

BALLYMURTAGH LANDFILL Waste Licence W0011-01

ANNUAL ENVIRONMENTAL REPORT 2009

Ballymurtagh Landfill W0011-01

Annual Environmental Report 2009

DOCUMENT CONTROL SHEET

Client	Wicklow Co	Wicklow County Council						
Project Title	Ballymurtag	Ballymurtagh Landfill Licence Compliance – Waste Licence W0011-01						
Document Title	Annual Env	Annual Environmental Report 2009						
Document No.	MDE0046R	MDE0046Rp0054						
This Document	DCS	TOC	Text	List of Tables List of Figures		No. of Appendices		
Comprises	1	1	22	1	1	7		

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
F01	Final	Brenda McEvoy	Paddy Lambe	Larry O' Toole	West Pier	17/06/2010

TABLE OF CONTENTS

1	INTR	ODUCTION	1
	1.1	WASTE MANAGEMENT POLICY	1
	1.2	SITE DESCRIPTION	1
	1.3	WASTE ACCEPTANCE	1
2	ENVI	IRONMENTAL MONITORING	2
	2.1	SURFACE WATER	2
		2.1.1 Interpretation	2
		2.1.2 ELV Compliance	6
	2.2	GROUNDWATER	6
		2.2.1 Interpretation	7
	2.3	LEACHATE	7
		2.3.1 Leachate Levels	8
	2.4	Noise	8
	2.5	GAS	g
		2.5.1 Investigation into Elevated CO2 levels	9
	2.6	Landfill Gas Flare	9
		2.6.1 Gas Flare Unit Efficiency	9
	2.7	METEOROLOGICAL DATA	10
	2.8	SITE SURVEY	10
	2.9	Ecology	10
3	WAS	TE TYPES	11
4	MAS	S BALANCE OF SPECIFIED SUBSTANCES (MBSS)	12
	4.1	EPRTR REQUIREMENTS	12
	4.2	RESOURCE AND ENERGY CONSUMPTION SUMMARY	12
	4.3	ESTIMATED & CUMULATIVE QUANTITES OF LANDFILL GAS	12
	4.4	MONTHLY WATER BALANCE CALCULATION AND INTERPRETATION	13
	4.5	EMISSIONS TO GROUNDWATER	14
5	SITE	DEVELOPMENT WORKS	15
	5.1	DEVELOPMENT WORKS UNDERTAKEN DURING 2009	15
	5.2	PROPOSED DEVELOPMENT WORKS	15
6	ENVI	IRONMENTAL MANAGEMENT	16
	6.1	ENVIRONMENTAL INCIDENTS	16
	6.2	Procedures	
	6.3	REPORTS ON FINANCIAL PROVISIONS	16
7	STAF	FFING AT BALLYMURTAGH LANDFILL	19
	7.1	ECONOMIC CONTRIBUTION	20
8	NUIS	SANCE CONTROL	21

8.1	LITTER	. 21
8.2	ODOUR	. 21
8.3	VERMIN CONTROL	. 21

LIST OF FIGURES

Figure 2.1	:	Monitoring I	Point	S
------------	---	--------------	-------	---

Figure 2.2: Site Layout

Figure 2.3: pH concentrations at all surface water monitoring locations from Feb 2005 to Nov 2009
Figure 2.4: Ammoniacal Nitrogen concentrations at SW3 from Aug 04 - Nov 09
Figure 2.5: Sulphate concentrations at SW3 from Nov 03 - Nov 09
Figure 2.6: Leachate Levels at L03/1 and L03/2 – August 2004 to December 2009
Figure 4.1: Average hourly rate of landfill gas generated at the facility for each year 1990 to 2130 13
Figure 4.2: Estimated leachate generation at Ballymurtagh Landfill 2003-20091
Figure 7.1: Management Structure & Organisational Chart

LIST OF TABLES

Table 2.1: CO2 Exceedances in 2009	9
Table 3.1: Total Quantities of Waste Accepted at the Civic Waste Facility during 2009	11
Table 6.1: Schedule of Environmental Objectives and Targets for 2010 - 2014	17
Table 6.2. % Completion of Schedule of Objectives & Targets for 2009-2013	18
Table 7.1: Managerial Staff	19

APPENDICES

APPENDIX A Monitoring Results

APPENDIX B Site Survey

APPENDIX C E-PRTR

APPENDIX D Water Balance Calculations

APPENDIX E Ecology Report

APPENDIX F Environmental Noise Survey

APPENDIX F Emissions to Atmosphere

1 INTRODUCTION

This Annual Environmental Report (AER) summarises the environmental performance of Ballymurtagh Landfill between January and December 2009 and outlines proposals for the 2010 reporting period to help minimise environmental impacts. RPS have prepared this AER on behalf of Wicklow County Council in accordance with the conditions of waste licence W0011-01, the Environmental Protection Agency (EPA) "Draft Guidance on Environmental Management Systems and Reporting to the Agency" and the EPA "Landfill Manuals – Landfill Monitoring 2nd Edition".

Wicklow County Council operate Ballymurtagh Landfill in accordance with Waste Licence Register No. W0011-01.

It is the policy of Wicklow County Council to comply fully with the conditions of this waste licence, to minimise impact on the environment and ensure that members of staff are aware of the environmental impacts associated with their work on the landfill.

1.1 WASTE MANAGEMENT POLICY

The County Wicklow Waste Management Plan outlines the following policy;

"..to move quickly to a 'maximum recycling' scenario, which will meet the wishes of the public and also meet the mandatory targets for recycling set out by government... The Council aims to arrest and counteract the current trend of waste growth through concerted measures aimed at waste minimisation and prevention".

1.2 SITE DESCRIPTION

Ballymurtagh Landfill is located in the townlands of Ballymurtagh, Ballygahan Upper, Ballygahan Lower, and Tinnahinch in the Vale of Avoca approximately 1.5 km north-west of the village of Avoca in County Wicklow. It is situated in the catchment of the Avoca River, which rises in the Wicklow Mountains and enters the Irish Sea at Arklow. The landfill is located within a disused Open Lode pit of the former Avoca Mines. Prior to landfilling the pit was used for the settlement of mine tailings, a layer of which underlies the body of waste. The bedrock underlying the landfill consists of volcanic rock, which is part of the Avoca Formation. The lithologies based on drilling carried out by the Geological Survey of Ireland consists of light greenish grey, fine grained, well foliated metavolcanic rock.

The principal activity between 1989 to 2002, was to 'deposit in, on or under land', Waste acceptance ceased for landfilling on the 31st December 2002 and recycling is now the principal activity. It is estimated that approximately 480,000m³ of waste were deposited at the site since it commenced operation in 1989. The Civic Waste Facility was opened in February 2003. The layout of the facility is shown on Figure 2.2.

Restoration works in accordance with the Waste Licence commenced in October 2004 and were completed in November 2005. The site has been landscaped and vegetation was successfully established during 2006.

1.3 WASTE ACCEPTANCE

A procedure for the acceptance of waste at the Civic Waste Facility has been developed and is outlined in the Environmental Management Plan (EMP).

MDE0046Rp0054 1 F01

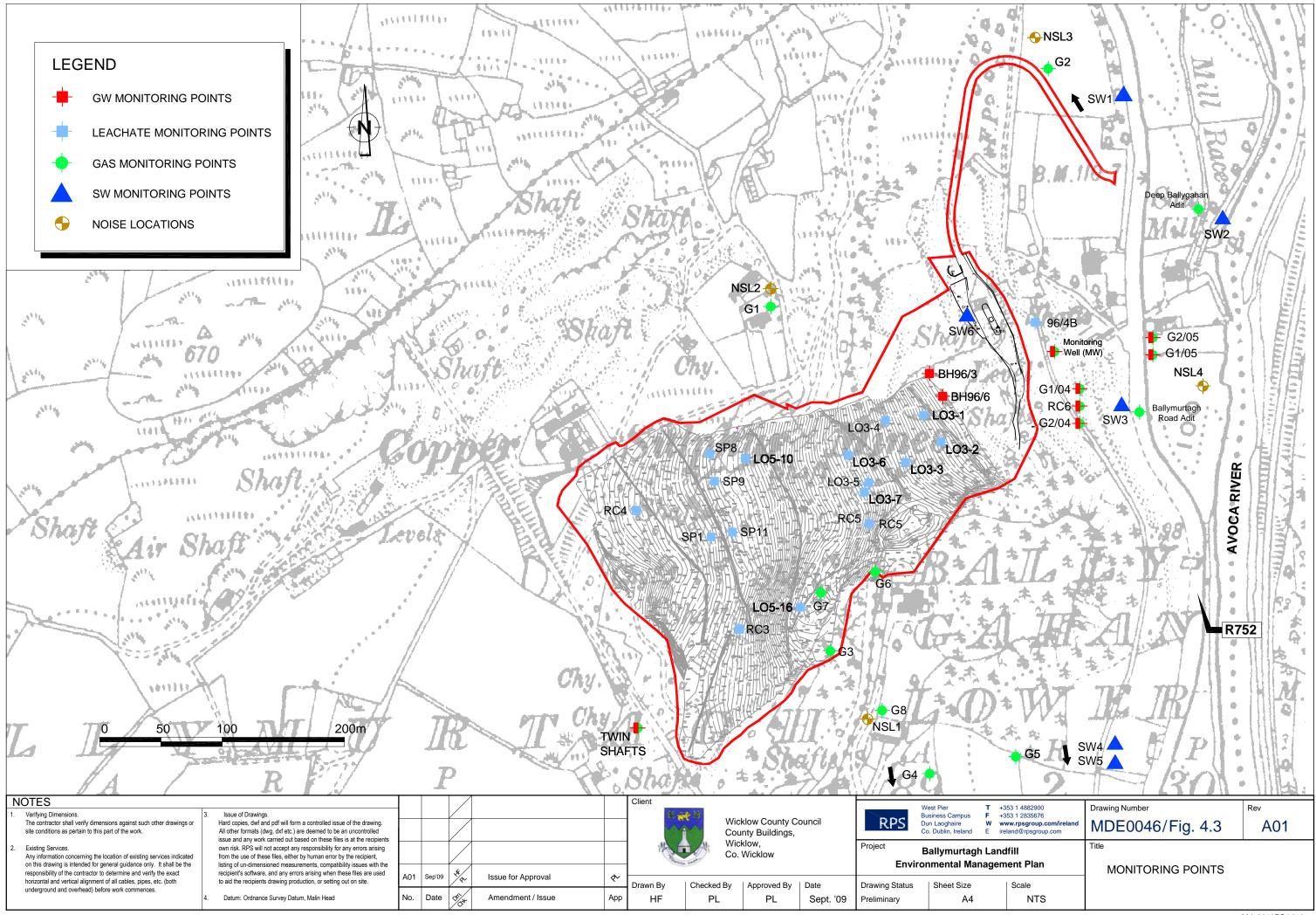
2 ENVIRONMENTAL MONITORING

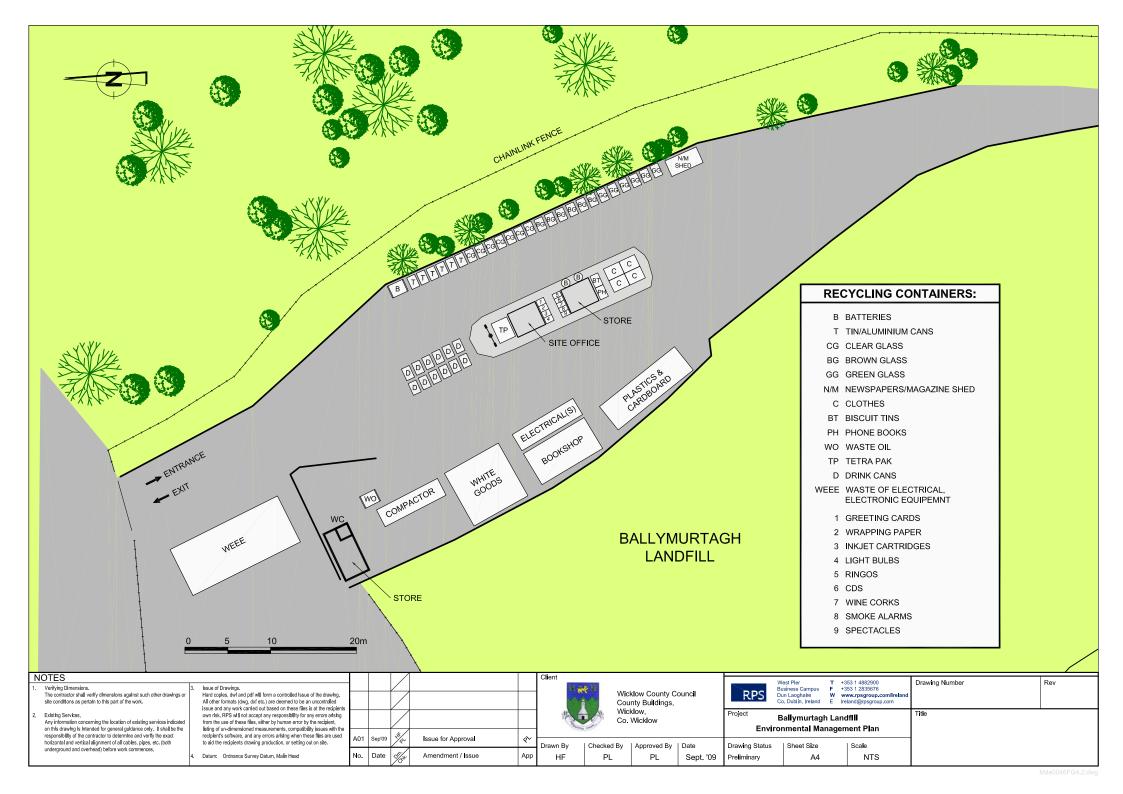
The following sections summarise the monitoring undertaken at Ballymurtagh during the 2009 reporting period. More detailed interpretations can be found within the quarterly monitoring reports, which were submitted to the Agency throughout 2009.

2.1 SURFACE WATER

TE Laboratories (TelLabs), Co Carlow collected and analysed samples from 5 monitoring locations (see Figure 2.1) specified in the waste licence. Samples were collected in March, June, September and November. Parameters requiring annual analysis were monitored in November. Results were compared with the European Community (Quality of Surface Water intended for Abstraction of Drinking Water) Regulations, 1989 (S.I. No. 294 of 1989) and the EPA's Environmental Quality Objectives and Environmental Quality Standards 2003.

Section 2.1.1 summarises the overall surface water quality at the landfill. However, it should be noted that the Ballygahan Adit and Ballymurtagh Road Adit carry acid mine drainage (AMD). Surface water quality monitoring point SW3 is located in close proximity to the adits. Parameters which would mainly originate from acid mine drainage include sulphate, copper, lead, iron, manganese and zinc along with low pH and elevated electrical conductivities are continuously found at these monitoring points.


Full copies of all results can be found in Appendix A.


2.1.1 Interpretation

Surface water quality upstream of the facility (at SW1 and SW2) was generally of good quality during the 2009 monitoring period with no quarterly limits exceeded. Iron was recorded during the annual round of monitoring and was elevated at both monitoring points. SW1 recorded 0.24mg/IFe and SW2 recorded 0.26mg/IFe.

Surface water quality at SW3 (Ballymurtagh Road Adit) shows evidence of Acid Mine Drainage in the form of low pH (range 3.9-4.3) (see Figure 2.3), elevated conductivity (ranging from 1,810µS/cm to 2,200µS/cm), and elevated sulphate (1,195mg/l - 1,581mg/l). Sulphate concentrations were elevated throughout the year and remain similar to those recorded in previous years as shown in Figure 2.5. Elevated concentrations of iron, cadmium, copper, manganese, lead and zinc were also detected in the annual sample. Dissolved oxygen concentrations ranged from 2.6mg/l in November 2009 to 8.2mg/l in September 2009. Low dissolved oxygen concentrations were recorded in the 4^{th} quarter (2.6 mg/l) and this is likely due to seasonal variances. BOD levels ranged from (<3mg/l - 12mg/l). Ammoniacal Nitrogen levels were elevated at SW3, ranging from 6.9mg/l NH₄ to 8.9mg/l NH₄). Since the site was capped ammoniacal nitrogen levels have gradually decreased as can be seen in Figure 2.4.

Surface water quality at SW4 and SW5, (approx 300-400m downstream of SW3) is generally of good quality and similar to that of 2009. Manganese was elevated at 0.1mg/l at SW4 and 0.07mg/l at SW5 during the annual round of monitoring in November 2009. Copper Was elevated at SW5 in the 4th Quarter of 2009 (0.15mg/l). Iron and zinc were also slightly elevated. All other parameters were within recommended limits.

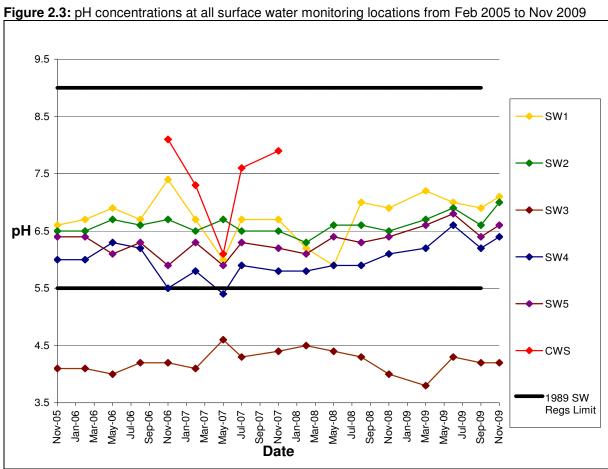
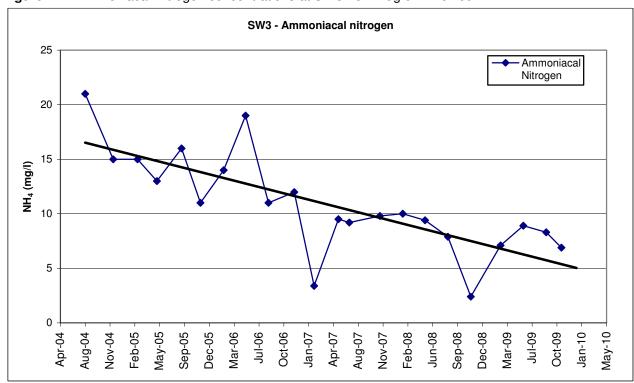



Figure 2.4: Ammoniacal Nitrogen concentrations at SW3 from Aug 04 - Nov 09

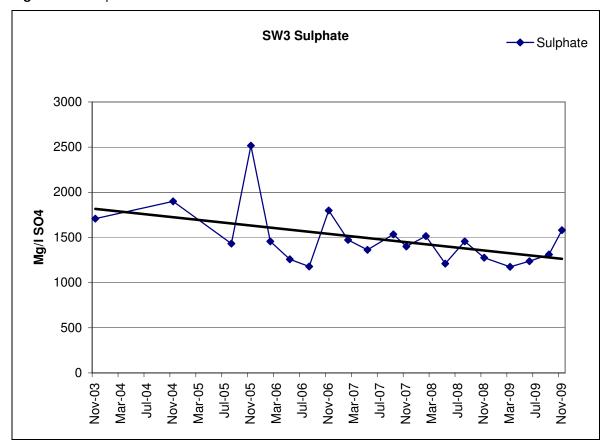


Figure 2.5: Sulphate concentrations at SW3 from Nov 03 - Nov 09

2.1.2 ELV Compliance

There is a surface water discharge limit of 35mg/l suspended solids. No exceedances of this limit were recorded during 2009.

2.2 GROUNDWATER

TelLabs took groundwater samples in March, June, September and November 2009, the results of which are contained within Appendix A. Samples were obtained from the Twin Shafts, G1/04, G2/04, G1/05, G2/05 and BH96/3, and RC6. Four private groundwater wells (Thomas Merrigan, Donal O' Leary, Eddie Coleman and Jeffery Green) were also monitored in 2009. Parameters that require analysis on an annual basis were sampled in November.

The results are compared with the EPA Groundwater Interim Guideline Values (2003) (IGV).

As discussed in the 'Monitoring Infrastructure Assessment Report' and the 'Groundwater Flow and Contaminant Transport Modelling Study', Ballymurtagh Landfill is located within a disused open mine pit, which is underlain by 6 - 16.5m of mine tailings and an underground mine. This underground mine was allowed to flood after closing and overflows mainly at the Ballymurtagh Road Adit (SW3) and on occasion at the Deep Ballygahan Adit (SW2). Therefore, any leachate generated within the body of waste seeps into the underground tailings and subsequently into the underground mine. Therefore, any landfill leachate contamination would be observed at the Ballymurtagh Road Adit (SW3).

RC6 was dry for the first 3 quarters of 2009, with a sample obtained in November 2009. A sample was previously obtained in November 2006.

