ANNUAL ENVIRONMENTAL REPORT Year End December 2009

Dunmore Landfill

Dunmore County Kilkenny

Waste Licence Register Number W0030-02

Kilkenny County Council County Hall John Street Kilkenny

Telephone – (056)7794470 environment@kilkennycoco.ie

1. Introduction

Kilkenny County Council's Landfill Site at Dunmore received its first Waste Licence (30/1) from the Environmental Protection Agency on the 23rd November 1999. In March 2001 an application was made to review this Licence, to incorporate an enhanced entrance, better infrastructural features and a further four cells. The EPA granted the review of the licence in May 2002 register no. 30/2. The reporting period for this Annual Environmental Report is from 01/01/09 to the 31/12/09.

Records for gas production and waste quantities are based on the waste quantities entering the landfill over the weighbridge. All water balance calculations, site area etc. refer to the entire licensed boundary of the site incorporating cells 1-14 (area for potential leachate generation).

2. Waste Acceptance

2.1 Waste Activities

The categories of waste listed below may be accepted at the landfill site: -

- Household refuse collected by refuse contractors in the functional areas of Kilkenny Council and Kilkenny Borough Council. This practice has now ceased due to the completion of the landfill area. No refuse contractors have been accepted in the site since end of October.
- Commercial refuse (similar in character to household refuse) collected private refuse contractors in the functional areas of Kilkenny County Council and Kilkenny Borough Council. Restrictions on Commercial recyclable waste have been in force since September 2001 and will continue under the terms of the Waste Management (Packaging) Regulations and the terms of the Waste Licence. Since the end of October 2009 only smaller scale operators have been accepted to the site.
- Household refuse which is transported directly by householders to the landfill site

or brought to the C.A. site which is in turn is deposited to landfill, including green waste.

- Commercial refuse (similar in character to household refuse) which is transported directly to the landfill site. Restrictions on Commercial recyclable waste have been in force since September 2001 and will continue under the terms of the Waste Management (Packaging) Regulations and the terms of the Waste Licence.
- Household waste for recycling which is temporarily stored on site (Mixed Electrical Goods, Steel/Aluminium Cans, Clear/Green/Brown Glass, Mixed Paper, Cardboard, Plastic Packaging, Tetra pack, Gas Cylinders, Timber, Metal, Waste Oils, Household Hazardous Waste, Textiles, Lead Acid/Primary Batteries)
- Non-hazardous construction and demolition waste which is specifically required for the site and is accepted by agreement with Kilkenny County Council.
- Non-hazardous industrial waste. Restrictions on Industrial recyclable waste have been in force since September 2001.
- Litter, street sweepings and gully cleanings.
- Imported cover and road material in quantities as required

The total maximum amount of each waste that may be accepted is listed in the table below.

WASTE TYPE	MAX (PER ANNUM)	TOTAL 2009
Household	20,995 Note 1	10,178
Commercial	14,000 Note 1	4097
Industrial Non-Hazardous Solids	5,000 Note 1	1
Treated Sewage Sludge	1,000 Note 2	0
Construction and Demolition Waste	1,000 Note 3&4	16
Green Waste for Composting	1,500 Note 5	0
TOTAL FOR DISPOSAL	40,000	14,291

Note 1: - The tonnage of household waste, commercial waste and industrial non-hazardous solid waste may be increased with the prior agreement of the Agency provided that the total amount of these wastes accepted at the landfill for disposal does not exceed the combined total of 40,000 tonnes per annum.

Note 2: - Treated sewage sludge may only be accepted at the facility for recovery and in accordance with

Condition 5.7.1.

Note 3: - Construction & Demolition Waste shall not be disposed of at the facility but may be accepted for recovery for use as daily cover, in site construction works and landfill restoration. This quantity may be increased subject to agreement with the Agency.

Note 4: - A maximum of 5 tonnes per annum of construction waste containing asbestos may be disposed of in accordance with Condition 5.7.3.

Note 5: - Limited to 1,000 m3 at any time.

Dunmore Landfill Site accepts only non-hazardous waste, however, hazardous waste in small quantities may be present in domestic refuse and in commercial refuse, particularly in skips. Kilkenny County Council has provided a separate area for the collection of white goods, brown goods and a household hazardous waste container. Specialised companies (Indaver, KMK Metals Recycling Ltd, Irish Lamp Recycling Co. Ltd and Enva Ireland Ltd) remove all of this waste from site and dispose/recycle it in accordance the relevant legislation. Kilkenny County Council also provides a mobile Chemcar collection of household hazardous waste at various times through out the year at different locations around the county.

From September 2001 restrictions were put on the acceptance of all recyclable commercial and industrial waste, including white & brown goods, paper, cardboard, metal, timber, glass and cans.

The demand for recycling services and quantities of recyclable materials increased through out 2009. Kilkenny City and County have 43 Bring Site accepting glass, cans, newspapers and plastic bottles. It is hoped that the CAS and the Bring Sites will encourage recycling and reduce the amounts of domestic waste being landfilled. In addition to this over 8000 home compost units have been distributed throughout the county. It is hoped that this will result in a significant reduction in the amounts of kitchen green waste going for disposal.

Animal waste such as hide and skin trimmings and fish offal has been restricted from the site since the 30th November 2001, which is now policy at the site.

2.2 Recycling

In October 2003 Kilkenny County Council opened a dedicated recycling facility. The materials accepted at the site include: -

- Mixed Paper
- Cardboard
- Glass (Brown, Green, Clear)
- Batteries (Primary, Lead Acid, fence batteries)
- White Goods
- Brown Goods
- Household Hazardous waste
- Waste Oils/filters
- Steel/Aluminium Cans
- Mixed Metal
- Timber
- Textiles
- Tetra Pack
- Plastics
- Reading Books

Since opening in 2003 there has been a significant increase in the quantities accepted for recycling at the facility. The quantities of recyclable material accepted at the C.A. site and the category breakdown can be found in Appendix A. Since opening an extra member of staff has been employed specifically to supervise the centre, with security systems to monitor activity. There is a nominal charge levied for using the centre to assist with the running cost.

From the 13th August 2005 Dunmore Civic Amenity Site accepts WEEE (Waste Electronic & Electrical Equipment) free of charge from householders under the Waste Management (waste Electrical and Electronic Equipment) Regulations 2005. Registered retailers are permitted to deliver the WEEE (collected from a like for like take back scheme) to the CA site by prior agreement.

2.3 Quantity and Composition

The quantities of waste accepted at the landfill since July 1997 and the categorised breakdown can be found in Appendix A. The recyclable waste removed from the site i.e. white/brown goods, bottles (green, brown and clear), metal, timber, paper/cardboard, tetra and mixed plastic are also listed.

2.4 Capacity

The remaining capacity (January 2010) at Dunmore was approximately 1500 tonnes, which is around 2 months capacity at current filling rates. It is expected that full capacity will be reached by mid March.

2.5 Area Occupied by the Waste

The area occupied by the waste at the end of 2009 is shown in the table below:-

Cell Number	Area (sqm)	Area	Area (Acres)	Comment
		(Hectares)		
1	5304	0.53	1.31	Full
2	3546	0.35	0.865	Full
3	3142	0.31	0.766	Full
4	6169	0.62	1.532	Full
5	3872	0.39	0.964	Full
6	4888	0.49	1.211	Full
7	2921	0.29	0.717	Full
8	7464	0.75	1.853	Full
9	4360	0.44	1.087	Full
10	6163	0.62	1.532	Full
11	6500	0.65	1.61	Full
12	3050	0.31	0.75	Full
13	6170	0.62	1.52	Full
14	5390	0.54	1.33	7/8 Full
Total	68939	6.9	17.03	

Filling is currently taking place in the remaining section of Cell 14. It is anticipated that filling to cell 14 will be completed in March 2010 and that capping to remainder of landfill area will commence in September 2010.

2.6 Deposition Methods

Waste presented at Dunmore landfill for disposal is handled in the following ways: -

Household and commercial waste collected by private refuse contractors and Kilkenny Corporation is deposited at the active land filling face. The waste is then spread and compacted as soon as it becomes practical to do so, by the site staff. The acceptance of this waste from private refuse contractors has ceased since the end of October 2009.

Waste brought directly to the site by householders is placed by them in the container located in the recycling centre. When this container is full, it is weighed and transported to the active tipping face for disposal. All recyclables brought to the site are directed to the appropriate location and are placed in the appropriate receptacle for temporary storage on site. As soon as these receptacles are full, site staff arranges for the removal of the material to an authorised materials recycling centre. From the start of 2002 some white goods and brown goods have been reclassified in the European Waste Catalogue and these goods will be handled in accordance with this directive (EC) No. 2557/2001.

Small amounts of construction/demolition waste are accepted at the site. This waste is tipped away from the tip face. An assessment is carried out on the waste and is used for internal haul roads, inert cover material and strengthening the tipping face. Any recoverable metal is placed in the metal recycling skip. Any material unsuitable for these operations is landfilled, which would only be from a domestic source. A separate construction and demolition facility does not operate at present.

Christmas trees brought to Dunmore during January 2009 were shredded and used as capping on the site.

3. Environmental Monitoring

3.1 Report on Emissions

3.1.1 Landfill Gas

Landfill gas monitoring locations at Dunmore are set out in the following locations. Perimeter Gas Migration Monitoring Locations

Station	Easting	Northing
GM1	249524	160493
GM2	249587	160435
GM3	249804	160270
GM4	249867	160441
GM5	249765	160510
GM7	249732	160623
GM8	249845	159922
GM9	249529	160616
GM10	249900	160467
GM11	249930	160497
GM12	249930	160535
GM13	249900	160568
GM14	249879	160632
GM15	249848	160668
GM16	249820	160707
GM17	249709	160660
GM18	249671	160714
GM19	249818	160545
GM20	249754	160497
GM21	249751	160443
GM22	249764	160401
GM23	249811	160374

Vent Pipe Locations (harnessed gas wells)

Station	Easting	Northing
VP1	249785	160305
VP2	249752	160329
VP3	249771	160357
VP4	249735	160378
VP5	249718	160350
VP6	249688	160376
VP7	249704	160398
VP8	249650	160395

VP9	249674	160427
VP10	249696	160466
VP11	249718	160496
VP12	249682	160499
VP13	249655	160465
VP14	249637	160423
VP15	249611	160445
VP16	249607	160483
VP17	249644	160503
VP18	249508	160564
VP19	249537	160593
VP20	249565	160621
VP21	249593	160649
VP22	249623	160676
VP23	249606	160546
VP24	249591	160571
VP25	249559	160586
VP26	249566	160554
VP27	249532	160563
VP28	249540	160537
VP29	249565	160516
VP30	249832	160014
VP31	249630	160664
VP32	249884	160007
VP33	249608	160611
VP34	249918	160038
VP35	249577	160592
VP36	249953	160070
VP37	249589	160528
VP38	249647	160566
VP39	249674	160565
VP40	249685	160589
VP41	249618	160562
VP42	249673	160623
VP43	249654	160604
VP44	249628	160588
VP45	249633	160622
VP46	249582	160623
VP47	249728	160577
VP48	249758	160574
VP49	249760	160543
VP50	249787	160570
VP51	249759	160600
VP52	249809	160585
VP53	249780	160615
VP54	249808	160638

VP55	249814	160617
VP56	249833	160616

Gas monitoring and migration results are submitted to the Agency biannually. Results for 2009 are available in Appendix B. All gas wells on the site are harnessed and the gas is burnt off thus reducing the landfills contribution to ozone depleting gases by 90%, and also reduces landfill gases odour.

Gas Quantity Emissions from the Landfill

The initial aerobic phase and the first transition stage only take a couple weeks. During these phases there is no gas produced as a result of degradation. In the second transition phase there is no longer oxygen intake to the site and the anaerobic phase begins. This results in methane production and will continue for up to two years. In this period of time the production of gas is not stable and the full annual production of gas is not reached. When gas production stabilizes in the methanogenic phase and total expected time until the end of methane production is approximately twenty years. The table below is an estimate based on the tonnages accepted since the weighbridge was installed (07/97) and since waste input (in tonnes) records were kept. The figures in the table below are based on an estimated gas production of 75 l/kg (which includes an assumption of 60% wet waste). A detailed discussion of landfill gas production since the site opened is contained in the EIS submitted as part of the licence review.

Cells 8-14

Year	Annual Tonnage Waste		Annual Gas Production Rate Methane (Mm3/yr)	Cumulative Methane Gas Production Rate (Mm3)	Annual Landfill Gas Production (Mm3/yr)
1997					
(6mths)	12,793.65	0.02	0.02	0.02	0.04
1998	21,828.05	0.04	0.09	0.07	0.16
1999	27,853.72	0.05	0.18	0.24	0.33
2000	33,593.38	0.06	0.30	0.53	0.54
2001	29,805.96	0.06	0.42	0.95	0.76
2002	17,651.90	0.03	0.51	1.48	0.92
2003	17,259.53	0.03	0.57	2.05	1.04
2004	23,334.00	0.04	0.65	2.69	1.18
2005	19,266.00	0.04	0.73	3.42	1.32

2006	18,516.00	0.03	0.80	4.22	1.45
2007	22,267.00	0.04	0.87	5.09	1.59
2008	18239.94	0.03	0.95	6.46	1.73
2009	14,289.00	0.03	0.96	6.46	1.75

In November 2003 a temporary gas extraction and flare system was introduced at the site in cells 8-10. This resulted in a noticeable improvement in the air quality within the site, a reduction in odour problems and a reduction in measured exceedance levels adjacent to these cells. During 2004 a permanent gas extraction and enclosed flare system was installed. This system controls all gas venting and migrating from cells 1 to 13, the gas is drawn out of the cell and is burnt off. Since the installation of this system the landfill gases have been significantly reduced by 90%. This system was extended in 2008 to extract gas from cell13& 14.

3.1.2 Surface Water, Groundwater and Leachate

Surface Water: - Surface water is analysed quarterly and the results are submitted to the Agency. The monitoring locations are listed below: -

Station	Easting	Northing
Stream A -Upstream	249978	160617
- Downstream	249544	160503

Results of the surface water monitoring are available in Appendix C

Groundwater: - Groundwater well quality is tested quarterly, and results are submitted to the Agency as set out in condition 9.1 and schedule F of the licence. The monitoring locations are listed on below: -

Station	Easting	Northing
No. 3	250011	160551
GW1	249675	160924
No. 14	249547	160507
GW2	249867	160440

GW3	249500	160511
GW4	249562	160456
MW1	249619	160383
No.15	249454	159728
No. 6	249488	160191

Results throughout the year have shown no adverse effects to the ground water as a result of landfilling in the area, and are listed in Appendix C.

Leachate: - The composition of leachate is tested at leachate manholes and holding lagoon quarterly and results are submitted to the Agency as set out in condition 9.1 and schedule F of the licence. The results are listed in Appendix C. The monitoring locations are listed below: -

Monitoring	Easting	Northing
Locations		
Holding Lagoon	249566	160484
Manhole 1	249649	160608
Manhole 2	249600	160604
Manhole 3	249521	160536
Manhole 4	249526	160507
Manhole 5	249566	160480

The volume of leachate produced and removed from the site is as follows: -

The water balance equation was calculated as follows: -

Amount of Leachate on Site = (effective rainfall * area cell 1-7 * % area not yet capped) + (effective rainfall * area cell 8-10 * % area not yet capped) + (effective rainfall * area cell 11-12* % area not yet capped) + (effective rainfall * area cell 13-14* % area not yet capped)-(leachate removed)-(primary absorption factor)-(degradation water usage2007)

Where: -

Effective Rainfall = Total Rainfall - Potential Evapotranspiration (Met Eireann Figures)

Primary absorption may be taken as 100 l/tonne for 10% of waste as the amount of dry materials is decreasing from domestic sources.

Volume required for degradation = 2mm per square meter

Amount of Leachate on Site = (3536.87) + (1065.91) + (6850.46) + (1131.87) -(13422.6) - (142.9) - (137.87)

Amount of Leachate on Site = -1118.27 m^3

The amount of leachate removed from site and frequency was in response to the amount of rainfall and potential evapo-transpiration at the site i.e. the rate of leachate production. More leachate was removed off site than was produced on site during 2009 as it was necessary to store some leachate on site in late 2008. This leachate was then tankered off site in early 2009. A second leachate lagoon was installed during 2003 which provides for a much greater storage capacity at the site.

During 2004 leachate recirculation tankers were installed in cells 8-10 to reduce the cost of leachate collection and disposal, enhance settlement with the aim of recovering air space, to encourage gas production and to promote early stabilisation. The leachate recirculation tanks locations are listed below.

Leachate recirculation Tanks

Station	Easting	Northing
LR 1	249515	160572
LR 2	249553	160605
LR 3	249602	160643
LR 4	249647	160670

3.1.3 Dust monitoring

Dust Monitoring: - Dust Monitoring takes place three times a year and the results are submitted to the Agency. The monitoring locations are listed below and results are shown in Appendix C: -

Station	Easting	Northing
DG 1	249565	160453
DG 2	249756	160467
DG3	249700	160638

DG 4	249870	160671
DG 5	249940	160588

3.1.4 Noise Monitoring

Noise Monitoring: - Noise Monitoring is analysed annually and the results are submitted to the Agency. The monitoring locations are listed below: -

Station	Easting	Northing
NS 1	249725	160830
NS 2	249852	160740
NS 3	250006	160593
NS 4	250003	160571
N1	249803	160290
N2	249489	160927
NS 5	249981	160510
Dunmore Cottage	249442	160896

The locations of all sampling and monitoring points can be found in the attached drawing in Appendix D.

13

3.2 Interpretation of Environmental Monitoring

Gas: - Gas monitoring took place on the site at both gas well locations and migration points. The results from the wells indicted that approximately 2/3 of the gas in the vents was methane with the remaining 1/3 carbon dioxide. These are the normal levels that can be expected in a landfill of this age.

Results from the migration points around the site indicated a number of exceedances in the set trigger levels, which are given in Schedule C of the licence. An Assessment of Landfill Gas Measurements at Dunmore Landfill, Co. Kilkenny analysing the processes responsible for these exceedence levels was carried out in March 2006 and submitted to the agency in 2007. This report concluded that there is CO₂ naturally occurring in the Dunmore Area. To allow for this finding the Agency agreed to increase the tolerance of the CO₂ trigger level, from 1.5% v/v to 3% v/v, therefore any levels =>3% v/v would be treated as an incident and reportable to the Agency. During 2007, 24.38% of the monitoring migration analysis points had trigger levels = or > than 1.5%, 71.19% of these exceedences had values in the range of = or > 1.5% v/v & <3% v/v, and 28.81% of these exceedences were in the range of = or > 3% v/v. The number of exceedences in the gas migration monitoring points was less than that in 2008. There were no exceedences of methane at any of the migration locations during 2009.

Ground/Surface Water: - Primary indicator parameters used to detect the presence of any leachate infiltration to groundwater are conductivity and chloride levels. The levels of chloride and conductivity are within acceptable levels and there is no noticeable increases in these levels since records began.

Dust Monitoring: - Dust monitoring was carried out at five different locations during the months of August, May and March. No exceedance of the permitted level of 350mg/m2/day, from Schedule C of the waste licence conditions, was recorded

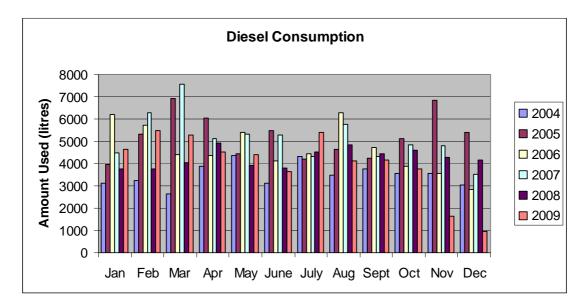
Noise Monitoring:-Noise monitoring was carried out during February 2009. Six sensitive locations and two boundary locations were monitored during daytime landfill operations. Results indicated that the local noise environment was primarily impacted by passing traffic on the N77 Kilkenny-Durrow Road, and that the noise from the landfill was negligible.

3.3 Meteorological Monitoring

Meteorological Report

The following is a summary of the rainfall amounts and potential evapo-transpiration rates at Dunmore. The results were obtained from Met-Eireann.

Month	Rainfall (mm)	Potential Evapotrans. (mm)
January	113.4	38
February	29.2	16.1
March	32.6	36.7
April	102.4	46.3
May	69	72.6
June	65	84.6
July	152.4	76.4
August	10.9	67.6
September	418	93.9
October	127.8	24.1
November	215.5	13.5
December	72.9	6.6
Total	1032.9	576.4


4. Site Infrastructure and Development

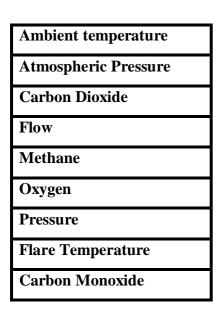
4.1 Resource and Energy Consumption

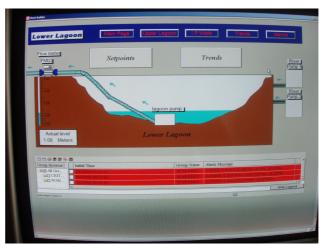
The following raw materials are used as a result of the land filling process at Dunmore landfill facility:

4.1.1 Diesel Fuel: -The amount of fuel consumed per week at the landfill site averages at approximately 960 litres for the year 2009, by the loading shovel, tractor, excavator, and compactor. There was a small decrease in diesel consumption, by approx 60l/week, in 2009 compared to previous year. Below shows comparative fuel use for the last number of years.

4.1.2 Electricity: -. Electricity is used in the following buildings; weighbridge office, main offices and recycling centre office. It is also used to operate the weighbridge computer, pump, lights, heating and cooling appliances, CCTV cameras etc. In 2003 a new three phase supply was installed to meet the demands of the revised licence and supply the recycling centre, gas flare, pumps, SCADA system and extended office.

4.1.3 Sprinkling Water: - During periods of dry weather water is used to suppress dust on the site haul roads. Occasionally water maybe taken from the river Nore located adjacent to the site. The quantities of water used would vary but would not exceed 8,000 gallons per day during dry weather. The entrance and weighbridge area are watered down and cleaned using the road sweeper or a power washer and a 300 gallon reused oil tank as a water reservoir filled from the site water supply. Some sprinkling around the weighbridge is carried out using local groundwater sources.


4.2 SCADA System:-


4.2.1 Leachate Monitoring

Supervisory Control and Data acquisition to facilitate monitoring and management of Leachate levels in the Leachate lagoons and new cells is in operation at the facility. This system allows for constant monitoring of all pumps, leachate levels in wells and lagoons, to ensure the levels in cells do not rise above 1m and that leachate level in

lagoons shall always maintain a minimum freeboard of 0.75m. Alarms will be raised should any of the levels be reached. (see below typical screen showing level in lower lagoon). The SCADA system was upgraded during 2008 to facilitate the control of the additional leachate pumps in Cells 13 & 14.

4.2.2 Gas collection and flaring system

Collection and flaring of gas commenced August 2004. The flare operates 24hr a day 7 days a week at temperatures of approx 1020°C. SCADA system on site constantly monitors and records the flaring system. Data is down loaded on a monthly basis from the flare system to an excel spread the following parameters are recorded:

Closed Flare System

4.3 Development Works

4.3.1. Development Works over the Reporting Period

Over the past year the following development works have been carried out at the facility:

- Installation and testing of liner cap on cells 4/7
- Horizontal gas collection pipes installed and connection of 2nd Stage of horizontal gas system to Flare.
- Completed grading, topsoiling, grass seeding and re-instatement of haul road at Cells 4/7
- Installed base and pipe work for gas vent No.55
- Completion of manholes and covers on wells in Cells 8,9,10,11 & 12.
- Connected 3 No. gas wells (No's 53, 54, 55) to flare system from Cell 14
- Commenced excavation and concrete works at Civic Amenity Site for new packer skips.

4.3.2 Proposed Development Works

It is proposed to carry out the following developments at Dunmore in the year 2010.

- Closure of landfill
- Connection of final gas well within cell 14.
- Capping and rehabilitation works to remaining cells.
- Final topsoiling to unfinished areas within the site.
- Install further signage in Civic Amenity site.
- Improve layout and increase capacity at CAS.
- Review of traffic management measures on site.
- Additional landscaping around site offices and civic amenity site.

4.4 Tank and Pipeline Integrity Tests

In respect of Condition 5.12.2, an integrity test on the leachate-holding lagoon and pipeline outside the cells was carried out.

'Geomembrane Testing Services Limited', carried out an integrity test on the leachate holding lagoon which was submitted to the Agency on 2nd September 2003. Air pressure and high frequency spark tests were carried out over the lined area of the lagoon. It was found that 'the geomembrane liner was free of defects at the time of final inspection'. Lagoon structures were retested in 2007 with the final part of the test completed in early 2008. Upon completion of the integrity test on both leachate holding lagoons, results were forwarded to the Agency

4.5 Restoration Plan and Aftercare Plan

The final ground level contours of the landfill are shown on Drawing No. 30-2-DWG03, contours map, while the restoration plan for the area is shown on Drawing No. 30-2-DWG02, Landscaping Plan. These are available in appendix F.

Phase I of the Restoration in Cells 1-7 was completed with a temporary cap after it

was filled between 1989 and 1998. Three acres of leased land has been seeded with grass and a small yard area is provided. The remaining six acres had been planted with native woodland species and fenced with a rabbit-proof fence. As part of the revised licence all seeded areas and trees were removed and a revised impermeable capping system commenced in 2003. 90% of this capping layer was completed in 2004 the remaining capping works to be completed in 2010 as part of phase III capping. The area will be restored as outlined previously with a mix of grass and planting.

Phase II of the Restoration Scheme comprises Cells 8 - 10. As part of the licence conditions and landfill directive partial capping of cells 8 -10 commenced in 2003. At the end of 2004 50% of this capping layer was completed. Completion of the remaining capping works to cells 8, 9, 10, 11 & 12 took place during 2008. Final capping will consist of a gas drainage layer, a bentonite enhance liner, an impermeable plastic layer, surface water drainage layer, subsoil and topsoil. The restored area will be a combination of seeded and planted areas. The final capping detail was submitted to the Agency for approval and is in accordance with details shown in the EPA Landfill Manual on Restoration and Aftercare.

Phase III of the Restoration Scheme comprises Cells 8 – 14. The remainder of the site will be capped progressively within 12 months of the final filling of cells to level. Final capping will consist of a gas drainage layer, a bentonite enhance liner, an impermeable plastic layer, surface water drainage layer, subsoil and topsoil. The restored area will be a combination of seeded and planted areas. The final capping detail was submitted to the Agency for approval and is in accordance with details shown in the EPA Landfill Manual on Restoration and Aftercare.

Prior to completion of the restoration, the gas pipework system shall be modified. Tree and shrub planting will be delayed until all remedial work on the gas system has been carried out and initial settlement has occurred. Areas subject to delays shall be restored on an interim basis and seeded with grass.

All leachate collection and control systems shall be maintained.

Upon completion of the landfill activities the following restoration/reinstatement works will be carried out: -

- 1. Removal of all litter screen fencing.
- 2. Weighbridge and offices area no longer required shall be topsoiled and seeded with grass, those required for the operation of the civic amenity site will be maintained as required.
- 3. Any litter from perimeter hedging, ditches and surrounding land shall be removed.
- 4. All boundary fences on the site shall be secured. Hedge rows will be retained and renewed as necessary.
- 5. All unsurfaced roadways with the exception of the access to the leachate lagoon and civic amenity site shall be removed.
- 6. Decommission and removal of services, e.g. telephone, ESB, no longer required on site.
- 7. Erect signage indicating that the landfilling facility is closed and directing users of the civic amenity facility to the correct locations.
- 8. The boundary at the access road (from the Bleech Road) will be secured, all unsurfaced roadway shall be removed apart from access to the lagoon.

In the long term and subject to Waste Licence conditions and monitoring results, any appurtenances no longer required for the monitoring or maintenance programmes shall be removed off site. The localised areas affected by these works will be restored to the condition of the surrounding ground.

The leased area of land (O'Neill's pit) will be returned to the owner for agricultural grazing use, all fence boundaries restored and its maintenance, apart from monitoring points and gas wells, will no longer be the responsibility of Kilkenny County Council.

The remaining areas of land subject to agreement with the agency will be woodland/grassland after the restoration and landscaping plan is complete and specialist forestry management firms under contract with Kilkenny County Council will manage these areas.

4.6 Site Survey

The site topographical survey is completed at least once a year. This survey was submitted to the Agency previously under condition 8.8.1 (ref. LC-41-MG) and will be submitted annually thereafter. Last topographical (Revision I) survey was carried out in March 2009 and will be sent to the Agency.

5. Environmental Targets and Objectives

5.1 Objectives and Targets

Objective 1

Ensure that all waste acceptance requirements are met

- Target 1.1 All waste accepted at the facility is within the criteria set out in Part I of the Waste Licence
- Target 1.2 The amounts of each category of waste recovered and disposed if at the facility does not exceed that specified in Schedule A of the Waste Licence
- Target 1.3 Any restriction on waste entering the facility shall be strictly enforced
- Target 1.4 All waste accepted for recovery and disposal shall be done so within the opening hours specified in condition 1.6

Objective 2

Establish and Environmental Management System to fulfil the obligation of the Waste Licence.

- Target 2.1 The facility shall employ a suitably qualified facility manager as the person in charge and that this person or a nominated deputy shall be present at all times at the facility, this person will be in place from the grant date of the licence.
- Target 2.2 The facility manager and deputy shall complete the FAS Waste Management Training Program with 12 months of their appointment.
- Target 2.3 All personnel performing specially assigned tasks shall receive all appropriate instruction prior to carrying out that function
- Target 2.4 Submission of details of management structure for Dunmore Landfill Facility by the end of August 2002, which will be reviewed annually or as required.
- Target 2.5 Preparation and submission of an Environmental Management Program (EMP) to the Environmental Protection Agency by the end of November 2002, which will be reviewed annually in November and submitted to the Agency or as required.
- Target 2.6 Preparation and submission of an Environmental Management System (EMS) to the Environmental Protection Agency by the end of November 2002, which will be reviewed annually in November and submitted to the Agency or as required.
- Target 2.7 Establish awareness and training procedures for personnel at Dunmore Landfill Facility which will form part of the EMS
- Target 2.8 Submission to the EPA of a communications program as part of the EMS
- Target 2.9 Preparation and submission of a corrective action procedure, which will be submitted to the Agency as part of the EMS

- **Target 2.10** First Annual Environment Report (AER) of Waste Licence 30-2 submitted to Agency by the end of January 2003.
- Target 2.11 Review of AER by the end of March annually thereafter

Objective 3

Provision of required infrastructure at the facility with the agreement of the agency

- Target 3.1 An updated site notice board will be provided at the new facility entrance by end June 2002. The new Waste Licence reference number will be provided, contacted details including revised telephone numbers and location of all environmental monitoring information
- Target 3.2 Security fencing and security measures will be provided as part of the provision of the new access by May 2003
- Target 3.3 A new access will be provided from the N77 by April 2003. Detailed SEW will be submitted on the project will be submitted to the Agency, when the safety audit on the alignment has been approved by the NRA.
- Target 3.4 Facility roads and hardstanding areas will be provided at the new access by April 2003, which will be designed to ensure safe access and movement within the site. All areas will be provided with appropriate surface water drainage systems.
- Target 3.5 New facility offices, will be provided, which will incorporate telephones and an electronic communication facility by April 2003. Offices shall be fitted with gas monitoring equipment, in accordance with 'Protection of New Buildings and Occupants from Landfill Gas.
- Target 3.6 A Waste Inspection and Quarantine Area will be provided by May 2003, subject to Agreement with the Agency. Drainage from these areas will go directly to the leachate lagoon.
- Target 3.7 The present weighbridge at the facility will be relocated or a

new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services.

- Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with the Agency.
- Target 3.9 As part of the development of the new offices, a wastewater treatment plant will be provide at the new facility offices by May 2003, subject to agreement with the Agency. The discharge from this unit will go directly to the new leachate lagoon.
- Target 3.10 A revised tank and drum storage area will be provided by April 2003, to ensure any spillage that may occur is contained.
- **Target 3.11** Four new cells will be provided (cell 11-14), between 2002 and 2005 and will be constructed to that specified in condition 3.13, subject to agreement with the Agency.
- **Target 3.12** A new larger leachate lagoon shall be construction to the specified standard to provide sufficient capacity for storage by May 2003, subject to agreement with the Agency.
- **Target 3.13** A new gas management system is in place, analysis and written procedure on the system will be prepared and submitted to the agency by 2006.
- Target 3.14 A SCADA system or equivalent will be installed at the facility by April 2003, where the hardware and software will be incorporated into the new facility offices, subject to the Agencies agreement.
- A full surface water management system will be incorporated **Target 3.15** as infrastructure and capping is provided, subject to the Agencies agreement. Surface water from the extension will be diverted to the surface water stream once the capping system is

provided.

- **Target 3.16** All new infrastructure provided will have regard to the ground water in the area which is monitored on a monthly basis.
- A construction and demolition storage area will be provided by **Target 3.17** April 2003 as part of the revised access, subject to the agreement of the Agency.
- **Target 3.18** The civic amenity site will be provided by May 2003 and will be maintained to the highest environmental standards. It is anticipated that this area in conjunction with other County Council initiatives will increase recovery rates in the County.
- A household hazardous waste facility will be provided at the **Target 3.19** new civic waste facility. This facility will be widely advertised and will raise awareness of the need to source segregate household hazardous waste.
- **Target 3.20** A proposal on the provision of compost facilities will be completed by May 2003 and submitted to the Agency. Composting/shredding facilities will increase recovery rates for green waste in the County.
- **Target 3.21** A revised proposal for the provision of berms at the facility will be submitted to the Agency by January 2003. All revision made will be as a result of consultation with adjacent properties.
- **Target 3.22** All monitoring points required to meet the conditions of the Waste Licence will be provided as infrastructure develops, subject to the Agencies agreement.
- **Target 3.23** The landfill gas management system shall be extended to extract gas from the new cells as they develop, subject to agreement with the agency.
- The leachate extraction system shall be extended as the cells **Target 3.24** develop, subject to agreement with the Agency.
- **Target 3.23** A storage and shredding area for Christmas Trees shall be

provided and shredded trees to be reused as landfill cover

Objective 4

Establishment of a detailed plan for the restoration and aftercare of the facility

- A full revised restoration and aftercare plan will be submitted Target 4.1 to the Agency by May 2003, which will incorporate a proposal for treatment of cells 1-7
- Target 4.2 Capping at the facility will commence in May 2003 in accordance with condition 4.3, subject to agreement with the Agency and will continue on a phased basis as the facility develops.
- Target 4.3 Assessment of the capping adequacy of cells 1-7 will commence in February 2003. A proposal for the capping and collection of gas from cells 1-7 will be submitted to the Agency by May 2003. All works on this area will be completed by May 2004.
- Target 4.4 All material excavated for the purpose of the development of infrastructure will be reused with the facility boundary and will be stored appropriately until required.
- Target 4.5 Proposals for the Phase II extension of capping of cells 10 & 11 will be submitted to the agency, it is proposed that works on this capping will be complete by October 2006.
- Target 4.6 Proposals for the Phase III capping of cells 7, 8, 9, 10, 11 & 12 will be submitted to the agency, it is proposed that works on this capping will be complete by end of 2009.

Objective 5

The facility shall be operated to ensure there are no adverse environmental effects as a result of the operation of the facility.

- Target 5.1 Waste shall not be disposed of in any part of the facility until approval is sought and granted by the Agency
- Target 5.2 A procedure for the acceptance of waste at the facility has been submitted and approved by the Agency and shall be updated annually thereafter.

- **Target 5.3** All waste shall be covered appropriately at the end of each day
- Target 5.4 A full leachate management plan will be drawn up which shall include procedures for monitoring leachate levels, removal of leachate by tanker and control procedures to ensure that leachate levels remain within parameters set out in condition 5.11. This plan will form part of the AER and will be revised as necessary.
- **Target 5.5** Written records of maintenance of all monitoring and emission equipment. Maintenance of these systems will take place as recommended by the manufacturer
- **Target 5.6** All lagoons structures at the site will be independently tested every three years.
- **Target 5.7** The wheel wash at the site entrance shall be maintained and cleaned as required.

Objective 6

Control of emissions at the facility

- **Target 6.1** Any emission exceeding trigger levels or unauthorised emission will be notified to the Agency.
- **Target 6.2** Monitoring of the landfill gas flare will commence once the installation of the flare is complete. All emission values shall comply with the terms of the Waste Licence.
- **Target 6.3** Flare unit efficiency shall be tested once it is installed and once every three years.

Objective 7

Continuing minimisation of Environmental Nuisances associated with Dunmore Landfill Facility.

Target 7.1 That any potential nuisance resulting from the operation of the facility will be minimised and any methods that may eliminate nuisance will be implemented. Ongoing community consultation and inspections at the facility will ensure nuisance is minimised. Full compliance with the requirements set out in Condition 7 of the Waste Licence will continue.

Objective 8

Continuation of Environmental Monitoring at the facility

- Target 8.1 All environmental monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10th July, 2002.
- An initial topographical survey of cells 1-10 and all areas to be Target 8.2 developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter.
- Target 8.3 A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be communicated to the Agency.
- Target 8.4 A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency.
- Target 8.5 A revised weekly nuisance monitoring system will be introduced at the site and implemented by January 2003; all records will be held at the site.

Objective 9

Contingency measures shall be put in place in the event of an incident or emergency

at the site

- Target 9.1 An Emergency response procedure will be developed and submitted to the Agency by November 2002 and submitted to the Agency. The procedure will be revised as necessary.
- Target 9.2 An adequate supply of absorbent booms and material will be provided and maintained at the site.
- Target 9.3 All waste oil storage containers shall be bunded.

