WYG Ireland

part of the **WYG** group

Monaghan County Council

Glaslough Waste Water Treatment Works - Waste Water Discharge Request for Further Information Licence Application (D0347-01)

Date: June 2010

1 Introduction

1.1 Background

This document forms Monaghan County Council's response to the EPA correspondence of 31st May 2010 relating to the Glaslough WWDLA (D0347-01) and compliance requirements in accordance with Regulation 16 of the Waste Water Discharge (Authorisation) Regulations 2007.

2 Regulation 16 Compliance Requirements

2.1 Clarify the frequency of sludge removal from the settlement ponds and method of sludge disposal;

The sludge pond at Glaslough has not been filled to the point that it requires sludge removal. One sludge pond is used at a time, hence when this pond fills up there will be a switch over to the second sludge pond. This will allow for the sludge in sludge pond 1 to dry up. This sludge will then be sent to the sludge press at Monaghan WWTP for pressing and further use.

2.2 Provide a summary of monitoring undertaken at the facility over the last twelve months, and provide a summary of the monitoring results including: influent flow rates, flow rates between ponds and effluent discharge rate, quality of effluent as sampled between ponds and the final effluent discharge to the receiving water, groundwater monitoring wells, lysimeters/piezometers ambient receiving water etc.;

Sampling Regime

Grab water samples are taken from the ICW influent and effluent points and upstream and downstream monitoring points. Groundwater samples are collected from eight piezometric wells (BH1-BH8) placed within the ICW system and along the suspected flow paths of contaminants. Samples of pond water infiltration are collected from six gravity pan lysimeters (L1-L6) placed 700 mm below the pond beds of the first three ponds (see **Map 1**).

The collected water samples are analysed for the following parameters:

- Nitrogen: total nitrogen, ammonia, nitrate.
- Phosphorus: total phosphorus, molybdate reactive phosphate.
- Organic matter: BOD, COD, SS.

The following physical parameters are also measured: dissolved oxygen, pH, temperature, redox potential, electrical conductivity, total and faecal coliforms.

All samples are collected approximately weekly and analysed the same day according to standard methods.

Sampling Results

Table 1 below provides a summary of the influent and effluent monitoring data taken over the last twelve months (mean and max values). The number of samples taken is outlined by *n*.

TABLE 1								
Parameter		Influent 🔬 🔬 Effluent						
Parameter	Mean	Max	ALOT	Mean	Max	n		
COD (mg O_2/L)	1091	3650	N°132	37	101	135		
BOD_5 (mg O_2/L)	769	2450	W121	5	22	130		
TSS (mg/L)	2377	240100	5 128	8	34	127		
Total Nitrogen (mg N/L)	44.63	90° °	100	2.07	9.2	107		
Total Phosphorus (mg P/L)	7.48	21,5	130	0.15	0.95	135		
Ammonia (mg N/L)	34.59	x1.3	132	0.82	8.2	139		
Nitrate (mg N/L)	6.81	<mark>∛</mark> 32.3	112	0.31	1.6	121		
Molybdate Reactive	4.29 en	12	128	0.09	0.9	134		
Phosphate (mg P/L)	Cons							

Table 2 below provides a summary of the upstream and downstream monitoring data taken over the lasttwelve months (mean and max values). The number of samples taken is outlined by *n*.

TABLE 2	TABLE 2										
Parameter		Upstream		C	n						
Parameter	Mean	Max	n	Mean	Max	n					
COD (mg O_2/L)	35	101	121	34	101	120					
BOD_5 (mg O_2/L)	3	30	114	3	12	114					
TSS (mg/L)	10	96	115	8	90	115					
Total Nitrogen (mg N/L)	1.99	11.2	94	1.94	6.1	94					
Total Phosphorus (mg P/L)	0.14	0.76	120	0.13	0.56	119					
Ammonia (mg N/L)	0.49	1.5	121	0.48	1.5	119					
Nitrate (mg N/L)	0.94	2.2	111	0.94	2.1	111					
Molybdate Reactive	0.08	0.3	116	0.08	0.3	115					
Phosphate (mg P/L)											

TABLE 3								
Parameter	BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH8
COD (mg O_2/L)	15	12	47	12	9	34	41	31
$BOD_5 (mg O_2/L)$	2.24	1.31	6.03	1.26	2.65	3.69	6.42	4.51
Total Nitrogen (mg N/L)	0.89	0.92	4.75	0.83	0.72	1.97	3.43	2.30
Total Phosphorus (mg P/L)	0.27	0.36	0.95	0.22	0.16	0.67	0.29	0.27
Ammonia (mg N/L)	0.40	0.61	4.89	0.12	0.67	2.34	4.67	1.47
Nitrate (mg N/L)	0.19	0.26	0.63	0.36	0.29	0.67	0.61	0.37
Molybdate Reactive Phosphate (mg P/L)	0.17	0.24	0.25	0.13	0.15	0.29	0.13	0.11

Table 3 below provides a summary of groundwater quality at the ICW (mean values)

Table 4 below provides the monthly water discharge (m³ day⁻¹) between ICW ponds (mean values)

TABLE 4							
			Flow	Rate (m ³ c	lay ⁻¹⁾		
Month	Influent	Sludge Pond	Outflow Pond 1	Outflow Pond 2	Outflow Pond 3	Outflow Pond 4	Effluent
Mar 2009	99.67	81.92	88.00	81.37	92.64	106.95	83.09
Apr 2009	130.36	114.51	108.91	94.94	88.81	97.98	76.73
May 2009	118.65	100.00	123.84	120.89	140.82	165.18	142.77
June 2009	85.10	72.47	76.02	64.38	61.62	55.05	29.90
July 2009	118.50	101.72	97.93 🦽	90.45	91.13	101.28	78.12
Aug 2009	137.74	123.21		ñĭ14.27	116.36	128.30	119.27
Sept 2009	76.24	55.95	73.675 11 69.90 19	74.34	107.72	131.20	111.97
Oct 2009	106.71	87.70	69.90	53.29	36.50	37.88	21.98
Nov 2009	249.11	225.75	260.67	273.33	312.48	349.85	358.70
Dec 2009	112.16	94.79	3 4.90	157.45	249.82	317.98	307.49
Jan 2010	100.80	82.73	103.53	109.55	130.59	160.34	153.90
Feb 2010	92.79	73.96	83.98	85.63	92.24	110.35	102.39
Mar 2010	65.99	53.98	56.64	49.90	41.60	36.13	22.56

Table 5 below provides the water quality of pond water infiltrating to the lysimeters (mean values

TABLE 5	TABLE 5									
Parameter	L1	L2	L3	L4	L5	L6				
COD (mg O_2/L)	47	74	9	135	56	278				
$BOD_5 (mg O_2/L)$	8.06	5.83	1.70	4.04	8.11	2.45				
Total Nitrogen (mg N/L)	16.56	4.89	1.60	12.52	16.09	7.94				
Total Phosphorus (mg P/L)	0.34	0.38	0.27	0.41	0.55	0.16				
Ammonia (mg N/L)	8.45	6.05	1.77	11.17	16.72	5.38				
Nitrate (mg N/L)	5.72	0.99	0.50	2.01	1.25	2.75				
Molybdate Reactive Phosphate (mg P/L)	1.90	1.09	1.02	1.11	0.61	2.37				

2.3 Provide a map of the integrated constructed wetland showing the location for all groundwater monitoring wells, lysimeters/piezometers installed on-site; include 6 digit national grid references, 6E, 6N.

Map 1 overleaf displays the locations of all monitoring boreholes and lysimeters installed on-site.

TABLE 6		
Piezometer	Easting	Northing
BH1	272184	342261
BH2	272166	342218
BH3	272140	342183
BH4	272228	342200
BH5	272100	342049
BH6	272098	341864
BH7	272185_ <mark>م</mark>	342048
BH8	2721 2	342177
	D Puredt	

Table 6 below displays the NGR of groundwater monitoring points at ICW:

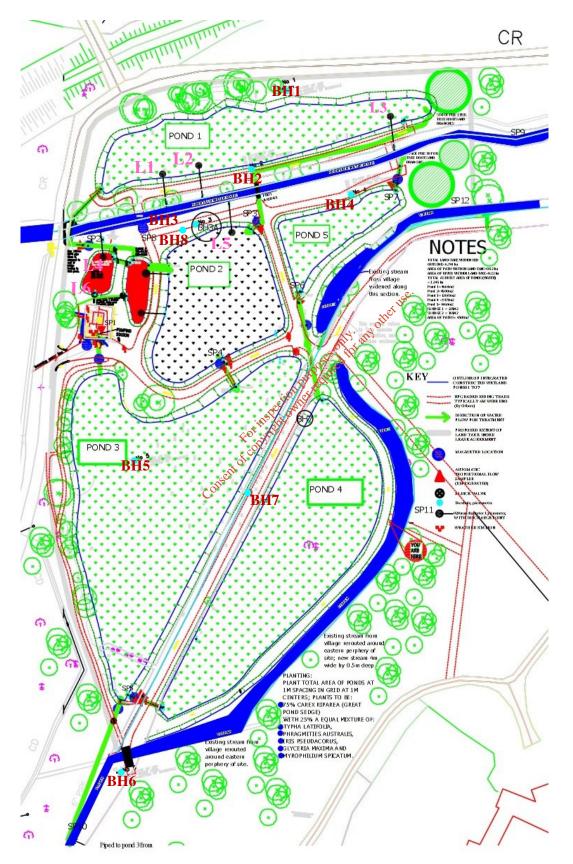

Table 7 below displays the NGR of lysimeters installed at Glaslough ICW:

TABLE 6	<u>~</u>	
Lysimeters	Easting	Northing
L1 _{Conse}	272057	342221
L2	272078	342226
L3	272189	342254
L4	272022	342173
L5	272097	342187
L6	272017	342151

2.4 Provide details of the maximum and average discharge parameter concentrations (including number of samples results are based upon) for BOD, COD, Suspended Solids, Orthophosphates, Total Phosphorous, Total Nitrogen and ammonia;

Table 8 below provides a summary of the influent and effluent monitoring data taken over the last twelve months (mean and max values). The number of samples taken is outlined by *n*.

Parameter		Influent			Effluent			
Parameter	Mean	Max	n	Mean	Max	n		
COD (mg O_2/L)	1091	3650	132	37	101	135		
BOD_5 (mg O_2/L)	769	2450	121	5	22	130		
TSS (mg/L)	2377	24010	128	8	34	127		
Total Nitrogen (mg N/L)	44.63	90	100	v ⁵ 2.07	9.2	107		
Total Phosphorus (mg P/L)	7.48	21.5	130 💉	0.15	0.95	135		
Ammonia (mg N/L)	34.59	71.3	132	0.82	8.2	139		
Nitrate (mg N/L)	6.81	32.3	20112	0.31	1.6	121		
Molybdate Reactive	4.29	12	128	0.09	0.9	134		
Phosphate (mg P/L)		OUR	QUIL					

Table 9 below provides a summary of the upstream and downstream monitoring data taken over the last twelve months (mean and max values). The number of samples taken is outlined by *n*.

TABLE 9	ente						
Parameter	CONSE	Upstream		C	n		
Parameter	Mean	Mean Max		Mean	Max	n	
COD (mg O_2/L)	35	101	121	34	101	120	
BOD5 (mg O ₂ /L)	3	30	114	3	12	114	
TSS (mg/L)	10	96	115	8	90	115	
Total Nitrogen (mg N/L)	1.99	11.2	94	1.94	6.1	94	
Total Phosphorus (mg P/L)	0.14	0.76	120	0.13	0.56	119	
Ammonia (mg N/L)	0.49	1.5	121	0.48	1.5	119	
Nitrate (mg N/L)	0.94	2.2	111	0.94	2.1	111	
Molybdate Reactive	0.08	0.3	116	0.08	0.3	115	
Phosphate (mg P/L)							

2.5 Provide details of the site investigations undertaken, including trial holes and boreholes installed, soil testing, prior to construction of the Integrated Constructed Wetlands. Provide a conceptual cross section of the site based on the investigations completed prior to construction and information gathered during construction. In addition provide details of confirmation testing undertaken during construction, including sign off of construction works; Provide details to demonstrate that permeability of the ponds is a minimum of $k = 1 \times 10^{-8}$ m/s.

Appendix A contains Glaslough Site Investigation reports. Cross sections of the site are contained in **Appendix B**.

Table 10 below	shows t	he permeability	of	ponds	as	calculated	the	rate	of	infiltration	to	the
lysimeters.						othe						
						ally any						

.e.

TABLE 10									
Dondo	Permeability (x 10	Permeability (x 10 ² m/s)							
Ponds	Mean For the	Standard Deviation	Number of samples						
Sludge Pond	4.38	3.92	15						
Pond 1	3.82	1.14	15						
Pond 2	11.9 conse	8.19	15						

2.6 An emergency overflow is identified at the pumping station at the inlet works, clarify if this emergency overflow discharges to the receiving water or is directed to an integrated constructed wetland pond, include grid reference of the discharge point; and

The emergency overflow located at the pumping station is directed to discharge into Pond 2 (NGR 272054, 342128). This emergency overflow was originally designed to discharge to the Mountain Water River just upstream of the outfall locations at NGR 272029E, 342194N.

