

ANNUAL ENVIRONMENTAL REPORT

By

Drogheda Borough Council

To

Environmental Protection Agency

For

Waste license Reference (W0033-01)

Reporting Period January – December 2008

DROGHEDA LANDFILL SITE COUNTY LOUTH

DROGHEDA BOROUGH COUNCIL DROGHEDA LANDFILL SITE

JANUARY - DECEMBER 2008

ANNUAL ENVIRONMENTAL REPORT

DOCUMENT CONTROL SHEET

Prepared by:	Angela Mc Ginley
Office of Origin:	Letterkenny
Checked by:	Angela Mc Ginley
Office of Origin:	Letterkenny
Report Ref:	IBR0078/Reports
Status:	Final
Revision No:	*
Date of Release:	03 April 2009
Approved and auth	orised for issue:

Name Donal Doyle

Position Technical Director

CONTENTS

- 1.0 INTRODUCTION
- 2.0 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY
- 3.0 QUANTITY AND COMPOSITION OF WASTE RECEIVED AND DISPOSED OF DURING THE REPORTING PERIOD AND EACH PREVIOUS YEAR
- 4.0 METHODS OF DEPOSITION OF WASTE
- 5.0 SUMMARY REPORT ON EMISSIONS AND INTERPRETATION OF RESULTS
- 6.0 VOLUME OF LEACHATE PRODUCED
- 7.0 REPORT ON RESTORATION
- 8.0 SITE SURVEY SHOWING EXISTING LEVELS OF THE FACILITY AT THE END OF THE REPORTING PERIOD
- 9.0 ESTIMATED ANNUAL AND CUMULATIVE QUANTITIES OF LANDFILL GAS (LFG) EMITTED FROM THE SITE
- 10.0 ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMISSIONS TO GROUNDWATER
- 11.0 MONTHLY WATER BALANCE CALCULATION AND INTERPRETATION
- 12.0 REPORT ON ENVIRONMENTAL MANAGEMENT PROGRAMME
- 13.0 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS FOR THE FORTHCOMING YEAR
- 14.0 FULL TITLE AND A WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY THE LICENSEE IN THE YEAR, WHICH RELATES TO THE FACILITY OPERATION
- 15.0 REPORTED INCIDENTS AND COMPLAINTS SUMMARIES, CORRESPONDENCE TO/FROM EPA
- 16.0 REVIEW OF NUISANCE CONTROLS
- 17.0 REPORT ON FINANCIAL PROVISIONS MADE UNDER THIS LICENSE, MANAGEMENT AND STAFFING STRUCTURE OF THE FACILITY AND A PROGRAMME FOR PUBLIC INFORMATION
- 18.0 PRTR REPORTING

APPENDICES

APPENDIX A DRAWINGS

APPENDIX B GROUNDWATER RESULTS

APPENDIX C ANNUAL LIST I & II MONITORING RESULTS

APPENDIX D SURFACE WATER RESULTS

APPENDIX E LANDFILL GAS RESULTS

APPENDIX F WATER BALANCE CALCULATION

APPENDIX G PRTR REPORTING

1.0 INTRODUCTION

This Annual Environmental Report (AER) has been prepared to meet the requirements of Condition 2.8 of Waste Licence W0033-01 for Drogheda Landfill and includes the information

listed in Schedule C of the Waste Licence. Drogheda Landfill Site has been in operation since

1983 and has ceased accepting waste for disposal since the waste licence was granted on

30th December 1999 as required by the Waste Management (Licensing) Regulations, 1997.

The site is located 600 metres north of the River Boyne on the north-west edge of Drogheda

town. The site is adjacent to Leonards Cross at the junction of the R168 road to Collon (and

there on to the newly constructed M1) and Cement Road, a minor road linking the Slane Road

and the N1 primary road northwards from Drogheda to Dundalk. The site is approximately 32

hectares in extent and was formally a limestone quarry. The site has historically operated on

a dilute and disperse principle.

REPORT PERIOD

The report period for this Annual Environmental Report (AER) is from January to December

2008.

2.0 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY

The licensed disposal activities, in accordance with the Third Schedule of the Waste

Management Act, 1996, are restricted to those listed as follows:

Class 13 Storage prior to submission to any activity referred to in a preceding paragraph

of this Schedule, other than temporary storage, pending collection, on the premises

where the waste concerned is produced

Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste

Management Act, 1996, are restricted to those listed as follows:

Class 2 Recycling or reclamation of organic substances, which are not used as solvents

(including composting and other biological transformation processes).

