | Ongoing            |                    |
| 9           | Fire Safety                                                                                      | Complete building fire safety review and implement findings.                   | September<br>2011  |                    |
| 10          | To Be Energy<br>Efficient                                                                        | Complete energy audit                                                          | Dec 2011           |                    |

| Issue No. | 007        | Compiled by:<br>Name/Position | Colm Hussey<br>Facility & Environmental<br>Manager |
|-----------|------------|-------------------------------|----------------------------------------------------|
| Date:     | March 2011 | Reviewed by:<br>Name/Position | Eftim Ivanoff<br>Operations Director               |

#### **APPENDIX G**

Pollutant Release and Transfer Register (PRTR)



| PRTR# : W0185 | Facility Name : Rilta Environmental Limited | Filename : W0185\_2010(1) xis | Return Year : 2010 |

Guidance to completing the PRTR workbook

#### **AER Returns Workbook**

Version 1.1.12

#### **REFERENCE YEAR** 2010

#### **1. FACILITY IDENTIFICATION**

| 1. FACILITY IDENTIFICATION              |                                                                        |
|-----------------------------------------|------------------------------------------------------------------------|
|                                         | Rilta Environmental Limited                                            |
|                                         | Rilta Environmental Limited                                            |
| PRTR Identification Number              |                                                                        |
| Licence Number                          | W0185-01                                                               |
| Waste or IPPC Classes of Activity       |                                                                        |
| No.                                     | class_name                                                             |
|                                         | Storage of waste intended for submission to any activity referred to   |
|                                         | in a preceding paragraph of this Schedule, other than temporary        |
|                                         | storage, pending collection, on the premises where such waste is       |
| 4.13                                    | produced.                                                              |
|                                         | Blending or mixture prior to submission to any activity referred to in |
| 3.11                                    | a preceding paragraph of this Schedule.                                |
|                                         | Repackaging prior to submission to any activity referred to in a       |
| 3.12                                    | preceding paragraph of this Schedule.                                  |
|                                         | Storage prior to submission to any activity referred to in a           |
|                                         | preceding paragraph of this Schedule, other than temporary             |
| 2.42                                    | storage, pending collection, on the premises where the waste           |
|                                         | concerned is produced.                                                 |
| 3.7                                     | Use of waste obtained from any activity referred to in a preceding     |
| 4 11                                    | paragraph of this Schedule.                                            |
| 4.11                                    | Exchange of waste for submission to any activity referred to in a      |
| 4 12                                    | preceding paragraph of this Schedule.                                  |
| 7.16                                    | Recycling or reclamation of organic substances which are not used      |
|                                         | as solvents (including composting and other biological                 |
| 4.2                                     | transformation processes).                                             |
|                                         | Recycling or reclamation of metals and metal compounds.                |
|                                         | Recycling or reclamation of other inorganic materials.                 |
| Address 1                               | Parkview House                                                         |
|                                         | Beech Hill                                                             |
|                                         | Clonskeagh                                                             |
| Address 4                               | Co. Dublin                                                             |
|                                         |                                                                        |
| Country                                 | Ireland                                                                |
| Coordinates of Location                 |                                                                        |
| River Basin District                    |                                                                        |
| NACE Code                               | 3832                                                                   |
|                                         | Recovery of sorted materials                                           |
| AER Returns Contact Name                |                                                                        |
| AER Returns Contact Email Address       |                                                                        |
| AER Returns Contact Position            |                                                                        |
| AER Returns Contact Telephone Number    |                                                                        |
| AER Returns Contact Mobile Phone Number |                                                                        |
| AER Returns Contact Fax Number          |                                                                        |
| Production Volume                       |                                                                        |
| Production Volume Units                 |                                                                        |
| Number of Installations                 |                                                                        |
| Number of Operating Hours in Year       | 2600                                                                   |

| PRTR# : W0185 | Facility Name : Rilta Environmental Limited | Filename : W0185\_2010(1).xls | Return Year? age 0 bf 2

| Number of Employees    | 8 |
|------------------------|---|
| User Feedback/Comments |   |
| Web Address            |   |

#### 2. PRTR CLASS ACTIVITIES

| Activity Number                                    | Activity Name                                                 |
|----------------------------------------------------|---------------------------------------------------------------|
| 5(a)                                               | Installations for the recovery or disposal of hazardous waste |
| 5(c)                                               | Installations for the disposal of non-hazardous waste         |
| 50.1                                               | General                                                       |
| 3. SOLVENTS REGULATIONS (S.I. No. 543 of 20        | 02)                                                           |
| Is it applicable?                                  | No                                                            |
| Have you been granted an exemption ?               | No                                                            |
| If applicable which activity class applies (as per |                                                               |
| Schedule 2 of the regulations) ?                   |                                                               |
| Is the reduction scheme compliance route being     |                                                               |
| used ?                                             |                                                               |

### AER Returns Workbook

## Link to previous years emissions data 4.2 RELEASES TO WATERS

| PRTP# 195165 | Eacity Nems Relis Environmental Limited | Elemente : Valide\_ 2010(51 % | Relium Year 2010.]