Objective 10

Records shall be maintained and available for inspection at all reasonable times

- **Target 10.1** All records for the site shall be available at the facility office for inspection
- Target 10.2 Ongoing maintenance of waste records as per Condition 10.2 of the Waste Licence.
- Target 10.3 A procedure shall be developed to log all waste leaving the civic amenity site once the project has been completed.
- Target 10.4 A complaints book shall be kept at the facility office and any complaint shall be logged as per condition 10.4
- **Target 10.5** A record of all leachate leaving the facility shall be kept in accordance with condition 10.5
- **Target 10.6** A record shall be kept of the program for the control of vermin and flies as per condition 10.7
- **Target 10.7** A record of bird control activities shall be kept and regular bird counts made.
- Target 10.8 A written record shall be kept of the type of daily cover that is used on the site as per condition 10.9
- Target 10.9 Long term environmental monitoring to continue a set out in the table over: -

Report Title	Report Submission	
•	•	
Environmental Management System	Annually in November	
Updates		
Annual Environmental Report (AER)	Annually at the end of March	
Bund, tank and container integrity	Every three years in September	
assessment		
Monitoring of landfill gas	Quarterly up to December 2004	
	biannually there after	
Monitoring of Surface Water Quality	Quarterly	
Monitoring Ground Water Quality	Quarterly	
Monitoring of Leachate	Quarterly	
Meteorological Monitoring	Annually	
Dust Monitoring	Three times a year	
Noise Monitoring	Annually	
Site Topographic Survey	Annually	

Objective 11

To submit all relevant reports and notifications to the Agency in the timeframes specified

- **Target 11.1** Any incident at the site shall be notified in accordance with the corrective action procedure
- **Target 11.2** A new contract will be entered into for the recovery/disposal white goods/brown goods by end May 2003
- **Target 11.3** Waste recovery reports shall be submitted to the Agency by November 2002 as outlined in condition 11.3
- **Target 11.4** A report on the achievement of the final profile at the site shall be submitted by November 2002
- **Target 11.5** An operations procedure shall be developed for operation in adverse wind conditions and submitted to the agency by November 2002.
- **Target 11.6** A report on procedure to control vermin and flies shall be submitted to the Agency by November 2002
- **Target 11.7** The first AER of the License will be submitted by May 2003
- **Target 11.8** A conditioning plan in accordance with Council Directive 1991/31/EC shall be submitted to the Agency by 16th July 2002

Objective 12

To operate the landfill to compliment relevant legislation and the Landfill Directive

- Target 12.1 All packaging waste as defined in SI No. 61 of 2003 will be restricted from the landfill
- **Target 12.2** All contractors using the site shall be in full compliance with SI No. 402 of 2001
- Target 12.3 Whole used tyres shall be restricted from the site from 1st of June 2003, in compliance with Council Directive 1991/31/EC. Shredded tyres will be restricted from 1st June 2006.
- The landfill site will be operated with regard to the South East Target 12.4 Waste Management and any measures necessary to meet the terms and targets of the plan shall be implemented. This will include the acceptance of waste from outside the Kilkenny area from the partners in the South East Region

Objective 13

To provide infrastructure to reduce visual impact and minimise nuisance

- Continuation of odour modelling and testing at the site and Target 13.1 local properties. Odour survey monitoring shall be sent to the agency at the end of each month. Recommendations will be implemented.
- Target 13.2 Provision of extensive planting and renewal of hedgerows. Berms will be placed in locations in order to minimise visual impact.
- Target 13.3 The road access and roadway along the front of the site will be maintained and cleaned in order to minimise visual nuisance at the entrance to the facility.

Objective 14

To reduce the quantity of recycling and biodegradable materials going to landfill.

- Target 14.1 To achieve a 50% reduction by commercial establishments.
- **Target 14.2** To set up a communication procedure and reporting

mechanism between landfill and enforcement officers regarding offenders.

Target 14.3 Provide awareness to companies of restricted landfill materials.

Objective 15

To achieve closure of the landfill facility to an environmentally satisfactory standard and comply fully with relevant legislation and the Landfill Directive.

- **Target 15.1**; The continued acceptance of acceptable waste in the landfill for such time as the required quantities are received to enable final contours be reached.
- **Target 15.2;** The notification of all customers that the landfill section at Dunmore will cease to operate from the advised date.
- **Target 15.3**; The expansion of the CAS to ensure continued availability of refuse disposal facility to householders and small business customers.
- **Target 15.4;** Increased signage and road markings at the CAS to ensure ease of access and use for the expected increase in customers anticipated as a direct result of the landfill closure.
- To maintain the existing gas and leachate management system **Target 15.5**; to ensure full compliance with the conditions of our license.
- Target 15.6; To advertise, appoint a contractor and complete the final capping of the landfill within 2010.
- **Target 15.7**; To maintain the nuisance montiroing system in place in relation to vermin, noise and litter control.
- Target 15.8; To investigate the viability of a C&D waste facility within the
- To assess the cost structure of the CAS to examine if the **Target 15.9**; facility can be self funding.

Details of the status of the objectives and targets can be found in Appendix G.

6. Procedures

6.1 Waste Acceptance Procedure

Municipal Waste defined as household waste as well as commercial and other waste which, because with nature or composition, is similar to household waste is accepted at Dunmore Landfill. Municipal Waste accepted at Dunmore Landfill Site will be subject to municipal waste characterisation surveys on a regular basis, at least once per annum.

Since the commencement of landfill operations at Dunmore a regular client base has been established of waste producers and waste contractors depositing waste at Dunmore Landfill. The waste producer and/or waste contractor have established with Kilkenny County Council if their waste is acceptable at the site. Any new waste producer or waste contractor wishing to dispose of waste at Dunmore Landfill Site is obliged to inform Kilkenny County Council of their operation. Similarly if the existing clientele have any reason to believe that the waste previously accepted has changed this information is brought to the attention of Kilkenny County Council. A correct and adequate description of the waste is sought and a determination whether the waste is acceptable or not is provided. If the waste is unacceptable at the Landfill Site then the waste producer/contractor is advised to find an alternative method of recovery or disposal and under the Waste Management Act, inform Kilkenny County Council of the alternative used.

When waste arrives at the Landfill the weighbridge operator notes the haulier/waste contractor and the vehicle registration number. The weighbridge operator determines the origin of the waste and the class of waste and inspects the covering of the waste. The weighbridge operator then confirms the type of waste by visual inspection. If the waste is acceptable the waste is directed to the tipping area where it is discharged from the vehicle. After discharge at the tipping area the compactor or loader operator inspects the waste. If the waste is acceptable the compactor operator proceeds to dispose and compact the waste in the active cell.

If the weighbridge operator determines that the waste is not acceptable, the site supervisor is informed. The site supervisor will then inspect the waste load. If the supervisor considers the waste acceptable the waste may be deposited in the active cell or if he/she requires to inspect the load it will be discharged on the active tipping area where it will be inspected and checked. The tipping area thus serves as an inspection area also. If the supervisor determines that the load is acceptable after inspection it is disposed of in the active cell. If the supervisor determines that the load is not acceptable the load will be directed to the waste quarantine area.

Once the site supervisor determines that a load prior to discharge from the vehicle is not acceptable or if a load is quarantined the site engineer is informed. The site engineer together with the site supervisor will discuss the waste load with the waste producer/contractor. Any further information as may be required or checks including analysis of the waste load will be undertaken. A decision on what action to be taken shall then be made and recorded. If it is determined at this stage that the load is acceptable it will be disposed of within the active. If the load is not acceptable the waste contractor/producer will be obliged to remove the load from the site and take it for an alternative recovery operation or to a disposal facility where the waste is accepted. Under section 18&34 of the Waste Management Act, Kilkenny County Council requires the Waste Contractor to record where all of the waste collected is disposed/recovered and such reports as required will be submitted to Kilkenny County Council.

A flow chart outlining the details of the procedure is outlined in Appendix H.

Emergency Response Procedure

Following an assessment of risk at the site in Dunmore, as part of our ongoing safety audits, procedures were put in place to deal with any emergency that may arise at the site.

The main risks identified at the site are explosion, fire, oil/leachate spillage and injury to persons.

During the end of 2004 a gas extraction and enclosed flare system was installed on site. This system extracts gases present in the cells and treats the gas on site by flaring thus significantly reducing its accumulation on site, its migration into the atmosphere and minimises the risk to human health. Field balancing of the wells are regularly carried out to ensure each well in all areas of the site are not being over or under pumped which would effect the combustion of the gas at the flare stage, and to ensure concentrations of landfill methane gas being transmitted are not within the explosive range of 5-15%. It is not permissible to set a fire or smoke at Dunmore, but with the nature of the gases present there remains a risk of fire on the active site. Also there is a quantity of diesel stored at the site. This tank will be secured in a fire proof vault. Again there is a slight risk of fire at this area. If a fire is identified at the site and it is safe to do so, the fire would be covered with inert material. If it is considered that the fire is unsafe and out of control, the fire service would be contacted immediately. Any fire at the site is immediately reported to the Engineer in charge and the site will be fully inspected.

The possibility of fire on one of the site vehicles or site offices was also identified as a potential risk. All site vehicles and site offices have been fitted with a fire extinguisher. In the case of a fire being detected in either, the fire extinguishers shall be used initially to control the fire. If the fire is unsafe or out of control the fire the fire brigade will be called. In the event of fire on any of the vehicles the vehicle owner/Machinery Yard Engineer shall be contacted immediately.

Site staff have received instruction in the use of this equipment and there is regular servicing of any fire control equipment on the site.

The storage of fuel on site, the presence of methane gas and other containers that may be on site from time to time, may pose a potential risk of explosion at the site. If there is an explosion on the site, all personnel on the site should be evacuated immediately. The fire service and the Engineer in charge are to be called immediately. A full investigation of the site is to be carried out to establish the cause of the explosion. Any resultant fire shall be brought under control as described above. The site may not be re-opened until clearance has been received from the Chief Fire Officer and the Engineer in charge.

Any fire or explosion on the site would be considered an incident and a full report will be made to the EPA as per condition 11.2.

Any spillage of leachate at the site is regarded as an incident under the terms of the waste licence. The source of any spillage is to be identified immediately and the course of action to be taken will be decided on or booms stored on the site. Any spillage would be contained by a clay bund. If necessary any watercourses in the area should be dammed to prevent any reception of leachate to surface water supply. A vacuum or leachate tanker will take the excess spilled leachate away. The surface/ground water should be sampled to assess the impact of the spill. Monitoring controls would then be put in place to ensure that levels do not breach the bunds. Extra leachate tankers will be employed to remove the excess leachate produced (a number of companies are available to provide this service); until monitoring results show that they are unnecessary. If there is any spillage of leachate, the Engineer in charge, is to be notified. An incident report will be prepared by the Engineer and sent to the EPA. In the event of any incident which relates to the discharges to surface water, the Southern Regional Fishery Board will be notified as soon as practicable and in any case not later than 10:00am on the following working day after such an

incident.

Oil spillage at the site will be contained with oil sorbant material. This sorbant when cleaned up will be stored in secure storage containers, supplied by the fire service, pending collection by an authorised waste facility. If any oil spillage occurs on site, the Engineer in charge should be notified.

All staff on site has been issued with personal protective equipment. All footwear is to SP3 standard (pierce proof, steel toed), hi-visibility clothing, gas masks and ear protection. Anti-bacterial wipes and bio guard wipes (which include protection from leptosporosis and other viruses) are provided on site. A number of first aid kits are available on site and they are regularly checked to ensure they are fully stocked. Some site staff have completed manual handling and first aid course and further courses are planned for the remainder. A full round of injections will be administered to the staff of Dunmore including Hepatitis A&B, Tetanus and Polio as required. All visitors to the site must report to the site offices and are restricted to certain areas within the site.

In the event of injury to any person, a member of the site staff will apply first aid. If it is necessary an ambulance will be called and the injured person will be taken to hospital. Any injury must be reported to Safety Co-ordinator and the Safety Officer to record the incident. The Safety Officer will then notify the HSA as required.

A summary chart of the procedures to be followed is shown on the following page. This chart along with all relevant phone numbers are posted in the site offices and all site staff has been made aware of this.

Emergency Response Procedure

Emergency	Response	Notify
Explosion	 Call-out Fire Brigade Evacuate Site 	Engineer in Charge Chief Fire Officer EPA
Fire-Vehicle	 Control with Vehicle or site fire extinguishers. If unsafe or out of control, call out Fire Brigade 	Machinery Yard Engineer Vehicle Owner Engineer in Charge
Fire-Site	 Cover with Inert Material. If unsafe, or out of control evacuate site and call-out Fire Brigade. 	Engineer in charge. EPA
Oil Spillage	Contain with oil sorbent material	Engineer in charge. EPA Southern Regional Fishery Board
Leachate Spillage	 Contain with clay bunds, Dam watercourses, if necessary. Suction up spillage with Vacuum tanker or leachate tanker 	Engineer in charge. EPA Southern Regional Fishery Board
Injury to Persons	Call Ambulance Apply First Aid	Engineer in charge.

Emergency Response Numbers: -

(056) 7722222 **Gardai Station**

Dominic St Kilkenny.

Fire Station (056) 7794400

Gaol Rd Kilkenny.

Ambulance (056) 7751133

Environmental Protection Agency – OEE

(053) 9160600

LoCall 1890 335599

Southern Regional Fisheries Board (052) 80055

7. Nuisance

7.1 Nuisance Control

The following measures are employed at Dunmore to control nuisance: -

7.1.1 Bird Control: - 'Bird Control Ireland' (BCI) have been employed since 2000 to regulate and monitor the bird control on site. A number of different techniques for controlling birds are used and specific non-native species of bird that come into the area are targeted. The methods employed are acoustic scarers, visual scarecrows such as helekite, eagle kites and falcon flights. Personnel visit the site weekly and provide a detailed monthly report of the bird populations observed on site. Instructions are left on a white board in the weighbridge for daily actions to be performed by site staff. A daily log sheet of on site activities is complete by site personnel and reviewed by both the facility manager and BCI to ensure the program remains successful.

During 2004 a marine signal pistol was purchased and is being used on the site to scare the birds. A number of staff on site have been trained in correct use of bird scaring pistol. A new acoustic scarer has recently been purchased for the site, which has a larger range of distress calls than on the previous machine. The distress calls added are designed to target the observed non native species that have tried to make raids on the site. Sample data logs and End of Year report are available in Appendix I.

7.1.2 Vermin Control: - 'Pestkill-Pest Control Services' visit the site on a regular basis, to place bait for vermin control at the site. There are 49 no. specific and labelled locations at and surrounding the site where bait is placed in custom made boxes. Pestkill inspects these monitoring points monthly to see if the bait was taken or rodent activity if any are noted and bait re-stock if necessary. The bait points are moved or the number shall be increased should it be deemed necessary by 'Pestkill'. Monthly record sheets of the findings at the site are logged and kept on site. There is also a monthly meeting between the vermin control company and the facility manager to discuss findings and any improvements to be made.

In April 2002, 'Pestkill' installed bait boxes in three adjoining properties to ensure that any vermin attracted by the Landfill to these properties would be controlled. Monthly inspections of these points are also made; notes of any bait take are made and restocked if necessary.

It is considered that adequate covering of the waste is also a necessary measure that is carried out. This will ensure that the food supply for vermin is kept at a minimum and therefore is a control measure for vermin.

7.1.3 Fly Control: - 'Pestkill-Pest Control Services' is under contract to spray the face of the landfill and machinery during the late Spring, Summer and early Autumn, and at other times if necessary.

It is considered that good site practice should eliminate the need for spraying. These measures include good compaction and mixing of the waste with inert clay. This leads to flies on the waste and their larva being compacted and buried with the waste, which in turn leads to the life cycle being stopped. When this is complete the active face of the landfill is covered with inert clay material as soon as is practical.

The use of Hessian material has discontinued as this has lead producing an environment suitable for the propagation of flies. Once the site has reached its agreed height the site is covered with appropriate soil cover and a permanent cap will be in place within twelve months of this final agreed height being reached.

8. Incidents and Complaints

8.1 Incident Reports

The following incidents took place at Dunmore during the reporting period. Details of the incidents are as follows: -

Gas Migration: - Under condition 6.3.1 of the licence, results showing a Methane level greater than or equal to 1 v/v or a CO₂ value greater than or equal to 1.5 v/v, is regarded as an exceedance. An Assessment of Landfill Gas Measurements at Dunmore Landfill, Co. Kilkenny analysing the processes responsible for these exceedence levels was carried out and submitted to the agency at the end of 2004. This report concluded that there is CO₂ is naturally occurring in the Dunmore Area. To allow for this finding the Agency agreed to increase the tolerance of the CO₂ trigger level, from 1.5% v/v to 3% v/v, therefore any levels =>3% v/v would be treated as an incident and reportable to the Agency. For the purpose of this report I have included both ranges of CO_2 from between 1.5 % to <3% v/v (Italic text) There were no recorded exceedances of =>3% v/v.

	1	2	3	4	5	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Jan					1.7																	
Feb																						
Mar		1.5		1.5													1.5					
Apr									1.6									1.5				
May																						
Jun		1.9							1.6	1.7	1.8											
Jul	1.5	1.9			2.0				2.4	2.0	1.6					1.6	2.0	1.8		1.6		1.5
Aug		2.4							1.9	2.1	1.6					2.1		1.8	1.5	1.8		
Sep		2.3							2.5	2.2			1.5				1.9					
Oct		2.5							2.5	2.1			1.5			2.9	2.4	2.2	1.6	1.6		
Nov		2.3		1.6	1.9				2.2	1.7	2.4		2.2		1.5	2.3	2.1	2.3				
Dec		2.4							2.3	1.7	2.1		2.4		1.6	2.6	2.1	2.1				

9. Staffing

9.1 Staffing Structure

Kilkenny County Council own and manage the landfill site at Dunmore. The County Council with Philip O'Neill as Director of Service and Simon Walton as Senior Engineer are presently appointed as the project supervisors for design and construction phase.

The Environment Section manages the facility on behalf of Kilkenny County Council with Carol McCarty BA BAI, MIEI, as Senior Executive Engineer of the Section.

On site John Bolger is caretaker at the site. The operatives at the site also include three drivers (Compactor, Traxcavator and Leachate Tanker), weighbridge operator, C.A. operator and a general operative.

The site is open Monday – Friday, 8.00 to 4.30 and on Saturday from 8.00 to 12.00. The phone numbers at the site are 056-7761999 and 056 7767848. Any queries or complaints may be made to the site or to the Environment Section in County Hall (056-7794470). A flow chart outlining the management structure is attached in Appendix J.

9.2 Monitoring and Sampling

The monitoring and sampling at Dunmore is carried out by the staff of the Environment Section of Kilkenny County Council, personnel from the Environmental Protection Agency, Regional Inspectorate, Seville Lodge, Callan Road, Kilkenny and personnel from environmental consultants Fehily, Timoney & Co. The list of all duties required and the relevant personnel are listed below: -

Interpretation of Results: -

Simon Walton, Senior Engineer

Environment Section Kilkenny Co. Co. January 2007 – Present

Landfill Duties Senior Engineer Environment

Carol McCarthy BA BAI MIEI, Senior Executive Engineer,

Completed FAS Waste December 2001,

Environment Section Kilkenny Co. Co. August 1990 - August 1994 and October 2001 – Present,

Environment Section Laois County Council Sept. 1996 – June 1997

Head of Environment Section Landfill Duties

Maeve Good BA BAI MIEI, Assistant Engineer,

Completed FAS Waste Management Certificate Feb 2005

Environment Section Kilkenny Co. Co. October 2004 - Present

Landfill Duties Deputy Facility Manager

Water Sampling (Condition 8.1 Schedule D.5): -

Michael Daly NCEA Diploma in Environmental Protection, Technician,

Diploma in Environment Protection

Environment Section Kilkenny Co. Co. Nov. 1982 – Present

Water/Leachate and Dust Monitoring/Noise Monitoring Landfill Duties

Water Sampling at the site is carried out by Jean Smith and Jim McGarry of the Environmental Protection Agency, Regional Inspectorate, Seville Lodge, Callan Road, Kilkenny. Quarterly sampling is carried out on all parameters listed in accordance with Condition 9.1 and Schedule F.4 of the Licence

Gas Monitoring (Condition 8.1 and Schedule D.2): -

Carol McCarthy BA BAI MIEI, Senior Executive Engineer,

Completed FAS Waste December 2001,

Environment Section Kilkenny Co. Co. August 1990 - August 1994 and October 2001 – Present,

Environment Section Laois County Council Sept. 1996 – June 1997

Head of Environment Section Landfill Duties

Noise Monitoring (Condition 8.1 Schedule D.4): -

Michael Daly NCEA Diploma in Environmental Protection, Technician,

Diploma in Environment Protection

Environment Section Kilkenny Co. Co. Nov. 1982 – Present

Landfill Duties Water/Leachate and Dust Monitoring/Noise Monitoring

Fehily Timoney & Co., Core Hse., Pouladuff Rd., Cork.

Director for Kilkenny Area Mr. Gerry O'Sullivan BE CEng

Landfill Duties Consulting Engineers/Noise Monitoring

Dust Monitoring (Condition 8.1 Schedule D.3): -

Michael Daly NCEA Diploma in Environmental Protection, Technician,

Diploma in Environment Protection

Environment Section Kilkenny Co. Co. Nov. 1982 – Present

Water/Leachate/Noise and Dust Monitoring Landfill Duties

Meteorological Monitoring (Condition 8.1 Schedule D.6): -

Meteorological Monitoring is carried out by Met Eireann at the Oakpark Meteorological Station, Carlow. Results are submitted to Kilkenny Council on a monthly basis.

10. Financial Provision

10.1 Financial Provision for the Site

The aggregate of the amount of charges imposed by Kilkenny County Council in respect of the disposal of waste at Dunmore Landfill (W0030-02) during 2009 was not less then the amount that would meet the total of the following costs:

- (a) costs incurred in acquisition and development of the facility,
- (b) costs of operating the facility and
- (c) costs of restoration.

11. Public Information

11.1 Procedure for Public Consultation

Dunmore Landfill is established since 1989 and good communication has developed between the site staff and the local community. The site staff in a spirit of good neighbourliness promptly deals with any issues arising locally.

During the development of proposals for an extension to the landfill site at Dunmore, intensive consultation has taken place especially with the immediate neighbours of the site and with other local residents. This consultation process commenced in November 2000 and was ongoing during the development stage. Arising out of these consultations, Kilkenny County Council had set up a Community Liaison Group.

The group comprises of seven members of the local community representing the different areas in the vicinity on the landfill, two local elected representatives, Senior Executive Engineer and the facility manager. As the landfill is now due for closure the Community Liaison Group will be convened to ascertain the appropriate community projects to benefit from this.

In addition to the above, the Kilkenny Area Committee of the County Council, comprising elected members of the Kilkenny Electoral Area are briefed on the developments at Dunmore.

The full Council are briefed on all waste management issues on a regular basis including developments at Dunmore, pricing structure, staff changes etc.

The Strategic Policy Committee on Environment (SPC 3), which comprises of council officials elected representatives and community representatives are briefed on developments at the landfill site and policy decisions are drafted as a result of the meetings.

All environmental monitoring results are held in the Dunmore Landfill, Dunmore, Co. Kilkenny and any member of the public is free to inspect them at any time during normal office hours (08:00 to 16:30 hours). Arrangements can be made to view the information at an alternative location by prior arrangement.

There is a fax and phone located at the site where queries can be made during opening hours i.e. 08:00 to 16:30, or a message can be left on the answering machine and if required will be contacted as soon as the message is received.

11.2 Complaints

A complaints register is located on site and any complaint regarding the operation of the facility is recorded and the action taken to address the complaint/observation. No complaints were received during 2009.

12. Compliance

12.1 Summary of Compliance

A summary of compliance under licence as part of our objectives and targets in Appendix G.

Appendix A

Waste Quantities

&

Recycling Rates

DUNMORE LANDFILL

2009

007 Local authority, 008 Domestic brought by house holders, 009 Domestic (contractors) 010 Litter & street sweepings, 011 Commercial, 012 Industrial, 013 Construction & demolition. 014 Sewage sludge, 015 Agricultural, 017 Asbestos waste

			CATEGO	RIES															
MONTHS	Local 00	House 00	Contract	Street 0'	Commer	Industria	Construc	Sewage	Agricultu	Asbesto	Clay	Roads	Stone	Gravel	Filt. Gra	Sand	Topsoil	WEEE	Check
January	34.32	389.38	565.44	60.2	342.26	0.14	0.64				1,976.18	113.78	314.32	114.36		21.46			
February	25.38	296.08	450.58	109.46	352.94		0.12				3,838	8.58		420.02		110.4			
March	18.46	385.76	429.88	39.44	346.08	0.16	0.00	0	0	0	869.64	47.84	42.66	193.64		105.4			
April	29.70	460.34	345.72	163.76	483.48	0.26	0.1	0	0	0	2,993.36	208.16	9.42	571.26		149.62			
May	27.36	399.40	412.74	115.98	361.60	0	0.36	0	0	0	953.24	380.10	70.88	68.00		22.56			
June	31.82	348.94	589.80	122.74	353.76	0	5.04				771.12	1098.26	230.46	0		0			
July	25.32	437.50	602.24	179.58	391.52	0	1.26	0			1003.1	271.88	39.22	0	C	0			
August	32.4	341.08	490.44	70.5	330.30	0	3.48	0	0	0	384.84	32.20	0.00	18.14	0.00				
Septembe	26.38	264.62	486.60	52.88	347.64	0.18	1.36			0	932.94	75.7		39.10				0.68	,
October	26.30	241.66	413.82	107.30	389.08	0	1.82	0	0	0	729.56	263.62	72.76	104.98	C	0		0.28	
Novembe	1.8	182.28	0.16	100.22	207.14	0	0.38	0	0	0	182.02	32.30		17.02				0.62	
Decembe	3.66	168.22	0.00	48.14	185.94	0	1.00	0	0	0	86.52	4.88	0.00	0.00	0.00	0.00	0.00	4.34	
Decembe	0.2	17.18	0.00	4.28	4.42	0	0	0	0	0	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.40	
TOTAL	283.1	3932.4	4787.4	1174.5	4096.2	0.74	15.56	0	0	0	14721	2537.3	779.72	1546.5	0	409.44	0	6.32	C
%	2%	28%	34%	8%	29%	0%	0%	0%	0%	0%									

TOTAL
1392.38
1234.56
1219.78
1483.36
1317.44
1452.10
1637.42
1268.20
1179.66
1179.98
491.98
406.96
26.08

Recycling Rates 2009

	Cardboard	Paper	Plastic	Timber	Metal	Fridges	Batteries	Textiles	Hazardous	Flouresce nt tubes	Glass	white & brown	tetra	Oil	Oil filters	Tyres	Total per month	Total WEEE
Jan	5.22	18.4	8.42	2.3	14.64	0.4	1.32	3.78	1.5	0	13.9	27.02	1.2	0.8	0	0	98.9	27.42
Feb	4.24	17.98	6.42	0	16.74	0.94	1.62	4.78	0	0	8.9	17.44	0.5	0.52	0	0	80.08	18.38
Mar	2.7	20.92	4.84	4.26	13.02	1.06	0.5	3	1.32	0.04	7.94	31.42	0.48	0	0	0	91.5	32.48
Apr	4.24	21.9	7.14	3.24	19.06	0	0.52	4.7	2.08	0	9.3	14.56	0.96	0	0	0	87.7	14.56
May	3.92	25.1	8.9	1.72	24.28	1.64	1.72	2.94	0	0	8.36	28.08	0.98	0	0	0	107.64	29.72
Jun	3.28	18.52	7.5	4.36	16.32	0	0	3.56	2.06	0.08	8.6	20.96	0.94	0.76	0	0	86.94	20.96
Jul	5.34	21.68	5.2	2.14	15.88	1.58	1.78	5.74	1.48	0	5.54	17.88	1.08	0	0	0	85.32	19.46
Aug	4.92	18	9.84	3.76	21.82	1.22	1	4.84	1.84	0	13.7	28.36	0.66	0	0	0	109.96	29.58
Sep	3.2	25.18	6.78	1.62	15.72	0	2.48	2.94	2.16	0	8.5	18.56	0.44	1	0	0	88.58	18.56
Oct	4.52	17.06	5.62	2.04	14.2	0.42	0.78	3.68	1.7	0	6.52	23.8	1.02	0.1	0	0	81.46	24.22
Nov	4.08	24.8	5.96	2.14	4.66	0	0	3.36	0	0	7.04	21.62	1.4	0	0	0	75.06	21.62
Dec	2.02	19.02	8.24	4.84	10.74	0.8	1.54	2.06	0	0.1	9.94	10.9	1.06	0	0	0	71.26	11.7
Subtotal	47.68	248.56	84.86	32.42	187.08	8.06	13.26	45.38	14.14	0.22	108.24	260.6	10.72	3.18	0	0	1064.4	268.66

Appendix B

Gas Monitoring

&

Gas Migration

Site Name		_andfill Site		Site Address: Dunmore,					
Operator:				Nation - 1		Co. Kilkenny			
Site Status		unty Coun	CII	Date: 28/0		nce: 160572N 249519E Time: 10:30			
Instrumen		tive			Date of Ca	alibration: May'08			
	Infra Red	Gas Analys	ser - GA 94			oration Due: May'10			
Wonitoring	g Personne Alan F	er: Ratigan		Weather: d	ry	Barometric Pressure (mb) : 1002			
Sample	Borehole/			RESULTS	3				
Station Number	Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments			
VP1	Cell No. 1 Vent	600mm	41.00	25.40	0.60	New gas well			
VP2	Cell No. 1 Vent	600mm	24.40	19.20	4.40	New gas well			
VP3	Cell No. 1 Vent	600mm	15.70	19.10	1.40	New gas well			
VP4	Cell No. 3 Vent	600mm	19.20	15.00	7.90	New gas well			
VP5	Cell No. 2 Vent	600mm	28.00	19.70	3.00	New gas well			
VP6	Cell No. 2 Vent	600mm	41.60	27.00	1.40	New gas well			
VP7	Cell No. 3 Vent Cell No. 7	600mm	57.50	28.00	2.20	New gas well			
VP8	Vent Cell No. 7	600mm	29.20	21.10	3.30	New gas well			
VP9	Vent Cell No. 6	600mm	24.50	19.20	6.10	New gas well			
VP10	Vent Cell No. 6	600mm	13.30	18.30	3.00	New gas well			
VP11	Vent	600mm	46.20	25.30	0.90	New gas well			
VP12	Cell No. 5 Vent	600mm	54.10	26.90	0.20	New gas well			
VP13	Cell No. 5 Vent	600mm	34.80	22.70	2.40	New gas well			
VP14	Cell No. 7 Vent Cell No. 7	600mm	36.50	23.40	3.90	New gas well			
VP15	Vent Cell No. 4	600mm				Disconnected due to capping work			
VP16	Vent Cell No. 4	600mm				Disconnected due to capping work			
VP17	Vent Cell No.	600mm	7.40	5.40	14.60	New gas well			
VP18	10 Vent	600mm	38.90	25.40	5.20	New gas well			
VP19	10 Vent	600mm	53.30	27.80	2.90	New gas well			
VP20	Cell No. 10 Vent	600mm	51.40	30.70	3.50	New gas well			
VP21	Cell No. 9 Vent	600mm	52.10	27.90	3.60	New gas well			
VP22	Cell No. 8 Vent	600mm	53.50	27.90	3.70	New gas well			
VP23	Cell No. 11 Vent	600mm	41.70	26.10	1.20	New gas well			
VP24	Cell No. 11 Vent	600mm	26.10	22.20	1.50	New gas well			
VP25	Cell No. 11 Vent	600mm	62.30	34.40	0.10	New gas well			
VP26	Cell No. 11 Vent	600mm	47.40	26.70	0.80	New gas well			
VP27	Cell No. 11 Vent	600mm	64.20	31.70	0.30	New gas well			
VP28	Cell No.	600mm	45.10	26.80	2.20	New gas well			
VP29	Cell No. 11 Vent	600mm	63.00	36.60	0.00	New gas well			
VP30	Cell No. 8 Vent	600mm	52.00	30.90	0.60	New gas well			
VP31	Cell No. 8 Vent	600mm	60.20	33.30	0.00	New gas well			

ı	Cell No. 9	1		1		
VP32	Vent	600mm	54.40	30.00	0.50	Now gos well
VF3Z	Cell No9	60011111	34.40	30.00		New gas well
VP33	Vent	600mm	63.30	35.50	0.00	New gas well
V1 33	Cell No10		00.00	33.30		ivew gas well
VP34	Vent	600mm	13.90	5.40	16.60	New gas well
****	Cell No.	000111111	10.00	0.40		rtew gas wen
VP35	10 Vent	600mm	63.10	35.90	0.30	New gas well
	Cell No.		00.10	00.00		. to gao tre
VP36	10 Vent	600mm	49.30	30.80	1.10	New gas well
	Cell No.					gas
VP37	11 Vent	600mm	58.10	32.70	0.40	New gas well
	Cell No.					. 3
VP38	12 Vent	600mm	44.80	30.10	0.30	New gas well
	Cell No.					Ŭ
VP39	12 Vent	600mm	48.50	32.90	0.00	New gas well
	Cell No.					Ŭ
VP40	12 Vent	600mm	48.70	32.70	0.00	New gas well
	Cell No.					
VP41	12 Vent	600mm	24.50	22.30	1.40	New gas well
	Cell No. 8					
VP42	Vent	600mm	61.40	36.20	0.50	New gas well
	Cell No. 8					
VP43	Vent	600mm	62.60	32.60	0.00	New gas well
	Cell No. 9					
VP44	Vent	600mm	60.30	29.30	0.30	New gas well
	Cell No. 9					
VP45	Vent	600mm	61.60	34.40	0.00	New gas well
	Cell No. 9					
VP46	Vent	600mm	41.50	27.00	1.20	New gas well
	Cell No.					
VP47	13 Vent	600mm	23.10	25.20	0.40	New gas well
l	Cell No.					
VP48	13 Vent	600mm	40.80	32.00	0.10	New gas well
	Cell No. 13 Vent		00.00	00.70	0.00	
VP49	Cell No.	600mm	63.80	33.70	0.60	New gas well
VP50	13 Vent	000	24.00	10.50	7.00	New goo wall
VP50	Cell No.	600mm	21.90	19.50	7.20	New gas well
VDE4	13 Vent	000	10.00	10.50	1.00	New goo wall
VP51	13 Venil	600mm	12.30	18.50	1.20	New gas well

Site Name				Site Address:					
Operator:		_andfill Site		L		Dunmore, Co. Kilkenny			
Site Statu	s:	unty Coun	CII	National G Date: 27/0		nce: 160572N 249519E Time: 13:57			
Instrumen		tive			Date of Ca	alibration: May'08			
Monitorine	Infra Red g Personne	Gas Analys	ser - GA 94	Weather:	Next Calib	pration Due: May'10 Barometric Pressure (mb) :			
		Ratigan			ry	1010			
Sample	Borehole/	0							
Station Number	Spike/ Other	Survey Depth	CH₄ % v/v	CO₂ % v/v	O ₂ % v/v	Comments			
VP1	Cell No. 1 Vent	600mm	54.60	26.70	0.90	New gas well			
VP2	Cell No. 1 Vent	600mm	41.10	20.20	2.20	New gas well			
VP3	Cell No. 1 Vent	600mm	42.70	25.30	0.40	New gas well			
VP4	Cell No. 3 Vent	600mm	66.30	26.70	0.60	New gas well			
VP5	Cell No. 2 Vent	600mm	44.40	23.20	1.10	New gas well			
VP6	Cell No. 2 Vent	600mm	50.50	25.50	1.20	New gas well			
VP7	Cell No. 3 Vent	600mm	51.50	25.10	3.30	New gas well			
VP8	Cell No. 7 Vent	600mm	21.00	10.60	12.00	New gas well			
VP9	Cell No. 7 Vent	600mm	40.70	22.20	3.40	New gas well			
VP10	Cell No. 6 Vent	600mm	28.60	17.50	4.50	New gas well			
VP11	Cell No. 6 Vent	600mm	49.10	25.50	0.50	New gas well			
VP12	Cell No. 5 Vent	600mm	50.50	26.00	0.60	New gas well			
VP13	Cell No. 5 Vent	600mm	61.40	28.50	0.90	New gas well			
VP14	Cell No. 7 Vent	600mm	25.70	16.80	7.40	New gas well			
VP15	Cell No. 7 Vent	600mm	13.00	7.30	16.10	New gas well			
VP16	Cell No. 4 Vent	600mm	41.10	24.90	5.00	New gas well			
VP17	Cell No. 4 Vent	600mm	52.30	27.00	0.90	New gas well			
VP18	Cell No. 10 Vent	600mm	50.90	29.70	1.70	New gas well			
VP19	Cell No. 10 Vent	600mm	31.60	21.90	5.00	New gas well			
VP20	Cell No. 10 Vent	600mm	44.50	25.20	3.30	New gas well			
VP21	Cell No. 9 Vent	600mm	46.40	26.70	0.90	New gas well			
VP22	Cell No. 8 Vent	600mm	45.80	27.30	2.10	New gas well			
VP23	Cell No. 11 Vent	600mm	55.80	28.50	0.50	New gas well			
VP24	Cell No. 11 Vent	600mm	74.40	24.00	0.10	New gas well			
VP25	Cell No. 11 Vent	600mm	63.60	34.10	0.10	New gas well			
VP26	Cell No. 11 Vent	600mm	34.50	23.50	1.70	New gas well			
VP27	Cell No. 11 Vent	600mm	66.20	31.10	0.00	New gas well			
VP28	Cell No. 11 Vent	600mm	30.60	25.60	0.00	New gas well			
VP29	Cell No. 11 Vent	600mm	59.40	34.20	0.20	New gas well			
VP30	Cell No. 8 Vent	600mm	44.90	24.70	5.10	New gas well			
VP31	Cell No. 8 Vent	600mm	39.70	25.90	2.90	New gas well			

