

Athy Civic Amenity Centre

Annual Environmental Report 2009

Waste Licence Reg: W0175-01

Original

Prepared by:

Kildare County Council, Aras Chill Dara, Devoy Park, Naas, Co. Kildare.

June 2010

Table of Co	ntents	<u>Page</u>
1. Introduction)	1
2.1. Wa	aste Activitiesaste Activities carried out at the Facilitye	2
3. Waste Quan	tities and Composition	4
4.1. Su 4.2. Em 4.3. Du 4.4. No	f Environmental Monitoring rface Water nissions to Sewer st ise mmary	5
5.1. Site 5.2. Pro	oment Workse Development Works during 2009 pposed Development Works for 2010	9 9
	tal Objectives and Targetspposed Objectives and Targets	
7.1. Ne 7.2. Inc 7.3. Re 7.4. Fin 7.5. En 7.6. Ma	usw Procedures Developed During 2009 sidents and Complaints Summary view of Nuisance Controls ancial Provision ergy Consumption and Generation anagement and Staffing Structure port of Staff Training	
List of Tables		
Table 3.1: Table 4.1: Table 4.2: Table 4.3: Table 4.4: Table 4.5: Table 4.6:	Summary of Recyclables Recovered from the Monitoring Results for SW1 and SW2	
Appendices		

Appendix I Appendix II Appendix III Drawings Monitoring Results Staffing Structure

1. Introduction

On the 30th October 2003, the Environmental Protection Agency issued Kildare County Council (KCC) a waste licence for its civic amenity facility located at Gallows Hill, Athy, Co. Kildare. The waste licence reference number is W0175-01. This report addresses Condition 11.4 of the waste licence for the facility.

Condition 11.4 states that:

- 11.4.1 The licensee shall submit to the Agency for it agreement within one month after the end of each calendar year, an Annual Environmental Report (AER).
- 11.4.2 The AER shall include as a minimum the information specified in Schedule F: Content of Annual Environmental Report of this licence and shall be prepared in accordance with any relevant written guidance issued by the Agency.

This report addressed the items listed in Schedule F: Content of the Annual Environmental Report of the waste licence for the facility, and covers the reporting period from 1st January 2009 to the 31st December 2009.

2. Site Description and Activities

2.1. Waste Activities carried out at the Facility

Waste activities at Athy Civic Amenity Centre are restricted to those outlined in Part 1 – Activities Licensed of the waste licence.

Licensed Waste Disposal Activities in accordance with the Third Schedule of the Waste Management Act, 1996

Class 11 Blending or mixing prior to submission to any activity referred to in a preceding paragraph of this schedule.

This activity is limited to the compaction and storage of municipal solid waste on site, prior to disposal off-site.

Class 12 Repackaging prior to submission to any activity referred to in a preceding paragraph of this schedule.

This activity is limited to the compaction of municipal solid waste on site, prior to disposal off-site.

Class 13 Storage prior to submission to any activity referred to in a preceding paragraph of this schedule, other than temporary storage pending collection, on the premises where the waste concerned was produced.

This activity is limited to the storage of municipal solid waste, prior to disposal offsite.

Licensed Waste Recovery Activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996

Class 2 Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes)

This activity is limited to the recycling of textiles, plastics, paper, cardboard, timber, green waste, limited quantities of waste arising from farm and household activities including; household chemicals, paints, inks, adhesives and resins, waste oils, oil filters and agrochemical waste.

Class 3 Recycling or reclamation of metals and metal compounds

This activity is limited to the recycling of scrap metal, aluminium cans and white goods.

Class 4 Recycling or reclamation of other inorganic materials

This activity is limited to the recycling of glass, household construction and demolition waste, tyres, electronics, fluorescent tubes, batteries and accumulators.

Class 11 Use of waste obtained from any activity referred to in a receding paragraph of this schedule

This activity is limited to the reuse of waste such as household construction and demolition waste, white goods or timber.

Class 12 Exchange of waste for submission to any activity referred to in a preceding paragraph of this schedule

This activity is limited to the exchange of waste that can be reclaimed and reused such as timber pallets and tyres.

Class 13 Storage of waste intended for submission to any activity referred to in a preceding paragraph of this schedule, other than temporary storage pending collection, on the premises where such waste is produced

This activity is limited to the storage of waste types authorised by this licence at the facility prior to recovery at an appropriate facility.

Members of the public and small commercial vehicles access the site. The activities carried out at each area are described in the subsections below.

2.2. Site Description

Athy Civic Amenity Centre is a purpose built waste management facility and is located approximately 200 metres off the N78 road between Athy and Kilcullen. A site location map is included in Appendix I. The facility was constructed on land owned by Kildare County Council which had historically been used for the storage of road maintenance equipment. The Site Layout Map for the facility shows the overall layout of the facility.

The household hazardous waste building was constructed with a bunded concrete floor slab, structural steel frame, profiled metal cladding and blockwork walls. The control building was constructed as a single storey, 'bungalow-like' structure. It contains the administration office, canteen, toilets and shower area. An 18m long weighbridge was installed adjacent to the control building.

The site consists of a split level area in the middle of the facility to allow members of the public to dispose of and recycle waste. This was constructed in a 'zig-zag' fashion to accommodate the skips below. A compactor unit was also installed adjacent to the split level area. This facilitates the disposal and compaction of municipal waste.

The civic amenity centre is surrounded by a 2m high palisade fence, for security of the site.

3. Waste Quantities and Composition

The quantity and composition of material received for recovery at the facility from the 1st January 2009 to the 31st December 2009 is outlined in Table 3.1.

Table 3.1. Summary of Recyclables Recovered (Tonnes) from the Facility (2006 – 2009)

Material	2006 (t)	2007 (t)	2008 (t)	2009 (t)
Cardboard	48.86	54.90	49.86	30.78
Newspaper	46.28	53.08	55.52	29.78
Bottles	32.62	45.18	48.88	24.68
Cans	2.61	4.02	5.48	3.02
Clothes	15.96	23.84	24.82	8.42
Electrical Goods	80.06	69.10	87.22	66.72
Batteries	6.46	5.74	3.40	2.3
Flat Glass	3.36	-	-	9.28
Vegetable Oil	0.52	1.90	1.18	0.36
Gas Bottles	0.44	-	-	-
Fluorescent Tubes	0.1	0.12	0.08	0.04
Paints	0.24	-	-	-
Metal	-	24.96	38.04	26.12
Plastic	-	12.70	7.76	23.98
Green Waste	-	27.26	84.60	28.82
Misc. Hazardous	-	12.30	3.38	2.42
Bulk Waste	-	154.78	196.62	126.68
Bulk Domestic Waste	-	319.26	323.02	344
Total	237.51	809.14	929.86	727.4

The figures above outline the recovery of recyclables for the 2006, 2007, 2008 and 2009 reporting periods. The figures show that the recovery of recyclables at the facility decreased by approximately 25% during 2009. This was mainly as a result of reduced opening hours at the facility and the economic downturn.

