10 September 2010

Ms Caroline Kelly Administration, Environmental Licensing Programme Office of Climate, Licensing and Resource Use **Environmental Protection Agency Headquarters** PO Box 3000 Johnstown Castle Estate Co. Wexford

Re: Certification of Newmarket Landfill Site **Application No. H0001-01**

Dear Caroline,

Further to our letter of 19th July 2010 (and your letters of 15th March and 20th April 2010) please find additional information relating to our application attached:

Leachate sampling and testing: 2)

Leachate sampling was conducted on the 16th July after a week of heavy rains. BH1 (Leachate Borehole No.1) and BH2 were dry on inspection. There was sufficient sample volume in leachate BH3 and the results are outlined below. The results are compared to the EPA Interim Guideline Values for the Protection of Groundwater in Ireland:

Batch Number	1					
Date of Receipt	21/07/10	EPA Interim Guideline Values	LOD	Units	Method No.	
pH [#]	7.26	6.5 - 9.5	<0.01	pH units	TM073	
Electrical Conductivity# @25°C	1151	1000	<100	μS/cm	TM28/PM11	
Sulphate [#]	193.36	200.00	< 0.05	mg/l	TM038W	
Chloride [#]	26.6	30.0	<0.3	mg/l	TM038W	
Fluoride	<0.3	1.0	<0.3	mg/l	TM027W	
Total Oxidised Nitrogen as N#	3.36	25 (as NO3)	< 0.05	mg/l	TM038W	
Tot Ammonia as N [#]	10.28	0.15	<0.01	mg/l	TM038W	
Arsenic - dissolved #	4.9	10.0	<2.5	μg/l	TM 030W	
Boron - dissolved	433	1000	<12	μg/l	TM 030W	

Cadmium - dissolved #	<0.5	5.0	<0.5	μg/l	TM 030W
Chromium - dissolved#	<1.5	30.0	<1.5	μg/l	TM 030W
Copper - dissolved #	<7	30.0	<7	μg/l	TM 030W
Mercury - dissolved #	<1	1.0	<1	μg/l	TM 030W
Nickel - dissolved #	3	20	<2	μg/l	TM 030W
Lead - dissolved [#]	<5	10.0	<5	μg/l	TM 030W
Zinc - dissolved #	35	100	<3	μg/l	TM 030W
Iron - dissolved #	651	200	<20	μg/l	TM 030W
Manganese - dissolved #	2030	50	<2	μg/l	TM 030W
Calcium - dissolved [#]	166.2	200.0	<0.2	mg/l	TM 030W
Magnesium - dissolved [#]	33.5	50.0	<0.1	mg/l	TM 030W
Potassium - dissolved [#]	36.8	5.0	<0.1	mg/l	TM 030W
Sodium - dissolved [#]	33.6	150.0	<0.1	mg/l	TM 030W
Molybdate Reactive Phosphorou	53	30	<5	μg/l	TM 030W
BOD*	NDP	.10 (Brinking			subcontracted
Total Cyanide*	<40 NDo Siried See tab See tab ND	10 Drinking water 50)	<40	μg/l	subcontracted
VOCs TICs	NDoses	, to	<100	μg/l	TM15/PM10
VOCs #	see tab		<1-5	μg/l	TM15/PM10
SVOCs (dissolved)	ge see tab		<10	μg/l	TM16/PM9
SVOC TICs 40	ND		<100	μg/l	TM16/PM9
Li i (00-040) (dissolved)	<10	10	<10	μg/ l	TM5/PM9
onsente					

2.1 Interpretation of Leachate Results

Most parameters were within the IGV guideline values. The only values that exceeded the guideline values are outlined in yellow (i.e. EC, Ammonia, Iron, Manganese, Potassium and phosphorus and Cyanide). None of these parameters are List I substances.

When comparing the above Leachate results to leachates sampled from other landfills (i.e. Table 7.2 EPA Landfill Site Design, 2000) most results are well below the minimum overall range for a landfill that is in Stage IV of the degradation cycle and generally a large factor below minimum leachate concentrations.

