

BALLEALLY CANDFILL, BALLEALLY, LUSK, CO. DUBLIN

ANNUAL MONITORING REPORT:

Report Period: January 2009 – December 2009

WASTE LICENCE REF. NO. W0009-02

ANNUAL MONITORING REPORT:

Report Period: January 2009 – December 2009

WASTE LICENCE REF. NO. W0009-02

COPY

BALLEALLY LANDFILL, BALLEALLY, LUSK, CO. DUBLIN

ANNUAL MONITORING REPORT:

Report Period: January 2009 - December 2009

WASTE LICENCE REF. NO. W0009-02

User is Responsible for Checking the Revision Status of This Document

Rev	Description		Prepared	Checked	Approved	Date:
0	Issue to Client	X	DD (FCC- ML)/MG	TR	4	29.03.2010
	1 ¹ ¹					
ent:	Fingal Co	unty Cc	ouncil			

Keywords: Annual Environmental Report, landfill environmental monitoring, landfill

Abstract: This report presents the Annual Environmental Report for Balleally landfill, Balleally, Lusk, Co. Dublin to the Environmental Protection Agency. The report covers the annual reporting period of 2009, in accordance with Waste Licence Reg. No. W0009-02.

TABLE OF CONTENTS

PAGE

1.	. 1	INTR		L
	1.1	Ref	PORTING PERIOD	1
	1.2		CILITY LOCATION	
	1.3		/IRONMENTAL POLICY FOR BALLEALLY	
2.			DESCRIPTION	
	2.1	LIC	ENSED WASTE ACTIVITY AT THE FACILITY	2
	2.2		FAL QUANTITY OF WASTE ACCEPTED & DEPOSITED	
	2.3		MAINING LANDFILL CAPACITY	
	2.4		CAL ENVIRONMENTAL CONDITIONS	
3.	. I	ENVI	IRONMENTAL MONITORING	5
	3.1	GR	OUNDWATER	5
	3.1	1.1	Monitoring Locations	6
	3.1	1.2	Location Description	6
	3.1	1.3	Monitoring Parameters	7
	3.1	1.4	OUNDWATER Monitoring Locations Monitoring Locations Monitoring Parameters Monitoring Parameters Monitoring Parameters Monitoring Interpretation of Results Interpretation Interpretation Interpretation RFACE WATER MONITORING Introduction Introduction Monitoring Locations Interpretation Interpretation Monitoring Locations Interpretation Interpretation Monitoring Parameters Interpretation Interpretation	7
	3.1	1.5	Conclusion1	1
	3.2	SUF	RFACE WATER MONITORING	1
	3.2	2.1	Introduction1	1
	3.2	2.2	Monitoring Locations	1
	3.2	-	Monitoring Parameters	2
	3.2		Monitoring Results	2
	3.2		Interpretation of Results	2
	3.2	2.6	Surface Water Improvements	3
	-	2.7	Conclusions	3
	3.3		CHATE MONITORING	3
	3.3 3.3		Monitoring Parameters	ታ ດ
	3.3		Interpretation of leachate level Results	フ
	3.3		Leachate Quality	
	3.3		Volume of Learnate transported off-site for treatment:	, 6
	3.3		Leachate Treatment Plant	6
	3.4		ISE MONITORINE	
	3.4		Monitoring Results	
	3.4		Assessment of Tonal Components	
	3.4	4.3	Interpretation of Results	
	3.5	Dus	ST AND PM ₁₀ MONITORING	
	3.5	5.1	Dust Monitoring	3
	3.5		Monitoring Results	
	3.5		Interpretation of Results	
	3.5		PM ₁₀ Monitoring	
	3.5		Monitoring Results	
	3.5		Interpretation of Results	
	3.6		IDFILL GAS MONITORING	
	3.6		Monitoring Parameters	
	3.6		Monitoring Results	
	3.6		Interpretation of Results	
	3.6 3.6		Conclusion	
	3.7		Summary report on emissions42 TEOROLOGICAL MONITORING43	
	3.8		SOURCE CONSUMPTION	
				1

TABLE OF CONTENTS

PAGE

3.8.1 Resource Use and Energy Efficiency Audit	
3.8.2 Energy Efficiency Audit	
3.8.3 Implication of Audit Findings	
3.9 LANDFILL GAS UTILISATION	
3.10 REVIEW OF NUISANCE CONTROLS	
3.10.1 Review of Bird Control January to December 2009	51
4. SITE DEVELOPMENT WORKS	53
4.1 Works carried out during the Reporting Period 2009	
4.1.1 Installation of New Landfill Gas Management Infrastructure	
4.2 PROGRESS ON-SITE RESTORATION	
4.2.1 Inert waste to be used for cover/restoration material at the facility	
4.3 ANNUAL TOPOGRAPHIC SURVEY	58
4.3 ANNUAL TOPOGRAPHIC SURVEY 4.4 SLOPE STABILITY	58
 4.4 SLOPE STABILITY	60
5.1 WASTE ACCEPTANCE AND HANDLING.	60
5.1.1 Waste reception	
5.1.2 Waste inspection	60
5.1.3 Inspection/Quarantine Area	61
5.2 QUARANTINE REGISTER	63
5.2.1 Operation Bruscar Introduction:	63
6. ENVIRONMENTAL INCIDENTS AND COMPLAINTS	65
6.1 REPORTED INCIDENTS	65
 6.1 REPORTED INCIDENTS 6.2 COMPLAINTS SUMMARY 	
7.1 Environmental Objectives and targets for 2010	
7.2 SUMMARY OF WRITTEN PROPERTIES	
7.3 COMMUNICATIONS PROGRAM FOR PUBLIC INFORMATION	
7.3.1 Site Visits	
7.3.2 Balleally Landin Liaison Committee	
7.4 FINICAL PROVISION	
7.5 MANAGEMENT STRUCTURE	71

APPENDICES

APPENDIX I DRAWINGS

LIST OF FIGURES

PAGE

FIGURE 3.1:	CD1 MONTHLY MONITORING RESULTS	9
FIGURE 3.2:	QUARTERLY AMMONIACAL NITROGEN MONITORING RESULTS	9
FIGURE 3.3:	QUARTERLY CHLORIDE MONITORING RESULTS	10
FIGURE 3.4:	QUARTERLY ELECTRICAL CONDUCTIVITY MONITORING RESULTS	10
FIGURE 3.5:	MONTHLY MONITORING RESULTS FOR S3	
FIGURE 3.6:	QUARTERLY SURFACE WATER ELECTRICAL CONDUCTIVITY RESULTS	
FIGURE 3.7:	QUARTERLY SURFACE WATER CHLORIDE RESULTS	
FIGURE 3.8:	QUARTERLY SURFACE WATER COD RESULTS	16
FIGURE 3.9:	QUARTERLY SURFACE WATER BOD RESULTS	
FIGURE 3.10:	QUARTERLY SURFACE WATER AMMONIACAL NITROGEN RESULTS	
FIGURE 3.11:	MONTHLY LEVEL OF LEACHATE IN THE LANDFILL	
FIGURE 3.12:	METHANE READINGS AT PERIMETER GAS WELLS	
FIGURE 3.13:	CARBON DIOXIDE READINGS AT PERIMETER GAS WELLS	40
FIGURE 3.14:	MAXIMUM, MINIMUM & MEAN TEMPERATURES BY MONTH 2009	44
FIGURE 3.15:	TOTAL PRECIPITATION VOLUME BY MONTH 2009 Average Daily Atmospheric Pressure by Month 2009	44
FIGURE 3.16:	AVERAGE DAILY ATMOSPHERIC PRESSURE BY MONTH 2009	45
FIGURE 3.17:	Average Daily Wind Direction 2009	46
FIGURE 3.18:		
FIGURE 3.19:	AVERAGE DAILY EVAPORATION & POTENTIAL EVAPORAL SPIRATION BY MONTH 2009	
FIGURE 4.1:	BALLEALLY LANDFILL CAPPING PROGRAM DECEMPER 2009	59
LIST OF TA		
LISTOFIA		
	7 ,	
		<u>PAGE</u>
T		~

LIST OF TABLES

PAGE

TABLE 2.1:	QUANTITY AND COMPOSITION OF WASTE RECEIVED AT THE FACILITY 2009	
TABLE 2.2:	TOTAL VOID SPACE REMAINING S SURVEYED ON JULY 2009	
TABLE 2.3:	REMAINING VOID SPACE AT BEGINNING OF JANUARY 2010	4
TABLE 3.1:	GROUNDWATER MONIFORM LOCATIONS	6
TABLE 3.2:	ANNUAL GROUNDWATER MONITORING RESULTS	8
TABLE 3.3:	SURFACE WATER MON TORING LOCATIONS	11
TABLE 3.4:	SURFACE WATER MONITORING RESULTS	14
TABLE 3.5:	STATUS OF LEACHATE MONITORING WELLS.	20
TABLE 3.6:	LEACHATELEVELS, 2008	21
TABLE 3.7:	LEACHATE LEVELS, 2009	22
TABLE 3.8:	ANNUAL LEACHATE MONITORING RESULTS	
TABLE 3.9:	WATER BALANCE CALCULATION FOR BALLEALLY LANDFILL 01/01/2009 – 31/12/2009	27
TABLE 3.10:	NOISE MONITORING LOCATIONS	28
TABLE 3.11:	NOISE EMISSION LIMITS	
TABLE 3.12:	QUARTER 1 NOISE MONITORING RESULTS	29
TABLE 3.13:	QUARTER 2 NOISE MONITORING RESULTS	30
TABLE 3.14:	QUARTER 3 NOISE MONITORING RESULTS	31
TABLE 3.15:	QUARTER 4 NOISE MONITORING RESULTS	32
TABLE 3.16:	DUST MONITORING LOCATIONS	
TABLE 3.17:	DUST DEPOSITION RESULTS (MG/M ² /DAY)	34
TABLE 3.18:	PM ₁₀ Results 2009	
TABLE 3.19:	GAS MONITORING LOCATIONS	
TABLE 3.20:	GAS MONITORING LOCATIONS (OUTSIDE WASTE)	37
TABLE 3.21:	LEACHATE/GAS MONITORING LOCATIONS	37
TABLE 3.22:	FCC FLOW ASSESSMENT AT GA5	41
TABLE 3.23:	RESULT OF EMISSIONS TESTING OF LANDFILL GAS PLANT 2009	42

LIST OF TABLES

PAGE

TABLE 3.24:	AVERAGE DAILY WIND SPEED, MIN/MAX, BY MONTH 2009	45
TABLE 3.25:	SUMMARY OF RESOURCES USED ON-SITE 2009	47
TABLE 3.26:	ELECTRICITY CONSUMPTION ON-SITE FOR JANUARY - DECEMBER 2009	48
TABLE 3.27:	ELECTRICITY OUTPUT (MWHR) FROM THE ON-SITE POWER STATION AT BALLEALLY LA	NDFILL PER
	YEAR 2003-2009	50
TABLE 3.28:	ELECTRICITY OUTPUT (MW) FROM THE ON-SITE POWER STATION AT BALLEALLY LAND	FILL 2009
		50
TABLE 4.1:	EQUIPMENT AND PLANT LIST AT BALLEALLY LANDFILL 2009	53
TABLE 4.2:	Work carried out during 2009	54
TABLE 4.3:	Works to be carried out during 2010	56
TABLE 5.1:	QUANTITY & TYPE OF WASTE DEPOSITED IN BALLEALLY LANDFILL IN 2003-2009 & WA	STE
	LICENCE LIMIT FOR WASTE LICENCE W0009-02	62
TABLE 6.1:	REPORTED INCIDENTS DURING THE REPORTING PERIOD 2009	65
TABLE 6.2:	COMPLAINTS RECEIVED FOR THE REPORTING PERIOD 2009	66
TABLE 7.1:	REPORTS & INFORMATION AVAILABLE FOR PUBLIC INSPECTION 1993-2009	

1. INTRODUCTION

In 2000 Fingal County Council (FCC) was granted a Waste Licence, Reg. 9-1 to continue operating Balleally Landfill. In July 2001 FCC applied for a review of this licence. On the 8th January 2003 the Environmental Protection Agency (EPA) issued FCC a second waste licence for Balleally Landfill: Waste Licence W0009-02. This licence supersedes the previous licence 9-1 and it permits the operation of a non-hazardous landfill. In accordance with the requirements of Condition 11.6 of the Waste Licence, an Annual Environmental Report (AER) for the facility must be submitted to the EPA.

This report was part written by both Fehily Timoney & Company (FTC) and FCC. FTC wrote the environmental monitoring section (sections 3.1 through section 3.6), while FCC wrote all other sections. The report was compiled by FTC on behalf of FCC.

1.1 Reporting Period

The reporting period for the AER is 1st January to 31st December 2009. This is the 10th AER for the facility as required by the waste licence. This AER applies to the licence W0009-02.

1.2 Facility Location

FCC has responsibility for the management and operation of the facility. The facility is located at:

Balleally Landfill, Balleally Lane, Lusk, Co. Dublin Tel. (01) 8071835 Fax. (01) 8431600

National Grid reference 322500 252200.

Drawing DE07-164-03-001-(B) included in Appendix I presents a map of the facility and the surrounding locations.

1.3 Environmental Voicy for Balleally

- Comply with the terms of our waste licence and all other relevant legislation and codes of practice.
- Strive for continuous improvement in the running of the facility, in order to minimise the effects of the landfill on the environment.
- Create better awareness and training for all staff involved in the running of the landfill.
- Develop a good relationship with local residents around Balleally for the betterment of the surrounding area.

2. SITE DESCRIPTION

Balleally Landfill is situated in Lusk, Co. Dublin. It has been in operation since 1971. Waste activities at the facility include landfill, special handling, a construction and demolition (C&D) recycling facility (which ceased in August 2005 due to capping commitments) and a civic amenity site (which ceased in December 2008 due to capping / operational commitments).

Condition 4.2 of W0009-02 restricts waste filling activities to meet Figure 2 of the 'Landscape Master Plan'. The final height of the facility shall be as shown in Figure 2 of the 'Landscape Master Plan'. The final height of the facility peak shall not exceed 40 mOD Malin Head.

On January 8th 2003 FCC was licensed to carry out the following waste activities at Balleally Landfill, Lusk, Co. Dublin subject to twelve conditions.

2.1 Licensed waste activity at the facility

Licensed waste disposal activities, in accordance with the Third Schedule of the Waste Management Act, 1996.

- Class 1: Deposit on, in or under land (including landfill).
- Class 5 Specially engineered landfill, including placement into lined discrete cells, which are capped and isolated from one another and the environment.
- Class 10 Release of waste into a water body (including a seabed insertion).
- Class 12 Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule.
- Class 13 Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced.

Licensed waste recovery activities, in accordance with the *Fourth Schedule* of the Waste Management Act, 1996.

- Class 2: Recycling or reclanation of organic substances, which are not used as solvents (including composting and other biological transformation processes).
- Class 3: Recyclic or reclamation of metals and metal compounds.
- Class 4: Recycling or reclamation of other inorganic metals.
- Class 9: Use of any waste principally as a fuel or other means to generate energy.
- Class 11: Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule.
- Class 13: Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced.

2.2 Total Quantity of Waste Accepted & Deposited

Waste received at Balleally to be disposed of at the landfill is weighed at the weighbridge on entry. Construction and demolition (C&D) material is also weighed and then stockpiled or used immediately for use in Specified Engineering Works (SEW). The quantity and composition of waste received, disposed of and recovered during the reporting period is detailed in Table 2.1.

Table 2.1: Quantity and composition of waste received at the facility 2009	Table 2.1:	Quantity and c	omposition of v	waste received	at the facility 2009
--	------------	----------------	-----------------	----------------	----------------------

Location & Waste Type	Waste Deposited (tonnes) in 2005	Waste Deposited (tonnes) in 2006	Waste Deposited (tonnes) in 2007	Waste Deposited (tonnes) in 2008	Waste Deposited (tonnes) in 2009
Tipface					
Household	66,203	62,056	63,708	50,489	37,789
Commercial/Trade	49,195.57	63,819	61,773	46,248	54,093
Sewage Sludge	3,402.24	4,623	7,466	5,091	315
Industrial Non-Hazardous Sludge	6,635	6,825	7,061	6,660	6,363
Civic Amenity					CLOSED
Household	5,801	4,891	4,867	3,959	
Local Fly Tipped			62	10	
Total	131,236.81	142,214	1,4,937	112,457	98,560

Note:-Table does not include materials used in SEW.

2.3 Remaining landfill capacity

As part of the Waste Management Strates with the Dublin Region an extension to the landfill facility was applied for by reviewing the then current icence W0009-02. This was granted on 8th January 2003 (W0009-02) and Priority Construction Ltd. under the supervision RPS-MCOS were appointed to construct 6 No. lined cells at Balleally to provide an additional capacity of 1.29 million m3. Filling of Cell 1 started on 1st April, 2004 – Table 2.2 for information on inputs to date.

Filling of:

- Cell 1 commenced 1^{sh} April, 2004. Cell 2 commenced 9th June, 2004. .
- ٠
- Cell 3 commenced-22nd June, 2005. .
- Cell 4 commenced 6th October, 2006. •
- •
- Cell 5 commenced 23^{rd} August, 2007. Cell 6 commenced 15^{th} December, 2008.

The remaining capacity in the landfill was surveyed in July 2009, Table 2.4. Remaining capacity at the end of 2009 is estimated in Table 2.5.

Table 2.2: Total Void Space Remaining as Surveyed on July 2009

Void Space	Source	Void Space (tonnes)
Cells 5, 6 (including piggybacking).	FCC	160,000

Table 2.3: Remaining Void Space at Beginning of January 2010

Void Space	Waste Deposited (tonnes)	Remaining Void Space <i>(tonnes)</i>
July 2009	8,342	160,000
Aug 2009	8,701	151,658
Sept 2009	9,353	142,957
Oct 2009	9.190	133,604
Nov 2009	8,504	124,414
Dec 2009	8,626	115,910
	ر کې ا	107,284

2.4 Local environmental conditions

Balleally landfill site covers 50 ha in total. The east face of the landfill is bordered by the Dublin-Belfast railway line and to the south by Rogerstown Estbary. See Drawing DE07-164-03-001-(B) included in Appendix I.

The former landfill facility was approx. 40ke. The extension to this facility to the north west of the site (OS National Grid Ref. 3225E 2522N) consists of a new engineered lined cell (approx. 10 Ha). The primary objective of its design is to prevent or reduce negative effects on the environment arising from landfilling of waste.

All waste is deposited in a limited working face, covered daily and surrounded by soil bunds. The entire site is surrounded by perimeter berges to reduce the visual impact and to create shelter to minimise the conditions that create wind own litter.

3. ENVIRONMENTAL MONITORING

All original monitoring results certificates issued by Alcontrol Laboratories Ltd., for surface water, groundwater, leachate and outfall monitoring results and from Southern Scientific Services Ltd., for dust and particulate monitoring have been already included and submitted to the EPA in the four quarterly reports submitted during the reporting period. The original results certificates are not included again in this report. This report only presents summary data.

3.1 Groundwater

This section of the Annual Environmental Report presents the groundwater monitoring results.

3.1.1 Monitoring Locations

Groundwater monitoring was carried out at the locations shown on Drawing DE07-164-03-001-(B), Appendix I. As part of a previous extension to the landfill a number of the bore oles stipulated in W0009-02 are no longer accessible. During July 2004 a revised monitoring checkle was agreed with the Environmental Protection Agency (EPA) on which the present monitoring is based. Details of the groundwater locations now monitored are presented in Table 3.1.

Monitoring location MB18 is located up-gradient, approximately 535 n north of the landfill on private agricultural land. Access to the monitoring location was not granted during the monitoring period.

Station	Classification	Easting	Northing
MB18	Eastern Upgradient	323 245	252 783
RC3	Western Upgradient	321 906	252 729
MB35	Southwestern Downgradient	322 029	251 906
CD1	Control Drain N/W of Cell 1	322 008	252 356

Table 3.1: Groundwater Monitoring Locations

3.1.2 Location Description

Borehole MB35

This borehole is situated approximately 190 m south of the landfill on the edge of the Inner Rogerstown Estuary, downgradient on the landfill

Location CD1

The control drain sampling location CD1 is situated approximately 30 m south of Balleally Lane west of the landfill extension. This drain collects groundwater from underneath the newly constructed lined cells.

MB18

This is an upgradient private well of Rogerstown House which lies to the north east of the landfill site along the estuary.

RC3

This upgradient borehole is situated approximately 535 m north of the landfill on private agricultural land.

3.1.3 Monitoring Parameters

Groundwater levels were monitored and a visual assessment was performed on a monthly basis at all groundwater wells. Groundwater monitoring location CD1 is sampled monthly and analysed for quarterly groundwater parameters, listed in Table D.5.1 of the Waste Licence. MB35 and RC3 are sampled quarterly and analysed for quarterly groundwater parameters, listed in Table D.5.1 of the Waste Licence.

Annual groundwater monitoring was also undertaken for CD1, MB35 and RC3 and the results are presented in Table 3.2

3.1.4 Interpretation of Results

Table 3.2. presents a summary of the groundwater chemical analysis results.

The groundwater results have been compared to the relevant Interim Guideline Value (IGV) set out in the EPA report '*Towards Setting Guideline Values for the Protection of Groundwater in Ireland'*. It should be noted that the groundwater beneath the landfill is likely to be estuarine in nature and would not generally be considered to be potable water.