12645201112-13

| CTION A : SECTOR SPECIFIC PRTR POLLUTAL | NTS                | Data on amb | Hent mon                                        | toring of storm/surface water or groundwater, conducted as part of your licence requirements, should NOT be submitted under AER / PRTR Reporting as this on | er, conducted as part of your | r licence requirements, should   | I NOT be submitted under AER | / PRTR Reporting as this on              |
|-----------------------------------------|--------------------|-------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|------------------------------|------------------------------------------|
|                                         | RELEASES TO WATERS |             |                                                 |                                                                                                                                                             | Please enter all quantit      | uantities in this section in KGs | 35                           |                                          |
|                                         | POLLUTANT          |             | ALC: NO AND |                                                                                                                                                             |                               |                                  | QUANTITY                     |                                          |
|                                         |                    |             |                                                 | Method Used                                                                                                                                                 |                               |                                  |                              |                                          |
| No. Annex II                            | Name               | M/C/E       | Method Code                                     | Designation or Description Emission Point 1                                                                                                                 | Emission Point 1              | T (Total) KG/Year                | A (Accidental) KG/Year       | Accidental) KG/Year F (Fugitive) KG/Year |
|                                         |                    |             |                                                 |                                                                                                                                                             |                               | 0.0                              | 0.0                          | 0.0                                      |

\* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

| SECTION B : REMAINING PRIR POLLUTANTS |                    |                         |                                                         |                                             |                            |                                           |                   |
|---------------------------------------|--------------------|-------------------------|---------------------------------------------------------|---------------------------------------------|----------------------------|-------------------------------------------|-------------------|
|                                       | RELEASES TO WATERS |                         |                                                         | Please enter all quantities in this section | section in KGs             |                                           |                   |
|                                       | POLLUTANT          | and and a second second |                                                         |                                             | QUANTITY                   | rity                                      |                   |
|                                       |                    |                         | Method Used                                             |                                             |                            |                                           |                   |
| No. Annex II                          | Name               | M/C/E                   | Method Code Designation or Description Emission Point 1 |                                             | T (Total) KG/Year A (Accid | (Accidental) KG/Year F (Fugitive) KG/Year | Fugitive) KG/Year |

\* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

# SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

|                     | RELEASES TO WATERS |                                                                                                                 | Please en                                              | lease enter all quantities in this section in KGs | Gs                                                            | A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER |
|---------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sel - CITAN PARTINE | POLLUTANT          | THE R. LEWIS CO., LANSING, MICH.                                                                                |                                                        |                                                   | QUANTITY                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                    | The second se | Method Used                                            |                                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pollutant No.       | Name               | M/C/E Meth                                                                                                      | ethod Code Designation or Description Emission Point 1 |                                                   | T (Total) KG/Year A (Accidental) KG/Year F (Fugitive) KG/Year | F (Fugitive) KG/Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                    |                                                                                                                 |                                                        |                                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                    |                                                                                                                 | COD measured x Average                                 |                                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                    |                                                                                                                 | Rainfall (700mm) x outdoor                             |                                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 306                 | COD                | C OTH                                                                                                           | surface area (4000m2)                                  | 47.32 47.                                         | 47.32 0.0                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     |                    |                                                                                                                 |                                                        |                                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Name (Column B) then click the delete button Select a row by double-clicking on the Pollutant Page 1 of 1

| Naste        |
|--------------|
| Insfers of \ |
| atment Tra   |
| Sheet : Tre  |
|              |

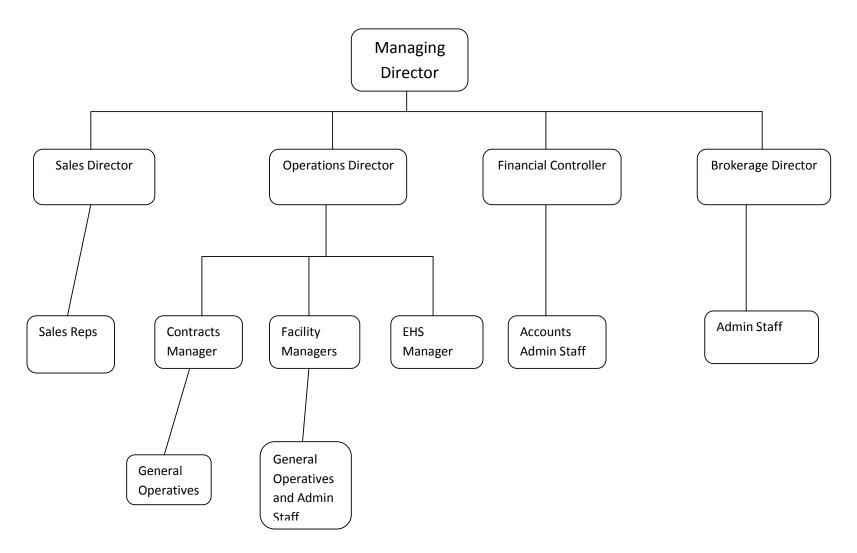
AER Returns Workbook

12/4/2011 13:13

12606201110.14

| iarro - Palje Swineumentia Limitad   Pitatamia - Afriti S. 2016/3.944 Rotum rear - 2010 | heet in Tonnes                         |
|-----------------------------------------------------------------------------------------|----------------------------------------|
| T & OFFSITE TRANSFERS OF WASTE PETRA, WEIRE FROM H                                      | Please enter all quantities on this sh |
| 5. ONSITE TREATMEN                                                                      |                                        |