It is concluded that the risk from this landfill to the adjacent surface water is insignificant.

Surface Water Monitoring: 4)

Batch Number	1 1		1	EQSs for Surface	LOD	Units	Method	
Date of Receipt	21/07/10	21/07/10	21/07/10	Waters	LOD	Onits	No.	
рН#	7.10	~	7.03		<0.01	pH units	TM073	
Electrical Conductivity# @25°C	92	~	96	1000	<100	μS/cm	TM28/PM11	
Total Suspended Solids	11	~	11		<10	mg/l	TM037W	
Total Dissolved Solids	~	~	~		<35	mg/l	TM020W	
Sulphate#	11.01	~	11.70	200.00	<0.05	mg/l	TM038W	
Chloride [#]	11.7	~	11.8	250.0	<0.3	mg/l	TM038W	
Fluoride	<0.3	~	<0.3	1.0	<0.3	mg/l	TM027W	
Total Oxidised Nitrogen as N#	1.00	~	0.52	50.00	<0.05	mg/I	TM038W	
Tot Ammonia as N#	0.09	~	0.09	0.02	<0.01	mg/l	TM038W	
Arsenic - dissolved #	<2.5	~	<2.5	`25	<2.5	μg/l	TM 030W	
Boron - dissolved	<12	~	<12	2000	<12	μg/l	TM 030W	
Cadmium - dissolved #	<0.5	~	<0.5	5.0	<0.5	μg/l	TM 030W	
Chromium - dissolved #	<1.5	2	<1.5	30.0	<1.5	μg/l	TM 030W	
Copper - dissolved #	<7	~	<7	30	<7	μg/l	TM 030W	
Mercury - dissolved #	<1	~	<1	1.0	<1	μg/l	TM 030W	
Nickel - dissolved #	<2	2	<2 ruse	50	<2	μg/l	TM 030W	
Lead - dissolved #	<5	~	othe.	10	<5	μg/l	TM 030W	
Zinc - dissolved #	32	~ onl	of art 25	100	<3	μg/l	TM 030W	
Iron - dissolved #	<5 32 471 5 9.9 2.318 471 49.6 87.6	35° ced	462	1000	<20	μg/l	TM 030W	
Manganese - dissolved #	5	Dirigalitie	4	300	<2	μg/l	TM 030W	
Calcium - dissolved#	9.9	offer?	10.5		<0.2	mg/l	TM 030W	
Magnesium - dissolved#	2.357	O ~	2.3		<0.1	mg/l	TM 030W	
Potassium - dissolved [#]	49.7yile	~	1.6		<0.1	mg/l	TM 030W	
Sodium - dissolved [#]	7.6	~	7.9		<0.1	mg/l	TM 030W	
Molybdate Reactive Phosphorou	ZIIL 54	2	63		<5	μg/l	TM 030W	
Dissolved Oxygen	9	~	9		<1	mg/l	TM059	
COD	54	2	53		<7	mg/l	TM057W	
TOC	~	~	~		<1	mg/l	TM060W	
Total Alkalinity as CaCO3#	31	~	27		<1	mg/l	TM032W	
BOD*	NDP	~	NDP				subcontracted	
Total Cyanide*	<40	~	<40	10	<40	μg/l	subcontracted	
Total Coliforms* (Presumptive)	2	2	~		<3	mpn/g	subcontracted	
Faecal Coliforms* (Presumptive	~	~	~		<3	mpn/g	subcontracted	
VOCs TICs	ND	~	~		<100	μg/l	TM15/PM10	
VOCs#	see tab	~	~		<1-5	μg/l	TM15/PM10	
SVOCs (dissolved)	2	~	~		<10	μg/l	TM16/PM9	
SVOC TICs	~	~	~		<100	μg/l	TM16/PM9	
EPH (C8-C40) (dissolved) # SS	<10	<10	<10	10	<10	μg/ l	TM5/PM9	

4.1 Interpretation of Surface Water resultsFurther testing of surface water samples was conducted due to the high petroleum readings from samples taken on the 3rd June. No high levels of

petroleum were detected on this occasion indicating that the source was not from the landfill. Ammonia readings did however exceed the EQSs values. As the Ammonia levels were the same up-stream and down stream of the landfill it is concluded that the impact from the landfill is imperceptible.

