

Accreditation Certificate

Cork County Council

Wastewater Testing Laboratory, Inniscarra, Co. Cork

Testing Laboratory

Registration number: 016T

is accredited by the Irish National Accreditation Board (INAB) to undertake testing as detailed in the Schedule bearing the Registration Number detailed above, in compliance with the International Standard ISO/IEC 17025:2005 2nd Edition "General Requirements for the Competence of Testing and Calibration Laboratories" (This Certificate must be regal in conjunction with the Annexed Schedule of Accreditation)

Date of award of accreditation: 01:10:2002

Date of last renewal of accreditation: 20:09:2007

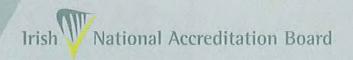
Expiry date of this certificate of accreditation: 20:09:2012

This Accreditation shall remain in force until further notice subject to continuing compliance with INAB accreditation criteria, ISO/IEC 17025 and any further requirements specified by the Irish National Accreditation Board.

Manager: Jom Domphey

Mr Tom Dempsey

Chairperson:


D. 11/1... W. L.L.

Issued on 20th September 2007

Organisations are subject to annual surveillance and are re-assessed every five years. The renewal date on this Certificate confirms the latest date of renewal of accreditation. To confirm the validity of this Certificate, please contact the Irish National Accreditation Board.

The INAB is a signatory of the European co-operation for Accreditation (EA) Testing Multilateral Agreement (MLA) and the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement.

Wilton Park House, Wilton Place, Dublin 2, Ireland. Tel +353 1 607 3003 Fax +353 1 607 3109 E-mail inab@inab.ie Web www.inab.ie

Tel +353 1 607 3003 Fax +353 1 607 3109

Schedule of Accreditation

(Annex to Accreditation Certificate)

Permanent Laboratory: Category A

CORK COUNTY COUNCIL

Chemistry Testing Laboratory

Initial Registration Date : 25-April-1991

iton purposes only any other use. Waste Water Laboratory Postal Address:

Inniscarra 🞺 (Address of other locations

Co. Cork as they apply) +353 (24) 4532700 Telephone:

+353 (21) 4532777 Fax:

E-mail:

Contact Name: Ms M Cherry

Facilities: Normally not available for Public testing

Wilton Park House, Wilton Place, Dublin 2, Ireland Tel +353 1 607 3003 Fax +353 1 607 3109 E-mail inab@inab.ie Web www.inab.ie

Schedule of Accreditation

Permanent Laboratory: Category A

THE IRISH NATIONAL ACCREDITATION BOARD (INAB) is the Irish body for the accreditation of organisations including laboratories.

Laboratory accreditation is available to testing and calibration facilities operated by manufacturing organisations, government departments, educational institutions and commercial testing/calibration services. Indeed, any organisation involved in testing, measurement or calibration in any area of technology can seek accreditation for the work it is undertaking.

Each accredited laboratory has been assessed by skilled specialist assessors and found to meet criteria which are in compliance with ISO/IEC 17025 or ISO/IEC 15189 (medical laboratories). Frequent audits, together with periodic inter-laboratory test programmes, ensure that these standards of operation are maintained.

Testing and Calibration Categories:

Category A: Permanent laboratory calibration and testing where the laboratory is erected on a fixed

location for a period expected to be greater than three years.

Category B: Site calibration and testing that is performed by staff sent out on site by a permanent

laboratory that is accredited by the Irish National Accreditation Board.

Category C: Site calibration and esting that is performed in a site/mobile laboratory or by staff sent

out by such a laboratory, the operation of which is the responsibility of a permanent

laboratory accredited by the Irish National Accreditation Board.

Category D: Site calibration and testing that is performed on site by individuals and organisations that

do not have a permanent calibration/testing laboratory. Testing may be performed using

(a) portable test equipment

(b) a site laboratory

(c) a mobile laboratory or

equipment from a mobile or site laboratory

Standard Specification or Test Procedure Used:

The standard specification or test procedure that is accredited is the issue that is current on the date of the most recent visit, unless otherwise stated.

Glossary of Terms

Facilities:

Public calibration/testing service: Commercial operations which actively seek work from others.

Conditionally available for public Established for another primary purpose but, more commonly than not,

calibration/testing: is available for outside work.