2.7 Demonstrate that the effluent discharge, via the primary discharge point, to the receiving water does not cause an exceedence of the European Communities Environmental Objectives (Surface Water) Regulations 2009 for parameters including BOD, Total Ammonia, and Molybdate Reactive Phosphorous (MRP).

Mountain Water River

Table 11 below provides an overview of the Mountain Water River in terms of the goal of achieving Good

 Ecological Status. The most important objective within the European Water Framework Directive (WFD) is

 to achieve a 'Good Ecological Status' (GES) for all waters, by 2015 (Source: Blackwater Management Unit

 Action Plan, www.nsshare.com).

TABLE 11			ay on the		
Biological Elements	Supporting	Elements of the second	objective	Date Objective to be Achieved	OVERALL STATUS
Macroinvertebrate (Q)	Physio- Chemical 👌	Ecological Status			
P	M for	∱°P	GES	2021	POOR

As can be seen from **Table 11** above, the overall status of the Mountain Water River is Poor. The date now set for this water body for achieving Good Ecological Status is 2021.

Water Quality & Dilution Capacity

The water quality downstream of the WWTW discharge point is slightly better than the water quality upstream (see **Table 12** and **Table 13** below), which would indicate that the plant is not affecting water quality of the receiving water body.

There is significant dilution available in the Mountain Water River at the primary discharge at mean river flow. Approximately 936 dilutions are available on the basis of an average discharge volume of 123.75m³/day and a mean river flow of 1.34m³/s.

During very dry weather periods there is a very low flow discharge from the ICW or in some cases no discharge flow (*e.g.* there has been no flow from the ICW for May and June 2010). For the purposes of the

95% ile river flow (0.02m³/s), a conservative ICW discharge flow of 10m³/d has been used for the purposes this assessment. However, it should be noted that this is considered the worst case scenario based on historical information. The ICW is not like a conventional waste water treatment plants where the outflow equals the inflow, owing to trans-evaporation coupled with a large free surface area.

During the 95% ile river flow (0.02m³/s), there is significant dilution available in the Mountain Water River at the primary discharge. Approximately, 173 dilutions (worst case) are available on the basis of 95% ile flow of the river and the low flow discharge from the ICW.

TABLE 12						
Parameter		Upstream		C	Downstream	n
Parameter	Mean	Max	n	Mean	Max	n
COD (mg O_2/L)	35	101	121	34	101	120
BOD_5 (mg O_2/L)	3	30	114	3	12	114
TSS (mg/L)	10	96	115	8.	90	115
Total Nitrogen (mg N/L)	1.99	11.2*	94	1 .94	6.1	94
Total Phosphorus (mg P/L)	0.14	0.76	120	o ^{ffre} 0.13	0.56	119
Ammonia (mg N/L)	0.49	1.5	1219 20	0.48	1.5	119
Nitrate (mg N/L)	0.94	2.2	Cox I de	0.94	2.1	111
Molybdate Reactive	0.08	0.3	urpo 116	0.08	0.3	115
Phosphate (mg P/L)			In tool			

*Ammonia effluent concentration elevated due to ponds being trozen for a period during winter 2009-2010. During this time period effluent ammonia was approximately 10 mg/L.

TABLE 13	X COV		
Parameter	Pond water	Monito	oring Points
Parameter	Effluent (95%ile)	Upstream (95%ile)	Downstream (95%ile)
COD (mg O_2/L)	65.20	84.00	74.05
BOD_5 (mg O_2/L)	11.75	8.00	6.08
TSS (mg/L)	28.70	61.50	19.50
Total Nitrogen (mg N/L)	7.40	3.24	3.61
Total Phosphorus (mg P/L)	0.64	0.27	0.28
Ammonia (mg N/L)	6.09*	1.17	1.22
Nitrate (mg N/L)	0.63	1.80	1.65
Molybdate Reactive Phosphate (mg P/L)	0.64	0.18	0.16

* Ammonia effluent concentration elevated due to ponds being frozen for a period during winter 2009-2010. During this time period effluent ammonia was approximately 10 mg/L.

Assimilative Capacity & European Communities Environmental Objectives (Surface Water) Regulations 2009

The Assimilative Capacity of the receiving waters is a measure of its ability or suitability to absorb waste water discharges whilst complying with relevant legislation and water quality objectives.

An overview of the impacts of the effluent discharge on the receiving water with special reference to the European Communities Environmental Objectives (Surface Water) Regulations 2009 is outlined below.

BOD:

Total Amount Discharge to River (Mean Values):

With an average effluent discharge volume of 123.75m³/day, the total amount of BOD discharged to the

Resulting BOD concentration in the River (Mean Values): The resulting BOD concentration in the river resulting for a log of the resulting formula: The resulting BOD concentration in the river resulting from the effluent input can be estimated using the copyright

$$CR = \frac{(C_{back} * Q_{back}) + (C_d * Q_{ab})}{(Q_{back} + Q_d)_{C}}$$

Where;

$$\label{eq:CR} \begin{aligned} & \text{CR} = \text{resulting concentration in river (mg O_2/l)} \\ & \text{C}_d = \text{average concentration in discharge (5 mg O_2/l)} \\ & \text{C}_{\text{back}} = \text{concentration in river u/s of discharge (3 mg O_2/l)} \\ & \text{Q}_{\text{back}} = \text{flow of river (l/d) (average flow 1.34 m^3/s)} = 115,776,000l/d \\ & \text{Q}_d = \text{discharge volume (l/d) 123,750l/d} \\ & 1\text{m}^3\text{/s} = 86,400,000 \text{ l/d} \end{aligned}$$

Therefore:

 $CR = \left[(3 \times 115,776,000) + (5 \times 123,750) \right] / \left[115,776,000 + 123,750 \right]$

Resulting Concentration in River (CR) = $3.002 \text{ mg O}_2/\text{I}$ (based on Mean Values)

Total Amount Discharge to River (95%ile Values):

With a low flow discharge volume of 10m³/day, the total amount of BOD discharged to the Mountain Water River is:

10,000 l/day x 11.75mg/l = 0.11kg/day

Note: A conservative ICW discharge flow of 10m³/d has been used for the purposes this assessment. It should be noted that this is considered the worst case scenario based on historical information.

Resulting BOD Concentration in the River (95%ile Values):

The resulting BOD concentration in the river resulting from the effluent input can be estimated using the following Formula:

$$CR = \frac{(C_{back} * Q_{back}) + (C_d * Q_d)}{(Q_{back} + Q_d)}$$

Where;

Pection puppes only on any other use CR = resulting concentration in river (mg/l) C_d = average concentration in discharge (11,75mg O₂/l) C_{back} = concentration in river u/s of discharge (8mg O₂/l) Q_{back} = flow of river (I/d) (95%ile 0.02 m³/s) = 1,728,000I/d Q_d = discharge volume (I/d) 10,000I/d (conservative discharge flow used) $1m^{3}/s = 86,400,000 l/d$

Therefore:

 $CR = [(8 \times 1,728,000) + (11.75 \times 10,000)] / [1,728,000 + 10,000]]$

Resulting Concentration in River (CR) = 8.022mg N/I

BOD Summary

There is no assimilative capacity for BOD based on the mean or 95% ile BOD standards under S.I. No. 272 of 2009, as the mean and 95% ile concentrations of BOD upstream of the discharge point for 2009-2010

(3mg O₂/I and 8mg O₂/I respectively) are greater than the water quality standards (\leq 1.5 mg O₂/I and \leq 2.6mg O₂/I respectively) (see **Table 14** below).

Based on the average discharge concentration and mean river flow, the BOD load in the discharge will result in a predicted contribution of 0.002mg O_2/I or 0.07%. Based on 95% ile values, a contribution of 0.02mg O_2/I or 0.25% is predicted. Hence, it is predicted that the effluent discharge contributes very marginally to downstream BOD levels (see **Table 14**).

TABLE 14 BOD	ASSIMILA		LATIONS				
Parameter	Values Based on	% Available Capacity	Background (mg N/I)	Effluent Discharge (mg/l)	Contribution from Primary Discharge (mg/l)	Predicted Downstream Quality	Relevant Standard
ROD	Mean	None	3	5	0.002	3.002	≤1.5 mg O ₂ /I
BOD	95%ile	None	8	11.75 m . an	0.02 ¹	8.022	≤2.6 mg O ₂ /I

¹ During very dry weather periods there is a very low flow discharge from the ICW or in some cases no discharge. A conservative ICW discharge flow of 10m³/d has been used for the purposes this assessment. However, it should be noted that this is considered the worst case scenario based on historical information.

Monaghan County Council monitoring results (Data 2009-2010), indicate an average upstream BOD concentration of 3mg O_2/I and 95% ile upstream concentration of 8mg O_2/I and an average downstream monitoring result of 3mg O_2/I /I N and 95% ile concentration of 6.08mg O_2/I . These results would indicate that predicted results are in fact overstating the real impact of the discharge from Glaslough in terms of BOD.

In summary, although the upstream and downstream monitoring results indicate that the river is not achieving the BOD standards stipulated for good status (mean or 95%ile) in the European Communities Objectives (Surface Water) Regulations, 2009 (S.I. No. 272 of 209), the results above and Monaghan County Councils monitoring results (see **Tables 11** and **12**) would indicate that the effluent discharge from the Glaslough WWTW is not having a significant impact on the receiving waters and thereby is not contributing to the failure of this waterbody to comply with the European Communities Objectives (Surface Water) Regulations in terms of BOD.

<u>Ammonia:</u>

Total Amount Discharge to River (Mean Values):

With an average effluent discharge volume of 123.75m³/day, the total amount of ammonia discharged to the Mountain Water River is:

123,750l/day x 0.82mg/l = **0.1kg/day**

Resulting Ammonia Concentration in the River (Mean Values):

The resulting ammonia concentration in the river resulting from the effluent input can be estimated using the following Formula:

CR =
$$\frac{(C_{back} * Q_{back}) + (C_d * Q_d)}{(Q_{back} + Q_d)}$$

 $C_{d} = \text{resulting concentration in river (mg/l)}$ $C_{d} = \text{average concentration in discharge (0.82mg/l); required for any other uses of discharge (0.82mg/l); required for any other use$ 1m³/s = 86,400,000 l/d

Therefore:

 $CR = [(0.49 \times 115,776,000) + (0.82 \times 123,750)] / [115,776,000 + 123,750]$

Resulting Concentration in River (CR) = 0.49035mg/l (based on mean values)

Total Amount Discharge to River (95%ile Values):

With an average effluent discharge volume of 10m³/day, the total amount of ammonia discharged to the Mountain Water River is:

10,000 l/day x 6.09mg/l = 0.06kg/day (see Notes 1 and 2 below)

Note 1: A conservative ICW discharge flow of 10m³/d has been used for the purposes this assessment. It should be noted that this is considered the worst case scenario based on historical information. **Note 2:** Ammonia effluent concentration elevated due the ponds being frozen for a while during winter 2009-2010. During this time period effluent ammonia was approximately 10 mg/L.

Resulting Ammonia Concentration in the River (95%ile Values):

The resulting ammonia concentration in the river resulting from the effluent input can be estimated using the following Formula:

$$CR = \frac{(C_{back} * Q_{back}) + (C_d * Q_d)}{(Q_{back} + Q_d)}$$

Where;

 $\begin{array}{l} CR = resulting concentration in river (mg/l) \\ C_{d} = average concentration in discharge (6.09mg/l) \\ C_{back} = concentration in river u/s of discharge (1.17mg/l) of the transformed of transformed of the transformed of the transformed of the transformed of the transformed of transformed of transformed of the transformed of transf$

Therefore:

 $CR = [(1.17 \times 1728000) + (6.09 \times 10,000)] / [1728000 + 10,000]$

Resulting Concentration in River (CR) = 1.1983mg/l (based on 95%ile values)

Ammonia Summary

There is no assimilative capacity for ammonia based on the mean or 95% ile standards under S.I. No. 272 of 2009, as the average and 95% ile concentrations of ammonia upstream for 2009-2010 (0.49mg N/I and 1.17mg N/I respectively) are greater than the water quality standards (≤ 0.065 mg/I and ≤ 0.14 mg/I respectively) (see **Table 15** below).

Based on the average discharge concentration and mean river flow, the ammonia load in the discharge will result in a predicted contribution downstream of 0.00035mg/l or 0.7%. Based on 95%ile values, a predicted contribution of 0.02830mg/l or 2% is predicted (see **Table 15** above).

TABLE 15 A	MMONIA	ASSIMILATI	VE CALCULATIO	DNS			
Para- meter	Values based on	% Available Capacity	Background (mg N/I)	Effluent Discharge (mg/l)	Contribution from Primary Discharge (mg/l)	Predicted Downsteam Quality	Relevant Standard
•	Mean	None	0.49	0.82 ¹	0.00035	0.49035	≤0.065 (Mean)
Ammonia	95%ile	None	1.17	6.09 ¹	0.02830 ²	1.1983	≤0.14 (95%ile)

¹ Ammonia effluent concentration elevated due the ponds being frozen for a while during winter 2009-2010. During this time period effluent ammonia was approximately 10 mg/L.

