

ANNUAL ENVIRONMENTAL REPORT

January - December 2010

For

Dundalk Landfill Site

Co. Louth

Waste Licence Reference W0034-02

By

Dundalk Town Council

То

Environmental Protection Agency

DUNDALK LANDFILL & CIVIC WASTE FACILITY SITE (W0034-02)

ANNUAL ENVIRONMENTAL REPORT

JANUARY – DECEMBER 2010

DOCUMENT CONTROL SHEET

Client	Dundalk To	Dundalk Town Council				
Project Title	Dundalk La	Dundalk Landfill Site				
Document Title		Annual Environmental Report January – December 2010				
Document No.	IBR0210/Re	IBR0210/Reports				
This Document	DCS	TOC	Text	List of Tables	List of Figures	No. of Appendices
Comprises	1	1	37	1	0	11

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
	Draft	AMG	AMG	DD	Letterkenny	07/04/2011
	Final	AMG	AMG	DD	Letterkenny	14/04/2011

TABLE OF CONTENTS

1.0	INTRO	DUCTIO	ON	1		
	1.1	Repor	T PERIOD	2		
2.0	WAST		/ITIES CARRIED OUT AT THE FACILITY	3		
3.0	QUAN		ID COMPOSITION OF WASTE RECEIVED AND DISPOSED OF DURIN	IG		
	THE R	EPORT	ING PERIOD AND EACH PREVIOUS YEAR	4		
	3.1	Landfi	LL	4		
	3.2	CIVIC V	VASTE FACILITY	4		
4.0	SUMN	IARY RE	EPORT ON EMISSIONS	8		
	4.1	EMISSI	ONS TO SEWER	8		
		4.1.1	Discharge Point (From Landfill Site)	8		
		4.1.2	Discharge Point (from CWF)	8		
	4.2	EMISSI	ONS TO GROUNDWATER AND SURFACE WATER	8		
	4.3	Сомро	DISTING AND BIOFILTER EMISSIONS	8		
	4.3.1	FLARE	EMISSIONS	9		
5.0	SUMN	IARY OF	FRESULTS AND INTERPRETATIONS OF ENVIRONMENTAL MONITO	RING,		
	INCLU	IDING L	OCATION PLAN OF ALL MONITORING LOCATIONS	10		
	5.1	MONIT	ORING LOCATIONS	10		
	5.2	LEACH	ATE QUALITY	10		
	5.3	GROUN	IDWATER	13		
	5.4	BASELI	NE DATA			
		5.4.1	Monthly Parameters	15		
		5.4.2	Quarterly Parameters			
		5.4.3	Annually	15		
	5.5	Down-	GRADIENT DATA			
		5.5.1	Monthly Parameters	16		
		5.5.2	Quarterly Parameters	16		
		5.5.3	Annually	17		
	5.6	Remed	PIATION	18		
	5.7	SURFA	CE WATER	-		
		5.7.1	Monthly Parameters	19		
		5.7.2	Quarterly Parameters	19		
	5.8	Remed	PIATION	20		
	5.9	SEWER	DISCHARGES	20		
	5.10	Perime	ETER GAS MONITORING AND LANDFILL GAS EXTRACTION	21		
	5.11 ESTUARINE SOIL SAMPLES					
	5.12		AONITORING			
	5.13		DSTING MONITORING			
	5.14	BIOFILT	rer Monitoring	24		

		5.14.1	Bed Media			
		5.14.2	Inlet and Outlet G	as		
	5.15	Μετεο	ROLOGICAL MONITOR	ING		
6.0	RESC	URCE A	ND ENERGY CONS	SUMPTION SUMMA	RY	
7.0	DEVE		NT / INFRASTRUCT	URAL WORKS IN F	PLACE AND PLANNE	D, TO
	PROC	ESS WA	STE QUANTITIES	PROJECTED FOR	THE FOLLOWING YE	AR
	(INCL	UDING P	LANT OPERATING	CAPACITY, PROV	ISION OF ADEQUAT	E STANDBY
	CAPA		ID PROVISION OF	CONTINGENCY, BA	ACKUP AND SPARES	S IN THE CASE
	OF BI	REAKDO	WN)			
	7.1	PLANTS	S AND METHODS			
	7.2	Propr	IETARY VACUUM AER	ATED STATIC PILE SYS	STEM	
8.0	SCHE		F ENVIRONMENTA	L OBJECTIVES AN	D TARGETS FOR TH	IE
	FORT	HCOMIN	IG YEAR			
9.0	REPC	ORT ON T	HE PROGRESS TO	WARDS ACHIEVE	MENT OF THE ENVI	RONMENTAL
	OBJE	CTIVES	AND TARGETS CO	NTAINED IN THE P	REVIOUS YEARS RE	EPORT 29
10.0	TANK	, DRUM,	PIPELINE AND BU	IND TESTING AND	INSPECTION REPOR	RT 30
11.0	FULL	TITLE A	ND A WRITTEN SU	MMARY OF ANY P	ROCEDURES DEVEL	OPED BY THE
	LICEN	NSEE IN	THE YEAR, WHICH	RELATES TO THE	FACILITY OPERATION	ON 31
12.0	REPC		NCIDENTS AND CO	OMPLAINTS SUMM	ARIES	
13.0	REVIE	EW OF N	UISANCE CONTRO)LS		
	13.1	DUST C	ONTROL			
	13.2	LITTER				
	13.3	Odour	S			
	13.4	Pest C	ONTROL (VERMIN)			
	13.5	NOISE .				
14.0	VOLU	IME OF L	EACHATE PRODU	CED AND VOLUME	OF LEACHATE TRA	NSPORTED
	DISCI	HARGED	OFF SITE			
15.0	REPC	ORTS ON	FINANCIAL PROV	ISION MADE UNDE	R THIS LICENCE, M	ANAGEMENT
	AND	STAFFIN	G STRUCTURE OF	THE FACILITY, AN	ID A PROGRAMME F	OR PUBLIC 36
	15.1					
16.0	ANNU	JAL BUD	GET AND SITE RU	NNING COSTS		37

LIST OF TABLES

Table 3.1	Waste Quantities Accepted (Tonnes) at Landfill	4
Table 3.2	Waste Quantities Accepted for Disposal and Recovery (Tonnes) at CWF	6
Table 4.1	Net Methane Emission	9
Table 5.1	Raw Leachate Concentrations	11
Table 5.2	Raw Leachate Concentrations	12
Table 5.3	Leachate Levels mOD1	2

Table 5.4	Groundwater Parameters Monitoring Frequencies	. 13
Table 5.5	Surface Water Parameters Monitoring Frequencies	. 19
Table 5.6	Parameters Monitored in S1	21
Table 5.7	Landfill Gas Monitoring Locations	.21
Table 5.8	Sediment Results	22
Table 5.9	Dust Monitoring Results	23
Table 5.10	Summary of Meteorological Monitoring for the Reporting Period	25
Table 6.1	Consumption of Resources	. 26
Table 12.1	Summary of Non Compliances and Audit Observations Noted During	32
	Audits/Landfill Site Inspections Undertaken During the Reporting Period by EPA	32

LIST OF FIGURES

Figure 15.1	Management Structure at Dundalk Landfill Site	6
i igaio iori		•

APPENDICES

- APPENDIX A EPA Landfill and IWMF Survey, Part 3 2010
- APPENDIX B PRTR Reporting, Landfill Gas Report
- APPENDIX C Water Balance Calculation
- APPENDIX D Flare Emission Report
- APPENDIX E Monitoring Points Drawing
- APPENDIX F Leachate Results
- APPENDIX G Groundwater Results
- APPENDIX H Surface Water Results
- APPENDIX I Landfill Gas Monitoring Results
- APPENDIX J Composting Monitoring and Biofilter Results
- APPENDIX K Noise Report

1.0 INTRODUCTION

This Annual Environmental Report (AER) has been prepared to meet the requirements of Waste Licence W0034-02 for Dundalk Landfill.

The site is owned by Dundalk Town Council and is located at Newry Road, Dundalk. It is situated on the northern bank of the Castletown River in an area of intertidal mudflats. The northern boundary of the site adjoins low lying and poorly drained agricultural lands. Residential and industrial properties adjoin the western boundary of the site.

Dundalk Landfill Site has been in operation since 1980. In 2000 Dundalk Town Council submitted an application to the Environmental Protection Agency (EPA) for the continued operation of the landfill site, as required by the Waste Management (Licensing) Regulations 1997. The landfill site ceased to accept waste in October 2002.

In March 2005, the EPA granted the Council a revised Waste Licence (registration number W0034-02) for the facility, in accordance with the Third and Fourth Schedule of the Waste Management Act, 1996-2003.

A hydrogeological study¹ was undertaken in accordance with Condition 4.14 of the Waste Licence W0034-01 in 2004 to develop a leachate management system at the site. The report recommended that the Best Practicable Environmental Option for the remediation of Dundalk landfill is the capping of the landfill with a low permeability liner augmented by monitored natural attenuation. Groundwater remediation of the Quaternary gravel aquifer impacted by Dundalk landfill leachate is reliant on both the landfill capping intervention and on monitored in-situ natural attenuation processes. Discharge into the Northern Stream will reduce following capping of the site owing the reduction of the leachate head within the waste.

The landfill site was restored in 2006. Works include installation of capping layer, provision of storm water drainage, leachate collection trench, provision of gas collection system, provision of gas flare, grading of site to provide for future football pitches and the provision of access road.

A leachate collection trench has been constructed on the southern slope of the landfill. The trench is lined on the estuary side of the trench and also to a level of 3.65mOD on the landfill side of the trench. The trench is connected to the foul sewer running along the western boundary of the site.

¹ Proposal for leachate management, July 2004. RPS MCOS.

Gas abstraction system provided on site includes for a Gas collection layer under the impermeable layer of capping material which provides a path of least resistance to the 47 No boreholes laid out on a grid system over the main body of the site. The boreholes are connected via 63mm. diameter pipework to a 250mm diameter main gas collection pipe which transfers the gas collected, under suction, provided by compressor, and to the 500 m³ enclosed Flare Unit. A SCADA system and Programmable Logic Controller produces data which is available by download weekly or by telephone from council offices. The boreholes in the area of historical fill adjoining the rear of Hardy's Grainstore have also been attached to the active gas collection system.

1.1 REPORT PERIOD

The reporting period of this report refers to January to December 2010. The landfill site ceased to accept waste in October 2002. A Civic Waste Facility is currently in operation at the facility.

2.0 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY

Waste is no longer accepted at the landfill facility except for restoration purposes. The maximum tonnage of waste to be accepted at the Civic Waste Facility is 20,000 tonnes per annum in accordance with Table A1 of the Waste Licence.

The waste intake at the CWF and MRF is limited to 20,000 tonnes per annum of municipal waste and construction & demolition waste. The licence also allows composting of biodegradable waste and green waste to 4,000 tonnes per annum.

The licensed disposal activities, in accordance with the Third Schedule of the Waste Management Act, 1996, are restricted to those listed as follows:

Class 11. Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule.

Class 12. Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule.

Class 13. Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced.

Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996, are restricted to those listed as follows:

Class 2. Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes).

Class 3. Recycling or reclamation of metals and metal compounds.

Class 4. Recycling or reclamation of other inorganic materials.

Class 10. The treatment of any waste on land with a consequential benefit for an agricultural activity or ecological system.

Class 11. Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule.

Class 13. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced.

3.0 QUANTITY AND COMPOSITION OF WASTE RECEIVED AND DISPOSED OF DURING THE REPORTING PERIOD AND EACH PREVIOUS YEAR.

3.1 LANDFILL

Dundalk Landfill Site was in operation for the acceptance of waste for disposal from 1980 until 2002. The site ceased to accept waste for disposal in October 2002 and waste was only brought on site for restoration purposes after this date. Waste data figures are derived from estimates and weighbridge readings. These figures are shown in Table 3.1.

Table 3.1 Waste Quantities Accepted (Tonnes) at Landfill²

Waste Types	1997	1998	1999	2000	2001	2002	2003	2004
Total	37,060	37,560	38,000	36,000	32,000	32,420	27,417	3,018

3.2 CIVIC WASTE FACILITY

The Civic Waste Facility (CWF) is open;

- Monday Friday 9.30am 6.00pm
- Saturday 9.00am 3.00pm

In accordance with Condition 5 of the waste licence only those waste types and quantities listed in Schedule A shall be disposed of at the facility unless prior agreement from the Agency has been obtained. The maximum annual tonnage of individual waste categories for acceptance to the site is listed in Schedule A of the Waste Licence.

The following are accepted at the CWF;

- paper
- glass
- plastics
- clothing
- greenery
- wood
- aluminium cans
- domestic appliances
- batteries
- electrical appliances
- Scrap metal.
- Waste Engine Oil

² 1997-2001 figures based on estimates.

Waste Cooking Oil

The quantity of waste received during the reporting period at the Civic Amenity Facility (CWF) is 10,834 tonnes. The figures are taken from EPA Landfill and IWMF Survey, Part 3 and Part 4 2010, EPA composting survey 2010 and PRTR Report 2010 which are provided in Appendix A and B.

In total 1,037 tonnes of waste was accepted for disposal at the CWF. This consisted of:

- 60 tonnes arising from members of the public
- Street Cleanings (977 tonnes). Water is decanted from Street Cleanings at Dundalk CWF prior to disposal at Whiteriver Landfill Site.

Building Rubble (1,778 tonnes) accepted at Dundalk CWF was also sent to Whiteriver Landfill Site were it was recovered. The remaining waste was recovered on or off site as listed in Table 3.2. 2,827 tonnes of garden and park waste from municipal sources (landscapers, householders etc.) was composted onsite. 1,450 tonnes of compost was produced in 2010. Compost analysis has been undertaken and is detailed in Section 5.12.

		accepted for Disposal a	···· / (···	······································	
Material Type	EWC Codes		Tonnage	Name of Destination Facility(ies), or Collector(s) If Directly Exported	Disposal Or Recovery "D" or "R" or "Both"
			Tonnage		
Mixed residual waste	20 03 01		60	Whiteriver landfill w0060-02	D
		Garden and park waste from municipal sources			
garden	20 02 01	(landscapers, householders etc.)	2,827	Dundalk town council W0034-02V & W Recycling mh2001/90d	R
cardboard packaging	15 01 01		1,978	Peute Europe nl 6000076	R
newspaper and magazines	20 01 01		220	Peute Europe nl 6000076	R
glass packaging	15 01 07		606	Glasson N.I I-n06/08	R
Metals	0		177	Tinnelly N.I wmex22/01	R
plastic packaging	15 01 02		719	Shabra Plastic IRL mn-080022-01	R
textiles, non-packaging	20 01 11		20	Cookstown N.I wmex01/11	R
		Waste accepted onsite in 2010 that was not composted was sent off site and			
wood packaging	15 01 03	recycled	433	Finsa IRL t0022-2	R
wood non-packaging	20 01 38		1,020	Finsa IRL t0022-2	R
lead acid batteries and accumulators	16 06 01*	non-portable (automotive and industrial)	4	Returnbatt IRL mh2001/61c	R

Table 3.2	Waste Quantities Accepted for Disposal and Recovery (Tonnes) at CWF ³
-----------	--

³ EPA Landfill and IWMF Survey, Part 3, Part 4 2010, EPA composting survey 2010, PRTR 2010.

Material Type	EWC Codes		Tonnage	Name of Destination Facility(ies), or Collector(s) If Directly Exported	Disposal Or Recovery "D" or "R" or "Both"
Other (e.g. alkaline) batteries and accumulators	16 06 04	portable	1	Returnbatt IRL mh2001/61c	R
Waste mineral oils	13 xx xx	lubrication, vehicle, machine, etc.	5	Enva IRL mh2001/107c	R
Waste cooking or vegetable oils	20 01 25		6	Enva IRL mh2001/107c	R
Waste paint and varnish (including containers)	08 01 12		3	Enva IRL mh2001/107c	Both
Building Rubble	17 01 07		1,778	Whiteriver landfill w0060-02	R
Street Cleanings	20 03 03		977	Whiteriver landfill w0060-02	D
Total			10,834		

4.0 SUMMARY REPORT ON EMISSIONS

4.1 EMISSIONS TO SEWER

4.1.1 Discharge Point (From Landfill Site)

A leachate collection trench has been constructed on the southern slope of the landfill. The trench is lined on the estuary side of the trench and also to a level of 3.65mOD on the landfill side of the trench. The trench is connected to the foul sewer running along the western boundary of the site. A flow monitoring has been installed in this trench. Zero flow has been measured to date.

4.1.2 Discharge Point (from CWF)

In accordance with The PRTR Regulations releases of pollutants and off site transfers of waste by facilities operating in relevant industrial sectors are to be reported by the EPA to the European E-PRTR website where the facility exceeds specified thresholds. This has been completed for Dundalk landfill site. The PRTR reporting and landfill gas survey are included in Appendix B.

S1 is the sewer discharge monitoring location at manhole No 2, adjacent to weighbridge. This monitors run-off from the Civic Waste Facility and Material Recovery Facility and discharge from the composting facility. The estimated flow to sewer from this area is 11,300 m³. Reportable emissions for this location as per PRTR requirement are;

- Chlorides (as Cl)
- Nitrogen oxides (NOx/NO2)
- Ammonia (NH3)

4.2 EMISSIONS TO GROUNDWATER AND SURFACE WATER

There are no direct emissions to groundwater or surface water. A water balance calculation has been completed for Dundalk landfill site and is presented in Appendix C. The site is unlined and an area of approximately 79,000 m² has been capped. There is no active leachate extraction system on the site. Infiltrations in restored areas are in the range of 2-10% of effective rainfall. This equate to 1,061 m³ to 5,304 m³ of leachate produced.

4.3 COMPOSTING AND BIOFILTER EMISSIONS

Compost analysis and biofilter emission monitoring has been undertaken during the reporting period. These are discussed in section 5.13 and 5.14.

4.3.1 FLARE EMISSIONS

A $600m^3$ flare has been installed at Dundalk Landfill Site. Based on model predications and information from the landfill gas flare the estimated net emission of methane from the flare combustion process and both surface and lateral emissions from the landfill body is 119,187 kg/year (Table 4.1). Other reportable emission was for Carbon dioxide (CO₂).

Table 4.1 Net Methane Emission

Quantities of Methane Flared and / or Utilised	T (Total) kg/Year
Total estimated methane generation (as per site model)	351100.0
Methane flared	231913.0
Methane utilised in engine/s	0.0
Net Methane Emission	119187.0

Flue gas monitoring of flare emissions was undertaken in June 2010. The results of the flare test show that all Waste Licence parameters listed in Waste Licence W0034- 02 are within the limits specified in schedule C.6. These findings show that efficient combustion in taking place within the combustion chamber of the Dundalk Town Council flare and in general, is operating under the original manufacturers specification. This report is provided in Appendix D

5.0 SUMMARY OF RESULTS AND INTERPRETATIONS OF ENVIRONMENTAL MONITORING, INCLUDING LOCATION PLAN OF ALL MONITORING LOCATIONS

5.1 MONITORING LOCATIONS

Monitoring is carried out at locations and frequencies as specified in Schedules D of the waste licence. Monitoring points are labelled and permanent access to all monitoring points is maintained. The following parameters form the major part of Dundalk Urban District Council's monitoring programme;

- Groundwater Quality
- Groundwater Levels
- Surface Water Quality
- Leachate Quality
- Leachate Levels
- Landfill Gas

All ditches and drains around the perimeter of the facility are kept clear to allow for surface water monitoring points to be maintained.

All monitoring points are detailed in Drawing Monitoring Locations as shown in Appendix E.

5.2 LEACHATE QUALITY

Leachate quality can vary during the lifetime of landfill sites depending on the phase of decomposition of the waste. Leachate results for the reporting period are presented in Appendix F and some of the characteristic parameters of the leachate are listed in Table 5.1

Raw leachate results have been compared to "Typical Leachate Composition of 30 Samples from UK/Irish Landfills accepting mainly Domestic Waste" (Landfill Operational Practices). As can be seen from the Table 5.2 all of the parameters are below the maximum concentration.

Table 5.1 Ra	aw Leachate Co	ncentration	S			
		No. of				Standard
Parameters	Units	Samples	Minimum	Maximum	Mean	Deviation
Alkalinity	mg/I CaCO3					
Aluminium	µg/l	4	23.4	738.1	212	351
Ammonia	mg/I N	15	0.47	509.45	108	125
B.O.D.	mg/I O2	16	4.2	60.1	19	14
Boron	µg/l	4	1086.9	2099.6	1415	468
Cadmium	µg/l					
Calcium	mg/I Ca	4	138.39	234.08	175	44
C.O.D.	mg/I O2	16	72	660	215	185
Chloride	mg/I CI	16	62	478	203	137
Chromium	µg/l	4	2.8	12.1	9	4
Conductivity	µS/cm @ 25	16	1803	8270	3731	2035
Copper	µg/l	4	2.3	6.2	4	2
Cyanide	mg/I CN					
Depth	m	12	2.9	8.9	5	2
D.O.	% Saturation					
Fluoride	mg/l	2	0.15	0.16	0	0
Iron	µg/l	4	24610.8	30325.1	26974	2405
Lead	µg/l	3	1.1	4.1	2	2
Magnesium	mg/l Mg	4	58.55	83.86	67	12
Manganese	µg/l	4	627.3	936.7	784	127
Mercury	µg/l					
Nickel	µg/l	4	4	52.6	19	23
o-Phosphate	mg/l P	9	0.03	2.37	1	1
рН	0	16	6.7	7.1	7	0
Potassium	mg/l	4	66.39	257.56	120	92
Residue on						
Evaporation	0					
Sodium	mg/l	4	92.42	360.75	165	130
Sulphate	mg/I SO4	3	6.6	10.9	9	2
Temp	°C	12	8.2	15.5	12	2
Time Sampled	0	12	10.45	12.2	11	1
T.O.C.	mg/l					
T.O.N	mg/I N	1	0.09	0.09	0	#DIV/0!
Total S Solids	mg/l					
Zinc	µg/l	4	19.3	70.2	34	24

Table 5.1	Raw Leachate Concentrations

	Dundalk L	andfill Site	From 30 Samples from UK/Irish Landfills Accepting Domestic Waste Results in mg/I			
Parameter	Min.Conc	Max.Conc	Min.Conc	Max.Conc	Mean	
Ammonia (mg/N)	0.05	112.55	<0.2	1700	491	
BOD	7.4	41	4.5	>4800	>834	
COD	80	842	<10	33,700	3078	
Chloride (mg/l)	90	655	27	3410	1256	
lron (μg/l)*	5416.5	33120.5	0.4	664	54.4	
Potassium (mg/l)	40.31	370.32	2.7	1480	491	
Sodium (mg/l)	97.54	535.8	12	3000	904	
TON (mg/l N)	0.11	0.12	/	/	/	
Conductivity (µS/cm)	2580	9910	503	19,200	7789	
pH (pH units)	6.7	7.2	6.4	8.0	7.2	

 Table 5.2
 Raw Leachate Concentrations

Leachate levels monitoring is undertaken at five locations on site (Table 5.3). L7 readings are not leachate levels but bottom of well (dry). The Hydrogeological report found that a leachate and groundwater mound was present within the landfill areas centred in L7 area. This monitoring point is to be reviewed to check if borehole is blocked.

Date	L1	L2	L4	L6	L7 ⁴
12/01/2010	2.22	1.39	2.15	4.28	5.16
05/02/2010	2.37	1.38	2.06	4.38	5.23
18/03/2010	2.30	1.42	2.11	4.36	5.14
12/04/2010	2.00	1.45	2.13	4.37	5.34
11/05//2010	2.12	1.38	2.20	4.28	5.22
17/06/2010	2.18	1.36	2.19	4.11	5.14
23/07/2010	2.25	1.42	2.14	4.39	5.12
11/08/2010	2.15	1.44	2.30	4.40	5.10
10/09/2010	2.27	1.51	2.29	4.36	5.11
06/10/2010	2.30	1.46	2.34	4.42	5.20
08/11/2010	2.30	1.44	2.41	4.47	5.25
03/12/2010	2.26	1.42	2.45	4.48	5.21
10/01/2011	2.15	1.47	2.46	4.44	5.26
07/02/2011	2.01	1.44	2.44	4.36	5.24
11/03/2011	1.93	1.48	2.41	4.66	5.34

Table 5.3 Leachate Levels mOD

 $^{\rm 4}$ Note these are not leachate levels but bottom of well (DRY)

5.3 **G**ROUNDWATER

As required under the Waste Licence, groundwater monitoring has been undertaken at the borehole locations as set out in Table D1.1 of the waste licence. Schedule D of the waste licence requires the monitoring of certain parameters on either a monthly, quarterly or annual basis; the frequencies of the monitoring of groundwater parameters are shown in Table 5.4 below.

		-	-		
Monthly	Quarterly	Annually			
Groundwater Level	Visual	Aluminium	Manganese	Total Alkalinity	
	Inspection/Odour				
Ammoniacal Nitrogen	Dissolved Oxygen	Boron	Nickel	Orthophosphate	
Chloride	рН	Cadmium	Potassium	TON	
Electrical Conductivity	Temperature	Calcium	Sodium	Residue on	
				Evaporation	
	TOC	Chromium	Zinc	List I/II Organic	
		Copper	Cyanide		
		Iron	Fluoride		
		Lead	Mercury		
		Magnesium	Sulphate		

Table 5.4	Groundwater Parameters Monitoring Frequencies
-----------	---

A hydrogeological study was undertaken in accordance with Condition 4.14 of the Waste Licence W0034-01 in 2004 to develop a leachate management system at the site. The report recommended that the Best Practicable Environmental Option for the remediation of Dundalk landfill is the capping of the landfill with a low permeability liner augmented by monitored natural attenuation. Groundwater remediation of the Quaternary gravel aquifer impacted by Dundalk landfill leachate is reliant on both the landfill capping intervention and on monitored in-situ natural attenuation processes. Discharge into the Northern Stream will reduce following capping of the site owing the reduction of the leachate head within the waste.

The landfill site was restored in 2006. Works include installation of capping layer, provision of storm water drainage, leachate collection trench, provision of gas collection system, provision of gas flare, and grading of site.

A leachate collection trench has been constructed on the southern slope of the landfill. The trench is lined on the estuary side of the trench and also to a level of 3.65mOD on the landfill side of the trench. The trench is connected to the foul sewer running along the western boundary of the site. A flow monitoring has been installed in this trench. Zero flow has been measured to date.

The main groundwater flow path is generally towards the estuary, which is located to the south of the site. Groundwater monitoring has been undertaken at boreholes WM1, WM4, WM5, WM6, WM8, WM9 and WM10. Groundwater monitoring results are provided in full within Appendix G. These results are also presented graphically.

Groundwater was assessed against;

Groundwater: the European Communities (Drinking Water) (No. 2) Regulations 2007 parametric value (DWR) and Interim Guideline Value (IGV) Towards Setting Guideline Values for the Protection of Ground Water in Ireland.

The following substances defined by the European communities (Drinking Water) (No. 2) Regulations 2007 were monitored in April and are referred to in the report.

Total pesticides means the sum of all individual pesticides detected and quantified in the course of the monitoring procedure. The DWR is 0.50µg/l. (Only those pesticides which are likely to be present in a given supply require to be monitored - organic insecticides, organic herbicides, organic fungicides, organic nematocides, organic acaricides, organic algicides, organic rodenticides, organic slimicides , related products (*inter alia*, growth regulators and their relevant metabolites, degradation and reaction products).

Polycyclic aromatic hydrocarbons are the sum of concentrations of specified compounds. The DWR is 0.10ug/l. The specified compounds are benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene and indeno(1,2,3-cd)pyrene.

Total trihalomethanes are the sum of concentrations of specified compounds. The DWR is 100ug/l. The specified compounds are: chloroform, bromoform, dibrom-ochloromethane and bromodichloromethane

Parameters that are indicative of possible leachate contamination include Ammoniacal-N, Conductivity, Iron, Chloride and heavy metals.

5.4 BASELINE DATA

Monitoring was carried out up-gradient of the site in order to obtain an overview of the baseline monitoring water quality of the surrounding groundwater. This allows for a baseline to be established from which the actual impact caused by the site on the down-gradient groundwater can be assessed. WM1 is the up-gradient monitoring point. Monitoring is undertaken on a monthly, quarterly and annual basis.

5.4.1 Monthly Parameters

Electrical Conductivity in WM1 was above the IGV of 1000µScm and DWR of 2500 µScm throughout the monitoring period. All Ammonia concentrations recordings were below the IGV 0.15mg/l and the DWR of 0.30mg/l except in February (22.13 mg/l) and December (0.63mg/l). The concentrations in WM1 were <0.03mg/l at times during the monitoring period. Chloride concentrations were above the IGV (30mg/l) and the DWR (250mg/l) throughout the monitoring period. The highest chloride reading recorded was 2,871 mg/l in February.

5.4.2 Quarterly Parameters

Dissolved Oxygen (DO) levels ranges from 12% to 51%. WM1 exhibits TOC values ranging from 1.7mg/l to 95.3 mg/l.

5.4.3 Annually

Cyanide is below the IGV (0.01mg/l) and DWR (50μ g/l) with a reading of <0.05mg/l. Fluoride has a reading of 0.190mg/l which is below the DWR (0.8mg/l0 and the IGV (1mg/l). Mercury ($<0.1\mu$ g/l) is below the IGV (0.001mg/l) and the DWR (1μ g/l). Sulphate is below the IGV (200mg/l) and the DWR (250mg/l) with a reading of >100 mg/l. Ortho-phosphate is below the IGV of 0.03mg/l with a recording of < 0.02 mg/l. Total Alkalinity shows no abnormal change with a reading of 380 mg/l. TON shows no abnormal change with a value of 0.84 mg/l for WM1. Residue on Evaporation recorded 1,956 mg/l in WM1 in April.

Metals consist of Aluminium, Boron, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Sodium and Zinc. These parameters were measured in April and were all below the relevant IGV and/or DWR except for Magnesium, Potassium and Sodium.

Magnesium exceeds the IGV of 50mg/l in WM1 with a reading of 54.62mg/l. Potassium exceeds the IGV of 5mg/l with a result of 22.34 mg/l and Sodium is above the IGV (150mg/l) and DWR (200mg/l) with a value of 410.56 mg/l.

Analysis for Polycyclic Aromatic Hydrocarbons (Total 16 EPA PAHs) was carried out in WM1 in April and recorded <0.1 μ g/l and is below the DWR of 0.1 μ g/l for PAH. All other parameters measured were less than the lower level of detection.

Phenols levels were <0.015 μ g/l which is the lower limit of detection for the methodology used for Phenols. This is below the IGV of 0.5 μ g/l.

Pesticide and Herbicides analysis was carried out in WM1 in April. Pesticide levels were <0.01µg/l which is the lower limit of detection for the methodology used. The total pesticides

could be above or below the IGV 0.5μ g/l. Herbicides levels were less than the lower level of detection.

Total-Trihalomethanes (THM) is the sum of Dichloromethane, Chloroform, Bromodichloromethane and Bromoform. Dichloromethane, Bromodichloromethane and Bromoform were below the lower detection limit for the analytical methodology used (<0.1 μ g /l), however Chloroform (0.1 μ g/l) was detected. However it does not exceed the DWR of 12 μ g/l. THM is below the DWR of 100 μ g/l total trihalomethanes.

Volatiles and semi volatiles parameters were either below the IGV or less than the detection limit for those comparable. Chloroform was detected at a concentration of $0.1 \mu g/l$; however it does not exceed the IGV of $12 \mu g/l$.

The detection limit of $0.1\mu g/l$ is higher than the IGV for a number of parameters.

The remaining parameters were below the detection limit (0.1ug/l) for the analytical methodology used.