Class 3 Recycling or reclamation of metals and metal compounds.

Class 4 Recycling or reclamation of other inorganic materials.

Class 10 The treatment of waste on land with a consequential benefit for an agricultural

activity or ecological system.

Class 11 Use of waste obtained from any activity referred to in a preceding paragraph of

this Schedule.

 Class 13 Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collecting, on the premises where such waste is produced.

3.0 QUANTITY AND COMPOSITION OF WASTE RECEIVED AND DISPOSED OF DURING THE REPORTING PERIOD AND EACH PREVIOUS YEAR

Table 1 shows waste quantities accepted at Drogheda landfill site from 1997-2006. The site is closed.

Table 1 Waste Quantities Accepted (tonnes)

Waste Types	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total	*75,350	*86,000	*40,000	*58,506	*27,085	*21,288	-	8,744	-	**58,584

^{*}Figures based on estimated.

Table 2 shows waste quantities accepted for recycling at Drogheda Civic Waste Facility in 2008

RPS

^{**}Capping material under the Capping and Restoration Contract.

Table 2 Waste tonnages accepted at the Civic Waste Facility in 2008

	Paper Cardboard	Plastic	Glass	Clothes	Batteries	Fluorescent tubes	Greenery	Wood	Scrap Metal	WEEE Goods	Total Tonnage Per Month
EWC Code	(20 01 01)	(20 01 39)	(20 01 02)	(20 01 10)	(20 01 33)	(20 01 21)	(20 02 01)	(20 01 38)	(20 01 40)	(20 01 35)	
January	84500	3200	9020	11080	2260		18460	50080		48660	227.3
February	52900	8960	16940	11180	1620		37600	36500		41720	207.4
March	43760		21140	7040			29960	51320		46860	200.1
April	60340	11060	9700	9280	2520		58560	57900		48360	257.7
May	40760		9200		1560		86320	55380		48740	242.0
June	74940	11560	23900	10180	2280		64600	47380		46640	281.5
July	64520	14100	17280	9900	1420	200.0	103560	71520	40860	50780	374.1
August	52680	41640	10700	11040	3200		83240	54280	28060	47540	332.4
September	57940	5780	9540	10060	1420	0.2	116340	55920	34060	46280	337.3
October	41240	8120	21160	9320	1940	0.2	65480	53200	25080	36940	262.5
November	51200	20820		9060	820	0.2	46920	37780	26320	40220	233.1
December	52860	13600	18840		1280		10880	42060	26900	48100	214.5
Total kg	677640	138840	167420	98140	20320	200.6	721920	613320	181280	550840	
Total Tonnes	677.6	138.8	167.4	98.1	20.3	0.2	721.9	613.3	181.3	550.8	3169.9

IBR0078/Reports/AER 2008

Status: Final Issue Date: April 2009

4.0 METHODS OF DEPOSITION OF WASTE

4.1 LANDFILL

The site has ceased to accept waste for disposal since the waste licence was granted in December 1999. The only materials accepted at the site are inert wastes, which are utilised for capping at the site. Phase 1 capping works were completed in September 2007.

4.2 CIVIC WASTE FACILITY

All waste deposited at the CWF must be placed into:

- Into a hopper of the compactor for disposal
- Into a receptacle for recovery, or
- In the case where inspection is required, into a designated inspection area

The storage containers and storage areas are clearly labelled with yellow backgrounds and black/green writing to indicate their content.

There are samples or signage describing the type of waste which can deposited into each container.

5.0 SUMMARY REPORT ON EMISSIONS AND INTERPRETATION OF RESULTS

5.1 Monitoring Locations

Monitoring is carried out at locations and at frequencies as specified in Schedule F of the waste licence. Permanent access to all monitoring points is maintained.

The results contained in this report were assessed as follows:

- Groundwater: Assessed against the European Communities (Drinking Water) (No. 2)
 Regulations 2007 parametric value (DWR) and Interim Guideline Value (IGV) Towards
 Setting Guideline Values for the Protection of Ground Water in Ireland. The following
 substances defined by the European communities (Drinking Water) (No. 2) Regulations
 2007 were monitored in April and are referred to in the report
- Total pesticides means the sum of all individual pesticides detected and quantified in the
 course of the monitoring procedure. The DWR is 0.50ug/l. (Only those pesticides which
 are likely to be present in a given supply require to be monitored- organic insecticides,
 organic herbicides, organic fungicides, organic nematocides, organic acaricides, organic

RPS

Issue Date: April 2009

algicides, organic rodenticides, organic slimicides, related products (*inter alia*, growth regulators and their relevant metabolites, degradation and reaction products.)

