

ANNUAL ENVIRONMENTAL REPORT

FOR

MARLINSTOWN LANDFILL

2010

WASTE LICENCE NO. W0071-02

Prepared By: -

Environment Section,
Westmeath County Council,
County Buildings,
Mullingar,
Co. Westmeath.

30 January 2011

ANNUAL ENVIRONMENTAL REPORT

FOR

MARLINSTOWN LANDFILL

2010

WASTE LICENCE NO. W0071-02

Prepared By: -

Westmeath County Council, County Buildings, Mullingar, Co. Westmeath

30th January 2011

TABLE OF CONTENTS

1.	INT	RODUCTION	1
2.	SIT	E DESCRIPTION	2
	2.1	SITE DESCRIPTION	.2
	2.2	WASTE MANAGEMENT ACTIVITIES	.2
	2.3	LOCAL ENVIRONMENTAL CONDITIONS	.2
3.	EMI	ISSION MONITORING AND CONTROL	3
٠.	3.1	GROUNDWATER	
	3.1.1		
	3.1.2		
	3.1.3		
		1.3.1 Groundwater Levels	
	3.1	1.3.2 Groundwater Quality	
	3.1.4		
	3.1.5		
	3.2	SURFACE WATER QUALITY MONITORING	
	3.2.1		
	3.2.2		
		2.2.1 Surface Water Quality	
	3.2.3		
	3.3	LEACHATE	
	3.3.1	Monitoring Locations	
	3.3.2	Monitoring Programme	
		3.2.1 Leachate Levels	
	3.3.3	Leachate Volumes	
	3.3.4	Control Measures	
	3.4	LANDFILL GAS	
	3.4.1	Monitoring Locations.	
	3.4.2	Monitoring Programme	
	3.4.4	V 5	
		Noise Survey	
	3.6	DUST MONITORING	
4.		E DEVELOPMENT WORKS1	
٦.	4.1	ENGINEERING WORKS UNDERTAKEN DURING THE REPORTING PERIOD.	
	4.2	SITE RESTORATION	
	4.3	RESOURCE CONSUMPTION	
5.		IRONMENTAL INCIDENTS AND COMPLAINTS 1	
J.	5.1	INCIDENTS	
	5.2	COMPLAINTS	
6.		VIRONMENTAL MANAGEMENT PROGRAMME1	
o.	6.1	REPORT ON PROGRESS TOWARDS ACHIEVING THE OBJECTIVES FOR 2010	
	6.1.1	Project 1 – Environmental Management System (EMS)	
	6.1.2	Project 2 – Leachate Collection	
	6.1.3	Project 3 – Surface Water Management	
	6.1.4	Project 4 – Restoration of Landfill Areas	
		OBJECTIVES AND TARGETS FOR 2011	
	6.3	STAFFING STRUCTURE	
	6.4	APPROACH TO ENVIRONMENTAL MANAGEMENT	
	6.4.1	Training	
	6.4.2	Corrective Action Implemented.	
	6.4.3	Standard Operating Procedures (SOPs)	
	6.5	FINANCIAL PROVISION	
7.		HER REPORTS2	
<i>f</i> •			
7			
. •	7 1		23

APPENDIX 1 - Meteorological Report

APPENDIX 2 - Groundwater

APPENDIX 3 - Surface Water

APPENDIX 4 - Leachate

APPENDIX 5 - Landfill Gas

APPENDIX 6 - Dust

APPENDIX 7 - EMP Documentation

APPENDIX 8 - Maps

1. INTRODUCTION

This is the tenth Annual Environmental Report (AER) for Marlinstown Landfill, Mullingar, County Westmeath, which is operated by Westmeath County Council (Council). The AER is prepared in response to Schedule E of Waste Licence W0071-02 issued to the Council by the Environmental Protection Agency (Agency) on 9th January 2004.

The AER describes the site activities for the period from 1st January 2010 to 31st December 2010. The content of the AER is based on Schedule G of the Waste Licence W0071-02.

It should be noted that disposal of all waste at Marlinstown Landfill ceased on the 31st December 2002 in accordance with Waste Licence (W0071-01). Recycling at Marlinstown and the acceptance of Household Waste from private vehicles for transport off-site for disposal at Ballydonagh Landfill, Athlone, Co. Westmeath, ceased on the 13th January 2007.

The facility address is: -

Marlinstown Landfill, Marlinstown Bog, Mullingar, County Westmeath.

The Council's Address is: -

Westmeath County Council, County Buildings, Mullingar, County Westmeath.

2. SITE DESCRIPTION

2.1 Site Description

The site is located approximately 3 km east of Mullingar in the southwest corner of Marlinstown Bog. The facility occupies an area of some 9 ha (22 acres) most of which has been used for landfill.

2.2 Waste Management Activities

Disposal of all waste at Marlinstown Landfill ceased on the 31st December 2002 in accordance with Waste Licence (W0071-01). The site operated as a Civic Amenity Centre up to January 13th 2007. The landfill had been in operation from 1963 to 31st December 2002. It is estimated that the total volume of waste disposed at the site was approximately 461,500 tonnes.

2.3 Local Environmental Conditions

A meteorological report for the period January to December 2010 for the meteorological station at Mullingar is included in Appendix 1. The report includes daily rainfall, air temperature, wind (speed and direction), relative humidity, barometric pressure, monthly evaporation and potential evapotranspiration totals.

3. EMISSION MONITORING AND CONTROL

The Council carries out an environmental monitoring programme at the facility to assess the significance of emissions from site activities. The monitoring programme includes groundwater, surface water, landfill gas, leachate and dust. With the agreement of the EPA the requirement to monitor noise is no longer necessary. The results of all monitoring carried out in the reporting period have been submitted to the Agency. An overview of the monitoring results for the reporting period, and comparisons with previous monitoring results, are presented in this section. The results are discussed in the context of the impact of the emissions on the environment and compared with available data on background and or ambient conditions.

3.1 Groundwater

3.1.1 Site Geology & Hydrogeology

The subsurface at the site is composed of peat, which ranges in thickness from 1 metre (m) in the North West of the site to 8.5 m in the north east of the site. The peat is underlain by glacial tills ranging in thickness from 4.3 m to 19.7 m. In the north of the site there is 10m thickness of coarse gravels. The overburden overlies the bedrock, which comprises Waulsortian limestone, basinal limestones and mudstones of the Tobercolleen formation.

The basinal limestones underlying the western half of the site and the Waulsortian limestones underlying the south-eastern corner of the site are classed as a 'locally important aquifer-generally moderately productive'. The mudstones underlying the eastern part of the site are classified as a 'poor aquifer-generally unproductive except for local zones'.

The groundwater flow in both formations is generally from the southwest to the northeast. There is local mounding of the shallow groundwater beneath the landfill.

3.1.2 Monitoring Locations

The Council monitors groundwater quality in 10 monitoring wells in the general vicinity of the site. The wells are located in the overburden and the bedrock aquifers up and down gradient of the site. The well locations are shown in Appendix 2.

Wells BH31 (Deep) and BH32 (Shallow) are up gradient of the site on the southern side of the Mullingar bypass. BH2 (S) and BH1 (D), although located up gradient, are

considered to be within the zone of influence of the landfill due to proximity and the effect of localised mounding of the shallow groundwater beneath the landfill.

The perimeter wells BH3 (D) and BH4 (S) are considered as down gradient due to the localised mounding of the shallow groundwater beneath the site.

Wells BH 13 (D), BH14 (S), BH15 (D) and BH16 (S) are all down gradient and located on the forest road to the north of the site.

3.1.3 Monitoring Programme

Groundwater levels are monitored at monthly intervals. Water quality is monitored at quarterly and annual intervals for a range of different parameters. The range of analysis is as specified in Schedule D (table D.5.1) of the Waste Licence and includes pH, electrical conductivity, organic, inorganic, metals and non-metals parameters. The sampling and analysis is carried out in accordance with recognised quality assurance and control procedures.

The full details of all the monitoring events including the sampling techniques, analytical methods and results are included in the quarterly monitoring reports submitted to the Agency. Summary tables of all of the data and graphs of indicator parameters are included in Appendix 2.

3.1.3.1 Groundwater Levels

The groundwater level data confirm the direction of groundwater flow in both the overburden and the bedrock is locally generally northwards, and that there is localised mounding in the overburden in the area of the site.

3.1.3.2 Groundwater Quality

The monitoring data for the up gradient wells BH31 (D) and BH32 (S) indicate good quality water in respect of parameters TOC and Chlorine. However, the Ammonia results for BH32 were higher this year, with the exception of the Q1 reading, than in previous years. The levels, in the range 0.09 to 0.34 mg/l N, exceeded the EPA guide value of 0.15mg/l N on 3 occasions. The TOC levels were low, in the range of 0.7 to 4.8 mg/l Cl. The Chloride results were in the range of 12.6 mg/l Cl to 21mg/l Cl for both monitoring locations which is in line with the typical value for Irish groundwaters of 20mg/l Cl.

The water quality was somewhat uncertain in the up gradient wells BH1 (D) and BH2 (S). The ammonia levels in both wells were less than 0.1mg/l N and the TOC levels were less than 4.6 mg/l which indicates good quality, however, the ranges for Chloride (29 to 174 mg/l Cl indicate less satisfactory quality.

The data for the perimeter wells BH3 (D) and BH4 (S) show that the quality is broadly similar to last year. The shallow well BH4 had much higher readings for Ammonia (6.84 to 8.31 mg/l N) than the deep well BH3 (0.04 to 0.45 mg/l N). There was a similar disparity in respect of the TOC readings with BH4 having high levels (13.7 to 16 mg/l), while BH3 had lower levels of 0.9 to 2.6 mg/l. The chloride figures were low, in the range of 10 to 28mg/l Cl. There is some impact on the overburden from the site leachate at this location.

In the down gradient locations the poorest quality water is in the deep well BH13 with the ammonia levels particularly high (30.88 mg/l N in Q2 and 34.8 mg/l N in Q3). The chloride levels are also high in the range of 25 to 82mg/l Cl, as are the TOC levels (19.1 to 34.7 mg/l). The shallow well BH14 has relatively high levels of ammonia, in the range of 2.41 to 3.61mg/l N. The TOC levels are also higher than in most other wells, in the range 19.5 to 40.6mg/l. The chloride values at BH14 (S) are low, less than 20mg/l Cl.

At the two other down gradient locations there are some relatively poor readings in relation to ammonia, for example BH15 (D) had readings in the range of 1.61 to 3.03mg/l N while BH16 (S) had readings in the range of 0.49 to 0.73mg/l N. The TOC levels at both locations are high in the range 48 to 112 mg/l. Results for these wells indicate a slight reduction in quality compared to last year.

Using Ammonia as the main parameter for comparison there is generally a slight reduction in water quality on the 2009 figures for the six down gradient wells. The readings for three of the four up gradient wells are similar to 2009 with the exception of BH32 (S) which had marginally higher readings than for 2010. The annual groundwater monitoring results and graphs are included in Appendix 2.

The Annual groundwater analysis results are presented in Appendix 2 along with the standards used for comparison. The results are compared with the limit values from the Drinking Water Regulations (S.I. No. 278 of 2007) and the EPA Interim Guideline Values (IGVs) set out in the EPA report "Towards Setting Guideline Values for the Protection of Groundwater in Ireland (2001)". The results that exceed these limits are highlighted.

Analysis for List I/II organic compounds were determined for samples at BH1, BH14 and BH16. All parameters were below the limit of detection with the exception of those listed in Table 3.1.

Table 3.1: List I/II compounds detected in BH1, BH14 and BH16

Parameters	Units	BH1	BH14	BH16
Naphthalene	ug/l	0.023	<0.04	< 0.10
Total PAH	ug/l	0.023	< 0.04	< 0.10
Bis(2- ethylhexyl)phthalate	ug/l	<5.0	41	26.6

Naphthalene and PAC levels are below the limits specified in The Drinking Water Regulations (S.I. No. 278 of 2007). The EPA Interim Guidelines values specify a limit of 5.0ug/l for phthalates. The levels of Bis(2-ethylhexyl)phthalate in BH14 and BH16 at 41.0ug/l and 26.6 ug/l exceeds this limit. BH14 and BH16 may

require further analysis if the level of phthalates is in exceedance of standards in the next monitoring round.

3.1.4 Estimated Annual and Cumulative Quantity of Emissions to Groundwater

The site is not provided with an engineered lining system but a leachate collection lagoon and collection sumps have been constructed and are operating successfully. Leachate is pumped to the lagoon and tankered off-site to Mullingar Wastewater Treatment Plant for treatment. However, there is the potential for the direct discharge of leachate to groundwater. The groundwater monitoring programme indicates that the that leachate is impacting on groundwater quality as results in the down gradient wells are inferior to those upstream as discussed in 3.1.3.2 above.

There are two distinct water-bearing formations beneath the site. The uppermost formation is the peat and glacial tills. The bedrock underlying the tills forms the lower formation. It is considered likely that leachate discharges directly to the upper water bearing formation. However, the thickness and low permeability of the tills retards and attenuates the discharge to the bedrock formation.

Leachate may also discharge to the site surface water drainage system. Surface water is a potential source of groundwater recharge and as such provides a possible pathway for indirect discharge to groundwater. It is not possible, based on the available information, to estimate the recharge contribution of the surface water drainage system to the groundwater beneath the site.

3.1.5 Control Measures

The Council has monitoring programmes for groundwater (3.1.3) and leachate (3.3.2) in place. Phase 2 Capping contract works due to have been carried out in the past 2 years have not taken place due to access difficulties at the site. This work will go ahead in early 2011 as these difficulties have been resolved.

3.2 Surface Water Quality Monitoring

Surface water from the site drains to the Marlinstown stream. The stream is fed by numerous bog drains. The main stream draining the site runs from east to west along the southern boundary before turning north through the western part of the site. It turns west and flows along the northern boundary for a short distance before turning northwards again. The stream swings eastwards and flows for approximately 2.6 km to join the Riverstown River. The Riverstown River is a tributary of the River Deel which itself is a tributary of the Boyne.

3.2.1 Monitoring Locations

The Council monitors surface water quality in 4 locations (SW1, SW2, SW3 and SW5) as shown in Appendix 3. SW1 and SW2 are located on drains upstream of the site, SW5 is on the Marlinstown Stream immediately downstream of the site. SW3 is also located on the Marlinstown stream approximately 0.7 km downstream of the site.

3.2.2 Monitoring Programme

The monitoring is conducted at weekly, quarterly and annual intervals in accordance with Licence conditions and includes weekly visual inspections and monthly in situ and laboratory testing. The range of analysis is as specified in Schedule D.5.1 of the Waste Licence and includes dissolved oxygen, pH, electrical conductivity, and organic and inorganic parameters.

The sampling and analysis is carried out in accordance with recognised quality assurance and control procedures. The detailed monitoring results are presented in the quarterly monitoring reports submitted to the Agency in the reporting period. Graphs of indicator parameters for each monitoring location are included in Appendix 3.

3.2.2.1 Surface Water Quality

The sampling point SW1 is upstream on a small drain flowing towards the Landfill from the south. The flow is generally low and in summer it can be stagnant. The water at this point is sometimes of poor quality. This may be accounted for by the low flow, the occasional stagnant nature of the drain, and the unavoidable disturbance of solids when taking the sample. The BOD readings varied from a low of <1mg/l in Q1 and Q4 to a high 18 mg/l in Q2 (evidence of hydrocarbons in sample). The level of SS in Q2 and Q3 were particularly high at 337 mg/l and 228 mg/l respectively. Ammonia was higher (2.02 mg/l N) than normal in Q2.

The sampling point SW2, located on the stream west of the site, is a more representative example of upstream water. It has a steady flow throughout the year. The water quality is satisfactory and complies with A2 values as set out in the EC (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations, 1988[S.I. No. 294 of 1989]. The quality would reach A1 standards were it not for an elevated ammonia level of 0.70mg/l in Q1.

The water quality at SW5 immediately downstream of the Landfill, while slightly inferior to SW2 upstream, is satisfactory. It would attain A1 quality (SS, Chloride and BOD levels are low), but for one elevated Ammonia reading of 2.38 mg/l in Q1.

The further downstream surface water location SW3 is broadly similar in quality to SW5 with elevated Ammonia reading of 1.97mg/l in Q1. The downstream water quality is very similar to last year.

The annual monitoring event included a comprehensive range of laboratory analysis as outlined in Schedule D of the Licence W0071-02. All parameters were within the A1 Category requirements of the EC (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations 1989 with the exception of iron and manganese. Both iron and manganese met the A2 Category requirements. The annual monitoring results and standards are included in Appendix 3.

3 2 3 Control Measures

The Council has a monitoring programme for leachate (3.3.2) in place. Phase II capping contract works, which will go ahead in early 2011, will cover the old recycling centre area and will further reduce the likelihood of contamination of the surface water.

3.3 Leachate

Leachate is a contaminated liquid generated when waste comes into contact with water. The sources of the water typically includes rainfall, surface water runoff and groundwater. At Marlinstown the primary source of leachate generation is rainfall. There may be limited surface water infiltration around the margins of the waste.

3.3.1 Monitoring Locations

A total of eight leachate monitoring wells are located in the Landfill. They are BH21 and BH26 in the uncapped area and gas extraction wells GEW31, GEW28, GEW25, GEW23, GEW18 and GEW20 in the capped area of the Landfill. There is damage to the pipes of wells GEW18 and GEW31. As a result no monitoring of these wells has taken place in the past 2 years. The well locations are shown in Appendix 4.

3.3.2 Monitoring Programme

Leachate levels are monitored weekly. Leachate quality is monitored at quarterly and annual intervals for a range of different parameters. The range of analysis is as specified in Schedule D.5.1 of the Waste Licence and includes pH, electrical conductivity, and organic, inorganic and microbiological parameters. The sampling and analysis is carried out in accordance with recognised quality assurance and control procedures.

The full details of all the monitoring events including the sampling techniques, analytical methods and results are included in the quarterly reports submitted to the Agency. Summary tables of the data for each location are included in Appendix 4.

3.3.2.1 Leachate Levels

The level monitoring did not identify any significant fluctuations in leachate levels in boreholes BH21, BH22, GEW20 and GEW23. In boreholes GEW25 and GEW28 there are doubts about the accuracy of the results, see data in Appendix 4. Levels in GEW18 and GEW31 could not be determined due to pipe damage in the wells

3.3.2.2 Leachate Quality

Every quarter a visual and odour inspection is carried out at the leachate monitoring wells. Annually 3 locations (Leachate lagoon, BH21 and GEW28) are monitored for the range of organic and inorganic parameters defined in the Waste Licence W0071-01. No sample could be collected from BH21 as the pipe was restricted. The results are consistent with leachate generated at a municipal waste landfill in various stages of the waste degradation lifecycle. The leachate from GEW is more concentrated than that in the lagoon. This is due to groundwater infiltration to the leachate at some sections of the landfill. The COD level in GEW28 was 2340mg/l compared to 209mg/l in the lagoon. Similarly, there were high readings of Chloride (1180mg/l Cl) and Conductivity (10,400uS/cm) at GEW28 compared to the much lower readings of 198mg/l Chloride and 1990uS/cm Conductivity for the lagoon. For full annual monitoring analysis see Appendix 4.

3.3.3 Leachate Volumes

The water balance calculations give an estimate of the amount of leachate generated for 2010. These calculations forms the basis for the estimation of cumulative totals over the lifetime of the landfill

The water balance calculates the volume of leachate generated at the site on a monthly basis based solely on rainfall data. It was considered that the potential for surface water infiltration was insignificant. The water balance methodology is described below and the calculations shown on Table 3.2 and 3.3

The water balance calculations are based on the methodology specified in the Agency's Landfill Site Design Manual. The calculation used is as follows: -

$$Lo = [ER(A) + LW + IRCA + ER(I)] - [aw]$$

Lo = leachate produced (m³)

ER = effective rainfall (m) (Use actual rainfall (R) for active cells)

A = area of cell (m^2)

LW = liquid waste (also includes excess water from sludges) (m³)

IRCA = infiltration through restored and capped areas (m)

- = surface area of lagoon (m²)
- a = absorptive capacity of waste (m^3/t)
- W = weight of waste deposited (t/a)

The meteorological data used was from the meteorological station at Mullingar. Given the history of filling at the site the entire site was included in the calculations. Meteorological data is presented in Appendix 1.

Where the evapotranspiration rate was higher than the total rainfall a conservative zero effective rainfall was assumed. In the restored area (70,000 m²) the infiltration rate of the rainfall was assumed to be zero due to the permanent capping being completed on this area of the landfill in March 2005. In the unrestored area (20,000 m² approx) a conservative estimate of 25% of the annual rainfall figure was used to calculate the infiltration in the temporary capped area. The Civic amenity area does not form part of the temporary capped area for calculation purposes as it is paved. The 20,000 m² covers the area from the civic amenity area to the entrance gate.

The estimated volume of leachate generated for the reporting period is 3736 m³ (Table 3.2). Cumulative annual figures are given in Table 3.3. The quantity of leachate removed off site for treatment in the reporting period is shown in Table 3.1 below.

2010 Leachate Volumes Removed from Site. Table 3.1

Month	Volume of Leachate Removed (m ^s)
January	0
February	437
March	82
April	246
May	452
June	180
July	0
August	720
September	450
October	270
November	720
December	180
Total	3736

3.3.4 Control Measures

The Council has a leachate monitoring programme (3.3.2) in place. Leachate is being pumped from the landfill to the holding lagoon and tankered off-site for treatment. Phase II capping contract works, which will go ahead in early 2011, will cover the old recycling centre area and will further reduce the amount of leachate being produced.

Table 3.2: 2010 Annual Leachate Volume Calculations

Restored	ō	Unrestored	Actual	Effective	(1)Infiltratio n Through	(2)Infiltration Through	Weight of	Leachate
Area		Area	Rainfall	Rainfall	Restored	Unrestored	Waste Deposited	Produced
(m ₂)		(m²)	(E)	(H)	(E)	(m ₃)	(Tonnes)	(m ₃)
	_			ER	IRCA	IRCA	×	Lo
70,000	L	20,000	0.0450	0.0407	00.0	203.50	0.0	203.50
70,000		20,000	0.0419	0.0311	0.00	155.50	0.0	155.50
70,000		20,000	0.0820	0 0514	00'0	257.00	0.0	257.00
70,000		20,000	0.0538	00000	0.00	0.00	0.0	00.00
70,000		20,000	0 0395	0 0000	0.00	00.0	0.0	0.00
70,000		20,000	0 0505	00000	0.00	00.0	0.0	0.00
70,000		20,000	0 1500	0.0795	0.00	397.50	0.0	397.50
70,000		20,000	0 0474	00000	0.00	0.00	0.0	00.0
70,000		20,000	0 1645	0.1231	0.00	615.50	0.0	615.50
70,000		20,000	0 0594	0 0362	0.00	181.00	0.0	181.00
20,000		20,000	0 1252	0 1187	0.00	593.50	0.0	593.50
70,000		20,000	0.0372	0.0345	0.00	172.50	0.0	172.50
	L		0.8964	0.5152		2.576		2576
	ı					130. <		

Moles

(1) The 70,000 m² Restored Area was permanently capped by the end of March 2005 so the infination rate since from the rainfall is 0.

(2) Effective rantall figures, at a 25% infiltration rate, were used to calculate the infiltration through the unrestored fill area

Table 3.3 - 2010 Cumulative Leachate Volume Calculations

Cumulative	Leachate	(m ₃)		28144	94807	100300	107617	14244	110410	110000	122324	126022	128499
Annual	Leachate	(E)		28144	66663	5493	7347	5703	2002	2624	3256	3500	2576
Cumulative	Volume	Sludge (tonnes		2402	2417	-		,					
Total	Volume	Sludge	L.	2402	5	c	- C	0	0	0	0		
Cumulative	Absorptive	apacity (m		1803	3747	3747	3747	4747	27.47	3747	3747	3747	3747
Absorptive	Capacity	Input (m³)		1803	1943		0	0	0		c	0	0
Cumulative	water	(E)		29948	98554	104047	111364	117157	120194	122815	126071	129670	132246
Total Water		(m³)		29948	68606	5493	7317	5793	3037	2621	3256	3599	2576
Unrest, area Total Water	Infiltration	(m ₃)		25576	64551	0	0	2583	3037	2621	3256	3599	2576
Unrestored	area	(m²)		80000	80000	0	0	20.000	20,000	20,000	20,000	20,000	20,000
Rest. area	infiltration	(m)		639	1614	5493	7317	3210	0	0	0	0	0
Restored	area	(m²)		8,000	8,000	70,000	70,000	70,000	70,000	70,000	70,000	70,000	70,000
Vaste Input	tonnes			30058.2	32383.7	0	0	0	0	0	0	0	0
Active Area Active area Vaste Input Restored	infiltration	Ê.		1330	2425	0	0	0	0	0	0	0	0
Active Area		(m,		2000	2000	0	0	0	0	0	0	0	0
Year				2001	2002	2003	2004	2005	2006	2007	2008	2009	2010

(1) The 70,000 m2 Restored Area was permanently capped by the end of March 2005 so the infilration rate since is 0.