The following interpretations summarise the overall groundwater quality. More detailed interpretations can be found within the quarterly monitoring reports, which were submitted to the Agency throughout the reporting period.

2.2.1 Interpretation

The groundwater up-gradient of the landfill (Twin Shafts) is generally of good quality, however during analysis of annual parameters in the fourth quarter high concentrations of zinc (0.38mg/l), manganese (0.16mg/l) and copper (31µg/l) were recorded Potassium limits (5mg/l) were exceeded in all quarters of 2009 with levels ranging from 7mg/l to 13mg/l. Bacteriological quality is generally poor and high concentrations of total coliforms ranged from >100CFU/100mls throughout 2009. Ammoniacal Nitrogen levels were within the required limits in 2009.

BH96/3 is located down gradient but adjacent to the main body of waste and is therefore more representative of leachate than groundwater. Samples taken at BH96/3 are of poor quality with conductivity, chloride, ammonia, potassium and sulphate exceeding the relevant IGV limits on all sampling occasions. Iron was elevated in 3 of the quarters of 2009 ranging from 0.22mg/l in Quarter 1 to 0.5mg/l in Q4 of 2009. Total coliforms exceeded IGV concentrations for all quarters of 2009. Calcium, phosphates, manganese and magnesium were also elevated in the 4th quarter for the annual round of monitoring.

Groundwater quality at other down-gradient (G1/04, G1/05, G2/04 and G2/05) monitoring points is also considered poor with low pH concentrations, incidences of high conductivity and sulphate concentrations.

Exceedances for ammonium were recorded at G1/04 ranging from 0.23mg/l in Quarter 3 to 1.7mg/l in Quarter 1 of 2009. The limits for calcium, chloride, chromium, copper, magnesium, manganese, zinc, iron, lead and fluoride were also exceeded at G1/04 during monitoring of annual parameters. Incidents of high total coliforms were recorded throughout the year indicating poor bacteriological quality.

Water quality at the private wells is generally good. However the pH concentrations were outside the recommended range in O' Leary's well and Coleman's well throughout the year. The pH concentrations in Mary Merrigan's well were outside the range in all quarters apart from Quarter 1 (6.5). Jeffrey Green's well was within the pH concentration limits for 1st and 2nd Quarter of 2009 (6.5 and 6.9 respecticely). Copper and Zinc were elevated in the 4th quarter in Coleman's and Green's Well.

Elevated total coliforms were detected in all wells; Merrigan's well in the 1st Quarter, all wells in the 2nd quarter, Merrigan's and O' Leary's well in the 3rd Quarter and all except Coleman's well in the 4th quarter. No Faecal coliforms were detected in the private wells in the 1st and 3rd Quarters of 2009. During the 2nd Quarter of 2009 faecal coliforms were detected in Merrigan's well (1CFU/100mls), Coleman's well (7CFU/100mls) and Green's well (4CFU/100mls). During the 4th Quarter of 2009 faecal coliforms were detected in Merrigan's well (55CFU/100mls) and Green's well (1CFU/100mls). Interpretations and results are provided to each well owner after each quarter.

As discussed above in Section 2.2, it is considered that SW3 (Ballymurtagh Road Adit) is representative of down-gradient conditions, details of which are outlined in Section 2.1.1.

2.3 LEACHATE

Leachate samples were taken from leachate monitoring points L05/10 and L05/16. L05/16 was dry in the 1st and 3rd quarters of 2009. L05/16 was dry in every quarter with the exception of quarter 1. All

other boreholes were dry throughout the year. Wicklow County Council intend to commission three new boreholes in 2010. Details of this can be seen in Section 5.2.

The samples obtained in November were analysed for a broader range of parameters to comply with the annual monitoring requirements of the licence. The results were compared with typical leachate compositions of 30 samples from UK/Irish landfills (EPA, 1997).

The concentrations of most of the indicator parameters, including all the metals for most of the samples taken, are within the typical/average values for landfill leachate.

2.3.1 Leachate Levels

Wicklow County Council record leachate levels at a number of monitoring locations in accordance with Condition 9.4 of the W0011-01. Historically L03/1, L03/2 and L03/4 were illustrated below. These boreholes were recorded as blocked and levels were not recorded in the 3rd & 4th quarters of 2009. Leachate levels fluctuate as shown in Figure 2.6.

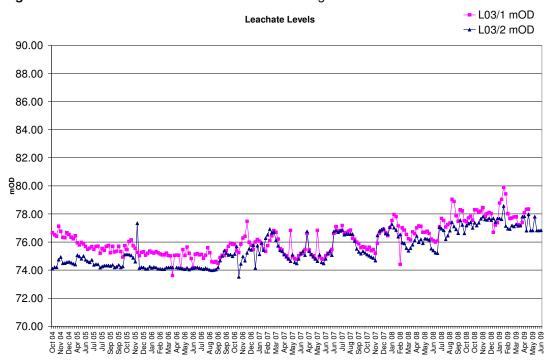


Figure 2.6: Leachate Levels at L03/1 and L03/2 - August 2004 to December 2009

2.4 NOISE

Noise monitoring was undertaken by Euro Environmental at 2 monitoring locations (NSL1 and NSL4) (see Figure 2.1) on 11th November 2009. The 55dB(A) day limit was exceeded at both monitoring points. NSL 1 exceeded the recommended daytime limits of 55dB(A) at 59dB(A) and NSL 4 exceeded the recommended daytime limits at 57Db(A). This was attributed to traffic on the main road. No noise could be heard from operations at the landfill at NSL1 at the time of monitoring. No noise emanating from the flare was audible at NSL1, the nearest noise sensitive location to the flare. This report is attached in Appendix F.

2.5 GAS

G7

GW1/05

GW2/05

Wicklow County Council undertook landfill gas monitoring during 2009 at those monitoring locations shown on Figure 2.1, summary results of which are contained in Appendix A. The table below outlines the exceedances in CO₂ during 2009.

	Unit	CO ₂ ELV	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
G2			2.70	1.90	1	NE	ΝE	NE	NE	NE	NE	NE	NE	2.8
G3			NE	NE	NE	NE	NE	NE	2.3	NE	NE	7.3	2.3	NE
G4			6.60	NE	NE	NE	NE	NE	5.4	NE	8	4.5	4.3	5.1
G6	%v/v	1.5%	4.10	4.60	4.50	3.7	3.3	4.1	2.6	4.6	3.8	2.5	2.6	2.8

2.7

NE

1.7

3.2

1.6

ΝE

3.5

NE

2.1

5.2

1.8

NE

4.5

NE

NE

3.5

NE

3.9

NE

NE

3.2

NE

NE

NE

NE

NE

ΝE

Table 2.1: CO2 Exceedances in 2009

NE: CO2 ELV not exceeded.

 CO_2 levels exceeded the limit of 1.5 %v/v at G6 (2.5% - 4.6%) throughout the reporting period. Exceedances of CO_2 were recorded at other wells on occasion throughout the reporting period as shown in Table 2.1. CH_4 levels did not exceed the Emission Limit Value at any of the points monitored during the reporting period.

3.50

NE

1.80

4.60

NE

1.70

3.20

NE

1.70

2.5.1 Investigation into Elevated CO₂ levels

RPS carried out a Phase 1 desk study review of the available and relevant geological, hydrogeological and geochemical information for the area including the landfill itself and the mine workings. This report was forwarded to the agency on 5th December 2007.

2.6 LANDFILL GAS FLARE

Irish Power Systems Ltd undertook monitoring of the landfill gas flare and gas abstraction sampling points throughout 2008. Methane levels averaged at 21.8%, carbon dioxide at 28.6% and oxygen at 1%. Although the methane content is low and decreasing, this is indicative of the stage of the microbial degradation. The remaining % is most likely made up of hydrogen, nitrogen, carbon monoxide and water vapour derived from the atmosphere. The methane and oxygen levels recorded at the flare have decreased proportionately. CO₂ levels have increased slightly in comparison to 2008.

Euro Environmental undertook the flare outlet monitoring in September to comply with the bi-annual requirements, results of which are included in Appendix G.

2.6.1 Gas Flare Unit Efficiency

Gas monitoring reports are included in Appendix G.

These reports state that efficient combustion is taking place within the combustion chamber of the flare and in general, is operating under the original manufacturers specification

Recently the availability of gas required to operate the flare has reduced. Options to remedy this issue are currently under review by Wicklow County Council.

2.7 METEOROLOGICAL DATA

No meteorological data was obtained on-site during the reporting period, however data is provided by the weather station at Casement Aerodrome.

2.8 SITE SURVEY

A site survey was undertaken in June 2009 and is attached in appendix B.

2.9 ECOLOGY

An assessment of the ecology of the restored landfill and adjoining habitats was carried out in May 2009. This report has been forwarded to the agency and is attached in Appendix E.

3 WASTE TYPES

The landfill ceased disposal of waste in December 2002. In total 480,000 tonnes of waste was disposed of at the facility.

Table 3.2 provides summary information on wastes received at the Civic Waste Facility and which was subsequently sent off-site for recovery during 2009.

Table 3.1: Total Quantities of Waste Accepted at the Civic Waste Facility during 2009

Waste Type	EWC Code	Approximate monthly Quantities (kg)	Materials transported Off-site (kg)
Aluminium cans	19 12 03	326.42	3,917
Steel Cans	20 01 40	1,270.92	15,251
Cardboard/ Newsprint/ Tetra Pak	20 01 01	19,955.00	239,460
Fluorescent tubes / Bulbs	20 01 21	40.33	484
WEEE	20 01 36	4412.67	52,952
Plastics	20 01 39	4265.5	51,186
Batteries	20 01 33/34	904	10,848
Mixed Municipal Waste	20 03 01	630.83	7,570
Waste Oils	20 01 25/26	287.5	3,450
Ink jet cartridges,	08 03 13	0.83	10
Glass	20 01 02	8,251.92	99,023
Polystyrene	20 01 39	145.83	1,750
Textiles, Clothes	20 01 10/11	1986.67	23,840
Scrap Metal	20 01 40	2413.33	28,960
Mobile Phones	20 01 35	1.17	14
Aerosols	20 01 99	88	1,056
Total		44,980.92	539,771

4 MASS BALANCE OF SPECIFIED SUBSTANCES (MBSS)

According to the Agency's 'Waste Licensing, Draft Guidance on Environmental Management Systems and Reporting to the Agency', the purpose of a MBSS is to produce a detailed analysis of the facility in order to itemise and quantify all material flows i.e. Inputs = Output + Accumulation + Consumption - Generation. Since activities at the landfill ceased in December 2002 the main inputs during 2009 relate to incoming waste to the Civic Amenity Site. The main outputs are leachate (section 4.4), air emissions (section 4.3), noise (section 2.4) and waste departing the Civic Waste Facility (section 3). In terms of generation, leachate and air emissions (mainly landfill gas) are generated because of the decomposition of waste, which result in their output. However, as the site was restored during 2005 and 2006, it is expected that these emissions will continue to reduce over time. The main activity at the Civic Waste Facility is the transfer of the waste disposed of at the site to suitable recovery/recycling facilities.

4.1 EPRTR REQUIREMENTS

As part of the requirements of the European Pollutant Release and Transfer Register, Ballymurtagh Landfill uploaded the results of emissions on the 13th May 2010. Further details can be seen in Appendix C.

4.2 RESOURCE AND ENERGY CONSUMPTION SUMMARY

The operation of the landfill required 57,661 units of electricity, 3,800L of diesel (to operate the generator at the civic amenity site) and 7,500L of water during 2009.

4.3 ESTIMATED & CUMULATIVE QUANTITES OF LANDFILL GAS

GasSim 2.0, a landfill gas modeling software package (developed by the UK Environmental Agency), was used to simulate the expected production of landfill gas at Ballymurtagh Landfill based on the input information (see Table 3.1). Figure 4.1 shows the average hourly rate of landfill gas generation for each year for Ballymurtagh landfill.

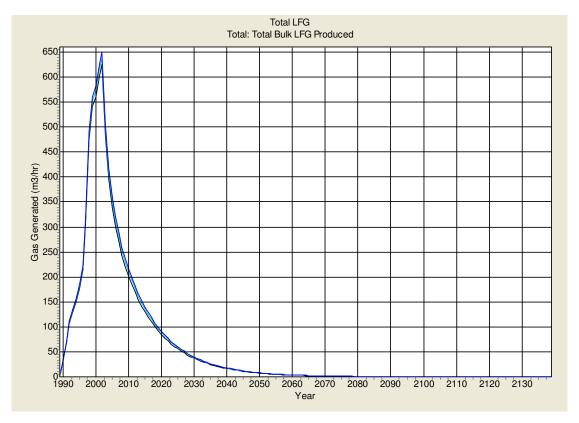
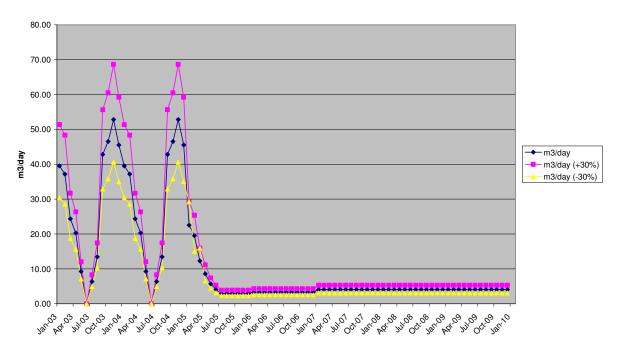


Figure 4.1: Average hourly rate of landfill gas generated at the facility for each year 1990 to 2130.


The flare at Ballymurtagh has a capacity of 500m³/hr.

4.4 MONTHLY WATER BALANCE CALCULATION AND INTERPRETATION

Monthly rainfall data obtained from the Met Eireann weather station at Casement recorded a total of approximately 816.2mm of rainfall in 2009. Evapotranspiration data was obtained from Met Éireann's weather station at the Casement Aerodrome. The total estimated amount of rainfall lost to evapotranspiration is estimated at 503.7mm. Monthly volumes of leachate were calculated for the entire landfill area based on monthly rainfall, area and the stage at which the area is at i.e. completely filled and permanently capped. The water balance calculations are outlined in Appendix D. Figure 4.2 shows the estimated leachate generation for the reporting period and projections for 2009.

Figure 4.2: Estimated leachate generation at Ballymurtagh Landfill 2003-2009

Leachate Generation

It is estimated that up to 1,492.4 $\rm m^3$ of leachate were generated during the reporting period, 124.4 $\rm m^3$ /month. This amount is similar to the estimated figure of $91\rm m^3$ /month as calculated before capping.

*Note Casement data was used to calculate leachate generation in 2009

4.5 EMISSIONS TO GROUNDWATER

The landfill was designed on a 'dilute and disperse' principle with no leachate containment measures put in place. The leachate, which is attenuated by the underlying soil and groundwater, drains naturally to the Avoca River.

5 SITE DEVELOPMENT WORKS

5.1 DEVELOPMENT WORKS UNDERTAKEN DURING 2009

No development works were carried out on site in 2009.

5.2 PROPOSED DEVELOPMENT WORKS

It is proposed to implement 2 new leachate wells on site. In addition to this an amemometer is proposed for the site. This is outlined in the EIS review which was submitted to the agency in November 2009.

6 ENVIRONMENTAL MANAGEMENT

The Facility Manager, assisted by the Senior Engineer, is responsible for achieving the schedule of objectives and targets, which are set out in the EMP. The responsibilities and time scales for achieving the objectives and targets for 2010 - 2014 are outlined in Table 6.1. As waste acceptance ceased in 2002, the objectives and targets mainly relate to the protection of the receiving environment and the aftercare of the facility.

Table 6.2 discusses the % completion of the Schedule of Objective & Targets set for 2009 - 2013.

6.1 ENVIRONMENTAL INCIDENTS

Corrective Action Report Forms relating to incidents occurring in 2009 are included in quarterly reports forwarded to the agency throughout the year.

6.2 PROCEDURES

The updated Environmental Management Plan and associated procedures was forwarded to the Agency in October 2009.

6.3 REPORTS ON FINANCIAL PROVISIONS

Wicklow County Council allocates funding on an annual basis from its revenue sources. The fund will be maintained in an amount always sufficient to underwrite the current Restoration and Aftercare Plan in accordance with Condition 11 of the Waste Licence.

Table 6.1: Schedule of Environmental Objectives and Targets for 2010 - 2014

SCHEDULE OF OBJECTIVES AND TARGETS 2010 - 2014							
Objective Target Responsible Party Completion Date							
Improve the environmental performance of the facility	Undertake regular reviews of Facility to assess compliance of site with Waste Licence	Facility Manager	Ongoing				
Reduce potential odour at the facility	Minimise the number of landfill gas flare shutdowns and ensure that the flare is operating as near to 100% of the time as possible.	Facility Manager	Ongoing				
Encourage public to recycle their waste	To inform the public of the waste accepted at the civic waste facility by issuing information at the civic waste facility office to members of the public, radio and newspaper advertisements	CWF Supervisor Facility Manager	Ongoing				
Provide for the protection of the receiving environment. Wicklow County Council will support any remedial action taken to improve the quality of the Avoca River. A report into the investigation of treatment of groundwater discharges from the adits was completed in February 2007. (University of Newcastle)		Senior Engineer	Ongoing				
Accept additional waste materials at the Civic Waste Facility	Source further recycling/re-use opportunities	CWF Supervisor Facility Manager	Ongoing				

Table 6.2. % Completion of Schedule of Objectives & Targets for 2009-2013

SCHEDULE OF OBJECTIVES AND TARGETS 2009-2013						
Objective	Target	Responsible Party	%Completion	Comment		
Improve the environmental performance of the	Undertake regular reviews of Facility to assess compliance of site with Waste Licence	Facility Manager	Ongoing	Compliance of the facility is discussed on a regular basis.		
facility	Submit Application for Review of Waste Licence (and accompanying EIS)	Director of Services	100%	A review of Waste Licence and an accompanying EIS was submitted in November 2009.		
Reduce potential odour at the facility	Minimise the number of landfill gas flare shutdowns and ensure that the flare is operating as near to 100% of the time as possible.	Facility Manager	Ongoing			
Encourage public to recycle their waste	To inform the public of the waste accepted at the civic waste facility by issuing information at the civic waste facility office to members of the public, radio and newspaper advertisements	CWF Supervisor Facility Manager	Ongoing			
Provide for the protection of the receiving environment.	Wicklow County Council will support any remedial action taken to improve the quality of the Avoca River. A report into the investigation of treatment of groundwater discharges from the adits was completed in February 2007. (University of Newcastle)	Senior Engineer	Ongoing			
Accept additional waste materials at the Civic Waste Facility	Source further recycling/re-use opportunities	CWF Supervisor Facility Manager	Ongoing			

7 STAFFING AT BALLYMURTAGH LANDFILL

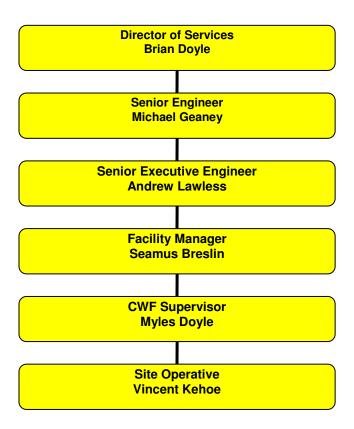

The site is under the overall operational control of the Director of Services and the Senior Engineer who provide office support as required. The Facility Manager is responsible for the day-to-day supervision and management of the site. The Facility Manager maintains regular contact with County Buildings, with regular site visits from the Senior Executive Engineer. RPS Consulting Engineers advises Wicklow County Council on operations at the facility and waste licence compliance issues. Table 7.1 provides details of the management in 2009.

Table 7.1: Managerial Staff

Position	Contact details			
Mr Brian Doyle, Director of Services	Wicklow County Council, County Buildings,			
(Environmental & Sanitary Services)	Wicklow.			
	Telephone No: 0404 20100			
	Fax No: 0404-67792			
Mr Michael Geaney, Senior Engineer	Wicklow County Council, County Buildings,			
(Environmental & Sanitary Services)	Wicklow.			
Mr Andrew Lawless, Senior Executive Engineer	Wicklow County Council, County Buildings,			
(Environmental & Sanitary Services)	Wicklow.			
Mr Seamus Breslin, Facility Manager	Wicklow County Council, County Buildings,			
	Wicklow.			

Figure 7.1 outlines the management structure for the site. A supervisor is also employed to run the civic waste facility. Any changes to this structure will be submitted to the Agency for agreement in accordance with Condition 2.6 of Waste Licence Reg. No. W0011-1.

Figure 7.1: Management Structure & Organisational Chart

7.1 ECONOMIC CONTRIBUTION

The operation of the landfill employed 4 local employees when it was in operation. Since closing in December 2002, one employee has taken the position of site supervisor at the Civic Waste Facility and another employee as Civic Waste Facility operator.