ı	Cell No. 9	1 1	l l			
VP32	Vent	600mm	67.40	30.50	0.20	New gas well
	Cell No9	000	01110	00.00		. ton gae non
VP33	Vent	600mm	31.40	17.90	9.10	New gas well
	Cell No10					Ü
VP34	Vent	600mm	33.80	22.70	5.30	New gas well
	Cell No.				1.00	
VP35	10 Vent	600mm	60.20	32.90	1.00	New gas well
	Cell No.				0.10	
VP36	10 Vent	600mm	61.50	33.10	00	New gas well
1/207	Cell No. 11 Vent	000	40.00	00.40	0.00	
VP37	Cell No.	600mm	42.30	29.40	0.00	New gas well
VP38	12 Vent	600mm	26.30	25.40	1.20	New gas well
VF-30	Cell No.	00011111	20.30	23.40	1.20	New gas well
VP39	12 Vent	600mm	69.60	29.50	0.40	New gas well
	Cell No.	000	00.00	20.00	0.10	. ton gae nen
VP40	12 Vent	600mm	26.10	19.00	6.50	New gas well
	Cell No.					·
VP41	12 Vent	600mm	13.00	16.80	3.50	New gas well
	Cell No. 8					
VP42	Vent	600mm	62.50	35.70	0.20	New gas well
	Cell No. 8					
VP43	Vent	600mm	57.70	30.30	0.50	New gas well
VD44	Cell No. 9 Vent	000	04.70	00.00	4.00	Name
VP44	Cell No. 9	600mm	31.70	22.90	1.20	New gas well
VP45	Vent	600mm	47.20	31.20	0.80	New gas well
	Cell No. 9	000111111	-17.20	01.20	0.00	11011 gas well
VP46	Vent	600mm	56.60	24.40	0.80	New gas well
	Cell No.					Ŭ
VP47	13 Vent	600mm	23.50	25.60	0.50	New gas well
	Cell No.					
VP48	13 Vent	600mm	45.10	32.60	0.50	New gas well
	Cell No.					
VP49	13 Vent	600mm	61.90	30.90	2.20	New gas well
VP50	Cell No. 13 Vent	600mm	22.00	20.00	6.00	Now goo well
VPOU	Cell No.	600mm	23.00	20.00	0.00	New gas well
VP51	13 Vent	600mm	10.20	18.90	1.20	New gas well
V1-31	Cell No.	OOOMIN	10.20	10.90	1.20	rvew gas well
VP52	14 Vent	600mm	29.00	26.70	0.60	New gas well
VP52	14 Vent	600mm	29.00	26.70	0.60	New gas well

Site Name		_andfill Site	9	Site Address: Dunmore,					
Operator:				Nation - 1		Co. Kilkenny			
Site Status		unty Coun	CII	Date: 06/0		nce: 160572N 249519E Time: 12:27			
Instrumen		tive			Date of Ca	alibration: Mar'09			
Monitoring	Infra Red	Gas Analys	ser - GA 94	Weather:	Next Calib	pration Due: Sep'09 Barometric Pressure (mb) :			
MOIIICIIII		Ratigan		d	ry	993			
Sample	Borehole/			RESULTS					
Station Number	Spike/ Other	Survey Depth	CH₄ % v/v	CO₂ % v/v	O₂ % v/v	Comments			
VP1	Cell No. 1	600mm	46.80	25.80	0.50				
	Vent Cell No. 1				0.50	New gas well			
VP2	Vent Cell No. 1	600mm	49.90	23.60		New gas well			
VP3	Vent Cell No. 3	600mm	52.50	27.00	0.30	New gas well			
VP4	Vent	600mm	62.80	27.50	1.80	New gas well			
VP5	Cell No. 2 Vent	600mm	60.80	27.00	0.60	New gas well			
VP6	Cell No. 2 Vent	600mm	68.20	29.40	0.30	New gas well			
VP7	Cell No. 3 Vent	600mm	48.20	23.60	4.80	New gas well			
VP8	Cell No. 7 Vent	600mm	30.00	14.10	10.20	New gas well			
VP9	Cell No. 7 Vent	600mm	64.80	28.30	0.30	New gas well			
VP10	Cell No. 6 Vent	600mm	59.10	24.30	0.00	New gas well			
VP11	Cell No. 6 Vent	600mm	54.30	26.70	0.10	New gas well			
VP12	Cell No. 5 Vent	600mm	52.70	26.20	0.60	New gas well			
VP13	Cell No. 5 Vent	600mm	25.00	15.60	6.70	New gas well			
VP14	Cell No. 7 Vent	600mm	57.20	25.00	3.20	New gas well			
VP15	Cell No. 7 Vent	600mm	22.50	10.50	12.80	New gas well			
VP16	Cell No. 4 Vent	600mm	37.00	20.00	5.80	New gas well			
VP17	Cell No. 4 Vent	600mm	54.50	27.30	0.90	New gas well			
VP18	Cell No. 10 Vent	600mm	63.80	34.30	0.40	New gas well			
VP19	Cell No. 10 Vent	600mm	61.20	34.40	0.30	New gas well			
VP20	Cell No. 10 Vent	600mm	52.50	31.50	2.90	New gas well			
VP21	Cell No. 9 Vent	600mm	60.20	31.50	1.50	New gas well			
VP22	Cell No. 8 Vent	600mm	58.80	29.10	2.10	New gas well			
VP23	Cell No. 11 Vent	600mm	59.40	29.40	0.20	New gas well			
VP24	Cell No. 11 Vent	600mm	75.60	24.20	0.00	New gas well			
VP25	Cell No. 11 Vent	600mm	64.30	34.90	0.00	New gas well			
VP26	Cell No. 11 Vent	600mm	50.40	27.70	0.50	New gas well			
VP27	Cell No. 11 Vent	600mm	66.70	32.70	0.00	New gas well			
VP28	Cell No. 11 Vent	600mm	39.10	26.90	0.00	New gas well			
VP29	Cell No. 11 Vent	600mm	62.60	35.60	0.00	New gas well			
VP30	Cell No. 8 Vent	600mm	65.20	33.80	0.00	New gas well			
	Cell No. 8				0.00				
VP31	Vent	600mm	64.00	33.20	3.00	New gas well			

I	Cell No. 9	ı ı	1			
VP32	Vent	600mm	67.20	31.20	0.00	New gas well
	Cell No9				0.00	
VP33	Vent	600mm	64.10	34.10	0.00	New gas well
VP34	Cell No10 Vent	C00	27.00	10.70	8.40	New gee well
VP34	Cell No.	600mm	27.00	16.70		New gas well
VP35	10 Vent	600mm	61.00	33.90	0.00	New gas well
	Cell No.					gas
VP36	10 Vent	600mm	59.10	32.80	0.30	New gas well
	Cell No.					
VP37	11 Vent	600mm	54.20	32.90	0.00	New gas well
	Cell No.					
VP38	12 Vent	600mm	30.50	20.70	5.40	New gas well
VDos	Cell No.	000	74.00	00.00	0.00	
VP39	12 Vent	600mm	71.00	29.90	0.20	New gas well
VP40	Cell No. 12 Vent	600mm	41.40	30.10	0.50	Now gas well
VP40	Cell No.	OUUIIIII	41.40	30.10	0.50	New gas well
VP41	12 Vent	600mm	62.30	36.70	0.60	New gas well
	Cell No. 8	55011111	02.00	00.70	0.00	14047 940 47011
VP42	Vent	600mm	26.40	21.00	2.40	New gas well
	Cell No. 8					Ü
VP43	Vent	600mm	62.10	32.40	0.60	New gas well
	Cell No. 9					
VP44	Vent	600mm	57.10	28.20	0.00	New gas well
	Cell No. 9					
VP45	Vent	600mm	64.20	34.80	0.00	New gas well
VD46	Cell No. 9 Vent	000	04.00	00.50	0.00	Name and small
VP46	Vent Cell No.	600mm	64.30	33.50	0.30	New gas well
VP47	13 Vent	600mm	33.30	28.90	0.00	New gas well
	Cell No.		00.00		0.00	940
VP48	13 Vent	600mm	50.80	34.70	0.10	New gas well
	Cell No.					Ü
VP49	13 Vent	600mm	19.80	17.40	5.70	New gas well
	Cell No.					
VP50	13 Vent	600mm	21.50	24.30	0.20	New gas well
	Cell No.					
VP51	13 Vent	600mm	48.70	34.00	0.00	New gas well
VP52	Cell No. 14 Vent	600mm	21 10	24.70	0.00	Now gos well
VP32	14 ACIII	600mm	21.10	24.70	0.00	New gas well

Site Name		_andfill Site		Site Address: Dunmore,					
Operator:						Co. Kilkenny			
Site Status		unty Coun	CII	National G Date: 28/0		nce: 160572N 249519E Time: 12:27			
Instrumen		tive			Date of Ca	alibration: Mar'09			
Monitoring	Infra Red g Personne	Gas Analys	ser - GA 94	Weather:	Next Calib	oration Due: Sep'09 Barometric Pressure (mb) :			
		Ratigan			ry	997			
Sample	Borehole/	0							
Station Number	Spike/ Other	Survey Depth	CH₄ % v/v	CO₂ % v/v	O ₂ % v/v	Comments			
VP1	Cell No. 1 Vent	600mm	27.50	21.70	3.90	New gas well			
VP2	Cell No. 1 Vent	600mm	50.50	21.80	0.80	New gas well			
VP3	Cell No. 1 Vent	600mm	60.40	28.20	0.40	New gas well			
VP4	Cell No. 3 Vent	600mm	39.00	25.00	1.50	New gas well			
VP5	Cell No. 2 Vent	600mm	64.60	26.90	0.90	New gas well			
VP6	Cell No. 2 Vent	600mm	51.50	27.40	0.50	New gas well			
VP7	Cell No. 3 Vent	600mm	43.50	22.40	5.70	New gas well			
VP8	Cell No. 7 Vent	600mm	14.80	7.90	14.10	New gas well			
VP9	Cell No. 7 Vent	600mm	61.60	27.40	1.20	New gas well			
VP10	Cell No. 6 Vent	600mm	61.60	25.20	0.50	New gas well			
VP11	Cell No. 6 Vent	600mm	52.90	26.50	0.10	New gas well			
VP12	Cell No. 5 Vent	600mm	49.30	25.10	1.10	New gas well			
VP13	Cell No. 5 Vent	600mm	22.80	22.70	3.40	New gas well			
VP14	Cell No. 7 Vent	600mm	60.10	29.30	0.60	New gas well			
VP15	Cell No. 7 Vent	600mm	45.90	25.30	3.90	New gas well			
VP16	Cell No. 4 Vent	600mm	37.20	22.20	6.00	New gas well			
VP17	Cell No. 4 Vent	600mm	14.50	15.10	10.10	New gas well			
VP18	Cell No.	600mm	35.10	23.20	6.40	New gas well			
VP19	Cell No. 10 Vent	600mm	9.60	8.50	13.90	New gas well			
VP20	Cell No. 10 Vent	600mm	36.40	22.10	8.70	New gas well			
VP21	Cell No. 9 Vent	600mm	39.70	24.50	7.50	New gas well			
VP22	Cell No. 8 Vent	600mm	46.90	27.40	3.90	New gas well			
VP23	Cell No. 11 Vent	600mm	46.40	28.70	0.30	New gas well			
VP24	Cell No. 11 Vent	600mm	72.60	23.90	0.50	New gas well			
VP25	Cell No. 11 Vent	600mm	64.90	34.70	0.00	New gas well			
VP26	Cell No. 11 Vent	600mm	30.30	23.30	1.60	New gas well			
VP27	Cell No. 11 Vent	600mm	66.30	32.80	0.10	New gas well			
VP28	Cell No. 11 Vent	600mm	24.70	23.90	0.10	New gas well			
VP29	Cell No. 11 Vent	600mm	46.00	33.50	0.20	New gas well			
VP30	Cell No. 8 Vent	600mm	63.40	36.20	0.00	New gas well			
VP31	Cell No. 8 Vent	600mm	62.00	33.60	0.00	New gas well			

1	Cell No. 9	1 1				
VP32	Vent	600mm	68.80	30.80	0.00	New gas well
	Cell No9					gae nen
VP33	Vent	600mm	63.00	33.80	0.00	New gas well
	Cell No10				0.00	•
VP34	Vent	600mm	52.80	31.60	0.90	New gas well
	Cell No.				0.20	
VP35	10 Vent	600mm	65.10	34.50	0.20	New gas well
	Cell No.				0.60	
VP36	10 Vent	600mm	65.30	35.10		New gas well
VP37	Cell No. 11 Vent	600mm	25.20	28.30	0.00	New goo wall
VP3/	Cell No.	600111111	35.30	20.30	0.00	New gas well
VP38	12 Vent	600mm	33.90	26.60	0.80	New gas well
*****	Cell No.	000111111	00.00	20.00	0.00	rtow gas wen
VP39	12 Vent	600mm	35.30	27.60	0.00	New gas well
	Cell No.					3 3 3
VP40	12 Vent	600mm	66.50	32.30	0.00	New gas well
	Cell No.					
VP41	12 Vent	600mm	5.60	12.10	6.60	New gas well
	Cell No. 8					
VP42	Vent	600mm	51.70	30.80	0.20	New gas well
	Cell No. 8					
VP43	Vent	600mm	38.20	28.00	3.30	New gas well
VP44	Cell No. 9 Vent	000	54.00	04.00	0.40	Name and small
VP44	Cell No. 9	600mm	54.00	31.20	0.40	New gas well
VP45	Vent	600mm	22.60	21.80	0.80	New gas well
VI 43	Cell No. 9	00011111	22.00	21.00	0.00	rvew gas wen
VP46	Vent	600mm	52.90	31.40	0.30	New gas well
-	Cell No.					- J
VP47	13 Vent	600mm	19.20	25.30	0.50	New gas well
	Cell No.					
VP48	13 Vent	600mm	48.80	33.90	0.20	New gas well
	Cell No.					
VP49	13 Vent	600mm	24.40	17.80	7.20	New gas well
VDEC	Cell No. 13 Vent	000	40.00	00.40	0.00	Name and a small
VP50	Cell No.	600mm	19.20	23.40	0.20	New gas well
VP51	Cell No. 13 Vent	600mm	29.00	27.00	0.30	Now goo well
VPSI	Cell No.	OUUIIIII	29.00	27.80	0.30	New gas well
VP52	14 Vent	600mm				New gas well
V 1"3Z	1-7 V OIIL	OUUIIIII				ivew gas well

Site Name		_andfill Site	•	Site Address: Dunmore,				
Operator:				National C		Co. Kilkenny nce: 160572N 249519E		
Site Status	s:	unty Coun	CII	Date: 03/0		Time: 12:24		
Instrumen	t Used:	Coo Amelia	04.04	Date of Calibration: Mar'09				
Monitoring	g Personne	Gas Analys el:	ser - GA 94	Next Calibration Due: Sep'09 Weather: Barometric Pressure (mb)				
	Alan F	Ratigan		d RESULTS	ry	1017		
Sample	Borehole/	Survey	CH₄	CO2	02			
Station Number	Spike/ Other	Depth	% v/v	% v/v	% v/v	Comments		
VP1	Cell No. 1 Vent	600mm	49.60	26.70	0.80	New gas well		
VP2	Cell No. 1 Vent	600mm	67.20	24.10	0.20	New gas well		
VP3	Cell No. 1 Vent	600mm	67.20	27.90	0.00	New gas well		
VP4	Cell No. 3 Vent	600mm	69.60	27.50	0.00	New gas well		
VP5	Cell No. 2 Vent	600mm	62.90	28.50	0.20	New gas well		
VP6	Cell No. 2 Vent	600mm	67.10	30.40	0.00	New gas well		
VP7	Cell No. 3 Vent	600mm	57.90	27.70	1.90	New gas well		
VP8	Cell No. 7 Vent	600mm	39.20	18.20	6.70	New gas well		
VP9	Cell No. 7 Vent	600mm	63.80	29.10	0.00	New gas well		
VP10	Cell No. 6 Vent	600mm	51.00	22.40	3.00	New gas well		
VP11	Cell No. 6 Vent	600mm	51.00	27.30	0.00	New gas well		
VP12	Cell No. 5 Vent	600mm	49.30	26.40	0.60	New gas well		
VP13	Cell No. 5 Vent	600mm	20.70	10.70	13.20	New gas well		
VP14	Cell No. 7 Vent	600mm	32.70	23.60	3.20	New gas well		
VP15	Cell No. 7 Vent	600mm	62.40	33.10	0.00	New gas well		
VP16	Cell No. 4 Vent	600mm	54.40	29.30	0.30	New gas well		
VP17	Cell No. 4 Vent	600mm	51.50	30.40	0.00	New gas well		
VP18	Cell No.	600mm	39.30	29.50	3.50	New gas well		
VP19	Cell No. 10 Vent	600mm	14.90	9.20	13.40	New gas well		
VP20	Cell No. 10 Vent	600mm	41.70	25.10	6.20	New gas well		
VP21	Cell No. 9 Vent	600mm	31.30	15.00	9.30	New gas well		
VP22	Cell No. 8 Vent	600mm	34.70	20.30	8.30	New gas well		
VP23	Cell No. 11 Vent	600mm	49.50	30.10	0.20	New gas well		
VP24	Cell No. 11 Vent	600mm	66.80	24.70	0.00	New gas well		
VP25	Cell No. 11 Vent	600mm	59.80	32.40	0.10	New gas well		
VP26	Cell No. 11 Vent	600mm	46.70	28.30	0.00	New gas well		
VP27	Cell No. 11 Vent	600mm	60.90	32.20	0.00	New gas well		
VP28	Cell No. 11 Vent	600mm	35.00	25.50	0.00	New gas well		
VP29	Cell No.	600mm	61.00	43.00	0.00	New gas well		
VP30	Cell No. 8 Vent	600mm	51.20	30.90	0.40	New gas well		
VP31	Cell No. 8 Vent	600mm	62.50	35.40	0.90	New gas well		

	Cell No. 9			1		
VP32	Vent	600mm	60.50	32.00	0.20	New gas well
VF3Z	Cell No9	00011111	00.50	32.00		New gas well
VP33	Vent	600mm	63.40	34.60	0.00	New gas well
	Cell No10					. 3
VP34	Vent	600mm	20.90	20.40	1.90	New gas well
	Cell No.				0.30	
VP35	10 Vent	600mm	61.60	32.90	0.30	New gas well
	Cell No.				0.30	
VP36	10 Vent	600mm	49.40	29.70	0.00	New gas well
\/D07	Cell No. 11 Vent	000	50.40	00.00	0.00	Name and the H
VP37	Cell No.	600mm	53.10	32.80	0.00	New gas well
VP38	12 Vent	600mm	37.90	25.00	1.80	New gas well
*1.00	Cell No.	000111111	01.00	20.00	1.00	New gas wen
VP39	12 Vent	600mm	55.50	28.90	0.30	New gas well
	Cell No.					Ŭ
VP40	12 Vent	600mm	40.50	28.90	0.60	New gas well
	Cell No.					
VP41	12 Vent	600mm	16.60	20.50	1.00	New gas well
1/540	Cell No. 8 Vent	000	00.70	00.00	0.00	
VP42	Cell No. 8	600mm	62.70	36.00	0.00	New gas well
VP43	Vent	600mm	54.40	30.30	0.00	New gas well
11.40	Cell No. 9	000111111	01.10	00.00	0.00	THEW gas wen
VP44	Vent	600mm	44.30	27.10	0.20	New gas well
	Cell No. 9					Ğ
VP45	Vent	600mm	40.50	28.50	1.60	New gas well
	Cell No. 9					
VP46	Vent	600mm	44.00	27.10	0.50	New gas well
VP47	Cell No. 13 Vent	600mm	33.30	27.50	0.60	Now gos well
VF4/	Cell No.	60011111	33.30	27.30	0.00	New gas well
VP48	13 Vent	600mm	40.60	30.50	0.10	New gas well
	Cell No.				00	
VP49	13 Vent	600mm	16.70	14.50	8.30	New gas well
	Cell No.					
VP50	13 Vent	600mm	18.80	23.40	0.10	New gas well
l	Cell No.					
VP51	13 Vent Cell No.	600mm	33.10	32.00	0.30	New gas well
VP52	Cell No. 14 Vent	600mm	52.90	44.20	0.00	New gas well
VF JZ	Cell No.	OUUIIIII	32.30	44.20	0.00	ivew gas well
HOR1	14 Vent	600mm	31.40	21.40	6.70	New gas well
<u> </u>	Cell No.					· · · · · · · · · · · · · · · · · · ·
HOR2	14 Vent	600mm	23.30	23.30	6.30	New gas well

Site Name		_andfill Site		Site Address: Dunmore,				
Operator:				Co. Kilkenny				
K Site Status		unty Coun	cil	National G Date: 02/0		nce: 160572N 249519E Time: 16:01		
Instrumen		tive		Date of Calibration: Mar'09				
	Infra Red	Gas Analys	ser - GA 94	Next Calibration Due: Sep'09				
Wonitoring	g Personne Alan F	el: Ratigan		Weather: d	ry	Barometric Pressure (mb) : 1010		
Sample	Borehole/			RESULTS	3			
Station	Spike/	Survey Depth	CH₄ % v/v	CO₂ % v/v	O ₂ % v/v	Comments		
Number	Other Cell No. 1							
VP1	Vent Cell No. 1	600mm	45.30	27.40	0.40	New gas well		
VP2	Vent Cell No. 1	600mm	53.30	25.60	0.30	New gas well		
VP3	Vent Cell No. 3	600mm	48.20	29.50	0.30	New gas well		
VP4	Vent Cell No. 2	600mm	59.80	29.60	0.30	New gas well		
VP5	Vent Cell No. 2	600mm	58.00	29.70	0.30	New gas well		
VP6	Vent	600mm	65.20	31.80	0.20	New gas well		
VP7	Cell No. 3 Vent	600mm	59.70	29.50	1.40	New gas well		
VP8	Cell No. 7 Vent	600mm	42.00	22.80	4.30	New gas well		
VP9	Cell No. 7 Vent	600mm	59.60	29.20	1.20	New gas well		
VP10	Cell No. 6 Vent	600mm	46.80	22.20	3.80	New gas well		
VP11	Cell No. 6 Vent	600mm	56.50	28.70	0.00	New gas well		
VP12	Cell No. 5 Vent	600mm	55.90	28.40	0.10	New gas well		
VP13	Cell No. 5 Vent	600mm	64.10	33.60	0.00	New gas well		
VP14	Cell No. 7 Vent	600mm	60.10	27.80	1.30	New gas well		
VP15	Cell No. 7 Vent	600mm	59.00	33.20	0.10	New gas well		
VP16	Cell No. 4 Vent	600mm	52.00	30.30	0.50	New gas well		
VP17	Cell No. 4 Vent	600mm	60.60	34.20	0.00	New gas well		
VP18	Cell No. 10 Vent	600mm	57.20	37.60	0.00	New gas well		
VP19	Cell No. 10 Vent	600mm	38.30	27.10	2.30	New gas well		
VP20	Cell No. 10 Vent	600mm	51.60	30.70	2.60	New gas well		
VP21	Cell No. 9 Vent	600mm	50.80	30.60	3.50	New gas well		
VP22	Cell No. 8 Vent	600mm	56.50	32.20	1.50	New gas well		
VP23	Cell No. 11 Vent	600mm	63.30	32.20	0.20	New gas well		
VP24	Cell No. 11 Vent	600mm	74.30	23.70	0.10	New gas well		
VP25	Cell No. 11 Vent	600mm	64.10	33.50	0.00	New gas well		
VP26	Cell No. 11 Vent	600mm	63.80	30.20	0.00	New gas well		
VP27	Cell No. 11 Vent	600mm	63.80	33.80	0.00	New gas well		
VP28	Cell No. 11 Vent	600mm	63.90	33.20	0.70	New gas well		
VP29	Cell No. 11 Vent	600mm	63.20	32.80	0.00	New gas well		
	Cell No. 8 Vent				1.00			
VP30	Cell No. 8	600mm	67.40	29.10	0.00	New gas well		
VP31	Vent	600mm	60.80	35.60	0.00	New gas well		

	Cell No. 9		ı i	1		
VP32	Vent	600mm	65.70	30.80	0.10	New gas well
VF3Z	Cell No9	60011111	03.70	30.60		New gas well
VP33	Vent	600mm	68.10	29.80	0.00	New gas well
	Cell No10	000	00.10	20.00		rien gae nen
VP34	Vent	600mm	20.20	8.30	13.60	New gas well
	Cell No.					Ŭ
VP35	10 Vent	600mm	60.20	32.20	0.30	New gas well
	Cell No.				0.40	
VP36	10 Vent	600mm	59.20	32.10	0.40	New gas well
	Cell No.					
VP37	11 Vent	600mm	72.60	23.30	1.20	New gas well
	Cell No.					
VP38	12 Vent	600mm	66.00	30.40	0.00	New gas well
VP39	Cell No. 12 Vent	C00	55.60	25.10	0.90	New gee well
VF39	Cell No.	600mm	33.00	23.10	0.90	New gas well
VP40	12 Vent	600mm	63.80	31.80	0.00	New gas well
VI 40	Cell No.	000111111	00.00	01.00	0.00	New gas wen
VP41	12 Vent	600mm	62.10	35.80	0.00	New gas well
	Cell No. 8					. 3
VP42	Vent	600mm	61.20	29.80	0.00	New gas well
	Cell No. 8					Ĭ
VP43	Vent	600mm	64.90	32.20	0.00	New gas well
	Cell No. 9					
VP44	Vent	600mm	67.10	29.90	0.00	New gas well
VD45	Cell No. 9	000	07.00	00.00	0.00	
VP45	Vent Cell No. 9	600mm	67.60	30.00	0.00	New gas well
VP46	Vent	600mm	57.90	33.20	0.00	Now gos well
VF40	Cell No.	60011111	37.90	33.20	0.00	New gas well
VP47	13 Vent	600mm	59.80	34.70	0.00	New gas well
	Cell No.					
VP48	13 Vent	600mm	40.30	30.80	0.00	New gas well
	Cell No.					Ī
VP49	13 Vent	600mm	18.60	17.60	5.40	New gas well
	Cell No.					
VP50	13 Vent	600mm	23.30	24.70	0.00	New gas well
	Cell No.					
VP51	13 Vent Cell No.	600mm	52.30	34.00	0.10	New gas well
VP52	14 Vent	600mm	40.80	32.40	0.00	New gas well
VF3Z	Cell No.	OUUIIIII	40.00	32.40	0.00	ivew gas well
HOR1	14 Vent	600mm	38.60	28.40	2.50	New gas well
	Cell No.	55011111	00.00	20.40	2.00	How gas won
HOR2	14 Vent	600mm	26.90	25.40	4.90	New gas well

Site Name:				Site Address:					
	Dunmore L	andfill Site	}	Dunmore,					
Operator:	ilkonny Co	unty Counc	sil	National G	Co. Kilkenny National Grid Reference: 160572N 249519E				
Site Status		unty Count	JII	Date: 13/0	Time: 12:05				
		tive				1			
Instrumen					Date of Calibration: Mar'09				
Manitanin		Gas Analys	ser - GA 94		Next Calib	ration Due: Sep'09			
wonitoring	g Personne Alan F	n: Ratigan		Weather:	ry	Barometric Pressure (mb) : 1017			
	7.1.0.1.1			RESULTS	,				
Sample	Borehole/			ı					
Station	Spike/	Survey Depth	CH₄ % v/v	CO₂ % v/v	O₂ % v/v	Comments			
Number	Other	-	76 V/V	70 V/V	70 V/V				
VP1	Cell No. 1 Vent	600mm	29.70	23.40	3.10	New gas well			
VP2	Cell No. 1 Vent	600mm	39.30	22.70	2.30	New gas well			
VP3	Cell No. 1 Vent	600mm	26.30	23.90	0.50	New gas well			
VP4	Cell No. 3 Vent	600mm	38.40	25.60	1.40	New gas well			
VP5	Cell No. 2 Vent	600mm	42.20	26.30	0.40	New gas well			
VP6	Cell No. 2 Vent	600mm	51.30	30.10	0.90	New gas well			
VP7	Cell No. 3 Vent	600mm	53.30	29.50	2.20	New gas well			
VP8	Cell No. 7 Vent	600mm	27.70	18.90	6.10	New gas well			
VP9	Cell No. 7 Vent	600mm	41.40	24.90	2.10	New gas well			
VP10	Cell No. 6 Vent	600mm	29.20	19.20	3.00	New gas well			
VP11	Cell No. 6 Vent	600mm	46.80	29.60	0.00	New gas well			
VP12	Cell No. 5 Vent	600mm	46.00	28.90	0.40	New gas well			
VP13	Cell No. 5 Vent	600mm	12.00	8.10	14.50	New gas well			
VP14	Cell No. 7 Vent	600mm	47.80	30.50	0.40	New gas well			
VP15	Cell No. 7 Vent	600mm	35.30	26.50	1.00	New gas well			
VP16	Cell No. 4 Vent	600mm	20.40	16.60	7.80	New gas well			
VP17	Cell No. 4 Vent	600mm	31.80	26.70	0.40	New gas well			
VP18	Cell No. 10 Vent	600mm	32.50	25.80	2.10	New gas well			
VP19	Cell No. 10 Vent	600mm	51.30	29.00	2.40	New gas well			
VP20	Cell No. 10 Vent	600mm	21.90	19.40	5.50	New gas well			

I	Cell No. 9	i i			0.40	
VP21	Vent	600mm	35.10	28.00	0.40	New gas well
\/D00	Cell No. 8	000	44.46	00.00	0.40	
VP22	Vent Cell No.	600mm	41.40	30.60		New gas well
VP23	11 Vent	600mm	40.20	26.50	1.80	New gas well
	Cell No.				0.00	3
VP24	11 Vent	600mm	68.70	24.20	0.20	New gas well
VP25	Cell No. 11 Vent	600mm	56.50	30.50	1.80	New gas well
VPZS	Cell No.	60011111	30.30	30.50		New gas well
VP26	11 Vent	600mm	42.20	26.70	0.00	New gas well
	Cell No.				0.00	
VP27	11 Vent	600mm	60.90	33.50	0.00	New gas well
VP28	Cell No. 11 Vent	600mm	25.60	23.40	0.00	New gas well
7. 20	Cell No.		20.00	20.70	0.00	110W gao Woll
VP29	11 Vent	600mm	60.40	36.20	0.00	New gas well
\/F.5.5	Cell No. 8		- 0.55	04 ==	0.10	
VP30	Vent Cell No. 8	600mm	58.90	31.50	0.10	New gas well
VP31	Vent	600mm	32.20	26.70	0.30	New gas well
	Cell No. 9		02.20		0.70	. to it gas it on
VP32	Vent	600mm	47.60	28.10	0.70	New gas well
VDOO	Cell No9 Vent	000	04.40	25.00	0.00	New was well
VP33	Cell No10	600mm	61.40	35.80		New gas well
VP34	Vent	600mm				disconnected
	Cell No.				1.30	
VP35	10 Vent Cell No.	600mm	39.50	28.20	1.50	New gas well
VP36	10 Vent	600mm	61.10	36.00	0.00	New gas well
VI 30	Cell No.	OOOIIIII	01.10	30.00		ivew gas well
VP37	11 Vent	600mm	51.40	33.40	0.00	New gas well
\/\	Cell No.	000	0.4.40	000	0.00	
VP38	12 Vent Cell No.	600mm	34.40	25.00	0.90	New gas well
VP39	12 Vent	600mm	44.50	24.60	2.10	New gas well
	Cell No.					Ğ
VP40	12 Vent	600mm	31.30	25.90	0.70	New gas well
VP41	Cell No. 12 Vent	600mm	17.80	19.60	1.50	New gas well
V F 4 1	Cell No. 8		17.00	19.00	1.30	ivew gas well
VP42	Vent	600mm	61.80	35.70	0.00	New gas well
	Cell No. 8					
VP43	Vent Cell No. 9	600mm	60.60	31.80	0.00	New gas well
VP44	Vent	600mm	38.10	25.90	0.30	New gas well
	Cell No. 9	300	33.10	20.00	0.00	gao won
VP45	Vent	600mm	23.40	15.80	8.30	New gas well
V/D 40	Cell No. 9		00.10	00.70	0.50	No. 11
VP46	Vent Cell No.	600mm	32.10	26.70	0.50	New gas well
VP47	13 Vent	600mm	47.70	33.30	0.00	New gas well
		50011111		55.55	3.00	940

	Cell No.	1				
VP48	13 Vent	600mm	31.40	26.70	0.50	New gas well
	Cell No.					
VP49	13 Vent	600mm	13.80	12.00	10.30	New gas well
	Cell No.					
VP50	13 Vent	600mm	17.50	21.20	0.90	New gas well
	Cell No.					
VP51	13 Vent	600mm	24.90	25.70	0.00	New gas well
	Cell No.					
VP52	14 Vent	600mm	53.10	36.10	0.00	New gas well
	Cell No.					
HOR1	14 Vent	600mm	37.40	25.80	4.90	New gas well
	Cell No.					
HOR2	14 Vent	600mm	28.50	22.80	5.80	New gas well

Site Name:			Site Address:					
	Dunmore L	andfill Site	!	Dunmore,				
Operator:	ilkanny Co	unty Counc	sil	Co. Kilkenny National Grid Reference: 160572N 249519E				
Site Status		unty Count	711	Date: 02/0		Time: 15:43		
	Ac	tive						
Instrumen			01.01		Date of Calibration: May'08			
Monitoring	Personne	Gas Analys	er - GA 94	Weather:	Next Calib	ration Due: May'10 Barometric Pressure (mb) :		
Wioriitoriii		atigan			ry	988		
		J		RESULTS	,			
Sample	Borehole/	Survey	CH₄	CO ₂	O ₂			
Station Number	Spike/ Other	Depth	% v/v	% v/v	% v/v	Comments		
	Cell No. 1	-						
VP1	Vent	600mm	32.80	25.50	2.20	New gas well		
VP2	Cell No. 1	600mm	47.50	24.00	1.30			
VI 2	Vent Cell No. 1		47.00	24.00	1.00	New gas well		
VP3	Vent	600mm	36.20	26.50	0.90	New gas well		
VP4	Cell No. 3 Vent	600mm	39.40	26.30	1.50	New gas well		
VP5	Cell No. 2 Vent	600mm	46.10	26.40	0.90	New gas well		
VP6	Cell No. 2 Vent	600mm	45.80	29.60	1.00	New gas well		
VP7	Cell No. 3 Vent	600mm	53.80	30.50	2.30	New gas well		
VP8	Cell No. 7 Vent	600mm	23.80	15.40	9.40	New gas well		
VP9	Cell No. 7 Vent	600mm	44.70	25.80	2.50	New gas well		
VP10	Cell No. 6 Vent	600mm	25.30	17.00	3.30	New gas well		
VP11	Cell No. 6 Vent	600mm	46.40	29.10	0.30	New gas well		
VP12	Cell No. 5 Vent	600mm	45.80	28.70	0.40	New gas well		
VP13	Cell No. 5 Vent	600mm	35.30	24.00	4.40	New gas well		
VP14	Cell No. 7 Vent	600mm	50.90	30.60	0.80	New gas well		
VP15	Cell No. 7 Vent	600mm	35.70	25.90	0.60	New gas well		
VP16	Cell No. 4 Vent	600mm	41.50	28.40	0.70	New gas well		
VP17	Cell No. 4 Vent	600mm	29.50	26.30	0.70	New gas well		
VP18	Cell No.	600mm	8.20	7.70	14.70			
VP19	Cell No.	600mm	49.90	29.50	1.30	New gas well		
VP20	Cell No. 10 Vent	600mm	19.60	16.50	3.90	New gas well		

ſ	Cell No. 9	1]		
VP21	Vent	600mm	34.50	16.30	0.10	New gas well
VP22	Cell No. 8 Vent	600mm	35.20	17.30	0.00	New gas well
VP23	Cell No. 11 Vent	600mm	45.70	29.40	0.50	New gas well
VP24	Cell No. 11 Vent	600mm	74.40	25.20	0.10	New gas well
VP25	Cell No. 11 Vent	600mm	46.50	27.50	0.00	New gas well
VP26	Cell No. 11 Vent	600mm	65.40	34.00	0.20	New gas well
VP27	Cell No. 11 Vent	600mm	64.20	34.40	0.00	New gas well
VP28	Cell No. 11 Vent	600mm	24.80	23.80	0.00	New gas well
VP29	Cell No. 11 Vent Cell No. 8	600mm	61.50	37.20	0.00	New gas well
VP30	Vent Cell No. 8	600mm	60.10	31.80	0.90	New gas well
VP31	Vent Cell No. 9	600mm	62.60	33.30	0.00	New gas well
VP32	Vent Cell No9	600mm	59.50	34.50	0.60	New gas well
VP33	Vent Cell No10	600mm	63.50	36.60	0.00	New gas well
VP34	Vent Cell No.	600mm	30.10	22.60	0.00	New gas well
VP35	10 Vent Cell No.	600mm	37.00	22.10	0.90	New gas well
VP36	10 Vent Cell No.	600mm	61.60	34.80	0.10	New gas well
VP37	11 Vent Cell No.	600mm	51.50	33.90	0.00	New gas well
VP38	12 Vent Cell No.	600mm	30.00	24.20	0.90	New gas well
VP39	12 Vent Cell No.	600mm	42.30	25.20	1.50	New gas well
VP40	12 Vent Cell No.	600mm	30.10	25.20	0.50	New gas well
VP41	12 Vent Cell No.	600mm	21.70	18.90	2.10	New gas well
VP42	12 Vent Cell No.	600mm	59.60	34.40	1.20	New gas well
VP43	12 Vent Cell No.	600mm	59.30	31.90	0.00	New gas well
VP44	12 Vent Cell No.	600mm	40.10	25.70	0.00	New gas well
VP45	12 Vent Cell No.	600mm	30.00	18.90	1.00	New gas well
VP46	12 Vent Cell No.	600mm	34.10	19.20	0.00	New gas well
VP47	13 Vent	600mm	48.60	33.00	0.10	New gas well

	Cell No.	1				
VP48	13 Vent	600mm	32.30	25.00	2.70	New gas well
VP49	Cell No. 13 Vent	600mm	48.90	30.70	0.90	New gas well
VP50	Cell No. 13 Vent	600mm	45.80	32.40	0.00	New gas well
VP51	Cell No. 13 Vent	600mm	32.60	27.70	0.30	New gas well
VP52	Cell No. 14 Vent	600mm	57.10	36.90	0.00	New gas well

