

Issue Code PMS CK07
Date 18/04/2008
Originator A. Johnston
Authorised by E. Brennan

Monthly Status Report Mar-2008

EXECUTIVE SUMMARY Rylane WWTP Mar-08

Flows		Design	
Parameter	Average		
	M ³ /d	M ³ /d	
Flow	16	81	
PE (Flow)	78	450	
PE (BOD)	79	450	

Only any **Process Calculations** Average MLSS 2128 Mg/I Plant Volume 125 **M3** Total Biomasse 266 kg Daily BOD load 5 kg FM Ratio 0.02 Conse

	Inlet			Effluent			
	Max	Min	Ave	Max	Min	Ave	STD
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l
COD	776	602	657	45	9	22	
BOD	350	255	296	10	2	6	10
SS	247	66	132	11	5	8	10
TP	14	14	14	0.2	0.2	0.2	

Issue Code	PMS CK07
Date	16/05/2008
Originator	A. Johnston
Authorised by	E. Brennan

Monthly Status Report Apr-2008

EXECUTIVE SUMMARY Rylane WWTP Apr-08

Flows			
Parameter	Average	Design	
	M³/d	M ³ /d	
Flow	15	81	
PE (Flow)	75	450	
PE (BOD)	86	450	

other us

Process Calculations	विश्वित वर्ष	
Average MLSS	20 1995	Mg/l
Plant Volume iton Prest	125	M3
Total Biomass on	249	kg
Daily BOD load	5	kg
FM Ratio	0.02	1

OISE

	Inlet			Effluent			
	Max	Min	Ave	Max	Min	Ave	STD
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l
COD	960	85	736	38	17	26	
BOD	460	40	344	10	5	7	10
SS	265	92	148	13	6	9	10
TP	7	7	7	1.2	1.2	1.2	

Issue Code	PMS CK07
Date	13/06/2008
Originator	A. Johnston
Authorised by	E. Brennan

Monthly Status Report May-2008

EXECUTIVE SUMMARY Rylane WWTP May-08

Flows			
Parameter	Average	Design	
	M³/d	M³/d	
Flow	14	81	
PE (Flow)	69	450	
PE (BOD)	42	450	

ther use

Process Calculations	only and	
Average MLSS	1976	Mg/l
Plant Volume	125	M3
Total Biomass	247	kg
Daily BQD load	5	kg
FM Ratio	0.01	

Conse

	Inlet			Effluent			
	Max	Min	Ave	Max	Min	Ave	STD
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l
COD	551	113	392	28	4	18	
BOD	260	55	180	7	1	4	10
SS	260	105	176	10	7	9	10
TP	2	2	2	0.6	0.6	0.6	

#/*	
Issue Code	PMS CK07
Date	16/07/2008
Originator	A. Johnston
Authorised by	F Brennan

Monthly Status Report Jun-2008

EXECUTIVE SUMMARY Rylane WWTP Jun-08

Flows			
Parameter	Average	Design	
	M³/d	M³/d	
Flow	17	81	
PE (Flow)	83	450	
PE (BOD)	73	450	

Process Calculations

Average MLSS

Plant Volume 125

M3

Total Biomass 346

kg

Daily BQD load 4 kg

EM Ratio 0.02

	Inlet			Effluent			
	Max	Min	Ave	Max	Min	Ave	STD
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l
COD	714	434	550	21	6	14	,
BOD	350	210	259	- 5	2	3	10
SS	698	9	157	14	1	6	10
TP	17	17	17	3	3	3	

Issue Code	PMS CK07
Date	15/08/2008
Originator	A. Johnston
Authorised by	F. Brennan

Monthly Status Report Jul-2008

Rylane WWTP Jul-08

Flows			
Parameter	Average	Design	
	M³/d	M ³ /d	
Flow	21	81	
PE (Flow)	107	450	
PE (BOD)	161	450	

ores offy, and other use. Process Calculations purpos Average MLSS 4351 Mg/l Plant Volume 125 **M**3 544 Total Biomass kg Daily BOD load 10 kg FM Ratio 0.02

	Inlet			Effluent			
	Max	Min	Ave	Max	Min	Ave	STD
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l
COD	1325	506	884	22	5	13	
BOD	750	245	461	6	1	3	10
SS	1151	12	583	17	6	10	10
TP	15	15	15	2	2	2	

PT_CD SW01RYLA	PT_TYPE	LA_NAME	RWB_TYPE	RWB_NAME	DESIGNATION	EASTING	NORTHING	VERIFIED
SW01RYLA	Primary	Cork County Council	River	Delehinagh	High	142188	80491	Υ
	,	,		Ĭ	Ĭ			
				- 	1	 		
					Ø1*			
					3.115°.			
					Mer			
				A ⁴	Y and the Y			
				of	o ^k "			
				and ited				
				or things be con				
				Got it it of other feet				
				32° 04				
				OT TIEST				
				COST				
				x of C				
				and the second				
				Certi				
					+	+		
					1	 		
			+			+		

Issue Code PMS CK07
Date 18/04/2008
Originator A. Johnston
Authorised by E. Brennan

Monthly Status Report Mar-2008

EXECUTIVE SUMMARY Rylane WWTP Mar-08

Flows		
Parameter	Average	Design
	M ³ /d	M ³ /d
Flow	16	81
PE (Flow)	78	450
PE (BOD)	79	450

Only any **Process Calculations** Average MLSS 2128 Mg/I Plant Volume 125 **M3** Total Biomasse 266 kg Daily BOD load 5 kg FM Ratio 0.02 Conse

	Inlet			Effluent			
	Max	Min	Ave	Max	Min	Ave	STD
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l
COD	776	602	657	45	9	22	
BOD	350	255	296	10	2	6	10
SS	247	66	132	11	5	8	10
TP	14	14	14	0.2	0.2	0.2	

Issue Code	PMS CK07
Date	16/05/2008
Originator	A. Johnston
Authorised by	E. Brennan

Monthly Status Report Apr-2008

EXECUTIVE SUMMARY Rylane WWTP Apr-08

Flows				
Parameter	Average	Design		
	M³/d	M ³ /d		
Flow	15	81		
PE (Flow)	75	450		
PE (BOD)	86	450		

other us

Process Calculations	विश्वित वर्ष	
Average MLSS	20 1995	Mg/l
Plant Volume iton Prest	125	M3
Total Biomass on	249	kg
Daily BOD load	5	kg
FM Ratio	0.02	1

OISE

	Inlet			Effluent			
	Max	Min	Ave	Max	Min	Ave	STD
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l
COD	960	85	736	38	17	26	
BOD	460	40	344	10	5	7	10
SS	265	92	148	13	6	9	10
TP	7	7	7	1.2	1.2	1.2	

Issue Code	PMS CK07
Date	13/06/2008
Originator	A. Johnston
Authorised by	E. Brennan

Monthly Status Report May-2008

EXECUTIVE SUMMARY Rylane WWTP May-08

Flows			
Parameter	Average	Design	
	M³/d	M³/d	
Flow	14	81	
PE (Flow)	69	450	
PE (BOD)	42	450	

ather use

Process Calculations	conty, any	
Average MLSS	1976	Mg/l
Plant Volume Holl Plant	125	МЗ
Total Biomass	247	kg
Daily BQD load	5	kg
FM Ratio	0.01	T

Conse

	Inlet			Effluent			
	Max	Min	Ave	Max	Min	Ave	STD
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l
COD	551	113	392	28	4	18	
BOD	260	55	180	7	1	4	10
SS	260	105	176	10	7	9	10
TP	2	2	2	0.6	0.6	0.6	

#/*	
Issue Code	PMS CK07
Date	16/07/2008
Originator	A. Johnston
Authorised by	F Brennan

Monthly Status Report Jun-2008

EXECUTIVE SUMMARY Rylane WWTP Jun-08

Flows		Design	
Parameter	Average		
	M³/d	M³/d	
Flow	17	81	
PE (Flow)	83	450	
PE (BOD)	73	450	

