SECTION 4

- GSI Characterisation of Avoca Mines Extract 1997 with accompanying maps
- Pre-Landfill "Blue Print" Drawing 1988
- General Design Description of Proposed Landfill 1988

around the time that Wood adit was driven, in the first half of the $19^{\text {th }}$ century, in order to take advantage of the discharge from it.

4.3 WEST AVOCA SURFACE MINING FEATURES

Most of the modern mining at Avoca took place in the West Avoca mine. This was mainly underground mining but one open pit was also operated. Excavation of this pit together with the construction and subsequent removal of the mill and extensive workshops have significantly reduced the number of surface mine features on the site. The West Avoca site covers an area of approximately $286,000 \mathrm{~m}^{2}$. There is a relatively large number of buildings dating from the modern mining period scattered in and around the mine site. Most of those in the areas surrounding the site were mine workers' accommodation and are now private dwellings. Spoil heaps cover 29% of the mine area ($81,690 \mathrm{~m}^{2}$) and the open pits a further $12 \%\left(33,181 \mathrm{~m}^{2}\right)$. The remaining 59% of the site comprises roads, paths, heathland and forested areas and the sites of the mill and other buildings, now landscaped and revegetated.

4.3.1 Spoil heaps

Spoil heaps in West Avoca, like those in East Avoca, are products of both old and modern mining activities. The most prominent heaps, inclưaing SP33 above the modern mine portal, SP34a, SP34b and SP35 on Ballymurtagh hiti and SP39 running along beside the main road below Bell Rock, were all produced in the ${ }^{\text {th }}$ century as a result of surface ore dressing (Fig. 4.14). Some, notably SP35 and SP34a, show stratification that is a feature of cobbings. Some of these older heaps are extensively colonized by local plant species, notably heather, gorse, pine and birch.

In the modern underground mine, waste rock was backfilled underground. However, North Lode open pit, excavated in the mid- $19^{\text {th }}$ century, was employed by AML as an emergency tailings pond. It is now filled by tailings and covered with a surface layer of spoil (SP 34). Excavation of the Pond Lode open pit in the 1970s did not give rise to waste heaps on the site: all material not left in the pit itself was passed through the mill.

Spoil heaps in West Avoca were mapped in the same manner as those in East Avoca. Descriptions are given in Appendix 4.1. Areas of heaps were derived from AutoCAD and the volumes of most were calculated using the area and estimates of height based either on contour data or visual inspection. In the case of SP39, sections derived from surveys by P . Behan Engineers were used to estimate the volume, as described for East Avoca heaps (section 4.2.1). The volume of SP34, the tailings filling the old open pit, was assumed to be the same as that of the old North Lode open pit (section 4.3.2). Table 4.2 summarizes the data for West Avoca spoil heaps.

Figure 4.14 West Avoca mine site, main features

Table 4.2 West Avoca spoil heaps: areas, volumes and plant colonization

Spoil heap	Area, m^{2}	Volume, m^{3}	Colonized area, m^{2}	\% of heap area colonized
SP33	7253	7253*	1135	15.6
SP34	14304	233220	5112	35.7
SP34a	1034	20680	0	0
SP34b	25028	25028*	5900	23.5
SP35	242	4840	0	0
SP36	808	3232	0	0
SP37	17902	17902*	2607	14.5
SP38	526	1052	0	0
SP39	14593	109071**	3006	20.5

4.3.2 Open pits

West Avoca contains the remains of North Lode open pit and Weaver's Lode (or south North Lode) open pit, both worked in the $19^{\text {th }}$ century, as well aşond Lode open pit, excavated by Avoca Mines Ltd. between 1973 and 1979 (Fig. 4.14) Only the small Weaver's Lode open pit remains extant: North Lode open pit was used loy Avoca Mines Ltd. as an emergency tailings pond and is almost completely fillect, ${ }^{\circ}$ ond Lode open pit is currently used by Wicklow County Council as a domestic reflisedisposal site and is expected to be filled by 1999.

1. North Lode open pit

North Lode open pit was minedoby the Wicklow Copper Mining Company in the 1850 s . When finished it had a lengthe $\delta \mathrm{f}$ about 300 m , a maximum width of 30 m and an average depth of 30 m . The area of $7,774 \mathrm{~m}^{2}$ implies a volume of $233,220 \mathrm{~m}^{3}$ if the walls of the pit are taken as vertical. It was, for a time, the largest open pit in the world (P.McArdle, pers. comm.). A contemporary account (Anon. 1856) catches well the wonder engendered by the North Lode and its workings: "I have never seen anything equal to [the Great North Lode]. On the surface of the hill appears a large bed of gossan, comprised of brown hematite ore, which reaches the enormous width of 100 feet. This gossan has been worked as a quarry at the surface to this enormous width. It is a most striking sight to stand upon the edge of this great excavation and mark its enormous size which certainly shakes all of our preconceived notions about lodes and mineral veins." The gossan, itself a valuable ore containing 52% iron, formed a surpergene cap to massive pyrite ore which in the 1850 s was the main export from Avoca. The pyrite was mined mainly from underground workings that remain, apparently mostly intact, below the open pit.

Today, only the uppermost sections of the pit walls at the southwestern end of the pit remain as evidence of the pit's existence. These walls define an area of approximately $2,529 \mathrm{~m}^{2}$. The remainder of the pit is filled by tailings and fine spoil. The surface is currently the site of the Life project revegetation trials conducted by Wicklow County Council. There is also some extensive natural colonization of spoil by heather and gorse, especially at the southwestern end in the area sheltered by the exposed pit walls.

2. Weaver's Lode open pit

This small pit has a length of 60 m , a maximum width of $10-15 \mathrm{~m}$ and a maximum depth of 10 m . Little is known about it or about the lode itself. It is not marked on Smyth's 1853 map. Mianrai Teoranta described this as "North Lode, south" and evidently it was excavated in the 1850s contemporaneously with North Lode open pit. Barnes (1864) referred to the lode as a sort of reserve, with full-scale mining of it awaiting an upturn in demand. The pit is underlain by limited underground workings, previously accessed by the Spa adit. Mianrai Teoranta described the pit on their 1951 map as the result of "caving, iron ore and ochre workings."

The pit is of interest today because it contains good footwall and hangingwall exposures of ore host rocks. The floor of the pit is obscured by debris and spoil and no has been observed during this study.

3. Pond Lode open pit

The Pond Lode open pit has been referred to in recent years as Ballymurtagh open pit but this name could equally be applied to the North Lode or Weaver's Lode open pits. Its original name is therefore preferred here. It was excavated between 1973 and 1979 by Avoca Mines Ltd. on the surface extension of the Pond Lode and a total of 1,077,730 tonnes of ore grading 0.6% copper was produced. Prior to this, the area had suffered extensive caving as a result of the collapse of underground workings precipitated by removakof pillars by SPCM in 196162. The open pit is approximately 320 m long and varies incwidth from 50 to 200 m . In 1996 its surface area was $29,779 \mathrm{~m}^{2}$. It is currently being infided with domestic refuse, a process scheduled to be completed by 1999. Although a ${ }_{c}$ number of features of geological interest remained exposed in 1996, these will be covere didue course.