² During very dry weather periods there is a very low flow discharge from the ICW or in some cases no discharge. A conservative ICW discharge flow of 10m³/d has been used for the purposes this assessment. However, it should be noted that this is considered the worst case scenario based on historical information.

In summary, although the upstream and downstream monitoring results indicate that the river is not achieving the ammonia standards stipulated for good status (mean or 95%ile) in the European Communities Objectives (Surface Water) Regulations, 2009 (SJNo. 272 of 209), the results above and Monaghan County Councils monitoring results (see Tables 11 and 12) would indicate that the effluent discharge from the Glaslough WWTW is not having a significant impact on the receiving waters and thereby is not contributing to the failure of this waterbody to comply with the European Communities Objectives (Surface Water) Regulations in terms of ammonia. ofcopt

MRP:

Total Amount Discharge to River (Mean Values):

With an average effluent discharge volume of 123.75m³/day, the total amount of MRP discharged to the Mountain Water River is:

123,750l/day x 0.09mg/l = 0.01kg/day

Resulting MRP Concentration in the River (Mean Values):

The resulting MRP concentration in the river resulting from the effluent input can be estimated using the following Formula:

$$CR = \frac{(C_{back} * Q_{back}) + (C_d * Q_d)}{(Q_{back} + Q_d)}$$

Where;

 $\label{eq:CR} \begin{array}{l} \mbox{CR} = \mbox{resulting concentration in river (mg/l)} \\ C_d = \mbox{average concentration in discharge 0.09mg/l)} \\ C_{back} = \mbox{concentration in river u/s of discharge (0.08mg/l)} \\ Q_{back} = \mbox{flow of river (l/d) (average flow 1.34 m^3/s)} = \mbox{115,776,000l/d} \\ Q_d = \mbox{discharge volume (l/d) 123,750l/d} \\ \mbox{1m}^3/s = \mbox{86,400,000 l/d} \end{array}$

Therefore:

CR = [(0.08 x 115,776,000) + (0.09 x 123,750)] / [115,776,000 + 123,750]

Resulting Concentration in River (CR) =0.08001mg N/I

Total Amount Discharge to River (95%ile Values):

With an average effluent discharge volume of 10m³/dav the total amount of MRP discharged to the Mountain Water River is:

10,000 l/day x 0.64mg/l = 0.006kg/day

Resulting MRP Concentration in the River (95%ile Values):

The resulting MRP concentration in the river resulting from the effluent input can be estimated using the following Formula:

$$CR = \frac{(C_{back} * Q_{back}) + (C_d * Q_d)}{(Q_{back} + Q_d)}$$

Where;

CR = resulting concentration in river (mg/l)

 C_d = average concentration in discharge (0.64mg/l)

 C_{back} = concentration in river u/s of discharge (0.18mg/l)

 Q_{back} = flow of river (I/d) (average flow 0.02 m³/s) = 1,728,000I/d)

Q_d = discharge volume (I/d) 10,000I/d (conservative discharge volume used)

 $1m^3/s = 86,400,000 l/d$

Therefore:

CR = [(0.18 x 1,728,000) + (0.64 x 10,000)] / [1,728,000 + 10,000]

Resulting Concentration in River (CR) =0.1826mg N/I

MRP Summary

There is no assimilative capacity for MRP based on the mean or 95% ile standards under S.I. No. 272 of 2009, as the mean and 95% ile concentrations of MRP upstream for 2009-2010 (0.08mg P/I and 0.18 mg P/I respectively) are greater than the respective water quality standards (≤ 0.035 mg P/I Mean and ≤ 0.075 mg P/I 95% ile) (see **Table 16** below).

TABLE 1	6 MRP ASSI	MILATIVE CA	ALCULATIONS				
Paramete	er Values based on	% Available Capacity	Background (mg N/I)	Effluent Discharge (mg/l)	Contribution from Primary Discharge (mg/l)	Predicted Downstream Quality	Relevant Standard
MRP (m P/l)	g Mean	None	0.08	0.09 es to	0.00001067	0.0800106	≤0.035 (Mean)
	95%ile	None	0.18	0.64200	0.00261	0.1826	≤0.075 (95%ile)

¹ During very dry weather periods there is a very low flow discharge from the ICW or in some cases no discharge. A conservative ICW discharge flow of 10m³/d has been used for the purposes this assessment. However, it should be noted that this is considered the worst case scenario based on historical information.

õ

Based on the mean discharge concentration and mean river flow, the MRP load in the discharge will result in a predicted contribution of 0.00001067mg P/I or 0.01% to the mean MRP river load downstream of the discharge point. Based on 95% ile values, a predicted contribution of 0.0026mg P/I or 1% is predicted. Hence, indicating that the effluent discharge contributes very marginally to downstream MRP levels.

Monaghan County Council monitoring results (see **Table 11** and **Table 12**) indicate an average upstream MRP concentrations of 0.08mg P/I (mean) and 95%ile concentration of 0.18 mg P/I and an average downstream monitoring result of 0.08 mg P/I (mean) and 95%ile concentration of 0.16mg P/I. These results would indicate that predicted results are overstating the real impact of the discharge from Glaslough in terms of MRP.

In summary, although the upstream and downstream monitoring results indicate that the river is not achieving the MRP standards stipulated for good status (mean or 95%ile) in the European Communities

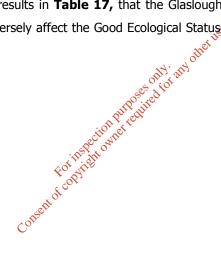
Objectives (Surface Water) Regulations, 2009 (S.I. No. 272 of 209), the results above and Monaghan County Councils monitoring results (see **Tables 11** and **12**) would indicate that the effluent discharge from the Glaslough WWTW is not having a significant impact on the receiving waters and thereby is not contributing to the failure of this waterbody to comply with the European Communities Objectives (Surface Water) Regulations in terms of MRP.

<u>Assimilative Capacity based on the Assumption that the Mountain Water River is at, at least,</u> <u>Good Ecological Status</u>

As part of this Further Information Request we also looked at the assimilative capacity with the assumption that the Mountain Water River is at, at least, Good Ecological Status as a result of measures applied in the broader catchment. As noted in **Table 11**, the overall status of the Mountain Water River at present is Poor; and the date set for achieving Good Ecological Status has been extended to 2021. Therefore for these assimilative capacity calculations we have used the standards, introduced by the European Communities Environmental Objectives (Surface Waters) Regulations, as the silver background concentrations *i.e.* Good Ecological Status.

Table 17 below summarises the waste assimilative capacity for BOD, Ammonia and MRP based on the assumption that the Mountain Water River is at, at least, Good Ecological Status.

·			FOLVILE			
			ONIA & MRP ASS			
Parameter	Values based on	Background (mg N/I)	Effluent Discharge (mg/l) (Current Effluent)	Contribution from Primary Discharge (mg/l)	Predicted Downstream Quality (mg/l)	Relevant Standard
BOD	Mean	1.5 ¹	5	0.0095 (0.6%)	1.5095	≤1.5 (Mean)
BOD	95%ile	2.6 ¹	11.75	0.0526 (2%)	2.6526	≤2.6 (95%ile)
•	Mean	0.065 ¹	0.82	0.0020 (3%)	0.0670	≤0.065 (Mean)
Ammonia	95%ile	0.14 ¹	6.09 ²	0.0034 (2%)	0.1434	≤0.14 (95%ile)
MDD	Mean	0.035 ¹	0.09	0.0001 (0.4%)	0.03515	≤0.035 (Mean)
MRP	95%ile	0.075 ¹	0.64	0.0033 (4%)	0.0783	≤0.075 (95%ile)



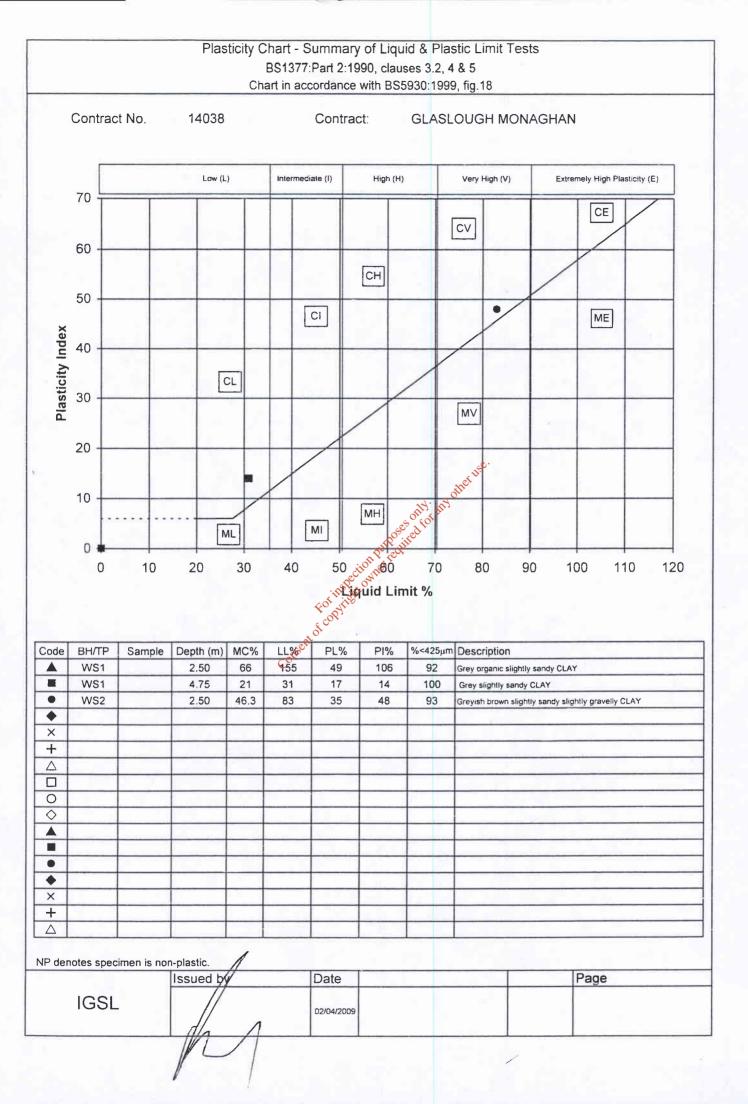
¹Current Effluent Concentrations used; S.I. No 272 of 2009 Good Status Standards used for background river concentrations. ² Ammonia effluent concentration elevated due the ponds being frozen for a while during winter 2009-2010. During this time period effluent ammonia was approximately 10 mg/L.

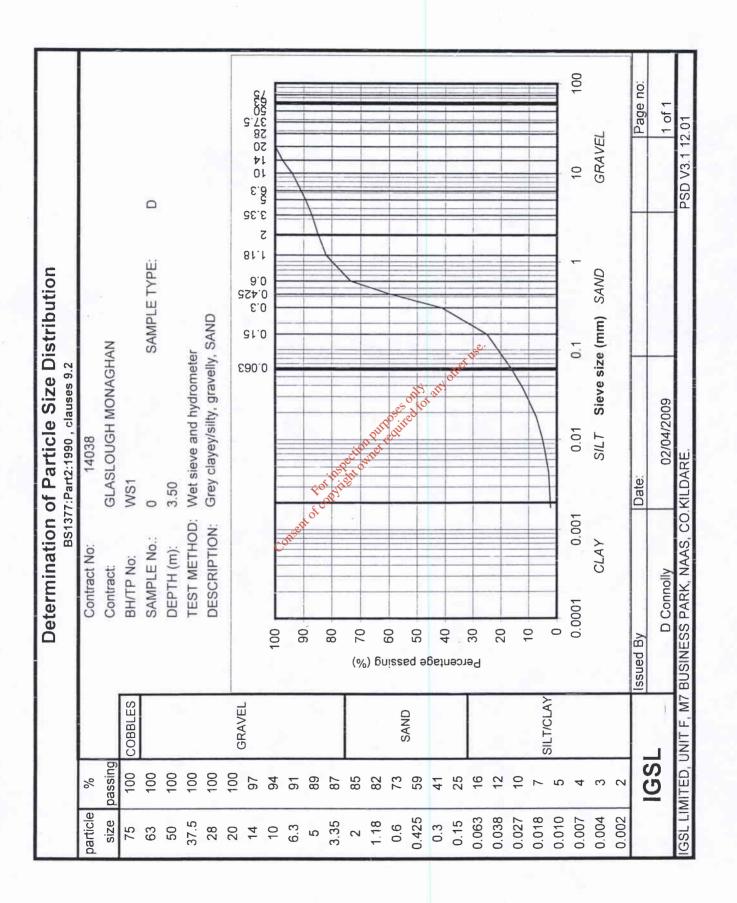
Additional Note: For the mean assimilative calculations the Discharge Flow Rate is based on 1,750 PE (Design PE) (315m³/d) as the Good Ecological Status target for the water body extended to 2021. A conservative ICW discharge flow of 10m³/d has been used for the 95% ile scenario.