Site Name				Site Addre	Site Address:				
Operator:	Dunmore L	_andfill Site	!		C	Dunmore, Co. Kilkenny			
· K		unty Counc	il		rid Referer	nce: 160572N 249519E			
Site Status		tive		Date: 01/1	0/09	Time: 11:55			
Instrumen	t Used:			<u> </u>		libration: Mar'09			
BA 't '		Gas Analys	er - GA 94		Next Calibration Due: Sept'09				
Wonitoring	g Personne Alan F	er: Ratigan		Weather :	ry	Barometric Pressure (mb) : 1005			
		J		RESULTS	,				
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments			
VP1	Cell No. 1 Vent	600mm	43.50	27.50	2.30	New gas well			
VP2	Cell No. 1 Vent	600mm	61.70	25.50	1.10	New gas well			
VP3	Cell No. 1 Vent	600mm	60.80	31.40	0.70	New gas well			
VP4	Cell No. 3 Vent	600mm	57.40	30.30	0.90	New gas well			
VP5	Cell No. 2 Vent	600mm	62.60	29.00	1.00	New gas well			
VP6	Cell No. 2 Vent	600mm	45.40	26.90	3.30	New gas well			
VP7	Cell No. 3 Vent	600mm	45.00	23.70	5.50	New gas well			
VP8	Cell No. 7 Vent	600mm	37.90	21.00	6.60	New gas well			
VP9	Cell No. 7 Vent	600mm	53.10	25.20	3.50	New gas well			
VP10	Cell No. 6 Vent	600mm	50.10	23.90	3.70	New gas well			
VP11	Cell No. 6 Vent	600mm	63.80	30.70	0.20	New gas well			
VP12	Cell No. 5 Vent	600mm	60.90	29.70	0.80	New gas well			
VP13	Cell No. 5 Vent	600mm	51.80	29.40	3.20	New gas well			
VP14	Cell No. 7 Vent	600mm	60.40	33.50	0.70	New gas well			
VP15	Cell No. 7 Vent Cell No. 4	600mm	55.70	31.30	0.80	New gas well			
VP16	Vent	600mm	50.70	32.40	1.40	New gas well			
VP17	Cell No. 4 Vent	600mm	55.60	33.70	1.50	New gas well			
VP18	Cell No.	600mm	38.10	21.70	7.40				
VP19	Cell No.	600mm	51.90	29.30	2.30	New gas well			
VP20	Cell No. 10 Vent	600mm	29.60	22.60	3.20	New gas well			

I	Cell No. 9	I I		i i		
VP21	Vent	600mm	47.50	31.70	0.10	New gas well
V. 2.	Cell No. 8	000111111	47.00	01.70		New gas wen
VP22	Vent	600mm	43.10	30.50	0.00	New gas well
	Cell No.			00.00		. se n. gene n en
VP23	11 Vent	600mm	60.00	29.50	1.10	New gas well
	Cell No.				0.00	Ğ
VP24	11 Vent	600mm	74.90	24.60	0.00	New gas well
	Cell No.				0.00	
VP25	11 Vent	600mm	64.30	33.60	0.00	New gas well
	Cell No.				0.00	
VP26	11 Vent	600mm	64.90	28.70	0.00	New gas well
\/D0=	Cell No.	000	50.00	00.00	0.40	
VP27	11 Vent Cell No.	600mm	58.80	30.90		New gas well
VP28	11 Vent	600mm	66.80	27.90	0.00	Now goo well
VF20	Cell No.		00.00	۷۳.۱۵		New gas well
VP29	11 Vent	600mm	62.00	36.80	0.40	New gas well
	Cell No. 8	20011111	02.00	55.55		Tion gas won
VP30	Vent	600mm	62.90	31.70	1.10	New gas well
	Cell No. 8				0.00	Ü
VP31	Vent	600mm	41.60	20.30	6.80	New gas well
	Cell No. 9				1.70	
VP32	Vent	600mm	49.80	32.90	1.70	New gas well
	Cell No9				0.30	
VP33	Vent	600mm	63.20	36.10	0.00	New gas well
VP34	Cell No10 Vent	COO:::::::::::::::::::::::::::::::::::	40.40	20.40	0.00	Now was wall
VP34	Cell No.	600mm	49.40	30.10		New gas well
VP35	10 Vent	600mm	56.10	30.40	2.10	New gas well
VI 00	Cell No.	COOMIN	00.10	00.40		110W gas Well
VP36	10 Vent	600mm	61.50	32.90	0.60	New gas well
	Cell No.					ÿ
VP37	11 Vent	600mm	64.50	31.00	0.00	New gas well
	Cell No.					
VP38	12 Vent	600mm	58.30	27.10	1.50	New gas well
	Cell No.					
VP39	12 Vent	600mm	57.30	23.90	3.40	New gas well
VP40	Cell No. 12 Vent	600~~	20.20	24.20	2.00	Now goo wall
V P 4 U	Cell No.	600mm	30.20	24.30	2.90	New gas well
VP41	12 Vent	600mm	37.10	27.30	0.00	New gas well
71.71	Cell No.	300111111	37.10	27.00	5.00	TOW gas won
VP42	12 Vent	600mm	59.60	34.40	1.10	New gas well
	Cell No.		-	-	-	<u> </u>
VP43	12 Vent	600mm	64.90	32.80	0.40	New gas well
	Cell No.					
VP44	12 Vent	600mm	47.50	29.60	0.50	New gas well
	Cell No.					
VP45	12 Vent	600mm	19.80	14.90	9.10	New gas well
VD46	Cell No.	000	40.00	20.00	0.00	Name and the
VP46	12 Vent Cell No.	600mm	46.60	29.90	0.30	New gas well
VP47	13 Vent	600mm	32.80	26.60	1.60	New gas well
VF4/	10 VEIIL	OUUIIIII	32.00	∠0.00	1.00	inew yas well

	Cell No.					
VP48	13 Vent	600mm	28.40	22.80	3.70	New gas well
VP49	Cell No. 13 Vent	600mm	19.70	14.80	9.20	New gas well
VP50	Cell No. 13 Vent	600mm	25.70	23.70	1.20	New gas well
VP51	Cell No. 13 Vent	600mm	23.30	24.40	0.50	New gas well
VP52	Cell No. 14 Vent	600mm	43.30	32.20	0.10	New gas well

Site Name	:			Site Address:					
	Dunmore L	andfill Site	!	Dunmore,					
Operator:	::::		.:1	National C		Co. Kilkenny			
Site Status	_	unty Counc	CII		National Grid Reference: 160572N 249519E Date: 28/10/09 Time: 10:14				
Sile Status		tive		Date. 20/1	0/09	1111le. 10.14			
Instrumen				<u> </u>	Date of Ca	libration: Mar'09			
		Gas Analys	er - GA 94		Next Calibration Due: Sept'09				
Monitoring	g Personne			Weather:		Barometric Pressure (mb) :			
	Alan F	Ratigan		RESULTS	ry	1008			
Sample	Borehole/			KESULIS) 				
Station	Spike/	Survey	CH₄	CO ₂	O_2	Comments			
Number	Other	Depth	% v/v	% v/v	% v/v	• • • • • • • • • • • • • • • • • • •			
VP1	Cell No. 1	600mm	17.30	17.70	6.50				
VFI	Vent	OUUIIIII	17.30	17.70	0.50	New gas well			
VP2	Cell No. 1 Vent	600mm	32.50	21.10	3.60	Now goe well			
	Cell No. 1			-	 	New gas well			
VP3	Vent	600mm	18.10	21.10	4.10	New gas well			
VP4	Cell No. 3	600mm	33.30	25.80	2.40	•			
V F 4	Vent	OUUIIIII	JJ.JU	20.00	2.40	New gas well			
VP5	Cell No. 2 Vent	600mm	16.10	21.00	2.70	New gas well			
	Cell No. 2					New gas well			
VP6	Vent	600mm	31.80	23.20	4.50	New gas well			
VP7	Cell No. 3	600mm	48.70	27.80	3.40	Ţ.			
VF7	Vent	OOOIIIII	40.70	27.00	3.40	New gas well			
VP8	Cell No. 7 Vent	600mm	21.10	18.20	6.80	New gas well			
	Cell No. 7					ivew gas well			
VP9	Vent	600mm	26.70	20.60	5.40	New gas well			
VP10	Cell No. 6	600mm	19.00	16.90	7.30				
VI 10	Vent		19.00	10.90	7.50	New gas well			
VP11	Cell No. 6 Vent	600mm	48.30	29.00	0.60	New gas well			
,	Cell No. 5		4			140W gas Well			
VP12	Vent	600mm	49.10	29.10	0.60	New gas well			
VP13	Cell No. 5	600mm	20.40	21.30	3.50				
11.73	Vent Cell No. 7	55011111	20.70]	New gas well			
VP14	Vent	600mm	40.20	28.30	1.00	New gas well			
	Cell No. 7	0.55	00.00	95.5		14000 903 00011			
VP15	Vent	600mm	22.60	23.20	1.60	New gas well			
VP16	Cell No. 4	600mm	27.50	23.90	2.50				
	Vent Cell No. 4	33011111		20.00		New gas well			
VP17	Vent	600mm	16.90	24.30	1.40	New gas well			
\/F:(2	Cell No.	000	5400	00.00	0.00	. tow gao won			
VP18	10 Vent	600mm	54.90	30.00	0.90				
\/ T	Cell No.	200	0.1 ===	00.45	1.20				
VP19	10 Vent Cell No.	600mm	61.70	30.10		New gas well			
VP20	10 Vent	600mm	29.70	25.40	3.60	New gas well			
71 20		Joonnin	20.10	20.40		140W gas Well			

VP21	Cell No. 9 Vent	600mm	58.90	34.00	0.10	New gas well
VP22	Cell No. 8 Vent	600mm	47.40	32.10	0.00	New gas well
VP23	Cell No. 11 Vent	600mm	52.30	32.00	0.60	New gas well
VP24	Cell No. 11 Vent	600mm	74.30	24.90	0.00	New gas well
VP25	Cell No. 11 Vent	600mm	64.80	33.90	0.00	New gas well
VP26	Cell No. 11 Vent	600mm	42.10	27.10	0.00	New gas well
VP27	Cell No. 11 Vent	600mm	65.10	34.20	0.00	New gas well
VP28	Cell No. 11 Vent Cell No.	600mm	28.80	25.30	0.00	New gas well
VP29	Cell No. 11 Vent Cell No. 8	600mm	62.00	37.30	0.00	New gas well
VP30	Vent Cell No. 8	600mm	61.50	32.70	0.30	New gas well
VP31	Vent Cell No. 9	600mm	50.20	33.00	1.50	New gas well
VP32	Vent Cell No9	600mm	67.40	30.30	0.00	New gas well
VP33	Vent Cell No10	600mm	62.40	36.00	0.10	New gas well
VP34	Vent Cell No.	600mm	32.80	21.20	5.60	New gas well
VP35	10 Vent Cell No.	600mm	46.90	31.40	0.60	New gas well
VP36	10 Vent Cell No.	600mm	64.20	33.70	0.20	New gas well
VP37	11 Vent Cell No.	600mm	54.50	35.50	0.00	New gas well
VP38	12 Vent	600mm	25.20	22.50	1.80	New gas well
VP39	Cell No. 12 Vent Cell No.	600mm	58.50	25.00	2.60	New gas well
VP40	12 Vent Cell No.	600mm	20.30	20.20	2.60	New gas well
VP41	12 Vent Cell No.	600mm	14.00	15.10	7.40	New gas well
VP42	12 Vent Cell No.	600mm	60.40	31.30	0.30	New gas well
VP43	12 Vent Cell No.	600mm	61.70	35.40	0.00	New gas well
VP44	12 Vent Cell No.	600mm	31.90	24.90	0.10	New gas well
VP45	12 Vent Cell No.	600mm	21.70	14.60	10.10	New gas well
VP46	12 Vent Cell No.	600mm	42.40	30.60	0.00	New gas well
VP47	13 Vent	600mm	61.90	36.80	0.00	New gas well

VP48	Cell No. 13 Vent	600mm	59.60	35.20	0.60	New gas well
V F 40		OOOIIIII	39.00	33.20	0.00	New gas well
VP49	Cell No. 13 Vent	600mm	14.70	13.60	8.40	New gas well
VP50	Cell No. 13 Vent	600mm	47.50	31.80	0.60	New gas well
VP51	Cell No. 13 Vent	600mm	20.40	21.30	2.10	New gas well
VP52	Cell No. 14 Vent	600mm	47.20	32.70	0.70	New gas well
VP53	Cell No. 14 Vent	600mm	38.80	28.60	3.30	New gas well
VP55	Cell No. 14 Vent	600mm	31.30	24.10	6.50	New gas well
HOR1	Cell No. 14 Vent	600mm	21.10	17.10	7.80	New gas well
HOR2	Cell No. 14 Vent	600mm	45.20	32.00	1.20	New gas well

Site Name	:			Site Addre	ess:				
	Dunmore L	andfill Site	!	Dunmore,					
Operator:	ilkonny Co	unty Counc	sil .	National G		Co. Kilkenny nce: 160572N 249519E			
Site Status		unty Count	/ 11		Date: 03/12/09 Time: 10:42				
		tive							
Instrumen						libration: Mar'09			
Manitanin		Gas Analys	er - GA 94		Next Calib	ration Due: Sept'09			
Wonitoring	g Personne Alan F	n: Ratigan		Weather:	ry	Barometric Pressure (mb) : 995			
	7.1.0.1.1	tutigui.		RESULTS	,				
Sample	Borehole/			1					
Station	Spike/	Survey Depth	CH₄ % v/v	CO₂ % v/v	O₂ % v/v	Comments			
Number	Other	•	70 V/V	70 V/V	70 V/V				
VP1	Cell No. 1 Vent	600mm	25.60	22.30	4.20	New gas well			
VP2	Cell No. 1 Vent	600mm	45.50	22.30	2.10	New gas well			
VP3	Cell No. 1 Vent	600mm	18.10	20.20	5.20	New gas well			
VP4	Cell No. 3 Vent	600mm	23.90	21.20	3.10	New gas well			
VP5	Cell No. 2 Vent	600mm	39.90	25.20	1.80	New gas well			
VP6	Cell No. 2 Vent	600mm	39.60	24.60	4.30	New gas well			
VP7	Cell No. 3 Vent	600mm	59.20	30.30	2.10	New gas well			
VP8	Cell No. 7 Vent	600mm	22.90	16.50	8.60	New gas well			
VP9	Cell No. 7 Vent	600mm	34.30	26.50	1.60	New gas well			
VP10	Cell No. 6 Vent	600mm	22.00	17.30	5.70	New gas well			
VP11	Cell No. 6 Vent	600mm	52.40	29.90	0.40	New gas well			
VP12	Cell No. 5 Vent	600mm	53.60	30.20	0.20	New gas well			
VP13	Cell No. 5 Vent	600mm	24.40	20.00	4.90	New gas well			
VP14	Cell No. 7 Vent	600mm	45.40	27.90	1.50	New gas well			
VP15	Cell No. 7 Vent	600mm	38.10	25.60	1.90	New gas well			
VP16	Cell No. 4 Vent	600mm	31.00	24.20	2.90	New gas well			
VP17	Cell No. 4 Vent	600mm	32.30	26.30	2.80	New gas well			
VP18	Cell No. 10 Vent	600mm	59.50	33.90	1.00				
VP19	Cell No. 10 Vent	600mm	35.00	25.90	2.80	New gas well			
VP20	Cell No. 10 Vent	600mm	33.40	28.90	0.30	New gas well			

VP21	Cell No. 9 Vent	600mm	58.90	32.80	0.00	Now goo well
VPZI	Cell No. 8	OUUIIIII	36.90	32.00		New gas well
VP22	Vent	600mm	45.90	30.80	0.40	New gas well
VP23	Cell No. 11 Vent	600mm	45.00	26.60	1.80	New gas well
VP24	Cell No. 11 Vent	600mm	74.40	24.70	0.30	New gas well
VP25	Cell No. 11 Vent	600mm	64.50	34.60	0.00	New gas well
VP26	Cell No. 11 Vent	600mm	40.30	26.10	0.10	New gas well
	Cell No.				0.00	3
VP27	11 Vent Cell No.	600mm	65.80	33.60	0.00	New gas well
VP28	11 Vent	600mm	29.40	25.00	0.00	New gas well
VP29	Cell No. 11 Vent	600mm	61.40	36.90	0.00	New gas well
VP30	Cell No. 8 Vent	600mm	46.90	31.30	0.10	New gas well
VP31	Cell No. 8 Vent	600mm	39.40	28.90	0.30	New gas well
VP32	Cell No. 9 Vent	600mm	68.50	30.40	0.00	New gas well
VP33	Cell No9 Vent	600mm	63.20	36.30	0.40	New gas well
	Cell No10				8.90	-
VP34	Vent Cell No.	600mm	17.50	14.10		New gas well
VP35	10 Vent	600mm	59.40	32.80	0.90	New gas well
VP36	Cell No. 10 Vent	600mm	56.60	33.00	0.80	New gas well
VP37	Cell No. 11 Vent	600mm	52.70	33.90	0.00	New gas well
VP38	Cell No. 12 Vent	600mm	54.60	24.50	3.90	New gas well
VP39	Cell No. 12 Vent	600mm	55.10	24.50	3.50	New gas well
	Cell No.					Ğ
VP40	12 Vent Cell No.	600mm	7.00	9.90	11.30	New gas well
VP41	12 Vent	600mm	19.70	20.00	3.00	New gas well
VP42	Cell No. 12 Vent	600mm	59.50	35.00	0.90	New gas well
VP43	Cell No. 12 Vent	600mm	60.30	31.50	0.00	New gas well
VP44	Cell No. 12 Vent	600mm	30.50	23.80	0.60	New gas well
VP45	Cell No. 12 Vent	600mm	25.20	15.70	9.30	New gas well
VP46	Cell No. 12 Vent	600mm	32.70	26.80	0.30	New gas well
VP47	Cell No. 13 Vent	600mm	32.30	23.60	5.90	New gas well

	Cell No.	1	1	1	1	
VP48	13 Vent	600mm	60.80	35.50	0.90	New gas well
VP49	Cell No. 13 Vent	600mm	18.80	17.60	5.10	New gas well
VP50	Cell No. 13 Vent	600mm	43.00	31.30	0.10	New gas well
VP51	Cell No. 13 Vent	600mm	29.40	24.40	3.00	New gas well
VP52	Cell No. 14 Vent	600mm	42.90	32.10	0.00	New gas well
VP53	Cell No. 14 Vent	600mm	35.40	27.80	3.00	New gas well
VP55	Cell No. 14 Vent	600mm	61.40	39.60	0.10	New gas well
VP56	Cell No. 14 Vent	600mm	61.10	41.00	0.00	New gas well
HOR1	Cell No. 14 Vent	600mm	9.80	7.70	13.80	New gas well
HOR2	Cell No. 14 Vent	600mm				New gas well

Site Name):			Site Address:				
	Dunmore L	andfill Site	!	Dunmore, Co. Kilkenny				
Operator: K	ilkennv Co	unty Counc	il	National G		o. Kiikenny nce: 160572N 249519E		
Site Status	s:			Date: 05/0		Time: 09:00		
Instrumen		tive			IData of Ca	libration, Mar!00		
instrumen		Gas Analys	er - GA 94		Date of Calibration: Mar'09 Next Calibration Due: Sept			
Monitoring	g Personne	l:		Weather:	<u> </u>	Barometric Pressure (mb) :		
	Alan R	hatigan			ry	997		
Sample	Borehole/			RESULTS	<u> </u>			
Station	Spike/	Survey	CH₄	CO ₂	O ₂	Comments		
Number	Other	Depth	% v/v	% v/v	% v/v			
VP1	Cell No. 1 Vent	600mm	51.00	27.60	1.20	New gas well		
VP2	Cell No. 1 Vent	600mm	58.70	24.00	1.80	New gas well		
VP3	Cell No. 1 Vent	600mm	42.20	21.60	0.90	New gas well		
VP4	Cell No. 3 Vent	600mm	36.40	23.10	1.80	New gas well		
VP5	Cell No. 2 Vent	600mm	52.20	23.90	0.60	New gas well		
VP6	Cell No. 2 Vent	600mm	55.00	32.50	1.90	New gas well		
VP7	Cell No. 3 Vent	600mm	20.90	13.20	11.90	New gas well		
VP8	Cell No. 7 Vent	600mm	16.30	11.50	10.60	New gas well		
VP9	Cell No. 7 Vent	600mm	32.00	18.30	3.90	New gas well		
VP10	Cell No. 6 Vent	600mm	19.40	14.50	7.90	New gas well		
VP11	Cell No. 6 Vent	600mm	45.10	27.60	0.50	New gas well		
VP12	Cell No. 5 Vent	600mm	47.90	28.90	0.10	New gas well		
VP13	Cell No. 5 Vent	600mm	35.50	23.10	3.30	New gas well		
VP14	Cell No. 7 Vent	600mm	34.40	23.60	2.40	New gas well		
VP15	Cell No. 7 Vent	600mm	27.50	21.90	3.30	New gas well		
VP16	Cell No. 4 Vent	600mm	28.50	19.70	5.40	New gas well		
VP17	Cell No. 4 Vent	600mm	9.30	18.10	3.30	New gas well		
VP18	Cell No. 10 Vent	600mm	31.40	17.20	7.70			
VP19	Cell No. 10 Vent	600mm	42.20	22.30	5.50	New gas well		
VP20	Cell No. 10 Vent	600mm	17.30	19.00	3.90	New gas well		

	Cell No. 9	I 1]	2.22	
VP21	Vent	600mm	53.30	32.00	0.30	New gas well
VP22	Cell No. 8 Vent	600mm	39.60	28.10	1.40	New gas well
VP23	Cell No. 11 Vent	600mm	35.50	22.70	2.10	New gas well
VP24	Cell No. 11 Vent	600mm	67.40	23.20	0.10	New gas well
VP25	Cell No. 11 Vent	600mm	63.80	34.70	0.00	New gas well
VP26	Cell No. 11 Vent	600mm	40.20	27.00	0.40	New gas well
VP27	Cell No. 11 Vent Cell No.	600mm	53.90	30.50	0.00	New gas well
VP28	11 Vent Cell No.	600mm	41.30	27.60	0.00	New gas well
VP29	11 Vent Cell No. 8	600mm	42.30	29.60	0.32	New gas well
VP30	Vent Cell No. 8	600mm	20.00	18.80	4.50	New gas well
VP31	Vent Cell No. 9	600mm	21.80	17.50	5.90	New gas well
VP32	Vent Cell No9	600mm	53.30	32.10	0.40	New gas well
VP33	Vent Cell No10	600mm	61.20	33.00	0.20	New gas well
VP34	Vent	600mm	31.60	18.10	4.30	New gas well
VP35	Cell No. 10 Vent	600mm	54.60	30.30	2.30	New gas well
VP36	Cell No. 10 Vent Cell No.	600mm	52.50	32.50	0.30	New gas well
VP37	11 Vent Cell No.	600mm	41.90	27.40	0.00	New gas well
VP38	12 Vent Cell No.	600mm	40.20	26.40	0.00	New gas well
VP39	12 Vent Cell No.	600mm	51.10	24.00	4.50	New gas well
VP40	12 Vent Cell No.	600mm	33.40	15.30	6.30	New gas well
VP41	12 Vent Cell No.	600mm	26.00	19.60	3.60	New gas well
VP42	12 Vent Cell No.	600mm	53.60	33.10	2.50	New gas well
VP43	12 Vent Cell No.	600mm	43.90	24.90	0.40	New gas well
VP44	12 Vent Cell No.	600mm	13.70	13.20	6.50	New gas well
VP45	12 Vent Cell No.	600mm	19.60	18.10	6.60	New gas well
VP46	12 Vent Cell No.	600mm	29.50	23.20	1.80	New gas well
VP47	13 Vent	600mm	49.60	24.40	2.90	New gas well

	Cell No.			1	ı İ	
VP48	13 Vent	600mm	47.60	21.90	3.40	New gas well
VP49	Cell No. 13 Vent	600mm	36.70	17.60	4.20	New gas well
VP50	Cell No. 13 Vent	600mm	62.60	34.40	0.60	New gas well
VP51	Cell No. 13 Vent	600mm	62.00	34.50	1.40	New gas well
VP52	Cell No. 14 Vent	600mm	57.10	37.60	2.80	New gas well
VP53	Cell No. 14 Vent	600mm	58.30	38.60	0.40	New gas well
VP55	Cell No. 14 Vent	600mm	46.30	22.50	1.80	New gas well
VP56	Cell No. 14 Vent	600mm	49.80	33.10	1.80	New gas well
HOR1	Cell No. 14 Vent	600mm	30.60	10.50	2.60	New gas well
HOR2	Cell No. 14 Vent	600mm	51.10	33.50	3.80	New gas well

	LANDFILL GAS MIGRATION MONITORING FORM											
Site Name	:			Site Addre	ess:							
	Dunmore L	andfill Site)	Dunmore,								
Operator:					(Co. Kilkenn	V					
l · к	ilkenny Co	unty Coun	cil	National G			2N 249519E					
Site Status				Date: 28/0			Time:10:21					
		tive										
Instrumen	t Used:				Date Of Ca	alibration: I	May '08					
	Infra red (Gas Analys	er - GA 94			ration Due						
Monitoring	Personne	l:		Weather:	•	Barometri	c Pressure (mb):					
`	Alan R	Ratigan		D	ry		1002					
				RESULTS	3							
Sample	Borehole/		011 07	00 01								
Station	Spike/	Survey	-	CO ₂ %	_		Comments					
Number	Other	Depth	v/v	v/v	% v/v							
GM1	Spike	600mm	0.00	0.30	20.70							
GM2	Spike	600mm	0.00	0.10	21.00							
GM3	Spike	600mm	0.00	0.90	20.10							
GM4	Spike	600mm	0.00	0.20	20.60							
GM5	Spike	600mm	0.00	1.70	9.50							
GM7	Spike	600mm	0.00	0.00	20.90							
GM8	Spike	600mm	0.00	0.80	19.60							
GM9	Spike	600mm	0.00	1.20	18.90							
GM10	Spike	600mm	0.00	0.90	19.5							
GM11	Spike	600mm	0.00	0.70	19.8							
GM12	Spike	600mm	0.00	0.40	20.1							
GM13	Spike	600mm	0.00	0.20	20.6							
GM14	Spike	600mm	0.00	0.70	20.70							
GM15	Spike	600mm	0.00	0.10	21.00							
GM16	Spike	600mm	0.00	0.10	20.90							
GM17	Spike	600mm	0.00	1.00	20.40							
GM18	Spike	600mm	0.00	0.60	20.60							
GM19	Spike	600mm	0.00	0.70	16.70							
GM20	Spike	600mm	0.00	0.50	18.80							
GM21	Spike	600mm	0.00	0.30	20.50							
GM22	Spike	600mm	0.00	0.90	20.00							
GM23	Spike	600mm	0.00	0.90	19.80							
1												

	LANDFILL GAS MIGRATION MONITORING FORM										
Site Name	:			Site Addre	ess:						
	Dunmore L	andfill Site)	Dunmore,							
Operator:					Co. Kilkenny						
	ilkenny Co	unty Coun	cil	National G		nce: 160572N 249519E					
Site Status		,		Date: 02/0	3/09	Time:13:37					
	Act	tive									
Instrumen	t Used:				Date Of Ca	alibration: May '08					
	Infra red (Gas Analys	er - GA 94		Next Calib	ration Due: May'10					
Monitoring	y Personne	l:		Weather:	-	Barometric Pressure (mb):					
	Alan R	Ratigan		D	ry	1005					
				RESULTS	3						
Sample	Borehole/	Survey	CH₄ %	CO ₂ %	02						
Station	Spike/	•	-	_	_	Comments					
Number	Other	Depth	v/v	v/v	% v/v						
GM1	Spike	600mm	0.00	0.90	19.70						
GM2	Spike	600mm	0.00	0.60	20.20						
GM3	Spike	600mm	0.00	0.70	20.60						
GM4	Spike	600mm	0.00	0.10	20.70						
GM5	Spike	600mm	0.00	1.40	18.70						
GM7	Spike	600mm	0.00	0.60	20.40						
GM8	Spike	600mm	0.00	1.10	19.30						
GM9	Spike	600mm	0.00	1.10	19.20						
GM10	Spike	600mm	0.00	1.30	18.7						
GM11	Spike	600mm	0.00	0.70	19.6						
GM12	Spike	600mm	0.00	0.60	20.1						
GM13	Spike	600mm	0.00	0.50	19.9						
GM14	Spike	600mm	0.00	0.60	20.50						
GM15	Spike	600mm	0.00	0.20	20.70						
GM16	Spike	600mm	0.00	0.00	21.10						
GM17	Spike	600mm	0.00	0.50	20.60						
GM18	Spike	600mm	0.00	1.50	18.80						
GM19	Spike	600mm	0.00	1.20	18.70						
GM20	Spike	600mm	0.00	0.80	19.10						
GM21	Spike	600mm	0.00	0.90	17.20						
GM22	Spike	600mm	0.00	0.90	19.40						
GM23	Spike	600mm	0.00	0.90	19.80						

	LANDFILL GAS MIGRATION MONITORING FORM										
Site Name				Site Address:							
	Dunmore L	andfill Site)	Dunmore,							
Operator:	:Ilconor: • O =		-:1	Co. Kilkenny National Grid Reference: 160572N 249519E							
L	ilkenny Co	unty Coun	CII			nce: 1605/					
Site Status		tive		Date: 06/0	4/09		Time:09:23				
Instrumen					Date Of Ca	alibration: I	Mar '09				
		Gas Analys	er - GA 94			ration Due					
Monitoring	Personne			Weather:			c Pressure (mb):				
		atigan		D	ry		992				
				RESULTS	3						
Sample	Borehole/	_	CH₄ %	00 %	_						
Station	Spike/	Survey	-	_	_		Comments				
Number	Other	Depth	v/v	v/v	% v/v						
GM1	Spike	600mm	0.00	0.90	19.40						
GM2	Spike	600mm	0.00	1.50	19.00						
GM3	Spike	600mm	0.00	0.60	20.20						
GM4	Spike	600mm	0.00	1.50	19.60						
GM5	Spike	600mm	0.00	1.20 14.10							
GM7 GM8	Spike	600mm	0.00		0.00 20.80						
GM9	Spike Spike	600mm 600mm	0.00 0.00	0.70 0.10	20.20 20.90						
GM10	Spike	600mm	0.00	1.40	19.90						
GM11	Spike	600mm	0.00	0.10	20.80						
GM12	Spike	600mm	0.00	1.20	18.60						
GM13	Spike	600mm	0.00	0.30	20.60						
GM14	Spike	600mm	0.00	1.00	20.20						
GM15	Spike	600mm	0.00	0.40	20.80						
GM16	Spike	600mm	0.00	0.20	20.70						
GM17	Spike	600mm	0.00	1.10	19.90						
GM18	Spike	600mm	0.00	1.30	19.50						
GM19	Spike	600mm	0.00	0.90	16.30						
GM20 GM21	Spike Spike	600mm 600mm	0.00 0.00	0.60 0.30	20.10 20.70						
GM21	Spike	600mm	0.00	1.00	19.60						
GM23	Spike	600mm	0.00	0.80	20.00						
	- F										

	LANDFILL GAS MIGRATION MONITORING FORM										
Site Name	:			Site Address:							
	Dunmore L	andfill Site	•			Dunmore,					
Operator:				Co. Kilkenny							
K	ilkenny Co	unty Coun	cil	National G	rid Refere	nce: 16057	2N 249519E				
Site Status				Date: 28/0	4/09		Time:11:58				
		tive									
Instrumen						alibration: I					
		Gas Analys	er - GA 94		Next Calib	ration Due	•				
Monitoring	•			Weather:		Barometri	c Pressure (mb):				
	Alan R	Ratigan			ry		995				
				RESULTS	5						
Sample	Borehole/	Survey	CH₄ %	CO ₂ %	02		_				
Station	Spike/	Depth	v/v	v/v	% v/v		Comments				
Number	Other	-		*/*	/U V/V						
GM1	Spike	600mm	0.00	4.40	40.00						
GM2	Spike	600mm	0.00	1.40	18.30						
GM3	Spike	600mm	0.00	0.50	19.50						
GM4	Spike	600mm	0.00	1.30	18.90						
GM5	Spike	600mm	0.00	1.30	13.30						
GM7 GM8	Spike	600mm	0.00	0.50	20.20	20.20					
GM9	Spike Spike	600mm 600mm	0.00 0.00	0.60 1.40	18.90						
GM10	Spike	600mm	0.00	1.40 1.60	17.10						
GM10 GM11	Spike	600mm	0.00	0.60	19.30						
GM12	Spike	600mm	0.00	0.70	19.80						
GM13	Spike	600mm	0.00	0.90	19.70						
GM14	Spike	600mm	0.00	1.00	20.00						
GM15	Spike	600mm	0.00	0.30	20.30						
GM16	Spike	600mm	0.00	0.00	20.70						
GM17	Spike	600mm	0.00	1.20	19.80						
GM18	Spike	600mm	0.00	1.20	20.10						
GM19	Spike	600mm	0.00	1.50	8.70						
GM20	Spike	600mm	0.00	1.20	18.20						
GM21	Spike	600mm	0.00	1.20	17.50						
GM22	Spike	600mm	0.00	0.80	19.50						
GM23	Spike	600mm	0.00	1.00	19.20						

LANDEUL GAGAMODATION MONITORING FORM

LANDFILL GAS MIGRATION MONITORING FORM										
Site Name	:			Site Address:						
	Dunmore L	andfill Site)			Dunmore,				
Operator:				Co. Kilkenny						
K	ilkenny Co	unty Coun	cil	National G	rid Referei	nce: 16057	2N 249519E			
Site Status	S:			Date: 03/0	6/09		Time:08:45			
	Act	tive								
Instrumen						alibration: I				
		Gas Analys	er - GA 94		Next Calib	ration Due	-			
Monitoring				Weather:		Barometri	c Pressure (mb):			
	Alan R	atigan			ry		1017			
				RESULTS	3					
Sample	Borehole/	Survey	СН₄ %	CO ₂ %	O ₂					
Station	Spike/	Depth	v/v	v/v	% v/v		Comments			
Number	Other	-								
GM1	Spike	600mm	0.00	0.60	18.10					
GM2	Spike	600mm	0.00	1.90	15.20					
GM3	Spike	600mm	0.00	0.60	18.50					
GM4	Spike	600mm	0.00	0.50	19.50					
GM5	Spike	600mm	0.00	0.50	18.60					
GM7	Spike	600mm	0.00		0.90 18.50					
GM8	Spike	600mm	0.00	0.60	19.80					
GM9	Spike	600mm	0.00	0.90	18.80					
GM10	Spike	600mm	0.00	1.60	18.20					
GM11	Spike	600mm	0.00	1.70 1.80	17.40 15.40					
GM12 GM13	Spike Spike	600mm 600mm	0.00 0.00	1.10	17.60					
GM13	Spike	600mm	0.00	0.90	19.60					
GM15	Spike	600mm	0.00	0.10	20.30					
GM16	Spike	600mm	0.00	0.10	20.10					
GM17	Spike	600mm	0.00	1.10	19.10					
GM18	Spike	600mm	0.00	1.20	19.50					
GM19	Spike	600mm	0.00	1.40	10.60					
GM20	Spike	600mm	0.00	1.00	19.00					
GM21	Spike	600mm	0.00	1.40	16.90					
GM22	Spike	600mm	0.00	0.80	18.70					
GM23	Spike	600mm	0.00	1.30	16.30					
	·									

	L/	NDFILL	GAS MIG	RATION	MONITO	RING FOR	RM	
Site Name				Site Address:				
	Dunmore L	andfill Site)			Dunmore,		
Operator:				Co. Kilkenny				
K	ilkenny Co	unty Coun	cil	National G	rid Refere	nce: 16057	2N 249519E	
Site Status				Date: 02/0	7/09		Time:12:37	
	Act	tive						
Instrumen						alibration: I		
		Gas Analys	er - GA 94		Next Calib	ration Due	-	
Monitoring				Weather:		Barometri	c Pressure (mb):	
	Alan R	atigan			ry		1011	
				RESULTS	3			
Sample	Borehole/	Survey	СН₄ %	CO ₂ %	O ₂		_	
Station	Spike/	Depth	v/v	v/v	% v/v		Comments	
Number	Other	-						
GM1	Spike	600mm	0.00	1.50	18.80			
GM2	Spike	600mm	0.00	1.90	18.70			
GM3	Spike	600mm	0.00	1.20	17.90			
GM4	Spike	600mm	0.00	1.40	18.50			
GM5	Spike	600mm	0.00	2.00	13.60			
GM7	Spike	600mm	0.00		1.40 18.90			
GM8	Spike	600mm	0.00	0.80	18.50			
GM9	Spike	600mm	0.00	0.10	20.10			
GM10	Spike	600mm	0.00	2.40	15.40			
GM11	Spike	600mm	0.00	2.00 1.60	17.10 15.00			
GM12 GM13	Spike Spike	600mm 600mm	0.00 0.00	1.00	15.00			
GM13	Spike	600mm	0.00	1.30	18.80			
GM15	Spike	600mm	0.00	0.10	20.30			
GM16	Spike	600mm	0.00	1.30	19.40			
GM17	Spike	600mm	0.00	1.60	18.60			
GM18	Spike	600mm	0.00	2.00	18.10			
GM19	Spike	600mm	0.00	1.80	5.30			
GM20	Spike	600mm	0.00	0.80	19.20			
GM21	Spike	600mm	0.00	1.60	18.20			
GM22	Spike	600mm	0.00	1.10	18.90			
GM23	Spike	600mm	0.00	1.50	18.20			
	'							

	LANDFILL GAS MIGRATION MONITORING FORM										
Site Name	:			Site Address:							
	Dunmore L	andfill Site)	Dunmore,							
Operator:				Co. Kilkenny							
	ilkenny Co	unty Coun	cil			nce: 160572N 249519E					
Site Status				Date: 12/08	8/09	Time:15:15					
		tive									
Instrumen						alibration: Mar '09					
Manifer		Gas Analys	er - GA 94	M/ (1	Next Calib	pration Due: Sep'09					
Monitoring	Personne	ı: Ratigan		Weather:	P1.7	Barometric Pressure (mb): 1015					
	Alali N	aliyan		RESULTS	ry	1015					
Sample	Borehole/			KESULIS							
Station	Spike/	Survey	CH₄ %	CO ₂ %	O_2	Comments					
Number	Other	Depth	v/v	v/v	% v/v	Comments					
GM1	Spike	600mm	0.00	0.50	19.40						
GM2	Spike	600mm	0.00	2.40	16.80						
GM3	Spike	600mm	0.00	0.50	18.50						
GM4	Spike	600mm	0.00	0.60	19.30						
GM5	Spike	600mm	0.00	0.70	18.40						
GM7	Spike	600mm	0.00	0.20	20.10						
GM8	Spike	600mm	0.00	0.70	19.30						
GM9	Spike	600mm	0.00	0.90	18.10						
GM10	Spike	600mm	0.00	1.90	16.50						
GM11	Spike	600mm	0.00	2.10	16.40						
GM12	Spike	600mm	0.00	1.60	16.30						
GM13 GM14	Spike Spike	600mm 600mm	0.00 0.00	0.60 0.70	18.80 19.60						
GM15	Spike	600mm	0.00	0.70	19.00						
GM16	Spike	600mm	0.00	0.50	19.70						
GM17	Spike	600mm	0.00	2.10	17.80						
GM18	Spike	600mm	0.00	1.30	18.80						
GM19	Spike	600mm	0.00	1.80	8.50						
GM20	Spike	600mm	0.00	1.50	18.60						
GM21	Spike	600mm	0.00	1.80	17.20						
GM22	Spike	600mm	0.00	1.00	19.20						
GM23	Spike	600mm	0.00	0.90	17.70						

