Rilta Environmental Ltd.

Annual Environmental Report (AER), Site 402, Greenogue Business Park.

April 2011 Revision: Final

TOBIN CONSULTING ENGINEERS

REPORT

PROJECT:

Rilta Environmental Ltd. Site 402 – Environmental Monitoring

CLIENT:

Rilta Environmental Ltd,

Block 402, Greenogue Business Park, Rathcoole, County Dublin

COMPANY:

TOBIN Consulting Engineers

Block 10-4 Blanchardstown Corporate Park Dublin 15

www.tobin.ie

DOCUMENT AMENDMENT RECORD

 Client:
 Rilta Environmental Ltd.

 Project:
 Greenogue Monitoring

 Title:
 Annual Environmental Report Rilta Environmental Ltd.

PROJECT NUMBER: 3084			DOCUMENT REF: 3084 - 04 - 01				
Final	Annual Environmental Report	DC	06/04/11	ST	06/04/11	DG	06/04/11
Revision	Description & Rationale	Originated	Date	Checked	Date	Authorised	Date
	TOBIN Consulting Engineers						

Table of Contents

1	INT	RODUCTION	•
	1.1	WASTE ACTIVITIES AND RECORDS	
2	EMI	SSIONS FROM THE FACILITY7	1
-	2.1	GROUNDWATER EMISSIONS	į
	2.1.	1 Groundwater Monitoring (BH1)7	,
	2.1.	2 Groundwater monitoring point 2 (BH2)8	;
	2.1.	3 Groundwater monitoring point 3 (BH3)9)
-	2.2	SURFACE WATER EMISSIONS	
	2.2.	1 Surface Water Monitoring11	
	2.3	WASTEWATER EMISSIONS14	
	2.3.	1 Wastewater Monitoring14	!
3	WA	STE MANAGEMENT RECORD18	
4	RES	OURSE CONSUMPTION SUMMARY 22	
5	CO	PLAINTS SUMMARY 22	
6	EN\	/IRONMENTAL MANAGEMENT 23	
(5.1	SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS23	
(5.2	ENVIRONMENTAL MANAGEMENT PROGRAMME23	
7	POL	LUTANT RELEASE AND TRANSFER REGISTER (PRTR)	
8	NO	ISE MONITORING 23	
9	AM	BIENT MONITORING25)
Ģ	9.1	DUST25)
ç	9.2	VOC EMISSIONS25	
10) Т/	ANK AND PIPELINE TESTING AND INSPECTION REPORT	,
11	L EI	NERGY EFFICIENCY AUDIT REPORT	,
	11.1	WATER DEMAND AND TRADE EFFLUENT DISCHARGE)
	11.2	EFFICIENCY OF USE OF RAW MATERIALS/ REDUCTION IN WASTE	-
(GENE	RATED26)

12	DEVELOPMENT/INFRASTRUCTURAL WORKS	26
13	FINANCIAL PROVISION	26
13	8.1 MANAGEMENT AND STAFFING STRUCTURE	26
13	B.2 PROGRAMME FOR PUBLIC INFORMATION	27
14	DECOMMISSIONING MANAGEMENT PLAN	27
	DECOMMISSIONING MANAGEMENT PLAN	
14		ACTIONS

List of Tables

Table 1-1	Waste Acceptance Tonnages as per Waste Licence 192–03	5
Table 2-1	Surface Water pH Results - 2010	
Table 2-2	Surface Water COD Results - 2010	
Table 2-3	Surface Water Total Suspended Solids Results - 2010	
Table 2-4	Surface Water Mineral Oil Results - 2010	
Table 2-5	Wastewater Results - 2010	
Table 3-1	Waste Types & Quantities - 2010	
Table 4-1	Resource and Energy Consumption - 2010	
Table 8-1	RILTA Daytime Noise - 2010	
Table 8-2	RILTA Night Time Noise - 2010	
Table 9-1	Dust Monitoring Results - 2010	
	-	

List of Figures

Figure 2-1	Surface Water pH Results - 2010	11
	Surface Water COD Results - 2010	
Figure 2-3	Surface Water Total Suspended Solids Results - 2010	
-	Surface Water Mineral Oil Results – 2010	13
Figure 2-5	Wastewater – pH Trend Data 2010	16
Figure 2-6	Wastewater – Mineral Oil Trend Data 2010	
Figure 2-7	Wastewater – Metals and BTEX Trend Data 2010	17
-	Wastewater – Miscellaneous Parameter Trend Data 2010	17

Appendices

Appendix A	Site Maps
Appendix B	Environmental Management Programme 2010 & 2011
Appendix C	Pollutant Release and Transfer Register (PRTR)
Appendix D	Annual Noise Monitoring Report
Appendix E	Dust Analysis Laboratory Results
Appendix F	OMI Emissions Report
Appendix G	Environmental Management and Staffing Structure

1 INTRODUCTION

The Environmental Protection Agency (EPA) issued Rilta Environmental Ltd. (RILTA) with Waste Licence Reg. No. W0192-03 for its site at Block 402, Greenogue Business Park, Rathcoole, County Dublin on 22nd July 2010. The facility is located within an industrial estate approximately 2 km east of Newcastle village and approximately 2.5km west of Rathcoole village. The facility has been in operation since 2004. RILTA retained Tobin Consulting Engineers (TOBIN) to prepare the Annual Environmental Report (AER) for the reporting period January 2010 to December 2010. This report has been prepared in accordance with Condition 11.10 and Schedule E of the waste licence.

This report addresses Condition 11.10 of the waste licence for the facility.

Condition 11.10 states:

'The licensee shall submit to the Agency by the 31st March of each year an AER covering the previous calendar year. This report which shall be to the satisfaction of the Agency shall include as a minimum the information specified in Schedule E: Annual Environmental Report, of this licence and shall be prepared in accordance with any relevant guidelines issued by the Agency'.

1.1 WASTE ACTIVITIES AND RECORDS

The RILTA facility is a fully engineered and contained industrial site. It is licensed to accept 111,000 tonnes of waste material per annum, as set out in Schedule A of the waste licence and summarised in Table 2-1 below.

	Waste Type	Maximum (Tonnes Per Annum) Note 3
Non-Hazardous Commercial Waste		500
Wastes Note 1,2	Construction & Demolition Waste	500
	Industrial Sludges	1,000
	Other Industrial Waste	3,000
Non Hazardous V	Vaste Total	5000
Hazardous Waste	25	
EWC Code	Description *	
13 05 03*	Interceptor sludges	10,000
16 07 08*	Waste containing oil	2,000
16 10 01*	Aqueous liquid waste containing dangerous substances	1,500
17 05 03*	Soil and stones containing dangerous substances	60,000
17 06 01* &	Insulation materials and	
17 06 05* construction materials containing asbestos.		
Other Note 4	-	24,400
Hazardous Waste	e Total	106,000
Total		111,000

Table 1-1 Waste Acc	eptance Tonnages as pe	er Waste Licence 192–03
---------------------	------------------------	-------------------------

- **Note 1:** Any proposals to accept other compatible non-hazardous waste types must be agreed in advance with the Agency.
- **Note 2:** Excluding putrescible waste.
- **Note 3:** The limitations on individual hazardous and non-hazardous waste types may be varied with the agreement of the agency subject to the individual total limits for hazardous and non-hazardous waste staying the same.
- Note 4:Hazardous waste types as detailed in Attachment H.1 of the review application for thislicence Reg No: 192-03 or may be otherwise agreed in advance with the agency.

Waste activities at the facility are restricted to those outlined in Part 1 - Schedule of Activities Licensed.

Licensed Waste Disposal Activities, in accordance with the 3rd Schedule of the Waste Management Act, 1996 to 2010:

- **Class 7:** Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination), which results in final compounds or mixtures, which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule (including evaporation, drying and calcination);
- **Class 11:** Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule;
- **Class 12:** Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule; and
- **Class 13:** Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced.

Licensed Waste Disposal Activities, 4th Schedule of the Waste Management Acts 1996 to 2010.

- **Class 2:** Recycling or reclamation of organic substances, which are not used as solvents (including composting and other biological transformation processes);
- Class 3: Recycling or reclamation of metals and metal compounds;
- Class 4: Recycling or reclamation of other inorganic materials;
- **Class 6:** Recovery of components used for pollution abatement;
- Class 8: Oil re-refining or other re-uses of oil; and
- **Class 13:** Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced.

2 EMISSIONS FROM THE FACILITY

Schedule C of Waste Licence 192-03 requires RILTA to carry out noise, air, dust, surface water, groundwater and wastewater emissions monitoring. The locations of these monitoring points are shown on Drawing 1250/01/1002, as submitted to the Environmental Protection Agency on the 28th of February 2005 and attached in Appendix A.

Monthly, quarterly and annual monitoring was carried out during the period 1st January 2010 to 31st December 2010. All monitoring results and reports have been submitted to the agency as required by Condition 11 and Schedule C of the waste licence. The following is a summary of the results and findings from the 2010 monitoring period.

2.1 GROUNDWATER EMISSIONS

Groundwater monitoring was conducted on a quarterly basis at 3 no. groundwater monitoring locations as set out Drawing 1250/01/1002 (*see Appendix A*). Results for all 4 quarterly monitoring events were furnished to the agency as part of the environmental monitoring reports sent in April, July and October 2010 and January 2011.

2.1.1 Groundwater Monitoring (BH1)

The following is a summary of the values recorded for each parameter at BH1.

pH:

The pH of groundwater analysed from BH1 ranged from 7.6 to 8.37 during 2010. Results from all monitoring events had values within the normal pH range ($6.5 \ge pH \le 9.5$) set out in the EPA Interim Guideline Values¹ (IGV) and reflects the natural background condition of the groundwater.

Conductivity:

The conductivity concentrations in BH1 ranged from 549μ S/cm to 744μ S/cm during 2010. Results from all monitoring events were within the normal electrical conductivity range and were considerably lower than the IGV limit (1000 μ S/cm), reflecting normal background groundwater concentrations.

Heavy metals:

Concentrations of arsenic and mercury in BH1 were below the laboratory limit of detection (LOD) (1 μ g/l and 10 μ g/l respectively), during all monitoring events in 2010. Copper, chromium, cadmium, boron, nickel, iron, lead and zinc were all analysed as part of the annual groundwater suite of parameters for

 $^{^{\}rm 1}$ From the EPA Interim Report – 'TOWARDS SETTING GUIDELINE VALUES FOR THE PROTECTION OF GROUNDWATER IN IRELAND'

BH1 during Q3 2010. All concentrations of heavy metals at BH1 during 2010 were below the required limit levels set out in the EPA IGVs.

Inorganic:

The following inorganic parameters were analysed at BH1 during Q3 2010, as part of the annual groundwater suite: total alkalinity, cyanide, chloride, sulphate, potassium, sodium, calcium and magnesium. These parameters all had results within the limit values specified in the EPA IGVs, with the exception of chloride (35.7mg/l) which exceeded the EPA IGV (30mg/l).

Pesticide:

No concentrations of pesticides were detected during any monitoring event at BH1 during 2010.

List 1/11 Organic Substances, Mineral Oil, BTEX:

Concentrations of list 1/11 organic substances (VOCs & SVOCs), mineral oil and BTEX were below the laboratory LOD² during all groundwater monitoring events at BH1 during 2010.

2.1.2 Groundwater monitoring point 2 (BH2)

The following is a summary of the values recorded for each parameter at BH2.

pH:

The pH of groundwater analysed from BH2 ranged from 7.40 to 8.44 during 2010. Results from all monitoring events had values within the normal pH range set out in the IGVs ($6.5 \ge pH \le 9.5$) and reflects the natural background condition of the groundwater.

Conductivity:

The conductivity concentrations in BH3 ranged from 557μ S/cm to 756μ S/cm during 2010. Results from all monitoring events were within the normal electrical conductivity range and were considerably lower than the IGV limit (1000 μ S/cm), reflecting normal background groundwater concentrations.

Heavy metals:

Concentrations of arsenic at BH2 ranged from 2.67 – 7.55 μ g/l during 2010. This concentration is within the IGV limit of 10 μ g/l. Similar to 2009, all groundwater sampled at BH2 had concentrations of mercury below the laboratory LOD (<0.01 μ g/l).

Copper, chromium, cadmium, boron, nickel, iron, lead and zinc were all analysed as part of the annual groundwater suite of parameters for BH2, during Q3 2010. All concentrations of metals tested at BH2 during 2010 were below the required limit levels set out in the EPA IGVs.

² TPG CWG - Limit of Detection

Inorganic:

The following inorganic parameters were analysed at BH2 during Q3 2010, as part of the annual groundwater suite: total alkalinity, cyanide, chloride, sulphate, potassium, sodium, calcium and magnesium. These parameters all had results within the limit values specified in the EPA IGVs, with the exception of chloride (122mg/I) which exceeded the EPA IGV (30mg/I).

Pesticide:

No concentrations of pesticides were detected during any monitoring event at BH2 during 2010.

List 1/11 Organic Substances, Mineral Oil, BTEX:

All groundwater sampled at BH2 from January to December 2010 had concentrations of mineral oil and BTEX below the laboratory LOD³, with the exception of mineral oil during Q2 (154 μ g/l) and Q3 (173 μ g/l).

List1/11 substances were detected at BH2 during all monitoring events in 2010. Volatile organic compounds (VOCs) were present in the form of methyl tertiary butyl ether (MTBE) during 2010 - 24µg/l during Q1, 11.5µg/l during Q2, 15.2µg/l during Q3 and 40.5µg/l during Q4. Concentrations of semi volatile organic compounds (SVOC) were not detected (were all below their respective laboratory LODs) at BH2 during 2010.

Although VOCs were detected in BH2 during 2010, all were below their respective IGV limit values.

2.1.3 Groundwater monitoring point 3 (BH3)

The following is a summary of the values recorded for each parameter at BH3.

pH:

The pH of the analysed groundwater from BH3 ranged from 8.8 to 10.2 during 2010. The reported pH values for BH3 were outside the pH range ($6.5 \ge pH \le 9.5$) set out in the EPA IGV during Q1 (10.2), Q3 (9.81) and Q4 (9.96) 2010. As discussed in the previous AER 2009, pH levels at BH3 are assumed to be elevated due to the use of alkaline cements and backfill construction material, which was used during the installation of underground tanks at the facility. While still elevated the pH measured at BH3 does appear to be receding relative to historic ph results.

Conductivity:

The conductivity within BH3 ranged from 528μ S/cm to 742μ S/cm during Q2 2010. Concentrations recorded at BH3 were below required limits set out in the EPA IGVs (1000 μ S/cm) during all monitoring events in 2010. It is suggested that the higher conductivity concentration to the north of the site may be attributable to backfill material from the construction of the underground tanks, where significant alkaline

³ TPG CWG - Limit of Detection

cements and construction fill were placed within the environs of the facility prior to the installation of BH3.

Heavy metals:

Concentrations of arsenic at BH3 ranged from $8.44 - 14.4\mu g/l$ during 2010. Arsenic results at BH3 for Q2 (11.9 $\mu g/l$), Q3 (14.4 $\mu g/l$) and Q4 (11.4 $\mu g/l$) slightly exceeded the EPA IGV (10 $\mu g/l$). Similar to 2009, all groundwater sampled at BH3 had concentrations of mercury below the laboratory LOD (<0.01 $\mu g/l$).

Copper, chromium, cadmium, boron, nickel, iron, lead and zinc were all analysed at BH3 during Q3 2010, as part of the annual groundwater testing suite of parameters. All concentrations of metals tested at BH2 during 2010 were below the required limit levels set out in the EPA IGVs.

Inorganic:

The following inorganic parameters were analysed at BH3 during Q3 2010 as part of the annual groundwater suite: total alkalinity, cyanide, chloride, sulphate, potassium, sodium, calcium and magnesium. These parameters all had results within the limit values specified in the EPA IGVs, with the exception of chloride (139mg/l) and potassium (7.85mg/l). The chloride (139mg/l) concentration at BH3 exceeded the EPA IGV (30mg/l) and the potassium (7.85mg/l) concentration at BH3 slightly exceeded the IGV (5mg/l).

Pesticide:

No Pesticide concentrations were detected during any monitoring event at BH3 during 2010.

List 1/11 Organic Substances, Mineral Oil, BTEX:

Mineral oil concentrations were below the laboratory limit of detection during all monitoring events at BH3 in 2010, with the exception of Q4 (109 μ g/l). The Q4 mineral oil result at BH3 (109 μ g/l) exceeded the EPA IGV (10 μ g/l). BTEX⁴ concentrations at BH3 were found to be <10 μ g/l during all monitoring events in 2010.

List1/11 substances were detected at BH3 during all 4 monitoring events in 2010. VOCs in the form of MTBE were detected at BH3 during Q1 (116µg/l), Q2 (161µg/l), Q3 (93.4µg/l) and Q4 (43.6µg/l) 2010. Additional VOCs detected included dichloromethane (4.77µg/l), benzene (1.52µg/l), toluene (6.41µg/l) during Q1, benzene (1.31µg/l) and toluene (4.89µg/l) during Q2, toluene (3.03µg/l) during Q3, and dichloromethane (8.27µg/l) and toluene (3.49µg/l) during Q4 2010.

Concentrations of semi volatile organic compounds were not detected (were all below their respective laboratory LODs) at BH3 during 2010, with the exception of 2,4-dimethylphenol (2.4 μ g/l) and 2-methylphenol (3.59 μ g/l) during Q1, 4-methylphenol (13.8 μ g/l), 2-methylphenol (3.67 μ g/l) and phenol (17 μ g/l) during Q2, and 4-methylphenol (6.91 μ g/l), 2-methylphenol (2.12 μ g/l) and phenol (8.27 μ g/l) during Q3.

⁴ TPG CWG - Limit of detection

Although VOCs and SVOCs were detected at BH3 during 2010 all parameters were below their respective IGVs with the exception of benzene⁵ during Q1 and Q2, which exceeded the EPA IGV (1μ g/I).

2.2 SURFACE WATER EMISSIONS

Groundwater monitoring was conducted on a quarterly basis at 3 no. surface water monitoring locations, as set out Drawing 1250/01/1002 (*see Appendix A*). Results for all 4 quarterly monitoring events were furnished to the agency as part of the environmental monitoring reports sent in April, July and October 2010 and January 2011.

2.2.1 Surface Water Monitoring

Results from all surface water monitoring locations indicate that surface water quality at the RILTA facility is within normal chemical range and is consistent with natural uncontaminated surface waters. The following is a summary of parameter concentrations at all surface water monitoring locations.

pH:

Table 2-1

The values at all surface water monitoring locations are within the normal range ($6.5 \ge pH \le 9.5$) set out in SI No. 278 of 2007⁶ and reflect the natural conditions of this surface water feature.

Surface Water pH Results - 2010							
	рН	Q1	Q2	Q3	Q4		
	SW1	8.37	8.17	8.32	8.54		
	SW2	8.4	8.2	8.28	8.63		
	SW3	8.29	8.12	8.17	7.85		

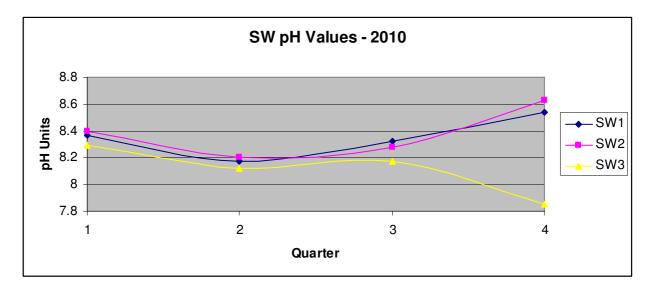


Figure 2-1 Surface Water pH Results - 2010

⁶ SI No 278 of 2007 – European Communities (Drinking Water) (No. 2) Regulations

⁵ Mass spectrometry (MS) method used – MS LOD is lower than TPG CWG method.