8 NUISANCE CONTROL

Wicklow County Council undertake weekly inspections of the landfill and civic waste facility to identify any environmental nuisances caused by litter, dust, odour and vermin. An inspection form is outlined in the EMP and forms part of the Corrective Action Procedure.

8.1 LITTER

The Facility Manager ensures that the facility is kept free from litter. In the event of fly tipping, the Facility Manager notifies and organises for the proper disposal of the waste.

8.2 ODOUR

In the event of odour detection, the Facility Manager has regard to the Corrective Action Procedure.

Irish Power Systems (IPS) visit the site on a weekly basis to maintain the gas extraction system so as to minimise flare failure which may lead to landfill gas migration and subsequent odour complaints.

8.3 VERMIN CONTROL

The Procedure for the Control of Vermin (set out in the EMP) outlines measures to ensure that vermin do not give rise to nuisance at the landfill and civic waste facility.

The Facility Manager oversees the implementation of the procedure for the control and eradication of pests. However, since waste acceptance has ceased at the landfill facility, the potential for vermin, pests, birds, etc has been much reduced.

APPENDIX A

Monitoring Results

Ballymurtagh Landfill Co Wicklow Surface Water Quality 2009

			2009				
		Surface Water	Environmental	SW1	SW1	SW1	SW1
		Regulations	Quality Standards	Whitesbridge	Whitesbridge	Whitesbridge	Whitesbridge
		1989		s/w sample	s/w sample	s/w sample	s/w sample
Parameter	Units	Max. Admissable Conc.	EPA Interim Report 2003	9-Mar-09	8-Jun-09	24-Sep-09	21-Nov-09
Total Alkalinity	mg/L	-	-	-	-		20
Ammonium	mg/L	0.2	0.02	<0.08	< 0.08	<0.08	<0.08
BOD	mg/L	7	-	<3	<2	4	<2
Cadmium	mg/L	0.005	0.005	-	_		0 0002
Calcium	mg/L	-	-	-	-		5
Chloride	mg/L	250	250	8	7	9	8
COD	mg/L	40	-	14	9	9	12
Conductivity	uS/cm at 20°C	1,000	1,000	61	61	86	59
Copper	mg/L	0.05	0.03	-	-		0.017
Dissolved Oxygen (on	mg/L	_	_				
site)	mg/L	_	_	8.3	10	10.1	10.8
Iron	mg/L	0.2	0.2	-	-	-	0.24
Lead	mg/L	0.05	0.01	_	-	-	
Magnesium	mg/L	-	-	-	-	-	2
Manganese	mg/L	0.05	0.3	-	-	-	0.04
Mercury	mg/L	0.001	0.001	-	-	-	<0.05
Orthophosphate	mg/L	-	-		-	-	<1
рН	mg/L	5.5 < pH < 9	-	7.1	7.4	6.8	6.2
Potassium	mg/L	-	-	-		-	<u>-1</u>
Sodium	mg/L	-	-	-	-	-	6
Sulphate	mg/L	200	200	6	5	12	6
Suspended Solids	mg/L	50	-	<1	2	1	9
Temperature (on site)	mg/L	25	-	4	12	11	9
Chromium	mg/L	0.05	0.03		-	-	<0.001
Total Oxidised Nitrogen	mg/L	-	-	_	-	-	1 1
Total Phosphorus as P	mg/L	-	-	-	-	-	<0.05
Zinc	mg/L	3	0.1	-	-	-	0.05

Ballymurtagh Landfill Co Wicklow Surface Water Quality 2009

			2009				
		Surface Water	Environmental	SW2	SW2	SW2	SW2
		Regulations	Quality Standards	Whitesbridge	Upstream adit	Whitesbridge	Whitesbridge
		1989		s/w sample	s/w sample	s/w sample	s/w sample
Parameter	Units	Max. Admissable Conc.	EPA Interim Report 2003	9-Mar-09	8-Jun-09	24-Sep-09	21-Nov-09
Total Alkalinity	mg/L	-	-	-	-	-	15
Ammonium	mg/L	0.2	0.02	<0.08	<0.08	<0.08	<0.08
BOD	mg/L	7	-	<2	<2	4	<2
Cadmium	mg/L	0.005	0.005	-	-	-	0.0002
Calcium	mg/L	-	-	-	-	-	5
Chloride	mg/L	250	250	8	7	9	8
Chromium	mg/L	0.05	0.03	-	-	-	<0.001
COD	mg/L	40	-	8	13	9	12
Conductivity	uS/cm at 20°C	1,000	1,000	76	65	116	58
Copper	mg/L	0.05	0.03	-	-	-	0.028
Dissolved Oxygen (on	mg/L		_				
site)	IIIg/L	-	-	8.3	11	10.2	10.9
Iron	mg/L	0.2	0.2	-		-	0.26
Lead	mg/L	0.05	0.01	-		-	0.0060
Magnesium	mg/L	-	-	-		-	2
Manganese	mg/L	0.05	0.3	-		-	0.05
Mercury	mg/L	0.001	0.001	-	-	-	<0.05
Orthophosphate	mg/L	-	-	-	-	-	<1
рН	mg/L	5.5 < pH < 9	-	7.0	7.4	6.8	6.1
Potassium	mg/L	-	-	-	-	-	<1
Sodium	mg/L	-	-	-	-	-	5
Sulphate	mg/L	200	200	11	9	13	8
Suspended Solids	mg/L	50	-	2	3	2	7
Temperature (on site)	mg/L	25	-	4	12	-	9
Total Oxidised Nitrogen	mg/L	-	-	-	-	-	1
Total Phosphorus as P	mg/L	-	-	-	-	-	<0.05
Zinc	mg/L	3	0.1	-	-	11	0.06

Ballymurtagh Landfill Co Wicklow Surface Water Quality 2009

			2009			_	
		Surface Water	Environmental	SW3	SW3	SW3	SW3
		Regulations	Quality Standards				
		1989					
Parameter	Units	Max. Admissable Conc.	EPA Interim Report 2003	9-Mar-09	8-Jun-09	24-Sep-09	21-Nov-09
Total Alkalinity	mg/L	-	-	-	<0.5	-	<0.5
Ammonium	mg/L	0.2	0.02	8.2	8.9	8.3	6.9
BOD	mg/L	7	-	13	11	12	<3
Cadmium	mg/L	0.005	0.005	-	0.018	-	0.0200
Calcium	mg/L	-	-	-	253	-	228
Chloride	mg/L	250	250	37	36	33	35
COD	mg/L	40	-	15	14	22	20
Conductivity	uS/cm at 20°C	1,000	1,000	1810	1944	1895	2200
Copper	mg/L	0.05	0.03	•	0.37	-	0.52
Dissolved Oxygen (on	ma/l	_	_				
site)	mg/L	-	_	5.4	5	8.2	2.6
Iron	mg/L	0.2	0.2	-	106	-	197
Lead	mg/L	0.05	0.01	-	0.351	-	0.3440
Magnesium	mg/L	-	-	-	98	-	156
Manganese	mg/L	0.05	0.3	-	8.8	-	13.7
Mercury	mg/L	0.001	0.001	-	0.00013	-	< 0.05
Orthophosphate	mg/L	-	-	-	0.10	-	<10
pH	mg/L	5.5 < pH < 9	-	4.3	4.4	4.3	3.9
Potassium	mg/L	-	-	-	10	-	9
Sodium	mg/L	-	-	-	20	-	22
Sulphate	mg/L	200	200	1195	1236	1311	1581
Suspended Solids	mg/L	50	-	3	3	2	<1
Temperature (on site)	mg/L	25	-	11	12	13	12
Chromium	mg/L	0.05	0.03	-	<1	-	< 0.001
Total Oxidised Nitrogen	mg/L	-	-	-	0.4	-	0.6
Total Phosphorus as P	mg/L	-	-	-	0.06	-	0.05
Zinc	mg/L	3	0.1	-	12	-	18

Ballymurtagh Landfill Co Wicklow Surface Water Quality 2009

			2009				
		Surface Water	Environmental	SW4	SW4	SW4	SW4
		Regulations	Quality Standards	Coal Yard	Coal Yard	Coal Yard	Coal Yard
		1989		s/w sample	s/w sample	s/w sample	s/w sample
Parameter	Units	Max. Admissable Conc.	EPA Interim Report 2003	9-Mar-09	8-Jun-09	24-Sep-09	21-Nov-09
Total Alkalinity	mg/L	-	-	-	-	-	10
Ammonium	mg/L	0.2	0.02	0.09	<0.08	0.24	<0.08
BOD	mg/L	7	-	<2	<2	<2	<2
Cadmium	mg/L	0.005	0.005	-	-		0.0004
Calcium	mg/L	-	-	-	-		6
Chloride	mg/L	250	250	9	7	10	8
Chromium	mg/L	0.05	0.03	-	-		<0.001
COD	mg/L	40	-	11	13	8	10
Conductivity	uS/cm at 20°C	1,000	1,000	89	66	133	82
Copper	mg/L	0.05	0.03	-]		0.01
Dissolved Oxygen (on site)	mg/L	-	-	8.0	11	10	10.7
Iron	mg/L	0.2	0.2				0.87
Lead	mg/L	0.05	0.01	-	-		0.0080
Magnesium	mg/L	-	-	-	-		3
Manganese	mg/L	0.05	0.3	-	-		0.10
Mercury	mg/L	0.001	0.001	-	-		<0.05
рН	mg/L	5.5 < pH < 9	-	6.4	6.7	6.4	5.8
Potassium	mg/L	-	-	-	-		<1
Sodium	mg/L	-	-	-	-		6
Sulphate	mg/L	200	200	19	11	30	14
Suspended Solids	mg/L	50	-	6	11 5	2	9
Temperature (on site)	mg/L	25	-	5	12	11	9
Total Oxidised Nitrogen	mg/L	-	-	-	-		1
Total Phosphorus as P	mg/L	-	-	-	-		0.05
Zinc	mg/L	3	0.1	-	-		0.15

Ballymurtagh Landfill Co Wicklow Surface Water Quality 2009

			2009				
		Surface Water	Environmental	SW5	SW5	SW5	SW5
		Regulations	Quality Standards	Coal Yard	Coal Yard	Coal Yard	Coal Yard
		1989		s/w sample	s/w sample	s/w sample	s/w sample
Parameter	Units	Max. Admissable Conc.	EPA Interim Report 2003	9-Mar-09	8-Jun-09	24-Sep-09	21-Nov-09
Total Alkalinity	mg/L	-	-	-	-	-	15
Ammonium	mg/L	0.2	0.02	0.12	<0.08	<0.08	<0.08
BOD	mg/L	7	-	<2	<2	<2	-2
Cadmium	mg/L	0.005	0.005	-	-	-	0.0003
Calcium	mg/L	-	-	-	-	-	5
Chloride	mg/L	250	250	9	7	9	8
Chromium	mg/L	0.05	0.03	-	-	-	<0.001
COD	mg/L	40	-	10	14	9	6
Conductivity	uS/cm at 20°C	1,000	1,000	71	72	101	64
Copper	mg/L	0.05	0.03	-	-	-	0.15
Dissolved Oxygen (on	mg/L		_				
site)	IIIg/L	-	-	8.3	11	10.3	10.6
Iron	mg/L	0.2	0.2	-	-	-	0.44
Lead	mg/L	0.05	0.01	-	-	-	0.0080
Magnesium	mg/L	-	-	-	-	-	2
Manganese	mg/L	0.05	0.3	-	-	-	0.07
Mercury	mg/L	0.001	0.001	-	-	-	<0.05
рН	mg/L	5.5 < pH < 9	-	6.6	8.0	6.7	6.0
Potassium	mg/L	-	-	-	-	-	<1
Sodium	mg/L	-	-	-	-	-	5
Sulphate	mg/L	200	200	12	7	19	10
Suspended Solids	mg/L	50	-	4	3	3	7
Temperature (on site)	mg/L	25	-	5	12	11	9
Total Oxidised Nitrogen	mg/L	-	-	-	-	-	1
Total Phosphorus as P	mg/L	-	-	-	-	-	<0.05
Zinc	mg/L	3	0.1	-	-	-	0.11

		EPA Groundwater				
		Guidelines 2003	BH96/3	BH96/3	BH96/3	BH96/3
Parameter	Units	IGV	09-Mar-09	08-Jun-09	24-Sep-09	23-Nov-09
Alkalinity			-	-		1270
Ammoniacal Nitrogen	mg/L	0.15	201	203	202	216
Boron	mg/L	1	-	-		0.77
Cadmium	mg/L	0.005	-	-		<0.0001
Calcium	mg/L	200	-	-		305
Chloride	mg/L	30	60	66	63	70
Total Chromium	mg/L	0.030	-	-		0.001
Conductivity(uS/cm @ 20	uS/cm at 20°C	1000	3830	3710	3780	3970
Copper	mg/L	0.03	-	-		0.014
Cyanide	mg/L	0.01	-	-		<0.01
Dissolved Oxygen	mg/L	No abnormal change	3.0	4.0	3.2	5.2
Fluoride	mg/L	1.00	-	-		0.67
Iron	mg/L	0.20	0.22	0.24	0.06	0.50
Lead	mg/L	0.01	-	-		<2
Magnesium	mg/L	50.00	-	-		212
Manganese	mg/L	0.05	-	-		7.0
Mercury	mg/L	0.001	-	-		<0.0005
Orthophosphate	mg/L	0.03	-	-		0.06
рН	pH Units	6.5-9.5	7.5	7.6	7.3	7.0
Potassium	mg/L	5	68	56	63	72
Residue on Evaporation @	180'C		-	-		2465
Sodium	mg/L	150	52	47	43	52
Sulphate	=	200	1541	1713	1445	1214
Temperature, 'C	mg/L	25	14	14	13	14
TOC	mg/L	No abnormal change	20	18	18	21
Total Oxidised Nitrogen	mg/L	No abnormal change	<0.25	0.4	<0.24	<0.32
Total Phenols by Colourir	μg/L	0.5000	0.05	0.13	<0.05	<0.05
Total Phosphorus	mg/L	0.50	-	-	-	0.14
Zinc	mg/L	0.10		-	-	<0.01
Faecal Coliforms (cfu/100	cfu/100mls	0	0	0	0	0
Total Coliforms (cfu/100r	cfu/100mls	0	>100	>100	>100	37

		EPA Groundwater Guidelines 2003	Twin Shafts	Twin Shafts	Twin Shafts	Twin Shafts
Parameter	Units	IGV	09-Mar-09	08-Jun-09	24-Sep-09	23-Nov-09
Alkalinity	· · · · · · · · · · · · · · · · · · ·	1	-	-	-	40
Ammoniacal Nitrogen	mg/L	0.15	<0.08	<0.08	<0.08	<0.08
Boron	mg/L	1	-	-	-	0.14
Cadmium	mg/L	0.005	-	-	-	0.002
Calcium	mg/L	200	-	-	-	43
Chloride	mg/L	30	24	24	22	22
Total Chromium	mg/L	0.030	-	-	-	<.001
Conductivity(uS/cm @ 20'C)	uS/cm at 20°C	1000	350	378	349	314
Copper	mg/L	0.03	-	-	-	0.031
Cyanide	mg/L	0.01	-	-	-	<0.01
Dissolved Oxygen	mg/L	No abnormal change	3.0	9	10.6	10.6
Fluoride	mg/L	1.00	-	-	-	0.20
Iron	mg/L	0.20	0.09	0.11	<0.05	<0.05
Lead	mg/L	0.01	-	-	-	<2
Magnesium	mg/L	50.00	-	-	-	10
Manganese	mg/L	0.05	-	-	-	0.16
Mercury	mg/L	0.001	-	-	-	<0.00005
Orthophosphate	mg/L	0.03	-	-	-	<1
рН	pH Units	6.5-9.5	7.2	7.2	6.6	6.6
Potassium	mg/L	5	13	7	8	13
Residue on Evaporation @180'C			-	-	-	230
Sodium	mg/L	150	11	11	9	11
Sulphate	-	200	88	105	107	88
Temperature, 'C	mg/L	25	14	12	10	10
TOC	mg/L	No abnormal change	2.1	1.8	1.10	3.2
Total Oxidised Nitrogen	mg/L	No abnormal change	5.4	2.4	3.6	4.9
Total Phenols by Colourimetry	μg/L	0.5000	0.06	<0.05	<0.05	<0.05
Total Phosphorus	mg/L	0.50	-	-	-	<0.05
Zinc	mg/L	0.10	-	-	-	0.38
Faecal Coliforms (cfu/100mls)	cfu/100mls	0	0	0	8	2
Total Coliforms (cfu/100mls)	cfu/100mls	0	>100	>100	>100	>100

		EPA Groundwater Guidelines 2003	SG1/04	SG1/04	SG1/04	SG1/04
Parameter	Units	IGV	09-Mar-09	08-Jun-09	24-Sep-09	23-Nov-09
Alkalinity			-	-	-	<0.5
Ammoniacal Nitrogen	mg/L	0.15	1.7	0.41	0.23	0.26
Boron	mg/L	1	-	-	-	0.45
Cadmium	mg/L	0.005	-	-	-	1
Calcium	mg/L	200	-	-	-	311
Chloride	mg/L	30	20	32	33	20
Total Chromium	mg/L	0.030	-	-	-	0.050
Conductivity(uS/cm @ 20'C)	uS/cm at 20°C	1000	9110	9260	9210	9670
Copper	mg/L	0.03	-	-	-	98
Cyanide	mg/L	0.01	3.1	-	-	< 0.01
Dissolved Oxygen	mg/L	No abnormal change	-	5.0	7.6	9.1
Fluoride	mg/L	1.00	94	-	-	26
Iron	mg/L	0.20	-	106	78	61
Lead	mg/L	0.01	-	-	-	0.072
Magnesium	mg/L	50.00	-	-	-	1237
Manganese	mg/L	0.05	-	-	-	59
Mercury	mg/L	0.001	-	-	-	<0.00005
Orthophosphate	mg/L	0.03	-	-	-	0.27
рН	pH Units	6.5-9.5	3.0	3.0	3.0	2.9
Potassium	mg/L	5	<5	<5	<5	<5
Residue on Evaporation @180'C			-	-	-	17644
Sodium	mg/L	150	6	13	8	9
Sulphate	_	200	12546	11861	11896	14295
Temperature, 'C	mg/L	25	6	12	13	11
TOC	mg/L	No abnormal change	8.7	11	7.60	7.6
Total Oxidised Nitrogen	mg/L	No abnormal change	<1.84	<0.89	1.3	<0.18
Total Phenols by Colourimetry	μg/L	0.5000	<0.05	0.12	<0.05	<0.05
Total Phosphorus	mg/L	0.50	-	-	-	0.46
Zinc	mg/L	0.10	-	-	-	266
Faecal Coliforms (cfu/100mls)	cfu/100mls	0	0	1	0	1
Total Coliforms (cfu/100mls)	cfu/100mls	0	24	>101	11	18
rotai Guillottiis (CIU/TUUTIIIS)	Ola, TOOTIIIS	U	24	>101	•	10

Units mg/L mg/L	0.15	09-Mar-09 -	08-Jun-09 -	24-Sep-09	23-Nov-09
mg/L	0.15		-		
mg/L	0.15	-		-	
mg/L	0.15	ll l	-	-	<0.5
ÿ		-	-	-	2.1
	1	-	-	-	0.18
mg/L	0.005	-	-	-	0.064
mg/L	200	-	-	-	112
mg/L	30	-	-	-	11
uS/cm at 20°C	1000	-	-	-	2980
mg/L	0.03	-	-	-	47
mg/L	0.01	-	-	-	<0.01
mg/L	No abnormal change	-	-	-	9.3
mg/L	1.00	-	-	-	5.6
mg/L	0.20	-	-	-	4.5
mg/L	0.01	-	-	-	0.032
mg/L	50.00	-	-	-	280
mg/L	0.05	-	-	-	15
mg/L	0.001	-	-	-	<0.00005
mg/L	0.03	-	-	-	0.36
pH Units	6.5-9.5	-	-	-	3.4
mg/L	5	-	-	-	<5
		-	-	-	4055
mg/L	150	-	-	-	9
-	200	-	-	-	2689
mg/L	25	-	-	-	12
mg/L	No abnormal change	-	-	-	2.2
mg/L	0.030	-	-	-	0.007
mg/L	No abnormal change	-	-	-	2.6
μg/L	0.5000	-	-	-	<0.05
mg/L	0.50	-			6.6
mg/L	0.10	-	-	-	21
cfu/100mls	T 0 II				>100
	The state of the s		-		>100
	mg/L mg/L uS/cm at 20°C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 200 mg/L 30 uS/cm at 20°C 1000 mg/L 0.03 mg/L 0.01 mg/L No abnormal change mg/L 1.00 mg/L 0.20 mg/L 0.01 mg/L 0.05 mg/L 0.001 mg/L 0.03 pH Units 6.5-9.5 mg/L 5 mg/L 5 mg/L 200 mg/L 25 mg/L No abnormal change mg/L 0.030 mg/L No abnormal change µg/L 0.5000 mg/L 0.5000 mg/L 0.50 mg/L 0.50 mg/L 0.10	mg/L 200 - mg/L 30 - uS/cm at 20°C 1000 - mg/L 0.03 - mg/L 0.01 - mg/L 1.00 - mg/L 1.00 - mg/L 0.20 - mg/L 0.01 - mg/L 0.05 - mg/L 0.05 - mg/L 0.03 - mg/L 0.03 - pH Units 6.5-9.5 - mg/L 5 - mg/L 5 - mg/L 25 - mg/L 25 - mg/L 0.030 - mg/L 0.030 - mg/L 0.500 -	mg/L 200 - - mg/L 30 - - uS/cm at 20°C 1000 - - mg/L 0.03 - - mg/L 0.01 - - mg/L 1.00 - - mg/L 0.20 - - mg/L 0.01 - - mg/L 0.01 - - mg/L 0.05 - - mg/L 0.05 - - mg/L 0.03 - - mg/L 0.03 - - pH Units 6.5-9.5 - - mg/L 5 - - mg/L 150 - - mg/L 150 - - mg/L No abnormal change - - mg/L No abnormal change - - mg/L No abnormal change -	mg/L 200 -