The results in **Table 17** demonstrate that the predicted contribution of the discharge effluent on the downstream BOD, Ammonia and MRP concentrations is negligible. As noted above, this is based on using the mean and 95%ile Good Ecological Status concentrations, as per S.I. No. 272 of 2009, as the background upstream river water quality concentrations.

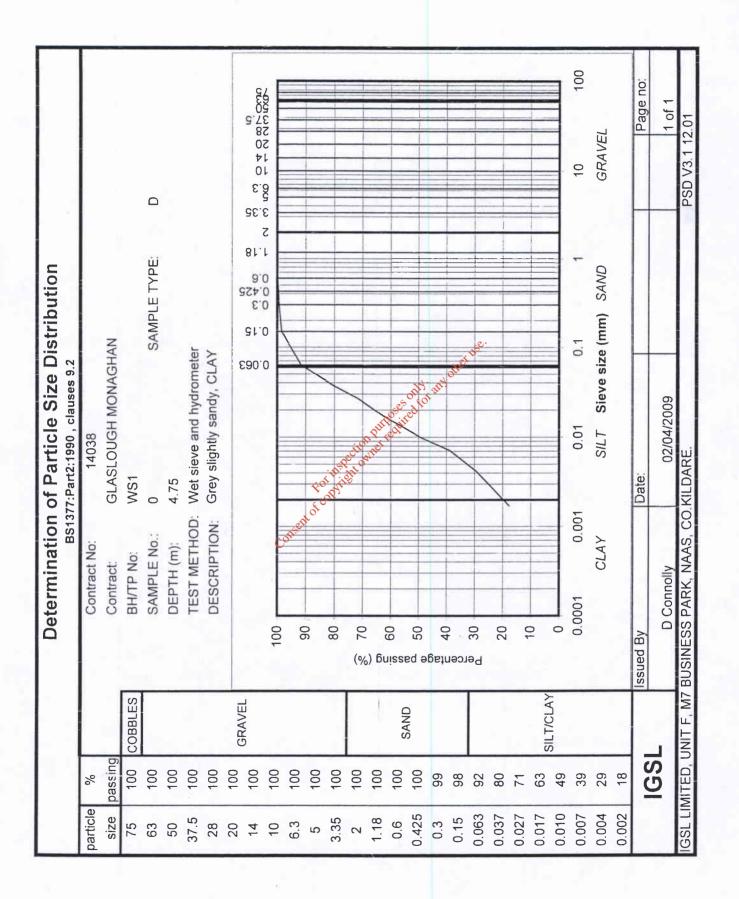
It can be concluded, based on results in **Table 17**, that the Glaslough ICW effluent discharge (based on Design PE of 1,750) will not adversely affect the Good Ecological Status of the Mountain Water River when this status is achieved.

Appendix A


Glaslough Site Investigation Reports



_		NOM	SAM	'LE F	KECC	ORD SH	EEIS				IGS	L Lim	ntec
CONTR	RACT: Glaslough Monaghan								PROB	E NO.:		WS1	1
CLIENT	S: Monaghan County Council		PROBE	WEIGH	HT (D	PL,DPM,D	PH):	DPH		STARTE	D:	1 of 09.0	
			HAMME	R MAS	SS (k	g):		50		COMPLE		09.0	
ENGIN	EER:		FALL H					500		ED BY:			
OCAT	TION: Glaslough Monaghan					ER (mm):		43.7		ED BY:		IOD	_
LUCAI	ION: Glaslough Monaghan					OVER (m	(kJ/m^2):	167 100	GROU	ND LEVE	L (mOD):	
	[VIED		m);	100	DATU	M:			
Ê		-	WINDOW SAMPLE DEPTH										
DOWNHOLE DEPTH (m)			B			6		Ę					
EPT			PLE	(9		ELEVATION (mOD)		noc					
ц Ц	SOIL DESCRIPTION		AM	RECOVERY (%)	Ξ	5 7		8 10		GRAPHIC	PROBE	RECORE	0
P		Depth (m)	N N	ERY	BLOWCOUNT	LIO	E	Ъ					
Ň		th	l G	No.	MO	VA	H	WS					
		Dep	MIN	REC	BLC		DEPTH (m)	BLOWS PER 100mm	0	10	20	30	40
0.0									1-1-	-	-	-	-
<i>0</i>	Subsoil	0.10					0.10 0.20						
22	MADE GROUND (brown silty clay with						0.30						
	occasional bands of grey sand and some	2					0.40						
0.5	fine gravel. Root hairs and fibres noted				1	6.6	0.50						
	along with fragments of red brick)				-		0.60						
			-				0.80						
							0.90						
1.0							1.00						
		1 20	_			1	1.20						
		1.20			ľ	only	1.30						
	Firm to stiff mottled grey brown silty					500 200	1.40						
1.5	CLAY with some organic traces		Sample	taker	for	triatial Pe	0.60 0.70 0.80 0.90 1.00 1.20 1.30 1.40 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50						
					on 2		1.60				1.		
				Pech	WILL		1.80						
34			3	47 Jul	Ĭ		1.90						
2.0		2 10	For	Stre			2.00						
		2.10	50				2.10						
	Soft very silty CLAY	-	ont				2.30						
		2.40	2				2.40				1		
2.5	Firm black organic (peaty) SILT		Sample	takar	for	 Atterburg	2.50						
	Tim black organic (peary) sich		Sample	Lakci			2.70						- 1
		2.80		-			2.80						-
2.0	Loopo to mediumd and first and						2.90						
3.0	Loose to mediumd ense fine grey silty SAND		-				3.00 3.10						
							3.20						
							3.30						
3.5			Sample	takar	for		3.40						
5.5			Sample			50	3.60						
							3.70				1		
							3.80					-	
4.0							3.90 4.00						
							4.10						
							4.20						
					- 1		4.30 4.40						
4.5		4.50					4.40						
							4.60						
	Soft grey SILT		Sample	taken	for T	riaxial Pe							
.0		5.00					4.80 4.90						
	Window Sample End	5.00					5.00						
OMME						INSTALL	A						
	WaterSeepage @ 2.80m						Standpipe installe	d to 5.00	m with	cover			


_	A CARL AND A	IDOW	SAM	LEF	KECO	RD SH	EETS				IGS	L Lim	nite
.UNT	RACT: Glaslough Monaghan								PROB			WS2 1 of	
LIEN	F: Monaghan County Council		PROBE	WEIGH	HT (DF	PL,DPM,D	PH):	DPH		STARTI	ED:	09.0	
			HAMME				ĺ.	50		COMPL		09.0	
NGIN	EER:		FALL H					500		ED BY:			
		_				R (mm):		43.7	LOGG	ED BY:		IOD	
OCAT	ION: Glaslough Monaghan		SPECIFI	C WO	rk pei	R BLOW	(kJ/m^2):	167			EL (mOE		
	1	_	BLOWS	COUN	TED (OVER (m	m):	100	DATU				_
Ē			표										
OWNHOLE DEPTH (m)			WINDOW SAMPLE DEPTH					E					
11d			Щ			(0		LE .					
DEI	SOIL DESCRIPTION		MP((%		E		00		RAPHIC	PROBE	PECOPE	
Ц			SAI	X	E I	Z		8			TRODE	RECORE	,
H		E	3	ER	0	19	E)	Б					
WN		ţ	D C	8	X	A V	E	MS					
DO		Depth (m)	NN N	RECOVERY (%)	BLOWCOUNT	ELEVATION (mOD)	DEPTH (m)	BLOWS PER 100mm	0	10	20	30	4
0.0									1	-	-		-
	Topsoil	0.10					0.10						
	MADE GROUND (brown silty clay with						0.20						
	occasional bands of grey sand and some						0.30						
0.5	fine gravel. Root hairs and fibres noted						0.40 0.50						
	along with fragments of red brick)						0.50						
	g g g g g g g g g g g g g g g g g g g						0.70			1			
							0.00						
			1				0.900			- 1			
.0							1,00			- 1 C			
							N.10						- 1
						Ea	1.20						
						50150	1.30			1			
.5		1 50				ose od t	1.40			- 1 -			
.5		1.50			OTT	din	1.50		11.				- 1
	Firm brown very silty sandy CLAY				ON X		0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30				- 1 -		
	with occasional fine gravel (possible			1 rect	WILL		1.80						
	made ground)			13,11	0		1.90						
.0			For	VILO			2.00		11	- H -	1.1		
		2.10	605	} ,			2.10				- 11		
			1 of	- 12			2.20				- 1 -		
	Soft brown slightly sandy SILT with	~	elle				2.30						
	some black organic flecks	Con	Sample	taker	for T	riaxial Pe	m				1.0		
.5							2.50				11		
		2.60					2.60 2.70						
	Loose grey silty fine SAND	2.80		- 1	1		2.80				- 1 -	111	
		2.00					2.90						
.0	Soft brown PEAT	3.00					3.00						
			-				3.10						
	Loose grey silty fine SAND				~ 1		3.20						
		3.30					3.30						
c	Coff to free brown DEAT						3.40				-		
.5	Soft to firm brown PEAT						3.50						
							3.60 3.70						
							3.80						
		3.90					3.90						
.0							4.00						
	Medium dense brown silty / clayey						4.10						
	SAND (possible very sandy silty Clay)						4.20						
							4.30						
5							4.40						
J							4.50 4.60						
							4.60						
							4.80						
0		5.00					4.90						
	Window Sample End						5.00						
MME	NTS:				1	INSTALL							
	Water ingress @ 2.10m						Standpipe installed	to 5 00	m with a	ov/or			

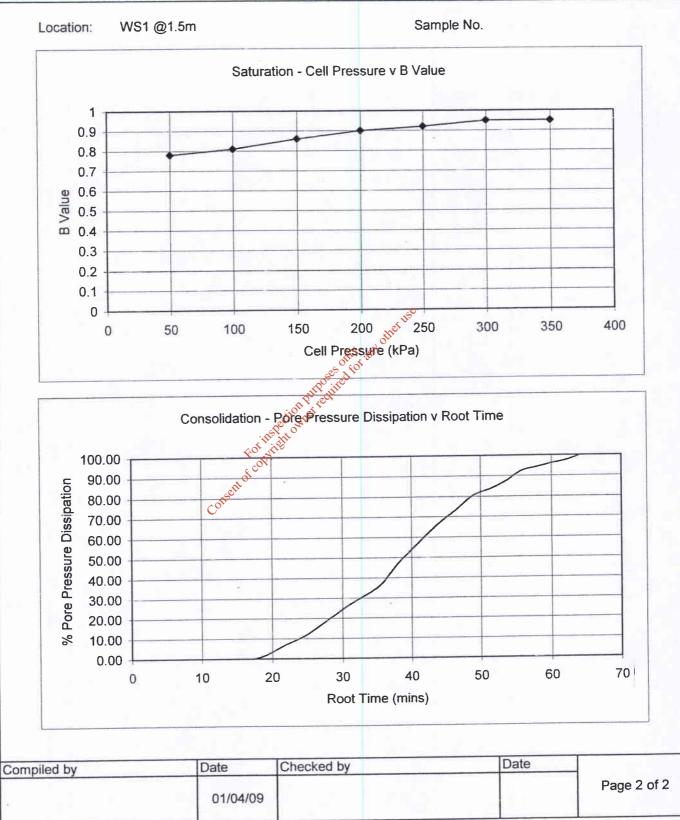
	Classification	СE	СГ	C V															
	Description	Grey organic slightly sandy CLAY	Grey slightly sandy CLAY	Greyish brown slightly sandy slightly gravelly CLAY													Contract No.	Page	of
sts 3 & 5.4	Preparation Description	WS	WS	SM										te.					
ation Te	<425µm %	92	100	93							600	KOT 25	other	22			GHAN		
nmary of Classification Tests 7:Part 2:1990, clauses 3.2, 4.3, 5.3 & 5.4	Plasticity Index	106	14	48				FOT TO	apectic	a purp	quire					stic	GLASLOUGH MONAGHAN		
Summary of Classification Tests 1377:Part 2:1990, clauses 3.2, 4.3, 5.3 & 6	Plastic Limit %	49	17	35		c	onsent	of con	<u>o</u> r							VP - Non Pla	GLASLOL	Date	02/04/2009
Sun BS1377	Liquid Limit %	155	31	83												i (425μm) h			
	Moisture Content %	66	21	46.3												NAT - tested as received WS - Wet sieved (425µm) NP - Non Plastic	$\left(\right)$		1
1	Sample Type	Ω	D	D												eived WS	Contract	Issued By	1
	Depth (m)	2.50	4.75	2.50												ted as rec			
	Sample No.															NAT - test		IGSL	
	BH/TP No.	WS1	WS1	WS2												Notes:			

.