Chemical Oxygen Demand:

The chemical oxygen demand for at all monitoring locations was consistent with historic monitoring results from the site. COD results at SW1 and SW2 were below 10mg/l during all monitoring events in 2010, concentrations were slightly elevated in SW3 with a peak concentration of 59.7mg/l during Q3. There is no limit for surface water COD set out in waste licence 192-03 or SI No. 278 of 2007. COD results from 2010 are summarised in Table 2-2 below.

Table 2-2 Surface Water COD Results - 2010

C match COD	neound			
COD	Q1	Q2	Q3	Q4
SW1	7.47	7	7.88	7.33
SW2	8.57	8.88	7.05	8.1
SW3	44.5	43.8	59.7	25.6

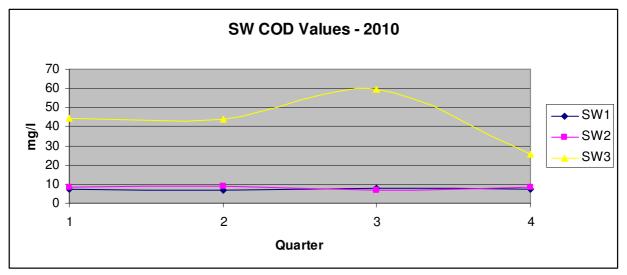


Figure 2-2 Surface Water COD Results - 2010

Suspended Solids:

The concentrations of suspended solids at all surface water monitoring locations were below the limit levels set out in waste licence 192–03 (35mg/l) for all monitoring events during 2010.

TSS	Q1	Q2	Q3	Q4
SW1	6	2	2.5	8.5
SW2	6	2	2.5	9
SW3	6	5	9.5	9.5

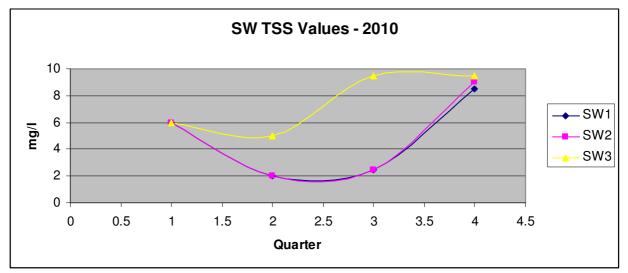


Figure 2-3 Surface Water Total Suspended Solids Results - 2010

Mineral Oils:

Concentrations of Mineral Oil were below the licence limit (5,000ug/l) at all monitoring locations during 2010. Although SW3 had concentrations above the laboratory LOD (10ug/l) it remained significantly below the limit value set out in W192-03 (5000ug/l).

Table 2-4Surface Water Mineral Oil Results - 2010

Mineral Oil	Q1	Q2	Q3	Q4
SW1	10	10	10	10
SW2	10	10	10	10
SW3	93.9	224	690	2580

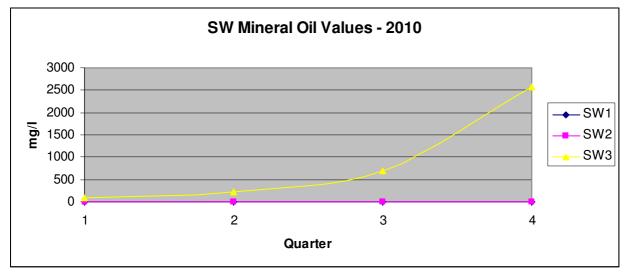


Figure 2-4 Surface Water Mineral Oil Results – 2010

2.3 WASTEWATER EMISSIONS

Waste water monitoring was conducted on a monthly basis at 1 no. monitoring location, as per Schedule C of the waste licence 192-03 and illustrated on Drawing 1250/01/1002 (*see Appendix A*). Results for all 12 no. monitoring events were furnished to the agency as part of the quarterly environmental monitoring reports sent to the Agency in April, July and October 2010, and January 2011.

2.3.1 Wastewater Monitoring

The concentration of pH was within the required licence limit ($6.5 \ge pH \le 10$) during all monitoring events in 2010. A summary of the reported monthly pH concentrations is contained in Table 3-1 and Figure 3-1 below.

The concentration of mineral oil at WW1 was below the required licence limit during all monitoring events in 2010. A summary of the reported monthly mineral oil concentrations is contained in Table 3-1 and illustrated in Figure 3-2 below.

Concentrations of zinc, copper, chromium, lead, nickel, arsenic, benzene, toluene, ethyl-benzene and total xylene were all below respective licence limits during 2010. The reported monthly WW1 concentrations for these parameters are summarised in Table 3-1 and illustrated in Figure 3-2 below.

Concentrations of BOD, COD, sulphate, surfactants, suspended solids and ammonical nitrogen⁷ were all below respective licence limits during 2010. A summary of the reported monthly WW1 concentrations for these parameters is contained in Table 3-1 and illustrated in Figure 3-4 below.

The total wastewater volume emitted during 2010 was 37495m³ (37495000 litres).

⁷ Ammonical nitrogen was added to the WW1 monthly parameters in 2010, as part of licence 192-03.

Table 2-5 Wastewater Results - 2010	Table 2-5	Wastewater Results - 2010
-------------------------------------	-----------	---------------------------

Parameter	Units						20	10					
Falameter	Units	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
рН	pH units	8.39	9.02	7.53	7.85	8.35	7.87	8.04	7.31	8.18	6.13	7.58	7.66
BOD	mg/l	32.3	37.4	663	50.2	27.9	77.5	303	47.6	51.6	83.3	226	201
COD	mg/l	474	626	1470	572	543	270	651	350	223	240	495	583
Sulphate SO ₄	mg/l	19.8	24.9	97	41.9	28.5	49.1	48.3	147	151	36.8	35.8	76.2
Surfactants	mg/l	0.304	0.736	3.31	0.746	0.492	0.719	0.921	0.67	0.442	0.113	0.189	0.53
Zinc Zn	μg/l	131	291	2310	129	258	260	60.8	525	528	365	104	1050
Copper Cu	μg/l	269	328	118	14.3	137	131	5.04	8.82	13.1	1.3	38.1	18.4
Chromium	μg/l	91.6	84.3	13.8	24	44.9	29.2	6.09	<3	<3	<3	4.99	<3
Lead	μg/l	2.09	2.59	3.39	0.209	2.12	3.92	0.419	0.349	0.545	0.47	1.27	0.078
Nickel	μg/l	38.2	93.4	331	130	82.2	109	67.4	56.7	54	91.4	21.8	201
Arsenic	μg/l	52.4	22.6	<1.9	12.2	15.3	4	3.45	3.22	2.4	<2	<2	<2
Benzene	μg/l	<7	<7	78.1	<7	<7	<7	15	11.8	6.67	<1.3	1.61	9.21
Toluene	μg/l	<4	28	353	38.5	13.5	60	84	74.4	29.3	1.4	3.49	59.5
Ethylbenzene	μg/l	<5	<5	11.9	<5	<5	<5	<5	3.89	<2.5	2.5	<2.5	5.09
Total Xylene	μg/l	<10	13	156.5	14.5	3.32	40	44	24.9	14.5	<4.5	<4.5	35
Suspended Solids	mg/l	12.1	24	28	47	37.6	23.6	47.4	5	18	8.5	13	16
Ammonical Nitrogen	mg/l	-	-	-	-	-	-	-	-	0.266	<0.2	0.988	1.1

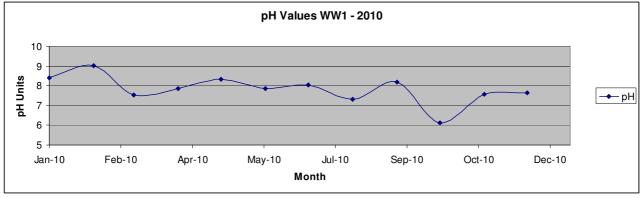


Figure 2-5 Wastewater – pH Trend Data 2010

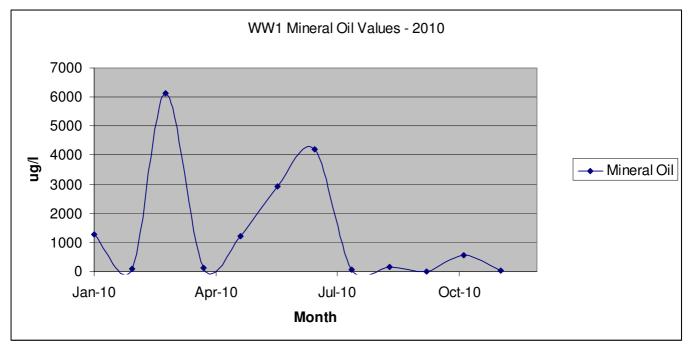


Figure 2-6 Wastewater – Mineral Oil Trend Data 2010

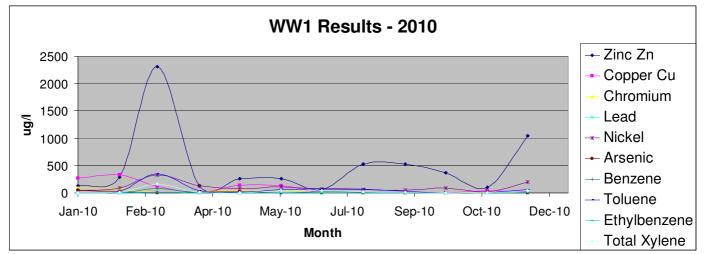


Figure 2-7 Wastewater – Metals and BTEX Trend Data 2010

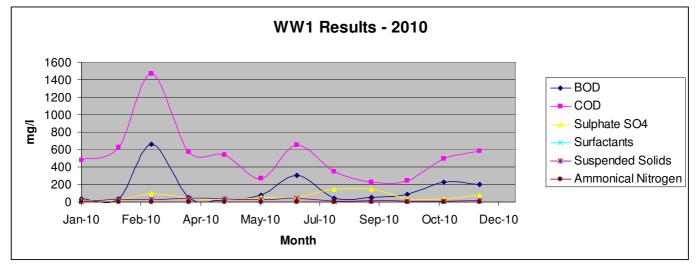


Figure 2-8 Wastewater – Miscellaneous Parameter Trend Data 2010

3 WASTE MANAGEMENT RECORD

The following tables summarise the types and quantities of waste handled over the period 1st January 2010 to 31st December 2010, at RILTA's Greenogue facility.

1 Waste Types & Quantities - 2010			
Waste Type	EWC Code	Weight/ Tonnes	
Mine Screenings	EWC 01 01 01	45.67	
Drilling muds	EWC 01 05 05	636.76	
Agrichemical	EWC 02 01 08	0.12	
Waste from prep foods	EWC 02 02 99	20.735	
waste from prep foods	EWC 02 03 01	1	
Off Spec Product	EWC 02 07 04	204.045	
Wood preservative	EWC 03 02 01	0.84	
Oil Spill	EWC 05 01 05	21.75	
Sulphuric Acid	EWC 06 01 01	97.98	
Hydrochloric acid	EWC 06 01 02	6.21	
Nitric Acid	EWC 06 01 05	67.23	
Other Acids	EWC 06 01 06	213.54	
Nitric Acid	EWC 06 01 99	24.92	
Lime	EWC 06 02 01	1.045	
Sodium Hydroxide	EWC 06 02 04	72.31	
Alkali/Bases	EWC 06 02 05	169.46	
Salt Sludge	EWC 06 03 14	79.47	
Mercury	EWC 06 04 04	0.773	
Silicone	EWC 06 08 02	0.85	
Corrosive Liquid	EWC 07 01 01	10.64	
Solvent	EWC 07 01 03	0.42	
Solvent	EWC 07 01 04	1.58	
Silica	EWC 07 01 10	0.15	
Cont glassware	EWC 07 01 99	0.16	
Bead Blast	EWC 07 02 99	0.353	
Pentachlorophenol (wood Preservative)	EWC 07 04 03	0.002	
Aqueous waste	EWC 07 05 01	21.87	
Solvent	EWC 07 05 04	19.162	
process Filter Cake	EWC 07 05 11	0.71	
Sludge from on site treatment	EWC 07 05 12	124.06	
Grease	EWC 07 06 08	2.145	
Redundant Cosmetics	EWC 07 06 99	2.42	
Paint relatated	EWC 08 01 11	122.73	
Aqueous paint Waste	EWC 08 01 12	81.92	
Paint related waste	EWC 08 01 13	13.155	

Table 3-1Waste Types & Quantities - 2010

Waste Type	EWC Code	Weight/ Tonnes
Aqueous Ink Waste	EWC 08 03 08	16.22
Waste Ink	EWC 08 03 12	47.35
Varnish	EWC 08 03 13	1.62
Adhesive	EWC 08 04 09	52.455
Polyol	EWC 08 04 10	3.41
Water washings traces of synthetic dispersion of Rubber	EWC 08 04 16	7.70
Isocyanate Waste	EWC 08 05 01	0.87
Photographic Waste	EWC 09 01 01	3.445
Developer	EWC 09 01 03	0.4
Photo Developer	EWC 09 01 04	94.605
Photographic waste	EWC 09 01 05	1.643
Boiler Ash	EWC 10 01 04	43.395
Boiler Ash	EWC 10 01 14	3.49
Oily Waste	EWC 10 02 11	3.92
Cutter sludge containing lead UN3077	EWC 10 11 13	365.31
Spent Acid	EWC 11 01 05	144.08
Processed Filtercake	EWC 11 01 09	161.52
Filter Cake	EWC 11 01 10	57.222
Corrosive waste	EWC 11 01 11	1.96
Aqueous Waste	EWC 11 01 12	1.77
Methylated Spirits	EWC 11 01 13	0.12
Lapp Sludge	EWC 11 01 99	13.12
Exchange Filters	EWC 11 02 06	0.06
Dust	EWC 11 05 99	5.62
Coolant/water mix	EWC 12 01 07	23.32
Coolant	EWC 12 01 09	905.29
Hydraulic Oil	EWC 13 01 05	1.18
Hydraulic Oil	EWC 13 01 13	4.12
Waste Oil (Hydraulic Oil)	EWC 13 02 04	0.39
Lube Oil	EWC 13 02 05	5.29
Engine/Gear/Lube oil	EWC 13 02 06	30.85
Waste Oil	EWC 13 02 08	1,845.34
Oil/PCBS	EWC 13 03 01	4.335
Transformer Oil	EWC 13 03 06	11.34
Waste hydraulic Oil	EWC 13 03 10	46.14
Bilge Oils	EWC 13 04 03	165.42
Dig Out	EWC 13 05 01	0.62
Interceptor	EWC 13 05 03	3,898.63
Oily Waste	EWC 13 05 06	7.04
Oily Waste	EWC 13 05 07	6,710.26

Waste Type	EWC Code	Weight/ Tonnes	
Interceptor waste	EWC 13 05 08	3.34	
Fuel Waste	EWC 13 07 01	150.75	
Diesel Waste	EWC 13 07 02	14.17	
Fuel Waste	EWC 13 07 03	12.80	
Oil Spill	EWC 13 08 99	1,238.60	
Aerosols	EWC 14 06 01	0.8	
Solvent	EWC 14 06 02	38.288	
Mixed Organic Solvents	EWC 14 06 03	499.61	
Solvent Sludge	EWC 14 06 05	0.05	
Plastic Packaging	EWC 15 01 02	2.08	
Car Exhausts	EWC 15 01 04	52.19	
Contaminated Packaging	EWC 15 01 10	1485.28	
Absorbents	EWC 15 02 02	665.187	
Absorbents	EWC 15 02 03	0.14	
Oil Filters	EWC 16 01 07	10.543	
Environmentally Hazardous Liquid	EWC 16 01 10	0.03	
Glycol	EWC 16 01 14	11.64	
Coolants/Glycol	EWC 16 01 15	8.67	
Glass	EWC 16 01 20	1.266	
Capacitators containing PCBs	EWC 16 02 09	11.845	
Contaminated Equipment	EWC 16 02 13	1.41	
WEEE	EWC 16 02 14	3.65	
WEEE	EWC 16 02 16	2.24	
Aqueous Waste	EWC 16 03 03	7.02	
Off Spec Unused products	EWC 16 03 04	92.97	
Organic Waste containing dangerous sub	EWC 16 03 05	4.39	
Mixed Organic Solvents	EWC 16 04 03	0.3	
Aerosols	EWC 16 05 04	7.679	
Lab Waste	EWC 16 05 06	54.66	
Lab Chemicals	EWC 16 05 07	30.92	
Env Haz Liq	EWC 16 05 08	1.11	
Fire extinguishers	EWC 16 05 09	1.58	
Batteries Led/Acid	EWC 16 06 01	5507.1	
Batteries Ni/Cd	EWC 16 06 02	6.36	
Batteries Alkaline	EWC 16 06 04	25.53	
Batteries Li Ion	EWC 16 06 05	0.57	
Tank Cleaning waste	EWC 16 07 08	869.56	
Tank Cleaning	EWC 16 07 09	280.61	
Bund area waste	EWC 16 07 99	116.72	
Spent Catalyst	EWC 16 08 02	1.4	

Waste Type	EWC Code	Weight/ Tonnes
oxidizing substances	EWC 16 09 04	7.13
Aqueous Liquid Washings	EWC 16 10 01	1397.73
Aqueous liquid	EWC 16 10 02	318.93
Concrete	EWC 17 01 01	62.24
Bitumen waste	EWC 17 03 01	2.65
Contaminated Soil	EWC 17 05 03	10925.27
Contaminated Soil	EWC 17 05 04	84.44
Asbestos	EWC 17 06 01	2928.725
Asbestos	EWC 17 06 03	1.28
Asbestos	EWC 17 06 04	0.51
Asbestos	EWC 17 06 05	2476.896
Unused Disposal Needles	EWC 18 01 01	0.19
Spent Medicines	EWC 18 01 06	19.002
Pharmaceutical waste	EWC 18 01 08	0.605
Spent Medicines	EWC 18 01 09	41.507
Veterinary waste	EWC 18 02 08	64.985
Silica Powder	EWC 19 01 14	0.14
Filtercake	EWC 19 02 05	38.88
Effluent Waste	EWC 19 02 99	26.90
leachate	EWC 19 07 03	22,155.91
Sludge waste	EWC 19 08 99	11.44
Water clarification waste	EWC 19 09 02	29.46
Spent Activated Carbon	EWC 19 09 04	15.85
Spent Activated Carbon	EWC 19 09 05	93.86
Retention Pond Waste	EWC 19 12 11	50.04
Leachate	EWC 19 12 12	2,157.78
Flammable Liquid	EWC 20 01 13	0.28
Hydroflouric acid	EWC 20 01 14	0.01
Floor Cleaner	EWC 20 01 15	0.98
Pesticides, Weedkillers, Herbicides, Antifreeze	EWC 20 01 19	10.03
flourescent tubes	EWC 20 01 21	0.525
Aerosols / CFCs	EWC 20 01 23	3.086
edible oil and fat	EWC 20 01 25	2.295
Lubricating Grease	EWC 20 01 26	7
Paints inks adhesives resins	EWC 20 01 27	444.43
Detergent	EWC 20 01 29	8.46
Detergents	EWC 20 01 30	0.055
Waste Meds	EWC 20 01 31	0.15
Non Reg Medicines, cosmetics, Pharmaceuticals	EWC 20 01 32	1.625
Wood	EWC 20 01 38	0.4

Waste Type	EWC Code	Weight/ Tonnes
Drain waste	EWC 20 03 99	35.46

As per Waste Licence No: 192-03, RILTA is allowed to accept up to 111,000 tonnes/year of waste consisting of hazardous waste, commercial waste, construction and demolition waste, industrial sludges and industrial waste at the facility.