Monthly monitoring at CD1 shows that results remained constant apart from a spike in readings during August, which returned to more normal levels during September and October (Figure 3.1).

Quarterly monitoring at groundwater locations indicates that annihomacal nitrogen levels are lower up gradient at RC3 than on-site at CD1 and down gradient at MB35 syggesting landfill impact downgradient (Figure 3.2).

The quarterly chloride (Figure 3.3) and electrical conductivity (Figure 3.4) plots follow a similar trend to each other. Results from both RC3 and CD1 are similar with elevated chloride and electrical conductivity results found in all samples at MB35.

Both chloride and electrical conductivity levels are lower up-gradient at RC3, increasing on-site at CD1 slightly and then greatly down-gradient at MB15. Apart from Quarter 4 all chloride results at RC3 are elevated above the IGV level (30 mg/l Cl), with all four quarterly results elevated above the IGV levels in both CD1 and MB35.

All electrical conductivity results from 803 are under the IGV level (1 mS/cm) and apart from Quarter 4 all results for CD1 are elevated above the IGV level. All results for MB35 are elevated above the IGV level.

It is likely that this trend in choose and electrical conductivity values are indicative of saline water intrusion at location MB35 due to its position in close proximity to the Rogerstown estuary. Saline intrusion may also be influencing CD1 and RC3, to a degree.

During annual monitoring in Quarter 3 elevated sulphate, potassium, manganese and barium levels were recorded at MB35 and CD1, similar to elevated trends from previous years. Elevated levels of manganese and barium were also found in RC3. It is possible that manganese and barium are constituents of the local geology. Potassium and sulphate can also be found in geological formations. Potassium is also known to be a constituent of many artificial fertilisers. Higher levels of potassium and sulphate have been found on-site at CD1 and down gradient at MB35 than were detected up-gradient at RC3.

Section 3

Fingal County Council Balleally Landfill, W0009-02 AER 2009

Table 3.2: Annual Groundwater Monitoring Results

				MB35	35			CD1	÷-			RC3	ក្ត	
Sample Identity	Units	VDI	Q 1	Q 2	Q 3	Q 4		Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4
pH (Field)	pH units	6.5 - 9.5	7.36	7.37	7.35	7.12	1186	7.85	7.35	8.79	7.81	7.89	7.7	7.87
Temp (Field)	° C	25	9.3	14.8	11.6	109	4.6	15.8	15.1	7.6	6.2	14.7	13.5	9.5
Ammoniacal Nitrogen as N	l/gm	0.12	6.1	4.87	5.1	4.84	0.8	0.792	2.12	1.11	<0.2	0.333	<0.2	<0.2
Dissolved Oxygen (Field)	mg/l	No abnormal change	4.56	5.16	0.42	2.6	8.36	7.57	1.06	6.89	8.11	9.13	5.4	6.1
Chloride	mg/l	30	18000	141.00	4400	14800	48	41.3	33.7	44.7	44	37	34.6	29.6
Electrical Conductivity (Field)	mS/cm		41.6	A	25.4	42	1.756	1.116	1.011	0.87	0.92	0.805	0.45	0.699
Electrical Conductivity @ 20C (Laboratory)	mS/cm	1	41	34.2	35.6	37.7	1.158	1	1.49	1.69	0.88	0.698	0.785	0.618
Total Organic Carbon	mg/I	No abnormal change	D -	6.54	4.82	6.98	11	9.1	11.4	12.7	ω	<3.00	4.56	с Х

J:/2009/LW09/164/01/Rpt004-0.doc

Page 8 of 71

NON AND THOMAS

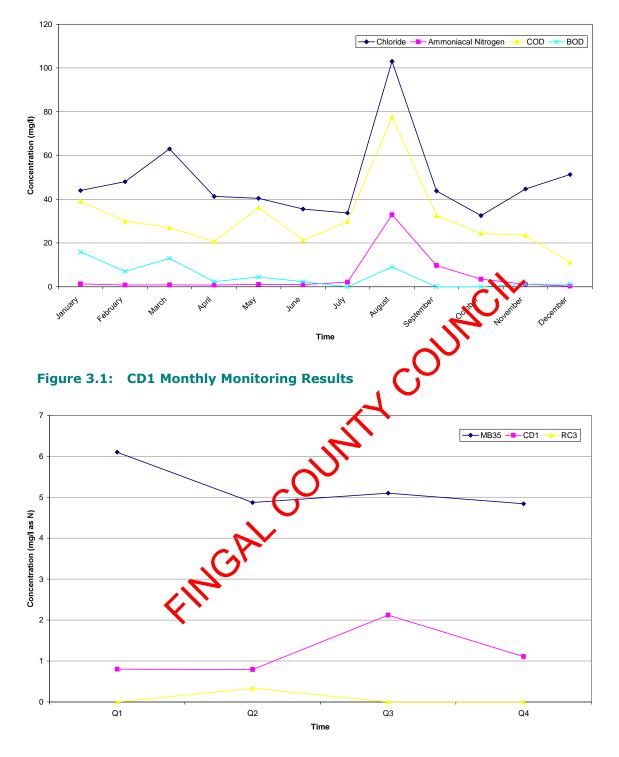


Figure 3.2: Quarterly Ammoniacal Nitrogen Monitoring Results

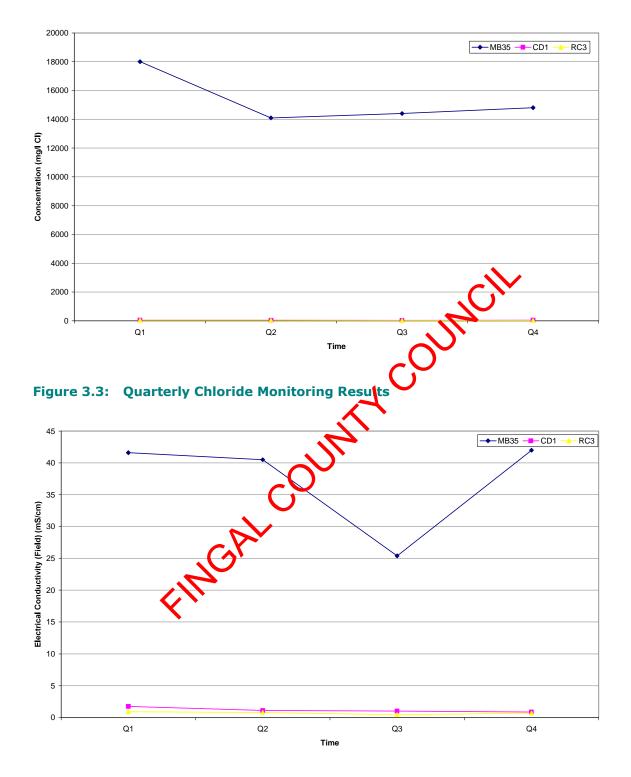


Figure 3.4: Quarterly Electrical Conductivity Monitoring Results

3.1.5 Conclusion

Groundwater results indicate that water quality is impacted by both the landfill (which is both a dilute and disperse land an engineered designed landfill) and the nearby estuary, in terms of salinity sources from the estuary. Quarterly monitoring at groundwater locations indicates that ammonical nitrogen levels are lower up gradient at RC3 than on-site at CD1 and down gradient at MB35, suggesting landfill impact down-gradient.

Groundwater results at MB35 showed impact from saline intrusion in chloride and electrical conductivity results, while saline intrusion may also be influencing CD1 and RC3, to a degree.

3.2 Surface water monitoring

This section of the Annual Environmental Report presents the surface water monitoring results.

<u>3.2.1</u> Introduction

Schedule D of the waste licence requires the monitoring of surface. The surface water monitoring locations are predominately upstream of the landfill footprint

3.2.2 Monitoring Locations

The sample locations can be seen Drawing DE07-164-03-001-(B). Appendix I and are presented in Table 3.3.

Table 3.3: Surface water monitoring location

Monitoring ID	Easting	Northing
SWFD	322 036	252 412
SWV1	321 98 2	252 187.4
S3	322 985	252 692
S7	312 646	253 213
SW20a	322 897	252 687
	•	

SWFD

Discharges to an open drain immediately west of the entrance to the wastewater treatment plant.

SWV1

The surface water discharge at the Western Point Surface Water Outfall – The samples are collected in the open channel immediately upstream of the discharge pipe/cut-off flap.

S3

This sampling point is located on a stream to the north east edge of the landfill site prior to its discharge to the estuary.

S7

This sampling point is located upstream of the site on the stream to the north of the landfill site.

SW20a

This sampling point is located at a drainage ditch to the east of Rogerstown Lane, close to the north-eastern tip of the landfill, currently bunged.

3.2.3 Monitoring Parameters

Environmental samples taken at the site were submitted for analysis in accordance with Table D.5.1 of Waste Licence W0009-02. As required, a monthly visual assessment of all surface water monitoring locations was undertaken.

Chemical analysis of surface water monitoring point S3 is required monthly. It is analysed monthly for quarterly parameters, so that the surface water chemistry can be characterised. These parameters included pH, temperature, conductivity, Chemical Oxygen Demand (COD), ammoniacal nitrogen, Biochemical Oxygen Demand (BOD), total suspended solids, dissolved oxygen and chloride. Chemical analysis of all surface water sampling points is carried out on a quarterly basis for the parameters listed in Table D.5.1 of Waste Licence W0009-02.

3.2.4 Monitoring Results

The visual assessment results and the full surface water analysis datasets as issued by the Laboratory have been previously submitted in the individual quarterly reports during the reporting period.

A summary of the results is presented in Table 3.4. A ummary of the monthly chloride, ammoniacal nitrogen, COD and BOD results for samples taken at 3 are shown in Figure 3.5. Quarterly results for all surface water monitoring locations are presented in Figure 3.6 to Figure 3.10.

3.2.5 Interpretation of Results

The surface water results have been compared to maximum admissible concentrations (MAC) as outlined in the Surface Water Regulations, 1989. It can be seen from the results that over the course of the year, several parameters were elevated above the regulations (Table 3.4).

These parameters examined very hosen because they are likely indicators of leachate impact, but they also may demonstrate impact, but ther sources, such as sewage or the nearby estuary.

For the monthly S3 sample analysis (Figure 3.5), variable COD results are observed, but these are still under the MAC levels (40 mg/l). BOD is also under the MAC (5 mg/l) during the reporting period. There is a slight variability also noted in the Chloride results, but these are still under the MAC (250 mg/l Cl).

Ammonical nitrogen levels are slightly elevated ranging between <0.2 mg/l to 2.67 mg/l during the reporting period, suggesting potential landfill impact.

Electrical conductivity levels remained under the MAC (1 mS/cm) at S3 and S7 during all monitoring events (Figure 3.6). Levels exceeding the MAC were recorded at SWV1, SWFD and SW20a. The results for SW20a peaked during Quarter 2, but showed a sustained improvement oven the next two quarters. The levels in SWV1 (now bunged)and SWFD also show a general downward trend from Quarter 1 through to Ouarter 4, despite a slight Ouarter 4 increase in electrical conductivity levels at SWV1. i

While higher chloride levels were recorded in SWV1 (Quarter 1) and SW20a (Quarter 2-4), all results for the monitoring period are significantly under the MAC (250 mg/l Cl) (Figure 3.7). As with the electrical conductivity results, S3 and S7 present the lowest chloride results in all analysed samples.

Results elevated above the COD MAC (40 mg/l) were recorded in SWV1 and SW20a (Figure 3.8). The results were much greater in SW20a. Results for SWFD, S3 and S7 were all under the MAC for all samples analysed.

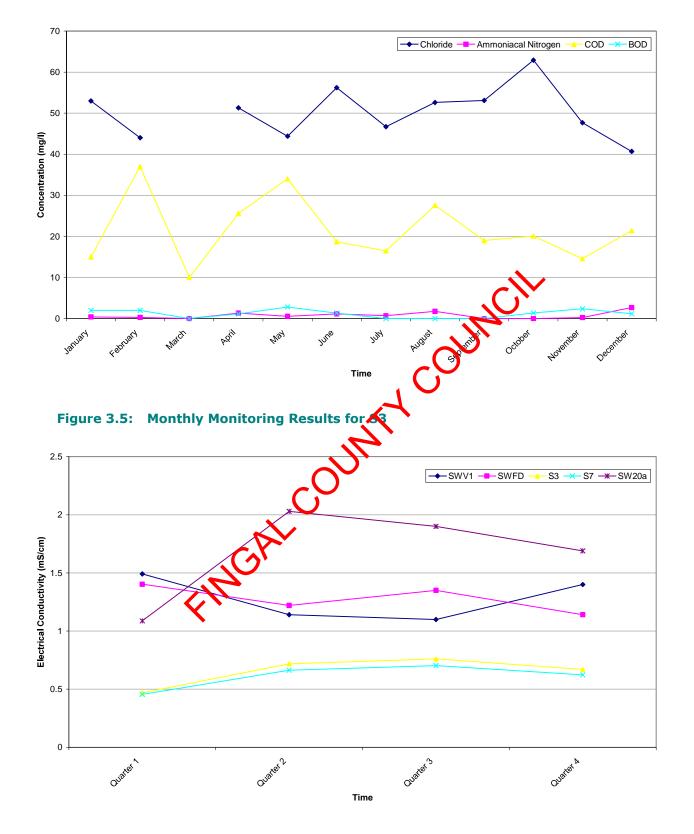
With the exception of one sample for SWV1 in Quarter 4 all BOD samples were under the MAC (5 mg/l) during the monitoring period (Figure 3.9).

With the exception of S7, which is located circa 700 m north of the site, all other monitoring locations have high ammoniacal nitrogen levels (Figure 3.10). While a spike in SW20a ammoniacal nitrogen results was recorded in Quarter 2 there was a sustained decrease in levels recorded during Quarter 3 and 4 (currently bunged). This is in contrast to the results for SWV1 where the results spiked in Quarter 4.

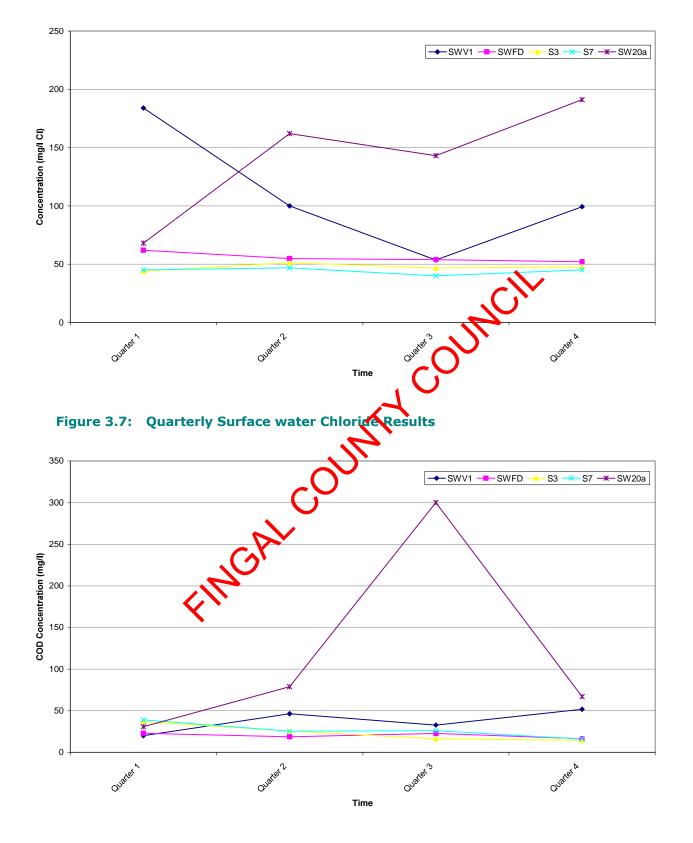
FINCAL

Section 3

Fingal County Council Balleally Landfill, W0009-02 AER 2009


Table 3.4: Surface water monitoring Results

Parameter	Units	MAC		SWV1	۲٦			SWFD	ΓD			S 3	~			S7				SW20a	20a	
			Q1	Q2	бз	Q4	Q1	Q2	бЗ	Q4	Q1	Q2	Q3	Q4	Q1	Q2	бз	Q4	Q1	Q2	Q3	Q4
Hq	pH Units	5.5 – 8.5 ¹	7.92	7.95	7.32	7.56	7.94	<i>L</i> .7	7.56	7.52	7.83	7.85	8.05	814	7.82	7.97	7.89	7.93	7.26	7.5	7.49	7.5
Temp	°C	No abnormal change	3.6	14.3	16.5	6.1	4.8	14.5	16.5	9.6	4.2	15.8	10	7.3	3.9	15	14.7	6.9	3.9	14.4	15.5	5.9
Ammoniacal Nitrogen as N	l/gm	0.23	1.6	4.58	3.93	21.9	0.3	<0.2	0.738	<0.2	0.3	33	0.683	0.259	0.2	<0.2	<0.2	<0.2	14.2	53.6	47.7	38.4
BOD Unfiltered	mg/l	5	<2	2.46	<1	6.81	2	<1	<1	1.72	A	1.16	<1	2.36	4	1.46	2.3	2.3	<2	1.65	1.4	2.16
COD Unfiltered	mg/l	40 ¹	20	46.4	32.9	51.7	23	18.8	22.7	16.3	37	25.6	16.5	14.6	39	25.4	26.1	16.1	31	78.9	300	67
Total Suspended Solids	l/gm	50 ²	11	42	2	8	36	13.3	7.5	J1.5	80	<6.0	<6.00	11	52	<6.0	4.5	12.5	40	11	916	12.5
Dissolved Oxygen	mg/l	No abnormal change	7.83	9.46	0.9	5.3	6.43	8.42	042	5.2	8.71	7.57	6.52	9.2	8.31	10.94	1.11	7.45	4.52	6.59	1.33	3
Chloride	mg/l	250	184	100	53.6	99.3	62	34.8	53.9	52.1	44	51.3	46.7	47.7	45	46.8	40	45	68	162	143	191
Electrical Conductivity (Field)				1.284	0.745	1.581	3	1.39	0.939	1.292		1.116	0.464	0.756		0.712	0.42	0.7		2.2	1.029	1.726
Electrical Conductivity (Laboratory)	mS/cm	1	1.492	1.14	1.1	-	1.403	1.22	1.35	1.14	0.469	0.718	0.76	0.669	0.455	0.663	0.703	0.623	1.088	2.03	1.9	1.69


J:/2009/LW09/164/01/Rpt004-0.doc

Page 14 of 72

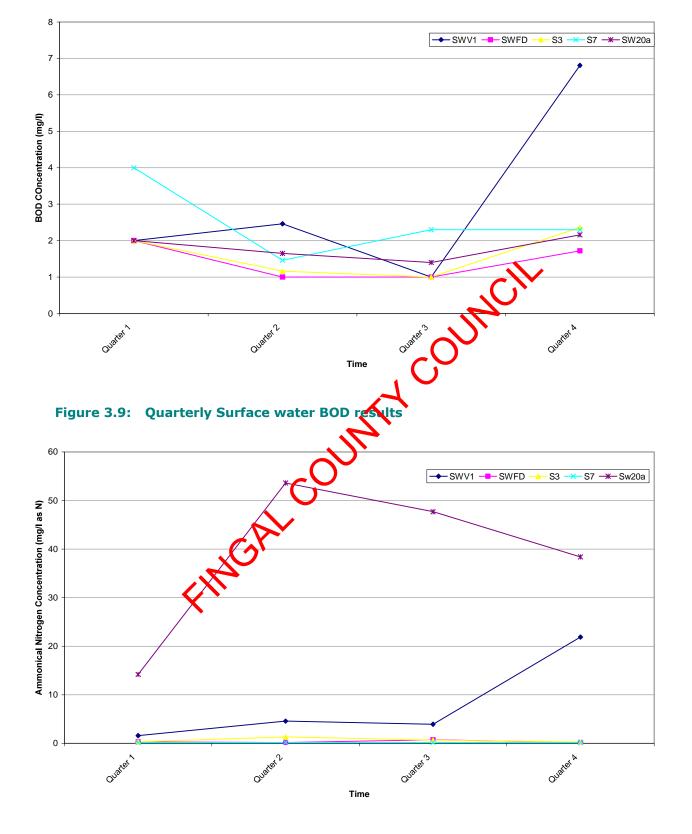

NON AND THOMAS

Figure 3.6: Quarterly Surface water Electrical Conductivity Results

Figure 3.10: Quarterly Surface water Ammoniacal Nitrogen results

3.2.6 Surface Water Improvements

The ongoing capping programme and final restoration of the landfill will control and contain the breakouts which occasionally occur near the entrance. The shallow vertical barrier surrounding the facility will be completed at the entrance as part of the closure plan. This should help contain any contamination of surface water with leachate into the future.

Remedial works were undertaken during Quarter 2, 2009 to protect the surface water drain / ditch in the vicinity of SW20A. A 50 m length of the drain/ditch was excavated and cleaned prior to lining with low-permeability clay and a HDPE liner pinned and stabilised to the underlying clay bank. These two layers of impermeable material serve to minimise inputs into the drainage ditch.

The ditch adjacent to SW20a was regarded with stone fill, which allows the movement of water through the gravel. A manhole access point was built to facilitate visuals assessment and the required periodic environmental sampling.

There is no flow into the estuary from SW20a as the outfall point is bunged.