Normally not available for public Unavailable for public calibration/testing more often than not.

calibration/testing:

Laboratory users wishing to obtain assurance that calibration or test results are reliable and carried out to the Irish National Accreditation Board criteria should insist on receiving an accredited calibration certificate or test report. Users should contact the laboratory directly to ensure that this scope of accreditation is current. INAB will, on request, verify the status and scope.

Cork County Council

Chemical Testing Laboratory

Permanent Laboratory: Category A

INAB Classification number (P9) Materials/products tested		Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used	
766	Waters	Chemical analysis:	Documented in-house methods based on Standard Methods for the Examination of Water	
.01	Waters for domestic purposes	Biochemical Oxygen Demand	& Wastewater 21 st Edition APHA (See Note 1)	
	Surface and ground waters	2 - 145,000 mg/l	No. 1 membrane electrode	
		Chloride 5 - 1,000 mg/l Speciforn Purple Reliable Speciforn Purple Relia	CP No. 7 Argentometric method	
		Biochemical Oxygen Demand 2 - 145,000 mg/l Chloride 5 - 1,000 mg/l ph 2 - 12 Consent of copyright owner resulting for the copyright owne	CP No. 5 Electrometry	
		Suspended Solids 0.5 - 17,500 mg/l	CP No. 3 Gravimetric	
		Chemical Oxygen Demand 21 - 135 mg/l 120 - 670,000 mg/l	CP No. 6 Reflux - colourmetric method	
		Total phosphorus 0.2 - 5,300 mg/l	US-EPA Approved method/HACH Method CP No.20	
		Ammonia 0.1 - 1,000 mg/l NH ₃ - N	Documented in-house method CP22 by Konelab based on Method for the Examination of Waters and Associated Material HMSO:1981	

Cork County Council

Chemical Testing Laboratory

Permanent Laboratory:
Category A

Waters Waters for domestic purposes	Orthophosphate as P (Konelab)	
domestic purposes	Orthophosphate as P (Konelab)	
	B 0.005 4.00 0.004.04	CP No. 23 Ascorbic Acid Method
	Range: 0.005-1.00 mg O-PO4 P/L	A 115°C.
Surface and ground waters	High Range: 1000 mg O-P04 P/L Method Detection Limit: 0.02 mg O-P04 P/L	other tise.
	Chloride (Konelab) Range: 25-250 mg/L Cl- High Range Conc.: 88,000 mg/L Cl- Method Detection Lamit: 25 mg/L Cl-	CP No. 24 Ferricyanide Method
	Sulphate (Ronelab)	CP No. 25 Documented in-house method by
	Range: 30-250 mg/L SO4/L	Konelab based on method for the examination
	High Range Conc.: 35,000 mg/L SO4/L	of waters and waste waters and associated
	Method Detection Limit: 30 mg SO4/L	material HMSO: 1981
		Sulphate (Ronelab) Range: 30-250 mg/L SO4/L High Range Conc.: 35,000 mg/L SO4/L

Cork County Council

Permanent Laboratory: Category A

Chemical Testing Laboratory

INAB Classification number (P9) Materials/products tested		Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used	
766	Waters	Chemical analysis	Documented in-house methods based on Standard Methods for the Examination of Water&	
.05	Trade Wastes Industrial effluents Urban Wastewater	Biochemical Oxygen Demand 2 - 145,000 mg/l	Wastewater 21 st Edition APHA (See Note 1)	
	Municipal Wastewater	Chloride 5 - 1,000 mg/l September 1,000 mg/l	CP No. 7 Argentometric method	
		Biochemical Oxygen Demand 2 - 145,000 mg/l Chloride 5 - 1,000 mg/l pH 2 - 12 Consent of contribution with the contribution of the contributi	CP No. 5 Electrometry	
		Suspended Solids 0.5 - 17,500 mg/l	CP No. 3 Gravimetric	
		Chemical Oxygen Demand 21 - 135 mg/l 120 - 670,000 mg/l	CP No. 6 Reflux - colourmetric method	
		Total phosphorus 0.2 - 5,300 mg/l	US-EPA Approved method/HACH Method CP No.20	
		Ammonia 0.1 - 1,000 mg/l NH3-N	Documented in-house method CP22 by Konelab based on Method for the Examination of Waters and Associated Material HMSO: 1981.	