Process Calculations

Average MLSS

Plant Volume 125

M3

Total Biomass 346

kg

Daily BQD load 4 kg

EM Ratio 0.02

	Inlet			Effluent			
	Max	Min	Ave	Max	Min	Ave	STD
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l
COD	714	434	550	21	6	14	,
BOD	350	210	259	- 5	2	3	10
SS	698	9	157	14	1	6	10
TP	17	17	17	3	3	3	

Issue Code	PMS CK07
Date	15/08/2008
Originator	A. Johnston
Authorised by	F. Brennan

Monthly Status Report Jul-2008

Rylane WWTP Jul-08

Flows		Design	
Parameter	Average		
	M³/d	M ³ /d	
Flow	21	81	
PE (Flow)	107	450	
PE (BOD)	161	450	

ores offy, and other use. Process Calculations purpos Average MLSS 4351 Mg/l Plant Volume 125 **M**3 544 Total Biomass kg Daily BOD load 10 kg FM Ratio 0.02

	Inlet			Effluent			
	Max	Min	Ave	Max	Min	Ave	STD
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l
COD	1325	506	884	22	5	13	
BOD	750	245	461	6	1	3	10
SS	1151	12	583	17	6	10	10
TP	15	15	15	2	2	2	

Accreditation Certificate

Cork County Council

Wastewater Testing Laboratory, Inniscarra, Co. Cork

Testing Laboratory

Registration number: 016T

is accredited by the Irish National Accreditation Board (INAB) to undertake testing as detailed in the Schedule bearing the Registration Number detailed above, in compliance with the International Standard ISO/IEC 17025:2005 2nd Edition "General Requirements for the Competence of Testing and Calibration Laboratories" (This Certificate must be read in conjunction with the Annexed Schedule of Accreditation)

Date of award of accreditation: 01:10:2002

Date of last renewal of accreditation: 20:09:2007

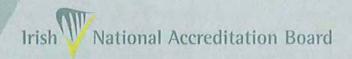
Expiry date of this certificate of accreditation: 20:09:2012

This Accreditation shall remain in force until further notice subject to continuing compliance with INAB accreditation criteria, ISO/IEC 17025 and any further requirements specified by the Irish National Accreditation Board.

Manager: Jom Dompay

Mr Tom Dempsey

Chairperson: //


Dr Máire Walsh

Issued on 20th September 2007

Organisations are subject to annual surveillance and are re-assessed every five years. The renewal date on this Certificate confirms the latest date of renewal of accreditation. To confirm the validity of this Certificate, please contact the Irish National Accreditation Board.

The INAB is a signatory of the European co-operation for Accreditation (EA) Testing Multilateral Agreement (MLA) and the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement.

Wilton Park House, Wilton Place, Dublin 2, Ireland. Tel +353 1 607 3003 Fax +353 1 607 3109 E-mail inab@inab.ie Web www.inab.ie

Schedule of Accreditation

(Annex to Accreditation Certificate)

Permanent Laboratory: Category A

CORK COUNTY COUNCIL

Chemistry Testing Laboratory

25-April-1991 Initial Registration Date :

tion but of set fed fired for any other use. Waste Water Laboratory Postal Address:

(Address of other locations

Co. Cork of copyride as they apply) +353 (21) 4532700 Telephone:

+353 (21) 4532777 Fax:

E-mail:

Contact Name: Ms M Cherry

Normally not available for Public testing Facilities:

Wilton Park House, Wilton Place, Dublin 2, Ireland Tel +353 1 607 3003 Fax +353 1 607 3109 E-padi inab@inab.ie Web www.inab.ie

Schedule of Accreditation

Permanent Laboratory: Category A

THE IRISH NATIONAL ACCREDITATION BOARD (INAB) is the Irish body for the accreditation of organisations including laboratories.

Laboratory accreditation is available to testing and calibration facilities operated by manufacturing organisations, government departments, educational institutions and commercial testing/calibration services. Indeed, any organisation involved in testing, measurement or calibration in any area of technology can seek accreditation for the work it is undertaking.

Each accredited laboratory has been assessed by skilled specialist assessors and found to meet criteria which are in compliance with ISO/IEC 17025 or ISO/IEC 15189 (medical laboratories). Frequent audits, together with periodic inter-laboratory test programmes, ensure that these standards of operation are maintained.

Testing and Calibration Categories:

Category A: Permanent laboratory calibration and testing where the laboratory is erected on a fixed

location for a period expected to be greater than three years.

Category B: Site calibration and testing that is performed by staff sent out on site by a permanent

laboratory that is accredited by the Irish National Accreditation Board.

Category C: Site calibration and testing that is performed in a site/mobile laboratory or by staff sent

out by such a laboratory, the operation of which is the responsibility of a permanent

laboratory accredited by the Irish National Accreditation Board.

Category D: Site calibration and testing that is performed on site by individuals and organisations that

do not have a permanent calibration/testing laboratory. Testing may be performed using

(a) portable test equipment

(b) a site laboratory

(c) a mobile laboratory or

equipment from a mobile or site laboratory

Standard Specification or Test Procedure Used:

The standard specification or test procedure that is accredited is the issue that is current on the date of the most recent visit, unless otherwise stated.

Glossary of Terms

Facilities:

Public calibration/testing service: Commercial operations which actively seek work from others.

Conditionally available for public Established for another primary purpose but, more commonly than not,

calibration/testing: is available for outside work.

Normally not available for public Unavailable for public calibration/testing more often than not.

calibration/testing:

Laboratory users wishing to obtain assurance that calibration or test results are reliable and carried out to the Irish National Accreditation Board criteria should insist on receiving an accredited calibration certificate or test report. Users should contact the laboratory directly to ensure that this scope of accreditation is current. INAB will, on request, verify the status and scope.

Cork County Council

Permanent Laboratory: Category A

Chemical Testing Laboratory

(P9)	lassification number als/products tested	Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used
766	Waters	Chemical analysis:	Documented in-house methods based on
			Standard Methods for the Examination of Water
.01	Waters for		& Wastewater 21 st Edition APHA (See Note 1)
	domestic purposes	Biochemical Oxygen Demand	No. 1 Membrane electrode
	Surface and ground waters	2 - 145,000 mg/l	
		Chloride Quife Chlife	CP No. 7 Argentometric method
		5 - 1,000 mg/l its ft of the state of the st	
		ph Godyties	CP No. 5 Electrometry
		Biochemical Oxygen Demand 2 - 145,000 mg/l Chloride 5 - 1,000 mg/l ph 2 - 12 Consent of contribute of the contribu	
		Suspended Solids	CP No. 3 Gravimetric
		0.5 - 17,500 mg/l	
		Chemical Oxygen Demand	CP No. 6 Reflux - colourmetric method
		21 - 135 mg/l	
		120 - 670,000 mg/l	
		Total phosphorus	US-EPA Approved method/HACH
		0.2 - 5,300 mg/l	Method CP No.20
		Ammonia	Documented in-house method CP22 by Konelab
		0.1 - 1,000 mg/l NH ₃ - N	based on Method for the Examination of Waters
			and
			Associated Material HMSO:1981

Cork County Council

Chemical Testing Laboratory

Permanent Laboratory: Category A

INAB Classification number (P9) Materials/products tested		Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used
766	Waters		
01	Waters for	Orthophosphate as P (Konelab)	CP No. 23 Ascorbic Acid Method
	domestic purposes	Range: 0.005-1.00 mg O-PO4 P/L	<u> </u>
	Surface and ground	High Range: 1000 mg O-PO4 P/L	alter use.
	waters	Method Detection Limit: 0.02 mg O-POAP/ACC	
		Chloride (Konelab)	CP No. 24 Ferricyanide Method
		Range: 25-250 mg/L Cl-citon red	
		mg. nange contribution in g. z c.	
		Method Detection Lamit: 25 mg/L Cl-	
		Sulphate (Konelab)	CP No. 25 Documented in-house method by
		Range: 30-250 mg/L SO4/L	Konelab based on method for the examinatio
		High Range Conc.: 35,000 mg/L SO4/L	of waters and waste waters and associated
		Method Detection Limit: 30 mg SO4/L	material HMSO: 1981