4. Summary of Environmental Monitoring

Condition 8 and Schedule D of the Waste Licence specify the environmental monitoring requirements for the facility. The following sections discuss the results from the monitoring events during the monitoring period.

Environmental monitoring of the Surface water and emissions to sewer at the facility was carried out on the 19th January 2009 and the 8th September 2009. Noise monitoring was carried out on the -----2009. Dust monitoring was carried out twice during the reporting period; over a 30-day period during August and September and over a 30 day period during September and October. The Environmental media monitored at the facility are as follows:

- 1. Surface Water
- 2. Emissions to Sewer
- 3. Air Quality Dust
- 4. Noise

Unless otherwise specified, monitoring was carried out at those locations set out in Table D1.1.of the waste licence and in Figure J.1.1. Map of Environmental Monitoring Locations which is included in Appendix I.

4.1. Surface Water

Two surface water monitoring points are defined in Schedule D of the waste licence, SW1 and SW2. SW1 had only a low flow during the January sampling event and was dry during the September sampling event.

Table 4.1. Monitoring Results for SW1 and SW2

	SV	V1	SW2		
	19/01/2009	08/09/2009	19/01/2009	08/09/2009	
pH	8.10	-	8.09	1.59	
Biochemical Oxygen Demand (mg/l)	<2	-	3	7.99	
Total Suspended Solids (mg/l)	869	-	22	<4.00	
Fats, Oils & Grease (mg/l)	3	-	<1	<1	

4.1.1. Interpretation of Results

The results for total suspended solids were elevated in SW1 in the January sample. The flows in this manhole are very low and run dry for long periods at a time. Previously, the low flow experienced at SW1 has led to problems obtaining a sample. During January 2009 a sample was obtained but the flow was still low. It is likely that the high suspended solid content identified in the results is owing to the capturing of bottom sediment incorporated into the waster sample, and is not indicative of the solid content in the flowing water. It is unlikely that the operation of the facility is having an adverse effect on the surface water in the area.

The surface water run-off from the site will continue to be monitored and analysed for these parameters on a bi-annual basis in 2010.

4.2. Emissions to Sewer

4.2.1 Monitoring Locations

Samples were taken from the point of emission to sewer (WW1) as shown on Figure J.1.1. Map of Environmental Monitoring Locations.

4.2.2. Monitoring Parameters

The samples were analysed for the parameters listed in Table D.5.1 in the waste licence. The results are presented in Table 4.2.

Table 4.2. Monitoring Results for WW1

	19/01/2009	08/09/2009
рН	8.08	8.05
Biochemical Oxygen Demand (mg/l)	3	32.1
Chemical Oxygen Demand (mg/l)	<15	-
Total Suspended Solids (mg/l)	94	15.5
Fats, Oils & Grease (mg/l)	1	2.65
Total Phosphorous (mg/l)	0.27	2.9
Total Nitrogen (mg/l)	-	15.2
Total Oxidised Nitrogen (mg/l)	< 0.3	-

4.2.3. Interpretation of Results

pH, COD and fats, oils and grease remained similar to the previous year. There was a spike in TSS concentrations in the January sample but this had returned to normal range by the September sampling event. Large quantities of leaves and mud were caught at the bottom of WW1 and were the cause of the higher than average TSS content in the January sample.

There was an increase in BOD and Total Phosphorous during the September monitoring. There is No previous history of elevated levels at this site and these parameters will be monitored closely for any trend. If an increasing trend becomes evident after future sampling, recommendations will be made in an effort to reduce phosphorous results.

The wastewater from the site will continue to be monitored and analysed for these parameters on a bi-annual basis in 2010.

4.3. Dust

4.3.1. Monitoring Locations

Dust monitoring was carried out at four locations in accordance with Schedule D of the licence. These locations are shown on Figure J.1.1. Map of Environmental Monitoring Locations. Two of these monitoring points are on the site boundary and two are located in the neighbouring road maintenance yard.

4.3.2. Monitoring Parameters

Bergerhoff gauges were used to determine total dust deposition. Four gauges were set up so that the dust jars were at a height of at least 1.5m above the ground and the jars were set in place during the monthly monitoring events.

4.3.3. Monitoring Results

The results for total dust deposition are presented in Table 4.3.

Table 4.3. Monthly Dust Deposition Results

		D1	D2	D3	D4
From	То	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d
10/08/09	08/09/09	82.5	303	45.8	45.8
10/09/09	09/10/09	60	226	56.7	96.7

4.3.4. Interpretation of Results

The dust deposition levels at all monitoring points are below the mean daily dust deposition limit as set out in Schedule C.2 of the waste licence for the facility $(350 \text{mg/m}^2/\text{d})$.

4.4. Noise

4.4.1. Monitoring Parameters

As per Schedule D of the waste licence, the annual noise survey was carried out on the 7th October 2009 when the conditions were found to be suitable. Noise monitoring was undertaken at the four locations as shown on Figure J.1.1. Map of Environmental Monitoring Locations.

Noise monitoring was carried out during the day between the hours of 09:00 and 12:00 for 30 minute intervals at each location. No night time noise monitoring is required at the facility. All measurements were taken in accordance with ISO 1996 (Description and Measurement of Environmental Noise) and the EPA Environmental Noise Survey Guidance Document.

The survey was carried out using a Brüel and Kjær 2260 Type 1 Sound Level Meter (SLM) with an outdoor microphone unit Type 4198.

The instrument was calibrated prior to commencing the survey using the recommended calibration procedure and a known pure tone noise source. The unit was again calibrated on completion of the survey to record drift during the course of the day. Drift is normally associated with battery fade and temperature. The unit had not drifted.

