Comhairle Contae Chorcaí Cork County Council

Administration, Environmental Licensing Programme, Office of Climate, Licensing & Resource Use, Environmental Protection Agency, Regional Inspectorate, Inniscarra, County Cork.

County Hall, Cork, Ireland. Tel: (021) 4276891 • Fax: (021) 4276321 Web: www.corkcoco.ie Halla an Chontae, Corcaigh, Éire. Fón: (021) 4276891 • Faics: (021) 4276321 Suíomh Gréasáin: www.corkcoco.ie

The Environmental Protection Agency 2 7 SEP 2010 CORK

24th September 2010

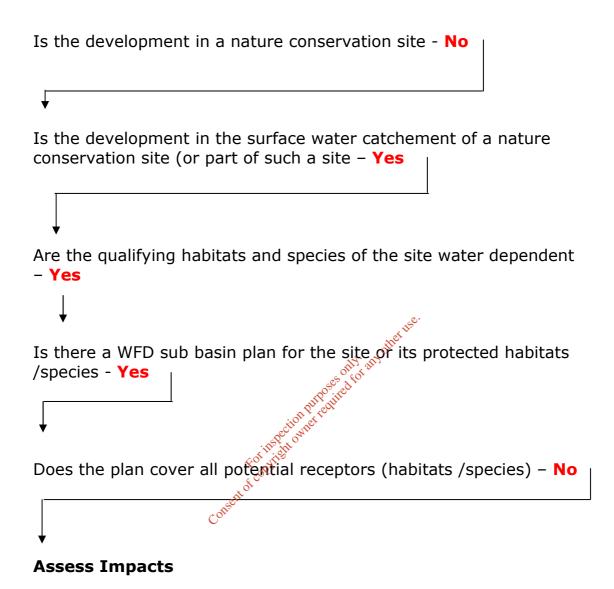
Re: Notice in accordance with Regulation 18(3) of the Waste Water Discharge (Authorisation) Regulations 2007.

Register No. D0329-01 Killeens Agglomeration

I refer to the above and to a letter received from the Agency dated 21st May 2010 requiring further information in accordance with Regulation 18(3)(b) of the regulations.

I enclose a submission to the Agency in response to the matters raised in said letter.

This information is supplied in the form of one original plus one copy and a CD-ROM of the information in electronic searchable PDF format as requested.


I also enclose a revised map of the agglomeration which includes the discharge point and location.

Yours Sincerely

Patricia Power Director of Services Area Operations South Floor 5 County Hall Cork.

Killeens Flow Chart – D0329-01

Question 1: Assess the likelihood of significant effects of the waste water discharge on the relevant European sites.

Habitats Directive Assessment (Screening Report) in respect of

Application by Cork County Council to the EPA

for Wastewater Discharge License for Killeen's WWTP streamse Licence Register Number D0329-01 September, 2010

1 Introduction

1.1 The village of Killeens is located approximately 1.5Km to the west of Cork City and approximately 3Km east of Blarney village. The Waste Water Treatment Plant is located to the west of the village, adjacent to the Cork-Mallow road. The waste water collection system for the Killeens catchment is predominantly separate. The waste water collection system primarily serves new residential developments, some long established houses and the Sunset Ridge Hotel which is the most significant non-domestic discharge. The Treatment Plant was upgraded last year and its present capacity is 1200 PE. The actual PE entering the treatment plant is approximately 860.

On entering the WWTP the waste water is directed through the on line automatic fine screen and forward to the primary treatment. If the fine screen capacity is exceeded the flow by-passes the fine screen and goes through a bar screen and onto the primary treatment stage. In the event of the by-pass capacity being exceeded then the waste water flows over the emergency overflow weir and discharges into a storm overflow tank. The primary settling tank comprises two cells. The capacity allows a retention time of 2 hours for a peak flow of 3 DWF. Following primary settlement the effluent is split 50% -50% and discharges into two separate Rotating Biological Contactors. From the Rotating Biological Contactors the treated waste water is discharged to the final clarifiers? Ferric sulphate is dosed between the Rotating Biological Contactors and the final clarifiers. From the final clarifiers activated sludge is returned to the Rotating Biological Contactors and activated sludge is wasted to the sludge holding tank. The effluent is then delivered to the sand filter for tertiary treatment. From here the treated effluent is discharged to the final effluent sump and then pumped to the Blarney River at a point approx 24Km upstream of the Cork Harbour SPA. Further downstream the Blarney River combines with the River Lee which flows into the Cork Harbour at the north western end of the Con Lough Mahon Estuary.

1.2 The plant is located approx. 24km upstream from the Cork Harbour Special Protection Area which is designated under the EU Birds Directive (79/409/EEC) as transposed into Irish Law under the European Union (Natural Habitats) Regulations SI 94/1997. As this is the case, and in accordance with requirements under this Directive, the potential impacts of proposed developments that have the potential to impact on Special Protection Areas must be assessed. The procedure to do this is called a Habitats Directive Assessment. The purpose of such an assessment is to identify whether there may be potential for elements of the project to have a significant impact on nature conservation sites within its impact zone, and if so, to predict the potential for such impacts to affect the overall integrity of such nature conservation sites. The European Union has provided guidance as to how to make a Habitats Directive Assessment which identifies four main stages in the process as follows:

Stage One: Screening

The process which identifies the likely impacts upon a Natura 2000 site of a project or plan, wither alone or in combination with other projects or plans, and considers whether these impacts are likely to be significant.

Stage Two: Appropriate assessment

The consideration of the impact on the integrity of the Natura 2000 site of the project or plan, either alone or in combination with other projects or plans, with respect to the site's structure and function and its conservation objectives. Additionally, where there are adverse impacts, an assessment of the potential mitigation of those impacts.

Stage Three: Assessment of alternative solutions The process which examines alternative ways of achieving the objectives of the project or plan that avoid adverse impacts on the integrity of the Natura 2000 site.

Stage Four: Assessment where no alternative solutions exist and where adverse impacts remain.

An assessment of compensatory measures, where in the light of an assessment of imperative reasons of overriding public interest, it is deemed that the project or plan should proceed.

1.3 This document brings together all of the information necessary to make determination as to whether there are likely to be significant impacts arising from the discharge from Killeens WWTP on the adjacent Cork Harbour Special Protection Area and represents the first stage of this process (Screening). LOWHOT POC pectionP

Step 1:

Provide a description of the plan and other plans and projects that, in combination, have the potential to have significant effects on Natura 2000 sites within the patential impact zone; Con

Step 2:

Identify Natura 2000 sites which may be impacted by the plan, and compile information on their qualifying interests and conservation objectives;

Step 3:

Determine whether the plan needs to be screened for potential impacts on Natura 2000 sites;

Step 4:

Carry out an assessment of likely effects - direct, indirect and cumulative undertaken on the basis of available information as a desk study or field survey or primary research as necessary;

Step 5:

Assess the significance of any such effects on the Natura 2000 sites within the impact zone.

1.4 The assessment has been prepared in accordance with the following guidance:

> European Commission (2000) Managing Natura 2000 sites: the provisions of Article 6 of the Habitats Directive 92/43/EEC.

European Commission (2001) Assessment of plans and projects significantly affecting Natura 2000 sites: Methodological guidance on the provisions of Articles 6(3) and (4) of the Habitats Directive 92/43/EEC.

Appropriate Assessment of Plans and Projects in Ireland. Guidance for Planning Authorities. Environment, Heritage and Local Government, 2009.

2 Appropriate Assessment Screening Matrix

2.1 Description of project		
Location	Killeens WWTP, Killeens, County Cork.	
Description of the key components of the project	The WWTP was upgraded in 2009. On entering the WWTP the waste water is directed through the on line automatic fine screen and forward to the primary treatment. If the fine screen capacity is exceeded the flow by-passes the fine screen and goes through a bar screen and onto the primary treatment stage. In the event of the by-pass capacity being exceeded then the waste water flows over the emergency overflow weir and discharges into a storm overflow tank. The primary settling tank comprises two cells. The capacity allows a retention time of 2 hours for a peak flow of 3 DWF. Following primary settlement the effluent is split 50% -50% and discharges into two separate Rotating Biological Contactors. From the Rotating Biological Contactors the treated waste water is discharged to the final clarifiers. Ferric sulphate is dosed between the Rotating Biological Contactors and the final clarifiers. From the final clarifiers activated sludge is returned to the Rotating Biological Contactors and activated sludge is wasted to the sludge holding tank. The effluent is then delivered to the sand filter for tertiary treatment. From here the treated effluent is discharged to the final effluent sump and then pumped to the Blarney River, approx 216cu.m./day of effluent is discharged to the Blarney River.	
Distance from designated sites in potential impact zone*	Approx. 24 Km distance from the Discharge point to the Cork Harbour SPA.	