The initial Moderate Risk Rating for this site was based on a 50% score for SPR 8 & 9. Based on the information obtained in the Tier II report as well at the further sampling and analysis undertaken it is concluded that the waste mass has largely biodegraded and that the contamination levels in the landfill are very low. There is a direct drainage connection to the adjacent stream but no perceivable impact from the landfill has been found. It is therefore concluded that this landfill poses a "Low Risk" to the environment and that no Quantitative Risk assessment is required. The revised Site Conceptual Model as outlined on page 37 of the Tier II report is therefore valid.

6) Validation Report and further monitoring

The topsoil on the site has been re-worked to give a 250mm layer over the landfill. This was completed last year. The site was also planted with grass seed.

It is proposed to sample the site (1No teachate well, 1No. Groundwater well and 2No. Surface Water samples) during the summer of 2011 to confirm the Low Risk status of this site.

A copy of this letter along with the sample and analysis report is attached in the accompanying CD.

If you have any queries on the above please do not hesitate to contact me on 021 453 2751.

Yours faithfully,

Kieran Coffey Environment Directorate Cork County Council

cc. Nicholas Bond, File

Attachments: Appendix 1 - Sampling and Analysis Reports CD with all above information in PDF format

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780

Fax: +44 (0) 1244 833781

No.4225

Kieran Coffey Attention:

23rd August 2010 Date:

Your reference : Newmarket Landfill

Test Report 10/3442 Our reference:

Location:

Cork County Council

Inniscarra Cork

Date samples received : 21/07/10

Final Report Status:

Issue:

Four samples were received for analysis on 21st July 2010 which was completed on 23rd August 2010. Please find attached our Test Report

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

All interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

which should be read with notes at the end of the report and should include all sections if reproduced.

J W Farrell- Jones CChem FRSC **Chartered Chemist**

Client Name: Cork County Council Report: Liquids

Reference: Newmarket Landfill

Location: -

Contact: Kieran Coffey Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.: 10/3442 H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HN0