4.3.3 Adits and levels

Many of the underground workingsin West Avoca in the $19^{\text {th }}$ century were below the level of the river and access was generally by shaft rather than adit. This, together with the effects of modern mining, means thatifew adits are exposed today on the site.

1. Road adit (32 m O.D.)

This adit was driven in the $19^{\text {th }}$ century to Ballygahan shaft and served as a drain for water pumped up the shaft from the deep mine workings. In 1864, a 50 " cylinder pumping engine was used to raise water some 600 feet $(180 \mathrm{~m})$ from the bottom of the mine and discharge it through this adit. An average of 10,000 gallons (45,500 litres) were raised per hour (Barnes 1864).

The adit is located beside the main Avoca - Rathdrum road opposite Wicklow County Council's yard (Fig. 4.14). It was exposed here until the 1980s but is now covered by coarse mine spoil. It is the main point of discharge for mine water in West Avoca and was used by both SPCM and AML. The discharge is currently channelled into a pipe and thence to the Avoca river.

2. Spa adit (114 m O.D.)

The Spa adit was driven in the 1850 s by WCMC to provide access to mine workings on the south branch of the North Lode (Weaver's Lode) (Fig. 4.14). It is located immediately east of the road between the North Lode area and White Bridge. The adit is bricked up but a pipe allows drainage of mine water. According to one report (Mining Services 1963), the adit is partly collapsed. It originally had a length of about 300 m and it appears to be the only
discharge pathway for mine water in the area of Weaver's Lode. The North Lode workings are directly linked to and drain into the main West Avoca underground mine workings.

3. Margaret adit (84 m O.D.)

This adit was begun in the $18^{\text {th }}$ century by HMC with a view to discovering further copper lodes north of the main lodes in West Avoca. It was abandoned before anything of interest was intersected. WCMC later (1852) extended the adit, proving the South Lode in depth, discovering the Pond Lode and Weaver's Lode and proving the North Lode in depth. The adit is the only significant cross-cutting adit in West Avoca. It was still accessible via a trapdoor in the garden of a private house when the mines closed in 1982 (Fig. 4.14). It is now sealed by a concrete cap.

4. Knight Tunnel (65 m O.D.)

The Knight Tunnel was the main decline or access tunnel to the underground mine in modern times. Shafts were not used in modern times except for services. The tunnel measured $5 \times 5 \mathrm{~m}$ at its portal. Trackless vehicles, including load-haul-dump and drilling vehicles, were driven along it and could enter all parts of the underground workings. The opening of the Knight Tunnel thus signalled the start of the modern mining era in Avoca when large volumes of ore could be transported rapidly from the mining face. In the deeper levels, the ore was carried to an underground crusher and thence to the surface mill by a converyor. In the upper levels of the mine, trackless vehicles were used to transport ore. SPCM began constructing the decline in 1955 and it reached the 1670 level. AML extended it in the early 1970 s to the 2000 level. The tunnel has a decline of 12° and descends vertically some 350 m by reversing direction at six points.

The Knight Tunnel was sealed by a concrete plug after the mine closed in 1982. The new road constructed by WCC to provide aseess to the landfill site in Pond Lode open pit largely obscured what remains of the portalbuthe top of it is still visible.

5. Ballygahan Deep Adit (30 m Q.D.)

This adit was linked to Ballygahan old engine shaft, formerly on the site of Pond Lode open pit, and drained to the Avoca river. A narrow pipe in the river embankment (Fig. 4.14, MAP 5) now appears to carry discharge from this adit. No other trace of it has been found. Argall (1880) and Smyth (1853) illustrate the adit. It runs directly under the floor of Pond Lode open pit.

4.3.4 Shafts

Mianrai Teoranta's 1951 map of the mine workings in West Avoca shows numerous shafts linking adits and levels to the surface (Fig. 4.15). Many of these have since disappeared, removed during open pit excavation or covered during other surface activities. Most of those still visible on the surface are part of the North Lode workings which remain largely intact.

1. Vent shaft

This is the only shaft constructed during the period of modern mining between 1955 and 1982. It was begun by AML in April 1971 at the southwestern end of the mine workings, linking the 1670 level with the surface and foul air was exhausted through it. Fans located in this shaft and in the Twin shafts drew 280,000 cubic feet $\left(4,375 \mathrm{~m}^{3}\right)$ per minute of fresh air through the mine workings via the Knight tunnel and Ballygahan shaft.

Figure 4.15 West Avoca, shafts mapped by Mianrai Teoranta, 1951

The shaft is located in pasture west of the farm buildings to the southwest of the mine site (Fig. 4.14). It is easily recognized by its 2 m high cylindrical concrete cap. A small vent in the cap allows measurement of water level in the mine workings. The shaft runs vertically from the surface (138 m O.D.) to the 1040 level ($-12 \mathrm{~m} \mathrm{O.D}$.) and then inclines to the 1670 level (-201 m O.D.).

2. Twin shafts

WCMC began work sinking these engine shafts side by side in the early 1850s (Smyth 1853) as part of the westward extension of the mine. By 1864, they had reached their final depth of about 300 m below the surface and formed "an efficient means of communication, drainage and discharge" (Barnes 1864). They were "projected at a period when the prospects in copper were most abundant and showing a large breadth going west and to replace the old underlay shafts which had become unequal to the discharge of the increasing quantity of ore and for the fixing of new and enlarged pitwork" (Barnes 1864). The shafts were used for pumping water (Engine shaft) and raising ore (Drawing shaft). According to Barnes (1864), a whim engine was used on the drawing shaft. In the modern era, the Twin shafts have been used only for ventilation purposes and as an escape way.

Each shaft consists of a bare single compartment, $7^{\prime} \times 7^{\prime}(2.1 \times 2.1 \mathrm{~m})$ in size (Mining Services 1963). When originally constructed, the shafts were vertical over the first 221 m to a depth of -90 m O.D. and then inclined to -170 m O.D. They connect with the Margaret adit and with the modern 995, 1121 and 1300 levels. Today, the shafts have concrete caps. The remains of hoisting wheel supports are visible nearby at

3. Margaret adit shaft

This short shaft (a few metres deep at mosty) Tinked Margaret adit to the surface, about 30 m from the adit entrance. It was presumaby a ventilation shaft. Today, the shaft is collapsed and is marked by a conical pit beside the dred Road.