- Polycyclic aromatic hydrocarbons are the sum of concentrations of specified compounds. The DWR is 0.10ug/l. The specified compounds are benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene and indeno(1,2,3-cd)pyrene.
- Total trihalomethanes are the sum of concentrations of specified compounds. The DWR is 100ug/l. The specified compounds are: chloroform, bromoform, dibrom-ochloromethane and bromodichloromethane
- Surface Water: Assessed against the Surface Water Quality Standards (SWQS) laid out in the European Communities (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations 1989.

Boreholes BH4A and BH10A where installed in March 2000. Boreholes BH1A, BH2A, BH3A, BH5A, BH6A, BH7, BH8A, BH9A and BH11A where installed in August 2001. These points where surveyed in October 2001 and grid reference points are given below. LG1 to LG7 where installed in October 1998.

Leachate monitoring points L1A to L5A where installed in February 2000. All monitoring points are shown in Drawing No IBL0006/01 Location of Monitoring Points in Appendix A.

RPS

Table 3 Grid References of Monitoring Points

Monitoring Points	Easting	Northing
Grou	ndwater Boreholes	
BH1A	306777	276414
BH2A	306869	276471
ВНЗА	307055	276063
BH4A	306959	276523
BH5A	307047	276563
BH6A	307182	275918
BH7	307239	276620
BH8A	307246	275890
BH9A	307394	275853
BH10A	307500	275928
BH11A	307699	276158
	Surface Water	
SW1	307164	276270
SW2	307414	276470
SW3	307388	275910
G	as Piezometers	
LG1	306773	276393
LG2	306820	276330
LG3	306867	276283
LG4	306913	276218
LG5	306949	276171
LG6	307564	276281
LG7	307580	276241
	Leachate	
L1A	307021	276228
L2A	307028	276337
L3A	307216	276378
L4A	307291	276334
L5A	307359	276279
	Noise	
N1	306786	276384
N2	306850	276238
N3	307311	275840
-	Dust	
DG1	306854	276352
DG2	307024	276073
DG3	307539	275993
DG4	307131	275903

5.2 GROUNDWATER

As required under the Waste Licence, groundwater monitoring has been undertaken at the borehole locations as set out in Table 3 of the waste licence. Schedule F of the waste licence requires the monitoring of certain parameters on either a monthly, quarterly or annual basis as shown in Table 4.

RPS

Table 4 Groundwater parameters monitoring frequencies

Monitoring Frequency	BH1A, BH4A, BH6A, BH9A, BH10A, BH11A	BH2A, BH3A, BH5A, BH7A, BH8A
Monthly	Visual Inspection and Odour, Groundwater Level, Ammoniacal Nitrogen, Chloride, Cadmium, Chromium, Electrical Conductivity, pH, Temperature, Iron, Lead, Manganese, Potassium, Sodium, Barium, Nickel, Nitrate, Nitrite, Phenol, Zinc	Groundwater Level, Ammoniacal Nitrogen, Electrical Conductivity, pH, Temperature
Quarterly	Dissolved Oxygen, Total Suspended Solids, TON, TOC, Zinc	Visual Inspection and Odour, Chloride, Dissolved Oxygen, Cadmium, Chromium, Iron, Lead, Manganese, Potassium, Sodium, TON, TOC, Barium, Nickel, Nitrate, Nitrite, Phenol
Annually	Boron, Calcium, Copper, Cyanide, Fluoride, Magnesium, Mercury, Sulphate, Total Alkalinity, Total Phosphorous, Residues on Evaporation, Faecal Coliforms, Total Coliforms List I & II substances monitored biannually from BH10, annually from other boreholes	Boron, Calcium, Copper, Cyanide, Fluoride, Magnesium, Mercury, Sulphate, Total Alkalinity, Total Phosphorous, Residues on Evaporation, Zinc, Faecal Coliforms, Total Coliforms

These results are presented graphically and in table format in Appendix B.

Parameters that are indicative of possible leachate contamination include Ammoniacal-N, Conductivity, Iron, Chloride and heavy metals.

The boreholes BH1A – BH5A and BH7 provide an indication of the up-gradient baseline groundwater characteristics whilst BH6A, BH8A and BH9A typify the down-gradient location for flow from the site. In addition BH11A provides information on the nature of the groundwater deep beneath the landfill site and BH10A provides down-gradient information in a borehole, which was penetrated through a karstic void and hence is potentially an area of relatively high groundwater flows emanating from the site.