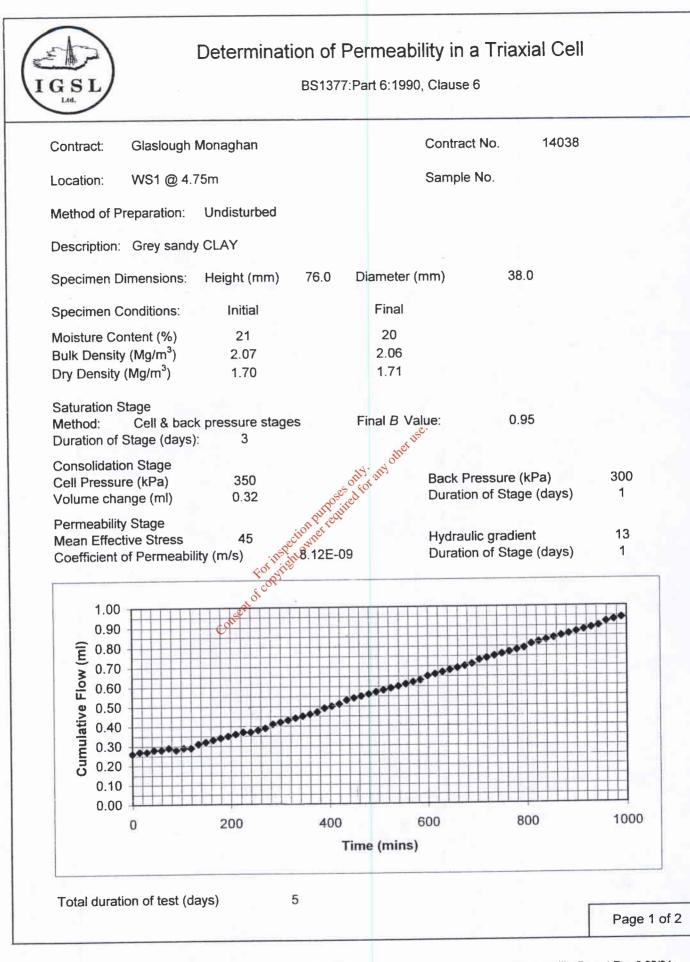
Determination of Particle Size Distribution BS1377:Part2:1990 , clauses 9.2	Contract No: 14038	Contract: GLASLOUGH MONAGHAN	BH/TP No: WS2	SAMPLE No.: 0 SAMPLE TYPE: D	DEPTH (m): 2.50	TEST METHOD: Wet sieve and hydrometer	DESCRIPTION: Greenish brown slightly sandy, slightly gravelly, CLAY	ġ	2000 100 1000 1		00000			02 (%	whe	00		40		30 56	20				0.0001 0.001 0.01 0.1 1 10 100	CLAY SILT Sieve size (mm) SAND GRAVEL		Issued By Date: Date: Page no:	D Connolly 02/04/2009 1 of 1	BUSINESS PARK, NAAS, CO KILDARE. PSD V3.1 12
			COBBLES					CDAVE	GNAVEL																				,	JNIT F, M7
	le %	e passing	100	100	100	-				-	-	_	_	86	97	94		-	80	3 65	8 52	7 45	8 38	0 30	7 26	4 19	2 12		001	GSL LIMITED, UNIT
	particle	size	75	63	50	37.5	28	20	14	10	6.3	5	3.35	2	1.18	0.6	0.425	0.3	0.15	0.063	0.038	0.027	0.018	0.010	0.007	0.004	0.002		1	IGSL

EPA Expo

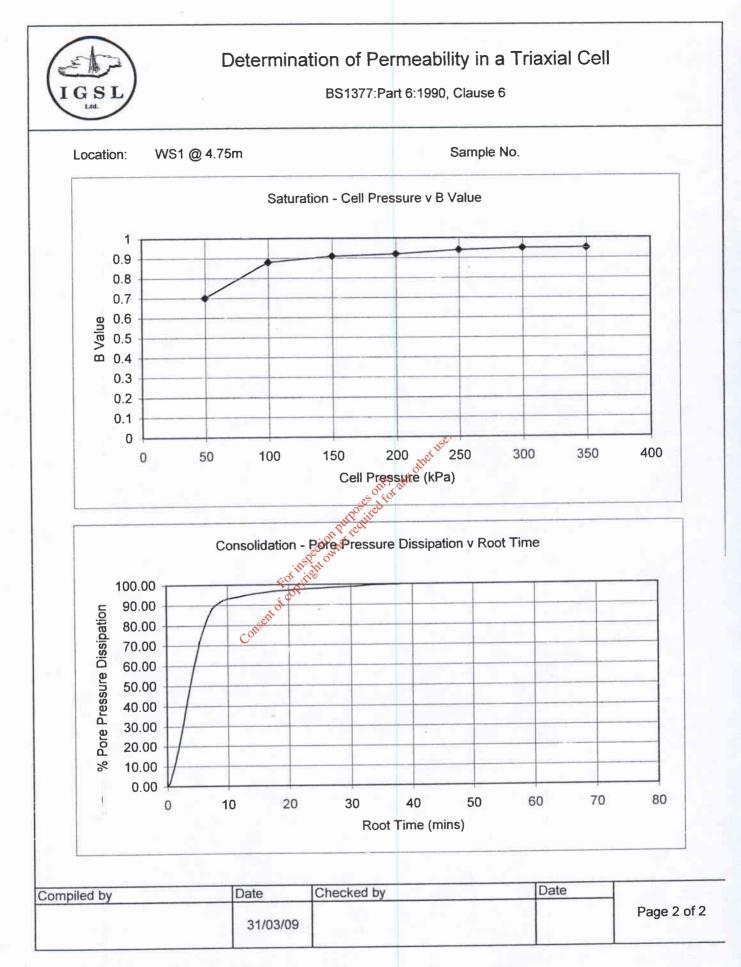
Contract: Glasi	ough Monagha	in		(Contract	t No.	14038	
Location: WS1	@1.5m			S	Sample	No.		
Method of Preparat	tion: Undistu	irbed						
Description: Gree	nish brown mo	ttled grey s	lightly sand		with org	anic mate	erial	
Specimen Dimensi	ions: Height	(mm) 7	6.0 Dia	meter (m	m)	38.	0	
Specimen Conditio		al		-inal				
Moisture Content (*		5		53				
Bulk Density (Mg/m				1.72				
Dry Density (Mg/m	³) 1.1	1		1.12				
Permeability Stage Mean Effective Str Coefficient of Perm	e 45 ress 45 neability (m/s)	e stages	03E-09		Hydraul Duratior	ic gradie n of Stage		13 1
0.80		ot -						
0.70	Cor							
0.60 (Jack Communication Commu								
<u>0.50</u>								
• 0.40								
0.30								
E 0.20								
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
0.10								
0.10 0.00 0	100	200	300	400		500	600	700