5.5 DOWN-GRADIENT DATA

The impact on the groundwater from leachate generated within the landfill can be identified from Boreholes WM4, WM5, WM6, WM8, WM9 and WM10. WM4 and WM8 are located in the gravel aquifer.

5.5.1 Monthly Parameters

Results from downstream indicate elevated levels of Ammonia in the majority of boreholes. The highest Ammonia level recorded was 6469.53 mg/l in WM8 in August. Elevated levels of Ammonia are indicative of leachate contamination. Electrical Conductivity exceeds the DWR of 2,500µScm in all boreholes. The highest level was recorded in WM6 (32,700µS/cm). Chloride levels also exceeded the DWR throughout the monitoring period. The highest Chloride concentration recorded was 5,212mg/l in WM4. It should be noted that saline water intrusion may contribute to the high levels of Chloride and Electrical Conductivity recorded down-stream of the site as seawater can contain Chloride levels up to 20,000mg/l.

5.5.2 Quarterly Parameters

TOC values provide a measure of organic contamination of the water, the higher the content the more oxygen is consumed. Organic contamination results in an increase in the growth of micro-organisms. TOC results show spike in concentrations in a number of boreholes. This also increased in the upstream borehole but not to the same concentrations. DO ranges from 12% to 57%.

5.5.3 Annually

Cyanide is below the IGV (0.01mg/l) and DWR (50μ g/l) with a reading of <0.05mg/l. Fluoride readings are below the DWR (0.8mg/l) and the IGV (1mg/l). Mercury ($<0.1\mu$ g/l) is below the IGV (0.001mg/l) and the DWR (1μ g/l). Sulphate readings are below the IGV (200mg/l) and the DWR (250mg/l) except at WM4 with a reading of >300mg/l. Ortho-phosphate is above the IGV of 0.03mg/l with a recording of 0.05mg/l to 0.62mg/l. Total Alkalinity shows no abnormal change with a reading of 653 mg/l to 920 mg/l. TON shows no abnormal change with a value of <0.08 to 2.14 mg/l. Residue on Evaporation recorded reading of 1723 mg/l to 6979 mg/l in downstream boreholes in April.

Metals /Non metals consist of Aluminium, Boron, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Sodium and Zinc. These parameters were measured in April and were all below the relevant IGV and/or DWR except for Boron, Calcium, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc. These results are included in Appendix G.

Annual analysis for List I and II substances were undertaken at WM6 and WM8 downstream of the site and are included in Appendix G.

Polycyclic Aromatic Hydrocarbons (total 16 EPA PAHs) in the two boreholes recorded of <0.1 μ g/l and are below the DWR of 0.1 μ g/l for PAH. All other parameters measured were less than the lower level of detection except Fluoranthene (0.0146 μ g/l) and Pyrene (0.0275 μ g/l in WM8.

Phenols levels were lower than the limit of detection for the methodology used (<0.015 μ g/l) and are lower than the appropriate IGV of 0.5 μ g/l.

Pesticide and Herbicides analyses were carried out in WM6 and WM8 in April. Pesticide levels were <0.01 μ g/l which is the lower limit of detection for the methodology used. The total pesticides could be above or below the IGV 0.5 μ g/l. Herbicides levels were less than the lower level of detection except for Chloridazion (0.0948 μ g/l) and Diuron (0.0492 μ g/l) which is below the IGV of 25 μ g/l for Diuron. There is no IGV set for Chloridazion.

Total-Trihalomethanes (THM) is the sum of Dichloromethane, Chloroform, Bromodichloromethane and Bromoform. All levels were below the lower detection limit for the analytical methodology used ($<0.1\mu g/l$) and are below the DWR of $100\mu g/l$ total trihalomethanes.

Volatiles and semi volatiles parameters were either below the IGV or less than the detection limit for those comparable. Chlorobenzene, Isopropylbenzene, m,p-Xylene, Naphthalene, n-

Propylbenzene, o-Xylene, sec-Butylbenzene and tert-Butylbenzene were all detected above the detection limit of $0.1\mu g/l$. Those which exceed IGV for those comparable are Chlorobenzene (2.1 µg/l), and Naphthalene (1.0 µg/l) which is equal to the IGV of 1 µg/l. The parameters detected above the detection limit of $0.1\mu g/l$ and those which exceed the IGV are all located in WM8.

The detection limit of $0.1\mu g/l$ is higher than the IGV for a number of parameters.

5.6 REMEDIATION

The results show that groundwater is being impacted by the landfill site. A hydrogeological study was undertaken and the recommended Best Practicable Environmental Option for the remediation of Dundalk landfill was the capping of the landfill with a low permeability liner augmented by monitored natural attenuation. The hydrogeological study predicated a range of concentrations in groundwater (along boundary with estuary) after 10 years from the completion of the landfill. Capping was completed in 2006. A review of monitoring results shows some improvement in groundwater and surface water quality over time since capping was completed. This will continue to be monitored for longer term trends to assess the extent of the natural attenuation of the site.

In the 'Predicted Environmental Risk Assessment' represented by the Dundalk landfill to the Quaternary Gravel Aquifer and the Castletown Estuary after 10 years from the completion of the landfill capping it is predicted that the concentration range for Ammoniacal Nitrogen will be between 67mg/l and 71mg/l in groundwater (along boundary with estuary). In WM4 and WM10 the concentrations are below the maximum predicted concentration range. WM5 is below the maximum in all but one occasion in 2010. WM6 WM8 exceeds the maximum predicted concentration range for Ammoniacal Nitrogen for the majority of the year.

5.7 SURFACE WATER

The results contained in this report are assessed against the Surface Water Quality Standards (SWQS) laid out in the European Communities Quality of Surface Water Intended for the Abstraction of Drinking Water Regulations 1989, (EC Abstraction of Drinking Water Regulations) for surface water assessment and Dangerous Substances Regulations, 2001.

The frequencies of the monitoring of surface water parameters are shown in Table 5.5.

Monthly	Quarterly	An	nually
Ammoniacal Nitrogen	BOD	Aluminium	Manganese
Chloride	COD	Boron	Nickel
Electrical Conductivity	Dissolved Oxygen	Cadmium	Potassium
	рН	Calcium	Sodium
	Total Suspended Solids	Chromium	Zinc
	Temperature	Copper	Mercury
	TON	Iron	Sulphate
		Lead	Alkalinity
		Magnesium	Orthophosphate

Table 5.5 Surface Water Parameters Monitoring Frequencies

Samples SW1 to SW4 are taken along the course of the drainage ditch, which adjoins the northern boundaries of the landfill. Monitoring points SW5 to SW9 are located in the estuary. SW5 and SW6 are adjacent to the landfill, whilst SW7 and SW8 are upstream and SW9 downstream of the site.

5.7.1 Monthly Parameters

Monthly chemical analyses of surface water are summarised in Appendix H. The results indicate elevated levels of Ammoniacal-N, the highest concentration recorded in the stream was 39.40 mg/l in SW2 and in the estuary was 1.16 mg/l in SW9. Elevated levels of Electrical Conductivity, and Chloride recorded at SW5 to SW9 maybe due to the presence of estuarine water.

5.7.2 Quarterly Parameters

The pH values range from 7.3 to 8.5 in all surface water locations which are between the SWQS of 5.5 to 9.

The results indicate elevated levels of BOD and COD, the highest concentration recorded in the stream was 36.4 mg/l in SW4 and in the estuary was 4 mg/l in SW8 for BOD and for COD the stream was 294 mg/l in SW4 and in the estuary was 697 mg/l in SW9.

Total Suspended Solids exceed the SWQS in all surface water monitoring locations, the highest concentration recorded in the stream was 139mg/l in SW1 and in the estuary was 60mg/l in SW9.

The Total Organic Nitrogen (TON) showed no abnormal change throughout 2010, the highest concentration recorded in the stream was 2.88 mg/l in SW4 and in the estuary was 2.85mg/l in SW8.

The majority of parameters assessed show that levels of contamination increase between sampling points SW1 and SW4, which are located along the drainage ditch running along the north of the site. It can be seen that elevated levels of Ammonia, COD and BOD have been recorded at the various monitoring locations along the drainage ditch. These results are presented graphical in Appendix H.

5.8 REMEDIATION

The results show that surface water is being impacted by the landfill site. In the hydrogeological study an Ammoniacal Nitrogen contaminant discharge was estimated at 70mg/l after capping (after 10 years), predicting a long term concentration of 0.26mg/l in the estuary. The results show the highest Ammoniacal Nitrogen concentration value for the stream is in SW1 at 31.451mg/l in November. The highest concentration for the estuary is in SW9 at 1.16 mg/l in December 2010 which is downstream of the site. SW5 and SW6 are adjacent to the site. Ammoniacal Nitrogen ranged from 0.11 to 1.03mg/l in SW5 and 0.4 to 1.05 mg/l in SW6.

5.9 Sewer Discharges

S1 is the sewer discharge monitoring location at manhole No 2, adjacent to weighbridge. This monitors run-off from the Civic Waste Facility and Material Recovery Facility and discharge from the composting facility. S1A is located within the site before the discharge reaches the public sewer at S1 and monitoring this location will highlight the discharge concentrations from only the site.

The Waste Licence in Schedule D requires the monitoring of the BOD, COD, Ammonia, Suspended Solids, Sulphates, pH and Temperature on a quarterly basis.

Table 5.6 illustrates the parameters that were monitored in S1. S1A and S2 were not sampled during this monitoring period. S1 exceeded the ELV for BOD and COD in July. S1 results can be found in full in Appendix H.

Table 5.6	ble 5.6 Parameters Monitored in S1						
Parameter	Jan	April	July	Oct	Emission Limit Value (ELV)		
					S1: Civic Waste	S2: Leachate from	
					Facility	Landfill	
					Grab Sample	Grab Sample (mg/)	
					(mg/l)		
BOD	32.6	184.2	1098	102	750	2000	
COD	163	536	4545	459	1000	9000	
Suspended	144	114	860	110	1000	2000	
Solids				110	1000	2000	
Sulphate	32.1	30.5	40.6	nm	300	400	
рН	7.4	7.2	7.0	7.2	6-9	6-9	
Temperature	32.1	30.5	40.6	12.1	40°C	40°C	

5.10 PERIMETER GAS MONITORING AND LANDFILL GAS EXTRACTION

Schedule D of the licence requires the licensee to conduct monthly monitoring of gas levels on the perimeter and in the waste of the landfill site. The gas is monitored using a GA2000 infrared monitoring device. The monitoring locations are shown on Table 5.7 and shown in Drawing in Appendix E (External Gas Monitoring Points).

Table 5.7	Landfill G	Sas Monitoring	Locations
-----------	------------	----------------	-----------

Landfill Gas Wells within	GW1 to GW47 inclusive
Waste and Boundary	(as shown on Drawing No. 004 of the Restoration Plan for
Locations	34-1 (Nov 2002) agreed by the Agency)
Piezometers Boundary Locations	G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G16, G17, GM1, GM2, GM3, GM4, GM5, GM6, GM7, GM8, GM24

Landfill gas around the periphery of the site is indicated by piezometers as shown in Table 5.7 above. GM7 and GM8 are no longer monitored.

A landfill gas trench has been installed to the west of the active landfill site to intercept the potential pathway of the gas migrating from the current active landfill site. Piezometers GM5 to GM7, G4 to G10 are to the west of the landfill gas trench.

A permanent gas extraction system has been installed at the facility during 2005. This includes a gas collection layer and 47 landfill gas extraction wells laid out on a grid system over the main body of the site. The wells are connected via 63mm diameter pipework to a 250mm diameter main gas collection pipe. A 500m³ enclosed Flare Unit and SCADA system

has been installed. The boreholes in the area of historical fill have also been attached to the active gas collection system. Records of field balancing are maintained.

Monthly monitoring of periphery piezometers around Dundalk Landfill site have indicated exceedances of licence requirements of Methane greater than or equal to 1.0% v/v in G6, G8, G10 and G20 in the months January to August. The highest reading was 2.8% v/v in G10 in January and May.

Monthly monitoring of periphery piezometers around Dundalk Landfill site have indicated exceedances of licence requirements of Carbon Dioxide greater than or equal to 1.5% v/v in G6,G10, G17, G20, GM2 and GM24 in the months January to August. The highest reading was 2.3% v/v in G20 in March. There were no exceedances for Methane or Carbon Dioxide for the months September to December 2010.

Subsequent monitoring of adjacent premises and houses using Flame Ionization Detector has not shown any raised methane levels. Landfill gas results for 2010 are included in Appendix I.

5.11 ESTUARINE SOIL SAMPLES

Sediment sampling was undertaken at five locations in the estuary in June 2010. These results are presented in Table 5.8. These results have been compared to the Dutch Target values and intervention values for soil remediation soil/sediment. The results are below the Target Value for all parameters except Zinc, Nickel and Copper at locations SW7 and SW8. The results are below the intervention value. No Targets Values are given for Manganese or Cyanide. Cyanide levels are below the lower detection limit for the analytical method used. SW7 and SW8 are located upstream of the site.

Date Sampled Parameter (mg/kg dry wt)	17/06/10 SW5	17/06/10 SW6	17/06/10 SW7	17/06/10 SW8	17/06/10 SW9	Target Value (Dutch)	Inter - vention Value (Dutch)
% Dry Weight	30.3	36.3	32.3	25.3	38.8		
Cadmium	0.618	0.519	0.589	1.15	0.36	0.8	1.2
Copper	31.5	27.8	31.6	44.6	24.1	36	190
Chromium	36.2	35.3	40.3	39.5	28.5	100	380
Lead	34.3	29.5	32.9	39	30.7	85	530
Manganese	458	403	773	667	428		
Mercury	<0.14	<0.14	<0.14	<0.14	<0.14	0.3	10
Zinc	168	141	170	240	118	140	720

Table 5.8Sediment Results

Date Sampled Parameter (mg/kg dry wt)	17/06/10 SW5	17/06/10 SW6	17/06/10 SW7	17/06/10 SW8	17/06/10 SW9	Target Value (Dutch)	Inter - vention Value (Dutch)
Nickel	29.4	29.1	36	38.3	23.6	35	
Total cyanide mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0		

5.12 DUST MONITORING

Dust monitoring was carried out three times in the year. Table 5.9 details the results of the three dust monitors installed on site. The waste licence requires dust deposition limits to be no more than 350 mg/m²/day.

Table 5.9	Dust Monitoring Results

Sampling Period	Dust Monitor 1	Dust Monitor 2	Dust Monitor 3
01/06/2010 30/06/2010	105.6	Blank-	81.5
30/06/2010 30/07/2010	1499.7	18.3	140.9
22/11/2010 21/12/2010	34.76	35.34	8.3

From Table 5.9 it can be seen that all dust deposition levels in all periods are below the limits except in DG1, which exceeds the licence requirements in June – July. It not thought that these exceedances are a result of operations at the CWF. No complaints were received nor was problem with dust noted during this period.

5.13 COMPOSTING MONITORING

V & W recycling compost hedge grass & hedge cuttings from Civic Amenity users. 2,827 tonnes was received for composting in 2010. Compost testing was undertaken by Bord na Mona Ltd and is provided in Appendix J. Samples are taken from 5 separate locations and depths within the compost pile to ensure a representative composite sample can be achieved. The sampling of compost takes place from the static pile before the screening process and hence does not take account of the filtering process. Compost is also stored on site for 6 months (held over winter).

The three samples of compost were sent for analysis. The samples of compost were checked for compliance against Schedule F of Waste Licence W0034-02.

18th March 2010

Sample complied with Schedule F, Maturity tests. The results show that the compost if fully stable. Contaminants > 2mm were detected (metal). Trace elements complied with Class 2 for Lead and Chromium. Remaining elements are Class 1. Sample also complied with the pathogen test.

27th October 2010

Sample complied with Schedule F, Maturity tests. The results show that the compost if fully stable. Contaminants > 2mm were detected (stones and glass). Trace elements complied with Class 1. Sample also complied with the pathogen test.

• 15th December 2010

Sample complied with Schedule F, Maturity tests. The results show that the compost if fully stable. Contaminants > 2mm were detected (stones). Trace elements complied with Class 1. Sample also complied with the pathogen test.

As stated above the sampling of compost takes place from the static pile before the screening process and hence does not take account of the filtering process. Contaminants are removed on site by a screening process undertaken by V&W Recycling, whereby the compost is passed through a rotating drum type sieve prior to bagging. Heavier material is returned to the process.

5.14 BIOFILTER MONITORING

Composting is undertaken in a proprietary vacuum aerated static pile system complete with Biofilters, supplied by Celtic Composting Systems of Cork. Biofilter monitoring has also been undertaking in accordance with Schedule D of the licence.

5.14.1 Bed Media

Moisture content, pH, Ammonia and Total viable counts were analysed for the bed media gases and are provided in Appendix J. There are no limits in waste licence for these parameters.

5.14.2 Inlet and Outlet Gas

Ammonia, Hydrogen sulphide and Mercaptans were measured on inlet and outlet gases and the results are provided in Appendix J. These are below the emission limit in C5.

5.15 METEOROLOGICAL MONITORING

Temperature and rainfall readings are taken from Dublin Airport.

Table 5.10 Summary of Meteorological Monitoring for the Reporting Period

Total rainfall in millimetres for Dublin Airport													
Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2010	45.2	36.7	54.8	26.7	38.0	50.3	78.5	48.0	104.3	30.8	100.0	58.1	671.4
mean	69.5	50.4	53.5	51.1	54.8	55.8	50.0	71.1	66.4	70.1	64.3	75.8	732.7

Mean temperature in degrees C. for Dublin Airport													
Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2010	1.7	2.3	4.9	7.7	9.6	14.1	16.0	13.9	13.1	10.1	5.2	-0.1	8.2
mean	5.0	5.0	6.3	7.9	10.5	13.4	15.1	14.9	13.1	10.6	7.0	5.9	9.6

6.0 RESOURCE AND ENERGY CONSUMPTION SUMMARY

Consumption of resources for the reporting period is shown in Table 6.1 below.

Table 6.1Consumption of Resources

Parameters	CWF	Landfill Site	Unit
Electricity	3250	14,349	kWh
Water	2,900		m ³

7.0 DEVELOPMENT / INFRASTRUCTURAL WORKS IN PLACE AND PLANNED, TO PROCESS WASTE QUANTITIES PROJECTED FOR THE FOLLOWING YEAR (INCLUDING PLANT OPERATING CAPACITY, PROVISION OF ADEQUATE STANDBY CAPACITY AND PROVISION OF CONTINGENCY, BACKUP AND SPARES IN THE CASE OF BREAKDOWN).

There is no additional development /infrastructural works planned for 2011 in the CWF and landfill site.

7.1 PLANTS AND METHODS

The current plant on site comprises of;

- Compactor The current compactor is used to bale recyclable materials
- Hopper The hopper is used to accept recyclables.
- Conveyer Belt The conveyer belt is used to sort materials
- Wood Shredder The wood shredder is used to shred wood received at the Civic Waste Facility.

All machines have a 50% back-up capacity and V & W Recycling also have access to spares as required.

7.2 PROPRIETARY VACUUM AERATED STATIC PILE SYSTEM

The licence also allows composting of biodegradable waste and green waste to 4,000 tonnes per annum. A Proprietary Vacuum Aerated Static Pile System has been installed. No food waste is utilised through the composting system. Celtic Composting systems biofilters (2) were specified to have capacity of 8,000 tonnes of compost, thus providing 100% spare capacity in the event of breakdown.

8.0 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS FOR THE FORTHCOMING YEAR

The following developments works (Environmental Objectives and Targets) will be carried out in 2011.

- 1. Reduce impact of the steam on the northern stream and Castletown estuary.
- 2. DTC will engage experts in the field of energy recovery. The proposal is to investigate the feasibility of using the landfill gas to
 - Recharge electric vehicles for use by DTC works department. This energy recovery may reduce DTC fuel costs and the carbon footprint and provide a lead by example to the Dundalk community.
 - Provide power for use by the compost making facility.

9.0 REPORT ON THE PROGRESS TOWARDS ACHIEVEMENT OF THE ENVIRONMENTAL OBJECTIVES AND TARGETS CONTAINED IN THE PREVIOUS YEARS REPORT

Progress towards the achievement of the two environmental objectives and targets contained in the previous years report are listed below:

1. Dundalk Town Council are proposing, on a trial basis, to allow an archery club access to the capped landfill area.

The decision was taken not to allow the club onto the landfill during 2010 for the following reasons.

- Following the last inspection it was decided not to allow any grass cutting in 2010 to encourage flora growth and to improve the natural habitat and encourage bio-diversity. In this way it may be possible determine the best areas for promoting natural habitat and locate the club activities to other areas less well suited.
- The site boundaries are secure and closed to the public, if public access was to be granted there are a number of manifolds on site that would need to be made more secure in the interests of health and safety. This has significant financial implications and a review on this matter will be taken during 2011, it may be possible to carry out these works on a staged basis over 2-3 years.
- 2. Following the last years EPA inspection additional gas monitoring points at well heads were requested, this in conjunction with the monitoring at the manifolds will give a better indication of the landfill gas production and help determine if there is any problems/blockages with the gas pipes leading from the wells to the manifolds; thus identifying any repairs that may need to be carried out. The monitoring points have been installed and monitoring is taking place with a view to identifying and carry out any repairs to the gas lines later this year.
 - The gas monitoring points were installed and monitoring is taking place, this monitoring has not revealed any significant problems with the gas lines, however the work done is a useful monitoring tool and continued monitoring is ongoing to identify any future areas of attention that may arise.

10.0 TANK, DRUM, PIPELINE AND BUND TESTING AND INSPECTION REPORT

The use of specialist Oil tanks was approved by EPA and installed as part of the extension to the Civic Amenity Site in 2004/2005, provided these tanks were protected from vehicular impact. This was done by the provision of railings and the tanks are then set in additional recesses. There are no other bunds on site. No other inspections are undertaken.

11.0 FULL TITLE AND A WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY THE LICENSEE IN THE YEAR, WHICH RELATES TO THE FACILITY OPERATION

The Environmental Management System and Environmental Management Plan were reviewed and updated in 2006 to include the procedures for the Civic Waste Facility and the closure of the Landfill site. No new procedures were developed in 2011.

12.0 REPORT ON INCIDENTS AND COMPLAINTS SUMMARIES

No complaints were received from the public and no incidents were reported. A site audit was carried out at the facility in August 2010. A summary is provided in Table 12.1.

Table 12.1Summary of Non Compliances and Audit Observations Noted During
Audits/Landfill Site Inspections Undertaken During the Reporting Period
by EPA

Inspection Date and	Summary of Audit Findings	Actions Taken to Address the
Reference		Observations
16/08/10	Non Compliances	1 V&W will maintain a record of compost
Issue date:	None	amounts generated
25/08/10	Audit Observations	2 Service Records For the Landfill Gas
Reference No:	1. CWF Waste Records.	Enclosed Flare
(W0034-	2. Service Records for the	The quarterly service is currently carried
02/02/10/AR06EM	landfill gas enclosed flare	out be Biogas, they were contacted after
	3. Gas Monitor Meter	the audit and requested to supply the
	4. Landfill Gas Monitoring	service records; those records have
	Results.	been received and are on file. Future
	5. Register of Monitoring	records will also be maintained.
	Station.	3 Gas Monitoring Meter
	6. Landfill Aftercare Manual	Following the audit CSL were contacted
	7. Enclosed Flare Operation.	regarding service/calibration intervals.
	8. Enclosed Flare	The recommendation from CSL is that a
	Maintenance	full service should be carried out at two
		year intervals and calibration checks
		every six months. This has now been
		arranged with CSL.
		4 Landfill Gas Monitoring Results
		A report will be prepared and submitted
		to the EPA by the 30/09/2010. This
		report was completed and forwarded to
		EPA recommending that extraction be
		extended to a couple of the monitoring
		points. More recent monitoring has
		indicated that these gas levels have
		reduced. As such this work was put on
		hold and monitoring has established that
		there are no exceedences at this time. If
		further exceedences are uncovered then

Inspection Date and	Summary of Audit Findings	Actions Taken to Address the
Reference		Observations
		this work will be done.
		5 Register of Monitoring Stations.
		Work is ongoing to prepare this register;
		this will be completed and submitted to
		the EPA by 31/12/2010.
		6 Landfill Aftercare Manual
		The landfill aftercare manual shall be
		prepared and maintained for inspection
		at the facility office by 31/12/2010.
		7 Enclosed Flare Operation
		The flare and operating systems will be
		maintained to achieve a minimum burn
		temperature of 1000°C.
		8 Enclosed Flare Maintenance.
		Irish Biotech Systems have attended the
		flare and discovered that the sampling
		pump was not working correctly, this has
		since been replaced.

13.0 REVIEW OF NUISANCE CONTROLS

13.1 DUST CONTROL

There was a breach of the dust deposition limit in 2010. Daily wind directions are taken and during episodes of high winds no movement of compost is undertaken. In addition operational activities to 'wet down' materials are in place.

13.2 LITTER

The landfill site was closed in October 2002 and therefore there is no wind blown litter arising from the landfill site. V & W Recycling (operators) of CWF do regular litter picks on blown paper waste etc and regular site clean up.

13.3 ODOURS

The landfill site was closed in October 2002 and therefore the potential for odours has been reduced. The permanent capping and installation of an active extraction system reduces the occurrence of odour from landfill gas.

The doors to the waste processing building are kept closed where possible, the biofilters minimize the odours from the composting process in the CWF.

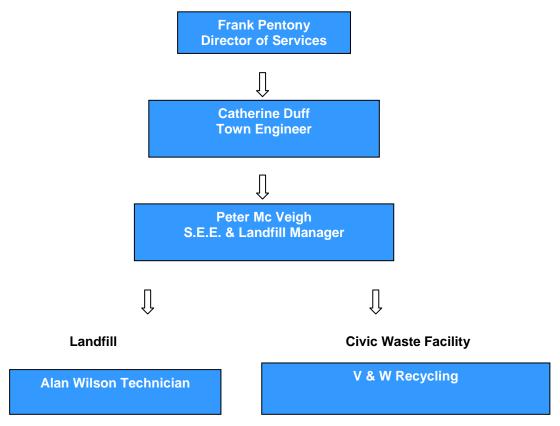
Odour is checked on a daily basis by V & W Recycling. DTC also have monthly odour checks across the site using the Mark 1 nose sniff test. No abnormalities were noted

13.4 PEST CONTROL (VERMIN)

Pest control is undertaken by V & W Recycling. Bait traps are checked on a 2-3 weekly basis.

13.5 Noise

Noise monitoring has been undertaken in June 2010. A copy of the noise monitoring report can be found in Appendix K. The noise measurements taken around the site are dominated by traffic movements on the local roads and the bypass. There is audible noise from the landfill at location 1 (vehicles entering/leaving the site, with some general activity) and some activity audible at location 3, although this is difficult to distinguish from the commercial units adjacent to the site. It is further noted that at both of these locations; although some activity was audible; the predominant noise source was traffic movements on the local roads, which have impacted the higher noise levels in the report. The night-time measurements are heavily influenced from traffic with no audible noise from the site.


14.0 VOLUME OF LEACHATE PRODUCED AND VOLUME OF LEACHATE TRANSPORTED DISCHARGED OFF SITE

A leachate drainage ditch has been constructed along the southern boundary of the landfill, laid to a nominal invert of 3.65 m (this being the level of the highest tide recorded in Dundalk). The base of the trench is lined with bentonite matting over which a 150 mm diameter perforated pipe is placed and the trench is then backfilled with clean stone. Any leachate/runoff entering the trench drains to the perforated pipe and from there drains via a manhole/ monitoring point to the foul sewer.

The trench is connected to the foul sewer running along the western boundary of the site. A flow monitoring has been installed in this trench. Zero flow has been measured to date.

15.0 REPORTS ON FINANCIAL PROVISION MADE UNDER THIS LICENCE, MANAGEMENT AND STAFFING STRUCTURE OF THE FACILITY, AND A PROGRAMME FOR PUBLIC

The management and staffing structure for the facility is as follows;

Figure 15.1 Management Structure at Dundalk Landfill Site

15.1 STAFFING STRUCTURE

The CWF is being operated by third party on behalf of Dundalk Town Council. There is currently 14 staff members employed at the CWF site. This consists of:

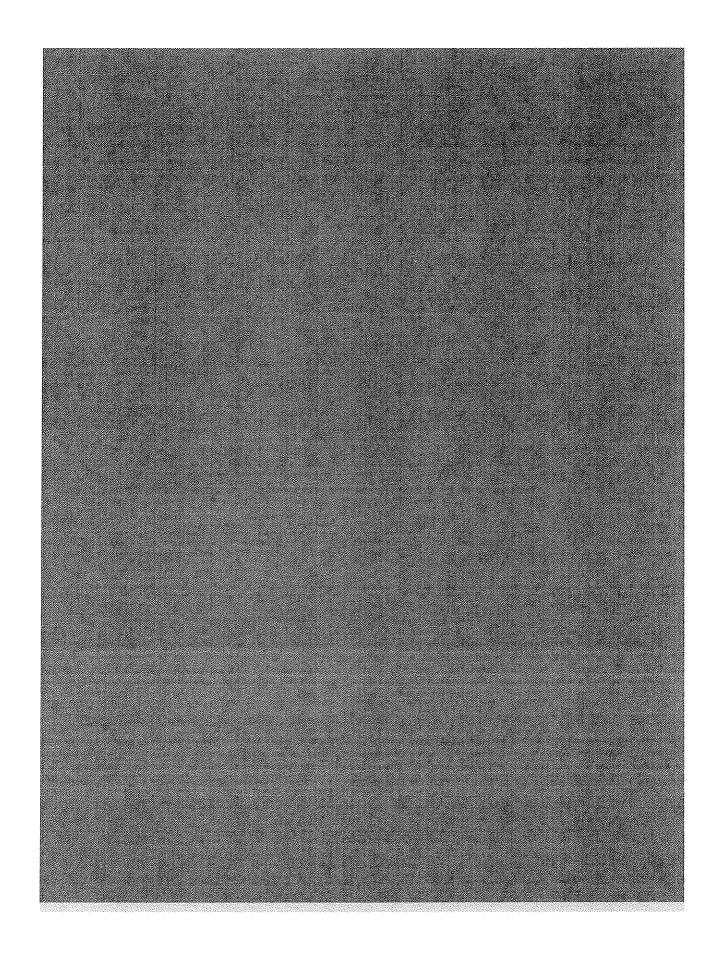
- managers
- supervisors
- general operatives

The public information programme is provided in the Environmental Management System for the site.

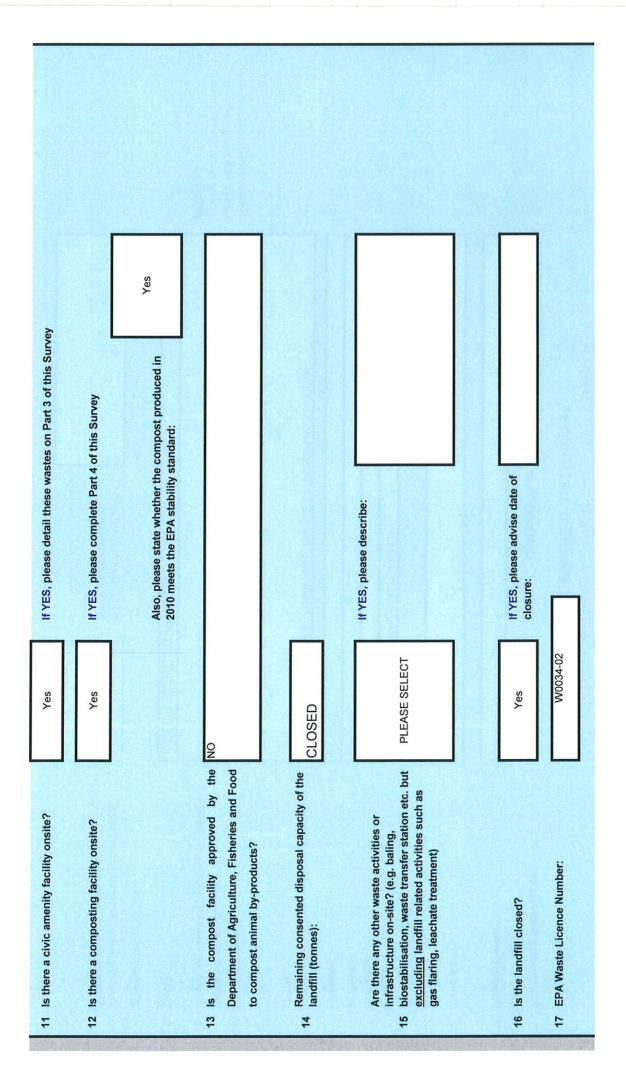
16.0 ANNUAL BUDGET AND SITE RUNNING COSTS.