		EPA Groundwater Guidelines 2003	SG1/05	SG1/05	SG1/05	SG1/05
Parameter	Units	IGV	09-Mar-09	08-Jun-09	24-Sep-09	23-Nov-09
Alkalinity			-	-	-	<0.5
Ammoniacal Nitrogen	mg/L	0.15	< 0.08	<0.08	<0.08	<0.08
Boron	mg/L	1	-	-	-	0.19
Cadmium	mg/L	0.005	-	-	-	0.053
Calcium	mg/L	200	-	-	-	205
Chloride	mg/L	30	16	16	15	17
Total Chromium	mg/L	0.030	-	-	-	0.002
Conductivity(uS/cm @ 20'C)	uS/cm at 20°C	1000	1926	1513	1847	1959
Copper	mg/L	0.03	-	-	-	13
Cyanide	mg/L	0.01	-	_	-	<0.01
Dissolved Oxygen	mg/L	No abnormal change	2.3	6	5.4	6.1
Fluoride	mg/L	1.00	-	-	-	0.36
Iron	mg/L	0.20	0.67	0.33	0.45	16
Lead	mg/L	0.01	-	-	-	0.212
Magnesium	mg/L	50.00	-	-	-	139
Manganese	mg/L	0.05	-	-	-	8.1
Mercury	mg/L	0.001	-	-	-	<0.00005
Orthophosphate	mg/L	0.03	-	-	-	<5
рН	pH Units	6.5-9.5	4.1	3.8	3.8	3.4
Potassium	mg/L	5	2	1	2	2
Residue on Evaporation @180'C		The state of the s	-	-	-	2209
Sodium	mg/L	150	-	-	-	12
Sulphate	_	200	13	12	12	1525
Temperature, 'C	mg/L	25	1509	1094	12	10
TOC	mg/L	No abnormal change	5	11	1.60	1.7
Total Oxidised Nitrogen	mg/L	No abnormal change	1.9	1.5	1.4	1.2
Total Phenols by Colourimetry	μg/L	0.5000	<0.05	<0.05	<0.05	<0.05
Total Phosphorus	mg/L	0.50	-	-	-	0.07
Zinc	mg/L	0.10	-	-	-	20
	Ĭ	•				
Faecal Coliforms (cfu/100mls)	cfu/100mls	0	0	0	0	0
Total Coliforms (cfu/100mls)	cfu/100mls	0	2	2	1	0

		EPA Groundwater Guidelines 2003	SG2/05	SG2/05	SG2/05	SG2/05
Parameter	Units	IGV	09-Mar-09	08-Jun-09	24-Sep-09	23-Nov-09
Alkalinity			-	-	-	<0.5
Ammoniacal Nitrogen	mg/L	0.15	<0.08	<0.08	<0.08	<0.08
Boron	mg/L	1	-	-	-	0.21
Cadmium	mg/L	0.005	-	-	-	0.040
Calcium	mg/L	200	-	-	-	185
Chloride	mg/L	30	15	17	15	16
Total Chromium	mg/L	0.030	-	-		0.002
Conductivity(uS/cm @ 20'C)	uS/cm at 20°C	1000	1432	1185	1219	1721
Copper	mg/L	0.03	-	-	-	9.4
Cyanide	mg/L	0.01	-	-	-	<0.01
Dissolved Oxygen	mg/L	No abnormal change	4.1	7	6.8	5.1
Fluoride	mg/L	1.00	-	-	-	2.6
Iron	mg/L	0.20	0.56	0.52	0.34	0.34
Lead	mg/L	0.01	-	-	-	<10
Magnesium	mg/L	50.00	-	-	-	108
Manganese	mg/L	0.05	-	-	-	6.3
Mercury	mg/L	0.001	-	-	-	<0.00005
Orthophosphate	mg/L	0.03	-	-	-	<2
рН	pH Units	6.5-9.5	3.9	3.8	3.8	3.4
Potassium	mg/L	5	2	1	2	2
Residue on Evaporation @180'C)		-	-	-	1842
Sodium	mg/L	150	11	12	12	12
Sulphate	_	200	999	775	794	1245
Temperature, 'C	mg/L	25	5	11	12	10
TOC	mg/L	No abnormal change	1.5	1.4	1.30	1.8
Total Oxidised Nitrogen	mg/L	No abnormal change	1.1	1.3	1.2	1.4
Total Phenols by Colourimetry	μg/L	0.5000	<0.05	<0.05	<0.05	<0.05
Total Phosphorus	mg/L	0.50	-	-	-	0.13
Zinc	mg/L	0.10	-	-	-	13
Faecal Coliforms (cfu/100mls)	cfu/100mls	0	0	0	1	0
,	cfu/100mls	0	10	10		
Total Coliforms (cfu/100mls)	CIU/ I UUMIS	0	10	10	11	6

		EPA Groundwater				
		Guidelines 2003	RC6	RC6	RC6	RC6
Parameter	Units	IGV	09-Mar-09	08-Jun-09	24-Sep-09	23-Nov-09
Alkalinity			-	-	-	<0.5
Ammoniacal Nitrogen	mg/L	0.15	-	-	-	<0.08
Boron	mg/L	1	-	-	-	0.38
Cadmium	mg/L	0.005	-	-	-	0.156
Calcium	mg/L	200	-	-	-	316
Chloride	mg/L	30	-	-	-	12
Total Chromium	mg/L	0.030	-	-	-	0.013
Conductivity(uS/cm @ 20'C)	uS/cm at 20°C	1000	-	-	-	5920
Copper	mg/L	0.03	-	-	-	50
Cyanide	mg/L	0.01	-	-	-	<0.01
Dissolved Oxygen	mg/L	No abnormal change	-	-	-	9.7
Fluoride	mg/L	1.00	-	-	-	14
Iron	mg/L	0.20	-	-	-	107
Lead	mg/L	0.01	-	-	-	0.054
Magnesium	mg/L	50.00	-	-	-	482
Manganese	mg/L	0.05	-	-	-	23
Mercury	mg/L	0.001	-	-	-	<0.00005
Orthophosphate	mg/L	0.03	-	-	-	0.21
рН	pH Units	6.5-9.5	-	-	-	2.6
Potassium	mg/L	5	-	-	-	<5
Residue on Evaporation @180'C			-	-	-	8658
Sodium	mg/L	150	-	-	-	8
Sulphate	=	200	-	-	-	5803
Temperature, 'C	mg/L	25	-	-	-	11
TOC	mg/L	No abnormal change	-	-	-	3.5
Total Oxidised Nitrogen	mg/L	No abnormal change	-	-	-	<0.59
Total Phenols by Colourimetry	μg/L	0.5000	-	-	-	<0.05
Total Phosphorus	mg/L	0.50	-	-	-	0.15
Zinc	mg/L	0.10	-	-	-	49
Faecal Coliforms (cfu/100mls)	cfu/100mls	0	-	-	-	1
Total Coliforms (cfu/100mls)	cfu/100mls	0				1

Parameter	Units	EU Drinking Water	EPA Groundwater Guidelines				
		Regulations 2000	2003	Mary Merrigan	Mary Merrigan	Mary Merrigan	Mary Merrigan
		S.I 439 of 2000	Interim Guideline Value	g/w sample	g/w sample	g/w sample	g/w sample
				09/03/2009	08/06/2009	24-Sep-09	23-Nov-09
Alkalinity	mg/l	-	No Abnormal Change	-	-	-	40
Ammonium	mg/l	0.3	0.15	<0.08	<0.08	<0.08	<0.08
Boron Cadmium	mg/l	1.0	1.0	-	-	-	0.28
Cadmium	μg/l	5	5	-	-	-	<0.0001
Calcium	mg/l	200	200	-	-	-	23
Chloride	mg/l	250.0	30.0	10	10	9	8
Chromium	μg/l	250.0 50	30	-	-	-	<1
Conductivity	μS/cm @ 20'C	1500	1,000	173	161	164	177
Copper	μg/l	2000	30	-	-	-	0.005
Cyanide	mg/l	2000 0.05	0.01	-	-	-	<0.01
Dissolved Oxygen	mg/l	-	-	5.6	8	7.3	9.0
Fluoride	mg/l	1.0	1.0	-	-	-	<0.1
Iron	mg/l	0.2	0.2	< 0.05	0.05	<0.05	<0.05
Lead	μg/l	10	10	-	-	-	<2
Magnesium	mg/l	-	-	-	-	-	4
Manganese	mg/l	50	50	-	-	-	<0.03
Mercury	μg/l	0.05	0.05	-	-	-	<0.05
Nitrate	mg/l	20	20	-	-	-	-
Nitrite	mg/l	50	25	-	-	-	-
Orthophosphate	mg/l	0.03	0.03	-	=	-	<0.03
pH	pH Units	>=6.5 and <=9.5	>=6.5 and <=9.5	6.5	6.4	5.9	5.6
Phenols	mg/l	-	0.5	0.05	0.08	-	< 0.05
Potassium	mg/l	12.0	5.0	<1	<1	<1	1
Residue on Evaporation	mg/l	-	-	-	-	-	96
Sodium	mg/l	150	150	6	7	6	6
Sulphate	mg/l	250	200	27	27	27	31
TOC TON	mg/l	-	No Abnormal Change	1.5	1.6	1.4	2.0
TON	mg/l	-	No Abnormal Change	3.2	2.6	2.1	3.0
Total Phosphorous	mg/l P	-	-	-	-	-	<0.05
Zinc	mg/l	5	0.1		-		0.06
Faecal Coliforms	CFU per 100 ml	0	0	0	1	0	55
Total Coliforms	CFU per 100 ml	0	0	4	3	12	>100

Parameter	Units	EU Drinking Water	EPA Groundwater Guidelines				
		Regulations 2000	2003	Eddie Coleman	Eddie Coleman	Eddie Coleman	Eddie Coleman
		S.I 439 of 2000	Interim Guideline Value	g/w sample	g/w sample	g/w sample	g/w sample
				09/03/2009	08/06/2009	24-Sep-09	24-Sep-09
Alkalinity	mg/l	-	No Abnormal Change	-	-	-	15
Ammonium	mg/l	0.3	0.15	<0.08	<0.08	<0.08	<0.08
Boron	mg/l	1.0	1.0	-	-	-	0.25
Cadmium	μg/l	5	5	-	-	-	<0.0001
Calcium	mg/l	200	200	-	-	-	9
Chloride	mg/l	250.0	30.0	13	11	11	12
Chromium	μg/l	50	30	-	-	-	<1
Conductivity	μS/cm @ 20'C	1500	1,000	131	127	130	125
Copper	μg/l	2000	30	-	-	-	0.0720
Cyanide	mg/l	0.05	0.01	-	-	-	<0.01
Dissolved Oxygen	mg/l	-	-	4.1	8	9.3	9.1
Fluoride	mg/l	1.0	1.0	-	-		0.10
lron	mg/l	0.2	0.2	0.15	0.11	<0.05	<0.05
Lead	μg/l	10	10	-	-	-	5
Magnesium	mg/l	-	-	-	-	-	4
Manganese	mg/l	50	50	-	-	-	0.05
Mercury	μg/l	0.05	0.05	-	-	-	<0.05
Nitrate	mg/l	20	20	-	-	-	-
Nitrite	mg/l	50	25	-	-	-	-
Orthophosphate	mg/l	0.03	0.03	-	-	-	<0.03
рΗ	pH Units	>=6.5 and <=9.5	>=6.5 and <=9.5	5.7	5.7	5.3	5.2
oH Phenols	mg/l	-	0.5	<0.05	<0.05		0.05
Potassium	mg/l	12.0	5.0	1	1	2	2
Residue on Evaporation	mg/l	-	-	-	-	-	61
Sodium	mg/l	150	150	9	9	8	8
Sulphate	mg/l	250	200	29	23	24	23
TOC	mg/l	-	No Abnormal Change	0.73	1.4	0.64	0.71
TON	mg/l	-	No Abnormal Change	1.8	3.0	2.9	3.1
Total Phosphorous	mg/l P	-	-	-	-	-	-
Zinc	mg/l	5	0.1	-	-	-	0.12
Faecal Coliforms	CFU per 100 ml	0	0	0	7	0	0
Total Coliforms	CFU per 100 ml	0	0	0	>100	0	0

Parameter	Units	EU Drinking Water	EPA Groundwater Guidelines				
		Regulations 2000	2003	Donal O' Leary	Donal O' Leary	Donal O' Leary	Donal O' Leary
		S.I 439 of 2000	Interim Guideline Value	g/w sample	g/w sample	g/w sample	g/w sample
				09/03/2009	08/06/2009	24-Sep-09	24-Sep-09
Alkalinity	mg/l	-	No Abnormal Change	-	-		40
Ammonium	mg/l	0.3	0.15	<0.08	<0.08	<0.08	<0.08
Boron	mg/l	1.0	1.0	-	-		0.230
Cadmium	μg/l		5	-	-		< 0.0001
Calcium	mg/l	5 200	200	-	-	 	9
Chloride	mg/l	250.0	30.0	12	11	13	12
Chromium	μg/l	50	30	-			<1
O do ato da -	μS/cm @ 20'C	4500	4.000	440	100		
Conductivity		1500	1,000	143	139	134	142
Copper	μg/l	2000 0.05	30			 	<.002
Cyanide	mg/l	0.05	0.01				<0.01
Dissolved Oxygen	mg/l	-	-	5.5	8	9.5	9.1
Fluoride	mg/l	1.0	1.0 0.2	-	-		<0.10
Iron	mg/l	0.2	0.2	<0.05	0.13	<0.05	0.07
Lead	μg/l	10	10	-	-	1	<2
Magnesium	mg/l	-	-	-	-	1	7
Manganese	mg/l	50 0.05	50	-	-	1	0.04
Mercury	μg/l	0.05	50 0.05	-	-		<0.05
Nitrate	mg/l	20	20	-	-	-	-
Nitrite	mg/l	20 50	25	-	-	-	-
Orthophosphate	mg/l	0.03	0.03	-	-	1	< 0.03
οΗ	pH Units	0.03 >=6.5 and <=9.5	>=6.5 and <=9.5	6.1	5.9	6	6.1
Phenols	mg/l	-	0.5	0.06	< 0.05		0.06
Potassium	mg/l	12.0	5.0	2	1	2	2
Residue on Evaporation	mg/l	-	-	-	-	I	76
Sodium	mg/l	150	150	8	8	11	10
Sulphate	mg/l	250	200	23	28	12	17
TOC	mg/l	-	No Abnormal Change	0.76	1.9	0.26	0.26
TON	mg/l	-	No Abnormal Change	3.2	2.5	3.9	2.3
Total Phosphorous	mg/l P	-	-	-	-	-	-
Zinc	mg/l	5	0.1	-	-	-	0.10
Tanal California	CELL may 100 ml	0		0	0	1 0	
Faecal Coliforms Total Coliforms	CFU per 100 ml	0	0	0	0 6	0	0
rotal Collforms	CFU per 100 ml	U	U	U	Ь	1	1

Parameter	Units	EU Drinking Water	EPA Groundwater Guidelines				
		Regulations 2000	2003	Jeffery Green	Jeffery Green	Jeffery Green	Jeffery Green
		S.I 439 of 2000	Interim Guideline Value	g/w sample	g/w sample	g/w sample	g/w sample
				09/03/09	08/06/09	24-Sep-09	23-Nov-09
Alkalinity	mg/l	-	No Abnormal Change	-	-	-	10
Ammonium	mg/l	0.3	0.15	<0.08	<0.08	<0.08	<0.08
Boron	mg/l	1.0	1.0	-	-	-	<.100
Cadmium	μg/l	5 200	5	-	-	-	0.00015
Calcium	mg/l	200	200	-	-	-	10
Chloride	mg/l	250.0	30.0	14	12	12	11
Chromium	μg/l	50	30	-	-	-	<1
Conductivity	μS/cm @ 20'C	1500	1,000	140	150	127	130
Copper	μg/l	2000	30	-	-	-	0.095
Cyanide	mg/l	0.05	30 0.01	-	-	-	<0.01
Dissolved Oxygen	mg/l	-	-	5.8	9	4.6	9.3
Fluoride	mg/l	1.0	1.0	-	-	-	0.13
Iron	mg/l	0.2	0.2	<0.05	0.07	0.19	0.06
Lead	μg/l	10	10	-	-	-	<2
Magnesium	mg/l	-	-	-	-	-	4
Manganese	mg/l	50	50	-	-	-	0.17
Mercury	μg/l	0.05	0.05	-	-	-	<0.05
Nitrate	mg/l	20	20	-	-	-	<0.03
Nitrite	mg/l	50	25	-	-	-	
Orthophosphate	mg/l	0.03	0.03	-	-	-	
рН	pH Units	>=6.5 and <=9.5	>=6.5 and <=9.5	6.5	6.9	5.4	5.3
Phenols	mg/l	-	0.5	<0.05	<0.05	-	0.06
Potassium	mg/l	12.0	5.0	<1	1	<1	2
Residue on Evaporation	mg/l	-	-	-	-	-	57
Sodium	mg/l	150	150	<1	10	9	8
Sulphate	mg/l	250	200	12	11	29	27
TOC	mg/l	-	No Abnormal Change	0.28	0.86	0.57	1.1
TON	mg/l	-	No Abnormal Change	4.4	3.7	0.94	2.3
Total Phosphorous	mg/l P	-	-	-	-	-	
Zinc	mg/l	5	0.1	-	-	-	0.29
	0511 100 1	1 -					T
Faecal Coliforms	CFU per 100 ml	0	0	0	4	0	1
Total Coliforms	CFU per 100 ml	0	0	0	9	0	15

Leachate Composition on site 2009							
Parameter	Units	Typical Leachate Range					
		(EPA Manual)	L05/16	L05/16	L05/16	L05/16	
			09-Mar-09	08-Jun-09	24-Sep-09	23-Nov-09	
Alkalinity	mg/l CaCO ₃	176 - 8840	-	-	-	430	
 Ammonia	mg/l NH₄	<0.2 - 1700	-	10	-	10	
3.O.D	mg/l	4.5 - >4800	-	15	-	9	
Boron	mg/l	<0.02 - 116	-	-	-	0.220	
C.O.D.	mg/l	<10 - 33700	-	104	-	89	
Cadmium	μg/l	<10 - 330	-	-	-	<0.1	
Calcium	mg/l	43 - 1440	-	-	-	213	
Chloride	mg/l	27 - 3410	-	16	-	16	
Chromium	μg/l	<40 - 560	-	-	-	2	
 Conductivity	uS/cm @20°C	503 - 19,200	-	1,250	-	1184	
Copper	μg/l	<20 - 160	-	-	-	9	
Cyanide (total)	mg/l	<0.05 - 0.16	-	-	-	<0.01	
Dissolved Oxygen	mg/l	-	-	-	-	-	
Fluoride	mg/l	n/a	-	-	-	0.21	
on	mg/l	0.4 - 664	-	-	-	12	
ead	μg/l	<40 - 280	-	-	-	<2	
/lagnesium	mg/l	18 - 470	-	-	-	39	
/langanese	mg/l	0.1 - 23.2	-	-	-	3.4	
Mercury	ug/l	<0.1 - 1.0	-	-	-	<0.05	
lickel	mg/l	<0.03 - 0.33	-	-	-	-	
Odour	-	-	-	musty	-	-	
Orthophosphate	mg/l	- "	-	-	-	0.03	
ьH	pH unit	6.4 - 8.0	-	7.1	-	6.6	
Phenols	mg/l	-	-	<0.05	-	<0.05	
Phosphorus (Total)	mg/l P	-	-	-	-	1.3	
Potassium	mg/l	2.7 - 1480	-	-	-	12	
Sodium	mg/l	12 - 3000	-	-	-	22	
Sulphate	mg/l	<5 - 739	-	-	-	298	
.O.C.	mg/l	2.8 - <5690	-	-	-	-	
emperature (on site)	°C	-	-	21	-	15	
Total Oxidised Nitrogen	mg/l N	-	-	<0.19	-	<0.18	
Zinc	mg/l	<0.01 - 6.7	-		-	0.02	
	IIa.					****	
aecal Coliforms	CFU per 100 ml	-	-	0	-	0	
otal Coliforms	CFU per 100 ml	-	-	>100	-	>100	
	1 01 0 por 100 mil			7100		>100	
_eachate Level	(m)	-	-	-	-	-	
Depth	(m)	-	-	-	-	-	
	,,			Brown, lots of			
Visual Description	-	•	-	suspended solids	-	-	