Cork County Council

Permanent Laboratory: Category A

Chemical Testing Laboratory

INAB Classification number (P9) Materials/products tested		Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used
766	Waters	Chemical analysis	Documented in-house methods based on Standard
.05	Trade Wastes Industrial effluents Urban Wastewater	Biochemical Oxygen Demand 2 - 145,000 mg/l	Methods for the Examination of Water& Wastewater 21 st Edition APHA (See Note 1) CROSO. 1 Membrane electrode
	Municipal Wastewater	Chloride 5 - 1,000 mg/l SPECION TO THE PROPERTY OF THE PROPE	CP No. 7 Argentometric method
		Biochemical Oxygen Demand 2 - 145,000 mg/l Chloride 5 - 1,000 mg/l pH 2 - 12 Consent of congridation and congridation of	CP No. 5 Electrometry
		Suspended Solids 0.5 - 17,500 mg/l	CP No. 3 Gravimetric
		Chemical Oxygen Demand 21 - 135 mg/l 120 - 670,000 mg/l	CP No. 6 Reflux - colourmetric method
		Total phosphorus 0.2 - 5,300 mg/l	US-EPA Approved method/HACH Method CP No.20
		Ammonia 0.1 - 1,000 mg/l NH3-N	Documented in-house method CP22 by Konelab based on Method for the Examination of Waters and Associated Material HMSO: 1981.

Notes 1. APHA American Public Health Association, USA, 21st Edition

Cork County Council

Permanent Laboratory: Category A

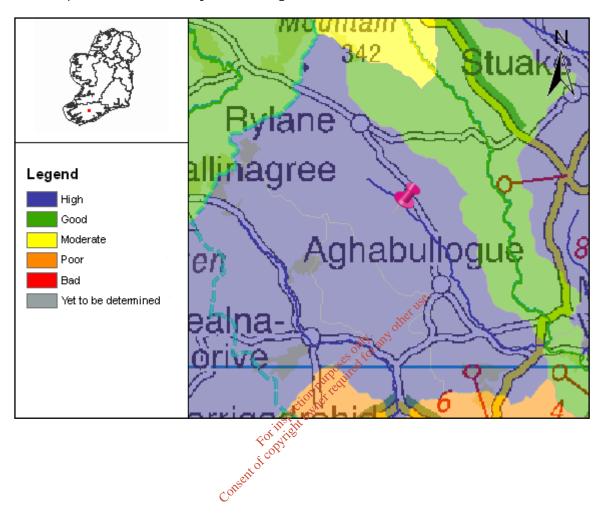
Chemical Testing Laboratory

INAB Classification number (P9) Materials/products tested		Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used	
766	Waters	Chemical analysis	Documented in-house methods based on Standard Methods for the Examination of Water&	
.05	Trade Wastes Industrial effluents Urban Wastewater Municipal Wastewater	oses alto	Wastewater 21 st Edition APHA (See Note 1)	
		Orthophosphate as P (Koneraby Orthophosphate as P (Koneraby Orthophosphate Range: 0.005 - 1.00 mg Orthophosphate P/L High Range: 1000 mg Orthophosphate P/L Method Detection Limit: 0.02 mg Orthophosphate P/L Consent	CP No. 23 Ascorbic Acid Method	
		Chloride (Konelab) Range: 25-250 mg/L Cl- High Range Conc.: 86,600 mg /L Cl- Method Detection Limit: 25mg / L Cl-	CP No. 24 Ferricyanide Method	
		Sulphate (Konelab)) Range: 30-250 mg/L SO4 /L High Range Conc.: 35,000 mg/L SO4 /L Method Detection Limit: 30 mg SO4 /L	CP No. 25 Documented in-house method by Konelab based on method for the examination of waters and waste waters and associated material HMSO: 1981	

Notes 1. APHA American Public Health Association, USA, 21st Edition

PT_CD	PT_TYPE	MON_TYPE	EASTING	NORTHING	VERIFIED
PT_CD SW01RYLA	Primary	Sampling	144713	77487	Υ
aSW01u	u/s	Sampling Sampling	144729	77536	Υ
aSW01d	d/s	Sampling	145802	75945	Υ
				Eo.	
			tion dispersion that the state of the state		
			11: 54		
			Office of the		
			205-601		
			OUT COLIE		
			tion of the		
			ing to the		
			COLUMN CO		
			00°		
		Caltigat C	5		
		- SORT			
		Con			
					-
				ĺ	

Attachment E4 R	ylane Table E4
-----------------	----------------


Sample Date	29/10/2009	29/10/2009	29/10/2009	29/10/2009
Sample	Influent	Effluent	upstream	downstream
Sample Code	GT1303	GT1304	GT1305	GT1306
Flow M ³ /Day	*	*	*	*
pH	7.4	7.1	6.9	7.4
Temperature °C	*	*	*	*
Conductivity uS/cm 20°C	338	508	196	169
Suspended Solids mg/L	137	<2.5	11	no result
Ammonia-N mg/L	16.0	<0.1	1.3	<0.1
BOD mg/L	221	4	1	<1
COD mg/L	312	56	54	62
TN-N mg/L	24.99	16.99	4.43	4.82
Nitrite-N mg/L	<0.1	<0.1	0.288	<0.1
Nitrate-N mg/L	<0.05	14.3	1.692	3.3
TP-P mg/L	1.95	1.79	0.105	0.078
O-PO4-P mg/L	1.81	3.48	0.19	0.11
SO4 mg/L	<30	43.3	<30	<30
Phenols µg/L	*	<0.10	*	<0.10
Atrazine µg/L	*	<0.01	*	<0.01
Dichloromethane µg/L	*	<1	*	<1
Simazine µg/L	*	<0.01	*	<0.01
Toluene µg/L	*	<0.28	*	<0.28
Tributyltin µg/L	not required	not required	not required	not required
Xylenes μg/L	*	<0.73	*	<1
Arsenic µg/L	*	1.5	*	0.4
Chromium ug/L	<20	<20	<20	<20 store
Copper ug/L	67.4	<20	<20	<20 ecite with
Cyanide µg/L	*	<5	*	<5 dil
Fluoride µg/L	63	61	43	₹038 ¹
Lead ug/L	<20	<20	<20	<u>\$</u> <20
Nickel ug/L	<20	<20	<20	ent <20
Zinc ug/L	106.9	31.7	<20	con <20
Boron ug/L	<20	27.8	<20	<20
Cadmium ug/L	<20	<20	<20	<20
Mercury µg/L	*	<0.03	*	<0.03
Selenium µg/L	*	<2.12	*	1
Barium ug/L	<20	<20	<20	<20
		1	120	1 120

Consent of copyright owner required for any other use.

Full Report for Waterbody Delehinagh, Trib of Lee

Date Reported to Europe: 22/12/2008

water matters

south western

Summary Information:

WaterBody Category: Subbasin Waterbody

WaterBody Name: Delehinagh, Trib of Lee

WaterBody Code: IE_SW_19_1651

Overall Status: High

Overall Objective: Protect

Overall Risk: 1b Probably At Risk

Applicable Supplementary

Measures:

Unsewered; Urban & Industrial; Morphology; Forestry;

Report data based upon Draft RBMP, 22/12/2008.

Consent of copyright owner required for any other use.

Date Reported to Europe: 22/12/2008

Status Report

WaterBody Category: Subbasin Waterbody

WaterBody Name: Delehinagh, Trib of Lee

WaterBody Code: IE_SW_19_1651

Overall Status Result: High

	Status Element Description	Result
EX	Status from Monitored or Extrapolated Waterbody	SW_19_1480
	Biological Elements	
Q	Macroinvertebrates (Q-Value)	n/a
F	Fish	n/a
DI	Phytobenthos (Diatoms)	n/a
FPM	Phytobenthos (Diatoms) Status value as determined by Margartifera Supporting Elements Hydromorphology Specific Pollutants General Physico-Chemical Chemical Status Chemical Status Overall Ecological Status	n/a
	Supporting Elements	
MOR	Hydromorphology	n/a
SP	Specific Pollutants	n/a
PC	General Physico-Chemical	n/a
	Chemical Status	
PAS	Chemical Status	n/a
	Overall Ecological States	
0	Overall Ecological Status	High

Date Reported to Europe: 22/12/2008

water matters Help us plan!