The civic amenity facility is operated by third party (V & W Recycling) on behalf of Dundalk Town Council. A €2.00 entrance charge is applicable to all users of the site except for the disposal of electrical goods.

The budget for 2011 for landfill site is €50,000.


APPENDIX A

EPA LANDFILL AND IWMF SURVEY, PART 3 2010



PART 2. WASTES COM	POSTEDC		Quantity apparted f
Waste Description	EWC Code	Quantity accepted from ROI (TONNES)	Quantity accepted from abroad (TONNES)
MUNICIPAL WASTE:			
Brown bin waste (kitchen/garden) separately collected from households	20 01 08		
Kitchen and canteen waste separately collected from	20 01 08		
commercial sources (hotels, canteens, commercial etc) Garden and park waste from municipal sources	20 02 01	2,827.00	
(landscapers, householders etc.) Paper and cardboard from municipal sources e.g. office	A CONTRACTOR	2,027.00	
paper, newspaper	20 01 01		
Paper packaging and cardboard packaging e.g., paper bags, wrapping paper	15 01 01		
Wood waste from municipal sources	20 01 38		
Wood packaging e.g., crates, cartons, cheese boxes, fruit trays	15 01 03		
Edible oil and fat	20 01 25		
Waste from markets	20 03 02		
Septic tank sludge	20 03 04		
< <enter description="" here="" waste="">></enter>	SELECT		
WASTES FROM WASTE MANAGEMENT FACILITIES	:		
Organic fines from mechanical treatment of municipal waste	19 12 12		
Sludges from treatment of urban waste water	19 08 05		
Sludges from water clarification	19 09 02		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
WASTES FROM AGRICULTURE, HORTICULTURE, A	QUACULTUR	E, FORESTRY, HU	NTING AND FISHING:
Poultry litter	02 01 06		
Pig manure	02 01 06		
Cattle manure	02 01 06		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
WASTE FROM THE FOOD PROCESSING INDUSTRY			
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
WASTE FROM OTHER INDUSTRIES:	Second and		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
OTHER - If you compost any waste other than the headin		above, please use the	e blank rows below.
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
If you have waste activities on site (other than composting) please fill in Part 3 of this survey.	4 at		
Please provide details regarding the end use of the compost produced onsite, including name of landfill if used for daily cover or engineering.			

					REPORT 2010 SURVEY			
COMPLETE T	HIS SHEE	T IF YOU AC	CEPTED W	PART 3. O ASTE FOR ACTIVITIES OTHER	PART 3. OTHER WASTE **COMPLETE THIS SHEET IF YOU ACCEPTED WASTE FOR ACTIVITIES OTHER THAN COMPOSTING AND FOR DETAILS OF WASTE REMOVED OFF-SITE IN 2010	ETAILS OF W	ISTE REMOVED OFF-SI	TE IN 2010**
WASTE <u>ACCE</u>	PTED ONS	Table 1 ITE IN 2010 TH	HAT WAS NO	Table 1 WASTE <u>ACCEPTED</u> ONSITE IN 2010 THAT WAS NOT COMPOSTED	M	Ta ASTE <u>REMOVE</u>	Table 2 WASTE <u>REMOVED</u> OFFSITE IN <mark>2010</mark>	
(Provid	le details or	(Provide details on all wastes accepted	ccepted at the	at the facility)	(Provide details on all wastes sent off site for recovery or disposal). Details on compost produced should be in Part 2 only. Please be very specific on the waste descriptions.	nt off site for re IIy. Please be v	tails on all wastes sent off site for recovery or disposal). Details on composition to be in Part 2 only. Please be very specific on the waste descriptions.	s on compost produced descriptions.
Waste Description	EWC Code	Quantity accepted from ROI (TONNES)	Quantity accepted from abroad (TONNES)	Waste Processing Operation - provide a brief description of how you process this waste stream	Waste Description	Quantity (TONNES)	FULL name & address of offsite facility to which waste was sent, also permit or licence number.	Additional information
< <example 1="">> Wood pallets</example>	15 01 03	45.00	0.00	Chipped	< <example 1="">> Chipped wood pallets</example>	45.00	Wood Company Ltd, Address ABC, Reg. No. 123	Used as a fuel in on-site boiler
untreated wood packaging	15 01 03	433.00	00.0	Chipped	<- <pre><<example 2="">> Contaminated brown bin waste unsuitable for composting</example></pre>	2.00	Landfill ABC, Address ABC, Reg No. 123	Disposed to engineered Jandfill
< <inset description<br="" waste="">here>></inset>					untreated wood packaging	433.00	finsa, co clare t0022-2	recycled
< <insert description<br="" waste="">here>></insert>					<			
< <inset description<br="" waste="">here>></inset>					< <insert description="" here="" waste="">></insert>			
< < here>>					< <insert description="" here="" waste="">></insert>			

								Please enter the name of the person who will answer any queries about the information submitted.		
NATIONAL WASTE REPORT 2010 SURVEY	PART ONE - GENERAL COMPANY INFORMATION **PLEASE COMPLETE ALL SECTIONS**	Calendar Year 2010	DUNDALK TOWN COUNCIL		DUNDALK LANDFILL & CIVIC WASTE FACILITY	NEWKY KUAD DUNDALK. CO. LOUTH	DUNDALK TOWN COUNCIL, TOWN HALL, CROWE ST. DUNDALK, CO. LOUTH	PETER MCVEIGH LANDFILL MANAGER 042 93322756, 0860437922	peter.mcveigh@dundalktown.ie	If YES, please specify the waste types recovered: No
		1 Year to which Data Applies:	2 Company Name:	3 Trade Names	dress(es)	Address 2: Address 3: Address 4:	5 Addresses for correspondence if different to above:	 6 Contact Name: 7 Postion held within company: 8 Telephone Numbers (<u>Landline</u> & <u>Mobile</u>): 	9 E-mail: Waste Activities Onsite	10 Were any wastes accepted at the <u>landfill</u> facility in 2010 for onsite recovery?

NATIONAL WASTE REPORT 2010 SURVEY

PART 3 - Household Waste Accepted at Civic Amentity Site in 2010

Enter information into white cells only. Information on non-household waste is requested to ensure that respondents consider and apply a household/non-household split. It is not mandatory. Please note that the information provided on this sheet may be subject to verification by audit.

If there is any waste from the civic amenity site that is recovered or disposed of at the landfill, remember to input the relevant data into <u>Part 2, Section B</u> of this survey.

DISPOSAL OR RECOVERY Name of destination facility(ies), or collector(s) if directly "D" or "R" or "Both" Household Non-househ Suggested EWC codes Commentary (if needed) Material type waste waste exported (if a mixture of both, please provide an explanation) (If you must depart from this list, pleas provide details on a separate sheet) (please provide ince/permit numb (overwrite a Notes (tonnes) (tonnes) appropriate) whiteriver landfill w0060-D Mixed residual waste 20 03 01 60 02 SELECT Organic waste (food and garden) if segregated, provide specific information on food and garden was foo 20 01 08 SELECT W0034-02V & W R 2,827 20 02 01 garde Mixed dry recyclables SELECT 20 03 01 SELECT Cardboard, newspaper and other paper if segregated, provide the breakdown o cardboard and paper in the rows below 1,978 Peute Europe nl 6000076 R 15 01 01 cardboard packaging cardboard non-packaging 20 01 01 SELECT SELECT 15 01 01 paper packaging SELECT paper non-packaging 20 01 01 20 01 01 220 Peute Europe nl 6000076 R newspaper and magazine Glass SELECT if segregated, provide the breakdown o glass in the next two row glass packaging 15 01 07 606 Glasson N.I I-n06/08 R SELECT glass non-packagin 20 01 02 177 Tinnelly N.I wmex22/01 R Antals if segregated, provide the breakdown of metals in the next four rows aluminium cans (packaging) 15 01 04 SELECT 15 01 04 SELECT steel cans (packaging) SELECT other metals (non-packaging) 20 01 40 SELECT Plastic if segregated, provide the breakdown of plastic waste in the next two rows Shabra Plastic IRL mn 080022-01 15 01 02 R plastic packaging 719 SELECT plastic non-packagin 20 01 39 15 01 05 Composite packaging (e.g. tetrapaks) SELECT Textiles if segregated, provide the breakdown of textiles in the next two row SELECT 15 01 09 textiles, packagin textiles, non-packagin 20 01 11 20 Cookstown N.I wmex01/1 R SELECT if segregated, provide the breakdown of wood waste in the next four row Finsa IRL t0022-2 R wood packagin 15 01 03 433 wood non-packagin 20 01 38 1,020 Finsa IRL t0022-2 R nixed, uncontaminated wood packaging ar non-packagin 15 01 03; 20 01 38 SELECT wood, treated, hazardo 20 01 37 SELECT Portable batteries weigh <2kg, are sealed, are not exclusively designed to propel an electrical vehicle, and are not SELECT Batteries intended to be used for utomotive starter, lighting or ignition power. auto

land and ballarian and a sum taken	10.00.045	portable				SELECT	
lead acid batteries and accumulators	16 06 01*	non-portable (automotive and industrial)	4		Returnbatt IRL mh2001/61	R	
		portable				SELECT	
Ni-Cd batteries and accumulators	16 06 02*	non-portable (automotive and industrial)				SELECT	
Other (e.g. alkaline) batteries and		portable	1		Returnbatt IRL mh2001/61	R	
accumulators	16 06 04	non-portable (automotive and industrial)				SELECT	
Waste mineral oils	13 xx xx	lubrication, vehicle, machine, etc.	4.5		Enva IRL mh2001/107c	R	
Oil filters (vehicles)		CARLES SHE STOLE				SELECT	
Oil containers (mineral oil) - plastic + metal						SELECT	
Naste cooking or vegetable oils	20 01 25		5.9		Enva IRL mh2001/107c	R	
Waste paint and varnish (including containers)	08 01 12		3		Enva IRL mh2001/107c	Both	<overwrite commentary="" here="" with=""></overwrite>
Tyres	16 01 03					SELECT	
NEEE taken off-site by charities (e.g. mobile phones)	various	EPA will compile tonnages of WEEE collected by WEEE Ireland or ERP from civic amenity sites from the compliance schemes and therefore this tonnage should not be reported here					
Plasterboard (gypsum-based construction naterials)	17 08 02					SELECT	
Household hazardous waste (medicines, sesticides etc.)	various					SELECT	
Bulky waste (provide detailed information in able below)	20 03 07	e.g. furniture, mattresses, mixed bulky waste					
Building Rubble	17 01 07		1778		whiteriver landfill w0060- 02	R	
other categories not included above>	<enter ewc<br="">code></enter>					SELECT	
other categories not included above>	<enter ewc<br="">code></enter>					SELECT	
other categories not included above>	<enter ewc<br="">code></enter>					SELECT	
Bulky waste types - Detailed Information	Use a row for th e.g. furniture skij <insert descriptio<br=""><insert descriptio<br=""><insert descriptio<br=""><insert descriptio<br=""><insert descriptio<="" td=""><td>on here> on here> on here> on here> on here></td><td>ed in each relev</td><td>ant bulky waste</td><td>skip or container at your f</td><td>acility</td><td></td></insert></insert></insert></insert></insert>	on here> on here> on here> on here> on here>	ed in each relev	ant bulky waste	skip or container at your f	acility	

NATIONAL WASTE REPORT 2010 SURVEY

PART 4 - WASTES COMPOSTED ONSITE IN 2010

Enter information into white cells only.

Please note that the information provided on this sheet may be subject to verification by audit.

If there is any waste from the composting facility that is recovered or disposed of at the landfill, remember to also input the relevant data into <u>Part 2, Section B</u> of this survey.

Naste Description	EWC Code	Quantity accepted from ROI (TONNES)	Quantity accepted from abroad (TONNES)
MUNICIPAL WASTE:			
Brown bin waste (kitchen/garden) separately collected from	20 01 08		
households	20 01 08		
Kitchen and canteen waste separately collected from commercial sources (hotels, canteens, commercial etc)	20 01 08		
Garden and park waste from municipal sources (landscapers, householders etc.)	20 02 01	2,827.00	
Paper and cardboard from municipal sources e.g. office paper,	20 01 01		
newspaper Paper packaging and cardboard packaging e.g., paper bags,			
wrapping paper	15 01 01		
Wood waste from municipal sources	20 01 38		
Wood packaging e.g., crates, cartons, cheese boxes, fruit trays	15 01 03		
Edible oil and fat	20 01 25		
Waste from markets	20 03 02		
Septic tank sludge	20 03 04		
< <enter description="" here="" waste="">></enter>	SELECT		
WASTES FROM WASTE MANAGEMENT FACILITIES:			
Organic fines from mechanical treatment of municipal waste	19 12 12		
Sludges from treatment of urban waste water	19 08 05		
Sludges from water clarification	19 09 02		
< <enter description="" here="" waste="">> </enter>	SELECT		
WASTES FROM AGRICULTURE, HORTICULTURE, AG		E EORESTRY HUNTING	
	02 01 06	E, FORESTRI, HORTING	And Homito.
Poultry litter	02 01 06		
Pig manure			
Cattle manure	02 01 06		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
WASTE FROM THE FOOD PROCESSING INDUSTRY:			
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
WASTE FROM OTHER INDUSTRIES:			
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
OTHER - If you compost any waste other than the heading	s mentioned a	bove, please use the blank	rows below.
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
< <enter description="" here="" waste="">></enter>	SELECT		
Please provide details regarding the end use of the compost produced onsite, including name of landfill if used for daily cover or engineering.	plantings	se by local authority for us Resident associations for nanagement and general p	use in estate vegetation

APPENDIX B

PRTR REPORTING, LANDFILL GAS REPORT

							to be filled in by li	censee		calculated by	spreadsheet		
lare No. 1													
	Flare type 1	2	1 Salat		le i Cala	Biogas BG2468	-	129935	If "other"	enter flare des	cription here		
	Is the flare	an open or end	closed flare	?		Enclosed	-	Rated flare ca	apacity ?	600	-	m3/hr	
	Month /vea	r comissioned	2			January	▼ 2004	-		1.4.1.2.2.2.2	1000		
		omissioned if d				a second s	and the state of the	and the second					
				ied in 2010 ?		Select	•						Sec. Sec.
	What is the	function of th	e flare ?			Extraction from	capped area	-	If "other" ente	er flare functio	n here		
Press ?		E A Jug Styl	enter de la	a de la desta de Sta	によう認知的	142-6-42-7-96		No. Contractor	Relation		10.763 × 1120		242.62
Nonthly	Method	Runtime	Runtime	Downtime	Total runtime	Average Inlet	Average Flow	Average CH ₄	Average CO ₂	Average O ₂	Combustion	Total CH ₄	Total CH
	M/C/E	days/month	hrs/day	hrs	hrs/month	Pressure (mbg)	Rate (m ³ /hr)	%v/v	%v/v	%v/v	efficiency (%)	m ³	kgs
anuary	С	24	22.0	5.0	523	-6	150	28.00	10.00	8.00	98.0	21,527	14,775
ebruary	С	24	21.0	6.0	498	-6	150	28.00	10.00	8.00	98.0	20,498	14,069
March	С	26	22.0	6.0	566	-6	175	28.00	12.00	7.50	98.0	27,179	18,655
pril	С	26	22.0	6.0	566	-7	175	28.00	12.00	8.00	98.0	27,179	18,636
Лау	С	27	23.0	5.0	616	-7	175	28.00	12.00	9.00	98.0	29,580	20,283
une	С	28	23.0	2.0	642	-6	200	28.00	12.00	9.00	98.0	35,233	24,183
uly	C	28	23.0	3.0	641	-6	225	28.00	11.00	8.00	98.0	39,575	27,163
lugust	C	28	23.0	3.0	641	-7	200	28.00	10.00	9.00	98.0	35,178	24,121
eptember	C	28	21.0	5.0	583	-6	200	27.00	12.00	8.50	98.0	30,852	21,176
October	С	27	21.0	5.0	562	-6	175	28.00	13.00	4.00	98.0	26,987	18,523
lovember	C	26	20.0	6.0	514	-6	175	28.00	15.00	5.50	98.0	24,682	16,941
December	С	24	20.0	6.0	474	-6	150	28.00	12.00	4.00	98.0	19,510	13,391
Total				Provident Street	6,826							337,981	231,915

Yearly	Method	Runtime	Runtime	Downtime	Total runtime	Average Inlet	Average Flow	Average CH ₄	Average CO ₂	Average O ₂	Combustion	Total CH ₄	Total CH ₄
	M/C/E	days/year	hrs/day	hrs	hrs/year	Pressure (mbg)	Rate m ³ /hr	%v/v	%v/v	%v/v	efficiency (%)	m³	kgs
2010					0		N. C. Statistics				98.0	0	0

.

| PRTR# : W0034 | Facility Name : Dundalk Landfill & Civic Waste Facility | Filename : W0034_2010.xls | Return Year : 2010 |

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2010

1. FACILITY IDENTIFICATION

Parent Company Name	Dundalk Town Council
Facility Name	Dundalk Landfill & Civic Waste Facility
PRTR Identification Numbe	r W0034
Licence Numbe	r W0034-02

Waste or IPPC Classes of Activity

No.	class_name
	Recycling or reclamation of organic substances which are not used
	as solvents (including composting and other biological
4.2	transformation processes).
	Blending or mixture prior to submission to any activity referred to in
3.11	a preceding paragraph of this Schedule.
	Repackaging prior to submission to any activity referred to in a
3.12	preceding paragraph of this Schedule.
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
	collection, on the premises where the waste concerned is
3.13	produced.
	The treatment of any waste on land with a consequential benefit for
4.10	an agricultural activity or ecological system.
	Use of waste obtained from any activity referred to in a preceding
4.11	paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred to
	in a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
	produced.
	Recycling or reclamation of metals and metal compounds.
	Recycling or reclamation of other inorganic materials.
	Newry Road
Address 2	
Address 3 Address 4	Co. Louth
Address 4	
Country	Ireland
Coordinates of Location	
River Basin District	
NACE Code	
	Recovery of sorted materials
AER Returns Contact Name	
AER Returns Contact Email Address	
AER Returns Contact Position	
AER Returns Contact Telephone Number	042 9392936/ 087 7700031
AER Returns Contact Mobile Phone Number	The second state of the second
AER Returns Contact Fax Number	and the set of the set
Production Volume	
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	
Number of Employees	0

| PRTR# : W0034 | Facility Name : Dundalk Landfill Civic Waste Facility | Filename : W0034_2010.xls | Return Year : 2010 | Page 1 of 2

User Feedback/Comments	
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
50.1	General
5(c)	Installations for the disposal of non-hazardous waste
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 20	02)
Is it applicable?	
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used ?	

AER Returns Workbook

4.1 RELEASES TO AIR Link to previous years emissions data

| PRTR# W0034 | Facility Name Dundalk Landfill & Civic Waste Facility | Filename W0034_2010 xis | Return Year 2010 |

08/04/2011 11 24

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

	RELEASES TO AIR						Please enter all quantities in this section in KGs						
POLLUTANT				METHOD		QUANTITY							
				Method Used	NAME AND ADDRESS OF TAXABLE	Strate and the state of the state	SALES STATISTICS	Contraction (Contraction)					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year					
					0.0	0.0	0.0	0.0					
01	Methane (CH4)	С	OTH		231913.0	351100.0	23100.0	96087.0					
03	Carbon dioxide (CO2)	С	OTH		195077.0	296632.0	23487.0	78068.0					

Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

							Please enter all quantities in this section in KGs					
POLLUTANT				METHOD	QUANTITY							
				Method Used				and the second state of the second state				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year				
					0.0	0.0	0.0	0.0				
					0.0	0.0	0.0	0.0				
02	Carbon monoxide (CO)	С	OTH		8596.0	12983.0	997.0	3390.0				
	 Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button 											

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES TO AIR		Please enter all quantities in this section in KGs									
		METHOD QUANTITY										
Charles and a second state of the second				Method Used		States and states and states	1.1.1	Service Inc.	Section Section 1			
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accident	tal) KG/Year	F (Fugitive) KG/Year			
					0.	.0	0.0	0.0	0.0			

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Lan	dfill operators					
flared or utilised on their facilities to accompany the fig	use Gases, landfill operators are requested to provide summary data on landfill gas (Methane) jures for total methane generated. Operators should only report their Net methane (CH4) ection A: Sector specific PRTR pollutants above. Please complete the table below:					
Landfill:	Dundalk Landfill & Civic Waste Facility					
Please enter summary data on the						
quantities of methane flared and / or						
utilised			Meth	hod Used		
				Designation or	Facility Total Capacity m3	
anana san an an an	T (Total) kg/Year	M/C/E	Method Code	Description	per hour	
Total estimated methane generation (as per						
site model)	351100.0	С	oth	calculated from gas sim lite	N/A	
Methane flared	231913.0	С	oth	calculated from gas sim lite	600.0	(Total Flaring Capacity)
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)
Net methane emission (as reported in Section						
A above)	119187.0	С	oth	calculated from gas sim lite	N/A	

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

| PRTR# . W0034 | Facility Name : Dundalk Landfill & Crivic Waste Facility | Filename . W0034_2010 08/04/2011 11:24

SECTION A : PRTR POLLUTANTS

	OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER Plea						Please enter all quantities in this section in KGs				
POLLUTANT			ME	ETHOD	QUANTITY						
and the state of the second second		Seturation in the setup of the setup of the		Method Used		The state of the state of the state	and the second second second second				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year			
70					0.	0.0	0.0	0.0			
79	Chlorides (as Cl)	en e	ESTIMATE		457.	457.0	0.0	0.0			
08	Nitrogen oxides (NOx/NO2)	E Contraction of the second	ESTIMATE		4.	4.1	0.0	0.0			
06	Ammonia (NH3)	E E	ESTIMATE		166.	166.0	0.0	0.0			

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

States and the Second States in	OFFSITE TRANSFER OF POLLUTANTS DE	Please enter all quantities in this section in KGs							
	POLLUTANT	a men a designed at the designed at the state of the second second second second second second second second s	ME	THOD	QUANTITY				
and the second second second	the second second second second second second second			Method Used		Personal and the second	CONTRACTOR OF A CONTRACTOR	Contraction of the	
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.0)	0.0 0.0	0.0	

Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

AER Returns Workbook

8/4/2011 11:24

									08/04/2011 11:24
	Quantity onnes per Year)	Waste		Method Used		Haz Waste : Name and Licence/Permit No of Next Destination Facility <u>Nor</u> <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	Haz Waste : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination Code Hazardous	Description of Waste	Treatment		Method Used	Location of Treatment				
Within the Country 20 03 03 No	977.0 street-cleaning residues 1838.0 other fractions not otherwise specified	D1	м	Weighed	Onsite in Ireland	V&W,WCP/MH/2001/90C	DUNDALK CIVIC AMENITY SITE,NEWRY ROAD,DUNDALK,,,IRELAN D CIVIC AMENITY SITE,NEWRY ROAD,DUNDALK,,IRELAN		
	1838.0 other fractions not otherwise specified	D1	M	Weighed	Onsite in Ireland	V&W,WCP/MH/2001/90C	D		

Select a row by double-clicking the Description of Waste then click the delete button

an and a second seco

APPENDIX C

WATER BALANCE CALCULATION

MONTHLY WATE	MONTHLY WATER BALANCE CALCULATION 2010															
Year	Active Phase	Active Area	Waste Input		Active Area	Temp Restored	Temp	Restored	Permanently	Restored area	Total Water	Cumulative	Absorptive	Cumulative	Cumulative	Leachate
					Infilitration	area	Restored	area(Temp)	Restored area			Water	Capacity			
							area(Temp)									
		A(m ²)	t/month	Rainfall	AR(A)(m ³)		RCA(m ²)	infiltration		RCA(m ²)				Absorptive	Leachate	produced
							. ,							Capacity		
				mm				IRCA(m3)					aW(m3)			Lo(m3)
2011	Closed		0.00	671.4	0				79000	5304	5304	5304	0.00	0.00	5304	5304
Total			0.00	671.4	0			0		5304			0			5304

Assumptions			
IRCA=	Temporarily capped/restored area infiltration of rainfall estimated %	30%	%
	Permanent capped/restored area infiltration of rainfall estimated % (2-10%)	10%	%
Absorptive	waste density of 0.8 tonnes/m3. Estimated absorptive capacity (water per tonne waste		
Capacity=	before leachate is produced) t/m3	0.06	t/m3
Restored Area	Area	79,000	m ²
Rainfall	Rainfall taken from Ardee weather station.	671.4	mm

APPENDIX D

FLARE EMISSION REPORT

Monitoring of Flare Emissions

at Dundalk Landfill

- June 2010

DOCUMENT CONTROL SHEET

Client	Dundalk To	wn Council												
Project Title	Monitoring of	of Flare Emis	sions at Dune	dalk Town Landfi	II									
Document Title	Survey Rep	urvey Report: June 2010												
Document No.	MDE0998R	IDE0998Rp0001												
This Document	DCS	TOC	Text	List of Tables	List of Figures	No. of Appendices								
Comprises	1	1	TOCTextList of Tables141	0	1									

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
D01	Draft	Ronan Murphy	Caitriona Reilly	Paul Chadwick	Dublin Environment	01/07/2010
F01	Final	Ronan Murphy	Caitriona Reilly	Paul Chadwick	Dublin Environment	02/07/2010
F02	Final	Ronan Murphy	Caitriona Reilly	Paul Chadwick	Dublin Environment	14/04/2011

TABLE OF CONTENTS

1	INTRODUCTION	1
2	MONITORING	2
	2.1 FLUE GAS ANALYSIS	
3	RESULTS	3
	3.1 FLUE GAS ANALYSIS	3
4	CONCLUSIONS	4

LIST OF TABLES

Table 3.1 Results of Flue Gas Monitoring from the Flare Unit	
--	--

1 INTRODUCTION

This report presents the results of the flare monitoring undertaken at Dundalk Town Council Landfill in accordance with Schedule D.6 of Waste Licence No. W0034-02.

Dundalk Town Council commissioned RPS Group to monitor emissions to atmosphere from a 1600 m³ Biogas flare unit at Dundalk Town Council Landfill, Dundalk, County Louth. The flare system is used to burn off landfill gas emitted from the decaying landfill waste and was sampled for emissions of flue gas parameters mainly:

- Nitrogen Oxide (NO_X)
- Carbon Monoxide (CO)
- Sulphur Dioxide (SO₂)

2 MONITORING

Suitably qualified personnel from RPS Group conducted the monitoring on the flare unit on 11th June 2010. The sampling and analytical methodologies employed are outlined below.

2.1 FLUE GAS ANALYSIS

Flue gas emissions were measured using a Testo 350 XL Flue Gas Analyzer. This is a specialised flue gas analysis system fully equipped with electrochemical sensors. The Flue Gas Analyser measures the following parameters:

- Carbon Monoxide (CO)
- Nitrogen Oxides (NO_x)
- Sulphur Dioxide (SO₂)

Sampling rounds were conducted over a 20-minute period in order to the flare temperature to be optimised.

3 **RESULTS**

3.1 FLUE GAS ANALYSIS

The results of flue gas emissions monitoring from the Biogas flare unit at Dundalk Town Council Landfill are presented in Table 3.1 below and compared with the emission limit values outlined in Schedule C.6 of the Waste Licence:

Table 3.1 Results of Flue Gas Monitoring from the Flare Unit

Parameter	Units	Emission Value ¹	Emission Limit ²
Nitrogen Oxides (NO _x) as NO ₂	(mg/Nm ³)	3	150
Carbon Monoxide (CO)	(mg/Nm ³)	4	Na
Sulphur Dioxide (SO ₂)	(mg/Nm ³)	1	Na

4 CONCLUSIONS

The level determined for all parameters were below the relevant emission limit values as stated in Schedule C.6 of Waste Licence W0034-02.

The findings of the flare test show that all Waste Licence parameters listed in Waste Licence W0034-02 are within the limits specified in schedule C.6. These findings show that efficient combustion in taking place within the combustion chamber of the Dundalk Town Council flare and in general, is operating under the original manufacturers specification.