During the forthcoming monitoring period FCC propose to undertake an analysis of historic data relating to:

- Leachate pumping
- Weekly electroconductivity readings
- Rainfall
- Leachate levels in cells
- Groundwater at CD1

Should the analysis of this data present any correlations it may suggest the source of elevated electrical conductivity levels.

3.2.7 Conclusions

Surface water results indicate that water quality is inpacted by both the landfill (which is both a dilute and disperse land an engineered designed landfill and the nearby estuary, in terms of salinity sources from the estuary.

Some improvements in surface water quality have been noted through the monitoring period results over MAC levels are also noted. However, Amoniacal nitrogen and BOD results have shown an improvement at SWV1 and S3.

Remedial works were undertaken during Quarter 2, 2009 to protect the surface water drain / ditch in the vicinity of SW20a. Environmental monitoring during the final quarter showed some initial signs of improvement to the surface water quality at SW20a and S3.

3.3 Leachate Monitoring

Leachate monitoring was carried out at the monitoring locations as defined in Schedule D of Waste Licence W0009-02 and shown on Figure DE07-164-03-001-(B), Appendix I.

Leachate monitoring locations L19 - L21 were removed during the on-going capping works occurring during the reporting period. Capping works have also been on-going along the southern boundary of the landfill and as a result a number of wells were noted to be destroyed or were inaccessible with the result that no sample was obtained for analysis, namely:- LMW2 (covered with soil), LMW8 (blocked on one occasion), LMW15 (destroyed), and LMW 16 (inaccessible due to height of casing). The status of leachate monitoring wells is summarised in Table 3.5.

A proposal will be submitted to the agency from FCC during the forthcoming monitoring and reporting period with the intention of upgrading and replacing a number of the leachate wells on-site.

3.3.1 Monitoring Parameters

Waste Licence W0009-02 requires that a visual assessment is undertaken and the leachate level in every second well is monitored and recorded monthly. Chemical analysis of leachate samples is taken annually.

3.3.2 Monitoring Results

Leachate level results are presented in Table 3.6 & 3.7 and in Figure 3.11. Annual leachate quality monitoring results are presented in Table 3.8.

FINCH

Section 3

Fingal County Council Balleally Landfill, W0009-02 AER 2009

Table 3.5: Status of Leachate Monitoring wells

Location	Description	Observation	Comments	Remediation & Monitoring potential
LMW1	Leachate/Gas well	No access - concrete culvert	Replacement well installed Q2 2008 (gas tap & bailer in place)	Accessible
LMW2	Leachate/Gas well	Missing	Removed during site landfill works	None
LMW3	Leachate/Gas well	No gas tap or bailer	Blockage or bend in pipe, possibly as a sert of landfill settlement, will allow dip but will not take bailer.	Leachate level only
LMW4	Leachate/Gas well	Blocked. No gas tap or bailer	Blue pipe in wedged in standpipe esting in blocking well.	Remove blue pipe and reassess
LMW5	Leachate/Gas well	Gas tap in place. No bailer	Blockage or bend in pipe, possibly as a result of landfill settlement, will allow dispetential not take bailer.	Leachate level only
9MMJ	Leachate/Gas well	Gas tap & bailer in place		Accessible
LMW7	Leachate/Gas well	Blocked	Replacement well fotaled Q2 2008 (gas tap & bailer in place)	Accessible
LMW8	Leachate/Gas well	Dry	Dips dry or protect. Not enough liquid to sample in the past.	Leachate level only
LMW9	Leachate/Gas well	Gas tap & bailer in place	Replacement well installed Q2 2008 (gas tap & bailer in place)	Accessible
LMW10	Leachate/Gas well	Gas tap & bailer in place		Accessible
LMW11	Leachate/Gas well	Gas tap & bailer in place	Gas tap cracked	Accessible
LMW12	Leachate/Gas well	Gas tap in place. No bailer	down preventing bailer going into the well	Leachate level only
LMW13	Leachate/Gas well	Gas tap & bailer in place		Accessible
LMW14	Leachate/Gas well	Gas tap & bailer in place		Accessible
LMW15	Leachate/Gas well	Missing	Removed during site landfill works	None
LMW16	Leachate/Gas well	Approximately 2 m extension to well	Inaccessible due to height	Make accessible and reassess
LMW17	Leachate/Gas well	Gas tap & bailer interest		Accessible
LMW18	Leachate/Gas well	Gas tap & bailet in place		Accessible
L19	Leachate/Gas well	Missing	Removed during site landfill works ("piggy-back" landfill)	Removed
L20	Leachate/Gas well	Missing	Removed during site landfill works ("piggy-back" landfill)	Removed
L21	Leachate/Gas well	Missing	Removed during site landfill works ("piggy-back" landfill)	Removed
L22	Leachate/Gas well	Missing	Removed during site landfill works ("piggy-back" landfill)	Removed
L23	Leachate/Gas well	Gas tap & bailer in place		Accessible
L24	Leachate/Gas well	Gas tap & bailer in place		Accessible

J:/2009/LW09/164/01/Rpt004-0.doc

Page 20 of 71

Section 3

Fingal County Council Balleally Landfill, W0009-02 AER 2009

els, 2008
chate Leve
.6: Lead
Table 3

	5											
Monitoring	JANUARY	February	March	April	Мау	JUNE	JULY	August	SEPTEMBER	OCTOBER	November	DECEMBER
LOCATION		-		LEV	ει οε μια		егг (модр) TOC - D	Level of Liquid in well (MOAD) TOC - DIP (DTW MBTOC)			
LEACHATE/GAS												
LMW1				3.92	3.5	3.49	3.56	3.38	3.53	3.49	3.31	3.38
LMW2												
LMW3			11.565		5.685	5.615		5.555	5,755		7.26	5.585
LMW4	6.08	5.65	5.76	5.71	5.71	5.67	5.69	4.6	5.76	5.81	5.55	5.56
LMW5	6.44	6.05	6.15	6.1	6.11	6.06	6.11	5.99	6.11	6.13	5.87	5.9
19WM5	6.04	5.6	5.74	5.7	5.7	5.63	5.68	23	5.75	5.76	5.5	5.48
LMW7				5.08	5.08	5.19	5.1	5.3	5.17	5.13	4.97	4.94
LMW8	4.67	4.14									4.89	
LMW9				4.31	4.29	4.2	3.19	4.14	4.23	4.36	4.09	4.09
LMW10	3.24	3.58	3.52	3.46	3.39	3.25	3.13	3.08	3.35	3.33	3.23	3.19
LMW11	3.35	3.44	3.52	3.47	6E E	3.2	3.12	3.17	3.37	3.35	3.23	3.19
LMW12	3.45	3.47	3.56	3.51	3.44	3.23	3.16	3.22	3.44	3.39	3.27	3.23
LMW13	3.22	3.12	3.22	3.13	3.04	2.0	2.79	2.76	3.08	3.07	2.93	2.84
LMW14	3.77	3.6	3.88	3.79	3.74	45	3.4	3.29	3.61	3.7	3.41	3.37
LMW15		5.83)							
LMW16	5.26	2.4										
LMW17	4.38	4.46	2.5	4.45	4.38	4.16	4.58	4.1	4.4	4.38	4.22	4.18
LMW18	4.27	4.23	4.35	92.4	3.19	3.99	3.97	4.07	4.27	4.15	4.02	3.77
L19	14.56	13.81							11.14			5.65
L20	14.93	15.61		11.58	10.41	10.41						
L21												
L22			•									
L23	4.52	4.39	4.42	4.36	4.02	4.08	4.14	4.43	4.49	4.45	4.23	4.22
L24	4.42	4.36	4,41	4.36	4.28	4.09	4.05	4.24	4.36	4.31	4.15	4.13
Note Leachate t	 Leachate trigger level = 	= 5.5 m AOD for LMW1-		LMW18 inclusive	sive							

Note - Leachate trigger level = 5.5 m AOD for LMW1- LMW Highlighted cells = above leachate trigger level Page 21 of 71

J:/2009/LW09/164/01/Rpt004-0.doc

Fingal County Council Balleally Landfill, W0009-02 AER 2009

ດ
0
0
2
S
D
>
Ū
Ð
÷
g
F
_
G
Ľ
_
m
O
P
a

I able 5.7:	Leachau	Leachare Levels, 2009	600									
MONITORING	JANUARY	February	MARCH	April	МАУ	JUNE	J υLY	Αυσυςτ	September	OCTOBER	November	DECEMBER
LOCATION						LEVEL OF	Level of Liquid in well (mOAD)	мент (мол	(a			
LEACHATE/GAS												
LMW1	3.34	3.4	3.42		4.04	3.24	3.43	3.47	2.82	2.84	2.88	2.72
LMW2												
LMW3	5.545	5.785	5.335	5.495	5.375	6.045	6.245	6.425	6.22	5.87	6.31	6.07
LMW4	5.32	5.74	2.6	5.57					5			
LMW5	2.86	6.02	5.84	5.88	5.8	5.73	5.86		6.3	6.42	6.36	6.08
19WW	5'5	5.65	5.48	5.38	5.46	6.35	5.44	5.57	5.96	6.11	60.9	5.63
LMW7	4.92	5.11	4.94	4.98	4.98	4.64	4.85	78.	5.67	5.86	5.85	
LMW8	36'8		4.37	4.46	7.41		C).		5.03		
LMW9	4.06	4.27	4.09		4.03	<u> </u>	8.02	4.84	5.17	5.31	5.32	5.01
LMW10	3.27	3.26	3.18	3.1	3.07	2.49	1 61	2.55	2.97	3.7	3.92	4.12
LMW11	3.24	4.37	3.25	3.06	3.01	2.69	2.94	2.81	3.95	3.88	4.12	4.42
LMW12	3.27	3.41	3.24	3.17	3.12	26 E	4.09	26 ⁻ 2	3.91	3.88	4.04	4.05
LMW13	2.77	3.1	2.87	2.71	2.71	3.5	4.01	3.95	3.57	3.86	3.51	3.58
LMW14	3.3	3.58	3.42	3.31	3.32	8.07	3.42	3.61	4.66	4.7	4.74	4.14
LMW15					0							
LMW16												
LMW17	4.18	4.34	4.22	4.38	3.07	3.98	4.18	4.26	4.22	4.22	4.49	4.26
LMW18	4.03	4.22	3.87	16 2	4.02	3.79	4.12	4	4	3.97	4.4	4.07
L19)								
L20				1								
L21												
L22												
L23	4'4	4.87	4.29	4.21	4.32	3.57	4.38	4.11	4.07	4.06	4.56	4.17
L24	4.12	4.31	4.13	4.05	4.08	4.4	3.24	4.22	3.89	5.1	2.01	4.24
Note - Leachate trigger level = 5.5 m AOD for LMW1-	rigger level =	= 5.5 m AOD fo	LMW1- I	LMW18 inclusive	sive							
Highlighted cells = above leachate trigger level	- above leach	ate trigger leve	0									

J:/2009/LW09/164/01/Rpt004-0.doc

Page 22 of 71

NON AND THOMAS

3.3.3 Interpretation of leachate level Results

The leachate levels recorded during monthly monitoring for the 2008 reporting period are included in Table 3.6, while the same results for the 2009 reporting period are presented in Table 3.7.

Leachate levels were measured in the period May to December 2009 from ground level whereas previously they had been measured from the top of the standpipe. This resulted in a slight over estimation of the level of leachate in the cells, by including the height of the steel standpipe in the calculation of the level of leachate in the landfill. Corrected level of leachate figures for the 2009 period are presented in Table 3.7. The 2008 and 2009 leachate levels are presented in Figure 3.11.

A trigger level of 5.5 meters above ordnance datum (m AOD) for wells between LMW1 to LMW18 has been established, to indicate when there is too much liquid in the landfill. Leachate was recorded above the trigger level at a number of locations, highlighted in Table 3.7 and Figure 3.11.

From the results it can be seen that by the end of the reporting period (December 2009) all leachate wells were under the 5.0 m AOD trigger level apart from LMW3 and LMW5.

It is observed by site management that the leachate monitoring wells are set back from the vertical clay barrier by 18-20 m. The hydraulic gradient is likely to fall between the leachate pronitoring wells and the vertical clay barrier. Consequently the levels at these wells may not relect the leachate levels at the vertical clay barrier.

It is further observed by site management that P1a & P1b are fully open and thus the northern and southern leachate lines are fully open. Therefore leachate should not be building up in the body of the landfill.

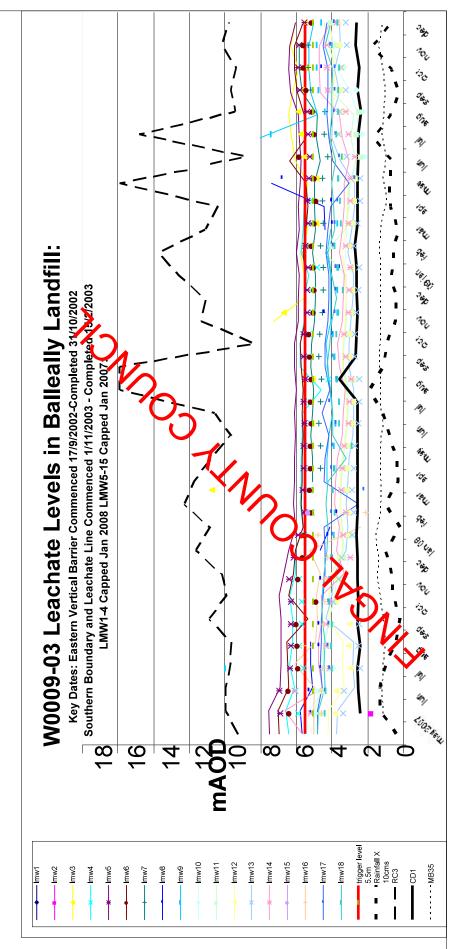
Nevertheless, in accordance with the ERP trigger levels, visual assessments were conducted on these slopes and there is no evidence of leachate break-out. This work corroborate the comments outlined above.

3.3.4 Leachate Quality

This section presents a summary of the chemical results. The results for leachate monitoring presented in Table 3.8.

High levels of Ammoniacal Nitrogen, sodium, chloride and electrical conductivity, dominate the results from all leachate monitoring wells.

The pumping chamber receiver learnate from a number of different locations on-site. As it collects leachate from a number of different areas over the site it is representative of general leachate quality over a greater time period than the individual grab samples from each of the leachate wells. The pumping chamber collects leachate from:


- Pipe1A New cells
- Pipe 1B Old northern boundary
- Pipe 1C Southern boundary

The results of leachate sampled from the pumping chamber reflect the results obtained from the individual wells on the landfill.

It is noted that the results for the southern boundary are slightly more concentrated, than the results along the eastern boundary. In general, the reported concentrations for the leachate sample are consistent with the typical composition of leachate sampled from large landfills and in line with the levels presented in the Environmental Protection Agency (EPA) Landfill Manual on Landfill Site Design (2000).

-man count

Page 24 of 71

J:/2009/LW09/164/01/Rpt004-0.doc

Fingal County Council Balleally Landfill, W0009-02 AER 2009

Table 3.8: Annual Leachate Monitoring Results

Sample Identity	LMW1	LMW6	LMW7	LMW9	LMW 10	LMW 11	LMW 13	LMW 14	LMW 17	LMW 18	L23	L24	PIPE 1A	PIPE 1B	PIPE 1C
Ammoniacal Nitrogen as N (mg/l)	467	92	158	622	421	360	25.4	175	112	284	27.1	102	1120	458	498
BOD mg/I O	63.3	30.3	13,3	7	35.5	24.3	3,35	4.45	6'80	1.89	9'98	10.5	486	17.5	15.3
COD mg/l O	2690	434	1790	828	882	570	85.8	346	191	362	111	161	2570	724	864
Chloride (mg/l)	1200	28.1	203	1040	1130	699	161	338	160	358	41.4	108	1500	891	1080
Electrical Conductivity (at 20 deg.C) (Laboratory) (mS/cm)	9.24	0.897	5,26	9.46	9.3	6.72	-57	3.64	2.61	4.51	1.55	2.2	13.5	7.35	8.08
Dissolved Boron low level (µg/I)	2930	<18	1520	4290	4010	2090	492	3200	852	1270	637	526	4870	2630	3060
Dissolved Cadmium low level (µg/I)	<0.22	<0.22	<0.22	<0.22	<0.22	<0 22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	0.338	<0.22	<0.22
Dissolved Calcium low level (mg/l)	149	180	325	114	151	187	77	217	232	273	312	390	197	237	219
(total) Chromium (Unfiltered) (µg/I)	160	4	71.8	28.3	19.7	<mark>6.</mark> 82	3.57	8.97	7.78	8.76	<3	7.19	244	31.1	22.2
Dissolved copper low levels (µg/I)	<1.6	2.17	<1.6	<1.6	207	1.72	<1.6	<1.6	1.68	2.15	2.47	1.74	5.09	2.46	<1.6
Dissolved iron low level (mg/l)	2.23	0.547	1.02	0.704	0.9.3	1.04	<0.019	0.279	25.8	15.4	17.7	9.32	2.16	1.06	1.86
Dissolved lead low level (µg/I)	1.8	<0.4	0.496	1.29	60	0.438	<0.4	0.512	966'0	1.1	0.861	0.967	9.2	1.38	0.672
Dissolved magnesium low level (mg/l)	117	8.38	82.5	1.77	160	141	25.1	72.4	52.7	65.3	29.4	45	110	95.2	107
Dissolved manganese low levels (µg/l)	401	1540	2540	589	363	958	685	265	2100	8170	1440	3490	1720	1740	1880
Dissolved nickel low levels (µg/I)	107	9.07	58	6.03	51.9	22.9	10.1	39.6	24.2	40.8	9.45	10.4	179	82.2	80
Dissolved Potassium low level (mg/l)	420	5.33	173	448	456	317	62.4	105	67.9	119	24.7	45.9	721	326	370
Dissolved sodium low levels (mg/I)	1190	21.4	510	979	1000	599	128	334	126	271	49.9	94.7	1530	765	884
Dissolved zinc low levels (µg/I)	<5	11.3	10.2	<5	38.7	10.2	12.5	5.64	75.2	35.2	20.3	9.01	130	7.46	<5
Total Cyanide (mg/l)	0.056	<0.0×	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoride (mg/l)	1.05		0.653	1.13	0.947	0.63	<0.5	<0.5	<0.5	0.618	<0.500	<0.5	0.987	0.729	0.846
Mercury Dissolved (µg/I)	1.0>	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sulphate (soluble) (mg/l)	54	102	<3	<3	<3	108	14.3	<3	5.3	50.3	199	<3	40	227	260
Phosphorus (Unfiltered) (µg/I)	11200	457	5340	2680	2480	1910	393	847	862	1320	176	520	12300	2990	1830
Phosphate (ortho as PO4) (mg/l)	3.83	<0.08	<0.08	<0.08	1.86	0.091	<0.08	<0.08	<0.08	<0'08	<0.08	<0.08	13.8	<1.4	<1.4
Total Oxidised Nitrogen as N (mg/l)	<0.1	<0.1	<0.1	<0.1	0.206	<0.1	0.355	<0.1	0.542	0.655	<0.1	<0.1	<0.2	<0.2	<0.2
															1

J:/2009/LW09/164/01/Rpt004-0.doc

Page 25 of 71

3.3.5 Volume of Leachate transported off-site for treatment:

A water balance for the reporting period has been prepared and is included as Table 3.9. The water balance calculation indicates that there was 39,547.06 m³ of Leachate Produced at the Landfill.

Leachate tankered off-site was recorded at 53,707.50 m³. The volume of leachate tankered off-site was greater than estimated in water balance calculation, but some contaminated surface water pumped to plant may account for this.

3.3.6 Leachate Treatment Plant

Operation of the leachate treatment plant was suspended during the reporting period. This suspension was put in place pending a review of the present Waste Licence for the site. The Waste licence review is seeking to remove Chemical Oxygen Demand (COD) as a leachate plant parameter and to raise the Emission Limit Value (ELV) levels for some of the other leachate treatment plant parameters.