2.2 Description of the Natura 2000 sites within the potential impact zone ¹			
Name	Cork Harbour Special Protection Area		

¹ Natura 2000 sites within the potential impact zone of the proposed development have been identified in accordance with guidance provided in the NPWS circular L8/08.

Site Code	4130		
Site Description	The Cork Harbour SPA is an estuarine complex which is primarily comprised of intertidal habitats, mainly mudflats as well as some other coastal and marine habitats. These habitats support very high numbers of wintering waterfowl that feed on the macro invertebrates inhabiting the mudflats. The Harbour regularly supports in excess of 20,000 wintering birds, making it an internationally important site and the fifth most important wintering waterfowl site in the country.		
	Killeens WWTP discharges to the Blarney River at appoint approx 24Km upstream from the Cork Harbour SPA.		
	The Blarney River combines with the River Lee and flows into the Cork Harbour SPA at the North Western end of the Lough Mahon estuary where the main habitats of importance are intertidal mudflats.		
	More information on the Cork Harbour SPA is contained in appendix 1 of this document. Bird count data is provided in appendix 3.		
Qualifying Interests of Cork Harbour SPA.	Internationally important numbers of Black-tailed Godwit and Redshank; Nationally important numbers of Cormorant, Shelduck, Oyster catcher, Golden Plover, Lapwing, Dunlin and Curlew; 20,000 wintering water birds. Source - National Parks and Wildlife Service See appendix 3 for bird count data for Cork Harbour		
	1998/2000 - 2007/2008.		
Other Notable Features of Cork Harbour SPA	Little Grebe, Great-crested Grebe, Grey Heron, Wigeon, Teal, Pintail, Shoveler, Red-breasted Merganser, Grey Plover, Black-headed Gull, Common Gull, Lesser Black- backed Gull, wetland and water birds. Source - National Parks and Wildlife Service		
	See appendix 3 for bird count data for Cork Harbour 1998/2000 - 2007/2008.		
Conservation Objectives	To avoid deterioration of the habitats of the qualifying species and species of special conservation interest, or significant disturbance to these species, thus ensuring that the integrity of the site is maintained.		
	To ensure for the qualifying species and species of special conservation interest that the following are maintained in the long-term.		
	 the population of the species as a viable component of the site; the distribution and extent of habitats supporting the species; the structure, function and supporting processes of habitats supporting the species; 		

	Source - National Parks and Wildlife Service
--	--

2.3 Assessment Criteria			
Describe the individual elements of the project (either alone or in combination with other plans or projects) likely to give	Discharge from Killeens WWTP: The treated effluent discharges from the WWTP to the Blarney River which combines with the River Lee. The Cork Harbour SPA is approx 32 km from the point of discharge.		
or projects) likely to give rise to impacts on the Natura 2000 site.	The discharge consists of high quality treated effluent from the WWTP.		
	Other Significant Discharges to the River Lee between Cork Harbour SPA and Killeens WWTP:		
	Treated Wastewater from the Ballincollig agglomeration discharges to the river Lee approx 13Km upstream of the Cork Harbour SPA. It should be noted that this facility has a Waste Water Discharge Licence (D0043-01).		
	Treated Wastewater from the Blarney agglomeration discharges to the Shournagh River which combines with the River Lee approx 19Km upstream of the Cork Harbour SPA. It should be noted that this facility has a Waste Water Discharge Licence (20049-01).		
	Treated Wastewater from Dripsey village discharges to the river Dripsey which combines to the River Lee approx 27Km upstream of the Cork Harbour SPA.		
c	Treated Wastewater from Coachford discharges to the River Lee approx 32Km upstream of the Cork Harbour SPA.		
Describe any likely direct, indirect or secondary impacts of the project (either alone or in combination with other plans or projects) on the Natura 2000 site taking into account the following:	Discharges could give rise to elevated nutrients entering the Western portion of Cork Harbour. Increased nutrient levels may impact on the ecology of an area by changing the composition of floral communities and reducing the ability of less robust plants to survive. Increased nutrient levels may also result in increasing the invertebrate populations in the estuary, thereby increasing bird population levels.		
 Size and scale Land-take Distance from the 	However the potential for the WWTP discharge to result in elevated nutrients within the harbour is reduced by the following factors:		
Natura 2000 site or key features of the site:	 The quality of the effluent is good. From the monitoring data available there is no deterioration in water quality in the rivers 		
 Resource requirements (water abstraction etc.) 	downstream of the discharge. 3. The discharge from the plant is approx 24Km upstream from Cork Harbour SPA and the River Lee		
 Emissions (disposal to land, water or air) Excavation 	enters the Cork Harbour SPA at the North Western end of Lough Mahon which is a large and well exchanged body of water with unlimited dilution		
Requirements	capacity.		

 Transportation Requirements Duration of construction, operation, decommissioning 	1 The standard of treated effluent is high. Treated effluent from the Killeens WWTP is monitored by the operator on a weekly basis and by CCC six times per year.
 Other. 	Note 1: See appendix 2 for effluent quality results for 2008 and 2009. Please note that the results for the discharge are based on results of the old WWTP, a new WWTP has since been commissioned and is operating to a higher standard.
	Note 2: As overflows occur in times of heavy rain the assumption must be made that what is discharged is diluted as well as screened.
	2 No deterioration in water quality in the Rivers downstream. According to the upstream and downstream monitoring already carried out as part of the WWDL application process, there is no deterioration in water quality associated with the Killeens WWTP discharge.
	It should also be noted that near Killeens Cross a point just downstream from the discharge the Q value is 3-4 (Slightly Polluted) and at Leencount Cross a point further downstream the Q value is 4-5 (Unpolluted)
	3 Treated effluent discharges into Harbour body The treated effluent enters the Cork Harbour SPA at the North Western End of the Lough Mahon Estuary which is a large and well exchanged body of water with unlimited dilution capacity. The endless dilution capability of the harbour body of water means that the discharge is properly diluted once within the SPA
Describe any likely changes to the site arising as a result of:	Reduction in habitat area: Effluent is discharging to a large well-exchanged body of water where dilution and dispersion potential is high. No significant impacts are evident or predicted on habitats within the Cork Harbour arising from the operation of this facility. Disturbance to key species: The operation of the WWTP does not cause any disturbance
 fragmentation Reduction in species density 	to species within the SPA. Habitat or species fragmentation:
 Changes in key indicators of conservation value (water quality etc) 	No habitat fragmentation has been caused as a result of the operation of this facility. Reduction in species density:
 Climate Change 	Effluent is discharging to a large well-exchanged body of water where dilution and dispersion potential is high. No significant impacts are evident or predicted on species for which the SPA is designated.
	Changes in key indicators of conservation value e.g. water quality: Monitoring of the rivers water quality indicates that there is

	no deterioration in water quality associated with the Killeens discharge. This is confirmed by the EQS comparison tables attached. It should also be noted that near Killeens Cross a point just downstream from the discharge the Q value is 3-4 (Slightly Polluted) and at Leemount Cross a point further downstream the Q value is 4-5 (Unpolluted)
Describe any likely impacts on the Natura 2000 site as a whole in terms of: Interference with the key relationships that define the structure of the site Interference with key relationships that define the function of the site 	Interference with the key relationships that define the structure of the site: The structure of the SPA is not impacted by the operation of this facility. Interference with key relationships that define the function of the site: The function of the SPA is not impacted by the operation of this facility.
Describe from the above those elements of the project of plan, or combination of elements, where the above impacts are likely to be significant or where the scale or magnitude of impacts is not known.	No significant impacts are predicted.