Risk Report

WaterBody Category: Subbasin Waterbody

WaterBody Name: Delehinagh, Trib of Lee

WaterBody Code: IE_SW_19_1651

Overall Risk Result: 1b Probably At Risk

	Risk Test Description		Risk
	Point Risk Sources		
RP1	WWTPs (2008)	2b	Not At Risk
RP2	CSOs	2b	Not At Risk
RP3	IPPCs (2008)	2b	Not At Risk
RP4	Section 4s (2008)	2b	Not At Risk
RPO	Overall Risk from Point Sources - Worst Case (2008)	2.b	Not At Risk
	IPPCs (2008) Section 4s (2008) Overall Risk from Point Sources - Worst Case (2008) Diffuse Risk Sources EPA diffuse model (2008) Road Wash - Soluble Copper Road Wash - Total Zinc Road Wash - Total Hydrocarbons Railways Forestry - Acidification (2008) Forestry - Suspended Solids (2008)		
RD1	EPA diffuse model (2008)	1b	Probably At Risk
RD2a	Road Wash - Soluble Copper	2b	Not At Risk
RD2b	Road Wash - Total Zinc	2b	Not At Risk
RD2c	Road Wash - Total Hydrocarbons	2b	Not At Risk
RD3	Railways	2b	Not At Risk
RD4a	Forestry - Acidification (2008)	2b	Not At Risk
RD4b	Forestry - Suspended Solids (2008)	2b	Not At Risk
RD4c	Forestry - Eutrophication (2008)	2a	Probably Not At Risk
RD5a	Unsewered Areas - Pathogens (2008)	2a	Probably Not At Risk
RD5b	Unsewered Phosphorus (2008)	2b	Not At Risk
RD5	Overall Unsewered (2008)	2b	Not At Risk
RD6a	Arable	2b	Not At Risk
RD6b	Sheep Dip	2b	Not At Risk
RD6c	Forestry - Dangerous Substances	2b	Not At Risk
RDO	Diffuse Overall -Worst Case (2008)	1b	Probably At Risk

Date Reported to Europe: 22/12/2008

water matters Help us plan!

		Name and Address of the Owner, where	
	Morphological Risk Sources		
RM1	Channelisation (2008)	2b	Not At Risk
RM2	Embankments (2008)	2b	Not At Risk
RM3	Impoundments	2b	Not At Risk
RM4	Water Regulation	2b	Not At Risk
RMO	Morphology Overall - Worst Case (2008)	2b	Not At Risk
	Q/RDI or Point/Diffuse		
QPD	Q class/EPA Diffuse Model or worst case of Point and Diffuse (2008)	1b	Probably At Risk
	Hydrology		
RHY1	Water balance - Abstraction	2b	Not At Risk
	Overall Risk		'
RA	Rivers Overall - Worst Case (2008)	1b	Probably At Risk

Consent of copyright owner required for any other use.

Date Reported to Europe: 22/12/2008

water matters

Objectives Report

WaterBody Category: Subbasin Waterbody

WaterBody Name: Delehinagh, Trib of Lee

WaterBody Code: IE_SW_19_1651

Overall Objective: Protect

	Objectives Description	Result
	Objectives	
OB1	Objective 1 - Protected Areas	Not Applicable
OB2	Objective 2 - Protect High and Good Status	Protect
OB3	Objective 3 - Restore Less Than Good Status	Not Applicable
OB4	Objective 4 - Reduce Chemical Pollution	Not Applicable
ОВО	Overall Objective	Protect
	Deadline	
YR	Default Year by which the objective must be met.	2015
EX	Revised Objective Deadline	2007
ОВО	Overall Objective and Deadline	Protect
	Overall Objective Deadline Default Year by which the objective must be meth and other track. Revised Objective Deadline Overall Objective and Deadline Consent of Confidence of Conf	

Date Reported to Europe: 22/12/2008

water matters Help us plan!

Basic Measures Report

WaterBody Category: Subbasin Waterbody

WaterBody Name: Delehinagh, Trib of Lee

WaterBody Code: IE_SW_19_1651

	Basic Measures Description	Applicable
	Key Directives	
BA	Bathing Waters Directive	No
ВІ	Birds Directive	No
HA	Habitats Directive	No
DW	Drinking Waters Directive	Yes
SEV	Major Accidents and Emergencies (Seveso) Directive	Yes
EIA	Environmental Impact Assessment Directive	Yes
SE	Sewage Sludge Directive Urban Waste Water Treatment Directive Plant Protection Products Directive Nitrates Directive Integrated Pollution Prevention Control Directive Other Stipulated Measures of the Control Directive Promotion of efficient and sustainable water use Protection of drinking water sources	Yes
UW	Urban Waste Water Treatment Directive	No
PL	Plant Protection Products Directive	Yes
NI	Nitrates Directive Ruffer Children	Yes
IP	Integrated Pollution Prevention Control Directive	Yes
	Other Stipulated Measures (1775)	
CR	Cost recovery for water use	Yes
SU	Promotion of efficient and sistainable water use	Yes
DWS	Protection of drinking water sources	Yes
AB	Control of abstraction and impoundments	Yes
PT	Control of point source discharges	Yes
DI	Control of diffuse source discharges	Yes
GWD	Authorisation of discharges to groundwater	No
PS	Control of priority substances	Yes
MOR	Control of physical modifications to surface waters	Yes
OA	Controls on other activities impacting on water status	Yes
AP	Prevention or reduction of the impact of accidental pollution incidents	Yes

Date Reported to Europe: 22/12/2008

Urban and Industrial Discharges Supplementary Measures Report

WaterBody Category: Subbasin Waterbody

WaterBody Name: Delehinagh, Trib of Lee

WaterBody Code: IE_SW_19_1651

	Point discharges to waters from municipal and industrial sources	Result
PINDDIS	Is there one or more industrial discharge (Section 4 licence issued by the local authority or IPPC licence issued by the EPA) contained within the water body?	No
PINDDISR	Are there industrial discharges (Section 4 licence issued by the local authority or IPPC licence issued by the EPA) that cause the receiving water to be 'At Risk' within the water body?	No
PB1	Basic Measure 1 - Measures for improved management.	No
PB2	Basic Measure 2 - Optimise the performance of the waste water treatment plant by the implementation of a performance management system.	No
PB3	Basic Measure 3 - Revise existing Section 4 license conditions and reduce allowable pollution load.	No
PB4	Basic Measure 4 - Review existing IPPC license conditions and reduce allowable pollution load.	No
PB5	Basic Measure 5 - Investigate contributions to the collection system from unlicensed discharges.	No
PB6	Basic Measure 6 - Investigate contributions to the collection system of specific substances known to impact ecological status.	No
PB7	Basic Measure 7 - Upgrade WWTP to increase capacity.	No
PB8	Basic Measure 8 - Upgrade WWTP to provide nutrient removal treatment.	No
PS1	Supplementary Measure 1 - Measures intended to reduce loading to the treatment plant.	No
PS2	Supplementary Measure 2 - Impose development controls where there is, or is likely to be in the future, insufficient capacity at treatment plants.	No
PS3	Supplementary Measure 3 - Initiate investigations into characteristics of treated wastewater for parameters not presently required to be monitored under the urban wastewater treatment directive.	No
PS4	Supplementary Measure 4 - Initiate research to verify risk assessment results and determine the impact of the discharge.	No
PS5	Supplementary Measure 5 - Use decision making tools in point source discharge management.	No
PS6	Supplementary Measure 6 - Install secondary treatment at plants where this level of treatment is not required under the urban wastewater treatment directive.	No
PS7	Supplementary Measure 7 - Apply a higher standard of treatment (stricter emission controls) where necessary.	No

Date Reported to Europe: 22/12/2008

water matters

PS8	Supplementary Measure 8 - Upgrade the plant to remove specific substances known to impact on water quality status.	No
PS9	Supplementary Measure 9 - Install ultra-violet or similar type treatment.	No
PS10	Supplementary Measure 10 - Relocate the point of discharge.	No

Consent of copyright owner required for any other use.