4. Drawing shaft (Western Whim)

According to Smyth's map (1883) and the Mianrai Teoranta map (1951), the Drawing shaft extended vertically from 129 m O.D. to the 935 level (19.5 m O.D.) and then inclined to the 1550 level (-165 m O.D.). It dates from at least the mid- $19^{\text {th }}$ century when a whim engine "of small dimensions" (Smyth 1853) was used to raise ore along it and it was called the Western Whim shaft. It is marked on the 1908 O.S. maps beside an engine house and stack, neither of which remain today. Caving during 1958-62 following SPCM mining led to the collapse of the shaft from a point 50 m below the surface down to the 935 level. Prior to this, the shaft had been used for supplying fresh air to the mine using downcast fans installed on the 935 level (Mining Services 1963).

The Drawing shaft is today within the fenced area on ground above the southwestern wall of Pond Lode open pit (Fig. 4.14). It is capped by concrete that has encouraged a thick growth of vegetation around it.

4. Ballygahan shaft

Ballygahan shaft dates from at least the first half of the $19^{\text {th }}$ century and was the main shaft in the old Ballygahan mine, used both for pumping water and for hoisting ore (Fig. 4.14). Power was supplied via an overshot water wheel of " 50 feet diameter and 30 inches breast" (Smyth 1853). In the 1940s, Mianrai Teoranta rehabilitated the shaft and deepened it to -230 m O.D., 290 m below the surface, driving a new level, the 1670 level ($-201 \mathrm{~m} \mathrm{O.D}$.), 750 m to the southwest (Mining Services 1963). Mianrai Teoranta, SPCM and AML used this shaft
as the main discharge route for mine water. Reservoirs were located at the 1670 and 70 fm levels. Mianrai Teoranta pumped water from the 1670 level to the 70 fm level and from there to the river via the Road adit. SPCM installed a KSB pump to pump water directly to the Road adit from the 1670 level. AML followed this procedure. Electrical cables and water lines were also brought into the mine via the shaft.

Ballygahan shaft is a small, four-compartment shaft, timbered with $8^{\prime \prime} \times 8^{\prime \prime}(20 \times 20 \mathrm{~cm})$ sets. - Two of the compartments, each $4^{\prime} l^{\prime \prime} \times 3^{\prime} 10^{\prime \prime}(1.23 \mathrm{~m} \times 1.15 \mathrm{~m})$, were used for hoisting ore (Mining Services 1963).

5. New Western shaft

This vertical shaft was begun around 1860 (Barnes 1861) and extended to 141 m O.D., 48 m below the surface, where it connected with the western end of the 30 fm level. It was sunk at the western end of the North Lode, providing a link to the levels being driven westwards along the lode. This shaft was open along its length in 1951 (Mianrai Teoranta). It is now capped and surrounded by a fence in an area overgrown by gorse and heather (Fig. 4.14).

6. Inclined shaft

This short shaft is located beside the New Western shaft withon the same fenced area and was sunk around the same time. The North Lode mine was developed in both an easterly and westerly direction simultaneously and the Inclined shaft and the New Western shaft were probably the last ones to be sunk. The Inclined shateis very short and does not connect to any North Lode levels (Mianrai Teoranta 1951), dote on Mianrai Teoranta's 1951 map/section suggests that is was used for working ochre deposits.

7. Air shaft

This is a short vertical shaft. Iters not shown on the Mianrai Teoranta map and its depth is unknown. It is surrounded boa fence. Some steel bars are set across the top but the shaft is effectively open.

8. Whelan's shaft

This is the only remaining shaft on Weaver's lode (Fig. 4.14). This lode was regarded as a reserve by WCMC and was not opened beyond the 30 fm level (54 m below surface). Whelan's shaft was sunk vertically to 138 m O.D., 45 m below the surface, and then inclined to 114 m O.D. It was linked to the Spa adit. In 1951, the shaft was apparently open along its length (Mianrai Teoranta 1951). Today it is capped and fenced off.

9. Wheatley's shaft

This was also known as the Eastern Whim shaft. In 1951 it was open along its length (Mianrai Teoranta 1951). It extends vertically 48 m below the surface to the 45 fm level (120 m O.D.) and then inclines to the 80 fm level (63 m O.D.), intersecting the 60 fm level (95 m O.D.). Little information is available about its development. It is now capped and fenced off (Fig. 4.14).

43.5 Engine houses and stacks

1. Twin Shafts engine houses

Two engine houses are located nearby and were apparently employed on the Twin Shafts (Fig. 4.14). The walls and chimney stack of the northernmost one, located on the Drawing shaft, lie behind the ruins of Mianrai Teoranta's storage buildings and are largely intact though covered in ivy. The southernmost one, beside the Engine shaft, is immediately beside - the farm road and is now in ruins with only the base of parts of three walls discernible. Both of these buildings presumably date from the early 1860 s when sinking of the Twin Shafts was completed. As noted by Coy (1996), the intact chimney stack is lower than other stacks at Avoca. The Drawing shaft was worked by a whim engine which raised the ore from underground; the engine employed on the Engine shaft was used for pumping out water.

2. Tramway Engine house stack

This ivy-covered stack (Fig. 4.14) stands immediately beside the path of the old tramway (below, 4.3.7). The engine was used to haul ore wagons. The engine house is now demolished.

3. Ballygahan Engine house

This house consists of an intact chimney stack and low ruined walls on the overgrown ground above the northern wall of Pond Lode open pit (Fig. 4.14, $28.16 a$). It has been referred to as "Ballygahan" engine house (Merrigan, pers. comm.) butwo reference has been found to it in the literature and it is not marked on any pre-20 cheontury maps seen during this study. No mine workings are known to lie below it or even close to it. A narrow channel immediately east of the house may be a counter balancepit or flat rods channel. It appears to extend southwards. If it is a flat rods channel, thien it must originally have extended to a shaft. A straight line extending $70-80 \mathrm{~m}$ southen the direction defined by the channel passes within 10 m of a shaft marked onthe 1908 O.S. map but absent from Mianrai Teoranta's 1951 map and from Smyth's 185\% map. The identity of this shaft is unknown. It does not appear to have been an engine shaft. The Ballymurtagh Old Engine shaft, the only known engine shaft in the vicinity, wis further west. If the line of the channel is extended 135 m northwards it passes within 6 m of Wheatley's shaft. The closest existing shaft is Whelan's shaft (100 m distant) on Weaver's lode but this lies oblique to the line of the channel. Of these, Wheatley's shaft is the most likely, given its depth, to have been operated using an engine.