4. Finding of No Significant Effects Report Matrix Cork Harbour Special Protection Area

Name of project or plan	Killeens WWTP.
Name and location of Natura 2000 site	Cork Harbour Special Protection Area
Description of the project or plan	The WWTP was upgraded in 2009. On entering the WWTP the waste water is directed through the on line automatic fine screen and forward to the primary treatment. If the fine screen capacity is exceeded the flow by-passes the fine screen and goes through a bar screen and onto the primary treatment stage. In the event of the by-pass capacity being exceeded then the waste water flows over the emergency overflow weir and discharges into a storm overflow tank. The primary settling tank comprises two cells. The capacity allows a retention time of 2 hours for a peak flow of 3 DWF. Following primary settlement the effluent is split 50% -50% and discharges into two separate Rotating Biological Contactors. From the Rotating Biological Contactors the treated waste water is discharged to the final clarifiers. Ferric sulphate is dosed between the Rotating Biological Contactors and the final clarifiers. From the final clarifiers activated sludge is returned to the Rotating Biological Contactors and activated sludge is wasted to the sludge

Is the project or plan directly connected with or necessary to the management of the site (provide details)?	holding tank. The effluent is then delivered to the sand filter for tertiary treatment. From here the treated effluent is discharged to the final effluent sump and then pumped to the Blarney River, approx 216cu.m./day of effluent is discharged to the Blarney River. No
The assessment of significant	e of effects
Describe how the project or plan (alone or in combination) is likely to affect the Natura 2000 Site.	Discharges from the Killeens WWTP either alone or in combination with discharges from other sources could give rise to elevated nutrients entering the Western portion of Cork Harbour. Increased nutrient levels may impact on the ecology of an area by changing the composition of floral communities and reducing the ability of less robust plants to survive. Increased nutrient levels may also result in increasing the invertebrate populations in the estuary, thereby increasing bird population levels. Effluent discharged from Saleen Septic tank or from the discharge points from the Whitegate/Aghada agglomeration may be having a negative impact on the Cork Harbour SPA, it is considered that the discharge from Killeens WWTP is not contributing to this impact because of its distance from Cork Harbour SPA and because of the large dilution capacity of the River Lee.
Explain why these effects are not considered significant.	Treated effluent discharges approx 24Km upstream of the SPA and the river discharges to a large well-exchanged body of water where dilution and dispersion potential is high. No significant impacts are evident or predicted on species for which the SPA is designated.
List of agencies consulted: provide contact name and telephone or email address	National Parks and Wildlife Service - Natureconservation@environ.ie, cyril.saich@environ.ie Birdwatch Ireland - Data request.
Response to consultation	Draft Conservation Objectives and a copy of Intention to Designate Cork Harbour as SPA was received previously from the NPWS. Bird count data was received previously from Birdwatch Ireland.

Data collected to carry out the assessment			
Who carried out the assessment	Sources of data	Level of assessment completed	Where can the full results of the assessment be accessed and viewed
Tim O'Farrell, Madeleine Healy and Sharon Casey, Cork County Council	IWebs Bird Data supplied by BirdWatch Ireland; Water Quality Monitoring Data CCC;	Desktop review of cited data.	This report.

Consent of copyright owner required for any other use.

Question 2: Review of the Impact of the Discharge in relation to the requirements of the Environmental Quality Objective.

Killeens WWTP Licence Register Number D0329-01

Provide a comparison of the predicted receiving water concentrations (based on the waste water treatment plant discharging at maximum average concentration) with the values included in the European Communities Environmental Objectives (Surface Waters) Regulations. 2009 SI No 272/2009.

The Blarney River into which the WWTP discharges has a "moderate status". Therefore the lower "good" standard contained in the surface water regulations was used for comparison purposes.

The upstream and downstream sampling results for 2008 and 2009 at aSW01u and aSW01d were compared to the relevant EQR/S from the surface water regulations in the following tables. The sample results and the EQR/S were included only if there were values for both, to allow comparison.

The upstream and downstream sample results incorporated in the following tables are those laid out in the upstream and downstream sheets of the Revised Table E. However many of these results are at the limit of detection, or are results based on averages that include assumed figures. Therefore additional upstream and downstream tables with actual results for analysis below the Limit of Detection have been included. This "Analysis below the Limit of Detection" is laid out on a separate sheet in the Revised Table E.

	Ecological quality ratio/standard	2009 upstream ambient	
Physico-chemical conditions	Good boundary	sampling results at aSW01u	
	Rivers (All Types)		
Oxygenation conditions Table 9	River water body	Ambient sampling results	
Biochemical Oxygen Demand (BOD) (mgO ₂ /l)	Good status≤1.5 (mean) or ≤2.6(95%ile)	<1.0mg/L (mean) <1.0mg/L (95%ile)	
Acidification Status Table 9	River Water Body	Ambient sampling results	
pH (individual values)	Soft Water 4.5 <ph<9.0 Hard Water 6.0<ph<9.0< td=""><td>7.9</td></ph<9.0<></ph<9.0 	7.9	
Nutrient conditions Table 9	River Water body	Ambient sampling results	
Total Ammonia (mg N/I)	Good status≤0.065(mean) or ≤0.140(95%ile)	<0.1mg/L (mean) <0.1mg/L (95%ile)	
Molybdate Reactive Phosphorus (MRP) (mg P/I)	Good status≤0.035(mean) or ≤0.075(95%ile)	0.0475mg/L (mean) 0.06775mg/L (95%ile)	
Specific pollutants Table 10	Inland surface waters AA-EQS	Ambient sampling results	
Phenol	8	<0.1µg/L	
Toulene	و 10	<u></u> ⊳∙ <1.0μg/L	
Xylene	10 م	<1.0µg/L	
Arsenic	25 off	<0.96µg/L	
Total Chromium	8.1 50 mb rank	<0.02µg/L	
Copper (depending on water hardness)	OIL PSOCIAL	<0.02µg/L	
Cyanide	ectivite 10	<5.0µg/L	
Flouride	10 ⁵ 611 500	46.0µg/L	
Zinc (depending on water hardness)	FOT STEE 100	<0.02µg/L	
Priority Substances Table 11	M Inland surface waters AA-EQS	Ambient sampling results	
Atrazine	0.6	<0.01µg/L	
Dichloromethane	20	<1.0µg/L	
Simazine	1	<0.01µg/L	
Lead and its compounds	7.2	<0.02µg/L	
Nickel and its compounds	20	<0.02µg/L	
Priority Hazardous Substances Table 12	Inland surface waters AA-EQS	Ambient sampling results	
Cadmium and its compounds (depending on water hardness)	0.15	<0.02µg/L	
Mercury and its compounds	0.05	<0.2 µg/L	

UPSTREAM COMPARISON TABLE

Note the following:

The black results are within the EQR/S.

The red results break the EQR/S.

The blue results may break the EQR/S. The results highlighted grey are at the limit of detection. Water hardness in the Blarney River is 131mgCaCO₃/L

UPSTREAM COMPARISON TABLE (ANALYSIS BELOW LIMIT OF DETECTION)

Physico-chemical conditions	Ecological quality ratio/standard Good boundary Rivers (All Types)	2009 upstream ambient sampling results at aSW01u	
Nutrient conditions Table 9	River Water body	Ambient sampling results	
Total Ammonia (mg N/I)	Good status≤0.065(mean) or ≤0.140(95%ile)	0.041mg/L (mean) 0.041mg/L (95%ile)	
Molybdate Reactive Phosphorus (MRP) (mg P/I)	Good status≤0.035(mean) or ≤0.075(95%ile)	0.0485mg/L (mean) 0.06785mg/L (95%ile)	
Specific pollutants Table 10	Inland surface waters AA-EQS	Ambient sampling results	
Total Chromium	8.1	<1.0µg/L	
Copper (depending on water hardness)	30	<1.0µg/L	
Zinc (depending on water hardness)	100	<1.0µg/L	
Priority Substances Table 11	Inland surface waters AA-EQS	Ambient sampling results	
Lead and its compounds	7.2 بون	<1.0µg/L	
Nickel and its compounds	20 20	1µg/L	
Priority Hazardous Substances Table 12	Inland surface waters AA-EQS	Ambient sampling results	
Cadmium and its compounds (depending on water hardness)	ation of 45 it	<1.0µg/L	

The black results are within the EQR/S. The red results break the EQR/S. The blue results may be The result

The blue results may break the EQR/S. The results highlighted grey are at the limit of detection. Water hardness in the Blarney River is 131mgCaCO₃/L

	Ecological quality ratio/standard	2009 Downstream ambient
Physico-chemical conditions	Good boundary	sampling results at aSW01d
	Rivers (All Types)	
Oxygenation conditions Table 9	River water body	Ambient sampling results
Biochemical Oxygen Demand (BOD) (mgO ₂ /l)	Good status≤1.5 (mean) or ≤2.6(95%ile)	1mg/L (mean) 1mg/L (95%ile)
Acidification Status Table 9	River Water Body	Ambient sampling results
pH (individual values)	Soft Water 4.5 <ph<9.0 Hard Water 6.0<ph<9.0< td=""><td>7.5</td></ph<9.0<></ph<9.0 	7.5
Nutrient conditions Table 9	River Water body	Ambient sampling results
Total Ammonia (mg N/I)	Good status≤0.065(mean) or ≤0.140(95%ile)	<0.1mg/L (mean) <0.1mg/L (95%ile)
Molybdate Reactive Phosphorus (MRP) (mg P/I)	Good status≤0.035(mean) or ≤0.075(95%ile)	0.0625mg/L (mean) 0.09625mg/L (95%ile)
Specific pollutants Table 10	Inland surface waters AA-EQS	Ambient sampling results
Phenol	8	<0.1µg/L
Toulene	10	<u></u> 2∙ <1.0μg/L
Xylene	10 _{ఆర} ్	<1.0µg/L
Arsenic	25 off	<0.96µg/L
Total Chromium	8.1 50 nd for and	<0.02µg/L Chromium
Copper (depending on water hardness)	OI PSORI	<0.02µg/L
Cyanide	pecternine 10	<5µg/L
Flouride	institute 500	49µg/L
Zinc (depending on water hardness)	FOR 971 100	<0.02µg/L
Priority Substances Table 11	hland surface waters مرجم AA-EQS	Ambient sampling results
Atrazine	0.6	<0.01µg/L
Dichloromethane	20	<1.0µg/L
Simazine	1	<0.01µg/L
Lead and its compounds	7.2	<0.02µg/L
Nickel and its compounds	20	<0.02µg/L
Priority Hazardous Substances Table 12	Inland surface waters AA-EQS	Ambient sampling results
Cadmium and its compounds (depending on water hardness)	0.15	<0.02µg/L
Mercury and its compounds	0.05	<0.2µg/L

DOWNSTREAM COMPARISON TABLE

Note the following:

The black results are within the EQR/S.