The above table shows that the total volume of waste accepted by RILTA from January 1^{st} 2010 to December 31^{st} 2010 was 71,407.24 tonnes.

4 RESOURSE CONSUMPTION SUMMARY

The main energy use at RILTA includes:

- Gas
- Electricity
- Water

A review of electricity and gas bills for the period from 01/01/09 to 31/12/09 shows that RILTA used the following quantities.

Energy	Units	Figures for 2010	Figures for 2009	Figures for 2008	Figures for 2007
Gas	KwH	175,932	525,347	1,663,901	977,260
Electricity	KwH	422,560	472,300	477,591	320,000
Water	m³	13132	8,880	9,122	7,100
Diesel	L	9888	10,843	11,667	8,470
Oil	L	288,600	65,884	0	0

 Table 4-1
 Resource and Energy Consumption - 2010

RILTA Environmental changed from a gas fired burner to an oil fired burner, as a larger burner was required for the oil treatment process. Hence the decrease in gas and increase in oil consumed.

5 COMPLAINTS SUMMARY

There were 4 no. complaints received during 2010, 3 no. related to odour. Odours were hard to pinpoint but RILTA management have made a concerted effort to keep both our industrial neighbours and the Greenogue Management Company informed of activities which may cause odours, such as moving soil etc. The additional complaint related to a broken steam pipe which caused a spray of steam into an adjoining site. However, this was rectified in less than one hour.

6 ENVIRONMENTAL MANAGEMENT

6.1 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS

Details of the Environmental Management Programmes (EMP) for the RILTA facility are contained in Appendix B.

6.2 ENVIRONMENTAL MANAGEMENT PROGRAMME

Details of the 2010 and 2011 EMPs for the RILTA facility are contained in Appendix B.

7 POLLUTANT RELEASE AND TRANSFER REGISTER (PRTR)

Details of the 2010 and 2011 Pollutant Release Transfer Register (PRTR) for the RILTA facility are contained in Appendix C.

8 NOISE MONITORING

The noise emission limits given in Waste Licence 192-03 are 55 dB(A) for daytime and 45 dB(A) for night time. These levels specifically relate to noise emissions arising from the facility, measured at any noise sensitive location. A more detailed noise monitoring report for this period is contained in Appendix D.

The noise emissions from RILTA Environmental Ltd. are given in Table 8-1 and Table 8-2 below.

					DAY TIME
Receptor	Time	Leq	L10	L90	Notes
N1	14:36	56.9	59.9	49.2	Plant not audible, Passing traffic and aircraft overhead dominant at this location
N2	16:25	51.9	54.6	45.4	Aircraft noise dominant, noise from adjoining facility, RILTA audible.
N3	15:48	62.8	60.6	52.4	Over head aircraft dominant, trucks and adjacent site noise audible, digger in operation next site, RILTA largely inaudible.
N4	15:14	63.7	61.7	48.4	Passing traffic is dominant, overhead aircraft, facility inaudible, aircraft and helicopters very low and very frequent.

Table 8-1 RILTA Daytime Noise - 2010

Table 8-2	RILTA	Night 1	Time	Noise -	2010
-----------	-------	---------	------	---------	------

	NIGHT TIME					
Receptor	Time	Leq	L10	L90	Notes	
N1	23:50	44.5	45.3	41.2	Passing traffic	
N2	22:40	43.5	42.1	40.0	Stream audible, aircraft overhead, distant road traffic, helicopter	
N3	22:05	52.6	55.9	55.2	RILTA audible at 46/47dB in lull periods, noise from neighbouring facilities and stream audible, fan audible.	
N4	23:15	44.3	43.4	35.4	Passing traffic on internal industrial estate roads.	

Noise levels recorded at the four EPA agreed noise monitoring locations contain noise emissions from adjacent industrial sites, low flying aircraft and traffic on the internal road network of the industrial estate. Noise emissions from the RILTA facility were audible only during daytime monitoring and not audible during the night time monitoring. Note that the EPA agreed noise monitoring locations are all on site and do not reflect emissions at noise sensitive locations.

The A-weighted equivalent continuous sound pressure level (LAeq, 30 min) recorded at the RILTA facility was less than 55 dB(A) at noise monitoring location N2 only, during the daytime monitoring event. Where the measured LAeq, 30 min exceeded 55 dB(A), this was due to the addition of extraneous noise sources such as low flying aircraft from nearby Baldonnell Airport, passing traffic on the internal roads of the industrial estate, distant traffic on the N7 and activities in adjacent sites.

No noise emissions due to the RILTA facility were generally audible during the night time monitoring period. During the night time monitoring period the A-weighted equivalent continuous sound pressure level (LAeq, 30 min) exceeded 45 dB(A) (night time) limit at N3 only. The exceedance at N3 was directly attributable to extraneous noise sources such as traffic on the industrial estate road network, the adjacent flowing stream or low flying aircraft from nearby Baldonnell Airport.

There were no impulsive noise emissions audible at any of the monitoring locations during the daytime or night time monitoring period. With regard to tonal emissions, Figures 1 to 8 (*see Appendix D*) indicate that tonal components were present at 2 no. daytime monitoring locations (N3 & N4). However, no tonal emissions at these frequencies were recorded at any other monitoring location during the day or night time monitoring event.

There was a pure tone at 20Hz measured at monitoring location N3 (Day Monitoring). The tone at this frequency was not present at the same location during the night time survey. During the daytime survey at N4 there was a pure tone at 25Hz. The tone at N4 (25Hz) was not observed at any other monitoring location during either the day or night time monitoring events, and as such is unlikely to have originated due to RILTA activities.

There was a tonal component at 50Hz measured at monitoring location N3 (Night Monitoring). The tone at this frequency was inaudible at all locations during the night time survey. The 5dB penalty has not been added as it is unlikely that the tone is due to mains hum, as it was not present at this location during the daytime survey and as such is likely to be derived from an off-site source. Full 1/3 octave frequency band analysis of both day and night time surveys is presented in Appendix D.

9 AMBIENT MONITORING

9.1 DUST

According to Schedule E of the waste licence, dust monitoring is required at the facility three times a year (twice between May and September), at monitoring locations illustrated on Drawing 1250/01/1002 (see *Appendix A*). Dust monitoring was carried out at four separate locations at the 4 no. corner boundaries of the RILTA facility. The samples were delivered to Alcontrol Laboratories for analysis.

The results for each sample location D1, D2, D3 and D4 are included in Appendix E. In summary the air quality at all monitoring locations was good, with no exceedances recorded during the 2010 monitoring period. The dust deposition limit of $350 \text{ mg/m}^2/\text{day}$ was not exceeded during 2010 and the highest recorded concentration for the site ($233 \text{mg/m}^2/\text{day}$) was recorded during the June monitoring event at D4.

Monitoring Period	D1	D2	D3	D4	Source of Dust	
Monitoring Period	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d	Source of Dust	
June 2010	151	110	141	233	No Exceedances	
Sep 2010	117	97	95.5	74.1	No Exceedances	
Dec 2010*	3.7	7.41	1.39	9.26	No Exceedances	

Table 9-1 Dust Monitoring Results - 2010

Note: Heavy snowfall resulted in low dust results for this period.

9.2 VOC EMISSIONS

Odour Monitoring Ireland were commissioned by Rilta Environmental Limited to perform volatile organic compound (VOC) monitoring of the three licensed emission points located within the facility. All results from the 2010 monitoring were in compliance with required limits, with the exception of the volume flow at A2.

The full report from OMI detailing ambient emissions from the RILTA facility is contained in Appendix F.

10 TANK AND PIPELINE TESTING AND INSPECTION REPORT

As per Condition 11 of waste licence 192-03, any reports on integrity testing of bunds or tanks will be furnished to the agency upon completion. Previous bund tests were reported to the Agency in the 2008 and 2009 AER and thus, were not due to be carried out within this reporting period.

11 ENERGY EFFICIENCY AUDIT REPORT

The energy audit was completed in 2008 and the details were furnished to the Agency. Another audit is due for completion in 2011.

11.1 WATER DEMAND AND TRADE EFFLUENT DISCHARGE

While considerable water is used throughout the site 1355m³ of treated effluent was re-used in 2010. This water was used to break up sludge in the settlement tanks and also on occasion by the vacuum tankers in their water tanks and also in the on site centrifuges. Research and development is continuing with a view to 'polishing' the effluent to a degree where it can be re-used more often and in more appliances.

11.2 EFFICIENCY OF USE OF RAW MATERIALS/ REDUCTION IN WASTE GENERATED

The main raw material used on site is paint. The current economic conditions have resulted in an increase in the usage of re-conditioned drums produced by RILTA and therefore the volume of paint has risen. RILTA is however, currently investigating the possibility of lower solvent-content paints.

12 DEVELOPMENT/INFRASTRUCTURAL WORKS

There were no infrastructural works carried out in 2010. A pilot treatment plant was put in place September but results so far have been inconclusive. RILTA has notified the Agency of its intention to install new oil holding tanks in an extended bund, these works has not yet commenced.

13 FINANCIAL PROVISION

A proposal in respect of financial provision is to be updated and will be furnished to the Agency as part of the proposals on ELRA and CRAMP.

13.1 MANAGEMENT AND STAFFING STRUCTURE

Details of the management and staffing structure are contained in Appendix G.

13.2 PROGRAMME FOR PUBLIC INFORMATION

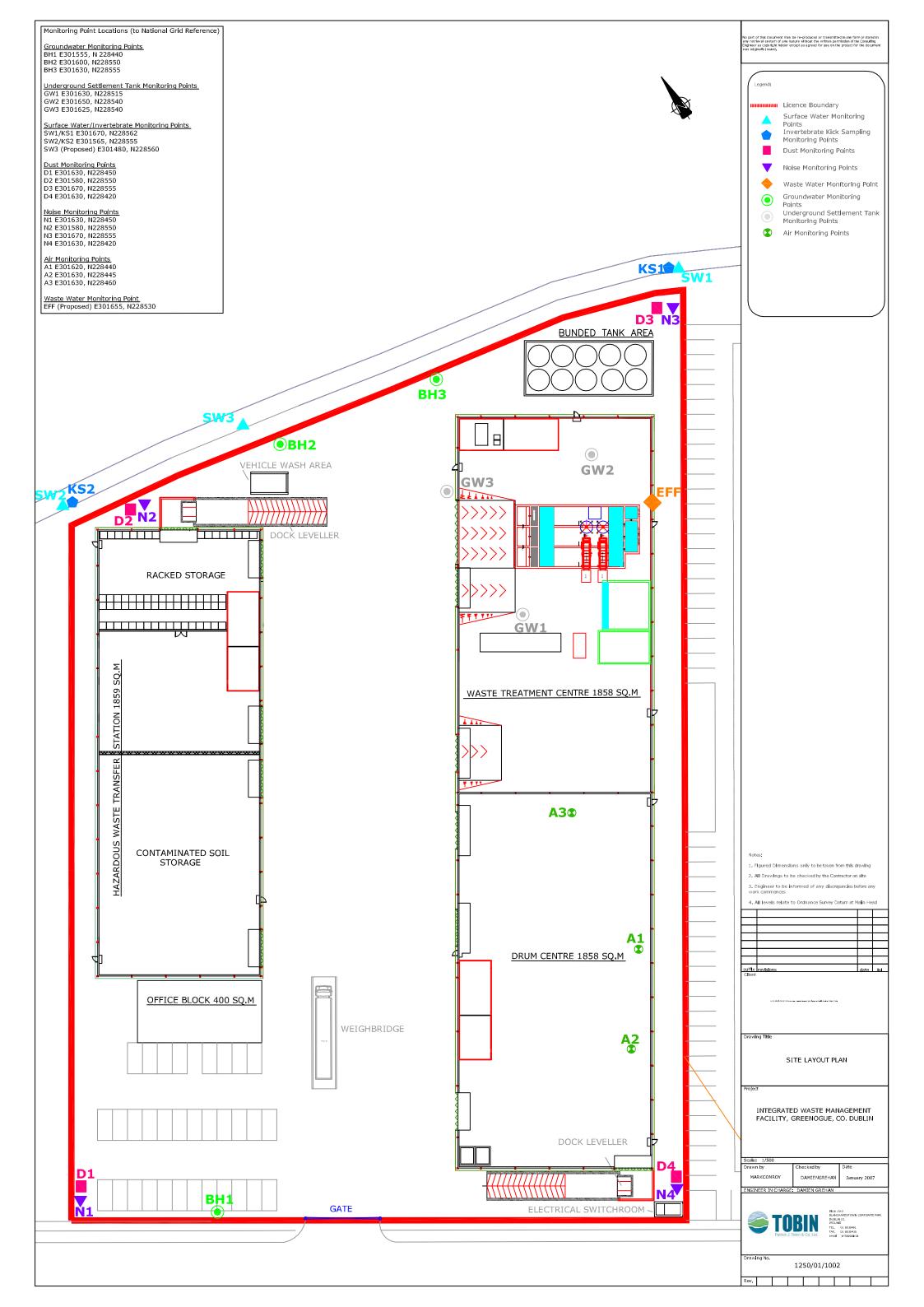
RILTA maintains a 'Public File' which contains all correspondence between RILTA and the Agency, all waste data and monitoring data as required by waste licence 0192-03. This file is available for viewing during normal office hours.

14 DECOMMISSIONING MANAGEMENT PLAN

This is currently being reviewed by RILTA and is due to be submitted to the Agency in April 2011.

14.1 PREVENTION OF ENVIRONMENTAL DAMAGE AND REMEDIAL ACTIONS (ENVIRONMENTAL LIABILITIES)

This is currently being reviewed by RILTA and is due to be submitted to the Agency in April 2011.


14.2 ENVIRONMENTAL LIABILITIES RISK ASSESSMENT (ELRA)

This is currently being reviewed by RILTA and is due to be submitted to the Agency in April 2011.

APPENDIX A

Site Maps Monitoring Location Map

APPENDIX B

Environmental Management Plan EMP 2010 EMP 2011

RILTA ENVIRONMENTAL Ltd.

ENVIRONMENTAL MANAGEMENT SYSTEM

ENVIRONMENTAL MANAGEMENT PLAN

ER-003

In accordance with ISO 14001

RILTA ENVIRONMENTAL ENVIRONMENTAL MANAGEMENT SYSTEM Environmental Management Programme

<u>ENVIRONMENTAL MANAGEMENT PROGRAMME FOR THE</u> <u>ACHIEVEMENT OF OBJECTIVES AND TARGETS</u>

EMP Ref.	Objective	Environmental Management Programme for the implementation of objectives.	Completion Date	Complet ed (Y/N) N	
1	Increase environmental awareness among RILTA staff.	Develop and issue quarterly e- mail environmental bulletin.	June 10		
2	Promote best practice in the processing of waste generated on site.	Assess implications of food regulations and formulate waste minimization plan accordingly.	Sept 10	Y	
3	Reduce fugitive emissions.	Annual monitoring of fugitive emissions.	Ongoing	Y	

Issue No.	006	Compiled by:	Colm Hussey
		Name/Position	Facility & Environmental
			Manager
Date:	March 2010	Reviewed by:	Nick Beale
		Name/Position	Managing Director

RILTA ENVIRONMENTAL	Issue No. 006
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: March 2010
Environmental Management Plan	Page 2 of 8

EMP Ref.	Objective Environmental Management Programme for the implementation of objectives.		Completion Date	Completed (Y/N)	
4	Improve site housekeeping.	Insist that only fully and correctly labeled drums/IBCs are accepted on site.	Ongoing	Yes	
		Investigate the possibility of building a wall at the north end of the site to control litter and other contaminants from reaching the river.		No	
5	Promote best practice for mixing incompatible wastes.	Complete re-assessment of storage in Bays 4 and 7 and implement findings All corrosive wastes moved to Bay 7.	June 2010	Yes	

Issue No.	006	Compiled by: Name/Position	Colm Hussey Facility & Environmental Manager
Date:	March 2010	Reviewed by: Name/Position	Nick Beale Managing Director

RILTA ENVIRONMENTAL	Issue No. 006
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: March 2010
Environmental Management Plan	Page 3 of 8

EMP Ref.	Objective	Environmental Management Programme for the implementation of objectives.	Completion Date	Completed (Y/N)	
6	Reduce use of hazardous raw materials used on site.	Implement the 'treat waste with waste' best practice method on an ongoing basis Waste Acceptance criteria updated and laboratory capabilities enhanced to ensure best results.	Ongoing	Yes	
		Reduce volume of Xylene by 5%	Dec 2010	No	
7	Optimize the quality of effluent discharged to sewer	Offer the customer free sample analysis for waste in order to get as much waste pre-tested as possible. Waste Acceptance criteria updated.	Ongoing	Yes	
		Investigate the JLJ reverse osmosis system as a means of secondary/tertiary form of treatment Biological Treatment plant piloted in its stead	Oct 2010	No	

Issue No.	006	Compiled by: Name/Position	Colm Hussey Facility & Environmental Manager
Date:	March 2010	Reviewed by: Name/Position	Nick Beale Managing Director

RILTA ENVIRONMENTAL	Issue No. 006
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: March 2010
Environmental Management Plan	Page 4 of 8

EMP Ref.	Objective	Environmental Management Programme for the implementation of objectives.	Completion Date	Completed (Y/N)
8	To be a good and considerate	Complete noise monitoring.	Ongoing	Yes
	neighbour.	Review site landscaping project to enhance the visual aspect of the site.	Sept 2010	Yes
		Plans to erect visual barrier put on hold Jan 2011		
		Monitor adjoining river on a yearly basis.	Ongoing	Yes
		Maintain a 'complaints register' and review annually.	Ongoing	Yes
		Liaise with industrial neighbours on a quarterly basis	Ongoing	Yes
		Implement 'closed door' policy system	Ongoing	Yes
		Investigate the effectiveness of general site extraction fans	August 2010	No
9	Fire Safety	Complete building fire safety review and implement findings.	September 2010	Yes
		In draft form		

Issue No.	006	Compiled by: Name/Position	Colm Hussey Facility & Environmental Manager
Date:	March 2010	Reviewed by: Name/Position	Nick Beale Managing Director

RILTA ENVIRONMENTAL Ltd.