4. Western Whim engine house

The base of a stack remains south of the North Lode open pit and west of the Tramway Arch (Fig. 4.14). The old Western Whim shaft was situated 40 m west of this stack. Two adits, one an access adit and one water discharge, were connected to the shaft in 1951 (Mianrai Teoranta 1951). According to Barnes (1864), the underground works of the North mine were initially drained along Margaret adit and finally, after the 56 fm crosscut was completed, to the main underground workings of the South mine: "It is no small advantage to the mine that we have obviated the necessity of additional pumping machinery by the deep sinking and crosscut connecting the North and South mine, a heavy piece of work which has taken many years to complete, the miners having to be supplied with air part of the time, driven through' pipes by machinery. The North mine has thus been laid dry to a depth of 132 fathoms [792 feet or 239 m] perpendicular to the surface.". Thus, engines were not used for pumping water from the underground workings and it must be assumed that this engine house was constructed for raising ore. The reason for the reference on Mianrai Teoranta's 1951 map to discharge from an adit is unclear.
(a) Ballygahan engine house and stack, West Avoca, looking SE.
(b) Tramway arch, West Avoca, linking Hodgson's tramway and North Lode open pit. Viewed from west.

FIGURE 4.16

4.3.6 Other mine buildings

1. Pre-20 $0^{\text {th }}$ century

The ruins of one small building can be seen directly south of the North Lode Air shaft. No specific reference to it has been found in the literature or on any map.

2. Mianrai Teoranta 1941-1955

A number of buildings constructed and/or used by Mianrai Teoranta remain. The most prominent building on the site is the concrete shell of storehouses located beside the Twin Shafts. Wicklow County Council's yard, east of the main road 200 m south of the entrance to the West Avoca site, is the site of Mianrai Teoranta's headquarters (Fig. 4.14). The stone buildings here appear to date at least from this time: they are not marked on the 1908 O.S. maps.

3. Saint Patrick's Copper Mines Ltd.

A large number of buildings used and in many cases purpose built by SPCM staff remain on and around the West Avoca mine site. On site, the building north of the site entrance was built by SPCM as its main office and was later used by AML_for the same purpose (Fig. 4.14). It is now being renovated for use as a miners' museum Behind this building are the old staff hostels (Fig. 4.14). AML later converted these to apartments, also for staff accommodation. The remaining buildings are outside the site. Across the road from White Bridge are two buildings: the one to the south was used as a garage and the other as a laboratory for sample analyses by SPCM. AMAL ased the first building as a welding shop. Both buildings are now privately owned and in use as workshops/dwellings. South of Bell Rock and east of the Red Road, there are a Directors' Lodge and Mine Manager' house. Most of this appear to have been built by the company and were subsequently assed for the same purpose by AML. All are now in private hands. West of the Red Road is the building used as a magazine by SPCM for storing explosives.

4. Avoca Mines Ltd.

As noted above, AML utilized many of the buildings constructed by SPCM, including the now dismantled mine buildings such as the mill, as well as housing stock. Apart from these buildings, the only remains specific to AML are the concrete foundations of workshops that are visible east of the entrance road to the West Avoca landfill site.

4.3.7 Hodgson's Tramway and Tramway Arch

This tramway was built to haul ore from West Avoca to Arklow harbour. Previously, ore had always been carted to Arklow by local people who agreed a price per ton of ore and supplied their own horse and cart. But there had been recurrent difficulties, with transport periodically in short supply, for example at harvest time when all available carts were needed in the fields (Cowman 1994). Henry Hodgson, proprietor of Ballygahan mine and director of WCMC which operated Ballymurtagh mine, decided to construct a tramway to haul ore to Arklow. At this time, the national rail network consisted of a short line from Dublin to Kingstown (Dun Laoghaire). The tramway was completed in 1846, a fortuitous date since the beginning of the Great Famine reduced sharply the availability of drivers and transport (Barnes 1864): "Before 1846, and the famine period, the neighbourhood supplied horses and carts in
abundance. Since that date the ores have been carried to Arklow by tramway." Ore from East Avoca continued to be transported by horse and cart.

The tramway probably began originally at the Tramway Engine house and followed a straight line southeast before running along what part of what is now the Red Road. Later, as the North mine was being developed, the tramway was extended to the north over an arch to the North Lode open pit. The Tramway Arch (Fig. 4.16b) is one of the most striking architectural features preserved at Avoca. Between 1857 and 1859, the Avoca - Dublin railway was joined with Hodgson's Avoca - Arklow railway.

4.3.8 Water drainage and discharge

The West Avoca mine is drained today in much the same way as it was in the $19^{\text {th }}$ century, i.e. via Ballygahan shaft, although today the water drains along the Road adit whereas then it was pumped out with power supplied from a water wheel. In the 1940s and 1950s Mianrai Teoranta drained water from the Twin Shafts along the now-disappeared 22 fm adit and subsequently to the Avoca River via the Red Road stream. They also constructed a pipeline to carry discharge to the river. This is visible close to the Ballygahan shaft and can be traced south along the side of the spoil heap SP39 until in turns to drain below the road and into the river at the site of the Ballymurtagh weir. At this time, water levels in parts of the mine would have been higher than they are today both because the workings were much shallower and less extensive and because various dams were constructed to block off different sections from one another. This pipeline appears to have been built to draw off water from the upper levels of the mine. Subsequently, SPCM rewise o the drainage system as described above (section 4.3.4) and the mine has since been drained mainly via the Road adit.

4.4 UNDERGROUND MINE WORKINGS

For most of its history, Avocahas been operated as a number of underground mines. There is a 27 km long network of adits and levels in East Avoca; the aggregate length of shafts, prior to open pit excavation, was 3.5 km . In West Avoca, there are some $15-20 \mathrm{~km}$ of levels and more than 1 km of shafts. There also remain huge volumes of stopes, partly backfilled, some collapsed. The deeper levels of the mines, below c. 30 m O.D. or the level of the Avoca river, are flooded. The East Avoca workings were mainly driven in the $18^{\text {th }}$ and $19^{\text {th }}$ centuries. Only the 850 adit, built by SPCM in 1958-1962, post-dates this. Excavation of East Avoca open pit and, especially, Cronebane open pit removed the upper levels of the workings although most remain. Their condition is unknown but probably poor. They were last completely mapped in the late 1940s and early 1950 s by Mianrai Teoranta geologists, who produced maps and sections of both East and West Avoca underground workings. Extensive underground development by SPCM and AML, excavation of the Pond Lode open pit and serious caving in the upper levels have brought many changes to the West Avoca underground workings since the 1950s. The exception is the North Lode mine, untouched since the $19^{\text {th }}$ century, where the Mianrai Teoranta map still appears valid. Plans of the individual levels driven by AML and, in the case of some of the upper levels, by SPCM form the basis for the underground map of the modern West Avoca mine.