The red results break the EQR/S.

The blue results may break the EQR/S. The results highlighted grey are at the limit of detection. Water hardness in the Blarney River is 131mg CaCO₃/L

DOWNSTREAM COMPARISON TABLE (ACTUAL METAL RESULTS)

	•/				
Ecological quality ratio/standard Good boundary	2009 Downstream ambient sampling results at aSW01d				
Rivers (All Types)					
Inland surface waters AA-EQS	Ambient sampling results				
8.1	<1.0µg/L				
30	<1.0µg/L				
100	<1.0µg/L				
Inland surface waters AA-EQS	Ambient sampling results				
7.2	2.0µg/L				
20	3.0µg/L				
Inland surface waters AA-EQS	Ambient sampling results				
0.15	^{ي.} <1.0µg/L				
EQR/S. purposes only any of EQR/S. purposes of the any of EQR/S. performer control of the at the limit of detection. iver is 191 mg CaCO ₃ /L					
	ratio/standard Good boundary Rivers (All Types) Inland surface waters AA-EQS 8.1 30 100 Inland surface waters AA-EQS 7.2 20 Inland surface waters AA-EQS				

PREDICTED IMPACTS

MASS BALANCE EQUATIONS FOR BOD:

Worst Case Scenario:

Maximum Discharge, Low Flow in the River, Maximum BOD in Discharge.

Flow of River (95%ile) = 0.06m3/sec Mean BOD in River (upstream) = 0.5mg/L (Half of LOD for Calculation Purposes) Max volume of discharge = 0.0075m3/sec Max value for BOD in discharge = 25mg/L (Note: Online Tables D is to be changed)

 $C_{\text{final}} = (0.06 \times 0.5) + (0.0075 \times 25)$ (0.06 + 0.0075)

C_{final} = 3.22mg/I BOD

This is in breach of the 1.5mg/L mean EQS and the 2.6mg/L 95%ile EQS for BOD.

Normal Scenario:

Normal Discharge, Median Flow in the River, Mean BOD in Discharge.

Flow of River (Median) = 0.583m3/sec Mean BOD in River (upstream) = 0.5mg/L (Half of LOD for Salculation Purposes) Formsection purpose only. . 2019 Normal volume of discharge = 0.0025m3/sec Mean value for BOD in discharge = 25mg/L

 $C_{\text{final}} = (0.583 \times 0.5) + (0.0025 \times 25)$ (0.583 + 0.0025)

 $C_{\text{final}} = 0.605 mg/l \; BOD$

This is within the 1.5mg/L mean and 2.6mg/L 95%ile EQS for BOD.

^Ó

Please note that a new WWTP has been commissioned since late 2009 and is operating to a high standard.

MASS BALANCE EQUATIONS FOR AMMONIA:

Worst Case Scenario:

Maximum Discharge, Low Flow in the River, Maximum Ammonia in Discharge.

Flow of River (95%ile) = 0.06m3/sec Mean Ammonia in River (upstream) = 0.05mg/L (Half of LOD for Calculation Purposes) Max volume of discharge = 0.0075m3/sec Max value for Ammonia in discharge = 30.7mg/L

 $C_{\text{final}} = (0.06 \times 0.05) + (0.0075 \times 30.7)$ (0.06 + 0.0075)

C_{final} = 3.455mg/l Ammonia

This is in breach of the 0.065mg/L mean and the 0.14mg/L 95%ile EQS for Ammonia.

Normal Scenario:

Normal Discharge, Median Flow in the River, Mean Ammonia in Discharge.

Flow of River (Median) = 0.583m3/sec Mean Ammonia in River (upstream) = 0.05mg/L (Half of LOD for Calculation Purposes) Normal volume of discharge = 0.0025m3/sec Mean value for Ammonia in discharge = 30.7mg/L

 $C_{\text{final}} = (0.583 \times 0.05) + (0.0025 \times 30.7)$ (0.583 + 0.0025)

C_{final} = 0.181mg/l Ammonia

This is in breach of the 0.065mg/L mean and the 0.14mg/L 95%ile EQS for Ammonia. However it is worth noting that the mean upstream Ammonia value of 0.05mg/L is already very close to the mean EQS of 0.065mg/L. This implies that there is very little capacity in the river for Ammonia.

Theoretical Scenario:

Normal Discharge, Median Flow in the River, Mean Ammonia in Discharge, Theoretical value for Ammonia in the River. This "Theoretical value for Ammonia" in the River is used because the conditions upstream are already close to failing the limits for Good Status". This scenario assesses the impact of the discharge separately from the impacts upstream. (As suggested in the "Implications of the Surface Water and Groundwater Environmental Objectives Regulations for the EPA" slideshow). 5

Flow of River (Median) = 0.583m3/sec Theoretical Ammonia in River (upstream) = 0:008mg/L Normal volume of discharge = 0.0025m3/sec Mean value for Ammonia in discharge +307mg/L

$$C_{\text{final}} = \frac{(0.583 \times 0.008) + (0.0025 \times 30.9)}{(0.583 + 0.0025)}$$
$$C_{\text{final}} = 0.139 \text{mg/l Ammonia}$$

C_{final} = 0.139mg/l Ammonia

This is in breach of the 0.065mg/L mean EQS for Ammonia but is within the 0.14mg/L 95%ile EQS for Ammonia.

MASS BALANCE EQUATIONS FOR ORTHOPHOSPHATE:

Worst Case Scenario:

Maximum Discharge, Low Flow in the River, Maximum Orthophosphate in Discharge.

Flow of River (95%ile) = 0.06m3/sec Mean Orthophosphate in River (upstream) = 0.0475mg/L Max volume of discharge = 0.0075m3/sec Max value for Orthophosphate in discharge = 1 mg/L (This is the max value recorded on samples tested in August and September 2010)

 $C_{\text{final}} = (0.06 \times 0.0475) + (0.0075 \times 1)$ (0.06 + 0.0075)

C_{final} = 0.153mg/l Orthophosphate

This is in breach of the 0.035mg/L mean and the 0.075mg/L 95%ile EQS for Orthophosphate. However it is worth noting that the mean upstream Orthophosphate value of 0.0475mg/L, already exceeds the mean EQS of 0.035mg/L. This implies that there is very little capacity in the river for Orthophosphate.

Normal Scenario:

Normal Discharge, Median Flow in the River, Mean Orthophosphate in Discharge.

Flow of River (Median) = 0.583m3/sec Mean Orthophosphate in River (upstream) = 0.0475mg/L Normal volume of discharge = 0.0025m3/sec Mean value for Orthophosphate in discharge = 1 mg/L

 $C_{\text{final}} = (0.583 \times 0.0475) + (0.0025 \times 1)$ (0.583 + 0.0025)

C_{final} = 0.052mg/l Orthophosphate

This is in breach of the 0.035mg/L mean EQS for Orthophosphate but is within the 0.075mg/L 95%ile EQS for Orthophosphate.

However it is worth noting that the mean upstream Orthophosphate value of 0.0475mg/L, already exceeds the mean EQS of 0.035mg/L. This implies that there is very little capacity in the river for Orthophosphate.

Please note that a new WWTP has been commissioned since late 2009 and is operating to a high standard.
<u>Theoretical Scenario:</u>
Normal Discharge, Median Flow in the River, Mean Orthophosphate in Discharge, Theoretical

value for Orthophosphate in the River. This "Theoretical value for Orthophosphate" in the River is used because the conditions upstream are failing to meet "Good Status". This scenario assesses the impact of the discharge separately from the impacts upstream. (As suggested in the "Implications of the Surface Water and Groundwater Environmental Objectives Regulations for the EPA" slideshow).