Good measurements require calm conditions to avoid spurious effects on the microphone, particularly at low frequencies. An average wind speed of less than 5 m/s is the preferred limit when noise measurements are being taken, with 7 m/s an upper limit. Weather conditions during the monitoring were damp and calm and wind speed was less than 7 m/s for the entire period.

4.4.2. Monitoring Locations

Monitoring was conducted at four locations as specified in the waste licence. The locations are shown on Figure J.1.1. Map of Environmental Monitoring Locations and summarised in Table 4.4

Table 4.4. Noise Monitoring Locations

Monitoring Location	Description
N1	Located on the south western boundary of the facility
N2	Located just to the east of the facility in the grounds of the adjacent quarry
S1	Located to the west of the facility adjacent to the access road
S2	Located in a housing estate northwest of the facility

4.4.4. Monitoring Results

Table 4.5. Noise Monitoring Results

Location	Date	Time	\mathbf{L}_{Aeq}	L_{AF10}	L_{AF90}
N1	07/10/2009	10:45-11:15	44	46	36
N2	07/10/2009	11: 20-11:50	52	51	40
S1	07/10/2009	09:25-09:55	52	53	46
S2	07/10/2009	10:00-10:30	54	55	45

4.4.5. Interpretation of Results

Noise emission limits are given in Table C1 of the Waste Licence and are reproduced here in Table 4.6.

Table 4.6. Noise Emission Limits

	Night dB (A) L _{Aeq} (30 minutes)
55	45

The noise levels at all of the monitoring locations were within the noise emission limits. No tonal element was present in the noise data at any of the locations.

4.4.6. Assessment of Tonal Components

All measurements were subject to a one-third octave band analysis to identify tonal components within the noise measured. No tonal element was present in the noise data analysed.

4.5. Summary

This report presents the monitoring results from the Athy Civic Amenity Centre, in compliance with the requirements of EPA Waste Licence Reg. No. W0175-01.

Monitoring of the environmental media, as discussed above, indicates that activities at the facility are not having a significant impact on the surrounding environment. The next monitoring report is due in 2011.

5. Site Development Works

5.1 Site Development Works During 2009

5.1.1. Civic Waste Facility

The Civic Amenity Site opened in August 2005 and has been maintained to a high standard by Kildare County Council.

No site development works were carried out during 2009

5.2. Proposed Development Works for 2010

Plans for the construction of a bunded shed have been submitted to the Agency and are awaiting approval.

6. Environmental Objectives and Targets

In compliance with Condition 2.3 of the waste licence, an Environmental Management System (EMS) has been established for the facility.

The EMS includes the timescale for achieving the objectives and targets, and the designation of responsibility for achieving the objectives and targets.

6.1. Proposed Objectives and Targets

The objectives and targets proposed for 2010 are listed below.

Objective 1. Operate facility in order to maintain the high standards set and promote continual environmental improvement.

It is the objective of Kildare County Council to comply with the conditions of the EPA waste licence for the facility and promote continual environmental improvement. This will ensure compliance with all licence conditions and, in return, improve the management and operation of the facility. The targets are tabulated below with a target date for the implementation of the goal.

	Target	Responsible
1	Review training schedule of each staff member & identify training needs	Facility Manager
2	Implement the EMS	Facility Manager
3	Continue programme of regular inspections	Facility Manager
4	Continue to maintain the appropriate records at the facility in	Facility Manager
	Accordance with Condition 11 of the waste licence	

Responsible Personnel

The facility manager is responsible for achieving this objective.

Timetable for Achievement of Tasks

Target	2010											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1												
2												
3												
4												

Objective 2. Maximise recovery/recycling within the civic amenity and site office.

It is the objective of the licensee to maximise the recycling of waste materials at the facility and site office.

The objective will be achieved by carrying out the following tasks:

	Target	Responsible
1	Promote recycling in-house within the site office	Facility Manager
2	Continue effort to source new markets for recyclable products	Facility Manager
3	Increase public awareness of the facility through advertising	Facility Manager

Responsible Personnel

The facility manager is responsible for achieving this objective.

Timetable for Achievement of Tasks

Target	2010											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1												
2												
3												

Objective 3. Maximise energy efficiency within the site office.

It is the objective of the licensee to constantly improve and maintain energy efficiency measures to maximise efficiency within the site office.

This objective will be achieved by carrying out the following tasks:

	Target	Responsible
1	Promote energy awareness in-house amongst all staff	Facility Manager
2	Any new appliance purchased for use in the site office will have a	Facility Manager
	high energy rating	
3	All lights and appliances will, where possible, be powered off at	Facility Manager
	night and over weekends. Energy efficient light bulbs will be utilised where possible	-

Responsible Personnel

The facility manager is responsible for achieving this objective.

Timetable for Achievement of Tasks

Target		2010												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
1														
2														
3														

Objective 4. Minimisation of complaints

It is the objective of the licensee to maintain the low level of complaints received regarding the operation of the facility. No complaints were received during 2009 and the licensee aims to repeat this in 2010. By maintaining good housekeeping procedures and ensuring the site is maintained in a proper manner, this will ensure the minimisation of complaints. An open and effective communications programme at the facility will continue to be used to ensure that any complaints received at the facility are dealt with and addressed in so far as possible to the satisfaction of the complainant.

	Target	Responsible			
1	Effectively deal with complaints	Facility Manager			
2	Formulate action plans for next period to minimise complaints	Facility Manager			
3	Maintain the high standard of housekeeping practises at the facility	Facility Manager			

Responsible Personnel

The facility manager is responsible for achieving this objective.

Timetable for Achievement of Tasks

Target		2010													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
1															
2															
3															

7. Miscellaneous

7.1. New Procedures Developed During 2009

- New domestic recycling charges were introduced in January 2009.
- Reduced opening hours began in February 2009 with the facility opening for three days a week.

7.2. Incidents and Complaints Summary

The facility manager records all site incidents and complaints on a register, which is held at the site office.

There were no incidents or complaints recorded at the facility during 2009.

7.3. Review of Nuisance Controls

Athy Civic Amenity Centre is maintained to a very high standard by Kildare County Council. All loose litter at the site and on the site access road is removed by site staff. All vehicles delivering or removing waste to or from the facility are appropriately covered to minimise littering.

7.4. Financial Provision

Kildare County Council pays to the Agency an annual contribution of ϵ 7,732 towards the cost of monitoring the facility, or otherwise in performing any functions in relation to the activity.