Notes 1. APHA American Public Health Association, USA, 21st Edition

Cork County Council

Permanent Laboratory: Category A

Chemical Testing Laboratory

INAB Classification number (P9) Materials/products tested		Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used	
766	Waters	Chemical analysis	Documented in-house methods based on Standard Methods for the Examination of Water&	
.05	Trade Wastes Industrial effluents Urban Wastewater Municipal Wastewater	or its different to the state of the state o	Wastewater 21 st Edition APHA (See Note 1) CP. 1 Membrane electrode	
		Orthophosphate as P (Konelab) edited Range: 0.005 - 1.00 mg of P04 P/L High Range: 1000 mg of P04 P/L Method Detection Primit: 0.02 mg O-P04 P/L Consenses	CP No. 23 Ascorbic Acid Method	
		Chloride (Konelab) Range: 25-250 mg/L Cl- High Range Conc.: 86,600 mg /L Cl- Method Detection Limit: 25mg / L Cl-	CP No. 24 Ferricyanide Method	
		Sulphate (Konelab)) Range: 30-250 mg/L SO4 /L High Range Conc.: 35,000 mg/L SO4 /L Method Detection Limit: 30 mg SO4 /L	CP No. 25 Documented in-house method by Konelab based on method for the examination of waters and waste waters and associated material HMSO: 1981	

Notes 1. APHA American Public Health Association, USA, 21st Edition

PT_CD	PT_TYPE	MON_TYPE	EASTING	NORTHING	VERIFIED
Sw01	Primary	Sampling Sampling	154840	69023	
SW01u	u/s	Sampling	154678	68659	
SW01u SW01d	d/s	Sampling	154936	69981	
			.©.		
			tice of the control o		
			- Alle		
			1823 Stay		
			S C KOT		
			and street		
			Lan Can		
			.059 LOW		
		4	of the		
		Cancert of	Col.		
		X.O			
		31501			
		0			

Sample Date	15/01/2009	15/01/2009	15/01/2009	15/01/2009
Sample	Influent	Effluent	Upstream	Downstream
Sample Code	GT054	GT053	GT055	GT056
Flow M ³ /Day	*	*	*	*
рН	7.2	7.6	7.6	7.7
Temperature ℃	*	*	*	*
Cond 20°C	489	438	200	199
SS mg/L	47	77	12	19
NH ₃ mg/L	4.9	4.9	<0.1	<0.1
BOD mg/L	46	32	<1.0	<1.0
COD mg/L	155	78	<21	<21
TN mg/L	6.3	7.8	3.6	3.7
Nitrite mg/L	0.188	0.231	0.0241	0.0121
Nitrate mg/L	4.78	4.29	3.25	3.09
TP mg/L	3.8	3.4	<0.20	<0.20
O-PO4-P mg/L	0.92	0.86	0.05	<0.05
SO4 mg/L	<30	30	<30	<30
Phenols μg/L	<0.10	<0.10	<0.10	<0.10
Atrazine μg/L	<0.01	<0.01	<0.01	<0.01
Dichloromethane μg/L	<1	<1	<1	<1
Simazine μg/L	<0.01	<0.1	<0.01	<0.01
Toluene μg/L	<1	<1	<1	10.851
Tributyltin μg/L	not required	not required	*	10.851 * <1 <0.96 <20
Xylenes μg/L	<1	<1	<1	<1
Arsenic μg/L	< 0.96	< 0.96	<0.96	<0.96
Chromium ug/L	<20	<20	<20	<20
Copper ug/L	<20	<20	<20	<20 \17.311
Cyanide μg/L	<5	9	<5	<5 FO 1917
Fluoride μg/L	108	86	50	42 &
Lead ug/L	<20	<20	<20	<20
Nickel ug/L	<20	<20	<20	€20
Zinc ug/L	<20	<20	<20	<20
Boron ug/L	<20	<20	<20	<20
Cadmium ug/L	<20	<20	<20	<20
Mercury μg/L	<0.2	<0.2	<0.2	<0.2
Selenium µg/L	1.5	<0.74	<0.74	<0.74
Barium ug/L	<20	<20	36	29