Flow of River (Median) = 0.583m3/sec Theoretical Orthophosphate in River (upstream) = 0.005mg/L Normal volume of discharge = 0.0025m3/sec Mean value for Orthophosphate in discharge = 5.19mg/L

 $C_{\text{final}} = (0.583 \times 0.005) + (0.0025 \times 1)$ (0.583 + 0.0025)

C_{final} = 0.009mg/l Orthophosphate

This is within the 0.035mg/L mean and 0.075mg/L 95%ile EQS for Orthophosphate.

SITE SYNOPSIS

SITE NAME: CORK HARBOUR SPA

SITE CODE: 004030

Cork Harbour is a large, sheltered bay system, with several river estuaries - principally those of the Rivers Lee, Douglas and Owenacurra. The SPA site comprises most of the main intertidal areas of Cork Harbour, including all of the North Channel, the Douglas Estuary, inner Lough Mahon, Lough Beg, Whitegate Bay and the Rostellan inlet.

Owing to the sheltered conditions, the intertidal flats are often muddy in character. These muds support a range of macro-invertebrates, notably *Macoma balthica*, *Scrobicularia plana*, *Hydrobia ulvae*, *Nepthys hombergi*, *Nereis diversicolor* and *Corophium volutator*. Green algae species occur on the flats, especially *Ulva lactua* and *Enteromorpha* spp. Cordgrass (*Spartina* spp.) has colonised the intertidal flats in places, especially where good shelter exists, such as at Rossleague and Belvelly in the North Channel. Salt marshes are scattered through the site and these provide high tide roosts for the birds. Salt marsh species present include Sea Purslane (*Halimione portulacoides*), Sea Aster (*Aster tripolium*), Thrift (*Armeria maritima*), Common Saltmarsh-grass (*Puccinellia maritima*), Sea Plantain (*Plantago maritima*), Laxflowered Sea-lavender (*Limonium humile*) and Sea Arrowgrass (*Triglochin maritima*). Some shallow bay water is included in the site. Cork Harbour is adjacent to a major urban centre and a major industrial centre. Rostellan lake is a small brackish lake that is used by swans throughout the winter. The site also includes some marginal wet grassland areas used by feeding and roosting birds.

Cork Harbour is an internationally important wetland site, regularly supporting in excess of 20,000 wintering waterfowl, for which it is amongst the top five sites in the country. The five-year average annual core count for the entire harbour complex was 34,661 for the period 1996/97-2000/01. Of particular note is that the site supports an internationally important population of Redshank (1,614) - all figures given are average winter means for the 5 winters 1995/96-1999/00. A further 15 species have populations of national importance, as follows: Great Crested Grebe (218), Cormorant (620), Shelduck (1,426), Wigeon (1,750), Gadwall (15), Teal (807), Pintail (84), Shoveler (135), Red-breasted Merganser (90), Oystercatcher (791), Lapwing (3,614), Dunlin (4,936), Black-tailed Godwit (412), Curlew (1,345) and Greenshank (36). The Shelduck population is the largest in the country (9.6% of national total), while those of Shoveler (4.5% of total) and Pintail (4.2% of total) are also very substantial. The site has regionally or locally important populations of a range of other species, including Whooper Swan (10), Pochard (145), Golden Plover (805), Grey Plover (66) and Turnstone (99). Other species using the site include Bat-tailed Godwit (45), Mallard (456), Tufted Duck (97), Goldeneye (15), Coot (77), Mute Swan (39), Ringed Plover (51), Knot (31), Little Grebe (68) and Grey Heron (47). Cork Harbour is an important

site for gulls in winter and autumn, especially Common Gull (2,630) and Lesser Black-backed Gull (261); Black-headed Gull (948) also occurs.

A range of passage waders occur regularly in autumn, including Ruff (5-10), Spotted Redshank (1-5) and Green Sandpiper (1-5). Numbers vary between years and usually a few of each of these species over-winter.

The wintering birds in Cork Harbour have been monitored since the 1970s and are counted annually as part of the I-WeBS scheme.

Cork Harbour has a nationally important breeding colony of Common Tern (3-year mean of 69 pairs for the period 1998-2000, with a maximum of 102 pairs in 1995). The birds have nested in Cork Harbour since about 1970, and since 1983 on various artificial structures, notably derelict steel barges and the roof of a Martello Tower. The birds are monitored annually and the chicks are ringed.

Extensive areas of estuarine habitat have been reclaimed since about the 1950s for industrial, port-related and road projects, and further reclamation remains a threat. As Cork Harbour is adjacent to a major urban centre and a major industrial centre, water quality is variable, with the estuary of the River Lee and parts of the Inner Harbour being somewhat eutrophic. However, the polluted conditions may not be having significant impacts on the bird populations. Qil pollution from shipping in Cork Harbour is a general threat. Recreational activities are high in some areas of the harbour, including jet skiing which causes disturbance to roosting birds.

Cork Harbour has is of major ornithological significance, being of international importance both for the total numbers of wintering birds (i.e. > 20,000) and also for its population of Redshank. In addition, there are at least 15 wintering species that have populations of national importance, as well as a nationally important breeding colony of Common Tern. Several of the species which occur regularly are listed on Annex I of the E.U. Birds Directive, i.e. Whooper Swan, Golden Plover, Bar-tailed Godwit, Ruff and Common Tern. The site provides both feeding and roosting sites for the various bird species that use it.

Attac	hment	E4 Kile	ens Di	scharg	je Outle	t Table I	Ξ4
Sample Date	28/02/2008	24/09/2008	09/10/2008	15/01/2009		Avorado	
Sample	Effluent	Effluent	Effluent	Effluent		Average	
Sample Code	GS140	GS986	GS1025	GT049	mg/L	Kg/Day	Kg/year
Flow M ³ /Day	*	*	*	*	648	*	*
рН	7.6	*	*	7.4	7.5	*	*
Temperature °C	*	*	*	*	*	*	*
Cond 20°C	*	*	*	642	642	*	*
SS mg/L	52	38	83	37	52.5	34.02	34020
NH ₃ mg/L	28	*	*	33.4	30.7	19.8936	19893.6
BOD mg/L	38	22.3	38	47	36.325	23.5386	23538.6
COD mg/L	148	57	134	167	126.5	81.972	81972
TN mg/L	33.65	*	*	34.5	34.075	22.0806	22080.6
Nitrite mg/L	*	*	*	0.061	0.061	0.039528	39.528
Nitrate mg/L	*	*	*	0.405	<0.405	<0.26244	<mark>,</mark> ≰262.44
TP mg/L	8.25	*	*	7.0	7.625	4.941	other 4941
O-PO4-P mg/L	5.5	*	*	4.88	5.19	3.3631	3363.12
SO4 mg/L	67.3	*	*	50.4	58.85	38.1348	38134.8
Phenols µg/L	*	*	*	<0.10	<0.0001	<0.0000648	<0.0648
Atrazine µg/L	*	*	*	<0.01	<0.00001	<0,00000648	<0.00648
Dichloromethane	*	*	*	<1	<0.001 📢	∑ ≪0.000648	<0.648
Simazine µg/L	*	*	*	<0.01	<0.00001 &	<0.00000648	<0.00648
Toluene μg/L	*	*	*	<1	< 0.00 the	<0.000648	<0.648
Tributyltin μg/L	*	*	*	*	*	*	*
Xylenes µg/L	*	*	*	<1	<0.001	<0.000648	<0.648
Arsenic µg/L	*	*	*	<0.96	<0.00096	<0.00062208	<0.62208
Chromium mg/L	<0.02	*	*	<0.02	<0.02	<0.01296	<12.96
Copper mg/L	<0.02	*	*	<0.02	<0.02	<0.01296	<12.96
Cyanide µg/L	*	*	*	<5	<0.005	<0.00324	<3.24
Fluoride µg/L	*	*	*	no result	no result	no result	no result
Lead mg/L	0.022	*	*	<0.02	0.016	0.010368	10.368
Nickel mg/L	<0.02	*	*	<0.02	0.02	0.01296	12.96
Zinc mg/L	0.042	*	*	<0.02	0.026	0.016848	16.848
Boron mg/L	1.045	*	*	0.033	0.539	0.349272	349.272
Cadmium mg/L	<0.02	*	*	<0.02	<0.02	<0.01296	<12.96
Mercury μg/L	*	*	*	<0.2	<0.0002	<0.0001296	<0.1296
Selenium µg/L	*	*	*	<0.74	<0.00074	<0.00047952	<0.47952
Barium mg/L	<0.02	*	*	0.022	0.016	0.010368	10.368