Appendix A - Survey Details

Location

Dundalk Landfill & Civic Waste Facility, Newry Road, Dundalk, County Louth

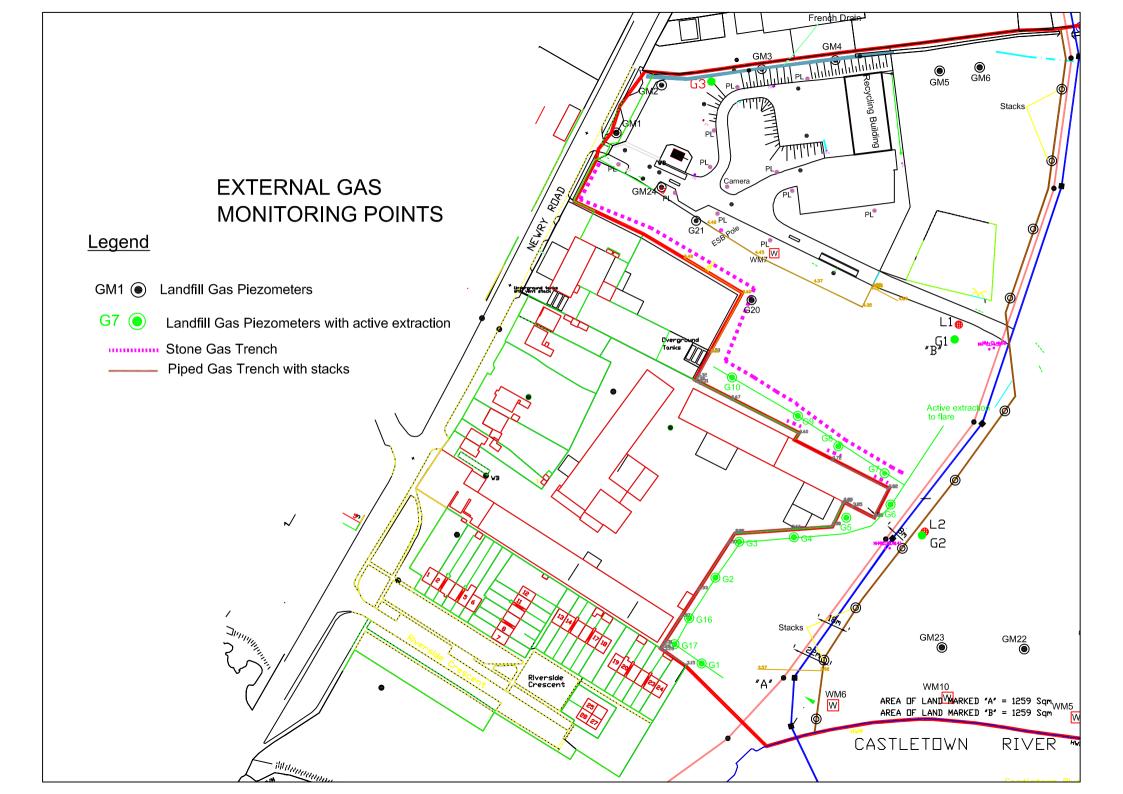
Personnel Present

Ronan Murphy – Environmental Consultant RPS

Date and Time

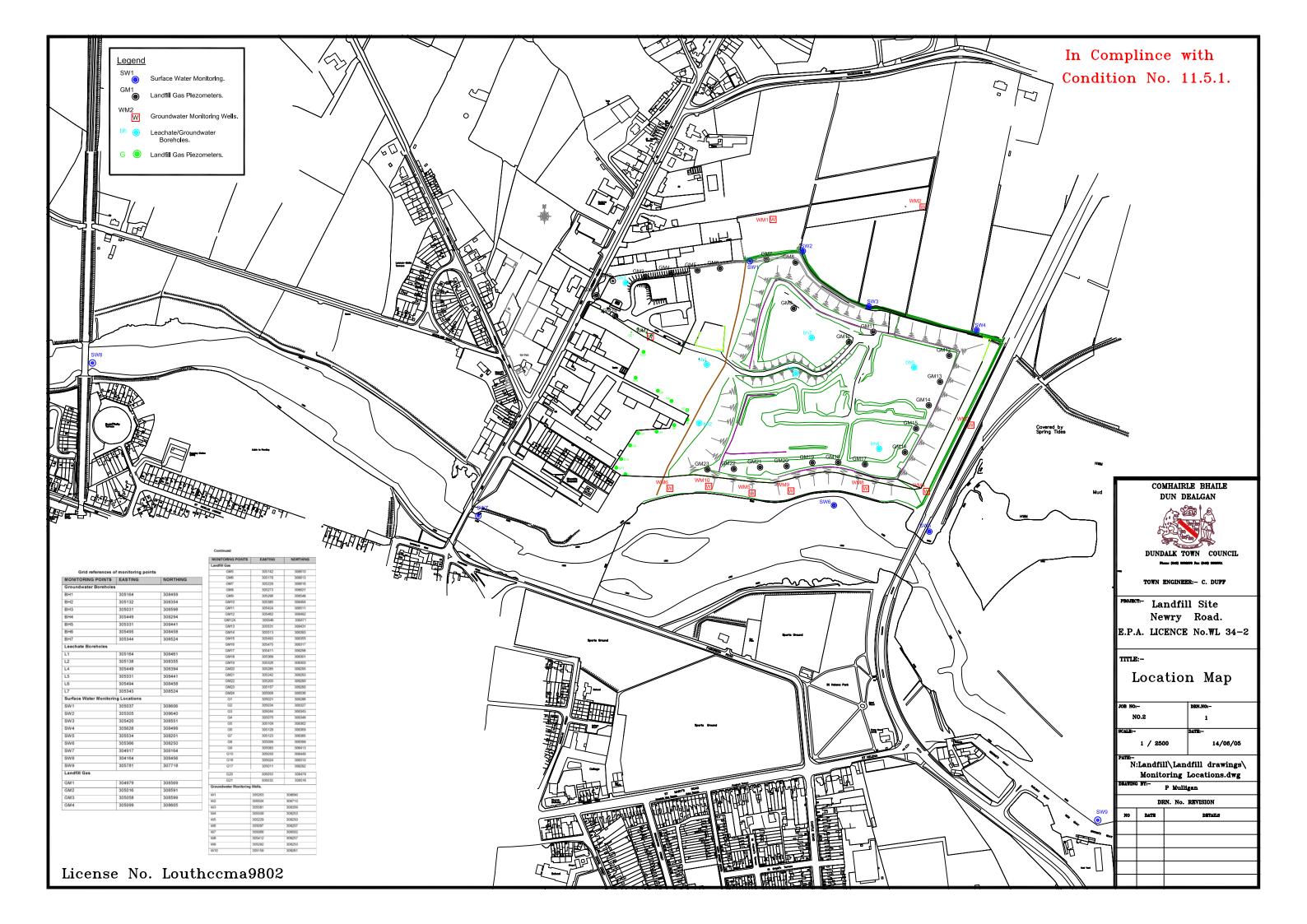
11th June 2010

10:30 - 11:30


Equipment

Testo 350XL Flue Gas Analyser

APPENDIX E


MONITORING POINTS DRAWING

•

APPENDIX F

LEACHATE RESULTS

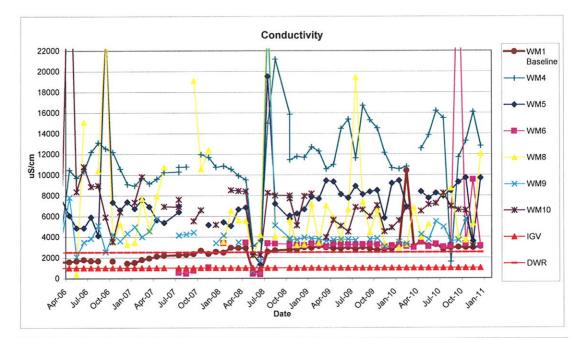
â									undalk Land									
Monitoring Point:		105223028								LH1							SAN AN AN AN AN	
			en este en	energen ander an der andere an der andere an der an der andere andere andere andere andere andere andere andere		*1011/10/2010/00/00/00/00	********			ar an tha an						ES ASSA ASSA		
									F	RESULTS								
										Date								
PARAMETERS	Units	16-Jan-07	26-Apr-07	10-Jul-07	26-Sep-07	16-Oct-07	17-Jan-08	15-Apr-08	30-Jul-08	28-Oct-08	27-Jan-09	29-Apr-09	23-Jul-09	28-Oct-09	19-Jan-10	20-Apr-10	28-Jul-10	26-Oct-10
Alkalinity	mg/I CaCO3					1						<u></u>			10000000000			20 000 10
Aluminium	µg/l		1179.9			1		<50		1		<50			1	49.6		
Ammonia	mg/i N	128.71	132.04	120.07		125.9	122.2	106.79	114,43	>80	112.55	1.54	102.7	107.92	1.75	154	103.42	109.52
B.O.D.	mg/i O2	11.3	21.9	17.8	1	5.7	8.8	8.5	25	23,1		8.4	7.4	12.7	11.6	6.7	4.2	7.7
Boron	µg/l		2075.6					1302.1		1		1595.1	1961.2			1140	, <u>.</u>	
Cadmium	µg/l		<0.10			1		<0.10		1		< 0.1	0.1			<0.1		
Calcium	mg/i Ca	1	188.79					169.78		1		167.32	191.32			183.58	-	
C.O.D.	mg/I O2	145	170	206		116	125	132	147	238		80	102	145	73	124	116	105
Chloride	mg/I CI	138	130	174	1	151	148	160	221	216	176	170	171	154	144	139	166	180
Chromium	µg/l	T	35.4		1	1		36				23	30.1			11.1	100	,00
Conductivity	µS/cm @ 25	2810	2920	2810	1	2690	2580	2500	2740	2760	2770	2610	2580	2660	2590	2960	2500	2720
Copper	µg/l	1	13.4		1	1	· · · ·	16		1		1.2	3,3			2.6		
Cyanide	mg/i CN	T	<0.05		1	1		< 0.05		1				лm		+		nm
Depth	m		3.6	3.4		3.7	3.2			2.6	5.5				3.2	3.1	4.2	
D.O.	% Saturation										nm	1						
Fluoride	mg/l	1	<0,150		1			<0.150		1			<0.150			<0.150		
Iron	µg/l	1	26158.8					21960.8		1		11227.3	33120.5			30325.1		
Lead	µg/l		10.1					<1		1		<1	<1		t	1.1		
Magnesium	mg/I Mg		92.43		1	[60,71				60.21	56.47			58,55	· · · · ·	
Manganese	µg/l		579.1		1		[·····	529				578.3	604.7			627.3		
Mercury	µg/l		<0.10					0.2			f	<0.1	<0.1			<0.1		
Nickel		1	89.7					32,9				11	28.5			5.4		
o-Phosphate	mg/I P		0.02			1		< 0.02			1	0.3	0.18	<0.02	<0.02	<0.02	<0.02	<0.02
рН		6.8	6.9	6.8	1	6.8	6.8	6,9	6.7	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.7	6.8
Potassium	mg/l		75.34		1	1		62.77				62.43	74.57			66.39		0.0
Residue on Evaporation									1		1.	02.10						
Sodium	mg/l		136.02			1		74.29	1	1	<u>†</u>	97.54	124.03			106.98		
Sulphate	mg/I SO4	1	16.4		1	1		<2.0			j	<2.0	<2.0		<u>†</u>	6.6		
Тетр	°C	7	12	15	nm	14	12	nm	12.9	11	10	15.8	14.8	nm	8.2	9.4	nm	13.1
Time Sampled	1	11	11	11.05	10	10.4	11	11	11.3	11.2	11	11	11.3	nt	10.5	10.5	10,45	11:00
T.O.C.	mg/l				1				1	1	35.5				†	1		
T.O.N	mg/I N	< 0.05	<0.05	<0.05	1	<0.05	<0.05	<0.05	<0.05	<0.05		0.11	0.12	<0.08	<0.08	<0.08	<0.08	<0.08
Total S Solids	mg/l				· · · ·	1				1	1				1	1	0.00	<u>, </u>
Zinc	µg/l		179.9					25.5		1	1	5.2	21		1	20.7		

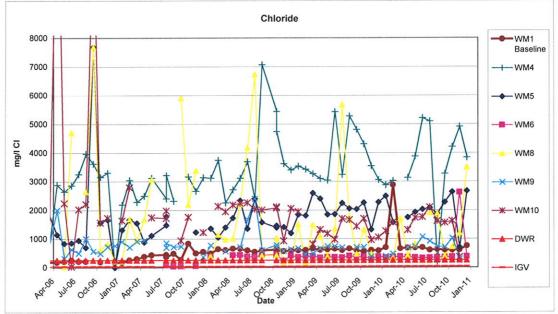
<u>a</u>																		
									undalk Landi ACHATE QU									
Monitoring Point:							8 9 0 0 S			LH2				8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
			·						r	ESULTS								
									(130113								
							·····	,		Date		·						
PARAMETERS	Units	16-Jan-07	26-Apr-07	10-Jul-07	26-Sep-07	16-Oct-07	17-Jan-08	15-Apr-08	30-Jul-08	28-Oct-08	27-Jan-09	29-Apr-09	23-Jul-09	28-Oct-09	19-Jan-10	20-Apr-10	28-Jul-10	26-Oct-10
Alkalinity	mg/I CaCO3							1										
Aluminium	μg/l		557.9					36.8				<50				23.4		
Ammonia	mg/I N	140.46	181.33	60.85		136,46	47.65	206.54	181.92	89.61	107.71	1.79	5.04	91.17	48.07	111.95	80.95	85.94
B.O.D.	mg/I O2	31.1	25.2	35.4		117.2	16.3	17.4	21.3	18.5		35.4	5.1	6.4	60.1	28.1	7.5	5.1
Boron	µg/l		2122.1				[2402.4				2335.2	241.1			1335.4		ł
Cadmium	µg/l		<0.10					<0.10				<0.1	<0.1			<0.1		
Calcium	mg/I Ca		221.31					185.29				180.22	99.57			234.08		
C.O.D.	mg/I O2	175	236	111		220	96	247	186	128		180	13	121	72	148	108	76
Chloride	mg/I CI	145	223	67		193	64	236	197	115	113	170	15	83	62	114	98	85
Chromium	µg/l		40.1					64.6				19.8	4	1		9		
Conductivity	µS/cm @ 25	3120	3930	1927		3360	1693	4180	3700	2450	2790	3310	680	2260	1803	3020	2260	2250
Copper	µg/I		8.8					10				3.3	4.7			2.3		
Cyanide	mg/I CN		<0.05					<0.05						nm				nm
Depth	m		3.5	3.6		4	3			2.4	1				2.9	2.9	4]
D.O.	% Saturation										ាភា]]			
Fluoride	mg/l		<0.150		[<0.150	ļ				0.19			0.16		
lron	µg/I		28870.8					30812.8]		4909.2	867.4			24610.8	ł	
Lead	lµg/l		6.5			1		3.1	1			<1	<1	ļ		1.8	}	
Magnesium	mg/I Mg		114.35	1				105.51				87.71	14.66			67.31		
Manganese	jµg/l		1121.2					877.3				668.2	130.9			767.7		L
Mercury	µg/l		<0.10				<u> </u>	<0.10	ĺ]	< 0.1	<0.1	1		<0.1		
Nickel			54.7					48.2				18	4.7			14.3	1	[
o-Phosphate	mg/I P		0.09					0.07				0.54	0.02	0.02	<0.02	<0.02	<0.02	0.03
рН		6.7	7	6.8		7	6.8	7	6.9	6.8	6.9	6.9	7.2	6.9	6.9	6.9	6.8	6.9
Potassium	mg/ł		144.38					157.26				106.62	14.34			73.89		
Residue on Evaporation				L]		l											
Sodium	mg/l		195.37					218.71				142.74	16.09			101.24		
Sulphate	mg/I SO4		8.5				1	14.8			1	10.1	86.2			10.9		
Temp	°C	7	12	15	ា៣	14	12	nm	12	11	9	16	14,8	nm	8.9	9.5	nm	13.3
Time Sampled		11.3	11.25	11.25	10.2	11.05	11.3	11.2	11.5	12.05	11.2	11.2	11.45	nt	11.2	11.2	11.05	11:25
T.O.C.	mg/l			<u> </u>		L				<u> </u>	33.1	-	L					
T.O.N	mg/I N	<0.5	<0.05	0.48		0.26	1.23	<0.05	<0.05	0.54		0.46	0.45	<0.08	<0.08	<0.08	<0.08	0.09
Total S Solids	mg/l			 		ļ	ļ	0.7		I				<u> </u>				<u> </u>
Zinc	µg/I		38.1					27	I	1	<u> </u>	33.6	15.6		L	27.5		L

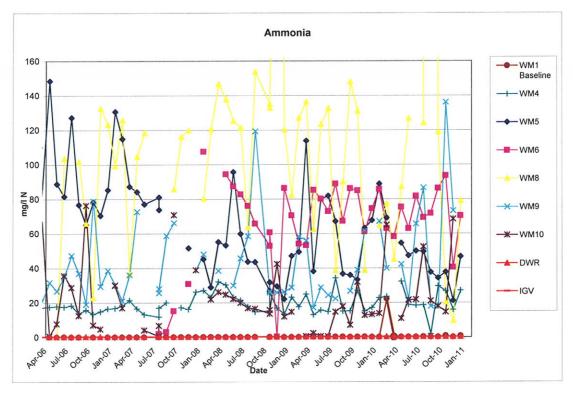
â									indalk Land									
Monitoring Point:						(Ellegenision) A	5602560450766038 			LH4								
							<u></u>		F	ESULTS								
PARAMETERS	Units	16-Jan-07	26-Apr-07	10-Jul-07	26-Sep-07	16-Oct-07	17-Jan-08	15-Apr-08	30-Jul-08	Date 28-Oct-08	27-Jan-09	29-Apr-09	23-14-09	28-Oct-09	19-Jan-1(20-Apr-10	28-, Jul-10	26-Oct-10
Alkalinity	mg/I CaCO3							······································							lie out te		no out to	
Aluminium	µg/l	1	2267.6					338,4				<50		1		35.7		
Ammonia	mg/I N	190.9	180.51	311.08		205.04	165.13	196.42	194,38	242.41	1.41	1,22	1.78	131.19	1.58	118.86	169.97	124.6
B.O.D.	mg/I O2	<30	39	<40		23	11.4	11.1	15.5	6.3		10.3	13.4	14.1	16,3	15.9	16	15.4
Boron	µg/l		1761.7					1737.5				2298.4	2888.4	<u> </u>		1086.9		,
Cadmium	µg/l		0.5				[<0.10				<0.1	<0.1			<0.1		[·]
Calcium	mg/I Ca		160.23					143,45				140,09	162.01			143.63		
C.O.D.	mg/I O2	332	629	600		447	175	210	212	209		170	190	156	145	147	209	109
Chloride	mg/I Cl	208	305	715		271	157	229	330	240	199	205	169	98	179	95	255	118
Chromium	µg/l		28					43.8				23.4	28	1		2.8		
Conductivity	µS/cm @ 25	3830	3830	6270		4380	3090	3720	3870	4480	4310	3800	3620	2590	3450	2820	3490	2660
Copper	µg/l		20.4					14.8				2.4	13.4			6.2		
Cyanide	mg/I CN		<0.05					<0.05				t		nm				mu
Depth	m	1	9.1	9.4		8.6	6			8.5	8.5			[8,9	7.9	4	
D.O.	% Saturation										nm			t		1		
Fluoride	mg/l	1	<0.150			1		<0.150				t	<0.150	i		0.15		
Iron	µg/l		8312.6				1	20914.2				5416.5	30127.9	1	1	26317.3		
Lead	µg/l	1	14.5					7.8				<1	3			<1		
Magnesium	mg/i Mg		87.65			1		79.47				86,67	93.1	İ		59,14		
Manganese	μg/l		782.1		1			793.2				780.6	860.7			805		1
Mercury	µg/l		<0.10					0.2			1	<0.1	<0.1	1		<0.1		
Nickel			33	1				37.2				13.2	29.9	1		4		
o-Phosphate	mg/l P		0.05			1	ĺ	0.17				1.6	0.94	0.1	0.14	1.14	0.09	0.09
pH		6.9	7	7,1		7.1	6.8	7	6.9	7	6.8	6.9	6.9	6.9	6,9	6.9	6,9	6.8
Potassium	mg/l		156.66					147.02				151.94	149.12	1		82.74		
Residue on Evaporation		1				1	[1								1		
Sodium	mg/l		236.8					202.64			ļ	172.92	179.3			92.42		1
Sulphate	mg/I SO4		20.1				[9.1			}	<2.0	<2.0	T	1	<2.0	[1
Тетр	°C	6	12	16	nm	15	12	ุกท	14.2	14	14	16.4	15.9	nm	12.8	12	nm	13.7
Time Sampled		12.05	12.1	12	10.4	11.4	12.05	11.5	12,35	12.3	11.45	11.45	12.4	nt	11.5	11.55	11.15	12:20
T.O.C.	mg/l		1	Τ	1						45.3					1		
T.O.N	mg/I N	<0.05	<0.05	<0.05		< 0.05	<0.05	<0.05	<0.05	<0.05		<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Total S Solids	mg/l																	
Zinc	µg/l		164	1	1			68.2				4.7	64.9			19.3		

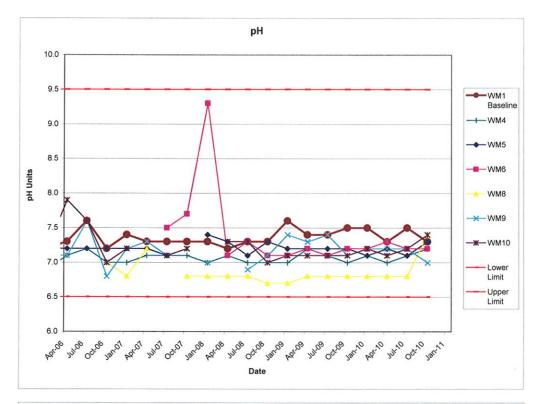
(SEA)									undalk Landi ACHATE QU									
Monitoring Point:		1499539409782			est sunging in					LH6								
		1						an a	n e na se			an distant sa	en e	s an	sa de terror de la decida.		8444567978788	Alla ann an Ailtean Ailtean Ailtean Ailtean A Ailtean Ailtean A
									F	ESULTS								
										Date								
PARAMETERS	Units	16-Jan-07	26-Apr-07	10-Jul-07	26-Sep-07	16-Oct-07	17-Jan-08	15-Apr-08	30-Jul-08	28-Oct-08	27-Jan-09	29-Apr-09	23-Jul-09	28-Oct-09	19-Jan-10	20-Apr-10	28-Jul-10	26-Oct-10
Alkalinity	mg/I CaCO3]			
Aluminium	µg/l		3368.1					913.5				<500			1	738.1		
Ammonia	mg/I N	455.22	198.19	282.08		602.54	482.76	490.38	708.87	707.34	0.05	<0.03	98.25	4.49	1.15	509.45	0.47	< 0.03
B.Q.D.	mg/I O2	<100	213.9	81.2		69,5	53.8	75.6	211.2	35.6		<40	41	139.5	22	35.9	27.5	28.4
Boron	µg/l		738.3					2936.9				5898.8	667			2099.6		1
Cadmium	µg/l		<0.10					<0.10				<1	<0.1			<0.1		
Calcium	mg/I Ca		245.08					119.02				115.4	227.8		1	138.39		1
C.O.D.	mg/I O2	626	1035	587		1130	616	947	1035	818		842	541	703	336	660	486	529
Chloride	mg/I CI	359	181	255		481	386	588	635	676	442	655	90	500	243	451	445	478
Chromium	µg/l		24.6					88.6				55.3	19.3	1		12.1		
Conductivity	µS/cm @ 25	6120	3650	5050		8990	6230	8070	8800	9220	7610	9910	2670	8100	4240	8270	6980	7680
Copper	μg/l		51.8					16.6				<10	8.8			5.2		
Cyanide	mg/I CN		<0.05					<0.05							T			nm
Depth	m	1	4.2	4.9		9,5	8.6			7.5	8				8.1	7.5	3.5	
D.O.	% Saturation										nm							
Fluoride	mg/l	1	<0.150					<0.150					0,18			<0.150		
Iron	µg/l		29436,3					14047.6				10645	32103.5			26643.2		
Lead	µg/l		17.3					8				<10	6.3			4.1		•
Magnesium	mg/I Mg	<u>†</u>	77,31					106,44				119.1	50.8			83.86		
Manganese	µg/I		982.4		-			805.5				632,9	4635.2			936.7		1
Mercury	µg/l		<0.10		[0.3				0.2	<0.1			<0.1		1
Nickel			129.3					111.9				105.1	48.8		1	52.6		t
o-Phosphate	mg/l P		3.79					2.3				3.32	2.01	2,95	1.52	2.08	2.37	2.17
pН	-	6.9	7,1	7.1	1	7.2	7	7.2	7,1	7,1	7	7.2	6,7	7.1	6.8	7	7.1	7
Potassium	mg/l	1	85.34		1			332.98				370.32	40,31			257.56		1
Residue on Evaporation		1					1	1										
Sodium	mg/l		213.63					497.95				535.8	175,45		1	360.75		1
Sulphate	mg/I SO4	1	33.3		i i			18.3				7.4	20.4		1	8.6		1
Temp	°C	7	11	15	nm	16	14	nm	16.6	17	16	16.5	15.9	nm	15.1	15.5	nm	13.4
Time Sampled	1	12.35	12.3	12.3	11	12	12.3	12.3	12,15	12.5	11.55	12.1	12.25	nt	12.15	12.2	11.35	12:20
T.O.C.	mg/l	1	ļ								134.5				1	1		1
T.O.N	mg/I N	<0.05	<0.05	<0.05		0.08	<0.05	<0.05	<0.05	<0.05		0.11	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Total S Solids	mg/l																	
Zinc	µg/l		1418.6					320.1			_	<10	141.7			70.2		1

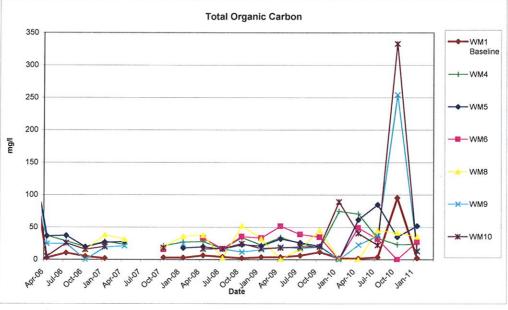
									undalk Land		,							
Monitoring Point:		Construction and the	and the second secon	n ann an		et en esta construcción de la const	dat based on the sector desta	LE	ACHATE Q									
Montoning Folit.	1									LH7								
									ਜ	RESULTS								
										Date					·····			
PARAMETERS	Units	16-Jan-07	26-Apr-07	10-Jul-07	26-Sep-07	16-Oct-07	17-Jan-08	15-Apr-08	30-Jul-08	28-Oct-08	27-Jan-09	29-Apr-09	23-Jul-09	28-Oct-09	19-Jan-10	20-Apr-10	28-Jul-10	26-Oct-10
Alkalinity	mg/I CaCO3							1		1		[······				ĺ		
Aluminium	µg/l		<500											1		1		
Ammonia	mg/I N	760.33	650,86	485.12		629.83	183.6			1						Í		
B.O.D.	mg/I 02	<50	48.4	<50		45.2	183.6	1							1	1		
Boron	µg/l		4193.2							[1	[1		1		
Cadmium	µg/l		<1	1		1						[1		
Calcium	mg/I Ca		135.75											1		1		
C.O.D.	mg/i O2	718	718 889 736 930 1049															
Chloride	mg/i Cl	798																
Chromium	µg/l	1	121.6	1								1						
Conductivity	µS/cm @ 25	11060	11140	10340		12280	7510	1						1				
Copper	µg/l		20.2	[1	1				ł				1		
Cyanide	mg/I CN		<0.05	Ì						[1	1			
Depth	m		9,9	5.7		7.8	7.2					ŀ			1			
D.O.	% Saturation							1										
Fluoride	mg/l		<0.150				1					2		 	h			
iron	µg/l		3972			· · · · · · · · · · · · · · · · · · ·	1	1			· ·							
Lead	µg/l		<10					1								1		
Magnesium	mg/I Mg		189.23											1	†••••			
Manganese	Ha\I]	478.2													1		
Mercury	µg/l	1	0.2	i				1						1				
Nickel			135.9	1			1											
o-Phosphate	mg/i P]	0.54			1								<u> </u>	1			
рН		7.3	7.2	7.2		7.3	7.6											
Potassium	mg/i		560.01											<u> </u>	†			
Residue on Evaporation				1		ĺ	l	·····								-		
Sodium	mg/l		954.75	1											1			
Sulphate	mg/I SO4		99.3															
Temp	°C	7	12	16	nm	25	29	1		1	<u> </u>			h		1		
Time Sampled		13	12.5	12.55	11.2	12.15	12.55							1	+	1		
T.O.C.	mg/i	h					1		·					<u> </u>				
T.O.N	mg/I N	<0.05	< 0.05	12.98		0.05	123,49	1		1		<u> </u>				*		
Total S Solids	mg/i	1		1								<u> </u>						
Zinc	µg/l		113,1	1		1	1	t			İ	1		<u>†</u>	t			

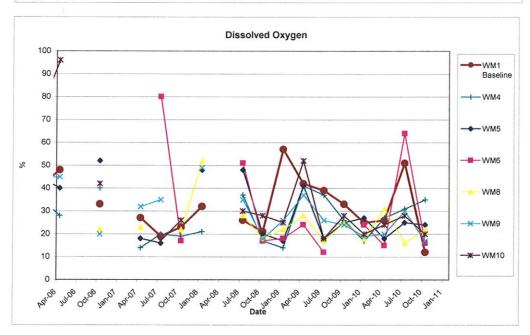

<u>@</u>			Dundalk Lar	ndfill Site		
		L.	EACHATE (
PARAMETERS						
		No. of Samples	Minimum	Maximum	Mean	Standard Deviation
	Units					
Alkalinity	mg/I CaCO3	0	0	0	#DIV/0!	#DIV/0!
Aluminium	μg/l	4	23.4	738.1	212	351
Ammonia	mg/I N	16	0.47	509.45	108	125
B.O.D.	mg/I O2	16	4.2	60.1	19	14
Boron	μg/l	12	1086.9	2099.6	1415	468
Cadmium	µg/l	12				
Calcium	mg/I Ca	12	138.39	234.08	175	44
C.O.D.	mg/I O2	16	72	660	215	185
Chloride	mg/I CI	16	62	478	203	137
Chromium	µg/l	12	2.8	12.1	9	4
Conductivity	µS/cm @ 25	16	1803	8270	3731	2035
Copper	µg/l	12	2.3	6.2	4	2
Cyanide	mg/I CN	12				1
Depth	m	16	2.9	8.9	5	2
D.Ò.	% Saturation	12				
Fluoride	mg/l	12	0.15	0.16	0	0
Iron	µg/l	12	24610.8	30325.1	26974	2405
Lead	µg/l	12	1.1	4,1	2	2
Magnesium	mg/l Mg	12	58.55	83.86	67	12
Manganese	µg/i	12	627.3	936.7	784	127
Mercury	µg/l	12				
Nickel	µg/l	12	4	52.6	19	23
o-Phosphate	mg/i P	16	0.03	2.37	1	1
Ha	0	16	6.7	7.1	7	0
Potassium	mg/l	12	66.39	257.56	120	92
Residue on Evaporation	0	12				1
Sodium	mg/l	12	92.42	360.75	165	130
Sulphate	mg/I SO4	12	6.6	10.9	9	2
Temp	°C	16	8.2	15.5	12	2
Time Sampled	0	16	10.45	12.2	11	1 1
T.O.C.	mg/l	10				1
T.O.N	mg/I N	16	0.09	0.09	0	#DIV/0!
Total S Solids	mg/l	10	<u> </u>		~	
Zinc	µg/l	12	19.3	70.2	34	24


<u>@</u>											ik Landfill Si RGE TO SE										
Monitoring Point:		SASSASSA	in Station (M		80000000	74.6367999		0200200202									9038838729		New memory of the		NICE STREET, STREET, ST
												ULTS	in destantione.								
											D	ate									
PARAMETERS	Units	28-Oct-08	27-Jan-09	25-Mar-09	29-Apr-09	23-Jul-09	26-Aug-09	29-Sep-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	20-Apr-10	19-May-10	16-Jun-10	28-Jul-10	30-Aug-10	23-Sep-10	26-Oct-18	25-Nov-18	21.Dec.10
Alkalinity	mg/l CaCO3				nm								420								
Aluminium	μg/l				254.4	1						1	379.9			t		11			
Ammonia	mg/I N	11.74	20.38	48.8	48.37	39.6	0.03	51.72	4,73	51.37	68.25	31.03	25.45	52.30	61.24	0.97	35.25	46.28	47.87	19.38	28.59
B.O.D.	mg/l O2	45.5	330.8		20.6	25.1			8085.0			32.6	184.2	02.00	07.24	1098.0	00.20		102.0	13.00	20.00
Boron	µg/l				744.0							52.0	1			1000.0			102.0		<u> </u>]
Cadmium	μg/l				0.7	[····						1	0.1			f					I
Calcium	mg/i Ca		148.11 128.64														<u>├────</u> ┨				
C.O.D.	mg/I O2	114	1289		109	164			14040			163	536			4545			459		tI
Chloride	mg/I CI	31	83	189	48	73	17	97		62	83	67	63	49	151	290	50	78	116	99	90
Chromium	µg/l				14.0						<u>v</u> v	······	3.0			230		· ^	110		30
Conductivity	µS/cm @ 25	652	1254	2050	1541	1931	243	1304	6330	1717	2050	1352	1392	1634	2430	3730	1168	1689	1839	1493	1642
Copper	µg/l				10.8							1002	11.6	1034	2450	0700	1 1100	,005	1055	1495	1042
Cyanide	mg/I CN					[1							
Depth	m					t								<u> </u>							<u> </u>
D.O.	% Saturation	nm	nm		<10	40			nm			nn	35			nm			nm		<u> </u>
Fluoride	mg/l										*****						l				└─── ┨
Iron	µg/i				3859.0	†						1	3169.5								<u> </u>
Lead	µg/l				9.0							1	7.3								
Magnesium	mg/l Mg				40.73								25.34								<u> </u>
Manganese	ug/l				634,4	1							653.2						·····		<u> </u>
Mercury	hđu				<0.1	<u>†</u>						******	<0.1								
Nickel		[9.1	<u> </u>							5.3								
o-Phosphate	ma/I P				0.35							·	1.55								
рН		7.2	7.3		7.2	7.6			6.4			7.4	7.2			7.0			7.2		<u> </u>
Potassium	mg/l				35.71				0.4			1 7.4	49.48			<i>r.</i> v			1.2		<u> </u>
Residue on Evaporation						<u> </u>							49.40								ll
Sodium	mg/l				49.76							+	35.67								f
Sulphate	mg/I SO4				35.5					20.1	6.8	32.1	30.5			40.0					ll
Temp	PC	12	9		14.2	16.5			nm	20.1	0.8	8	10.7			40.6			10.1		ļ
Time Sampled	+ -	14.1	13	12.2	1-4,2	13.05		11.3	nt	nt	14.10	12.4	14.15	9.25	14.05	nm		10.10	12.1		<u> </u>
T.O.C,	mg/l	1-1.1		16.6		13.00	14.00	11.5		111	14.10	12,4	14,15	9.25	14,05	14,10	nt	13.40	12:40	nm	13:30
T.O.N	mg/I N	1.81	1.7		3,11	0,18			1.56		ļ	4.00	0.44								└─── ┤
Total S Solids	mg/l	174	740		40	112						1.33	0.14			<0.08			2.52		⊢]
Zinc	ug/i	1/7	/+0		60.4	- 112			nm			144	44.8			860		 	110		⊢]
	1694			l	00.4	L	1				I	1	44.8				L	I			