Date Reported to Europe: 22/12/2008

Date Report Created 20/08/2009

Physical Modifications Supplementary Measures Report

WaterBody Category: Subbasin Waterbody

WaterBody Name: Delehinagh, Trib of Lee

WaterBody Code: IE_SW_19_1651

	Physical Modifications Supplementary Measures	Applicable
	Reduce	
SM1	Codes of Practice	Yes
SM2	Support for voluntary initiatives	Yes
	Remediate	
SM3	Channelisation impact remediation schemes	No
SM4	Channelisation investigation	No
SM5	Overgrazing remediation	No
SM6	Impassable barriers, impact confirmed, investigation into feasibility of remediation required	No
SM7	Impassable barriers investigation	Yes
	Impassable barriers, impact confirmed, investigation into feasibility of remediation required Impassable barriers investigation The standard of the standard	

Date Reported to Europe: 22/12/2008

Unsewered Properties Supplementary Measures Report

WaterBody Category: Subbasin Waterbody

WaterBody Name: Delehinagh, Trib of Lee

WaterBody Code: IE_SW_19_1651

	Supplementary Measures for	Applicable
	Unsewered Properties	
SP1	Amend building regulations	Yes
SP2	Establish certified expert panels for site investigation and certification of installed systems	Yes
SP3	Assess applications for new unsewered systems by applying risk mapping/decision support systems and codes of practice	Yes
SP4	Carry out an inspection programme in prioritised locations for existing systems and record results in an action tracking system	No
SP5	Enforce requirements for percolation	No
SP6	Enforce requirements for de-sludging	Yes
SP7	Consider connection to municipal systems of the arriver of the connection to municipal systems of the connection to municipal systems	No
	systems and record results in an action tracking system Enforce requirements for percolation Enforce requirements for de-sludging Consider connection to municipal systems Consider to the standard of the	

Date Reported to Europe: 22/12/2008

Forestry Measures Report

WaterBody Category: Subbasin Waterbody

WaterBody Name: Delehinagh, Trib of Lee

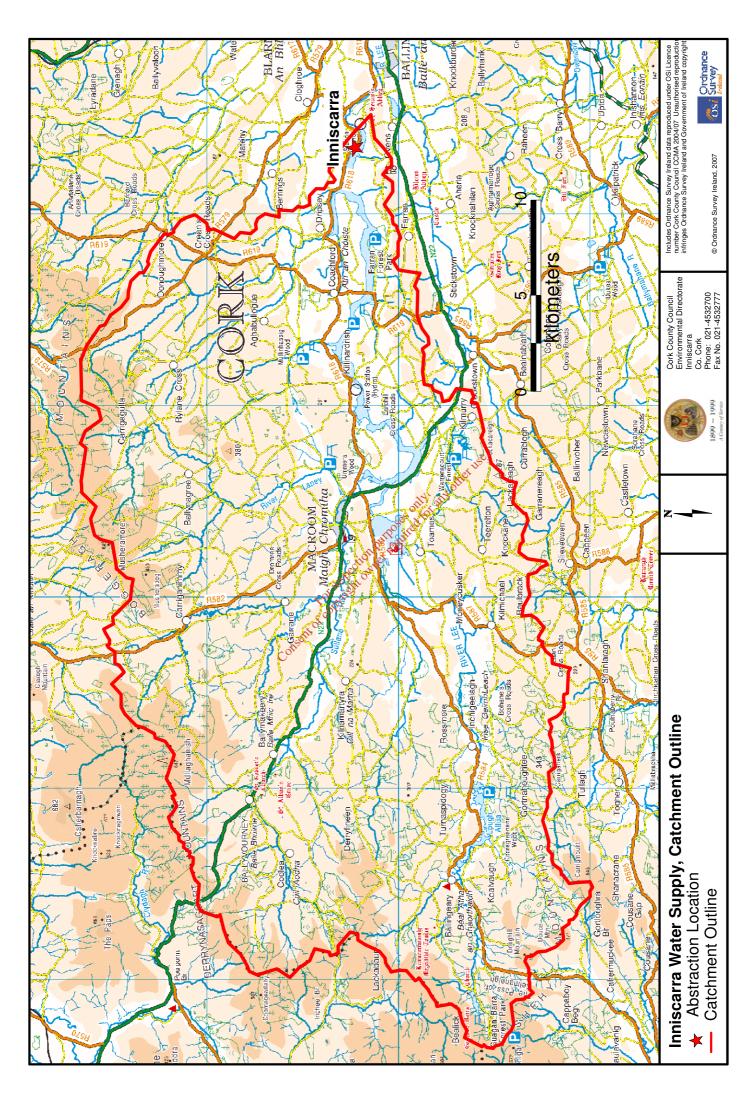
WaterBody Code: IE_SW_19_1651

	Forestry Measures for	Applicable
	Forestry	
SF1	Management Instruments - Ensure regulations and guidance are cross referenced and revised to incorporate proposed measures	No
SF2	Acidification - Avoid or limit afforestation on 1st and 2nd order stream catchments in acid sensitive areas	No
SF3	Acidification - Revise the Acidification Protocol to ensure actual minimum alkalinities are detected and revise boundary conditions for afforestation in acid sensitive areas	No
SF10	Pesticide Use - Pre-dip trees in nurseries prior o planting out	No
SF11	Pesticide Use - Maintain registers of pesticide use	No
SF12	Acidification - Restructure existing forests to include open space and structural diversity through age classes and species mix, including broadleaves	No
SF13	Acidification - Mitigate acidimpacts symptomatically using basic material	No
SF14	Acidification - Manage catchment drainage to increase residence times and soil wetting	No
SF15	Acidification - Implement measures to increase stream production.	No
SF16	Eutrophication - Establish riparian zone management prior to clearfelling	No
SF17	Eutrophication and Sedimentation - Enhance sediment control	No
SF18	Eutrophication - Manage catchment drainage to increase residence times and soil wetting, including no drainage in some locations	No
SF19	Sedimentation - Establish riparian zone management prior to clearfelling	No
SF20	Sedimentation - Enhance sediment control	No
SF21	Sedimentation - Manage catchment drainage to increase residence times and soil wetting, including no drainage in some locations	No
SF22	Hydromorphology - Enhance drainage network management, minimise drainage in peat soils	No
SF23	Pesticide Use - Develop biological control methods	No

Date Reported to Europe: 22/12/2008

Date Report Created 20/08/2009

water matters


SF4	Eutrophication and Sedimentation - Avoid or limit forest cover on peat sites	No
SF5	Eutrophication and Sedimentation - Change the tree species mix on replanting	No
SF6	Eutrophication and Sedimentation - Limiting felling coup size	No
SF7	Eutrophication and Sedimentation - Establish new forest structures on older plantation sites	No
SF8	Hydromorphology - Audit existing drainage networks in forest catchments	No
SF9	Pesticide Use - Reduce pesticide usage	No

Date Reported to Europe: 22/12/2008

Date Report Created 20/08/2009

ABS_CD	AGG_SERVED	ABS_VOL	PT_CD	DIS_DS	EASTING	NORTHING	VERIFIED
0500PUB3401	City & Harbour - 135,000		No Label Assigned	13,000	153486	72314	N
03001 CB3 101	City & Harbour 155,000	220,000	110 Edoci 7 Issigned	13,000	133 100	72311	14
					I ISE		
				, c	ne.		
				क्षेत्र, श्राप			
				For instant on the feeting of the formal of the feeting of the fee			
				no ited			
				Dell'edil			
				illed of the			
				Section 1			
				instit			
				For Mile			
				\$ cov			
				N.			
			E Ouz				
							
	-					<u> </u>	
						-	

SURFACE WATER - Introduction

appear on this sheet. The section scores will be totalled automatically on this summary sheet. The population Scores should be inserted (where appropriate) into the blue boxes in Sections 1 to 10. The scores for each section will be automatically totalled (in the yellow box) and a summary of the scores for each section will of supply should be entered into the blue box below on this page and the overall Cryptosporidium Risk Assessment Score will be automatically calculated for the supply.