In the interim period the leachate treatment plant operation will remain suspended and leachate will continue to be takered off-site.

in sue

-man count

Fingal County Council Balleally Landfill, W0009-02 AER 2009

2/2009
- 31/12/2
/2009 -
01/01
Landfill
Balleally
l for l
Calculation
r Balance
Watei
Table 3.9:

Month		Old landfill						New Landfill						Sewage Sludges		
	шш	acres	m2	m2	%	m2	%	acres	<i>m2</i>	<i>m</i> 2	m2	m2	tonnes	m3	Tonnes	m3/tonne
Jan	62.1	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.08	11,33132	26,187.6	82.60	61.95	8,618.61	0.025
Feb	56.1	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.08	11, 831.,2	16,187.6	23.42	17.57	8,941.72	0.025
Mar	26.2	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.08	11, 31, 32	16,187.6	22.30	16.73	11,303.50	0.025
Apr	71.1	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.08	11,331.32	16,187.6	13.30	9.98	60.09	0.025
Мау	75.5	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.03	11,331.32	16,187.6	16.46	12.35	7,059.04	0.025
Jun	64.3	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.08	11,331.32	16,187.6	16.22	12.17	8,648.82	0.025
ylut	165.4	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.08	11,331.32	16,187.6	19.23	14.42	8,342.01	0.025
Aug	69.5	100	402,694	362,424.6	10	40,269.4	30	20	9 28	53,419.08	11,331.32	16,187.6	17.84	13.38	8,701.39	0.025
Sept	24.2	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.08	11,331.32	16,187.6	24.44	18.33	9,353.06	0.025
Oct	63	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.08	11,331.32	16,187.6	22.10	16.58	9,190.68	0.025
Nov	171.3	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.08	11,331.32	16,187.6	23.64	17.73	8,504.84	0.025
Dec	69.1	100	402,694	362,424.6	10	40,269.4	30	20	80,938	53,419.08	11,331.32	16,187.6	33.26	24.95	8,626.59	0.025
Total	917.8					•		20					314.81	236.1075	97956.35	
							ん									

Old Landfill Capped + New Landfil Capped + Old Landfill Temp Cap + New Landfill Temp cap + Active Area + Liquid Waste - Liquid Absorbed Leachate Produced Landfill = {(.9178 * 362424.6 *.1) + (.9178 * 3719.1*.1) + (.9178 * 40269.4 * .3) + (.9178 * 27518.9 * .3) + (.9178* 16187.6) + 236.1075}- {97596.35 *.025} Leachate Produced Landfill M3 39,547.06

39,547.06 53,707.50

Leachate Tankered Off-Site M3

J:/2009/LW09/164/01/Rpt004-0.doc

Page 27 of 71

NON AND THOMAS

3.4 Noise Monitoring

Noise surveys were undertaken during every quarter of the monitoring period (2009) in order to assess the existing noise emissions from the site and to establish the existing noise environment at potentially sensitive receptors near the site in accordance with Schedule D of Waste Licence W0009-02. Noise monitoring was carried out during daytime hours. The location of noise monitoring points can be seen in Figure DE07-164-03-001-(B), Appendix I and presented in Table 3.10.

Noise measurements were taken for 30 minutes at each location.

Noise emission limits are given in Table C.1 of the waste licence and are reproduced here in Table 3.11.

MONITORING LOCATION	DESCRIPTION	Northings	Eastings
NM1	Situated adjacent to the north- eastern boundary of the site.	321 919	252 357
NM2	Situated north east of the site boundary adjacent to Balleally Lane.	321 779	252 415
NM3	Situated East of the landfill 120m along Balleally Lane.	32) 459	252 383
NM4	Situated north of the landfill along Rogerstown Lane.	322 604	252 962
NM5	Situated north of the landfill atons Rogerstown Lane.	322 970	254 004

Table 3.10: Noise Monitoring Locations

Table 3.11: Noise Emission Limits

Day dB(A) L _{Aeq} (30 minutes)	Night dB(A) L _{Aea} (30 minutes)
55	45
2.4.1 Monitoring Doubts	

<u>3.4.1</u> <u>Monitoring Results</u>

A summary of the quarterly monitoring results are presented in Table 3.12 to Table 3.15.

-man count

Fingal County Council Balleally Landfill, W0009-02 AER 2009

Table 3.12: Quarter 1 Noise Monitoring Results

LOCATION	ДАТЕ	TIME	Tonal	L _{AE} Q	L _{AF90}	LAF10	COMMENTS
ΓM1	04/02/09	12.36	0	69	45	70	The dominant noise source at this location was from No. 30 site vehicles and No. 6 cars driving along Balleally brie. Birdsong, the hum from on-site machinery, clanging from construction work and a local bird scarcer device all contributed to background noise.
NM2	04/02/09	13.09	o	70	40	64	Similar to NM1, No. Posite trucks were the dominant noise source. A bird scare device firing press under the minutes contributed to background noise. Birdsong, trees rustling, thun from nearby machinery and fast flowing water form a nearby stream we e the main contributors to background noise levels.
RMN	04/02/09	14.35	0	89	42	66	The dominant noise source at this monitoring point was from No. 32 vehicles on Ball ally tane and the sound of vehicles passing over the speed ramps on the road. Background noise was comprised of birdsong, distant traffic from the M1 monthe distant clanging of machinery from the landfill site. Dogs barking and a bird scare device randomly firing every 4-7 minutes also contributed to background levels.
NM4	04/02/09	11.54	0	54	42		The dominant sound at this monitoring location was a nearby neighbour revving a quad bike. Background noise at this location included birdsong, seagulls and the distant noise from on-site machinery. This included reversing beacons and engine revving. No. 6 passing vehicles, no. 1 overhead airplanes, no. 2 passing trains and a neighbouring dog barking also contributed to background noise.
NM5	04/02/09	11.20	0	NIS	S, [®]	50	The background noise source at this location has the lowest L_{AF10} out of all noise monitoring points. This background noise was made up of birdsong, the distant hum of traffic from the M1 and a bird scare device. The dominant sources at this point include No. 5 passing cars, No. 2 overhead aeroplanes, No. 1 train passing and the distant revving of a motorbike during the monitoring period also influenced the dominant non-site related sound recorded at this monitoring period point.

J:/2009/LW09/164/01/Rpt004-0.doc

Page 29 of 71

Fingal County Council Balleally Landfill, W0009-02 AER 2009

Table 3.13: Quarter 2 Noise Monitoring Results

	I			I			
Location	Date	Time	Tonal	L _{Ae} q	Laf90	LAF10	Comments
NM1	04/02/2009	12.36	0	70	I	69	The dominant source of noise at this location was the No. 37 traffic movements along the road during the motioning period. Birdsong, water movement in a near-by stream and a slight "hum" from site machinery all contributed to background noise leven at this location. No. 1 airplane passed over head during the monitoring period. The same time period.
NM2	04/02/2009	13.09	O	71	40	71	The dominant source of noise at this location was the No. 38 traffic movements on the road during the monitoring period. Birdsong, rustling leaves, peoples voices and children playing and a dog barking all contributed to background noise levels. A car was in idle beside the noise meter for a short period during motitoring. A lawnmower was operating for 2 minutes during monitoring.
NM3	04/02/2009	14.35	Ŋ	62+5 = 67	36	LS	The dominant noise source at this location was the No. 25 traffic movements about the road. Birdsong and rustling leaves contributed to background noise levels. Traffic sound could also be heard in the distance. Bird scarier bangers and a helicopter overhead were also recorded during monitoring.
NM4	04/02/2009	11.54	Ю	60+5 = 65	42	24 24	The dominant noise at this location is the "hum" of machinery working on-site, including intermittent reversing beacons. Birdsong, a distant bird scare device, rustling leaves and a radio from a neighbor's house contributed to the background noise levels at this location. No. 3 trains, No. 1 airplane and No. 7 road vehicles passed during the monitoring period.
NM5	04/02/2009	11.2	0	V _I	36	46	The dominant noise at this location was the sound of traffic from the M1 and intermittent bangs from a bird scare device. Birdsong and slight rustling of leaves contributed to background noise levels. No. 2 airplanes passed overhead and No. 3 trains passed during the monitoring period. No. 3 cars passed on the road during the monitoring period.

J:/2009/LW09/164/01/Rpt004-0.doc

۴)
2	
9	2
Ŧ	2
- 5	Ś
	ť
v	1

Fingal County Council Balleally Landfill, W0009-02 AER 2009

Table 3.14: Quarter 3 Noise Monitoring Results

191		Quarter 3 Noise Monitoring Results			Kesuits		
Location	Date	Time	Tonal	L _{Ae} q	Laf90	LAF10	Comments
TWN	2009 Jul 28	12:50:47	o	55	44	57	The results were most influenced by the No. 20 passing vehicles recorded during the monitoring period on Balleally Lane, including a leachate tanker passing the monitoring location entering and exiting the site. Intermittent bird scare bangers and one of head plane were also recorded during the monitoring period. Site works and vehicle movements could be heard from this location.
NM2	2009 Jul 28	14:50:04	0	57	44	68	Monitoring at this location was dominated by the No. 10 passing vehicles were recorded during the monitoring period (banging over the speed bumps on the road). Background noise was influenced by rustling leaves and birdsong. Two overflying planes were also recorded during the monitoring period, with birds-scare device and drilling in near-by field also contributing to the background noise dvels.
NM3	2009 Jul 28	14:11:33	0	60	35	61	Wontoring results at this location were dominated by the No. 26 passing wencies during the monitoring period (banging over the speed bumps on the Noad). 2 No. overhead planes were recorded during the monitoring period. Background noise was influenced by rustling leaves, birdsong and intermittent bird scare devices. A constant hum of machinery engines on-site could be heard during monitoring.
N M4	2009 Jul 28	14:11:33	1	55+ 5= 60	AS.	54	Rural background sounds, with wind rustling leaves. No. 7 passing vehicles on Rogerstown Lane were recorded during the monitoring period. Intermittent bird scarcer bangers were also recorded. There were intermittent sounds from vehicles, horns and occasional reversing beacons from works on-site. No. 3 flying overhead helicopters were recorded during the monitoring period. Paused once to allow a van to pass. Agricultural activity (tractor) in market farm adjacent to monitoring location. Persistent birdsong and intermittent dogs barking contributed to background noise levels. Faint sounds could be heard from drilling works that were happening independent of site activity.
NM5	2009 Jul 28	13:37:26	0	53	46	55	Rural background sounds, with intermittent traffic on Rogerstown Lane. Background noise levels were dominated by rustling of leaves in trees and birdsong. Background sounds of vehicle movements on the landfill and bird- scare devices. Three planes passed over head during the monitoring period. A truck sits in idle close to the noise meter for a short period during monitoring.

J:/2009/LW09/164/01/Rpt004-0.doc

Page 31 of 71

Fingal County Council Balleally Landfill, W0009-02 AER 2009

Table 3.15: Quarter 4 Noise Monitoring Results

		Quarter + Noise Monitoring Results			Acoults		
Location	Date	Time	Tonal	L _{Ae} q	Laf90	LAF10	Comments
NM1	11-Dec-09	10:02:47	0	53	38	53	Still conditions. Dominant noise from passing vehicles on Balleally Lane. No. 21 vehicle movements during the monitoring period. Background contributions from birdsong and intermittent dogs barking. Intermittent bird scare bangers and the sound of distant site works on-site also contributed to the background noise.
NM2	11-Dec-09	13:56:51	o	61	42	61	Still conditions. Dominant noise from the No. 27 vehicle movements on Balleally Land during the monitoring period. Trucks delivering material to the site were mixed fast, even over the speed bumps, contributing to the overall noise levels. Background noise levels consisted of birdsong, the sound of site works in the distance and intermittent bird scare bangers.
NM3	11-Dec-09	13:19:24	0	60	43	65	bon inant noise from the No. 36 vehicle movements on Balleally Lane during the monitoring period. Background noise consists of the sound of distant angines on-site including the sound of reversing beacons. No. 1 overhead plane was also recorded during the monitoring period. A very low breeze causing a slight rustling of trees also contributed to the background noise levels.
NM4	11-Dec-09	09:00:16	0	53	12	23	Dominant noise from engines operating on-site including reversing beacons. Intermittent bangs also from site. No. 6 vehicle movements on Rogerstown Lane, No. 1 passing train and No. 1 overhead plane also contributed to the dominant noise. Background noise consists of intermittent birdsong and intermittent bird scare bangers.
NM5	11-Dec-09	08:24:27	0	V	42	49	Dominant noise from works on-site, especially engine revving noise and reversing beacons. Background noise consists of slight breeze rustling in the hedgerows, birdsong and distant traffic sounds. No. 4 vehicle movements Rogerstown Lane, No. 2 passing trains, No 1 overhead plane and intermittent bird scare bangers contributed to the noise recorded.

]:/2009/LW09/164/01/Rpt004-0.doc

<u>3.4.2</u> Assessment of Tonal Components

All measurements were subject to a one-third octave band analysis to identify tonal components within the noise measured. The raw results of this analysis have been presented in the quarterly reports submitted during the reporting period. Tonal noise was identified on a number of occasions and the reported L_{Aeq} was adjusted by 5 dB in accordance with the EPA (2006) *Guidance Note for Noise in Relation to Scheduled Activities, 2nd Edition.*

3.4.3 Interpretation of Results

Noise emission limits are presented in Table 3.11 above. There were only seven instances during the year during noise monitoring periods which complied with the EPA limit of 55 dB (A) for daytime noise. During all four quarters NM5 was in compliance with the EPA limit.

Traffic movements on Balleally and Rogerstown lane are the main contributors to noise levels in the area, which includes noise from trucks travelling to and from the site. Noise from site does not have as much impact as traffic movements; however a great number of the traffic movements are related to vehicle movements to the site. An assessment of the L_{A90} results shows the influence traffic movement had on the noise monitoring results, with L_{A90} results ranging from 38 – 47 dB.

Bird scare bangers, train movement and over head airplanes also contribute to the dominant noise sources in the area.

3.5 Dust and PM₁₀ Monitoring

3.5.1 Dust Monitoring

Dust monitoring was carried out at 4 locations in accordance with Schedule D of the licence. The locations of these monitoring points are shown on Figure Dto7 64-03-001-(B), Appendix I and presented in Table 3.16

Bergerhoff style gauges were used to determine total dust deposition levels at the site. Four gauges were set up so that the dust jars were at a high of at least 1.5 m above the ground and the jars were set in place during the monthly monitoring events. The samples were submitted to Southern Scientific Ltd. for analysis of total dust contents.

Table 3.16: Dust Monitoring Locations

Location	Easting	Northing
DM1 (PM1)	321 874	252 321
DM2	321 927	252 482
DM3 (PM2)	322 038	252 484
DM4 (PM3)	322 728	252 671

Note = (PM Labels = PM10 monitoring locations)

3.5.2 Monitoring Results

Dust monitoring was undertaken twice during Quarter 3. As D3 was knocked over during sampling in July 2009, monitoring at this point was repeated in September. The final round of Dust monitoring was undertaken during December. The annual results for total dust deposition are presented in Table 3.17.

-man count

Fingal County Council Balleally Landfill, W0009-02 AER 2009

Table 3.17: Dust Deposition Results (mg/m²/day)

		Jul-09			Aug-09			Sep-09			DEC-09	
LOCATIONS	ORGANIC DUST	INORGANIC DUST	TOTAL DUST	ORGANIC INORGANIC TOTAL ORGANIC DUST DUST DUST DUST	INORGANIC DUST	Τοται Dust	ORGANIC	VOTGANIC DUST	TOTAL DUST	ORGANIC DUST	ORGANIC INORGANIC DUST DUST	TOTAL DUST
D1	73	86	171	115	87	205	4	/	/	77	67	144
D2	327	160	487	25	0	25	5	/	/	123	100	223
D3	Knc	Knocked over *		143	20	213	22	13	35	48	20	67
D4	124	155	579	86	86	184	/	/	/	53	88	85

* = Sample D3 was knocked over during the sampling period and was being re-sampled.

J:/2009/LW09/164/01/Rpt004-0.doc

Page 34 of 71

NON AND THOMAS

3.5.3 Interpretation of Results

An organic and inorganic analysis of dust was performed in addition to the total dust deposition analysis to give a greater understanding of the results.

The results indicate that during July the results at D2 were over the licence limit of $350 \text{ mg/m}^3/\text{day}$. The organic split of the results is $327 \text{ mg/m}^3/\text{day}$, suggesting that the sample contained a large portion of organic particles or organic growth (algae), contributing to the over-all high result for the location rather than inorganic or inert material., which was unlikely to be attributable to landfill activities. All other results for July were under the limit.

A second round of dust monitoring was undertaken in August and the third round of dust monitoring was undertaken in December. All results for the August and December monitoring are under the licence limit of 350 mg/m³/day.

<u>3.5.4</u> PM₁₀ Monitoring

Monitoring of particulate matter (PM_{10}) levels was undertaken once for a 24 hour sampling period at 3 monitoring locations, namely PM1, PM2 and PM3 in accordance with Schedule 0 of the licence during the 2009 monitoring period. The locations of these monitoring points are shown on Figure DE07-164-03-001-(B), Appendix I and presented in Table 3.18.

3.5.5 Monitoring Results

The PM_{10} monitoring results for the 2009 monitoring period are presented in Table 3.18.

Sampling Point	AVERAGE CONCENTRATION VALUE
	(μG/M ³)
PM1	28.2
PM2	13.1
PM3	16.3

Table 3.18: PM₁₀ Results 2009

3.5.6 Interpretation of Results

There is no emission limit set for PM_{10} in Schedule C of the licence but Condition 6.7 sets a trigger level of 50 µg/m3 for a daily sample.

The results in Table 3.18 show that the air quality is good at PM1 and the results are under the trigger level of 50 μ g/m3 for a daily sample.

3.6 Landfill gas monitoring

The licence requires that the licensee conducts monthly monitoring in the gas boreholes/vents/wells in order to detect off-site gas migration. The location of the monitoring positions is shown on Figure DE07-164-03-001-(B), Appendix I.

The locations are presented in Table 3.19. In addition to the perimeter Landfill Gas Monitoring locations two leachate monitoring wells (chosen at random) from each of the southern and eastern boundaries LMW1-LMW18 and two manholes MHL33 and MHL40 (Table 3.20) along Balleally Lane were also monitored. LMW1 – LMW18 boreholes are located in front of the vertical barrier installed along these boundaries and are in the leachate that is collected at these points.

It should be noted that boreholes LMW1-18 are leachate sampling wells and not specifically designed for monitoring landfill gas. See Table 3.19, 3.20 and 3.21 for grid references.

Table 3.19: Gas Monitoring Locations

Borehole ID	Borehole Description	Easting	Northing	Depth of Borehole <i>(m)</i>	Top of casing level	Ground Level (m O.D.)	Sample
GA1	Northern corner of Cell 1	321 767	252 159	6	4.155	4.0	Perimeter Borehole
GA2	Western corner of Cell 1	321 986	252 383	6	4.314	3.3	Perimeter Borehole
GA3	Northern boundary of Cell 2	322 070	252 414	10	7.076	7.5	Perimeter Borehole
GA4	Northern boundary of Cell 3	322 170	252 415	10	7.370	7.66	Perimeter Borehole
GA5	Northern boundary of Cell 4	322 291	252 440	15	12:287	14.3	Perimeter Borehole
GA6	Northern boundary of Cell 5	322 389	252 467	15	11.864	13.3	Perimeter Borehole
GA7	Northern boundary of Cell 6	322 490	252 498		10.749	9.57	Perimeter Borehole
GA8	Northern boundary beside exit to landfill	322 614	252 542	G	5.503	4.981	Perimeter Borehole
GA9	North of cell 1 beside gate	321 942	252 547	-	-	-	Perimeter Borehole
GA10	Residents land opposite gate	321 942	252 393	-	-	-	Outside Perimeter Borehole
GA11	Lands opposite entrance/exit between cell 6 and LMW18	322 035	252 433	-	-	-	Outside Perimeter Borehole
GA12	Lands opposite entrance/exit	322 669	252 575	-	-	-	Outside Perimeter Borehole
GA13	Lands opprisive entrance/exit adjacent to SW20a	322 848	252 666	-	-	-	Outside Perimeter Borehole

Manhole ID	Manhole ID	Easting	Northing
MH L33	Across from Cell 1	322 001	252 416
MH L40	Across from Cell 6	322 654	252 566

Table 3.21: Leachate/Gas Monitoring Locations

Borehole ID	Easting	Northing	Sample
LMW1	322 006	252 143	Leachate/Gas
LMW2	322 077	252 115	Leachate/Gas
LMW3	322 169	252 084	Leachate/Gas
LMW4	322 271	252 053	Leachate/Gas
LMW5	322 368	252.022	Leachate/Gas
LMW6	322 461	251,991	Leachate/Gas
LMW7	322 559	251 958	Leachate/Gas
LMW8	322 651	251 933	Leachate/Gas
LMW9	322 749	251 903	Leachate/Gas
LMW10	322 84	251 877	Leachate/Gas
LMW11	322 846	251 974	Leachate/Gas
LMW12	322 853	252 074	Leachate/Gas
LMW13	322 859	252 175	Leachate/Gas
LMW14	322 863	252 274	Leachate/Gas
LMW15	322 873	252 375	Leachate/Gas
LMW16	322 880	252 473	Leachate/Gas
LMW17	322 885	252 572	Leachate/Gas
LMW18	322 890	252 657	Leachate/Gas

3.6.1 Monitoring Parameters

In accordance with Table D.2.1 of the Waste Licence, gas wells were monitored for Methane (CH₄), Carbon dioxide (CO₂), Oxygen (O²) and atmospheric pressure. It should be noted that the boreholes along the estuary were designed and constructed to sample leachate and groundwater and not specifically landfill gas.

3.6.2 Monitoring Results

The Landfill Gas (LFG) monitoring results are summarised in Figure 3.12 and Figure 3.13. FCC have also monitored LFG levels at GA5 during the monitoring period. These results are presented in Table 3.22.

3.6.3 Interpretation of Results

 CH_4 results for the 2009 monitoring period were generally below the 1% trigger level (Figure 3.12). However, results elevated above the trigger level at locations GA3, GA4 and GA5 and also at GA13 are noted. These locations are situated along the north and north-eastern corners of the landfill.

Throughout the monitoring period increasing levels of CH_4 was recorded at GA5. Towards the third and fourth quarter the levels of methane were also seen to increase occasionally in the adjacent wells, GA3 and GA4.

 CO_2 results elevated above the 1.5% trigger level at sampling locations GA2, GA3, GA4, GA5, GA7, GA8, GA11 and GA13 in 2009 (Figure 3.13). CO_2 levels illustrate a similar trend to the results found last year. High concentrations of CO_2 can occur naturally at shallow depths of up to 2 the due to microbial activity associated with the roots of many types of vegetation.

3.6.4 Conclusion

In general, gas levels appear to be at their highest values during the third and fourth quarters of the monitoring period. This trend is similar to observations made in the previous monitoring periods.