	Ballymurtagh Landfill, Co. Wicklow Leachate Composition on site 2009						
Parameter	Units	Typical Leachate Range					
-		(EPA Manual)	L05/10	L05/10	L05/10	L05/10	
			09-Mar-09	08-Jun-09	24-Sep-09	23-Nov-09	
Alkalinity	mg/l CaCO ₃	176 - 8840	-	-	-	-	
Ammonia	mg/l NH₄	<0.2 - 1700	522	-	-	-	
B.O.D	mg/l	4.5 - >4800	47	-	-	-	
Boron	mg/l	<0.02 - 116	-	-	-	-	
C.O.D.	mg/l	<10 - 33700	947	-	-	-	
Cadmium	μg/l	<10 - 330	-	-	-	-	
Calcium	mg/l	43 - 1440	-	-	-	-	
Chloride	mg/l	27 - 3410	718	-	-	-	
Chromium	μg/l	<40 - 560	-	-	-	-	
Conductivity	uS/cm @20°C	503 - 19,200	9230	-	-	-	
Copper	μg/l	<20 - 160	-	-	-	-	
Cyanide (total)	mg/l	<0.05 - 0.16	-	-	-	-	
Dissolved Oxygen	mg/l	-					
Fluoride	mg/l	n/a	-	-	-	-	
Iron	mg/l	0.4 - 664	-	-	-	-	
Lead	μg/l	<40 - 280	-	-	-	-	
Magnesium	mg/l	18 - 470	-	-	-	-	
Manganese	mg/l	0.1 - 23.2	-	-	-		
Mercury	ug/l	<0.1 - 1.0	-	-	-	-	
Nickel	mg/l	<0.03 - 0.33					
Odour		<u></u>	musty	-	-	-	
Orthophosphate	mg/l		- 7.8	-	-	-	
pН	pH unit	6.4 - 8.0		-	-	-	
Phenois	mg/l		0.09	-	-	-	
Phosphorus (Total)	mg/l P	2.7 - 1480	-	-	-	-	
Potassium Sodium	mg/l	2.7 - 1480 12 - 3000	-	-	-	-	
Sulphate	mg/l mg/l		-	-	<u>-</u> -	-	
T.O.C.	mg/l	2.8 - <5690	-	-	<u>-</u> -		
	°C	2.0 - < 3090		-	-	-	
Temperature (on site) Total Oxidised Nitrogen	_		37	-	-		
Zinc	mg/l N mg/l	- <0.01 - 6.7	<0.71	-	-	-	
ZIIIC	Ilig/I	<0.01 - 0.7	-	-	<u> </u>		
Faecal Coliforms	OFIL 7 2 7 100 ml			1		-1	
	CFU per 100 ml CFU per 100 ml	-	0	-	-	-	
Total Coliforms	CFO per 100 IIII	-	>100	-	-	-	
Leachate Level	(m)	_	_	-			
Depth	(m)	-	-	-	-		
Visual Description			Brown, lots of suspended solids	-	-	-	

	LANDFILL GAS MONITORING FORM							
Facility Name: Ballymurtagh Landfill	Eggility Address							
Licence no.: W0011-01	Facility Address:							
Licensee: Wicklow Co. Co.								
Date of Licensing:	Date of sampling: 30)/01/09	Time of Sampling	j:				
	Date Next Full Calibration: August 2009							
Instrument used:	Last Field Calibration: August 2008							
G A 2000	Luot i iola Galibratio	III / lagaot 2000						
			Parametria process	ro. 096 000				
Monitoring Personnel: Seamus Breslin	Weather:	Weather:						
Seamus Bresiin			Mean Temperature	: 200				
		Results						
O	CH ₄	CO ₂	O ₂	Comments:				
Sample Station Number	(%v/v)	(%v/v)	(%v/v)					
G1	0.00	0.10	20.70					
G2	0.00	2.70	15.10					
G3	0.00	0.20	20.70					
G4	0.00	6.60	7.60					
G6	0.00	4.10	14.10					
Ballygahan Adit	0.00	0.00	20.90					
Ballymurtagh Adit	0.00	0.00	20.90					
G7	0.00	4.60	14.00					
G8	0.00	0.60	20.00					
GW2/04	0.00	0.30	20.40					
RC 6	0.00	0.00	20.90					
GW1/04	0.00	0.00	20.90					
GW1/05	0.00	0.80	19.60					
GW2/05	0.00	1.70	19.40					
FLARE	29.00	31.00	0.00					
TWIN SHAFTS	0.00	0.00	20.90					

LANDFILL GAS MONITORING FORM								
Facility Name: Ballymurtagh Landfill	F. W. Add.	all as death A	D. M. II.					
Licence no.: W0011-01	Facility Address: B	allymurtagh, Avoca, (O. WICKIOW					
Licensee: Wicklow Co. Co.								
Date of Licensing:	Date of sampling: 0	02/03/09	Time of Sampling	j:				
	Date Next Full Calib	oration: August 2009						
Instrument used: G A 2000	Last Field Calibrati	on: August 2008						
G / 12000								
Monitoring Personnel:	Weather:		Barometric pressur	re: 996 - 1008				
Seamus Breslin	weather:		Mean Temperature:	: 7.6C				
Results								
Sample Station Number	CH ₄	CO ₂	O ₂	Comments:				
Sample Station Number	(%v/v)	(%v/v)	(%v/v)					
G1	0.00	0.60	20.00					
G2	0.00	1.90	16.70					
G3	0.00	0.30	20.60					
G4	0.00	0.20	20.30					
G6	0.00	4.60	13.10					
Ballygahan Adit	0.00	0.00	20.70					
Ballymurtagh Adit	0.00		20.80					
G7	0.00		15.20					
G8	0.00		20.30					
GW2/04	0.00	0.40	19.80					
RC 6	0.00		20.70					
GW1/04	0.00		20.60					
GW1/05	0.00 1.00		19.10					
GW2/05	0.00		18.60					
FLARE	20.50		0.50					
TWIN SHAFTS	0.00	0.40	20.40					
			, <u>_</u>					

	LANDFILL	. GAS MONITORIN	IG FORM				
Facility Name: Ballymurtagh Landfill Licence no.: W0011-01 Licensee: Wicklow Co. Co.	Facility Address: B	Facility Address: Ballymurtagh, Avoca, Co. Wicklow					
Date of Licensing:	Date of sampling: 3	20/03/09	Time of Sampling	1.			
Date of Licensing.		oration: August 2009		J•			
Instrument used:							
G A 2000	Last Field Calibration	on: August 2008					
Monitoring Personnel:	Weather:		e: 1001 - 1012				
Seamus Breslin	weather.		Mean Temperature:	9.5C			
Results							
Ol. Oladan Namahan	CH₄	CO ₂	O ₂	Comments:			
Sample Station Number	(%v/v)	(%v/v)	(%v/v)				
G1	0.00	0.40	20.40				
G2	0.00	0.00	20.80				
G3	0.00	0.50	20.30				
G4	0.00	0.00	20.80				
G6	0.00	4.50	13.80				
Ballygahan Adit	0.00	0.00	20.80				
Ballymurtagh Adit	0.00	0.00	20.70				
G7	0.00	3.50	15.60				
G8	0.00	0.00	20.80				
GW2/04	0.00	0.40	19.40				
RC 6	0.00	0.00	20.80				
GW1/04	0.00	0.00	20.70				
GW1/05	0.00	0.90	19.60				
GW2/05	0.00	1.80	18.70				
FLARE	25.00	29.00	0.80				
TWIN SHAFTS	0.00	0.00	20.80				

LANDFILL GAS MONITORING FORM						
Facility Name: Ballymurtagh Landfill Licence no.: W0011-01	Facility Address:					
Licensee: Wicklow Co. Co.						
Date of Licensing:	Date of sampling: 29	9/04/09	Time of Sampling	 :		
,	Date Next Full Calib	ration: August 2009				
Instrument used:	Last Field Calibratio	9				
G A 2000	Last Field Calibratio	III. August 2000				
			B	- 000 000		
Monitoring Personnel:	Weather:		Barometric pressur			
Seamus Breslin			Mean Temperature:	: 8.8℃		
		Results				
	CH ₄	CO ₂	O ₂	Comments:		
Sample Station Number	(%v/v)	(%v/v)	(%v/v)			
G1	0.0	0.6				
G1 G2	0.0	0.0	20.7			
G3	0.0	0.6	20.0			
G4	0.0	0.2	20.2			
G6	0.0	3.7	13.2			
Ballygahan Adit	0.0	0.0	20.8			
Ballymurtagh Adit	0.0	0.0	20.5			
G7	0.0	2.7	15.8			
G8	0.0	0.1	20.6			
GW2/04	0.0	0.2	19.4			
RC 6	0.0	0.0	20.6			
GW1/04	0.0	0.0	20.5			
GW1/05	0.0	1.4	18.6			
GW2/05	0.0	1.7	18.3			
FLARE	17.5	25.0	1.4			
TWIN SHAFTS	0.0	0.0	20.6			

LANDFILL GAS MONITORING FORM									
Facility Name: Ballymurtagh Landfill									
Licence no.: W0011-01	Facility Address: Ballymurtagh, Avoca, Co. Wicklow								
Licensee: Wicklow Co. Co.									
Date of Licensing:	Date of sampling: 2	28/05/09	Time of Sampling	j:					
	Date Next Full Calil	oration: August 2009							
Instrument used: G A 2000	Last Field Calibrati	on: August 2008							
Monitoring Personnel:	Weather:		Barometric pressur	re: 1012 - 1025					
Seamus Breslin	weather.		Mean Temperature	: 20℃					
Results									
Sample Station Number	CH ₄	CO ₂	O ₂	Comments:					
	(%v/v)	(%v/v)	(%v/v)						
G1	0.0	0.4	20.0						
G2	0.0	0.1	20.7						
G3	0.0	1.4	18.4						
G4	0.0		20.5						
G6	0.0		13.4						
Ballygahan Adit	0.0	0.0	20.8						
Ballymurtagh Adit	0.0		20.7						
G7	0.0	5.2	12.5						
G8	0.0	0.0	20.4						
GW2/04	0.0	0.0	20.6						
RC 6	0.0		20.5						
GW1/04	0.0		20.4						
GW1/05	0.0		19.0						
GW2/05	0.0		18.5						
FLARE	23.0		0.1						
TWIN SHAFTS	0.0	0.0	20.5						

	LANDFILL	GAS MONITORIN	IG FORM	
Facility Name: Ballymurtagh Landfill Licence no.: W0011-01 Licensee: Wicklow Co. Co.	Facility Address: B	allymurtagh, Avoca, (Co. Wicklow	
Date of Licensing:	Date of sampling: 2	06/06/00	Time of Sampling	15
Date of Licensing:) .
Instrument used:		oration: August 2009	1	
G A 2000	Last Field Calibration	on: August 2008		
Monitoring Personnel:	Ma atham		Barometric pressur	e: 995 - 1007
Seamus Breslin	Weather:		Mean Temperature:	: 17.5℃
	<u> </u>	Results		
Comple Station Number	CH ₄	CO ₂	O ₂	Comments:
Sample Station Number	(%v/v)	(%v/v)	(%v/v)	
G1	0.0	0.2	20.4	
G2	0.0	0.1	20.6	
G3	0.0	0.6	19.9	
G4	0.0	0.0	20.9	
G6	0.0	4.1	12.8	
Ballygahan Adit	0.0	0.0	20.7	-
Ballymurtagh Adit	0.0	0.1	20.7	
G7	0.0	3.5	15.4	
G8	0.0	0.1	20.8	
GW2/04	0.0	0.2	20.4	
RC 6	0.0	0.0	20.8	
GW1/04	0.0	0.1	20.2	
GW1/05	0.0	1.5	18.9	
GW2/05	0.0	2.1	17.6	
FLARE	21.5	1.3	28.0	
TWIN SHAFTS	0.0	0.0	20.9	· · · · · · · · · · · · · · · · · · ·

LANDFILL GAS MONITORING FORM						
Facility Name: Ballymurtagh Landfill Licence no.: W0011-01	Facility Address:					
Licensee: Wicklow Co. Co.	1					
Date of Licensing:	Date of sampling: 28		Time of Sampling	J:		
In atmospherical dis	Date Next Full Calib	ration: November 2	009			
Instrument used: G A 2000	Last Field Calibration	n: August 2008				
Monitoring Personnel:	Weather:		Barometric pressur	re: 990 - 1003		
Seamus Breslin	weatner:		Mean Temperature:	: 17.3℃		
		Results				
Commis Otation Number	CH₄	CO ₂	O ₂	Comments:		
Sample Station Number	(%v/v)	(%v/v)	(%v/v)			
G1	0.0	0.5	20.3			
G1 G2	0.0	0.0	20.8			
G3	0.0	2.3	17.3			
G4	0.0	5.4	10.0			
G6	0.0	2.6	13.7			
Ballygahan Adit	0.0	0.0	20.9			
Ballymurtagh Adit	0.0	0.0	20.8			
G7	0.0	3.2	15.4			
G8	0.0	0.6	20.0			
GW2/04	0.0	0.0	20.9			
RC 6	0.0	0.2	20.6	_		
GW1/04	0.0	0.0	20.8			
GW1/05	0.0	1.6	18.4			
GW2/05	0.0	0.3	20.4			
FLARE	19.5	26.0	1.5	·		
TWIN SHAFTS	0.0	0.0	20.9			

LANDFILL GAS MONITORING FORM							
Escility Address Rellymystach Aveca Co Wieklaw							
domey Address: B	anymanagn, 7100a, C	50. WIOIGOW					
Date of sampling: 2	28/8/09	Time of Sampling	j:				
Date Next Full Calib	oration: November 2	009					
Last Field Calibration	on: August 2008						
Weather:		Barometric pressur	re: 1003 - 1018				
weather.		Mean Temperature	: 14.0℃				
Results							
CH ₄	CO ₂	O ₂	Comments:				
(%v/v)	(%v/v)	(%v/v)					
0.0	0.0	20.9					
0.0	0.0	20.8					
0.0	1.2	18.7					
0.0	0.8						
	0.1	20.7					
	0.0	20.9					
0.0	•						
0.0	0.0						
		-					
0.0	0.0	20.8					
	Facility Address: Backling: 2 Date of sampling: 2 Date Next Full Calibration Last Field Calibration Weather: CH4 (%v/v) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Pacility Address: Ballymurtagh, Avoca, Control	Pacility Address: Ballymurtagh, Avoca, Co. Wicklow				

	LANDFILL	. GAS MONITORIN	IG FORM	
Facility Name: Ballymurtagh Landfill Licence no.: W0011-01	Facility Address: B	allymurtagh, Avoca, (Co. Wicklow	
Licensee: Wicklow Co. Co.			I	
Date of Licensing:	Date of sampling: 2		Time of Sampling	j:
	Date Next Full Calib	oration: November 2	009	
Instrument used: G A 2000	Last Field Calibration	on: August 2008		
G A 2000				
Monitoring Personnel:	Weather:		Barometric pressur	re:
Seamus Breslin	weatner:		Mean Temperature	: 18.1 ℃
		Results		
Commis Chatley Number	CH ₄	CO ₂	O ₂	Comments:
Sample Station Number	(%v/v)	(%v/v)	(%v/v)	
G1	0.0	0.0	20.6	
G2	0.0	0.1	20.1	
G3	0.0	1.1	18.8	
G4	0.0	8.0	9.1	
G6	0.0	3.8	14.0	
Ballygahan Adit	0.0	0.1	20.5	
Ballymurtagh Adit	0.0	0.0	20.7	
G7	0.0	3.5	15.2	
G8	0.0	0.5	19.3	
GW2/04	0.0	0.1	20.5	
RC 6	0.0	0.0	20.7	
GW1/04	0.0	0.1	20.3	
GW1/05	0.0	0.4	20.1	
GW2/05	0.0	3.9	15.2	
FLARE	19.0	29.0	1.3	
TWIN SHAFTS	0.0	0.0	20.6	

LANDFILL GAS MONITORING FORM						
Facility Name: Ballymurtagh Landfill	F. What Address					
Licence no.: W0011-01	Facility Address:					
Licensee: Wicklow Co. Co.						
Date of Licensing:	Date of sampling: 30	/10/09	Time of Sampling] :		
	Date Next Full Calibr	ration: December 20		-		
Instrument used:	Last Field Calibration	n: Docombor 2000				
G A 2000	Last Field Calibration	II. December 2009		Γ		
				<u> </u>		
Monitoring Personnel:	Weather:		Barometric pressur			
Seamus Breslin			Mean Temperature	: 14.5℃		
		Results				
Commis Chatian Number	CH ₄	CO ₂	O ₂	Comments:		
Sample Station Number	(%v/v)	(%v/v)	(%v/v)			
G1	0.0	0.3	20.4			
G2	0.0	0.5	19.9			
G3	0.0	0.7	20.2			
G4	0.0	7.3	12.1			
G6	0.0	4.5	13.5			
Ballygahan Adit	0.0	0.1	20.7			
Ballymurtagh Adit	0.0	0.0	20.8			
G7	0.0	2.5	16.4			
G8	0.0	0.8	19.1			
GW2/04	0.0	0.4	19.5			
RC 6	0.0	0.0	20.9			
GW1/04	0.0	0.1	20.4			
GW1/05	0.0	1.0	19.4			
GW2/05	0.0	3.2	16.0			
FLARE	20.0	29.0	0.5			
TWIN SHAFTS	0.0	0.0	20.8			

	LANDFILL	. GAS MONITORIN	IG FORM	
Facility Name: Ballymurtagh Landfill	English Address D	allumustaala Aus C	2a Wieklew	
Licence no.: W0011-01	Facility Address: B	allymurtagh, Avoca, (50. WICKIOW	
Licensee: Wicklow Co. Co.				
Date of Licensing:	Date of sampling: 2	27/11/09	Time of Sampling	j:
	Date Next Full Calil	bration: December 2	010	
Instrument used: G A 2000	Last Field Calibrati	on: December 2009		
6,7,2000				
Monitoring Personnel:	Weather:		Barometric pressur	re: 980 - 993
Seamus Breslin	weather.		Mean Temperature	: 5.3℃
	•	Results		
Sample Station Number	CH₄	CO ₂	O ₂	Comments:
	(%v/v)	(%v/v)	(%v/v)	
G1	0.0	0.1	20.8	
G2	0.0	0.7	19.4	
G3	0.0	0.5	20.3	
G4	0.0			
G6	0.0	4.3	13.5	
Ballygahan Adit	0.0	0.0	20.7	
Ballymurtagh Adit	0.0	0.0	20.8	
G7	0.0	2.6	16.4	
G8	0.0	0.0	20.9	
GW2/04	0.0	0.5	19.6	
RC 6	0.0		20.8	
GW1/04	0.0		20.6	
GW1/05	0.0	0.0		
GW2/05	0.0	0.6	20.0	
FLARE	23.0	29.0	0.7	
TWIN SHAFTS	0.0	0.0	20.9	

	LANDFILL	. GAS MONITORIN	IG FORM	
Facility Name: Ballymurtagh Landfill Licence no.: W0011-01 Licensee: Wicklow Co. Co.	Facility Address: B	allymurtagh, Avoca, (Co. Wicklow	
	Data of compliant (22/12/00	Time of Compline	
Date of Licensing:	Date of sampling: 2		Time of Sampling	j:
Instrument used:		oration: December 2	010	
G A 2000	Last Field Calibration	on: December 2009		
a / (2000				
Monitoring Personnel:	Weather:		Barometric pressur	re: 969 - 982
Seamus Breslin	weatner:		Mean Temperature	: -2.0 ℃
	<u> </u>	Results		
Commis Chatley Number	CH ₄	CO ₂	O ₂	Comments:
Sample Station Number	(%v/v)	(%v/v)	(%v/v)	
G1	0.0	0.0	20.8	
G2	0.0	2.8	14.5	
G3	0.0	0.3	20.5	
G4	0.0	1.1	19.9	
G6	0.0	5.1	12.1	
Ballygahan Adit	0.0	0.0	20.9	
Ballymurtagh Adit	0.0	0.0	20.8	
G7	0.0	2.8	15.7	
G8	0.0	0.7	19.8	
GW2/04	0.0	0.5	19.9	
RC 6	0.0	0.0	20.8	
GW1/04	0.0	0.1	20.6	
GW1/05	0.0	0.0	20.8	
GW2/05	0.0	0.9		
FLARE	18.5	22.0	1.6	
TWIN SHAFTS	0.0	0.0	20.8	