Two 3-D digital maps of underground mine workings have been compiled, one of East Avoca (Map 4) and one of West Avoca (Map 5). In both cases, the emphasis has been placed on drawing the adits, levels and shafts in order to convey the spatial extent and complexity of
mine workings. For East Avoca, no stopes have been drawn. Although stopes are shown in section on the Mianrai Teoranta compilation, no plans are available for them so they cannot be drawn accurately in a 3-D map. Stopes have been drawn in the West Avoca map since the modern mine plans generally contain stopes outlines which can be linked on successive levels. However, not all plans show stopes and in places stopes are drawn in a somewhat schematic way. Plans of lodes appear on many West Avoca mine plans so Map 5 contains reconstructions of the Pond Lode and South Lode. Gaps in the data mean that these are also schematic to some extent. Appendices 4.2 and 4.3 contain a listings of all levels, adits and shafts drawn in Maps 4 and 5 and a list of data sources.

Adits and levels have been given a standard width/height, usually 2 or 3 m , except where exact information is available. For example, the Knight Tunnel is known to have measured 5 x 5 m . Shafts have all been drawn with $4 \times 4 \mathrm{~m}$ horizontal dimensions, partly for convenience. In many cases, they exceed known dimensions.

The maps were digitized in AutoCAD. 3-D drawing techniques were employed to digitize vertical and inclined shafts and to position the adits and levels at different topographic elevations. The AutoCAD drawing can be viewed from any perspective and overlaid in 2-D on the topographic map. Unfortunately, they are not "solid", i.e. they lack any depiction of ground and the various features in it appear simply as a series of connected lines. In 3-D, they overlap in space such that drawing elements which should\&e hidden from the viewer by other elements in front them instead can still be seen. Auto $6 A D$ allows some hiding of these lines, so reducing the confusion. Nevertheless, the lack of any background terrain element in the drawing makes it essentially a technical drawing, suitable mainly for scientific/engineering purposes. For display pupposes, especially in the context of the Life project, a more realistic version was felt to be negeessary.

The technique of Ray Tracing was used to create a "solid" 3-D image of the underground workings (Fig. 4.17 and 4.18). Using information about the viewer's perspective and the position of the drawing elements, levels, shafts, etc., in space, ray tracing involves rendering an image based on mathematicalmodelling of the interaction of light rays and the objects of interest. The images generated by ray tracing software make use of "primitive" geometrical objects such as cylinders, spheres, etc. Grouping these together can produce a complex 3-D image. For example, in the image of the underground workings at Avoca, the horizontal levels are rendered as cylinders (Fig. 4.17 and 4.18). The software package used for the Avoca images is Rayshade and the images were output at large screen resolution (1920 x 1440) for subsequent reproduction on 35 mm transparency film. The ray tracing modelling was carried out for GSI by Dr. K. Russ, Camborne School of Mines, Cornwall, England.

4.5 ENVIRONMENTAL IMPACTS

4.5.1 Introduction

The two major environmental impacts observed at Avoca mines are 1) the pollution of the Avoca river by AMD and 2) physical alteration of the landscape by mining activity. The contamination of soil in areas surrounding the mine site by heavy metals is described in Chapter 5. Physical alteration of the landscape was a continuous process during nearly three hundred years of mining at Avoca. However, the scale of alteration increased dramatically in the 1970s when AML excavated open pits in East and West Avoca. The large spoil heaps and open pits that resulted from these operations represented significant new visual impacts on the landscape, impacts that remain unchanged after more than twenty years. In contrast to much of the rest of the site, which has acquired significant vegetation cover over many years, the heaps and pits

Figure 4.17 3-D reconstruction of underground mine workings, East Avoca

Figure 4.18 Two views of 3-D reconstruction of underground mine workings, West Avoca, from southeast (top) and south (scalebar $=200 \mathrm{~m}$)
support no significant vegetation. For some, these untouched relics of mining amount to visual pollution in a valley renowned for its natural beauty. For others, they are valuable parts of the mining heritage which is an essential component of Avoca's history. These issues are discussed further in Chapter 6. Below, the sources and pathways of AMD are described and the implications discussed in the light of possible future attempts at remediation.

4.5.2 Sources and pathways of AMD

Sources of AMD

AMD is generated by the oxidation of sulphide minerals in the presence of air and water; the reaction is catalyzed by sulphur-producing bacteria. The most important mineral in this respect is pyrite which is also by far the most abundant sulphide in the mineralized rocks of Avoca. There are large volumes of sulphide-bearing bedrock and spoil exposed to air and water on the Avoca mine site. AMD is generated by leaching of bedrock sulphides principally within and around the underground mine workings where mineralized rock is still in situ and is accessible to water in a number of ways: 1) along cleavage planes, joints, fractures and faults in the footwall, hangingwall and country rocks; 2) in the rocks faces forming the walls, floors and roofs of 50 km of levels and shafts and an unknown volume of stopes and 3) in large but unknown volumes of mineralized waste rock left underground by $18^{\text {th }}$ and $19^{\text {th }}$ century miners as backfilling for stopes. The host rock sequence of volcapic tuffs contains no significant volume of carbonate lithologies that could help to buffer or neutralize AMD.

The volume and sulphur content of all such minetadized rock cannot be calculated but it is possible to estimate the amount and compositionvof ore-grade bedrock for most of East and West Avoca using ore reserves established ley Avoca Mines Ltd. (section 3.6). For West Avoca, the calculated reserves are 4.5 million tefines (Mt) of vein/disseminated ore $(0.68 \% \mathrm{Cu}, 17 \%$ pyrite) and 259,210 tonnes (t) of banded. $\%$ ($0.61 \% \mathrm{Cu}, 65 \%$ pyrite). The percentages of pyrite present in these ores are taken to becthe same as those quoted for the different ore types by McArdle (1993). According to standard volume/weight conversion factors employed by AML, these tonnages are contained ine ${ }^{\circ} 1,477,964 \mathrm{~m}^{3}$ and $79,318 \mathrm{~m}^{3}$ of rock, respectively. The ore contains some 929,863 t of gyrite and $534,161 \mathrm{t}$ of sulphur, including a small component in chalcopyrite. In East Avoca, calculated reserves are $11,703,120 \mathrm{t}$ of vein/disseminated ore $(0.52 \% \mathrm{Cu}, 17 \%$ pyrite) and $2,623,750 \mathrm{t}$ of banded ore $(1.37 \% \mathrm{Cu}, 65 \%$ pyrite). These tonnages are contained in $3,862,030 \mathrm{~m}^{3}$ and $802,868 \mathrm{~m}^{3}$ of rock, respectively. The ore contains some $3,694,968 \mathrm{t}$ of pyrite and $2,174,179 \mathrm{t}$ of sulphur, including a contribution of about $200,000 \mathrm{t}$ sulphur from sulphides other than pyrite.

Some of the figures quoted here are either drill-indicated or inferred and as such must be regarded as, at best, approximations. There is no reason to believe, however, that they are grossly exaggerated. Indeed, there is reason to regard them as an underestimate since the mineralized zones in Cronebane and Connary in East Avoca are excluded because no data are available for them. Moreover, the calculations refer to ore-grade material only, specifically copper ore, i.e. chalcopyrite-bearing rocks. They therefore exclude possibly very large tonnages of pyrite-bearing rocks that have chalcopyrite contents below a certain cut-off level (not specified) and are thus not regarded as ore.