JE Job No.:	10/3442						H=H ₂ SO ₄ , Z	Z=ZnAc, N=l	NaOH, HN=	HN0 ₃			
J E Sample No.	1-5	6-9	10-12	13-16									
Sample ID	ВН3	SW1	SW2	SW3									
Depth	-	-	-	-									
COC No / misc													
												ee attached riations and	notes for all acronyms
Containers	VHPG	VHPG	VHPG	VHPG									·
Sample Date	16/07/10	16/07/10	16/07/10	16/07/10									
Sample Type	Water	Water	Water	Water							NDP - No deter	mination possible	
Batch Number	1	1	1	1									Method
Date of Receipt	21/07/10	21/07/10	21/07/10	21/07/10							LOD	Units	No.
pH [#]	7.26	7.10	~	7.03							<0.01	pH units	TM073
Electrical Conductivity# @25°C	1151	92	~	96							<100	μS/cm	TM28/PM11
Total Suspended Solids	~	11	~	11							<10	mg/l	TM037W
Total Dissolved Solids	~	~	~	~							<35	mg/l	TM020W
Sulphate [#]	193.36	11.01	~	11.70							< 0.05	mg/l	TM038W
Chloride [#]	26.6	11.7	~	11.8							<0.3	mg/l	TM038W
Fluoride	<0.3	<0.3	~	<0.3							<0.3	mg/l	TM027W
Total Oxidised Nitrogen as N#	3.36	1.00	~	0.52				15e.			<0.05	mg/l	TM038W
Tot Ammonia as N#	10.28	0.09	~	0.09	or inspection			ner			<0.01	mg/l	TM038W
							14. VA	<u> </u>					
Arsenic - dissolved #	4.9	<2.5	~	<2.5		Ġ.	Office gran				<2.5	μg/l	TM 030W
Boron - dissolved	433	<12	~	<12		205°	59,				<12	μg/l	TM 030W
Cadmium - dissolved #	<0.5	<0.5	~	<0.5		DILLOUIS	ľ				<0.5	µg/l	TM 030W
Chromium - dissolved #	<1.5	<1.5 <7	~	<1.5 <7	iji	n rice					<1.5	μg/l	TM 030W
Copper - dissolved # Mercury - dissolved #	<7	<1	~	<1	-30° C	MIL					<7 <1	μg/l	TM 030W
Nickel - dissolved #	<1 3	<2	~	<2 /	ांगि वृति						<2	μg/l μg/l	TM 030W
Lead - dissolved #	<5	<5		<5	05/1						<5	μg/l	TM 030W
Zinc - dissolved #	35	32	~	25 0	0-						<3	μg/l	TM 030W
Iron - dissolved #	651	471	~	462							<20	μg/l	TM 030W
Manganese - dissolved #	2030	5	~	25 n of							<2	μg/l	TM 030W
Calcium - dissolved#	166.2	9.9	~	10.5							<0.2	mg/l	TM 030W
Magnesium - dissolved#	33.5	2.3	~	2.3							<0.1	mg/l	TM 030W
Potassium - dissolved#	36.8	1.7	~	1.6							<0.1	mg/l	TM 030W
Sodium - dissolved#	33.6	7.6	~	7.9							<0.1	mg/l	TM 030W
Molybdate Reactive Phosphor	53	54	~	63							<5	μg/l	TM 030W
Dissolved Oxygen	~	9	~	9							<1	mg/l	TM059
COD	55	54	~	53							<7	mg/l	TM057W
TOC	~	~	~	~							<1	mg/l	TM060W
Total Alkalinity as CaCO3#	~	31	~	27							<1	mg/l	TM032W
BOD*	NDP	NDP	~	NDP									subcontracted
Total Cyanide*	<40	<40	~	<40							<40	μg/l	subcontracted
Total Cyanide Total Coliforms* (Presumptive	~	~	~	~							<3	mpn/g	subcontracted
Faecal Coliforms* (Presumptive	~	~	~	~							<3	mpn/g	subcontracted
, , , , , , , , , , , , , , , , , , ,												19	
VOCs TICs	ND	ND	~	~							<100	μg/l	TM15/PM10
VOCs #	see tab	see tab	~	~							<1-5	μg/l	TM15/PM10
SVOCs (dissolved)	see tab	~	~	~							<10	μg/l	TM16/PM9
SVOC TICs	ND	~	~	~							<100	μg/l	TM16/PM9
EPH (C8-C40) (dissolved) #SS	<10	<10	<10	<10							<10	μg/ l	TM5/PM9

Client Name: Cork County Council SVOC Report : LIQUID

Reference: Newmarket Landfill

Location:

Kieran Coffey Contact:

JE Job No.:	10/3442								-		
J E Sample No.	1-5								Ĭ		
Sample ID	ВН3										
Depth	-										
COC No / misc										ee attached iations and a	notes for all
Containers	VHPG								abbiev	iations and t	acronyma
Sample Date	16/07/10										
Sample Type	Water										
Batch Number	1										Method
Date of Receipt	21/07/10	,							LOD	Units	No.
Phenois	21/01/10										
2-Chlorophenol	<10								<10	μg/ l	TM16/PM9
2-Methylphenol	<10	,							<10	μg/ l	TM16/PM9
2-Nitrophenol	<10								<10	μg/ l	TM16/PM9
2,4-Dichlorophenol	<10								<10	μg/ l	TM16/PM9
2,4-Dimethylphenol	<10								<10	μg/ l	TM16/PM9
2,4,5-Trichlorophenol	<10								<10	μg/ l	TM16/PM9
2,4,6-Trichlorophenol	<10								<10	μg/ l	TM16/PM9
4-Chloro-3-methylphenol 4-Methylphenol	<10 <10								<10 <10	μg/ l	TM16/PM9 TM16/PM9
4-Nitrophenol	<10								<10	μg/ l μg/ l	TM16/PM9
Pentachlorophenol	<10								<10	μg/ l	TM16/PM9
Phenol	<10								<10	μg/ l	TM16/PM9
PAHs										1	
2-Chloronaphthalene	<10		Consent				0		<10	μg/ l	TM16/PM9
2-Methylnaphthalene	<10						150		<10	μg/ l	TM16/PM9
Naphthalene	<10					,	het		<10	μg/ l	TM16/PM9
Acenaphthylene	<10					1. 40	γ.		<10	μg/ l	TM16/PM9
Acenaphthene Fluorene	<10 <10					My all,			<10 <10	μg/ l	TM16/PM9 TM16/PM9
Phenanthrene	<10				ුළු	7601			<10	μg/ l μg/ l	TM16/PM9
Anthracene	<10				705	20			<10	μg/ l	TM16/PM9
Fluoranthene	<10	,			Phiedh				<10	μg/ l	TM16/PM9
Pyrene	<10			is in	Mei Je				<10	μg/ l	TM16/PM9
Benz(a)anthracene	<10			Secre	WILL				<10	μg/ l	TM16/PM9
Chrysene	<10			inspir					<10	μg/ l	TM16/PM9
Benzo(bk)fluoranthene	<10		✓	of Ville					<10	μg/ l	TM16/PM9
Benzo(a)pyrene	<10 <10			Cob,					<10	μg/ l	TM16/PM9 TM16/PM9
Indeno(123cd)pyrene Dibenzo(ah)anthracene	<10		, ŏ						<10 <10	μg/ l μg/ l	TM16/PM9
Benzo(ghi)perylene	<10		cent						<10	μg/ l	TM16/PM9
Phthalates		,	COR								
Bis(2-ethylhexyl) phthalate	<10								<10	μg/ l	TM16/PM9
Butylbenzyl phthalate	<10								<10	μg/ l	TM16/PM9
Di-n-butyl phthalate	<10								<10	μg/ l	TM16/PM9
Di-n-Octyl phthalate	<10								<10	μg/ l	TM16/PM9
Diethyl phthalate Dimethyl phthalate	<10 <10								<10 <10	μg/ l	TM16/PM9 TM16/PM9
Other SVOCs	<10								<10	μg/ l	TIVITO/FIVIS
1,2-Dichlorobenzene	<10	,							<10	μg/ l	TM16/PM9
1,2,4-Trichlorobenzene	<10								<10	μg/ l	TM16/PM9
1,3-Dichlorobenzene	<10								<10	μg/ I	TM16/PM9
1,4-Dichlorobenzene	<10								<10	μg/ l	TM16/PM9
2-Nitroaniline	<10								<10	μg/ l	TM16/PM9
2,4-Dinitrotoluene	<10								<10	μg/ l	TM16/PM9 TM16/PM9
2,6-Dinitrotoluene 3-Nitroaniline	<10 <10								<10 <10	μg/ l μg/ l	TM16/PM9 TM16/PM9
4-Bromophenylphenylether	<10								<10	μg/ I	TM16/PM9
4-Chloroaniline	<10	,							<10	μg/ l	TM16/PM9
4-Chlorophenylphenylether	<10								<10	μg/ l	TM16/PM9
4-Nitroaniline	<10								<10	μg/ l	TM16/PM9
Azobenzene	<10								<10	μg/ l	TM16/PM9
Bis(2-chloroethoxy)methane	<10								<10	μg/ l	TM16/PM9
Bis(2-chloroethyl)ether	<10								<10	μg/ l	TM16/PM9
Carbazole Dibenzofuran	<10								<10	μg/ l	TM16/PM9 TM16/PM9
Dibenzofuran Hexachlorobenzene	<10 <10								<10 <10	μg/ l μg/ l	TM16/PM9 TM16/PM9
Hexachlorobutadiene	<10								<10	μg/ I	TM16/PM9
Hexachlorocyclopentadiene	<10								<10	μg/ l	TM16/PM9
Hexachloroethane	<10								<10	μg/ I	TM16/PM9
Isophorone	<10								<10	μg/ l	TM16/PM9
N-nitrosodi-n-propylamine Nitrobenzene	<10 <10								<10 <10	μg/ l μg/ l	TM16/PM9 TM16/PM9