LANDEUL CACAMODATION MONITORING

	LANDFILL GAS MIGRATION MONITORING FORM										
Site Name	:			Site Address:							
	Dunmore L	andfill Site)			Dunmore,					
Operator:				Co. Kilkenny							
	ilkenny Co	unty Coun	cil			nce: 16057	2N 249519E				
Site Status				Date: 01/0	9/09		Time:16:13				
_		tive									
Instrumen			04.04			alibration: I					
N# 14 1		Gas Analys	ser - GA 94	M41	Next Calib	ration Due	-				
Monitoring	•	ı: hatigan		Weather:	ry	Barometri	c Pressure (mb): 989				
	Alali N	ilatiyali		RESULTS			909				
Sample	Borehole/			RESULT							
Station	Spike/	Survey	CH₄ %	CO ₂ %	O_2		Comments				
Number	Other	Depth	v/v	v/v	% v/v		Comments				
GM1	Spike	600mm	0.00	0.70	19.80						
GM2	Spike	600mm	0.00	2.30	18.20						
GM3	Spike	600mm	0.00	0.60	20.00						
GM4	Spike	600mm	0.00	0.50	19.50						
GM5	Spike	600mm	0.00	1.30	17.10						
GM7	Spike	600mm	0.00	0.00	20.50).50					
GM8	Spike	600mm	0.00	0.60	19.30	9.30					
GM9	Spike	600mm	0.00	0.80	18.20						
GM10	Spike	600mm	0.00	2.50	15.40						
GM11	Spike	600mm	0.00	2.20	16.50						
GM12	Spike	600mm	0.00 0.00	1.20	15.60						
GM13 GM14	Spike Spike	600mm 600mm	0.00	0.10 1.50	20.40 18.70						
GM15	Spike	600mm	0.00	0.20	20.50						
GM16	Spike	600mm	0.00	1.30	19.40						
GM17	Spike	600mm	0.00	1.40	18.30						
GM18	Spike	600mm	0.00	1.90	18.70						
GM19	Spike	600mm	0.00	1.20	11.70						
GM20	Spike	600mm	0.00	1.10	19.20						
GM21	Spike	600mm	0.00	1.40	18.90						
GM22	Spike	600mm	0.00	1.10	19.60						
GM23	Spike	600mm	0.00	0.80	19.20						

LANDEUL GAGAMODATION MONITORING FORM

		ANDFILL	GAS MIG			RING FOR	RM	
Site Name				Site Address:				
	Dunmore L	andfill Site)	Dunmore,				
Operator:	Illiania - O -		_:I	Co. Kilkenny National Grid Reference: 160572N 249519E				
Site Status	ilkenny Co	unty Coun	CII	Date: 27/1		1ce: 16057	ZN 249519E Time:13:19	
Site Status		tive		Date: 27/1	0/09		11me:13:19	
Instrumen					Date Of Ca	alibration: I	Mar '09	
		Gas Analys	er - GA 94			ration Due		
Monitoring	g Personne	l:		Weather:		Barometri	c Pressure (mb):	
	Alan R	hatigan			ry		1002	
				RESULTS	3			
Sample	Borehole/	Survey	CH₄ %	CO ₂ %	O ₂			
Station	Spike/	Depth	v/v	v/v	% v/v		Comments	
Number	Other	-						
GM1	Spike	600mm	0.00	0.60	19.90			
GM2	Spike	600mm	0.00	2.30	17.50			
GM3	Spike	600mm	0.00	0.50	20.10			
GM4	Spike Spike	600mm	0.00	1.60	18.50			
GM5 GM7	Spike Spike	600mm 600mm	0.00 0.00	1.90 15.10 0.10 20.30				
GM8	Spike	600mm	0.00	0.10	20.30			
GM9	Spike	600mm	0.00	1.00	19.40			
GM10	Spike	600mm	0.00	2.20	17.90			
GM11	Spike	600mm	0.00	1.70	15.60			
GM12	Spike	600mm	0.00	2.40	12.70			
GM13	Spike	600mm	0.00	0.80	18.60			
GM14	Spike	600mm	0.00	2.20	17.20			
GM15	Spike	600mm	0.00	0.60	20.10			
GM16	Spike	600mm	0.00	1.50	18.70			
GM17	Spike	600mm	0.00	2.30	17.90			
GM18 GM19	Spike	600mm 600mm	0.00 0.00	2.10 2.30	18.60 5.20			
GM20	Spike Spike	600mm	0.00	0.70	19.60			
GM20	Spike	600mm	0.00	0.60	19.00			
GM22	Spike	600mm	0.00	1.20	17.90			
GM23	Spike	600mm	0.00	1.10	19.00			
	· ·							

	L/	ANDFILL	GAS MIG	RATION	MONITOR	RING FOR	RM
Site Name				Site Address:			
	Dunmore L	andfill Site	•	Dunmore,			
Operator:				Co. Kilkenny			
	ilkenny Co	unty Coun	cil			nce: 16057	2N 249519E
Site Status		tive.		Date: 01/1	0/09		Time:12:17
Instrumen		tive			Data Of Co	alibration: I	Mor 100
instrumen		Gas Analys	er - GA 94			ration Due	
Monitoring	Personne		0. 0/(01	Weather:	HOXE Gails		c Pressure (mb):
		hatigan			ry		1018
				RESULTS	3		
Sample	Borehole/	Survey	CH₄ %	CO ₂ %	O ₂		
Station	Spike/	Depth	V/V	V/V	% v/v		Comments
Number	Other	-					
GM1	Spike	600mm	0.00	0.70	19.30		
GM2	Spike	600mm	0.00	2.50	13.20		
GM3 GM4	Spike Spike	600mm 600mm	0.00 0.00	0.50 0.60	18.60 19.50		
GM5	Spike	600mm	0.00	0.80	18.80		
GM7	Spike	600mm	0.00	0.20	20.20		
GM8	Spike	600mm	0.00	0.70	19.30		
GM9	Spike	600mm	0.00	0.90	18.20		
GM10	Spike	600mm	0.00	2.50	17.20		
GM11	Spike	600mm	0.00	2.10	18.50		
GM12	Spike	600mm	0.00	1.10	18.00		
GM13	Spike	600mm	0.00	0.10	20.00		
GM14 GM15	Spike	600mm 600mm	0.00 0.00	1.50 1.20	17.60 19.00		
GM16	Spike Spike	600mm	0.00	0.10	20.50		
GM17	Spike	600mm	0.00	2.90	18.30		
GM18	Spike	600mm	0.00	2.40	17.40		
GM19	Spike	600mm	0.00	2.20	17.80		
GM20	Spike	600mm	0.00	1.60	18.40		
GM21	Spike	600mm	0.00	1.60	16.70		
GM22	Spike	600mm	0.00	0.90	19.10		
GM23	Spike	600mm	0.00	1.30	18.10		

	L/	ANDFILL	GAS MIG	RATION	MONITOR	RING FORM	
Site Name	:			Site Addre	ess:		
	Dunmore L	andfill Site)			Dunmore,	
Operator:						Co. Kilkenny	
K	ilkenny Co	unty Coun	cil	National G	rid Referer	nce: 160572N 249519E	
Site Status				Date: 02/1:	2/09	Time:12:57	
		tive					
Instrumen						alibration: Mar '09	
		Gas Analys	er - GA 94		Next Calib	ration Due: Sep'09	
Monitoring	Personne			Weather:		Barometric Pressure (mb):	
	Alan R	hatigan			ry	982	
0				RESULTS	5		
Sample	Borehole/	Survey	CH₄ %	CO ₂ %	O_2		
Station	Spike/	Depth	v/v	v/v	% v/v	Comments	ļ
Number	Other	-					
GM1	Spike	600mm	0.00	0.70	20.50 18.70		
GM2 GM3	Spike Spike	600mm 600mm	0.00 0.00	2.40 0.60	18.70 19.70		
GM4	Spike Spike	600mm	0.00	1.40	16.90		
GM5	Spike	600mm	0.00	1.40	18.50		
GM7	Spike	600mm	0.00	0.20	20.40		
GM8	Spike	600mm	0.00	0.40	20.40		
GM9	Spike	600mm	0.00	0.40	19.40		
GM10	Spike	600mm	0.00	2.30	17.20		
GM11	Spike	600mm	0.00	1.70	17.70		
GM12	Spike	600mm	0.00	2.10	17.50		
GM13	Spike	600mm	0.00	0.60	19.90		
GM14	Spike	600mm	0.00	2.40	17.10		
GM15	Spike	600mm	0.00	0.50	20.30		
GM16	Spike	600mm	0.00	1.60	18.30		
GM17	Spike	600mm	0.00	2.60	18.50		
GM18	Spike	600mm	0.00	2.10	17.90		
GM19	Spike	600mm	0.00	2.10	16.80		
GM20	Spike	600mm	0.00	0.60	19.70		
GM21 GM22	Spike	600mm	0.00	0.60	18.90		
GM22 GM23	Spike Spike	600mm 600mm	0.00 0.00	1.30 0.80	19.00 19.00		
GIVIZO	Spike	OUUIIIII	0.00	0.00	19.00		

	L/	ANDFILL	GAS MIG	RATION	MONITOR	RING FOR	RM
Site Name	:			Site Addre	ess:		
	Dunmore L	andfill Site)			Dunmore,	
Operator:						Co. Kilkenn	
		unty Coun	cil		rid Referei	nce: 16057	
Site Status		tive.		Date:	05 lon 10		Time:
Instrumen		tive			05-Jan-10	alibration:	Mor 100
instrumen		Gas Analys	er - GA 94			ration Due	
Monitoring			CI OA 04	Weather:	NOXE GAILD		c Pressure (mb):
		hatigan			ry		1004
		<u> </u>		RESULTS			
Sample	Borehole/	Cumuraur	CH₄ %	CO ₂ %			
Station	Spike/	Survey Depth	V/V	V/V	O₂ % v/v		Comments
Number	Other	-					
GM1	Spike	600mm	0.00	0.60	19.90		
GM2	Spike	600mm	0.00	2.10	18.40		
GM3	Spike	600mm	0.00	0.50	20.50		
GM4 GM5	Spike Spike	600mm 600mm	0.00 0.00	0.60 0.80	20.20 20.00		
GM7	Spike	600mm	0.00	0.00	20.80		
GM8	Spike	600mm	0.00	0.70	18.40		
GM9	Spike	600mm	0.00	0.40	20.30		
GM10	Spike	600mm	0.00	2.00	18.60		
GM11	Spike	600mm	0.00	1.70	18.40		
GM12	Spike	600mm	0.00	0.60	20.00		
GM13	Spike	600mm	0.00	0.30	20.40		
GM14	Spike	600mm	0.00	1.20	19.30		
GM15	Spike	600mm	0.00	0.20	19.30		
GM16 GM17	Spike Spike	600mm 600mm	0.00 0.00	0.00 1.80	21.00 19.30		
GM17 GM18	Spike	600mm	0.00	2.50	17.90		
GM19	Spike	600mm	0.00	1.60	18.80		
GM20	Spike	600mm	0.00	0.60	19.80		
GM21	Spike	600mm	0.00	1.00	19.40		
GM22	Spike	600mm	0.00	0.70	19.60		
GM23	Spike	600mm	0.00	0.90	19.10		

Appendix C

Surface, Ground Water Monitoring

&

Leachate Monitoring

	1									1									ı	1	1			
GW 3	1st 1/4 2004	2nd 1/4 2004	3rd 1/4 2004	4th 1/4 2004	1st1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008	1st 1/4 2009	2nd 1/4 2009	3rd 1/4 2009	4th 1/4 2009
PH	7.3	7.3	7.3		7.4																			
Temperature °C	11.6	12	13.2		12.2																			
Conductivity uS/CM 20 °C	-	-	-	-	-																			
Conductivity uS/CM 25 °C	755	777	748		751	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	
Ammonia mg/l N	0.006	< 0.003	< 0.003		< 0.003	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Dissolved Oxygen %sat	73.6	71.2	75.3		72.5	q	q	q	q	Ω	Ω	Ω	q	q	q	Q	q	q	Ω	q	Ω	p	q	
Calcium mg/l Ca	121	-	-			В	В	В	В	Ø	Ø	Ø	Ø	В	В	Ø	Ø	В	Ø	Ø	Ø	В	Ø	
Cadmium mg/l Cd	< 0.0001	-	-			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Chromium mg/l Cr	0.0060							-		· -														
Chloride mg/l Cl	19	18	18		20	В	В	В	В	a	a	Ø	В	а	В	Ø	В	В	Ø	Ø	Ø	В	Ø	
Copper mg/l Cu	0.00197	-	-			>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	
Iron mg/l Fe	0.187	< 0.060	<0.006		<60	⋖	⋖	٧	⋖	⋖	⋖	⋖	⋖	A	⋖	⋖	⋖	⋖	⋖	⋖	⋖	⋖	⋖	
Lead Mg/I Pb	< 0.0001	-	-																					
Magnesium mg/l Mg	10.4		-			Ф	Φ	Ф	Φ	Φ	Φ	Φ	Φ	Ф	Φ	Φ	Φ	Ф	Φ	Φ	Φ	Ф	Φ	
Manganese mg/l Mn	<0.001	-	-			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Mercury mg/l Hg	-	-	-			Ф	٥	Ф	۵	۵	۵	٥	۵	Ф	٥	٥	۵	۵	٥	٥	۵	٥	٥	
Nickel mg/l Ni	0.00184	-	-			E	Ε	Е	Ε	Ε	Ε	Ε	Ε	Е	Ε	Ε	Ε	E	Ε	Ε	Ε	Ε	Ε	
Potassium mg/l K	1.76	2.1	1.6			В	В	В	В	Ø	Ø	Ø	Ø	а	Ø	Ø	Ø	В	Ø	Ø	Ø	В	a	
Sodium mg/l Na	9.5	9	9.1			S	S	S	S	S	ဟ	ဟ	ဟ	S	ഗ	ဟ	S	S	S	ဟ	S	S	S	
Sulphate mg/l SO₄	13.3																							
Zinc mg/l Zn	0.013	-	-			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Alkalinity CaCO ₃	-	-	-			z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	
TOC mg/I C	0.68	-	0.42		0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
TON mg/l N	8.5	8.6	8.1		8.9																			
Nitrate+Nitrite mg/l N	-	-	-																					
Flouride mg/l F	<0.1	-	-																					
Phosphorous mg/l P	-	-	-																					
Nitrite mg/l N	<0.001	0.001	<0.001		<0.001																			
Suspended Solids mg/l	-	-	-																					
o-Phosphate mg/l P	<0.006	<0.006	<0.006		<0.006																			
Colour Hazen	-	-	-																					
Total Coliforms/100ml	0	0	0		0																			
Faecal Coliforms/100ml	-	-	-																					
Aluminium mg/l	<0.05	-	-																					
e-coli					0																			

Well 14	1st 1/4 2004	2nd 1/4 2004	3rd 1/4 2004	4th 1/4 2004	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008	1st 1/4 2009	2nd 1/4 2009	3rd 1/4 2009 4th 1/4 200
PH	7.5	7.8	7.1	7.2	7.5	7.7	7.1	7.5	7.5	7.4	7.4	7.5	7.6	7.2	7.4	7.5	7.6	7.6	7.6	7.7	7.7	7.2	7.2
Temperature °C	9.6	9	13	13.8	10.7	10.8	14.3	16.5	11	11.9	16.7	16.4	9.5	14.3	14.9	13.4	10.6	13.9	14.8	9.8	10	14.1	15.5
Conductivity uS/CM 20 °C	-	-	-			-																	
Conductivity uS/CM 25 °C	399	406	657	435	414	434	524	585	539	438	567	532	441	679	771	637	508	582	459	436	437	484	513
Ammonia mg/l N	0.037	<0.003	0.13	0.024	0.006	0.018	0.05	0.033	<0.003	.00	0.082	0.022	0.024	0.012	0.023	0.019	0.017	0.23	0.02	0.14	0.5	0.06	0.26
Dissolved Oxygen %sat	82.4	63.1	29	55.4	71.6	63.3	21	44.2	102.5	72	46.2	67.3	78.5	37.9	58.3	61.3	74	51.1	75.6	91	82.9	75	65
Calcium mg/l Ca	54.3	-	-		-	-	89	96.3	92	69.8	90	77	71	110	133			102				76.9	
Cadmium mg/l Cd	< 0.0001	-	-		-	-		<.0001		<.0001				< 0.005	< 0.005			< 0.001				< 0.005	
Chromium mg/l Cr	0.0026							0.00562		<.001				< 0.005	< 0.005			0.00191				0.0056	
Chloride mg/l Cl	22	22	20	17	16	18	17	18	17		26	49	16	24	13	16	17	15	13	14	14	16	10
Copper mg/l Cu	< 0.001	-	-		-	-		0.01		0.0224				<0.005	< 0.005			0.00126				<0.005	
Iron mg/l Fe	0.154	0.082	0.085	2.13	0.1	0.153	0.077	0.605	0.785	0.329	0.062			0.0572	0.166			0.152		0.199	0.086	<0.25	0.37
Lead Mg/I Pb	< 0.0001	-	-		-	-		<.001		<.001				< 0.005	< 0.005			< 0.001				< 0.005	
Magnesium mg/l Mg	5.25	-	-		-	-		6.16	6.6	5.54	5.5	4.1	6.3	<1	9.43			7.92				13	
Manganese mg/l Mn	0.00328	-	-		-	-	6.4	45.4		0.0136				< 0.050	0.0663			0.0156				< 0.25	
Mercury mg/l Hg	-	-	-		-	-								< 0.0005	< 0.005			< 0.0005				< 0.0005	
Nickel mg/l Ni	< 0.001	-	-			-		0.00294		0.00208				<0.005	< 0.005			0.00114				< 0.005	
Potassium mg/l K	1.53	< 0.3	2.2	1		2	1.8	2.11	1.7	1.33	1.7	1.5	1	<1	1.49			1.99		< 0.3	1.3	<5	3.7
Sodium mg/l Na	9.83		21.7	9.1		10.4	10.6	12	11.1		16	23	10.5	19.2	14.9			14.6		6.9	7	17.2	9.3
Sulphate mg/l SO ₄	11	9.6						-		9.7				73.8				50.2				17	
Zinc mg/l Zn	0.0118	-	-		-	-		0.0213		<.001				< 0.030	< 0.030			0.0188				< 0.005	
Alkalinity CaCO ₃	-	-				177		272						226								213	
TOC mg/I C	2.7	-	2.7	5.9	-	4.48		-				3.6	4.2	3.7	2.5	3.3	3.1		5.3	3.9	2.5	2.7	5.1
TON mg/l N	4.4	3.8	2.2	2.8	2.9	3.6	2.7	2.2	6.7		5.9	4.9	4.1	5.1	3	3	4.7	4	3.5	3.3	2.8	3.1	2.2
Nitrate+Nitrite mg/l N	-	-	-		-	-																	
Flouride mg/l F	0.14	-	-		-	-		-		<.1				0.16				<0.10				0.08	
Phosphorous mg/l P	-	-	-			-																	
Nitrite mg/l N	0.005	0.004	0.043	0.007	0.002	0.003	0.004	0.003	0.001		0.016	0.006	0.002	0.016	0.015	0.002		0.006	0.002			0.009	
Suspended Solids mg/l	-	-	-		-	-																	
o-Phosphate mg/l P	0.018	0.092	0.023	0.015	0.016	0.026	<0.006	<0.006	0.019		<.006	< 0.006	0.012	0.012	0.03	0.036		0.04				0.13	
Colour Hazen	-	-	·		-	-																	
Total Coliforms/100ml	1986	2380	12033	24192	>2419	>2419	3448	2420	>2419	549	>2419	1986	>2419	>2419	6867	5475	>2419	1986	>2419	1198	468	6900	24000
Faecal Coliforms/100ml	-	-	-		-	-																	
Aluminium mg/l	0.058	-	-		-	-		0.439		0.22				<0.025	<0.025			0.0322				<0.25	
e-coli					27	147	89	161	649	17	613	108	38	326	<10	275	1203	99	461	74	26	120	4400

Well 6	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th1/4	1st1/4	2nd1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4				
	2004	2004	2004	2004	2005	2005	2005	2005	2006	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008			3rd 1/4 2009	4th 1/4 2009
PH	7.3	7.4	7.4	7.3	7.3	7.4	7.3	7.8	7.3	7.2	7.6	7.2	7.3	7.2	7.3	7.2	7.3	7.3	7.3	7.4	7.2	7.2	7.1	
Temperature °C	9.8	10.6	12.9	11.9	10.9	10.5	13.1	12.3	9.7	10.7	15.3	12.9	10.8	12.2	11.4	10.6	10.4	11.9	11.8	9.8	10.8	14.1	12.3	
Conductivity uS/CM 20 °C	-	-	-			-																	1	
Conductivity uS/CM 25 °C	721	733	733	737	737	739	730	780	741	749	631	744	769	724	756	748	760	766	750	753	754	743	744	
Ammonia mg/l N	0.033	<0.003	0.013	0.004	< 0.003	0.023	<.003	0.004	<.003		0.21	0.01	< 0.003	0.12	0.028	0.013	< 0.003	< 0.003	0.006	0.005	< 0.003	0.18	0.04	
Dissolved Oxygen %sat	30.6	13	35.2	18.4	14.7	16.8	30	66.7	27.4	15.3	46	51.5	18.1	35.4	16.5	22	25	27.1	27.5	39	38	40.1	34	
Calcium mg/l Ca	105		-			-	122	129	129	129	107	130	132	125	121							121		
Cadmium mg/l Cd	< 0.0001	-	-			-		<0.0001		<.0001				< 0.005	< 0.005							< 0.005		
Chromium mg/l Cr	0.0065							0.00531		0.0037				< 0.005	< 0.005							< 0.005	1	
Chloride mg/l Cl	24	28	24	23	21	23	21	24	16		19	22	23	22	23	23	22	22	22	22	21	22	20	
Copper mg/l Cu	<0.001	-	-			-		<.0227		<.001				<0.005	<0.005							<0.005		
Iron mg/I Fe	0.165	<0.06	0.108	<0.06	<0.06	<0.06	0.085	0.143	<0.06	137	<.06			0.05	0.119					0.23	0.11	< 0.25	0.1	
Lead Mg/I Pb	<0.001	-	-			-		<.001		<.001				<0.005	<0.005							<0.005		
Magnesium mg/l Mg	11.3	-	-			-		11.3	13.3	12.3	10.6	11.4	13.3	1.3	11.6							17.8		
Manganese mg/l Mn	<0.001	-	-			-	12.3	0.015		0.0915				<0.050	< 0.050							<0.25		
Mercury mg/l Hg	-	-	-			-								< 0.0005	< 0.0005							<0.0005		
Nickel mg/l Ni	0.00181	-	-			-		0.00213		<.001				<0.005	<0.005							<0.005		
Potassium mg/l K	2.39	3.1	2.6	1.1		3	2.6	2.33	2.6	2.61	2.4	2.8	2.7	<1	2.7					2.6	2.3	<5	4.3	
Sodium mg/l Na	13.9	13.3	12.4	12.3		13.5	12.8	10.9	12.2		10.5	11.1	13.1	12	10.9					9.8	8.1	18.5	12	
Sulphate mg/l SO ₄	16.3							-		9.2				19.2				31.2				21	1	
Zinc mg/l Zn	0.0079	-	-			-		0.122		<.001				< 0.030	< 0.030							< 0.005		
Alkalinity CaCO ₃	-	-	-			322		306						297				341				350		
TOC mg/I C	0.46	-	0.34	0.6		1.56	-	-				1.6	0.8	1.2	0.5	<0.5	3	<0.5	1.2	1.1	<0.5	1.6	1.7	
TON mg/l N	8.1	8.2	7.6	7.9	7.2	8.2	7.9	6.2	7.6		7.8	8.5	8.3	9.6	9.9	9	8.8	9	8.9	8.5	8.4	8.4	7.6	
Nitrate+Nitrite mg/l N	-	-	-			-																		
Flouride mg/l F	<0.1	-	-			-		-		<0.1				0.12				0.1				0.08		
Phosphorous mg/l P	-	-	-			-																		
Nitrite mg/l N	0.005	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<.001		0.012	<0.001	< 0.001	0.003	<0.001	< 0.001		0.001	0.001			< 0.001		
Suspended Solids mg/l	-	-	-			-																		
o-Phosphate mg/l P	<0.006	0.05	<0.006	<0.006	<0.006	0.02	<0.006	<0.006	0.027		0.024	<0.006	0.022	<0.006	0.019	0.026		0.01				0.1		
Colour Hazen	-	-	-			-					,													
Total Coliforms/100ml	1553	126	-	222	387	2419	47	>2420	12	30	>2419	461	3	866	1049	34	16	>2419	51	<10	<5	96	74	
Faecal Coliforms/100ml	-	-	-			-																		
Aluminium mg/l	<0.050	-	-			-		<0.05		<.050			, and the second	<0.025	<0.025							<0.25		
e-coli					0	1	0	517	0	0	0	0	0	0	<5	0	1	0	10	<10	<5	<10	31	

Well 3	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4				
	2004	2004	2004	2004	2005	2005	2005	2005	2006	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008		2nd 1/4 2009		4th 1/4 2009
PH	7.4	7.5	7.4		7.5	7.5	7.3	7.6			7.5	7.4	7.4	7.3	7.5	7.3	7.5	7.3	7.5		7.3	7.3	7.1	
Temperature °C	10.2	9.4	13.8	-	8.2	9.2	14.3	7.2			16.3	12.3	7.1	14.5	12.7	10.5	7.4	12.1	12.2		9.4	14.7	11.8	
Conductivity uS/CM 20 °C	-	-	-	-	-	-																		
Conductivity uS/CM 25 °C	603	590	630		590	620	648	599	Φ	Φ	656	644	592	637	648	625	589	653	596	Φ	610	653	663	
Ammonia mg/l N	< 0.003	<0.003	< 0.003	-	0.009	<0.003	0.22	<0.003	_	_	0.021	0.01	0.013	<0.003	0.013	0.02	0.005	<0.003	0.003	_	< 0.003	<0.01	<0.01	
Dissolved Oxygen %sat	12.4	39.1	71	-	36	38.4	71.6	103.1	q	q	50.5			61.3	82.4	58	36.7	67.8	43.7	q	50	71	71	
Calcium mg/l Ca	84.4	-	-			-	109	100	В	a	113	111	91	102	106					a		112		
Cadmium mg/l Cd	0.0050	-	-			-			_	_				< 0.005	< 0.005					_		< 0.005		
Chromium mg/l Cr	0.0050													< 0.005	< 0.005					-		0.00559		
Chloride mg/l Cl	23	23	25		22	25	23	21	Ø	a	25	25	23	22	23	19	22	23	23	Ø	24	23	23	
Copper mg/l Cu	0.0104	-	-	-	-	-			>	>				0.0127	0.0116					>		0.00754		1
Iron mg/l Fe	0.156	< 0.06	< 0.06	-	< 0.06	0.089	< 0.06	0.156	⋖	⋖	<.06			0.0986	0.113					⋖	0.09	< 0.25		
Lead Mg/I Pb	< 0.001	-	-	-	-	-								< 0.005	< 0.005							< 0.005		
Magnesium mg/l Mg	12.7	-	-	-	-	-	8.4	12.1	Φ	Φ	7.8	8	15.5	<1	8.59					Φ		15		
Manganese mg/l Mn	0.00388	-	-	-		-			_	_				< 0.050	< 0.050					_		< 0.25		
Mercury mg/l Hg	-	-	-	-	-	-			۵	۵				< 0.0005	< 0.0005					٥		< 0.0005		
Nickel mg/l Ni	<0.001	-	-	-	-	-			Ε	Ε				<0.005	<0.005					Ε		<0.005		,
Potassium mg/l K	1.11	1.8	0.8			0.4	0.8	1	Ø	a	0.9	1	1.3	<1	<1.0					Ø	1.4	<5		
Sodium mg/l Na	10.7	10.1	11.4			12.1	11.9	11.2	ഗ	တ	11.8	12.3	11	12	12					S	8.7	19.8		
Sulphate mg/l SO₄	18.9													22				33.4				25		
Zinc mg/l Zn	0.126	-	-	-	-	-			0	0				0.227	0.113					0		0.0594		
Alkalinity CaCO ₃	-	-	-	-	-	271			Z	Z				231				252		Z		261		
TOC mg/I C	0.33	-	0.56	-	-	1.24						1	0.7	0.7	1.1	0.6	10	1	0.9		<0.5	1.6	2.4	
TON mg/l N	2.7	1.5	7.8	-	2.1	5.3	9.2	3.7			9.7	8.7	2.5	9.8	10	7.5	2.8	9.4	2.9		4.1	9.3	7.2	
Nitrate+Nitrite mg/l N	-	-	-	-	-	-																		
Flouride mg/l F	< 0.0001	-	-			-								0.12				<0.10				0.1		
Phosphorous mg/I P	-	-	-	-	-	-																		
Nitrite mg/l N	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001			<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001		<0.001	<0.001			<0.002		
Suspended Solids mg/l	-	-	-	-	-	-																		
o-Phosphate mg/l P	<0.006	<0.006	<0.006	-	<0.006	<0.006	<0.006	0.0041			<0.006	<0.006	<0.006	<0.006	<0.006	0.012		<0.006				0.07		_
Colour Hazen	-	-	-	-	-	-																		
Total Coliforms/100ml	222	35	-	-	102	173	2419	249			167	57	96	501	455	29	38	308	613		10	20	87	4
Faecal Coliforms/100ml	-	-	-	-	-	-																		1
Aluminium mg/l	<0.050	-	-	-	-	-								<0.025	<0.025							<0.25		<u> </u>
e-coli	I		l		0	1	0	0			19	3	1	1 0	<5	0	0	l 1	0		<5	<10	3	1

BANA/ 4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	Ī	L		
MW 1	2004	2004	2004	2004	2005	2005	2005	2005	2006	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008		2nd 1/4 2009		4th 1/4 2009
PH	7.2	7.3	7.2	7.2	7.3	7.3	7	7.5	7.2	7.1	7.3	7.2	7.2	7.1	7.3	7.2	7.2	7.2	7.2	7.3	7.1	7.2	7.2	ullet
Temperature °C	10.9	11.6	12.9	11.1	11.3	11.2	12.4	11.5	10.7	11.6	14.1	11.9	10.8	12.2	11.8	11.6	10.9	12.1	11.7	10.3	11.5	13.4	11.5	
Conductivity uS/CM 20 °C	-	-	-																					1
Conductivity uS/CM 25 °C	798	796	823	776	797	803	776	776	788	799	789	768	808	807	759	743	760	793	748	755	758	764	742	
Ammonia mg/l N	0.016	0.29	0.019	0.044	0.041	< 0.003	< 0.003	0.004	0.01		0.042	0.014	< 0.003	0.014	0.058	0.015	0.008	0.007	0.004	0.011	0.003	0.064	0.1	
Dissolved Oxygen %sat	32.7	25.9	42.3	42.6	53.8	39.2	38	35.9	54.9	53.3	55.6	50.3	47	52.2	53.6	54.8	49	59.1	53	60	62	68	61	
Calcium mg/l Ca	126	-	-				135	128	143	139	142	137	146	147	128							131		
Cadmium mg/l Cd	< 0.0001	-	-					<.0001		0.0001				< 0.005	< 0.005							<0.005		
Chromium mg/l Cr	0.0066							<.00643		0.00373				< 0.005	< 0.005							0.0064		
Chloride mg/l Cl	22	24	24	22	23	23	18	22	21		22	22	21	22	23	24	21	23	21	21	21	23	21	
Copper mg/l Cu	< 0.001	-	-					<.0107		0.001				< 0.005	< 0.005							< 0.005		
Iron mg/l Fe	0.42	0.32	1.16	0.326	0.754	0.07	0.106	0.143	0.183	0.141	<.06			0.0637	0.125					0.175	0.089	<0.25	0.1	
Lead Mg/l Pb	<0.001	-	-					< 0.001		<.001				< 0.005	< 0.005							< 0.005		
Magnesium mg/l Mg	12	-	-					12.3	13	12.1	11.4	11.3	12.7	1.4	11.6							19		
Manganese mg/l Mn	0.0127	-	-					0.00233		<.001				< 0.050	< 0.050							< 0.25		
Mercury mg/l Hg	-	-												< 0.0005	< 0.0005							< 0.0005		
Nickel mg/l Ni	0.00268	-	-					<.001		< 0.001				< 0.005	< 0.005							< 0.005		1
Potassium mg/l K	1.74	2	1.6	<0.3		2.2	1.4	1.4	1.3	1.23	1.4	1.2	1.1	<1	1.06					1.2	1.1	<5	2.8	
Sodium mg/l Na	11.8	11.4	12.7	11.4		12.3	11.6	11.2	11.5		11.1	11.2	11	12.6	10.7					9.9	7.7	19.7	11	
Sulphate mg/l SO ₄	14							13.8		11.7				15.8				30.6				20		1 1
Zinc mg/l Zn	0.00748	-	-					0.0206		<.001				< 0.030	< 0.030							< 0.005		
Alkalinity CaCO ₃	-	-	-			364	343	343						239				364				363		
TOC mg/l C	0.6	-	0.61	0.84	-	1.22	0.6					1.2	1.3	1	<0.5	<0.5	1.1	0.9	0.9	1	<0.5	1.6	2.2	
TON mg/l N	8.1	8	7.6	7.7	7.5	8	6.8	7.5	7.8		12	8.1	8.5	10	9.3	8.3	7.7	8.4	7.9	7.1	7.1	7.1	6.6	
Nitrate+Nitrite mg/l N	-	-	-																					
Flouride mg/l F	< 0.0001	-	-					<.1		<0.1				0.1				<0.1				< 0.05		
Phosphorous ma/l P	-	-	-																					
Nitrite mg/l N	< 0.001	<0.001	<0.001	0.003	< 0.001	< 0.001	<0.001	<0.001	<.001		<0.001	<0.001	< 0.001	<0.001	0.001	0.005		<0.001	< 0.001			<0.001		
Suspended Solids mg/l	-	-	-																					
o-Phosphate mg/l P	< 0.006	<0.006	<0.006	<0.006	0.007	<0.006	<0.006	<0.006	0.062		<.006	<0.006	< 0.006	<0.006	0.12	0.31		0.006				0.17		
Colour Hazen	-	-	-																					
Total Coliforms/100ml	70	80	70	0	1046	51	99	816	1203	659	>2419	225	2419	79	2359	1533	1	115	>2419	2247	21	41	31	
Faecal Coliforms/100ml	-	-	-																					
Aluminium mg/l	0.0938	-	-					0.005		0.005				<0.025	<0.025							<0.25		
e-coli					0	0	0	0	0	0		0	0	0	<10	<10	0	0	0	<10	<5	<10	<10	