Pathways for AMD

Most of the AMD generated in Avoca is now discharged either through the Deep Adit (East Avoca) or the Road adit (West Avoca) into the Avoca river (Fig. 4.2, 4.14). A much smaller amount is continuously discharged from Cronebane Shallow adit above and south of the rim of

East Avoca open pit, intermittently from Madam Butler's and Kilmacoo North adits in Cronebane and Connary, respectively, and from the Spa adit and Deep adit in West Avoca. Water enters the underground mine workings either as groundwater passing laterally through the rocks along cleavage planes, faults and fractures or as rainwater falling directly on the mine site and passing vertically through the roof of the mine or through open shafts. The rainwater will also percolate through spoil heaps. Where these overlie caved areas, AMD generated by leaching of spoil will pass quickly into the underground workings and thence to the river. Spoil heaps SP5, SP8 and SP10 in East Avoca are the best known examples of this. Even where spoil heaps overlie bedrock that has not collapsed, any AMD generated in them may still pass down into the mine workings, although this will be dependent on the permeability of the rock. In some cases at least, especially around Mount Platt (SP20) in East Avoca, permeability is low and the AMD emerges as springs around the base of the heap before running along the surface. It may then flow to a more permeable area, such as the base of Cronebane open pit, or simply seep into the soil in the areas surrounding the mine site. Any AMD that stays within the boundary of the mine site will most likely end up as discharge from one of the adits.

In summary, virtually all the AMD generated in Avoca, whether by leaching of bedrock sulphides or spoil heap sulphides, is eventually discharged from the mine workings into the Avoca river.

4.5.3 Discussion

The estimated volume of $6.22 \times 10^{6} \mathrm{~m}^{3}$ of ore compares with the estimated volume $1.4 \times 10^{6} \mathrm{~m}^{3}$ for spoil heaps in East and West Avoca (Tables 4ite 4.2). Since the ore is much richer in sulphur, it is clear that the mineralized bedrock represests a potentially much greater source of AMD than spoil heaps. According to TCD ${ }^{9}$ data (Herr and Gray 1995b), the mean concentration of $\mathrm{SO}_{4}{ }^{2-}$ in the East Avoca Deep A dit discharge over a period of seven months in 1994 was $1596 \mathrm{mg} \mathrm{l}^{-1}$. For a mean disclarge rate of $17.2 \mathrm{ls}^{-1}$ (Gray 1995), this indicates that 790 kg of sulphur per day are added to * similar amount is added each day frore West Avoca via the Road adit. At this rate, some 7540 years would pass before the calculated in situ bedrock reserves of sulphur in East Avoca were leached and deposited in the rix. This assumes that all the sulphur in the Deep Adit discharge is derived from bedrock. Since some comes from spoil heaps, the estimated period of time would be greater. Lower figures apply to West Avoca on account of the smaller ore reserves there. These calculations are necessarily highly simplified but serve to emphasise the importance of bedrock mineralization to the problem of riverine pollution at Avoca.

The calculations also indicate that rehabilitation of surface spoil heaps will not greatly ameliorate the AMD problem. Active treatment of discharge waters will be costly; passive treatment will require construction of wetlands at a suitable site. Rehabilitation of the river will involve a long-term commitment and significant resources.

Appendix 4.3 Underground mine workings, West Avoca

1. LEVELS AND ADITS IN 3-D DIGITAL RECONSTRUCTION

L540	1460' level, Weaver's Lode	138	MT 1951		[PRE-20th C.
L570	Adit to W. Whim shaft, North Lode	171	MT 1951		PRE-20th C.
1610	42 fm level, South mine	117	MT 1951		PRRE-20th C.
1620	Spa adit, Weaver's Lode	114	MT 1951	125/6/1/3/56	PRE-20th C.
L670	53 fm level, South mine	O, 99	AML undated	125/6/1/3/55	PRE-20th C.
$\overline{1720}$	Margatet adit	\%) 84	AML undated; MT 1951		PRE-20\%h C.
L790	80 fm level, North Lode	${ }^{6} 63$ 合	MT 1951		[PRE-20th C.
L830	260 fm level, South mine	55^{5}	AML undated	1125/6/1/3/67	PRE-20th C.
L875	875 level, South mine	37.5 Om	AML undated	125/6/1/3/69	SPCM
L890	100 fm level, North Lode	$33-1$	BT 1951		PRE-20th C.
L894	Road adit, South mine	32 P	M 121951		PRE-20th C.
L900	Ballygahan Deep adit	30	M 11951		Pre-20in C.
L950	112 fm level, North Lode	15			PRE-20nc.
$\underline{590}$	18 fm level, South mine	3	SPCM ${ }^{\text {a }}$		PRE-204h C.
L995	995 level, South mine	1.5	MT 19518		SPCM
MANDECLINE	main decline below Knight tunnel		AML 30/08/72	125/6/1/3/75; 125/6/1/2/29	AML
OREPASS	orepasses, South mine		\%/		SPCM/AML
PONDECLINE	Pond Lode decline		¢		AML

2. REMAINING SHAFTS

Shaft	Layer (AutocAD)	Type: V/I/VI		on,	
			top	hinge	bottom
Ballygahan	shaft ballygahan	V	60		-210
Drawing	shaft_drawing	V	129		84
New western	shaft_new-western	V	189		141
Twin: Drawing	shaft_twin drawing	V	131	-90	-170
Twin: Engine	shaft twin engine	VI	131	-90	-201
Vent	shaft vent	VI	138	-12	-201
Wheatley's	shaft wheatleys	VI	168	120	63
Whelan's	shaft_whelans	VI	159	138	114
		os			
V: vertical		人1, 000			
VI: vertical + inclined		e^{5}			
$1:$ inclined		Q 0°			

BALLYMURTAGH OPEN_PIT

GENERAL DESCRTPTION \& ESTIMATE $O E$ COST
OF
THE PROPOSED WASTE TSSPOSAL SITE

LANDEILL DESIGN AT BALLYMURTAGH OPEN_RIT AVOCA_CO. WICKLOW

1.0 Site Description:

The Ballymurtagh open pit is a disused mine excavation which was developed to exploit the Pond Lode in West Avoca. The pit itself covers approximately 1 hectare which is fully enclosed by a high chain link perimeter fence some $1,370 \mathrm{~m}$. long and covering some 8 hectares. The open pit is a long (180 m.), narrow (55 m .) excavation which is nearly full enclosed by high walls of rock and mine waste.