(2)Effective rainfall figures were used to calculate the infiltration through unrestored fill area (past the civic waste area and to the west of the site out to entrance gate) a 25% infiltration rate was used for the unrestored area. Temporary Capping with 600mm soil.

3.4 Landfill Gas

Landfill gas is produced during the breakdown of waste within the landfill. It is a by-product of the digestion, by anaerobic bacteria, of the organic component of the waste. Landfill gas comprises a mixture of different gases. Methane and carbon dioxide (in the ratio of 3:2) are the main components, with small concentrations of a wide variety of compounds. The number and ratio of gases at any one time depends on the breakdown process which occurs in stages and which is subject to controlling factors. These factors include: -

- Physical dimension of the site,
- Type and input rate of waste deposited,
- Waste age,
- Moisture content, pH, temperature and density of wastes,
- Application of cover, compaction and capping.

3.4.1 Monitoring Locations

The Council monitors landfill gas at 32 permanent monitoring wells (G1 to G32, Appendix 5) at locations in and around the landfill and in Hamill's shop. It must be noted that these wells are between 8 and 12 years old and some of them appear to be impaired. This is observed when suction is applied to the well by the gas monitor in excess of the normal 30 to 60 seconds monitoring time. The initial level of methane/carbon dioxide drops off sharply as the suction is applied. This was confirmed for a number of wells in March of this year when the EPA in conjunction with DCU installed continuous monitoring meters at these wells. Most wells, including G26, were pulling a vacuum during the monitoring event so gas analysis was not possible. This monitoring was only continued at G27 (high CO2) and is in place at the end of the year. Therefore, there is some uncertainty in regard to the accuracy of the data from these wells. It is planned, as part of the Phase 2 capping contract, that all these wells will be replaced.

Since May 2006 the Council have been monitoring the level of Gas at G26 (south of the Landfill and to the west of the Service Station) daily because of high gas levels being recorded at this well. In June 2006 the Council installed 5 temporary Piezometers (G33 to G37 inc.) around the perimeter of G26 to fully investigate possible gas migration in this area. In October 2007 the Council installed 20 gas monitoring/vent wells inside the landfill site but outside the perimeter of the waste body (see appendix 8). Eleven of the wells are on the south side adjacent to Hamill's shop while the remaining ones are to the north of the site. Monitoring of the wells adjacent to Hamills in 2008 and 2009 showed very low levels of gas. In mid 2009 the caps were removed from these wells so that any gas present can be vented to atmosphere.

Gas extraction wells GEW1, GEW4, GEW28, and GEW24 (replaced wells G12 to G15 after Phase 1 capping) located in the fill area are also used for monitoring purposes. Wells G10 and G11 are located on the edge of the older section of the landfill (Phase 2

capping area). Monitoring locations G1 to G6 are located outside the fill area but inside the landfill perimeter. The wells G7 to G9 and G16 to G32 are located outside the landfill perimeter on the northern side to monitor for the possible migration of gas from the landfill. In October 2009 the Council installed 3 extra gas monitoring wells (G58 – G60) in Hamill's land between wells G26 and G27 to check if gas was present in this area. Summary tables of the data are included in Appendix 5.

3.4.2 Monitoring Programme

Monitoring is carried out at daily and monthly intervals in accordance with the licence conditions. Daily monitoring is carried out at Hamill's shop, at points G16, G17, G18, G26 and G33 to G37, and three times weekly at G7, G8 and G9 to monitor gas migration. The remaining wells G1 to G6, G10, G11 and G19 to G32 are monitored monthly.

The monitoring programme includes methane, carbon dioxide, oxygen, temperature and atmospheric pressure. The monitoring results are presented in the summary tables in Appendix 5.

3.4.3 Gas Quality

The average methane level in the gas wells (GEW1, GEW4, GEW24 and GEW28) of the main body of the landfill is 24% with a range of 0.1 to 70%. The average level is consistent with the average gas levels recorded at the Flare. The Methane levels in wells G10 and G11 in the older, uncapped area is much lower (average 2.3%) than those in the rest of the Landfill.

On the south side of the Landfill the perimeter wells G1 to G5 have Methane levels ranging from 0 to 46.5%, with an average level of 9.3%. The frequent high levels at these locations may indicate that gas is migrating towards the south in this area. Methane readings of 0 to 1.2% were recorded for well G6 on the north-east corner of the site.

A limit of 1% methane applies to any building on or adjacent to the facility and/or at any point located outside the body of the waste. Generally high levels of methane are recorded at wells G7, G8, G9 and G32 located to the north of the Landfill. The methane range for these wells is 0 to 58.4% with an average of 16%. However, there are 2 wells in this area G30 and G31 that have zero levels of methane. Wells G27 outside the site to the south west and G28 outside to the north east regularly have elevated levels of methane ranging from 0 to 4.4% with an average level of 1.3%.

High levels of methane gas were observed at G26 outside the facility on the southern side, with levels ranging from 0 to 56% with an average level of 24%. This is the only well in the vicinity of the petrol station that gives high methane readings. It is one of the wells that may be giving erroneous readings as described in 3.4.1 above. At G17 adjacent to the Petrol Station methane readings did not exceed 0.1% (except for one occasion – 1.35% on 12th Nov.). However, Carbon Dioxide levels are constantly high at this point, in the range of 1.0 to 31.5%. The methane levels at the in-situ gas monitoring

meter in the petrol station shop never exceeds a reading of 0.1%. There was no methane detected in the new wells G58 to G60.

3.4.4 Landfill Gas Volumes

Estimates of gas volumes generated at the site were made for a thirty-five year period.

For predictive purposes Year 1 was taken as 1999. The estimates were based on the following assumptions of waste inputs and landfill gas characteristics: -

Biodegradable waste placed 251,000 tonnes

Annual Biodegradable waste inputs 15,000 tonnes/annum

Lifetime 4 years

Time to reach steady stage production 1 year

Potential future gas production per annum 8.5 m³/tonne of waste; years 1-10

2.0 m³/tonne of waste; years 10-40

It was assumed that in Year 1 (1999) 251,000 tonnes of the waste placed in the Landfill was generating gases, of which 122,500 tonnes was generating 8.5 m³/tonne and 128,500 tonnes at 2 m³/tonne. It was assumed the waste placed in 1999 would not begin producing significant volumes of gas until 2000.

It was assumed that the annual waste inputs reached steady state gas generating conditions within twelve months and that gas generation would not be impacted by reductions in moisture content following the placement of the final capping. Gas volumes will gradually reduce over the following 40 years as the biodegradable content is depleted and although gas may continue to be produced to year 50, the levels will be negligible. The projected gas yields are presented in Table 3.4.

3.4.4 Landfill Gas Control

Of the 38 extraction wells (see map no. 192-11-MTL-01 in appendix 8) in place only 25 are now producing gas at a level that can be flared. The gas output has dropped off in the past year to the extent that the Flare cuts out or has to be turned off for at least one day per week. Gas balancing is carried out fortnightly at the Landfill in order to optimise the flaring process.

Monitoring is carried out on a daily basis at Hamill's shop and the wells in the vicinity of the shop. On the northern perimeter monitoring is less frequent for wells G7 to G9 at 3 times weekly. The remaining wells are monitored on a monthly basis.

A gas fingerprinting analysis was carried out in July 2009 to try to determine the origin of the gas at G26. The report, carried out by consultants TMS, suggests that the gas may be attributable to fuel sources.

3.5 Noise Survey

In 2008 the Council obtained permission from the EPA to cease noise monitoring at Marlinstown Landfill, as the Landfill was closed and therefore, there were no activities giving rise to noise.

3.6 Dust Monitoring

Dust is monitored at three locations around the site (D1, D2, and D3) as shown on Figure 1 in Appendix 6. During the reporting period two dust monitoring events were completed in April and June. A summary table of the results is included in Appendix 6.

The levels of dust were in the range 6.2 to 13.4 mg/m3/day which is well below the licence limit of 350 mg/m²/day. It can therefore be concluded that the quality of the ambient air in the vicinity of Marlinstown Landfill site is good, as it should be, given that there is no activity at the site.

Table 3.4 Landfill Gas Volumes

.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
316 316 316 318 316 318 316 316 317 311 311 311 311 311 311 311 311 311
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 60<
50 60<
120 120 120 120 120 120 120 120 120 120

4. SITE DEVELOPMENT WORKS

4.1 Engineering Works Undertaken During the Reporting Period

There were no engineering works carried out in 2010. The planned Phase 2 capping contract was deferred to 2011 due to access problems at the site.

4.2 Site Restoration

Phase 2 of the final capping will be carried in early 2011.

4.3 Resource Consumption

The following resource was used on-site during the reporting period: -

Electricity (24,156 kWhr)

5. ENVIRONMENTAL INCIDENTS AND COMPLAINTS

5.1 Incidents

During the reporting period there were 36 incidents recorded at the site. Twelve of these were in relation to elevated levels of Methane and Carbon Dioxide at some of the wells during the monthly and daily monitoring at gas wells G7 to G32 inclusive. The other incidents relate to the Flare cutting out on low methane or being shut down to allow a build up of gas. All incidents were notified to the Agency.

5.2 Complaints

There were no complaints received during the reporting period of 2010.

6. ENVIRONMENTAL MANAGEMENT PROGRAMME

6.1 Report on progress towards achieving the Objectives for 2010

The Environmental Management Programme (EMP) prepared for 2010 contained a schedule of objectives and targets and the means for their implementation.

6.1.1 Project 1 - Environmental Management System (EMS)

- Task 1: Complete an assessment of personnel training needs by 31/08/2010. This task was completed.
- Task 2: Establish additional training if required by 31/08/2010. This task was completed.
- Task 3: Deliver the training programme by 31/12/2010. This task was completed.
- Task 4: Ensure that all procedures prepared as part of the works to meet the other Objective and Targets specified in this Schedule comply with all EMS requirements including designation of responsibility, performance assessment, corrective action and document control.

 This task was completed.

6.1.2 Project 2 - Leachate Collection

Task 1: Construct a drain to intercept leachate migrating from the former Recycling area of the site. The leachate will be pumped from collection chambers located on the drain to the leachate holding lagoon. The leachate interceptor drain will be constructed by 31/10/2010.

This task was not completed and will be incorporated into the objectives and targets for 2011

AFR 2010 19 of 34 Jan 2011

6.1.3 Project 3 – Surface Water Management

Task 1:

To design and construct a surface water swale around the former Civic Amenity area of the site taking into consideration the existing ground conditions. The swale will be lined with LLDPE and will be constructed outside the leachate interceptor drain. This will be constructed by 31/10/2010. This task was not completed and will be incorporated into the objectives and targets for 2011.

6.1.4 Project 4 - Restoration of Landfill Areas

Task 1:

Complete installation of low permeability capping system around the former Civic Amenity Area of the site incorporating a topsoil layer, a subsoil layer, an infiltration drainage layer, low permeability layer and a landfill gas collection layer. The infiltration drainage layer will tie into the perimeter surface water swale. The topsoil element of the cap will be seeded. The capping system for the former Civic Amenity Area of the site will be completed by 31/10/2010. This task was not completed and will be incorporated into the objectives and targets for 2011.

Task 2:

Installation of two sets of gas wells within the former Civic Amenity Area of the site.

This task was not completed and will be incorporated into the objectives and targets for 2011.

Task 3:

To carry out mitigation measures for the gas migration from the site in accordance with the SEW approved by the agency.

This task was not completed and will be incorporated into the objectives and targets for 2011.

Task 4:

Keep Flare and gas extraction running during construction works. This task was not necessary as works did not take place.

Task 5: Every precaution to be taken to ensure that any migration of gas be kept to a minimum during construction of the work. In particular method statements will be required from the contractor to show how capping work will be carried out around the existing gas extraction system.

This task was not necessary as works did not take place.

6.2 Objectives and Targets for 2011

Responsibility Manager Landfill Manager Landfill Manager Manager Manager Landfill Manager Manager Manager Landfill Landfill Landfill Landfill Landfill Date: Feb. 2011 September 2011. Target Project 1B: Construction of perimeter leachate interceptor drain around the Phase 2 area Project 1D: Placing of geocomposite, subsoil and topsoil final cap to Phase 2 area Project 2B: Carry out survey, and necessary servicing, of gas extraction network Project 1C: Installation of lined, surface water swale around the Phase 2 area Project 2A: Installation of 5no. New gas extraction wells in the Phase 1 area EMP - Future Targets & Objectives for 2011 Project 1E: Installation of Replacement Perimeter Gas Monitoring Wells Project 1A: Installation of new combined gas / leachate extraction wells Project 1F: Improvement of leachate storage and handling facilities Projects To expand and optimise the gas capping of Phase 2 of the landfill. extraction well network in Phase To complete the permanent Objective 1 of the landfill. Marlinstown Landfill N

6.3 Staffing Structure

The management structure for Marlinstown Landfill consists of the following:

Landfill Manager: Mr. Michael Rooney, Executive Engineer.

Deputy Manager: Mr. John Waldron, Senior Executive Technician.

The responsibilities, experience and competencies of the management team are detailed in SOP 01 in Appendix 7.

6.4 Approach to Environmental Management

6.4.1 Training

In the past year Michael Rooney has completed the following courses:

- FAS Waste Management Course
- Managing Safely for Construction Managers
- Certified First Aid Refresher Course
- Manual Handling

John Waldron has completed the following courses:

- LAPN course in Waste Prevention/Clean Technology
- Manual Handling

6.4.2 Corrective Action Implemented

No corrective action was implemented in 2010.

6.4.3 Standard Operating Procedures (SOPs)

There were no new SOPs written in 2010. Existing SOPs in relation to Corrective Action, Standard Monitoring Procedures, Emergency Response Procedure, etc are included in Appendix 7. Also included is the new Incident Report sheet issued by the EPA.

6.5 Financial Provision

Westmeath County Council will draw from reserved internal capital resources in 2011 to fund the Phase 2 restoration works and the ongoing aftercare of the landfill.

7. OTHER REPORTS

7.1 Assessment of Waste Density and Settlement

A topographic survey is used to assess the rate of settlement and to calculate the waste density. Drawing No. 144-10-02 showing the most recent survey carried out by Westmeath County Council in October 2010 and is included in Appendix 8.

AER 2010 23 of 34 Jan 2011

APPENDIX 1

Meteorological Report

Effective Rainfall Calculation 2010 (Actual Rainfall minus Potential Evaporation)

		Potential Evapotranspiration	
Month	Rainfall (mm)	(mm)	Effective Rainfall (mm)
Jan	45.0	4.3	40.7
Feb	41.9	10.8	31.1
Mar	82.0	30.6	51.4
Apr	53.8	54.6	-0.8
May	39.5	74.2	-34.7
Jun	50.5	88.2	-37.7
Jul	150.0	70.5	79.5
Aug	47.4	62.9	-15.5
Sep	164.5	41.4	123.1
Oct	59.4	23.2	36.2
Nov	125.2	6.5	118.7
Dec	37.2	2.7	34.5
Total	896.4	469.9	426.5

Note: The effective rainfall values for April, May, June and August are negative values, assumed to be 0

Potential
Evapotran
s spiration Evaporati
(Penman) on (mm)

Min.
Temp.
(Degrees Celsius)
0.1

1.1 0.2 6.8 4.7

37				Humidit	84	6	88	82	88	91	84	84	78	71	72	69	75	78	84	74	81	8	67	70	99	99	62	83	87	84	98	98	80	98	
	Wind	Direction	(Degrees	rom North)	240	85	335	265	180	270	280	240	160	150	70	55	09	55	25	185	280	320	340	330	20	160	170	150	225	215	160	180	235	225	
			. Wind	Speed	4 9	2.8	3.9	6.9	14.7	6.9	4.0	4.1	4.4	5.3	2.6	3.8	4.3	4.5	3.8	2.7	2.8	2.6	3.7	3.5	1.7	2.5	5.2	7.7	6.3	4.5	9.4	9.0	5.0	4.4	
				Kaintall (mm)	0.7	4.8	1.3	2.7	7.7	20.8	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.2	0.0	0.0	0.0	0.0	9.0	3.5	0.1	0.3	5.4	0.1	4.3	53.8
) e C	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	59	30	Total
			L	Evaporati	10	1.	6.0	1.1	1.3	1.1	1.4	1.6	1.4	1.0	1.3	1.4	1.1	1.5	1.5	1.0	1.6	1.6	1.5	1.8	1.9	1.7	1.6	1.9	1.6	1.8	2.1	2.1	0.7	0.7	2.2
		Potential	Evapotran	(Penman)	9.0	0.7	9.0	9.0	6.0	0.8	6.0	1.1	6.0	0.7	6.0	1.0	0.8	1.0	1.0	0.7	1.2	1.2	1.1	1.2	1.3	1.0	1.1	1.3	1.1	1.3	1.5	1.5	0.4	0.4	1.3
	:	Min.	nemp.	(Degrees Celsius)	-3.9	4.9	-1.9	-3.4	-4.5	0.1	-2.7	-5.9	-5.7	-4.9	-4.5	4.1	2.6	-1.3	-1.7	-2.0	5.6	8.8	5.0	1.6	1.3	1.6	2.8	5.4	5.9	4.7	4.6	2.8	1.7	0.2	0.5
		Max.	Degrada	(Degrees Celsius)	8.5	7.4	6.1	7.7	10.1	8.4	6.8	7.2	8.8	7.5	8.3	9.2	9.1	10.9	10.6	9.1	13.4	12.7	10.2	11.2	13.1	10.3	9.4	11.9	12.2	12.7	11.2	10.4	5.0	2.4	5.3
	_	Į.	Droggilled	(hPa)	1010.9	1021.4	1018.8	1027.3	1033.2	1030.1	1032.0	1031.6	1033.5	1033.0	1029.1	1028.0	1033.7	1033.2	1028.5	1020.4	1013.3	1002.8	1005.9	1005.5	1011.3	1008.6	1008.0	998.0	994.0	993.5	1005.7	1006.7	93.6	984.7	999.2
		Polativo	Humidity	(%)	8	98	81	84	83	83	78	72	71	8	6/	81	79	84	78	84	85	86	79	80	77	83	86	82	89	87	78	77	94	66	84
	DUINA C	Olrection		North)	225	06	120	25	315	340	06	2	70	355	325	340	300	285	240	150	195	165	220	335	185	215	160	100	80	185	275	280	70	300	300
		Wind	Speed	(Knots)	1.4	4.0	3.8	3.1	2.0	2.6	4.5	3.8	1.8	8.1	7.7	4.9	3.7	3.8	2.8	6.5	7.7	12.5	5.0	3.8	6.0	9.5	8.1	6.2	6.7	3.7	5.4	3.5	6.5	9.8	9.6
			Rainfall	(mm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	1.5	5.2	4.1	0.0	5.6	0.1	4.9	8.7	3.4	0.0	0.0	14.4	24.8	8.2
				Day	-	2	3	4	5	9	7	8	5	2;		72	13	14	15	16	11	80	19	20	17	22	23	24	52	97	17	87	53	30	31

2.1

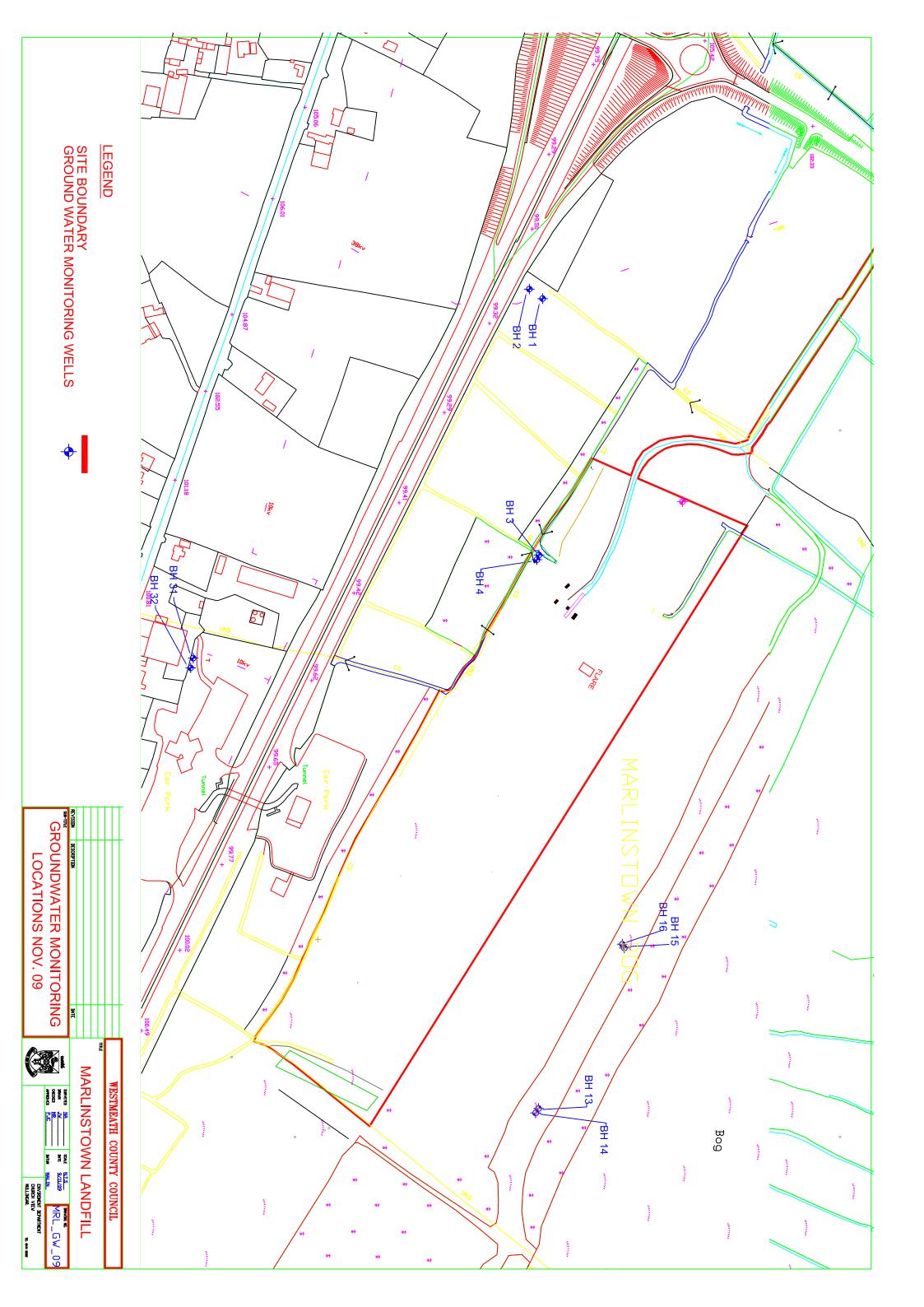
2.3 2.3 2.0 1.7

MSL Pressure (hPa) 1004.0 994.3 1000.5 1000.5 1005.3 1022.2 1030.4 1031.2 1028.8 1028.8 1028.8 1027.7 1029.1 1029.1 1029.1 1017.4 1017.4 1017.4 1013.9 1023.3