Cork Harbour and City Water Supply Scheme at Inniscarra Waterworks

22/02/2008

Surface Water Catchment Risk Scores	Section Score	Total Score	
Section 1 - Animals within the Catchment	(10+5+0+2+4)	21	
Section 2 - Agricultural Practices within the Catchment	(6+3+3+6+8)	26	
Section 3 - Discharges to the Catchment/Water Source	(6+6+2)	14	
Section 4 - Water Source Type	4	4	
Section 5 - Catchment Inspections	(-3-3)	9-	
Section 6 - Raw Water Intake Management for Abstractions	(-2-4)	9-	
Total Surface Water Catchment Risk Score	is per	53	
Surface Water - Treatment and Supply Risk Score	ion put		
Section 7 - Water Treatment Processes	10°5	-10	
Section 8a - Treatment Works Monitoring of Coagulation and Filtration	ited ited	-5	
Section 8b - Treatment Works Monitoring of Coagulation and Filtration	ig.	7	
Section 8c - Treatment Works Monitoring of Coagulation and Filtration	(-5-2+5-2)	4-	
Section 8d - Treatment Works Monitoring of Coagulation and Filtration)°	iner	
Section 8e - Treatment Works Monitoring of Coagulation and Filtration		115°C	
Section 8f - Treatment Works Monitoring of Coagulation and Filtration			
Section 9 - Rapid Gravity and Pressure Filter Works Performance	(0+6-2-2)	2	
Section 10 - Treatment Works Operation	(-2+1-4+4-2+2+4)	က	
Total Surface Water - Treatment and Supply Risk Score		-15	
Surface Water Risk Assessment Score		38	
Population		111,000	

2.018129192 **76.68890928**

Population Weighting Factor (0.4 x log10(population))

Final Weighted Risk Assessment Score

Water Supply Risk Classification

High Risk

21/04/2008
Since the assessment was made the sand filters were upgraded and the media depth is now above the minimum design level. Therefore the scoring for Section 9 is now -6 resulting in an overall score of 60.54 and a risk classification of Moderate.

•••
9
as
reads
ssment
/ asse
nev
The

Surface Water Catchment Risk Scores	Section Score	Total Score
Section 1 - Animals within the Catchment	(10+5+0+2+4)	21
Section 2 - Agricultural Practices within the Catchment	(6+3+3+6+8)	26
Section 3 - Discharges to the Catchment/Water Source	(6+6+2)	14
Section 4 - Water Source Type	4	4
Section 5 - Catchment Inspections	(-3-3)	9-
Section 6 - Raw Water Intake Management for Abstractions	(-2-4)	9-
Total Surface Water Catchment Risk Score	₽	53
S. C.	inst iti	
Surrace Water - I reatment and Supply RISK Score	ectic ant c	Ç
Section / - water frequirient Processes	SWILE ON THE	0 .
Section 8a - Treatment Works Monitoring of Coagulation and Filtration	ingo Street	
Section 8b - I reatment Works Monitoring of Coagulation and Filtration	wiii Wiii	<u>-</u>
Section 8c - Treatment Works Monitoring of Coagulation and Filtration	(-2-2+2-g)	4-
Section 8d - Treatment Works Monitoring of Coagulation and Filtration	J. 92	
Section 8e - Treatment Works Monitoring of Coagulation and Filtration	izl o	ð
Section 8f - Treatment Works Monitoring of Coagulation and Filtration		net i
Section 9 - Rapid Gravity and Pressure Filter Works Performance	(0-2-2-2)	φ
Section 10 - Treatment Works Operation	(-2+1-4+4-2+2+4)	က
Total Surface Water - Treatment and Supply Risk Score		-23
Surface Water Risk Assessment Score Population Population Weighting Factor (0.4 x log10(population)) Final Weighted Risk Assessment Score Water Supply Risk Classification		30 111,000 2.018129192 60.54387575 Moderate

Agglomeration details

Leading Local Authority	Cork County Council
Co-Applicants	
Agglomeration	Rylane
Population Equivalent	110
Level of Treatment	Secondary
Treatment plant address	Waste Water Treatment Plant, Seiscne, Rylane, Co Cork
Grid Ref (12 digits, 6E, 6N)	142915 / 080839 (Verifed using GPS)
EPA Reference No:	

Contact details

Contact Name:	Patricia Power
Contact Address:	Water Services Sections Cork County Council Southern Division Carrigrohane Road Cork
Contact Number:	021-4276891
Contact Fax:	021-4276321
Contact Email:	patricia.power@corkcoco.ie

WWD Licence Application - Rylane - Page: 1

Table D.1(i)(a): EMISSIONS TO SURFACE/GROUND WATERS (Primary Discharge Point)

Discharge Point Code: SW-1

WWTP		
Mount Rivers, Rylane, Cork		
using GPS)		
y Weather Flow		
% Weather Flow		

Emission Details:

(i) Volume emitted			other		
Normal/day	15 m³	Maximum/dayouty and	120 m³		
Maximum rate/hour	5 m ³	Period of emission (avg)	60 min/hr	24 hr/day	365 day/yr
Dry Weather Flow	0.625 m³/sec	action net			
Dry Weather Flow 0.625 m³/sec For integration Consett of topy tright of the contribution Consett of the					

WWD Licence Application - Rylane - Page: 2

Table D.1(i)(b): EMISSIONS TO SURFACE/GROUND WATERS - Characteristics of The Emission (Primary Discharge Point)

Discharge Point Code: SW-1

Substance	As discharged					
	Unit of Measurement	Sampling Method	Max Daily Avg.	kg/day		
pH	pН	Grab	= 9			
Temperature	°C	Grab	= 25			
Electrical Conductivity (@ 25°C)	μS/cm	Grab	= 1000			
Suspended Solids	mg/l	Grab	= 35	4.2		
Ammonia (as N)	mg/l	Grab	= 5	0.6		
Biochemical Oxygen Demand	mg/l	Grab	= 25	3		
Chemical Oxygen Demand	mg/l	Grab	= 125	15		
Total Nitrogen (as N)	mg/l	Grab	= 0	0		
Nitrite (as N)	mg/l	Grab	= 0	0		
Nitrate (as N)	mg/l	Grab	= 0	0		
Total Phosphorous (as P)	mg/l	Grab	= 4	0.48		
OrthoPhosphate (as P)	mg/l	Grab	= 3	0.36		
Sulphate (SO ₄)	mg/l	Grab	= 0	0		
Phenols (Sum)	μg/l	Grab	= 0	0		

For Orthophosphate: this monitoring should be undertaken on a sample filtered on 0.45µm filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent. on the standard Method 6240, or equivalent.

Table D.1(i)(c): DANGEROUS SUBSTANCE EMISSIONS TO SURFACE/GROUND WATERS - Characteristics of The Emission (Primary Discharge Point)

Discharge Point Code: SW-1

Substance		,	As discharged	
	Unit of Measurement	Sampling Method	Max Daily Avg.	kg/day
Atrazine	μg/l	Grab	= 0	0
Dichloromethane	μg/l	Grab	= 0	0
Simazine	μg/l	Grab	= 0	0
Toluene	μg/l	Grab	= 0	0
Tributyltin	μg/l	Grab	= 0	0
Xylenes	μg/l	Grab	= 0	0
Arsenic	μg/l	Grab	= 0	0
Chromium	μg/l	Grab	= 0	0
Copper	μg/l	Grab	= 0	0
Cyanide	μg/l	Grab	= 0	0
Flouride	μg/l	Grab	= 0	0
Lead	μg/l	Grab	= 0	0
Nickel	μg/l	Grab	= 0	0
Zinc	μg/l	Grab	= 0	0
Boron	μg/l	Grab	, ≅ 0	0
Cadmium	μg/l	Grab 💉	= 0	0
Mercury	μg/l	Grab	= 0	0
Selenium	μg/l	Grab or all	= 0	0
Barium	μg/l	Grab Grab Grab Grab Grab Grab Grab Grab	= 0	0

For Orthophosphate: this monitoring should be undertaken on a sample filtered on 0.45µm filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240 are quivalent.