The floor of the Ballymartagh open pit is a flat surface which results fromeitis use as a settlement pond for liquid mine wasqe with wp to 16.5 m . of tailings occuring beneath the present floor. The tailings, which are hainly in the silt range ($0.002-0.05 \mathrm{~m} . \mathrm{m}$.$) ,$ have infilled the deeper parts of the open pit and now have a thin covering layer of overburden. While the tailings were in a liquid state when pumped to the open pit for settlement, drainage through the base of the open pit has allowed the tailings to dry out and consolidate. Standard penetration tests carried out during the drilling operations associated with this study irdicate that the tailings axe now in a medium dense condition and only show signs of softening in the deeper levels below 6 m . This process of consolidation will continue as further drainage takes place.

The preanat open pit flogr is dry and axoept far a few seepages from the enclosing walls the excavation is devoid of water. Some isolated ponding of rainwatex does take place on the open pit floor where the thin layex of overburden $h^{2}=$ been compacted by truck movements.
1.1 Fit_Floor Drainage:

The pit floor in periods of high rainfall becomes saturated with a considerable amount of standing water indicating the impermeability nature of the tailings material. This property which is advantageous in controlling the rate of seepage of fenerated leachate will cause operational and sonstruction difficulties.

In order to provide a pseatisfactory working base for the construction and operation of the open pit, it will be necessary to inswafl land drains below the present level of the pit flgor approx. 1.5 m . deep on average at a spacing of 18 m . The purpose of these land drains is twofold :-
(a) To improve the bearing capacity of the tailings; (b) To provide for bettex soakage of the leachate.

We would propose to lay 2 No. longitudinal drains 15 m . apart 1.5 m . deep and $600 \mathrm{~m} . \mathrm{m}$. wide filled with 19.25 m.m. crushed stone and surround with "Texram" 700 acting as a filter medium.
1.2 Fit Floor Bearing_Capacity:

The tailings forming the pit floor at present are only
partially compacted and would not form a satisfactory working base. It is proposed to improve this by mears of a separating membrane of Terram 1000 on which a graded granular layer $500 \mathrm{~m} . \mathrm{m}$. thich sub-base is placed and compacted. This sub-base will then provide a base on which the genexated leachate dan be dispersed laterally into the drains and tailings. The separating membrane will prevent loss of the gramular material into its mine tailings. The specification of the 500 mm layex shall be crushed stone graded 100 mm to 12 mm . This is likely to be its most costly part of the developement costs of this land fill site and onothe site trial tests should be carried out to determine if some of its on site material could be used an its upper 200 mm as stated above. The purpose of ohis layer is two fold, one to provide a workinge doase to carry the imposed truck loading and two, Qo provide for lateral dispersal of generated leaghate. The thickness of the free draining layer would be adequate at 300 mm

1. 3

Containment of Leachate:

The Ballymurtagh site is designed to operate as a dilute and disperse site i.e. its leachate to filter through the mine tailings, in the base into its mine working shaits and there diluted by the mine waters.

To ensure that the leachata is contained in this path it is proposed to construet a bund at the Eastern end of the pit. The bund should be raised to the level of 5 meters over the base of the pit and shall be lined on the pit side by means of a Butyl Rubber Lining. Ihe lining shall be roughly 2 meters below the present floox of the pit. On top of the impermeable lining a free draining layer of stones shall be placed to ensure that any liquid reaching the face of the bund is drained off into the drains running back into the pit.

$1: 4$

1:5

Gas Dispersal

Landfill. gas consisting pringipally of methane and carbondioxide is a naturaproduct of land fill sites. The design includes aventing system consisting of a stone filled columef ith perferated collecting pipes as shown in detail 8 . 5°, to ensure safe dispersal of the gases into the eratmosphere. The pipes shall be extended upwards as the pit is filled.

Security Fencing

The main pit at present has a concrete post and a chain link fence with 3 strands of barbed wire security fence all around. It is proposed to extend this fencing out to the entrance gate and around the entrance facilities and to link it back with the existing fersce.

Portions of the existing fence have been removed or damaged and it is proposed to make these sections good.

Site Facilities

The site has been laid out with the minimum visibility from the Arklow Ratharum Road. It is proposed trat the site be indicated by sign posts on this road and with a finger post sign at the entrance. A new entrance is to be constructed at the site and it will improve visibility. The site entrance proper is to be set back beyond where the housing access road meets the main access road. It is proposed at this point to erect a sign showing hours of opening charges eto and a cattle grid and peers will define the start of the site. The acoess road is to be laid to good standard to encourage full usage of the lange fill site. The main site buildings will be conginucted on the platue level of 63M.O.D. and partial yoscreened from the road. These include site office ${ }^{c}$ wheel wash and weigh bridge and a week- end facility over the full weelr end and it $1 s$ proposed that domestic use at weekends would be into two collection skips. These collection skips would then be tramsported to the main pit at the beginning of the working week.

In normal operation all waste would be directly disposed of into the main pit. Domestic use would be at the turning circle directly beyond the screer bund and industrial use along the access road directly into the pit.

Preparation of Land Eill Base

A

The base ot the pit shall be graded to eftect an even surface by means of a tracked machine to remove all irregularictos. $\quad .50 \quad 5,500$ OC

The floor of the pit shall then be drained as described and measure badec land drairage

Provide and lay "Terran 1000" over the entire area of pit and turned up 1 metre at all edges. Laps betweer sheet to be 0. 5m ald in accorcianoe with detall D. 3

Provide, iderand compact crushed stone gratded 100 mm . to 12 mm - a layer 00 thich minimum ovex the githre area to base of pit.

Fropide and lay 1 mm . Butyl
Rgbber impermeable membrane to促ace soreened band as shown on detail D4

Provide and lay 300 mm layer of fres draining atong graded 40 mm to 20 mm to detail Pa

Provide and Lay Terxan 700mm Pifter Membrane to detade D4

Erovide and lay 75 mm thiok Layer of noarse sand oo detail 04

Provide and eroot 4 no. gas dispersai chambers with extension pistes to monitoring bore holes bo detail 05
$500.00 \quad 2,000 \quad 0$
Erovide and lay gas colleoting pipencri to gas dispersal ohembere to dotat bs
$3.00 \quad 1,950 \quad 0$
$.50 \quad 3250$
1.00650

0

To Summary
EP3,100

Site access and roed works.

Genera.	3 3te	\therefore
removal ot	cubble	- demolit
malis.	gener	1 grading \%
improwe		

A It,en

Bemoval of rencire ard post. storiog tor re erestion.
3.00
705∞

Bulk exaavation on site to provide Eill material to embankments and sub-base to road. The material to be excavated shall be taken trom the Gouth section of the pit. This area shall be ceduoed to the levels requicerd for the access road and tile additional material talatent from hagher: Eround to the worth ritist. The material peseavated shall be bushed ofe knuled and deposited along oitace entrancos road and embandents to form the subbase dotior the road. The matgorial shall be deposited in Leters not greater. than 200 mm Gpread and compacted in acoorcamee mith chanse 609 of the D.O. H spec for rod worke.

```
G 0u.mta. 19456
```

3 on.mts. 500

Extra over \quad orem B to:
oxeavation in reck
$1.50 \quad 29,184 \quad O C$
$10.00 \quad 5,000 \quad 00$

1tem

ছrovide and bay \% no कumfac bensming Geates in acoordanoe with ozamse 908.