APPENDIX G


GROUNDWATER RESULTS





<u>a</u>	[Dun	dalk Landfill	Site	*****				
						GROUN	DWATER Q	JALITY					
Monitoring Point:	1000316213203		S. 1997.00										
								ULTS					
								late					
PARAMETERS	Units	19-Jan-10	24-Feb-10	30-Mar-10	20-Anr-10	19-May-10	17-Jun-10		30-Aug-10	23-Sen-10	26-Oct-10	25-Nov-10	21-Dec-10
Alkalinity	mg/I CaCO3				380						400		
Aluminium	µg/l				<10						<5		
Ammonia	mg/I N	0.03	22.13	< 0.03	0.04	<0.03	<0.03	0.18	0.03	< 0.03	0.7	< 0.03	0.63
B.O.D.	mg/l O2										-		
Boron	ua/l				349.5						382.6		
Cadmium	µg/l				< 0.1						<0.1		
Calcium	mg/l Ca				144.68						141.42		
C.O.D.	mg/I O2												(
Chloride	mg/I Cl	696	2871	658	678	684	697	609	629	607	608	612	750
Chromium	µg/l			1	<1						1.1		
Conductivity	uS/cm @ 25	3190	10420	3070	3570	3130	3250	2810	2950	3000	2960	2950	3060
Copper	µg/l	1			1.4						0.7		
Cyanide	mg/I CN			******	< 0.05						< 0.05		[
Depth	m	2.8		1	5,5	5,0	5.4	2.5	*****		กm		
D.O.	% Saturation	25		1	26			51			12		í
Fluoride	mg/l			1	0.19						<0.150		
Iron	μg/i	1		f	<10						17		
Lead	μg/l	1			<1						2.3		
Magnesium	mg/I Mg	1			54.62						63.86		í –
Manganese	µg/l	1		1	6.8						57.1		i
Mercury	µg/l	1		1	<0.1						< 0.05		1
Nickel	µg/l				<1	[<0.5		
o-Phosphate	mg/l P			1	< 0.02	I					0.02		1
pH	1 <u>-</u>	7,5		1	7.3			7.3			7.3		
Potassium	mg/l			1	22.34					[24.51		
Residue on Evaporation	1				1956						1749		1
Sodium	mg/l	1			410.56						449,18		
Sulphate	mg/I SO4				>100						189.6		
Temp	I C	9.9			11,3			15.0			13.7		
Time Sampled	1	11.45	9.3	16.05	11	8.45	8.50	11.00	nt	8.45	12:10	nm	9:55
T.O.C.	mg/l	2.3	1		1.7			3.8		1	95.3	l	
T.O.N	mg/I N				0.84	l					1,74		
Total S Solids	mg/l		1		i					l	I		
Zinc	μg/t	1	t	1	1.7			[1	3.9	1	

		Dundalk Landfill Site																	
									GROUN	DWATER C	UALITY								
Monitoring Point:		y all chaires																	
										RE	SULTS								
											Date								
PARAMETERS	Units	23-Jul-09	26-Aug-09	29-Sep-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	30-Mar-10	20-Apr-10	19-May-10	17-Jun-10	28- Jul-10	30-400-10	23-Sen-10	26-Oct-10	25-Nov-10	21-Dec-10
Alkalinity	mg/i CaCQ3										720			20.007.10	ou Aug Io	20-00p-10	810	20-1107-10	21-060-10
Aluminium	µg/i						<50				<10						26.5		
Ammonia	mg/I N	34.3	14.99	15.14	27.00	15.10	17.01	22.82	23.53		32.25	18.84	18.29	18.62	1.82	29,58	26.73	15.85	27.08
B.O.D.	mg/I O2						17701		20.00		02.20	10.04	10.20	10.02	1.02	2.3.30	20.13	10.00	27.00
Boron	µg/i						1275.4				1458.6						1884		
Cadmium	µg/i						<0,1				<0.1						<1		
Calcium	mg/I Ca				1		145.43				203.11						235.2		
C.O.D.	mg/I O2										200.11						200.2		
Chloride	mg/I CI	3241	5276	4811	4311	3542	3057	2874	3025		3127	3877	5212	5098	200	3266	4211	4913	3833
Chromium	hði						12.2	20/4	0020		3		5212	3030	200	5200	8.9	4010	
Conductivity	µS/cm @ 25	11640	16720	15310	14540	12155	10680	10580	10820		12580	13860	16200	15490	1608	11710	13290	16100	12810
Copper	µg/l					12100	23.4		10020		1.7		10200	10400	,000	117.00	<5	10100	12010
Cyanide	mg/I CN						<0.05				<0.05						<0.05		
Depth	m			4.5			0.00	4,3			40.00			4.1			-0.00 nm		╂────┦
D.O.	% Saturation	37			26		26	17			27			31			35		
Fluoride	mg/l		f				0.350	<u></u>			0.3			51			<0.150		<u> </u>
Iron	µg/l						2466.0				2684						1628.3		
Lead	µg/l		1	1			<1				<1						<5		<u> </u>
Magnesium	mg/I Mg				·		223.62				237,77						316,39		
Manganese	µg/i						801.3		ł		1013.4						695.8		łł
Mercury	µg/!						<0.1				<0.1						<0.05		
Nickel	µg/l						5.3				3.9						<5		
o-Phosphate	mg/IP			ł			0.71				0.62						0.45		
pH		7.1		1	7.0		7.1	7.1			7			7			7,2		<u> </u>
Potassium	ma/l	1.1			1.0		111.16	·····			121.86			/			1.2		ł
Residue on Evaporation	nign			<u>+</u>	<u> </u>		6565				6979						8939		
Sodium	mg/l						1775.87				1887.62						2645.79		
Sulphate	mg/I SO4						>200				>300						443.3		
Temp	°C	15,4		+	14.1		11.6	10.6	ł		11.8			16			44.3.3		+
Time Sampled	+	11.4	12	14	nt	nt	12.35	10.6	11.4		11.0	11.2	10,28	11,2	nt	10.2	13:55	DM	10:20
T.O.C.	mg/i	24.9	12	14	17.6		12.35 nm	74.6	1		70.5	11.4	10,20	33.1	114	10.2	23.3	1111	10.20
T.O.N	mg/t N	24.0			17.0		<0.08	74.0	ł		<0.08			33.1			0.47		+
Total S Solids	mg/l				<u> </u>		~0.00		<u> </u>		~0.00						0.47		+
Zinc	hð\l				1		14.2				2.5					1	20.8	<u> </u>	<u> </u>
6-177V	1680	L		1	1		14.2		l	L	2.5					1	∠0.8	1	<u> </u>

										Dundalk	Landfill Site									
									G		TER QUAL									
Monitoring Point:				an an an an an an an an an an an an an a			en and an de	ulla de seus	ndenostanen	۷	VM5		65.020 620.094	second and			y Colegadora			
											RESULT	TS								
PARAMETERS	Units	23-Jul-09	26-Aug-09	29-Sep-09	28-Oct-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	Date 30-Mar-10	20-Apr-10	19-May-10	17-Jun-10	28-Jul-10	30-Aug-10	23-Sep-10	26-Oct-10	25-Nov-10	21-Dec-10
Alkalinity	mg/I CaCO3							[1	690						925		1
Aluminium	µg/l							<50			İ	<10				1		6,4		<u>+</u>
Ammonia	mg/l N	67.1	36.68	35.95	33.28	33.28	63,21	67.68	88.83	69.1		54,45	47.23	49,9	49.56	37.61	34,3	37.68	21.14	46.63
B.O.D.	mg/I O2			1					00.00	00.1	<u>+</u>	04.40	47.20		49.00	01.01	<u> 77.7</u>	57.00	21.74	40.00
Boron	µg/l			1				1475.8				1558.2						1858.9		+
Cadmium	µg/l							<0.1				<0.1						<1		
Calcium	mg/I Ca			1				145.55				163.79						193.61		
C.O.D.	mg/I O2															1				
Chloride	mg/I CI	2242	2052	2033	2263	2263	1320	2276	2490	1569		1749	1924	2029	2077	1869	2278	2636	700	2669
Chromium	µg/l			1				15.9				3,9						5.3		
Conductivity	µS/cm @ 25	8920	8130	8370	8510	8510	5820	9190	9460	6900	1	8390	7760	8250	7950	8480	9300	9720	3580	9690
Copper	µg/i			1				18.4				1.7					1	<5		
Cyanide	mg/I CN							< 0.05				< 0.05					1	<0.05		1
Depth	m			5.3					4,7			1			4.5	<u> </u>	1	nm		1
D.O.	% Saturation	18		1	25	25		35	27			18			25		1	24		1
Fluoride	mg/l			1				<0.150				<0.150					1	<0.150		
Iron	µg/l							3390.4				347,3					1	94.3		
Lead	µg/l			1				<1				<1						<5		
Magnesium	mg/i Mg			1				197,26				164.84					1	223.53		1
Manganese	μg/l							682.0				216.3						211.1		1
Mercury	µg/l			T		[<0.1				<0.1				[<0.05		
Nickel	µg/l			}				6.1	[1	3						<5		1
o-Phosphate	mg/l P							0.72				0.1					1	0.04		1
pH		7.2			7.2	7.2		7.1	7.1			7.2			7.2	1		7.3		1
Potassium	mg/l							107.13				95.9						114.16		1
Residue on Evaporation								5343				4563					1	5792		
Sodium	mg/l							1400.86				1164.98						1825.73		
Sulphate	mg/I SO4							256.7				147.8						78.7		
Temp	°C	13.8			14.4	14.4		12.1	11.1			12			16			14.6		
Time Sampled		13.55	12.35	16.25	nt	nt	nt	14.40	12.1	15		12.15	13.4	nt	11.45	nt	12.15	13:30	nm	12:30
T.O.C.	mg/l	26			20.7	20.7		nm	>100			61.5			84.7			35		
T.O.N	mg/I N							0.48				1.05						2.16		
Total S Solids	mg/l	ļ															1			
Zinc	µg/l						1	9.7			1	3.1						23.2		

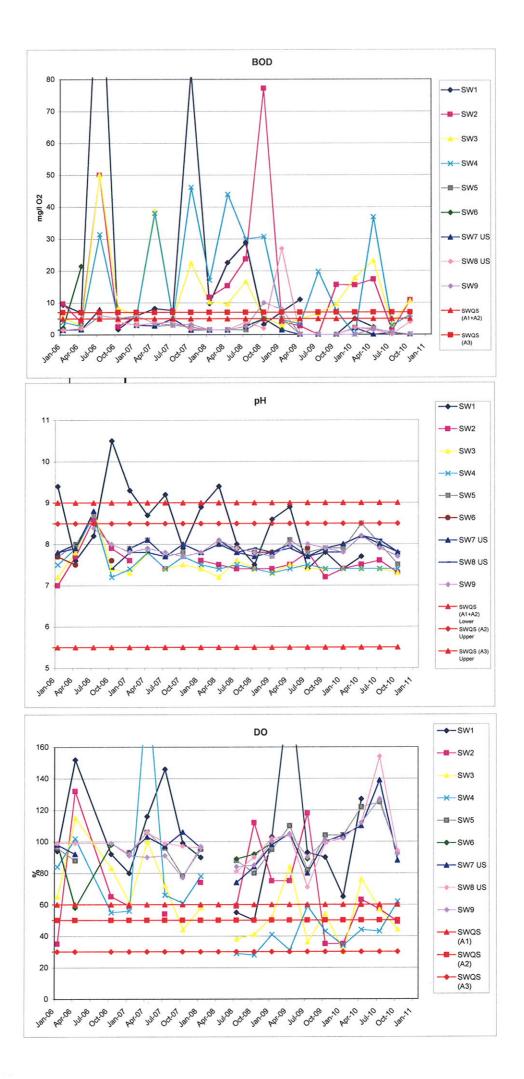
<u>a</u>		Dundalk Landfill Site																	
		GROUNDWATER QUALITY WM6																	
Monitoring Point:	Charles Charles Ch			ANNE ANNA A	Felhia din perintender				WA	16	an an an an an an an an an an an an an a		91 <i>624914</i> 90						ansenteenteen
			RESULTS																
	Units									Date								••••••	
PARAMETERS		28-May-09	25-Jun-09	23-Jul-09	26-Aug-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10		30-Mar-10	20-Apr-10 19-May-10 28-Jul-10 30-Aug-10 23-Sep-10 26-Oct-10 25-							21-Dec-10
Alkalinity	mg/l CaCO3						1	1	1		1	653			l l l l l l l l l l l l l l l l l l l		20 000 10	120 (10) 10	
Aluminium	hð\l	1	1				<u> </u>	-	†			<10			·				+
Ammonia	mg/I N	80,10	72.86	88.81	67,21	84,93	61.00	74.43	85.62	62.93	58,11	75.3	62.84	69.23	71.66	86.23	93,55	40.34	70.27
B.O.D.	mg/I O2	00.70	1.2.00	00.01	07.21		01.00	14.45	05.02	02.95	30,11	15.5	02.04	69,23	/1.00	00.23	93,55	40.34	10.27
Boron	µg/l		1				<u> </u>					1534.2				l		-	<u> </u>
Cadmium	µg/l											<0.1							ł
Calcium	mg/I Ca		1									135.73						+	<u>+</u>
C.O.D.	mg/I O2		f				1					100.70							
Chloride	mg/I Cl	354	358	345	402	373	314	374	340	362	377	350	343	336	344	351	366	2615	377
Chromium	µq/l		1		<u> </u>		†					2.6						2075	
Conductivity	µS/cm @ 25	3260	3240	3260	3280	3250	2980	3150	3230	3080	2980	3480	3060	3030	3110	32700	3300	9540	3120
Copper	µg/l										2000	5.3		0000	0110		0000		5120
Cyanide	mg/I CN						1		1		ł	<0.05							ł
Depth	m	1						1	4.8			10.00		4.6					+
D.O.	% Saturation		1	12		28			24			15		54			16		+
Fluoride	mg/l		1									0.33				<u> </u>	10		
Iron	µg/l	1	1									3858,1				<u> </u>			t
Lead	µg/l		1					1				<1			[·····				
Magnesium	mg/I Mg				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1		+	75.55							
Manganese	µg/l		1				1	1	-			444.8			1			1	ł
Mercury	µg/l						l		1			<0.1						1	ł
Nickel	µg/l		1				· · · · ·	1				9.4				t	*******************	1	t
o-Phosphate	mg/l P						[1				0.05			·				
рН				7.1		7,2	1		7.2			7.3		7.3		i	7.2		1
Potassium	mg/l							1	1			106.96						1	1
Residue on Evaporation		1										1723				[1	1
Sodium	mg/l								1			295.33		*******	1				1
Sulphate	mg/I SO4											16.8						1	1
Temp	°C			14		14.2			10.4		1	12.4		16			13.9	1	1
Time Sampled		11.00	9.45	13.2	11.5	nt	nt	14.40	12.3	14.25	16.2	12.4	13.05	12	nt	12.3	12:50	nm	12:00
T.O.C.	mg/l	1		38.8		34.8			>100		1	49		31.7	[[>100	1	1
T.O.N	mg/I N										1	2.14							1
Total S Solids	mg/l							1							[1	
Zinc	µg/l				1							3.5							

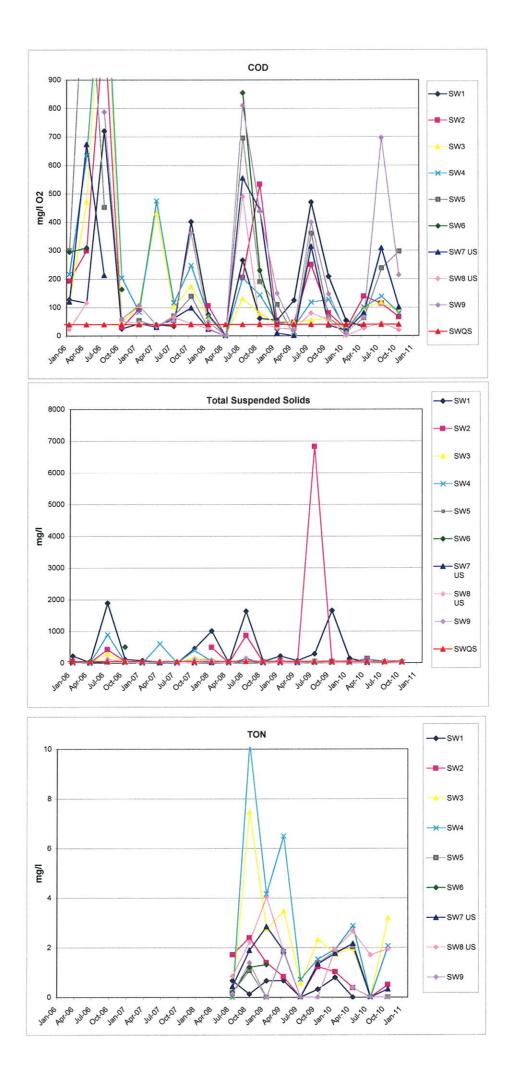
.

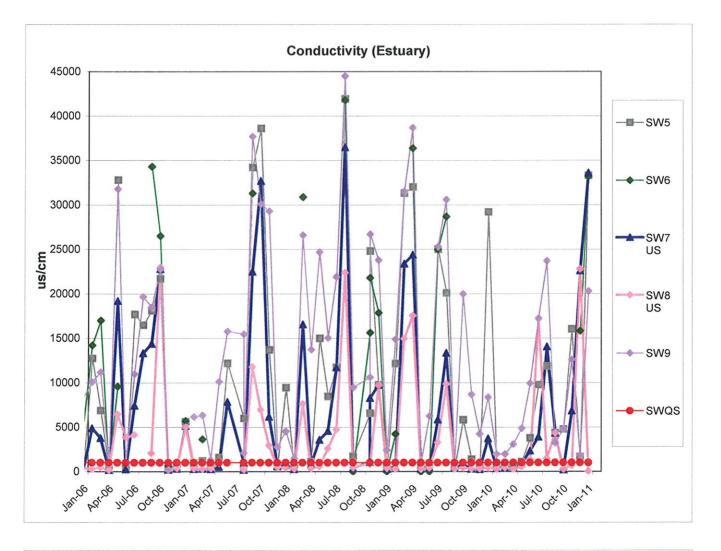
		Dundalk Landfill Site GROUNDWATER QUALITY																	
Monitoring Point:		84480.000				en stalen av de				WM8					1743 (20198) 55		HERREN SINGER		arenosaannaa
		RESULTS															<u></u>		
PARAMETERS	Units	23-Jul-09	26-Aug-09	29-Sep-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	30-Mar-10	Date 20-Apr-10	19.May.10	17- Jun-10	28- Jul-10	30-400-10	23.Sen.10	26-Oct-10	25 Nov 10	21-Dec-10
Alkalinity	mg/I CaCO3								211.00 10	00 1111 10	920	10-may-10	11-0411-10	20-041-10	Ju-Aug-10	20-0ep-10	20-001-10	20-1104-10	21-000-10
Aluminium	µg/l			1 ·····							60.8								1
Ammonia	mg/l N	38.49	89,91	147.92	130.96	38,70		64.52	77.29	44.97	87.1	126.72		124.1	6469.53	118.87	20.24	9.31	79.12
B.O.D.	mg/I O2							01.02	11.20		<u> </u>	120,72		127.7	0403.00	110,07	20.24	3.51	15.12
Boron	µg/l			1							1531.8					<u>+</u>		1	+
Cadmium	µg/l	1									0,3								
Calcium	mg/l Ca				1						240.81								
C.O.D.	mg/i O2	1			1										··	1			
Chloride	mg/I Cl	5667	1737	475	1314	484		259	332	1700	407	823		1899	1887	403	720	1207	3494
Chromium	μg/l										3.3							1201	
Conductivity	µS/cm @ 25	19440	7350	4400	6580	3270		2970	3260	6830	3960	5220		8220	8710	4010	3670	5310	12020
Copper	µg/l	1			1						12.6	0110		0220	0/10		0010		12020
Cyanide	mg/I CN					1					< 0.05					<u>+</u>			<u> </u>]
Depth	m			4.1	1			3.6						3.5					<u> </u>]
D.O.	% Saturation	17			25			18			31			16			22		
Fluoride	mg/l					[<0.150								<u> </u>
Iron	µg/l										13526					1			
Lead	μg/l										2.7					1	******	1	
Magnesium	mg/I Mg										84.67					1			
Manganese	µg/i										2574								
Mercury	µg/l										<0,1								
Nickel	µg/l										19.6						1		
o-Phosphate	mg/I P										0.38								
рН		6.8			6.8			6.8			6.8			6.7			7,4		
Potassium	mg/l										74.82								
Residue on Evaporation					_						2223								
Sodium	mg/l										287.94						1		
Sulphate	mg/I SO4										87.2								
Temp	°C	14.3			14,9			10.7			12.7			17		I	15.2		
Time Sampled	[14.4	13.15	16.55	nt	nt		12.55	15.3	16.35	13	14.1		12.15	nt	12.45	13:05	nm	13:00
T.O.C.	mg/l	16.5			45.0			>100			nm			44.9		1	41.4		
T.O.N	mg/I N										0.93						1		1
Total S Solids	mg/i															[[1
Zinc	µg/l										40.8					1			

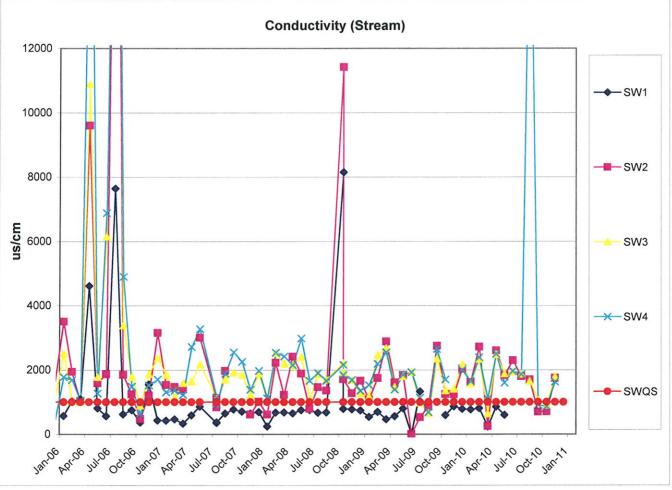
<u>m</u>	Dundalk Landfill Site																		
		GROUNDWATER QUALITY WM9																	
Monitoring Point:										WM9									
										RE	ESULTS								
											Date								
PARAMETERS	Units	23-Jul-09	26-Aug-09	29-Sep-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	30-Mar-10	20-Apr-10	19-May-10	17-Jun-10	28-Jul-10	30-Aug-10	23-Sep-10	26-Oct-10	25-Nov-10	21-Dec-10
Alkalinity	mg/I CaCO3										693					20 000 10	20 001 10		21.000.10
Aluminium	µg/l		1								29.6								
Ammonia	mg/I N	22.37			38.96	61.66		67.22	40.04		42.2	21.87	65.67	86.53	17.85	18.16	136.21	73,26	
B.O.D.	mg/l O2										100.100			00.00		10.10	100.21	75.20	
Boron	µg/l										942.1								
Cadmium	µg/i		1								<0.1					1			
	mg/I Ca		1			1					108.89								
C.O.D.	mg/I O2								1										
Chloride	mg/I Cl	703	1		711	378		392	474		689	732	1071	917	734	714	1027	296	
Chromium	µg/l		1								<1						1021	200	
Conductivity	µS/cm @ 25	3700	1		3880	3090		3530	3340		4250	3770	5520	4970	3610	3680	5760	3140	
Copper	µg/i		1								16.3	<u> </u>			00.0	0000	0100	0,40	
Cyanide	mg/I CN		1	1							< 0.05								
Depth	m		1					4.2						4					
D.O.	% Saturation	26			24			19			20			30			17		
Fluoride	mg/i		1								0.2								
	µg/l										2808.7								
Lead	µg/l										1.4	1							
Magnesium	mg/I Mg										81.3								
Manganese	µg/l		1								852.7								_
Mercury	µg/l								1		<0.1	1							
Nickel	µg/l										16.8								
	mg/l P										0.07								
рН		7.4			7.1			7.2			7.2			7			7		
Potassium	mg/l]		60,7								
Residue on Evaporation											2202								
	mg/l										532.22								
	mg/I SO4]		96.7								
	°C	16.3			15.8			11.7	I	nm	13.8			16			14.6		
Time Sampled		14.15			nt	nt		13,15	15.15	nt	13.25	13.55	12.5	12.45			13:20	nm	
	mg/l	17.4			19.4			>100	1		23	1		36.7			254.4		
	mg/I N										0.18	1							
Total S Solids	mg/l								1										[]
Zinc	µg/l										20.2								

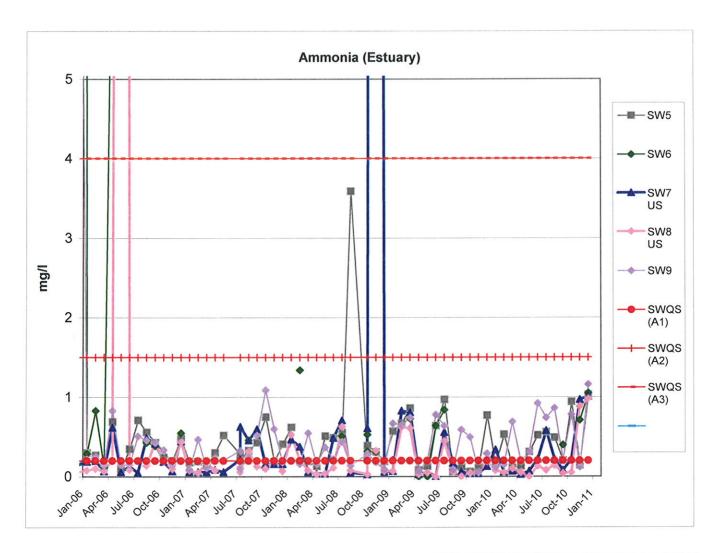
<u>ma</u>									Dundalk L	andfill Site								
								G	ROUNDWA	TER QUALI	TY							
Monitoring Point:	HARING KARANGA KAR	ngyaga nggan	iga ing paggang	na ang ang ang		gulag nganaga	E STAND		W	M10								unseritigae,
										RESULT	rs							
										Date								
PARAMETERS	Units	23-Jul-09	29-Sep-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	30-Mar-10		19-May-10	17-Jun-10	28- Iul-10	30-Aug-10	23-Sep.10	26-Oct-10	25 Nov 10	21 Dec 10
Alkalinity	mg/l CaCO3		1		1					695	10 110	11-0011-10	20-001-10	00-7409-10	10-000-10	20-000-10	20-1001-10	21-020-10
Aluminium	µg/Î		1	1				1		13.5				1				
Ammonia	mg/I N	14.64	7	31,97	12.69	13.12	13.66	65.04		10.85	21.4	21.75	52.28	21.02	17.84	14.55	68,46	
B.O.D.	mg/I O2											~		1.1.01	77.04	14,00	00.40	
Boron	µg/l		1			1		1		1262.8						*****		
Cadmium	µg/l			1				1		<0.1	1							
Calcium	mg/I Ca		1		1	1	1			141.57				†				
C.O.D.	mg/I O2		1	1	1			1	1									
Chloride	mg/I CI	1704	1438	1703	964	1054	1269	1573	1	1310	1737	1761	2097	1618	1567	1628	361	
Chromium	µg/l		1	-				1		1.4	[
Conductivity	µS/cm @ 25	6880	6000	7060	4530	4890	5570	6880	1	6500	7130	7250	8230	6970	6620	6580	3110	
Copper	µg/l							1		10								
Cyanide	mg/I CN					1	1	1		<0.05				1				
Depth	m		5.2				5.1	1		5	5.3	5.6	4.9	1				
D.O.	% Saturation	18		28			20	1		24			28	1		20		
Fluoride	mg/i				1			1		0.23				1				
	µg/l		1		1		1	1		1278.7				1				
Lead	µg/l								1	<1				1				
Magnesium	mg/I Mg						1	1	1	113.95	1							
Manganese	µg/l				1	1				324.4				1				
Mercury	µg/l					1		1	1	<0.1	1			1				1
Nickel	µg/l						1	1	1	5.6	1							
o-Phosphate	mg/I P						1	1	1	0.05				1				
рН		7.1		7.1	1		7.2			7,1			7,1			7.4		
Potassium	mg/l		1		T		1			67.86	1							
Residue on Evaporation					1	1	1			3430								
Sodium	mg/l						1		1	917.9								
Sulphate	mg/I SO4		1	T	1		1	1	1	113.1	1			1				1
Temp	°C	14.4		14.6	1	1	10.5	1	1	12	1		16	1		14.2		1
Time Sampled		13.35	16.1	nt	nt	15.45	13.4	14.4		13.5	13.2	12.31	13.1	nt	13.15	13:35	nm	1
T.O.C.	mg/l	19.6	1	20.0	1		89.1	1	1	40,6			22.4	1		333.1		1
T.O.N	mg/I N		1		1	1	1	1	1	0.84	1			1			1	1
Total S Solids	mg/l		1	1	1	1		1	1					1				1
Zinc	µg/l		1	1	1	1	1		t	14.5	1			1				1

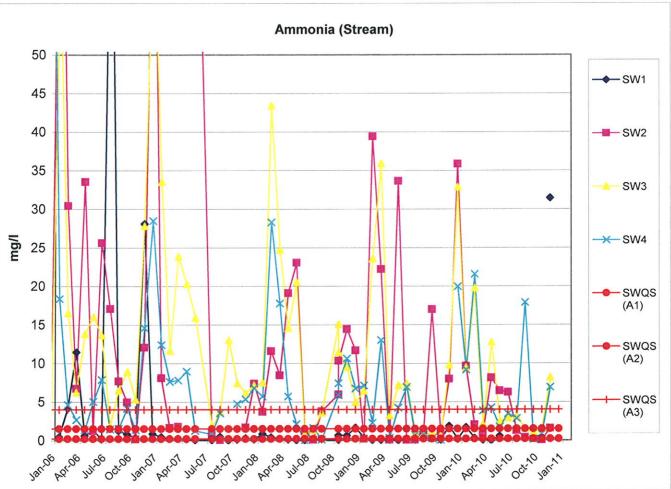

.