ENVIRONMENTAL MANAGEMENT SYSTEM

ENVIRONMENTAL MANAGEMENT PLAN

ER-003

In accordance with ISO 14001

RILTA ENVIRONMENTAL ENVIRONMENTAL MANAGEMENT SYSTEM Environmental Management Programme

<u>ENVIRONMENTAL MANAGEMENT PROGRAMME FOR THE</u> <u>ACHIEVEMENT OF OBJECTIVES AND TARGETS</u>

EMP Ref.	Objective	Completion Date	Complet ed (Y/N)	
1	Increase environmental awareness among RILTA staff.	<i>implementation of objectives.</i> Develop and issue quarterly e- mail environmental bulletin.	June 11	
2	Promote best practice in the processing of waste generated on site.	Extend Green bin system to all office and warehouse areas.	Sept 11	
3	Reduce fugitive emissions.	Annual monitoring of fugitive emissions.	Ongoing	

Issue No.	007	Compiled by: Name/Position	Colm Hussey Facility & Environmental Manager
Date:	March 2011	Reviewed by: Name/Position	Eftim Ivanoff Operations Director

	Issue No. 007 Date: March 2011
Environmental Management Plan	Page 2 of 8

EMP Ref.	Objective	Environmental Management Programme for the implementation of objectives.	Completion Date	Completed (Y/N)
4	Improve site housekeeping.	Insist that only fully and correctly labeled drums/IBCs are accepted on site.	Ongoing	
		Investigate the possibility of building a wall at the north end of the site to control litter and other contaminants from reaching the river.	tbc	
5	Reduce trade effluent sent to foul sewer	Investigate tertiary treatment of effluent with a view of re-using treated aqueous waste.	Oct 2011	

Issue No.	007	Compiled by: Name/Position	Colm Hussey Facility & Environmental Manager
Date:	March 2011	Reviewed by: Name/Position	Eftim Ivanoff Operations Director

RILTA ENVIRONMENTAL	Issue No. 007
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: March 2011
Environmental Management Plan	Page 3 of 8

EMP Ref.	Objective Environmental Management Programme for the implementation of objectives.		Completion Date	Completed (Y/N)
6	Reduce use of hazardous raw materials used on site.	Implement the 'treat waste with waste' best practice method on an ongoing basis	Ongoing	
		Reduce volume of Xylene by 5%	Dec 2011	
7	Optimize the quality of effluent discharged to sewer	Offer the customer free sample analysis for waste in order to get as much waste pre-tested as possible.	Ongoing Oct 2011	
		Investigate tertiary treatment of effluent.	000 2011	

Issue No.	007	Compiled by: Name/Position	Colm Hussey Facility & Environmental Manager
Date:	March 2011	Reviewed by: Name/Position	Eftim Ivanoff Operations Director

RILTA ENVIRONMENTAL	Issue No. 007
ENVIRONMENTAL MANAGEMENT SYSTEM	Date: March 2011
Environmental Management Plan	Page 4 of 8

EMP Ref.	Objective	Environmental Management Programme for the implementation of objectives.	Completion Date	Completed (Y/N)
8	To be a good and considerate neighbour.	Complete noise monitoring.	Ongoing	
	in gire out	Monitor adjoining river on a yearly basis.	Ongoing	
		Maintain a 'complaints register' and review annually.	Ongoing	
		Liaise with industrial neighbours on a quarterly basis	Ongoing	
		Implement 'closed door' policy system	Ongoing	
9	Fire Safety	Complete building fire safety review and implement findings.	September 2011	
10	To Be Energy Efficient	Complete energy audit	Dec 2011	

Issue No.	007	Compiled by: Name/Position	Colm Hussey Facility & Environmental Manager
Date:	March 2011	Reviewed by: Name/Position	Eftim Ivanoff Operations Director

APPENDIX C

Pollutant Release and Transfer Register (PRTR)

| PRTR# : W0192 | Facility Name : Rilta Environmental Limited | Filename : W0192 2010.xls | Return Year : 2010 |

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2010

Version 1.1.11

FACILITY IDENTIFICATION	Rilta Environmental Ltd (formerly known as SITA Environmental
Parent Company Name	
Facility Name	Rilta Environmental Limited
PRTR Identification Number	
Licence Number	
Waste or IPPC Classes of Activity	
No.	class_name
4.13	Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced.
3.11	Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Repackaging prior to submission to any activity referred to in a
3.12	preceding paragraph of this Schedule. Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste
3 13	concerned is produced.
	Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological
	transformation processes).
	Recycling or reclamation of metals and metal compounds.
	Recycling or reclamation of other inorganic materials.
	Recovery of components used for pollution abatement.
	Oil re-refining or other re-uses of oil.
	Block 402, Grant's Drive
	Greenogue Business Park
	Rathcoole
Address 4	County Dublin
Country	
Coordinates of Location	
River Basin District	
NACE Code	
	Recovery of sorted materials
AER Returns Contact Name	
AER Returns Contact Email Address AER Returns Contact Position	
AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number	
AER Returns Contact Mobile Phone Number	
Production Volume	
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	14000

| PRTR# : W0192 | Facility Name : Rilta Environmental Limited | Filename : W0192_2010.xls | Return Year : 27age 1 of 2

User Feedback/Comments	
Web Address	www.rilta.ie

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5(a)	Installations for the recovery or disposal of hazardous waste
5(c)	Installations for the disposal of non-hazardous waste
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 20	02)
Is it applicable?	No
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used ?	

316342311 09.35

VIDES 2010 VIDEN Return VIDE 20101

4.1 RELEASES TO AIR Link to previous years emissions data

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

Please enter all quantities in this section in KGs RELEASES TO AIR

P	DLLUTANT		METHOD			QUANTITY	
			Method Used		and the second se		
No. Annex II	Name	M/C/E Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Yea	F (Fugitive) KG/Ye
					0.0	0.0	0

· Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

	۱
	l
	1
	ł
	Į
	1
	I
	I
	I
	I
	I
	I
	I
	I
S	I
E	1
z	I
⊲	1
-	1
-	ł
_	1
4	I
0	1
۵.	I
~	I
Ľ	1
2	I
5	I
-	I
ບ	I
z	1
=	I
≤	1
⊲.	I
≥	I
ш	1
ñ	I
Ξ.	1
m	I
ш	1
	1
0	1
ź	1
5	1
ECTION	ł
뇄	I
~/	ł

	RELEASES TO AIR			Please enter all quantitie	s in this section in KGs		
POLITI	UTANT	×	ETHOD			QUANTITY	
			Method Used				
No. Annex II	Name	M/C/E Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
				C	c	00 00	0.0

· Select a row by double-clicking on the Pollutant Name (Column B) then click the detete button

KELEASES	RELEASES TO AIR		Please enter all guantities in this section in KGs	this section in KGs				
POLLUTANT		METHOD					QUANTITY	
		Method Used						
Pollutant No. Name	M/C/E Method Code	de Designation or Description	Emission Point 1	Emission Point 2	Emission Point 3	Emission Point 3 T (Total) KG/Year KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
144 . Totel Anennie Carbon (as C)	- HTO	Calculated using bi-annual TOC measurement x 1000hrs operation time	160.0	270.0	50.0	480.0		0.0
	 Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button 							

0.0

data on handilligas (Nethane) flared or utilised on their facilities to accompany the figures for total methane generated Operators should only report their their methane (CH4) emission to the environment under T(total) KGlyr for Section A: Sector specific PRTR pollutants above. Please complete the table below:	e. More than the second part of the second part	ated. m A:				
Landfill: Ri	Rilta Environmental Limited					
Please enter summary data on the quantities of methane flared and / or utilised			Metho	Method Used		
	T (Total) kg/Year	MICIE	Method Code	Designation or Description	Facility Total Capacity m3 per hour	
Total estimated methane generation (as per site model)		0.0			N/A	
Methane flared		0.0			0.0	0.0 (Total Flaring Capacity)
Methane utilised in engine/s		0.0			0.0	0.0 (Total Utilising Capacity)
Net methane emission (as reported in Section A above)		0.0			N/A	

4.2 RELEASES TO WATERS Link to previous years emissions data

PETRE - WOIDS | Facility Marine (Role Environmente) Internation - Wolf42_2010 and Return Seer - 2010 |

T (Total) KG/Year A (Accidental) KG/Year F (Fugitive) KG/Year 0.0 AER / PRTR | QUANTITY Please enter all quantities in this section in KGs M/C/E Method Code Designation or Description Emission Point 1 Data c **RELEASES TO WATERS** Name POLLUTANT SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS No. Annex II

Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	POLLUTANT					QUANTITY	
			Method Used				
No. Annex II	Name	M/C/E	Method Code Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year F (F (Fugitive) KG/Year
					0.0	0.0 0.0	0.0

Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	CENTRAL CONTRAL	A TOTAL PROPERTY.	Arrest Arrested	Please enter all q	Please enter all quantities in this section in KGs	ŝŝ	
	POLLUTANT					QUANTITY	
				Method Used			
Pollutant No	Name	M/C/E	Method Code	Designation or Description Emission Point 1	T (Total) KG/Year	T (Total) KG/Year Accidental) KG/Year F (Fugitive) KG/Year	F (Fugitive) KG/Year
				Average measured COD x			
				Site area (11,000m2) x			
306	COD	υ	OTH	Average Rainfall (700mm)	331.1 331.1	1 0.0	0.0
				Ave. Measured TSS x site			
240	Suspended Solids	υ	OTH	area x rainfall	61.6 61.6	.6 0.0	0.0
				Ave measured mineral oil x			
324	Mineral ols	U	OTH	site area x rainfall	6.9	6.9 0.0	0.0
	 Server an analysis of the Delivery of the Delivery Name (Column B) then click the delate butter 						

* Select a row by double-clicking on the Pollutant Name (Column B) then click the del

4

Sheet : Releases to Wastewater or Sewer

AER Returns Workbook

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

15 60 110220015 I PRTE# : Wr0192 | Facility Mame Rita Environmental Limited | Filename W8192, 2010 xis | Rolum

		And a local division of the local division o					l	
	POLLUTANT		ME	METHOD			QUANTITY	
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description Er	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year F (Fugitive) KG/Year	ar F (Fugitive) KG/
				Average value measured x Total volume discharged				
19	Chromium and compounds (as Cr)	o	OTH	(37495m3)	0	0.93 0.93	0.93 0.93	0.0
				Average value measured x				
	Conner and commonings (as Cui)	C	OTH	I otal volume discharged (37495m3)	3	3.37 3.	3.37 0	0.0
				Average value measured x				
				Total volume discharged				
62	Benzene	υ	OTH	(37495m3)	0.	0.46 0.	0.46 0	0.0
				Average value measured x				
				Total volume discharged				
21	Arsenic and compounds (as As)	o	OTH	(37495m3)	.0	0.37 0.	0.37 0	0.0
				Average value measured x				
				Total volume discharged				
	Ethyl benzene	υ	OTH	(37495m3)	0.0	0.075 0.0	0.075 0	0.0
				Average value measured x				
				Total volume discharged				
	Nickel and compounds (as Ni)	ο	OTH	(37495m3)	3.	3,99 3,99	3.99 0	0.0
				Average value measured x				
				Total volume discharged				
50	Lead and compounds (as Pb)	0	OTH	(37495m3)	0.	0.06 0.	0.06	0.0
				Average value measured x				
				Total volume discharged				
73	Toluane	0	OTH	(37495m3)	2	2.34 2.	2.34 0	0.0
				Average value measured x				
				Total volume discharged				
78	Xvienes	ο	OTH	(37495m3)	1	1.11 1.	1.11 0	0.0
				Average value measured x				
				Total volume discharged				
24	Zinc and compounds (as Zn)	U	OTH	(37495m3)	18.	18.78 18.	18.78 0	0.0

Vacant I w TIANTI I DO CININI ABO O NOLLODO

Deficient loc Deficient loc Method Location Location <thlocation< th=""> Location Location</thlocation<>	The second s	OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER	MENT OR SI	EWER		Please enter all quantities in this section in KGs	n this section in KGs	and the second s	and the second se
Name Marcial Lead		POLLUTANT			ООН			QUANTITY	
Name Name Name Name Designation of Description Imision Point 1 Imition Adverses BOD CO C CH Total volume discringed 5624.25 5624.25 5624.25 COD CO C CH Total volume discringed 5624.25 5624.25 5624.25 COD CO C CH Total volume discringed 20284.79 20284.79 20284.79 20284.75 Deregents (as MBAS) C CH Total volume discringed 20284.79 20284.79 20284.75 5624.25 5624.25 5624.25 5624.25 5624.25 5624.25 5624.25 5624.25 5624.25 5624.25 5624.75 50.0 20284.79 2018 20284.79 2018 <				V	Aethod Used				
BOD C OTH Consideranged (3746)m3) 5624.25 5624.25 COD C OTH (3746)m3) 5624.25 5624.25 COD C OTH (3746)m3) 5624.25 5624.25 COD C OTH (3746)m3) 20284.79 20284.79 COD C OTH (3746)m3) 20284.79 20284.79 Mineral onis C OTH (3746)m3) 30.0 30.0 Mineral onis C OTH (3746)m3) 30.0 30.0 Suphrate C OTH (3746)m3) 30.0 30.0 Mineral onis C OTH (3746)m3) 30.0 30.0 Suphrate C OTH (3746)m3) 30.0 30.0 Suphrate a own y onthere dont a Polaria Name (dont and a dont a dont a Polaria Name (dont and a dont a Polaria Name (dont and a dont a dont a Polaria Name (dont and a dont a Polaria Name (dont a dont a dont a dont a Polaria Name (dont a dont	Pollutant No	the second se		Method Code	Designation or Description E		T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
BOD C CH (31456m3) 562.425 562.425 562.425 COD COD C CH (7456m3) 562.425 562.425 562.425 COD COD C CH (743.65m3) 202.84.79 202.84.79 202.84.79 Detergents (as MBAS) C CH (743.65m3) 202.84.79 202.84.79 Mineral oils C CH (743.65m3) 202.84.79 202.84.79 Mineral oils C CH (743.65m3) 202.84.79 202.84.79 Mineral oils C CH Cold Hold Restringed 203.01 203.01 Mineral oils C CH Cold Hold Restringed 203.01 30.0 Suphate C CH Cold Hold Restringed 52.37 52.37 Subpated Solids C CH CH 203.01 52.37 52.37 Subpate Solids C CH CH 204.66.69.10 202.18 202.18 203.18 Subpate					Average value measured x Total volume discharged				
COD Constrained Detergents (as MBAS) C CH (745m3) 2024.79 2024.79 Detergents (as MBAS) C CH (745m3) 2024.79 2024.79 Detergents (as MBAS) C CH (745m3) 2024.79 2024.79 Mineral oils C CH (745m3) 2024.79 2024.79 Mineral oils C CH (745m3) 2024.79 2024.79 Suphate C CH (745m3) 202 2024.79 2024.79 Suphate C CH (745m3) 202 202 202 Suphate C CH (745m3) 202 16 202 Suphate C CH (745m3) 202 16 202 Suphate C CH (745m3) 202 16 202 Suphate C CH (745m3) 202 202 16 Suphate C CH (745m3) 202 16 202 16 Suphate C CH (745m3) 202 16 202 16 Suphate C CH (745m3) 201 202 16 <t< td=""><td>303</td><td></td><td></td><td>HTC</td><td>(37495m3)</td><td>5624.25</td><td>5624.25</td><td></td><td>0.0</td></t<>	303			HTC	(37495m3)	5624.25	5624.25		0.0
COD COI Total volume discharged 20284.79					Average value measured x				
COD C1H (37456m3) 20284.79 20284.79 20284.79 Detergents (as MBAS) C CH (37456m3) 203 30.0 30.0 Detergents (as MBAS) C CH (37456m3) 30.0 30.0 30.0 Mineral oits Mineral oits C CH (37456m3) 30.0 30.0 Mineral oits Mineral oits C CH (37456m3) 30.0 30.0 Suphate C CH (37456m3) 52.37 52.37 52.37 Suphate C CH (37456m3) 2362.18 2362.18 2362.18 Suphate C CH (37456m3) 2362.18 232.18 232.18 Suphate C CH (37456m3) 2362.18 232.18 232.18 Suphate C CH (37456m3) 364.13 361.13 361.13					Total volume discharged				
Detergents (as MBAS) C OTH Overage value measured x total volume discharged 30.0 30.0 Mineral oils C OTH (37456m3) 30.0 30.0 Mineral oils C OTH (37456m3) 30.0 30.0 Valor (3745m3) C OTH (3745m3) 30.0 30.0 Allor (3745m3) C OTH (3745m3) 52.37 52.37 Suphate C OTH (3745m3) 52.37 52.37 52.37 Suphate C OTH (3745m3) 53.18 2362.18 2362.18 Sastra over yoube-diseng on the Polliant Name (colum B) then disk danged C OTH (3745m3) 2362.18 2362.18 Sastra over yoube-diseng on the Polliant Name (colum B) then disk haded butten C OTH (3745m3) 281.13 881.13	306			DTH	(37495m3)	20284.79	20284.79		0.0
Detergents (as MBAS) C OTH Total volume discharged 30.0 30.0 Mineral oils C OTH (3745m3) 30.0 30.0 Mineral oils C OTH (3745m3) 52.37 52.37 Sulphate C OTH (3745m3) 52.37 52.37 Sulphate C OTH (3745m3) 52.37 52.37 Sulphate C OTH (3745m3) 52.37 52.37 Subpated Solids C OTH (3745m3) 2362.18 2362.18 Saeta anow yoube-disengent the Polluant Name (dort me discharged value measured x Total volume discharged 2362.18 2362.18 Saeta anow yoube-disengent the Polluant Name (dort me discharged value measured x Total volume discharged 2362.18 2362.18 Saeta anow yoube-disengent the Polluant Name (dort me discharged value measured x Total volume discharged 2362.18 2362.18					Average value measured x				
Detergents (as MBAS) C OTH (37456m3) 30.0 30.0 30.0 Mineral oils Areage value measured x Areage value measured x 23.37 52.36 53.216 53.62.18 53.62.18 53.62.18 53.62.18 53.62.18 53.62.18 53.62.18 53.62.18 53.62.18 53.62.18 53.62.18 53.62.18 53.62					Total volume discharged				
Average value measured x Average value measured x Mineral olis C OTH 70456m3 52.37 52.37 Sulphate C OTH (37456m3) 52.37 52.37 Sulphate C OTH (37456m3) 52.37 52.37 Suphate C OTH (37456m3) 52.37 52.37 Suphate C OTH (37456m3) 52.37 52.37 Suphate C OTH (37456m3) 532.18 2362.18 Sasta anowy ouble-diseng on the Polluant Name (colum B) then doot who decharged Total volume discharged 2362.18 2362.18 Sasta anowy ouble-diseng on the Polluant Name (colum B) then doot who deate butten C OTH (37455m3) 881.13	308			DTH	(37495m3)	30.0	30.0		0.0
Mineral oils C OTH Total volume discharged Average value measured x 52.37 52.37 52.37 Sulphate C OTH (3745m3) 52.37 52.37 52.37 Sulphate C OTH (3745m3) 52.37 52.37 52.37 Sulphate C OTH (3745m3) 2362.18 2362.18 Suspended Solids C OTH (3745m3) 2362.18 2362.18 Select a now by ouble-objenity frame (column B) free dook here deete butten C OTH (37456m3) 881.13 881.13					Average value measured x				
Mineral oils C OTH (37456m3) 52.37 52.37 52.37 52.37 Number of the control of the c					Total volume discharged				
Sulphate Average value measured x Sulphate C Supported Solids C OTH (37455m3) C OTH Valence of solids 2362.18 Suspended Solids 2362.18 C OTH Valence of solids 2362.18 Searca own y onbine-disent on the Polutant Name (Colum B) then dook the detec button	324			DTH	(37495m3)	52.37	52.37		0.0
Sulphate Total volume discharged 2362.18 2332.18 Supparted Solids C OTH (37455m3) 2362.18 2362.18 Suspended Solids C OTH (37455m3) 2362.18 2362.18 Suspended Solids C OTH (37455m3) 2362.18 2362.18 Searca row by double-clicing on the Pollutant Name (Column B) then click the delete buttion C OTH (37455m3) 881.13 881.13					Average value measured x				
Suphate C OTH (37455m3) 2362.18 2362.18 2362.18 Suppended Solids Average value measured x Total volume discharged 2362.18 2362.18 2362.18 Suppended Solids C OTH (37455m3) 2362.18 2362.18 2362.18 Suppended Solids C OTH (37455m3) 381.13 881.13 -Select a row by double-clicking on the Polutant Name (Column B) then click the delete buttion (37455m3) 881.13 881.13					Total volume discharged				
Average value measured x Average value measured x Suspended Solids C OTH Total volume discharged 881.13 C OTH (37495m3) 881.13 881.13	343			DTH	(37495m3)	2362.18	2362.18		0.0
Total volume discharged Total volume discharged Suspended Solids C OTH (37495m3) 881.13 * Saket a row by double-discing on the Polutant Name (Column B) then disk the datete button (37495m3) 881.13					Average value measured x				
Suspended Solids Column B) then click the delete button (37495m3) (37495m3) 881.13 881.13 • Select a row by double-clicking on the Polutant Name (Column B) then click the delete button					Total volume discharged				
	240			OTH	(37495m3)	881.13	881.13		0:0
		* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button							