During the monitoring period FCC took the proactive approach of monitoring LFG at on-site and off-site locations weekly and they are also monitoring GA5 and sensitive locations GA10 and GA11 more frequently (2 – 3 times per week). The results of this additional monitoring are retained by FCC on-site and any changes in the trends will be noted. This monitoring is in addition to the licence compliance monitoring being undertaken by FTC.

Additionally FCC are working with Bioveration manage the landfill gas on-site to effectively balance the gas field and reduce the levels of methane noted in GA5. A number of additional in-waste landfill gas extraction wells have been drilled during Quarter 4 and became operational to increase the LFG abstraction for energy from the area of the landfill adjacent to GA5.

Monthly monitoring will be undertaken during the coming year as well as additional more frequent monitoring by FCC as required close attention will be paid to the trends to investigate the outcome of the mitigation measures implemented during Quarter 4.

Fingal County Council Balleally Landfill, W0009-02 AER 2009

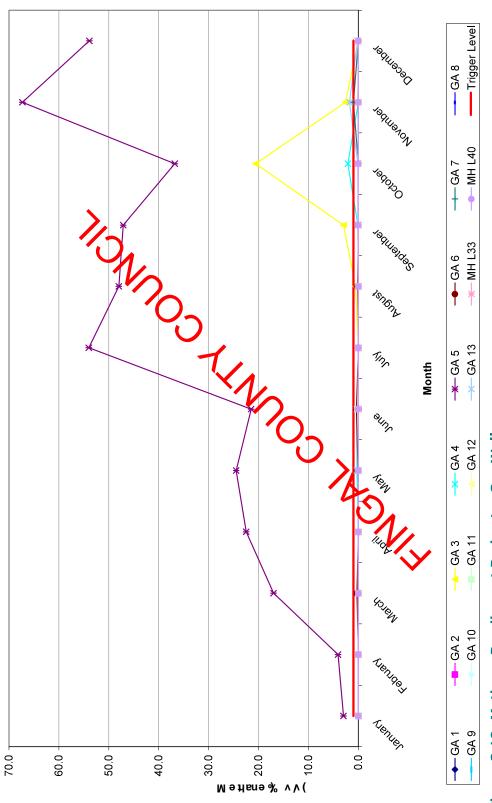


Figure 3.12: Methane Readings at Perimeter Gas Wells

J:/2009/LW09/164/01/Rpt004-0.doc

Section 3

Fingal County Council Balleally Landfill, W0009-02 AER 2009

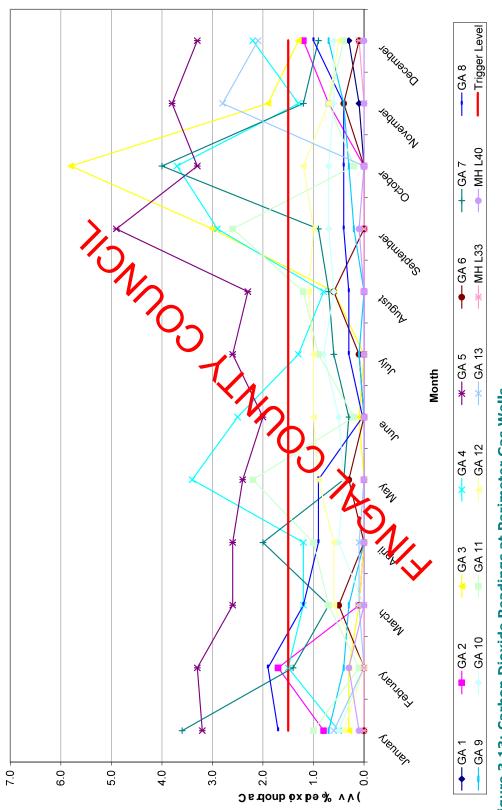


Figure 3.13: Carbon Dioxide Readings at Perimeter Gas Wells

Page 40 of 71

J:/2009/LW09/164/01/Rpt004-0.doc

GA5	Date	Time	Tap before	Tap after	CH₄ %/v/v	CO₂ %/v/v	O₂ %/v/v	Flow m3/hr
	01/09/2009		suction	suction	17	1	14.7	-0.00001
	03/09/2009		suction	suction	33	14	5	-0.01
	04/09/2009		suction	suction	1.7	1.2	19.9	-0.05
	09/09/2009		suction	suction	0	0	21	-0.06
	10/09/2009		suction	suction	23	12	5.2	-0.02
	11/09/2009		suction	suction	26.5	3.8	0.9	0
	14/09/2009		suction	suction	48	4.5	0	0
	17/09/2009		suction	suction	35	6	0.5	0
	17/09/2009		suction	suction	47.5	3.9	0	-0.005
	18/09/2009		suction	suction	47.5	3.9	0	-0.06
	22/09/2009		suction	suction	44	5.7	0.9	0
	23/09/2009		suction	suction	42	3.5	0.4	-0.06
	25/09/2009		suction	suction	18	3.7	11.3	-0.07
	29/09/2009		closed	closed	35	3	ρ	0.03
	01/10/2009		closed	closed	21	2.9	6.7	minus off range
	06/10/2009		closed	closed	57	3	0	0.00006
	08/10/2009		closed	closed	0		21	minus off range
	13/10/2009		closed	closed	15.5	8.5	9.2	0.00007
	15/10/2009		closed	closed	3.4	0.6	18.3	-0.016
	16/10/2009		closed	closed		0	20.9	-0.00001
	23/10/2009		closed	closed	12.5	1.2	14	minus off range
	27/10/2009		closed	closed	39	4.2	2	0.00006
	29/10/2009		closed	closed	37	4.2	2	-0.00001
	03/11/2009		closed	closed	35	3.6	3.2	-0.000064
	05/11/2009		closed	closed	47.5	3.5	2.4	-0.00001
	10/11/2009		closed	closed	40	11	0	-0.000096
	12/11/2009		closed	closed	59	3.6	0	0.000286
	18/11/2009		closed 🦵	closed	48	3	2.6	-0.00006
	19/11/2009		closed	closed	69	3.5	0	0.000242
	01/12/2009		closed	closed	47	3.6	0.2	-0.00001
	03/12/2009		tosed	closed	66	3.5	0	0.09
	08/12/2009		closed	closed	64	3.3	0.5	0.162
	09/12/2009	•	losed	closed	52	3.1	3.4	-0.06
	15/12/2009		closed	closed	64	3.2	0	0.13
	16/12/2009		closed	closed	63	3.6	0	0.103
	21/12/2009	$\mathbf{\langle}$	closed	open	66	3	0	0.21
	22/12/2009		open	open	63	2.8	0	0.026
	23/12/2009		open	open	64	2.8	0	0.020
-	24/12/2009		-	closed	64	3.1	0	0.010
	04/01/2010	am	open closed		66	3.1	0	0.21
	04/01/2010	pm	open	open open	63	3	0	0.21
	05/01/2010		•	•	65	3	0	0.138
	06/01/2010	pm am	open	open closed	0	0	21	-0.06
		am	open		-	-		
	08/01/2010	am	closed	open	22	2.8 3	6.3 0	minus off range 0
	11/01/2010	am	open	open	61	-	0	0.179
	12/01/2010	am	open	open	69	3.1	-	
	18/01/2010	am	open	closed	0	0	20.8	-0.09
	20/01/2010	am	closed	closed	2.7	1.5	14	-18.5
	25/01/2010	am	closed	open	3.5	0.8	17.3	minus off range
	26/01/2010	pm	open	open	0	0.3	20.6	0.019
	01/02/2010	am	open	open	16.5	1.8	15.3	-0.08
	03/02/2010	am	open	open	33	2.9	6.9	0.109

Table 3.22: FCC Flow Assessment at GA5

3.6.5 Summary report on emissions

As per Schedule D.7.1 of Waste Licence W0009-02 the licensee is required to carry out annual environmental monitoring of the Gas Combustion Plant/Enclosed Flare. Odour monitoring Ireland personnel conducted the survey on the 7th and the 8th December 2009.

The monitoring included the gas composition in the flue outlets from the four generators and flare in order to meet the requirements of the waste licence. The monitoring for CO, SO_2 , NO_x , and O_2 was carried out *insitu* using an electrochemical analyser. Temperature, velocity and flow rate were also monitored *in-situ* using a thermocouple and a pilot tube and manometer respectively. Samples were collected for analysis to determine TA Luft Class I, II, III organic substances. In addition, samples were collected for the landfill gas delivery system and determined for chlorine, fluorine and sulphur content.

The compliance status of emissions from the five generators with respect to the Waste Licence Limit is summarised in Table 3.23.

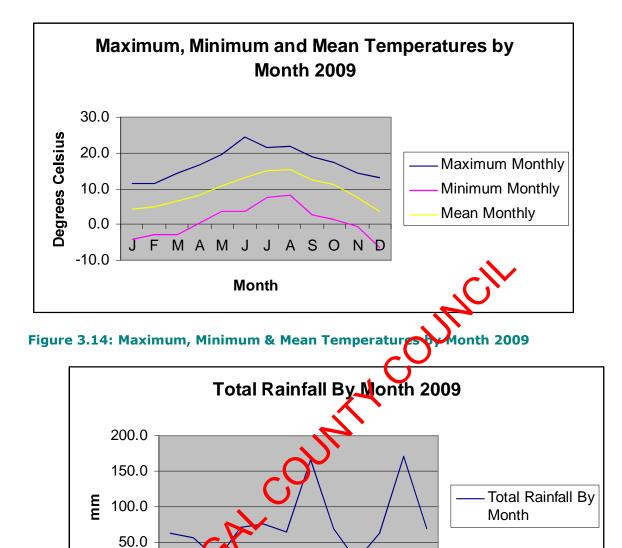
Engine Number	Parameter	Compliance Status
	Falanielei	Compliance Status
	FLOW	COMPLIES
	СО	COMPLIES
	NOx	COMPLIES
	TA LUFT CLASS I ORGANICS	COMPLIES
BY 01.	TA LUFT CLASS II ORGANIÇS 💙	COMPLIES
	TA LUFT CLASS III ORGANICS	COMPLIES
	HCI	COMPLIES
	HF	COMPLIES
	PARTICULATES	COMPLIES
		COMPLIES
		NON COMPLIANCE
	NOx	COMPLIES
	TA LUFT CLASS I ORGANICS	COMPLIES
2.	TA WET CLASS II ORGANICS	COMPLIES
	A LUFT CLASS III ORGANICS	COMPLIES
	нсі	COMPLIES
	HF	COMPLIES
	PARTICULATES	COMPLIES
	FLOW	COMPLIES
	СО	NON COMPLIANCE
	NOx	COMPLIES
	TA LUFT CLASS I ORGANICS	COMPLIES
3.	TA LUFT CLASS II ORGANICS	COMPLIES
	TA LUFT CLASS III ORGANICS	COMPLIES
	HCI	COMPLIES
	HF	COMPLIES
	PARTICULATES	COMPLIES
	FLOW	COMPLIES
	СО	NON COMPLIANCE
	NOx	COMPLIES
5.	TA LUFT CLASS I ORGANICS	COMPLIES
	TA LUFT CLASS II ORGANICS	COMPLIES
	TA LUFT CLASS III ORGANICS	COMPLIES
	HCI	COMPLIES

Table 3.23: Result of emissions testing of landfill gas plant 2009

Engine Number	Parameter	Compliance Status
	HF	COMPLIES
	PARTICULATES	COMPLIES
	FLOW	COMPLIES
	CO	COMPLIES
	NOx	COMPLIES
FLARE	TA LUFT CLASS I ORGANICS	COMPLIES
	TA LUFT CLASS II ORGANICS	COMPLIES
	TA LUFT CLASS III ORGANICS	COMPLIES
	HCI	COMPLIES
	HF	COMPLIES

 $\rm NO_x$ as $\rm NO_2$, particulates, Total Non Methane Volatile Organic Compounds, Hydrochloric acid and Hydrogen fluoride were low in the gas utilisation engines and within Emission Limit Values set out in Schedule C.5 of the Waste Licence.

CO emission concentration values were above the 650 mg/Nm³ Emission Limit value established for Waste Licence W0009-02 at BY02, 03 & 05. These gas utilisation engines were below the Emission Limit Value (1400mg/m³) set for Carbon monoxide in other licences, e.g. W0127-01

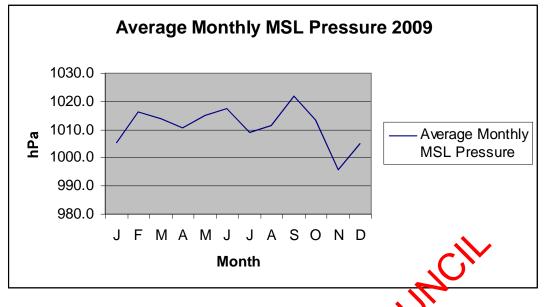

3.7 Meteorological Monitoring

Condition 8 and Schedule D.6 of Waste Licence W0009-02 require daily monitoring of precipitation volume, temperature (max. /min.), wind force and direction, and atmospheric pressure.

It has been previously reported (AER, 2007), that there were a series of ongoing problems with the operation of the meteorological instrumentation and equipment on-site and the retrieval of recorded information. Attempts to resolve the issues with the company have proved difficult. A consultant was engaged with a view to commissioning a new votem. They recommended relocating the weather station approximately 200 m SW of existing station. The weather recording equipment has been ordered and procured. The civil engineering works were completed, the weather station was assembled and operational from April, 2009.

As a full year's data are not available from the site station, a summary of the meteorological data recorded at Dublin Airport is included for the period. Dublin Airport is situated 10 km southwest of Balleally landfill and the weather station is used by Met Éireann for official statistics. The package used by them was developed in-house and maintained by their own staff.

June had the highest maximum mean monthly temperatures. Rainfall was most prevalent during July and November when highest volumes of rainfall were registered. The site was predominantly affected by south westerly winds.



AMJJASOND

Month

0.0

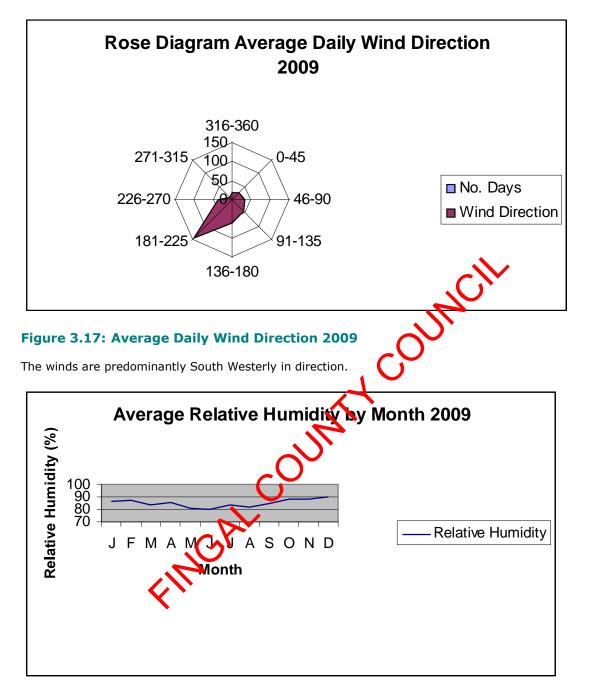


Table 3.24:	Average Daily Wind Speed, Min/Max,	ву м	lonth 2009

4

Month	Mean Spred (know)
Jan	
Feb	0.4
Mar	12.6
Apr	9.6
May	12.2
Jun	9.0
Jul	10.0
Aug	11.1
Sept	10.1
Oct	10.2
Nov	14.3
Dec	11.3

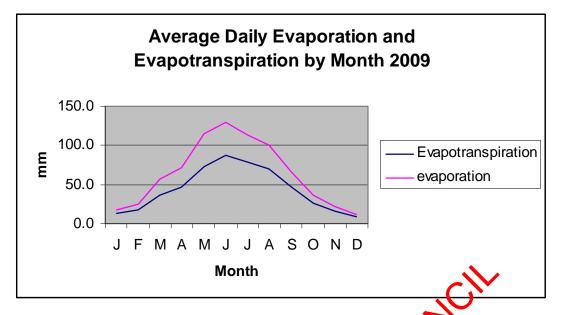


Figure 3.19: Average Daily Evaporation & Potential Evaporation By Month 2009

3.8 Resource Consumption

Resources consumed at Balleally Landfill include diesel fuel, electricity, hydraulic oil and lubricating oil. Table 3.25 presents a summary of the quantities of each used on-site for the period of this report. Electricity consumed on-site (Table 3.26)was used to the purpose of heating, lighting, the operation of office equipment and the leachate treatment plant. The largest consumer of electricity is the leachate treatment plant. The largest consumer of the drop in electricity consumption in 2009.

Diesel consumption in 2009 was similar to 2008.

Table 3.25: Summary of featurces used On-site 2009

Resource	FCC	BPS		
Electricity	184,317 KWh	1,245,000 KWh		
Diesel	221,972 litres	0 litres		
Petrol	181.84 litres	0 litres		
Lube Oil	1000 litres (Estimate)	38,930		
Water	8485 m3			

Year	Site 900109623	Site 901532286	Leachate Treatment Plant 902446909	KWHr Total
2009	Ceased	82,950*	101,367*	184,317*
2008	1,832*	91,350*	202,739*	295,921*
2007	1,726*	84,900*	202,669*	289,295*
2006	2,109*	97,600*	73,420*	173,129*
2005	1,033*	115,050*	N/R	115,050*
2004	NR	66,250*	NR	66,250*
2003	NR	NR	N/R	89,155 @
2002	NR	NR	N/R	76,529 @
2001	NR	NR	N/R	55,453 @
2000		NR	N/R	49,016 @

Table 3.26: Electricity consumption on-site for January - December 2009

* Data derived from ESB Energy Extra website for three accounts registered to Balleally.

- N/R: Accounts not set up at these times.
- @ Data sourced from AER 2006.

Note:

- 1) There was a significant increase in electricity consumption in the period 2006 2008, from previous years as can be observed from Table 3.25. This is attributable to the operation of the new on-site leachate treatment plact, which has the capacity to treat 150m³/day. The decrease in 2009 is attributable to the fact the leachate treatment plant was not in operation.
- 2) The electricity consumption has increased consecutively since the year 2000 with the exception of 2004 and 2009.

3.8.1 Resource Use and Energy Efficiency Audit

On 28th October, 2005 the EPA issued a technical amendment (B) inserting a new Condition 2.5. This condition requires FCC to carry out an energy efficiency audit. The audit must:

- i) identify all opportunities for energy use reduction and efficiency;
- ii) be carried out in accordance with the guidance published by the EPA "Guidance Note on Energy Efficiency Auditing", and
- iii) be repeated at intervals required by the Agency.

The recommendations from this audit should be incorporated in the Schedule of Environmental Objectives and Targets under Condition 2.3. Opportunities for reducing water consumption and identifying recycling and reuse initiatives will be investigated and an assessment of the efficiency of use of raw materials in all processes will be carried out.

3.8.2 Energy Efficiency Audit

The best practice Specific Energy Consumption (SEC) sometimes called the Energy Performance Indicator (EPI), of the sector and of any significant processes is determined where possible. The site SEC's are then compared to the best and the average practice. Any discrepancies were investigated during the 2006 energy audit.

The energy audit identified the site SEC. This may be used as a benchmark to identify the success or otherwise of the implementation of the recommendations.

3.8.3 Implication of Audit Findings

No SEC data could be found for comparable industry sectors and thus no comparison of the site's SEC with others could be made.

The energy audit identified a number of recommendations that could be implemented. Implementation of these will result in a reduction of energy cost and green house gas emissions. However in comparison to other industrial sites the energy consumed at Balleally Landfill is very low, especify when it is considered that FCC do not directly control the diesel used by the hired heavy plant vehicles. As the energy consumption at Balleally is so low, it is proposed that it may not be necessary for FCC to have further energy audits conducted at the site.

3.9 Landfill Gas Utilisation

Landfill gas is actively extracted by means of a series of wells and a collection pipe network in the waste body. The gas is pumped through two main lines to the site utilisation plant. The utilisation plant comprises of five generators grouped into two operating units AER1 and AER3 as shown in the schematic diagram of the plant in Appendix I. To achieve maximum design power output from the station the inlet gas must contain 50% methane and the minimum available gas volume must be 3,340 m³/hr. At present the 50% methane gas concentration is achieved, but the gas volume is not measured at the landfill.

The power station/utilisation plant operators, Bioverda Power Systems Limited, regulate the inflow of gas to the station in order to achieve the 50% Methane target. The total power output from the station for the period is shown in Tables 3.27 & 328

Utilisation was reduced during the period 2004-2006 due to the re-location of the plant and repairs needed to the main gas collection nipe. Field reconfigurations were also required due to the advancing capping programme. During 2007, 24 new gas wells were installed in cells 1 & 2. An increase in the gas extraction network occurred in 2008 with the emplacement of an additional 10 new gas wells in cells 1-3. Three "rising landfill gas extraction wells" were placed in the active tipping area (Cell 5) during 2008. Additional 14 wells placed in cell 5 during 2009. The success of these measures has resulted in a consistent increase in electricity production from gas extraction from 2006 through to 2008 (Table 3.16 & 3.17).