7.5. Energy Consumption and Generation

The figures for energy use in 2009 are as follows:

• Electricity: 73,400 (approximate)

• Fuel: 1,500 litres (approximate)

• Water: 1000 m³ (approximate)

Water usage is not metered, so consumption is approximate. The electrical usage is also estimated.

7.6. Management and Staffing Structure

This is included in Appendix III

7.7. Report on Staff Training

Training completed by staff in 2009 is as follows:

Pat Roche completed the Fás Safe Pass Course. Brian Fitzpatrick completed the Fás Safe Pass Course.

Appendix I

Drawings

Appendix II Monitoring Results

Unit 18A Rosemount Business Park Ballycoolin Dublin 11

Tel: (0035) 3188 29893

Kildare County Council Water Services Aras Cilldara Devoy Park Naas Co.Kildare

Attention: Claire McLaughlin

CERTIFICATE OF ANALYSIS

 Date:
 22 September 2009

 Job:
 D_KILCC_NAS-2

SDG Reference: 090908-63 **Report No.**: 62069

Your Reference:

Location: Silliot Hill

A total of 12 samples was received on Tuesday September 08, 2009 and completed on Tuesday September 15, 2009. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation. We are pleased to enclose our report, it was a pleasure to be of service to you, and we look forward to our continuing association.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occuring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample. Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM)Approved By: Chris Crutchley Operations

Director - Land UK & I

ALcontrol Laboratories Analytical Services

Kildere County CouncilD_KILCC_NAS-2

Customer:

Client Reference:

Attention: Claire McLaughlin

Location: Silliot Hill

Order No.: Report No: 62069

				_	_	_	_	_	_			$\overline{}$	$\overline{}$
Sample ID	Depth	Sample Type Container			Anions by Kone (w)	BOD Unfiltered	Dust in Water	Mineral Oil C10-40 Aqueous (W)	pH Value	Total Metals by ICP-MS	Total Nitrogen	Total Suspended Solids	TPH by IR Oils and Greases
				All	All	All	All	All	All	All	All	All	All
ACD1		1l glass bottle (D)	LIQUID	T	T	T	X	Г		П	П		П
ACD2		1l glass bottle (D)	LIQUID	Г			X						
ACD3		1l glass bottle (D)	LIQUID				X						
ACD4		1l glass bottle (D)	LIQUID	L	L		X						
SHD1		1l glass bottle (D)	LIQUID	L	L	L	X	L	L	Ц	L	Ц	L
SHD2		1l glass bottle (D)	LIQUID	L	L	L	X	L	L	Ц	Ц	Ц	L
SHD3		1l glass bottle (D)	LIQUID	L	L	L	X	L	L	Ц	Ц	Ц	L
SHD4	<u> </u>	1l glass bottle (D)	LIQUID	L	L	L	X	L	L	Ц	Ц	Ц	L
SHD6		1l glass bottle (D)	LIQUID	L	L	L	X	L	L	L	L	Ц	L
SHD7		1l glass bottle (D)	LIQUID	L	L	L	X	L	L	L	L	Ц	L
SW2		H2SO4 (Dublin)	LIQUID	X	H	L	L	L	L	H	H	Н	L
		1l glass bottle (D)	LIQUID	\vdash	\vdash	L	H	X	Ļ	\vdash	\vdash	X	X
VA04/1	-	1l glass bottle (D)	LIQUID	X	\vdash	X	\vdash	\vdash	X	\vdash	\vdash	X	H
WW1		H2SO4 (Dublin) 1l glass bottle (D)	LIQUID	ŕ	H	H	┝	┝	┝	X	H	H	X
		11 glass bottle (D)	LIQUID LIQUID	H	Y	X	H	H	X	f	X	X	ŕ
									-		-	-	

ALcontrol Laboratories Analytical Services

Job: D_KILCC_NAS-2 Customer: Kildare County Council

Client Reference: Attention: Claire McLaughlin

Location: Silliot Hill Order No.: Report No: 62069

Table of Results

Ammonium

Results Legend # ISO17025 Accredited. # MCERTS accredited. * sub contracted test. * This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Depth(n Sample Sample Sample SDG Re Sample	n) Type received date d date ef		SW2 Water(GW/SW) 08/09/2009 090908-63 464107	WW1 Water(GW/SW) 08/09/2009 090908-63 464116
	LoD	Units	Method		
Ammoniacal Nitrogen as N	<0.2	mg/l as N	TM099	<0.200	14.8

Anions by Kone (w)

Results Legend # ISO17025 Accredited. m MCERTS accredited. ** Sub contracted test. ** This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Sample Depth(n Sample Sample Sample Sample Sample	n) Type received date d date ef	WW1 Water(GW/SW) 08/09/2009 090908-63 464116	
	LoD	Units	Method	
Sulphate (soluble)	3	mg/l	TM184	9.10

BOD Unfiltered

Results Legend # ISO17025 Accredited. m MCERTS accredited. ** Sub contracted test. ** This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Depth(n Sample Sample Sample Sample SDG Re Sample	n) Type received date d date ef		SW2 Water(GW/SW) 08/09/2009 090908-63 464107	WW1 Water(GW/SW) 08/09/2009 090908-63 464116
	LoD	Units	Method		
BOD	<1	mg/l O	TM045	1.59	32.1

Dust in Water

Results Legend # ISO17025 Accredited. m MCERTS accredited. * Isub contracted test. ** This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Sample ID Depth(m) Sample Type Sample received date Sampled date SDG Ref Sample Ref		ACD1 Water(GW/SW) 08/09/2009 08/09/2009 090908-63 464093	ACD2 Water(GW/SW) 08/09/2009 08/09/2009 090908-63 464096	ACD3 Water(GW/SW) 08/09/2009 08/09/2009 090908-63 464099	ACD4 Water(GW/SW) 08/09/2009 08/09/2009 090908-63 464102	
	LoD	Units	Method				
Collection days		Days	TM253	30	30	30	30
Dust	<0.026	mg/m2/day	TM253	82.5	303	45.8	45.0

ALcontrol Laboratories Analytical Services

Job: D_KILCC_NAS-2 Customer: Kildare County Council

Client Reference:

Attention: Claire McLaughlin

Location: Silliot Hill Order No.: Report No: 62069

Dust in Water

Results Legend	Sample ID			SHD1	SHD2	SHD3	SHD4
# ISO17025 Accredited. m MCERTS accredited. ** This result relates to the % recovery of the surrogate ** This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Depth(m) Sample Type Sample received date Sampled date SDG Ref Sample Ref		Water(GW/SW) 08/09/2009 08/09/2009 090908-63 464070	Water(GW/SW) 08/09/2009 08/09/2009 090908-63 464075	Water(GW/SW) 08/09/2009 08/09/2009 090908-63 464078	Water(GW/SW) 08/09/2009 08/09/2009 090908-63 464081	
	LoD	Units	Method				
Collection days		Days	TM253	30	30	30	30
Dust	<0.026	mg/m2/day	TM253	245	24.2	218	213

Dust in Water

Results Legend	Sample	ID		SHD6	SHD7
# ISO17025 Accredited. m MCERTS accredited. **Sub-contracted test. **This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Depth(n Sample Sample Sample SDG Ro Sample	Type received date date date		Water(GW/SW) 08/09/2009 08/09/2009 090908-63 465737	Water(GW/SW) 08/09/2009 08/09/2009 090908-63 464090
	LoD	Units	Method		
Collection days		Days	TM253	30	30
Dust	<0.026	mg/m2/day	TM253	42.5	20.0

Mineral Oil C10-40 Aqueous (W)

Results Legend # ISO17025 Accredited. m MCERTS accredited. ** This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Depth(r Sample Sample Sample SDG R Sample	n) Type received date d date ef	SW2 Water(GW/SW) 08/09/2009 090908-63 464107	
	LoD	Units	Method	
Mineral Oil (Aqueous)	<10	µg/l	TM172	<10.0

pH Value

Results Legend # ISO17025 Accredited. m MCERTS accredited. * Isbo corrected test. ** This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Sample Depth(n Sample Sample Sample SDG Re Sample	n) Type received date d date ef		SW2 Water(GW/SW) 08/09/2009 090908-63 464107	WW1 Water(GW/SW) 08/09/2009 090908-63 464116
	LoD	Units	Method		
pH value		pH Units	TM133	7.99	# 8.05

ALcontrol Laboratories Analytical Services

Job: D_KILCC_NAS-2 Customer: Kildare County Council

Client Reference:

Attention: Claire McLaughlin

Location: Silliot Hill Order No.: Report No: 62069

Total Metals by ICP-MS

Results Legend # ISO17025 Accredited. m MCERTS accredited. ** Sub contracted test ** This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Sample Depth(n Sample Sample Sample SDG Re Sample	n) Type received date d date ef	WW1 Water(GW/SW) 08/09/2009 090908-63 464116	
	LoD	Units	Method	
Phosphorus (Unflitered)	<18.3	μg/l	TM191	2900

Total Nitrogen

Results Legend # ISO17025 Accredited, m MCERTS accredited. * sub contracted test * sub contracted test * This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Depth(n Sample Sample Sample Sample SDG Ro Sample	n) Type received date d date ef	WW1 Water(GW/SW) 08/09/2009 090908-63 464116	
	LoD	Units	Method	
Total Nitrogen	<1	mg/l	TM212	15.2

Total Suspended Solids

Results Legend # ISO17025 Accredited. m MCERTS accredited. ** This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Sample Depth(n Sample Sample Sample Sample SDG Re Sample	n) Type received date d date ef		SW2 Water(GW/SW) 08/09/2009 090908-63 464107	WW1 Water(GW/SW) 08/09/2009 090908-63 464116
	LoD	Units	Method		
Total Suspended Solids	<2	mg/l	TM022	<4.00	15.5

TPH by IR Oils and Greases

Results Legend # ISO17025 Accredited. m MCERTS accredited. ** Sub contracted test. ** This result relates to the % recovery of the surrogate standard added to the sample to check on the efficiency of the method. Acceptable limits for most organic methods are 70 - 130 % The results of the individual compounds within the sample are not corrected for this recovery.	Depth(n Sample Sample Sample Sample SDG Re	n) Type received date d date ef		SW2 Water(GW/SW) 08/09/2009 090908-63 464107	WW1 Water(GW/SW) 08/09/2009 090908-63 464116
	LoD	Units	Method		
TPH / Oil & Greases	<1	mg/l	TM087	<1.00	2.65

ALcontrol Laboratories Analytical Services

 D_KILCC_NAS-2 Job: Customer: Kildare County Council

Claire McLaughlin Client Reference: Attention:

Location: Silliot Hill Order No.: Report No: 62069

Test Completion dates

				SE	G	re	fer	en	ce:	0	909	908
Sample ID	Depth	Туре	Ammonium	Anions by Kone (w)	BOD Unfiltered	Dust in Water	Mineral Oil C10-40 Aqueous (W)	pH Value	Total Metals by ICP-MS	Total Nitrogen	Total Suspended Solids	TPH by IR Oils and Greases
ACD1		LIQUID				14/0						
						14/09/2009						
ACD2		LIQUID				14/0						
						14/09/2009						
ACD3		LIQUID				14/0						
						14/09/2009						
ACD4		LIQUID				14/09						
						14/09/2009						
SHD1		LIQUID				14/09						
						14/09/2009						
SHD2		LIQUID				14/09						
						14/09/2009						
SHD3		LIQUID				14/09						
						14/09/2009						
SHD4		LIQUID				14/09/2009						
						2009						
SHD6		LIQUID				14/09/2009						
						2009						
SHD7		LIQUID				14/09/2009						
						2009						
SW2		LIQUID	10/09/2009		15/09/2009		14/09/2009	10/09/2009			14/09/2009	11/09/2009
			2009		2009		2009	2009			2009	9009
WW1		LIQUID	10/09/2009	09/09/2009	15/09/2009			10/09/2009	10/09/2009	11/09/2009	14/09/2009	11/09/2009
			2009	2009	2009			2009	2009	2009	2009	2009

APPENDIX

APPENDIX

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH₄ by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. Alcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Surrogate recoveries Most of our organic methods include surrogates, the recovery of which is monitored and reported.