values recorded as 1/2 Of LOD for statistical purposes

Attachm	ent E4 Ki	lleens In	let Table	E4	
Sample Date	15/01/2009		Avorado		
Sample	Influent		Average		
Sample Code	GT050	mg/L	Kg/day	Kg/year	
Flow M ³ /Day	*	648	*	*	Maximum Flo
pH	7.4	7.4	*	*	
Temperature °C	*	*	*	*	
Cond 20 ℃	656	656	*	*	
SS mg/L	106	106	68.688	25071.12	
NH₃ mg/L	37.2	37.2	24.1056	8798.544	
BOD mg/L	130	130	84.24	30747.6	
COD mg/L	284	284	184.032	67171.68	
TN mg/L	38.7	38.7	25.0776	9153.324	
Nitrite mg/L	0.008	0.008	0.005184	1.89216	
Nitrate mg/L	<0.405	<0.405	<0.26244	<95.7906	15 ⁰ .
TP mg/L	8.1	8.1	5.2488	1915.812	All'any offer use.
O-PO4-P mg/L	5.53	5.53	3.58344	1307.9556	ALY any
SO4 mg/L	47.1	47.1	30.5208	11140.092	d XO
Phenols µg/L	<0.10	<0.0001	<0.0000648	< 0.023652	
Atrazine µg/L	<0.01	<0.00001	<0.0000648	<0.0023652	
Dichloromethane µg/L	<1	<0.001	<0.000648	<0,23652	
Simazine µg/L	<0.01	<0.00001	<0.0000648	<0.0023652	
Toluene μg/L	<1	<0.001	<0.000648	onser < 0.23652	
Tributyltin μg/L	*	*	*	*	
Xylenes μg/L	<1	<0.001	<0.000648	<0.23652	
Arsenic µg/L	<0.96	<0.00096	<0.00062208	<0.2270592	
Chromium mg/L	<0.02	<0.02	<0.01296	<4.7304	
Copper mg/L	<0.02	< 0.02	< 0.01296	<4.7304	
Cyanide µg/L	<5	< 0.005	< 0.00324	<1.1826	
Fluoride µg/L	488	0.488	0.316224	115.42176	
Lead mg/L	<0.02	< 0.02	<0.01296	<4.7304	
Nickel mg/L	<0.02	< 0.02	<0.01296	<4.7304	
Zinc mg/L	0.03	0.03	0.01944	7.0956	
Boron mg/L	0.024	0.024	0.015552	5.67648	
Cadmium mg/L	< 0.02	<0.02	<0.01296	<4.7304	
Mercury μg/L Selenium μg/L	<0.2 0.8	<0.0002 0.0008	<0.0001296 0.0005184	<0.047304 0.189216	
		<0.0008	<0.0005184	<0.0047304	
Barium mg/L	<0.02	<0.00002	<0.00001296	<0.004/304	

values recorded as 1/2 Of LOD for statistical purposes

Attachment	E4 Kileen	s Upstrea	m Table E4	
Sample Date	24/09/2008	15/01/2009		
Sample	River	River	Average	
Sample Code	GS987	GT051		
Flow M ³ /Day	*	*	*	
рН	*	7.9	7.9	
Temperature °C	*	*	*	
Cond 20°C	*	281	281	
SS mg/L	*	19	19	
NH₃ mg/L	*	<0.1	<0.1	
BOD mg/L	*	<1.0	<1.0	
COD mg/L	*	<21	<21	
TN mg/L	*	6.9	6.9	
Nitrite mg/L	*	0.014	0.014	
Nitrate mg/L	*	5.95	5.95	د ي .
TP mg/L	*	<0.20	<0.20	ther use.
O-PO4-P mg/L	0.025	0.07	0.0475	0,06775
SO4 mg/L	*	<30	<30 <5 ⁵ 2	50
Phenols μg/L	*	<0.10	<0.10	
Atrazine μg/L	*	<0.01	<0.01 cectemper	
Dichloromethane µg/L	*	<1	<1 contraction	
Simazine µg/L	*	<0.01	<0.0 1000	
Toluene μg/L	*	<1	ুৱা	
Tributyltin μg/L	*	*	C033 *	
Xylenes μg/L	*	<1	<1	
Arsenic μg/L	*	<0.96	<0.96	
Chromium mg/L	*	<0.02	<0.02	
Copper mg/L	*	<0.02	<0.02	
Cyanide μg/L	*	<5	<5	
Fluoride μg/L	*	46	46	
Lead mg/L	*	<0.02	<0.02	
Nickel mg/L	*	<0.02	<0.02	
Zinc mg/L	*	<0.02	<0.02	
Boron mg/L	*	<0.02	<0.02	
Cadmium mg/L	*	<0.02	<0.02	
Mercury μg/L	*	<0.2	<0.2	
Selenium µg/L	*	1.7	1.7	
Barium mg/L	*	51	51	

values recorded as 1/2 Of LOD for statistical purposes

Attachment E	4 Kileens	Downstrea	am Table E4	
Sample Date	24/09/2008	15/01/2009		
Sample	River	River	Average	
Sample Code	GS988	GT052		
Flow M ³ /Day	*	*	*	
рН	*	7.5	7.5	
Temperature °C	*	*	*	
Cond 20°C	*	258	258	
SS mg/L	*	26	26	
NH ₃ mg/L	*	<0.1	<0.1	
BOD mg/L	*	1	1	
COD mg/L	*	32	32	
TN mg/L	*	4.9	4.9	
Nitrite mg/L	*	0.037	0.037	
Nitrate mg/L	*	4.07	4.07	USC.
TP mg/L	*	<0.20	<0.20	offeruse.
O-PO4-P mg/L	0.025	0.1	0.0625	0.09625
SO4 mg/L	*	7.5	7.5 The street of the street o	
Phenols μg/L	*	<0.1	<0.1 , on Perfect	
Atrazine μg/L	*	<0.01	<0.04 000	
Dichloromethane µg/L	*	<1	Fee Jines	
Simazine µg/L	*	<0.01	<0.01	
Toluene μg/L	*	<1	601 ⁵⁰¹ <1	
Tributyltin μg/L	*	*	*	
Xylenes µg/L	*	<1	<1	
Arsenic µg/L	*	<0.96	<0.96	
Chromium mg/L	*	< 0.02	<0.02	
Copper mg/L	*	<0.02 <5	<0.02 <5	
Cyanide μg/L Fluoride μg/L	*	<5 49	<5 49	
Lead mg/L	*	<0.02	<0.02	
Nickel mg/L	*	<0.02	<0.02	
Zinc mg/L	*	<0.02	<0.02	
Boron mg/L	*	<0.02	<0.02	
Cadmium mg/L	*	<0.02	<0.02	
Mercury μg/L	*	<0.2	<0.2	
Selenium µg/L	*	1.2	1.2	
Barium mg/L	*	34	34	

values recorded as 1/2 0f LOD for statistical purposes

Sample Date	24/09/2008	15/01/2009	Average	95% percentile
Sample	Upstream River	Upstream River		
Sample Code	GS987	GT051		
NH ₃ mg/L	*	0.041	0.041	0.041
O-PO4-P mg/L	0.027	0.07	0.0485	0.06785
Chromium ug/L	*	<1	<1	n/a
Copper ug/L	*	<1	<1	n/a
Lead ug/L	*	<1	<1	م n/a
Nickel ug/L	*	1	1	n/a
Zinc ug/L	*	<1	<1	othe n/a
Boron ug/L	*	<1	<1 1	n/a
Cadmium ug/L	*	<1	<1	n/a
Barium ug/L	*	51	51 Pouline	n/a

D0329-01 Attachment E4 tabulation of monitoring results for compliance purposes against SI 272 of 2009 for comparison purposes where results are b

Sample Date	24/09/2008	15/01/2009	Average	95% percentile
Sample	Downstream River	Downstream River	5	
Sample Code	GS988	GT052		
NH ₃ mg/L	*	0.0535	0.0535	0.0535
O-PO4-P mg/L	0.0395	0.1	0.06975	0.096975
Chromium ug/L	*	<1	<1	n/a
Copper ug/L	*	<1	<1	n/a
Lead ug/L	*	2	2	n/a
Nickel ug/L	*	3	3	n/a
Zinc ug/L	*	<1	<1	n/a
Boron ug/L	*	<1	<1	n/a
Cadmium ug/L	*	<1	<1	n/a
Barium ug/L	*	34	34	n/a