Link to previous years emissions data

Sheet : Releases to Land

AER Returns Workbook

Link to previous years emissions data 4.4 RELEASES TO LAND

PRTR# _V00192 | Fedility Name - Rita Environmental Limited | Filename - V00192_2010.xls | Rerum Year 2010 |

31/03/2011 09:38

S	
~	
-	
z	
1	
~	
-	
-	
-	
_	
0	
2	
а.	
œ	
-	
RTR	
ĽĽ,	
۵.	
- 73	
- 20	
51	
~	
~	
O	
-	
-	
()	
m	
-	
S	

	RELEASES TO LAND			Please e	enter all quanti	lease enter all quantities in this section in Nos	
	POLLUTANT	A TRUE OF	METHOD				QUANTITY
			Method Used	Ised			
o. Annex II	Name	M/C/E	Method Code Desig	gnation or Description Emission Point 1	n Point 1	T (Total) KG/Year	A (Accidental) KG/Year
						0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES 10	LAND			Please enter all quan	lease enter all quantities in this section in NGS	2
	POLLUTANT		ME	AETHOD			QUANTITY
				Method Used			
Pollutant No.	Name	MICIE	Method Code	Designation or Description Emission Point 1	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year
						0.0	0.0 0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

			Quantity (Tonnes per Year)				Method Used		Haz-Waste : Name and Licence/Permit No of Next Destination Facility Haz-Waster Name and Licence/Permit No of Recover/Disposer	Haz Waste : Address of Next Destination Facility Non Haz Waste : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination	European Waste	Hazardous		Description of Waste	Waste Treatment Operation	t M/C/E	Method Used	Location of Treatment				
To Other Countries	01 03 0	Yes	118.22	other tailings containing dangerous 118.22 substances	DS	Σ	Weighed	Abroad	IAG GmbH,A7-64111	Ihlenberg, Selmsdorg,., DE23 923, Germany	IAG GmbH,A7- 64111,Ihlenberg,Selmsdorg, DE23923,Germany	Ihlenberg, Selmsdorg, , DE23 923, Germany
Within the Country	02 03 04	No	11.31 p	materials unsuitable for consumption or 11.31 processing	08	Σ	Weighed	Offsite in Ireland	Premier Proteins Ltd., P045- 05	Poolboy,.,Ballinalsoe,Co. Galway,Ireland		
To Other Countries	02 07 04	No	r 198.58 p	materials unsuitable for consumption or 198 58 processing	R10	×	Weighed	Abroad	K Nord,108ZEB026	Industriepark 6Ganderkesee,D27777,G ermany		
To Other Countries		Yes	34.54 s	34,54 subhurio acid and sulphurous acid	ß	Σ	Weighed	Abroad	Future Industrial Solutions,EA Ref	KirkbyLiverpool,L33 7UF,United Kingdom	Future Industrial Solutions,EA Ref,KirkbyLiverpool,L33 7UF,United Kingdom	KirkbyLiverpool.L33 7UF,United Kingdom
To Other Countries		Yes	74.48 0	74.48 other acids	R6	۶	Weighed	Abroad	Revatech SA,No. Ref	Rue de l'Ile Monsin 95Engis,B4020,Belgium	Revatech SA,No. Ref,Rue de l'Ile Monsin 95Engis,B4020,Belgium	Rue de l'Ile Monsin 95,Engis,B4020,Belgium
To Other Countries		No	86.3 v	86.3 wastes not otherwise specified	RG	Σ	Weighed	Abroad	Revatech SA,No. Ref	Rue de l'Ile Monsin 95,.,Engis,B4020,Belgium Gottlieb Daimler Strasse 3-		
Within the Country	06 03 14	oZ	56.0 n	solid salts and solution other than those 66.0 mentioned in 06 03 11 and 06 03 13	R5	Σ	Weighed	Abroad	Zimmerman,783/240406	7,.,Gutersloh,33334,German y		
Within the Country		Yes	1.03 ח	other organic solvents, washing liquids and 1.03 mother liquors	D13	Σ	Weighed	Offsite in Ireland	Offsite in Ireland Indaver, W036-02	Tolka Quay,Dublin Port,Dublin,1,Ireland	Indaver,W036-02,Tolka Quay,Dublin Port,Dublin,1,Ireland	Tolka Quay,Dublin Port,Dublin,1,Ireland
To Other Countries	09 01 05	Yes	92.72 t	92.72 bleach solutions and bleach fixer solutions	R4	Σ	Weighed	Abroad	Remondis (UK) Ltd.,WML/0707/MO1	Blackrod, Bolton, Lancashire, BL6 5SL, United kingdom	Remondis (UK) Ltd.,WML/0707/MO1,Blackr od.Bolton,Lancashire,BL6 5SL,United kingdom	Blackrod, Bolton, Lancashire, BL6 5SL, United kingdom
To Other Countries	s 10 01 04	Yes	92.9 c	92.9 oil fly ash and boiler dust	R5	۶	Weighed	Abroad	Zimmerman,783/240406	Goulleb Dalmier Suasse 3- 7.,,Gutersloh, 33334,German Y	Zimmerman,783/240406	7Gutersloh,3334,German y
			5	glass-polishing and -grinding sludge		3				Gottlieb Daimler Strasse 3- 7,.,Gutersloh,33334,German		Zimmerman, //53/240406/Got titleb Daimler Strasse 3- Gottlieb Daimler Strasse 3- 7Guterstoh, 33334, German 7Guterstoh, 33334, German
To Other Countries To Other Countries	s 10 11 13 s 11 01 09	Yes Yes	395.08 (22.0 o	395.08 containing dangerous substances sludges and filter cakes containing 22.0 dangerous substances	D9 R5	5 2	Weighed	Abroad Abroad	zimmerman, / 83/240406 Revatech SA, No. Ref	y Rue de l'Ile Monsin 95Engis.B4020,Belgium	y Revatech SA,No. Ref,Rue de l'Ile Monsin 95Engis,B4020,Belgium	y Rue de l'Ile Monsin 95Engis,B4020,Belgium
To Other Countries	11 01	Yes	5 86.78 c	sludges and filter cakes containing 86.78 dangerous substances	R5	Σ	Weighed	Abroad	Remondis (UK) Ltd.,WML/0707/MO1	Blackrod, Bolton, Lancashire, BL6 5SL, United kingdom	Zimmerman, 783/240406,Got tilieb Daimler Strasse 3- 7Gutersioh, 33334,German Y	Zimmerman, 783/240406, Got Tib Daimler Strasse 3- 7., Gutersioh, 33334, German 7., Gutersioh, 33334, German y
To Other Countries	s 11 05 99	No	15.84 v	15.84 wastes not otherwise specified	R4	Σ	Weighed	Abroad	Revatech SA,No. Ref	Rue de l'Ile Monsin 95,Engis,B4020,Belgium		
Within the Country	13 07 01	Yes	19.54 f	19.54 fuel oil and diesel	R13	¥	Weighed	Abroad	Veolia,W050-02	corm., Fermoy, co. Cork, Ireland		
To Other Countries	s 14 06 03	Yes	22.0 6	22.0 other solvents and solvent mixtures	R2	Σ	Weighed	Abroad	RCN,120900718	Daimlerstrasse 26.,,Gock,D47574,Germany	RCN,120900718,Daimlerstra sse 26.,Gock,D47574,Germany	Daimlerstrasse 26,Gock,D47574,Germany
To Other Countries	s 14 06 03	Yes	315.86 0	315.86 other solvents and solvent mixtures	5	۶	Weighed	Abroad	ATM,821780	Vlasweg 12,Moerdijk.4782 PW,Netherlands	PW, Netherlands	Vlasweg 12,.,Moerdijk,4782 PW,Netherlands
Within the Country	15 01 04	QN	3.16 r	3.16 metallic packaging	R4	Σ	Weighed	Offsite in Ireland	Offsite in Ireland A1 Metals, WMP007d	laois,Ireland		

31/3/2011 9:39

AER Returns Workbook

Sheet : Treatment Transfers of Waste

Page 1 of 4

| PRTR# : W0192 | Facility Name : Rilta Environmental Limited | Filename : W0192_2010.xls | Return Year : 2010 |

Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)		Louis Krages Strasse 10 Bremen D28237 Germe		Vlasweg 12Moerdijk,4782 PW,Netherlands	Ctra Castilla ,802-820,Naron (La Coruna),15572,Spain	Westvaardijk ,97,Grimbergen,1850,Belgiu m	Westvaardijk ,97,Grimbergen,1850,Belgiu m		Am Kanal 9Bramshe,49565,German	r Vlasweg 12,Moerdijk,4782 PW.Netherlands	Rue de l'Ile Monsin 95,Engis,B4020,Belgium	Vlasweg 12,.,Moerdijk,4782 PW, Netherlands	Industriepark	ermany	Rue de l'Ile Monsin 95,Engis,B4020,Belgium	Smithstown Industrial Estate, Shannon, Co. Clare,Ireland	Rue de l'Ile Monsin 95,.,Engis,B4020,Belgium	Vlasweg 12Moerdijk,4782 PW,Netherlands
Name and License / Permit No. and Address of Final Recover / Disposer (PAZARDOUS WASTE ONLY)		Nehlsen GmbH,A-4187 HH,Louis Krages Strasse		ATM,821780,Vlasweg 12Moerdijk,4782 PW,Netherlands	Megasa Siderurgica SL, 12548, Ctra Castilla ,802- 820, Naron (La Coruna), 15572, Spain		Sita Decontamination, D/PMVC/0 1F28/33629, Westvaardijk .97, Grimbergen, 1850, Belgiu m		Remondis ,08HRO03001,Am Kanal 9,Bramshe,49565,German	ATM,821780,Vlasweg 12Moerdijk,4782 PW, Netherlands	Revatech SA,No. Ref,Rue de l'Ile Monsin 95., Engis,B4020,Belgium	A I M, 52 1 / 50, viasweg 12,.,Moerdijk, 4782 PVV, Netherlands K	Nord, 108ZEB026, Industriep ark	ermany	Kevatech SA, No. Ket, Kue de l'Ile Monsin 95., Engis, B4020, Belgium Enva, W0041-01, Smithstown	Industrial Estate,Shannon,Co. ClareIreland Pevatech SA No. Ref Rue	de l'Ile Monsin 95., Engis, B4020, Belgium	12., Moerdijk, 4782 PW, Netherlands
Haz Waste : Address of Next Destination Facility Non Haz Waste: Address of Recover/Disposer		Louis Krages Strasse	An international second second	Vlasweg 12Moerdijk,4782 PW,Netherlands	Monery, Crossdowney, Co. Cavan., Ireland	Westvaardijk ,97,Grimbergen,1850,Belgiu m	Unit14A1,Greenogue Business Park,Rathooole,Co. Dublin,Ireland	Unit 77 Broomhill Road,Tallaght,Dublin ,24,Ireland	Am Kanal 9Bramshe,49565,German	y Vlasweg 12Moerdijk,4782 PW. Netherlands	Rue de l'Ile Monsin 95,Engis,B4020,Belgium	Vlasweg 12Moerdijk,4782 PW,Netherlands	Industriepark	o,.,Ganderkesee,UZ1111,G ermany	Rue de l'Ile Monsin 95,.,Engis,B4020,Belgium	Smithstown Industrial Estate,Shannon,Co. Clare,,Ireland	Rue de l'Ile Monsin 95,.,Engis,B4020,Belgium	Vlasweg 12Moerdijk,4782 PW,Netherlands
Haz Waste : Name and Licence/Permit No of Next Destination Facility Non Haz Waste Name and Licence/Permit No of Recover/Disposer			Nehlsen GmbH,A-4187 HH	ATM,821780	Felix Gormley Metals,WP07/015	Sita Decontamination, D/PMVC/0 1F28/33629	Cedar, W0185-01	Rehab Recycling,WFP-DS- 10-0008-01	POLEOCODIS OBLOCODIS	ATM.821780	Revatech SA,No. Ref	ATM,821780		K Nord, 108ZEB026	Revatech SA,No. Ref	Enva,W041-01	Revatech SA,No. Ref	ATM,821780
	Location of Treatment		Abroad	Abroad	Offsite in Ireland	Offsite in Ireland	Offsite in Ireland	Offsite in Ireland		Abroad	Abroad	Abroad		Abroad	Abroad	Abroad	Abroad	Abroad
Method Used	Method Lised	1	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed		Weigned	Weighed	Weighed		Weighed	Weighed	Weighed	Weighed	Weighed
	nt M/C/F		Σ	Σ	Σ	Σ	Σ	Σ		2 2	Σ	Σ		Σ	Σ	Σ	Σ	Σ
	Waste Treatment Oneration	2000	R3	R1	R4	R4	R13	R13	č	5 6	R6	D8		D8	D8	60	R3	R1
i.	Dascrintion of Waste		packaging containing residues of of contaminated by dangerous substances absorbants filler materials (including oil	filters not otherwise specified), wping cloths, pretective clothing contaminated by 384.46 dangerous substances	44.28 oil filters	transformers and capacitors containing 4.36 PCBs	transformers and capacitors containing 0.0.0 PCBs	discarded equipment other than those mentioned in 16 02 09 to 16 02 13	gases in pressure containers (including	10.92 haons) containing dangerous substances laboratory chemicals, consisting of or containing dangerous substances, including 41.64 mixtures of laboratory chemicals.	discarded inorganic chemicals consisting of 59.66 or containing dangerous substances	aqueous liquid wastes containing 44.0 dangerous substances	:= ;; ; ;	aqueous liquid wastes containing 22.0 dangerous substances	aqueous liquid wastes containing 592.16 dangerous substances	aqueous liquid wastes containing 4.0 dangerous substances	aqueous liquid wastes containing 25.1 dangerous substances	18.72 cytotoxic and cytostatic medicines
Quantity (Tonnes per Year)			72.76	384.46	44.28	4.36	10.0	4.02		41.64	59.66	44.0		22.0	592.16	4.0	25.1	18.72
	sindhreteH	2000	Yes	Yes	Yes	Yes	Kes	°Z		Y Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
	European Waste		15 01 10	15 02 02	16 01 07	16 02 09	16 02 09			16 US U4 16 D5 D6		16 10 01		16 10 01	16 10 01	16 10 01	16 10 01	
	Transfer Destination		To Other Countries	To Other Countries	Within the Country	To Other Countries	Within the Country			To Other Countries		To Other Countries		To Other Countries	To Other Countries	Within the Country	To Other Countries	To Other Countries 18 01 08

AER Returns Workbook

Sheet : Treatment Transfers of Waste

Ð
to
m
5
5
-
0
5
Ð
ŝ
~
τυ.
Ē
1
Ē
Ð
E
+2
and
۳.
F
*
set
neet
Sheet

AER Returns Workbook

Name and License / Permit No. and Address of Final Recoverer / Actual Address of Final Destination Disposer (HAZARDOUS WASTE I: Final Recover / Disposal Site ONLY) (HAZARDOUS WASTE ONLY)			Recyfuel SA,P-ENV07- 01,Zoning Industriel of Ehein.,Engis,B4480,Belgi		ATM,821780,Vlasweg 12.,Moerdijk,4782 Vlasweg 12.,Moerdijk,4782 PVV Netherlands PVV,Netherlands	ATM, 821780, Vlasweg 12., Moerdijk, 4782 Vlasweg 12., Moerdijk, 4782 PW, Netherlands PW, Netherlands	ATM,821780,Vlasweg 12.,Moerdijk,4782 Vlasweg 12.,Moerdijk,4782 PW,Netherlands PW,Netherlands	Nehlsen GmbH,A-4187 HH,Louis Krages Strasse 10.,Bremen,D28237,Germa 10.,Bremen,D28237,Germa nv nv	Recyfuel SA.P-ENV07- 01.Zoning Industriel Zoning Industriel d'EheinEngis,B4480,Belgi d'EheinEngis,B4480,Belgi um				Buhck GmbH, KGA53F00502, Rapp enberg, Wiershop21502,G Rappenberg, Wiershop215 ermany Buhck	GmbH,KGA53F00502,Rapp enberg,Wiershop,.,21502,G Rappenberg,Wiershop,.,215 ermany 02,Germany	Buhck Gembly, KGAS5F00502, Rapp enberg, Wiershop,21502, G Rappenberg, Wiershop,215 ermany 02, Germany 02, Germany	North Refinery.2009-35- 003/25 M.C.OSTERWIERUM 25.,.HJ Farmsum,9936, Netherlands Farmsum,9936, Netherlands	Oli (GP3135D Halesowen, , Halesowen, ,Vest Vest Midlands,B63 Midlands,B63 39N,United West Midlands,B63 Midlands,B63 39N,United North Refinency 2006-35-	003/24 MV/ OOSTERWIERI IM
Haz Waste : Address of Next Desthation Facility Non Haz Waste: Address of Racover/Distoser		Vlasweg 12,.,Moerdijk,4782	PW, Netherlands Zoning Industriel d'Ehein Enois, B4480, Belgi		Vlasweg 12,Moerdijk,4782 PW,Netherlands	Vlasweg 12,Moerdijk,4782 PW,Netherlands	Vlasweg 12,Moerdijk,4782 PW,Netherlands	asse 237,Germa	ning Industriel iheinEngis,B4480,Belgi		Linure, Monasterbolce, Co. Louth,, Ireland Brownstown Kilcuillan Co.	Kildare,, Ireland	ershop215	Rappenberg, Wiershop,.,215 02, Germany	Rappenberg, Wiershop215 02, Germany	OOSTERWIERUM 25HJ Farmsum,9936, Netherlands	Halesowen,,,West Midlands, B63 39N,United Kingdom	
Haz Waste : Name and LeencePennt No of Next Destination Facility Haz Waste Name and LecencePennt No of Recover/Disposer			ATM,821780	Recyfuel SA, P-ENV07-01	ATM,821780	ATM,821780	ATM,821780	Nehlsen GmbH A-4187 HH	Revisinel SA P.FNV07-01	Recylinel SA, F-CINVUT-01	Kecycling Village, WP2007/20	KTK Landfill, W081-04	Buhck GmbH,KGA53F00502	Buhck GmbH,KGA53F00502	Buhck GmbH,KGA53F00502	North Refinery,2009-35- 003/24 MV	Midland Oil, GP3135SD	
	Location of Treatment		Abroad	Abroad	Abroad	Abroad	Abroad	Abroad	A here	ADIOBO	Offsite in Ireland	Offsite in Ireland	Abroad	Abroad	Abroad	Abroad	Abroad	
Method Used	Method Used	2000 D00000	Weighed	Weighed	Weighed	Weighed	Weighed	Wainay	PoddielW	paußienn	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	
	Waste Treatment Operation M/C/F		Σ	¥	Σ	Σ	Σ	N	5	Σ	Σ	¥	Σ	Σ	Σ	Ð	Σ	
r per	Description of Waste	ines other than those mentioned in 18	18.9 02 07 R3 paint inks adhesives and resins containing	340.36 dangerous substances D9	paint, inks, adhesives and resins containing 22.44 dangerous substances	paint, inks, adhesives and resins containing 669.95 dangerous substances	paint, inks, adhesives and resins containing 170.62 dangerous substances	ind resins containing	nd resins containing	19.36 dangerous substances discarded electrical and electronic	equipment other than those mentioned in 2.04 20 01 21, 20 01 23 and 20 01 35 R4	10743.96 in 17 05 03 D1	soil and stones containing dangerous 65.2 substances	3715.78 insulation materials containing asbestos D1	construction materials containing asbestos D1	1625.0 other engine, gear and lubricating oils R9	mineral-based non-chlorinated insulating 300.0 and heat transmission oils R1	
Quantity (Tonnes per Year)	Натапіонс	2000 1070	0	Yes 34	Yes 2	Yes 66	Yes 17			Yes	No	No 1074		371 Yes		Tes 16	Xes 3	
	European Waste	-	18 02 08 No	20 01 27 Ye	20 01 27 Ye	20 01 27 Ye	20 01 27 Ye			20 01 27	20 01 36 N	17 05 04 N				13 02 08	13 03 07	
	Transfer Destination		To Other Countries	To Other Countries	To Other Countries	To Other Countries	To Other Countries			To Other Countries	Within the Country	To Other Countries		To Other Countries 17 06 01	To Other Countries	To Other Countries	To Other Countries	