WWD Licence Application - Rylane - Page: 4

TABLE E.1(i): WASTE WATER FREQUENCY AND QUANTITY OF DISCHARGE – Primary and Secondary Discharge Points

Identification Code for Discharge point	Frequency of discharge (days/annum)	Quantity of Waste Water Discharged (m³/annum)
SW-1	365	5475

TABLE E.1(ii): WASTE WATER FREQUENCY AND QUANTITY OF DISCHARGE – Storm Water Overflows

Identification Code for Discharge	Frequency of discharge		Complies with Definition of Storm
point	(days/annum)	Discharged (m³/annum)	Water Overflow

TABLE F.1(i)(a): SURFACE/GROUND WATER MONITORING

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1d
Grid Ref (12 digits, 6E, 6N)	145802 / 075945 (Verifed using GPS)

Parameter		Results (mg/l)			Sampling method	Limit of Quantitation	Analysis method / technique
	01/01/09	29/10/09					
рН		= 7.4			Grab	2	Electrochemic al
Temperature	= 0				Grab	0.5	Electrochemic al
Electrical Conductivity (@ 25°C)		= 169			Grab	0.5	Electrochemic al
Suspended Solids	= 0				Grab	0.5	Gravimetric
Ammonia (as N)		< 0.1			Grab	0.02	Colorimetric
Biochemical Oxygen Demand		< 1			Grab	0.06	Electrochemic al
Chemical Oxygen Demand		= 62		, USE.	Grab	8	Digestion & Colorimetric
Dissolved Oxygen	= 0			net.	Grab	0.2	ISE
Hardness (as CaCO₃)	= 0			4.204	Grab	1	titrimetric
Total Nitrogen (as N)		= 4.82	Pettor purpose of	ford	Grab	0.5	Digestion & Colorimetric
Nitrite (as N)		< 0.1	alifedilite		Grab	0.1	Colorimetric
Nitrate (as N)		= 3.3	ion of real		Grab	0.5	Colorimetric
Total Phosphorous (as P)		= 0.078	Special purposering		Grab	0.2	Digestion & Colorimetric
OrthoPhosphate (as P)		= 0.11	4		Grab	0.02	Colorimetric
Sulphate (SO ₄)		< 30			Grab	30	Turbidimetric
Phenols (Sum)		< 0.1			Grab	0.1	GC-MS2

For Orthophosphate: this monitoring should be undertaken on a sample filtered on $0.45\mu m$ filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

Additional Comments:	default of 01/01/09 and 0 where no results are available

TABLE F.1(i)(b): SURFACE/GROUND WATER MONITORING (Dangerous Substances)

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1d
Grid Ref (12 digits, 6E, 6N)	145802 / 075945 (Verifed using GPS)

Parameter	Results (μg/l)			Sampling method	Limit of Quantitation	Analysis method / technique	
	01/01/09	29/10/09					
Atrazine		< 0.01			Grab	0.96	HPLC
Dichloromethane		< 1			Grab	1	GC-MS1
Simazine		< 0.01			Grab	0.01	HPLC
Toluene		< 0.28			Grab	0.02	GC-MS1
Tributyltin	= 0				Grab	0.02	GC-MS1
Xylenes		< 1			Grab	1	GC-MS1
Arsenic		= 0.4			Grab	0.96	ICP-MS
Chromium		< 20			Grab	20	ICP-OES
Copper		< 20			Grab	20	ICP-OES
Cyanide		< 5		, 1 50.	Grab	5	Colorimetric
Flouride		= 38		otherth	Grab	100	ISE
Lead		< 20		4. 4 Oli	Grab	20	ICP-OES
Nickel		< 20	ર્જ	tot stry	Grab	20	ICP-OES
Zinc		< 20	See 3	,	Grab	20	ICP-OES
Boron		< 20	alifeditie		Grab	20	ICP-OES
Cadmium		< 20	Recipi Particulited		Grab	20	ICP-OES
Mercury		< 0.03	Decrewite .		Grab	0.2	ICP-MS
Selenium		= 1	dit		Grab	0.74	ICP-MS
Barium		< 20	Cr.		Grab	20	ICP-OES

	TBT value is 0.02ug/l as sin default of 01/01/09 and 0 where no results are available, TBT testing not required	
(default of 01/01/09 and 0 where no results are available, TBT testing not required	

TABLE F.1(i)(a): SURFACE/GROUND WATER MONITORING

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1u
Grid Ref (12 digits, 6E, 6N)	144713 / 077487 (Verifed using GPS)

Parameter		Results (mg/l)			Sampling method	Limit of Quantitation	Analysis method / technique
	01/01/09	29/10/09					
рН		= 6.9			Grab	2	Electrochemic al
Temperature	= 0				Grab	0.5	Electrochemic al
Electrical Conductivity (@ 25°C)		= 196			Grab	0.5	Electrochemic al
Suspended Solids		= 11			Grab	0.5	Gravimetric
Ammonia (as N)		= 1.3			Grab	0.02	Colorimetric
Biochemical Oxygen Demand		= 1			Grab	0.06	Electrochemic al
Chemical Oxygen Demand		= 54		, 115°C.	Grab	8	Digestion & Colorimetric
Dissolved Oxygen	= 0			thei	Grab	0.2	ISE
Hardness (as CaCO₃)	= 0			1. 4	Grab	1	titrimetric
Total Nitrogen (as N)		= 4.43	Special Bull best of the country of	fot any o	Grab	0.5	Digestion & Colorimetric
Nitrite (as N)		= 0.288	alifedilite		Grab	0.1	Colorimetric
Nitrate (as N)		= 1.692	ion of rect		Grab	0.5	Colorimetric
Total Phosphorous (as P)		= 0.105	Rection Purpose Leguine		Grab	0.2	Digestion & Colorimetric
OrthoPhosphate (as P)		= 0.19	(18)		Grab	0.02	Colorimetric
Sulphate (SO ₄)		< 30	•		Grab	30	Turbidimetric
Phenols (Sum)	= 0	centor			Grab	0.1	GC-MS2

For Orthophosphate: this monitoring should be undertaken on a sample filtered on $0.45\mu m$ filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

Additional Comments:	default of 01/01/09 and 0 where no results are available

TABLE F.1(i)(b): SURFACE/GROUND WATER MONITORING (Dangerous Substances)

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1u
Grid Ref (12 digits, 6E, 6N)	144713 / 077487 (Verifed using GPS)

Parameter	Results (μg/l)		Sampling method	Limit of Quantitation	Analysis method / technique		
	01/01/09	29/10/09					
Atrazine	= 0				Grab	0.96	HPLC
Dichloromethane	= 0				Grab	1	GC-MS1
Simazine	= 0				Grab	0.01	HPLC
Toluene	= 0				Grab	0.02	GC-MS1
Tributyltin	= 0				Grab	0.02	GC-MS1
Xylenes	= 0				Grab	1	GC-MS1
Arsenic	= 0				Grab	0.96	ICP-MS
Chromium		< 20			Grab	20	ICP-OES
Copper		< 20			Grab	20	ICP-OES
Cyanide	= 0			, se.	Grab	5	Colorimetric
Flouride		= 43		net b	Grab	100	ISE
Lead		< 20		4. A Oli	Grab	20	ICP-OES
Nickel		< 20	ó	id and other tra	Grab	20	ICP-OES
Zinc		< 20	See 3	XV.	Grab	20	ICP-OES
Boron		< 20	aliferijie		Grab	20	ICP-OES
Cadmium		< 20	ion extern		Grab	20	ICP-OES
Mercury	= 0		Section and tribile		Grab	0.2	ICP-MS
Selenium	= 0	28	12 girl		Grab	0.74	ICP-MS
Barium		< 20	3		Grab	20	ICP-OES

	TBT value is 0.02ug/l as sn default of 01/01/09 and 0 where no results are available. TBT testing not required
	detail of 01/01/05 and 0 where no results are available, 151 testing not required

Annex 2: Check List For Regulation 16 Compliance

Regulation 16 of the waste water discharge (Authorisation) Regulations 2007 (S.I. No. 684 of 2007) sets out the information which must, in all cases, accompany a discharge licence application. In order to ensure that the application fully complies with the legal requirements of regulation 16 of the 2007 Regulations, all applicants should complete the following.