26/06/2009

	I ANDEILI	GAS MONI	TORING FOR	RM		
Facility Name: Ballymurtagh	Facility Address	<u></u>				
Landfill						
Waste Licence no.: W0011-01						
Licensee: Wicklow Co. Co.	-					
Instrument used: G A 2000	Date Next Full Calibration: August 2009					
	Last Field Calibr	ation: Augus	st 2008			
Monitoring Personnel: Seamus Breslin	-					
		Results				
	Sample Station	CH ₄	CO ₂	O_2	Pressure	Temp C
Date	Number	(%v/v)	(%v/v)	(%v/v)	ATM	
09/01/2009	Site Office	0.00	0.00	20.90	1012	5.70
16/01/2009	Site Office	0.00	0.00	20.80	990	7.40
23/01/2009	Site Office	0.00	0.00	20.90	966	5.10
30/01/2009	Site Office	0.00	0.00	20.80	989	8.50
06/02/2009	Site Office	0.00	0.00	20.80	982	3.60
12/02/2009	Site Office	0.00	0.00	20.90	1010	9.20
19/02/2009	Site Office	0.00	0.00	20.80	1006	4.50
27/02/2009	Site Office	0.00	0.00	20.80	1005	9.60
06/03/2009	Site Office	0.00	0.00	20.80	988	10.00
13/03/2009	Site Office	0.00	0.00	20.80	1001	8.60
20/03/2009	Site Office	0.00	0.00	20.80	1016	9.10
27/03/2009	Site Office	0.00	0.00	20.90	982	5.50

Facility Name: Ballymurtagh Landfill	Facility Address:	: Ballymurtaç	jh, Avoca, Co. \	Wicklow			
Waste Licence no.: W0011-01	1						
Licensee: Wicklow Co. Co.	1						
Instrument used: G A 2000	Date Next Full Calibration: August 2009						
	Last Field Calibra	ation: Augu	ıst 2008				
Monitoring Personnel: Seamus Breslin							
		Results	,				
	Sample Station	CH ₄	CO ₂	O ₂	Pressure	Temp C	
Date	Number	(%v/v)	(%v/v)	(%v/v)	ATM		
03/04/2009	Site Office	0.00	0.00	20.80	1001	11.80	
09/04/2009	Site Office	0.00	0.00	20.80	984	9.70	
17/04/2009	Site Office	0.00	0.00	20.90	999	8.90	
24/04/2009	Site Office	0.00	0.00	20.70	995	13.80	
01/05/2009	Site Office	0.00	0.00	20.80	1003	10.30	
08/05/2009	Site Office	0.00	0.00	20.80	991	12.50	
15/05/2009	Site Office	0.00	0.00	20.70	986	17.90	
22/05/2009	Site Office	0.00	0.00	20.70	999	14.10	
29/05/2009	Site Office	0.00	0.00	20.70	1016	17.70	
05/06/2009	Site Office	0.00	0.00	20.70	997	17.20	
10/00/000	Site Office	0.00	0.00	20.80	1005	12.40	
12/06/2009	Site Office	0.00	0.00	20.00	.000		

MDE0046RP0054 F01

0.00

0.00

20.80

999

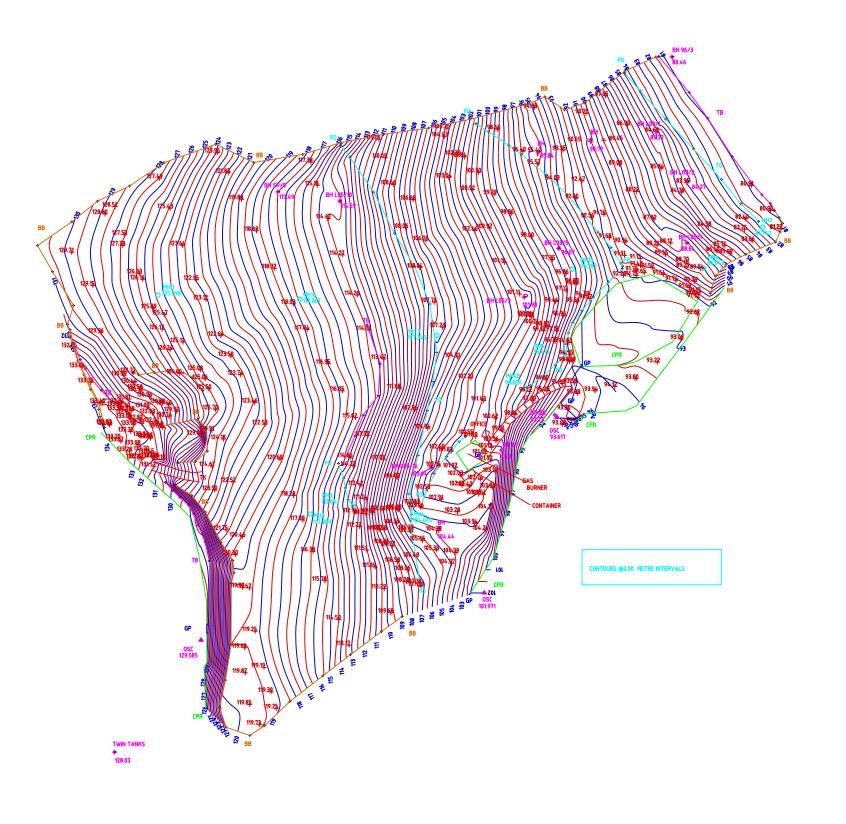
17.50

Site Office

Facility Name: Ballymurtagh

	LANDFILL	GAS MONI	TORING FOR	RM		
Facility Name: Ballymurtagh Landfill	Facility Address:	: Ballymurtagl	n, Avoca, Co. V	Vicklow		
Waste Licence no.: W0011-01]					
Licensee: Wicklow Co. Co.						
Instrument used: G A 2000	Date Next Full Ca	alibration: No	ovember 2009			
	Last Field Calibra	ation: Augus	t 2008			
Monitoring Personnel: Seamus Breslin						
		Results				
	Sample Station	CH₄	CO ₂	O_2	Pressure	Temp C
Date	Number	(%v/v)	(%v/v)	(%v/v)	ATM	
03/07/2009	Site Office	0.00	0.00	20.80	1001	21.00
10/07/2009	Site Office	0.00	0.00	20.90	1003	17.00
17/07/2009	Site Office	0.00	0.00	20.80	998	18.20
23/07/2009	Site Office	0.00	0.00	21.00	983	13.80
31/07/2009	Site Office	0.00	0.00	20.90	1000	14.70
07/08/2009	Site Office	0.00	0.00	20.90	1008	17.90
14/08/2009	Site Office	0.00	0.00	20.80	999	17.40
21/08/2009	Site Office	0.00	0.00	20.80	1002	16.20
28/08/2009	Site Office	0.00	0.00	20.90	995	14.00
04/09/2009	Site Office	0.00	0.00	20.80	997	16.20
11/09/2009	Site Office	0.00	0.00	20.80	1025	19.20
18/09/2009	Site Office	0.00	0.00	20.90	1005	14.20
25/09/2009	Site Office	0.00	0.00	20.90	1014	14.30

_andfill											
Waste Licence no.: W0011-01											
Licensee: Wicklow Co. Co.	1										
instrument used: G A 2000	Date Next Full Calibration: December 2010										
	Last Field Calibr	ation: Dece	mber 2009								
Monitoring Personnel: Seamus Breslin	=										
		Results	3								
_	Sample Station	CH ₄	CO ₂	O ₂	Pressure	Temp C					
Date	Number	(%v/v)	(%v/v)	(%v/v)	ATM	110					
02/10/09	Site Office	0.00	0.00	20.70	1006	14.2					
09/10/09	Site Office	0.00	0.00	20.90	998	12.0					
16/10/09	Site Office	0.00	0.00	20.90	1921	13.7					
23/10/09	Site Office	0.00	0.00	20.70	991	14.7					
30/10/09	Site Office	0.00	0.00	20.90	999	14.5					
06/11/09	Site Office	0.00	0.00	20.80	982	11.6					
13/11/09	Site Office	0.00	0.00	20.80	982	7.5					
20/11/09	Site Office	0.00	0.00	20.90	993	11.2					
27/11/09	Site Office	0.00	0.00	20.90	984	5.3					
04/12/09	Site Office	0.00	0.00	20.80	992	6.2					
11/12/09	Site Office	0.00	0.00	20.90	1016	9.7					
18/12/09	Site Office	0.00	0.00	20.90	1009	2.5					
23/12/09	Site Office	0.00	0.00	20.90	973	0.2					
31/12/09	Site Office	0.00	0.00	20.90	993	1.6					


LANDFILL GAS MONITORING FORM

Facility Address: Ballymurtagh, Avoca, Co. Wicklow

APPENDIX B

Site Survey

BALLYMURTAGH LANDFILL TOPOGRAPHICAL SURVEY 2009

BH G5 **♦**47.68 SURVEY CARRIED OUT IN
NATIONAL GRID
CO-ORDINATE SYSTEM (1975)
JUNE 2009

APPENDIX C

E-PRTR

| PRTR# : W0011 | Facility Name : Ballymurtagh Landfill Facility | Filename : W0011_2009_F01.xls | Return Year : 2009 |

14/06/2010 11:05

AER Returns Worksheet

REFERENCE YEAR 2009

1. FACILITY IDENTIFICATION Parent Company Name	Wicklow County Council
	Ballymurtagh Landfill Facility
PRTR Identification Number	
Licence Number	W0011-01
Waste or IPPC Classes of Activity	
No.	class_name
	Use of waste obtained from any activity referred to in a preceding
	paragraph of this Schedule.
3.1	Deposit on, in or under land (including landfill).
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
3.13	collection, on the premises where the waste concerned is produced.
	Land treatment, including biodegradation of liquid or sludge discards
3.2	in soils.
	Biological treatment not referred to elsewhere in this Schedule which
	results in final compounds or mixtures which are disposed of by
	means of any activity referred to in paragraphs 1. to 10. of this
3.6	Schedule.
	######################################
3.7	
4.40	The treatment of any waste on land with a consequential benefit for
4.10	an agricultural activity or ecological system.
	Storage of waste intended for submission to any activity referred to in
	a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4.13	produced.
	Recycling or reclamation of organic substances which are not used
	as solvents (including composting and other biological transformation
4.2	processes).
4.3	Recycling or reclamation of metals and metal compounds.
4.4	Recycling or reclamation of other inorganic materials.
	Use of any waste principally as a fuel or other means to generate
4.9	energy.
Address 1	Ballymurtagh, Ballygahan Upper, Ballygahan Lower
Address 2	Tinnahinch
Address 3	Co. Wicklow
Address 4	
Country	Ireland
Coordinates of Location	
River Basin District	
NACE Code	
NACE Code	3832
Main Economic Activity	3832 Recovery of sorted materials
Main Economic Activity AER Returns Contact Name	3832 Recovery of sorted materials Seamus Breslin
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager 087 2301627
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager 087 2301627
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume Production Volume Units	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager 087 2301627 0.
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume	3832 Recovery of sorted materials Seamus Breslin Sbreslin@wicklowcoco.ie Facility Manager 087 2301627 0.
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume Production Volume Units Number of Installations Number of Operating Hours in Year	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager 087 2301627
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume Production Volume Units Number of Installations	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager 087 2301627
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume Production Volume Production Volume Units Number of Installations Number of Operating Hours in Year Number of Employees	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager 087 2301627
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume Production Volume Units Number of Installations Number of Operating Hours in Year	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager 087 2301627
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume Production Volume Units Number of Installations Number of Operating Hours in Year Number of Employees User Feedback/Comments	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager 087 2301627
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume Production Volume Units Number of Installations Number of Operating Hours in Year Number of Employees User Feedback/Comments Web Address	3832 Recovery of sorted materials Seamus Breslin sbreslin@wicklowcoco.ie Facility Manager 087 2301627
Main Economic Activity AER Returns Contact Name AER Returns Contact Email Address AER Returns Contact Email Address AER Returns Contact Position AER Returns Contact Telephone Number AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number Production Volume Production Volume Units Number of Installations Number of Operating Hours in Year Number of Employees User Feedback/Comments	3832 Recovery of sorted materials Seamus Breslin Streslin@wicklowcoco.ie Facility Manager 087 2301627 0.0

2. I IIIII OLAGO AGIIVIIILO	
Activity Number	Activity Name
00.1	General
5(c)	Installations for the disposal of non-hazardous waste
5(d)	Landfills
50.1	General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

0. 00EVENTO HEGGEATIONS (0.1. NO. 040 OF 20	02)
Is it applicable?	
Have you been granted an exemption?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used?	

4.1 RELEASES TO AIR

| PRTR# : W0011 | Facility Name : Ballymurtagh Landfill Facility | Filename : W0011_2009_F01.xls | Return Year : 2009 |

14/06/2010 11:05

SECTION A: SECTOR SPECIFIC PRTR POLLUTANTS

ĺ		RELEASES TO AIR								
	POLLUTANT				METHOD		QUANTITY			
					Method Used					
	No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
	01	Methane (CH4)	С	SSC	Gas Sim 2	6521.62	75300.0	0.0	68778.38	
	03	Carbon dioxide (CO2)	С	SSC	Gas Sim 2	1741212.0	3731999.579	0.0	1990787.579	

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B: REMAINING PRTR POLLUTANTS

	RELEASES TO AIR									
POLLUTANT				METHOD	QUANTITY					
				Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG	Year F (Fi	fugitive) KG/Year	
					0.	0	0.0	0.0	0.0	

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES TO AIR								
	POLLUTANT			METHOD			QUANTITY		
				Method Used					
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental)	KG/Year	F (Fugitive) KG/Year
					0	.0	0.0	0.0	0.0

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators

For the purposes of the National inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KGyr for Section A. Sector specific PRTP pollutants above. Please complete the table below:

Landfill: Please enter summary data on the quantities of methane flared and / or	Ballymurtagh Landfill Facility					
utilised			Meth	hod Used		
					Facility Total Capacity m3	
	T (Total) kg/Year	M/C/E	Method Code	Description	per hour	
Total estimated methane generation (as per						
site model)	720940.328	С	SSC	Gas Sim 2 - Statistics	N/A	
Methane flared	645640.328	С	OTH	Gas Sim 2 & calcs	500.0	(Total Flaring Capacity)
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)
Net methane emission (as reported in Section						
A above)	75300.0	С	SSC	Gas Sim 2 - PI Report	N/A	

SECTION A: SECTOR SPECIFIC PRTR POLLUTANTS

Data on ambient monitoring of storm/surface water or groundwater, conducted as part of your licence requirements, should NOT be submitted under AER / PRTR Reporting as this only concerns Releases from your facility

	RELEASES TO WATERS								
POLLUTANT					QUANTITY				
				Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Ac	ccidental) KG/Year	F (Fugitive) KG/Year
						0.0	0.0	0.0	,

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO WATERS								
							OHANETTY.		
POLLUTANT					QUANTITY				
				Method Used					
and the second s	and the contract of the contra	MICIE							
No. Annex II	Name Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
						0.0	0.0)	
							0.0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

		RELEASES TO WATERS									
	POLLUTANT					QUANTITY					
					Method Used						
	Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Ye	ar A (Ace	cidental) KG/Year	F (Fugitive) KG/Ye	ar
					Flow Meter and monitoring						
240		Suspended Solids	С	OTH	results	238	5.0	2385.0	0.0		0.0

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION A: PRTR POLLUTANTS

	OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER											
	POLLUTANT		N	IETHOD	QUANTITY							
				Method Used								
No. Annex II	Name	M/C/E	/C/E Method Code Designation or Description		Emission Point 1	T (Total) KG/Year	A (Acc	cidental) KG/Year	F (Fugitive) KG/Year			
					0.	0	0.0	0.0	0.0			

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	SECTION B. HEMANING POLECTANT Emission (as required in your electrics)									
	OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER									
	PC		ME	THOD	QUANTITY					
			Method Used							
F	Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (A	ccidental) KG/Year	F (Fugitive) KG/Year
						0.0		0.0	0.0	0.

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

4.4 RELEASES TO LAND

SECTION A: PRTR POLLUTANTS

	RELEASES TO LAND
	POLLUTANT
No. Annex II	Name

^{*} Select a row by double-clicking on the Pollutant Name (Column B)

SECTION B: REMAINING POLLUTANT EMISSIONS (as required in your Licence)

		() , , , , ,
		RELEASES TO LAND
	PO	DLLUTANT
Pollutant No.		Name

^{*} Select a row by double-clicking on the Pollutant Name (Column B)

	ME							
		Method Used						
M/C/E	Method Code	Designation or Description	Emission Point 1					
				0.0				