			=	Ē					Т	_	1	Т	т-		_					_	_	_		_	_			_	_	_	_	_	_
			Evaporat	on (mm	3.1	5.1	5.0	4.7	5.3	2.7	1.7	1.4	3.1	3.7	3.8	3.3	3.2	5.5	4.9	3.9	5.2	5.9	6.2	4.8	2.9	3.5	2.8	4.2	5.6	1.9	4.4	4.7	
		Potential Evapotran	spiration	(Penman)	2.3	3.8	3.5	3.6	4.0	1.9	1.3	1.0	2.3	2.7	2.8	2.3	2.4	3.9	3.7	3.0	388	4.3	4.7	3.5	2.2	2.6	2.1	3.2	4.0	1.4	3.4	3.5	88.2
		Min. Temp.	(Degrees	Celsius)	9.4	8.3	9.5	12.0	10.9	10.3	12.0	11.7	7.8	8.3	10.5	9.2	8.2	8.5	10.1	13.4	8.4	5.7	9.3	9.7	13.3	10.8	11.0	13.8	11.8	11.1	10.0	13.5	
		Max. Temp.	(Degrees	Celsius)	16.8	20.6	20.3	21.4	20.6	16.6	15.9	14.4	18.1	18.8	16.9	15.2	18.5	20.6	21.3	20.1	18.5	21.7	24.5	21.7	19.8	19.4	19.6	22.1	20.6	18.8	19.8	22.2	
		MSL	φ	_	\dashv	+	+	1010.9	+	+	Н	Н	1014.9	1014.4	1019.5	1015.8	1023.4	1030.1	1027.7	1023.6	1022.3	1023.4	1022.0	1021.4	1019.2	1019.4	1016.8	1013.4	1014.9	1016.3	1019.3	1014.6	
		Relative	lity	8	3	8/2	2 8	25	284	06			+	1		+	+	+	+	1		Н	+	1	+	+	+	+	+	+	+	┨	
	Wind	= S		yorth)	200	135	155	080	315	80	55	45	35	315	310	305	370	760	330	330	340	315	225	212	190	245	0/1	160	502	1/5	305	0/1	
ŀ		0.000	Speed	+	+	6.3	+	+	+			+	1			0.0	+	-	+	3.8	Н	+	+	+	7.7	+	+	0.0	+	+	7.0	6.	
$\frac{1}{2}$			Rainfall Sp	+	+	+	0.0		+	H	1	-		+	0.0	1	+	+		-		+		+	+	1	+	+	+	+	+	, u	5
ŀ		Î		+					, 2	2	6	Σ 0	0 0	5 0	5	0.0	200	0.00	0.0	0.0	0.0	0.0	0.0	0.0	2.3	4.0	-		ه اد	o c	5 6	50.5	3
				7		4 67	4	· C	9	7	∞ σ	מ ל	2 7	= 5	7 6	2 4	7.	16	17	18	19	25	22	22	24	25	2 2	27	7 80	2 6	30 63	Lato L	
_						_	_	_			_					_		_									222						
			cvaporati	2.1	2.5	3.4	2.4	2.2	1.7	3.0	0.4	0.4	2.5	280	200	3.7	3.3	3.5	3.8	2.1	2.5	0.0	5.4	5.7	4.4	4.5	4.5	4.0	2.5	7.	42	3.6	
	tial			4	1							_		+	+-			1		\vdash	_	_	+			1	1	1	1	3,	- 1	1	
1	Potential	Evapotran	(Penman)	1.5	T	2.4	1.8	1.7	1.3	2.1	5.5	6	2 0	200	14	2.6	2.3		2.8	1.4	6.6	3.2	3.7	4.3	3.2	+	$^{+}$	t	1	+	\dagger	2.6	74.2
		Ш	_		1.9			8.1 1.7		+	3.1	-	-	0.5 2.0		\vdash		2.4		7.4 1.4	+	+	+		-	3.2	3.3	2.8	2.5	7	\dagger	2.6	74.2
		Temp. E	Celsius) (5.0	6.1	2.1	4.1	16.4 8.1 1.7	7.8	+	2.5	4.0	-	0.5	4.1	4.0	3.0	3.3 2.4	5.1	\parallel	10.6	12.5	7.5	8.2	10.0	5.1 3.2	4.9	4.2 2.8	3.0 2.5	87 11	3.1	8.1 2.6	74.2
	Max. Min.	Temp. Temp. E	Celsius) Celsius) (12.5 5.0	11.2 6.1 1.9	12.2 2.1	12.4 4.1	16.4	13.4 7.8	14.0 3.7	12.5 3.1	9.9	9.8	10.3 0.5	11.0 4.1	14.6 4.0	14.1 3.0	14.9 3.3 2.4	15.5 5.1	14.8 7.4	19.5 10.6	22.1 12.5	24.8 7.5	23.8 8.2	18.6 10.0	15.8 5.1 3.2	15.0 4.9 3.3	14.2 4.2 2.8	15.1 3.0 2.5	13.2 8.7 1.1	16.5 5.1 3.1	17.5 8.1 2.6	74.2
	Max. Min.	MSL Temp. Temp. E	(hPa) Celsius) Celsius) (1010.0 12.5 5.0	3 11.2 6.1 1.9	1029.3 12.2 2.1	1031.4 12.4 4.1	16.4	1016.4 13.4 7.8	1019.2 14.0 3.7	1016.6 12.5 3.1	1016.8 9.9 4.0	1017.2 9.8 -0.1	1017.7 10.3 0.5	1010.4 11.0 4.1	1010.3 14.6 4.0	1016.2 14.1 3.0	1017.5 14.9 3.3 2.4	1024.4 15.5 5.1	1025.5 14.8 7.4	1030 8 23.4 43.5	1030.4 22.1 12.5	1028.4 24.8 7.5	1023.4 23.8 8.2	1017.9 18.6 10.0	1015.5 15.8 5.1 3.2	1013.5 15.0 4.9 3.3	1011.6 14.2 4.2 2.8	1012.8 15.1 3.0 2.5	1006.2 13.2 8.7 11	1015.6 16.5 5.1 3.1	1018.6 17.5 8.1 2.6	74.2
Pul	Max. Min.	Relative MSL Temp. E Humidity Pressure (Degrees (Degrees)	(%) (hPa) Celsius) (Celsius)	87 1010.0 12.5 5.0	78 1019.8 11.2 6.1 1.9	71 1029.3 12.2 2.1	76 1031.4 12.4 4.1	90 1023.6 16.4	91 1016.4 13.4 7.8	57 1019.2 14.0 3.7	73 1016.6 12.5 3.1	72 1016.8 9.9 4.0	80 1017.2 9.8 -0.1	76 1017.7 10.3 0.5	85 1010.4 11.0 4.1	78 1010.3 14.6 4.0	74 1016.2 14.1 3.0	79 1017.5 14.9 3.3 2.4	76 1024.4 15.5 5.1	93 1025.5 14.8 7.4	83 1030 8 23.4 13.5	81 1030.4 22.1 12.5	73 1028.4 24.8 7.5	69 1023.4 23.8 8.2	73 1017.9 18.6 10.0	66 1015.5 15.8 5.1 3.2	65 1013.5 15.0 4.9 3.3	74 1011.6 14.2 4.2 2.8	72 1012.8 15.1 3.0 2.5	94 1006.2 13.2 8.7 11	73 1015.6 16.5 5.1 3.1	75 1018.6 17.5 8.1 2.6	74.2
Wind	Direction Max. Min.	(Degrees Relative MSL Temp. Temp. E from Humidity Pressure (Degrees (Degrees	North) (%) (hPa) Celsius) (Celsius) (275 87 1010.0 12.5 5.0	345 78 1019.8 11.2 6.1 1.9	340 71 1029.3 12.2 2.1	315 76 1031.4 12.4 4.1	300 90 1023.6 16.4	5 91 1016.4 13.4 7.8	45 57 1019.2 14.0 3.7	345 73 1016.6 12.5 3.1	345 72 1016.8 9.9 4.0	325 80 1017.2 9.8 -0.1	340 76 1017.7 10.3 0.5	205 85 1010.4 11.0 4.1	290 78 1010.3 14.6 4.0	240 74 1016.2 14.1 3.0	280 79 1017.5 14.9 3.3 2.4	215 76 1024.4 15.5 5.1	170 93 1025.5 14.8 7.4	195 83 1030 8 23.4 13.5	135 81 1030.4 22.1 12.5	165 73 1028.4 24.8 7.5	260 69 1023.4 23.8 8.2	15 73 1017.9 18.6 10.0	20 66 1015.5 15.8 5.1 3.2	350 65 1013.5 15.0 4.9 3.3	280 74 1011.6 14.2 4.2 2.8	225 72 1012.8 15.1 3.0 2.5	65 94 1006.2 13.2 87 11	300 73 1015.6 16.5 5.1 3.1	145 75 1018.6 17.5 8.1 2.6	74.2
Wind	Direction Max. Min.	Wind (Degrees Relative MSL Temp. Temp. E Speed from Humidity Pressure (Degrees (Degrees)	(Knots) North) (%) (hPa) Celsius) Celsius) (2.0 275 87 1010.0 12.5 5.0	4.4 345 78 1019.8 11.2 6.1 1.9	4.8 340 71 1029.3 12.2 2.1	4.7 315 76 1031.4 12.4 4.1	4.9 300 90 1023.6 16.4	6.6 5. 91 1016.4 13.4 7.8	6.5 45 57 1019.2 14.0 3.7	3.0 345 73 1016,6 12.5 3.1	5.5 345 72 1016.8 9.9 4.0	3.5 325 80 1017.2 9.8 -0.1	340 76 1017.7 10.3 0.5	205 85 1010.4 11.0 4.1	4.8 290 78 1010.3 14.6 4.0	5.4 240 74 1016.2 14.1 3.0	4.8 280 79 1017.5 14.9 3.3 2.4	2.9 215 76 1024.4 15.5 5.1	3.5 186 00 1025.5 14.8 7.4	2.5 195 83 1030 8 23 4 43 5	4.4 135 81 1030.4 22.1 12.5	3.2 165 73 1028.4 24.8 7.5	260 69 1023.4 23.8 8.2	15 73 1017.9 18.6 10.0	20 66 1015.5 15.8 5.1 3.2	350 65 1013.5 15.0 4.9 3.3	280 74 1011.6 14.2 4.2 2.8	225 72 1012.8 15.1 3.0 2.5	65 94 1006.2 13.2 87 11	73 1015.6 16.5 5.1 3.1	6.7 145 75 1018.6 17.5 8.1 2.6	
Wind	Direction Max. Min.	(Degrees Relative MSL Temp. Temp. E from Humidity Pressure (Degrees (Degrees	(Knots) North) (%) (hPa) Celsius) Celsius) (2.0 275 87 1010.0 12.5 5.0	4.4 345 78 1019.8 11.2 6.1 1.9	4.8 340 71 1029.3 12.2 2.1	315 76 1031.4 12.4 4.1	4.9 300 90 1023.6 16.4	5 91 1016.4 13.4 7.8	6.5 45 57 1019.2 14.0 3.7	3.0 345 73 1016,6 12.5 3.1	5.5 345 72 1016.8 9.9 4.0	3.5 325 80 1017.2 9.8 -0.1	3.6 340 76 1017.7 10.3 0.5	5.5 205 85 1010.4 11.0 4.1	4.8 290 78 1010.3 14.6 4.0	5.4 240 74 1016.2 14.1 3.0	4.8 280 79 1017.5 14.9 3.3 2.4	2.9 215 76 1024.4 15.5 5.1	170 93 1025.5 14.8 7.4	2.5 195 83 1030 8 23 4 43 5	4.4 135 81 1030.4 22.1 12.5	3.2 165 73 1028.4 24.8 7.5	2.4 260 69 1023.4 23.8 8.2	15 73 1017.9 18.6 10.0	4.7 20 66 1015.5 15.8 5.1 3.2	4.8 350 65 1013.5 15.0 4.9 3.3	280 74 1011.6 14.2 4.2 2.8	3.6 225 72 1012.8 15.1 3.0 2.5	4.3 65 94 1006.2 13.2 87 11	3.7 300 73 1015.6 16.5 5.1 3.1	6.7 145 75 1018.6 17.5 8.1 2.6	39.5

			Direction	111.0000		Max.	Min.	Potential	
		Wind	(Degrees	Relative	MSL	Temp.	Temp.	Evapotran	
	Rainfall	Speed	from	Humidity	Pressure	(Degrees	(Degrees	spiration	Evaporat
Day	(mm)	(Knots)	North)	(%)	(hPa)	Celsius)	Celsius)	(Penman)	on (mm
-	0.3	3.2	265	85	1014.5	18.3	12.2	2.1	2.8
2	0.1	2.7	245	98	1019.5	15.5	10.1	1.3	1.6
က	2.2	4.7	275	87	1014.7	16.0	10.6	1.6	2.3
4	7.0	5.5	305	98	1011.0	17.3	10.8	2.6	3.6
5	0.2	4.8	265	82	1012.9	18.6	12.0	2.6	3.5
9	5.4	6.2	225	93	1007.6	16.7	12.5	1.7	2.4
7	0.2	4.4	305	85	1016.7	17.5	12.3	1.9	2.5
8	0.0	3.5	215	84	1019.9	19.0	8.7	2.5	3.3
6	3.6	5.3	235	83	1010.9	18.0	10.4	2.6	3.6
10	0.3	5.9	300	6/	1008.9	18.0	10.0	3.0	4.2
11	0.0	4.6	295	85	1015.5	17.3	9.4	2.2	3.1
12	0.4	5.6	315	83	1021.6	16.1	11.8	1.9	2.5
13	0.0	4.5	320	62	1024.4	15.5	10.9	1.7	2.2
14	0.0	3.0	325	81	1023.4	17.3	8.8	1.8	2.4
15	0.0	2.0	325	77	1024.9	23.0	4.7	2.8	3.8
16	6.1	3.6	215	96	1018.9	15.8	8.2	6.0	1.3
17	1.1	4.5	305	83	1011.7	16.9	11.3	1.8	2.4
18	2.1	5.5	230	98	1005.9	16.8	10.6	2.3	3.2
19	1.8	6.0	200	91	1004.2	17.9	11.2	1.5	2.2
20	2.2	8.0	240	82	1004.9	19.2	11.2	2.1	3.2
21	0.7	6.2	215	85	1013.3	19.1	11.5	2.1	2.8
22	5.8	3.6	215	89	1010.6	18.7	10.8	1.9	2.5
23	5.7	5.0	250	88	1000.7	15.3	9.6	1.8	2.6
24	1.4	9.9	295	87	1007.0	16.6	6.2	1.6	2.3
25	0.0	3.1	65	84	1012.0	16.5	4.5	1.9	5.6
26	0.0	3.2	360	80	1009.9	18.4	4.7	2.0	2.6
27	0.0	3.6	310	80	1016.0	17.7	8.4	2.2	3.0
28	0.3	5.8	285	83	1022.4	17.1	8.9	2.0	2.8
29	0.5	5.7	335	75	1022.2	15.5	8.2	1.9	2.7
30	0.0	3.0	92	75	1027.4	17.3	4.3	2.4	3.3
31	0.0	4.0	155	78	1024.3	19.1	4.5	2.4	3.2
Total	177							000	

October


L																																			
			Evaporati	on (mm)	0.0	9.0	2.0	7: 0	7.7	0.7	4. 0	2.3	1.0	5.0	2.2	7.0	4:0	2.2	27.7	10	2 0	2,0	23	6	2.0	1.5	4	14	r.	2.2	0.0	17		2	
	Potential	Evapotran	Spiration	, commany	2.3	5.3	7.7	0.0	0.0	0.0	5.0	5 4	2 7		5 4			, t	2 0		20	1.5	17	1.4	1,5	1.1	60	0	-	7.	90	1.0	1.	41.4	
	Min.	Temp.	(Degrees	7.7		7.0	12.6	13.7	13.7	0.00	10.0	10.0	14.1	10.6	2.0	12.0	96	6.0	86	4.5	4.1	12.8	12.8	12.1	11.0	11.0	7.8	7.0	3.5	3.3	7.2	5.8	5.2		
	Max.	Temp.	(Degrees	19.7	216	21.1	17.6	18.4	18.1	14.9	18.1	17.6	18.6	17.3	15.9	186	15.9	15.2	16.0	14.3	13.3	16.7	19.3	18.1	19.8	15.2	12.7	10.7	12.1	15.2	14.5	16.2	14.8		
	ġ	MSL	(hPa)	1020.3	1019.6	10186	1015.9	1010.5	998 8	994.8	1001	1012.2	1008.6	1011.8	1023.9	1017.7	1013.0	1012.2	1015.7	1020.9	1017.4	1008.5	1009.7	1013.3	1008.2	1005.5	1016.2	1022.4	1019.1	1015.1	1012.1	1012.6	1007.5		
		Kelative	(%)	78	70	76	94	91	98	95	91	92	92	91	87	96	82	88	84	87	97	93	87	88	92	93	92	73	11	81	96	88	91		
Wind	Direction	saeugan)	North)	150	130	135	140	130	125	205	170	225	205	280	275	225	265	285	295	295	210	220	225	160	200	315	350	350	65	140	155	260	155		
	Wind	Speed	(Knots)	4.3	4.9	6.5	6.3	8.8	7.3	4.6	5.0	4.8	4.8	4.4	4.9	8.6	8.0	7.5	4.7	2.8	5.9	6.5	5.7	7.4	5.7	5.1	5.0	2.9	2.5	4.5	5.0	2.3	5.7		
		Rainfall	(mm)	0.0	0.0	0.0	6.5	9'2	61.0	19.4	1.9	10.1	9.2	5.9	0.7	11.0	5.6	0.4	0.4	0.3	4.7	1.5	0.3	0.1	5.6	2.1	0.0	0.0	0.0	0.0	9.9	0.2	0.1	164.5	
			Day	-	2	3	4	5	9	7	8	6	19	7	12	13	14	15	16	17	18	19	20	17	22	23	44	52	26	/7	28	53	30	otal	

			Wind						
		-	Direction			Max.	Min	Potential	
	1	Wind	(Degrees	Relative	MSL	Тетр.	Тетр.	Evapotran	
Day	(mm)	Speed (Knots)	rom North)	Humidity (%)	Pressure	(Degrees	(Degrees	spiration	Evaporati
-	2.2	8.0	210	84	993.2	14.2	Ceisius)	(renman)	on (mm
2	5.1	7.0	175	06	995.2	146	7.7		9 ,
3	0.4	4.2	210	91	992.0	9	7.7	- 7	U
4	2.2	7.6	195	66	992.4	200	7.7	- 0	0.
5	0.1	7.8	190	79	991.7	14.5	0.0	0.0	2.1
9	0.1	5.8	205	85	7.666	15.0	4.4	5,5	7.0
_	0.2	8.6	150	83	1010.2	16.9	8.7	14	0.0
œ	0.0	9.1	105	87	1010.0	19.4	13.7	1.4	5 6
o (0.0	10.1	80	90	1013.6	15.0	12.3	6.0	12
2	0.0	7.0	20	89	1015.6	13.2	10.7	0.7	6.0
	0.3	5.5	70	87	1021.5	16.8	8.3	1.1	1.5
17.	0.3	2.3	65	95	1023.1	14.5	3.3	0.7	10
13	0.2	1.2	45	98	1023.9	9.5	4.8	0.5	90
14	0.0	1.5	340	88	1024.6	10.9	8.5	9.0	80
2	0.1	3.8	315	87	1023.5	14.2	7.8	0.7	6.0
9 !	0.1	1.9	320	86	1025.6	13.2	1.1	9.0	10
1	0.8	3.4	215	91	1025.1	13.2	0.1	9.0	80
20 9	0.8	5.3	265	88	1019.6	12.6	9.0	0.7	60
60	1.0	4.8	280	88	1016.7	10.8	3.1	9.0	6.0
07	0.0	3.5	285	83	1023.7	9.7	0.0	9.0	10
1.7	0.0	4.3	225	88	1021.3	11.7	1.6	0.7	0.9
77	4.0	6.0	205	92	1011.3	10.7	5.0	0.3	0.5
3	5.0	3.2	315	92	1006.5	11.5	2.6	0.5	0.8
74	0.0	2.3	320	89	1020.9	10.3	-1.4	0.5	0.8
27	1.3	5.6	160	84	1024.4	8.6	-3.7	0.5	0.8
97	11.1	9.5	205	95	1010.8	16.3	9.5	9.0	0.8
17	2.9	7.5	210	06	1009.0	12.2	7.5	9.0	0.8
28	2.6	9.5	175	93	1003.1	14.2	6.4	0.4	0.7
29	18.6	6.4	205	94	987.5	13.6	5.8	0.6	0.7
30	0.2	3.7	180	93	991.0	12.8	2.5	0.4	0.7
2	1.1	3.0	15	93	1003.5	11.2	5.0	0.4	0.5
lotal	59.4							23.2	

			i	1 1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
		1	Evaporati	0.5	0.7	0.5	0.5	0.5	0.4	0.3	0.1	9.0	0.3	9.0	9.0	0.4	0.2	0.3	0.5	0.4	0.3	0.2	0.4	0.1	0.2	0.2	0.1	0.0	0.1	0.3	0.0	0.1	0.3		
	Potential	Evapotran	Spiration	0.4	0.5	0.4	0.3	0.4	0.2	0.2	0.0	9.0	0.2	0.4	0.5	0.3	0.2	0.2	0.3	0.4	0.2	0.1	0.3	0.1	0.1	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.2	6.5	
	Min.	Temp.	(Degrees	Celsius)	9.3	7.5	11.7	7.8	2.6	0.7	2.6	1.9	-2.3	7.0	4.6	2.7	-1.6	-2.0	1.8	6.5	4.3	9.0	4.3	1.4	0.3	2.1	9.0-	-1.3	-1.9	-2.2	-5.1	-4.6	-2.9		
	Max.	Temp.	(Degrees	13.0	12.5	14.3	14.8	10.6	7.5	6.9	8.0	8.4	7.5	10.2	9.1	6.4	3.5	8.2	8.9	6.6	6.6	9.7	9.8	6.0	7.3	7.5	5.4	5.0	3.5	2.3	0.0	2.2	1.4		
		MSL	Pressure (hDa)	1008.9	1001.2	1006.9	1009.4	1017.4	1017.4	1004.1	966.4	987.4	999.2	977.6	988.4	988.9	995.9	1011.2	1010.6	991.5	995.1	1007.8	1015.2	1018.1	1015.6	1016.9	1015.2	1016.7	1011.5	1010.0	1008.1	1015.7	1019.7		
	;	Relative	Humidity (%)	93	91	96	97	93	93	93	97	87	87	83	84	95	96	06	89	88	92	93	92	89	95	95	94	89	93	87	94	92	90		
Wind	Direction	(Degrees	North	200	225	220	235	230	285	225	190	25	180	245	240	215	215	220	135	140	200	135	55	15	330	330	335	320	300	360	335	10	45		
		Mind	Speed (Knots)	6.5	9.8	5.0	10.1	5.6	3.3	8.0	5.3	7.3	4.7	14.0	7.6	5.1	1.3	2.5	9.0	12.3	8.7	3.0	4.8	3.7	3.2	2.7	3.2	4.6	4.6	4.2	2.4	2.7	5.3	MODELSH	
		-	(mm)	6.3	11.8	8.0	19.2	2.4	2.9	11.5	4.6	9.8	1.0	11.3	0.3	1.8	0.0	0.5	4.1	7.4	4.0	0.2	0.0	0.0	0.1	0.0	0.0	1.8	0.0	0.0	0.0	0.0	17.4	125.2	
			Zav.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Total	

			Direction			Max.	Min.	Potential	
		Wind	(Degrees	Relative	MSL	Temp.	Temp.	Evapotran	
	Rainfall	Speed	from	Humidity	Pressure	(Degrees	(Degrees	spiration	Evaporat
Day	(mm)	(Knots)	North)	(%)	(hPa)	Celsius)	Celsius)	(Penman)	on (mm
-	0.5	4.4	5	83	1018.1	-0.7	-5.0	0.1	0.2
2	0.2	3.8	345	06	1017.6	0.3	6.6-	0.0	0.1
3	1.6	3.6	205	91	1007.8	0.4	-8.9	0.1	0.2
4	0.0	1.6	300	94	1003.9	1.1	-6.3	0.0	0.0
5	0.0	1.4	220	93	1007.7	-0.3	-8.8	0.0	0.0
9	3.6	2.4	195	95	1002.5	-0.2	-3.1	0.0	0.0
7	0.0	2.4	335	96	1007.9	-0.2	-6.0	0.2	0.2
8	0.0	1.9	315	86	1021.4	-1.0	-9.3	0.0	0.0
6	0.0	1.9	220	86	1033.4	3.9	-8.6	0.1	0.1
10	0.4	3.3	265	98	1033.9	5.3	2.8	0.0	0.1
11	0.7	2.0	270	96	1029.5	5.3	-1.9	0.1	0.2
12	0.0	3.5	06	06	1025.8	5.6	-0.7	0.0	0.0
13	0.0	2.3	85	91	1029.1	3.9	-1.5	0.2	0.3
14	0.0	2.1	325	06	1038.1	4.4	0.2	0.0	0.1
15	0.1	3.1	295	92	1040.7	5.4	1.7	0.2	0.3
16	2.4	7.3	275	06	1017.3	9.7	-2.4	0.2	0.3
17	1.2	5.3	275	98	1001.9	-0.2	-2.7	0.0	0.0
18	0.0	2.6	290	26	992.9	-2.3	-9.8	0.0	0.0
19	0.0	1.8	45	92	996.5	0.0	-10.0	0.0	0.0
20	0.0	1.6	335	96	1002.6	-5.0	-10.9	0.0	0.0
21	0.0	1.2	330	96	1006.1	2.3-	-13.3	0.0	0.0
22	0.0	1.7	340	26	1012.5	-2.6	-8.3	0.0	0.0
23	0.0	2.1	325	96	1020.1	-1.8	-7.1	0.0	0.0
24	0.0	1.8	305	36	1026.4	-3.5	-11.0	0.0	0.0
25	0.0	9.0	130	62	1029.5	4.0-	-13.7	0.0	0.0
56	10.3	8.2	155	94	1018.3	5.1	-6.4	0.2	0.3
27	12.9	10.5	165	26	1003.0	1.7	5.4	0.3	0.5
28	9.0	5.2	165	86	1005.8	10.6	6.4	0.1	0.2
59	2.6	4.8	165	86	1014.6	8.9	9.9	0.2	0.3
30	0.1	3.8	70	96	1023.7	8.3	5.6	0.2	0.3
31	0.0	1.0	55	96	1027.1	7.2	5.1	0.3	4.0
			-				0.00000		200

Groundwater

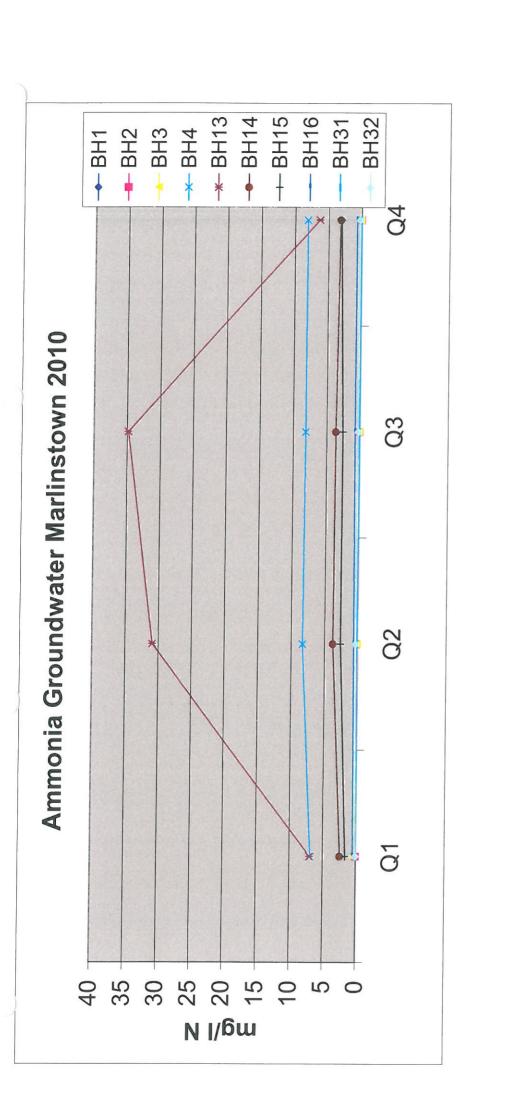
2010 Ground Water In-Situ Monitoring

Q1

Well ID Sample ID	Conductivity (µS/cm@20 ⁰ C)	Temperature (°C)	Dissolved Oxygen Mg/L O ²	Water Level mbgl	Odour & Visual
BH1	880		1.8	1.47	No odour, clear
BH2	1020		1.6	1.42	No odour, clear
ВН3	461		1.7	2.22	No odour, clear
BH4	684		2.0	3.02	Very cloudy, brown cream colour,high suspended solids (SS)
BH13	297		1.7	3.55	Slight yellow tint, no SS
BH14	405		2.9	3.28	Slight yellow tint, no SS
BH15	525		1.1	2.48	Very yellow/brown. SS. No noticeable smell.
BH16	450		0.9	2.6	Very yellow/brown. Medium conc. SS. Faint smell.
BH 31	513		2.0	2.48	Slightly opaque/cloudy
BH32	670		1.9	2.91	No odour, white SS.