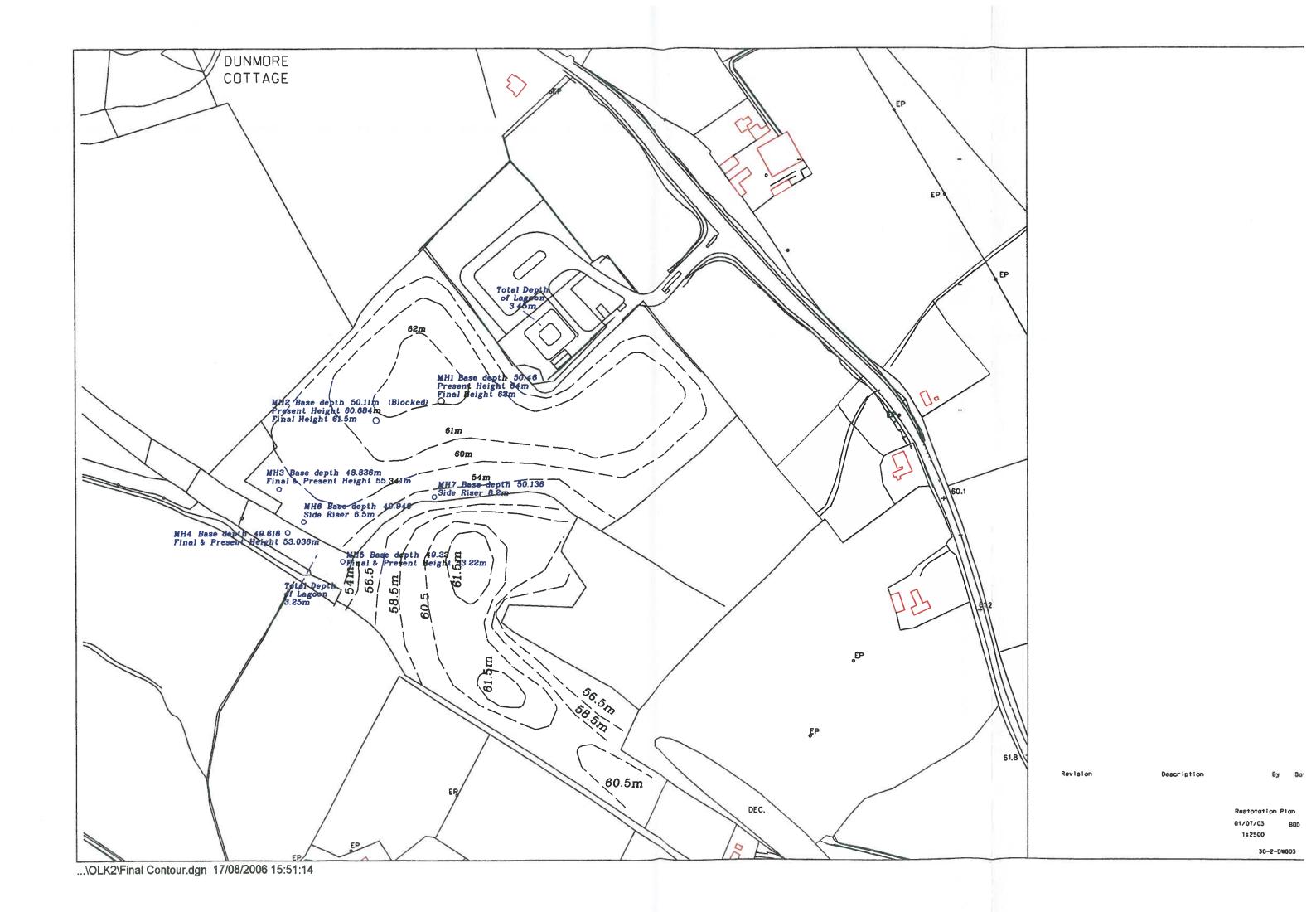
	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4				
GW 4	2004	2004	2004	2004	2005	2005	2005	2005	2006	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008	1st 1/4 2009	2nd 1/4 2009	3rd 1/4 2009	4th 1/4 2009
PH	7.3	7.4	7.3	7.3	7.4	7.3	7	7.3	7.3	7.2	7.5	7.2	7.4	7.2	7.3	7.2	7.2	7.3	7.3	7.2	7.2	7.2	7.1	
Temperature °C	10.9	10.9	11.9	11.7	11.6	11.3	12.4	12.3	11.6	11.8	13.1	13	11.4	13.1	12.4	12.4	12	13	12.6	12.4	12.9	13.2	12.8	
Conductivity uS/CM 20 °C	-	-	-																					
Conductivity uS/CM 25 °C	701	643	702	751	677	734	737	766	694	638	643	748	688	720	695	698	712	731	701	699	717	707	711	
Ammonia mg/l N	<0.003	< 0.003	0.017	0.009	<0.003	<0.003	<0.003	<0.003	< 0.003		0.032	0.021	0.003	0.006	0.013	0.063	0.008	0.51	0.004	0.04	< 0.003	0.12	0.06	
Dissolved Oxygen %sat	44.6	63	59.5	56.1	46.9	48.9	54.5	59.4	65.8	62.2	61.2	64.5	61.2	62.9	56.8	51.6	63.4	62.5	56.5	61	67	64	62	
Calcium mg/l Ca	110	-	-				113	127	124	110	113	135	120		119			139				122		
Cadmium mg/l Cd	< 0.0001	-	-					<01		<.1					< 0.005			< 0.001				< 0.005		
Chromium mg/l Cr	0.0643							0.0107		0.00223					< 0.005			0.00221				0.0055		
Chloride mg/l Cl	20	21	21	20	21	22	20	22	20		22	23	22	22	23	22	20	21	22	19	22	22	22	
Copper mg/l Cu	<0.001	-	-					0.00311		<.001					<0.005			0.00193				< 0.005		
Iron mg/l Fe	0.235	0.43	0.494	0.845	0.599	0.875	0.321	0.266	0.139	0.203	0.06				0.152			0.184		0.116	0.1	< 0.25	0.11	
Lead Mg/I Pb	< 0.001	-	-					<.001		<.001					< 0.005			< 0.001				< 0.005		
Magnesium mg/l Mg	8.72	-	-				9	8.48	9.3	7.8	7	9.8	8.6		8.24			8.99				14.8		
Manganese mg/l Mn	0.00965							0.018		0.0154					< 0.050			<0.01				< 0.25		
Mercury mg/l Hg	-														< 0.0005			<00005				< 0.0005		
Nickel mg/l Ni	0.00204	-	-					0.00213		0.001					< 0.005			0.00122				< 0.005		
Potassium mg/l K	1.75	2.4	1.9	2.7		4.3	2.2	1.99	2	1.92	1.9	2.1	2		<5.0			3.24		< 0.3	2.1	4.52	3.9	
Sodium mg/l Na	10.9	9.3	10.1	10.3		11.2	11.5	7.3	10.5		9.8	10	10.8		10.1			13.8		17.5	8.4	18.8	11	
Sulphate mg/l SO ₄	16.7							14.2		12.3				18.5				35.3				23		
Zinc mg/l Zn	0.00754	-	-					0.0172		0.101					< 0.030			0.0154				< 0.005		
Alkalinity CaCO ₃	-	-	-			317		324		241				279								296		
TOC mg/l C	0.75	-	0.72	0.69	-	1.89	<0.05	<0.5				1.2	1.1	1	0.7	<0.5	1.2		0.9	1.2	<0.5	1.7	2.4	
TON mg/l N	8.3	7.6	8.8	10	7.6	10	9.5	10	9.5		10	10	12	14	12	11	9.9	10	9.7	9.5	11	11	9.9	
Nitrate+Nitrite mg/l N	-	-	-																					
Flouride mg/l F	<0.1	-	-					<0.1		<0.1				0.13				<0.10				0.07		
Phosphorous mg/l P	-	-	-																					
Nitrite mg/l N	<0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001		<0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001		0.007	<0.001			<0.001		
Suspended Solids mg/l	-	-	-																					
o-Phosphate mg/l P	<0.006	<0.006	<0.006	<0.006	<0.01	<0.006	<0.006	<0.006	0.056		<0.006	<0.006	<0.006	<0.006	0.025	0.29		<0.006				0.4		
Colour Hazen	-	-	-																					
Total Coliforms/100ml	0	0	0	0	0	0	0	11	0	0	<10	0	0	0	<5	<5	0	0	0	<10	<5	<5	<10	
Faecal Coliforms/100ml	-	-	-																					
Aluminium mg/l	< 0.05	-	-					98.4		0.0691					< 0.025			<0.005				<0.25		
e-coli					0	0	0	0	0	0	<10	0	0	0	<5	<5	0	0	0	<10	<5	<5	<10	

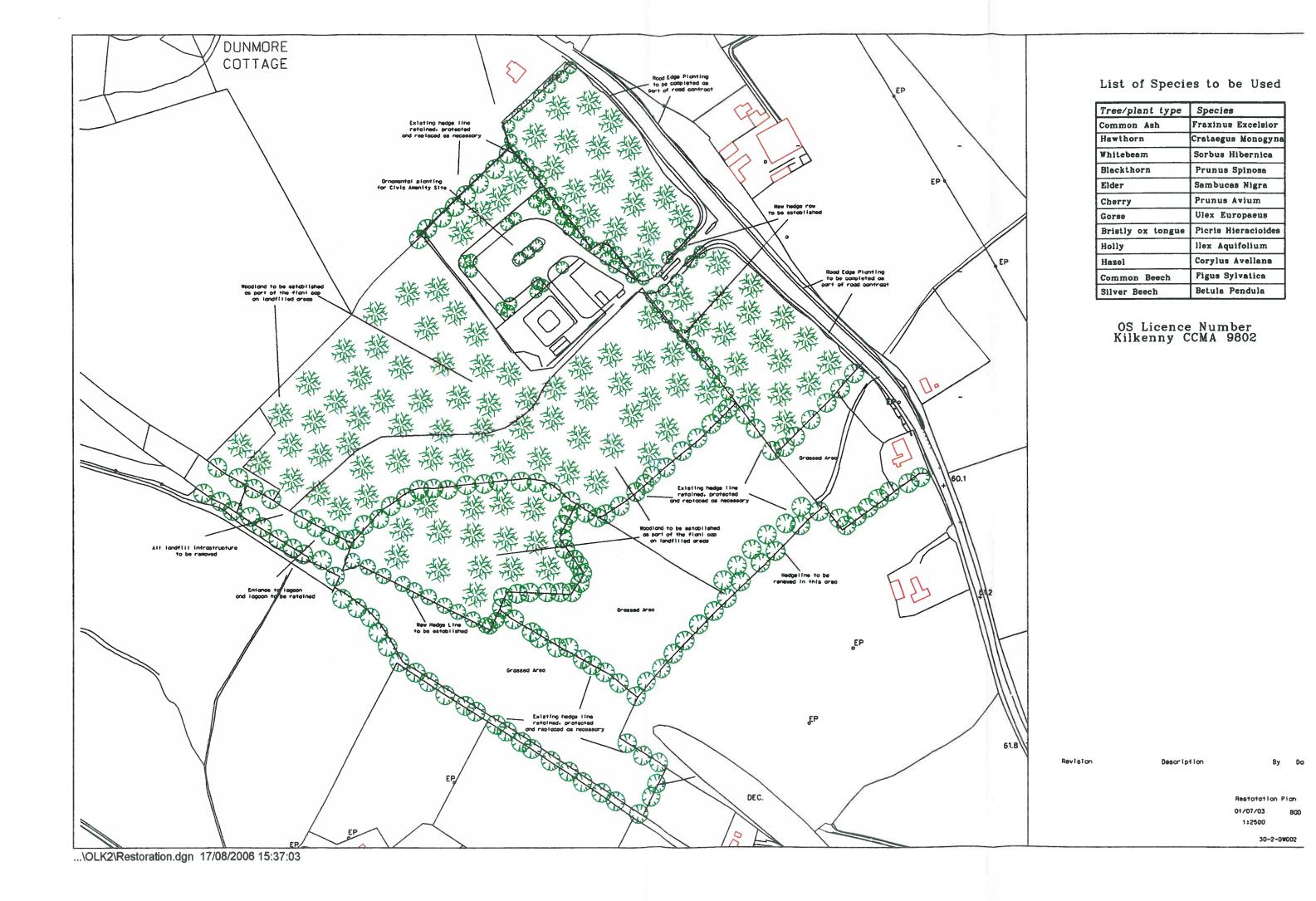
Well 15	1st 1/4 2004	2nd 1/4 2004	3rd 1/4 2004	4th 1/4 2004	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008	1st 1/4 2009	2nd 1/4 2009	3rd 1/4 2009	4th 1/4 2009
PH	7.3	7.3	7.5	7.2	7.1	7.3	7.2	7.2	7.2	7.2	7.3	7.2	7.2	7.1	7.3	7.5	7.2	7.2	7.2	7.3	7.2		7.1	
Temperature °C	9.2	9.4	13.3	13.6	10.1	9.7	13.4	13.4	9.2	9.5	14.3	14.5	9	12.8	13.4	11.4	8.5	12.1	13.7	8.5	8.7	13.6	13.5	
Conductivity uS/CM 20 °C	-	-	-		-	-																		
Conductivity uS/CM 25 °C	739	726	725	761	739	727	744	742	721	730	734	737	705	721	714	637	721	734	732	728	726	713	711	
Ammonia mg/l N	0.007	0.5	0.034	0.003	0.005	<0.003	0.75	< 0.003	0.087		0.032	0.008	0.005	0.036	0.075	0.024	1.2	0.009	<0.003	0.017	<0.003	1	0.04	
Dissolved Oxygen %sat	34.6	23.2	32.2	29.7	16.3	16.9	31	25.1	21	31.4	25.9	47	23.1	20.1	16.3	15.2	22.5	16.9	24.1	34	34	32	24	
Calcium mg/l Ca	113	-	-		-	-	130	122	130	129	136	131	126	116	121							120		
Cadmium mg/l Cd	< 0.0001	-	-		-	-		<0.001		<.0001				< 0.005	<0.005							<0.005		
Chromium mg/l Cr	0.0049							0.00604		0.00406				<0.005	<0.005							0.006		
Chloride mg/l Cl	25	26	22	24	21	21	21	27	19		22	23	21	22	22	21	25	22	23	23	22	21	20	
Copper mg/l Cu	<0.001	-	-		-	-		0.00773		<.001				< 0.005	< 0.005							< 0.005		
Iron mg/l Fe	0.453	0.333	0.807	0.458	0.278	0.466	1.24	0.502	0.526	0.479	<.06			0.14	0.158					0.382	0.25	< 0.25	0.22	
Lead Mg/l Pb	<0.001	-	-		-	-		<0.001		<.001				<0.005	< 0.005							< 0.005		
Magnesium mg/l Mg	10.7	-	-		-	-	11.2	11.5	11.6	11	10.8	10.7	10.9	1	9.98							16.5		
Manganese mg/l Mn	0.0475	-	-		-	-		0.297		0.151				0.101	0.0813							<0.25		
Mercury mg/l Hg	-	-	-		-	-								< 0.0005	< 0.0005							<0.0005		
Nickel mg/l Ni	0.00341	-	-		-	-		0.00253		2.68				<0.005	<0.005							<0.005		
Potassium mg/l K	1.59	2.2	2			2.2	2.1	2.16	1.8	1.73	2	2.1	1.7	<1	1.95					1.8	1.8	<5	3.8	
Sodium mg/l Na	10.6	9.6	10.5			10.5	10.7	10.1	10		10.4	10.8	9.9	9	9.08					7.9	7.5	17.4	11	
Sulphate mg/l SO ₄	0.0264							19.3		14.6				16.7				26.8				19		
Zinc mg/l Zn	0.00697	-	-		-	-		0.0216		0.00653				< 0.030	< 0.030							< 0.005		
Alkalinity CaCO ₃	-	-	-		-	330		324										323				337		
TOC mg/l C	0.46	-	0.98	0.67	-	1.58		<.5				1.8	1.7	<0.5	0.8	<0.5	1.4	0.6	2.1	1.1	0.5	1.6		
TON mg/l N	9.3	7	6	6.5	5	5.6	6.9	6.7	5.5		6	6.5	5.6	7.5	7.8	6.1	6.5	7.5	6.8	7	6.8	6.5	5.5	
Nitrate+Nitrite mg/l N	-	-	-		-	-																		
Flouride mg/l F	<0.0001	-	-		-	-		<0.1		<.1				0.13				<0.10				0.09		
Phosphorous mg/l P	-	-	-		-	-																		
Nitrite mg/l N	<0.001	<0.001	<0.001	<0.001	0.002	0.001	<0.001	<0.001	<.001		<0.001	< 0.001	< 0.001		0.006	0.001		0.001	0.007			0.005		
Suspended Solids mg/l	-	-	-		-	-																		
o-Phosphate mg/I P	<0.006	0.018	<0.006	<0.006	0.011	<0.006	<0.006	<0.006	<.009		<0.006	<0.006	< 0.006	0.016	0.019	0.035		0.006				0.11		
Colour Hazen	-	-	-		-	-																		
Total Coliforms/100ml	2	13	91	5	548	1414	20	11	86	93	8664	727	1733	10	1266	66	435	22	2419	295	98	340	180	
Faecal Coliforms/100ml	-	-	-		-	-																		
Aluminium mg/l	0.105	-	-		-	-		0.16	,	0.138				<0.025	< 0.025							< 0.25		
e-coli					75	225	9	0	4	14	52	0	46	0	265	26	23	3	345	74	41	120	74	

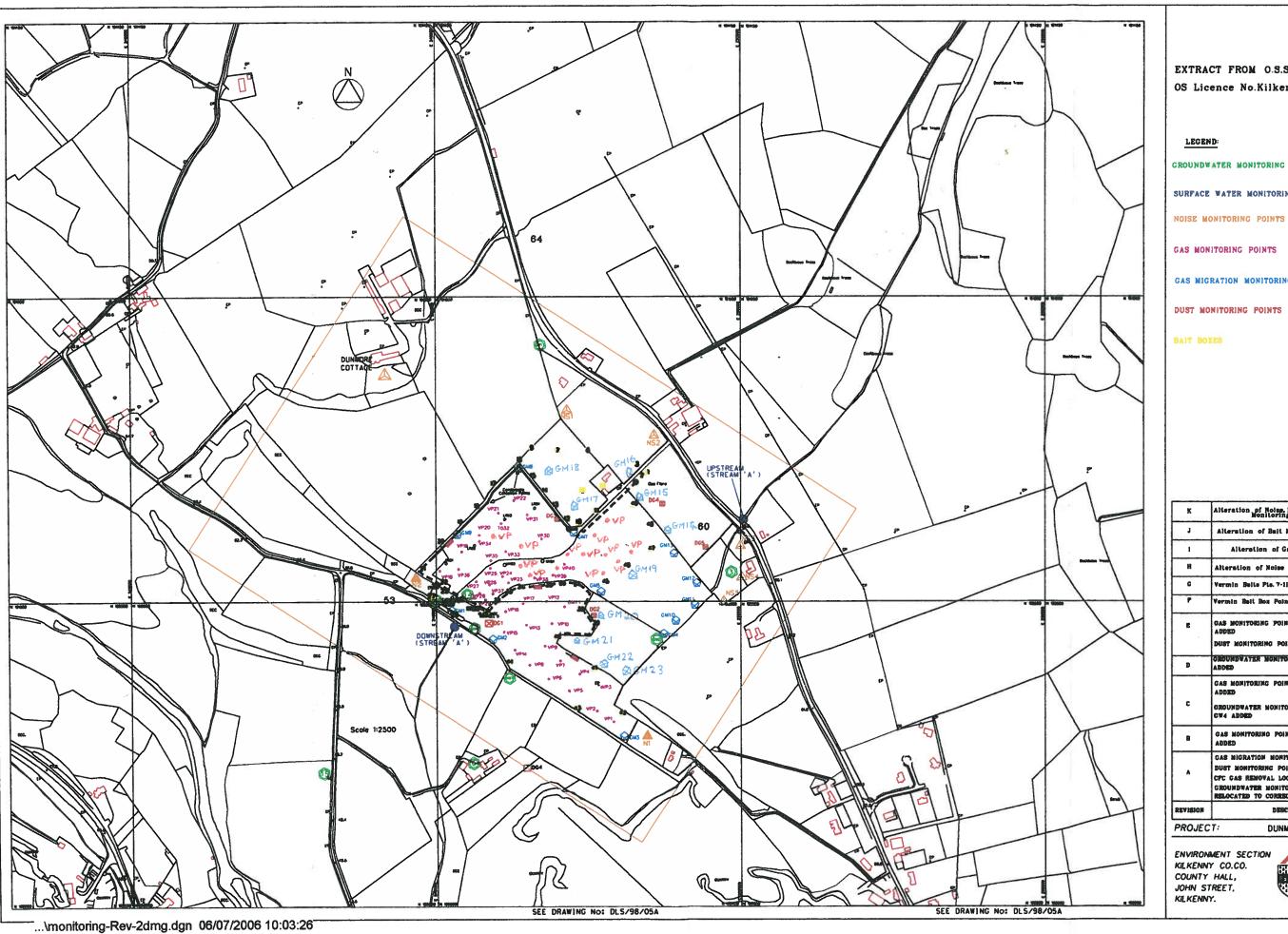
Manhala 2	3rd 1/4	4th 1/4 2006	1st 1/4	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	4-14/4 0000	0 1 4/4 0000	0-14/4 0000	411-4/4-0000	4-14/4 0000	0:: 1 4/4 0000	0-14/40000	4th 1/4 2009
Manhole 3	2006		2007											
PH	7.3	7.6	7.2	7.3	7.5	7	7.3	7.2	7.4	7.1	7.3	7.3	7.2	7.1
Temperature oC	17	17	11	15	15	12	10	14	16	13.5	11	15.7	16.2	11.5
Conductivity uS/CM 20oC														
Conductivity uS/CM 25oC	14160	4450	5900	10890	4960	4110	16490	5710	2330	6690		3160	93200	3550
C.O.D.	890	210	1527	1059	226	273	1144	374	94	557	2565	168	61	660
B.O.D.	80	8	>656	42	22.6	10	79	31	4.4	109.5	1360	21	5.8	284
Ammonia mg/l N	940	300	240	630	>298	200	< 0.003	190	78	0.98	240	150	71	120
Dissolved Oxygen %sat														
Calcium mg/l Ca				149				306				61		
Cadmium mg/l Cd				<0.005				<0.001				<0.005		
Chromium mg/l Cr				0.0319				0.0234				0.016		
Chloride mg/l Cl	2241	679	688	1503	690	570		>696	269	825	903	380	173	376
Copper mg/l Cu				0.0126				0.0112				< 0.005		
Iron mg/l Fe				9.28				7.823				2.3		
Lead Mg/I Pb				< 0.005				0.00186				< 0.005		
Magnesium mg/l Mg				0.012				69.3				28		
Manganese mg/l Mn				1.66				3.549				0.42		
Mercury mg/l Hg				< 0.0005				< 0.0005				< 0.0005		
Nickel mg/l Ni				0.0767				0.0581				0.023		
Potassium mg/l K				37.5				194				99		
Sodium mg/l Na				32.6				581				270		
Sulphate mg/l SO4				26.5				330.9				34		
Zinc mg/l Zn				0.0343				0.11				< 0.005		
Alkalinity CaCO3														
TOC mg/l C														
TON mg/l N	7.5	8.4	4	17	1.3	17	0.3	1.1	0.1	0.1	<0.1	0.6	<0.5	0.6
o-Phosphate mg/l P	1.3	0.039	0.28	0.55	0.32	0.1		0.25				0.26		
Flouride mg/l F				8.07				1.31				0.9		
Phosphorous mg/l P														
Nitrite mg/l N	0.071		< 0.001	0.18	0.48	0.085		<0.001				0.022		
Nitrate mg/l N														
Suspended Solids mg/l														
Colour Hazen														
Total Coliforms/100ml				24190				>9677				370		
E Coli/100 ml				10				147				52		
Faecal Coliforms/100ml														
Aluminium mg/l				0.268				0.0876				0.53		

	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	I		I		1			
Manhole 4	2004	2004	2004	2004	2005	2005	2005	2005	2006	2006	2006	2006	2007	2007	2007	2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008	1st 1/4 2009	2nd 1/4 2009	3rd 1/4 2009	4th 1/4 2009
PH															7.3									
Temperature oC															15	<u>[</u>								
Conductivity uS/CM 20oC																<u>.</u>								
Conductivity uS/CM 25oC			Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	6660		Φ	Φ	Φ	Φ	Φ	Φ		
C.O.D.			_	_	_	_	-	_	_	_	_	_	_	_	623	_	_	_	_	_	_	_		
B.O.D.			Q	Ф	٩	Q	Р	q	q	Q	ρ	q	Ф	Q	129.6	٩	٩	q	Ω	Q	ρ	q		
Ammonia mg/l N			a	а	Ø	a	а	Ø	Ø	a	a	В	а	a	>326	Ø	a	Ø	a	Ø	Ø	а		
Dissolved Oxygen %sat			_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_		
Calcium mg/l Ca								-			-					<u> </u>								
Cadmium mg/l Cd			a	a	a	a	В	Ø	a	Ø	Ø	В	В	a		a	a	a	Ø	Ø	Ø	В		
Chromium mg/l Cr	1		>	>	>	>	>	>	>	>	>	>	>	>		>	>	>	>	>	>	>		
Chloride mg/l Cl			⋖	⋖	⋖	⋖	⋖	⋖	⋖	⋖	⋖	⋖	⋖	⋖	746	⋖	⋖	⋖	⋖	⋖	⋖	⋖		
Copper mg/l Cu																<u>.</u>								
Iron mg/I Fe			Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ	Φ		Φ	Φ	Φ	Φ	Φ	Φ	Φ		
Lead Mg/I Pb		Ç.	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_		
Magnesium mg/l Mg		Taken	۵	۵	۵	٥	٥	ď	۵	۵	۵	р	۵	٥		۵	۵	۵	۵	٥	٥	Ф		
Manganese mg/l Mn		E e	٤	٤	Ε	Ε	٤	٤	Ε	٤	Ε	٤	٤	٤		Ε	٤	Ε	Ε	Ε	٤	Ε		
Mercury mg/l Hg		<u>l</u> du	a	a	Ø	a	a	Ø	Ø	Ø	Ø	В	a	Ø		Ø	a	Ø	Ø	Ø	Ø	a		
Nickel ma/l Ni		Sample	ဟ	ဟ	S	S	S	S	S	S	S	S	ဟ	ဟ		ဟ	ဟ	Ø	S	S	Ø	S		
Potassium mg/l K		Š																						
Sodium mg/l Na		_	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0		
Sulphate mg/l SO4	1		z	z	z	z	z	Z	z	z	z	Z	z	z		z	z	z	z	z	z	z		
Zinc mg/l Zn																1								
Alkalinity CaCO3																1								
TOC mg/I C	1																							
TON mg/l N															0.4	1								
o-Phosphate mg/l P															1.6									
Flouride mg/l F																J								
Phosphorous mg/I P																								
Nitrite mg/l N	1														<0.001]								
Nitrate mg/l N	1															1								
Suspended Solids mg/l	1															1								
Colour Hazen	1															1								
Total Coliforms/100ml	4															4								
Faecal Coliforms/100ml			1		1					l	l		l	1				1	l		I			

Landrata Landra	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4								
Leachate Lagoon	2006	2006	2006	2006	2007	2007	2007	2007							3rd 1/4 2009	
PH	7.5	7.3	8.2	7.2	7.3				7.7	7.8	7.5	7.1	7.2	7.3	7.2	7.2
Temperature oC	8	14	20	20	10			7.3	7	14	15	13.1	12	23	18.4	14.8
Conductivity uS/CM 20oC																
Conductivity uS/CM 25oC	6690	5900	8930	6910	7870	Φ	Φ	6750	4910	14650	6200	4540	7580	6840	38500	6180
C.O.D.	436	454	660	791	910	_	_	903	1484	1291	659	696	2675	1242	281	985
B.O.D.	10	88	60	248	440	q	Q	45	548	45	158	150	1500	380	31.5	400
Ammonia mg/l N	330	290	680	470	850	В	Ø	330	100	670	260	150	270	<0.003	120	240
Dissolved Oxygen %sat						_	_									
Calcium mg/l Ca		193				-				164				220		
Cadmium mg/l Cd		>0.002				В	В			<0.001				< 0.005		
Chromium mg/l Cr		0.0601				>	>			0.0582				0.04		
Chloride mg/l Cl	762	666	1782	1575	1093	⋖	⋖	909		>1416	811	475	947	25121	451	790
Copper mg/l Cu		0.0165								0.0285				< 0.005		
Iron mg/I Fe		8.55				Φ	Φ			10.12				3.3		
Lead Mg/I Pb		>0.02				_	_			0.00257				< 0.005		
Magnesium mg/l Mg		72.2				d	۵			98.9				110		
Manganese mg/l Mn		2.03				Ε	Ε			1.27				1.7		
Mercury mg/l Hg						В	Ø			<0.0005				< 0.0005		
Nickel mg/l Ni		0.073				S	S			0.15				0.059		
Potassium mg/l K		197								510				260		
Sodium mg/l Na		503				0	0			1750				620		
Sulphate mg/l SO4		24.4				Z	Z			185.9				170		
Zinc mg/l Zn		0.666								0.0601				< 0.005		
Alkalinity CaCO3																
TOC mg/I C																
TON mg/l N	<10	0.4	5.8	8.9	0.3			12	0.2	1.1	0.4	0.2	<0.1	<0.1	<0.5	2.3
o-Phosphate mg/l P	0.68	0.27	0.26	0.62	0.62			0.22		1.9				0.2		
Flouride mg/l F		0.75								3.46				29		
Phosphorous mg/l P																
Nitrite mg/l N	0.036	>0.001	0.039		<0.001			0.75		<0.001				0.029		
Nitrate mg/l N																
Suspended Solids mg/l																
Colour Hazen																
Total Coliforms/100ml		4044								7945				>24192		
E Coli/100ml		1514								30				>24192		
Faecal Coliforms/100ml																
Aluminium mg/l		>1								0.203				< 0.25		


Manhole 5	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008	1st 1/4 2009	2nd 1/4 2009	3rd 1/4 2009	4th 1/4 2009
PH	7.5	7	7.6	7.2	7.3	7.2	7.3	7.2	7.7	7.8	7.3	7	7	7.2	7.3	7.1
Temperature oC	9	12	16	19	10	13	15	13	7	14	14	11.2	11	15.5	18.5	13.9
Conductivity uS/CM 20oC																
Conductivity uS/CM 25oC	8120	5740	15870	7690	7970	15280	6640	7730	5250	14770	7380	5090	5992	11120	47800	6480
C.O.D.	547	309	1071	756	915	5380	666	814	1575	1196	524	435	309	849	306	917
B.O.D.	48	39	96	208	380	>2400	126.6	46	540	39	110	114	84	195	38	360
Ammonia mg/l N	450	320	1200	420	850	840	>350	410	110	980	390	260	370	0.036	190	280
Dissolved Oxygen %sat																
Calcium mg/l Ca		178				532				157				180		
Cadmium mg/l Cd		0.002				< 0.005				<0.001				< 0.005		
Chromium mg/l Cr		0.0718				0.0635				0.0641				0.05		
Chloride mg/l Cl	924	592	2664	1083	1054	2248	872	960		>1676	1009	525	629	1553	338	856
Copper mg/l Cu		0.0286				0.0667				0.0229				< 0.005		
Iron mg/l Fe		22.8				8.15				6.239				2.9		
Lead Mg/I Pb		>0.02				< 0.005				0.00198				< 0.005		
Magnesium mg/l Mg		61.9				22.1				126				87		
Manganese mg/l Mn		1.67				6.33				1.296				1.1		
Mercury mg/l Hg						< 0.0005				< 0.0005				<0.0005		
Nickel mg/l Ni		0.0624				0.0902				0.1564				0.058		
Potassium mg/l K		185				41				569				330		
Sodium mg/l Na		453				43.7				1922				910		
Sulphate mg/l SO4		17.9				34.7				197.2				100		
Zinc mg/l Zn		1.47				0.209				0.0504				< 0.005		
Alkalinity CaCO3																
TOC mg/l C										4						
TON mg/l N	<10	0.7	6.7	6.8	2.6	<0.1	0.4	3.2	0.2	1.1	0.4	0.7	0.2	<0.1	<0.5	2.9
o-Phosphate mg/l P	0.95	0.26	1.8	0.57	0.62	1.5	29	0.37		2				2.3		
Flouride mg/l F		0.2				98.7				4.77				3.2		
Phosphorous mg/I P																
Nitrite mg/l N	< 0.001	>0.001	< 0.001		< 0.001	< 0.005	< 0.001	< 0.001		< 0.001				< 0.01		
Nitrate mg/l N																
Suspended Solids mg/l																
Colour Hazen																
Total Coliforms/100ml		2764				>24190				>9677				>24192		
E Coli/100 ml		575				19863				54				>24192		
Faecal Coliforms/100ml																
Aluminium mg/l		>1				0.219				0.227				< 0.250		


	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1		1		l		1	
Upstream 'A'	2004	2004	2004	2004	2005	2005	2005	2005	2006	2006	2006	2006	2007	2007	2007	2007	1st 1/4 2008	2nd 1/4 200	3rd 1/4 2008	4th 1/4 2008	1st 1/4 2009	2nd 1/4 2009	3rd 1/4 2009	4th 1/4 2009
PH	8.1	8.4		8.3	8.2	8.3			8	8.3		8.3	7.4			8	8.3		8.1	8.3	8.4	8.4	8.1	
Temperature oC	9.3	11.7		11.3	8.6	10.1			7.3	8.1		12.8	7.4			11.1	6.7		13.2	8.2	11.2	15.9	13.5	
Conductivity uS/CM 20oC	-	-																						
Conductivity uS/CM 25oC	389	410	Φ	434	382	390	Φ	Φ	367	418	Φ	434	412	Φ	Φ	420	317	Φ	381	558	428	451	370	
C.O.D.	25	<8	_	10	<8	16	_	_	22	8		<8	27	_	-	<8	38	_	22	24	<8		<20	
B.O.D.	0.5	1.3	Ω	0.8	0.7	1	Q	Ω	0.8	0.5	Ω	0.9	1.5	Q	Ω	0.8	1.6	Q	1.2	1.2	0.5	1	0.9	
Ammonia mg/l N	0.01	0.034	a	0.008	0.022	0.018	В	a	0.007	0.01	Ø	0.011	0.003	Ø	а	0.019	0.012	В	0.021	0.022	0.006	0.017	<0.01	
Dissolved Oxygen %sat	96.8	102.4	_	95.2	96.4	91.5	_	_	113.5	101	_	112	99.3	_	_	92	99.2	_	97.2	100	101.3	99	100.8	
Calcium mg/l Ca	55.3	-								64.5												140		
Cadmium mg/l Cd	< 0.0001	-	a				В	Ø		<.0001	a			a	В			В				<0.005		
Chromium mg/l Cr	0.0024	-	>				>	>		<.001	>			>	>			>				0.00678		
Chloride mg/l Cl	18	21	⋖	18	18	18	⋖	⋖	15	18	⋖	18	15	⋖	⋖	14	14	⋖	13	54	16	16	10	
Copper mg/l Cu	<0.001									<.001												<0.005		
Iron mg/I Fe	0.163	-	Φ				Φ	Φ		0.0815	Φ			Φ	Φ			Φ				< 0.25		
Lead Mg/I Pb	< 0.0001	-	_				_	_		0.001	_			_	_			_				<0.005		
Magnesium mg/l Mg	5.26	-	۵				ď	۵		6.01	۵			۵	۵			٥				36.5		
Manganese mg/l Mn	0.0047	-	Ε				Ε	Ε		0.0027	Ε			Ε	Ε			Ε				<0.25		
Mercury mg/l Hg	-	-	Ø				B	a			В			a	a			Ø				<0.0005		
Nickel mg/l Ni	<0.001	-	ဟ				S	S		<.001	ဟ			S	တ			ဟ				< 0.005		
Potassium mg/l K	1.1	-								0.78												<5		
Sodium mg/l Na	8.95		0				0	0		8.37	0			0	0			0				29.4		
Sulphate mg/l SO4	13.5	-	Z				Z	Z			Z			Z	Z			Z				13		
Zinc mg/l Zn	0.0083	-								<.001												0.24		
Alkalinity CaCO3	-	-				161				157												200		
TOC mg/I C	-	-																						
TON mg/l N	4.5	4.2		3.7	2.8	3.3			3.7	6		5.2	4									4	2.5	
o-Phosphate mg/l P	0.009	0.048		0.014	0.013	0.021			0.011	0.0037		0.02	0.01									0.2		
Flouride mg/l F	<0.1	-																						
Phosphorous mg/l P	-	-																						
Nitrite mg/l N	0.002	0.013	4		0.001	0.005			0.002	0.006	4	0.005	0.001									0.007		
Nitrate mg/l N	-		4	0.003							4													
Suspended Solids mg/l	-	<6	4	<6	9	<6			<10	65.4	4	<6.0	<6.0				7		34	42	<6	<17		
Colour Hazen	-	-	4								4													
Total Coliforms/100ml	-	-	4								4													
Faecal Coliforms/100ml	-	-																						


Downstream 'A'	1st 1/4 2004	2nd 1/4 2004	3rd 1/4 2004	4th 1/4 2004	1st 1/4 2005		3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006		2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3 3rd 1/4 2008	4th 1/4 2008	1st 1/4 2009	2nd 1/4 2009	3rd 1/4 2009	4th 1/4 2009
PH	8.1	8.6			8.4	8.4			7.9	8.1			8			8.2	8.3		8.2	8.3	8.5	8.3	7.8	
Temperature oC	8.2	7.1	1		8.1	9.5			7.9	8.1			7.1			11.1	7.5		13	8	10.4	16.2	14	
Conductivity uS/CM 20oC	-	-																						
Conductivity uS/CM 25oC	459	367	Φ	Φ	402	360	Φ	Φ	487	412	Φ	Φ	408	a)	Φ	455	294	Φ	411	487	415	471	370	
C.O.D.	29	<8	_	_	<8	9	l –	_	16	24	-	_	31	-	_	<8	46	l –	13	<8	12		47	
B.O.D.	1	0.6	Ω	Ω	0.7	1.6	Ω	Ω	1	0.6	Ω	Ω	0.9	۵	Ω	0.8	2.2	Ω	0.7	0.9	0.5	1.4	1.8	
Ammonia mg/l N	2.1	< 0.003	Ø	Ø	0.004	0.12	Ø	Ø	0.4	0.008	a	Ø	0.009	Ø	В	0.012	0.031	a	0.059	0.018	0.006	0.014	0.03	
Dissolved Oxygen %sat	89	103.6	_	_	98.4	94.2	_	_	114.4	104	_	_	99.9	_	_	89	101.2	_	98	100	104	94	108.6	
Calcium mg/l Ca	44.2	-								64.5												74.9		
Cadmium mg/l Cd	< 0.0001	-	a	а			а	a		<.0001	В	a		а	В			а				<0.005		
Chromium mg/l Cr	0.0035	-	>	>			>	>		0.00242	>	>		>	>			>				0.00527		
Chloride mg/l Cl	31	19	⋖	⋖	17	19	⋖	⋖	19	17	⋖	⋖	15	⋖	⋖	14	14	⋖	14	30	16	16	11	
Copper mg/l Cu	0.0018	-								0.00289												< 0.005		
Iron mg/l Fe	0.135		Φ	Φ			Φ	Φ		0.0778	Φ	Φ		Φ	Φ			Φ				<0.25		
Lead Mg/I Pb	< 0.001	-	_	_			_	_		<.001	_	_		_	_			_				< 0.005		
Magnesium mg/l Mg	6.25	-	۵	۵			۵	ď		6.08	۵	۵		۵	۵			۵				12.7		
Manganese mg/l Mn	0.0044	-	Ε	Ε			Ε	Ε		0.0335	Ε	Ε		Ε	Ε			Ε				< 0.25		
Mercury mg/l Hg	-	-	Ø	В			В	Ø			В	Ø		В	Ø			В				<0.0005		
Nickel mg/l Ni	0.0022	-	ဟ	S			S	S		<.001	S	S		ဟ	ဟ			S				<0.005		
Potassium mg/l K	5.74	-	1							0.92												<5		
Sodium mg/l Na	25.1		0	0			0	0		9.5	0	0		0	0			0				17.4		
Sulphate mg/l SO4	7.1	-	z	z			z	z			z	z		z	z			z				17		
Zinc mg/l Zn	0.0089	-								<1												< 0.005		
Alkalinity CaCO3	-	-	1			153				150	1											205		
TOC mg/l C	-	-																						
TON mg/l N	6.9	4			3.1	3			6.1	5.7			5									3		
o-Phosphate mg/l P	0.009	0.041			0.01	0.012			0.008	0.006			0.01									0.11		
Flouride mg/l F	0.19	-																						
Phosphorous mg/l P	-	-	4				1				1							1						
Nitrite mg/l N	0.035	0.01	4		0.002	0.007	1		0.001	0.004	4		0.003					1				0.023		
Nitrate mg/l N	-	-	4				4			24.0	1							4						
Suspended Solids mg/l	-	<6.3	4		<6	<6	4		21.6	61.3	1		<6.0				8	4	<6	<7.5	<6	29		
Colour Hazen	-	-	-				-		-					-				-						
Total Coliforms/100ml Faecal Coliforms/100ml	-	-	-				-		-					-				-						
Faecai Colliorms/100ml	-	-			<u> </u>																			

Appendix D

Sampling Points Drawing

EXTRACT FROM O.S.S. Nos: 4645-C & 4645-D OS Licence No.Kilkenny CCMA9802

LEGEND:

GROUNDWATER MONITORING POINTS

SURFACE WATER MONITORING POINTS

GAS MONITORING POINTS

O VP

GAS MIGRATION MONITORING POINTS OM

DUST MONITORING POINTS

DG

BAIT BOXES

Alteration of Noise, Dust, Leachate, Gas Monitoring Points	NG	une '0
Alteration of Bait Monitoring Points	MG	Mar '0
Alteration of Gas Well Points	NG	JAN 'O
Alteration of Noise Monitoring Points	BOD	OCT 100
Vermin Seite Pts. 7-11 Removed	BOD	SEP '0
Vermin Beit Box Points Added Pts. 1-40	BOD	JAN '0
GAS MONITORING POINTS (VP19,VP20 & VP20) ADDED DUST MONITORING POINT IDG 51 ADDED	100	OF MAL
OROUNDWATER MONITORING POINTS NW1	ROC	MAY '9
GAS MONITORING POINTS (VP)7 & VP(6) ADDED GROUNDWATER MONITORING POINTS GW1 TO GW4 ADDED	ROC	APR 'S
GAS MONITORING POINTS (VP18 & VP16) ADDED	ROC	B. AOK
GAS MIGRATION MONITORING POINTS ADDED DUST MONITORING POINTS ADDED CPC GAS REMOVAL LOCATION ADDED GROUNDWATER MONITORING POINT IS - RELOCATED TO CORRECT POSITION	ROC	AUG '9 AUG '98 AUG '99
DESCRIPTION	BY	DATE
	Alteration of Bait Monitoring Points Alteration of Gas Well Points Alteration of Noise Monitoring Points Alteration of Noise Monitoring Points Vermin Baits Pts. 7-11 Removed Vermin Baits Box Points Added Pts. 1-40 GAS MONITORING POINTS (VP19.VP20 & VP21) ADDED DUST MONITORING POINTS (VP19.VP20 & VP21) GAS MONITORING POINTS (VP17 & VP18) ADDED GAS MONITORING POINTS (VP17 & VP18) ADDED GAS MONITORING POINTS (VP18 & VP18) ADDED GAS MIGRATION MONITORING POINTS ADDED CYC GAS REMOVAL LOCATION ADDED GROUNDWATER MONITORING POINT 13 - RELOCATED TO CORRECT POSITION	Alteration of Bait Monitoring Points MG Alteration of Gas Well Points MG Alteration of Moles Monitoring Points BOD Vermin Baits Pts. 7-11 Removed BOD Vermin Baits Box Points Added Pts. 1-40 BOD GAS MONITORING POINTS (VP19.VP20 & VP21) ADDED DUST MONITORING POINTS (VP19.VP20 & VP21) ADDED GAS MONITORING POINTS (VP17 & VP18) ADDED GAS MONITORING POINTS (VP17 & VP18) ADDED GAS MONITORING POINTS (VP17 & VP18) ADDED GAS MONITORING POINTS (VP18 & VP18) ADDED GAS MIGRATION MONITORING POINTS ADDED DUST MONITORING POINTS ADDED CFC GAS REMOVAL LOCATION ADDED GROUNDWATER MONITORING POINT 13 - RELOCATED TO CORRECT POSITION

ENVIRONMENT SECTION KILKENNY CO.CO. COUNTY HALL, JOHN STREET, KILKENNY.