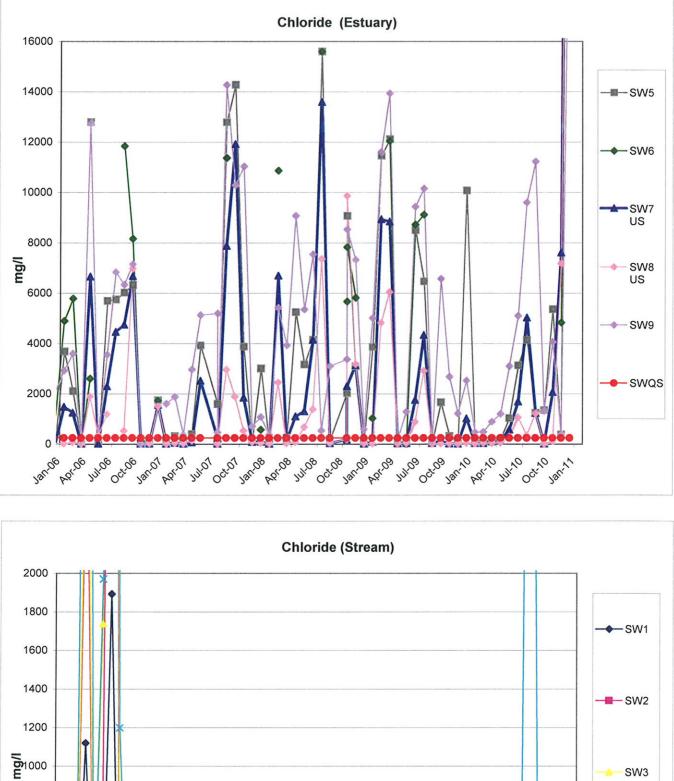

<u>@</u>			Dundalk Lar	ndfill Site		
		GRO		R QUALITY		
PARAMETERS						
,		No. of Samples	Minimum	Maximum	Mean	Standard Deviation
· · · · · ·	Units					1
Alkalinity	mg/I CaCO3	9	380	925	689	270
Aluminium	µg/l	4	6.4	60.8	27	9
Ammonia	mg/I N	55	0.04	6469.53	149	738
B.O.D.	mg/I O2					1
Boron	µg/l	9	349.5	1884	1276	529
Cadmium	µg/l	1	0.3	0.3	0	0
Calcium	mg/l Ca	9	108.89	240.81	171	67
C.O.D.	mg/I O2	1				
Chloride	mg/l Cl	56	200	5212	1481	1236
Chromium	µg/l	7	1.1	8.9	4	2
Conductivity	µS/cm @ 25	56	1608	32700	6874	5028
Copper	ug/l	7	0.7	16.3	6	3
Cyanide	mg/I CN	1				1
Depth	m	12	3.5	5.6	5	2
D.Ö.	% Saturation	23	12	64	24	13
Fluoride	mg/l	4	0.19	0.33	0	0
Iron	µg/l	8	17	13526	2916	1883
Lead	µg/l	3	1.4	2.7	2	0
Magnesium	mg/I Mg	9	54.62	316.39	142	64
Manganese	µg/l	9	6.8	2574	640	384
Mercury	µg/l					
Nickel	μg/l	5	3	19.6	10	4
o-Phosphate	mg/I P	8	0.02	0.62	0	0
pH	0	23	6.7	7.5	7	4
Potassium	mg/l	9	22.34	159.43	85	36
Residue on Evaporation	0	9	1723	8939	3956	1800
Sodium	mg/l	9	287.94	2645.79	1042	518
Sulphate	mg/I SO4	7	16.8	443.3	147	69
Temp	°C	23	10.4	17	13	7
Time Sampled	0	38	9.3	16.35	13	7
T.O.C.	mg/l	17	1.7	333.1	69	56
T.O.N	mg/l N	8	0.18	2.16	1	1
Total S Solids	mg/l	1				1
Zinc	µg/l	9	1.7	40.8	13	8

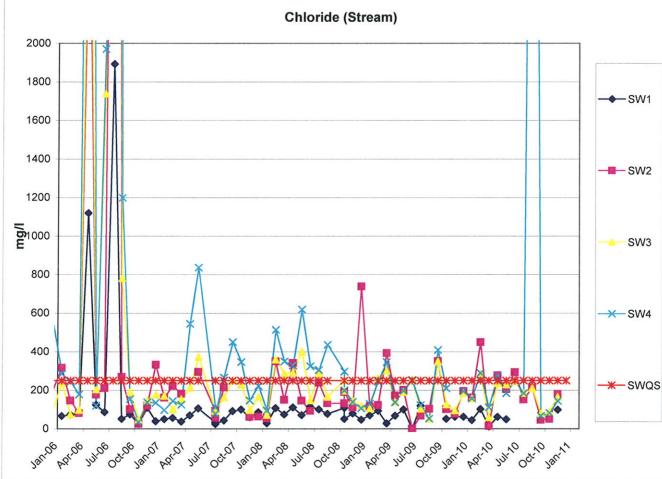

APPENDIX H


SURFACE WATER RESULTS









<u></u>										Dundalk Lar	dfill Sile									
<u>64</u>									SUR	FACE WAT	ER QUALIT	Y								
Monitoring Po	in!	Hanna serve			Server Maren	950.970.8570	1020000000	ongioesiaon	ann an an an an an an an an an an an an	2012053555	SW1	neon es usces					hen gedelen ig	41388455723 <u>3</u>	anga gada	
aloritoring i o	1		<u> </u>																	
							T ==	47 D	40 1 40	01 Eak 10	Date	20 005 10	19-May-10	45. Gm.10	28-1ul-10	30-400-10	23-Sep.10	26-Oct-10	25-Nov-10	21-Dec-1
PARAMETERS	Units	25-Jun-09	23-Jul-09	25-Aug-09	29-Sep-09	28-061-09	26-100-09	31-Dec-03	19-380-10	24-Feb-10	SU-Mai-IV	304	13-may-10	10-2011-10	20-041-10	30-H0g-10	Lo-ocp to	20 001 10		
Alkalinity	mg/I CaCO3											192.6								
Aluminium	µg/I						1.88	0,16	1.71	0.32	0.07	<0.03	0.58				0.24		31,45	
Ammonia	mg/i N		0.03			0.07	1.88	0.16	5	0.32	0.07	2.3	0.50				0.44			
B.O.D.	mg/i O2		42.3			29.9	l					2.3		·····-						t
Boron	µg/l											<0.1							(<u> </u>
Cadmium	µg/(L										· · · · · · · · · · · · · · · · · · ·				
Calcium	mg/I Ca							Ļ				95.69								
C.O.D.	mg/I O2		470			209	ļ		54			30			<u> </u>		47		99	
Chloride	mg/l Cl		119			51	62	62	45	102	12	61	49		[ļ	4/		35	
Chromium	µg/l							1				<1		.	ļ		701		1706	<u> </u>
Conductivity	µS/cm @ 25		1334			595	864	785	769	809	236	853	600		 	Į	/03		1/00	
Copper	uq/i					l			1			3			ļ	Į				
Cyanide	mg/I CN							L						ļ	ļ				<u>+</u>	+
Depth	m							L						ļ	ļ		L			<u> </u>
D.O.	% Saturation		93			90			65			127		ļ	<u> </u>	l			+	<u>+</u>
Fluoride	mg/l				1	1						ļ			1					ł
Iron	ug/l						1		1	I		363.4		Į						+
Lead	ugli				1							<1		<u> </u>	l	4	l		<u> </u>	
Magnesium	mg/I Mg											12.69		ļ	L		l			
Manganese	µg/l					1					L	68.9		4	ł				+	4
Mercury	µg/l					1				l		<0.1			_	·			<u> </u>	+
Nickel	ug/l								1	1		2.8		ļ			ļ	ļ	+	
o-Phosphate	mg/i P						1		<u> </u>		L	<0.02			L		Į		<u>+</u>	+
рH	1		7,4			7.8			7,4			7.7				·	 	<u> </u>		+
Potassium	mq/l	[1		1	7.54		1	Į		ł	 	+	+
Residue on Evaporation		1			1		1		<u> </u>	ļ	1						Į		<u>+</u>	+
Sodium	mg/l	1			1			1				37.8		4	+				+	+
Sulphate	mg/i SO4	1							L		<u> </u>	67.4		-	4			Į	+	+
Temp	*C		16.2		1	14.3	1		6	1	L	9.4		ļ			1			
Time Sampled	-		14.5		1	nt	nt	13.10	10.45	10	15.3	11,1	9.15				9.15	ļ	nm	+
T.O.C.	ma/l	1			1					1				1	1	-	Į	.		
T.O.N	mg/I N		<0.08		1	0.32		T	0.8			<0.08		1	1			<u> </u>	. <u>+</u>	+
Total S Solids	mg/l	1	285		1	1653	1		139	1		22			1		ł	ļ	+	
	µg/l	1			1			1	1	1	1	4.2		1		1	1			1
Zinc]HAu			E		1			1											

										Dundaik Lar	dfill Site									
<u>a</u>									SUR	FACE WAT	ER QUALIT	Y								
Monitoring Po	pint:	5980799289888	ales astronomi	Sangang gang	12000000000	SSI AMA	SERVICE SERVICES			0,746,846,896	SW2	086624066		SIZ SIN			SANGA MARA	20202020		78888888
PARAMETERS	Units	25-Jun-09	23-Jul-09	00.0	00.0 00		00 1/	1 47 0 00	40 1 40	01 F	Date	1	19-May-10			1 00 0	00.0	00.0-4.40	00 11	01.0
Alkalinity	mg/I CaCO3	23-Jun-03	23-301-09	26-Aug-09	23-Sep-03	28-001-09	20-1004-03	11-D6C-0a	19-380-10	24-Feb-10	30-mat-10	20-Apr-10 596	19-may-10	17-Jun-10	28-JUI-10	30-A0g-10	23-Sep-10	26-000-10	25-100-10	21-000-1
Aluminium	ug/l	· · · · · ·						+				222.2								/
Ammonia	mg/I N		0.08	1.24	16,98	1.09	7,96	35.86	9,64	2.04	0.91	8,1	6,43	6.25	1,26	0.39	0.21	0.05	1,57	[
B.O.D.	mg/I O2		<80	1.24	10.55	15.6	1.50		15.5	2.04	0.31	17.3	0.43	0.25	13.5	0.35	V.21	10.8	1.57	(
Beron	1119/102		.00			15.6			10.0			11.5			13.5			10.0	ii	ſ · · · · · · · · · · · · · · · · · · ·
Cadmium	µg/l											<0.1							ii	
Calcium	mg/l Ca											212.7								······
C.O.D.	mg/I O2		250		<u>+</u>	80	ł		24			139			114			66	ii	(
Chloride	mg/I CI		67	103	350	101	77	195	161	449	13	276	205	293	151	213	46	50	180	
Chromium	µg/i			103	330	101	<u>''</u>	135	101	445	13	1.6	205	295	1,51	215	40		100	r
Conductivity	µS/cm @ 25		529	857	2750	1242	1231	2030	1612	2720	248	2600	1829	2290	1800	1693	696	703	1742	(
Copper	µg/l		32.3	0.51	2150	1242	14.01	2030	1012	2120	240	3.6	1023	2230	1000	1035	050	105	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Cyanide	mg/i CN							+				<u> </u>							(
Depth	m																			i
D.O.	% Saturation		118			35			35			63	-		57			49	/	j
Fluoride	mg/l										·								(<u> </u>
Iron	ug/l				1							1560.9								
Lead	199/I						<u>+</u>					1.3								i
Magnesium	mg/I Mg							1				49.1			<u> </u>	i				
Manganese	ug/i											368.1				+				
Mercury	រុរថ្ន/l									· · · · · ·		<0,1				1			[
Nickel	ug/l				<u>†</u>	···· ·	<u>†</u>	+		<u> </u>		6.6							·	
o-Phosphate	mg/I P							+				0.07				+			i	
pH	aign r		7.8			7.2			7.4			7.5			7.6	+		7.3	(
Potassium	mg/l		7,0			1.4			····	<u> </u>		22.45			+	1			<u> </u>	
Residue on Evaporation						<u> </u>		+		<u> </u>		£2.4J			·····	+				
Sodium	mg/i				<u> </u>		<u> </u>	+	<u> </u>	<u> </u>		216,76	+			-			·····	
Sulphate	mg/i SO4							<u>+</u>		 	· ····	161.9	+			+		-	t	
Temp	PC		16.2			14.5	<u> </u>	+	6		<u> </u>	101.9			18			12	t	
Time Sampled	+ <u> </u>	<u> </u>	14,35	13.55	12,4	01 01	01	13.20	10.55	10.3	15.35	11.2	9.25	9.28	12.05	nt	9.25	11:15	nm	
T.O.C.	ma/l			10.00	12.4		1 10	10.20	10.00	10.0	10.00	11.2	3.1.4	3.20	1 12.00					
T.O.N	mg/l N		<0.08		+	1.22		·	1.02			0.38			<0.08	1		0.5		
Total S Solids	mg/i N mg/i		6830		1	40	1		1.02			132	+		15		t	13	t	
Zinc	ung/i		0000		·····	40		+	+ +0	<u> </u>		6,4	+		13	+		1.0	ł	
LING	1680	1		l	1	Ł	<u>i</u>	1	1	L	L	9,4	1	I <u></u>	<u> </u>	1	1	1	<u>i</u>	i

									Du	undalk Landi	ill Site	· · · ·								
									SURF	ACE WATER	QUALITY									
Monitoring Po	xint:					Alta Malaka	an ang ang ang ang ang ang ang ang ang a				SW3	Galenael		18. augusta (Space			<u>Mésadares</u>	1400000000		
											Date	······								
PARAMETERS	Units	25-Jun-09	23-Jul-09	26-Aug-09	29-Sep-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	30-Mar-10		19-May-10	17-Jun-10	28-Jul-10	30-Aug-10	23-Sep-10	26-Oct-10	25-Nov-10	21-Dec-10
Alkalinity	mg/I CaCO3											605								
Aluminium	µg/l											122.5				1				
Ammonia	mg/I N	7.36	1.02	0.74		0.60	9,79	32.87	9.43	19.77	2.15	12.75	2.48	6.25	1.26	0.39	0.21	1.44	8.19	
B.O.D.	mg/i O2		6.6			9.6		1	17.7			23.2			13.5			10.6		
Boron	µg/l					1			1	1										
Cadmium	ug/l					[1	1		<0.1				1				
Calcium	mg/I Ca								1	1		191.26								
C.O.D.	mg/I O2		55			61			24	1		100			114			88	1	
Chloride	mg/I CI	254	104	51		126	95	186	157	287	59	236	229	293	151	213	46	89	164	
Chromium	ug/i											1.6					1			
Conductivity	uS/cm @ 25	1940	981	663		1363	1410	2170	1575	2340	647	2480	1882	2290	1800	1693	696	903	1788	
Copper	µg/l							1	1			4,2								
Cyanide	mg/I CN					1		1	1	1							1		1	
Depth	m							1					2.9							
D.O.	% Saturation		36			54			30			76			57			44	1	
Fluoride	mo/l								1	1	1					1	[1	
Iron	µg/l							1	1	1		509.2				<u> </u>	1		1	
Lead	ug/l							1	1	1		<1	1			1	1		1	
Magnesium	mg/I Mg							1				50.29				1				
Manganese	µo/l								1	1		568.1					[·····	[1	
Mercury	μο/Ι							1				<0.1				1	·····	<u> </u>	1	
Nickel	μg/l				t			i	1	1		7.4				+	t		1	
o-Phosphate	mg/I P							1	1	1		<0.02				1			1	
IpH			7.4			7.4			7.4		ŧ	7.4			7.6	1		7.3		
Potassium	ពាជ/រំ		···· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·			·····			1.7			36,89			1,0	+	<u> </u>		1	1
Residue on Evaporation	ing/						1	1	ł	+		1	1			t		l		<u> </u>
Sodium	mg/l	l			<u> </u>					<u> </u>		173.22				1			+	
Sulphate	mg/I SO4	····			<u> </u>	<u> </u>		+	+			18.21				1	<u>+</u>			
Тетр	*C	łł	17		<u> </u>	14.2	<u></u>	·{· · · · · · · · · · · · · · · · · · ·	6.1	+	<u> </u>	10.21	[18	1		11.6	+	
Time Sampled		12.2	14.25	12.5	<u> </u>	14.2 nt	nt	13.35	11.1	10.5	15,45	11.3	9.4	9.28	12.05	nt	9.25	11:25	nm	
T.O.C.	mg/l	12.2	14.25	12.5		n	· · · · · · · · · · · · · · · · · · ·	13.35	<u> </u>	10,5	13,45	1.3	3.4	3.20	12.05	1 14	3.23	11.20	1	
T.O.N	mg/I N		0.56			2.32		<u>+</u>	1,74	+		1.97	t		<0.08			3.2	+	· · · · · · · · · · · · · · · · · · ·
Total S Solids	mg/i N mg/i	<u> </u>	25			12		ł	9	+	 	40	· [······		15	 		70	+	
		<u> </u>	20			12	<u> </u>	+		+		5.8	·		13			10	1	·
Zinc	µg/l	I			L	J	1	1	1		<u> </u>	3.0				1	<u></u>	L	1	1

.

(pa									Ľ	undalk Land	Ifill Site									
									SURF	ACE WATE	R QUALITY									
Monitoring Poi	int:	789986808			200320-04030			799002000		SURGUISNIG			annezeus:	asonaangi			an an an an an an an an an an an an an a		ang kang kang sang sang sang sang sang sang sang s	78978888
						•					Date									
PARAMETERS	Units	25-Jun-09	23-Jul-09	26-Aug-09	29-Sep-09	28-Oct-09	26-Nov-09 17	-Dec-09	19-Jan-10	24-Feb-10		20-Apr-10	19-May-10	17-Jun-10	28-Jul-10	30-Aug-10	23-Sep-10	26-Oct-10	25-Nov-10	21-Dec-10
Alkalinity	mg/l CaCO3											520								
Aluminium	μgß							80,8				77.3	1							
Ammonia	mg/I N	6.92	0.73	0.81	1	0.04		19.97	9.16	21.58	3.86	4.27	1,8	3,48	2.88	17.9	0.16	0.86	6.91	
B.O.D.	mg/I O2		19.8			7.5		21.1	>8.0			36.9			19,1			6.2		
Boron	ugfi												1							
Cadmium	ug/l	}						<0.1				<0.1	1			1			1	
Calcium	mg/l Ca							171.8				181.37	1							
C.O.D.	mg/I O2		119	1	1	128		83	20			101			139	1		81		
Chloride	mg/l Ci	253	123	53		211		196	158	289	111	271	184	250	185	6253	67	82	144	[]
Chromium	µg/l	1						6.9				1,5								
Conductivity	µS/cm @ 25	1927	1137	691		1703		1991	1648	2390	1094	2500	1602	1965	1862	18440	915	865	1628	
Copper	µg/l	1			1			4.8			1	3.7					l	1	1	
Cyanide	mg/I CN	1											1				1			1
Depth	m											5	5.4			1			1	
D.O.	% Saturation		59			43		48	34			44			43			62		(
Fluoride	mg/i				1					1						1			1	[]
Iron	µg/l							235.5				369.2	1			1	1	1	1	
Lead	μο/1							<1				<1	1			1		1	1	
Magnesium	mg/i Mg	1						47.66		1		50.32							1	
Manganese	цал				1			1063.9		1	1	364.9	1			1		1	1	[
Mercury	hðil							<0,1				<0.1	1							
Nickel	µg/l	· · · · · ·						7.1				7	1			1		1		(
o-Phosphate	mg/IP							0.03				< 0.02				1				(
pH	1		7.5		1	7.4	1	7.6	7.4		1	7.4			7.4	1	1	7.4		
Potassium	mg/l							40.91				35.17		i						
Residue on Evaporation	1	1	-	1	1															
Sodium	mg/l	1			-			143,27				192.04				1	1	1		
Sulphate	mg/l SO4							118.2				88.6								
Temp	°C		17.5			13.9		5.8	6.1			11.3			18			11,4		
Time Sampled		nt	14	12.2		nt		13,55	11.25	11.15	15.55	11.45	10	10.02	12.35	nt	10	11:40	nm	
T.O.C.	mg/l														[1
T.O.N	mg/l N		0.72			1.54		1.8	1.93			2.88			<0.08	[2.07		
Total S Solids	mg/l		52			28		14	6			128			38			27		
Zinc	Hall	1						8.7				4.9				1	1			

ത										Dundalk La	ndfill Site									
									SU	RFACE WAT	TER QUALI	Υ								
Monitoring Po	int:								use and a				(SN)(940)840					an shear		
											Date									
PARAMETERS	Units	25-Jun-09	23-Jul-09	26-Aug-09	29-Sep-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	30-Mar-10	20-Apr-10	19-May-10	17-Jบก-10	28-Jul-10	30-Aug-10	23-Sep-10	26-Oct-10	25-Nov-10	21-Dec-10
Alkalinity	mg/I CaCO3											142	i			×	t	130	í – – – – – – – – – – – – – – – – – – –	
	μg/i							161.7	1			49,7						237.9	í	[
	mg/I N	0.64	0.97	0.06		0.06	0.11	0.77	0.15	0.53	0.11	1		0.52	0,56	0,49	0.2	0.94	0.14	1.03
B.O.D.	mg/I O2	1	<25			<4.0		<1.5	2.1			1.9			<6.0			<20		
Вогол	ugß	1		1															·	f
Cadmium	ugß				· · · · · · · · · · · · · · · · · · ·		1	< 0.1				< 0.1						<1	·	
Calcium	mg/I Ca	1		1				239.18				51,88				1		155.91	· · · · · · · · · · · · · · · · · · ·	
C.O.D.	mg/I O2	1	360	1		64		1058	13			63			238			297	[
Chloride	mg/l Ci	8502	6469	41		324	32	10080	190	128	177	191	1036	3131	4141	1242	1352	5363	379	46731
Chromium	lug/l	1		1				16.6				<1						10.4	······	
Conductivity	uS/cm @ 25	25000	20100	354	1	1387	336	29200	902	742	756	1098	3780	9750	11860	4350	4770	16030	1668	33300
Copper	ugfl	1						77.8				1.9		5/00		4000		<5		
	mg/I CN	1		1		· · · · ·													i	[]
Depth	m	1	<u> </u>	1								•	4.8		·		<u>{</u>		j	
	% Saturation	1	82	1		104		96	104			122			125	-	<u> </u>	93	¦ł	
	mg/l	1		1								146			,25	ł	<u> </u>	35	;^	i — I
	ug/l	1	<u>†</u>	+				654.7				246.9					<u> </u>	569.4	il	iI
	ug/l			1		·		1.2				<1				<u> </u>		<5	jl	[]
	mg/l Mg	1		+				667.74				17.23						352.8	¦l	
	ug/i	+				<u> </u>		78.9	<u>{</u>			25.8					ļ	352.8	لـــــــــــــــــــــــــــــــــــــ	<u> </u>
	1997 1997	+	<u> </u>	<u> </u>				<0.1				<0.1				-		<0.05	j	[]
Nickel	µg/l	+	f	ł	<u> </u>			4.8	<u> </u>			1,2							لـــــــــــــــــــــــــــــــــــــ	├────
o-Phosphate	mg/l P	+			<u>+</u>	<u> </u>		0.03				0.02				·		<5	j	ļ
pH	anga e	+	7.8	ł	<u> </u>	8.0		7.9	7.9			8.5			8	ł		7.5	ا ۔۔۔۔۔ا	i
Potassium	ma/l	+	1.0			0.U		204.34	1.9			6.57			8	1		117.66	J	ļĮ
Residue on Evaporation	1090			+	<u> </u>			204.34				0.5/				+		117.66	<u> </u>	
Sodium	mg/l	+	l			L		5695.71			L	107.00				ł			<u>ب</u>	⊦]
	mg/l mg/l SO4				+			1483.6	+		<u> </u>	107.03	li			<u> </u>		3095.68	لـــــــــــــــــــــــــــــــــــــ	└─── ┦
Temp	*C		18.2	+	+	14.4		1483.6	5.8			40.6						571	ہ ۔۔۔۔۔ا	<u> </u>
Time Sampled	<u>- v</u>	13.15	13.05	14,25				5.3			10.15		11.15	10.00	18	·		8.6	ہ ۔۔۔۔۔'	
Time Sampled	mall	13.15	13.05	14.25		nt	nt	12.00	14.1	12	16,15	12.55	11.45	10.52	13.2	nt	10.4	13:50	nm	10:30
T.O.N	mg/l					1.00				ļ		1	[.			j'	!
	mg/l N		<0.08		÷	1.39		<0.08	1.85		I	2.04		Į	<0.08		ļ	<0.08	j/	├──── ┦
Total S Solids	ling/l	ł	32			5	ļ	49	30			10	Į		42	Į		60	ļ	
Zinc	µg/l	1		L	[1	l	29.5	<u> </u>	1	1	3.6						23.8	<u>ł </u>	L

<u>m</u>			· · · · · · · · · · · · · · · · · · ·							Dundalk La	ndfill Site									
									SUE	RFACE WAT		TY .								
Monitoring Po	bint:	2023402002	alaoneenaan	anne anne an		an an an an an an an an an an an an an a	20100209224	San Shi sa sa sa sa sa sa sa sa sa sa sa sa sa					00000000000000	968636666668	nananan					ale en la calega de la calega de la calega de la calega de la calega de la calega de la calega de la calega de
															50 Per 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
					1	1	12010 12	1	1	1	Date						1			<u> </u>
PARAMETERS Alkalinity	Units mg/I CaCO3	25-Jun-09	23-Jui-09	26-Aug-09	29-Sep-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	30-Mar-10	20-Apr-10	19-May-10	16-Jun-10	28-Jul-10	30-Aug-10	23-Sep-10	26-Oct-10	25-Nov-10	21-Dec-10
Aleminium					.	·				{·····							Į			i
	ug/l mg/l N	0.64	0.07				-	}	<u> </u>										0,71	1.05
Ammonia		0.64	0.84				<u> </u>	<u>}</u>		·····	• • • • • • • • • • • • • • • • • • • •		.				0.4		U,71	1.05
B.O.D.	mg/I O2		<40					L									_			<u> </u>
Boron	իցվ	·						 	1	<u> </u>		ļ					Į			<u> </u>
Cadmium	µg/l								1	ļ		Į				ļ				<u> </u>
Calcium	mg/I Ca								1	1			ļ				ļ			'
C.O.D.	mg/i O2		2100							1					l		1			ļ
Chloride	mg/i Cl	8724	9119				ļ		L	L							20		4838	49555
Chromium	hđų						I		<u> </u>											L
Conductivity	µS/cm @ 25	25000	28700														227		15840	33200
Copper	µg/l							i	1	1		ł								
Cyanide	mg/I CN								1			1			1		1			
Depth	m																			
D.O.	% Saturation		89																	
Fluoride	mg/l								1											
Iron	µg/l								1							1				
Lead	µg/l							[
Magnesium	mg/I Mg											1					1			
Manganese	µg/l									1		1		1			1			
Mercury	µg/l				1				1										-	
Nickel	µg/l				1		1		1				1			1				
o-Phosphate	mg/IP								1		1						1			
pH	1		7.9			1	1	1	1	1			······			1	1	1		
Potassium	mgß				1	1		1				1			Ī	1	1			
Residue on Evaporation	1 "					1		1	1	1		1	1		1		1			
Sodium	mg/i				1		1	1				1					1			
Sulphate	mg/i SO4						1	1	1	1			1	I		1	1			
Temp	°C		18				1		1	1		1	1				1			
Time Sampled		13	13.25		1	1	1	1	1	1		1	1			1	11	1	កភា	14:00
T.O.C.	mg/l		1					1	1	1	1	1	1	1	1		1			
T.O.N	mg/I N	1	<0.08		1	1	1	1	1	1		1	1	1				1	1	
Total S Solids	mg/l	1	55		1	1	1	1	1	1		1	1	1		1	1	1		1
Zinc	ug/l		<u> </u>		1	1	·t	1	1	1	1	+	1	1		1	1	t	1	1

<u></u>	·									Dundalk La	ndlill Site									
									SILE	REACE WAT		TV								
Monitoring Po	pint:	- See States	an an an an an an an an an an an an an a	<u>en de la composita de la</u>	an an an an an an an an an an an an an a		126311218410125						anesosada	01000100000		201020222000	GARCENESSANDES		-	NESERIE CHARGE
		ļ																		
PARAMETERS	Units	25-Jun-09	23-Jui-09	26-Aug-09	29-Sep-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	Date 30-Mar-10	20-Apr-10	19-May-10	16-Jun-10	28-10-10	30-400-10	23-Sep-10	26-Oct-10	25-Nov-10	21-Dec-10
Alkalinity	mg/l CaCO3	1										135	<i>ie</i> ((a) 10	10 0 0 11 10			20-000-10	124	20-100-10	21-000-10
Aluminium	μα/Ι	1						133.1				42.8			<u> </u>			121.3		
Ammonia	mg/I N	<0.03	0.56	0 17		0.04	0.04	0.13	0.34	0.06	0.07	0.03	0.07	0.22	0.58	0,22	0.08	0.22	0.97	1.01
B.O.D.	mg/I O2		<20		ł	<2.0		<1.5	2.1	0.00		<1.5	0.01	0.22	7.8	4.22	0.00	<7	0.37	1.01
Boron	µg/l	1			ł·	-4.0		-1.9	2.1						1.0			~!		
Cadmium	µg/l							<0.1		·····		<0.1			1			<1		
Calcium	mg/l Ca	1			1			59.59		t	1	54.59				i	1	91.45		
C.O.D.	mg/I O2	t	315		+	38		69	18			81			309			101		
Chloride	mg/I Cl	1765	4345	51		32	16	1027	47	43	111	142	584	1693	5030	1243	18	2073	7613	49174
Chromium	µg/l		-0-10				,,,	3.1				<1		1095	- 5030	1243	10	<5	1013	49114
Conductivity	µS/cm @ 25	5850	13370	433		325	271	3730	370	449	519	914	2360	3920	14070	4350	213	6850	22600	33600
Copper	µg/l		10010		+ • • • • • • • • • • • • • • • • • • •		471	8.7		443		1.8	2300	3920	14070	4350	213	<5	22000	33000
Cyanide	mg/I CN	1						<u>.</u>				1.0				<u> </u>		~		ł
Depth	m																			<u> </u>
D.O.	% Saturation	1	80			100		95	104			110			139			88		
Fluoride	ma/l							üü								1	<u>+</u>			
Iron	µg/l							518 1		I		233			<u> </u>	1		476		
Lead	µg/l							<1		†		<1				<u> </u>		<5		
Magnesium	mg/I Mg		•					73.83			1	14.83		[t			145.48		
Manganese	µg/l							48.7				28			1		1	61.1		
Mercury	µg/l				1			<0.1			1	< 0.1			1		[<0.05		
Nickel	µg/l							3.0		İ — — —		1.1			1			<5		1
o-Phosphate	mg/i P							0.04			1	0.02			1	1	1	0.05	· · · · ·	
pH			7.7			7.9		7.9	8			8.2		[8	1	1	7.8	İ	1
Potassium	mg/i							22.32				5.48			1	1	1	48.22		
Residue on Evaporation																	[1	
Sodium	mg/i							595.76				80.74						1246.08		
Sulphate	mg/i SO4							157.2				33.8						248.6		
Temp	l°C		18.2			14.4		5.1	5.9			10.2			19			8.6		
Time Sampled		14.1	12.3	13		nl	nt	12.50	13.05	14	17	13.55	12.45	11.57	13	nt	11,15	13:00	nm	11:15
T.O.C.	mg/i]				
T.O.N	mg/l N		<0.08			1,34		0.45	1.77			2.16			<0.08			0 33		
Total S Solids	mgß		32			24		14	50	1		<5			45			40		
Zinc	µg/l				1			11.6		1	1	4.2						31.7	1	