 $\mathbf{Q2}$

Well ID	Conductivity	Temperature	Dissolved	Water	Odour & Visual
Sample ID	(μS/cm@20 ⁰ C)	(°C)	Oxygen Mg/L O ²	Level mbgl	oudur de Visida
BH1	924	10.1	1.3	1.96	No odour, clear
BH2	1160	10.3	3.4	1.95	Very opaque. Brown SS.
ВН3	467	11.0	1.4	2.46	Clear
BH4	743	10.4	3.1	3.1	Light brown. Very cloudy and opaque.
BH13	929	10.4		3.8	Light brown. No SS
BH14	309	10.2	1.2	3.5	Light brown. Brown SS.
BH15	625	10.2	0.7	3	Brown colour, cloudy appearance.
BH16	515	8.6	<0.5	3.19	Brown colour, no SS.
BH 31	533	10.9	<0.5	2.84	Clear
BH32	683	10.4	1.3	3.06	Slightly opaque. White SS.


Marlinstown Landfill
Waste Licence W0071-02
Groundwater Monitoring Results

Well ID Sample ID	Conductivity (µS/cm@20 ⁰ C)	Temperature (°C)	Dissolved Oxygen Mg/L O ²	Water Level mbgl	Odour & Visual
BH1	907		1.8	1.85	No odour, clear
BH2	1090		1.7	1.85	No odour, clear
ВН3	445		2.7	2.4	No odour, clear
BH4	687		1.3	3.04	Light yellow tint. Some black SS.
BH13	1110		0.8	3.75	Light yellow, some SS.
BH14	347		0.8	3.45	Light brown, no SS.
BH15	628		0.7	2.98	Light brown, no SS.
BH16	536		<0.5	3.2	Light creamy brown colour. High dissolved solids.
BH 31	485		1.4	2.85	Slightly opaque
BH32	592		1.0	2.96	Slightly opaque

04

Q4					
Well ID	Conductivity	Temperature	Dissolved	Water	Odour & Visual
Sample	(µS/cm@20	(^{0}C)	Oxygen	Level	
ID	(OC)		$Mg/L O^2$	mbgl	
BH1	804		2.6	1.54	Clear water, no noticeable smell
BH2	854		2.3	1.42	Clear water, no noticeable smell
ВН3	465		2.9	2.05	Clear water, no noticeable smell
BH4	732		1.4	2.85	No smell, turbid
BH13	627		1.7	3.49	Low suspended solids, clear, no smell
BH14	536		1.5	3.23	Yellow colour, some suspended solids
BH15	618		4.6	2.4	Brown colour, some suspended solids
BH16	585		<0.5	2.63	Yellow colour, low suspended solids
BH 31	521		3.2	2.26	Clear water, low suspended solids, no smell
BH32	714		1.6	2.62	Clear water, low suspended solids, no smell

Marlinstown Landfill Waste Licence W0071-02 Groundwater Monitoring Results

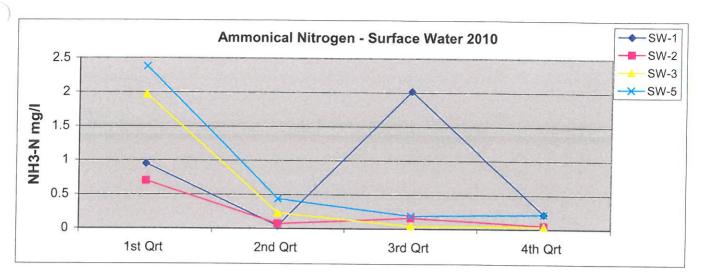
Groundwater Lab Monitoring 2010

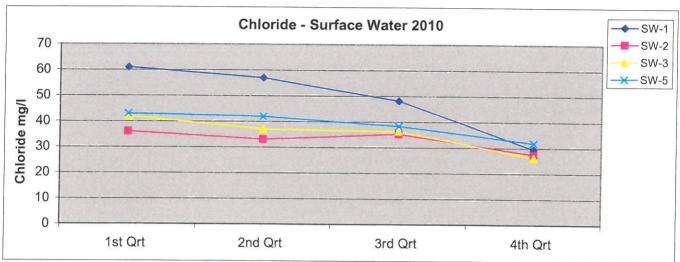
5	Parameter	Units	Methodology	BH1	BUS	PUS	7110	077110					
0700/0707	001		(60,000	5	7110	SEG	DH4	BH13	BH14	BH15	BH16	RH31	RH32
10/03/50/01		ma/	Spectrophotometry	46	2.7	30	000	7.07	1 0,				20110
			a paragraphical y). F		0.7	0.0		7.5.5	484	1100	7	0 1
	Chloride		Titration	010	0007	0 , ,			010		0.4		0.4
	000000000000000000000000000000000000000	0 1/8	ווומווסוו	0.70	162.0	14.0	170	000	120	26.0	070	7 1 0	0.70
	7						0.	0.04	0.0	20.02	0.72	12.0	21.0
	- 10		Electrometry	.3	7 4	76	7.1	7 3	2 2	7 7	1		
	Ammonio	1 N I				5.	1.,	t.:	0.0	ر. ا	5.) '	73
	ATTITIONE	N I/BIL	Spectrophotometry	0.05	0.04	0.45	6 84	8.08	2 11	7 07	0,0	100	
						0::0	5.0	0.30	1.4	0.	0.43	0.05	60.0
								The state of the s	The second name of the last of				

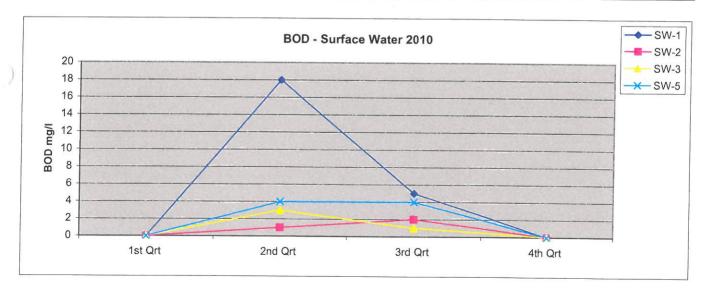
	BH32	0	55.5		190	0.0	1 1	4.7		0.34
	BH31	1	ς.	00,	77.2	1:0	11	1.1		0.08
01110	01.10	E/ E	0.4.0	1	24.5		77	t. /	000	09.0
01175	CILIO	210	0.40	0 07	40.7		7 7	t.	CL	2.59
DU11	1110	40 6	0.01	100	0.0		2	0.0	777	3.77
BH12	2	23.1	1.03	73 E	0.0	0		2.	00 00	20.00
RHA		14.2	1:1:1	100	0.0	1			α 24	0.0
BH3		17		14.8	5:-	10	0./		200	0.01
BH2		7.8		1740	0:-	7	† .		0.04	10.0
BH1		3.0		72.1		7.2	3.	0,0	010	0
Methodology	Chapter	Specifications of the control of the	· · · · · ·	I Itration		Flactromatry	FIGURE OF THE B	Canada Landa Landa		
 Units	0 // 0 //) Si	0 2	S / Sml				14 // w		
Parameter	TOC	20	Chinala	on louis		I C		Ammonia		The same of the sa
Q2	30/06/2010	200000								

	BH31 BH32	+		1	_		H	_	+
077	8H16	707	40.4		28.3	20.0	000	00.0	0 10
01145	0 10	0 01	0.04		0 07	2.5	000	00.0	0 2 0
DU11	4110	32.0	0.20		0.00	0.0	010	0	2 64
RH13	2110	316	0.10	000	82.33		07.8	01.0	3/1 80
BHA	2	13.7		1770	7.1.7		8 50	0.00	8 15
BH3		2.0	Dii	0 4	0.61		8 70	0	0.11
BH2		3.6		7000	0.80		8.60		0.04
BH1		3.0		7700	0.211	000	8.50		0.0
Methodology		Spectrophotometry		itration	וממוסוו	TI Soften in the	Electrometry		Spectrophotometry
Units	0 1/200	ر ا		. /bu	0 160			1 4 1/	Z /SW
Parameter	100	20	Chinolan			Į.	- 1	A manage and	Ammonia
Q 3	25/08/2010	20/00/2010							


	BH32	700	7.3		170	0.7	1)	0.28
2010	DH3	770	47.0		137	2.0	1 00	09.7		< 04
01146	סוום	62 50	00.00		23.0	20.0	7 20	00.7		0.69
DUAE	CILIC	27.00	00.40	1 00	30.5	0.00	7 20	02.7		3.03
BH14	1	25.00	20.00	710	200		6 70	00		3.15
RH13	2	34 70	01:10	0 30	72.0		000	0.00	.00	6.31
BH4		13.70	0	107	13.7		7 10	2	0.7.0	8.13
BH3		0.92		177		-			770	O. 14
BH2	1	7.7		25 6	0.00	1 10	7.40		201	1.04
BH1	00 7	98.		200 4	1.01	7.40	01.7			0.03
Methodology	Chantonhatamatan	Specificationionietry	., ,,,	litration		Flootromoting	רוברוו סווובנו א		- Vatamotodogical	Speak opinotellictiy
Units	C /2m) S		S S S S S	,			1 N I		0
Parameter	TOC	00-	Chi	Ollolide		T L	- 12	Ammonio		
Q4	25/11/2010	201112010								


Environmentar-Monitoring at Marlinstown Landfill 2010


Annual Groundwater Results (sampled 26/8/10)


		EPA IGV	S.I. No. 278 of 2007										
Poros	Units	Standards*	Standards**	BH1	BH2	BH3	BH4	BH13	BH14	RH15	DU16	DELIGA	0
BOIOII	mg/l	-	-	0.23	0.23	0.17	0.18	0.21	0.15	070	070	PLIO	DH3Z
cadmium	l/gm	0.005	0.005	<0.0006	<0.000 0>	90000	3000	75.0	2.0	0.10	0.19	0.14	0.17
Calcium	l/bm	200		187	4000	0000	20.000	20.000	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
Chromium	l/om	0.03	20.0	107	282	92.9	221	190	78.6	131	128	100	146
Copper	50 8	0.00	0.00	<0.0007	<0.0007	<0.0007	0.0028	0.0015	<0.0007	0.0022	0.0026	<0.0007	<0.000
ron	1/6111	0.03	2	0.023	900.0	0.001	0.019	0.019	0.018	<0.001	0.004	0 002	0.000
	1/6	7.0	0.2	<0.19	0.3	<0.19	9.35	11.5	4.35	8.41	6,35	<0.19	<0.002
Magnesium	1/611	0.01	0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00
Mandanese	5	000	1	11	11	14	7.37	8.7	3.65	6.23	6.52	14	6.26
	1/811	0.05	0.05	0.104	0.128	0.223	0.556	0.553	0.411	0.37	0.426	200	0.20
Mercury	l/gm	0.001	0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.000 0>	10000	7000	7000	00.0	0.700
Nickel	l/gm	0.02	0.02	0.035	000	2000	000.0	000.0	000.0	<0.000 l	<0.0001	<0.0001	<0.0001
Potassium	ma/l	יני		40.4	0.0	0.002	0.000	0.058	0.011	0.007	0.006	900.0	0.017
Sodium	ma/l	150	- 000	000	0.77	0.74	2.65	19.1	1.86	10.8	10.1	0.74	3.51
Zinc	l/om	200	2007	03.0	97.9	15.7	20.7	64.3	19.2	32.2	18.3	11.1	13.5
Total Oxidised Nitrogen (N)	l/om	-	1	0.054	0.021	0.005	0.027	0.017	0.048	0.008	0.014	0.00	0.01
OrthoPhosphate	, bu	0.03	1	1.44	1.88	0.43	<0.29	<0.29	<0.29	<0.29	<0.29	0.63	1.31
Sulphate as SO4	100	0.00	1 6	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	0.54	<0.08	<0.08	<0.08
Total Dissolved Solids	100	2007	750	35.6	44.9	<5.00	<5.00	<1.0	<5.00	<5.00	<5.00	40.8	120
Conido	mg/l	1000		630	723	296	470	649	268	506	430	0.00	5.0
Cyanide Se E	mg/l	0.01	0.05	<0.009	<0.009	<0.009	<0.009	<0.00>	000 U>	0000	000	100	71.4
Alkalinity of CoCo	l/gm	1.0	0.8	0.3	0.3	0.4	0.1	0.2	0.1	0.3	0.3	600.0	50.008
COOR OR CHILL	1/6111	ī	1	391	374	257	403	550	101	202	201	7.0	7.0

Surface Water

Annual Surface Water Quality Results

				RES	ULTS	
Parameter	Method	Units	SW1	SW2	SW3	SW5
Boron, Total as B	WAS049	mg/l	0.3	0.35	0.29	0.31
Cadmium , Total as Cd	WAS049	mg/l	<0.0006	<0.0006	<0.0006	<0.0006
Calcium , Total as Ca	WAS049	mg/l	141	153	114	159
Chromium , Total as Cr	WAS049	mg/l	<0.0007	<0.0007	<0.0007	<0.0007
Copper, Total as Cu	WAS049	mg/l	0.002	0.002	<0.001	0.003
Iron , Total as Fe	WAS049	mg/l	0.86	0.41	0.39	1.55
Lead , Total as Pb	WAS049	mg/l	0.005	< 0.005	<0.005	<0.005
Magnesium, Total as Mg	WAS049	mg/l	5.65	6.35	5.72	7.61
Manganese , Total as Mn	WAS049	mg/l	0.088	0.109	0.074	0.194
Mercury, Total as Hg	WAS013	mg/l	<0.0001	< 0.0001	< 0.0001	<0.0001
Nickel , Total as Ni	WAS049	mg/l	<0.002	0.002	<0.002	0.003
Potassium , Total as K	WAS049	mg/l	3.85	3.79	3.8	5.95
Sodium , Total as Na	WAS049	mg/l	19	15.6	14.7	21.3
Zinc, Total as Zn	WAS049	mg/l	0.005	0.005	0.004	0.01
Alkalinity as CaCO3	WAS025	mg/l	296	302	240	298
Nitrogen, Total Oxidised as N	WAS036	mg/l	1.36	1.05	2.6	3.08
Phosphate, Ortho as P	WAS036	mg/l	<0.08	<0.08	<0.08	<0.08
Sulphate as SO4	WAS036	mg/l	18.1	43.5	27.2	36.7

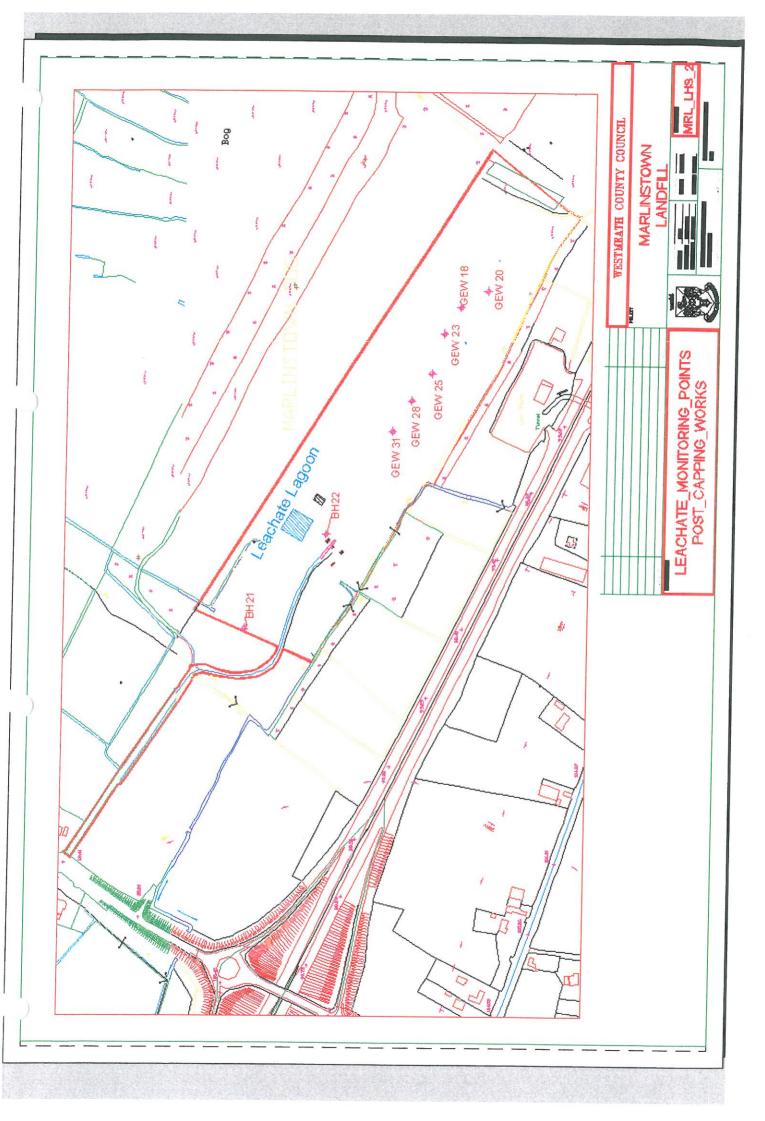
Items highlighted in yellow are exceedance of Surface Water Quality Standards S.I.No. 294 of 1989 Items highlighted in pink are in exceedance of European Communities (Quality of Salmonid Waters) Regulations,

Surface Water Standards

			Qualit	y Standard	s
Parameter	Unit	Surface	Water Reg	ulations ¹	Water
		A1	A2	A3	Quality Regulations ²
Boron	mg/l	2	2	2	_
Cadmium	mg/l	0.005	0.005	0.005	-
Calcium	mg/l	_	-	-	-
Total Chromium	mg/l	0.05	0.05	0.05	0.03
Copper	mg/l	0.05*	0.1*	1*	0.03
Dissolved iron	mg/l	0.2	2	2	-
Lead	mg/l	0.05	0.05	0.05	0.01
Magnesium	mg/l		-	-	-
Manganese	mg/l	0.05	0.3	1	-
Mercury	mg/l	0.001	0.001	0.001	-
Nickel	ug/l	_	-	-	0.05
Potassium	mg/l	-	-	-	-
Sodium	mg/l	-	8	-	_
Zinc	mg/l	3	5	5	0.1
Alkalinity as CaCO3	mg/l	-	-	-	-
Nitrogen, Total Oxidised as N	mg/l	-	_	-	_
Phosphates	mg/l	0.5	0.7	0.7	-
Sulphate	mg/l	200	200*	200*	-

S.I. No. 294/1989 — European Communities (Quality of Surface Water Intended For The Abstraction of Drinking Water) Regulations,

Category A1: Simple physical treatment and disinfection, e.g. rapid filtration and disinfection.


Category A2: Normal physical treatment, chemical treatment and disinfection, e.g. prechlorination, coagulation, flocculation, decantation, filtration, disinfection (final chlorination).

Category A3: Intensive physical and chemical treatment, extended treatment and disinfection, e.g. chlorination to break-point, coagulation, flocculation, decantation, filtration, adsorption (activated carbon), disinfection (ozone, final chlorination).

²S.I. No. 12/2001 - Water Quality (Dangerous Substances) Regualtions 2001

^{*} A departure from the quality standards referred to in article 3 (1) may be granted by the Minister to a sanitary authority where exceptional meteorological or geographical conditions have arisen.

Leachate

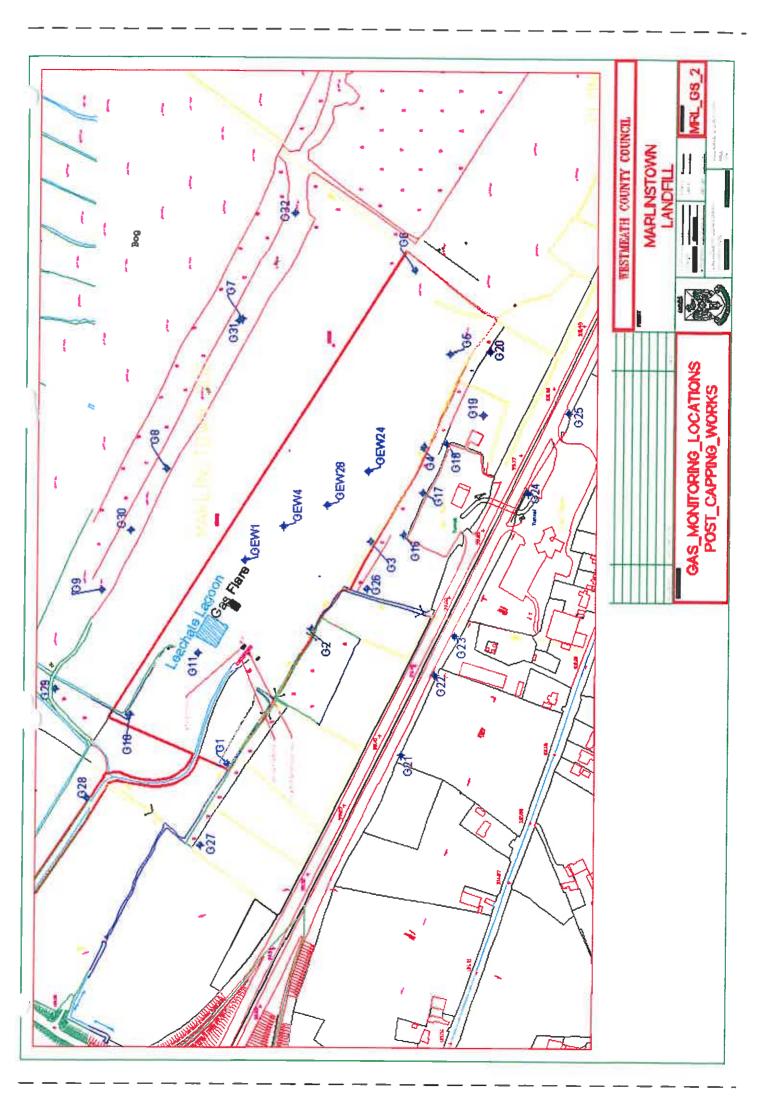
Leachate Monitoring 2010

Quarter 1	Sample I D	Depth of Leachate (m)	Temp C	Odour/Visual Appearance
18/02/2010	GEW31			Pipe damaged
	GEW28	6.71		Yellow colour, slight ammonia smell
	GEW25	2.17		Yellow colour, black SS, no smell
	GEW23	1.09		Strong smell, black SS, clear colour
	GEW18	0.00		Pipe damaged
	GEW20	0.96		Grey colour, strong smell
	BH21	1.50		Clear colour, no smell
	BH22	1.90	3.6	Clear colour, no smell, orange SS

Quarter 2	Sample I D	Depth of Leachate (m)	Temp C	Odour/Visual Appearance
27/05/2010	GEW31			Pipe damaged
	GEW28	2.30	16.9	Yellow colour, slight ammonia smell
	GEW25	2.93	17	Yellow colour, slight ammonia smell
	GEW23			Not done, access problems
	GEW18		- 1369	Pipe damaged
	GEW20	0.73	13.9	Grey colour, black SS, slight smell
	BH21	0.80	12	Clear colour, no smell
	BH22	0.60		Unable to sample due to bend in casing