Client Name: Cork County Council VOC Report: LIQUID

Reference: Newmarket Landfill

Location: -

Contact: Kieran Coffey

JE Job No.: 10/3442

JE Job No.:	10/3442									1		
J E Sample No.	1-5	6-9										
Sample ID	ВН3	SW1							j l			
•	-	-										
Depth	-	-							}			
COC No / misc												
Containers	VHPG	VHPG								Please s	ee attached	notes for all
Sample Date	16/07/10	16/07/10								abbrev	riations and	acronyms
Sample Type	Water	Water										
Batch Number	1	1										
										LOD	Units	Method No.
Date of Receipt	21/07/10	21/07/10										
Dichlorodifluoromethane	<2	<2								<2	μg/l	TM15/PM10
Methyl Tertiary Butyl Ether Chloromethane #	<2 <3	<2 <3								<2 <3	μg/l μg/l	TM15/PM10 TM15/PM10
Vinyl Chloride	<2	<2								<2	μg/l	TM15/PM10
Bromomethane	<1	<1								<1	μg/l	TM15/PM10
Chloroethane #	<3	<3								<3	μg/l	TM15/PM10
Trichlorofluoromethane #	<3	<3								<3	μg/l	TM15/PM10
1,1-Dichloroethene #	<6	<6								<6	μg/l	TM15/PM10
Carbon Disulphide #	NA -2	NA -2								<3	μg/l	TM15/PM10
Dichloromethane # trans-1-2-Dichloroethene #	<3 <3	<3 <3								<3 <3	μg/l μg/l	TM15/PM10 TM15/PM10
1.1-Dichloroethane #	<3	<3								<3	μg/l	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3								<3	μg/l	TM15/PM10
2,2-Dichloropropane	<1	<1								<1	μg/l	TM15/PM10
Bromochloromethane #	<2	<2								<2	μg/l	TM15/PM10
Chloroform #	<3	<3					met use.			<3	μg/l	TM15/PM10
1,1,1-Trichloroethane #	<3	<3					ve.			<3	μg/l	TM15/PM10 TM15/PM10
1,1-Dichloropropene * Carbon tetrachloride *	<3 <2	<3 <2					Let V			<3 <2	μg/l μg/l	TM15/PM10
1.2-Dichloroethane #	<2	<2				. 0	The same			<2	μg/l	TM15/PM10
Benzene #	<3	<3				17. My				<3	μg/l	TM15/PM10
Trichloroethene #	<3	<3			<u>_</u>	off of d				<3	μg/l	TM15/PM10
1,2-Dichloropropane #	<2	<2			محوت	91				<2	μg/l	TM15/PM10
Dibromomethane #	<3	<3			W. W.	۲				<3	μg/l	TM15/PM10
Bromodichloromethane # cis-1-3-Dichloropropene #	<3 <2	<3 <2			US TOOL					<3 <2	μg/l	TM15/PM10 TM15/PM10
Toluene #	<3	<3		its	Dr. Cot					<3	μg/l μg/l	TM15/PM10
trans-1-3-Dichloropropene #	<2	<2		20e0 C	4					<2	μg/l	TM15/PM10
1,1,2-Trichloroethane #	<2	<2		thoth						<2	μg/l	TM15/PM10
Tetrachloroethene #	<3	<3	4	OI VITE						<3	μg/l	TM15/PM10
1,3-Dichloropropane #	<2	<2		COB,						<2	μg/l	TM15/PM10
Dibromochloromethane #	<2 <2	<2 <2	Consento	Ŭ						<2 <2	μg/l	TM15/PM10 TM15/PM10
1,2-Dibromoethane # Chlorobenzene #	<2	<2	enl							<2	μg/l μg/l	TM15/PM10
1,1,1,2-Tetrachloroethane #	<2	<2	COUSE							<2	μg/l	TM15/PM10
Ethylbenzene #	<3	<3	C							<3	μg/l	TM15/PM10
p/m-Xylene #	<5	<5								<5	μg/l	TM15/PM10
o-Xylene #	<3	<3								<3	μg/l	TM15/PM10
Styrene #	<2	<2								<2	μg/l	TM15/PM10
Bromoform #	<2 <3	<2 <3								<2 <3	μg/l	TM15/PM10 TM15/PM10