| <ul> <li>Actual Address of Final Destination</li> <li>Actual Address of Final Destination</li> <li>i.e. Final Recovery / Disposal Site</li> <li>(HAZARDOLS WASTE ONLY)</li> </ul> |                |                             | TechRec<br>Ni,stobook,Kilyman,Dunga Kiliyman,Dungannon,Co.<br>non,Co. Tyrone,BT71 TEF,United<br>7EF,United Kingdom Kingdom |                                            |                                             | Rita Environmental ,W0192-<br>03,402 Greenogue Business<br>Park Rathcoole,Co. Park, Rathcoole,Co.<br>Dublin, Jreland Dublin, Ireland |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Name and License / Permit No. and<br>Address of Final Racoverer /<br>Disposer (HAZARDOUS WASTE<br>ONLY)                                                                           |                |                             | TechRec<br>NI,6180804,Killyman,Dunge<br>nnon,Co. Tyrone,BT71<br>7EF,United Kingdom                                         |                                            |                                             | Rilta Environmental ,W0192-<br>03,402 Greenogue Business<br>Park,Rathcoole,Co.<br>Dublin.,Ireland                                    |
| <ul> <li><u>Haz Waste</u> : Address of Next<br/>Destination Facility<br/><u>Non Haz Waste</u>, Address of<br/>Recover/Disposer</li> </ul>                                         |                |                             | Killyman,Dungannon,Co.<br>Tyrone,BT71 7EF,United<br>Kingdom                                                                | Ballysimon<br>Road,.,Limerick,.,Ireland    | Banysmuu<br>Road,,,Limerick,,,Ireland       | 402 Greenogue Business<br>- Park,Rathcoole,Co.<br>DublinIreland                                                                      |
| Haz Waste : Name and<br>Licence/Permit No of Next<br>Destination Facility Mon<br>Licence/Permit No of<br>Recover/Disposer                                                         | 2              |                             | TechRec NI,6180804                                                                                                         | Offsite in Ireland Hegarty Metals ,WP05-04 | Offsite in Ireland Hegarty Metals , WP05-04 | 402 Greenogue Bu:<br>Ritla Environmental ,W0192- Park,Rathcoole,Co.<br>03 Dublin,(reland                                             |
|                                                                                                                                                                                   | I ocation of   | Treatment                   | Abroad                                                                                                                     | Offsite in Ireland                         | Offsite in Ireland                          | Offsite in Ireland                                                                                                                   |
| Method Used                                                                                                                                                                       |                | Operation M/C/E Method Used | Weighed                                                                                                                    | Weighed                                    | Weighed                                     | Weighed                                                                                                                              |
|                                                                                                                                                                                   | e              | ion M/C/E                   | . Σ                                                                                                                        | ×                                          | ×                                           | ×                                                                                                                                    |
|                                                                                                                                                                                   | Waste          | Operat                      | R4                                                                                                                         | R4                                         | R4                                          | R9                                                                                                                                   |
| tity<br>s per                                                                                                                                                                     |                | Description of Waste        | discarded equipment containing<br>913.48 chlorofiuorocarbons, HCFC, HFC                                                    | 1339.56 ferrous metal                      | 250.94 non-ferrous metal                    | mineral-based non-chlorinated insulating 468.77 and heat transmission oils                                                           |
| Quantity<br>(Tonnes per<br>Year)                                                                                                                                                  |                | ns                          |                                                                                                                            | 133                                        | 25                                          | 46                                                                                                                                   |
|                                                                                                                                                                                   |                | Hazardous                   | Yes                                                                                                                        | Q                                          | No                                          | Yes                                                                                                                                  |
|                                                                                                                                                                                   | European Month |                             | 16 02 11                                                                                                                   | 19 12 02                                   | 19 12 03                                    | 13 03 07                                                                                                                             |
|                                                                                                                                                                                   |                | Transfer Destination        | To Other Countries 16 02 11                                                                                                | Within the Country 19 12 02                | Within the Country 19 12 03                 | Within the Country 13 03 07                                                                                                          |


choic line ciefele builden

" Selact a row by couple-ploking the Desn

#### **APPENDIX H**

**Staffing Structure** 

#### **<u>Rilta Environmental Management Structure</u>**