Quarter 3	Sample I D	Depth of Leachate (m)	Temp C	Odour/Visual Appearance
08/10/2010	GEW31			Pipe damaged
	GEW28	5.15	15.7	Black colour, strong smell, white SS
	GEW25	2.60	15.8	Yellow colour, strong smell
	GEW23	0.97	11.2	Clear colour, slight smell, black SS
	GEW18			Pipe damaged
	GEW20	1.10	12.3	Clear colour, slight smell
	BH21	0.90	11.6	not sampled
	BH22	1.50		not sampled

Quarter 4	Sample I D	Depth of Leachate (m)	Temp C	Odour/Visual Appearance
15/12/2010	GEW31			Pipe damaged
	GEW28	2.08	14.4	Yellow colour, slight smell, no SS
	GEW25	4.25		No sample could be extracted
	GEW23	1.09	11.1	Black SS, slight hydrocarbon sheen
	GEW18			Pipe damaged
	GEW20	1.20	9.1	Black colour, strong smell
	BH21	1.02		not sampled
	BH22	1.13		not sampled


Cells highlighted - suspect figures- meter activating above liquid level

Annual Leachate Results

Parameters	Units	Leachate Lagoon	GEW28
Ammoniacal Nitrogen as N	mg/l	103	11.5
рН	pH units	8.2	8
Conductivity- Electrical 20C	uS/cm	1990	10400
Chloride as Cl	mg/l	198	1180
Phosphate, Ortho as P	mg/l	0.2	0.91
BOD + ATU (5 day)	mg/l	20	91
COD (Total)	mg/l	209	2340
Cyanide, Total as CN	mg/l	<0.009	0.009
Fluoride as F	mg/l	0.3	1
Nitrogen, total Oxidised as N	mg/l	0.9	<0.5
Sulphate as SO4	mg/l	42.5	246
Mercury, Total as Hg	mg/l	< 0.0001	< 0.0001
Boron, Total as B	mg/l	0.56	1.04
Cadmium , Total as Cd	mg/l	< 0.0006	< 0.0006
Calcium , Total as Ca.	mg/l	92.8	397
Chromium , Total as Cr	mg/l	0.0018	0.0281
Copper, Total as Cu	mg/l	<0.001	0.113
Iron , Total as Fe	mg/l	3.95	154
Lead , Total as Pb	mg/l	< 0.005	0.198
Magnesium, Total as Mg	mg/l	28	134
Manganese , Total as Mn	mg/l	0.256	1.37
Zinc, Total as Zn	mg/l	0.012	2.49
Nickel , Total as Ni	mg/l	0.021	0.16
Potassium , Total as K	mg/l	88.8	543
Sodium , Total as Na	mg/l	156	1040
List I-II		*	N/S

^{*}See Appendix 1 for detailed Laboratory Report N/S Inadequate sample volumes for analysis

Landfill Gas

11

LANDFILL GAS MONITORING RECORD SHEET

	Facility Name: Marlinstown Landfill	ne: Marlin	stown Land				English		
Persounel: May Claire Sheridan & Mark Conaty RESULTS Public Colspan="6">RESULTS Public Colspan="6">RESULTS No. (% v/v)	Licensee: V	/estmeath	County Co	uncil			Date of	amore:	3: Warlinstown, Mullingar, Co. Westmeath
pheir Pressure 1018 mb. Preside (% No. 10.2) (% No. 10.4) (% No. 10.4	Monitoring	Personne	al: Mary Cla	lire Sheridal	a & Mark C	hatv	Weather	F100	W. cont partnery cont
New No. (% w/v) (% O ₂ (% O ₂ (% O ₂ (% O ₂ H ₂ S) N.2 n No. (% w/v) (w/v) (w/v) ppm LEL (%) (%) n No. (% w/v) (w/v) ppm ppm LEL (%) (%) n No. (% w/v) (w/v) (w/v) ppm D 98.4 81.8 n 1.4 4.3 0.6 0 0 98.4 81.9 n 2. 1.2 1.6 0 0 2.8 81.1 n 2. 2.4 8.3 0 0 0 2.8 81.3 n 2. 2.4 8.3 0 0 0 67.5 72.7 n 0 0	Atmospheri	c Pressu	re 1018 mt	č					יון פוום פתוווץ.
No. (% w/v) W/v) Ppm Ppm LEL (%) (%) W/v 6.5						RESUL	TS		
No. (%6 W/V) V/V V/V OPDM OPDM CEL (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	Sample	Т				HzS		ź	
6.5 0.2 10.4 0 0 84.5 82.8 1.4 1.4 1.2 0.0 0 0 0 2.8 81.1 1.2 0.2 1.7.6 0 0 0 0 2.8 91.1 1.2 0.2 1.7.2 0 0 0 23.5 84.8 1.2 1.2 3.2 17.2 0 0 0 23.2 79.3 1.9.4 0.0 0 0 23.2 79.3 1.9.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Station No.	(% ^/ \)	(_N / _N	(v/v	ppm	шдд	LEL (%)	'§	Comments
14 4.3 0.6 0 0 0 0 0 0 0 0.2	75	6.5	0.2	10.4	0	0	94.5	82.8	Water pulled up through tubing
0.2 1 7.6 0 2.8 91.1 0.2 0.6 14.7 0 0 2.8 91.1 0.2 0.6 14.7 0 0 3.5 84.8 25 2.4 8.3 0 0 23.2 79.3 1.2 3.2 17.2 0 0 23.2 78.5 9.7 1.7 0.5 0 0 23.2 78.5 0.4 0.3 18.4 0 0 67.5 72.7 0 0 20.8 0 0 78.5 77.7 0 0 20.8 0 0 0 78.9 0 0 20.3 0 0 0 78.9 0 0 20.3 0 0 79.7 77.7 0 0 20.6 0 0 78.9 78.9 0 0 2.4 18.2 0 <	23	4	4.3	9.0	0	0	98.4	81	R
Valve under frozen water Valve under frozen water Valve under frozen water 3.5 84.8 25 2.4 8.3 0 0 3.5 84.8 1.2 3.2 17.2 0 0 23.2 78.3 9.7 17 0.5 0 0 23.2 78.3 0.4 0.3 18.4 0 0 67.5 72.7 0 0 20.8 0 0 78.7 9.6 0 0 20.8 0 0 78.3 0 0 78.3 0 0 20.3 0 0 0 78.8 0 0 78.8 0 0 20.3 0 0 0 78.8 0 0 0 78.8 0 0 0 0 0 0 0 0 78.8 0 0 0 78.8 0 0 0 0 0 <td< td=""><td>64</td><td>0.2</td><td>-</td><td>7.6</td><td>0</td><td>0</td><td>2.8</td><td>91.1</td><td></td></td<>	64	0.2	-	7.6	0	0	2.8	91.1	
0.2 0.6 14.7 0 0 3.5 84.8 25 2.4 8.3 0 0 5.5 64.2 1.2 3.2 17.2 0 0 23.2 79.3 1.2 3.2 17.2 0 0 67.5 72.7 9.7 1.7 0.6 0 0 67.5 72.7 0 0.4 0.3 18.4 0 0 0 79.1 0 0 20.8 0 0 0 79.7 9.6 0 0 20.8 0 0 0 79.1 9.6 0 0 20.3 0 0 0 79.2 9.6 0 0 20.3 0 0 0 79.2 9.6 0 0 0 0 0 0 79.2 9.6 0 0 0 0 0 0 79.2	35			Valve ur	ider frozen	waler			
25 2.4 8.3 0 0 >>> 64.2 1.2 3.2 17.2 0 0 23.2 79.3 9.7 17 0.5 0 0 23.2 79.3 0.4 0.3 19.4 0 0 67.5 72.7 0 0 0 20.8 0 0 79.7 9.6 0 0 0 20.8 0 0 79.7 9.6 0 0 0 20.8 0 0 79.7 9.6 0 0 20.8 0 0 0 79.7 9.6 0 0 20.3 0 0 0 79.7 9.6 0 0 20.3 0 0 0 79.7 9.6 0 0 0 0 0 0 0 79.7 0 0 0 0 0 0 0	99	0.2	9.0	14.7	0	0	3.5	84.8	
1.2 3.2 17.2 0 0 23.2 78.3 9.7 17 0.5 0 0 67.5 72.7 0.4 0.3 19.4 0 0 67.5 72.7 0 0 20.8 0 0 0 79.7 9.6 0 0 20.8 0 0 0 79.7 9.6 0 0 20.8 0 0 0 93.3 9.6 9.9 79.8 0 0 20.3 0 0 0 0 9.3 77.7 0 0 20.9 0 0 0 0 79.8 0 0 0 0 0 0 0 79.8 0 0 0 0 0 0 0 0 77.7 0 0 0 0 0 0 0 0 77.9 0	<u>G7</u>	22	2.4	8.3	0	0	â	842	
9.7 17 0.5 0 0 67.5 72.7 0.4 0.3 19.4 0 0 79.7 9.6 0 0 20.8 0 0 0 79.7 9.6 0 0 20.8 0 0 0 79.7 9.6 0 0 20.8 0 0 0 79.7 9.6 0 0 20.3 0 0 0 0 93.3 77.7 0 0 20.3 0 0 0 0 79.8 0 0 0 0 0 0 0 77.7 0 0 0 0 0 0 0 77.7 0 0 0 0 0 0 79.8 90.4 0 0 0 0 0 0 0 77.7 0 0 0 0 0	85	1.2	3.2	17.2	0	0	23.2	79.3	
O.4 0.3 19.4 orallogual of the control	65	9.7	17	0.5	0	0	67.5	72.7	
0.4 0.3 19.4 0 0 79.7 9.6 0 0 20.8 0 0 0 79.1 9.6 0 8.1 8.5 0 0 0 0 79.7 9.6 0 0 20.3 0 0 0 0 79.9 0 3.2 16.8 0 0 0 77.7 0 0.7 19.4 0 0 0 79.8 0 0 0 0 0 0 77.7 0 0 0 0 0 0 77.7 0 0 0 0 0 0 0 77.7 0 0.6 18.2 0 0 0 79.2 0 0 0.6 18.2 0 0 0 0 79.2 0 0.5 19.9 0 0 0 0 0 <td>G10</td> <td></td> <td></td> <td>Valve un</td> <td>der frozen</td> <td>water</td> <td></td> <td></td> <td></td>	G10			Valve un	der frozen	water			
0 0 20.8 0 0 79.1 0 8.1 8.5 0 0 0 0 83.3 0 0 20.3 0 0 0 0 98.3 0 0 20.3 0 0 0 0 78.8 0 0 0 0 0 0 0 78.8 0 0 0 0 0 0 0 78.8 0 0 0 0 0 0 0 78.8 0 0 0 0 0 0 0 78.8 0 0 0 0 0 0 0 0 78.4 0 0 0 0 0 0 0 0 78.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>G11</td> <td>0.4</td> <td>0.3</td> <td>19.4</td> <td>0</td> <td>0</td> <td>79.7</td> <td>9.6</td> <td>Water oulled up through history</td>	G11	0.4	0.3	19.4	0	0	79.7	9.6	Water oulled up through history
0 8.1 8.5 0 0 0 0 0 20.3 0 0 0.9 0 3.2 16.8 0 0 0 7.9 1 13.3 0 0 0 0 0.7 19.4 0 0 0 0 0 2.4 18.2 0 0 0 0 0 0 2.4 18.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G16	0	0	20.8	0	٥	0	79.1	
0 0 20.3 0 0.9 0 3.2 16.8 0 0 0 7.9 1 13.3 0 0 0 0 0.7 19.4 0 0 0 0 0.7 19.4 0 0 0 0 0.7 19.4 0 0 0 0 0.2 19.4 0 0 0 0 0 0.6 18.2 0 0 0 0 0 0 0 0.6 18.2 0<	G17	0	8.1	8.5	0	0	0	83.3	
0 3.2 16.8 0 0 0 7.9 1 13.3 0 0 0 0 0.7 19.4 0 0 0 0 0.7 19.4 0 0 0 0 0.2 20.6 0 0 0 0 0.6 18.2 0 0 0 0 0.6 18.2 0 0 0 0 10 0.6 18.2 0 0 0 0 0 0 0.5 18.9 0 0 0 0 0 0 0.9 0.6 19.3 0 0 0 0 0 0 0 0 0.0 0.1 20.6 0	618	0	0	20.3	0	0	6.0	79.6	
7.9 1 13.3 0 0 >>> 0 0.7 19.4 0 <	619	٥	3.2	16.8	0	0	0	78.9	
0 0.7 19.4 0 <td>920</td> <td>6.7</td> <td></td> <td>13.3</td> <td>0</td> <td>0</td> <td>^</td> <td>77.7</td> <td></td>	920	6.7		13.3	0	0	^	77.7	
0 0 20.6 0 0 0 0 2.4 18.2 0 0 0 0 0.6 18.8 0 0 0 0 0.5 19.9 0 0 0 10 3.9 17.2 0 0 0 0.9 0.6 19.3 0 0 18.4 0.2 0 15 0 0 4.5 0 0 15 0 0 4.5 0 0 15 0 0 0 0 4.5 4.9 13.7 0 0 0 0 4.5 4.9 13.7 0 0 0 0 1.9 1.2 19.5 0 2.8 39.7 30 9.2 2.7 0 0 >>> 1.2 16.5 0 0 >>> 20.5 0 <td< td=""><td>G21</td><td>0</td><td>0.7</td><td>19.4</td><td>0</td><td>0</td><td>0</td><td>79.8</td><td></td></td<>	G21	0	0.7	19.4	0	0	0	79.8	
0 2.4 18.2 0 0 0 0 0.6 18.8 0 0 0 0 0.5 19.9 0 0 0 10 3.9 17.2 0 0 0 0.9 0.6 19.3 0 0 18.4 0.2 0 15 0 0 4.5 0 0 0 0 0 4.5 0 0 0 0 0 0 0 4.5 4.9 13.7 0 0 0 0 4.5 4.9 13.7 0 0 0 0 1.9 1.2 19.5 0 0 1.1 1.9 1.2 19.5 0 0 >>> 1.9 0.0 0.7 0 0 >>>	G22	0	0	20.6	0	0	0	79.3	
0 0.6 18.8 0 0 0 0.5 19.9 0 0 0 10 3.8 17.2 0 0 0 0 0.9 0.6 19.3 0 0 18.4 0.2 0 15 0 0 4.5 0 0 0 0 0 0.8 0 0 0 0 0 0 0 4.5 4.9 13.7 0 0 0 0 4.5 4.9 13.7 0 0 0 1.1 1.9 1.2 19.5 0 0 1.1 1.9 1.2 19.5 0 0 >>> 1 30 9.2 2.7 0 0 >>> 1 0.05 0 20.9 - - - -	623		2.4	18.2	0	0	0	79.2	
0 0.5 19.9 0 18.4 0 0 18.4 0 0 18.4 0 0 18.4 0 0 0 4.5 0	624	0	9.6	18.8	٥	0	0	80.4	
10 3.9 17.2 0 0 0 0 0 0 0 0 0	250		0.5	19.9	0	o	0	79.5	
0.9 0.6 19.3 0 0 18.4 0.2 0 15 0 0 4.5 0 0.1 20.6 0 0 0 0 4.5 4.9 13.7 0 0 0 0 0 0.1 0.1 20.5 0 0 1.1 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 19.5 0 0 0 1.1 1.1 1.1 1.2 1.2 1.2 1.2 0 0 0 0 1.1 1.1 1.1 1.2 1.2 0<	075	2 5	3.9	17.2	0	0	^^^	68.8	
0.2 0 15 0 0 4.5 0 0.1 20.6 0 0 0.8 0 2 16.4 0 0 0 0 4.5 4.9 13.7 0 0 0 0 0 1.9 0.1 20.5 0 0 0 1.1	900	9,0	9,0	19.3	0	0	18.4	79.1	
0 0.1 20.6 0 0 0.8 4.5 4.8 13.7 0	020	7,		င	٥	٥	4.5	84.9	
4.5 4.9 13.7 0 0 0 0.1 0.1 20.5 0 0 83.3 1.9 1.2 19.5 0 2.8 39.7 1 30 9.2 2.7 0 0 >>> 3 23.5 16 0.7 0 5 >>> (20) 0.05 0 20.9 - - -	630	3	0.7	20.6	0	0	9.0	72.9	
4.5 4.8 13.7 0 0 83.3 0.1 0.1 20.5 0 0 1.1 1.9 1.2 19.5 0 2.8 39.7 1 30 9.2 2.7 0 0 >>> 3 23.5 16 0.7 0 5 >>> (20) 0.05 0 20.9 - - -	100	3	7	16.4	0	0	0	80.9	
1.9 1.2 19.5 0 0 1.1 1.9 1.2 19.5 0 2.8 39.7 1.30 9.2 2.7 0 0 >>> 2.3.5 16 0.7 0 5 >>> (20) 0.05 0 20.9 -	G532	0.4	25.0	13.7	0	0	83.3	76.8	
1.3 1.2 19.5 0 2.8 39.7 1 30 9.2 2.7 0 0 0 >>> (20) 0.05 0 5 >>> (20) 0.05 0 5 >>>	GEWI		- (20.5	0	0	1.1	79.2	
23.5 (6 0.7 0 5 >>> 0.05 0 0 >>>	GEVV4	P. C	1.2	19.5		2.8	39.7	77.3	
0.05 0 20.9	GEVV24	2 5	2.8	27	0	0	^	58	
0 60.0	SEVIZO SUDO (MO)	23.3	9	0.7	٥	c)	^^	59.7	
	300r (/20)	CO.0]	20.9	-	-	-	,	

RPS Consulting Engineers, Lyrr Building, IDA Business Technology Park, Mervue, Galway, Ireland T+353 091 400200 F+353 091 400299 E ireland@rpsgroup.com

Facility Nam	l Ø l	Landfill				Facility A	ddress: h	Aarlinsto	Facility Address: Marlinstown, Mullingar, Co. Westmeath
		County Council				Date of Sa	:Buildme	18th Fe	Date of Sampling: 18th February 2010
Monitoring F	Personnel: Mar	al: Mary Claire Shendan	heridan			Weather:	Very cold	and tro	Weather: Very cold and frosty, dry and sunny.
						RESULTS			
1	Atmospheric	2	0	,		:			
Station No.	(mb)	(\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	5 § § §	(% ^(^)	0 6	NZ H	LEL (%)	z 8	Commente
G1	975	5,3	8.3	6.3	0		23	2	
G2	975	0.5	0.2	18.2	0	0	2	8	
ပ္ပ	975	9.6	4.5	0.3	0	0	68.1	85.2	
64	975	0	1.8	5,3	0	0	0	92.8	
GS	975		Waler	Water covering nozzle	nozzle - C	- could not sample	mple		
ဗ္ဗ	975	0	0	20.7	0	0	0	79.2	
<u>G</u> 7	975	3.2	0.9	17.1	0	0	61.4	78.7	
සි	975	3.9	2.4	16.5	0	0	74.9	77.1	
69	975	6.6	11	3.4	0	0	54.4	78.9	
G10	975		Frozen wa	ter cover	Frozen water covering nozzle	- could not sample	sample		
<u>G11</u>	975		Frozen wa	iter cover	Frozen water covering nozzle	- could not sample	t sample		
G16	975	0	0	20.6	-	0		79.3	
G17	975	0.8	8	6.1	0	80	0	85	
G18	975	0	0	20.8	0	0	0.1	79.1	
G19	975	0	2.8	17.7	0	0	0.1	79.4	
620	975	12.5	1.6	8.5	0	û	^^	77,3	
G21	975	0	0.7	19.6	0	0	0	79.6	
G22	975	0	0	20.7	0	0	o	79.2	
G23	975	0	1.6	18.8	0	0	0.1	79.5	
G24	975	٥	1.5	16.8	0	0	0	81.6	
G25	975	0	0.5	20.5	0	0	0	78.9	
626	975	22	2.2	9.3	2.8	2.3	^<<	66.4	
627	975	- 3	0.2	13.4	0	0	35.1	84.4	
979	975	0.4	0	2.2	0	0	3.6	97.3	
630	975	0.2	0	20.7	0	0	9.6	79	
G31	975	٥	8.	13	0	0	0	79.1	
G32	975	13	5.3	5.7	0	1.3	^^	75.9	
GEW1	975	63	21	0.2	0	27.9	0	14.7	
GEW4	975	52	18	0.3	0	1.6	^<<	31.6	
GEW24	975	9.6	0.7	20.5	0	0	15	78	
GEWZ8	975	23	14	0.9	0	24.8	^	62	
SHOP (/20)	9/5	0,1	0	20.9	•	•	•	,	

RPS Consulting Engineers, Lyrr Building, IDA Business Technology Park, Mervue, Galway, Ireland T+353 091 400200 F+353 091 400299 E ireland@rpsgroup.com

) ii

- 10
111
Ŧ
ŝ
Ω
~
ECOR
~~
ĭii
~
75
9
_
œ
0
Ē
7
\tilde{a}
¥
GAS M
U)
⋖
G
_
_
正
Z
<
تہ