<u></u>									Di	indalk Landi	ill Site									
									SURFA	CE WATER										
Monitoring Po	int:	en les services	<u>vano</u> 2002/17	Sa (leta evenas	02002020		saaannaa ka	si son sente									ASTRONAL	signa an an an an an an an an an an an an a	<i>669,624,034</i>	
											Date						•••••			
PARAMETERS	Units	25-Jun-09	23-Jul-09	26-Aug-09	29-Sep-09	28-Oct-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	30-Mar-10	20-Apr-10	19-May-10	16-Jun-10	28-Jul-10	30-Aug-10	23-Sep-10	26-Oct-10	25-Nov-10	21-Dec-10
Alkalinity	mg/I CaCO3											148					1		1	
Aluminium	μg/l											82.8								
Ammonia	ma/t N	< 0.03	0.45	0.06		0.04	0.05	0.19	0.08	0.05	0.1	0.05	<0.03	0.13	0.08	0.14	0.04	0.05	0.88	0.98
B.O.D.	mg/I O2		<8.0			<3.0			2.2			1.5			<2.0		0.01	4	0.04	
Boron	µg/i						[+	<u> </u>			
Cadmium	lhði											<0.1			<u> </u>	1				
Calcium	mg/i Ca						1					55,88				1				
C.O.D.	mg/8 O2		80			57			<10			27			45	1		20	<u> </u>	ł
Chloride	ma/i Cl	897	2919	20		30	19	46	20	44	46	61	296	1074	356	1228	15	120	7187	42513
Chromium	hält						1					<1			t	1		120		
Conductivity	µS/cm @ 25	3290	9870	299		318	333	454	288	456	295	582	1352	17180	1493	4340	276	707	22800	34
Copper	μg/l											2				1				
Cvanide	ma/I CN								1		1				1					
Depth	m			1											1	1		1		
D.O.	% Saturation		71			99	1		102			112		<u> </u>	154	1	1	94		1
Fluoride	mg/l	1		1			1					1 ··· ·· · · · · · · · · · · · · · · ·	1		1	1	<u> </u>			
Iron	µg/l			1								359.4			<u> </u>	1		1	·····	1
Lead	µg/			1						······	1	<1	1			1			<u> </u>	
Magnesium	mg/l Mg			1		· · · · ·						10,35]			1	1	1		t
Manganese	µg/l			1							1	78.9	1			1		1		
Mercury	µg/I				1	[1					<0,1			1	1		1		1
Nickel	µg/l										İ	1.4	t		1			1		1
o-Phosphate	mg/I P			1			1		1		1	0.02						1		
На	1		7.7		1	7.8			7.8		1	8.2			8,1			7.8		
Potassium	mg/l			1								3.73	†		1	1	1		1	+
Residue on Evaporation							t		<u> </u>				1		1	1	1	1		t
Sodium	mg/l			1	1		1		1		1	34.64	t			+	<u> </u>	1	†	t
Sulphate	mg/l SO4			1	1		i				1	22.4	1	·····	ţ	1	1	1	1	1
Temp	°C		18	t	1	14.6	1		5.9			10.8	t		19	1	1	8.6		t
Time Sampled	1	14,3	12.1	13.2	1	nt	nt	10.55	13,45	13	16,45	13.4	12.25	11.4	13.3		11.35	13:15	nm	nm
T.O.C.	mg/l			† <u>```</u>	†	t	1		1	······································	1	····	1		+		1	+		t
T.O.N	mg/i N		<0.08	t	<u> </u>	1.30			1.93		1	2.65	<u> </u>		1.7	1	1	1.94		<u> </u>
Total S Solids	mgli		23	l	1	<5	1		9		t	13		<u> </u>	22	1	1	7		t
Zinc	µg/l	i	~~~		1	t	t		t	******	1	5	 		1 22	+	+	t		1
	11.4.			1	1		L	·	L	1		·~	1		1	1	·	<u>t</u>	1	4

r -

<u>.</u>								Dı	ındalk Landfi	ll Site								
								SURF/	ACE WATER	QUALITY								
Monitoring Po	int:				en in en en en en en en en en en en en en en					SW9								
									••••••	Date								
PARAMETERS	Units	23-Jul-09	26-Aug-09	29-Sep-09	26-Nov-09	17-Dec-09	19-Jan-10	24-Feb-10	30-Mar-10		19-May-10	16-Jun-10	28-Jui-10	30-Aug-10	23-Sep-10	26-Oct-10	25-Nov-10	21-Dec-10
Alkalinity	mg/I CaCO3							1	1	156	1			Ŭ Č	· · ·			
Aluminium	hð\j								1	80.5				1				
Ammonia	mg/I N	0.64	0.09	0.59	0,06	0.29	0.12	0.15	0.69	0.19	0.31	0.92	0.74	0.86	0.22	0.78	0.12	1,16
B.O.D.	mg/I O2	<30				1	<1.5	1	1	1.7			<10.0			<15	0.12	
Boron	μg/l					<u>†</u>									1			
Cadmium	µg/l	1								<0.1	1				1			
Calcium	mg/I Ca	1								79.66								
C.O.D.	mg/I O2	400				f	11	1	1	65			697			214		
Chloride	mg/I Cl	10160	163	6574	1228	2531	477	488	897	1210	3103	5100	9600	11233	1320	4061	381	24349
Chromium	µg/i	1							1	<1	0100	0100		+	1			24040
Conductivity	µS/cm @ 25	30600	810	20000	4250	8370	1969	1983	3100	4880	9930	17250	23700	3230	4780	12600	1825	20300
Copper	µg/l	00000			1200		1		0100	2.5		17200	20100	0200	4,00	12000	1020	20000
Cyanide	mg/I CN							+		2.0								
Depth	lm	1				+						2.9						
D.O.	% Saturation	90				<u> </u>	102	+	1	112		£	127			92		
Fluoride	mg/l		·			t	102		+	132			121			32		
Iron	µg/l							<u>†</u>	1	329					+			
Lead	μg/l	<u>+</u>								<1	+	{						
Magnesium	mg/l Mg							1	+	85.89	-					<u> </u>		
Manganese	ug/l	ł				<u> </u>				50.7	+			<u> </u>	<u> </u>		•••••	
Mercury	μg/l								+	<0.1	+			1				
Nickel	ug/l						+			1.3								
o-Phosphate	mg/I P							<u> </u>	+	0.03	+			+	ł	}		
pH	1	8				t	7,8	1	+	8.2			7.9		1	7,7		
Potassium	mg/l	†					1 7.0		+	26.09			1.3		+			
Residue on Evaporation	1	1				+	+		1	20.03					1			
Sodium	mg/l	+					+		·{	709.49	+							
Sulphate	mg/I SO4	+					-		+	99.3	-+			+	+			•
Temp	1007 304	17,9					6			10,9	-+		19	+	+	8.7		
Time Sampled	<u>ا</u>	12,45	14.1	14.45	nt	11,42	13.2	12.25	16.4	13,1	12.05	11,15	13.5	nt	12	13:30	nm	10:45
T.O.C.	mg/i	12,40	14.1	14.40	111	111.42	13.2	12.23	30.4	13,1	12.00	11.10	13.5	111	12	15,50	HIB	10.45
T.O.N	mg/l N	<0.08		<u> </u>	ļ	ł	1.45	<u> </u>		0.38	+	1	<0.08			<0.08		<u> </u>
Total S Solids		46									+			ł	·	<0.08 37		
Zinc	mg/l	40		<u> </u>		+	25			29 6.7			60		<u> </u>	31		<u> </u>
4.6510	μg/l			I	L		.1	1		L. 6./	1			1	<u> </u>	1	l	L

æ			Dundalk Lar	ndfill Site		
		SUR	FACE WATE	ER QUALITY	· · · · · · · · · · · · · · · · · · ·	
PARAMETERS		No. of				Standard
		NO. Of Samples	Minimum	Maximum	Mean	Deviation
	Units					
Alkalinity	mg/I CaCO3	67	124	605	286	206
Aluminium	μg/l	67	42.8	237.9	123	71
Ammonia	mg/I N	87	0.03	31.45	3	5
B.O.D.	mg/l O2	21	1.5	36.9	10	9
Boron	µg/l					
Cadmium	µg/I					
Calcium	mg/l Ca	10	51.88	212.7	117	62
C.O.D.	mg/I O2	29	11	697	114	138
Chloride	mg/l Cl	91	12	49555	3448	9957
Chromium	µg/l	4	1.5	10.4	4	4
Conductivity	µS/cm @ 25	91	34	33600	5060	7820
Copper	µg/i	8	1.8	4.2	3	1
Cyanide	mg/I CN					
Depth	m	5	2.9	5.4	4	1
D.O.	% Saturation	30	30	154	86	35
Fluoride	mg/l				~~~~	
Iron	µg/1	10	233	1560.9	502	387
Lead	µg/l	1	1.3	1.3	1	
Magnesium	mg/I Mg	10	10.35	352.8	79	105
Manganese	µg/l	10	25.8	568.1	170	191
Mercury	µg/l	1				
Nickel	µg/l	8	1,1	7.4	4	3
o-Phosphate	mg/I P	7	0.02	0.09	0	0
pH	0	30	7.3	8.5	8	0
Potassium	mg/l	10	3.73	117.66	31	34
Residue on Evaporation						1
Sodium	mg/l	10	34.64	3095.68	589	960
Sulphate	mg/I SO4	9	22.4	571	148	174
Temp	°C	30	5.8	19	11	5
Time Sampled	0	63	9.15	17	12	2
T.O.C.	mg/l	1	-			
T.O.N	mg/I N	21	0.33	3.2	2	1
Total S Solids	mg/l	29	6	139	40	37
Zinc	µg/l	10	3.6	31.7	10	10

APPENDIX I

LANDFILL GAS MONITORING RESULTS

LANDFILI	L GAS MONITO	RING FOR	M	(Baseline Ambient)						
Site Nam	e:			Site Address:						
DUNDAL	.K LANDFILL	,		NEWRY ROAD, DUNDALK						
Operator	•									
DUNDAL	.K TOWN CO	UNCIL		National Grid Reference: 1632-12						
Site Statu	s: Closed			Date: 11:	01:2010		Time : 12.30 pm			
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calib	pration:			
GA2000					April 20	10				
Monitori	ng Personnel:	d		Weather	•	Baron	netric pressure:			
aw				Dry/ Col	h	1014n	ıb			
Results										
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments			
Station	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)					
Number										
G1	PIEZO		0	0	19.1					
G2	PIEZO		0	0.3	18.9					
G3	PIEZO		0	0.1	19.2	.,				
G4	PIEZO		0.2	0.6	18.1					
G5	PIEZO		0.1	0.3	18.8					
G6	PIEZO		1.2	2.1	18.1					
G7	PIEZO		0.1	0.3	19.1					
G8	PIEZO		0.6	0.4	18.1					
G9	PIEZO		0	1.4	18.9					
G10	PIEZO		2.8	2	18.6					
G16	PIEZO		0	0.2	19.6					
G17	PIEZO		0	0.8	19.6					
G20	PIEZO		0.2	1.6	17.1					
G21	PIEZO		0.3	1.4	19.2		,			
GM1	PIEZO		0	0.6	17.8					
GM2	PIEZO		0	2	18.1					
GM3	PIEZO		0	0.2	19.1					
GM4	PIEZO		0	0.2	18.1					
GM5	PIEZO		0	0.2	18.4					
GM6	PIEZO		0	0.3	18.7					
GM24	PIEZO		0	2.1	16.8					

LANDFILI	L GAS MONITO	RING FOR	М	(Baseline Ambient)				
Site Name	e:			Site Add	ress:			
DUNDAL	.K LANDFILL	,		NEWRY ROAD, DUNDALK				
Operator	•							
DUNDAL	K TOWN CO	UNCIL		National	Grid Refe	erence:	1632-12	
Site Statu	s: Closed			Date: 11	:01:2010		Time : 12.30 pm	
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calik	oration:	
GA2000/H	FID				April 20	010		
Monitori	ng Personnel:			Weather	:	Baron	netric pressure:	
aw				Dry/War	m	1014m	ıb	
Results								
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		21.3	15.5	4.6			
HUT			21	15	0			
The followir and FID and		ommercial	properties we	ere visited a	ind surveyed	d using C	GA2000 infra-red gas	
No's 2, 3, 4	1, 5, ,8, 9, 10, 11	, 12, 15, 18	3,19,20, Rive	rside Cresc	ent			
No's 2, 3 &	Newry Road							
Mc Kevitts.	Maxol. Yard Ma	ce Shop. A	utoglass. Pei	uaeot Office	e. Lvnch Min	i Mix (Ya	ard), Portway Travel	

Agents, Hardys (offices & Yard), Road Drains.

LANDFILI	L GAS MONITO	RING FOR	M	(Baseline Ambient)						
Site Nam	e:			Site Address:						
DUNDAL	.K LANDFILL			NEWRY ROAD, DUNDALK						
Operator	•									
DUNDAL	.K TOWN CO	UNCIL		National Grid Reference: 1632-12						
Site Statu	s: Closed			Date: 09:	Date : 09:02:2010 Time : 12.30 pm					
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calil	oration:			
GA2000					April 20	10				
Monitori	ng Personnel:]		Weather	:	Baron	netric pressure:			
aw				Dry/ Col	d	1028n	ıb			
Results										
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments			
Station	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)					
Number	01570									
G1	PIEZO		0	0	18.6					
G2	PIEZO		0	0.2	18.6					
G3	PIEZO		0	0.3	18.7					
G4	PIEZO		0.4	0.4	18.4					
G5	PIEZO		0	0.2	19.1					
G6	PIEZO		2.1	1.8	17.8					
G7	PIEZO		0.1	0.2	18.7					
G8	PIEZO		1.2	0.6	18.3		.,			
G9	PIEZO		0.2	1.2	19.2					
G10	PIEZO		2.2	1.8	19					
G16	PIEZO		0.1	0.2	19.1					
G17	PIEZO		0	1.2	19.2					
G20	PIEZO		0	1.2	18.6					
G21	PIEZO		0.7	1.2	19.6					
GM1	PIEZO		0	0.8	16.6					
GM2	PIEZO		0	1.8	17.6					
GM3	PIEZO		0.1	0.3	19.6					
GM4	PIEZO		0	0.1	18.2					
GM5	PIEZO		0	0.2	19.3					
GM6	PIEZO		0	0.1	18.2					
GM24	PIEZO		0	1.8	17.2		· · · · · · · · · · · · · · · · · · ·			

LANDFIL	L GAS MONITO	RING FOR	RM	(Baseline Ambient)					
Site Nam	e:			Site Add	lress:				
DUNDAI	LK LANDFILI			NEWRY ROAD, DUNDALK					
Operator	•			-					
DUNDAI	LK TOWN CO	UNCIL		National	Grid Ref	erence: 1632-12			
Site Statu	s: Closed		<u></u>	Date : 09	:02:2010	Time : 12.30 pm			
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calibration:			
GA2000/I	FID				April 20	010			
Monitori	ng Personnel:			Weather	•:	Barometric pressure:			
aw				Dry/War	m	1028mb			
			R	esults					
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments			
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)				
FLARE	PIEZO		21.3	15.5	4.6				
HUT			21	15	0				
The followir and FID and	ng houses and c alyser.	ommercial	properties we	ere visited a	Ind surveyed	d using GA2000 infra-red gas			
No's 2, 3, 4	1, 5, ,8, 9, 10, 11	, 12, 15, 18	3,19,20, River	rside Cresc	ent				
No's 2, 3 &	Newry Road								
Mc Kevitts, Agents, Har	Maxol, Yard Ma dys (offices & Y	ce Shop, A ard), Road	utoglass, Peu Drains.	ugeot Office	e, Lynch Min	i Mix (Yard), Portway Travel			

LANDFILI	L GAS MONITO	RING FOR	M	(Baselin	ne Ambier	nt])			
Site Nam	e:			Site Address:					
DUNDAI	LK LANDFILL	,		NEWRY ROAD, DUNDALK					
Operator	:								
DUNDAI	K TOWN CO	UNCIL		National Grid Reference: 1632-12					
Site Statu	s: Closed			Date: 15	:03:2010	Time : 12.30 pm			
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	ext Calibration:			
GA2000					April 20	10			
Monitori	ng Personnel:			Weather	: :	Barometric pressure:			
aw				Dry/ Col	d	1027mb			
			R	esults					
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments			
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)				
G1	PIEZO		0	0	19.3				
G2	PIEZO		0	0.4	18.8				
G3	PIEZO		0	0	18.6				
G4	PIEZO		0.3	1.2	18.6				
G5	PIEZO		0	0.2	20.1				
G6	PIEZO		2.3	1.6	17.6				
G7	PIEZO		0	0.3	18.9				
G8	PIEZO		1.4	1.2	19.6				
G9	PIEZO		0.1	0.6	19.6				
G10	PIEZO		2.6	1.4	18.4				
G16	PIEZO		0	0	18.9				
G17	PIEZO		0	1.6	18.4				
G20	PIEZO		1.4	2.3	18.2				
G21	PIEZO		0.5	0.8	18.9				
GM1	PIEZO		0	0.6	18.4				
GM2	PIEZO		0	1.7	18.2				
GM3	PIEZO		0.2	0.2	19.4				
GM4	PIEZO		0.1	0.4	19.1				
GM5	PIEZO		0	0.2	20.2				
GM6	PIEZO		0.2	0.1	19.1				
GM24	PIEZO		0	2	18.6				

LANDFILI	L GAS MONITO	RING FOR	M	(Baseline Ambient)					
Site Nam	e:			Site Add	ress:				
DUNDAI	.K LANDFILL	,		NEWRY ROAD, DUNDALK					
Operator	:								
DUNDAI	LK TOWN CO	UNCIL		National	Grid Refe	erence: 1	632-12		
Site Statu	s: Closed			Date: 15	:03:2010		Time : 12.30 pm		
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calib	ration:		
GA2000/I	FID				April 20	010			
Monitori	ng Personnel:	ł		Weather	•	Barom	etric pressure:		
aw				Dry/War	m	1027m	b		
Results									
Sample	Borehole/	Survey	CH ₄	CO ₂	02	<u>_</u>	Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)				
FLARE	PIEZO		26.7	12	5.4	*****			
HUT			27	13	0				
						<u> </u>			
The followir and FID an	ng houses and c alyser.	ommercial	properties we	ere visited a	ind surveyed	d using G	A2000 infra-red gas		
No's 2, 3, 4	\$, 5, ,8, 9, 10, 11	, 12, 15, 18	3,19,20, Rive	rside Cresc	ent				
No's 2, 3 &	Newry Road								
	Maxol, Yard Ma rdys (offices & Y			ugeot Office	e, Lynch Min	ii Mix (Ya	rd), Portway Travel		

LANDFILI	L GAS MONITO	RING FOR	M	(Baseline Ambient)						
Site Nam	e:			Site Address:						
DUNDAI	.K LANDFILL	,		NEWRY ROAD, DUNDALK						
Operator	•									
DUNDAI	K TOWN CO	UNCIL		National Grid Reference: 1632-12						
Site Statu	s: Closed			Date: 08:	Date : 08:04:2010 Time : 2.30 pm					
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calil	oration:			
GA2000					April 20	10				
Monitori	ng Personnel:			Weather	:	Baron	netric pressure:			
aw				Dry/ Colo	đ	1028n	ıb			
Results										
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	,	Comments			
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)					
G1	PIEZO		0	0	18.4					
G2	PIEZO		0	0.2	18.6					
G3	PIEZO		0	0.1	18.4					
G4	PIEZO		0.3	0.6	18.4					
G5	PIEZO		0	0.2	18.6					
G6	PIEZO		2.2	1.2	17.6					
G7	PIEZO		0.1	0.2	18.6					
G8	PIEZO		1.2	1.4	18.7					
G9	PIEZO		0	0.4	18.6					
G10	PIEZO		2.1	1.6	17.2					
G16	PIEZO		0	0.2	17.9					
G17	PIEZO		0.1	0.8	18.2					
G20	PIEZO		0.8	1.8	18.6					
G21	PIEZO		0.1	0.2	18.4					
GM1	PIEZO		0	0.4	18.6					
GM2	PIEZO		0	1.2	18.1					
GM3	PIEZO		0	0.2	18.4					
GM4	PIEZO		0	0.1	18.4					
GM5	PIEZO		0	0.2	18.4					
GM6	PIEZO		0.1	0.2	18.6					
GM24	PIEZO		0	0.4	18.2					

LANDFILL GAS MONITORI	NG FOR	M	(Baseline Ambient)				
Site Name:			Site Add	ress:			
DUNDALK LANDFILL			NEWRY	ROAD, D	UNDA	LK	
Operator:			-				
DUNDALK TOWN COUN	ICIL		National Grid Reference: 1632-12				
Site Status: Closed			Date: 08	:04:2010		Time : : 2.30 pm	
Instrument used:	al Analytic:	al Range:	Date Ne	xt Cali	bration:		
GA2000/FID				April 20	010		
Monitoring Personnel:			Weather	:	Baron	metric pressure:	
aw			Dry/War	m	1028n	nb	
		R	esults				
-	urvey	CH ₄	CO ₂	O ₂		Comments	
Station spike/other I Number)epth	(% v/v)	(% v/v)	(% v/v)			
FLARE PIEZO		28.6	10	8.2			
HUT		29	12	0			
The following houses and com and FID analyser. No's 2, 3, 4, 5, ,8, 9, 10, 11, 12					d using (GA2000 infra-red gas	

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

LANDFILI	L GAS MONITO	RING FOR	M	(Baseline Ambient)						
Site Nam	e:			Site Address:						
DUNDAI	.K LANDFILL			NEWRY ROAD, DUNDALK						
Operator	•									
DUNDAI	.K TOWN COU	JNCIL		National Grid Reference: 1632-12						
Site Statu	is: Closed			Date : 07:05:2010 Time : 15:30 pm						
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calil	bration:			
GA2000					May 201	2				
Monitori	ng Personnel:			Weather	:	Baror	netric pressure:			
aw				Dry/War	n	1018n	nb			
Results										
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments			
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)					
	PIEZO				40.5					
G1	PIEZO	·····	0	0	18.5					
G2	PIEZO		0	0.3	18.2					
G3	PIEZO		0	0	18.6					
G4	PIEZO		0.2	0.2	18.7					
G5 G6	PIEZO		<u>0.1</u> 2.1	0.1 1.4	<u>18.4</u> 18.2					
G7	PIEZO		0.1	0	18.4					
G8	PIEZO		1.4	1.2	18.6					
 G9	PIEZO		0.1	0.3	18.4					
G10	PIEZO		2.8	1.2	17.6					
G16	PIEZO		0.1	0	18.2					
G17	PIEZO		0	0.6	18.6					
G20	PIEZO		0.8	1.6	18.7					
G21	PIEZO		0	0.6	18.6					
GM1	PIEZO		0	0.2	18.2					
GM2	PIEZO		0	1	18.3					
GM3	PIEZO		0.1	0.1	18.6					
GM4	PIEZO		0.1	0.1	18.3					
GM5	PIEZO	-	0	0.3	17.9					
GM6	PIEZO		0	0.1	18.2					
GM24	PIEZO		0	0.3	18.7					

LANDFILI	L GAS MONITO	RING FOR	M	(Baseline Ambient)				
Site Nam	e:			Site Address:				
DUNDAL	.K LANDFILL			NEWRY ROAD, DUNDALK				
Operator								
DUNDAL	K TOWN CO	UNCIL		National	Grid Refe	erence:	1632-12	
Site Statu	s: Closed			Date: 07	:05:2010		Time : 15:30 pm	
Instrument used: Normal Analytic				al Range:	Date Ne	xt Calil	oration:	
GA2000/F	FID			May 201	2			
Monitori	ng Personnel:	I		Weather	•	Baror	netric pressure:	
aw				Dry/War	m	1018n	nb	
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		32.2	11.2	9.8			
HUT			32	11	0			
							··········	
The followir and FID an		ommercial	properties we	ere visited a	and surveyed	d using (GA2000 infra-red gas	

No's 2, 3, 4, 5, ,8, 9, 10, 11, 12, 15, 18, 19, 20, Riverside Crescent

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

LANDFIL	L GAS MONITO	RING FOF	RM	(Baseline Ambient)					
Site Nam	e:			Site Address:					
DUNDAI	.K LANDFILL			NEWRY ROAD, DUNDALK					
Operator	•			4					
DUNDAI	.K TOWN COU	JNCIL		National	Grid Refe	erence:	1632-12		
Site Statu	s: Closed			Date: 09:	Date : 09:06:2010 Time : 11.30 am				
Instrume	nt used:	Norm	al Analytic	al Range:	Date Ne	xt Calil	bration:		
GA2000					May 201	2			
Monitori	ng Personnel:			Weather	:	Baron	netric pressure:		
aw				Dry/ Wai	m	1008n	nb		
			R	esults		1			
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	·	Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)				
G1	PIEZO		0	0	18.2				
G2	PIEZO		0	0.2	18.9				
G3	PIEZO		0	0.2	18.2				
G4	PIEZO		0.2	0.3	18.6		······		
G5	PIEZO		0	0.0	17.9				
G6	PIEZO		2.3	1.6	18.1				
G7	PIEZO		0.1	0.2	18.1				
G8	PIEZO		1.2	0.8	18.2				
G9	PIEZO		0	0.4	18.2				
G10	PIEZO		2.6	1.4	17.8				
G16	PIEZO	· · · · · · · · · · · · · · · · · · ·	0	0.1	18.6				
G17	PIEZO		0	0.8	18.4				
G20	PIEZO		0.6	1.7	17.9				
G21	PIEZO		0	0.1	18.3				
GM1	PIEZO		0	0.2	18.6				
GM2	PIEZO		0	1.1	18.4				
GM3	PIEZO		0	0.1	18.1				
GM4	PIEZO		0	0	18.1				
GM5	PIEZO		0	0.2	18.2				
GM6	PIEZO		0	0.2	18.4				
GM24	PIEZO		0	0.1	18.1				

LANDFILI	L GAS MONITO	RING FOR	M	(Baseline Ambient)				
Site Nam	e:			Site Address:				
DUNDAL	.K LANDFILL			NEWRY ROAD, DUNDALK				
Operator	•			-				
DUNDAL	K TOWN CO	UNCIL		National	Grid Refe	erence:	1632-12	
Site Statu	s: Closed		Date: 09:	:06:2010		Time : 11.30 am		
Instrument used: Normal Analytic				al Range:	Date Ne	xt Calil	oration:	
GA2000/I	FID				May 201	2		
Monitorii	ng Personnel:			Weather	•	Baron	netric pressure:	
aw				Dry/War	m	1008n	nb	
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		34.6	10.8	11.4			
HUT			0	0	0	E	rror in monitoring equipment	
The followir and FID and		ommercial	properties we	ere visited a	ind surveyed	d using (GA2000 infra-red gas	

No's 2, 3, 4, 5, ,8, 9, 10, 11, 12, 15, 18, 19, 20, Riverside Crescent

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

LANDFILL GAS MONITORING FORM (Baseline Ambient)											
Site Nam	e:		Site Address:								
DUNDAI	.K LANDFILL		NEWRY ROAD, DUNDALK								
Operator	•										
DUNDAI	.K TOWN CO		National Grid Reference: 1632-12								
Site Statu	s: Closed		Date : 14:07:2010 Time : 10.30 am								
Instrume	nt used:	Norm	Normal Analytica		Range: Date Ne		bration:				
GA2000					May 2012						
Monitoring Personnel:				Weather: Barometric pressure:							
aw			Dry/ Wai	Warm 996mb							
Results											
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments				
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)						
G1	PIEZO		0	0	18.4		Hun				
G2	PIEZO		0	0.3	18.1						
G3	PIEZO		0	0	18.1						
G4	PIEZO		0.2	0.2	18.2						
G5	PIEZO		0	0	18.2						
G6	PIEZO		1.8	1.2	17.6						
G7	PIEZO		0.1	0.4	17.9						
G8	PIEZO		1.6	0.6	17.6						
G9	PIEZO		0.2	0.4	17.9						
G10	PIEZO		2.2	1.3	18.1						
G16	PIEZO		0	0	18.2						
G17	PIEZO		0	0.6	17.9						
G20	PIEZO		0.6	1.4	18.3						
G21	PIEZO		0	1.2	17.9						
GM1	PIEZO		0	0.1	18.9						
GM2	PIEZO		0	0.2	18.2						
GM3	PIEZO		0	0.2	18.1						
GM4	PIEZO		0.3	0.2	17.9						
GM5	PIEZO		0	0.3	18.3						
GM6	PIEZO		0	0.3	18.3						
GM24	PIEZO		0	0.4	18.2						

LANDFILI	L GAS MONITO	RING FOR	M	(Baselin	ne Ambiei	nt_)		
Site Nam	e:			Site Address:				
DUNDALK LANDFILL				NEWRY ROAD, DUNDALK				
Operator	•							
DUNDAL	K TOWN CO	UNCIL		National Grid Reference: 1632-12				
Site Statu	s: Closed	······································		Date : 14:07:2010 Time : 10.30 am				
Instrume	nt used:	Norm	al Analytic	I Range: Date Next		t Calibration:		
GA2000/I	FID				May 201	2		
Monitoring Personnel:				Weather	:	Barometric pressure:		
aw				Dry/War	m	996mb		
			R	esults		de		
Sample Station Number	Borehole/ spike/other	Survey	CH ₄	CO ₂	O ₂	Comments		
		Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		28.2	9.2	8.6			
HUT			0	0	0	Error in monitoring equipment		
				l 				
The fellows			anapartias			d using GA2000 infra-red cas		

The following houses and commercial properties were visited and surveyed using GA2000 infra-red gas and FID analyser.

No's 2, 3, 4, 5, ,8, 9, 10, 11, 12, 15, 18, 19, 20, Riverside Crescent

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

LANDFILI	M	(Baselir	ie Ambiei	nt])				
Site Nam	e:			Site Address:				
DUNDAI	.K LANDFILL			NEWRY ROAD, DUNDALK				
Operator	•							
DUNDAI	.K TOWN COU	JNCIL		National	Grid Refe	erence:	1632-12	
Site Statu	is: Closed			Date: 27:08:2010 Time: 14.30 am				
Instrument used: Normal Analytica				al Range:	Date Ne	xt Calil	oration:	
GA2000			May 201	2				
Monitoring Personnel:				Weather	:	Baror	netric pressure:	
aw				Dry/ war	m	1026n	nb	
Results								
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
G1	PIEZO		0	0	19.8			
G2	PIEZO		0	0.3	20.2			
G2 G3	PIEZO	<u></u>	0	0.3	20.2			
G4	PIEZO		0.1	0.1	20.4			
G5	PIEZO		0.1	0	20.2			
G6	PIEZO		0.3	0.6	19.5			
G7	PIEZO		0	0.4	20.1			
G8	PIEZO		0.3	0.6	19.5			
G9	PIEZO		0	0.1	20.1			
G10	PIEZO		0.5	0.6	18.6			
G16	PIEZO		0	0.1	20.7			
G17	PIEZO		0	0.8	19.1			
G20	PIEZO		0.8	0.7	19.8			
G21	PIEZO		0	0.1	20			
GM1	PIEZO		0	1.3	18.4			
GM2	PIEZO		0	1.2	18.9			
GM3	PIEZO		0	0.8	19.8			
GM4	PIEZO		0.1	0.3	19.6			
GM5	PIEZO		0	0.2	18.7			
GM6	PIEZO		0	0.3	20.6			
GM24	PIEZO		0	0.1	20.2			

LANDFILI	L GAS MONITO	RING FOR	М	(Baseline Ambient)				
Site Nam	e:			Site Address:				
DUNDAI	LK LANDFILL	,		NEWRY ROAD, DUNDALK				
Operator								
DUNDAI	K TOWN CO	UNCIL		National	Grid Refe	erence:	1632-12	
Site Statu	s: Closed			Date: 27	:08:2010		Time : 14.30 am	
Instrument used: Normal Analytics				al Range:	Date Ne	xt Calil	oration:	
GA2000/FID				May 201	2			
Monitoring Personnel:				Weather	•	Baron	netric pressure:	
aw			Dry/ war	m	1026n	ıb		
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		30.1	9.4	8.6			
HUT			0	0	0	Sam	pler awaiting repair	
		ommercial	properties we	ere visited a	ind surveyed	d using C	GA2000 infra-red gas	
and FID an	alyser.				·			
No's 2, 3, 4	4, 5, ,8, 9, 10, 11	, 12, 15, 18	3,19,20, Rive	rside Cresc	ent			
No's 2, 3 &	Newry Road							

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

All levels detected using the FID where below 15 part per million (10,000ppm = 1% v/v).