DESC: MONITORING POINTS
DATE: MAY '99 gy:RDC
SCALES: Not to Scale DRAWING NO: DLS/98/05/RevE

Appendix E

Meteorological Monitoring

	METEOROLOGICAL DATA								
								Jan-09	
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)	
2009	1	1	3.6	-2.8	0.0	2.6	93.6	1020.8	
2009	1	2	4.9	0.7	0.0	5.5	76.3	1022.8	
2009	1	3	3.6	0.6	0.0	3.3	67.9	1022.3	
2009	1	4	4.4	-2.2	0.0	2.3	85.7	1016.4	
2009	1	5	4.3	-4.7	0.0	1.8	94.4	1017.4	
2009	1	6	1.7	-5.9		1.9	88.6	1021.3	
2009	1	7	3.3	-7.0	0.0	1.4	90.9	1020.1	
2009	1	8	4.9	-5.7	0.0	3.3	91.0	1020.2	
2009	1	9	5.2	0.3	0.2	4.9	85.8	1017.7	
2009	1	10	8.7	2.9	0.3	14.2	77.5	1009.5	
2009	1	11	11.1	8.4	13.5	21.1	93.5	1000.0	
2009	1	12	10.8	5.4	1.8	7.1	93.0	995.5	
2009	1	13	7.2	-0.7	0.7	4.5	90.3	1000.8	
2009	1	14	10.1	-1.3	10.5	12.9	95.0	997.2	
2009	1	15	10.4	5.7	7.6	12.5	91.0	991.8	
2009	1	16	9.4	3.9	3.4	9.0	92.2	995.0	
2009	1	17	8.9	2.1	9.4	15.9	85.0	986.1	
2009	1	18	5.0	0.4	7.1	11.9	86.6	982.1	
2009	1	19	5.1	1.2	8.0	9.5	87.6	969.9	
2009	1	20	4.5	0.2	0.0	9.0	84.2	979.6	
2009	1	21	9.7	0.2	10.1	10.1	91.4	983.8	
2009	1	22	10.6	2.1	3.8	8.1	83.1	972.2	
2009	1	23	6.6	-0.2	0.0	8.3	87.0	972.3	
2009	1	24	7.4	-0.8	1.5	8.6	88.6	977.2	
2009	1	25	7.8	2.2	6.2	9.6	91.2	967.0	
2009	1	26	8.7	1.4	1.2	6.0	86.4	991.8	
2009	1	27	8.8	1.9	1.3	3.5	95.5	1000.1	
2009	1	28	9.3	-1.4	0.0	4.1	93.4	1005.0	
2009	1	29	8.6	4.5	4.1	14.6	92.5	998.3	
2009	1	30	11.7	6.6	16.0	18.3	94.8	993.7	
2009	1	31	6.7	5.2	6.7	9.2	94.3	996.4	

6.7 **113.4**

potential	Class A pan
evapotranspirati	•
on (mm)	(mm)
9.8	

	METEOROLOGICAL DATA							
								Feb-09
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)
2009	2	1	5.5	1.4	0.0	7.9	73.2	1003.2
2009	2	2	1.4	-1.5	6.6	7.7	90.7	998.4
2009	2	3	1.6	-1.1	8.4	6.4	96.5	980.7
2009	2	4	4.7	0.8	2.0	6.7	90.2	983.2
2009	2	5	2.0	-0.3	2.0	9.4	92.3	986.5
2009	2	6	4.3	-1.4	0.0	7.5	84.5	990.8
2009	2	7	4.6	-3.2	0.0	7.6	77.5	995.8
2009	2	8	6.6	-2.4	5.6	4.5	87.7	992.7
2009	2	9	3.7	-0.3	0.0	6.0	94.5	987.7
2009	2	10	7.7	-0.2	0.0	6.6	86.2	999.9
2009	2	11	8.7	-2.3	0.0	3.0	91.7	1012.4
2009	2	12	10.6	1.3	1.5	6.0	90.3	1017.9
2009	2	13	9.4	5.2	0.0	2.6	90.6	1017.9
2009	2	14	8.8	4.9	0.0	3.7	91.0	1019.5
2009	2	15	11.6	5.0	0.0	4.5	81.3	1020.6
2009	2	16	10.3	1.5	0.0	5.8	81.3	1020.7
2009	2	17	10.8	7.0	0.0	5.4	75.1	1022.4
2009	2	18	8.1	5.7	0.0	3.7	75.7	1020.4
2009	2	19	8.6	3.3	0.3	3.4	88.5	1021.7
2009	2	20	10.4	-1.9	0.0	2.9	86.6	1025.3
2009	2	21	10.5	-0.6	0.0	4.9	87.4	1026.4
2009	2	22	11.0	6.5	0.0	7.1	83.5	1023.9
2009	2	23	11.1	6.4	0.3	4.8	90.9	1021.4
2009	2	24	9.8	7.1	0.0	3.4	89.0	1021.0
2009	2	25	10.1	3.1	0.0	7.4	79.8	1020.5
2009	2	26	11.0	2.0	0.0	7.5	83.7	1017.2
2009	2	27	9.8	6.8	0.0	7.4	83.5	1011.7
2009	2	28	9.9	6.0	2.5	9.4	89.3	1002.4

29	.2

potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
16.1	

	METEOROLOGICAL DATA								
								Mar-09	
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)	
2009	3	1	10.4	3.1	1.3	7.8	82.5	1001.9	
2009	3	2	10.1	0.9	0.7	6.7	89.2	1007.2	
2009	3	3	6.9	-0.2	10.6	9.7	88.0	987.3	
2009	3	4	5.2	-1.1	0.2	6.5	85.3	974.1	
2009	3	5	8.9	-1.8	0.7	6.1	83.6	989.6	
2009	3	6	11.4	-0.5	0.9	6.9	91.1	997.4	
2009	3	7	14.6	4.1	1.6	12.5	83.5	997.0	
2009	3	8	6.6	2.1	3.3	16.3	79.6	994.0	
2009	3	9	8.8	2.9	7.6	11.1	80.4	1001.7	
2009	3	10	10.8	5.9	1.0	6.8	87.0	1003.3	
2009	3	11	14.9	6.7	0.0	8.3	85.8	1011.6	
2009	3	12	13.0	5.6	0.1	7.4	78.5	1012.1	
2009	3	13	9.8	6.9	1.3	10.7	90.3	1005.9	
2009	3	14	12.5	5.7	0.1	11.0	71.4	1010.9	
2009	3	15	12.6	2.6	0.0	7.4	77.3	1023.1	
2009	3	16	12.4	2.6	0.0	4.8	81.2	1024.1	
2009	3	17	13.1	1.3	0.0	5.4	83.9	1025.7	
2009	3	18	13.2	2.4	0.1	4.7	89.8	1023.1	
2009	3	19	14.0	0.9	0.1	5.3	84.5	1020.2	
2009	3	20	11.9	3.0	0.0	7.8	84.0	1021.4	
2009	3	21	11.6	0.3	0.0	4.0	90.4	1026.8	
2009	3	22	14.2	0.4	0.0	6.8	82.0	1027.9	
2009	3	23	11.7	4.4	0.3	12.8	74.2	1016.7	
2009	3	24	11.5	1.3	0.1	9.8	78.6	1012.3	
2009	3	25	12.1	6.8	0.0	14.7	67.5	1002.4	
2009	3	26	10.3	3.6	1.3	15.4	77.0	994.8	
2009	3	27	9.4	2.3	1.2	12.5	74.7	991.0	
2009	3	28	8.4	-1.2	0.0	11.5	61.3	1001.2	
2009	3	29	9.9	-0.7	0.0	8.6	80.2	1004.0	
2009	3	30	12.0	6.4	0.0	4.2	82.9	1010.6	
2009	3	31	14.7	3.0	0.1	4.4	80.2	1014.9	

0.1 **32.6**

potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
36.7	

	METEOROLOGICAL DATA							
								Apr-09
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)
2009	4	1	12.6	5.5	0.0	4.7	72.8	1016.0
2009	4	2	16.1	0.8	0.0	4.2	77.3	1013.4
2009	4	3	11.8	2.5	4.9	8.9	90.9	1006.7
2009	4	4	12.3	2.5	0.1	8.4	71.9	1010.6
2009	4	5	11.8	0.8	0.4	7.3	80.0	1011.9
2009	4	6	9.9	5.1	8.8	9.5	87.9	996.0
2009	4	7	11.8	3.3	8.5	15.6	84.3	990.3
2009	4	8	14.2	5.5	2.9	11.2	71.8	994.2
2009	4	9	11.2	7.2	13.0	17.2	92.1	988.5
2009	4	10	12.2	2.8	0.6	6.0	75.5	992.4
2009	4	11	13.2	1.2	0.3	5.4	81.5	1001.3
2009	4	12	13.0	2.4	0.0	7.4	84.0	1006.1
2009	4	13	9.8	7.6	4.2	9.4	92.1	998.5
2009	4	14	13.3	5.9	2.0	6.9	87.4	999.2
2009	4	15	11.5	6.3	0.9	5.1	89.8	1000.0
2009	4	16	13.2	8.9	4.8	5.8	87.0	1000.1
2009	4	17	10.4	8.1	1.6	4.4	90.2	1005.1
2009	4	18	14.4	4.2	0.0	4.5	72.5	1012.2
2009	4	19	16.5	1.6	0.0	4.3	79.0	1017.2
2009	4	20	17.8	3.8	0.0	4.8	78.2	1020.0
2009	4	21	17.7	6.3	0.0	6.5	75.0	1019.5
2009	4	22	14.0	5.7	0.2	11.6	84.6	1015.6
2009	4	23	13.2	8.6	5.8	5.8	93.8	1009.5
2009	4	24	11.4	8.3	15.7	5.9	93.7	1001.7
2009	4	25	12.3	4.5	11.6	8.3	85.8	995.9
2009	4	26	12.0	3.2	3.6	6.3	89.5	997.6
2009	4	27	12.1	4.6	4.4	7.6	81.4	987.6
2009	4	28	13.5	2.7	0.1	3.8	79.4	995.9
2009	4	29	12.2	7.3	6.0	7.3	92.0	995.9
2009	4	30	15.6	7.8	2.0	4.9	76.7	1003.7

potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
46.3	

	METEOROLOGICAL DATA								
								May-09	
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)	
2009	5	1	15.6	5.7	4.4	10.5	74.3	1011.7	
2009	5	2	13.9	4.6	4.6	7.1	80.1	1019.8	
2009	5	3	13.1	3.9	0.1	7.9	74.0	1022.4	
2009	5	4	14.4	7.3	0.8	12.0	84.3	1017.6	
2009	5	5	16.2	10.6	0.0	13.7	76.5	1012.9	
2009	5	6	16.1	8.0	1.5	13.5	77.9	1006.1	
2009	5	7	14.3	5.4	2.8	13.0	74.5	999.6	
2009	5	8	14.0	4.5	1.5	13.5	72.1	999.1	
2009	5	9	14.1	6.1	0.6	8.7	72.3	1004.6	
2009	5	10	14.7	4.8	0.0	2.9	72.9	1012.3	
2009	5	11	15.8	4.5	0.0	6.5	65.6	1015.9	
2009	5	12	14.6	4.8	0.0	5.9	63.7	1015.1	
2009	5	13	12.1	4.6	0.9	4.4	83.5	1007.1	
2009	5	14	13.9	9.7	1.0	3.3	93.6	1001.0	
2009	5	15	12.9	5.5	1.2	5.3	90.1	993.0	
2009	5	16	12.1	7.0	11.4	13.7	85.2	985.5	
2009	5	17	11.8	6.8	7.9	9.1	84.5	989.2	
2009	5	18	13.9	8.2	15.2	10.5	87.1	995.3	
2009	5	19	14.8	8.4	6.7	9.7	85.9	1002.7	
2009	5	20	14.4	7.9	1.6	7.0	86.5	1006.8	
2009	5	21	15.3	6.5	0.1	6.6	77.2	1006.7	
2009	5	22	19.4	9.2	1.0	7.8	87.4	1005.8	
2009	5	23	14.8	6.5	0.9	8.7	80.2	1008.0	
2009	5	24	18.2	4.5	0.0	6.4	74.3	1012.1	
2009	5	25	17.8	7.3	0.2	5.0	83.1	1008.1	
2009	5	26	15.0	4.3	0.8	10.2	73.4	1010.2	
2009	5	27	16.0	8.8	3.8	11.2	91.6	1010.5	
2009	5	28	22.3	11.5	0.0	4.8	80.7	1021.7	
2009	5	29	19.5	10.5	0.0	7.4	86.1	1020.6	
2009	5	30	20.3	9.4	0.0	5.9	72.4	1017.2	
2009	5	31	21.5	7.2	0.0	3.5	69.3	1019.8	

potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
72.6	

	METEOROLOGICAL DATA							
								Jun-09
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)
2009	6	1	23.9	8.3	0.0	2.9	70.6	1020.2
2009	6	2	26.8	8.8	0.0	2.1	65.8	1019.7
2009	6	3	21.2	8.5	0.0	5.1	74.0	1015.7
2009	6	4	20.7	5.9	0.0	3.1	75.6	1011.3
2009	6	5	16.1	5.4	0.0	6.8	75.9	1003.4
2009	6	6	9.7	4.6	16.7	9.1	90.1	996.7
2009	6	7	14.4	7.7	1.2	7.9	76.2	997.6
2009	6	8	14.2	5.5	0.3	6.4	78.3	999.6
2009	6	9	15.2	7.5	0.1	5.3	72.1	1002.7
2009	6	10	16.0	5.6	0.3	2.9	78.9	1004.4
2009	6	11	-999.0	-999.0	0.0	-999.0	73.2	1011.0
2009	6	12	16.9	9.0	0.8	7.3	83.3	1010.8
2009	6	13	19.2	10.3	0.1	9.1	77.4	1009.2
2009	6	14	18.0	9.4	3.1	5.4	84.0	1009.8
2009	6	15	18.0	8.4	0.4	4.1	84.4	1008.8
2009	6	16	20.9	7.6	0.9	7.7	80.3	1012.2
2009	6	17	17.1	9.1	26.4	11.2	80.4	1004.8
2009	6	18	16.8	8.9	0.7	10.8	76.4	1008.8
2009	6	19	16.7	9.5	0.0	10.5	72.6	1015.5
2009	6	20	18.8	11.5	0.0	7.4	73.2	1018.9
2009	6	21	22.7	11.6	0.4	4.7	83.9	1019.3
2009	6	22	22.4	14.2	0.0	3.8	84.1	1021.1
2009	6	23	24.0	14.2	0.0	4.1	75.2	1020.1
2009	6	24	20.6	12.1	0.0	5.1	70.3	1013.9
2009	6	25	21.8	12.5	0.1	4.1	71.0	1007.1
2009	6	26	19.0	13.9	10.6	3.9	90.5	1005.2
2009	6	27	21.5	12.6	0.0	5.0	83.4	1007.8
2009	6	28	20.1	10.2	2.6	5.5	84.6	1007.2
2009	6	29	21.2	13.6	0.1	4.2	87.2	1008.7
2009	6	30	22.9	11.9	0.2	6.9	85.4	1011.9

potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
84.6	

	METEOROLOGICAL DATA								
								Jul-09	
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)	
2009	7	1	19.6	16.6	5.9	5.8	94.4	1013.2	
2009	7	2	19.5	16.0	14.4	5.3	94.2	1009.2	
2009	7	3	20.9	13.6	0.2	9.4	82.2	1003.2	
2009	7	4	19.8	12.3	17.7	9.0	82.1	1000.3	
2009	7	5	18.3	10.9	3.8	8.8	87.5	996.5	
2009	7	6	17.7	9.1	5.1	5.6	87.8	995.2	
2009	7	7	20.1	12.0	0.0	9.3	76.1	1001.6	
2009	7	8	18.3	12.1	0.0	6.3	71.6	1009.3	
2009	7	9	17.0	10.6	0.0	4.6	72.3	1011.8	
2009	7	10	15.6	7.8	1.7	4.1	88.7	1008.8	
2009	7	11	17.8	14.0	21.2	7.5	95.0	998.8	
2009	7	12	18.9	12.1	5.8	9.0	81.0	995.8	
2009	7	13	17.3	10.6	10.8	7.2	90.4	995.2	
2009	7	14	18.7	10.5	10.4	4.9	88.2	994.9	
2009	7	15	21.5	9.7	0.2	5.0	80.4	1002.0	
2009	7	16	18.0	10.6	6.0	3.2	85.5	1008.3	
2009	7	17	19.3	11.1	0.1	9.5	72.3	1006.6	
2009	7	18	16.1	10.4	3.3	5.8	84.3	1004.1	
2009	7	19	19.2	10.3	1.4	6.0	80.1	1001.7	
2009	7	20	19.8	9.9	0.0	7.9	77.9	1004.1	
2009	7	21	20.1	11.4	8.6	11.1	85.1	990.6	
2009	7	22	20.4	12.2	1.5	8.1	86.4	986.9	
2009	7	23	20.5	11.7	7.8	6.6	86.5	992.5	
2009	7	24	20.2	10.8	2.0	5.8	85.6	1002.1	
2009	7	25	20.7	8.4	2.4	7.6	82.8	1011.2	
2009	7	26	19.0	13.1	6.7	11.7	82.5	1001.2	
2009	7	27	19.9	12.1	0.1	10.1	73.8	1001.6	
2009	7	28	17.1	11.4	4.3	10.5	89.6	1000.9	
2009	7	29	18.0	8.9	0.2	5.4	82.2	1001.4	
2009	7	30	19.0	9.8	0.0	8.8	70.9	1010.3	
2009	7	31	15.3	10.6	10.8	10.8	92.8	1004.9	

potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
76.4	

	METEOROLOGICAL DATA								
								Aug-09	
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)	
2009	8	1	19.0	9.9	0.1	10.1	78.2	999.3	
2009	8	2	19.1	8.8	0.1	7.8	80.4	1003.0	
2009	8	3	19.6	13.4	6.8	11.4	89.0	998.9	
2009	8	4	20.7	13.4	0.1	10.9	82.2	1000.1	
2009	8	5	21.2	11.5	0.0	10.8	73.9	1006.4	
2009	8	6	20.9	9.5	0.2	5.2	80.6	1011.8	
2009	8	7	19.6	8.8	0.0	4.5	75.5	1014.1	
2009	8	8	22.2	12.2	4.8	6.5	84.7	1012.6	
2009	8	9	19.9	13.6	0.4	6.2	87.7	1010.2	
2009	8	10	19.8	13.7	1.1	7.9	86.5	1006.3	
2009	8	11	21.7	13.5	0.0	6.7	81.9	1014.4	
2009	8	12	21.7	13.8	0.8	6.4	85.3	1012.8	
2009	8	13	19.3	12.2	0.0	3.1	74.4	1013.0	
2009	8	14	22.0	12.9	0.1	9.6	85.5	1005.3	
2009	8	15	20.2	12.4	5.2	10.0	82.7	1002.2	
2009	8	16	18.9	13.0	0.2	9.8	76.6	1006.8	
2009	8	17	21.6	13.2	0.2	8.3	76.8	1007.4	
2009	8	18	19.7	13.7	0.8	10.8	89.3	1005.4	
2009	8	19	21.2	16.0	9.0	11.8	90.7	1000.4	
2009	8	20	18.8	11.3	30.8	10.0	84.2	998.8	
2009	8	21	18.5	9.4	0.9	9.3	74.4	1009.4	
2009	8	22	20.0	7.7	1.9	8.9	81.0	1010.9	
2009	8	23	19.3	10.4	2.1	11.6	89.9	999.5	
2009	8	24	18.4	7.6	2.1	9.2	79.3	996.0	
2009	8	25	19.5	9.1	1.0	8.6	76.9	997.2	
2009	8	26	20.8	12.7	9.8	10.4	86.9	993.5	
2009	8	27	16.9	9.3	2.4	10.1	85.9	1000.8	
2009	8	28	17.0	9.8	3.6	11.2	81.0	1005.2	
2009	8	29	16.5	8.2	0.1	7.8	80.8	1012.8	
2009	8	30	19.0	9.6	4.3	8.4	95.1	1003.9	
2009	8	31	17.0	11.0	12.0	11.4	93.7	994.6	

17.0 11.0 **Total monthly rainfall**

12.0 **100.9**

potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
67.6	

	METEOROLOGICAL DATA							
								Sep-09
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)
2009	9	1	17.3	9.9	3.9	8.7	82.5	994.3
2009	9	2	14.4	9.6	25.6	7.4	94.2	992.1
2009	9	3	16.2	9.4	1.1	11.3	80.3	994.1
2009	9	4	17.3	8.4	0.8	11.3	79.1	1004.3
2009	9	5	16.0	10.4	0.0	8.6	77.9	1013.2
2009	9	6	15.8	11.8	5.4	10.7	89.0	1008.0
2009	9	7	18.5	10.9	0.4	8.9	82.4	1006.6
2009	9	8	17.7	9.8	3.5	11.2	90.5	1005.2
2009	9	9	18.0	6.3	0.1	3.3	79.9	1024.5
2009	9	10	19.6	5.6	0.1	3.1	82.9	1031.3
2009	9	11	20.8	4.5	0.1	1.6	84.7	1030.6
2009	9	12	-999.0	-999.0	0.2	2.2	83.7	1025.6
2009	9	13	21.2	5.5	0.1	2.3	88.2	1023.4
2009	9	14	17.3	6.5	0.1	4.0	84.7	1023.3
2009	9	15	16.4	7.1	0.0	6.6	85.2	1021.4
2009	9	16	15.9	9.4	0.1	6.2	85.1	1020.5
2009	9	17	14.0	6.9	0.0	2.8	82.0	1017.4
2009	9	18	15.4	8.0	0.0	2.6	80.5	1011.2
2009	9	19	15.6	6.0	0.1	4.1	85.8	1010.3
2009	9	20	17.1	4.2	0.0	4.7	81.2	1017.0
2009	9	21	19.7	10.4	0.0	11.0	79.6	1014.3
2009	9	22	17.4	11.0	0.1	10.1	77.2	1014.0
2009	9	23	17.5	7.5	0.1	8.3	79.2	1018.0
2009	9	24	16.4	6.9	0.0	5.2	79.6	1019.9
2009	9	25	18.8	9.4	0.0	6.3	76.8	1019.9
2009	9	26	17.6	12.4	0.0	2.7	80.4	1021.1
2009	9	27	17.3	12.1	0.0	5.1	85.0	1022.0
2009	9	28	17.8	13.0	0.0	7.0	81.9	1021.2
2009	9	29	17.2	12.8	0.0	5.5	84.0	1017.8
2009	9	30	18.1	9.6	0.0	3.4	84.2	1014.4

potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
93.9	

	METEOROLOGICAL DATA							
								Oct-09
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)
2009	10	1	13.0	9.4	0.0	4.8	79.4	1015.4
2009	10	2	16.8	8.2	0.0	9.4	81.8	1012.6
2009	10	3	14.2	8.5	1.4	11.0	79.8	1001.3
2009	10	4	13.9	6.9	0.0	3.7	81.8	1004.6
2009	10	5	16.4	7.5	0.0	3.6	80.8	1001.4
2009	10	6	14.0	5.2	25.2	5.9	95.4	995.8
2009	10	7	12.1	2.1	0.1	1.8	90.1	1006.1
2009	10	8	14.3	5.3	0.0	1.6	81.5	1011.6
2009	10	9	15.4	6.2	9.6	6.6	90.5	1003.5
2009	10	10	15.5	8.9	0.2	4.4	87.0	1008.1
2009	10	11	15.3	7.0	1.6	6.7	86.2	1011.2
2009	10	12	15.4	2.1	0.1	3.0	88.0	1022.2
2009	10	13	15.1	4.9	0.1	2.6	92.3	1023.0
2009	10	14	14.3	11.2	0.1	3.2	93.8	1023.2
2009	10	15	15.1	10.4	0.1	2.1	92.2	1026.6
2009	10	16	15.4	4.5	0.0	3.2	91.0	1028.7
2009	10	17	13.9	1.4	0.0	2.5	92.5	1024.5
2009	10	18	14.2	7.1	0.6	6.4	90.2	1013.8
2009	10	19	13.0	10.3	0.7	10.9	87.5	997.1
2009	10	20	14.8	8.6	11.0	9.7	87.2	980.2
2009	10	21	13.6	8.9	28.5	10.3	89.2	979.0
2009	10	22	14.1	9.6	20.8	5.1	93.7	983.5
2009	10	23	13.9	8.6	0.8	5.0	93.0	995.3
2009	10	24	16.2	11.2	5.8	13.7	88.0	990.3
2009	10	25	14.7	10.7	0.3	11.9	84.0	1001.0
2009	10	26	13.6	6.9	0.2	4.7	94.0	1008.1
2009	10	27	15.5	12.4	3.3	11.6	91.8	1002.6
2009	10	28	16.9	10.8	0.2	7.3	90.0	1006.8
2009	10	29	15.6	12.8	0.2	10.6	94.9	1007.9
2009	10	30	15.9	12.3	16.4	11.7	95.9	1004.7
2009	10	31	16.7	10.7	0.5	7.0	92.8	1008.1

16.7 10.7 **Total monthly rainfall**

0.5 **127.8**

potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
24.1	

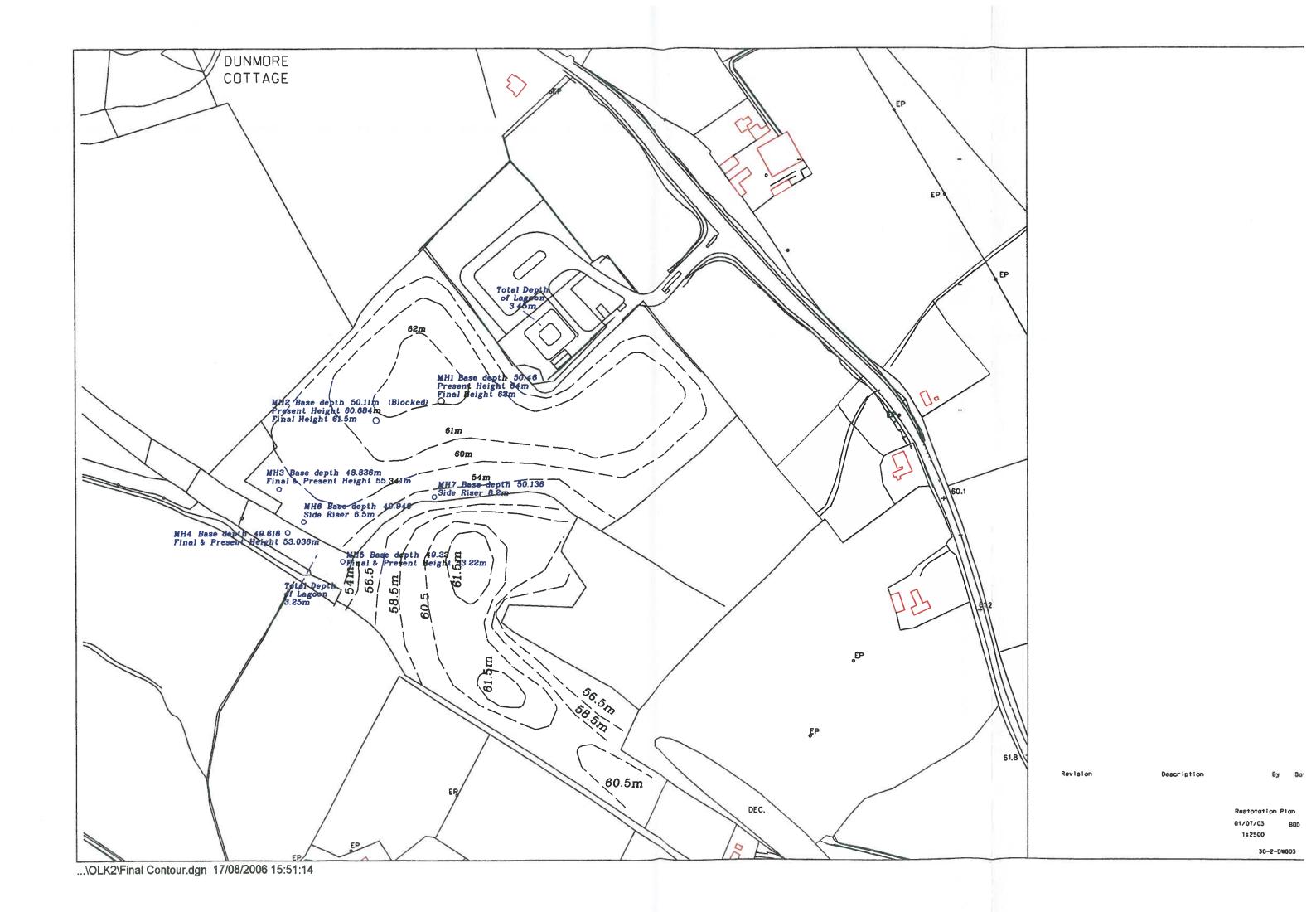
	METEOROLOGICAL DATA							
								Nov-09
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)
2009	11	1	13.2	6.0	24.7	10.1	88.4	990.9
2009	11	2	10.6	5.4	2.6	8.2	88.6	990.0
2009	11	3	11.8	5.9	5.8	11.2	84.6	978.2
2009	11	4	11.8	6.1	1.7	13.2	82.4	977.8
2009	11	5	11.1	6.8	0.0	13.4	80.1	990.2
2009	11	6	11.8	3.9	4.6	8.9	84.4	990.5
2009	11	7	8.9	3.4	4.9	9.3	89.0	984.7
2009	11	8	11.2	1.3	0.0	6.6	84.8	1003.7
2009	11	9	9.9	0.3	13.8	4.7	95.6	1009.7
2009	11	10	10.4	0.8	1.8	4.1	92.5	1004.6
2009	11	11	10.1	-0.3	12.1	4.0	100.0	993.6
2009	11	12	12.1	5.7	6.1	9.9	86.9	983.2
2009	11	13	11.7	3.1	9.1	5.6	87.6	982.3
2009	11	14	10.2	3.3	6.1	8.9	86.6	976.7
2009	11	15	12.8	5.0	1.2	7.8	90.8	989.6
2009	11	16	11.2	6.8	11.4	11.6	85.1	984.8
2009	11	17	10.9	4.8	1.4	10.9	83.7	993.5
2009	11	18	13.2	6.5	11.9		90.9	991.7
2009	11	19	13.7	11.9	32.1	20.5	94.7	987.3
2009	11	20	12.2	5.6	0.3	8.6	84.2	998.0
2009	11	21	14.3	8.6	16.4	16.8	86.2	991.3
2009	11	22	9.3	5.9	5.8		80.8	983.2
2009	11	23	10.8	7.2	12.2	12.2	85.8	989.5
2009	11	24	12.8	5.5	9.6	13.7	90.2	987.3
2009	11	25	9.1	5.3	0.4	15.3	79.5	983.6
2009	11	26	8.3	3.6	0.1	8.2	83.0	988.0
2009	11	27	7.2	1.6	0.1	7.2	89.0	988.3
2009	11	28	2.4	-0.5	5.9	4.1	99.9	983.4
2009	11	29	5.8	1.5	13.4	14.1	89.4	982.9
2009	11	30	4.2	-2.3	0.0	6.2	87.6	1002.3

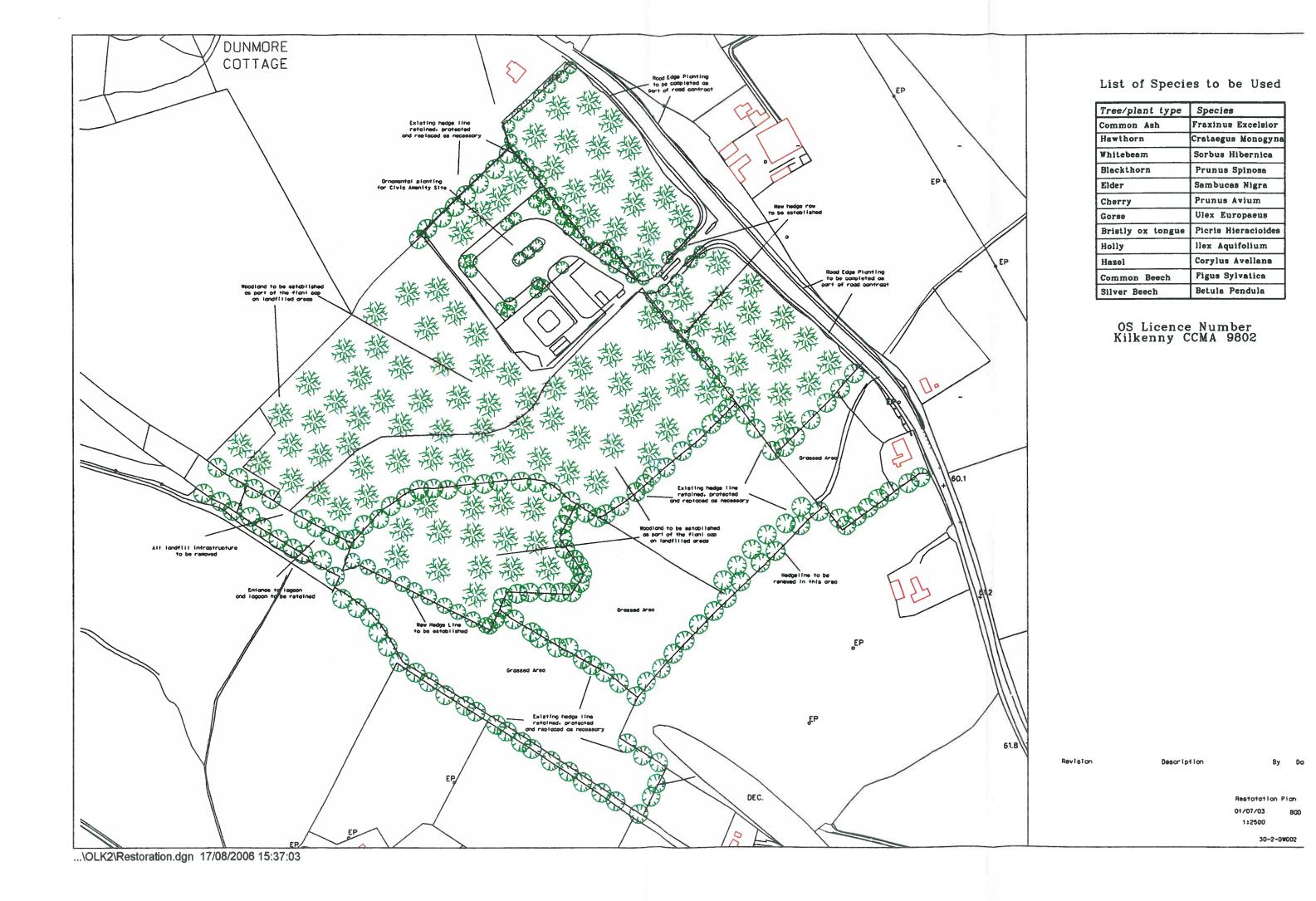
potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
13.5	