Almospheric CH ₄ CO ₂ O ₂ No. (mb) (% v/v) (% v/v) (% v/v) 1015 1.1 11 5.1 1015 8.6 2 7.9 1015 0 2.4 2.1 1015 0 2.4 2.1 1015 0 0 2.4 2.1 1015 0 0 2.4 2.1 1015 0 0 2.4 2.1 1015 0 0 2.4 2.1 1015 0 0 2.4 2.1 1015 0 0 2.0.5 1015 0 0 0.2 1015 0 0 0.2 1015 0 0 0.2 1015 0 0 0.2 1015 0 0 0.2 1015 0 0 0.2 1015 0 0 0.2 1015 0 0 0.2 1015 0 0 0.2 1015 0 0 0.2 1015 0 0 0.2 1015 0 0		C=01 4.	Addison	1.0 12-	
Afmosphenc CH ₄ CO ₂ O ₂ O ₂ O ₃ (mb) (% v/v) (%	Souncil	Date of	Samuling:	Patenty Address: Warlinstown, Mulli	Patenty Address: Warlinstown, Mullingar, Co. Westmeath
Afmospheric CH ₄ CO ₂ O ₂ O ₂ In No. (mb) (% v/v)	laire Sheridan	Weathe	C. Silnov ar	יים קוניו ווופוכו	Weather: Sinov and dry with some overseath drive
Afmospheric CH ₄ CO ₂ O ₂ O ₂ o ₃ o ₄		RESULTS	or Cuilly Gi	id diy will s	ome overcast good.
No. (mb) (% v/v) (% v/	-	- FESSEL			
1015 1.1 11 5.1 1015 8.6 2 7.9 1015 0 2.4 2.1 1015 0 0 2.6 1015 0 0 2.6 1015 0 0 20.6 1015 0 0 20.6 1015 0 0 0 20.4 1015 0 0 0 20.5 1015 0 0 0 20.5 1015 0 0 0 20.3 1015 0 0 0 20.3 1015 0 0 0 20.3 1015 0 0 0 20.3 1015 0 0 0 20.4 1015 0 0 0 20.4 1015 0 0 0 20.4 1015 0 0 19.9 1015 0 0 119 1015 0 0 119	CO ₂ O ₂ (% v/v)	CO H ₂ S	(%)	N ₂	
1015 8.6 2 7.9 1015 4 8.1 0 1015 0 2.4 2.1 1015 0 0 2.4 2.1 1015 0.4 3.5 14.8 0.3 1015 0.4 3.5 14.8 0.3 1015 0.4 3.5 14.8 0.3 1015 0.4 3.5 14.8 0.3 1015 0 0.2 20.4 0.3 1015 0 0.2 20.4 0.3 1015 0 0.2 20.4 0.0 1015 0 0 20.3 17.8 1015 0 0 20.3 14.1 1015 0 0 0 20.4 1015 0 0 0 0 0 1015 0 0 0 0 0 1015 0 0 0 0 <td>5,1</td> <td>╀</td> <td>6.6</td> <td></td> <td>Collinents</td>	5,1	╀	6.6		Collinents
1015 4 8.1 0 1015 0 2.4 2.1 1015 0 0 2.4 2.1 1015 0.4 3.5 14.6 14.6 1015 0.4 3.5 14.6 14.6 1015 0.4 3.5 14.6 10.3 1015 0.4 3.5 14.6 10.3 1015 0 0.2 20.4 10.3 1015 0 0.2 20.4 10.1 1015 0 0 0.2 20.4 1015 0 0 0.3 17.8 1015 0 0 0 20.4 1015 0 0 0 0 1015 0 0 0 0 1015 0 0 0 0 1015 0 0 0 0 1015 0 0 0 0	2	0	91.8	81.4	
1015 0 2.4 2.1 1015 0 0 20.6 1015 21 3 4.3 1015 0.4 3.5 14.6 1015 0.4 3.5 14.6 1015 0.4 3.5 14.6 1015 0 0.2 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 0 1015 0 0 0 1015 0 0 0 <	8.1	0	27	87.6	
1015 0 0 20.6 1015 21 3 4.3 1015 21 3 4.3 1015 0.4 3.5 14.6 1015 0.4 3.5 14.6 1015 0 0.2 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 18.5 1015 0 0 14.6 1015 0 0 11 1015 0 0 11 1015 0 0 11 <td< td=""><td>2.4</td><td>0 1.8</td><td>٥</td><td>95.4</td><td></td></td<>	2.4	0 1.8	٥	95.4	
1015 0 0 20.6 1015 21 3 4.3 1015 0.4 3.5 14.6 1015 7.4 17 0.3 1015 0 0.2 20.4 1015 0 0.2 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 20.3 1015 0 0 0 1015 0 0 0 1015 0 0 0 1015 0 0 0 1015 0 0 11 1015 <td></td> <td>Water cove</td> <td>Water covering nozzle</td> <td></td> <td>Samole</td>		Water cove	Water covering nozzle		Samole
1015 21 3 4.3 1015 0.4 3.5 14.6 1015 7.4 17 0.3 1015 10.5 5.1 4.8 1015 0 0.2 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.5 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 14.6 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 <td< td=""><td>0</td><td>0 3.7</td><td>0</td><td>79.3</td><td></td></td<>	0	0 3.7	0	79.3	
1015 0.4 3.5 14.6 1015 7.4 17 0.3 1015 15.5 5.1 4.8 1015 0 0.2 20.4 1015 0 0 20.5 1015 0 0 20.5 1015 0 0 20.5 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 14.6 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015	3	0	Â	71.6	
1015 7.4 17 0.3 1015 15.5 5.1 4.8 1015 0 0.2 20.4 1015 0 0.2 20.4 1015 0 0 20.5 1015 0 3.3 17.8 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 14.6 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 0 1015 0 0 0 1015	3.5	0	7.4	814	
1015 15.5 5.1 4.8 1015 0 0.2 20.4 1015 0 0.2 20.4 1015 0 0 20.5 1015 0 3.3 17.8 1015 0 0.9 18.5 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 14.6 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 0 1015 0 0 0 1015 0 0 0 1015 0 </td <td>17</td> <td>0</td> <td>50.6</td> <td>75.2</td> <td></td>	17	0	50.6	75.2	
1015 15.5 5.1 4.8 1015 0 0.2 20.4 1015 0 0 20.5 1015 0 3.3 17.8 1015 0 3.3 17.8 1015 0 0.9 18.5 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 14.6 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 0 1015 0 0 0 1015 0 0 0 1015 0 <td></td> <td>Water cove</td> <td>Water covering nozzle</td> <td></td> <td>sample</td>		Water cove	Water covering nozzle		sample
1015 0 0.2 20.4 1015 0 0 20.5 1015 0 3.3 17.8 1015 0 0.9 18.5 1015 0 0 20.3 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 1.9 18.2 1015 0 0 0.6 19.9 1015 0.8 0.9 0 1015 0.8 0.9 0	5.1	0	Â	74.5	
1015 1015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2	0	0	79.3	
1015 0 0 20.5 1015 0 3.3 17.8 1015 6.2 1.5 14.1 1015 0 0.9 19.5 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 0.6 19.9 1015 0.8 0.9 0 1015 0.8 0.9 0		2	Monitored by the EPA	v the EPA	
1015 0 3.3 17.8 1015 6.2 1.5 14.1 1015 0 0.9 18.5 1015 0 0 20.3 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 6 18.2 1015 0 0 6 18.9 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 2 18 1015 0 2 18 1015 46.5 23 0 1015 47.5 22 0	0	0	0	79.4	
1015 6.2 1.5 14.1 1015 0 0.9 18.5 1015 0 0 20.3 1015 0 1.9 18.2 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 14.6 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 2 18 1015 46.5 23 0 1015 47.5 22 0	3.3	0 0	0	78.8	
1015 0 0.9 19.5 1015 0 0 20.3 1015 0 1.9 18.2 1015 0 0 20.4 1015 0 0 20.4 1015 0 0 14.6 1015 0 0 11 1015 0 0 11 1015 0 0 11 1015 0 2 18 1015 0 2 18 1015 0 2 18 1015 46.5 23 0 1015 47.5 22 0	1.5	0	^	78.1	
1015 0 0 20.3 1015 0 1.9 18.2 1015 0 0 20.4 1015 1.7 1.4 14.6 1015 0.8 0.9 0 1015 0.0 0 11 1015 0 0 11 1015 0 0 11 1015 10.5 1.3 1015 46.5 23 0	0.9	0	0	79.5	
1015 0 1.9 18.2 1015 0 0 20.4 1015 0 0.6 19.9 1015 1.7 1.4 14.6 1015 0.8 0.9 0 1015 0 0 11 1015 0 20.5 1.3 1015 46.5 23 0	0	0	0	79.6	
1015 0 0 20.4 1015 0 0.6 19.9 1015 1.7 1.4 14.6 1015 0.8 0.9 0 1015 0 0 11 1015 0 2 18 1015 20.5 7.2 1.3 1015 46.5 23 0	9.1	0	0	79.8	
1015 0 0.6 19.9 1015 1.7 1.4 14.6 1015 0.8 0.9 0 1015 0 0 11 1015 0 2 18 1015 20.5 7.2 1.3 1015 46.5 23 0	0	0	0	79.5	
1015 1.7 1.4 14.6 1015 0.8 0.9 0 1015 0 0 11 1015 0 2 18 1015 20.5 7.2 1.3 1015 46.5 23 0 1015 47.5 22 0	0.6 19.9	0 0	0	79.4	
1015 0.8 0.9 0 1015 0 0 11 1015 0 2 18 1015 20.5 7.2 1.3 1015 46.5 23 0	1.4 14.6	2.2	31.7	82.2	
1015 0 0 11 1015 0 2 18 1015 20.5 7.2 1.3 1015 46.5 23 0 1015 47.5 22 0	0.9	30 1.3	^	98.2	
1015 0 2 1015 20.5 7.2 1015 46.5 23 1015 70 23	0	24 1.2	0	88.9	
1015 0 2 1015 20.5 7.2 1015 46.5 23 1015 70 23 4 1015 47.5 22		Water	on led up	Water pulled up Ihrough Juhing	
1015 20.5 7.2 1015 46.5 23 1015 70 23 4 1015 47.5 22	2	0	0	1 6 62	
1015 46.5 23 1015 70 23 4 1015 47.5 22	7.2	0	^	70.9	
1015 70 23 1015 47.5 22	23	0 111	Ŷ	30.9	
1015 47.5 22	23	0 15.3	٨	6.9	
	22	0 84.5	٨	30.4	
1015 33.5	20	0 53.7	٨	46.4	
SHOP (/20) 1015 0.0 0 21.2	0		-	-	

RPS Consulting Engineers, Lyrr Bullding, łDA Business Technology Park, Mervue, Galway, Ireland T+353 091 400200 F+353 091 400299 E ireland@rpsgroup.com

Facility Name	Facility Name: Marlinstown Landfill	Landfill				Facility A	ddress: h	Aarlineto	Facility Address: Marlinstown Mullinger Co Westmooth
Licensee: Westmeath	estmeath Coun	County Council				Date of S	Date of Sampling: 20th April 2010	20th Ap	ni 2010
Monitoring P	Monitoring Personnel: Mary Claire Shendan	y Claire S	heridan			Weather: Dry, bright and sunny	Dry, brigh	it and su	nny
						RESULTS			
	Atmospheric							Г	
Sample Station No.	Pressure (mb)	% CH % ≪)	(% ×%) (% ×%)	(% ^\x\)	00 Ed	H ₂ S mdd	LEL (%)	z~ &	Comments
<u>G</u> 1	1015	2.5	8.5	6.3	0	0	25.8	82.5	
G2	1015	3.1	2.3	0.2	0	0	21.1	9 6.5	
63	1015	4.8	4.6	0.3	0	0	33.6	90.1	
42	1015	0	1.1	6.0	0	0	0	97.9	
GS	1015	15	6.0	5.9	0	٥	ŝ	78.1	
99	1015	0	0	20.6	0	0	0.1	79.3	
lG7						ش	Error with Gas Meter	as Mete	1
89	1015	2	4.3	13.9	0	0	37.8	79.6	
ගී							Error with G	Gas Meler	Ji
610		16.5	6.7	0.3	0	0	^	76.4	
G11		4	2.4	0.2	0	0	27.8	93.3	
G16	1015	0	0.3	19.8	0	0	0	79.2	
G17	1015					M	Monitored by the EPA	/ the EP	A
G18		0	0	20.7	0	0	0	79.2	
G19		0	3.2	16.9	0	0	0	79.8	
G20		3.6	1,1	13.3	0	0	67.8	81.9	
G21		٥	0.8	19	0	o	0	80.1	
622	1015	٥	0	20.4	0	0		79.5	
623	1015	0	1.7	17.9	0	0	0	80.3	
624	1015	0	1.2	17	0	0	0	81.7	
G 25	1015	0	9.0	19.7	0	0	0	79.6	
G26		28.5	8.4	က	0	0	^^	60	
627	1015	2	0.4	0.1	0	0	13.7	97.4	
G28	1015	0.3	٥	5.6	20	1.2	2.3	94	
030		0	0	20.7	0	0	0	79.2	
631	1015	0	2.6	17.5	0	0	0	79.8	
G32	1015	24	4.5	1.6	0	0	^^	69.8	
GEW1	1015	25.5	13	2.6	0	0	^	7.1	
GEW4	1015	14.5	Ξ	5.3	0	0	0	58.8	
GEW24	1015	5.8	4.3	15	0	0	^^	69.1	
GEWZB		14.5	13	1.4	0	0	^	74.7	
SHOP (/20)	1015	0.0	0	21.1			,		

RPS Consulting Engineers, Lyrr Building, IDA Business Technology Park, Mervue, Gatway, Ireland T+353 091 400200 F+353 091 400299 E ireland@rpsgroup.com

Licensee: Westnes Monitoring Person	Licensee: Westmeath County Council Monitoring Personnel: Mary Claire S	Ith County Council	heridan			Date of Sampling: 27th May 2010 Weather: Cool, sunny, light breeze	mpling: Cool. sun	27th Ma	Faculty Address: Mailinstown, Mullingar, Co. Westmeath Date of Sampling: 27th May 2010 Weather: Cool. sunny. light breeze
					2	RESULTS			
Sample	Pressure	CH⁴	CO2	ő	8	H ₂ S		ź	
Station No.	(mb)	(% %)	(% ^/^)	(~~~)	mdd	ppm	LEL (%)	· %	Comments
T	997	9.6	14	0.7	0	0	60.7	78.6	
1	997	0.7	8.4	0.2	0	0	4	90.6	
T	997	0.1	0.9	-	0	0	0	91	
	282		ᇷ	sampled -	Gas Meter	Battery	Died		
1	997	12.5	0.6	0.4	0	0	38	98	
1	266	0.2	٥	20	0	0	^	79	
Ī	997	12	2.1	0.4	0	0	83	85.4	
	997	0	2.8	17.8		0	1.7	79.3	
	266	15	12	0.8	95	0		72.1	
	697	8.2	7.8	0.5	0		85	83.4	
	266		Not	sampled -	Not sampled - Gas Meter Battery	r Battery D	Died	3	
	997	0	0.8	19.8	0	0	0	79.3	
	997					₩	Monitored by the EPA	the FP	Α,
	997	0	0	21	0	0	0	78.9	
	266	0	4.9	15.9	0	0	0	79.1	
1	997	9.0	2.5	9.6	0	0	10.9	87	
7	997	٥	1.6	19.6	0	0	0.1	78.7	
1	997	0	0	20.7	0	0	0	79.2	
7	997	٥	2,3	19	0	0	0	78.6	
1	997	0	0.6	19.8	0	0	٨	79.4	
T	766	0.4	0.3	20.4	0	0	0	78.9	
1	286	24.5	14	9.0	0	0	0	60.8	
T	788	0.6	0.3	0.2	0	0	3.5	98.8	
1	/88	0.9	0	3.8	57	2	7.1	95.2	
7	266	0	0.2	20.7	0	0	4.	26	
1	286	-	4.7	12.2	0	0	0	83	
7	1997	72	က	9.0	0	0	٨	74.3	
7	997		No(s	Not sampled -	- Gas Meter	r Battery Died	<u>8</u>		
7	266		Not s	- paldue	Not sampled - Gas Meter	r Battery D	Died		
7	265		Note	ampled -	Gas Meter	Not sampled - Gas Meter Battery Died	ied		
	266		Not s	ampled -	Gas Meter	Not sampled - Gas Meter Battery Died	þa		
SHOP (720)	\66 66	0.0	0	212	,				

RPS Consulting Engineers, Lyrr Building, IDA Business Technology Park, Mervue, Galway, Ireland T+353 091 400200 F+353 091 400299 E ireland@psgroup.com

Facility Address: Marlinstown, Mullingar, Co. Westmeath Comments Date of Sampling: 29th June 2010 Weather: Warm and sunny Monitored by the EPA 79.3 83.4 79.7 79.5 79.8 81.5 86.8 78.9 80.3 80.6 78.9 78.9 85.8 55.9 31.4 93.4 45.3 53 81.4 ź8 96 LEL (%) 65.9 53.2 0.1 85 23.2 23.0 0 76.7 5.5 ٨ ۸ 25 ٨ ٨ ۸ 0 0 ത RESULTS H₂S Ppm Could not move the valve Inaccessible Inaccessible 응 櫃 150 140 16 48 0 0 (% ^/^) 20.6 15.1 19.6 20.2 18.8 19.3 19.4 13.6 0.3 o . 5. 20.7 0.1 (%/\%) Monitoring Personnel: Mary Claire Sheridan ဝ္ပ 1.3 1.3 1.3 2.9 0.2 9.4 0.2 23 O 0 윘윉 icensee: Westmeath County Council (%/\%) 45.5 12.5 21.5 1.3 £ Facility Name: Marlinstown Landfill 8.0 9 0 0 0 19 0.1 0 0 Q Amospheric Pressure 88 8 8 8 8 8 8 (gm) 8 1008 SHOP (/20) Station No. Sample GEW24 **GEW1** G16 G17 G10 **G23** G30 98888 66

RPS Consulting Engineers, Lyrr Building, IDA Business Technology Park, Mervue, Galway, Ireland T+353 091 400200 F+353 091 400299 E ireland@rpsgroup.com

3)

Learness Meaning Learness	Facility Name: Martin	ne: Martinstown	stown Landfill				Facility A	defense.	Apriliation	Am Mullinger Co. Ment.
Open Brownel Mary Claire Sheridan RESULTS RESULTS This. (mb) (% v/h)	Icenses: W		nty Counci				Date of S	amolina	27th .hd	wit, mustinger, CO. Wesumaan
Amospheric CH4 CO2 O2 CO HzS Nz 1 005 5.80 17 3.5 0 0 48.1 73.6 1 005 5.80 17 3.5 0 0 0 78.1 1 005 6.00 1.2 0 0 0 0 75.8 1 005 1.005 1.0 1.0 0 0 0 75.8 1 005 1.0 5.6 0.5 0 0 0 75.8 1 005 1.0 5.6 0.5 0 0 0 75.8 1 005 2.0 0 0 0 0 7.5 8 1 005 2.0 0 0 0 0 0 7.5 8 1 005 2.2 4.0 0 0 0 0 0 7.3 1.3 1 005 0 0 0 0 0 0 0	Controrting		ry Claire S	heridan			Weather	Hoopt of	larraet 1	Old house
No. No.							Fell *6		, least	ילווי סופפלה
O. (mb) (% v/v)		Atmospheric								
1005 5.80 17 1.25 1.75 1.	Sample Station No.	Pressure (mb)		% CO %	ر پر پر	8	H ₂ S	(8)	₹ 5	
1005 100	11	1005	5.80	-	3.5	0	2	48 1	(%) 73.8	Comments
1005 saccessible 8.4 0 0 0 1005 0.00 4.8 8.4 0 </td <td>2</td> <td>1005</td> <td>27</td> <td>12</td> <td>0</td> <td></td> <td>, ,</td> <td>Â</td> <td>900</td> <td></td>	2	1005	27	12	0		, ,	Â	900	
1005 0.00 4.8 8.4 0 0 0 0 0 0 0 0 0	3	1005	accessib	ı			,		8.9	
1005 18 5.6 0.5 0	4	1005	00'0	4.8	8.4	0	0	c	7 PA 7	
1005 0 48 0 <td>Ŝ.</td> <td>1005</td> <td>18</td> <td>5.6</td> <td>0.5</td> <td>0</td> <td>0</td> <td>2</td> <td>75 A</td> <td></td>	Ŝ.	1005	18	5.6	0.5	0	0	2	75 A	
1005 28 2.4 0 0 0 >> 1005 2 8.5 9 15 0 28.7 1005 7 21 0.6 51 0 48.5 1005 7.2 14 0 14 0 48.5 1005 0 1.2 18.3 0 0 0 0 1005 0 0 1.2 18.3 0	9	1005	0	0	20.9	0	0	0	62	
1005 2 8.5 9 15 0 28.7 1005 7 21 0.6 51 0 49 1005 7.2 14 0 14 0 48.5 1005 0 1.2 18.3 0 0 0 0 1005 0 0 0.7 19.2 0 0 0 1005 0 0.7 19.2 0 0 0 0 0 1005 0 0.1 2.4 18.5 0 0 0 0 1005 0 0 2.4 18.5 0 <	7	1005	28	2.4	0	0	0	^	69.5	
1005 7 21 0.6 51 0 49 1005 7.2 14 0 14 0 48.5 1005 0 1.2 18.3 0 0 0 0 1005 0 0.7 19.2 0 0 0 0 0 1005 wed by the EPA 0 0 0 0 0 0 0 1005 0 0.1 2.0 0 0 0 0 0 1005 0 2.4 18.5 0 0 0 0 0 1005 0 2.4 18.5 0 0 0 0 1005 0 2.4 18.5 0 0 0 0 1005 0 2.4 18.5 0 0 0 0 1005 0 0 0 0 0 0 0 1005	œ,	1005	2	8.5	6	15	0	28.7	80.4	
1005 7.2 14 0 14 0 48.5 1005 0 1.2 18.3 0 0 0 0 1005 0 0.7 19.2 0 0 0 0 1005 0 0.7 19.2 0 0 0 0 1005 0 0.1 2.9 0 0 0 0 1005 0 2.4 18.5 0 0 0 0 1005 0 2.4 18.5 0 0 0 0 1005 0 2.4 18.5 0 0 0 0 1005 0 2.4 18.5 0 0 0 0 1005 0 0 2.4 18.5 0 0 0 1005 0 0 0 0 0 0 0 1005 0 0 0 <t< td=""><td>රා</td><td>1005</td><td>7</td><td>21</td><td>9'0</td><td>51</td><td>0</td><td>49</td><td>71.3</td><td></td></t<>	රා	1005	7	21	9'0	51	0	49	71.3	
1005 0 1.2 18.3 0	10	1005	7.2	14	•	14	0	48.5	79.8	
1005 Need by the EPA 19.2 0	=	1005	0	1.2	18.3	0	٥	0	80.4	
1005 red by the EPA 0.1 20.6 0	16	1005	0	0.7	19.2	0	0	0	8	
1005 0 0.1 20.6 0	17	1005	red by th							
1005 accessible 2.4 18.5 0 0 0 1005 0 2.4 18.5 0 0 0 1005 0 2.4 18.5 0 0 0 1005 0 4 16.5 0 0 0 1005 0 0.8 17.9 0 0 0 1005 0 0.5 18.8 0 0 0 1005 0 0.5 18.8 0 0 0 1005 0 0.5 1.5 0 0 0 1005 0 0 0 0 0 0 0 1005 0 0 0 0 0 0 0 0 1005 0 0 0 0 0 0 0 0 1005 0 0 0 0 0 0 0 0 <	18	1005	0	0.1	20.8	0	0	6	70	
1005 0 8.3 2.8 0<	19	1005	accessib	9						
1005 0 2.4 18.5 0	20	1005	٥	8.3	2.9	0	0	0	88.5	
1005 0 2 18,3 0 0 0 1005 0 4 16,5 0 0 0 0 1005 0 0 0 0 0 0 0 0 1005 37 29 1,5 0 0 0 0 1005 0 0 0 0 0 0 0 1005 0 0 0 0 0 0 0 1005 0 0 0 0 0 0 0 1005 21 7.1 0 0 0 0 0 1005 21 7.1 0 0 0 0 0 1005 33.5 28 0.7 0 24,5 >> 4 1005 0.1 0 0 0 24,5 >> 8 1005 0.1 0 0	21	1005	0	2.4	18.5	0	0	0	79.1	
1005 0 4 16.5 0 </td <td>22</td> <td>1005</td> <td>0</td> <td>7</td> <td>18,3</td> <td>0</td> <td>0</td> <td>0</td> <td>79.6</td> <td></td>	22	1005	0	7	18,3	0	0	0	79.6	
1005 0 0.8 17.9 0	23	1005	0	4	16.5	0	0	0	79.4	
1005 0 0.5 19.6 0	24	1005	0	9.0	17.9	0	0	0	81.2	
1005 37 29 1.5 0 0 >> 1005 1.2 0.8 0.1 0	25	1005	0	0.5	19.6	0	0	0	79.8	
1005 1,2 0.8 0.1 0	26	1005	37	82	1.5	0	0	٨	32.9	
1005 0 0 0 833 2.3 0 1005 0 0.3 20.1 21 0 0 1005 0 7 15.1 0 0 0 0 1005 21 7.1 0 0 0 0 0 1005 33.5 28 0.7 0 24.5 >> 4 1005 0.1 0.6 20.3 0 0 2.1 8 1005 27.5 25 0.4 0 3.8 >> (20) 1005 0.1 0 21.1 - - -	27	1 005	1,2	0.8	0.1	0	0	0	97.8	
1005 0 0.3 20.1 21 0 0 1005 0 7 15.1 0 0 0 1005 21 7.1 0 0 0 0 1005 33.5 28 0.7 0 24.5 >> 4 1005 0.1 0.6 20.3 0 0 2.1 8 1005 27.5 25 0.4 0 3.8 >> (20) 1005 0.1 0 21.1 - - -	28	1005 5	0	0	0	833	23	0	99.9	
1005 0 7 16.1 0 </td <td>8</td> <td>1005</td> <td>0</td> <td>0.3</td> <td>20.1</td> <td>21</td> <td>0</td> <td>0</td> <td>79.5</td> <td></td>	8	1005	0	0.3	20.1	21	0	0	79.5	
1005 21 7.1 0 0 0 >> 1005 33.5 28 0.7 0 24.5 >> 1005 42.5 31 1.6 0 28.9 >> 4 1005 0.1 0.6 20.3 0 0 2.1 8 1005 27.5 25 0.4 0 3.8 >> (20) 1005 0.1 0 21.1 - - -	31	1005	0	7	15.1	0	0	0	77.8	
1005 33.5 28 0.7 0 24.5 >> 1005 42.5 31 1.6 0 28.9 >> 4 1005 0.1 0.6 20.3 0 0 2.1 8 1005 27.5 25 0.4 0 3.8 >> (20) 1005 0.1 0 21.1 - - -	32	1005	21	7.1	0	0	0	٨	71.8	
1005 42.5 31 1.6 0 28.9 >> 4 1005 0.1 0.6 20.3 0 0 2.1 3 1005 27.5 25 0.4 0 3.8 >> (20) 1005 0.1 0 21.1 - - -	M.	1005	33.5	28	0.7	0	24.5	^	37.7	
1005 0.1 0.6 20.3 0 0 2.1 1005 27.5 25 0.4 0 3.8 >> 1005 0.1 0 21.1 - - -	EW4	1005	42.5	31	1.6	0	28.9	^	24.8	
1005 27.5 25 0.4 0 3.8 >> 1005 0.1 0 21.1 -	EW24	1005	0.1	9.0	20.3	٥	0	2.1	78.9	
- 100 0.1 0 21.1	EWZB	1005	27.5	25	0.4	0	3.8	^	47	
	HOP (/20)	COOL	9	0	21.1	•	•		,	

RPS Consulting Engineers, Lyrr Building, IDA Business Technology Park, Mervue, Galway, Ireland T+353 091 400200 F+353 091 400299 E ireland@psgroup.com

1

Monitoring Personna Monitoring Personna Sample Press Station No. (mb G1 986 G2 986 G3 986	ersennel: Mary Armospheric Pressure (mb) 997 997	n County Council el: Mary Claire Sheriden	heridan			Date of S	Date of Sampling: 26th August 2010	26th Au	Dot- of Co 11 50th A
E .	nosphenc ressure (mb) 997 987	/ Claire Si	heriden			j			1 CS 1 SO 10
<u> </u>	nosphenc ressure (mb) 997 997					Weather: Sunny, dry	Sunny, G	7	
₹	ressure (mb) 997 997					RESULTS			
	(mb) 997 997 997								
	997 997	(% v/v)	% [%] %	% % %	S &	S Edd	LEL (%)	z 8	Comments
4	997	12.00	24	9.0		0	86.4	28	
	286	1.7	13	٥		0	Ξ	85.2	
				-	naccessible	L			
-	997	0.00	7	1.8	0	0	0	9	
	282	21	4.8	0.3	0	0	^	74.3	
_	997	0	0.2	20.6	0	0	0	79.1	
Н	285			"	Submerged				
	266	0	5.1	17.7	0	0	0	77.1	
	997	12.5	24	0	139	0	83.7	63.4	
	997	6.6	15	0	0	0	55	78.3	
	997]"	Submerged				
	265	0	F	19.2	0	0	6	797	
	997			Monit	Monitored by the EPA	EPA			
	997	0	0.1	20.4			0	79.4	
	997			<u> </u>	Inaccessible	-			
	266	0	6.6	9.6	0	0	0	83.7	
	266	0	1.8	19.1	0	0	٥	79.2	
	997	0	0.2	20.3	0	0	0	79.4	
-	266	0	3.1	18.2	0	0	0	78.6	
$\frac{1}{1}$	2867	0	4.2	15	0	0	0	9.08	
$\frac{1}{1}$	987	٥	0.8	19.5	0	0	0	75.6	
+	997	42	5 6	0.1	0	0	0	31.3	
+	997	0.8	2.4	0	0	0	5.1	296.7	
+	997	0.3	0	0	863	2	Â	9.66	
-	997	0	0.3	20.3	8	0	٥	79.3	
	997	0	11	10.0	0	0	0	78	
	997	28.5	9	0	0	0	٨	65.4	
-	997	24.5	23	0	14	4.4	٨	54.4	
-	897	31.5	20	6.2	0	20.8	٨	42.2	
	266	0.3	2	18.7	0	0	6.9	78.9	
	997	27	22	1.1	0	17.3	٨	49.3	
SHOP (/20)	287	0.05	0	20.8	0	0	0	0	