) then click the delete button

	ME	THOD		
M/C/E	Method Code	Designation or Description	Emission Point 1	
				0.0

⁾ then click the delete button

009 | 14/06/2010 11:05

	QUANTITY
T (Total) KG/Year	A (Accidental) KG/Year
0.	.0 0.0

	QUANTITY
T (Total) KG/Year	A (Accidental) KG/Year
	0.0

Part	0. 0.10.112 1112/111	MENT & OTT SITE THE			FRI FIFE . W 00 FF Facility Name . Ballymurlagh Landilli	,		LOOU_I OT.MO FROMIT FOOR	. 2000				13
Marie Re County 20 10 10 10 10 10 10 10		5		(Tonnes per				Method Used		Licence/Permit No of Next Destination Facility Non Haz Waste: Name and Licence/Permit No of	Destination Facility Non Haz Waste: Address of	Address of Final Recoverer / Disposer	i.e. Final Recovery / Disposal Site
With the County 20 10 1	Transfer Destination		Hazardous		Description of Waste			Method Used					
With the Country 2012 1010 80 2.54 tree Pair R13 M Weeped Center in Pears R14 Pear Country R15 R	Within the Country	20 01 01	No	86.42	! Cardboard	R13	М	Weighed	Onsite in Ireland	Bailey Waste,WPT 9/4	Park,.,Dulin 11,.,Ireland		
Miles no Pooling 1910 19	Within the Country	20 01 01	No	150.46	Newsprint	R13	М	Weighed	Onsite in Ireland	Bailey Waste,WPT 9/4	Park,.,Dulin 11,.,Ireland		
Minth to County 2011 02 No. 2012 03 No. 2013 04	Within the Country	15 01 05	No	2.58	Tetra Pak	R13	М	Weighed	Onsite in Ireland	Bailey Waste,WPT 9/4	Park,.,Dulin 11,.,Ireland		
Within the Country 20 13 9 No S.1.88 Plausic Flat Market Plaus Plausic Plaus Plausic Plaus Plausic P	Within the Country	20 01 02	No	99.023	Glass	R13	М	Weighed	Onsite in Ireland	RecycleNet ,49/2001(Kildare	Wicklow,.,Ireland		
Within the Country 20 1 1 20 1	Within the Country	20 01 39	No	51.186	Plastic	R13	М	Weighed	Onsite in Ireland	07B) RecycleNet ,49/2001(Kildare	Kildare,,Ireland		
Within the Country 20 01 40 No	Within the Country	20 01 39	No	1.75	Polystyrene	R13	М	Weighed	Onsite in Ireland	07B)	Kildare,,,Ireland		
Within the Country 20 1 40 No 28.96 Scrip metal R13 M Weighted Parish Paris	Within the Country	20 01 40	No	15.251	Steel Food cans	R13	М	Weighed	Onsite in Ireland	(ESS1254504/07A)	Lane, Dublin,.,,, Ireland		
Within the Country 20 1 33	Within the Country	20 01 40	No	28.96	Scrap metal	R13	М	Weighed	Onsite in Ireland				
Within the Country 20 01 25 No 52.952 WEEE R13 M Weighed Onsite in Ireland Foundation, CHY12405, Managament Ma	Within the Country	20 01 33	Yes	10.848	Batteries	R13	М	Weighed	Onsite in Ireland		Centre, Melitta Road, Co	35,Kildare Enterprise Centre,Melitta Road,Co Kildare,Ireland	Centre, Melitta Road, Co
Within the Country 20 12 5 No 52.952 WEEE R13 M Weighed Onsite in Ireland Ltd.ESS/15/47/4088 Dublin, reland Within the Country 20 12 1 Ves 0.484 Bulbs & Tubes R13 M Weighed Onsite in Ireland Ltd.ESS/15/47/4088 Dublin, reland Within the Country 20 12 1 Ves 0.484 Bulbs & Tubes R13 M Weighed Onsite in Ireland Ltd.ESS/15/48/10/C Road Aftly, Col Ridger, Ireland Clomminam Industrial Estate Portlaciose, Colominam Industrial Estate Portlaciose, Colo	Within the Country	20 01 35	Yes	0.014	Mobile phones	R13	М	Weighed	Onsite in Ireland		Manor, Johnstown, Naas, Co	Foundation, CHY12405, Johns town Manor, Johnstown	
Within the Country 20 11 21 Yes 0.484 Bulbs & Tubes Park Prince Country 20 11 1 Yes 0.484 Bulbs & Tubes Park Principle Park Pr	Within the Country	20 01 25	No	52.952	WEEE	R13	М	Weighed	Onsite in Ireland	Managament	Business Park,Rathcoole,Co		
Within the Country 20 01 25 No 1.45 Cooking oil R13 M Weighed Onsite in Ireland Enva ESS15/54/05D Laois,,,Ireland Fireland Enva ESS15/54/05D Laois,, Ireland Estate, Portlaoise, Co Laois,, Ireland State, Portlaoise, Co Laois,, Ireland Manor, Johnstown, Naas, Co King Manor, Johnstown, Naas, Co K	Within the Country	20 01 21	Yes	0.484	Bulbs & Tubes	R13	М	Weighed	Onsite in Ireland	Irish Lamp Recycling Ltd,ESS/15/54/51/07C	Road, Athy, Co Kildare, Ireland Clonminam Industrial	Ltd,ESS/15/54/51/07C,Black park,Kilkenny Road,Athy,Co	
Within the Country 20 01 26 Yes 2.0 Waste Engine oil R13 M Weighed Onsite in Ireland Country 20 01 26 Yes 2.0 Waste Engine oil R13 M Weighed Onsite in Ireland Country 20 01 26 Yes 2.0 Waste Engine oil R13 M Weighed Onsite in Ireland Country 20 01 26 Yes 2.0 Waste Engine oil R13 M Weighed Onsite in Ireland Country 20 01 26 Yes 2.0 Waste Engine oil R13 M Weighed Onsite in Ireland Country 20 01 26 Yes 2.0 Waste Engine oil R13 M Weighed Onsite in Ireland Country 20 01 26 Yes 2.0 Waste Engine oil R13 M Weighed Onsite in Ireland Country 20 01 26 Yes 2.0 Waste Engine oil R13 M Weighed Onsite in Ireland Country 20 01 26 Yes 2.0 Waste Engine oil R13 M Weighed Onsite in Ireland Country 20 01 26 Yes 2.0 Waste Engine oil R14 M Weighed Onsite in Ireland Country 20 01 20 Yes 2.0 Waste Engine oil R14 M Weighed Onsite in Ireland Country 20 01 20 Yes 2.0 Waste Engine oil R14 M Weighed Onsite in Ireland Country 20 01 20 Yes 2.0 Waste Engine oil R14 M Weighed Onsite in Ireland Country 20 01 20 Yes 2.0 Waste Engine oil R14 M Weighed Onsite in Ireland Country 20 01 20 Yes 2.0 Waste Engine oil R14 M Weighed Onsite in Ireland Country 20 01 20 Yes 2.0 Waste Engine oil R14 M Weighed Onsite in Ireland Country 20 01 20 Yes 2.0 Waste Engine oil R14 M Weighed Onsite in Ireland Country 20 01 26 Yes 2.0 Waste Engine oil R15 M Weighed Onsite in Ireland Country 20 01 20 Yes 2.0 Waste Engine oil R15 M Weighed Onsite in Ireland Country 20 01 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 01 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 01 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 01 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 01 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 01 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 01 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 01 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 01 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 01 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 Yes 2.0 Waste Engine oil R25 Verial Country 20 Yes 2.0 Waste Engine oil R25 Verial Count	Within the Country	20 01 25	No	1.45	Cooking oil	R13	М	Weighed	Onsite in Ireland	Enva ,ESS15/54/05D		Enva	
Within the Country Within the Co	Within the Country	20 01 26	Yes	2.0	Waste Engine oil	R13	М	Weighed	Onsite in Ireland	Enva ,ESS15/54/05D	Estate,Portlaoise,Co Laois,.,Ireland	Industrial Estate,Portlaoise,Co	Estate, Portlaoise, Co
Within the Country 19 12 03 No 3.917 Aluminium Cans R13 M Weighed Onsite in Ireland Rampere Arklow Waste Landfill, Rampere, Co Within the Country 20 03 01 No 7.57 Mixed Municipal waste R13 M Weighed Onsite in Ireland Council for the Blind Country 20 01 11 No 23.84 Textiles R13 M Weighed Onsite in Ireland Council for the Blind Country 20 01 19 No 1.056 Aerosol cans R13 M Weighed Onsite in Ireland Council for the Ireland Country 20 01 99 No 1.056 Aerosol cans R13 M Weighed Onsite in Ireland Council Ireland Country 20 01 19 Dosite in Irel	Within the Country	08 03 13	No	0.01	Inkjet Cartrides	R13	М	Weighed	Onsite in Ireland		Kildare,Ireland		
Within the Country 20 03 01 No 7.57 Mixed Municipal waste R13 M Weighed Onsite in Ireland Disposal, ESS/15/54/05D Mixidonal Council for the Blind Unit T5B Toucher Business (Mrs Quinn's Charity Park, Newhall, Naas, Kildare, Ir eland Park, Naas,	Within the Country	19 12 03	No	3.917	Aluminium Cans	R13	М	Weighed	Onsite in Ireland	Greenstar,W0053-03	Wicklow,.,Ireland		
Within the Country 20 01 11 No 23.84 Textiles R13 M Weighed Onsite in Ireland Shop),ESS/15/54/365/08B eland Cedar Resource Site No 14A1,Greenogue Managament Business Park,Rathocole,Co Within the Country 20 01 99 No 1.056 Aerosol cans R13 M Weighed Onsite in Ireland Ltd,ESS/15/54/74/08B Dublin,Ireland	Within the Country	20 03 01	No	7.57	Mixed Municipal waste	R13	М	Weighed	Onsite in Ireland	Disposal,ESS/15/54/05D National Council for the Blind	Landfill,Rampere,Co Wicklow,.,Ireland Unit T5B Toucher Business		
Within the Country 20 01 99 No 1.056 Aerosol cans R13 M Weighed Onsite in Ireland Ltd, ESS/15/54/74/08B Dublin, Ireland Utd, ESS/15/54/74/08B	Within the Country	20 01 11	No	23.84	Textiles	R13	М	Weighed	Onsite in Ireland				
										Managament	Business Park,Rathcoole,Co		
	Within the Country	20 01 99				R13	М	Weighed	Onsite in Ireland	Ltd, ESS/15/54/74/08B	Dublin,Ireland		

APPENDIX D

Water Balance Calculations

Medium precipitation, Covered cells Completed cell with topcover

Surface flow %= 65
Evaporation factor = 1

Unit of data: mm

	Evaporation factor = 1						Onit of data: him						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	year
precipitation	59.6	57.9	24.4	74.1	53.2	72.8	111.0	68.2	64.4	35.2	184.2	11.2	816.2
surface run-off	39	38	16	48	35	47	72	44	42	23	120	7	531
infiltration	21	20	9	26	19	25	39	24	23	12	64	4	286
potential evapotranspiration	11.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
infiltration-pot. evaporation	9	20	9	26	19	25	39	24	23	12	64	4	
waterdeficit (*)	0	0	0	0	0	0	0	0	0	0	0	0	
actual evaporation	12	0	0	0	0	0	0	0	0	0	0	0	12
leachate, infiltration-act. evaporation	9	20	9	26	19	25	39	24	23	12	64	4	274
equalization, factor 12	22.8	22.8	22.8	22.8	22.8	22.8	22.8	22.8	22.8	22.8	22.8	22.8	273.8

APPENDIX E

ECOLOGY REPORT

Monitoring report on Ballymurtagh Landfill, Avoca, Co Wicklow

Terrestrial Flora & Fauna

July 2009

1. INTRODUCTION

This description and assessment of terrestrial ecology is written as part of the monitoring protocol for the closed landfill at Ballymurtagh. It has been prepared to comply with a condition of Wicklow County Council's waste licence from the EPA.

The site was visited in May 2009 and a walkover survey carried out to cover the entire area as well as the near surroundings. A previous similar visit had been made in July 2007 and also when the landfill was active, in 1998.

The report is arranged in the same order as in 2007 so any changes will be apparent.

2. DESCRIPTION OF SITE

The landfill occupies a gap in the valley side above the Avoca River which was created by an opencast mining operation and is now filled and capped. It slopes generally in an easterly direction, culminating in a steep slope of 20-30° above the recycling depot. There are small drops also to the margins where the original schistose rock or hillside is exposed. Two flatter parts on the SE margin are occupied by the gas flaring plant and a settlement lagoon taking surface run-off. There is also an 'island' of pre-existing rock at the south-western end around a capped mine shaft, covered by pine and birch trees.

2.1 Vegetation

The surface has been sown with grasses into which other species are now spreading, including trees and bushes at the eastern, more sloping end. The soil has been compacted by machinery but is well covered by vegetation except at the western end beyond the zone of filling where the surface is gravelly (Photo 1). Along the western margin there is also a narrow strip of sandy ground which is probably high in metal content from the exposed rocks nearby. In 2009 there is possible evidence of toxicity here for a short distance of 5m or so into the site (Photo 2). The growth of scutch *Elytrigia repens* and bent grasses *Agrostis stolonifera*, *A.capillaris* is somewhat depressed while glaucous sedge *Carex flacca* appears to flourish. This effect could also be related to waterlogging from flows off the surroundings as the preceding weeks had been very wet.

A possibly related pattern is also emerging in the gorse *Ulex europaeus* which is colonising the NW corner. Here a proportion of the outer bushes die off after a few years of growth with the result that they never reach above 50cm of so (Photo 3). Closer to the corner the growth is better, up to 1.5m. This again may have a hydrological or soil cause rather than any toxicity.

1

The main part of the site has a mixed cover of grasses with some broad-leaved species. The species list for 2007 is compared with 2009 below. Both are in rough order of abundance and stem from the same type of walkover transect

2007	2009
2007	2007

Festuca rubra
Holcus lanatus
Anthoxanthum odoratum
Poa pratensis
Elytrigia repens
Agrostis capillaris
Lolium perenne
Vicia sativa
Trifolium pratense
Rumex crispus
R.obtusifolius
Lotus corniculatus
Medicago lupulina
Cirsium arvense
Stellaria graminea
Calliergon cuspidatum
Lotus pedunculatus
Epilobium parviflorum
Cardamine pratensis
Ulex europaeus
Ranunculus acris
Bellis perennis
Juncus effusus
Deschampsia cespitosa
Ranunculus repens

Potentilla reptans
Juncus conglomeratus

The front slope has nutritionally richer soil and recent tree planting has resulted in superficial soil disturbance (Photo 4). The trees species used include birch, ash and oak with a little hawthorn. In undisturbed places in between, cocksfoot *Dactylis glomerata*, scutch *Elytrigia repens* and timothy *Phleum pratense* grow with the red fescue and Yorkshire fog and some soft rush *Juncus effusus* and ribwort plantain *Plantago lanceolata*. Disturbed ground adds

Cerastium glomeratum
Medicago lupulina
Trifolium dubium
Hypochaeris radicata
Vicia sativa
Geranium dissectum
Tortula, Bryum, Barbula spp

sticky mouse-ear black medick yellow trefoil catsear early vetch cut-leaved cranesbill moss species The upper trees are planted along a new bank and drain in which water accumulates towards the south. This allows floating sweet grass *Glyceria fluitans*, jointed rush *Juncus articulatus* and a single plant of pendulous sedge *Carex pendula* into the vegetation.

The established trees (Photos 5,6) on the slope are now 3-4m in height and include birches *Betula pubescens* and *B.pendula*, pines *Pinus contorta*, *P.sylvestris*, and willows *Salix cinerea* and a little *S.aurita*. The gorse is now 2m high and the shaded conditions suit

Rubus fruticosus bramble
Cytisus scoparius broom

Anthoxanthum odoratum sweet vernal grass
Agrostis capillaris common bent
Polytrichum commune a moss

Lotus pedunculatus greater birdsfoot trefoil

Vicia sepiumbush vetchCirsium arvensecreeping thistleChamerion angustifoliumrose-bayRhytidiadelphus squarrosusa mossCalluna vulgarisling

Blechnum spicant hard fern
Dryopteris affinis scaly male fern

At the base ragwort *Senecio jacobaea*, greater stitchwort *Stellaria holostea*, sorrel *Rumex acetosa* and hedge St John's wort *Hypericum maculatum* grow amongst planted alder and beech.

Willows and gorse also occur as a narrow strip under the cliff at the northern edge of the landfill. Here they grow with the horsetails *Equisetum arvense*, *E.telmateia*, nettle *Urtica dioica*, winter heliotrope *Petasites fragrans*, wild rose *Rosa canina*, pheasant berry *Leycesteria formosa* and butterfly bush *Buddleja davidii*. Nearby there is a little bare ground without tall grass on which clovers *Trifolium repens*, *T.dubium* red fescue *Festuca rubra*, the moss *Calliergon cuspidatum* and yellow sedge *Carex viridula* are found

Tree growth is also seen on the island of original surface at the western end. A group of shore pine *Pinus contorta* grow here with downy- *Betula pubescens* and silver-birches *B.pendula* – the source of many of the seedlings at this end. There is also a tree of holly *Ilex aquifolium* and rowan *Sorbus aucuparia* along with bramble *Rubus fruticosus*, greater stitchwort *Stellaria holostea*, wood sage *Teucrium scorodonia*, bracken *Pteridium aquilinum* and ling *Calluna vulgaris*.

The only other feature of the site is the small lagoon on the SE side. Surrounded by red fescue *Festuca rubra* and sweet vernal grass *Anthoxanthum odoratum* this supports

Potamogeton natansbroad-leaved pondweedCallitriche spwater starwortLemna minorcommon duckweed

Juncus articulatus Juncus effusus Agrostis stolonifera Glyceria fluitans Rumex crispus R.obtusifolius jointed rush soft rush creeping bent floating sweet grass curled dock broad-leaved dock

2.2 Surrounding habitat

No changes were seen in the surrounding lands except for a reduction in weed species along the western end.

3. FAUNA

The grassland fauna consists primarily of insects and the ringlet and meadow brown have been noted in the past. Mammals are present, in the form of hare and rabbit though their grazing influence is small. Visiting species include fox and sika deer though the absence of browsing damage on the broad-leaved trees suggests their numbers are very low.

The birds seen on or over the landfill have been raven, jackdaw, wood pigeon, pheasant, goldfinch, linnet and meadow pipit. A pair of meadow pipits was nesting on site in 2009. The habitat may favour nesting linnets in future in gorse but the upland site probably would reduce potential numbers. Whitethroat would also be expected.

Frogs breed in the lagoon on the southern margin where there are also two dragonfly species the common darter *Sympetrum striolatum* and ruddy darter *S. sanguineum*.

4. ASSESSMENT

The vegetation and habitat on site suggest that the landfill is still effectively isolated below the capping material and causes little if any impact on the surface or the surroundings. Changes in the grass cover reflect a decline in nutrient status, presumably from the natural leaching experienced in a high rainfall area. The cover has become more dense and only one annual species *Vicia sativa* is now prominent, rather than three in the past. It may be noted that only one introduced species *Carex pendula* occurs on the main surface and this has appeared since 2007 because of the new tree planting. At the margins however three others persist – winter heliotrope *Petasites fragrans*, butterfly bush *Buddleja davidii* and pheasant berry *Leycesteria formosa*.

The amount of exposed gravel at the western margin of the site is noted and may require attention in time depending on the growth of vegetation in the next few years.

1

The additional tree planting has caused minor soil disturbance and changes in surface water hydrology though these will be assimilated in due course. Hawthorn, ash and oak have been used in addition to the more widely successful birch and willow.

Colonisation by new species is also noticed in the lagoon on the southern side where four new plants have appeared, probably brought in by birds. Three waterplants and one rush are involved and they will allow for a greater range of invertebrates.

Changes in the large fauna have been minimal in the two years and the upper parts of the site still have a very small number of birds.

The prognosis for the site is a gradual extension of the tree growth but also the further colonisation by plant and animal species from the surroundings.

In terms of the restoration of the mining site the situation now is considerably better than when first visited in 1998. The surface now is stabilised and its vegetation coming to resemble that on the rest of the valley side, run-off from the area has been managed and a smaller area of the old mining site is exposed to weathering and mineral loss. This must result in less mine drainage entering the Avoca River below.

_

Photo 1. Vegetation effect at western end caused by run-off from surroundings

Photo 2. Gravel exposed at western end outside filled area

,

Photo 3. Gorse at NW corner of landfill. Note thin growth on outer fringe

Photo 4. New planting above existing trees on eastern slope

_

Photo 5. Eastern slope in 2007 (August)

Photo 6. Eastern slope in 2009 (May)

0

APPENDIX E

ENVIRONMENTAL NOISE SURVEY

RPS-MCOS

Ballymurtagh Landfill, Co. Wicklow

Environmental Noise Survey

Report Date: 11th November 2009

EURO environmental services Unit 35A Boyne Business Park, Drogheda, Co. Louth

Report No. 2040/M22 Rev.1

1.0 Introduction

EURO environmental services carried out a noise survey at the Ballymurtagh Landfill. Monitoring was conducted at 2 different locations around the facility as part of the requirements of the current Waste Licence, W0011-01.

According to the waste licence (W0011-01), activities on site shall not give rise to noise levels off site, at noise sensitive locations, which exceed the sound pressure limits of 55 dB(A) during the day and 45dB(A) at night.

The civic waste facility operates between 10.00am and 16.00pm, Tuesday to Saturday. The landfill is capped so the main activity that gives rise to noise levels is the operation of the gas flare, which runs 24 hours a day. Local traffic contributes significantly to noise levels in the surrounding area.

2.0 Duration and Measurements of Surveying

The daytime broadband noise survey was carried out between 14.51 and 17.01 hours on Friday, 30th October 2009. The following measurements were carried out at each site:

- Daytime Broadband measurements L(A)_{eq}, L(A)₁₀, L(A)₉₀ and LC_{peak} over a 30-minute period.
- Daytime 1/3 Octave Band measurements over a 30-minute period.

2.1 Description of Measurement Parameters

- 2.1.1 L_{eq} Values: L_{eq} (t) values represent the continuous equivalent sound level over a specified time (t). This value expresses the average levels over time and is a linear integral.
- 2.1.2 L_{90} and L_{10} Values: The L_{90} and L_{10} are statistical values which represent the sound levels exceeded for a percentage of the measurement time. L_{10} indicates the sound levels exceeded for the 10% of the monitoring period while L_{90} indicates the sound levels exceeded for 90% of the monitoring period. The L_{90} value is a good indication of background noise levels.
- 2.1.3 Tonal and Impulsive Characteristics: Tonal noise is characterised in accordance with ISO 1996-2, which indicates that a noise source being tonal at a particular frequency is either clearly audible or exceeds the level of the adjacent bands by 5dB or more. An impulsive noise is of short duration (typically less than 1 second), it is brief and abrupt, its startling effect causes greater annoyance than would be expected from a simple measurement of sound pressure level. For example an instantaneous bang/thud that may be associated with pile driving, hammering etc.

3.0 Weather Conditions

Weather conditions during the noise monitoring survey was cold, with constant rainfall and slightly breezy with wind speeds of <5m/sec during the survey. Temperatures ranged from 10-12 °C.

4.0 Location of Monitoring Points

4.1 Monitoring Point NSL 1

The meter was positioned at the nearest house approximately 2m from the roadway leading up to the landfill and approximately 150m from the landfill entrance. The monitoring point was clearly marked.

4.2 Monitoring Point NSL 4

This monitoring point was located at the back of Wicklow County Council's work yard on the R752. The meter was positioned behind the outhouses approximately 25m from the Avoca River.

5.0 Sources of noise

5.1 Vehicle movements

The main vehicle movements in the vicinity are those along the main road in the area, the R752. Traffic was the dominant noise source for monitoring points, NSL1 and NSL4.

5.2 Rainfall

Rain falling and running along the ground also contributed to elevating noise levels at both monitoring locations NSL1 and NSL4.

6.0 Methodology

The noise survey was carried out in accordance with ISO 1996/1/2/3 - Acoustics - Description and Measurement of Environmental Noise.

Reference was also made to the guidance document issued by the EPA entitled "Environmental Noise Survey Guidance Document" EPA 2003.

Broadband measurements were analysed for 30-minute intervals. Daytime measurement range was set at 30-90dB. 1:3 Octave measurements were conducted for a 30-minute period.