đ
-
S
co.
>
>
-
0
- 2
92
-
4
50
C
05
-
1
1.00
7
5
~
E
-
ര
ം
+
+
Φ
â
č
10
0,

			Quantity (Tonnes per Year)				Method Used	i	Harring Angeles: Name and Licence/Permit No of Next Destination Facility Haz/Wastis: Name and Licence/Permit No of Recover/Disposer	Haz Waste - Address of Next Destination Facility Non Haz Waste, Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recover / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination I.e. Final Recovery. Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination	European Waste	Hazardous		Description of Waste	Waste Treatment Oneration	Waste Treatment Operation M/C/F	Method Used	Location of Treatment				
										Hoverstrasse 74-		
To Other Countries 19 03 04	19 03 04	Yes	1450.0 5	wastes marked as hazardous, partly (20) 1450.0 stabilised	D8	Σ	Weighed	Abroad	TerraCon GmbH,EG0102	/6,.,Hamburg,20539,Germa ny	roHamburg,20539,Germa ny	ль,.,натригд,∠орза,сегта пу
Within the Country	16 06 05	°Z	0.51 6	0.51 other batteries and accumulators	R4	٤	Weighed	Offsite in Ireland	Recycling Village,WP2007/20	Tinure,Monasterboice,Co. Louth,Ireland		
										South DarleyDerbyshire,DE4	HJ Enthoven, BL5598, South Darley,., Derbyshire, DE4	South DarleyDerbyshire,DE4
To Other Countries 16 06 01	16 06 01	Yes	5236.89 1	5236.89 lead batteries	R4	Σ	Weighed	Abroad	HJ Enthoven, BL5598	2LP,United Kingdom	2LP, United Kingdom Recycling	2LP,United Kingdom
									Recycling	Tinure, Monasterboice, Co.	village, vvrzuorizu, mule, w onasterboice, Co.	
Within the Country	16 06 02	Yes	7.92	7.92 Ni-Cd batteries	R4	Σ	Weighed	Offsite in Ireland	Village,WP2007/20 Recycling	LouthIreland Tinure,Monasterboice,Co.	Louth., Ireland	Louth,.,Ireland
Within the Country 16 06 04	16 06 04	No	32.52	32.52 alkaline batteries (except 16 06 03)	R4	Σ	Weighed	Offsite in Ireland		LouthIreland		
										6 place de la Madeline,.,Paris,75008,Fran	Recyclex SA6 place de la MadelineParis.75008, Fran	Recyclex SA., 6 place de la 6 place de la Madeline., Paris, 75008, Fran Madeline., Paris, 75008, Fran
To Other Countries 16 06 01	16 06 01	Yes	136.82	136.82 lead batteries	R4	Σ	Weighed	Abroad	Recyclex SA,.	ce Unit 14B Greenogue	83	8
										Business Park,Rathcoole,Co.		
Within the Country 20 01 39	20 01 39	٥N	330.0 1	330.0 plastics	R13	Σ	Weighed	Offsite in Ireland	Offsite in Ireland Greenstar, W0188-01	Dublin, Ireland Acragar, Mountmellick, Co.		
Within the Country 20 01 40	20 01 40	No	314.0 1	No 314.0 metals	R13	Σ	Weighed	Offsite in Ireland	Offsite in Ireland A1 Metals, WMP007d	laois, Ireland		

APPENDIX D

Annual Noise Monitoring Report - 2010

RILTA ENVIRONMENTAL LTD.

Annual Noise Survey 2010

October 2010 Final

TOBIN CONSULTING ENGINEERS

REPORT

PROJECT:

RILTA Site 402 Noise survey September 2010

CLIENT:

RILTA Environmental Ltd. Greenogue Business Park, Rathcoole,

D24

COMPANY:

TOBIN Consulting Engineers Block 10-4, Blanchardstown Corporate Park,

Dublin 15

www.tobin.ie

DOCUMENT AMENDMENT RECORD

Client:	Rilta Environmental Ltd
Project:	Greenogue noise Monitoring
Title:	September 2010 Noise monitoring

	PROJECT NUMBER: 3	DOC	UMENT RE	EF: 3084 - 01	- 04				
Final	Annual Noise Report	DC	18/10/11	ST	18/10/11	DG	18/10/11		
Revision	Description & Rationale	Originated	Date	Checked	Date	Authorised	Date		
	TOBIN Consulting Engineers								

TABLE OF CONTENTS

1	INT	FRODUCTION	. 3
2		DISE MONITORING SURVEY	2
2	NO		
	2.1	INSTRUMENTATION USED	.3
	2.2	MEASUREMENT PROCEDURE	.3
	2.3	RESULTS OF NOISE SURVEY	.4
z	co	NCLUSION	5
	20		

LIST OF TABLES

Table 2-1	Noise Monitoring Locations	. 4
Table 2-2	Noise Monitoring Results – dB(A) and 30 minute intervals	. 5

APPENDICES

Appendix A	: 1/3 Octave Frequency Analysis	
Figure 1	N1 Daytime Frequency Analysis	8
Figure 2	N1 Night Time Frequency Analysis	8
Figure 3	N2 Daytime Frequency Analysis	9
Figure 4	N2 Night Time Frequency Analysis	9
Figure 5	N3 Daytime Frequency Analysis	10
Figure 6	N3 Night Time Frequency Analysis	10
Figure 7	N4 Daytime Frequency Analysis	11
Figure 8	N4 Night Time Frequency Analysis	11

1 INTRODUCTION

This report deals with the noise monitoring requirement conditions of RILTA Environmental Ltd. (RILTA) hazardous waste facility at Greenogue Business Park, Rathcoole, Co. Dublin, Waste Licence No. 192-03.

2 NOISE MONITORING SURVEY

Tobin Consulting Engineers (TOBIN) were commissioned by RILTA to carry out an annual day and night time noise survey at their facility in Grenogue Business Park. The noise survey was carried out within the site boundary of the waste facility, at 4 no. locations agreed with the EPA (see Drawing No. 1250/01/1002). Weather conditions during monitoring event were dry and calm with no breeze. The following conditions were adhered to in undertaking the survey:

- Measurement of noise levels was undertaken using Type 1 instrumentation;
- Cognisance was taken of the EPA's 'Environmental Noise Survey Guidance Document, 2003;
- The survey was carried out in accordance with ISO 1996 Acoustics Description and Measurement of Environmental Noise: Parts 1/2/3.

2.1 INSTRUMENTATION USED

The following instrumentation was used in the environmental noise monitoring survey:

- One Larson Davis 824 Precision Integrating Sound Level Analyser/Data logger with *Real-Time* Frequency Analyser Facility;
- Wind Shield Type: Larson Davis 2120 Windscreen; and
- Calibration Type: Larson Davis Precision Acoustic Calibrator Model CA200.

2.2 MEASUREMENT PROCEDURE

Daytime and night time noise monitoring was carried out by TOBIN on 1st September 2010. Noise monitoring was undertaken for 30 minute intervals at four agreed EPA locations. All the environmental noise analysers had data logging facilities were set on real-time, the logged data was later downloaded via a personal computer using software. One third octave frequency analysis was taken at the locations using the 824 Precision Integrating Sound Level Analyser/Data logger with *real-time* frequency analyser facility.

The measurement locations were all away from reflecting surfaces and at 1.5m height above local ground.

All acoustic instrumentation was calibrated before and after the survey period and no drift of calibration was observed (calibration level 114dB at 1000Hz).

2.3 RESULTS OF NOISE SURVEY

The noise monitoring locations are summarised in Table 2-1 below and illustrated on Drawing No. 1250/01/1002. The results of the noise survey are given in Table 2-2. The 1/3 octave frequency analysis data is given in graphical format in Appendix A.

Table 2-1 Noise Monitoring Locations

Monitoring Location	Description
N1	South western boundary of site
N2	North western boundary of site
N3	North eastern boundary of site
N4	South eastern boundary of site

Location N1

Noise monitoring location N1 is located at the southwestern boundary of the site, adjacent to the site car park and to the access road to RILTA within Greenogue Business Park. Noise at this location was dominated in both the day and night period by Baldonnel air traffic.

Location N2

N2 is located in the northwestern corner of the site, behind the racked storage building. Aircraft, road traffic and adjacent facilities were the main noise contributors at N2.

Location N3

N3 is located at the northeastern site boundary, adjacent to the tank farm. At this location, activity from neighbouring facilities, truck movements and aviation traffic dominated the noise sources. The RILTA facility was audible in lulls.

Location N4

Noise monitoring location N4 is located in the southeastern corner of the site. Passing road traffic and air traffic from Baldonnel dominated the noise climate at this location. The RILTA facility was largely inaudible.

Receptor	Time	Leq	L10	L90	Notes				
	DAY TIME								
N1	14:36	56.9	59.9	49.2	Plant not audible, Passing traffic and aircraft overhead dominant at this location				
N2	16:25	51.9	54.6	45.4	Aircraft noise dominant, noise from adjoining facility, RILTA audible.				
N3	15:48	62.8	60.6	52.4	Over head aircraft dominant, trucks and adjacent site noise audible, digger in operation next site, RILTA largely inaudible.				
N4	15:14	63.7	61.7	48.4	Passing traffic is dominant, overhead aircraft, facility inaudible, aircraft and helicopters very low and very frequent.				
					NIGHT TIME				
N1	23:50	44.5	45.3	41.2	Passing traffic				
N2	22:40	43.5	42.1	40.0	Stream audible, aircraft overhead, distant road traffic, helicopter				
N3	22:05	52.6	55.9	55.2	RILTA audible at 46/47dB in lull periods, noise from neighbouring facilities and stream audible, fan audible.				
N4	23:15	44.3	43.4	35.4	Passing traffic on internal industrial estate roads.				

Table 2-2 Noise Monitoring Results – dB(A) and 30 minute intervals

3 CONCLUSION

The noise emission limits given in Waste Licence 192-03 are 55 dB(A) for daytime and 45 dB(A) for night time. These levels specifically relate to noise emissions arising from the facility, measured at any noise sensitive location.

The noise emissions from RILTA Environmental Ltd. are given in Table 2-2 above.

Noise levels recorded at the four EPA agreed noise monitoring locations contain noise emissions from adjacent industrial sites, low flying aircraft and traffic on the internal road network of the industrial estate. Noise emissions from the RILTA facility were audible only during daytime monitoring and not audible during the night time monitoring. Note that the EPA agreed noise monitoring locations are all on site and do not reflect emissions at noise sensitive locations.

The A-weighted equivalent continuous sound pressure level (LAeq, 30 min) recorded at the RILTA facility was less than 55 dB(A) at noise monitoring location N2 only, during the daytime monitoring event. Where the measured LAeq, 30 min exceeded 55 dB(A), this was due to the addition of extraneous noise sources such as low flying aircraft from nearby Baldonnell Airport, passing traffic on the internal roads of the industrial estate, distant traffic on the N7 and activities in adjacent sites.

No noise emissions due to the RILTA facility were generally audible during the night time monitoring period. During the night time monitoring period the A-weighted equivalent continuous sound pressure level (LAeq, 30 min) exceeded 45 dB(A) (night time) limit at N3 only. The

exceedance at N3 was directly attributable to extraneous noise sources such as traffic on the industrial estate road network, the adjacent flowing stream or low flying aircraft from nearby Baldonnell Airport.

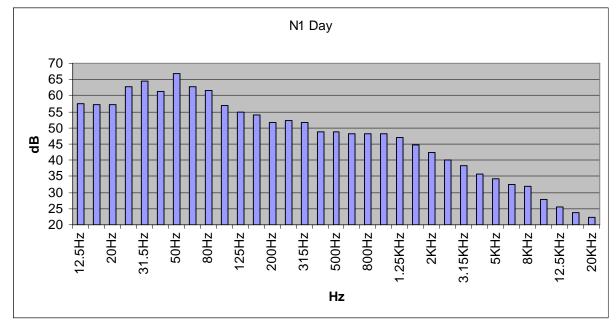
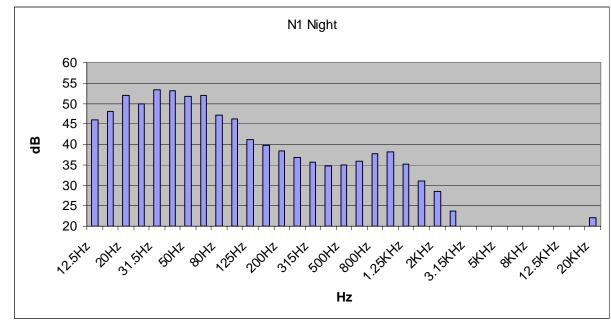
There were no impulsive noise emissions audible at any of the monitoring locations during the daytime or night time monitoring period. With regard to tonal emissions, Figures 1 to 8 (see Appendix A) indicate that tonal components were present at 2 no. daytime monitoring locations (N3 & N4). However, no tonal emissions at these frequencies were recorded at any other monitoring location during the day or night time monitoring event.

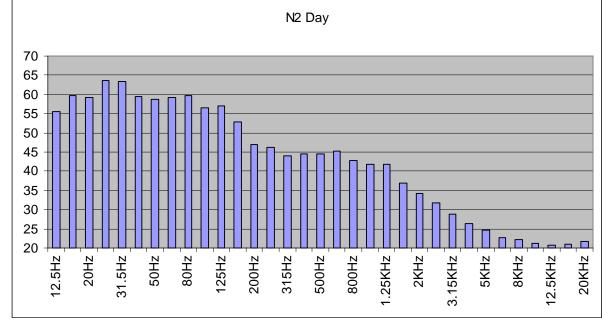
There was a pure tone at 20Hz measured at monitoring location N3 (Day Monitoring). The tone at this frequency was not present at the same location during the night time survey. During the daytime survey at N4 there was a pure tone at 25Hz. The tone at N4 (25Hz) was not observed at any other monitoring location during either the day or night time monitoring events, and as such is unlikely to have originated due to RILTA activities.

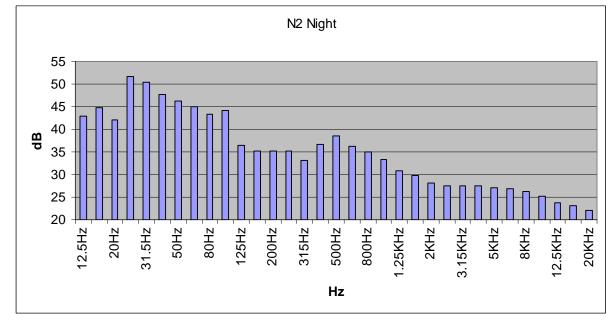
There was a tonal component at 50Hz measured at monitoring location N3 (Night Monitoring). The tone at this frequency was inaudible at all locations during the night time survey. The 5dB penalty has not been added as it is unlikely that the tone is due to mains hum, as it was not present at this location during the daytime survey and as such is likely to be derived from an off-site source. Full 1/3 octave frequency band analysis of both day and night time surveys is presented in Appendix A.