IGSL Ltd M7 Business Park Naas Co. Kildare

WS1.1.5m


Determination of Permeability in a Triaxial Cell

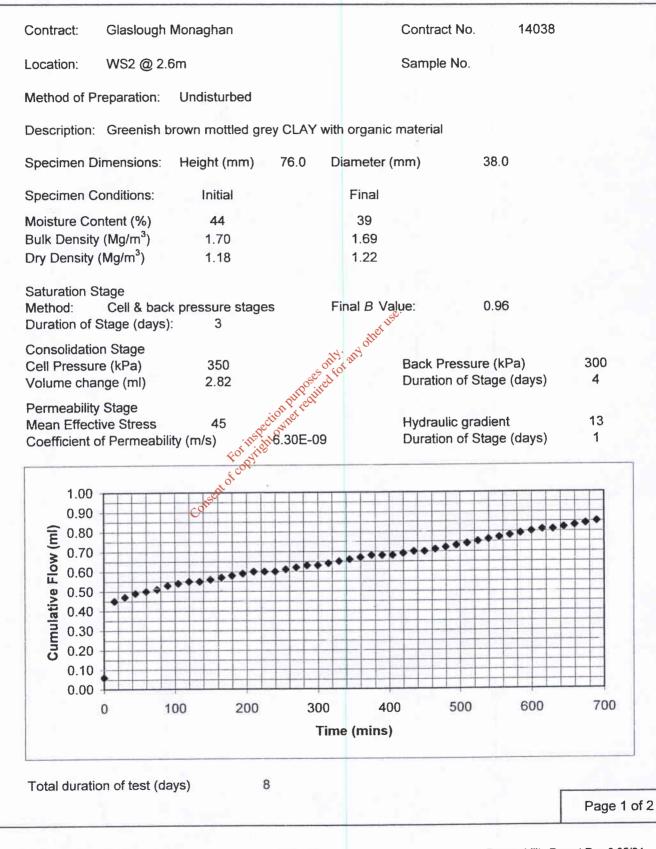
BS1377:Part 6:1990, Clause 6

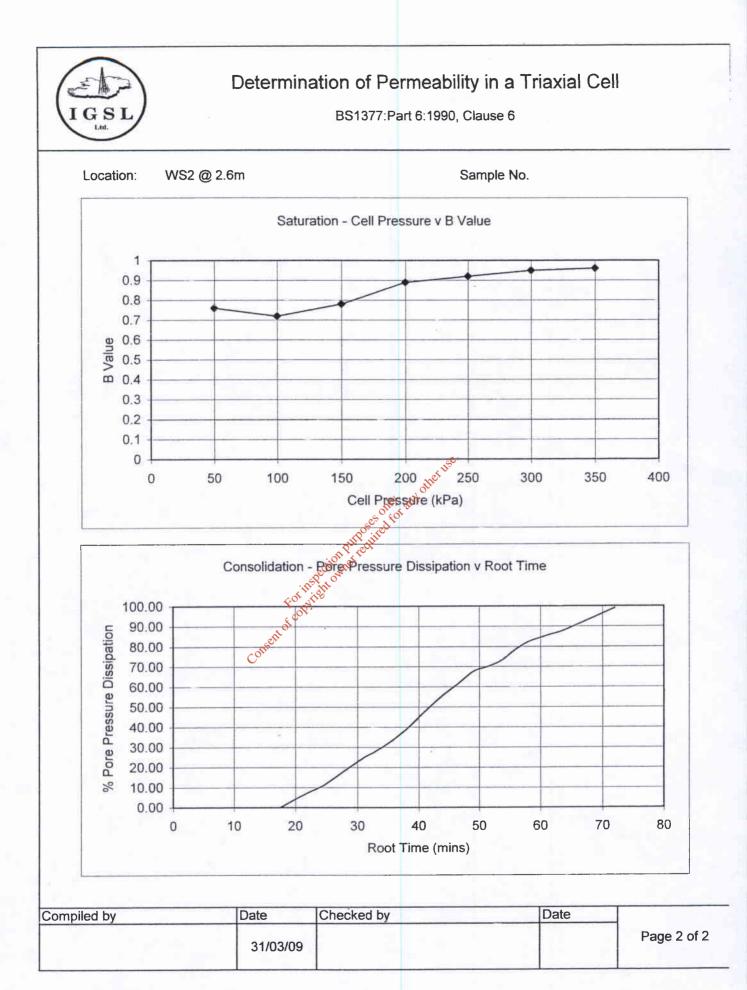

IGSL Ltd M7 Business Park Naas Co. Kildare

WS1.1.5m

IGSL Ltd M7 Business Park Naas Co. Kildare

WS1.4.75m


IGSL Ltd M7 Business Park Naas Co. Kildare

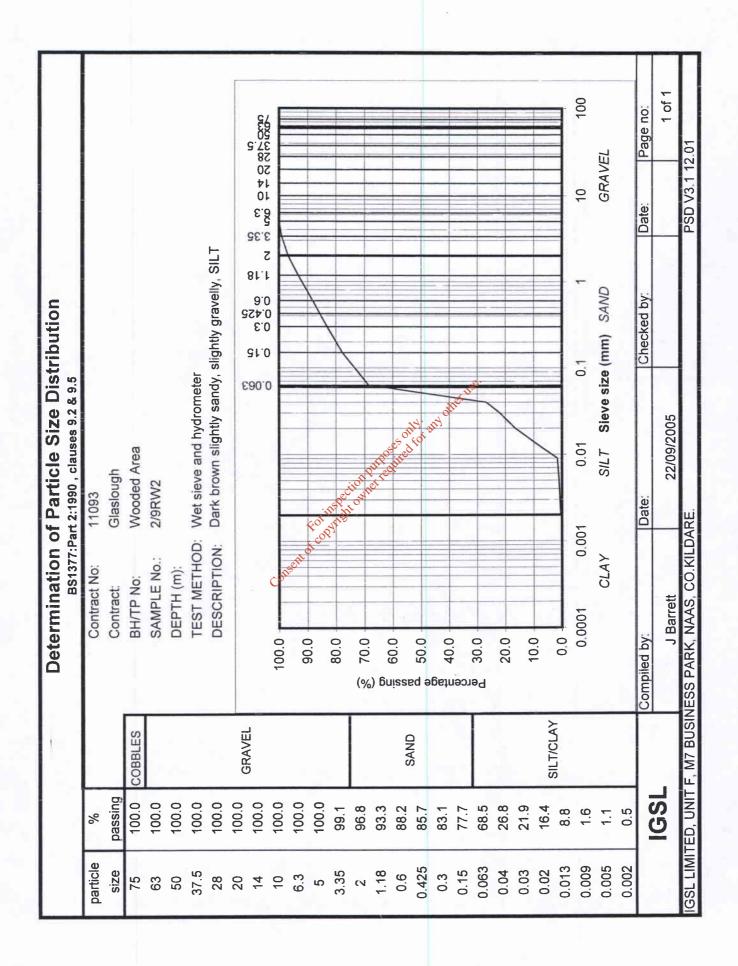

WS1.4.75m

Determination of Permeability in a Triaxial Cell

BS1377:Part 6:1990, Clause 6

IGSL Ltd M7 Business Park Naas Co. Kildare

WS2.2.6m

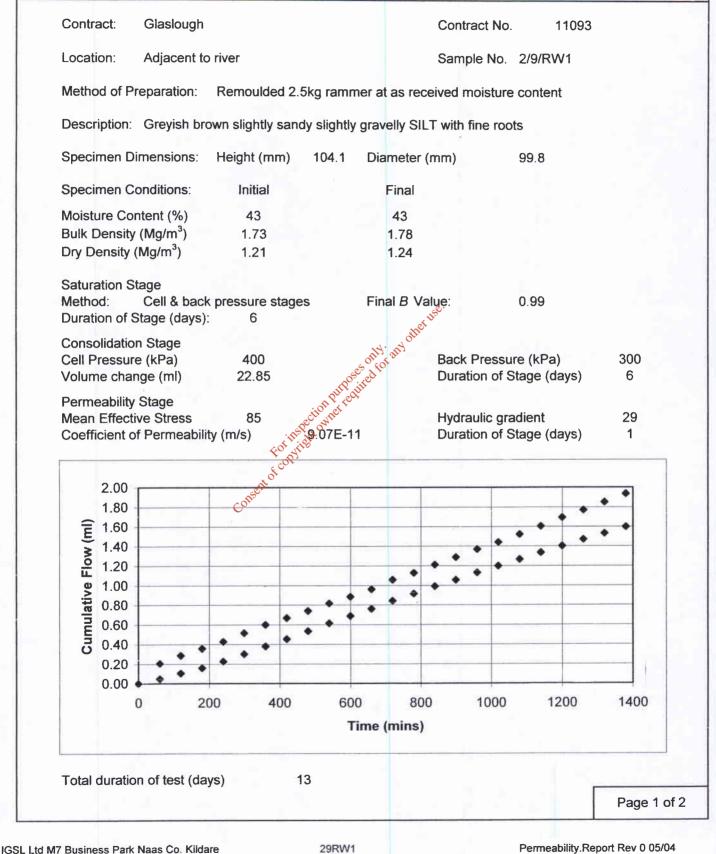

PL.LL.Summary Rev 0 06/04

Summary

Classification	> W	ш W												-		
uo	Greyish brown slightly sandy slightly gravely SILT with roots	Dark brown slightly sandy slightly gravely SILT with many roots												Contract No. 11093	Page	
Descript	Greyish brow	Dark brown s													Date	
Preparation Description	WS	MS							anty.	anyot	Ret USE	·				
<425μm %	96	86					iong	arpose requi	ed to	>					3y	
Plasticity Index	29	38			FC SC	INSP DPVID	0							Glaslough	Approved By	
Plastic F Limit %	45	06		Conse	at										Date /	
Limit %	74	128														
Moisture Content %	46	130													I By	
Sample Type	8	m												Contract	Compiled By	
Depth (m)															_	_
Sample No.	2/9/RW1	2/9/RW2													いきと	IGSL
Н																-

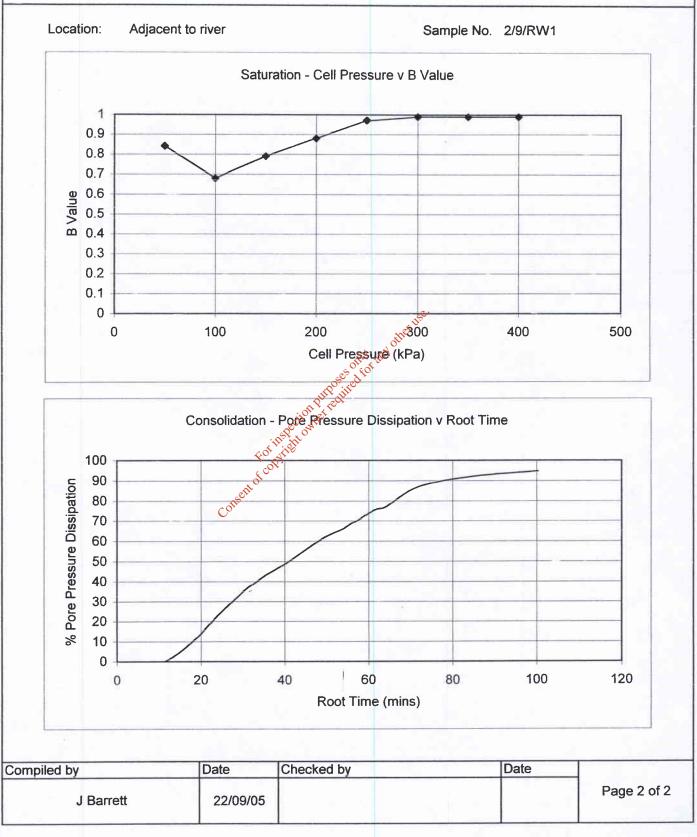
TEST REPORT: Moisture Content & Plastic/Liquid Limits

2.7		97.0 96.3 96.3 95.3 92.5 86.3 86.3 1.7 66.2 58.0 66.2 58.0 31.7 21.4 21.4 21.4 2.7 6 .2 7	0.425 0.3 0.15 0.063 0.063 0.063 0.063 0.013 0.013 0.005 0.005 0.005
Date: Checked by: Date:	SL	50	
Compiled by: Date: Checked by: Date: Page no:	L L	2	
	ī		
		9.6	0.005
9.6 CLAY SILI SIEVE SIZE (MM) SAIVU	-	4	
9.6	4	21.4	0.009
21.4 0.0001 0.001 0.01 0.1 1 10 9.6 CLAY S/LT Sieve size (mm) SAND GRAVEL	-	31.7	0.013
31.7 0.0 0.0 1 1 21.4 0.0001 0.001 0.01 0.1 1 9.6 CLAY SILT Sieve size (mm) SAND		47.6	0.02
47.6 SILT/CLAY 0.0 0.0 0.001 0.01 0.1 1 10 31.7 21.4 0.0001 0.001 0.01 0.1 1 10 9.6 CLAY SILT Sieve size (mm) SAND GRAVEL			
47.6 31.7 10.0 10.0 10.0 10.0 10.0 31.7 21.4 0.0 0.01 0.1 1 10 21.4 0.001 0.01 0.1 1 10 10 9.6 CLAY SILT Sieve size (mm) SAND GRAVEL	0	58.0	0.03
58.0 10.0	5	66.2	0.04
66.2 20.0 20.0 0.0 0.0 10.0 <	2		0.000
66.2 20.0 20.0 10.0		S 98	063
86.3 66.2 58.0 58.0 47.6 31.7 31.7 21.4 9.6 0.0 0.001 0.01 0.1 10.0 0.0001 0.01 0.1 CLAY SILT Sievesize (mm) SAND GRAVEL	2	92.5	0.15
92.5 86.3 86.3 86.3 58.0 58.0 58.0 58.0 58.0 58.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0	77	5.0A	0.3
92.5 86.3 86.3 86.3 86.3 86.3 86.3 86.2 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0			
95.3 92.5 92.5 86.3 86.3 66.2 58.0 58.0 58.0 58.0 58.0 58.0 70.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		96.3	0.425
96.3 0.00 95.3 0.00 95.3 95.3 92.5 86.3 86.3 66.2 86.3 86.3 66.2 86.3 86.3 66.2 86.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		97.0	
97.0 SAND 96.3 96.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95			0.6
97.0 96.3 96.3 96.3 96.3 96.3 96.3 96.3 96.2 86.3 66.2 86.3 66.2 86.3 97.0 9.6 9.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-	98.1	1.18 0.6
98.1 98.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95	0 ==	98.1 98.1	1.18 0.6
98. 98.1 97.0 97.0 96.3 95.3 9		98.8 98.1	2 1.18 0.6
99.5 98.8 98.1 97.0 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3	10 00 5	99.5 98.8 98.1	3.35 2 1.18 0.6
1000 99.5 98.8 98.1 97.0 96.3 96.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.0 96.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.0 100 100 100 0.00 100 0.00 100 0.00	0 10 10 7	100.0 99.5 98.8 98.1	5 3.35 2 1.18 0.6
100.0 100.0 98.8 98.1 98.1 98.1 98.3 96.3 97.0 98.4 96.0		100.(99.5 98.8 98.1	0.3 5 3.35 3.35 2 1.18 0.6
100.0 100.0 100.0 98.8 98.1 98.1 98.3 99.0 0.0	0 0 0 7	100.0 100.0 99.5 98.8 98.1	6.3 5 3.35 2 1.18 0.6
100.0 100.0 100.0 100.0 100.0 93.5 98.3 99.0 00.0 0.0 0.0 0.0 0.0 0.0 0	0000	100.0 100.0 99.5 98.8 98.1	10 6.3 5 3.35 2 1.18 0.6
100.0 10		100.0 100.0 100.0 99.5 98.8 98.1	14 10 5 5 3.35 3.35 2 1.18 0.6
100.0 GRAVEL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 110.0 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 111 0.0 0.00 0.0		100.0 100.0 100.0 100.0 99.5 98.8 98.8	20 14 10 6.3 5 3.35 2 2 1.18 0.6
100.0 DESCRIPTION: Gravel 100.0 GRAVEL 0.000 0.15 35.6 0.15 35.6 0.15 35.6 0.000 0.15 35.6 0.15 35.6 0.000 0.00 0.15 35.6 0.15 35.6 0.00 0.00 0.00 0.15 35.6 0.15 35.6 0.00 0.00 0.00 0.15 35.6 0.15 35.6 0.00 0.00 0.15 35.6 0.00 0.00 0.00 0.15 35.6 0.00 0.00 0.00 0.15 35.6 0.12 35.6 0.12 35.6 0.12 35.6 0.12 35.6 0.12 35.6 0.12 0.00 0.12 <td></td> <td>100.0 100.0 100.0 100.0 100.0 99.5 98.8 98.1 98.1</td> <td>28 20 20 14 5 3.35 2 2 2 0.6</td>		100.0 100.0 100.0 100.0 100.0 99.5 98.8 98.1 98.1	28 20 20 14 5 3.35 2 2 2 0.6
100.0 TEST METHOD: Wet seve and hydrometer 100.0 100.0 100.0 GRAVEL 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 98.8 0.0 98.1 0.0 98.3 0.0 98.3 0.0 98.3 0.0 98.3 0.0 98.3 0.0 98.3 0.0 98.3 0.0 96.3 0.0 97.0 0.0 96.3 0.0 97.4 0.0 96.3 0.0 97.4 0.0 96.1 0.0 97.0 0.0 97.0 0.0 97.1 0.0 97.1 0.0 97.1 0.0 97.1 0.0		100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	37.5 28 28 14 14 10 6.3 5 5 3.35 3.35 2 2 2 0.6
100.0 10		100.0 100.0 100.0 100.0 100.0 100.0 99.5 98.8 98.1 98.1	50 37.5 28 28 14 10 6.3 5 5 3.35 2 2 2 0.6
1000 1000 1000 DEPTH (m): 1000 DepTH (m): 1000 1000 DEPTH (m): 1000 TEST METHOD: Wet sieve and hydrometer 1000 TEST METHOD: Wet sieve and hydrometer 1000 1000 GRAVEL DESCRIPTION: Grayish brown slightly sandy, slightly gravely, SILT 1000 GRAVEL DESCRIPTION: Grayish brown slightly sandy, slightly gravely, SILT 1000 GRAVEL DESCRIPTION: Grayish brown slightly sandy, slightly gravely, SILT 1000 900 0		100.0 100000000	50 50 37.5 28 28 14 10 6.3 5 5 3.35 2 2 3.35 0.6
100.0 SAMPLE No.: 29RW1 100.0 100.0 100.0 EEST METHOD: Wet sieve and hydrometer 100.0 100.0 GRAVEL SAMPLE No.: 29RW1 100.0 100.0 GRAVEL DESCRIPTION: Greyish brown slightly sandy, slightly gravelity, SILT 100.0 GRAVEL 0.0		100.0 100000000	63 50 37.5 28 28 14 14 14 16 5 5 3.35 5 3.35 0.6
100.0 COBBLES BHTP No: Adjacent to River 100.0 PEPTH (m): 2/9RW1 100.0 FETTH (m): 2/9RW1 100.0 FETTH (m): 2/9RW1 100.0 GRAVEL 0.0 100.0 0.0 0.0 0.0 95 0.0		100.0 100.0 100.0 100.0 100.0 100.0 99.5 98.8 98.6	75 63 50 37.5 28 28 14 14 14 16 3.35 5 3.35 5 3.35 0.6
passing Contract: Classlough 100.0 COBBLES 100.0 COBBLES 100.0 CORTACT: 100.0 CORTACT: 100.0 CEPTH (m): 100.0 CRAVEL 100.0 GRAVEL	ŏ	passin 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	size 75 63 50 37.5 50 37.5 28 14 14 14 14 16 3.35 5 3.35 2 8.3 5 7 0.6
			96.3 95.3 92.5 86.3 86.3 66.2 58.0 47.6 31.7 21.4 9.6 9.6 2.7 2.7