There has been a slight decrease in landfill gas utilisation in 2009 over 2008. A number of factors are thought to have contributed to this. One of the engines have been removed from Balleally to be located at another site. The total volume of waste entering the landfill is decreasing year on year since2002. Additionally with the roll-out of the brown bin service in the Fingal area and the diversion of biodegradable waste from landfill this is resulting in a subsequent decrease in the biodegradable element of waste entering Balleally.

Currently sufficient gas is being extracted to run 4 engines.

Table 3.27: Electricity Output (MWhr) from the On-site Power Station at Balleally Landfill per year 2003-2009

YEAR	ELECTRICITY OUTPUT (MWhr)
2003	30,194
2004	21,636
2005	21,234*
2006	20,529*
2007	23,762
2008	27,117
2009	25,429

* Corrected data for 2005-2006 reported by Bioverda Power Systems.

 Table 3.28: Electricity Output (MW) from the On-site Power Station at Balleally

 Landfill 2009

Month	Combined ASP1 & AER3 (MWhrs)		
January	2338		
February	2146		
March	2331		
April	2211		
Мау	2276		
June	2120		
July	2161		
August	2130		
September	1940		
October	2006		
November	1827		
December	1943		
Total	25429		

3.10 Review of Nuisance Controls

Condition 7 of Waste Licence W0009-02 requires that vermin, birds, flies, mud, dust, litter and odours do not give rise to nuisance at the facility or in the immediate area of the facility. To this end a review of the nuisance controls was initiated.

The Nuisance which gives rise to greatest number of complaints is odour. FCC received two complaints from local residents regarding odour emanating from the landfill site on 5th January and 20th February. This is significantly down from the fourteen complaints received in 2008. All complaints were responded to as soon as possible after the time they were reported. Odour monitoring Ireland visited the site twice during 2008 and once during 2009 and they made many recommendations for odour / surface emission control (EPA Refs. W0009-02/gen43mh & W0009-02 / ak60em).

Many of these recommendations have been implemented to date in an effort to further improve odour control and may have contributed to the reduction in odour complaints.

Where these complaints or weekly nuisance inspections reveal odours associated with landfill activities landfill management take corrective action. Expert advice was sought previously on the installation of effective odour control. The company chosen goes by the name of *Mist-Air* and they are based in the United Kingdom.

Mist Air odour neutraliser is an alternative gas cleaning technology that achieves the transfer from odorous gases to a non-odorous liquid. This is achieved by mixing the contaminated air efficiently with the absorbent mist at the optimum ratio of volume to surface area causing a rapid transfer of the odorous gases into the liquid phase, thereby preventing a smell. The neutraliser is totally biodegradable, together with the many odorous causing pollutants and is safe for animals, humans and plants life. It absorbs Ammonia, Alcohol's, Hydrogen Sulphides, Sulphur Dioxide, Ethyl Mercaptans, Amines and many more gases.

The misting system is a base unit housed in a free-standing lockable steel cabinet that provides all the power for the system. A reinforced circulation hose is then fed from the base unit to the various circuits required from around the site.

The static manifolds are fitted with stainless steel atomising jets. These are no inted around the site at 7 meter centres. The system is currently installed around the active Cell 5. The static manifolds were attached to their own independent poles during late 2005. This is a change in practice based on the idea that if they have their own fixed position then they do not have to be continually moved with the litter netting as the active cell changes levels as filling progresses. This should mean less maintenance and air blocks, which will improve the effectiveness of the system's performance.

Since the construction of the speed ramps along Balleally Lane there has been an increase in the amount of mud deposited on the road. FCC reviewed the road-sweeping programme and had a few trial runs with a footpath-cleansing vehicle and various road sweepers. FCC sends a road sweeper up Balleally Lane daily which sweeps Balleally Lane and within the Landfill from the wheelwash. Additionally FCC have a tractor mounted sweeper which is used on-site.

3.10.1 Review of Bird Control January to December 2009

Bird Control Ireland Ltd visited Balleally Laidfill site for the purpose of Bird Control between January - December 2009.

During this time site was visited once/twice per month on some occasions and a jointly operated programme was run. The objective of the programme at Balleally was to reduce the amount of scavenging birds on-site to a minimum.

During each visit to site and Control Ireland staff undertook efforts to reinforce the daily bird control activities. These included:

- Flying of Falcons and Hawks
- Use of species specific distress calls
- Use of shotgun and Bird scaring pistol
- Flying of various kites (visual deterrents)

Site staff at Balleally Landfill were responsible for the daily deployment of equipment daily and for keeping record of activities on-site. These record sheets (*visit logs*) were retained in the Bird Control Manual.

Corvids and Gulls were the most common pest bird on-site throughout 2009. These pest birds were moved off site with distress calls and visual deterrents. No gulls were harmed.

Hard and cold weather in January showed increased numbers of scavenging birds on-site. Birds were not permitted to land and were pushed off on each occasion using distress calls, visual deterrents and pyrotechnics. Harassment proved successful as birds numbers reduced on-site. New distress call system (*one shot*) was delivered to site in June.

August and September saw a reduction in the number of birds due to agricultural activities in the area.

Throughout the year Bird Control Ireland Ltd undertook management activities

- Liaison with site management
- Variation of bird control activities on-site to achieve best results
- Equipment maintenance and report faults etc.
- Maintenance of site bird control manual and visit log

The Balleally project has achieved a measure of success for a low level programme. Using site equipment birds can be moved on easily.

Bird distress calls were noted to be effective at moving pest birds off site however the one shot system was moved on-site during the year. The benefit of this move is to represent a "new" call in respect of birds. This proved successful

In conclusion:

- Birds did attempt raids each month but were cleared using the range of techniques and equipment available.
- Corvids and Gulls are the most persistent bird that attempt to raid Balleally Landfill on occasions, usually during times of inclement weather.

Bird Control Ireland Ltd are pleased with the results achieved at Balleally handful Site during 2009 and this level of control is to be expected to remain as the current programme continues.

eurent programm.

4. SITE DEVELOPMENT WORKS

Details of the equipment and plant on-site in Balleally is presented in Table 4.1.

Table 4.1: Equipment and Plant list at Balleally Landfill 2009

Type of Item	Item	Quantity	Resource Used
Transport	02 D 76790 Isuzu 4X4 *	1	Diesel
	04 D 68456 Ford Fiesta Van*	1	Diesel
	03 D 4835 Isuzu 4X4*	1	Diesel
	06 D 77339 VW Twin Cab Pick Up*	1	Diesel
Plant	04 D 64948 John Deere 4X4 Tractor*	1	Diesel
	07 D 7332 Same Tractor*	1	Diesel
	02 D 5577 Renault 4 axle skip lifter*	1	Diesel
Heavy Plant	Hanimag Compactor	1	Diesel
	Kamatsu 65px dozer*	2	Diesel
	Cat 130 mini Excavator*	1	Diesel
	Cat excavator 330*	1	Diesel
	30 Ton Vibrating Roller*	1	Diesel
	Kobelco 355 Excavator*	1	Diesel
	Diesel H/P power washer and bowser*	1	Diesel
	10 KVA 3 Phase Generates*	2	Petrol
Auxiliary Plant	Wacker Plate*	1	
	CONSAW*	1	Petrol
	6 nch bump*	1	Diesel
	6.5 KVA diesel generator*	1	Petrol
Equipment	Extrusion welder*	1	
	Ingerioll-Rand mobile lighting set*	1	
	Wedger Seam Welder*	1	
	Lyster heater / welder*	1	
Survey	Sokkisna level and tripod*	1	
	Sokkisna theodolite & Tripod*	1	
	NIKON auto level*	1	
	Garmen GPS*	1	
	GMI gas monitor*	1	
	Multi 340I meter*	1	
	GMI FI 2000*	1	
	30 Metre steel Tape*	1	
	Solinist 30m dip meter*	1	
	Psion organiser*	1	
	Various P.C.s and printers*	1	

GCL – Geosynthetic Clay Liner

4.1 Works carried out during the Reporting period 2009

The ongoing capping programme and final restoration of the landfill will control and contain the breakouts which occasionally occur near the entrance. The shallow vertical barrier surrounding the facility will be completed at the entrance as part of the closure plan. This should help contain any contamination of surface water with leachate into the future.

Remedial works were undertaken during Quarter 2, 2009 to protect the surface water drain / ditch in the vicinity of SW20A. A 50 m length of the drain/ditch was excavated and cleaned prior to lining with low-permeability clay and a HDPE liner pinned and stabilised to the underlying clay bank. These two layers of impermeable material serve to minimise inputs into the drainage ditch.

The ditch adjacent to SW20a was regarded with stone fill, which allows the movement of water through the gravel. A manhole access point was built to facilitate visuals assessment and the required periodic environmental sampling.

There is no flow into the estuary from SW20a as the outfall point is bunged.

During the forthcoming monitoring period FCC propose to undertake an analysis of historic data relating to:

- Leachate pumping
- Weekly Electronductivity readings
- Rainfall
- Leachate levels in Cells
- Groundwater in CD1

Should the analysis of this data present any correlations it nay suggest the source of elevated electrical conductivity levels in surface waters.

4.1.1 Installation of New Landfill Gas Management Infrastructure

14 No. 125mm diameter gas extraction wells were drilled during Quarter 4 2009 across Cell 5. The exact locations were selected after consultation with FCC and Bioverda. The spacing of the gas extraction system is approximately 45 m between each well on each line. The depth of each of the extraction wells is no deeper that 2 m above the base of the lined landfill at the point of each gas well. The wells were connected to the utilisation plant. The CQA document for these wells is available for inspection at the facility offices.

Table 4.2:Work carried out during 2009

Objective/ Target	Description	Timescale
Objective 1	To minimise environmental impact on the immediate environment	
Target 1	To remediate banks around existing and new boreholes and up update TOC readings	Commenced & Ongoing
	Some TOC's resurveyed and all relabelled in-situ	
	To review and extend gas abstraction network in newly capped areas	
Target 2	Significant new areas harnessed 20 new wells on Top Lobe. 14 new auger wells cells 4&5 Ten new rising wells in cells 5 & 6	Commenced & Ongoing
Target 3	To start the installation of concrete paving around LTP	Commenced & Ongoing
	Partial Completion 2008	
Target 4	Complete Commissioning of Leachate Treatment Plant & Centrifuge	Commenced & Ongoing

Objective/ Target	Description	Timescale
	All parameters in compliance except for COD. Application for Licence Review (W0009-04) to remove COD as an ELV parameter	
Target 5	Complete capping of phases 3 and 11.	Commenced & Ongoing
	Phase 3 complete. Cells 1-5 capped within Phase 11	
Taurah C	Determine manual procedure for checking leachate levels in the cells	Complete
Target 6	Placed second level detector (pressure transducer) in cells	Complete
T	Install leachate borehole(s) near SVB at western end of site & Repair Leachate Monitoring Boreholes at NE section of Site	Constat
Target 7	Installed leachate borehole(s) near SVB at western end of site & Repair Leachate Monitoring Boreholes at NE section of Site	Complete
Objective 2	Restoration of the facility	
	Installation of final capping layer	Commenced & Ongoing
Target 1	Phases 2 & 3 Complete. Cells 1-5 capped with Phase 11	
	Prepare capped areas for landscaping	Commenced & Ongoing
Target 2	Phases 2 & 3 Complete. Cells 1 4 Tapped within Phase 11.	
Target 3	Prepare Landscaping Plan for implementation in 2009-2010 to include planting of northern boundary adjacent to gas plant area, Balleally Lane / Landfill northern boundary (after final capping installed) and capped southern and eastern boundaries up to 27m contour line Grass seeing of capped areas ongoing. No other	Commenced & Ongoing
	planting his year. Liaison with Parks Department ongoins. Proposal sent to EPA re Planting Programme along Southern, Western and Northern Slopes. Agreement Secured with NPWS for these proposals	
Target 4	Examine the completion of a shallow vertical barrier at the northern boundary for implementation during restoration of site	Commenced & Ongoing
	No Progress to report	
Target 5	Demobilisation of Civic Amenity Area Civic Amenity Demobilised	Complete
Target 6	Seal leachate risers in pump chambers and apply negative pressure	Complete
Target 7	To provide for Leachate Recirculation in Cells 5 & 6	Commenced & Ongoing
Target 8	To Prepare grade and place liner for second lift Piggybacking above the haul road Cells 4-6	Commenced & Ongoing
Target 9	To commence mitigation measures to deal with surface water contamination at SW20a.	Commenced & Ongoing

Objective/ Target	Description	Timescale
Target 10	Install Weather Station	Complete

Table 4.3:Works to be carried out during 2010

Objective/ Target	Description	Timescale
Objective 1	To minimise environmental impact on the immediate environment	
Target 1	Repair or replace leachate monitoring boreholes around landfill perimeter.	Feb-Dec 2010
Target 2	To review and extend gas abstraction network during 2010 in recently capped areas of new cells (5-6)	Feb-Dec 2010
Target 4	To provide for Leachate Recirculation in Cells 5 & 6	Feb-Dec 2010
Target 5	To progress the installation of concrete paving around Leachate Treatment Plant (LTP)	Feb-Sept 2010
Target 6	Complete Licence Review to remove COD as treatment ELV for treated leachate discharge to estuary	Peb-Sapt 2010
Target 7	To Commence Capping of northern flanks of cells 5& 6 and tie into base anchor trenck To commence capping of former Civic Amonity Area	Commenced & Ongoing
Target 8	To Prepare grade and place liner for second lift Piggybacking above the had node Cells 4-6	Commenced & Ongoing
Target 9	To complete mitigation measures to deal with surface water contamination at SW20a	March-Dec 2010
Target 10	To investigate mitigation measures for the prevention of leadnete vreakout along the southern boundary of the landfill	March – Dec 2010
Objective 3	Restoration or the facility	
Target 1	Commence Capping of northern flanks of cells 5 & 6 and tie into base anchor trench. To Commence Capping of old civic amenity area.	March – Dec 2010
Target 2	Prepare capped areas for landscaping	March – Dec 2010
Target 3	Prepare Landscaping Plan for implementation in 2010 to include planting of northern boundary adjacent to gas plant area, Balleally Lane / Landfill northern boundary (after final capping installed) and capped southern and eastern boundaries up to 27m contour lineGrass seeding of capped areas ongoing. No other planting this year. Liaison with Parks Department ongoing. Proposal sent to EPA re Planting Programme along Southern, Western and Northern Slopes. Agreement Secured with NPWS for these proposals	March – Dec 2010

Objective/ Target	Description	Timescale
Target 4	Examine the completion of a shallow vertical barrier at the northern boundary for implementation during restoration of site	March – Dec 2011
Target 5	To Prepare Plan for the demobilisation of existing facility offices to a new location	March – Dec 2010
Target 6	Address Flooding Issue at Entrance	March – Dec 2010
Target 7	Address Contamination Issue at SWV1	March – Dec 2010
Target 8	Repair Leachate Monitoring Levels SCADA system	March – Dec 2010

4.2 Progress on-site restoration

The Restoration and Aftercare Plan for the landfill was submitted in July 2003 as per Condition 4.1. This plan sets out a framework to successfully restore Balleally Landfill to a condition suitable for use as an amenity for the general public. The plan has been prepared in accordance with the EPA Landfill manual 'Landfill Restoration and Aftercare' (1999), the Council Directive (1999/31/EC) on the Landfill of Waste and Waste Licence W0009-02. Restoration is being undertaken at Bancally Landfill using a phased approach due to the size of the site and seasonal constraints. On completion of restoration in each phase, the aftercare plan to establish and maintain the after use of the site shall be implemented.

Capping of the site is undertaken as per Condition 4.3. The geotextile alternative was investigated and agreed in early 2004 with the EPA. This decreased the number of vehicle movements required for importing soil for the final cap.

Figure 4.1 indicates the agreed phases for the capping and restoration of Balleally Landfill. The phasing provides for the restoration of the original landfill initially, and then the landfill extension area. The total area for capping is 45.9 Hectares (113.42 Acres).

Between 2004 and December 2008, 36.25 Hectares (89.57 Acres) were capped. During 2009, an additional 1.28 Hectares (ha) (3.16 Acres) were capped. Along with the "Old Landfill", Cells 1, 2, 3, 4 and the majority of 5 of the new landfill, are now capped, see Figure 4 .1. A total of 37.53 Hectares (92.73663 Acres) is now capped, this equates to 81.76% of the entire landfill area capped. The remaining capping areas are the new cells 5&6 (4.6ha approximatery) and Old Landfill (3.7ha approx).

A proposal was sent to *the Agency* (Ref: FCC-W0009-02-020) on 22/9/2008 to provide for a second lift "piggybacking" between 'new cells" and Top Lobe of the old landfill. This proposal would give a void space of 176,000 tonnes. This proposal was agreed to, subject to conditions, by *The Agency*, (Ref: W0009-02 / ak61em) and an additional 1.6 ha of the landfill was lined for the reception of waste.

<u>4.2.1</u> Inert waste to be used for cover/restoration material at the facility

An estimate of soils required for the final capping of the landfill is as follows:

Expected subsoil tonnages for restoration = 1,180,000 tonnes Expected topsoil tonnages for restoration = 580,000 tonnes

This estimate does not take into account any soil requirements for levelling off the contours prior to the placement of the final capping. However, it is expected that material on the landfill site (berms etc.) will be used which will limit the importation of soil/clay.

Onion skin method of filling takes place at the tipface at Balleally Landfill as described in the EPA Landfill Operational Practices manual. As a result of this method at the end of each day the tipface is completely covered with clay and other such inert material. This reduces the possibility of windblown litter and provides reasonable surface quality for vehicle access the next day for tipping.

This mixed cover material provides drainage, shape and surface stability to the landfill, which is essential, when the final restoration measures above are initiated.

A filling plan has been prepared for the extension area in 2006 to ensure the integration of waste filling activities with the phased restoration of the site under condition 5.2 of the Waste Licence W0009-02.

A revised filling plan was submitted to and approved by the EPA before entering Cell 5: the revised plan took into consideration the EPA Circular Letter to all landfills, dated 20th June 2007.

The total area of the site is 124 Acres. The Licence area is 124 Acres.

See below statistics of capping programmed:

Start Date of Capping Programme: May 2004 Progress as of 18th December 2009: Approximately 92.73 Acres (37.53ha)

The final capping profile is made up of:

- 1. Topsoil layer of 300 mm thickness.
- 2. Subsoil layer of 700 mm thickness.
- Geocomposite Drainage Layer (GDL).
 Geosynthetic Clay Liner (GCL) / LLDPE membrane liner on New Cells
 Geocomposite Gas Collection (GGCL).

4.3 Annual topographic survey

In accordance with Condition 8.5.1 of WL W0009-02 a Too graphical Survey was undertaken in Balleally Landfill in September 2009 and submitted to The Agent Ref: FCC-W0009-02-2009-027).

4.4 Slope stability

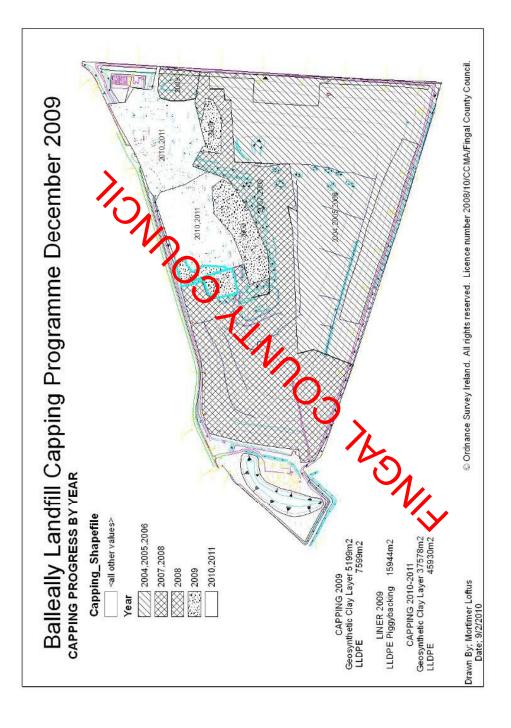
As required under Licence Condition 8.8.1 lope stability survey was undertaken in Balleally Landfill during October 2009 and submitted to The Agency (Ref: FCC-W0009-02-2009-029).

Amongst the conclusions in the statement that, "The accessible slopes at Balleally Landfill are considered by BMA to be, in general, in good condition."

The following recommendations were made:

".....

Temporary slopes exist, pending regarding, within the site at relatively steep angles but only minor evidence of slope instability or distress of these slopes was noted during the site visit. Monitoring should be undertaken regularly in these areas and the slopes reprofiled as soon as possible......


Vegetation of any un-vegetated, permanent slopes should be carried out as soon as possible.....

The minor slope stability issues identified in this report should be addressed as soon as possible".

These recommendations have been communicated to site management and will be implemented.

"Consideration should be given to the establishment of specific monitoring points along the southern slope for measurement during the annual topographic survey."

This recommendation will be discussed with Topographic Survey Company with a view to incorporating it into annual topographic survey.

Figure 4.1: Balleally Landfill Capping Program December 2009

J:/2009/LW09/164/01/Rpt004-0.doc

IISANOS KINOS KONIS

5. WASTE RECEIVED AND CONSIGNED FROM THE FACILITY

5.1 Waste acceptance and handling

5.1.1 Waste reception

During operational hours, a qualified person in charge of the landfill is always present on-site. A new weighbridge system was installed at Balleally Landfill by Precia Molen Irl. Limited. It consists of two Precia Molen VS300CS surface Mounted Weighbridges linked to a GeneSYS PC-based Weighbridge Management System. The GeneSYS Windows – based software, which forms the basis of the PC based system stores all relevant data in database form from which cross-referenced reports can be generated as required by landfill management and the accounts department.