 For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted.
- 13. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 14. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 15. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 16. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 17. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
	EXTR	EXTI	
PAH MS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
ЕРН	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
EPH CWG	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
MINERAL OIL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
PCB 7 CONGENERS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
PCB TOTAL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GS MS
SVOC	DCM	LIQUID/LIQUID SHAKEN SVOC	GC MS
FREE SULPHUR	DCM	SOLID PHASE EXTRACTION	HPLC
PEST OCP/OPP	DCM/EA	SOLID PHASE EXTRACTION	GC MS
TRIAZINE HERBS	DCM/EA	SOLID PHASE EXTRACTION	GC MS
PHENOLS MS	DCM	SOLID PHASE EXTRACTION	GC MS
TPH by INFRA RED (IR)	TCE	LIQUID/LIQUID EXTRACTION	HPLC
MINERAL OIL by IR	TCE	LIQUID/LIQUID EXTRACTION	HPLC
SAPONIFIABLE	TCE	LIQUID/LIQUID EXTRACTION	HPLC
UNSAPONIFIABLE	TCE	LIQUID/LIQUID EXTRACTION	HPLC
GLYCOLS	DCM	LIQUID/LIQUID EXTRACTION	EZ FLASH

SOLID MATRICES EXTRACTION SUMMARY

	JULID	MATRICES EXTRACTION SUMMARY		
ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
Solvent Extractable Matter	D&C	DCM	SOXTHERM	GRAVIMETRIC
Cyclohexane Ext. Matter	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
Thin Layer Chromatography	D&C	DCM	SOXTHERM	IATROSCAN
Elemental Sulphur	D&C	DCM	SOXTHERM	HPLC
Phenols by GCMS	WET	DCM	SOXTHERM	GC-MS
Herbicides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
Pesticides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH (Min oil)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH (Cleaned up)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH CWG by GC	D&C	HEXANE:ACETONE	END OVER END	GC-FID
PCB tot / PCB con	D&C	HEXANE:ACETONE	END OVER END	GC-MS
Polyaromatic Hydrocarbons (MS)	WET	HEXANE:ACETONE	Microwave TM218.	GC-MS
C8-C40 (C6-C40)EZ Flash	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Polyaromatic Hydrocarbons Rapid GC	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Semi Volatile Organic Compounds	WET	DCM:ACETONE	SONICATE	GC-MS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Asbestos Type	Common Name
Chrysotile	White Asbestos
Amosite	Brown Asbestos
Crocidolite	Blue Asbestos
Fibrous Actinolite	-
Fibrous Anthophyllite	-
Fibrous Tremolite	_

Unit 18A Rosemount Business Park Ballycoolin Dublin 11

Tel: (0035) 3188 29893

Kildare County Council Water Services Aras Cilldara Devoy Park Naas Co.Kildare

Attention: Claire McLaughlin

CERTIFICATE OF ANALYSIS

 Date:
 23 October 2009

 Job:
 D_KILCC_NAS-5

Sample Delivery Group (SDG): 091012-9 Report No.: 63723

Your Reference: SILLIOT HILL
Locatio SILLIOT HILL

A total of 16 samples was received on Friday October 09, 2009 and completed on Friday October 23, 2009. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories. Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM). Approved By:

Chris Crutchley
Operations Director - Land UK & I

ALcontrol Laboratories Analytical Services

SDG:091012-9Customer:Kildare County CouncilJob:D_KILCC_NAS-5Attention:Claire McLaughlin

Client Reference: SILLIOT HILL Order No.:

Location: SILLIOT HILL Report No: 63723

Results Legend X Test N No Determination	Sample ID	ACA D1	ACA D2	ACA D3	ACA D4	BT-1	BT-2	BT-3	BT-4	HOLDING TANK	INLET	SH D1	SH D2	SH D3	SH D4	SH D6	SH D7	STONE FILTER	
Possible	Depth																		
	Container	JAR (D)	JAR (D)	JAR (D)	JAR (D)	60g VOC Dublin	JAR (D)	60g VOC Dublin	Total										
	Sample Type	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	
Determination of Dissolved Gases	All					X	X	N	X	Χ	X							X	1 6
Dust in Water	All	X	X	X	X	Ť	Ť					X	X	X	X	X	X		0

SDG:091012-9Customer:Kildare County CouncilJob:D_KILCC_NAS-5Attention:Claire McLaughlin

Client Reference: SILLIOT HILL

Location: SILLIOT HILL Report No: 63723

Test Completion dates

Order No.:

SDG reference: 091012-9

				SL
Sample ID	Depth	Туре	Determination of Dissolved Gases	Dust in Water
ACA D1		LIQUID		15/10/2009
ACA D2		LIQUID		15/10/2009
ACA D3		LIQUID		15/10/2009
ACA D4		LIQUID		15/10/2009
BT-1		LIQUID	16/10/2009	
BT-2		LIQUID	16/10/2009	
BT-4		LIQUID	16/10/2009	
HOLDING TANK		LIQUID	16/10/2009	
INLET		LIQUID	16/10/2009	
SH D1		LIQUID		15/10/2009
SH D2		LIQUID		15/10/2009
SH D3		LIQUID		15/10/2009
SH D4		LIQUID		15/10/2009
SH D6		LIQUID		15/10/2009
SH D7		LIQUID		15/10/2009

SDG:091012-9Customer:Kildare County CouncilJob:D_KILCC_NAS-5Attention:Claire McLaughlin

Client Reference: SILLIOT HILL

Location: SILLIOT HILL Report No: 63723

Test Completion dates

Order No.:

SDG reference: 091012-9

				SI
Sample ID	Depth	Туре	Determination of Dissolved Gases	Dust in Water
ACA D1		LIQUID		
				15/10/2009
ACA D2		LIQUID		15/10/2009
ACA D3		LIQUID		15/10/2009
ACA D4		LIQUID		15/10/2009
BT-1		LIQUID	16/10/2009	
ВТ-2		LIQUID	16/10/2009	
BT-4 HOLDING TANK		LIQUID	16/10/2009	
		LIQUID	16/10/2009	
INLET		LIQUID	16/10/2009	
SH D1		LIQUID		15/10/2009
SH D2		LIQUID		15/10/2009
SH D3		LIQUID		15/10/2009
SH D4		LIQUID		15/10/2009
SH D6		LIQUID		15/10/2009
SH D7		LIQUID		15/10/2009

SDG:091012-9Customer:Kildare County CouncilJob:D_KILCC_NAS-5Attention:Claire McLaughlin

Client Reference: SILLIOT HILL

Location: SILLIOT HILL Report No: 63723

Test Completion dates

Order No.:

SDG reference: 091012-9

Debrimination of Description Debrimination Debrimination of Description Debrimination Debri					S
ACA D1	Sample ID	Depth	Туре	Determination of Dissolved Gases	Dust in Water
ACA D2 LIQUID 15102009 151020					_
ACA D3 LIQUID 15/10/2009 BT-1 LIQUID 16/10/2009 BT-2 LIQUID 16/10/2009 HOLDING TANK LIQUID 16/10/2009 INLET LIQUID 16/10/2009 SH D1 LIQUID 16/10/2009 SH D2 LIQUID 16/10/2009 SH D3 LIQUID 16/10/2009 SH D4 LIQUID 16/10/2009 SH D5 LIQUID 16/10/2009 SH D6 LIQUID 16/10/2009					5/10/2009
1510/2008 1510	ACA D2		LIQUID		15/10/2009
BT-1 LIQUID 16/10/2009 BT-2 LIQUID 16/10/2009 BT-4 LIQUID 16/10/2009 INLET LIQUID 16/10/2009 SH D1 LIQUID 15/10/2009 SH D2 LIQUID 15/10/2009 SH D3 LIQUID 15/10/2009 SH D4 LIQUID 15/10/2009 SH D6 LIQUID 15/10/2009					15/10/2009
BT-2 LIQUID 16/10/2008 BT-4 LIQUID 16/10/2008 HOLDING TANK LIQUID 16/10/2008 SH D1 LIQUID 15/10/2008 SH D2 LIQUID 15/10/2008 SH D3 LIQUID 15/10/2008 SH D4 LIQUID 15/10/2008 SH D6 LIQUID 15/10/2008	ACA D4		LIQUID		15/10/2009
BT-4 LIQUID 16/10/2008 HOLDING TANK LIQUID 16/10/2008 INLET LIQUID 16/10/2008 SH D1 LIQUID 15/10/2008 SH D2 LIQUID 15/10/2008 SH D3 LIQUID 15/10/2008 SH D4 LIQUID 16/10/2008	BT-1		LIQUID	16/10/2009	
HOLDING TANK LIQUID 16/10/2008 INLET LIQUID 16/10/2008 SH D1 LIQUID 16/10/2008 SH D2 LIQUID 16/10/2008 SH D3 LIQUID 16/10/2008 SH D4 LIQUID 16/10/2008 16/10/2008 LIQUID 16/10/2008 16/10/2008 LIQUID 16/10/2008 16/10/2008 LIQUID 16/10/2008	BT-2		LIQUID	16/10/2009	
SH D3 SH D4 LIQUID 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009 15/10/2009	BT-4		LIQUID	16/10/2009	
SH D1 LIQUID 15/10/2008 15/10/200	HOLDING TANK		LIQUID	16/10/2009	
SH D2 LIQUID 15/10/2008 SH D3 LIQUID 15/10/2008 SH D4 LIQUID 15/10/2008 SH D6 LIQUID 15/10/2008	INLET		LIQUID	16/10/2009	
SH D3 LIQUID 15/10/2008 SH D4 LIQUID 15/10/2008 SH D6 LIQUID 15/10/2008	SH D1		LIQUID		15/10/2009
SH D4 LIQUID 15/10/2008 15/10/2008 15/10/2008 15/10/2008	SH D2		LIQUID		15/10/2009
SH D6 LIQUID 15/10/2008	SH D3		LIQUID		15/10/2009
5/10/2009	SH D4		LIQUID		15/10/2009
	SH D6		LIQUID		15/10/2009
	SH D7		LIQUID		

Order No.:

SDG:091012-9Customer:Kildare County CouncilJob:D_KILCC_NAS-5Attention:Claire McLaughlin

Client Reference: SILLIOT HILL

Location: SILLIOT HILL Report No: 63723

Dust in Water

Determination of Dissolved Gases

16/10/2009

ALcontrol Laboratories Analytical Services

Order No.:

091012-9 Kildare County Council Customer: SDG D_KILCC_NAS-5 SILLIOT HILL Job: Attention: Claire McLaughlin

Client Reference: SILLIOT HILL Location:

Report No: 63723

						•		·
Results Legend	San	ple Identity	ACA D1	ACA D2	ACA D3	ACA D4	BT-1	BT-2
# ISO17025 accredited. M mCERTS accredited.		Depth (m)						
* subcontracted test.		ample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)
** This result relates to the % recovery		mpled Date						
of the surrogate standard added to		le Received	09/10/2009	09/10/2009	09/10/2009	09/10/2009	09/10/2009	09/10/2009
the sample to check on the efficiency of the method. Acceptable limits for	Samp		09/10/2009	09/10/2009	09/10/2009	09/10/2009	09/10/2009	09/10/2009
most organic methods are 70 - 130 %		SDG Ref Number(s)	091012-9	091012-9	091012-9	091012-9	091012-9	091012-9
The results of the individual compounds within the sample are	Sample	e Number(s)	536649	536652	536722	536656	536695	536697
not corrected for this recovery. Component	LOD/Units	Method						
	LODIOMIS							
Methane Dissolved	<1 µg/l	TM223					221	36.2
Dust	<0.026	TM253	60	226	56.7	96.7		
Organic Dust	mg/m2/day	TM253	42.5	217	56.7	72.5		
Inorganic dust	mg/m2/day	TM253	17.5	9.17	0	24.2		
morganic dust	mg/mz/day	71W233	17.5	3.17	- U	27.2		

ALcontrol Laboratories Analytical Services

091012-9 Kildare County Council SDG Customer: D_KILCC_NAS-5 SILLIOT HILL Job: Attention: Claire McLaughlin

Client Reference: Location:

Order No.: Report No: SILLIOT HILL 63723

	1	nlo ldc4:4	BT-4	HOLDING	1811 ==	CH D4	CH D0	011.00
Results Legend	Sam	ple Identity	B1-4	HOLDING - TANK	INLET	SH D1	SH D2	SH D3
# ISO17025 accredited. M mCERTS accredited.		Depth (m)		IAIN				
* subcontracted test.	s	ample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)
** This result relates to the % recovery of the surrogate standard added to		mpled Date	09/10/2009	09/10/2009	09/10/2009	09/10/2009	09/10/2009	09/10/2009
the sample to check on the efficiency		le Received	09/10/2009	09/10/2009	09/10/2009	09/10/2009	09/10/2009	09/10/2009
of the method. Acceptable limits for		SDG Ref	091012-9	091012-9	091012-9	091012-9	091012-9	091012-9
most organic methods are 70 - 130 % The results of the individual	Sample	Number(s)	536702	536708	536690	536659	536661	536665
compounds within the sample are not corrected for this recovery.								
Component	LOD/Units	Method						
Methane Dissolved	<1 µg/l	TM223	1.84	7.59	2690			
Dust	<0.026	TM253				65.8	21.7	320
Organic Dust	mg/m2/day	TM253				30.8	0	237
norganic dust	mg/m2/day	TM253				35	21.7	83.3
						<u></u>		
				-		-		
								<u></u>
				I		I	I	I