LANDFIL	RM	(Baseline Ambient)					
Site Nam	e:	****	******	Site Address:			
DUNDAI	LK LANDFILL			NEWRY ROAD, DUNDALK			
Operator							
DUNDAI	LK TOWN CO	UNCIL		National	Grid Refe	erence:	632-12
Site Statu	s: Closed		······	Date: 10:	:09:2010		Time : 11.30 am
Instrument used: Normal Analytica				al Range:	Date Ne	xt Calib	eration:
GA2000					May 201	2	
Monitoring Personnel:				Weather	:	Baron	netric pressure:
aw				Dry/ cool	l	1008m	b
			R	esults		1	
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)		
G1	PIEZO		0	0	21.5		
G2	PIEZO		0	0.1	21.3		
G3	PIEZO		0	0	21.5		
G4	PIEZO		0	0	21.5		
G5	PIEZO		0	0	21.6		
G6	PIEZO		0	0	21.3		
G7	PIEZO		0	0	21.3		
G8	PIEZO		0	0	21.3		
G9	PIEZO		0	0	21.6		
G10	PIEZO		0	0	21.6		
G16	PIEZO		0	0	21.5		
G17	PIEZO		0	1.2	19.4		
G20	PIEZO		0.7	0.7	20		
G21	PIEZO		0	0	21.4		
GM1	PIEZO		0	1.3	18.4		
GM2	PIEZO		0	1.2	19.4		
GM3	PIEZO		0	0.4	19.7		
GM4	PIEZO		0	0.2	19.6		
GM5	PIEZO		0	0.1	20.1		
GM6	PIEZO		0	0.1	20.7		
GM24	PIEZO		0	0	21.1		

LANDFILI	LANDFILL GAS MONITORING FORM (Baseline Ambient)								
Site Nam	e:			Site Add	Site Address:				
DUNDAL	K LANDFILL			NEWRY ROAD, DUNDALK					
Operator	•								
DUNDAL	.K TOWN COU	NCIL		National	Grid Refe	erence:	1632-12		
Site Statu	s: Closed			Date: 10:	Date : 10:09:2010 Time : 11.30 am				
Instrument used: Normal Analytica				al Range:	Date Ne	xt Calib	oration:		
GA2000/I	FID			May 201	2				
Monitoring Personnel:				Weather	•	Baron	netric pressure:		
aw				Dry/ cool	L.	1008m	ıb		
			R	esults					
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)				
FLARE	PIEZO		26.1	9.1	8.2				
НИТ			29	10	9				
The followir and FID an		mmercial	properties we	ere visited a	ind surveye	d using G	A2000 infra-red gas		
No's 2, 3, 4	4, 5, ,8, 9, 10, 11,	12, 15, 18	3,19,20, Rive	rside Cresc	ent				
No's 2, 3 &	Newry Road								
Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.									
All levels detected using the FID where below 15 part per million (10,000ppm = $1\% v/v$).									

LANDFIL	RING FOR	M	(Baselin	ne Ambie	nt_)			
Site Nam	e:			Site Add	ress:			
DUNDAI	LK LANDFILL			NEWRY ROAD, DUNDALK				
Operator	••							
DUNDAI	LK TOWN CO	UNCIL		National	Grid Refe	erence: 1632-12		
Site Statu	s: Closed			Date: 07:	10:2010	Time: 2:30 pm		
Instrument used: Normal Analytica				al Range:	Date Ne	xt Calibration:		
GA2000					May 201	2		
Monitoring Personnel:				Weather	:	Barometric pressure:		
aw	-			Dry/ cool	l	1011mb		
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂	Comments		
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
G1	PIEZO		0	0	21.6			
G2	PIEZO		0	0	21.6			
G3	PIEZO		0	0	21.3			
G4	PIEZO		0	0.2	20.8			
G5	PIEZO		0	0	21			
G6	PIEZO		0	0.1	21			
G7	PIEZO		0	0.1	21			
G8	PIEZO		0	0.1	21			
G9	PIEZO		0	0.1	21			
G10	PIEZO		0.1	0.2	20.9			
G16	PIEZO		0	0	21.5			
G17	PIEZO		0	1.5	18.3			
G20	PIEZO		0.7	0.2	20.5			
G21	PIEZO		0	0	21.1			
GM1	PIEZO		0	1.2	18.6			
GM2	PIEZO		0	1.2	19.2			
GM3	PIEZO		0	0.3	20.1			
GM4	PIEZO		0	0.1	20.2	·····		
GM5	PIEZO		0	0.1	20.2			
GM6	PIEZO		0.1	0.2	20.3			
GM24	PIEZO		0.1	0.2	20.3			

LANDFILI	L GAS MONITO	RING FOR	M	(Baseline Ambient)				
Site Nam	e:			Site Address:				
DUNDAI	.K LANDFILL	,		NEWRY	NEWRY ROAD, DUNDALK			
Operator								
DUNDAL	K TOWN CO	UNCIL		National	Grid Refe	erence:	1632-12	
Site Statu	s: Closed		Date: 07	:10:2010		Time : 2:30pm		
Instrument used: Normal Analytica			al Range:	Date Ne	xt Calil	oration:		
GA2000/FID				May 201	2			
Monitoring Personnel:				Weather	•;	Baron	netric pressure:	
aw			Dry/ coo	I	1011n	ıb		
			R	esults		I		
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		32.1	9.6	8.7			
HUT			31	10	9			
The followin and FID an		ommercial	properties we	ere visited a	ind surveyed	d using C	GA2000 infra-red gas	
No's 2, 3, 4	ŧ, 5, ,8, 9, 10, 11	, 12, 15, 18	3,19,20, Rive	rside Cresc	ent			

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

All levels detected using the FID where below 15 part per million (10,000ppm = 1% v/v).

LANDFIL	RM	(Baselin	1e Ambie	nt[])				
Site Nam	e:			Site Add	Site Address:			
DUNDAI	.K LANDFILL	,		NEWRY ROAD, DUNDALK				
Operator								
DUNDAI	.K TOWN CO		National	Grid Ref	erence:	1632-12		
Site Statu	s: Closed		Date: 10:	Date : 10:11:2010 Time : 2:30 pm				
Instrument used: Normal Analytica				al Range:	Date Ne	xt Calil	pration:	
GA2000					May 201	2		
Monitoring Personnel:				Weather	:	Baron	netric pressure:	
aw				Dry/ cold	l	1002n	ıb	
Results								
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
G1	PIEZO		0	0	21.4			
G2	PIEZO		0	0	21.1			
G3	PIEZO		0	0.1	20.8			
G4	PIEZO		0	0	21			
G5	PIEZO		0	0	21.2			
G6	PIEZO		0	0.1	21.2			
G7	PIEZO		0	0.1	20.9			
G8	PIEZO		0	0.1	20.8			
G9	PIEZO		0	0	21.6			
G10	PIEZO		0.1	0.2	20.8			
G16	PIEZO		0	0	21.2			
G17	PIEZO		0	1.3	18.9			
G20	PIEZO		0.7	0.2	20.9			
G21	PIEZO		0.1	0.1	21.2			
GM1	PIEZO		0	0.8	19.8			
GM2	PIEZO		0	0.9	19.9			
GM3	PIEZO		0	0.7	20			
GM4	PIEZO		0	0.2	20.2			
GM5	PIEZO		0	0	20.6			
GM6	PIEZO		0	0.3	20.3			
GM24	PIEZO		0	0.1	19.4			

LANDFILI	L GAS MONITO	M	(Baseline Ambient)					
Site Nam	e:			Site Address:				
DUNDAL	.K LANDFILL			NEWRY	ROAD, D	UNDAI	LK	
Operator	•			-				
DUNDAL	K TOWN COL	JNCIL		National	l Grid Refe	erence:	1632-12	
Site Statu	s: Closed		***********	Date : 10	:11:2010		Time : 2:30pm	
Instrument used: Normal Analytica				al Range:	Date Ne	xt Calil	oration:	
GA2000/FID					May 201	2		
Monitori	ng Personnel:	I		Weather	*:	Barometric pressure:		
aw			Dry/ cold	ł	1002n	ıb		
			R	esults				
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		28.6	10.4	8.6	*****		
HUT			29	10	8			
				1				

No's 2, 3, 4, 5, ,8, 9, 10, 11, 12, 15, 18, 19, 20, Riverside Crescent

No's 2, 3 & Newry Road

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

All levels detected using the FID where below 15 part per million (10,000ppm = 1% v/v).

LANDFILI	RM	(Baselii	ne Ambie	nt_)				
Site Nam	e:			Site Address:				
DUNDAI	.K LANDFILL	,		NEWRY	NEWRY ROAD, DUNDALK			
Operator	•							
DUNDAI	K TOWN CO		National	Grid Refe	erence: 1	632-12		
Site Statu	is: Closed			Date: 10:	:12:2010		Time : 2:30 pm	
Instrument used: Normal Analytica				al Range:	Date Ne	xt Calib	ration:	
GA2000					May 201	2		
Monitoring Personnel:				Weather	· · · · · · · · · · · · · · · · · · ·	Barom	etric pressure:	
aw				Dry/ cold	l	1032m	b	
Results								
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
G1	PIEZO		0	0	20.7			
G2	PIEZO		0	0	20.7			
G3	PIEZO		0	0.1	19.4			
G4	PIEZO		0	0.1	19.7			
G5	PIEZO		0	0	20.9			
G6	PIEZO		0	0.1	19.8			
G7	PIEZO		0	0.1	20.4			
G8	PIEZO		0	0.1	19.6			
G9	PIEZO		0	0	19.7			
G10	PIEZO		0.1	0.2	19.8			
G16	PIEZO		0	0	19.7			
G17	PIEZO		0	1.1	19.1			
G20	PIEZO		0.7	0.2	20.4			
G21	PIEZO		0	0	20.8			
GM1	PIEZO		0	0.6	19.4			
GM2	PIEZO		0	0.7	19.2			
GM3	PIEZO		0	0.6	19.4			
GM4	PIEZO		0	0.2	19.7			
GM5	PIEZO		0	0.1	19.9			
GM6	PIEZO		0	0.1	20.1			
GM24	PIEZO		0	0.1	19.8			

LANDFILI	GAS MONITO	RING FOR	М	(Baseline Ambient)				
Site Name	e:		****	Site Address:				
DUNDAL	.K LANDFILL			NEWRY ROAD, DUNDALK				
Operator	;							
DUNDAL	K TOWN COU	UNCIL		National	Grid Refe	rence:	1632-12	
Site Statu	s: Closed		Date: 10:	12:2010		Time : 2:30pm		
Instrument used: Normal Analytica				al Range:	Date Ne	xt Calil	oration:	
GA2000/F	FID			May 201	2			
Monitoring Personnel:				Weather	•	Baron	netric pressure:	
aw			Dry/ cold	l	1032m	ıb		
Results								
Sample	Borehole/	Survey	CH ₄	CO ₂	O ₂		Comments	
Station Number	spike/other	Depth	(% v/v)	(% v/v)	(% v/v)			
FLARE	PIEZO		26.2	11.6	8.2			
нит			27	10	7			
					· · · · · · · · · · · · · · · · · · ·			
The followir and FID and		ommercial	properties we	ere visited a	ind surveyed	d using C	GA2000 infra-red gas	
No's 2, 3, 4	1, 5, ,8, 9, 10, 11	, 12, 15, 18	3,19,20. Rive	rside Cresc	ent			
	Newry Road							

Mc Kevitts, Maxol, Yard Mace Shop, Autoglass, Peugeot Office, Lynch Mini Mix (Yard), Portway Travel Agents, Hardys (offices & Yard), Road Drains.

All levels detected using the FID where below 15 part per million (10,000ppm = 1% v/v).

APPENDIX J

COMPOSTING MONITORING AND BIOFILTER RESULTS

V & W Recycling

1 Introduction

No details of this sample are known, 1 sample was received on the 15th of December 2010, and labelled as follows:

Du Mahanda	Client code
BnM lab code	
GUUL 01 201	Not known
GW101201	
GWIVIZVI	

The sample was analysed as requested by the client.

2 Results of Analysis

Compost Testing and Analysis Service

Report ref: GW 101201

Sample reference: GW 101201 Sample matrix: not known

Maturity Tests

Specific Oxygen Uptake Rate

Sample no	mgO2/gdm/h
GW 101201	1.59

Self Heating

Sample no	°C above ambient
GW101201	22

Moisture content

Sample no	[%] Moisture (w/w)
GW 101201	61.3

Extractable nutrients (CAT soluble)

Sample no	pН	EC uS.cm ⁻¹	NH4-N mg.L ⁻¹	NO ₃ -N mg.L ⁻¹	PO4-P mg.L ⁻¹	K mg.L ⁻¹
GW 101201	7.44	1318	3	257	10	1290

Total Plant Nutrients and Organic Matter

Sample no	Organic Matter	%C	%N	%P	%К
GW 101201	54.2	30.1	3.0	0.4	1.3

V & W Recycling

Particle Size Analysis (Dry Wt. Basis)

				8-16.5mm	16.5-	>31.5
<1mm %	1-2mm %	2-4mm %	4-8mm %	%	31.5mm %	mm %
24	31	26	18	1	<0.01	<0.01

Contaminants (Dry Wt. Basis)

Sieve size	Stones %	Metals %	Plastic %	Glass %	Other %
<1mm	n/d	n/d	n/d	n/d	n/d
1-2mm	n/d	n/d	n/d	n/d	n/d
2-4mm	1.15	<0.01	< 0.01	<0.01	< 0.01
4-8mm	1.38	< 0.01	<0.01	< 0.01	< 0.01
8-16mm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16-31.5mm	< 0.01	<0.01	<0.01	< 0.01	<0.01
>31.5mm	< 0.01	< 0.01	<0.01	< 0.01	<0.01

Heavy Metals (Dry Wt. Basis)

Sample no	Cd	Cr '	Cu	Hg	Ni	Pb	Zn
	mg.kg ^{.1}	mg.kg ^{·1}	mg.kg ⁻¹				
GW 101201		24.3			18.1	36.7	175 /*

Microbiological Analysis

54 J
Salmonella
(sp/25g)
Not Detected

Cress Germination

Cress Germination Test

Sample no	Sample Diluted with <u>50%</u> peat to bring to correct	% Germination compared to control	Root Index Compared to control (%)	MLV compared to control (%)
GW 101201	EC	93.3	102.6	102.5
+ 0001 011				

* <80% = fail (method based on pr EN 16089)

x

Results of Analysis

A sample was received from V&W recylcing on the 18th of March 2010 (GW 100310). It was received in good condition. Analysis was carried out on this sample as requested by the client.

Compost Testing and Analysis Service

Report ref: GW 100310

Sample reference: GW 100310

Sample matrix: Composted source separated household waste

Maturity Tests

Specific Oxygen Uptake Rate

Sample no	mmolO ₂ /kg OS/h	
GW 100310	0.37	ļ

Self Heating Test

Sample no	Maximum
_	temperature
	reached (°C)
GW 100310	25

Plant Nutrient and Organic Matter Content

Water Soluble Nutrients

pH	EC	NH4-N	NO ₃ -N	PO4-P	K
*	∝S.cm ⁻¹	mg.L ⁻¹	mg.L'	mg.L	mg.L
7.06	2560	4	593	9	1789

Total Plant N	utrients and	Carbon Con	tent (Dry W	t. Basis)
N	P	K	С	C:N
%	*/0	%	%	%
2.1	0.3	1.1	23.26	11.3

Heavy Metals (Dry Wt. Basis)

Copper	Zinc	Lead	Cadmium	Mercury	Nickel	Chromium
mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹
56.1	186	136	0.387	0.13	32.3	118

Physical Analysis

H20 % 49.1

Particle Size Analysis (Dry Wt. Basis)

>31.5	16.5-	8-16.5mm %	4-8mm %	2-4mm %	1-2mm %	<1mm %	
<u>mm %</u>	<u>31.5mm %</u> 0	2	15	16	18	47	

Bord na Móna Ltd.

Compost Testing and Analysis Service Interpretation of Results Sheet

Ref: IR-1

Below are detailed maximum values or desirable ranges of values for mature biowaste compost. Results are on a fresh wt. basis except where indicated. Plant Nutrient and Organic Matter Content Exchangeable Nutrients

6.9-8.3	2000-6000	<1-500	<1-240	50-120	620-2280
	∞ .cm ⁻¹		mg.L ^{.t}	mg.L ¹	mg.L ⁻¹
pH*	SC*	NH4-N mg.L ⁻¹	NO3-N	P	ĸ

*Water soluble

Total Plant Nutrients and Carbon Content (Dry wt. Basis)

N	Р	к	ASH	C:N	Mg	Ca
%	%	%	%		%	*/6
0.8-1.9	0.4-1.1	0.6-1.7	24-51	≤25	0.18-0.78	1.57-5.07

Heavy Metals (Dry Wt. Basis) 4

Class	Cd	Cr	Cu	Pb	Hg	NI	Zn
	mg.kg-1	mg.kg-l	mg.kg-1	mg.kg-l	rog.kg ⁻¹	nig.kg-l	mg.kg-1
I	0.7	100	100	100	0.5	50	200
II	1.5	150	150	150	1	175	400

Physical Analysis

H ₂ 0	DBD**	MBD
%	g.L ⁻¹	g.Ľ ⁻¹
55-76	120-369	500-820

Contaminants (Dry Wt. Basis)

vs.L-1	0.5.L ⁻¹ Free	0.5-2.L ⁻¹ Low	>2.L- ¹ Significant	
Foreign Material (Metał, Glass, Plastic etc)	<0.1% Free of foreign material	0.1-0.5 % Potentially free	>0.5% Marked quantity (Noticeable)	>2% Significant quantity (distinct)
Stones	< 5% Low	>5% Significant		

Microbiological Analysis

Faccal	Salmonella (sp/25g)
Collforms	
(MPN/g)	
<1000	Absent in 25g

**Denotes Bord na Móna suggested standard

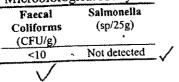
Oxygen Uptake Rate

Bord na Móna Maturity Indicator Values (OS = organic solids)

mmolO2/kg OS/b**	Compost Process Stage
>26	Very Unstable
16-25	Unstable
11-15	Moderately Stable
5-10	Stable
<5	Completely stable

Bord na Móna Ltd.

V & W Recycling


Contaminants (Dry Wt. Basis)

manuano	(Dig na D				
Sieve size	Glass %	Metals %	Plastic %	Stones %	Other %
<lmm< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lmm<>	ND	ND	ND	ND	ND
1-2mm	ND	ND	ND	ND	ND
2-4mm	<0.01	< 0.01	<0.01	< 0.01	< 0.01
<u>4-8mm</u>	< 0.01	0.03	< 0.01	< 0.01	< 0.01
4-816mm	<0.01	<0.01	< 0.01	1.44	<0.01
16-31.5mm	<0.01	<0.01	< 0.01	3.20	< 0.01
>31.5mm	<0.01	< 0.01	<0.01	< 0.01	<0.01
>31.5000	~0.01	-0.01	5.0 -		

7 4

ND not determined

Microbiological Analysis

1

Bord na Móna Ltd.

V & W Recycling

AND SAME

1 Introduction

No details of this sample are known, 1 sample was received on the 27th of October 2010, and labelled as follows:

BnM Jah code	Client code
GW101005	Not known

The sample was analysed as requested by the client.

2 Results of Analysis

Compost Testing and Analysis Service

Report ref: GW 101005

Sample reference: GW 101005 Sample matrix: not known

Maturity Tests

Specific Oxygen Uptake Rate

Sample no	mgO2/gdm/h
GW 101005	4.18

Self Heating

Sample no	°C above ambient
GW101005	20

Moisture content

Sample no	* Moisture (w/w)
GW 101005	61.2

Extractable nutrients (CAT soluble)

Sample no	рН	EC uS.cm ⁻¹	NH₄-N mg.L ^{·1}	NO ₃ -N mg.L ⁻¹	PO ₄ -P mg.L ⁻¹	K mg.L ⁻¹
GW 101005	7.94	1198	1	139	10	1207

Total Plant Nutrients and Organic Matter

Sample no	Organic Matter	%C	%N	%P	%K
GW 101005	54.6	30.4	2.7	0.3	1.0

.

V & W Recycling

Particle Size Analysis (Dry Wt. Basis)

				8-16.5mm	16.5-	>31.5
<1mm %	1-2mm %	2-4mm %	4-8mm %	%	31.5mm %	<u>mm %</u>
31	26	21	18	4	<0.01	<0.01

Contaminants (Dry Wt. Basis)

Sieve size	Stones %	Metals %	Plastic %	Glass %	Other %
<1mm	n/d	n/d	n/d	n/d	n/d
1-2mm	n/d	n/d	n/d	n/d	n/d
2-4mm	2.61	< 0.01	· 0.01	< 0.01	<0.01
4-8mm	2.83	-0.01	< 0.01	0.59	<0.01
8-16mm	<0.01	<0.01	<0.01	< 0.01	<0.01
16-31.5mm	< 0.01	<0.01	<0.01	< 0.01	<0.0}
>31.5mm	× 0.01	<0.01	< 0.01	< 0.01	< 0.01

Heavy Metals (Dry Wt. Basis)

	Cd	Cr	Cu	Hg	Ni	Pb	Zn
Sample no	mg.kg ⁻¹	mg.kg	mg.kg ⁻¹	mg.kg ¹	mg.kg ⁻¹	mg.kg ⁻¹	mg.kg ⁻¹
GW 101005	0.103	54.4	36.1	0.1	16.3	29.7	176

Microbiological Analysis

E. Coli	Salmonella
(cfu/g)	(sp/25g)
270	Not Detected

Cress Germination

Cress Ger	mination Test			
Sample n	 Sample Diluted with 50% peat to 	% Germination compared to	Root Index Compared to	MLV compared to control (%)
	bring to correct	control	control (%)	

96.7

EC * <80% = fail (method based on pr EN 16089)

Radish Germination

GW 101005

Radish Germi				
Sample no	Sample Diluted with <u>50%</u> peat to bring to correct	% Germination compared to control	Root Index Compared to control (%)	MLV compared to control (%)
GW 101005	EC	96.7	90.2	89.9

99.6

98.9

* <80% fail (method based on pr EN 16089)

_	
a second	
	•

7

UR environmental services

Environmental Science & Management Water, Soil & Air Testing

Ref- 2009

Unit 35 Boyne Busiliess Park. Drogheda Co. Louth ireland +353 41 9845440 Ťe∶ +353 41 9846171 Fax www.euroenvile Web into@euroecs ie email

1143/006/01

16/03/2010

16/03/2010

Acceptable

25/03/2010

Other

Delivered by Customer

Lab Report Ref. No. Veronica Martin Customer V & W Recycling Date of Receipt Shredding Service Date Testing Commenced Newry Rd **Received or Collected** Dundalk Condition on Receipt Co Louth Date of Report Customer PO Biofilter 1 - Wood Chip Sample 16/03/10 Customer Ref Sample Type

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
% Moisture Content	0	Drying @ 104 C	67.6	ن: تع	
Ammonia (Solid)	114	Colorimetry	118.73	mg/Kg as N	
pH (Solid)	110	Electrometry	6.3	pH Units	
TVC's @ 22 (Solid)	141	Incubation @ 22C/ 72H	300000	no/g	
TVC's @ 37 (Solid)	141	Incubation @ 37C/ 48H	129000	រាជវ័ម្ម	

Signed : 1) H(S(...)

Donna Heslin - Laboratory Manager

Acr. Accredited Parameters by ISO 17025 2005

All organic results are analysed as received and all results are corrected for dry weight at 104 C Results shall not be reproduced, except in full, without the approval of EURO environmental services Results contained in this report relate only to the samples tested

Date : _____2503.410

EURO environmental services

Environmental Science & Management Water,Soil & Air Testing Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9845171 Web: www.euroenv.ie email info@euroenv.ie

÷

Customer	Veronica Martin	Lab Report Ref. No.	1143/007/01
	V & W Recycling	Date of Receipt	23/07/2010
	Shredding Service	Date Testing Commenced	23/07/2010
	Newry Rd Dundalk	Received or Collected	Delivered by Customer
	Co Louth	Condition on Receipt	Acceptable
Customer PO		Date of Report	06/08/2010
Customer Ref	Biofilter 1 - Wood Chip Sample 23/07/10	Sample Type	Other

CERTIFICATE OF ANALYSIS

Test Parameter

% Moisture Content
Ammonia (Solid)
pH (Solid)
TVC's @ 22 (Solid)
TVC's @ 37 (Solid)

SOP	Analytical Technique	Result	Units	Acc.
0	Drying @ 104 C	63.7	%	
114	Colorimetry	170.97	mg/Kg as N	
119	Electrometry	6.5	pH Units	
141	Incubation @ 22C/ 72H	350000	no/g	
141	Incubation @ 37C/ 48H	320000	no/g	
141	Incubation @ 37C/ 48H	320000	no/g	

Signed : Yuu Ou

Date : _ 6/8/10

Katherine McQuillan - Technical Manager

Acc. : Accredited Parameters by ISO 17025:2005

All organic results are analysed as received and all results are corrected for dry weight at 104 C Results shall not be reproduced, except in full, without the approval of EURO environmental services Results contained in this report relate only to the samples tested

EURO environmental services

Environmental Science & Management Water,Soil & Air Testing Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.euroenv.ie email info@euroenv.ie

Customer	Veronica Martin	Lab Report Ref. No.	1143/007/02
	V & W Recycling	Date of Receipt	23/07/2010
	Shredding Service	Date Testing Commenced	23/07/2010
	Newry Rd	Received or Collected	Delivered by Customer
	Dundalk Co Louth	Condition on Receipt	Acceptable
Customer PO	Co Louin	Date of Report	06/08/2010
Customer Ref	Biofilter 2 - Wood Chip Sample 23/07/10	Sample Type	Other

CERTIFICATE OF ANALYSIS

Test Parameter

% Moisture Content Ammonia (Solid) pH (Solid) TVC's @ 22 (Solid) TVC's @ 37 (Solid)

SOP	Analytical Technique	Result	Units	Acc.
0	Drying @ 104 C	64.4	%	
114	Colorimetry	75.12	mg/Kg as N	
110	Electrometry	6.2	pH Units	,
141	Incubation @ 22C/ 72H	410000	no/g	
141	Incubation @ 37C/ 48H	180000	no/g	

Signed : MUQuel Katherine McQuillan - Technical Manager

Acc. : Accredited Parameters by ISO 17025:2005

Date : 6/8/10

All organic results are analysed as received and all results are corrected for dry weight at 104 C Results shall not be reproduced, except in full, without the approval of EURO environmental services Results contained in this report relate only to the samples tested

Inlet & Outlet Gasses BED Ammonia TVC @22 TVC @37 Ammonia Ammonia Hyd. Sulph. Hyd. Sulph. Mercaptans Mercaptans Moisture Out In Out ln deg C degC In Out (ppm v/v) Content (%) pH Date Checked BY No. -------- sie The second -6.5 176.97 350000 320000 63.7 23/ 7/10 Fur Emponent Sennal -200 75.12 410000 180000 The 朣 -3 64.4 6.2 23/7/10 2 Fun Environ Ernices 0 0 0 17 38 0 -6/7/10 VR WROD ----0 0 0 0 20 44 ----6/10 VBW Rac _____ 2 0 D 0 42 15 0 -1 25/2/11 --V.R. W Recy --267.36 4000000 350000 61.27 7.1 11/3/11 VR W Rey

Biofilter Bi-Annual Monitoring Dundalk Civic Waste Facility W0034-02

		BED					Inlet & Outlet Gasses						
Date Checked	вү	No,	Moisture Content (%)	pН	Ammonia (ppm v/v)	TVC @22 deg C	TVC @37 degC	Ammonia In	Ammonia Out	Hyd. Sulph. In	Hyd. Sulph. Out	Mercaptans In	Mercaptan Out
25/3/10	Euro Enviroment SERVICES.]	67.6	6.3		300000		1					
15/1/10	V&W REC.	1						41	17	0	0	0	0
	-												
						-							

Biofilter Bi-Annual Monitoring Dundalk Civic Waste Facility W0034-02

1

.

APPENDIX K

NOISE REPORT

Environmental Noise Measurement Report

Measurement Details

Location: Dundalk Landfill Site 2010 Description: Date of Measurement: 02/06/2010 10:21

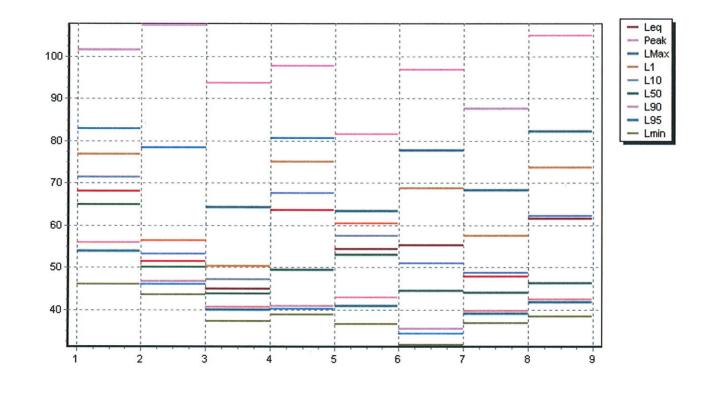
Instrumentation Details

 Sound Level Meter:
 Cirrus Research plc CR:800B C19087FD

 Acoustic Calibrator:
 Cirrus Research plc CR:511E

 Calibration:
 Cirrus Research plc CR:511E

(for	Lmax a	and I	_ns)
	(for	(for Lmax a	(for Lmax and I


Measurement Data

Start of Measurements:	02/06/2010 10:21
No. of Measurements:	8
Total Duration:	02:29:38
Highest Lmax:	82.8
I may Evenedance County	Orat an about 11EdD

Lmax Exceedance Count: 0,at or above 115dB

Date	Time 🗆 R	un Duration	Leq dB 🛛 L	max dB⊡Pe	eak dBC⊡	L1 0	L10	L50□	L90 🗆	L950	Lmin
02/06/2010 1	0:21:30	00:20:04	68.1	82.8	101.5	76.9	71.4	65.0	55.9	54.0	46.1
02/06/2010 1	1:27:21	00:20:48	51.4	78.4	107.3	56.4	53.3	50.1	46.7	46.0	43.5
02/06/2010 1	2:03:49	00:22:06	44.9	64.2	93.6	50.3	47.1	43.8	40.7	39.9	37.2
02/06/2010 1	2:30:38	00:21:13	63.5	80.7	97.7	74.9	67.7	49.4	41.0	40.2	38.8
02/06/2010 2	2:59:26	00:16:28	54.3	63.4	81.5	60.4	57.6	53.0	42.9	40.9	36.6
02/06/2010 2	3:18:30	00:17:35	55.3	77.8	96.7	68.8	51.0	44.4	35.6	34.5	31.7
02/06/2010 2	3:39:56	00:15:50	47.9	68.2	87.6	57.5	48.7	44.0	39.8	39.1	36.8
02/06/2010 2	3:58:20	00:15:34	61.6	82.2	104.8	73.6	62.2	46.2	42.5	41.7	38.4

Environmental Noise Measurement Report

Assessment made by:

Date:

04/06/2010