Wrovide ard lay precase concrete reres to B. S. 340 set; jointed and peinted in cement mortar on and inoludine 150 mm bed of concrete mis no. 20 , 350 mm wide ooncrete baurchag ajae $250 \mathrm{~mm} x 250 \mathrm{~mm}$ to back ot kerbs, to detail Db, includirg quaving.
provide and install catele grad to entrance to detaid D?.

To Summary
$2.50 \quad 10,575$
10.00

11,800
$1,500 \quad 0$

Land Dratrage

Suxeace Water drainage.
Provide ard lay sumface water sewer along road os shown on drawinge
225 mm diameter Warinsenex arenage depth i. 5 m
35 mm diameter sewer averaes clepth 1.75 m .
B.W. Manholes to detail.
Heedral. at conneection to river
Cut off drainatitation road to be connected to móne shaft.
Precast: concrete road gullies and tremes with commeoting pipe woflato detail
To Summary

$350.00 \quad 5,250 \quad$ o
19.754

Site_Sexvices

Watermain
Commes to existing batermatin at entrarce indude tor providers 75 mm Tee conmertion 75 mm sluice value and vaive chamber.

Provide and ley 75 mm Wayto water matia along road bese to entrame hut, average depth below finished road level 800 mm .
$28.00 \quad 3,120$
Provide and install booster pump in entrance hut to provide supply to centeen and toilet.

Plumbing teqconneotions l"mm toonteen sink $12 m m \sec ^{2}$ W. C. axd W.A.B. 18 mimo Bik cock ? No. 1 omin to Wheel mash.

Frovide 1 No thanged hybrant and Tee and chamber to 5.3 .123
$800 \quad 00$

To Summary
$400 \quad 00$
Gite Facilitios.

$$
£ 15,000 \quad O C
$$

$4,950 \quad 00$
$9,600 \quad 00$
Provide and construet canteen and toilet to detail.
$3,230 \quad 00$
Provide and construct entranoe hut to detail.
$2,450 \quad 00$

40000

35000

To Summary

A

8

G
Item
13.

Electricgl

Summary

Preliminaries and Insurances
Contingenoy sum
Preparation of land fill Base
Site Access and Road Works
Land drainage
Surface water drainage
Watex main
Site Facilities
Electrical Works
Fencing and Gates
Landscaping
Desing fees
Monitoring
Land coste

Total (excl v.a.t.)

This estimate is based on current building costs (April 1988). A number of items above have been excluded as noted owing to lack of information and should be added to the final overall costing. Value Added Tax has also not been accounted for.
16.
not included

20,000	00
73,100	00

91,100	00
9.925	00

$\begin{array}{ll}19,754 & 000 \\ 5,820 & 00\end{array}$
35,980 00
7,600
7,700 00
10,000
00
not included
not included
not included

ま280,979
00

Detail $\triangle T$ EDGE of Pit.

Malachi Cullen Assoc. CONSULTING ENGINEERS 15 Custume Place, Athlone. Tel; (0902) 74264 or 78422	```title DETAIL AT SICES OFPIT.```		$\begin{gathered} \text { job no } \\ 2170 . \\ \hline \text { drg no } \end{gathered}$
	rev	$\left.\mathrm{ldate}_{\text {March }} \mathrm{lecs}\right\|^{\text {by }}$ JD.	D4

300 m ϕ STOHE
surpaxitio to SLOTFD WAVIX PIPE.

75ϕ SLOTIED WUvir Pipe.

1200 D P. Loxk uSMHOLE RIMCA WIIH. 50 MM ϕ HOLES AT 300 M CEVTRES DRILLED IN SIPES MH. Rivet pBE FHELED WITHSTONE

AS REFUSE RUILOS UP
BORE HOLE PDES $\triangle R E$ TORE EXTENDED $\triangle S$ WOTED

$\frac{00}{40}$

BASE OF pit

Gas Dispersal chanber

4. No. THeIS

ROADG KERB DE†UIL

Malachi Cullen Assoc. CONSURTING ENGINEEAS 15 Custurte place. Ahione. Te!: (0902) 712Ed or 7e422				$100 n 0$270ery $n 6$
	hite ROAD GCHLY DEFAIS			
		$\text { AppiL } 1988$	$\begin{aligned} & \text { by } \\ & \text { jo. } \end{aligned}$	5×-2.

Malachi Cullen Assoc. CONSULTING ENGINEERS 15 Custume Place, Athione. Te! ; (0902) 71263 or 73422			$\begin{aligned} & 106 \text { no } \\ & 270 \end{aligned}$
	Tite MAMHCLE COVERS + FROMES		
	rev	date by	
	U.T.S.	APRIL Me8 Jo	5×3.

Manhole Covers \& Frames

Monhole Covers And Frames Shall Be As Approved And Uniess Specitied Otherwise Shall Comply Wifin 85497 In Ail But Dimensions The Minmum Opening Dimensions
Shall Be $600 \mathrm{~mm} \times 600 \mathrm{~mm}$ Rectangular Or if Circular 550 mm Diameter The Apprapnate Grade Of Cover And Frame Which Shall Se Used in Any Location is Given in Tadet

indicator Plates And Marker Posts
itydranis Air vaives And Sulce valves Sholl Be Locared Ey incicaior flaies Positioned To The Approval of The Local Authority, Hydront incicator Plates Snall Be Single Hydrant incicator Plates With Fixed Elack Leiters Complying With BS.352? Except That The Flates Sinall Be White. Air Volve And Siuree Vaive Indicator Flates Sinall Comply with The Specification for Singie Hycrant incicatior flates With Fixed Letters in B.S 3521 Except That They Sinall Be Coloured white Aral Instead of The ietter H Sinall Bear the Letters AV And SV Respectiveiy As Approved. Where Marker Posts are Used They Snall Be Concrete Complying With I Si62.

Malachi Cullen Assoc.
(

Elevation

SECTION.

Under Ground E.S.B. Duct.

Concrete Anchor Blocks Shall Be Provided On Watermans At Deod Ends, Tees, Bend Of Greater Curyoture Than $22 \ddot{x}^{\circ}$ and At Both Sides of A Slvice Velve Chamber Anchor Blocks Shall Encase The Pipe in Concreiz To A Miommum thick ness of 150 mm all Round And Shall Ba A Minimum Length of 600 mm