APPENDIX A

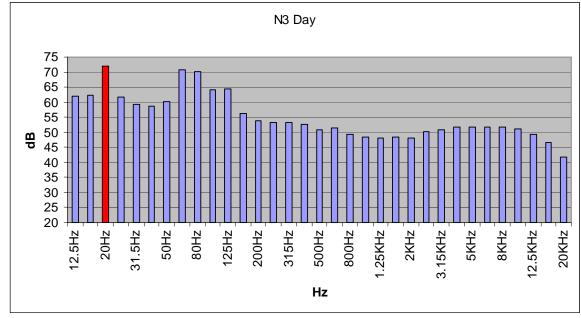
1/3 Octave Frequency Analysis Day & Night Noise Surveys

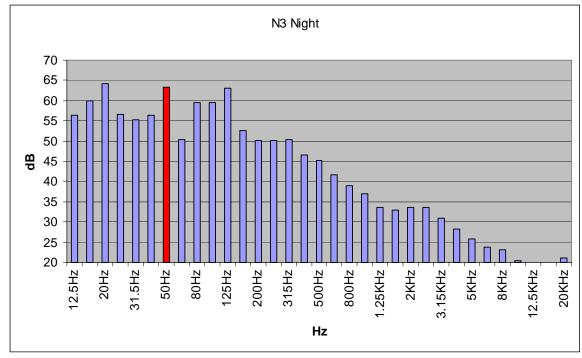

Figure 1 N1 Daytime Frequency Analysis



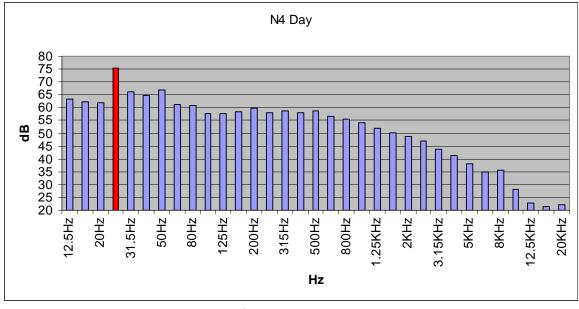
N2 Daytime Frequency Analysis



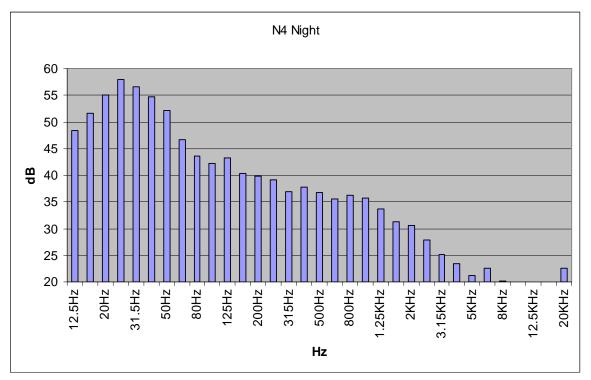
N2 Night Time Frequency Analysis



N3 Daytime Frequency Analysis



N3 Night Time Frequency Analysis



N4 Daytime Frequency Analysis

N4 Night Time Frequency Analysis

APPENDIX E

Laboratory Dust Monitoring Results - 2010

Attention: Da

David Corrigan

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location:

D_TOBIN_DUB-17 100608-47 3084 Rilta Enviro LTD

17 June 2010

Report No.: 87438

We received 4 samples on Friday June 04, 2010 and 4 of these samples were scheduled for analysis which was completed on Thursday June 17, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

enton

Iain Swinton Operations Director - Land UK & Ireland

Validated	ALcontrol Laboratories Analytical Services							
SDG:	100608-47	Customer:	Tobin					
Job:	D_TOBIN_DUB-17	Attention:	David Corrigan					
Client Reference:	3084	Order No.:	1777					
Location:	Rilta Enviro LTD	Report No:	87438					

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Sampled Date
1657819	D1 1		04/06/2010
1657824	D2 1		04/06/2010
1657829	D3 1		04/06/2010
1657840	D4 1		04/06/2010

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated	ALcontrol Laboratories Analytical Services								
SDG:	100608-47	Customer:	Tobin						
Job:	D_TOBIN_DUB-17	Attention:	David Corrigan						
Client Reference:	3084	Order No.:	1777						
Location:	Rilta Enviro LTD	Report No:	87438						

LIQUID

-								
Results Legend	Lab	Sample No(s)	1657819	1657824	1657829	1657840		
X Test								
No Determination Possible	Cus	tomer Sample Ref.	D1	D2	D3	D4		
		Depth (m)						Total
		Container	11 glass bottle (D)	11 glass bottle (D)	1I glass bottle (D)	1l glass bottle (D)		
Dust in Water	A	II	X	X	X	X	0 4	

Validated	ALcontrol Laboratories Analytical Services							
SDG: 10	00608-47	Customer:	Tobin					
Job: D_	_TOBIN_DUB-17	Attention:	David Corrigan					
Client Reference: 30	084	Order No.:	1777					
Location: Ri	ilta Enviro LTD	Report No:	87438					

Test Completion dates

				SDG reference: 100608-47			
Lab Sample No(s)	1657819	1657824	1657829	1657840			
Customer Sample Ref.	D1	D2	D3	D4			
Depth							
Туре	LIQUID	LIQUID	LIQUID	LIQUID			

17/06/2010 17/06/2010 17/06/2010 17/06/2010

Dust in Water

SDG: Job: Client Reference: Location:	100608-4 D_TOBIN 3084 Rilta Envi	I_DUB-17	7	Atte	ention: Da ler No.: 17	obin avid Corrigan 777 7438	
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. totunfitt Dissolved / filtered sample. * subcontracted test. * % recovery of the surrogate standard to check the efficienc of the method. The results of th individual compounds within the samples are not corrected for this recovery. Component	S Da Da	Sample Ref. Depth (m) ample Type ite Sampled te Received SDG Ref mple No.(s) Method	D1 Water(GW/SW) 04/06/2010 04/06/2010 100608-47 1657819	D2 Water(GW/SW) 04/06/2010 04/06/2010 100608-47 1657824	D3 Water(GW/SW) 04/06/2010 04/06/2010 100608-47 1657829	D4 Water(GW/SW) 04/06/2010 04/06/2010 100608-47 1657840	
Dust, Total	<0.026	TM253	151	110	141	233	
Dust, Organic	mg/m2/day mg/m2/day	TM253	56.5	63.1	49.4	127	
Dust, Inorganic	mg/m2/day	TM253	94	47	91.7	106	

Table of Results - Appendix

SDG Nu	umber :	100608-47	Client : Tobin Client Ref : 3084					3084	
REPORT KEY Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7									
NDP	No Determin	ation Possible	#	ISO 17025 Accredited			Subcontracted Test	м	MCERTS Accredited
NFD	No Fibres Detected		PFD	PFD Possible Fibres Detected			Result previously reported (Incremental reports only)	EC	Equivalent Carbon (Aromatics C8-C35)
ote: Method detection limits are not always achievable due to various circumstances beyond our control									
M	Method No Reference					Wet/Dry Sample ¹			
TM253 Dust is collected either using a "Frisbee" The Determ collector this is the "Stockholm" method or using a "jam jar" collector, this is the "Berghoff" method.					The Determir	nation of	Dust		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

APPENDIX

APPENDIX

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH₄ by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- Surrogate recoveries Most of our organic methods include surrogates, the recovery of which is monitored and reported.
 For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

LIQUID MATRICES EXTRACTION SUMMARY							
ANALYSIS	EXTRACTION SOLVENT	ЕХТКАСТІОN МЕТНОD	SISATNA				
PAH MS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS				
EPH	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID				
EPH CWG	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID				
MINERAL OIL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID				
PCB 7 CONGENERS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS				
PCB TOTAL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GS MS				
SVOC	DCM	LIQUID/LIQUID SHAKE	GC MS				
FREE SULPHUR	DCM	SOLID PHASE EXTRACTION	HPLC				
PEST OCP/OPP	DCM	LIQUID/LIQUID SHAKE	GC MS				
TRIAZINE HERBS	DCM	LIQUID/LIQUID SHAKE	GC MS				
PHENOLS MS TPH by INFRA RED (IR)	DCM TCE	SOLID PHASE EXTRACTION LIQUID/LIQUID EXTRACTION	GC MS HPLC				
MINERAL OIL by IR	TCE	LIQUID/LIQUID EXTRACTION	HPLC				
GLYCOLS	NONE	DIRECT INJECTION	GC FID				

ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
Solvent Extractable Matter	D&C	DCM	SOXTHERM	GRAVIMETRIC
Cyclohexane Ext. Matter	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
Thin Layer Chromatography	D&C	DCM	SOXTHERM	IATROSCAN
Elemental Sulphur	D&C	DCM	SOXTHERM	HPLC
Phenols by GCMS	WET	DCM	SOXTHERM	GC-MS
Herbicides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
Pesticides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANE:ACETONE	END OVER END END OVER	GC-FID
EPH (Min oil)	D&C	HEXANE:ACETONE	END	GC-FID
EPH (Cleaned up)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH CWG by GC	D&C	HEXANE:ACETONE	END OVER END END OVER	GC-FID
PCB tot / PCB con	D&C	HEXANE:ACETONE	END	GC-MS
Polyaromatic Hydrocarbons (MS)	WET	HEXANE:ACETONE	Microwave TM218.	GC-MS
C8-C40 (C6-C40)EZ Flash	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Polyaromatic Hydrocarbons Rapid GC	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Semi Volatile Organic Compounds	WET	DCM:ACETONE	SONICATE	GC-MS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in


MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Asbestos Type

Common Name

Chrysotile Amosite Crocidolite Fibrous Actinolite Fibrous Anthophyllite Fibrous Tremolite White Asbestos Brown Asbestos Blue Asbestos --

Attention: Da

David Corrigan

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: 21 September 2010 D_TOBIN_DUB-32 100916-49 3084 (1250)

Report No.: 97476

We received 4 samples on Thursday September 16, 2010 and 4 of these samples were scheduled for analysis which was completed on Tuesday September 21, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Rilta

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

enton

Iain Swinton Business Director - Land UK & Ireland

Validated	ALcontrol Laboratories Analytical Services						
SDG:	100916-49	Customer:	Tobin				
Job:	D_TOBIN_DUB-32	Attention:	David Corrigan				
Client Reference:	3084 (1250)	Order No.:	1892				
Location:	Rilta	Report No:	97476				

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
2094946	D1			
2094953	D2			
2094958	D3			
2094965	D4			

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

ALcontrol Laboratories Analytical Services

SDG:	100916-49	Customer:	Tobin
Job:	D_TOBIN_DUB-32	Attention:	David Corrigan
Client Reference:	3084 (1250)	Order No.:	1892
Location:	Rilta	Report No:	97476

LIQUID

-				_	_	_	
Results	Legend	Lab Sample No(s)			2094953	2094958	2094965
N	Test No Determination Possible	Customer Sample		Ā	D2	03	D4
		AGS Ref.					
		Depth (m)					
		Container		2l glass bottle	2l glass bottle	2l glass bottle	2l glass bottle
Dust in Wat	er		NDPs: 0 Fests: 4	x	x	x	×

Validated	ALcontrol Laboratories Analytical Services						
SDG:	100916-49	Customer:	Tobin				
Job:	D_TOBIN_DUB-32	Attention:	David Corrigan				
Client Reference:	3084 (1250)	Order No.:	1892				
Location:	Rilta	Report No:	97476				
	·	·					

Test Completion Dates

Lab Sample No(s)	2094946	2094953	2094958	2094965
Customer Sample Ref.	D1	D2	D3	D4
AGS Ref.				
Depth				
Туре	LIQUID	LIQUID	LIQUID	LIQUID
Dust in Water	21/09/2010	21/09/2010	21/09/2010	21/09/2010

Validated	ALcontrol Laboratories Analytical Services							
SDG: Job: Client Reference: Location:	100916-4 D_TOBIN 3084 (12 Rilta	N_DUB-3	2	Att Or	ention: [der No.: 1	Tobin David Corrigan 1892 97476		
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample.	Customer	Sample Ref. Depth (m)	D1	D2	D3	D4		
tot.unfilt Total / unfiltered sample. * subcontracted test.		Sample Type Date Sampled	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)) Water(GW/SW)		
** % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected	Lab	Date Received SDG Ref Sample No.(s) GS Reference	16/09/2010 100916-49 2094946	16/09/2010 100916-49 2094953	16/09/2010 100916-49 2094958	16/09/2010 100916-49 2094965		
for this recovery. Component	LOD/Units	Method						
Dust, Total	<0.026	TM253	117	97.3	95.5	74.1		
Dust, Organic	mg/m2/day mg/m2/day	TM253	53.6	74.1	32.1	37.5		
Dust, Inorganic	mg/m2/day	TM253	63.4	23.2	63.4	36.6		

Table of Results - Appendix Client : D_TOBIN_DUB SDG Number : 100916-49 Client Ref: 3084 (1250) **REPORT KEY** Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7 No Determination Possible NDP ISO 17025 Accredited # Subcontracted Test М MCERTS Accredited Result previously reported (Incremental reports only) Possible Fibres Detected No Fibres Detected PFD Equivalent Carbon NFD (Aromatics C8-C35) Note: Method detection limits are not always achievable due to various circumstances beyond our control Wet/Dry Sample ¹ Surrogate Corrected **Method No** Reference Description Dust is collected either using a "Frisbee" collector this is the "Stockholm" method or using a "jam jar" collector, this is the "Berghoff" method. The Determination of Dust TM253

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

APPENDIX

APPENDIX

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH₄ by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- Surrogate recoveries Most of our organic methods include surrogates, the recovery of which is monitored and reported.
 For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

	LIQUID	MATRICES EXTRACTION SUMMARY	
ANALYSIS	EXTRACTION SOLVENT	ЕХТКАСТІОN МЕТНОD	SISATNA
PAH MS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
EPH	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
EPH CWG	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
MINERAL OIL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
PCB 7 CONGENERS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
PCB TOTAL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GS MS
SVOC	DCM	LIQUID/LIQUID SHAKE	GC MS
FREE SULPHUR	DCM	SOLID PHASE EXTRACTION	HPLC
PEST OCP/OPP	DCM	LIQUID/LIQUID SHAKE	GC MS
TRIAZINE HERBS	DCM	LIQUID/LIQUID SHAKE	GC MS
PHENOLS MS TPH by INFRA RED (IR)	DCM TCE	SOLID PHASE EXTRACTION LIQUID/LIQUID EXTRACTION	GC MS HPLC
MINERAL OIL by IR	TCE	LIQUID/LIQUID EXTRACTION	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GC FID

ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
Solvent Extractable Matter	D&C	DCM	SOXTHERM	GRAVIMETRIC
Cyclohexane Ext. Matter	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
Thin Layer Chromatography	D&C	DCM	SOXTHERM	IATROSCAN
Elemental Sulphur	D&C	DCM	SOXTHERM	HPLC
Phenols by GCMS	WET	DCM	SOXTHERM	GC-MS
Herbicides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
Pesticides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANE:ACETONE	END OVER END END OVER	GC-FID
EPH (Min oil)	D&C	HEXANE:ACETONE	END	GC-FID
EPH (Cleaned up)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH CWG by GC	D&C	HEXANE:ACETONE	END OVER END END OVER	GC-FID
PCB tot / PCB con	D&C	HEXANE:ACETONE	END	GC-MS
Polyaromatic Hydrocarbons (MS)	WET	HEXANE:ACETONE	Microwave TM218.	GC-MS
C8-C40 (C6-C40)EZ Flash	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Polyaromatic Hydrocarbons Rapid GC	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Semi Volatile Organic Compounds	WET	DCM:ACETONE	SONICATE	GC-MS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in

MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Asbestos Type

Common Name

Chrysotile Amosite Crocidolite Fibrous Actinolite Fibrous Anthophyllite Fibrous Tremolite White Asbestos Brown Asbestos Blue Asbestos --

Tobin Block 10 - 4 Blanchardstown Corporate Park Dublin

Attention: David Corrigan

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 17 January 2011 D_TOBIN_DUB 110104-17 04.1.11 Dust Samples 23.11.10 - 29.12.10 111283

We received 4 samples on Tuesday January 04, 2011 and 4 of these samples were scheduled for analysis which was completed on Monday January 17, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Sonia McWhan Laboratory Manager

CERTIFICATE OF ANALYSIS

Validated

Dust Samples 23.11.10 - 29.12.10 1986 SDG: 110104-17 Location: Order Number: D_TOBIN_DUB-44 111283 Job: Customer: Tobin Report Number: **Client Reference:** 04.1.11 Attention: David Corrigan Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
2645605	D1			23/11/2010
2645607	D2			23/11/2010
2645613	D3			23/11/2010
2645617	D4			23/11/2010

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol I	Laborator	ries	CF	RT	ΊF	CATE OF ANALYSIS			Validate
SDG: Job: Client Reference:	110104-17 D_TOBIN_ 04.1.11		Location: Customer: Attention:	[: 1	Dust Гоbi	Samples 23.11.10 - 29.12.10	Order Number: Report Number: Superseded Report:	1986 111283	
				٦	Ге	st Schedule			
LIQUID Results Legend X Test		Lab Sample N	No(s)	2645607 2645605	2645617 2645613				
No Determin Possible	ation	Custome Sample Refer		D1	D3				
		AGS Refere	nce						
		Depth (m)						
		Containe	r	PLAS BOT (D)	PLAS BOT (D)				
Dust in Water		All	NDPs: 0 Tests: 4	x x	x x				

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

Validated

_									
#	Results Legend ISO17025 accredited.	c	ustomer Sample R	D1	D2	D3	D4		
M § diss.filt tot.unfilt *	mCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. subcontracted test. % recovery of the surrogate standar	rd to	Depth (m) Sample Type Date Sampled Date Received	Water(GW/SW) 23/11/2010 04/01/2011	Water(GW/SW) 23/11/2010 04/01/2011	Water(GW/SW) 23/11/2010 04/01/2011	Water(GW/SW) 23/11/2010 04/01/2011		
	check the efficiency of the method. results of the individual compounds within the samples are not corrected this recovery.	The s d for	SDG Ref Lab Sample No.(s) AGS Reference	110104-17 2645605	110104-17 2645607	110104-17 2645613	110104-17 2645617		
Compo Dust,	nent Total	LOD/Units <0.026		3.7	7.41	1.39	9.26		
		mg/m2/da		-					
 									
L				L	I	I	<u> </u>	I	I

•	ALcontrol L	aboratories		CER		OF AN	IALYSIS				Va	alidated
SDG: Job: Client	Reference:	110104-17 D_TOBIN_DUB-44 04.1.11		Location: Customer: Attention:	Dust Samples 2 Tobin David Corrigan		- 29.12.10	Order Numbe Report Numb Superseded I	er:	1986 111283		
REPOR				Table	of Resul	ts - /	Appendix					
NDP	No Determination	Possible	#	ISO 17025 Accredited		*	Subcontracted Test	Results		as (e.g.) 1.03E-07	is equivaler RTS Accred	
NFD	No Fibres Detect		# PFD	Possible Fibres Detected	t	»	Result previously repor (Incremental reports on		M EC	Equiv	valent Carbo matics C8-C	on
Note: Metho	od detection limits	are not always achievable d	ue to vario	us circumstances beyond	our control							
М	ethod No		Refe	rence			Descript	ion			/et/Dry ample ¹	Surrogate Corrected
	TM253	Dust is collected eit collector this is the " a "jam jar" collector, method.	"Stockho	olm" method or using	The Deter	rmination	of Dust					

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

ALcontrol	Laboratories		CEI	RTIFICA [.]		IALYSIS			Validated
SDG: Job: Client Reference:	110104-17 D_TOBIN_DUB-44 04.1.11		Location: Customer: Attention:	Dust Samp Tobin David Corr	oles 23.11.10 ⁻ igan	- 29.12.10	Order Number: Report Number: Superseded Report:	1986 111283	
Test Completion Dates									
L	_ab Sample No(s)	2645605	2645607	2645613	2645617				
Custo	omer Sample Ref.	D1	D2	D3	D4				
	AGS Ref.								
	Depth								
	Туре	LIQUID	LIQUID	LIQUID	LIQUID				
Dust in Water		11-Jan-2011	11-Jan-2011	11-Jan-2011	11-Jan-2011				

ALcontrol Laboratories

.....