7.0 Equipment

The equipment used was a Cirrus CR:831A serial No. B14907FF Type 1 integrating averaging sound level meter, with selective 1:1 or 1:3 octave band measurements.

The meter was fixed to a tripod 1.3 meters above the ground level and the microphone was protected using a windshield. The microphone cartridge type was an MK224, Serial No. 990785 with open circuit sensitivity level of 45.4 mV per Pa.

7.1 Calibration

Calibration was carried out on site using an acoustic calibrator at 94dBA. The meter was calibrated before and after the monitoring round.

8.0 Noise Monitoring Data

Monitoring Point	Date / Time	Sampling Interval (Minutes)	L(A)eq	L(A)10	L(A)90	L(A)eq L(A)10 L(A)90 Comments
NSL1	30/10/2009 14:51	30	20	62	54	No site operations from the Landfill facility could be heard at this location. Rain falling and running along the ground and wind rustling through trees were audible sounds recorded. Several cars passing within two meters of the noise meter was the loudest of audible noise at this monitoring location. Traffic from the main road approximately 500 meters away was also slightly audible.
NSL4	30/10/2009 16:01	30	<mark>57</mark>	61	50	Most noise at this monitoring point came from frequent traffic passing on the R752. Rain falling on the ground and water flowing in the Avoca River (25m away) could be heard rushing downstream crashing off the boulders and riverbed. No noise was audible from the landfill facility at this monitoring location. Wind rustling through the trees and bushes was also continuous throughout the survey period.

9.0 Conclusions

The recommended limit for broadband noise measurements set out by the International Standards Organisation is 55 dB(A) for day time.

From noise measurements taken at two specified noise-monitoring locations in and around the Ballymurtagh Landfill site, it was determined that the levels of noise measured at NSL1 and NSL4 exceeded the recommended day-time limits set within the waste licence (W0011-01). Noise audible at NSL1 was mainly from vehicle movement on the Main Road, and passing vehicles in close proximity to the monitoring location. There was no noise audible from the activities at the landfill site. Noise from the landfill flare was not audible at NSL1. Frequent traffic movements on the R752 contributed to significantly elevate noise levels at the NSL4 monitoring location.

A tonal component was detected at monitoring location NSL4 at a frequency of 250 Hz (48 dB). The source of this tonal component is attributable to the frequent passage of vehicles along the R752 road.

David Kelly

Field Services Manager

Aadil Khan

Environmental Technical Manager

11th November 2009

Appendix 1: Broadband Monitoring Data

Measurement Report

Measurement Details

Date and Time:

Run Duration:

30/10/2009 14:51 Cirrus Research plc

Sound Level Meter:

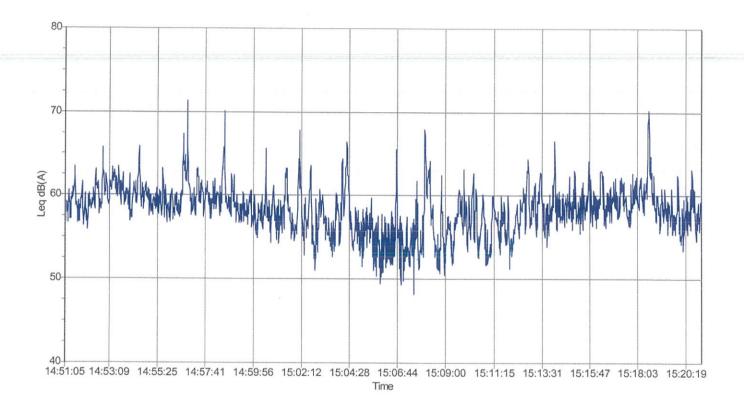
00:30:00 hh:mm:ss

Range:

50-110 dB

Overload:

no


Location:

Ballymurtagh Landfill NSL1 Broadband

Data

Leg 59.3 dBA Lepd 47.3 dBA LAE 91.7 dBA LAFmax 73.4 dBA 95.8 dBC Peak

L1.0 65.6 dBA L10.0 62.0 dBA L50.0 58.0 dBA L90.0 53.5 dBA L95.0 52.2 dBA L99.0 50.5 dBA

Measurement Report

Measurement Details

Date and Time:

30/10/2009 16:01

Sound Level Meter:

Cirrus Research plc

Run Duration:

00:30:00 hh:mm:ss

Range:

50-110 dB

Overload:

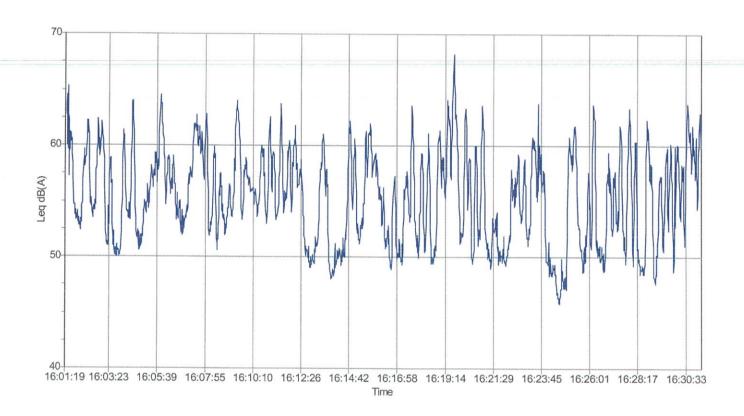
no

Location:

Ballymurtagh Landfill NSL4 Broadband

Data

 Leq
 57.3 dBA


 Lepd
 45.3 dBA

 LAE
 89.7 dBA

 LAFmax
 70.8 dBA

 Peak
 103.0 dBC

L1.0 63.8 dBA L10.0 60.9 dBA L50.0 55.3 dBA L90.0 49.8 dBA L95.0 49.0 dBA L99.0 47.3 dBA

Appendix 2: 1/3 Octave Spectra

Measurement Report

Measurement Details

Date and Time:

30/10/2009 15:22

Sound Level Meter:

Cirrus Research plc

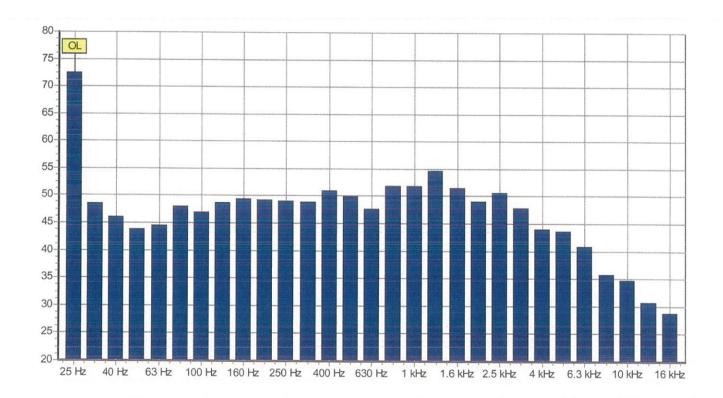
Run Duration:

00:29:52 hh:mm:ss

Range:

50-110 dB

Location:


Ballymurtagh Landfill NSL1 1/3 Octave

Band	LZeq,t	Time s Ov	erload	Band	LZeq,t	Time s Overload	Band	LZeq,t	Time s Overload	
25 Hz	72.5 dB	56	yes	250 Hz	49.1 dB	56	2.5 kHz	50.5 dB	56	
31 Hz	48.5 dB	56		315 Hz	48.9 dB	56	3.15 kHz	47.8 dB	56	
40 Hz	46.0 dB	56		400 Hz	50.9 dB	56	4 kHz	44.0 dB	56	
50 Hz	43.8 dB	56		500 Hz	49.9 dB	56	5 kHz	43.6 dB	56	
63 Hz	44.5 dB	56		630 Hz	47.7 dB	56	6.3 kHz	40.9 dB	56	
80 Hz	48.0 dB	56		800 Hz	51.8 dB	56	8 kHz	35.8 dB	56	
100 Hz	46.9 dB	56		1 kHz	51.8 dB	56	10 kHz	34.7 dB	56	
125 Hz	48.7 dB	56		1.25 kHz	54.6 dB	56	12.5 kHz	30.6 dB	56	
160 Hz	49.4 dB	56		1.6 kHz	51.5 dB	56	16 kHz	28.8 dB	56	
200 Hz	49.3 dB	56		2 kHz	49.0 dB	-56				

Band Leq,t Time s Overload

LAeq LCeq

56.1 dBA 56 60.1 dBC 56

Measurement Report

Measurement Details

Date and Time:

30/10/2009 16:31

Sound Level Meter:

Cirrus Research plc

Run Duration:

00:29:52 hh:mm:ss

Range:

50-110 dB

Location:

Ballymurtagh Landfill NSL4 1/3 Octave

Data

Band	LZeq,t	Time s Overload	Band	LZeq,t	Time s Overload	Band	LZeq,t	Time s Overload	
25 Hz	49.9 dB	56	250 Hz	48.4 dB	56	2.5 kHz	43.2 dB	56	
31 Hz	48.5 dB	56	315 Hz	40.5 dB	56	3.15 kHz	42.6 dB	56	
40 Hz	58.5 dB	56	400 Hz	43.9 dB	56	4 kHz	38.7 dB	56	
50 Hz	55.5 dB	56	500 Hz	44.9 dB	56	5 kHz	40.5 dB	56	
63 Hz	60.3 dB	56	630 Hz	42.8 dB	56	6.3 kHz	38.6 dB	56	
80 Hz	52.0 dB	56	800 Hz	47.9 dB	56	8 kHz	38.4 dB	56	
100 Hz	48.9 dB	56	1 kHz	47.1 dB	56	10 kHz	33.9 dB	56	
125 Hz	48.7 dB	56	1.25 kHz	49.8 dB	56	12.5 kHz	28.7 dB	56	
160 Hz	46.8 dB	56	1.6 kHz	49.6 dB	56	16 kHz	28.9 dB	56	
200 Hz	41.2 dB	56.	2 kHz	46.0 dB	56				

Band

Leq,t

Time s Overload

LAeq

70

65

60

55-

50-

45

40

35

30

25

20

40 Hz

59.9 dBA

56 56

LCeq 69.7 dBC

1 kHz

100 Hz 160 Hz 250 Hz 400 Hz 630 Hz

63 Hz

1.6 kHz 2.5 kHz 4 kHz 6.3 kHz 10 kHz 16 kHz

APPENDIX E

EMISSIONS TO ATMOSPHERE

RPS, Ballymurtagh Landfill

Ballygahan, Tinnahinch, Co Wicklow

Emissions to Atmosphere Report No: 2040/M21 rev2

Waste Licence No. W0011-01

Report Date 21/12/2009

EURO environmental services

Unit 35, Boyne Business Park, Drogheda, Co. Louth Phone: +353 41 98 45440

Year: 2009

Report for the Periodic Monitoring of Emissions to Air

Part 1:

Executive Summary

Waste Licence No:

W0011-01

Job Quote Number

AAAQ6501-01

Operator Name	Installation	Phone	Contact Name
Ballymurtagh Landfill	Ballygahan	01 4882900	Paddy Lambe
	Tinnahinch	087 2301627	Seamus Brestin
	Co Wicklow		
		Fax	
		01 2020707	

Monitoring Dates:

29/09/2009

Monitoring Organisation:

EURO environmental services

Unit 35A, Boyne Business Park, Greenhills, Drogheda, Co.

Louth. Ireland

Ph: + 353 41 98 45440

Fax: + 353 41 98 46171 Email: air@euroenv.ie

UKAS Registration number: 2802

Report Date: 21/12/2009

Written By	Ewa Piatek	Approved By	Geoff Fitzpatrick
MCERTS Reg.	MM07 799	MCERTS Reg.	MM07 801
Competency	Level 1	Competency	Level 2
Function	Field Services Supervisor	Function	Manager
Endorsements	TE1, TE2	Endorsements	TE1,TE2,TE3,TE4

Signed: Essa Piglely

Signed:/..

Contents

- 1. Part 1 Executive Summary
- 1.1 Monitoring Objectives
- 1.2 Special Monitoring Requirements
- 1.3 Monitoring Results
- 1.4 Operating Information
- 1.5 Monitoring Deviations
- 1.6 Summary and Conclusions
- 2. Part 2 Supporting Information
- Appendix 1: General Information
- Appendix 2: Monitoring information

1 Part 1: Executive Summary

1.1 Monitoring Objectives

The monitoring was carried out on behalf of Wicklow Co Co as requested by their representative Paddy Lambe from RPS. Air Emission Monitoring was carried out on the 28/09/2009 between 12:00 and 16:00 at Flare Ballymurthagh Landfill. Parameters measured were Nitrogen Oxides, Oxides of Sulphur, Carbon Monoxide, TA Luft Organics Class I, II, III, Chloride as HCl and Fluoride as HF.

Particulates measurement was requested also but Technicians could not carry out measurement as port diameter was too small.

Substances to be monitored	Flare
Nitrogen Oxides as NO ₂	54.2 mg/m ³
Oxides of Sulphur asSO ₂	16.9 mg/m ³
Carbon Monoxide - CO	219.4 mg/m ³
TA Luft Organics Class I	<lod< td=""></lod<>
TA Luft Organics Class II	<lod< td=""></lod<>
TA Luft Organics Class III	<lod< td=""></lod<>
Chloride (HCI)	1.8 mg/m ³
Fluorides (as HF)	0.7 mg/m ³

Equipment used

Nitrogen Oxides, Carbon Monoxide, Oxides of Sulphur were measured by Horiba Potable Flue Gas Analyzer. Equipment was calibrated on site against certified calibration gases. Measurement was carried out for a 30 minutes period.

Chloride and Fluoride monitoring consists of extracting a volume of gas from the stack using SKC pumps and mini impingers set. Sampling was carried out for a 30 minutes period with air flow rate 1.5 l/min.

TA Luft Organics Class I, II, III, monitoring consists of extracting a volume of gas using SKC Pumps from the stack using an extraction via sorbent tube. Sampling was carried out for a 30 minutes period with air flow rate 0.2 l/min.

1.2 Special Monitoring Requirements

Particulates measurement was not carried out as port diameter was too small. Actual port diameter is 20mm for Particulates measurements minimum 100mm port is recommended.

1.3 Monitoring Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Wicklow Co Co at Ballymurtagh Landfill. The results were measured from the sample positions downstream of the Flare.

Accreditation Status	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Operating Status	As Normal	As Normal	As Normal	As Normal	As Normal	As Normal	As Normal	As Normal	As Normal	As Normal	As Normal
Method Reference	BS EN 14792	BSEN 14789:2005	BS EN 15058:2006	BS EN 6069- 4.4	BS EN 13649	BS EN 13649	BS EN 13649	BS EN 1911 parts 1-3	BS EN 1911 parts 1-3	BS ISO 15713	BS ISO 15713
Start/End Times	15:20-15:50	15:20-15:50	15:20-15:50	15:20-15:50	12:20-12:50	12:20-12:50	12:20-12:50	13:25-13:28	13:35-14:05	12:38-12:41	12:46-13:46
Date of Sampling	28/09/2009	28/09/2009	28/09/2009	28/09/2009	28/09/2009	28/09/2009	28/09/2009	28/09/2009	28/09/2009	28/09/2009	28/09/2009
Units	mg/m ₃	%	mg/m³	mg/m³	mg/m ₃	mg/m ₃	mg/m ₃	mg/m³	mg/m ₃	mg/m ₃	mg/m ₃
Uncertainty	09'9-/+	+/-0.30	+/-26.66	+/-2.13	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Periodic Monitoring Result	54.2	8.46	152.5	16.9	<pre></pre>	<lod< td=""><td><cod< td=""><td><00></td><td>1.8</td><td><00></td><td>0.7</td></cod<></td></lod<>	<cod< td=""><td><00></td><td>1.8</td><td><00></td><td>0.7</td></cod<>	<00>	1.8	<00>	0.7
Emission Limit Value	800	1	650	1	20	100	150	i	20	1	2
Substance to be Monitored	Ň	02	8	sO _x	TA Luft Organics Class I	TA Luft Organics Class II	TA Luft Organics Class III	HCI	HCI	生	生
Emission Point Reference	Flare	Flare	Flare	Flare	Flare	Flare	Flare	Blank	Flare	Blank	Flare

Additional Information
* Analysis carried out by EURO Environmental Services
**The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%.
***Result reported at Reference Conditions

. 01	6003
Visit No	Year: 2

mission Point Reference		Reference	Reference Conditions	
Flare	Temperature: 273 K	Pressure: 101.3 hPa	Moisture: dry	Oxygen: 3%

1.4 Operating Information

Date	Process	Process	919	Foodstock	Abstement		Comparis	son of operat Monitorin	Comparison of operator CEMS and Periodic Monitoring Results	eriodic
	Туре	Duration	5 5 -				Substance	CEMS Result	Periodic Result	Units
28/09/2009	Flare	As required	Landfill Gas	N/A	None	llu F	As per table 1.3	A/N	As per table 1.3	mg/m³

1.5 Monitoring Deviations

Emission Point Reference	Substance Deviations	Monitoring Deviations	Other Relevant Information
Flare	None	Particulates and duct gas velocity profile not carried out due too small sampling port diameter. HF sampling carried out using TSI pump and PTTF impingers system. HCI sampling carried out using TSI pump.	None

Comments on monitoring procedures

Particulates monitoring not carried out due too small port diameter.

Comment	If No, WHY?	
Did the sampling location meet the standard?	No, Sampling port too small.	
Were all the sampling points obtainable?	Yes	
Were all parameters sampled?	No, Particulates sampling not carried out due too small port size.	
Was monitoring carried out in full accordance to the specified standards and SOP's?	No, Velocity, pressure measurement not taken.	

1.6 Summary and Conclusions

Air Emission Monitoring was carried out at Flare Ballymurthagh Landfill. Parameters measured were Nitrogen Oxides, Oxides of Sulphur, Carbon Monoxide, TA luft Organics Class I, II, III, Chloride as HCl and Fluoride as HF.

Nitrogen Oxides, Carbon Monoxide were measured by Horiba. Reading is taken on site in ppm. Data were calculated to mg/m³ and reference oxygen. Nitogen Oxide result is 54.2 mg/m³ and the result is below Emission Limit Value as per Waste Licence W0011-01. Result for Carbon Monoxide is 152.5 mg/m³ it complies with the Emission Limit Value. Oxides of Sulphur result is 16.9 mg/m³, there is no Emission Limit Value for this parameter.

Chloride and Fluoride monitoring consists of extracting a volume of gas from the stack using extraction into sorbent solution. Result for Chloride is 1.8mg/m³as HCl and is below Emissions Limit Value. Fluoride results is 0.7 mg/m³ as HF. The result for HF is also below Emission Limit Value as per Waste Licence W0011-01.

TA Luft Organics Class I, II, III, monitoring consists of extracting a volume of gas from the stack using an extraction via sorbent tube. The volume of extracted air was 6L. Results were lower than the limit of detections for this method

The particulates measurement was not carried out due to the sampling port being too small to cary out this method to standard.

Report for the Periodic Monitoring of Emissions to Air

Part 2 Supporting Information

Waste Licence Number:

W0011-01

Operator:

RPS - Ballymurtagh Landfill

Installation:

Ballygahan, Tinnahinch, Co Wicklow

Monitoring Dates:

28/09/2009

Organization and Monitoring Team Details

EURO environmental services

Unit 35

Boyne Business Park

Drogheda Co. Louth

Phone: 041 9845440 Fax: 041 9846171

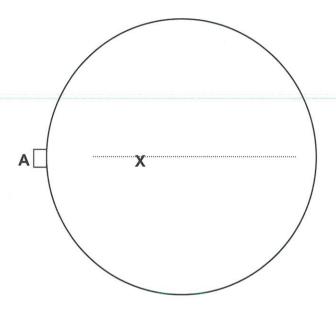
E-mail address: air@euroenv.ie

Appendix 1

Sampling Personnel

Name:	Responsibility:	Competency:	Technical Endorsement(s):	MCERT Number:
Piotr Nadany	Technician	Level 1	TE1	MM07 881
Lisa Doyle	Technician	Trainee	-	MM091208

Substances Monitored


Substance	Standard Method	EURO SOP
VOC (speciated)	BS EN 13649:2002	EM 107
Hydrogen Chloride	BS EN 1911 parts 1-3 (modified)	EM 148
Hydrogen Fluoride	BS ISO 15713 (modified)	EM 129
Carbon Monoxide	BS EN 15058	EM161
Nitrogen Oxides	BS EN 14792	EM 161
Oxygen	BS EN 14789	EM 161
Oxides of Sulphur	BS EN 6069-4.4	EM 161

Equipment Checklist References

Equipment	Reference Number	
TSI Pumps	EM140, EM147	
Horiba	EM209	

Appendix 2

Diagram of Sampling Location (not to scale)

Monitoring result calculations and uncertainty calculations