ALcontrol Laboratories Analytical Services


091012-9 Kildare County Council SDG Customer: D_KILCC_NAS-5 SILLIOT HILL Job: Attention: Claire McLaughlin

Client Reference: SILLIOT HILL Location:

Order No.: Report No: 63723

							•
Results Legend	San	ple Identity	SH D4	SH D6	SH D7	STONE FI-	
# ISO17025 accredited.		Danth (m)				LTER	
M mCERTS accredited. * subcontracted test.	—	Depth (m) ample Type	14//- (814/	14/-/ (2000-000	147-7- 1814/1-111	147-1-181-11-11-1	
** This result relates to the % recovery	3	ampie Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	
of the surrogate standard added to		mpled Date	09/10/2009	09/10/2009	09/10/2009	09/10/2009	
the sample to check on the efficiency of the method. Acceptable limits for	Samp	le Received SDG Ref	09/10/2009	09/10/2009 091012-9	09/10/2009	09/10/2009	
most organic methods are 70 - 130 %	Comple	SDG Ref Number(s)	091012-9 536667	091012-9 536669	091012-9 536673	091012-9 536705	
The results of the individual compounds within the sample are	Sample	. Humber(S)	J3000/	330009	3300/3	330703	
not corrected for this recovery.							
Component	LOD/Units	Method					
Methane Dissolved	<1 μg/l	TM223				16	
Wethane Dissolved	<1 μg/1	1101223				,,,	
Dust	<0.026	TM253	18.3	21.7	24.2		
Organic Dust	mg/m2/day	TM253	23.3	20.8	21.7		
Inorganic dust	mg/m2/day	TM253	-5	0.833	2.5	<u> </u>	
				ļ			
				1			
						-	
				1			
				1			
				İ			
				-			
				1			
				1			
				1			
				1			
				İ			
							
				1			
				 		-	
		i				1	

Alcontrol Laboratories Analytical Services

Notification of NDP's (No determination possible)

Location

Order No.

SILLIOT HILL

SDG Number 091012-9

Client D_KILCC_NAS

Client Reference SILLIOT HILL Report No. 25162-0

Attention Claire McLaughlin Date Received 12/10/2009 11:52:29

 Sample No
 Sample Identity
 Depth (m)
 Test
 Comment

 536698
 BT-3
 Determination of Dissolved Gases
 Container Received Empty

APPENDIX

APPENDIX

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH₄ by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. Alcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely quaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. **Surrogate recoveries** Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted.
- 13. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 14. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 15. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 16. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 17. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAH MS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
ЕРН	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
EPH CWG	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
MINERAL OIL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
PCB 7 CONGENERS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
PCB TOTAL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GS MS
SVOC	DCM	LIQUID/LIQUID SHAKEN SVOC	GC MS
FREE SULPHUR	DCM	SOLID PHASE EXTRACTION	HPLC
PEST OCP/OPP	DCM/EA	SOLID PHASE EXTRACTION	GC MS
TRIAZINE HERBS	DCM/EA	SOLID PHASE EXTRACTION	GC MS
PHENOLS MS	DCM	SOLID PHASE EXTRACTION	GC MS
TPH by INFRA RED (IR)	TCE	LIQUID/LIQUID EXTRACTION	HPLC
MINERAL OIL by IR	TCE	LIQUID/LIQUID EXTRACTION	HPLC
SAPONIFIABLE	TCE	LIQUID/LIQUID EXTRACTION	HPLC
UNSAPONIFIABLE	TCE	LIQUID/LIQUID EXTRACTION	HPLC
GLYCOLS	DCM	LIQUID/LIQUID EXTRACTION	EZ FLASH

SOLID MATRICES EXTRACTION SUMMARY

	SOLID	MATRICES EXTRACTION SUMMARY		
ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
Solvent Extractable Matter	D&C	DCM	SOXTHERM	GRAVIMETRIC
Cyclohexane Ext. Matter	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
Thin Layer Chromatography	D&C	DCM	SOXTHERM	IATROSCAN
Elemental Sulphur	D&C	DCM	SOXTHERM	HPLC
Phenols by GCMS	WET	DCM	SOXTHERM	GC-MS
Herbicides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
Pesticides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH (Min oil)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH (Cleaned up)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH CWG by GC	D&C	HEXANE:ACETONE	END OVER END	GC-FID
PCB tot / PCB con	D&C	HEXANE:ACETONE	END OVER END	GC-MS
Polyaromatic Hydrocarbons (MS)	WET	HEXANE:ACETONE	Microwave TM218.	GC-MS
C8-C40 (C6-C40)EZ Flash	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Polyaromatic Hydrocarbons Rapid GC	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Semi Volatile Organic Compounds	WET	DCM:ACETONE	SONICATE	GC-MS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos

Containing Material, removed during the 'Screening of soils for Asbestos Containing

Materials', which have been examined to determine the presence of asbestos fibres using

Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy

and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

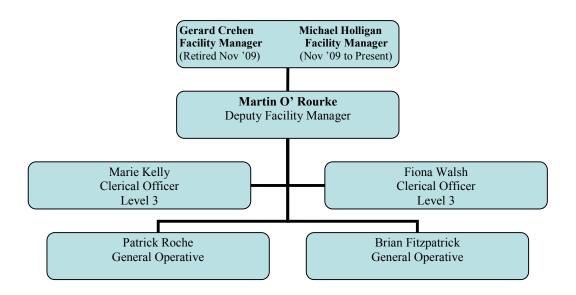
Further guidance on typical asbestos fibre content of manufactured products can be found in

MDHS 100.

Fibrous Tremolite

The identification of asbestos containing materials falls within our schedule of tests for which

we hold UKAS accreditation, however opinions, interpretations and all other information


contained in the report are outside the scope of UKAS accreditation.

Asbestos Type Common Name

Chrysotile White Asbestos
Amosite Brown Asbestos
Crocidolite Blue Asbestos
Fibrous Actinolite Fibrous Anthophyllite -

Appendix III

Staff Structure