RPS Consulting Engineers, Lyrr Building, IDA Business Technology Park, Mervue, Galway, Ireland T+353 081 400200 F+353 091 400299 E ireland@rpsgroup.com

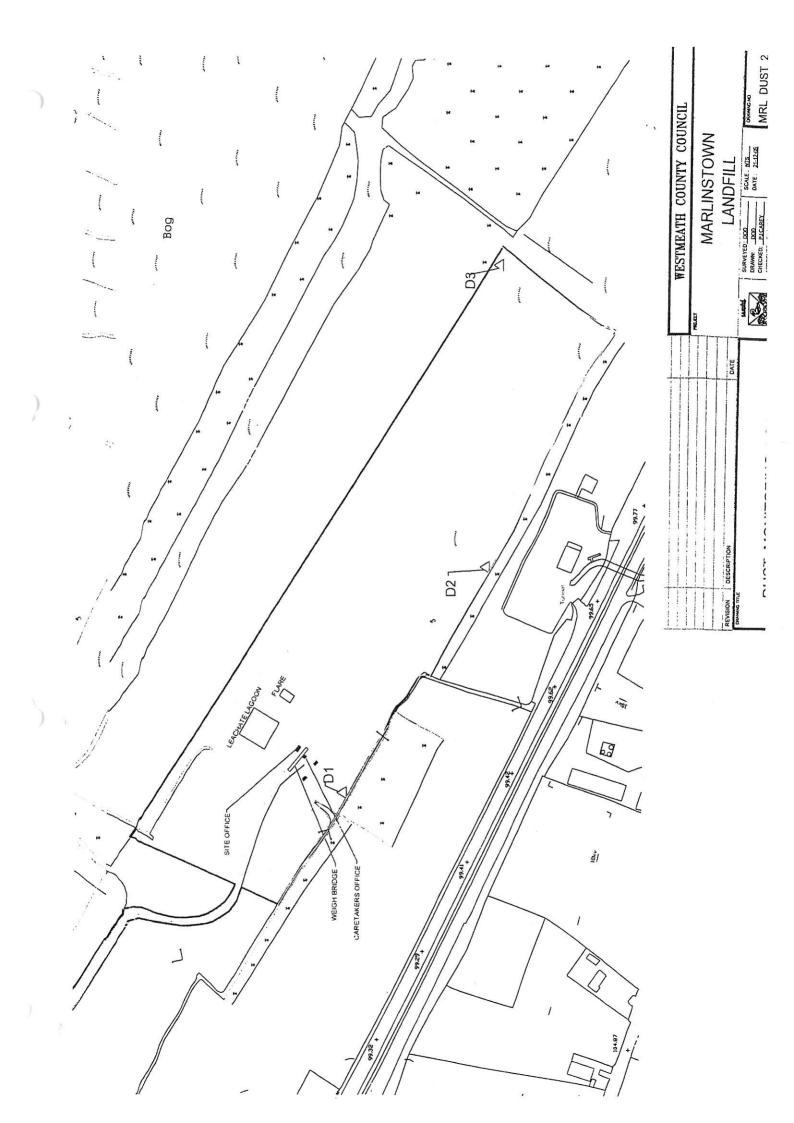
Ì

								Part of Touch	The second of th
	censes: Westmeath County Council	ty Council				Data of S	emplina:	Bh Oct	Date of Sempling: 8th October 2010
toring	lookoring Personnel: Mary Claire Sheridan	y Claine S	heridan			Weather	Overcast	warm.	Weather: Overcast, warm, Eght breeze
					-	RESULTS			
Spendo	Almospheric	2	9	(
Station No.	(dm)	(% V/V)	% ₹ {	5 §		7 E 8	CEL (36)	ž Į	- Comment
	988	8.40	21	3.8	0	٥	71.1	86.7	CHIGHNO
	966	3.4	6.9	0	0	-	23.2	88.6	
	986	0.00	4.5	17.2	0	0	0	78.2	
	986	0.00	5.5	10.9	0	٥		83.5	
	988	17.5	6.5	0.1	0		â	76.8	
	986	0	0.1	20.5	0	٥	٥	79.3	
	986	49.50	1.8	0	7	-	â	48.6	
	980	12	11	3.4	0	0	98.4	73.5	
	966	10.5	20	1.4	0	-	76.9	88	
	968	6.3	15	٥	0	0	58.5	78.8	
	968	0.00	1	18.7	0	0	0	80.2	
	986	0	9.0	19.7	٥	٥	6.0	70.4	
	986	ared by the	e EPA						
	986	0	o	20.7	0	0		79.2	
	986	0	6	14.4	0	0		76.5	
	966	0	3.1	13.4	0	0	0.7	83.4	
	986	0	1.5	19.9	0	0	0	79.1	
	988	0	0.4	20.1	0	0	0	79.4	
	960	0	3.5	18.4	0	0	0	79	
	989	0	4,5	15.2	0	0	0	80.2	
	988	•	1.7	19,6	0	0	0	78.6	
	968	10.5	28	7.1	0	0	^	55.3	
	988	27	0.1	0	0	0	18.7	97	
	986	9.8		3,9	850	Ŧ	7.5	95.2	
	988	0	0.2	19.0	0	0	0	79.8	
	966	•	6.9	15.7	0	0	0	78.3	
	988	88	5.6	0	30	0	^	55.3	
GEWI	986	35.5	8	-	0	0	^	37.9	
GEWA	966	32	8	0	14	65.5	٨	34.9	
GEW24	966	-	1.5	19.3	0	0	19.7	78.1	
GEW28	986	13.6	20	3.1	98	0	^	63.3	
		400		7.0					

RPS Consulting Engineers, Lyrr Building, IDA Bustness Technology Park, Mervue, Galway, Ireland T+353 091 400200 F+353 091 400299 E ireland@rpsgroup.com

Facility Address: Marlinstown Mullinger Co Westmooth	ober 2010				The state of the s	RINGHILLOO																															
arlinsto	22th Oc	cold, dr			z 8	26.4	86.4	86.2	6	73.3	79	49.4	78.4	72.4	76.1	63.2	79.5		79.4	76.3	82	78.7	79.3	77.7	79.4	79.4	55.2	95.5	89.5	79.2	78.1	58	41.9	41.4	55.4	53.5	ı
ddress: N	ampling:	Overcast,			LEI (%)	î ^	^	0	0	Ŷ	0.7	Â	9.0	â	65.7	0	0		0	0	5.7	0	0	0	0	۵	^	14.5	7.1	2.4	^	^	65.7	^	^	^	•
Facility A	Date of Sampling: 22th October 2010	Weather: Overcast, cold, dry	RESULTS	:	7 ₂ r E00	0	0	0	0	0	0	0	0	0	0	٥	0		0	٥	0	0	0	0	0	1.1	0	0	0	0	0	0	0	0	14.9	1.5	٠
			az.		2 8	13	17	13	17	18	19	1062	191	61	÷	12	0		0	0	0	0	0	0	0	0	0	16	1001	86	1062	1059	11	49	31	36	
				(~ § % °	o	1.6	2.7	2.1	0	20.3	0	17.4	0.1	0.2	13.9	19.8		20.5	16.3	16.1	19.4	19.3	18.6	20.4	19.9	6.7	0	9.8	20.4	15.8	0.4	٥	2.5	0	0.1	21
		heridan		C	~ { } %	27	12	11	7.7	4.2	0.5	0.8	4.1	21	14	2.8	9.0	e EPA	0	7.4	1.5	1.8	1.3	3.6	0.1	9.0	18	2.2	0.1	0.2	9	6.5	25	24	24	24	0
Landfill	y Council	/ Claire S		7	(% %) (% \%)	46.50	0	0.00	0.00	22	0.1	20.00	٥	6.4	9.6	0.00	0	red by the EPA	0	0	0.3	0	0	0	0	0	20	2.2	0.5	0.1	0	35	33.5	32	20.5	22.5	0.05
Facility Name: Marlinstown Landfill	Licensee: Westmeath County Council	Monitoring Personnel: Mary Claire Sheridan		Atmospheric	(qm)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Facility Name	Licensee: We	Monitoring P		olamo o	Station No.	G1	G2	63	<u>\$4</u>	92	99	G7	89	69	G10	G11	G16	G17	G18	G19	020	621	G22	623	G24	625	929	G27	628	030	G31	G32	GEW1	GEW4	GEW24	GEW28	SHOP (/20)

RPS Consulting Engineers, Lyrr Building, IDA Business Technology Park, Mervue, Galway, Ireland T+353 091 400200 F+353 091 400299 E ireland@rpsgroup.com


Facility Nam	Facility Name: Marlinstown Landfill	Landfill				Facility A	ddraee. b	Apriliant	Facility Address: Marlactonia Multipage Control
Licensee: Westmea	estmeath Coun	th County Council				Date of S	omelion.	JEH NA	with Mullinger, Co. Westmeath
Monitoring Person	Personnel: Mar	el: Mary Claire Sheridan	heridan			Moster of S	E L	N LIICZ	Mostes: Oct 2 - 1
			10000			Wedner: Cold and Sunny	CONG BUG	SILINIS	
	Atmospheric					KESULIS			
Sample	Pressure	CH ₄	co,	ဝ်	9	ų,		ź	
Station No.	(qm)	(% %)	(% %/)	(% v/v)	mdd	шdd	LEL (%)	? (%	staammoo
<u>G</u> 1	1000	11.4	14	3.8	0	0	11.8	80.9	STIGHT
<u>G</u> 2	1000	5.1	2.9	0	0		34.5	91.9	
<u>G3</u>	1000	27.50	71	0.3	0	0	^	65	
3	1000	7.70	4	4.2	0	O	85.7	84	
92	1000	21	3.8	1	0	0	^	74.7	
99	1000	0	0.2	21.1	0	0	0	78.6	
<u>G</u> 7	1000	48.00	1.3	2.7	0	0	٨	47.9	Flow = -2.1l/h. Pressure = -9Pa
3	1000	2.2	5.7	11.1	0	0	35.6	80.9	Pressure and Flow = 0
69	1000	10.5	17	1.5	0	0	78.9	70.9	Pressure= -8Pa to 0Pa. Flow = -2l/h to -0 1l/h
G10	1000	11.5	13	0.1	0	0	78.7	75.3	
611	1000				Submerged	9			
G16	1000	0	0.3	20	0	0	0	79.6	
617	1000			Monit	Monitored by the	e EPA			
618	1000	٥	0	20.6	0		0	79.3	
619	1000	0	4.4	16.6	0	0	0	78.9	
G20	1000	-	1.4	18.1	0	0	, -	79.3	
G21	1000	0	0.9	20	0	0	0	79	
G22	1000	0	0	21.4	0	0	0	78.5	
623	1000	0	1.6	18.3	0	0	0	80	
G24	1000	0	2.5	17.7	D	0	0	79.7	
G25	1000	9	0.7	20.4	D	0	0	78.7	
625	1000	_	6.3	15.4	0	0	^	71.2	
627	1000	1.9	9.0	0	0	0	0	97.2	
628	1000	1.9	0	4.7	235	0	17.2	93.3	Pressure and Flow = <<
030	1000	0	0.1	20.5	0	0	0	79.3	Pressure and Flow = 0
631	1000	0	3.1	18.4	0	0	0	78.4	Pressure and Flow = 0
G 32	1000	42.5	5.3	0.8	16	0	^	51.3	Pressure and Flow = 0
GEW1	1000	32.5	23	0	0	2.9	^	44.4	Flow and Pressure = <<
GEW4	1000	23.5	19	5.3	0	19.7	^	52.1	Flow and Pressure = << Smell of sulphur
GEW24	1000	11.5	15	6.2	0	6.7	^	59.1	V
GEW28	1000	18.5	22	0.3	0	2.9	^	67.2	Flow and Pressure = <<
SHOP (/20)	1000	0.10	0	20.9					

RPS Consulting Engineers, Lyrr Building, IDA Business Technology Park, Mervue, Galway, Ireland T+353 091 400200 F+353 091 400299 E ireland@rpsgroup.com

						The second second			
Licensee: W	Licensee: Westmeath County Council	by Counci				Date of S	amelina.	15th De	Date of Sampling: 15th December 2010
Monitoring l	Monitoring Personnel: Mary Claire Shendan	y Claire S	hendan			Weather: Cold. overcast and icv	Cold pve	rcast ar	id icy
						RESULTS			for all
	Atmosphere					10001			
Sample Station No.	Pressure (mb)	CH4 (% x/v)	CO ₂ % v/v)	0°2 % %	0 8	H ₂ S	(%)	Z 2/8	· ·
G1	1027	a L	45	2.2	ļ		, (W)		Comments
G2	1027	3	2	2.7	3		8	/4.1	
G3	1027								
G4	1027								
G5	1027								
G6	1027								
G7	1027	31	2.7	4.9	=	٥	^	61.3	Flow = .2 41/h P = .100a
GB	1027	3.3	6.2	10.8	0	0	49.2	79.6	
69	1027	9.4	19	0.1	0	0	63.7	71.5	
G10	1027	8.2	7.2	7.5	20	0	87.9	77	Flow = -4 I/h and Presette = -5Pa
G11	1027			Sub	Submerged in ice	8			
G16	1027	0.0	0.4	19.3				80.3	
G17	1027			Monik	Monitored by the EPA	e EPA			
G18	1027	0.1	0.2	19.0				80.7	
G19	1027	0	3.6	17.6				78.8	
G20	1027	1.3	1.1	17.7				79.9	
G21	1027	0	1.5	19.3				79.2	
G22	1027	0	0,2	20.2				79.6	
G23	1027	0	1.6	19.1				79.3	
G24	1027	0	2.7	16.3				18	
625	1027	0	0.8	19.5				79.7	
G26	1027	0.1	3.8	18.3				9/	
G27	1027			Valv	Valve lever frozen	zen			
G28	1027	1.8	0	7.8	139	0	20.5	90.3	Flow and Pressure = <<<
G30	1027	0	0.2	20.5	0	0	0	79.2	
G31	1027	0	2.8	18.8	0	٥	0	78.3	
G32	1027	36	6.8	0.4	0	0	^	56.7	
GEW1	1027								
GEW4	1027								
GEW24	1027								
GEW28	1027								
	1027	200	c	2					

RPS Consulling Engineers, Lyrr Building, IDA Business Technology Park, Mervue, Galway, Ireland T+353 091 400200 F+353 091 400299 E ireland@rpsgroup.com

Dust

Marlinstown Landfill Dust Results 2010

April

SAMPLING POINT	DUST DEPOSITION RATE mg/m²-day
D-1	8.3
D-2	14.6
D-3	30.4

June

SAMPLING POINT	DUST DEPOSITION RATE mg/m²-day
D-1	18.3
D-2	6.2
D-3	19.1

APPENDIX 7

EMS Documentation

Standard Operating Procedure Number SOP/W0071-02/001	Page 1 of 2
Title: Management Structure	Rev 05 (04-02-07 J.W.)
Marlinstown Landfill	Written by: CMcDonough
	Approved by: M. Rooney

1.0 Management Structure of Facility.

The day-to-day management of the facility and supervision of waste activities are the responsibility of the Landfill Manager and the site operatives.

The names of the persons who provide management and supervision and their positions are set out below

Landfill Manager:

Mr. Michael Rooney, Executive Engineer.

Deputy Manager:

Mr JohnWaldron, Sen. Executive Technician.

Deputy Manager / Caretaker. Assistant Caretaker: General Operative: No Longer Required Site Closed No Longer Required Site Closed

No Longer Required Site Closed

2.0 Responsibilities

Westmeath County Council, as the licensee, is responsible for ensuring the requisite resources are provided to operate the facility in accordance with the conditions of Waste Licence Registration No. W0071-02.

The Landfill Manager or nominated Deputy is responsible for ensuring that the day to day operation of the facility is carried out in accordance with waste licence conditions and any procedures or operational work practice sheets prepared on foot of licence conditions.

The Landfill Manager or nominated Deputy is responsible for ensuring that the environmental monitoring programme is carried out and report submitted to the EPA in accordance with licence conditions.

The Landfill Manager or nominated Deputy is responsible for arranging that the specified engineering works, the leachate and landfill gas management programmes and the restoration programmes are properly implemented.

The Landfill Manager is responsible for arranging appropriate training programmes for all facility personnel and for maintaining training records.

Stand	ard Operating F	Procedure		Page 2 of 2
Numb	er SOP/W0071	-02/001		
Title:	Management	Structure	Marlinstown	Rev 05 (04-02-07 J.W)
Landfi	l l			Written by: CMcDonough
				Approved by: M. Rooney

3.0 Experience, Competence and Qualifications

- Mr. M.Rooney B.Sc.Eng.(Trinity College Dublin), Dip.Struct.Eng.(DIT Bolton St.), M.I.E.I. is a Civil Engineer of 11 years experience and has completed the FAS Waste Management Training Programme.
- Mr. John Waldron, Senior Executive Technician with 29 years Environmental experience, has completed the FAS Waste Management Training Programme.

4.0 Contingency Arrangements.

In the event of the absence of the above named persons from the facility the following arrangements will be implemented.

Where absence is due to scheduled holidays or periods of illness extending to a maximum of two weeks the following applies: -

• In the absence of the Landfill Manager the nominated Deputy will be Mr. John Waldron, Senior Executive Technician.

For longer periods of absence the Landfill Manager will be responsible for ensuring that appropriate alternative staff are available.

Standard Operating Procedure	Page 1 of 1			
Number SOP/W0071-02/004	3			
Title: Standard Operating Procedure for	Rev 04 (04-02-08 A.M.)			
Corrective Actions at Marlinstown Landfill	Written by: Anne Bonner			
Site	Approved by:			

1.0 Introduction.

It is necessary to ensure that the landfill site and associated activities have minimal impact on the environment and that in the unlikely event of an environmental incident occurring it is essential that appropriate corrective action procedures and notification procedures are implemented.

2.0 Objective

To ensure that in the event of a non-compliance with Waste Licence W0071-02 the appropriate notification and corrective action procedures are implemented.

3.0 Responsibility.

The Landfill Manager must ensure that the Deputy Manager and Landfill Caretaker carry out the procedure.

4.0 Procedures

4.1 Corrective Action Procedures

4.1.2 In the event of an environmental incident the corrective actions as per Table 4.1 Appendix 1, shall be implemented in accordance with Waste Licence Ref No W0071-02.

5.0 Health and Safety.

All operators at the landfill site must ensure that they wear personnel protective clothing at all times.

6.0 References.

- Environmental Protection Agency, Waste Licence Ref. No. W0071-02.
- Environmental Protection Agency (2002). European Waste Catalog and Hazardous Waste List. EPA Publications, Wexford.
- Environmental Protection Agency Landfill Manuals Landfill Operational Practices. EPA Publications, Wexford.

acobe	Activities	0001		
Site Operations		S.C.T. S Ker No.	Type of Action	Details
	Leachate and landfill gas management Complaints	SOP/W0071-02/007 SOP/W0071-02/008	Minor	Action shall be implemented by landfill site personnel and records of actions implemented retained at the site.
	Record maintenance Surface water management Incidents	RDD PO-1 ISSUED IN	Environmental Incident	If an environmental incident occurs the Landfill manager shall initiate clean up and implement the notification procedures as per condition
	Landfill gas flare Leachate collection treatment and removal			11.2.
Surface	• All emissions to waters as		Environmental	If included the 1 months
	per condition 6.5 of licence No. W0071-02		Incident	in increant or Languil manager initiates corrective action clean-up and notification procedures as per ficence condition 11.
Groundwater				
monitoring	• All emissions to waters as per condition 6.4 of licence No. W0071-02	SOP/W0071-02/007	Exceedance of trigger level	If trigger levels determined as per 6.4.2 are exceeded the Landfill Manager rititates corrective actions and the notification procedures as per licence condition 11.
andfill Gas	A A A A A A A A A A A A A A A A A A A			
monitoring	ber condition 6.3	SOP/W0071-02/007	Exceedance of trigger level	If trigger levels are exceeded the Landfill manager initiates corrective actions and the notification procedures as per licence condition

Marlinstown Landfill Waste Licence W0071-02 Corrective Action Procedure SOP/W0071-02/004

Standard Operating Procedure Number SOP/71-1/006	Page 2of 2		
Title: Standard Operating Procedure for	Rev 01		
Emergency Response.	Written by: Anne Bonner		
	Approved by:		

4.5 Notifying the Environmental Protection Agency

 All emergencies or incidents recorded at Marlinstown Landfill site shall be reported to the Environmental Protection Agency in the following manner:

During Business Hours

Details regarding the incident shall be faxed and conveyed by telephone as soon as practicable or not later then 10.00 am the following working day to the Environmental Protection Agency Licence inspector responsible for the Marlinstown Waste Licence.

Outside Business Hours

Details regarding the incident shall be faxed as soon as practicable or not later then 10.00 am the following working day to the Environmental Protection Agency Licence Inspector and a telephone message shall be left on the 24 hour answering machine.

5.0 Environmental Incident Emergency Procedures

 Table 6.1 outlines the actions taken in the event of an Environmental Incident

6.0 Personal Injury Emergency Procedure

 Table 6.2 Outlines the procedure in the event of a personal injury emergency

7.0 Health and Safety

All operators at the landfill site must ensure that they wear personnel protective clothing at all times.

8.0 References.

- Environmental Protection Agency, Waste Licence Ref. No. 71-1.
- Environmental Protection Agency (2002). European Waste Catalog and Hazardous Waste List. EPA Publications, Wexford.
- Environmental Protection Agency Landfill Manuals Landfill Operational Practices. EPA Publications, Wexford.

Standard Operating Procedure Number SOP/71-1/006	Page 1of 2			
Title: Standard Operating Procedure for	Rev 01			
Emergency Response.	Written by: Anne Bonner			
Emergency recoposite.	Approved by:			

1.0 Introduction.

In accordance with the EPA waste Licence the following Emergency response Procedure is developed to ensure that landfill personnel are able to better deal with emergency situations that may arise at Marlinstown landfill site.

2.0 Objective

To develop a systematic approach for landfill personnel in relation to an emergency situation that may arise at the landfill site or as a result of associated activities relating to Marlinstown Landfill.

3.0 Responsibility.

The Landfill Manager must ensure that the Deputy Manager and Landfill Caretaker carry out the procedure.

4.0 Communication of An Emergency

4.1 Notification During Business Hours

 In the event of an emergency response occurring during opening hours 8.30am-4.30pm Monday to Friday and 8.30am-12.30pm on Saturdays, any emergency situation can be reported directly to the landfill caretakers, either by telephone or Fax or directly to the Site Office.

4.2 Notification During Non Business Hours

 In the event of an emergency occurring during non business hours an answering machine shall be in operation at the landfill. The answering machine shall play back the contact names and telephone numbers necessary to activate the relevant emergency response procedure. Appendix A outlines contact telephone numbers.

4.3 Notification of A Major Emergency

 The type of emergency determines the actions taken. If the emergency is a major emergency Westmeath County Councils major emergency plan is activated. This is located in County Buildings of Westmeath County Council.

4.4 Notification of A Minor Emergency

 If the emergency is considered minor it shall be reported to the Landfill personnel and appropriate actions shall be implemented.

Table 6.1 Emergency Response rocedures

Surface Water Surface Water Minor Ontamination Ontamination Ontamination The Landfill Caretaker st Major Outing the monitoring of the water contamination. The Landfill Manager sha contamination, assess th situation. Fire Minor A minor incident may include o In the event of a small fine located at the site to deal located at the site to deal or The Landfill caretaker sha notify the EPA.	Aninor incident may include litter floating on the surface of the water The Landfill Caretaker shall organise the removal of same and inform the Landfill Manager. During the monitoring of the surface waters surrounding the landfill site if it is noted that there is surface water contamination. The Landfill Manager shall be notified and inturn shall conduct an investigation to locate source of contamination, assess the extent of the contaminant and take appropriate actions to rectify the situation. A minor incident may include a small fire that is easily extinguished by a fire extinguisher located at the site to deal with the fire. In the event of a small fire the Landfill Manager who inturn shall contact the Fire Brigade and notify the EPA. The Landfill caretaker should notify the Landfill Manager of the incident who inturn shall contact the Fire Brigade and notify the EPA.
emergency services, EPA	emergency services, EPA, and local residents in the area.