CERTIFICATE OF ANALYSIS

Validated

12					
SDG:	110104-17	Location:	Dust Samples 23.11.10 - 29.12.10	Order Number:	1986
Job:	D_TOBIN_DUB-44	Customer:	Tobin	Report Number:	111283
Client Reference:	04.1.11	Attention:	David Corrigan	Superseded Report:	

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

SDG:	110104-17	Location:	Dust Samples 23.11.10 - 29.12.10
Job:	D TOBIN DUB-44	Customer:	Tobin
Client Reference:	04.1.11	Attention:	David Corrigan

Appendix

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

12. Results relate only to the items tested

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited

19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: Superseded Report: 1986 111283

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	d/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DCM	SOXTHERM	IATROSCAN
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HFLC
PHENOLSBYGONS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH (MNOL)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH CMG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFD
POB TOT / POB CON	D&C	HEXANEACETONE	END OVEREND	GCMS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
08-040(06-040)EZ FLASH	WET	HEXANEACETONE	SHAVER	GCEZ
POLYAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAVER	GCEZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMAGETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
BPH .	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPHCWG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
PCB 7 CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
PCB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLID PHASE EXTRACTION	HPLC
PEST 00P/0PP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRIAZINE HERBS	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TIH by INFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HPLC
MINERALOIL by R	TCE	LIQUID/LIQUID SHAKE	HFLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Amosite	BrownAsbestos
Oroddaite	Blue Asbestos
Fibrous Adindite	-
Fibrous Anthophylite	-
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX F

OMI – Emissions Report 2010

ODOUR & ENVIRONMENTAL ENGINEERING CONSULTANTS

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

ROUND 1 2010-MONITORING OF VOC EXHAUST STACKS CONCENTRATIONS AT RILTA LTD, BLOCK 402, GREENOGUE BUSINESS PARK, RATHCOOLE, CO. DUBLIN

PERFORMED BY ODOUR MONITORING IRELAND ON BEHALF OF RILTA ENVIRONMENTAL LIMITED

PREPARED BY:	Dr. John Casey	
ATTENTION:	Mr. Colm Hussey	
LICENCE NUMBER:	WL00192-03	
LICENCE HOLDER:	Rilta Environmental Limited	
FACILITY NAME:	Block 402, Grants's Drive	
DATE OF MONITORING VISIT:	13 th Aug. 2010	
NAME AND ADDRESS OF CLIENT ORGANISATION:	Rilta Environmental Ltd., Block 402, Grants's Drive, Greenogue Business Park, Rathcoole, Co. Dublin	
NAME AND ADDRESS OF MONITORING ORGANISATION:	Odour Monitoring Ireland, Unit 32 DeGranville Court, Dublin Road, Trim, Co. Meath	
DATE OF REPORTING:	16 th Feb. 2011	
NAME AND THE FUNCTION OF THE PERSON APPROVING THE REPORT:	Dr. Brian Sheridan, Managing Partner, Odour Monitoring Ireland	
REPORT NUMBER:	2011A71(1)	
Reviewers:		

TABLE OF CONTENTS

Section		Page number
TABLE C	OF CONTENTS	i
Docum	ent Amendment Record	II
Part 1 -	Executive Summary	1
1.1	Monitoring Objectives	1
1.2	Special Monitoring Requirements	1
1.3	The substances to be monitored at each emission point	1
2.	Monitoring Results	2
2.1	Operating Information	2
2.2	Monitoring Result Reference Conditions	2
2.3.	Sampling Location Summary	2
2.4.	Sampling time runs	3
4.	Conclusion	3
5.	Appendix I-Sampling, analysis	4

Document No. 2011A71 (ver.1) Visit No: 01 Year: 2010 WL0192-03 Rilta Environmental Limited Greenogue Business Park

This document is submitted as part of environmental monitoring carried out by Odour Monitoring Ireland. The results reported are representative of actual conditions on the day of monitoring.

Respectively submitted,

levu

Brian Sheridan B.Sc. M.Sc. (Agr) Ph.D (Eng).

For and on behalf of Odour Monitoring Ireland™

www.odourireland.com

Document No. 2011A71 (ver.1) Visit No: 01 Year: 2010 WL0192-03 Rilta Environmental Limited Greenogue Business Park

DOCUMENT AMENDMENT RECORD

Client: Rilta Environmental Limited

Title: Round 1 2010 - Monitoring of VOC concentrations at Rilta Environmental Ltd., Block 402, Greenogue Business Park, Rathcoole, Co. Dublin

Project Number: 2011A71(1)			Document Reference: 2011A71(1)		
2011A71(1)	Document for review	JWC	BAS	BAS	16/02/2011
Revision	Purpose/Description	Originated	Checked	Authorised	Date
	· · ·	O D OU R monitoring IRELAND			

Part 1 - Executive Summary

The results of the monitoring exercise are contained in Section 2 of this report.

- Mass emissions for locations A1, A2 and A3 are in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.
- Volume flow for locations A1, A2 and A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.

1.1 Monitoring Objectives

Odour Monitoring Ireland were commissioned by Rilta Environmental Limited to perform Volatile Organic Compound (VOC) monitoring of the three licensed emission points located within the facility. The survey was carried out on the 13th August 2010. The monitoring was carried out at this facility as part of compliance monitoring with the requirements of Waste licence W0192-03. The emissions testing was carried out by Odour Monitoring Ireland on behalf of Rilta Environmental Limited.

1.2 Special Monitoring Requirements

There were no special monitoring requirements for this campaign.

1.3 The substances to be monitored at each emission point

The parameters listed in *Table 1.1* were monitored using the appropriate instrumentation as illustrated in *Table 1.1*. All monitoring was carried out in accordance with Environmental Protection Agency Office of Environmental Enforcement (OEE) Air Emission Monitoring Guidance Note 2 (AG2).

Sample location	Parameter	Analytical method
A1, A2, A3	Volumetric airflow rate & Temperature (⁰ C)	Pitot in accordance with EN13284-1:2002. MGO coated K type thermocouple and PT100
A1, A2, A3	Total Organic Carbon (TOC)	EN13649:2002 analysis via Gas Chromatography in an UKAS accredited lab.

Table 1.1. Monitored parameters and techniques

This report presents details of this monitoring programme. This environmental monitoring was carried out Dr. John Casey, Managing Partner, Odour Monitoring Ireland on the 13th August 2010. Results and Conclusions are presented herein.

2. Monitoring Results

This section will present the results of the monitoring exercise.

Emission Point Reference	Date	Process Type	Process Duration	Fuel	Feedstock	Abatement	Load
A1	13/08/2010	Drum washer	Continuous	N/A	Air emission from washing processes	No	Air emission from washing processes
A2	13/08/2010	Drum painter	Continuous	N/A	Air emission from paint processes	No	Air emission from paint processes
A3	13/08/2010	Drum dryer	Continuous	N/A	Air emission from drying processes	No	Air emission from drying processes

2.1 Operating Information

2.2 Monitoring Result Reference Conditions

Emission Point Reference	Temperature (K)	Pressure	Moisture Correction	Oxygen Correction (%)
A1	К	101.3	Yes	None
A2	К	101.3	Yes	None
A3	К	101.3	Yes	None

2.3. Sampling Location Summary

Comment	Yes/No
Recommended 5 hydraulic diameters straight length before sampling plane	Yes*
Recommended 2 hydraulic diameters straight length after sampling plane	Yes*
Ports number <1.5m - 2 ports >1.5m - 4 ports	2 ports
Appropriate port size	Yes
Suitable working platform	Yes

Note: *Airflow rate in accordance with EN13284 with exception of location A1 due to access issues airflow rate was performed at one plane on the base of the stack.

2.4. Sampling time runs

Parameter	Approx. Sampling period per location
Volumetric air flow rate	Manually calculated
Stack gas temp	35 minutes
T A Luft Organics	35 minutes

Table 2.5. Measurement results and emission limit values within Waste licence 192-03 - Schedule B

Emission Point	Temperature (Kelvin)	Limit Volumetric airflow rate (Nm ³ hr ⁻¹)	Measured Volumetric airflow rate (Nm ³ hr ⁻¹)
A1	292.15	5,292	3,011
A2	308.15	5,292	5,239
A3	299.15	2,520	1,930

Table 2.6. Results of monitoring at Emission Point A1

Library/ID	Conc. of VOC (mgC/ Nm ³)	Mass Flow of Speciated VOC (kg/hr)
Total Organic Carbon (TOC as carbon)	52.4 mgC/Nm ³	0.16 kg/hr
Total Organic Carbon (TOC as carbon) Limit value	-	1.0 kg/hr

Table 2.7. Results of monitoring at Emission Point A2

Library/ID	Conc of VOC (mgC/Nm³)	Mass Flow of Speciated VOC (kg/hr)
Total Organic Carbon (TOC as carbon)	13.5 mgC/Nm ³	0.08 kg/hr
Total Organic Carbon (TOC as carbon) Limit value	-	0.10 kg/hr

Table 2.8.Results of VOC Monitoring at Emission Point A3.

Library/ID	Conc of Speciated VOC (mg Nm ⁻³ as C)	Mass Flow of Speciated VOC (kg/hr)
Total Organic Carbon (TOC as carbon)	3.2 mgC/Nm ³	0.007kg/hr
Total Organic Carbon (TOC as carbon) Limit value	-	0.30 kg/hr

Mass emissions for locations A1, A2 and A3 are in compliance with emission limit values as set out in Schedule B of Waste licence 192-03. Volume flow for locations A1, A2 and A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.

4. Conclusions

The following conclusions were drawn from the study:

- Mass emissions for locations A1, A2 and A3 are in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.
- Volume flow for locations A1, A2 and A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.

5. Appendix I-Sampling, analysis

5.1.1 Location of Sampling

Rilta Environmental Ltd., Block 402, Grants's Drive, Greenogue Business Park, Rathcoole, Co. Dublin

5.1.2 Date & Time of Sampling 13th August 2010

5.1.3 Personnel Present During Sampling

Dr. John Casey, Odour Monitoring Ireland, Trim, Co. Meath. MCERTS level 1: MM0674

5.1.4 Instrumentation check list

Federal Method 2 S type pitot and MGO coated thermocouple; L type pitot tube Testo 400 handheld and appropriate probes. SKC sample pumps and Bios Primary calibrator and glass impingers.

ODOUR & ENVIRONMENTAL ENGINEERING CONSULTANTS

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

ROUND 2 2010-MONITORING OF VOC EXHAUST STACKS CONCENTRATIONS AT RILTA LTD, BLOCK 402, GREENOGUE BUSINESS PARK, RATHCOOLE, CO. DUBLIN

PERFORMED BY ODOUR MONITORING IRELAND ON BEHALF OF RILTA ENVIRONMENTAL LIMITED

_		
PREPARED BY:	Dr. John Casey	
ATTENTION:	Mr. Colm Hussey	
LICENCE NUMBER:	WL00192-03	
LICENCE HOLDER:	Rilta Environmental Limited	
FACILITY NAME:	Block 402, Grants's Drive	
DATE OF MONITORING VISIT:	01 st Oct. 2010	
NAME AND ADDRESS OF CLIENT ORGANISATION:	Rilta Environmental Ltd., Block 402, Grants's Drive, Greenogue Business Park, Rathcoole, Co. Dublin	
NAME AND ADDRESS OF MONITORING ORGANISATION:	Odour Monitoring Ireland, Unit 32 DeGranville Court, Dublin Road, Trim, Co. Meath	
DATE OF REPORTING:	16 th Feb. 2011	
NAME AND THE FUNCTION OF THE PERSON APPROVING THE REPORT:	Dr. Brian Sheridan, Managing Partner, Odour Monitoring Ireland	
REPORT NUMBER:	2011A72(1)	
Reviewers:		

TABLE OF CONTENTS

Section		Page number
TABLE C	DF CONTENTS	i
Docum	ent Amendment Record	II
Part 1 -	- Executive Summary	1
1.1	Monitoring Objectives	1
1.2	Special Monitoring Requirements	1
1.3	The substances to be monitored at each emission point	1
2.	Monitoring Results	2
2.1	Operating Information	2
2.2	Monitoring Result Reference Conditions	2
2.3.	Sampling Location Summary	2
2.4.	Sampling time runs	3
4.	Conclusion	3
5.	Appendix I-Sampling, analysis	4

Document No. 2011A72 (ver.1) Visit No: 02 Year: 2010 WL0192-03 Rilta Environmental Limited Greenogue Business Park

This document is submitted as part of environmental monitoring carried out by Odour Monitoring Ireland. The results reported are representative of actual conditions on the day of monitoring.

Respectively submitted,

levu

Brian Sheridan B.Sc. M.Sc. (Agr) Ph.D (Eng).

For and on behalf of Odour Monitoring Ireland™

www.odourireland.com

Document No. 2011A72 (ver.1) Visit No: 02 Year: 2010 WL0192-03 Rilta Environmental Limited Greenogue Business Park

DOCUMENT AMENDMENT RECORD

Client: Rilta Environmental Limited

Title: Round 2 2010 - Monitoring of VOC concentrations at Rilta Environmental Ltd., Block 402, Greenogue Business Park, Rathcoole, Co. Dublin

Project Number: 2011A72(1)		Document Reference: 2011A72(1)			
2011A72(1)	Document for review	JWC	BAS	BAS	16/02/2011
Revision	Purpose/Description	Originated	Checked	Authorised	Date
		O D O U R monitoring IRELAND			

Part 1 - Executive Summary

The results of the monitoring exercise are contained in Section 2 of this report.

• Mass emissions for location A1, A2 and A3 are in compliance with emission limit values as set out in Schedule B of Waste licence 192-03. Volume flow for locations A1 and A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03. Volume flow for location A2 was not in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.

1.1 Monitoring Objectives

Odour Monitoring Ireland were commissioned by Rilta Environmental Limited to perform Volatile Organic Compound (VOC) monitoring of three licensed emission points located within the facility. The survey was carried out on the 01st October 2010. The monitoring was carried out at this facility as part of compliance monitoring with the requirements of Waste licence W0192-03. The emissions testing was carried out by Odour Monitoring Ireland on behalf of Rilta Environmental Limited.

1.2 Special Monitoring Requirements

There were no special monitoring requirements for this campaign.

1.3 The substances to be monitored at each emission point

The parameters listed in *Table 1.1* were monitored using the appropriate instrumentation as illustrated in *Table 1.1*. All monitoring was carried out in accordance with Environmental Protection Agency Office of Environmental Enforcement (OEE) Air Emission Monitoring Guidance Note 2 (AG2).

Sample location	Parameter	Analytical method
A1, A2, A3	Volumetric airflow rate & Temperature (⁰ C)	Pitot in accordance with EN13284-1:2002. MGO coated K type thermocouple and PT100
A1, A2, A3	Total Organic Carbon (TOC)	EN13649:2002 analysis via Gas Chromatography in an UKAS accredited lab.

Table 1.1. Monitored parameters and techniques

This report presents details of this monitoring programme. This environmental monitoring was carried out Dr. John Casey, Managing Partner, Odour Monitoring Ireland on the 01st October 2010. Results and Conclusions are presented herein.

2. Monitoring Results

This section will present the results of the monitoring exercise.

Emission Point Reference	Date	Process Type	Process Duration	Fuel	Feedstock	Abatement	Load
A1	01/10/2010	Drum washer	Continuous	N/A	Air emission from washing processes	No	Air emission from washing processes
A2	01/10/2010	Drum painter	Continuous	N/A	Air emission from paint processes	No	Air emission from paint processes
A3	01/10/2010	Drum dryer	Continuous	N/A	Air emission from drying processes	No	Air emission from drying processes

2.1 Operating Information

2.2 Monitoring Result Reference Conditions

Emission Point Reference	Temperature (K)	Pressure	Moisture Correction	Oxygen Correction (%)
A1	К	101.3	Yes	None
A2	К	101.3	Yes	None
A3	К	101.3	Yes	None

2.3. Sampling Location Summary

Comment	Yes/No
Recommended 5 hydraulic diameters straight length before sampling plane	Yes*
Recommended 2 hydraulic diameters straight length after sampling plane	Yes*
Ports number <1.5m - 2 ports >1.5m - 4 ports	2 ports
Appropriate port size	Yes
Suitable working platform	Yes

Note: *Airflow rate in accordance with EN13284 with exception of location A1 due to access issues airflow rate was performed at one plane on the base of the stack.

2.4. Sampling time runs

Parameter	Approx. Sampling period per location
Volumetric air flow rate	Manually calculated
Stack gas temp	34 minutes
T A Luft Organics	34 minutes

Table 2.5. Measurement results and emission limit values within Waste licence 192-03 - Schedule B

Emission Point	Temperature (Kelvin)	Limit Volumetric airflow rate (Nm ³ hr ⁻¹)	Measured Volumetric airflow rate (Nm ³ hr ⁻¹)
A1	288.15	5,292	3,054
A2	291.15	5,292	6,221
A3	296.15	2,520	1,814

Table 2.6. Results of monitoring at Emission Point A1

Library/ID	Conc. of VOC (mgC/ Nm ³)	Mass Flow of Speciated VOC (kg/hr)
Total Organic Carbon (TOC as carbon)	50.1mgC/Nm ³	0.15 kg/hr
Total Organic Carbon (TOC as carbon) Limit value	-	1.0 kg/hr

Table 2.7. Results of monitoring at Emission Point A2

Library/ID	Conc of VOC (mgC/Nm³)	Mass Flow of Speciated VOC (kg/hr)
Total Organic Carbon (TOC as carbon)	14 mgC/Nm ³	0.09 kg/hr
Total Organic Carbon (TOC as carbon) Limit value	-	0.10 kg/hr

Table 2.8.Results of VOC Monitoring at Emission Point A3.

Library/ID	Conc of Speciated VOC (mg Nm ⁻³ as C)	Mass Flow of Speciated VOC (kg/hr)
Total Organic Carbon (TOC as carbon)	2.5 mgC/Nm ³	0.004 kg/hr
Total Organic Carbon (TOC as carbon) Limit value	-	0.30 kg/hr

Mass emissions for location A1, A2 and A3 are in compliance with emission limit values as set out in Schedule B of Waste licence 192-03. Volume flow for locations A1 and A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03. Volume flow for location A2 was not in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.

4. Conclusions

The following conclusions were drawn from the study:

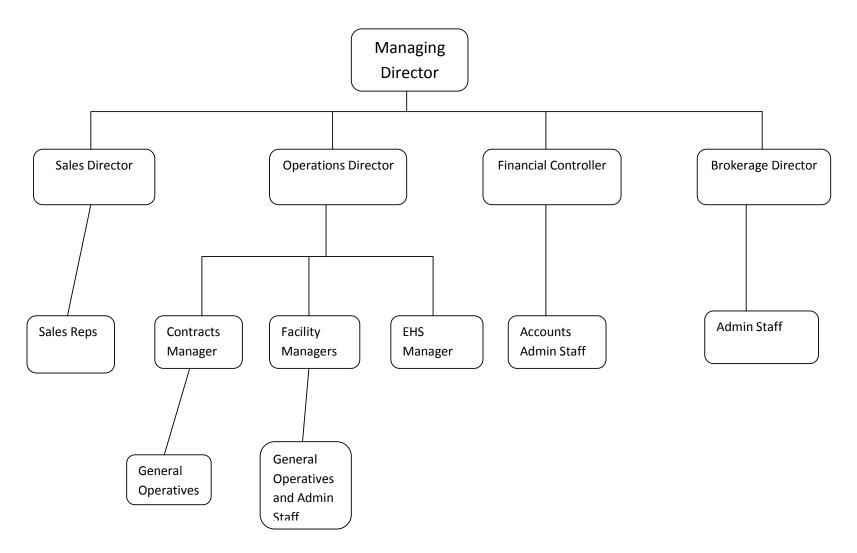
• Mass emissions for location A1, A2 and A3 are in compliance with emission limit values as set out in Schedule B of Waste licence 192-03. Volume flow for locations A1 and A3 were in compliance with emission limit values as set out in Schedule B of Waste licence 192-03. Volume flow for location A2 was not in compliance with emission limit values as set out in Schedule B of Waste licence 192-03.

5. Appendix I-Sampling, analysis

5.1.1 Location of Sampling

Rilta Environmental Ltd., Block 402, Grants's Drive, Greenogue Business Park, Rathcoole, Co. Dublin

- 5.1.2 Date & Time of Sampling 01st October 2010
- 5.1.3 Personnel Present During Sampling Dr. John Casey, Odour Monitoring Ireland, Trim, Co. Meath. MCERTS level 1: MM0674


5.1.4 Instrumentation check list

Federal Method 2 S type pitot and MGO coated thermocouple; L type pitot tube Testo 400 handheld and appropriate probes. SKC sample pumps and Bios Primary calibrator and glass impingers.

APPENDIX G

Environmental Management and Staffing Structure - 2010

<u>Rilta Environmental Management Structure</u>