<1 Note values of 0ug/l recorded as <1ug/l</p>

Cork Harbour

Species	1% National	1% International	1998/99	1999/00	2000/01	2001/02	2002/03	2003/04	2004/05	2005/06	2006/07	2007/08	Mean (03-07)	Peak (03-07)
Mute Swan	110	110	46	42	25	15	42	56	71	54	73	68	64	73
Bewick's Swan	20	200	6					2					0	2
Whooper Swan	130	210			12	14	12	15	7			3	5	15
Black Swan			3								2		0	2
Pink-footed Goose		2,250	-		1						_	2	0	2
Greenland White-fronted Goose	110	270			1								0	0
Greylag Goose	50	870			3	4	4	1	1	3	1	6	2	6
Canada Goose			10	6	13	8	2	21	23	11	13	22	18	23
Light-bellied Brent Goose	220	260		-	4	-	6	21 12 totherv	5 ⁰ 16	26	11	17	16	26
Feral/hybrid Goose								ther	2			5	1	5
Shelduck	150	3,000	1,875	1.870	722	1,108	1,903 m 1,937 m 1,937 m 7,007 m 1,492 489 73 103 27 1 29	\$,946	1,391	1,350	918	823	1,286	1,946
Wigeon	820	15,000	1,683	1.402	1.272	1.519	1.93.0		2,043	2,332	1,492	1,259	2,010	2,926
Gadwall	20	600	4	.,	6	8	67.0	17	13	13	7	.,	10	17
Green-winged Teal					1	1	OUTPOUL						0	0
Teal	450	5,000	778	1.214	1.139	1.079	\$1.492	1.611	1,169	1,302	667	644	1,079	1,611
Mallard	380	20,000	671	572	431	362	489	539	628	406	423	484	496	628
Pintail	20	600	52	41	2	117411	73	46	20	14	2		16	46
Shoveler	25	400	103	148	74 4	FOT 48	103	33	24	45	62	51	43	62
Red Crested Pochard			1										0	0
Pochard	380	3,500	38	11	19 💑	21	27	18	7	7	2	3	7	18
Ring-necked Duck		-,			alser		1						0	0
Tufted Duck	370	12,000	34	20	C ₄₆	36	29	33	14	14	19	16	19	33
Scaup	45	3,100	2							2			0	2
Long-tailed Duck		20,000					2						0	0
Eider	30	12,830						1		15	1		3	15
Common Scoter	230	16,000		2			1	1	3	7		1	2	7
Surf Scoter		-,	2										0	0
Velvet Scoter												3	1	3
Goldeneye	95	11,500	18	14	18	28	11	14	7	10	5	14	10	14
Red-breasted Merganser	35	1,700	110	128	64	77	95	88	85	80	68	72	79	88
Red-throated Diver	20	3,000	-	-	-					1	1		0	1
Black-throated Diver		3,750								-	-		0	0
Great Northern Diver		50	1	8	3	1	1	1			4	3	2	4
Pied-billed Grebe			1	-	-	-	-					-	0	0

TVEDS		4 0 0 0						00				<u> </u>		00
Little Grebe	25	4,000	56	50	58	59	60	88	80	69	58	65	72	88
Great Crested Grebe	55	3,600	166	218	171	287	240	132	105	137	63	106	109	137
Slavonian Grebe		55	4		1			3	1	2			1	3
Black-necked Grebe			3	3	2	2							0	0
Cormorant	140	1,200	283	556	244	392	326	357	370	308	163	285	297	370
Shag									2		2	8	2	8
Little Egret		1,300	20	18	27	39	61	83	166	126	143	151	134	166
Grey Heron	30	2,700	54	61	114	57	97	68	135	76	84	72	87	135
Spoonbill												1	0	1
Water Rail			3	3		1	1	1	2	2	2	2	2	2
Moorhen	20		28	21	21	19	24	46	24	33	55	25	37	55
Coot	330	17,500	34	96	24	13	26	31	23	16	19	7	19	31
Oystercatcher	680	10,200	1,584	1,421	1,698	1,061	1,570	2,021	1,857 😌	2,076	1,061	1,590	1,721	2,076
Ringed Plover	150	730	59	52	78	66	28	68001	25	67	17	27	41	68
Golden Plover	1,700	9,300	3,000	3,432	4,009	6,888	4,262	5,102	6,200	3,002	3,266	5,232	4,560	6,200
Grey Plover	65	2,500	72	44	5	6	4,262 108 M	51 211 37	4	24	12	39	23	39
Lapwing	2,100	20,000	4,386	4,116	7,267	2,816	4,1760	4,864	4,133	4,096	3,321	3,321	3,947	4,864
Knot	190	4,500	16	17	80	79	11 800TC	114	85	117	124	111	110	124
Sanderling	65	1,200				. 5	N 35	350		33			77	350
Curlew Sandpiper				15		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4,476,1 1 1 3,979 1 20		3	4	1		2	4
Dunlin	880	13,300	8,277	8,240	6,632	5155	3,979	4,785	4,325	3,874	4,456	3,579	4,204	4,785
Ruff		12,500		1	6,632 5 1,645 (351	cot tiest	1	1		1		3	1	3
Snipe		20,000	43	47	5	0 ² 20	20	54	14	49	32	75	45	75
Long-billed Dowitcher					, č	1	1						0	0
Black-tailed Godwit	140	470	2,508	1,692	1.645	2.128	3,162	1,518	2,937	3,337	1,433	2,823	2,410	3,337
Bar-tailed Godwit	160	1,200	16	52	(351	419	477	405	298	218	383	257	312	405
Whimbrel		2,000	2	1		1	1	3	1	4	1	1	2	4
Curlew	550	8,500	2,927	2,223	1,297	1,329	1,817	1,083	2,317	1,809	1,363	1,607	1,636	2,317
Common Sandpiper		-,	3	3	1	2	2	2	2	2	1	4	2	4
Green Sandpiper			2	1	•	1	1	1	1	1	•	•	- 1	1
Spotted Redshank		900	3	2	1	1	2	1	2	1	1	1	1	2
Greenshank	20	2,300	46	61	31	25	60	47	83	68	72	71	68	83
Redshank	310	3,900	2,243	2,269	1,005	1,138	2,170	1,591	2,295	1,543	1,459	1,725	1,723	2,295
Turnstone	120	3,900 1,500	166	146	93	66	145	131	161	136	129	214	154	2,295
Mediterranean Gull	120	1,000	5	7	93 1	2	145	11	13	150	24	48	22	48
Sabine's Gull			5	1	I	2	14	1	15	10	24	-10	0	40
Bonaparte's Gull								I			1		0	1
		20,000	0 400	1 000	2 2 2 2	1 400	1 0 4 4	2054	0 470	0.007	•	0 400	-	•
Black-headed Gull		20,000	2,493	1,609	2,288	1,180	1,811	2,954	2,170	2,627	2,010	2,103	2,373	2,95

Ring-billed Gull		2	3	2	1		1	1				0	1
Common Gull	16,000	676	378	1,264	1,725	459	200	290	188	214	207	220	290
Lesser Black-backed Gull	4,500	753	118	177	106	63	254	496	31	630	72	297	630
Herring Gull	13,000	53	68	36	16	37	32	36	40	123	51	56	123
Iceland Gull			1	1								0	0
Glaucous Gull											1	0	1
Great Black-backed Gull	4,800	120	238	141	76	110	150	385	157	137	98	185	385
Unidentified gull					2,123							0	0
Sandwich Tern		2	12	2	34	5		2	225	2	17	49	225
Common Tern			18			2	1		1	1	1	1	1
Arctic Tern											1	0	1
Unidentified Tern							3					1	3
Kingfisher			1	1	2	1	3 💊	s ^{e.} 3	3	1	2	2	3