The system has been in operation since the 25th of May 2005 and consists of two weighbridges, one "in" and one "out". These are linked to a computerised system. An automatic barrier system is proposed to be linked to the computerised system. This will consist of one barrier to prevent the lorry being driven off the weighbridge prematurely and another to prevent the ensuing lorry from getting too close to the weighbridge. The capacity of both weighbridges is 50,000/60,000Kg and the deck size is 18m x 3.6m.

Extensive protection against lightening is included as standard, this includes each loadcell and a central earth for the entire weighbridge.

Written records of loads arriving on-site are maintained. These include the date, weight (tonnes), origin (producer/collector), description of waste (EWC code), the carriers name, vehicle registration and special handling/pre-approval permit number (where applicable) is recorded. The initial point of inspection is the weighbridge and the name of the operator is recorded electronically by the GeneSYS system as the person checking the load in the first instance. Written operational procedures for waste acceptance are available and used for training staff on-site.

The weighbridge is located a few hundreds yards north of the administration building where a service hatch permits communication with the driver and inspection of documentation accompanying the waste consignment (Waste Acceptance Form A, B or S, Permit (if applicable). The site reception area is laid out in a one-way system, which assists the through flow of vehicles. No vehicles deemed unfit to use the site roads are allowed access. Rejected loads are recorded as per Condition 10.2 (i) of the Waste Licence 9-2 detailing the date and type of waste rejected and the facility to which they were directed.

All vehicles arriving on-site must be appropriately covered to ensure the transport of the waste does not adversely affect the environment. Warnings will be given to the driver where necessary and if the instruction is ignored the company involved will be contacted and the load rejected.

Acceptance of waste is a per Schedule A of the Waste Licence Reg. No. 9-2 Waste Acceptance policy agreed by EPA as per condition 5.2.3 and Condition 1.6 of the licence.

Wastes not acceptable are liquid wastes, animal wastes, construction and demolition wastes, whole used tyres and hazardous wastes. Difficult wastes that require special handling can only be accepted if the Environmental Services Department of the Council has given prior authorisation at County Hall, Swords. Authorisation is by means of a valid permit (which expires one month after the date of stamping by the Environmental Services Department) and details the waste type, quantity and any special instructions required by site personnel.

Following acceptance of the load the weighbridge operator directs traffic to the relevant working area for the waste type where a banksman in charge of traffic will give further instructions to drivers.

5.1.2 Waste inspection

If the weighbridge operator is unhappy with the documentation, nature and/or source of a load presented for disposal or if the carrier's permit is invalid, he will contact the Site Manager and may instruct the vehicle to park (in a holding area) while the legal status of the permit, or the origin, description and nature of the load is confirmed.

A visual inspection can be performed at the weighbridge, if possible. Alternatively, the load can be tipped adjacent to the relevant tipping face and inspected by the designated waste inspector. Where a breach of the law is suspected, the EPA and the Gardaí will be informed.

Where a breach of the waste acceptance policy is suspected the load can be diverted to the Waste Inspection Area/Quarantine Area for further inspection.

In addition to these inspections, checking and confirmation of suspect loads, random checks are also carried out on regular site traffic.

Non-municipal type waste is not accepted on-site unless the Environmental Services Department has given prior approval at County Hall, Swords by means of a pre-approval permit.

FCC personnel responsible for checking the documentation accompanying vehicles must be capable of:

- understanding the waste acceptance criteria for the site in terms of licence requirements, and site management policies,
- understanding the basic underlying reasons for the acceptance criteria for the site,
- understanding the information which should be provided on the documentation accompanying loads,
- identifying non-conformity,
- Following specific procedures in the event that either the documentation is incorrect or the load does not comply with the relevant acceptance criteria.

Where inspection of a load is not possible at the site reception area (e.g. sealed containers), then the waste is deposited on the ground close to the working face. This permits inspection of the load prior to blading and burial. If a non-conformity is discovered or suspected, the waste is isolated and placed back in the transporting container or suitable alternative and removed to the Quarantine area pending management investigation. If the non-compliance is confirmed and deposit on the site not possible, then the load is returned to the carrier, and the producer and authorities informed. Written records of the incident are recorded at the Weighbridge in the Rejects Book. Noads held on-site overnight are recorded in the Quarantine Register.

5.1.3 Inspection/Quarantine Area

An inspection area is provided as per condition 3.7 of the Waste Licence W0009-02. Any waste not conforming with schedule A and/or agreed Waste Acceptance Policy as per condition 5.2.3 will be rejected and removed off-site or placed in the quarantine area. Random loads and suspect loads will be diverted to the Inspection area for spot checks

Section 5

Fingal County Council Balleally Landfill, W0009-02 AER 2009

Quantity & Type of Waste Deposited in Balleally Landfill in 2003-2009 & Waste Licence Limit for Waste Licence W0009-02 Table 5.1:

Waste Type	Licence Limit	Deposited in 2003	Deposited in 2004	Deposited in 2005	Deposited in 2006	Deposited in 2007	Deposited in 2008	Deposited in 2009
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Household	152,500	61,201.52	65,814.99 (+ 6,099.56 C.A) 71,914.55	66,203 (+ 5,801 C.A) 72,004	62056 (+4.891.C.A.)	63,708 (+4,867 C.A.) +62 F.T. 68,637	50,489 (+ 3,959 C.A.) +10 F.T. 54,458	37,789
Commercial	200,000	150,454.96	119,890.35	49,195.57	63,819	61,773	46,248	54,093
Sewage Sludge	30,000	4,494	5,104.58	3,402,24	4,623	7,466	5,091	315
Industrial Non- Hazardous Sludge	6,000	5,749	5,992.8	¢ 635	6,825	7,061	6,660	6,363
Total	388,500	221,899.48	202,902.28	131,236.81	142,214	144,937	112,457	98,560
C.A – Civic Amenity								

Note: As can be seen from the above figures during 2005-2008, the fountrial non-hazardous sludge from Leixlip waste water treatment plant exceeded the licence limit of 6,000 tonnes. This is attributable to the expansion of the plant due to an increase in demand for potable water and subsequently an increase in production. Sewage sludge is from Barnageera Sewage Treatment Works with accounted for increases in this waste stream during 2007, no longer comes to Balleally Landfill.

t

J:/2009/LW09/164/01/Rpt004-0.doc

IISANOS KINOS KONIS

Waste received at Balleally to be disposed of at the landfill is weighed at the weighbridge on entry. A waste acceptance policy has been prepared as per Condition 5.2. This enables the recording of waste into and out of the facility as per Condition 10.2 and 10.5.

5.2 Quarantine register

Vehicles are taken into quarantine at Balleally Landfill for inspection under the Operation Bruscar Scheme.

5.2.1 Operation Bruscar Introduction:

On Saturday, 16th November 2002 a joint operation between guards and authorised persons under the Waste Management Act, 1996 commenced. This operation was codenamed "Operation Bruscar".

The authorised persons involved identified vehicles that were transporting waste and requested the guard to stop the identified vehicle. The waste on the vehicle was examined and the driver was questioned with regards to the origin and eventual destination of the waste. If, in the opinion of the authorised person, it was necessary to prevent environmental pollution, the vehicle containing the waste was impounded.

All impounded vehicles were taken to the quarantine area at Balleally landfill, where they were detained. This made it possible to further inspect and in detail examine the waste on the impounded vehicles.

Examination of waste is necessary to gather evidence for possible prosecution and to classify and identify the waste to safely dispose of it at a facility that is licensed to accept t.

Three operations were done during November and December 2002 and 41 were executed in 2003. 39 of these vehicles have been impounded to date, 25 of them in 2003.

There were only 7 vehicles impounded in 2004 and 3 vehicles impounded during the reporting period of 2005. This was owing to the temporary closure of the guarantine area in order to facilitate the excavation of the new cell number 6 in July 2004. A replacement quarantine area was built in 2005 but utilisation of this area has not been possible due to outstanding construction issues. All vehicles impounded are recorded in the Balleally Landfill Quarantine Register. FCG has also agreed to accept vehicles from similar operations from Meath County Council waste officials when required.

2006

There were seven vehicles impounded in the quarantine area during 2006. All vehicles impounded are recorded in the Balleally Landell Quarantine Register. FCC has also agreed to accept vehicles from similar operations from Meath County Council waste officials when required.

2007

There were six vehicles impounded in the quarantine area during 2007. All vehicles impounded are recorded in the Balleally Landfill Quarantine Register. FCC has also agreed to accept vehicles from similar operations from Meath County Council waste officials when required.

2008

No vehicles were impounded in the quarantine area during 2008.

2009

No vehicles were impounded in the quarantine area during 2009.

5.3 Discussion of Fingal County Council's waste consigned to Balleally Landfill

- **Domestic Waste:** Domestic waste is household refuse that was collected by FCC refuse freighters from the doorstep of private households. The waste is presented to the Council in a wheelie bin.
- **Road Sweepers:** Road sweepers are lorry type machines that are employed by the Council to sweep channels and kerbing and to remove grit and litter from the road surface.
- **Roads:** The Roads Department carry out repairs to footpaths and roads in the county. The waste material arising from these activities is used in the landfill for berk and internal road construction.
- **Parks:** The Parks Department not only tend to trees, shrubs and plants but also conduct repairs to buildings and structures of a historical nature and clear litter and rubbish from open spaces. Residual materials from these activities were deposited to the landfill. Waste from road cleansing and landscaping also arise from this department. It should be noted that no green waste was disposed of to the facility by this department.
- **Drainage:** Sewage sludge consigned to the facility for the period was classified as drainage as it originated in the Drainage Department. This was the only sewage sludge consigned to the facility.
- **Environment:** Material from the Environment Department originates from activities such as beach cleaning, cemetery management and clean-ups.
- **Cleansing:** The Litter Management Section collects material such as litter bin contents and flytipped waste which is consigned to the landfill.
- **Leixlip Waterworks:** Leixlip Waterworks is a potable water treatment plant. A by-product of the treatment process is a non-hazardous sludge cake as wen as some screenings.
- **Waterworks:** Waste generated by the operation of the Water and Drainage Division that would include cleanings and inert material arising from the laying of pipes.
- HQ: A small quantity of waste produced in the headquarters of FCC was disposed of at the facility.

6. ENVIRONMENTAL INCIDENTS AND COMPLAINTS

6.1 Reported incidents

Table 6.1 gives a summary of reported incidents during 2009. More details are available at the facility office.

Table 6.1: Reported Incidents during the Reporting Period 2009

Incident Number	Date of Incident	Nature of Incident
1	24/8/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Well-GA5.
2	25/8/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Well-GA5.
3	27/8/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Well-GA5.
4	1/9/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Well-GA5.
5	11/9/2009	Landfill Gas: Emission Tune Value Exceeded at Monitoring Well-GA5.
6	14/9/2009	Landfill Gas: Enission Limit Value Exceeded at Monitoring Well- GA5.
7	18/9/2009	Landfill Gase Epiission Limit Value Exceeded at Monitoring Wells-GA3& GA5.
8	21/9/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Well GA5.
9	30/9/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Wells- GA3 & GA5.
10	7/10/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Well- GA5.
11	14/10/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Wells- GA3&GA5.
12	23/10/200	Landfill Gas: Emission Limit Value Exceeded at Monitoring Wells- GA3, GA4 & GA5.
13	27(10/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Wells- GA3, GA4 & GA5.
14	X11/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Wells- GA3&GA5.
15	11/11/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Wells- GA3&GA5.
16	19/11/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Well-GA5.
17	27/11/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Wells- GA3, GA5, GA7 & GA13.
18	1/12/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Wells- GA3&GA5.
19	8/12/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Wells- GA3&GA5.
20	11/12/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Well- GA5.
21	16/12/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Well-GA5.
22	21/12/2009	Landfill Gas: Emission Limit Value Exceeded at Monitoring Well-GA5.

6.2 Complaints Summary

A summary of complaints for the reporting period is shown in Table 6.2. The complaints register is available for further inspection at the site office. There were a total of 2 complaints received at the facility for the reporting period-compared to fourteen complaints in 2008. They both relate to odour. All complaints were responded to as soon as possible after the time they were reported. Odour monitoring Ireland visited the site twice during 2008 and once during 2009 and made many recommendations for odour / surface emission control (EPA Refs. W0009-02/gen43mh & W0009-02 / ak60em). Many of these recommendations have been implemented to date which may account for the reduction in the number of complaints received.

Table 6.2: Complaints received for the reporting period 2009

Date of Complaint	Nature of Complaint	Complaint	Corrective Action
5/1/2009	Odour	Odour at Dwelling – Balleally Lane / Lusk Road Junction	Investigation
11/2/2009	Odour	Odour at Dwelling-Lusk Area	Investigation
	FINCA	Contra court	

7. ENVIRONMENTAL MANAGEMENT PROGRAM

7.1 Environmental Objectives and targets for 2010

See section 4.2 for environmental objectives and targets.

7.2 Summary of written procedures

There were no new written procedures during the reporting period.

7.3 Communications program for public information

The Communications Programme for FCC contains information on Balleally Landfill. The information can roughly be divided into two areas. Background information prior to granting of waste licence, and information concerning the waste licence (W009-02). There is also a register of correspondence to and from the Agency, along with the various correspondences relevant to the Lipence. This information is updated on a continuous basis.

Environmental Information can be viewed at the following locations:

- At the Council's Headquarters between 9.30 a.m. and 13.45 p.m. and 2.00 p.m. and 4.00 p.m. Monday to Friday (excluding public holidays), unless otherwise arranged by prior appointment. Permanent facilities for viewing information including a computer to be provided at Balleally Landfill.
- At Balleally Landfill by prior appointment with the andfill Manager.
- A register of information will be made available of www.fingalcoco.ie. A Link to the EPA's website will also be added to the site.

7.3.1 Site Visits

- Site visits to Balleally Landfill can be arranged by writing to the Senior Landfill Manager requesting the date and time of the proposed visit and indicating the number of visitors and the purpose of such a visit and whether any presentation is required. The use of cameras and video equipment during the visit must be agreed in advance with FCC.
- Such requests will be accommodated where possible.

Balleally Landill Liaison Committee 7.3.2

- All information relating to the restoration and aftercare of Balleally Landfill is presented to the Liaison Committee for comment and adoption.
- The members of the committee are:

Mr. Brian Arnold - REACT

Mr. John Barrett, and Ms. Rena Condrot - Balleally Residents and Farmers Association

Mr. Des Martin, and Mr. Ben Colgan - RAGE

Cllr. May McKeon (Chairperson), Cllr. Anne Devitt, Cllr. Tom Kelleher, Cllr. Joe Corr - Public Representatives. Following local elections and voting onto steering committees Cllr. Tom Kelleher & Cllr. Joe Corr were replaced by Cllr Ken Farrell and Cllr. Gerry McGuire.

Mr. John Daly, Mr Martin Kiely and Mr. Mortimer Loftus. - FCC.

The Committee met six times during 2009. Agenda were set and minutes kept.

Table 7.1: Reports & Information Available for Public Inspection 1993-2009

Information Available	Report Date
Balleally Landfill Preliminary Technical Report & Scoping Study	September 1993
Balleally Landfill Study, Improvement of Balleally Landfill Site & Lusk Sewage Outfall, Inception Report	October 1996
Balleally Landfill Study, Improvement of Balleally Landfill Site & Lusk Sewage Outfall, Safety & Environment Assessment Report	January 1997
Balleally Landfill Study, Improvement of Balleally Landfill Site & Lusk Sewage Outfall, Preliminary Report on Recycling of Construction/ Demolition Waste	January 1997
Environmental Impact Statement for Balleally Landfill and Rush/Lusk Wastewater Treatment Plant, Volumes 1 - 8	September 1997
Waste Licence Application, Application Form	October 1997
Waste Licence Application, Monitoring Data	October 1997
Balleally Landfill Report on Interpretation of Baseline Monitoring Programme	November 1998
Waste Licence Request for Additional Information Waste Licence Request for Additional Information Article 6(1)	February 1998 September 1998
Waste Licence 9 – 1, Issued by the EPA	16 th February 1996
Report on Short Term Options at Balleally Landfill	July 1999
Waste Management Plan for the Dublin Region, Accepted by FCC	10 th May 1999
Dublin Landfill Site Selection, Phase 1 Report	July 1999
Report on Short Term Options at Balleally Landfill	July 1999
Report on Short Term Options (capacity) at Balleally Landfill	Aug. 2000
Construction & Demolition Waste Recycling Project, Contracts Decuments	
Hydrology Study at Balleally Landfill	March 1993
Groundwater Quality at Balleally Landfill	June 2000
Groundwater Quality at Balleally Landfill	December 2000
Construction & Demolition Waste Recycling Project, contract Documents	April 2001
Ground & Surface Water Quality at Balleally Landfil	April 2001
Proposal for Leachate Management at Balley Landfill in Response to Condition 4.17 of Waste Licence 9-1	July 2001
Environmental Monitoring at Balleally Andfill	July 2001
Noise Monitoring at Balleally Leadin	August 2001
Environmental Monitoring at Balleally Landfill	October 2001
Environmental Monitoring a Balleally Landfill	Jan 2002
Bird counts from Rogerstown Estuary	1995 2001
Environmental Monitoring at Balleally Landfill	April 2002
3alleally Landfill Vertical Barrier - Specified Engineering Works/ Tenders	May 2002
Environmental Monitoring at Balleally Landfill	July 2002
Annual Environmental Report 2000	
Annual Environmental Report 2001	Nov 2002
3alleally Landfill/ Short Term Extension Program - updated tender Jan 2003	Jan 2003
Annual Environmental Report 2002 / 9-1	February 2003
Environmental Monitoring at Balleally Landfill Nov - Dec 2002 Environmental Monitoring at Balleally Landfill Jan 2003	February 2003
Ecological Monitoring of Rogerstown Estuary May & July 2002	February 2003
Study of Scavenging Birds at Balleally Landfill December 2002	February 2003
Ecological Monitoring of Rogerstown Estuary Oct & Nov 2002	February 2003
Dust Monitoring Locations April 2003	July 2003

Information Available	Report Date
Environmental Monitoring April 2003	July 2003
Revised Restoration and Aftercare Plan Balleally landfill July 2003	July 2003
Slope Stability Assessment for Balleally Landfill July 2003	July 2003
Environmental Monitoring at Balleally July 2003	July 2003
Environmental Monitoring at Balleally July 2003 C001983/4	July 2003
Rogerstown Estuary Final Report June 2003	June 2003
Environmental Monitoring at Balleally July 2003 C002631/1	October 2003
Construction Quality Assurance Report/Schedule B	September 2003
Environmental Monitoring Report Balleally Dec 2003 (including Appendices)	December 2003
Balleally Landfill AER 2003	February 2004
Environmental Monitoring Report January 2004	April 2004
Environmental Monitoring Report March 2004	March 2004
December '03 Environmental Noise Report	July 2004
Quarterly Monitoring Report Q2 June 2004	August 2004
Construction Quality Assurance Report/Schedule B	August 2004
Quarterly Monitoring Report Q3 October 2004	October 2004
Quarterly Monitoring Report Q4 December 2004	January 2005
Annual Environmental Report 2004	February 2005
Quarterly Monitoring Report Q1 January 2005	April 2005
Quarterly Monitoring Report Q2 & Noise monitoring report Q2 April 2005	July 2005
Quarterly Monitoring Report Q3 July 2005	October 2005
Quarterly Monitoring Report Q4 October 2005	January 2006
Annual Environmental Report 2005	January 2006
Environmental Management Plan 2005	February 2006
Quarterly Monitoring Report and Noise Survey 01 006	April 2006
Quarterly Monitoring Report and Noise Survey 22 2006	July 2006
Quarterly Monitoring Report and Noise Survey Q3 2006	September 2006
Resource Use and Energy Efficiency Au	October 2006
Quarterly Monitoring Report Q4 206	January 2007
Noise Survey Q4 2006	January 2007
2006 Annual Emissions Survey ISS Gas Plant	January 2007
Annual Environmental Report 2006	January 2007
Quarterly Monitoring Report and Noise Survey Q1 2007	April 2007
Quarterly Monitoring Report Q2 2007	July 2007
Noise Survey Q2 2007	July 2007
Quarterly Monitoring Report and Noise Survey Q3 2007	October 2007
Flooding Report	November 2007
Slope Stability Survey Report	December 2007
Quarterly Monitoring Report and Noise Survey Q4 2007	January 2008
Annual Environmental Report 2007	January 2008
Quarterly Monitoring Report Q1 2008	April 2008
Quarterly Monitoring Report Q2 2008	July 2008
Rogerstown Estuary Treated Leachate Discharge Modelling Report.	October 2008
Slope Stability Survey	November 2008
Landfill Gas Trace Element Analysis Report	November 2008
Biological Monitoring Report	November 2008

Information Available	Report Date
2008 Annual Emissions Survey IPS Gas Plant	January 2009
Quarterly Monitoring Report and Noise Survey Q4 2008	January 2009
Annual Environmental Report 2008	January 2009
Quarterly Monitoring Report Q1 2009	April 2009
Quarterly Monitoring Report Q2 2009	July 2009
Slope Stability Survey	November 2009
2009 Annual Emissions Survey IPS Gas Plant	January 2010
Map Information Available	Report Date
Re-location C&D at Balleally	March 2003
Wall & Railing along landfill at Balleally	April 2003
C&D Waste Recovery Area, Balleally	June 2003
Topographical Survey for Balleally June 2003	June 2003
Re-location of Gas Compound at Balleally / 4 Drawings	July 2003
Proposed gas extraction pipe to new gas plant	November 2003
Monitoring Map (J1/DG0008) For Balleally	December 2003
Balleally Leachate Treatment Plant Process & Instrumentation Drawing	July 2004
Balleally Leachate Treatment Plant Site Plan Layout	July 2004
Topographical Survey for Balleally Landfill June 2004	August 2004
Revised Monitoring Drawing	October 2004
Installation of new landfill gas management infrastructure.	February 2005
Topographical Survey	October2005
Topographical Survey	August 2006
Provision of Public Car Park and Walkway	February 2007
New IPS Gas Wells	February 2007
Phase 2 Piggybacking	April &July 2007
Joining of existing two vertical barrier walks	June 2007
Installation of New Landfill Gas Management Infrastructure	July 2007
Topographical Survey	December 2007
Updated as built drawings for surface-water / leachate infrastructure	October 2008
Topographic Survey	October 2008
Topographic Survey	October 2009
Landfill Gas Infrastructure	October 2009

7.4 Finical provision

Condition 12.2 of the licence requires the establishment of a fund to implement the Restoration and Aftercare Plan (submitted as per Condition 4.1 in July 2003).