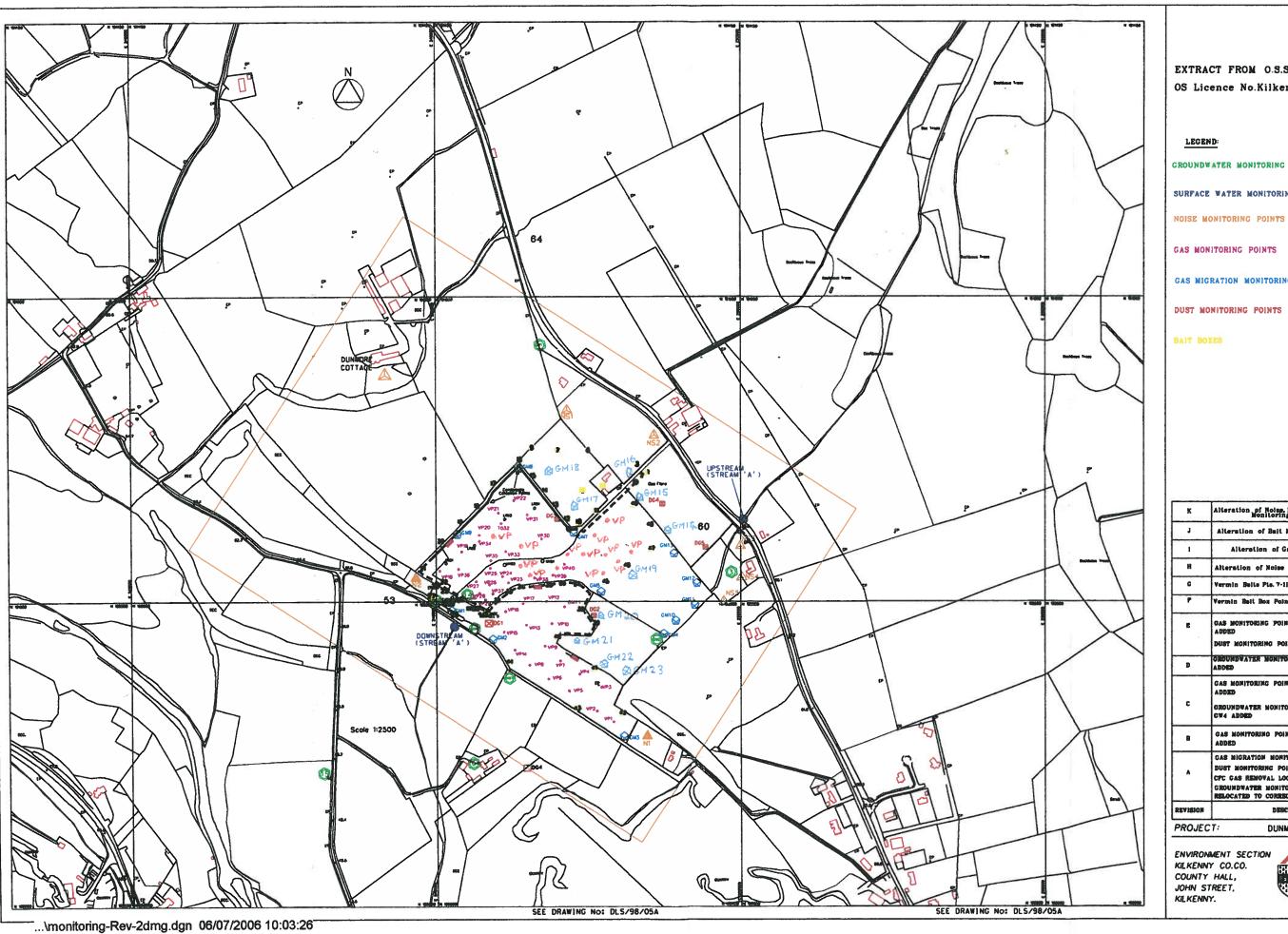
	METEOROLOGICAL DATA							
	Dec-09							
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humididty (%)	mean CBL pressure (hPa)
2009	12	1	8.7	-2.3	5.2	10.0	82.6	995.3
2009	12	2	9.2	3.2	9.8	5.2	94.8	984.6
2009	12	3	6.9	2.0	0.5	10.2	85.1	995.0
2009	12	4	10.2	-0.4	13.6	5.1	96.0	994.6
2009	12	5	11.6	5.5	9.2	11.2	92.9	981.3
2009	12	6	8.2	3.9	0.5	11.3	83.4	980.4
2009	12	7	8.1	3.5	5.4	9.1	89.1	984.7
2009	12	8	11.8	2.9	3.4	9.0	91.3	995.0
2009	12	9	10.8	5.1	3.9	7.6	88.8	1004.4
2009	12	10	9.1	1.2	0.2	4.8	91.8	1019.5
2009	12	11	9.3	3.5	0.0	8.0	88.8	1022.5
2009	12	12	7.4	1.1	0.0	4.0	86.8	1025.8
2009	12	13	3.1	-1.8	0.0	3.2	97.5	1025.3
2009	12	14	6.1	-1.2	0.3	4.3	97.9	1018.7
2009	12	15	7.4	1.8	1.3	6.3	93.3	1012.7
2009	12	16	6.1	2.1	1.1	4.9	97.0	1008.4
2009	12	17	4.9	0.0	0.3	7.2	92.6	1010.3
2009	12	18	0.8	-2.6	0.1	6.3	83.6	1016.2
2009	12	19	4.5	-3.8	2.1	4.8	93.1	1006.6
2009	12	20	2.3	-1.8	0.0	8.6	89.8	993.7
2009	12	21	1.2	-3.3	0.0	3.9	95.7	981.5
2009	12	22	2.0	-3.6	0.0	3.7	96.2	979.0
2009	12	23	1.0	-4.9	0.0	3.5	96.1	979.3
2009	12	24	0.3	-3.1	0.0	5.8	96.5	98101.0
2009	12	25	3.6	-4.7	4.7	4.2	99.1	988.0
2009	12	26	5.9	0.2	0.7	6.5	91.9	985.5
2009	12	27	5.9	-1.9	0.1	8.3	85.0	992.9
2009	12	28	4.0	-4.9	0.0	2.3	97.6	994.9
2009	12	29	4.7	2.6	2.2	9.7	84.3	986.2
2009	12	30	4.4	2.7	8.3	11.4	86.5	984.1
2009	12	31	4.4	-2.3	0.0	9.0	83.9	997.9

72.9

Total monthly rainfall


potential	Class A pan
evapotranspirati	evaporation
on (mm)	(mm)
6.6	


Appendix F


Restoration Plan

&

Aftercare Plan

EXTRACT FROM O.S.S. Nos: 4645-C & 4645-D OS Licence No.Kilkenny CCMA9802

LEGEND:

GROUNDWATER MONITORING POINTS

SURFACE WATER MONITORING POINTS

GAS MONITORING POINTS

O VP

GAS MIGRATION MONITORING POINTS OM

DUST MONITORING POINTS

DG

BAIT BOXES

Alteration of Noise, Dust, Leachate, Gas Monitoring Points	NG	une '0
Alteration of Bait Monitoring Points	MG	Mar '0
Alteration of Gas Well Points	NG	JAN 'O
Alteration of Noise Monitoring Points	BOD	OCT 100
Vermin Seite Pts. 7-11 Removed	BOD	SEP '0
Vermin Beit Box Points Added Pts. 1-40	BOD	JAN '0
GAS MONITORING POINTS (VP19,VP20 & VP20) ADDED DUST MONITORING POINT IDG 51 ADDED	100	OF MAL
OROUNDWATER MONITORING POINTS NW1	ROC	MAY '9
GAS MONITORING POINTS (VP)7 & VP(6) ADDED GROUNDWATER MONITORING POINTS GW1 TO GW4 ADDED	ROC	APR 'S
GAS MONITORING POINTS (VP18 & VP16) ADDED	ROC	B. AOK
GAS MIGRATION MONITORING POINTS ADDED DUST MONITORING POINTS ADDED CPC GAS REMOVAL LOCATION ADDED GROUNDWATER MONITORING POINT IS - RELOCATED TO CORRECT POSITION	ROC	AUG '9 AUG '98 AUG '99
DESCRIPTION	BY	DATE
	Alteration of Bait Monitoring Points Alteration of Gas Well Points Alteration of Noise Monitoring Points Alteration of Noise Monitoring Points Vermin Baits Pts. 7-11 Removed Vermin Baits Box Points Added Pts. 1-40 GAS MONITORING POINTS (VP19.VP20 & VP21) ADDED DUST MONITORING POINTS (VP19.VP20 & VP21) GAS MONITORING POINTS (VP17 & VP18) ADDED GAS MONITORING POINTS (VP17 & VP18) ADDED GAS MONITORING POINTS (VP18 & VP18) ADDED GAS MIGRATION MONITORING POINTS ADDED CYC GAS REMOVAL LOCATION ADDED GROUNDWATER MONITORING POINT 13 - RELOCATED TO CORRECT POSITION	Alteration of Bait Monitoring Points MG Alteration of Gas Well Points MG Alteration of Moles Monitoring Points BOD Vermin Baits Pts. 7-11 Removed BOD Vermin Baits Box Points Added Pts. 1-40 BOD GAS MONITORING POINTS (VP19.VP20 & VP21) ADDED DUST MONITORING POINTS (VP19.VP20 & VP21) ADDED GAS MONITORING POINTS (VP17 & VP18) ADDED GAS MONITORING POINTS (VP17 & VP18) ADDED GAS MONITORING POINTS (VP17 & VP18) ADDED GAS MONITORING POINTS (VP18 & VP18) ADDED GAS MIGRATION MONITORING POINTS ADDED DUST MONITORING POINTS ADDED CFC GAS REMOVAL LOCATION ADDED GROUNDWATER MONITORING POINT 13 - RELOCATED TO CORRECT POSITION

ENVIRONMENT SECTION KILKENNY CO.CO. COUNTY HALL, JOHN STREET, KILKENNY.

DESC: MONITORING POINTS
DATE: MAY '99 gy:RDC
SCALES: Not to Scale DRAWING NO: DLS/98/05/RevE

Appendix G

Status of Objectives and Targets

		<u>Status</u>	Comments
<u>Objectives</u>		Status	Comments
Objective 1			
Ensure that a	Il waste acceptance requirements		
are met			
Target 1.1	All waste accepted at the facility	Compliant	
	are within the criteria set out in		
	Part I of the Waste Licence	a 11	
Target 1.2	The amounts of each category of	Compliant	
	waste recovered and disposed if		
	at the facility does not exceed		
	that specified in Schedule A of		
	the Waste Licence		
Target 1.3	Any restriction on waste entering	Compliant	
	the facility shall be strictly		
	enforced		
Target 1.4	All waste accepted for recovery	Compliant	
	and disposal shall be done so		
	within the opening hours i.e.		
	8.00 – 4.30 Mon –Fri. and 8.00		
	12.00 Sat.		
Objective 2			
Establish and Enviro	onmental Management System to		
fulfil the obligation of	of the Waste Licence.		
Target 2.1	The facility shall employ a	In place	
	suitably qualified facility	since licence	
	manager as the person in charge	granted	

	and that this person or a		
	nominated deputy shall be		
	present at all times at the facility,		
	this person will be in place from		
	the grant date of the licence.		
Target 2.2	The facility manager and deputy	Completed	
	shall complete the FAS Waste	Completed	
	Management Training Program		
	within 12 months of their		
	appointment.		
Target 2.3	All personnel performing	Ongoing as	
	specially assigned tasks shall	part of awareness	
	receive all appropriate	and	
	instruction prior to carrying out	training	
	that function		
Target 2.4	Submission of details of	Completed	Submitted
	management structure for	and	04/12/02
	Dunmore Landfill Facility by the	reviewed as required	Oct 2004 Jan 2007
	end of August 2002, which will	1	
	be reviewed annually or as		
	required.		
Target 2.5	Preparation and submission of an	Completed	
	Environmental Management	and	G 1 24 1
	Program (EMP) to the	reviewed as required	Submitted 09/04/04
	Environmental Protection	1	
	Agency by the end of November		
	2002, which will be reviewed		
	annually in November and		
	submitted to the Agency or as		
	required.		
Target 2.6	Preparation and submission of an	Completed	

	Environmental Management System (EMS) to the Environmental Protection Agency by the end of November 2002, which will be reviewed annually in November and submitted to the Agency or as	and reviewed as required	Submitted 09/04/04
Target 2.7	required. Establish awareness and training procedures for personnel at Dunmore Landfill Facility which will form part of the EMS	Ongoing	
Target 2.8	Submission to the EPA of a communications program as part	Completed	Submitted as
Target 2.9	of the EMS Preparation and submission of a corrective action procedure,	Completed	Submitted as part of EMS 09/04/03
	which will be submitted to the Agency as part of the EMS		Submitted as part of EMS 09/04/03
Target 2.10	First Annual Environment Report (AER) of Waste Licence	Completed	
	30-2 submitted to Agency by the end of January 2003.		Submitted 14/08/03
Target 2.11	Review of AER by the end of January annually thereafter	Every January	
Objective 3			
Provision of required the agreement of the Target 3.1	infrastructure at the facility with agency An updated site notice board will be provided at the new	Completed by 08/03	

	facility entrance by end June	
	2002. The new Waste Licence	
	reference number will be	
	provided, contacted details	
	including revised telephone	
	numbers and location of all	
	environmental monitoring	
	information	
Target 3.2	Security fencing and security	Completed
	measures will be provided as	07/03
	part of the provision of the new	
	access by May 2003	
Target 3.3	A new access will be provided	Completed
	from the N77 by April 2003.	04/03
	Detailed SEW will be submitted	
	on the project will be submitted	
	to the Agency, when the safety	
	audit on the alignment has been	
	approved by the NRA.	
Target 3.4	Facility roads and hardstanding	
	areas will be provided at the	Complete 04/03
	new access by April 2003,	04/03
	which will be designed to ensure	
	safe access and movement	
	within the site. All area will be	
	provided with appropriate	
	surface water drainage systems.	
Target 3.5	New facility offices, will be	Completed
	provided, which will incorporate	04/03
	telephones and an electronic	
	communication facility by April	

gas monitoring equipment, in accordance with 'Protection of New Buildings and Occupants from Landfill Gas. Target 3.6 A Waste Inspection and Quarantine Area will be provided by May 2003, subject to Agreement with the Agency. Drainage from these areas will go directly to the leachate lagoon. Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with the Agency		2003. Offices shall be fitted with		1
New Buildings and Occupants from Landfill Gas. Target 3.6 A Waste Inspection and Quarantine Area will be provided by May 2003, subject to Agreement with the Agency. Drainage from these areas will go directly to the leachate lagoon. Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		gas monitoring equipment, in		
from Landfill Gas. A Waste Inspection and Quarantine Area will be provided by May 2003, subject to Agreement with the Agency. Drainage from these areas will go directly to the leachate lagoon. Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		accordance with 'Protection of		
Target 3.6 A Waste Inspection and Quarantine Area will be provided by May 2003, subject to Agreement with the Agency. Drainage from these areas will go directly to the leachate lagoon. Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		New Buildings and Occupants		
Quarantine Area will be provided by May 2003, subject to Agreement with the Agency. Drainage from these areas will go directly to the leachate lagoon. Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		from Landfill Gas.		
Quarantine Area will be provided by May 2003, subject to Agreement with the Agency. Drainage from these areas will go directly to the leachate lagoon. Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with	Target 3.6	A Waste Inspection and	Completed	
to Agreement with the Agency. Drainage from these areas will go directly to the leachate lagoon. Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		Quarantine Area will be	-	
Drainage from these areas will go directly to the leachate lagoon. Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		provided by May 2003, subject		
go directly to the leachate lagoon. Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		to Agreement with the Agency.		
lagoon. Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		Drainage from these areas will		
Target 3.7 The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		go directly to the leachate		
facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		lagoon.		
new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with	Target 3.7	The present weighbridge at the	-	
provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		facility will be relocated or a	05/03	
entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		new weighbridge will be		
with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		provided at the new facility		
This weighbridge will not be made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		entrance, subject to agreement		
made operational until approval is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		with the Agency, by May 2003.		
is given by Legal Metrology Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		This weighbridge will not be		
Services. Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		made operational until approval		
Target 3.8 A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		is given by Legal Metrology		
the EIS area will be provided at the facility entrance by May 2003, subject to agreement with		Services.		
the EIS area will be provided at the facility entrance by May 2003, subject to agreement with	Target 3.8	A wheel cleaning as set out in		
2003, subject to agreement with		the EIS area will be provided at	05/03	
		the facility entrance by May		
the Agency		2003, subject to agreement with		
· ·		the Agency.		
Target 3.9 As part of the development of Complete by 05/03	Target 3.9	As part of the development of	-	
the new offices, a wastewater		the new offices, a wastewater		
treatment plant will be provide		treatment plant will be provide		
at the new facility offices by		at the new facility offices by		

	May 2003, subject to agreement		
	with the Agency. The discharge		
	from this unit will go directly to		
	the new leachate lagoon.		
Target 3.10	A revised tank and drum storage	Completed	
	area will be provided by April	by 04/03	
	2003, to ensure any spillage that		
	may occur is contained.		
Target 3.11	Four new cells will be provided	One and a	QA/QC for
	(cell 11-14), between 2002 and	half cells completed	cell 11a submitted
	2005 and will be constructed to	by 12/02	24/10/02
	that specified in condition 3.13,	Others	QA/QC for
	subject to agreement with the	ongoing	cell12
	Agency.	until 12/05	30/05/03
Target 3.12	A new larger leachate lagoon	Completed	
	shall be construction to the	by 05/03	
	specified standard to provide		
	sufficient capacity for storage by		
	May 2003, subject to agreement		
	with the Agency.		
Target 3.13	A revised landfill gas	Completed	
	management system will be	by 11/03	
	provided by November 2003,		
	which will contain a proposal		
	for the utilisation of Landfill		
	Gas as an energy source. A		
	proposal on the system will be		
	submitted to the Agency by		
	March 2003.		
Target 3.14	A SCADA system or equivalent	Phase I	
	will be installed at the facility by	completed	

	capping is provided, subject ne Agencies agreement.	
Sur exte surf	face water from the ension will be diverted to the face water stream once the ping system is provided.	
Target 3.16 All will wat	new infrastructures provided have regard to the ground er in the area which is nitored on a monthly basis.	Ongoing
stor Apr acce	onstruction and demolition age area will be provided by il 2003 as part of the revised ess, subject to the agreement he Agency.	Will not be provided C&D waste Accepted direct to tip face
Target 3.18 The provided the pr	civic amenity site will be wided by May 2003 and will maintained to the highest ironmental standards. It is cipated that this area in junction with other County ancil initiatives will increase	Completed by 05/03

Target 3.19	A household hazardous waste	Completed
	facility will be provided at the	by 05/03
	new civic waste facility. This	
	facility will be widely advertised	
	and will raise awareness of the	
	need to source segregate	
	household hazardous waste.	
Target 3.20	A proposal on the provision of	Proposal
	compost facilities will be	will be
	completed by May 2003 and	examined and
	submitted to the Agency.	submitted
	Composting/shredding facilities	to the Agency
	will increase recovery rates for	
	green waste in the County.	
Target 3.21	A revised proposal for the	Complete
	provision of berms at the facility	by 01/03
	will be submitted to the Agency	
	by January 2003. All revision	
	made will be as a result of	
	consultation with adjacent	
	properties.	
Target 3.22	All monitoring points required	Ongoing
	to meet the conditions of the	
	Waste Licence will be provided	
	as infrastructure develops,	
	subject to the Agencies	
	agreement.	
Target 3.23	A storage and shredding area	Set up
	for Christmas Trees shall be	December
	provided and shredded trees to	2003 Annually
	be reused as landfill cover	there after

Objective 4		
Establishment of a detailed plan for the restoration and		
aftercare of the facilit	у	
Target 4.1	A full revised restoration and	G 1.
	aftercare plan will be submitted	Complete by 05/03
	to the Agency by May 2003,	,
	which will incorporate a	
	proposal for treatment of cells 1-	
	7	
Target 4.2	Capping at the facility will	_
	commence in May 2003 in	To commence
	accordance with condition 4.3,	05/03
	subject to agreement with the	Ongoing
	Agency and will continue on a	until site is
	phased basis as the facility	complete
	develops.	
Target 4.3	Assessment of the capping	Ongoing
	adequacy of cells 1-7 will	
	commence in February 2003. A	
	proposal for the capping and	
	collection of gas from cells 1-7	
	will be submitted to the Agency	
	by May 2003. All works on this	
	area will be completed by May	
	2004.	
Target 4.4	All material excavated for the	
	purpose of the development of	Ongoing
	infrastructure will be reused	
	with the facility boundary and	
	will be stored appropriately until	

	required.		
Objective 5			
The facility shall be operated to ensure there are no adverse environmental effects as a result of the operation of the facility.			
Target 5.1	Waste shall not be disposed of		
	in any part of the facility until	Ongoing	
	approval is sought and granted		
	by the Agency		04/12/03
Target 5.2	A procedure for the acceptance	G 1 . 1	
	of waste at the facility shall be	Completed	
	submitted to the Agency for		
	agreement by August 2002 and		
	updated annually thereafter.		
Target 5.3	All waste shall be covered	Ongoing	
	appropriately at the end of each		
	day		
Target 5.4	A full leachate management	Completed	
	plan will be drawn up which	Completed as part of	
	shall include procedures for	AER	
	monitoring leachate levels,	SCADA	
	removal of leachate by tanker	System- on Going	
	and control procedures to ensure	monitoring	
	that leachate levels remain	Of leachate Levels in	
	within parameters set out in	cells and	
	condition 5.11. This plan will	lagoons	
	form part of the AER and will		
	be revised as necessary.		
Target 5.5	Written records of maintenance		
	of all monitoring and emission	Ongoing	
	equipment. Maintenance of	<i>66</i>	

	these systems will take place as	
recommended by the manufacturer		
Target 5.6	All lagoons structures at the site	Ongoing
	will be independently tested	
	every three years.	
Target 5.7	The wheel wash at the site	Ongoing
	entrance shall be maintained and	Wheel shakeout
	cleaned as required	unit by
		06/03
Objective 6 Control of emissions	at the facility	
Target 6.1	Any emission exceeding trigger	Ongoing
	levels or unauthorised emission	Oligothig
	will be notified to the Agency.	
Target 6.2	Monitoring of the landfill gas	
	flare will commence once the	New flare unit
	installation of the flare is	installed
	complete. All emission values	07/04
	shall comply with the terms of	
	the Waste Licence.	
Objective 7		
Continuing minimisation of Environmental Nuisances associated with Dunmore Landfill Facility.		
Target 7.1	That any potential nuisance	Onasina
	resulting from the operation of	Ongoing
	the facility will be minimised	
	and any methods that may	
	eliminate nuisance will be	
	implemented. Ongoing	

	community consultation and		
	inspections at the facility will		
	ensure nuisance is minimised.		
	Full compliance with the		
	requirements set out in Condition		
	7 of the Waste Licence will		
	continue.		
Objective 8			
Continuation of Envi	ironmental Monitoring at the		
Target 8.1	All environmental monitoring at the facility as specified in Schedule D of the Waste Licence	Ongoing	
Target 8.2	shall commence by 10 th July, 2002. An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June	Completed	Submitted 08/04/03
Target 8.3	2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter. A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be	Ongoing	
Target 8.4	communicated to the Agency. A stability assessment of the site will be completed by November 2002 and annually thereafter and	Complete by 05/03	
Target 8.5	submitted to the Agency. A revised weekly nuisance monitoring system will be introduced at the site and implemented by January 2003;	Completed	

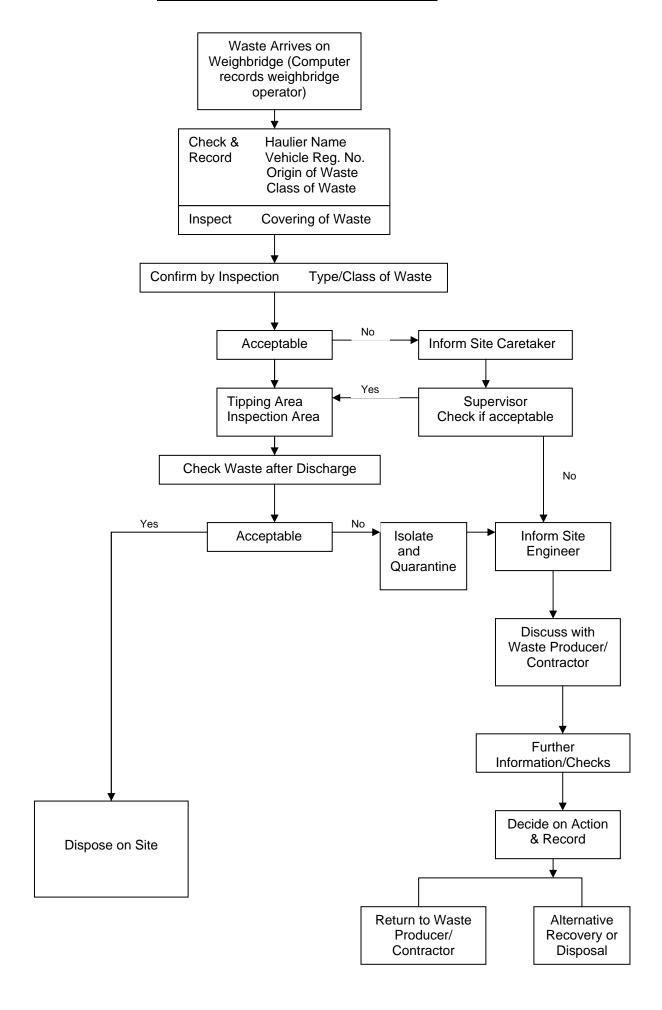
	all records will be held at the		
	site.		
Objective 9			
Contingency measure of an incident or eme			
Target 9.1	An Emergency response procedure will be developed and submitted to the Agency by November 2002 and submitted to the Agency. The procedure will be revised as necessary.	Completed	Submitted by 06/12/03
Target 9.2	An adequate supply of absorbent booms and material will be provided and maintained at the site. Completed Continually assessed		
Target 9.3 Waste oil containers shall be bunded. Completed By March 2005			
Objective 10		In place	
Records shall be maintained and available for inspection at all reasonable times			
Target 10.1 All records for the site shall be			
	available at the facility office for	Ongoing	
	inspection		
Target 10.2 Ongoing maintenance of wast records as per Condition 10.2		Completed 06/03	
	the Waste Licence.		
Target 10.3	A procedure shall be developed		
	to log all waste leaving the civic	In place	
	amenity site once the project has		
	been completed.		
Target 10.4	A complaints book shall be kept		
	at the facility office and any	Ongoing	
	complaint shall be logged as per		

condition 10.4			
Target 10.5 A record of all leachate leaving			
	the facility shall be kept in	Ongoing	
	accordance with condition 10.5		
Target 10.6	A record shall be kept of the		
	program for the control of	Ongoing	
	vermin and flies as per condition		
	10.7		
Target 10.7	A record of bird control activities	Ongoing	
	shall be kept and regular bird		
	counts made.		
Target 10.8	A written record shall be kept of		
	the type of daily cover that is	Ongoing	
	used on the site as per condition		
	10.9		
Target 10.9	Long term environmental		
	monitoring to continue.		
Objective 11			
To submit all relevan	t reports and notifications to the	Ongoing	
Agency in the timefra	ames specified		
Target 11.1	Any incident at the site shall be	Complete	
	notified in accordance with the	05/03	
	corrective action procedure		
Target 11.2	A new contract will be entered		
	into for the recovery/disposal	Completed	
	white goods/brown goods by end	04/03	
	May 2003		
Target 11.3	Waste recovery reports shall be		
	submitted to the Agency by	Form part	

	November 2002 as outlined in	of SEW	
condition 11.3		reports	Report 06/12/03
Target 11.4	A report on the achievement of	Submitted	00/12/03
	the final profile at the site shall		
	be submitted by November 2002		
Target 11.5	An operations procedure shall be		
	developed for operation in		Report
	adverse wind conditions and	Submitted	04/12/03
	submitted to the agency by		
	November 2002.		
Target 11.6	A report on procedure to control		
	vermin and flies shall be	Submitted	
	submitted to the Agency by	14/08/03	Report
	November 2002	Complete	12/07/02
Target 11.7	The first AER of the License will	1	
	be submitted by May 2003		
Target 11.8	A conditioning plan in		
	accordance with Council		
	Directive 1991/31/EC shall be		
	submitted to the Agency by 16 th		
	July 2002		
Objective 12			
To operate the landfil	ll to compliment relevant	In place	
legislation and the Landfill Directive		since 03/02	
Target 12.1	All packaging waste as defined	Phased in	
	in SI No. 61 of 2003 will be	through 2002	
	restricted from the landfill		
Target 12.2	All contractors using the site	Complete by 06/03	
	shall be in full compliance with	3, 00/03	
	SI No. 402 of 2001		

Target 12.3 Whole used tyres shall be		
	restricted from the site from 1st	
	of June 2003, in compliance with	
	Council Directive 1991/31/EC.	Ongoing
	Shredded tyres will be restricted	Ongoing
	from 1 st June 2006	
Target 12.4	The landfill site will be operated	
	with regard to the South East	
	Waste Management and any	
	measures necessary to meet the	
	terms and targets of the plan	
	shall be implemented. This will	
	include the acceptance of waste	
	from outside the Kilkenny area	
	from the partners in the South	
East Region		
Objective 13		
To provide infrastructure to reduce visual impact and		Ongoing
minimise nuisance		
Target 13.1	Continuation of odour modelling	
	and testing at the site and local	Ongoing
	properties. Recommendations	
	will be implemented.	
Target 13.2	Provision of extensive planting	
	and renewal of hedgerows.	
	Berms will be placed in locations	Ongoing
	in order to minimise visual	
	impact.	
Target 13.3	The road access and roadway	
	along the front of the site will be	

	maintained and cleaned in order	
to minimise visual nuisance at		
the entrance to the facility.		
Objective 14		
To reduce the	quantity of recycling and biodegradable materials going to landfill.	
Target 14.1	To achieve a 50% reduction by commercial establishments.	Dec 06
Target 14.2	Target 14.2 To set up a communication procedure and reporting mechanism between landfill and enforcement officers regarding offenders.	
Target 14.3	Provide awareness to companies of restricted landfill materials.	Ongoing
Objective 15 To achieve closure of the landfill facility to an environmentally satisfactory standard and comply fully with relevant legislation and the Landfill Directive.		
Target 15.1;	The continued acceptance of acceptable waste in the landfill for such time as the required quantities are received to enable final contours be reached.	Ongoing
Target 15.2;	The notification of all customers that the landfill section at Dunmore will cease to operate from the advised date.	Ongoing
Target 15.3;	The expansion of the CAS to ensure continued availability of refuse disposal facility to householders and small business customers.	Ongoing


Target 15.4;	Increased signage and road markings at the CAS to ensure ease of access and use for the expected increase in customers anticipated as a direct result of the landfill closure.	Ongoing
Target 15.5;	To maintain the existing gas and leachate management system to ensure full compliance with the conditions of our license.	Ongoing
Target 15. 6;	To advertise, appoint a contractor and complete the final capping of the landfill within 2010.	Ongoing
Target 15. 7;	To maintain the nuisance montiroing system in place in relation to vermin, noise and litter control.	Ongoing
Target 15.8 ;	To investigate the viability of a C&D waste facility within the site.	Ongoing
Target 15. 9;	To assess the cost structure of the CAS to examine if the facility can be self funding.	Ongoing

Appendix H

Waste Acceptance Procedure Flowchart

DUNMORE LANDFILL

WASTE ACCEPTANCE PROCEDURE

Appendix I

Bird Control

Littlebridge Inches, Cappoquin, Co. Waterford, Ireland

Year End Report for Dunmore Landfill Site

January 2009 - December 2009

Location: Dunmore Landfill, Dunmore, Co. Kilkenny

Type: Landfill Site

Client: Kilkenny County Council

BCI Ltd operated a bird control programme at Dunmore between January 2009 and December 2009. During each visit to the site a *Visit Log* was completed giving details of activities undertaken to control nuisance birds for the period of time. A *Month End Report* was complied from the *Visit Logs* and submitted to Dunmore Landfill Site Manager each month.

Throughout the year various types of bird scaring devices were employed to include, Falcons, Hele Kites, Fire Arms, Species Specific Distress Calls and Bird Scaring Pistol.

Equipment is checked on each visit to site for faults and damages. Any reported damaged goods were repaired/replaced.

A suggested plan of action was marked out on a site Planner Board by BCI each week Site staff were responsible for daily deployment of Visual Deterrents (kites) are the visual cue for scavenging birds that danger is lurking, so when kites cannot be deployed (for example due to severe weather conditions birds will sometimes attempt to raid. Site staff also used Distress Calls.

The staff at Dunmore Landfill were enthusiastic and helpful at all times they applied the equipment diligently and adapted as necessary.

Site visits (start hours on site) were varied again throughout the year to ensure that when birds were recorded either early morning, mid day or in the evenings and as BCI Ltd. staff consistently harassed them with various bird control measures, their return to the site was slow.

By visiting the site at different times, any unusual bird activity can be recorded and a new approach tried to ensure the best bird control programme is achieved. During the month of July (67) birds numbers were high on entry to site. The breeding season also puts pressure on birds to find extra food for hungry chicks. Given the chance birds will attempt to raid. However the site staff were able to clear raiders with distress calls when required.

Littlebridge Inches, Cappoquin, Co. Waterford, Ireland

The site Bird Scaring Pistol was used as required usually at times when visual cues could not be deployed due to adverse weather conditions.

It is clear from the figures recorded that the number of birds scavenging at Dunmore Landfill is at very low level and very much under control.

Sheet One shows the bird count totals for each month.

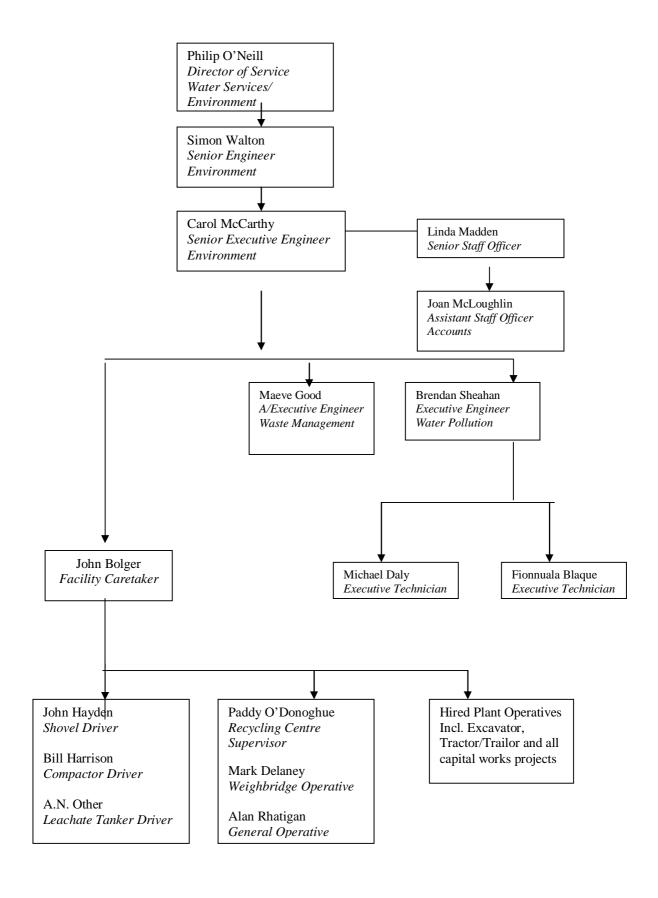
Chart One Monthly Bird Counts for the period Jan 09 to Dec 09

Chart Two Shows the mean bird value of birds from Jan 09 to Dec 09

Chart Three Shows a comparison of Mean Bird Values from 2005-2009

Chart Four Shows the distribution of main problem species on site Jan to Dec 2009

Bird Control Ireland Ltd are please with the level of bird control maintained at Dunmore Landfill Site.


Yours sincerely,

Jeremy Nicholson Managing Director Bird Control Ireland Ltd

Appendix J

Management Structure

Staff Structure - Dunmore Landfill

Appendix K

AER Returns Worksheet

| PRTR# : W0030 | Facility Name : Dunmore Landfill | Filename : W0030_2009(1).xls | Return Year : 2009 |

AER Returns Worksheet

Version 1.1.10

1. FACILITY IDENTIFICATION		
	Parent Company Name	Kilkenny County Council
		Dunmore Landfill
	PRTR Identification Number	W0030
	Licence Number	W0030-02

REFERENCE YEAR 2009

Waste or IPPC Classes of Activity	1
No.	class_name
	Specially engineered landfill, including placement into lined discrete
	cells which are capped and isolated from one another and the
	environment.
3.1	Deposit on, in or under land (including landfill).
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
3.13	collection, on the premises where the waste concerned is produced.
	Surface impoundment, including placement of liquid or sludge
3.4	discards into pits, ponds or lagoons.
	The treatment of any waste on land with a consequential benefit for
4.10	an agricultural activity or ecological system.
	Use of waste obtained from any activity referred to in a preceding
4.11	paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred to in
	a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4.13	produced.
	Recycling or reclamation of organic substances which are not used
	as solvents (including composting and other biological transformation
4.2	processes).
4.3	Recycling or reclamation of metals and metal compounds.
4.4	Recycling or reclamation of other inorganic materials.
	Use of any waste principally as a fuel or other means to generate
	energy.
	Dunmore
	Co. Kilkenny
Address 3	
Address 4	
	/ Ireland
Coordinates of Location	
River Basin District	
NACE Code	
	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	
AER Returns Contact Email Address	joseph.scully@kilkennycoco.ie
AER Returns Contact Position	
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	
Production Volume	
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	
Number of Employees	
User Feedback/Comments	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5(d)	Landfills
5(c)	Installations for the disposal of non-hazardous waste
5(d)	Landfills
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 20	02)
Is it applicable?	
Have you been granted an exemption?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
In the reduction cohome compliance route being	

31/03/2010 09:17