In each case, refer to the attachment number(s), of your application which contains(s) the information requested in the appropriate sub-article.

Regulation 16(1) In the case of an application for a waste water discharge licence, the application shall -		Attachment Number	Checked by Applicant	
(a)	give the name, address, telefax number (if any) and telephone number of the applicant (and, if different, of the operator of any treatment plant concerned) and the address to which correspondence relating to the application should be sent and, if the operator is a body corporate, the address of its registered office or principal office,		Yes	
(b)	give the name of the water services authority in whose functional area the relevant waste water discharge takes place or is to take place, if different from that of the applicant,		Yes	
(c)	give the location or postal address (including where appropriate, the name of the townland or townlands) and the National Grid reference of the location of the waste water treatment plant and/or the waste water discharge point or points to which the application relates,		Yes	
(d)	state the population equivalent of the agglomeration to which the application relates,		Yes	
(e)	specify the content and extent of the waste water discharge, the level of treatment provided, if any, and the flow and type of discharge,		Yes	
(f)	give details of the receiving water body, including its protected area status, if any, and details of any sensitive areas or protected areas or both in the vicinity of the discharge point or points likely to be affected by the discharge concerned, and for discharges to ground provide details of groundwater protection schemes in place for the receiving water body and all associated hydrogeological and geological assessments related to the receiving water environment in the vicinity of the discharge.	e.	Yes	
(g)	identify monitoring and sampling points and indicate proposed arrangements for the monitoring of discharges and, if Regulation 17 does not apply, provide details of the likely environmental consequences of any such discharges,		Yes	
(h)	in the case of an existing waste water treatment plant, specify the sampling data pertaining to the discharge based on the samples taken in the 12 months preceding the making of the application,		Yes	
(i)	describe the existing or proposed measures, including emergency procedures, to prevent unintended waste water discharges and to minimise the impact on the environment of any such discharges,		Yes	
(j)	give particulars of the nearest downstream drinking water abstraction point or points to the discharge point or points,		Yes	
(k)	give details, and an assessment of the effects of any existing or proposed emissions on the environment, including any environmental medium other than those into which the emissions are, or are to be made, and of proposed measures to prevent or eliminate or, where that is not practicable, to limit any pollution caused in such discharges,		Yes	
(I)	give detail of compliance with relevant monitoring requirements and treatment standards contained in any applicable Council Directives of Regulations,		Yes	
(m)	give details of any work necessary to meet relevant effluent discharge standards and a timeframe and schedule for such work.		Yes	
(n)	Any other information as may be stipulated by the Agency.		Yes	
Without	ion 16(3) prejudice to Regulation 16 (1) and (2), an application for a licence shall be anied by -	Attachment Number	Checked by Applicant	
(a)	a copy of the notice of intention to make an application given pursuant to Regulation 9,		Yes	
(b)	where appropriate, a copy of the notice given to a relevant water services authority under Regulation 13,		Yes	
(c)	Such other particulars, drawings, maps, reports and supporting documentation as are necessary to identify and describe, as appropriate -		Yes	
(c) (i)	the point or points, including storm water overflows, from which a discharge or discharges take place or are to take place, and		Yes	
(c) (ii)	the point or points at which monitoring and sampling are undertaken or are to be undertaken,		Yes	
(d)	such fee as is appropriate having regard to the provisions of Regulations 38 and 39.	See Letter Attachment B8	Yes	

WWD Licence Application Annex II

An origi	ion 16(4) nal application shall be accompanied by 2 copies of it and of all accompanying ents and particulars as required under Regulation 16(3) in hardcopy or in an electronic format as specified by the Agency.	Attachment Number	Checked by Applicant	
1	An Original Application shall be accompanied by 2 copies of it and of all accompanying documents and particulars as required under regulation 16(3) in hardcopy or in electronic or other format as specified by the agancy.		Yes	
For the associa	ion 16(5) purpose of paragraph (4), all or part of the 2 copies of the said application and ted documents and particulars may, with the agreement of the Agency, be submitted in tronic or other format specified by the Agency.	Attachment Number	Checked by Applicant	
1	Signed original.		Yes	
2	2 hardcopies of application provided or 2 CD versions of application (PDF files) provided.		Yes	
3	1 CD of geo-referenced digital files provided.		Yes	
subject to 2001 respect stateme	ion 17 a treatment plant associated with the relevant waste water works is or has been to the European Communities (Environmental Impact Assessment) Regulations 1989, in addition to compliance with the requirements of Regulation 16, an application in of the relevant discharge shall be accompanied by a copy of an environmental impact and approval in accordance with the Act of 2000 in respect of the said development by be submitted in an electronic or other format specified by the Agency	Attachment Number	Checked by Applicant	
3	2 CD versions of EIS, as PDF files, provided.		Yes	
1	EIA provided if applicable		Yes	
2	2 hardcopies of EIS provided if applicable.		Yes	
Regulation the capplication	ion 24 ase of an application for a waste water discharge certificate of authorisation, the ion shall –	Attachment Number	Checked by Applicant	
(a)	give the name, address, telefax number (if any) and telephone number of the applicant and the address to which correspondence relating to the application should be sent and, if the operator of the waste water works is a body corporate, the address of its registered office or principal office	e·	Yes	
(b)	give the name of the water services authority in whose functional area the relevants waste water discharge takes place or is to take place, if different from that of the applicant,		Yes	
(c)	give the location or postal address (including where appropriate, the name of the townland or townlands) and the National Grid reference of the location of the discharge point or points to which the application relates,		Yes	
(d)	state the population equivalent of the agglomeration to which the application relates,		Yes	
(e)	in the case of an application for the review of a certificate, specify the reference number given to the relevant certificate in the register,		Yes	
(f)	specify the content and extent of the waste water discharge, the level of treatment provided and the flow and type of discharge,		Yes	
(g)	give details of the receiving water body, its protected area status, if any, and details of any sensitive areas or protected areas, or both, in the vicinity of the discharge point or points or likely to be affected by the discharge concerned,		Yes	
(h)	identify monitoring and sampling points and indicate proposed arrangements for the monitoring of discharges and of the likely environmental consequences of any such discharges,		Yes	
(i)	in the case of an existing discharge, specify the sampling data pertaining to the discharge based on the samples taken in the 12 months preceding the making of the application,		Yes	
(j)	describe the existing or proposed measures, including emergency procedures, to prevent unauthorised or unexpected waste water discharges and to minimise the impact on the environment of any such discharges,		Yes	
(k)	give particulars of the location of the nearest downstream drinking water abstraction point or points to the discharge point or points associated with the waste water works,		Yes	
(I)	give details of any designation under any Council Directive or Regulations that apply in relation to the receiving waters,		Yes	
(m)	give details of compliance with any applicable monitoring requirements and treatment standards,		Yes	
(n)	give details of any work necessary to meet relevant effluent discharge standards and a timeframe and schedule for such work,		Yes	
(o)	give any other information as may be stipulated by the Agency, and		Yes	
(p)	be accompanied by such fee as is appropriate having regard to the provisions of Regulations 38 and 39.		Yes	