FCC received a letter from The Agency during 2008 regarding Environmental Liability Risk Assessment (ELRA), Residuals Management Plans (RMP), Closure Remediation and Aftercare Plans (CRAMP) and Financial Provision (FP).

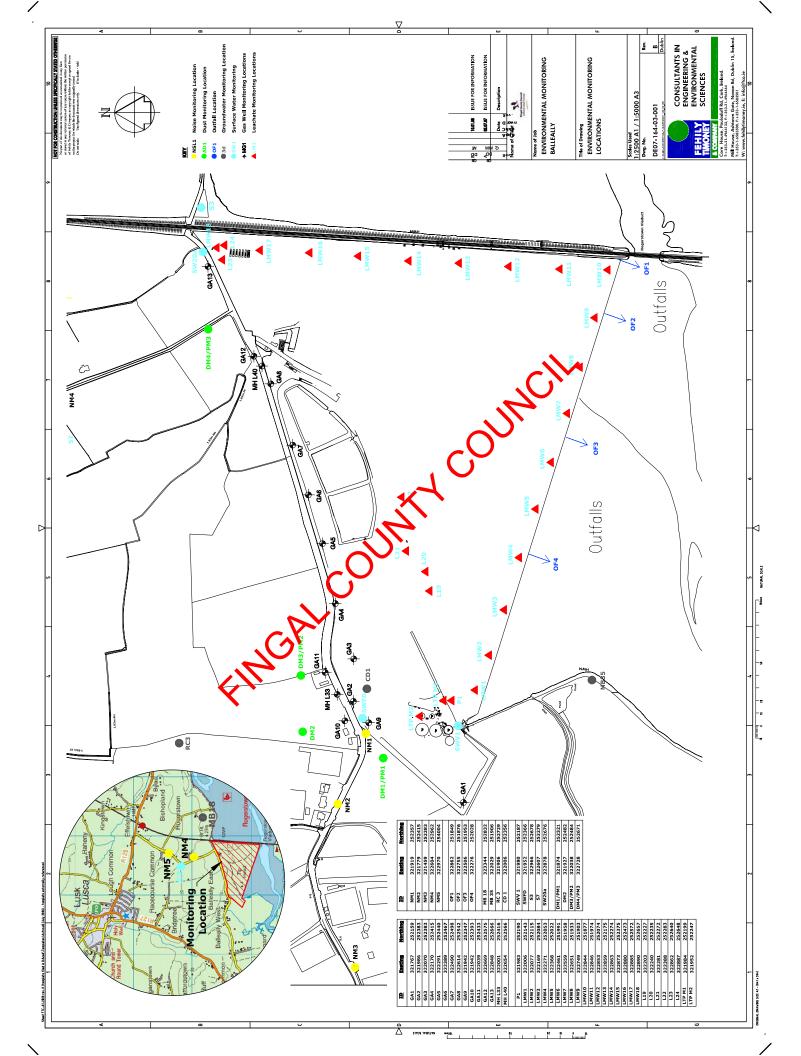
In order to assist The Agency in their assessment on the uptake of Environmental Liability Risk Assessment (ELRA), Residuals Management Plans (RMP), Closure Remediation and Aftercare Plans (CRAMP) and Financial Provision (FP), the following information was submitted to The Agency in relation to Balleally Landfill.

• Balleally Risk Categorisation as derived using the system set out in The Agency's Guidance Document.

This specific exercise has not been carried out to date. However on looking at the guidance document it appears similar to the "Methodology for Determining Enforcement Category of Licences". This exercise gave Balleally an A1 enforcement category which would probably equate to a Risk Category 3 classification.

- The facility's RMP/CRAMP was submitted to The Agency on 4/7/2003. He was agreed by The Agency during 2003. The RMP / CRAMP have not yet been fully costed.
- FCC's position to date with regard to financial provision currently in place for Balleally has been stated as follows; "In accordance with Condition 12.2 of the Waste LCENCE, FCC shall establish and maintain a fund or other form of approved security, that is adequate to assure the financial capability of implementing the Restoration and Aftercare Plan as agreed with "*The Agency*"." Financial provision is made on an annual basis at FCC budgeting meetings. Details of Financial Provision were furnished to The Agency on 25/1/2010 in correspondence Ref: FCC w0009-02-2010-03.

As the CRAMP/RMP predates the Guidance Document (2006), there are some differences in content and methodology. The contents of the CRAMP/RMP broadly reflect the suggested contents in the guidance document. It is also worth stating that *The Agency* approved of the CRAMP/RMP at the time of submission. The financial provision is considered adequate.


7.5 Management Structure

The facility is owned and operated by FCC. The Environmental Services Department of FCC manage the landfill facility. Some changes in the management structure occurred during 2009. A description of the current management structure is detailed in Appendix II.

Appendix II Management structure

Balleally Landfill – Waste Licence W0009-02: Condition 2.2.1. Management Structure – 23rd March 2009

TITLE	NAME	BASE	DUTIES AND	QUALIFICATIONS	EXPERIENCE
			RESPONSIBILITIES		
Senior Engineer, Environment	Mr. J. Daly	HQ	Responsible for Waste Management Enforcement and Waste Infrastructure.	B.E. (Civil Engineering), 1986. M.Sc. Environmental Engineering, 1993. MIEI.	15 years Water Service and Waste Management experience. 14 years LA experience.
Senior Executive Engineer, Environment	Mr. M. Kiely	HQ	Responsible for Waste Infrastructure within the Environment Department.	B.E. (Civil Engineering) 1977, F.Á.S. Waste Management Training Course.	Approx.30 years LA experience including 18 years Waste Management experience. Joined the Environmental Services Department of FCC in Jul 2001.
Landfill Management, Executive Engineer,	Mr. Aidan Murphy	HQ & Balleally Landfill	Landfill Management. Supervision of external contracts. Liaison with consultants and contractors for development works and capping program.	B.E. (Mechanical Engineering), EurIng, MIEI, Chartered Engineer. F.A.S. Waste Management Haining Course. F.A.S. Managing Safely in Onstruction Truining Course.	10 years Engineer Officer, Defence Forces, 6 Years Project Management Construction Industry. Joined the Environmental Services Department in July 2004.
Landfill Management, A/ Executive Scientist,	Dr. Mortimer Loftus	Balleally Landfill & HQ	Landfill Management. Management of Waste Licence Compliance. Supervision of scieptine monitoring, reporting and liaison with the Environmental Protection Agency.	Ph.D Écology, B.Sc. Environmental Science, Dip Environmental Impact Assessment Management, Dip Environmental Management, F.Á.S. Waste Management Training Course. F.Á.S. Managing Safely in Construction Training Course.	1996-2004 Soil Research and Mapping in Teagasc. Joined the Environmental Services Department in July 2004.
Landfill Foreman	Mr. John Lacey	Balleally Landfill	Deputy in the absence of the Landfill Manager, Waste Acceptance Manager, safety inspections and day to day supervision of staff.	Completed courses in Health and Safety (NIFAST), Manual Handling, Evasive Driving	Over 30 years Local Authority Service. Assistant Foreman in Dunsink Landfill for 12 years before being appointed Foreman for Balleally Landfill in 1998.
A/Assistant Foreman	Mr. Mick Harford	Balleally Landfill	Assistant to Landfill Foreman, task management of site operatives for general works and capping program.	A/Assistant Foreman.	Working at Balleally Landfill Site since 1986.

| PRTR# : W0009 | Facility Name : Balleally Landfill | Filename : W0009_2009_ Updates.xls | Return Year : 2009 |

Version 1.1.10

19/04/2010 16:18

CPC Environmental Protection Agency

AER Returns Worksheet

REFERENCE YEAR	2009
1. FACILITY IDENTIFICATION Parent Company Name	Fingal County Council
	Balleally Landfill
PRTR Identification Number	W0009
Licence Number	W0009-02
Wests at IDDC Classes of Astivity	
Waste or IPPC Classes of Activity	class_name
NO.	Specially engineered landfill, including placement into lined discrete cells which are
3.5	capped and isolated from one another and the environment.
	Deposit on, in or under land (including landfill).
3.10	Release of waste into a water body (including a seabed insertion).
3.12	Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule.
5.12	Storage prior to submission to any activity referred to in a preceding paragraph of this
	Schedule, other than temporary storage, pending collection, on the premises where the
	waste concerned is produced.
3.2	Land treatment, including biodegradation of liquid or sludge discards in soils.
3.4	Surface impoundment, including placement of liquid or sludge discards into pits, ponds or lagoons.
3.4	The treatment of any waste on land with a consequential benefit for an agricultural activity
4.10	or ecological system.
	Use of waste obtained from any activity referred to in a preceding paragraph of this
4.11	Schedule.
4.40	Exchange of waste for submission to any activity referred to in a preceding parameters this Schedule.
4.12	Storage of waste intended for submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending collection on the
4.13	premises where such waste is produced.
	Recycling or reclamation of organic substances which are not used as solvents (including
	composting and other biological transformation processes).
	Recycling or reclamation of metals and metal compounds. Recycling or reclamation of other inorganic materials.
	Use of any waste principally as a fuel or other means to penerate energy.
Address 1	
Address 2	
	Co. Dublin
Address 4	
	Ireland
Coordinates of Location	
River Basin District	
NACE Code Main Economic Activity	Treatment and disposed of non-hazardous waste
AER Returns Contact Name	
AER Returns Contact Email Address	mortimer.loftus@fingalcoco.le
AER Returns Contact Position	
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number	
Production Volume	
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	0
Number of Employ es User Feedback/ commente	0
Web ddress	
2. PRTR CLASS ACTIVITIES	
Activity Number	Activity Name
5(d) 5(c)	Landfills Installations for the disposal of non-hazardous waste
5(c) 5(d)	Landfills
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 20	02)
Is it applicable?	No
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ? Is the reduction scheme compliance route being	
used ?	

	SECTION A: SECTION SECURIA FRINK FOLLUTANTS RELEASES TO AIR POLITIANT		THOD						LINULIO	UTITV	
			Method Used	Flare	BY01	BY02	BY03	BY04			
No. Annex II	Name	M/C/E Method Code	Designation or Description	Emission Point 1	Emission Point 2	Emission Point 3 Emi	Emission Point 4 Emi	Emission Point 5 T (Te	T (Total) KG/Year KG/Y	A (Accidental) F (KG/Year KG	F (Fugitive) KG/Year
	Methane (CH4)	M att	Testo 350/454 MXL Flue Gas Analyser	93.0	16976.0	14996.0	12646.0	16177.0	3061375.62	0.0	3000487.62
	Carbon monoxide (CO)	M att	Testo 350/454 MXL Flue Gas Analyser	26.0	23396.0	23777.0	9462.0	12458.0	69119.0	0:0	0.0
	Nitrous oxide (N2O)	M ałt	Testo 350/454 MXL Flue Gas Analyser	941.0	11797.0	9915.0	8963.0	0.7809	40703.0	0.0	0.0
	Non-methane volatile organic compaunds (NMVOC)	scc N	Portable Signal 3030PM FID calibrated with Propane in accordance with EN1526:2002 non-methane hydrocarbon cutter	941.0	131.0	1	185.0	205.0	1612.0	0.0	0.0
	Sulphur oxides (SON/SO2) Carbon dioxide (CO2)	M scc scc	resto 330/434 MAL Flue Gas Analyser GASSIM	1666.0 49105.0	2120.0 8958726.0	2199.0 704-021.0	1741.0 6677200.0	1831.0 8541599.0	9657.0 32144651.0	0.0	0.0
• s SECTION B : REMAINING PRTR POLLUTANTS	ielect a row by double-clicking on the Pollutant	utten			Ŋ	1					
	RELEASES TO AIR POLLUTANT	ME	THOD							g	QUANTITY
No. Annex II	Name	M/C/E Method Code	Method Used	Flare Emission Point 1	Contraction 2	BY02 Emission Point 3 Emi	BY03 Emission Point 4 Emi	BY04 Emission Point 5 Emi	Emission Point 6 T (To	A (T (Total) KG/Year	A (Accidental) F (Fugitive) KG/Year
	Chlorollancearbons (CFCs)	SC M	Impinger train containing 0.1 molar sodium hydroxide and detonised water solution in accordance with EN1911 and EPA 25A	0.1 6004874	26.436569789	23.365521339	19.703946576	25.205657422	0.0	94.8566	0.0
	ta detected to see the set of the Cost.		Impinger train containing 0.1 molar sodium hydroxide and deionised water solution in accordance with EN(9) and ED0 26A	0.148408000		CBUTEOND EC	00 100F670T3	05 83070/666	c	11880C 70	c
	Tyrucum of the second of the second s	Σ		6070640110	600141760.17	700/06446.07		00040 /00010	0.0	H-0007" Je	00
: REMAINING POLLUTANT EMI	SECTION C.: REMANING POLLUTATT EMISSIONS (As required in your Lienno) RELEASED TO AIR POLLITATT		THOP	[] Lasse	1070			PVO4	QUAN	итгү	
Pollutant No.	Name	M/C/E Method Code	esignatio or Description	Emission Point 1	Emission Point 2	Emission Point 3 Emi	Emission Point 4 Emi	ssion Point 5 T (To	Emission Point 5 T (Total) KG/Year KG/Year		F (Fugitive) KG/Year
	Total Particulates • Select a row by double-closing on the Polutant Name (Column B) then clos the dekite button	M SCC	re destruction matter Measured in accordance with EN13284-1	0.0	1583.0	1389.0	1348.0	1352.0	5672.0	0.0	0.0
Additional Data Requested from Landfill operators for the purpose of the National Inventory on combines Gases, landfill of function of undered on their fadilies to accompany the figures to violal method	Additional Data Requested from Landfill operators Free purposes of the National Newtory on occentionary data. Indifferentiate are requested to provide summary data on Indiff. and Rehamol Terre to under on the National Newtory on occentionary data without generated. Operators should only data free the	(Methane)									
enission to the environment under T(teah) KG/yr for Landfill: Please enter summary data on the quantities of methane flared and / or utilised	Section A Sector specific PRTR pollutants above. Please complete the table below. Ballealy Landfill	1,	Method Used Designation or	Facility Total Capacity m3							
Total estimated methane generation (as per site model) Methane utilised in Section Net methane emission (as reported in Section	T (Total) kg/Year	MCIE Method Code 7537104.0 C SCC 0.0 C SCC 4597504.38 M 0TH	Description GASSIM GASSIM FROM BPS POWER GENE	Per hour N/A 0.0 (To 0.0 (To	(Total Flaring Capacity) (Total Utilising Capacity)						

4.3 RELEASES TO WASTEWATER OR SEWER

19/04/2010 16:18 | PRTR# : W0009 | Facility Name : Balleally Landfill | Fliename : W0009_2009_Updates.xls | Return

.Amex II								
	e	M/C/E Method Code	Method Used Designation or Description	Leachate Tankered Offsite Emission Point 1 T (T	T (Total) KG/Year A (A (Accidental) KG/Year	F (Fugitive) KG/Year	3/Year
	Chlorides (as Cl)	M ALT	TM184 - ISO17025 Accredited	62139.5775	62139.5775	0.0	0	0.0
19 Chro	Chromium and compounds (as Cr)	M ALT	ICP-MS. TM191 - ISO17025 Accredited	5.32241325	5.32241325	0.0	0	0.0
20 Cop	Copper and compounds (as Cu)	M ALT	Accredited	0.202745813	0.202745813	0.0	0	0.0
82 Cyar	Cyanides (as total CN)	M ALT	I M22/ - ISO1/025 Accredited	10.7415	10.7415	0.0	0	0.0
Fluo	Fluorides (as total F)	M ALT	IM104 - ISO17025 Accredited	45.866205	5.866205	0.0	0	0.0
23 Lead	Lead and compounds (as Pb)	M ALT	ICF-WS-1MIDZ - ISO17025 Accredited TMA92 ISO47025	0.20143893	0. 0143893	0.0	0	0.0
Merc	Mercury and compounds (as Hg)	M ALT	Accredited TMAED ICO17025	0.000537075	000537075	0.0	0	0.0
Zinc	Zinc and compounds (as Zn)	M ALT	Accredited	2.55039	2.55039015	0.0	0	0.0
8 Cadr	Cadmium and compounds (as Cd)	M ALT	ISO17025 Accredited	0.018153 45	0.018153135	0.0	0	0.0
22 Nicke	Nickel and compounds (as Ni)	M ALT	ICF-MS_IM152 - ISO17025 Accredited	6.082 6	6.108333	0.0	0	0.0
13 Total	Total phosphorus	M ALT	ICP-MS. TM191 - ISO17025 Accredited	06.4908	306.4908	0.0	0	0.0
* *	* Select a row by double-clicking on the Pollutant Name (Column B) then click the detete button). (
ECTION B : REMAINING POLLUTANT EMISSION OFFS	SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence) OFFSITE TRANSER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER DO I I I TRANT	MENT OR SEWER	METHOD		ē	DIIANTTY		
Pollutant No.	9	M/C/E Method Code	Aethod Used Designation or Cescription	Leachate Tankered Offsite Emission Point 1 T (T	T (Total) KG/Year	tal) KG/Year	F (Fugitive) KG/Year	GVear
	Ammonia (as N)	M ALT	5	37165.59	37165.59			0.0
BOD		M ALT	TM045 - ISO 7025 Accrete	9287.817	0:0	0.0	0	0.0
306 315 Caloium		M ALT M	Accretited	74438.595	0.0	0.0		0.0
	oandrin Magnesium		ICED COLORIST	5589:1605	0.0	0.0		6.0
	Manganese (as Mn)		SO17025 Accredited	95.59935 00.0447	95.59935 0.0	0.0		0.0
338 Potassiu 341 Sodium	sodium Sodium	M ALT M ALT	iCap-OES, TN228	25367.8425 56912.0475	0.0	0.0		0.0
343 Sulpi	Sulphate	M ALT	TM184 - ISO17025 Accredited	9434.6175	0:0	0.0	0	0.0
			TM184 - ISO17025			0		00

5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE				FRUKE, WOUUS FACINY NAME - DAMERIY LANGINI FINCHAME - WUUUS_ 2005_ UPDAARS, XIS REGUME 1 EAU - 2005	Indillo . wooco		Nothin Louis - Aven					19/04/2010 16:18 3
			Quantity (Tonnes per Year)			Metho	Method Used		Haz Waste : Name and Licence/Permit No of Next Destination Facily Haz Waste : Name and Licence/Permit No of Recover/Disposer	Haz Waste : Address of Next Destination Facility Non Haz Waste : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destimation i.e. Final Recovery / Disposal Ste (HAZARDOUS WASTE ONLY)
Transfer Destination	European Waste Code	Hazardous		Description of Waste	Waste Treatment Operation M/C/E		Method Used	Location of Treatment				
Within the Country 2	20 03 01	°N N	37789.0 H	37789.0 Household MSW	5	M Weighed	per	Onsite in Ireland	Onsite in Ireland Balleally Landfil, W000 02	Fingal County Council Balleally Landfill, Balleally Lane,Lusk,Co. Dublin,Ireland		
Within the Country 2	20 03 01	No	54093.0 C	54093.0 Commercial/Trade MSW	5	M Weighed	per	Onsite in Ireland Balleally Lâ	3alleally Landfin Wood9-02	Fingal County Council Balleally Landfill, Balleally Lane, Lusk, Co. Dublin, Ireland		
Within the Country 2	20 03 06	0 Z	315.0 S	315.0 Sewage slugdes	5	M Weighed	ped	Onsite in Ireland	B leally andfil, W0009-02	Fingal County Council Balleally Landfill,Balleally Lane,Lusk,Co. Dublin,Ireland		
Within the Country 1	19 08 99	Ň	6363.0 In	6363.0 Industrial Non-Hazardous Sludge	5	M Weighed	Ded	Onsite in Ireland	Onsite In Ireland Balleally Landfill, W0009-02	Fingal County Council Balleally Landfill, Balleally Lane, Lusk, Co. Dublin, Ireland		
		* Salect a row by	y double-clicking the	- Select a row by double-clicking the Description of Waster them click the delete button	The second se	10	×N2					
				NIS								