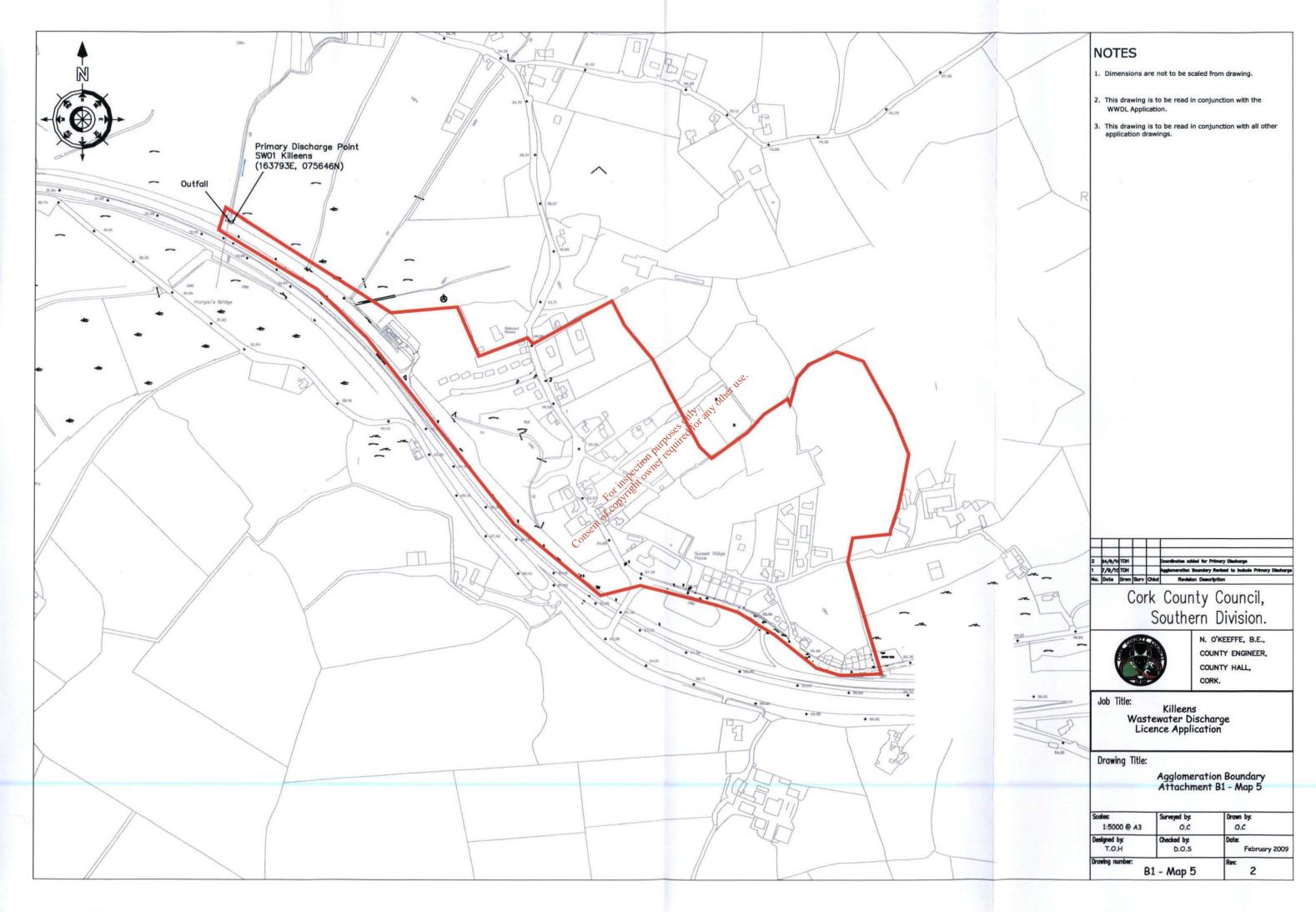
3 3 Consent for inspection purposes only any other to Consent of copying to whether the output of the option of th

Saleen

Species	1% National	1% International	1998/99	1999/00	2000/01	2001/02	2002/03	2003/04	2004/05	2005/06	2006/07	2007/08	Mean (03-07)	Peak (03-07)
Mute Swan	110	110	1	2	2	2	1	1		3			<u>(03-07)</u> 1	3
Canada Goose			-	_	_	_	-	-	13	-			3	13
Light-bellied Brent Goose	220	260			4								0	0
Shelduck	150	3,000	59	75	42	52	30	41	60	44	34	29	42	60
Wigeon	820	15,000	129	95	122	73	173	102	97	179	149	124	130	179
Green-winged Teal		-,					1						0	0
Teal	450	5,000	72	101	81	168	199	223	188	248	184	226	214	248
Mallard	380	20,000	29	26	28	56	41	46	39	46	91	82	61	91
Shoveler	25	400					4	7 💉	SC.	4			2	7
Goldeneye	95	11,500		2				223 46 7 offer 67 offer 9 16 3 10 7 147					0	0
Red-breasted Merganser	35	1,700			2	8	8 💉	9. 079	2	1	2		3	9
Red-throated Diver	20	3,000					SOL	ot		1			0	1
Black-throated Diver		3,750					ase d	Y					0	0
Little Grebe	25	4,000	11	13	9	11	OILLAIL	9	5	8	14	8	9	14
Great Crested Grebe	55	3,600	13	6	5	8 📈	et 6	16	7	13	4	5	9	16
Slavonian Grebe		55			1	Dect of	NILL						0	0
Cormorant	140	1,200	7	7	6	in the	6	3	6	6	7	7	6	7
Little Egret		1,300	9	4	7 🔨	FOTOTO	10	10	23	17	17	18	17	23
Grey Heron	30	2,700	7	4	8	6 ⁰⁰	5	7	6	6	4	5	6	7
Moorhen	20				ant	,,	2			1			0	1
Oystercatcher	680	10,200	129	172	136	150	175	147	135	137	94	176	138	176
Ringed Plover	150	730	14		C ₁₄		19		13	41			11	41
Lapwing	2,100	20,000	36	8	7	2		2	12		1		3	12
Knot	190	4,500								5		1	1	5
Curlew Sandpiper				9									0	0
Dunlin	880	13,300	256	31	26	10	164	28	64	6	37	54	38	64
Ruff		12,500										1	0	1
Snipe		20,000						2	6	2	5	1	3	6
Long-billed Dowitcher							1						0	0
Black-tailed Godwit	140	470	61	22	16	55	75	52	121	72	129	101	95	129
Bar-tailed Godwit	160	1,200	1	2	4	4	2	1	13	5	1	1	4	13
Whimbrel		2,000				1	1						0	0
Curlew	550	8,500	121	81	82	89	96	91	103	90	115	152	110	152
Common Sandpiper										1	1		0	1

Spotted Redshank		900	3	2								1	0	1
Greenshank	20	2,300	8	10	13	11	12	4	9	12	8	10	9	12
Redshank	310	3,900	123	106	135	129	116	116	144	126	173	161	144	173
Turnstone	120	1,500	61	26	52	33	35	12	26	73	54	17	36	73
Mediterranean Gull						1		4	4	5	6	48	13	48
Bonaparte's Gull											1		0	1
Black-headed Gull		20,000	190	177	167	107	176	57	187	184	221	212	172	221
Ring-billed Gull					1								0	0
Common Gull		16,000	7	47	41	88	264	39	103	21	65	84	62	103
Lesser Black-backed Gull		4,500	7	42	3	77	1	1	2	1	5	9	4	9
Herring Gull		13,000	2	3	4	1	6	3	7	3	5	3	4	7
Great Black-backed Gull		4,800	1	4	1	14	4	9	8	4	3	4	6	9
Sandwich Tern				2		22		\$	s ^{e.} 2	6		3	2	6
Kingfisher					1		1	ther	1	1	1	1	1	1

Consent of copying to ometresting for any et



Owenboy Estuary

Species	1% National	1% International	1998/99	1999/00	2000/01	2001/02	2002/03	2003/04	2004/05	2005/06	2006/07	2007/08	Mean (03-07)	Peak (03-07
Mute Swan	110	110	5	2	2				2			4	2	4
Feral/hybrid Goose									2				1	2
Shelduck	150	3,000	111	122	97		167	206	141	76		45	117	206
Wigeon	820	15,000	13										0	0
Teal	450	5,000	88	50	5		80	50	75	29		25	45	75
Mallard	380	20,000	58	49	36		51	115	77	18		49	65	115
Red-breasted Merganser	35	1,700	15				12	12	7	9		3	8	12
Little Grebe	25	4,000					1		<i>C</i> .•			7	2	7
Great Crested Grebe	55	3,600						1 🔊	²			1	1	1
Cormorant	140	1,200	10	38	20		9	8ther	6	1		5	5	8
Little Egret		1,300		1			x	12 1 80 80 13 80 30 63 3 100 39 1	6			8	4	8
Grey Heron	30	2,700	4	6	18		6,01	ళ 13	12	6		11	11	13
Oystercatcher	680	10,200	119	54	40		Sel ed	80	82	27		105	74	105
Ringed Plover	150	730			6		OHECHIL						0	0
Golden Plover	1,700	9,300	450	60	1,050	ion	et re						0	0
Lapwing	2,100	20,000	426	200	150	Dect of	150	30	117	73		94	79	117
Knot	190	4,500			1	Thomas			16			10	7	16
Curlew Sandpiper					4	FOUNTE			1				0	1
Dunlin	880	13,300	460	115	55	i cox	120	63	170	107		125	116	170
Snipe		20,000		8	ant) <i>,</i>		3		10		1	4	10
Black-tailed Godwit	140	470	75	194	145		210	100	233			250	146	250
Curlew	550	8,500	98	85	C ₉₉		54	39	51	31		83	51	83
Common Sandpiper								1	1			2	1	2
Greenshank	20	2,300	4	9	2		30	12	23	17		11	16	23
Redshank	310	3,900	138	92	152		150	148	280	120		370	230	370
Turnstone	120	1,500	10	4			20	20	76	10		10	29	76
Black-headed Gull		20,000	397	156	147		80	200	226	253		305	246	305
Common Gull		16,000	82	90	65		80	50	50	90		183	93	183
Lesser Black-backed Gull		4,500	158	15					40			51	23	51
Herring Gull		13,000	6		1		5		2			17	5	17
Iceland Gull					1								0	0
Great Black-backed Gull		4,800	5	1	2		8		20			3	6	20
Sandwich Tern												2	1	2
Kingfisher							1						0	0

Consent of constraint owner required for any other use.