		Test Report			
Report No.		MOISTURE CONDITION VALUE (MCV)			
Contract: GlasI	Glaslough			Contract No:	11093
Locaton No.	Sa D	Sample Description	Moisture Content %	MCV	Material <20mm
Adjacent to river 2/9/RW1 Wooded area 2/9/RW2		Greyish brown slightly sandy slightly gravely SILT with roots 46 Dark brown slightly sandy shipher gravely SILT with many roots 130	46 130	7. 1	100
Compiled by	Date	Checked by	Date		Page 1 of 1

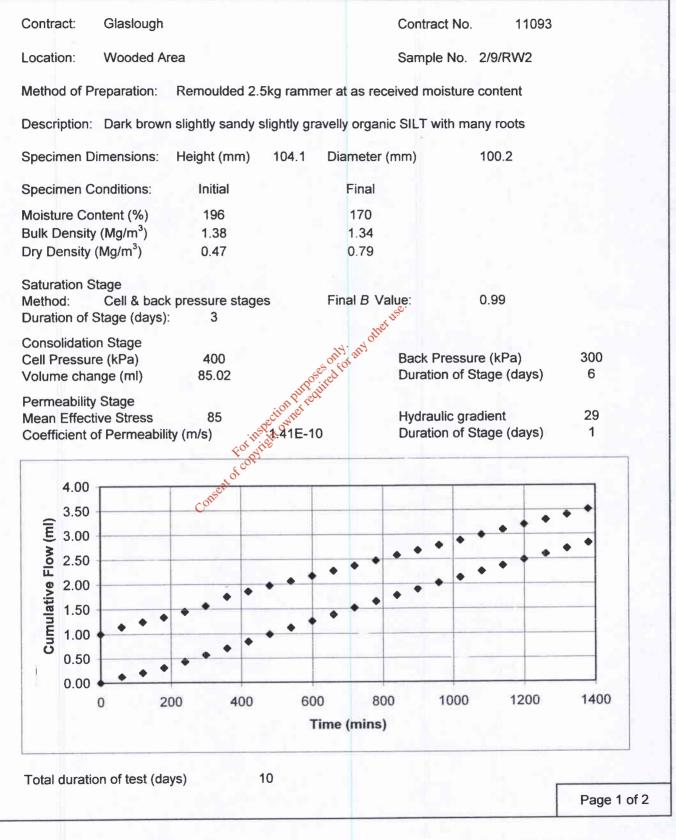
rev 0 2/03

IGSL R9



BS1377:Part 6:1990, Clause 6

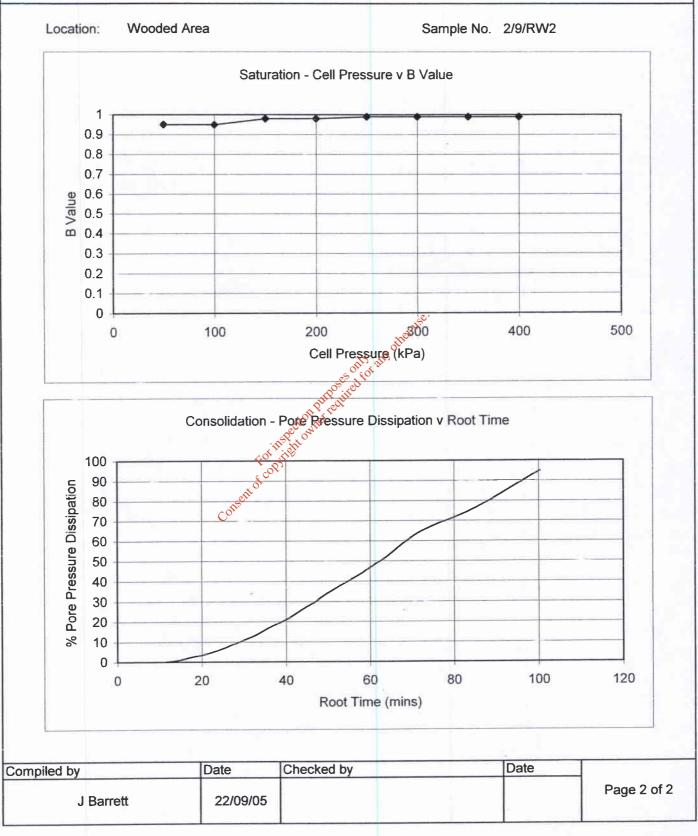
BS1377:Part 6:1990, Clause 6


IGSL Ltd M7 Business Park Naas Co. Kildare

29RW1

Permeability.Report Rev 0 05/04

BS1377:Part 6:1990, Clause 6

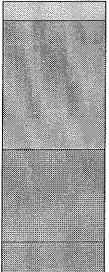

IGSL Ltd M7 Business Park Naas Co. Kildare

29RW2

Permeability.Report Rev 0 05/04

BS1377:Part 6:1990, Clause 6

IGSL Ltd M7 Business Park Naas Co. Kildare


29RW2

Permeability.Report Rev 0 05/04

GLASLOUGH SEWERAGE IMPROVEMENT SCHEME: PROPOSED SITE NO. 2 ON LESLIE ESTATE PROPERTY: EXAMINATION OF SITE NO 2:

TRIAL HOLES (20/10/98):

TRIAL HOLE NO. 1: (see also photos attached).

200 mm VEGETATION / TREE STUMPS

FINE CLAY-TOPSOIL

1.6m

BLUE / GREY CLAY

2.5m WATER ENTERING PIT

2.8m TRENCH DEPTH

COMMENTS: TRENCH DEPTH 2.8m SIDES OF TRENCH BEGINNING TO SUBSIDE. WATER ENTERING AT 2.5m.

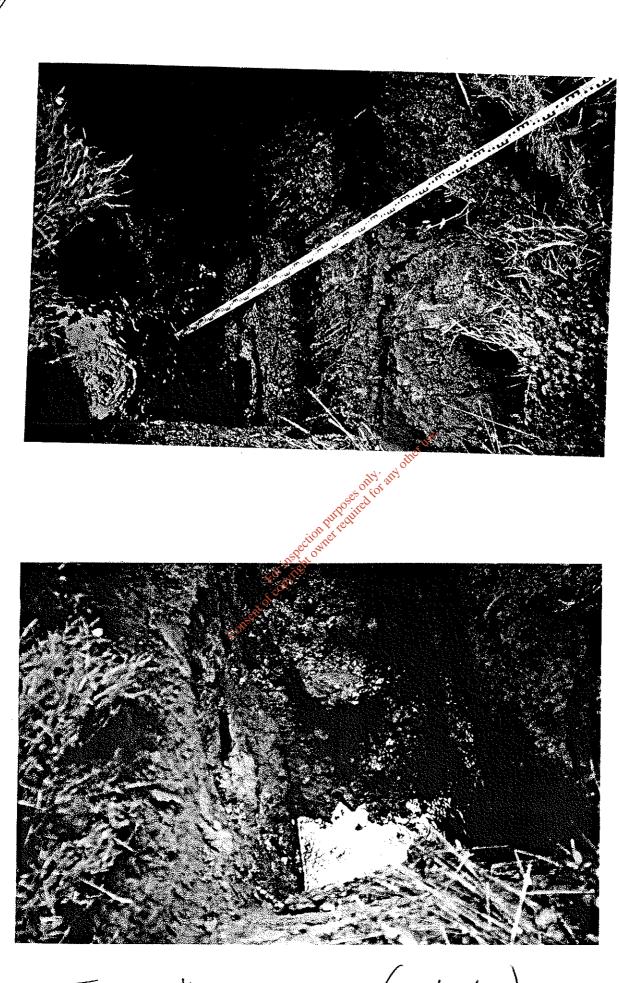
ction purposes only any other use TRIAL HOLE NO. 2: (see also photos attached).

200mm VEGETATION / TREESSTUMPS

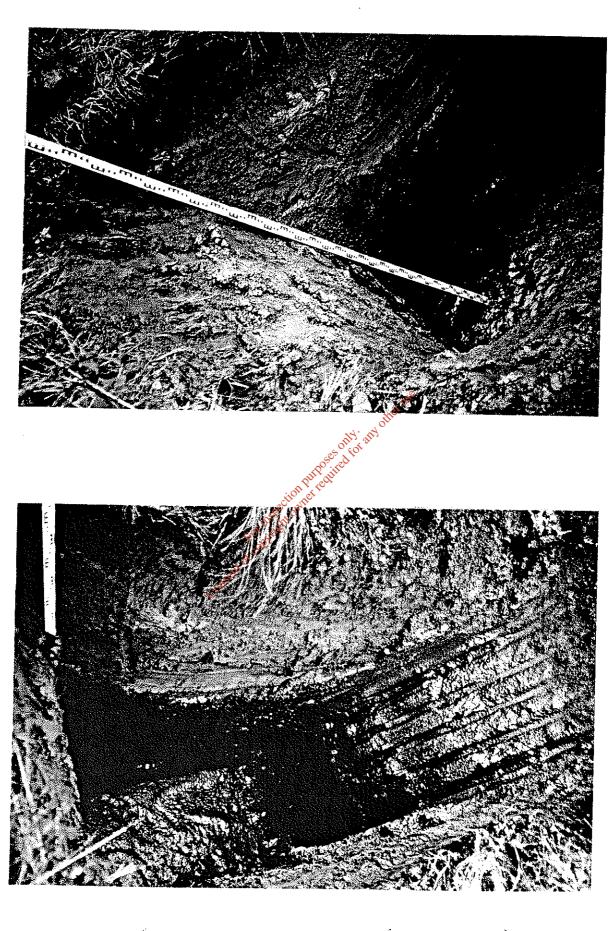
FINE CLAY-TOPSOIL

1.3m

BLUE / GREY CLAY

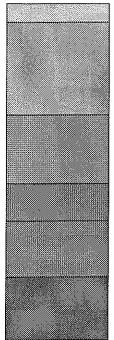

2.6m

2.9m WATER ENTERING PIT


SHALE / GRAVEL LAYER STONES RANGING IN SIZES FROM 25mm - 100mm

3.7m TRENCH DEPTH

COMMENTS: TRENCH DEPTH 3.7m TRENCH SUBSIDING WATER ENTERING AT 2.6m



TRIAL HOLE NO. 1. (20/10/98)

TRIAL HOLE NO. 2. (20/10/98)

TRIAL HOLE NO. 3: (see also photos attached).

100mm VEGETATION / TREE STUMPS

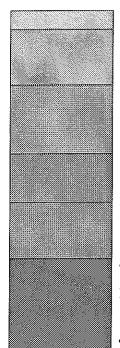
FINE CLAY-TOPSOIL

1.2m

BLUE/GREY CLAY

1.8m

2.7m WATER ENTERING PIT


LAYER OF GRAVEL/SHALE RANGING IN SIZES FROM 25mm - 100mm 3.2m

LAYER OF BOULDER CLAY

3.5m TRENCH DEPTH

COMMENTS: TRENCH DEPTH 3.5m TRENCH SUBSIDING AT GRAVEL LAYER WATER ENTERING AT 2.7m

Hoses only any other use. TRIAL HOLE NO. 4: (see also photos attached).