Table 6.1 Emergency Response Procedures

)

}

Incident	Type	Action
Spillage of Polluting	Minor	In event of minor spill which may include leaks from vehicles or small spills of waste oils
Matter e.g. Oil./		 The caretaker shall immediately absorb the material with the absorbent pads, stored at the cito.
Chemical		 The spent pads shall then placed in high strength polyethylene bags and treated as hazardous waste
		to be disposed by a registered contractor
Spillage of Polluting	Major	The landfill operatives shall inform Landfill manager of the incident
Matter e.g. Oil./		 The primary function of the landfill manager is to assess the extent of the spill and take appropriate
Chemical.		measures to <i>contain</i> the spill. The initial containment may include identifying the source where
		appropriate, erecting absorbent booms and or digging an interceptor ditch.
		 The landfill manager shall also employ a registered clean-up contractor, contact the relevant
		authorities and the EPA and any members of the public which may be affected by the spill
		 The function of the registered environmental specialist shall be to clean up the contaminant and
		conduct the appropriate remedial actions.

Table 6.2 Emergency Response Procedures

Incident Personal Injury	Type Minor	Actions Taken In the event of a minor injury such as minor abrasions or cuts. The Landfill Caretaker shall note the incident in the Incident Report Register, notify Landfill Manager and organise the appropriate treatment. The cleaning solutions, disinfection, barrier creams and
		materials for the covering of minor cuts or abrasion are located in the First Aid Box located in the Landfill Office.
	Major	All landfill staff should arrange to be inoculated for Tetanus and Hepatitis. In the event of a major injury such as even injury such as eve
		 The Landfill Caretaker shall notify the appropriate emergency personnel i.e. a doctor and an
		ambulance.
		 The Landfill Manager should also be notified of the incident and must The Landfill Caretaker shall also note the incident in the Incident Report Register

Annex 1 Incident Notification Form

Licence/COA Number Licence/COA Name									
Licensee/COA Address:									
Incident notification form submitted by:									
Licensees/COA holders Environmental Impact Ranking:	1 []	2		3. 🗍	4. []	5. []			
Details of incident:									
Date of incident:							_		
Approximate start time of incident(Provide range if time is not known)			·						
Details of when incident first noticed:									
Still ongoing: Yes/No Finish time and date									
New or reoccurring incident ¹									
Uncontrolled release:	Air 🗆	Wate	r 🗆 S	Sewer 🗌	Ground		uncontr	olled rele	ase 🗌
Incident Nature (Explosion, Fire, Spillage, Odour, Breach of ELV, Monitoring Equipment offline, Trigger Level Reached, Uncontrolled Release, Other – specify)									
Details of any vulnerable receptors									
Details of ELV Exceedance if available ² (Provide measurement units for values provided)	Param Value	eter							
Grab or Composite sample						1			
Location of incident: Discharge point/Other									
<u> </u>				_					

Annex 1

Digital Photographs taken:	Yes/No							
Odour ³	Not applica	ble 🔲		Odour de	tected			
Odours detected								
Extent ⁴	Intermitten			Persistent				
Sensitivity ⁵	Remote	Low		Moderate		High 🛚	Extra 🗆	
Intensity ⁶	Faint	N	1oderat	е 🗆	Strong		Very strong	
Weather at time of incident:				<u> </u>				
Wind Direction:								
Details of who was notified:	EPA by Local A Fisherie Other	uthori			- "			
Corrective actions taken:								
Preventative actions taken or planned:								
Likelihood of reoccurrence								
Details of any other relevant detail or supporting information for submission to the Agency								
This section should be completed preventative actions are complete		see/COA	A holde	er for their	records	once the c	orrective and	
Follow up actions								
Close out date								
Signed								
Position		_						

Standard Operating Procedure Number SOP/W0071-02/007	Page 1of 2
Title: Standard Operating Procedure for Environmental Monitoring at Marlinstown Landfill Site	Rev 034(12-Feb-08 AM) Written by: Anne Bonner Approved by:

1.0 Introduction.

Environmental monitoring at the Landfill site is essential for ensuring that the landfill site complies with the conditions outlined in Waste Licence W0071-02 and also to establish the possible impacts that the landfill site activities may have on the environment

2.0 Objective

To establish an effective monitoring program that complies with Waste Licence W0071-02

To ensure that in the event of a non-compliance with Waste Licence W0071-02 the appropriate notification and corrective action procedures are implemented.

3.0 Responsibility.

The Landfill Manager must ensure that the Deputy Manager and Landfill Caretaker carry out the procedure.

4.0 Procedures

4.1 Notification of Non - Compliance:

4.1.1 Environmental Consultant

- If a non-compliance of licence limits is noted they shall notify Landfill Manager within a day of the laboratory analysis being completed.
- The Landfill Manager shall initiate the appropriate corrective actions as per the following:
 - SOP/W0071-02/006

Emergency Response Procedure

4.1.2 Westmeath County Council Staff

- The landfill Caretaker and Deputy Manager shall notify Landfill manager of any non - compliance with licence during the course of their site inspections.
- The Landfill Manager shall then initiate the appropriate corrective actions as per the following:
 - SOP/W0071-02/006

Emergency Response Procedure

Marlinstown Landfill Waste Licence W0071-02
The Standard Operating Procedure for Environmental Monitoring at Marlinstown Landfill Site
SOP/W0071-02/007

Standard Operating Procedure	Page 2of 2
Number SOP/W0071-02/007	
Title: Standard Operating Procedure for	Rev 03 (19-02-07) CMD
Environmental Monitoring at Marlinstown	Written by: Anne Bonner
Landfill Site	Approved by:

4.2 Monitoring of Surface Waters and Landfill Gas

4.2.1 Environmental Consultant

- The monitoring schedule for Surface Water, Groundwater, Leachate, Noise, Dust and Landfill Gas is attached in Appendix 1 (Table 7.1) this outlines which monitoring is carried out by the consultants. Detailed maps outlining the monitoring locations are attached in Appendix 3.
- Notification of a non-compliance is as per 4.1of SOP/W0071-02/007
- Reports are sent to the Agency in accordance with Schedule D of the Waste Licence W0071-02

4.2.2 Westmeath County Council Surface Water, Landfill Gas and Gas Flare Monitoring

- The Landfill caretaker or deputy Manager conduct monitoring as outlined in Table 7.1and SOP/W0071-02/008 at the locations identified on maps see Appendix 3. The Gas Monitoring Report Document daily and monthly as per SOP/W0071-02/008, Leachate Monitoring and Surface water Monitoring and Gas Flare Report Sheet are completed see Appendix 2. Detailed maps outlining the monitoring locations are attached in Appendix 3.
- In the event of an non-compliance they shall notify the Landfill Manager who shall initiate the appropriate actions as per the following
 - SOP/71-2/006 Emergency Response Procedures
- Reports are sent to the Agency in accordance with Schedule E of the Waste Licence W0071-02

5.0 Health and Safety.

All operators at the landfill site must ensure that they wear personnel protective clothing at all times.

6.0 References.

- Environmental Protection Agency, Waste Licence Ref. No. W0071-02.
- Environmental Protection Agency (2002). European Waste Catalog and Hazardous Waste List. EPA Publications, Wexford.
- Environmental Protection Agency Landfill Manuals Landfill Operational Practices. EPA Publications, Wexford.

Standard Operating Procedure Number SOP/W0071-02/008	Page 1of 3
Title: Standard Operating Procedure Monitoring	Rev 03 (A.M) 06-02-08
of Landfill Gas at Marlinstown Landfill Site	Written by: Anne Bonner
	Approved by:

1.0 General

The portable gas monitoring equipment is used to monitor the levels of gases to ensure compliance with Waste Licence W0071-02

The portable gas monitoring equipment records the following parameters:

- methane (CH₄);
- carbon dioxide (CO₂);
- oxygen (O₂);
- lower explosive limit (LEL);
- · temperature and
- pressure.

2.0 Objectives

To ensure compliance with Waste Licence W0071-02. To ensure that in the event of a non-compliance with Waste Licence W0071-02 the appropriate notification and corrective action procedures are implemented.

3.0 Responsibility.

The Landfill Manager must ensure that the Deputy Manager conducts the procedure.

4.0 Equipment

- Portable Sampling Equipment
- Record Sheets
- Protective clothing

5.0 Sampling Frequency

The sampling frequency is as per Table 7.1 of SOP/W0071-02/007

Standard Operating Procedure	Page 2of 3
Number SOP/W0071-02/008	
Title: Standard Operating Procedure Monitoring	Rev 02 (CMD 19-02-07)
of Landfill Gas at Marlinstown Landfill Site	Written by: Anne Bonner
	Approved by:

6.0 Landfill Gas Measurement

- On arrival at the first location, open the well cover using the key provided.
- Switch on the instrument and wait until the screen prompts for sampling allowing the instrument to settle at atmospheric conditions in the manual for sampling.
- Connect the instrument to the gas port on the well and open the gas tap.
 Ensure that the tubing is fully sealed on the gas well and properly connected to the instrument. Select either data logging mode or manual and follow instructions in the manual for sampling.
- Note each of the readings for CH₄, CO₂, O₂, LEL and pressure on the field record form or data logger. The maximum CH₄ and CO₂ readings should be recorded. The minimum O₂ reading should be recorded. Also, allow the readings to settle and note the final readings after they have stabilised.
- Switch off the instrument and close gas tap. Remove from the piezometer and lock the cover.
- Move to the next position and repeat.

6.0 Records

The gas monitoring results are recorded in the Gas monitoring record sheets as per Appendix1 of SOP/W0071-02/008

Standard Operating Procedure Number SOP/W0071-02/008	Page 3of 3
Title: Standard Operating Procedure Monitoring of Landfill Gas at Marlinstown Landfill Site	Rev 02 (CMD 19-2-07) Written by: Anne Bonner Approved by:

7.0 Notification of Non-compliance

 In the event of a non-compliance the notification procedure as outlined in SOP/W0071-02/007 Section 4.1 and if an emergency SOP/W0071-02/006 shall be implemented.

8.0 Health and Safety.

All operators at the landfill site must ensure that they wear personnel protective clothing at all times.

9.0 References

- Environmental Protection Agency, Waste Licence Ref. No. W0071-02.
- Environmental Protection Agency (2002). European Waste Catalog and Hazardous Waste List. EPA Publications, Wexford.
- Environmental Protection Agency Landfill Manuals Landfill Operational Practices. EPA Publications, Wexford.

Standard Operating Procedure Number: SOP/W0071-02/009	Page: 1of 1
Title: Standard Operating Procedure for the collection, treatment and removal of Leachate at Marlinstown Landfill	Rev: 02 Date: 12-Feb-08 AM Written by: CMcDonough Approved by: PJ Carey

1.0 Introduction.

}

1

This procedure outlines the correct procedure to ensure that the leachate is collected, treated and removed off-site in the correct manner.

2.0 Objective.

To ensure that the leachate is handled correctly and no environmental incidents occur.

3.0 Responsibility.

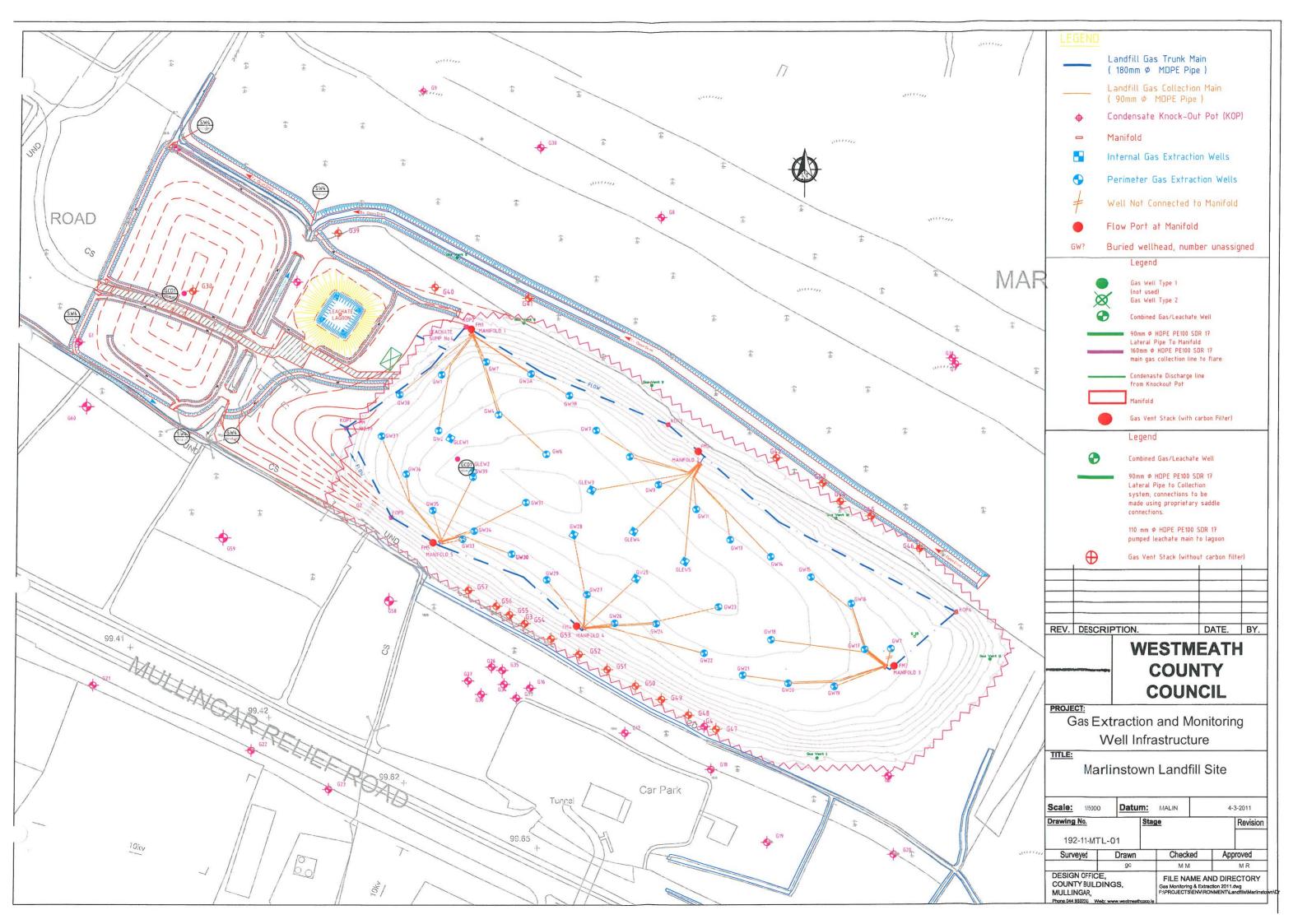
The Landfill Manager must ensure that the Deputy Manager and Landfill Caretaker carries out this procedure.

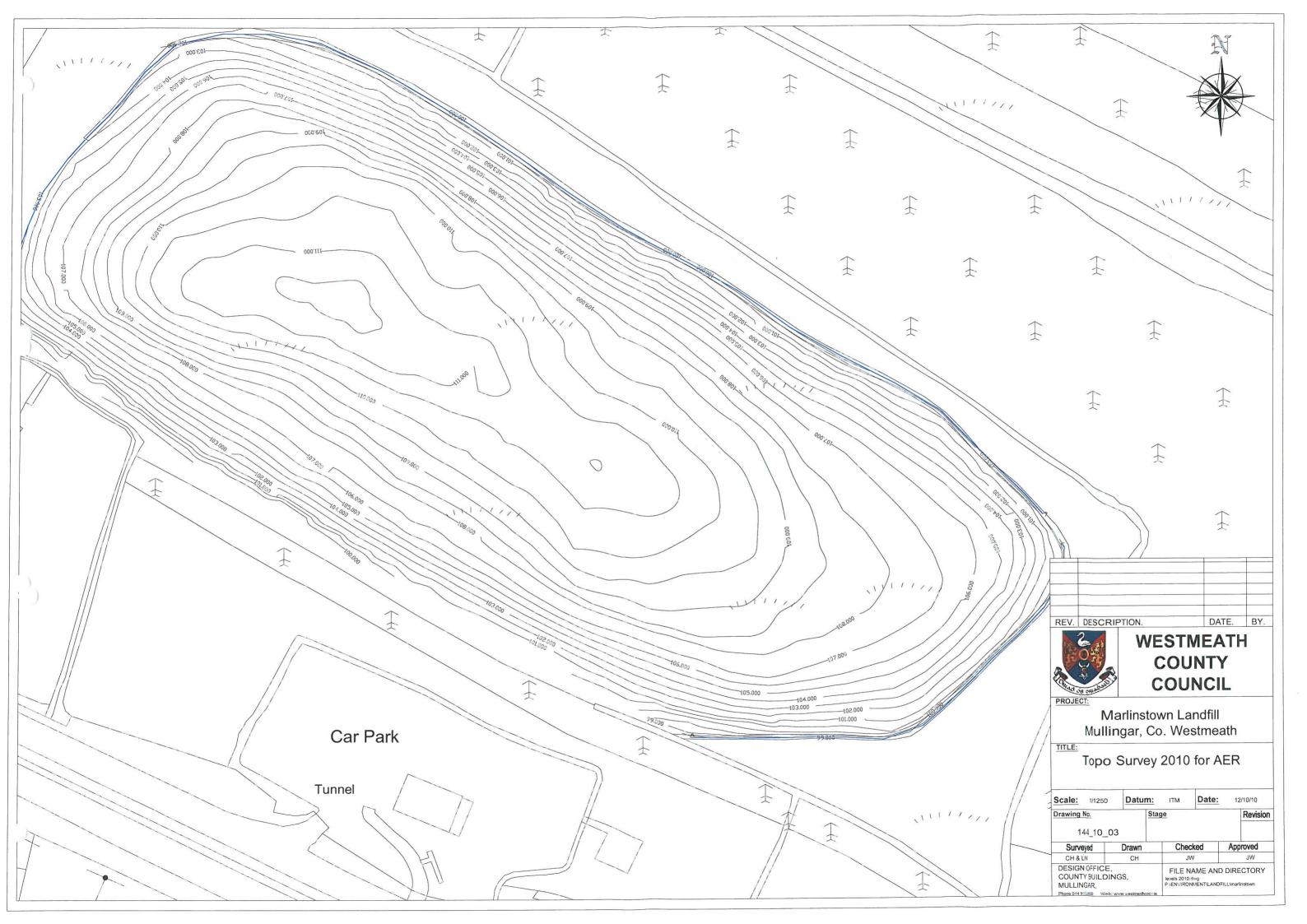
4.0 Guidelines.

- Leachate is pumped automatically to the Lagoon by the combined leachate/gas extraction system installed.
- The aerator will run continuously to facilitate methane stripping until the leachate level in the lagoon drops below the float switch level 400mm from the base.
- •Leachate will be drained from the lagoon with a drainage pipe into a collection tanker.
- •The waste must be taken to Mullingar Waste Water Treatment Plant for treatment.
- •Records for each load of leachate will be kept at the head office and a copy at the Landfill site.
- •Ensure that the contractor employed to empty the leachate lagoon has a valid Waste Collection Permit.
- In the event of a spillage please refer to Standard Operating Procedure for Emergency Response SOP/W0071-02/006

5.0 Health and Safety.

All personnel working at the landfill site must ensure that they wear the correct personal protective clothing at all times.


6.0 References.


- Environmental Protection Agency, Waste Licence Ref. No. W0071-02.
- Standard Operating Procedure Number SOP/W0071-02/006

APPENDIX 8

Topographical Site Survey

| PRTR# : W0071 | Facility Name : Marlinstown Landfill | Filename : w0071_2010(1).xls | Return Year : 2010 |

19/04/2011 09:57

Guidance to completing the PRTR workbook

AER Returns Workbook

1. FACILITY IDENTIFICATION	
Parent Company Name	Westmeath County Council
Facility Name	Marlinstown Landfill
PRTR Identification Number	W0071
Licence Number	W0071-02

REFERENCE YEAR 2010

Waste or IPPC Classes of Activity				
No.	class name			
	Storage of waste intended for submission to any activity referred to			
	in a preceding paragraph of this Schedule, other than temporary			
	storage, pending collection, on the premises where such waste is			
4.13	produced.			
	Storage prior to submission to any activity referred to in a			
	preceding paragraph of this Schedule, other than temporary			
	storage, pending collection, on the premises where the waste			
2 12	concerned is produced.			
3.10	Surface impoundment, including placement of liquid or sludge			
2.4	discards into pits, ponds or lagoons.			
3.4	Biological treatment not referred to elsewhere in this Schedule			
	which results in final compounds or mixtures which are disposed of			
	by means of any activity referred to in paragraphs 1. to 10. of this			
	Schedule.			
3.7	***************************************			
	Use of waste obtained from any activity referred to in a preceding			
4.11	paragraph of this Schedule.			
	Storage of waste intended for submission to any activity referred to			
	in a preceding paragraph of this Schedule, other than temporary			
	storage, pending collection, on the premises where such waste is			
4.13	produced.			
	Recycling or reclamation of organic substances which are not used			
	as solvents (including composting and other biological			
	transformation processes).			
	Recycling or reclamation of metals and metal compounds.			
4.4	Recycling or reclamation of other inorganic materials.			
	Use of any waste principally as a fuel or other means to generate			
	energy.			
	Marlinstown Bog			
Address 2				
	Co Westmeath			
Address 4				
Country	Ireland			
Coordinates of Location				
River Basin District				
NACE Code	3821			
	Treatment and disposal of non-hazardous waste			
AER Returns Contact Name				
AER Returns Contact Email Address				
	Senior Ex. Technician - Environment Section			
AER Returns Contact Telephone Number				
AER Returns Contact Mobile Phone Number				
AER Returns Contact Fax Number				
Production Volume				
Production Volume Units				
Number of Installations	-			
Number of Operating Hours in Year				
Number of Employees				
User Feedback/Comments				
Web Address				

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name			
5(a) Installations for the recovery or disposal of hazardous was				
5(c) Installations for the disposal of non-hazardous waste				
50.1	General			
3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)				

O. COLVENTO MEGGERATIONS (C.I. NO. C-IC OF EG	02)
Is it applicable?	
Have you been granted an exemption?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used?	

SECTION A: SECTION SPECIFIC PRITE POLLUTANTS								
RELEASES TO AIR				Please enter all quantities in this section in KGs				
POLLUTANT		METHOD			QUANTITY			
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
01	Methane (CH4)	С	PER	Calculated using Gas Sim	0.0	38000.0	0.0	38000.0
03	Carbon dioxide (CO2)	С	PER	Calculated using Gas Sim	0.0	144000.0	0.0	144000.0
					0.0	0.0	0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO AIR	Please enter all quantities in this section in KGs							
POLLUTANT				METHOD	QUANTITY				
				Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.0		0.0	0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES TO AIR	Please enter all quantities in this section in KGs							
	POLLUTANT	N	IETHOD	QUANTITY					
		Method Used							
Pollutant No.	Name	M/C/E Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
				0.0)	0.0 0.	0.0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) tlared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KGyl roft Section A Sector specific PRTIP golduntains above. Please complete the table below:

Link to previous years emissions data

Landfill:	Marlinstown Landfill					
Please enter summary data on the quantities of methane flared and / or utilised			Met	thod Used		
					Facility Total Capacity m3	
	T (Total) kg/Year	M/C/E	Method Code	Designation or Description	per hour	
Total estimated methane generation (as per site						
model)		С	PER	Calculated using GasSim	N/A	
Methane flared	216000.0	E	Estimate	pw/hr by Ch4 conc by Sp. Gra		(Total Flaring Capacity)
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)
Net methane emission (as reported in Section A						
above)	38000.0	С	Oth	Methane generated minus m	N/A	
· ·						

5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE	RTR# : W0071 Facility Name : Marlinstown Landfill Filename : w0071 2010(1).xls F	Return Vear - 2010 I
3. ONSITE THEATMENT & OFF SHE THANSIERS OF WASTE	ATH#. WOOTT Facility Name. Wallinstown Earlann Fliendine. WooTt_2010(1).Xis F	Aetuiii rear . 2010

Please enter all quantities on this sheet in Tonnes											3	
			Quantity (Tonnes per Year)		Waste		Method Used		Haz Waste: Name and Licence/Permit No of Next Destination Facility Haz Waste: Name and Licence/Permit No of Recover/Disposer	Haz Waste : Address of Next Destination Facility Non Haz Waste: Address of Recover/Disposer		Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
	European Waste				Treatment			Location of				
Transfer Destination	Code	Hazardous		Description of Waste	Operation	M/C/E	Method Used	Treatment				
				andfill leachate other than those mentioned					Mullingar Wastewater	Clonmore, Mullingar, Co.		
Within the Country	19 07 03	No	3736.0	n 19 07 02	D8	M	Volume Calculation	Onsite in Ireland	Treatment Plant.D 0008-01	WestmeathIreland		

19/04/2011 09:57

Link to previous years waste data
Link to previous years waste summary data & percentage change

^{*} Select a row by double-clicking the Description of Waste then click the delete button