Isopropylbenzene # 1,1,2,2-Tetrachloroethane	<3 <4	<3 <4								<3 <4	μg/l μg/l	TM15/PM10
Bromobenzene #	<2	<2								<2	μg/l	TM15/PM10
1,2,3-Trichloropropane #	<3	<3								<3	μg/l	TM15/PM10
Propylbenzene #	<3	<3								<3	μg/l	TM15/PM10
2-Chlorotoluene #	<3	<3								<3	μg/l	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3								<3	μg/l	TM15/PM10
4-Chlorotoluene [#] tert-Butylbenzene [#]	<3 <3	<3 <3								<3 <3	µg/l	TM15/PM10 TM15/PM10
tert-Butylbenzene " 1,2,4-Trimethylbenzene "	<3 <3	<3 <3								<3 <3	μg/l μg/l	TM15/PM10
sec-Butylbenzene #	<3	<3								<3	μg/l	TM15/PM10
4-Isopropyltoluene #	<3	<3								<3	μg/l	TM15/PM10
1,3-Dichlorobenzene #	<3	<3								<3	μg/l	TM15/PM10
1,4-Dichlorobenzene #	<3	<3								<3	μg/l	TM15/PM10
n-Butylbenzene #	<3	<3								<3	μg/l	TM15/PM10
1,2-Dichlorobenzene #	<3	<3								<3	μg/l	TM15/PM10
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	<2 <3	<2 <3								<2 <3	μg/l μg/l	TM15/PM10 TM15/PM10
Hexachlorobutadiene #	<3	<3								<3	μg/l	TM15/PM10
Naphthalene	<2	<2								<2	μg/l	TM15/PM10
				1		1	1	l	1	<3	μg/l	TM15/PM10

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. Your final report will reflect this, with non-MCERTS results on separate pages.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Asbestos screens where requested will be undertaken by a UKAS accredited laboratory.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory. It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples. All samples are treated as groundwaters and analysis performed on settled samples unless we are instructed otherwise.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any analysis that may be compromised highlighted on your schedule/ report by the use of a symbol.

The use of any of the following symbols indicates that the sample was deviating and the test result may be unreliable:

- \$ sample temperature on receipt considered inappropriate for analysis requested
- ^ samples exceeding recomended holding times
- & samples received in inappropriate containers (e.g. volatile samples not submitted in VOC jars/vials)
- no sampling date given, unable to confirm if samples are with acceptable holding times

ABBREVIATIONS and ACRONYMS USED

- # UKAS accredited
- M MCERTS accredited
- NAD No Asbestos Detected
- ND None Detected (usually refers to VOC and/SVOC TICs)
- SS Calibrated against a single substance
- * analysis subcontracted to a Jones Environmental approved laboratory.
- W Results expressed on as received basis
- + Failed AQC results should be considered as indicative only and are not accredited.
- ++ Result outside calibration range, may be possible to re-run with higher detection limits