200mm VEGETATION / TREE STUMPS

FINE CLAY-TOPSOIL

0.6m

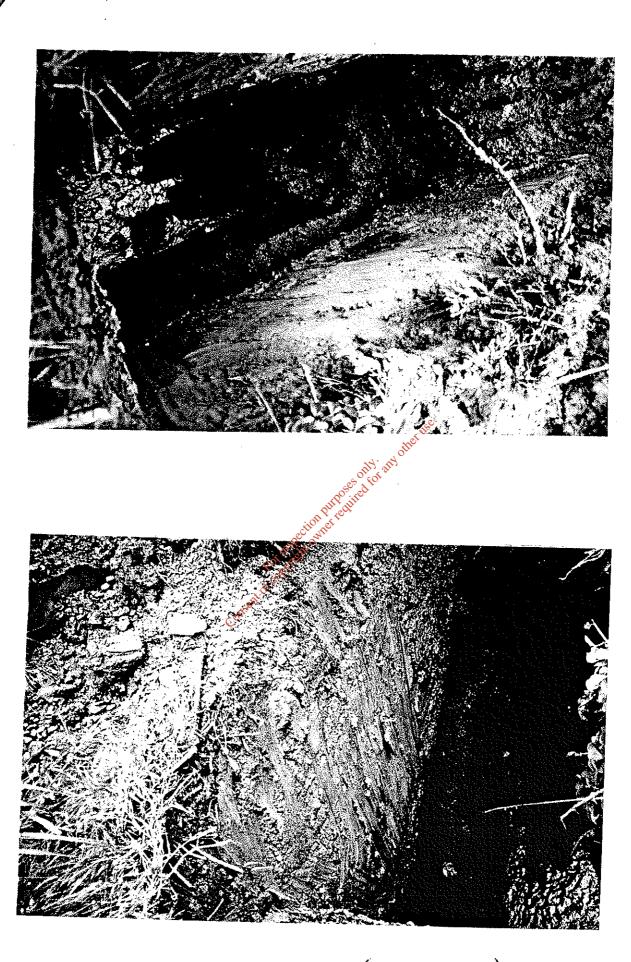
BLUE / GREY CLAY

1.4m

2.6m WATER ENTERING PIT

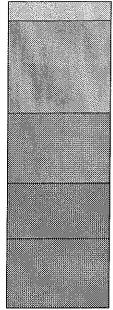
LAYER OF GRAVEL/SHALE RANGING IN SIZES FROM 25mm - 100mm

3.1m


BLUE / GREY CLAY

4m TRENCH DEPTH

COMMENTS: TRENCH DEPTH 4m TRENCH SUBSIDING AT GRAVEL LAYER WATER ENTERING AT 2.6m



TRIAL HOLE ND. 3. (20/10/98)

TRIAL HOLE NO. 4. (20/10/98)

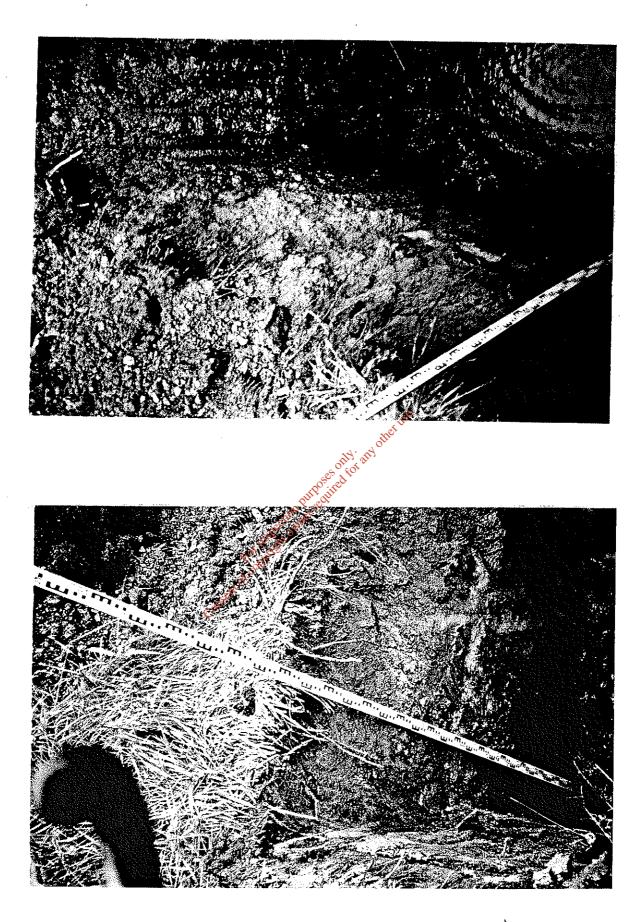
TRIAL HOLE NO. 5: (see also photos attached).

150mm VEGETATION / TREE STUMPS

FINE CLAY-TOPSOIL

1.3m

BOULDER CLAY


1.9m

2.4m WATER ENTERING PIT

LAYER OF GRAVEL/SHALE RANGING IN SIZES FROM 25mm - 100mm

3.3m TRENCH DEPTH

Consent of copyright owner required for any other use. **COMMENTS:** TRENCH DEPTH 3.3m TRENCH SUBSIDING AT GRAVEL LAYER WATER ENTERING AT 2.4m

TRIAL HOLE NO. 5. (20/10/98)

TRIAL HOLE NO. 6:

350 TOPSOIL

BOULDER CLAY

1.0m

GREY GRAVELLY SILTY CLAY/MIMIMUAL WATER ENTERING TRENCH

TRENCH STABLE AT 2.8m

2.8m

Consent of copyright owner required for any other use.

RIAL HOLE NO. 7:

350 TOPSOIL

BOULDER CLAY

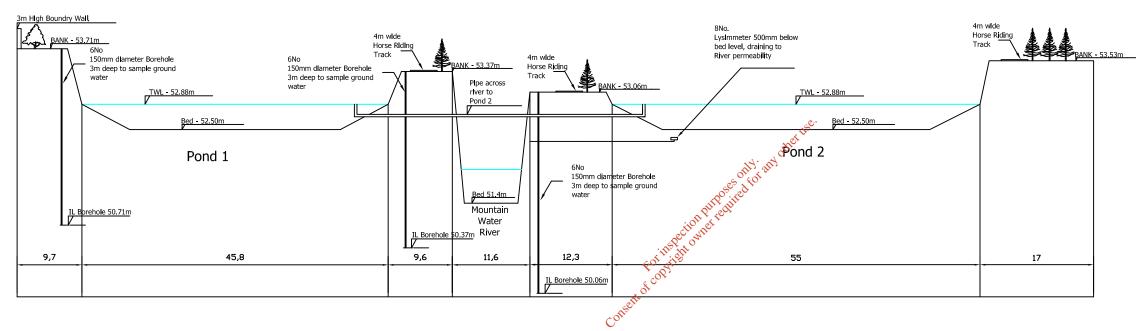
1.5m WATER ENTERING AT 1.5m

RUNNING SAND / TRENCH COLLAPSING

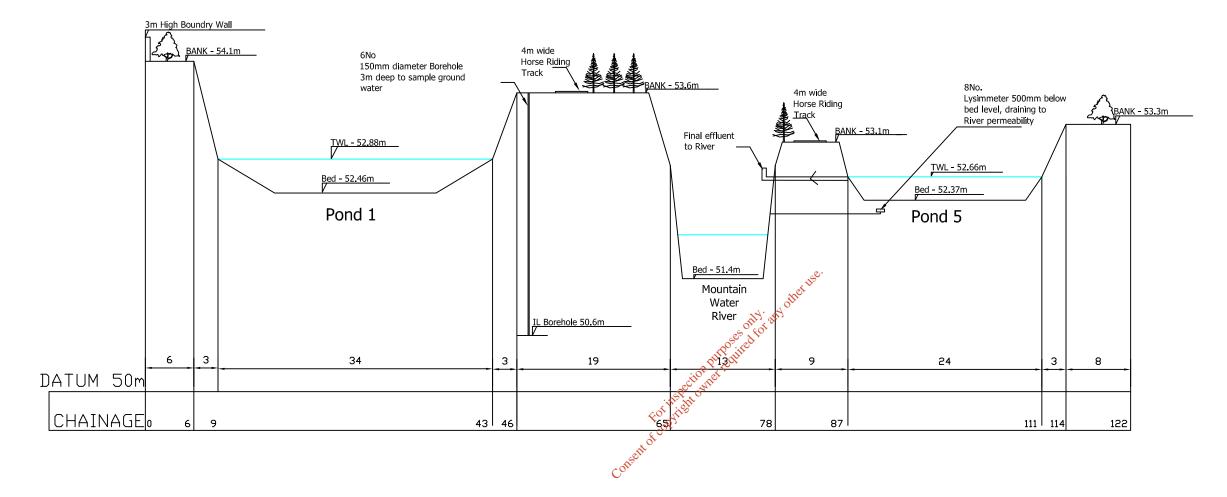
2.2m HARD GRAVEL AT 2.2m

Consent of copyright owner required for any other use.

REALING STRATES CONTRACTOR



Appendix B


Site Cross Sections

Section through Ponds and River

Glaslough ICW

Section through Ponds and River

Glaslough ICW

GLASLOUGH WASTE WATER TREATMENT WORKS

WASTE WATER DISCHARGE LICENCE APPLICATION

Revised Non Technical Summary

Monaghan County Council County Offices The Glen Co. Monaghan

copyriel

JUNE 2010

REVISED NON TECHNCIAL SUMMARY

Monaghan County Council is applying to the Environmental Protection Agency for a waste water discharge licence for the Glaslough Wastewater Sewerage Scheme at Glaslough, Co. Monaghan.

The Glaslough Waste Water Treatment Works comprises a gravity sewer network, a pumping station and associated rising main and an Integrated Constructed Wetlands (ICW) for the treatment of municipal sewerage serving Glaslough Village.

The Glaslough pilot ICW (NGR 272027E, 342135N) is part of a unique initiative by the Department of Environment Heritage and Local Government (DoEHLG) in treating liquid waste streams in shallow vegetated ponds and to towards achieving effective social, economic and environmental water management. It is a co-operative undertaking by Monaghan County Council, Castle Leslie, DoEHLG and the University of Edinburgh.

The wetland, as noted above, treats sewage from the village of Glaslough and has a design capacity of 1,750 PE. The current load is approximately 700 PE (based on house counts and business capacity in 2008; some of which is seasonal) and provides tertiary treatment. No pre-treatment is carried out. The influent is pumped directly from the pumping station located on site (272019E, 342128N) to a receiving pond (Sludge Pond). Thereafter, the liquid flows by gravity through 5 sequential vegetated ponds through connecting pipes after which the effluent discharges to the Mountain Water River at 272194E 342230N.

The Pumping Station is located adjacent to the Integrated Constructed Wetlands at National Grid Reference 272019E, 342128N. There is one emergency overflow located at the pumping station which is directed to discharge into Pond 2 (NGR 272054, 342128). This emergency overflow was originally designed to discharge to the Mountain Water River just upstream of the outfall locations at NGR 272029E, 342194N. There are no storm water overflows associated with the works.

The Mountain Water River is not a designated Salmonid Water (under the European Communities (Quality of Salmonid Waters) Regulations, 1988) nor is it identified as sensitive water in terms of the Urban Waste Water Treatment Regulations 2001. The river is not designated as an SPA, SAC or NHA. The River is a tributary of the Blackwater Monaghan which is designated as sensitive from the confluence of the River Shambles to Newmills Bridge under the Urban Waste Water Treatment Regulations 2001.

Monaghan County Council **Glaslough Waste Water Discharge Licence Application Revised Non Technical Summary June 2010** Register No: D0347-01

The overall status of the Mountain Water River is Poor and the date now set for this water body for achieving Good Ecological Status is 2021.

A Q value of 3 was recorded upstream of the discharge point (Nr of Glaslough Bridge Station No. 0650) in 2004. A previous Q value of 3 was also recorded at this location in 2001 and 1998.

The nearest flow monitoring data available for the Mountain Water River is at the Bridge North of Glaslough (NGR 271979; 342193) (OPW Station 03055). The 95-percentile flow (m³/s) is given as 0.020, the average flow as $1.34 \text{ (m}^3\text{/s)}$.

The treated effluent has an average BOD concentration of 5 mg/l and average suspended solids concentration of 8 mg/l. Average concentrations of nutrients are as follows; Molybdate Reactive Phosphate 0.09 mg/l (P), Total Phosphorus 0.15 mg/l (P), Total Nitrogen 2.07 mg/l (N) and Ammonia 0.82 mg N/I (Based on Monaghan County Council's 2009-2010 data)

only At present the existing waste water treatment plant is meeting the required standards as set out in the Urban Waste Water Regulations 2001(S.I 254 of 2001) for the limits set on BOD, COD and suspended ior solids.

202

Parameter	B pstream				Downstream			
	Mean	Max	95%ile	n	Mean	Max	95%ile	n
COD (mg O_2/L)	35	101	84.00	121	34	101	74.05	120
BOD_5 (mg O_2/L)	3	30	8.00	114	3	12	6.08	114
TSS (mg/L)	10	96	61.50	115	8	90	19.50	115
Total Nitrogen (mg N/L)	1.99	11.2	3.24	94	1.94	6.1	3.61	94
Total Phosphorus (mg P/L)	0.14	0.76	0.27	120	0.13	0.56	0.28	119
Ammonia (mg N/L)	0.49	1.5	1.17	121	0.48	1.5	1.22	119
Nitrate (mg N/L)	0.94	2.2	1.80	111	0.94	2.1	1.65	111
Molybdate Reactive Phosphate (mg P/L)	0.08	0.3	0.18	116	0.08	0.3	0.16	115

The upstream and downstream monitoring results for 2009-2010 are tabled below:

Monaghan County Council Glaslough Waste Water Discharge Licence Application Revised Non Technical Summary June 2010 Register No: D0347-01

Monaghan Co. Co. upstream and downstream monitoring results indicate that the Mountain Water River is not achieving the BOD, Ammonia or MRP standards stipulated for good status (mean or 95%ile) in the European Communities Objectives (Surface Water) Regulations, 2009 (S.I. No. 272 of 209). However the assimilative capacity results and monitoring results indicate that the effluent discharge from the Glaslough WWTW is not having a significant impact on the receiving waters and thereby is not contributing to the failure of this waterbody to comply with the European Communities Objectives (Surface Water) Regulations in terms of required parameters.

Consent of copyright owner required for any other use.