5.3 UP-STREAM

The pH levels for all up-stream boreholes remain between the IGV and DWR of 6.5 and 9.5 pH units except for BH7 which exceeded the limits three times during monitoring. The highest pH value of 10.4 was recorded in BH7 in July of this monitoring period.

RPS

All up-stream boreholes recorded Electrical Conductivity levels below the IGV of $1,000\mu S/cm$ and DWR of $2,500\mu S/cm$, except BH1A and BH5A which recorded levels above the IGV at

different periods of the year.

TON levels are highest upstream in BH4A and BH5A. BH5A shows significant fluctuations

over the year.

Ammonia levels were elevated for two of the up-stream boreholes (BH4A ad BH5A). BH5A

has consistently recorded elevated Ammonia levels above IGV (0.15mg/l) and DWR

(0.30mg/l) throughout the year, with the highest results recorded in February (10.94mg/l).

BH4A (0.17mg/l) exceeded the IGV in November.

Potassium levels remained elevated at BH3A, BH5A and BH7, and occasionally in BH1A. The

IGV of 5mg/l was exceeded for the entire monitoring period in BH3A and BH7. Potassium

levels were highest in BH7A in July (145.08 mg/l).

Chromium, Cadmium, Lead and Sodium levels upstream were all equal to or below the

relevant IGV and/or DWR for the monitoring period.

Nitrite is below the IGV and DWR except BH1A and BH4A in August which exceeds the IGV

only.

Barium and Zinc levels exceed the IGV in BH4 in May. All other recordings are below the

limits.

Nickel concentrations exceeded the IGV and DWR in BH1A, BH4A and BH5A at times during

monitoring. Manganese concentrations exceed the IGV and DWR constantly in BH4A and

BH5A and at times in BH1A and BH7A. Iron exceeded the IGV and DWR in all boreholes for

a majority of the monitoring period.

Chloride levels exceed the IGV of 30 mg/l in BH1A, BH3A, BH4A, BH5A and BH7A. All

boreholes up-gradient were below the DWR of 250 mg/l.

TON results show no abnormal change.

Trends for remaining parameters are presented in Appendix B. The results show that the

groundwater has been contaminated upstream.

IBR0078/Reports/AER 2008 Status: Final

Status: Final Issue Date: April 2009

5.4 **ANNUAL MONITORING RESULTS**

> Boron, Calcium, Copper, Cyanide, Fluoride, Magnesium, Mercury and Sulphate

concentrations in all the boreholes are below DWR and/or IGV in this monitoring period.

Orthophosphate forms are produced by natural processes, but major man-influenced sources

include: partially treated and untreated sewage, runoff from agricultural sites and application of some lawn fertilisers. Orthophosphate values up-gradient are equal to or exceed the IGV of

0.03mg/l in BH1A (0.03mg/l), BH2A (0.04mg/l), BH5A (0.04mg/l) and BH7A (0.03mg/l).

Total Coliforms were recorded in BH1A 36/100ml, BH2A 24/100ml, BH3A 133/100ml, BH4A

6/100ml and BH7A 13/100ml. Faecal coliforms were recorded in BH2A 1/100ml.

Annual analysis for List I and II substances were undertaken at BH1A and BH4A up-gradient

of the site. These results are included in Appendix C.

Analysis for Polycyclic Aromatic Hydrocarbons (total 16 EPA PAHs) recorded <10ng/l and is

below the DWR of 0.1µg/l for PAH.

Phenols levels were analysed by an external lab and were <0.01mg/l. These concentrations

are lower than the limit of detection for the methodology used for Phenols however this is

higher than the appropriate IGV of 0.5µg/l.

Pesticide analysis was carried out in BH1A and BH4A in April. These results are below the

parametric value for individual pesticides of 0.1µg/l as per the Drinking Water Regulation and

the IGV for those comparable. The IGV for Total pesticides is 0.5µg/l. Total pesticides

means the sum of all individual pesticides detected and quantified in the course of the

monitoring procedure. As these were all less than the lower detection limit used they cannot

be quantified and therefore compared to the IGV.

Total-Trihalomethanes (THM) which is the sum of Dichloromethane, Chloroform,

Bromodichloromethane and Bromoform levels were below the lower detection limit for the

analytical methodology used (>0.1µg/l) and are below the DWR of 100µg/l total

trihalomethanes.

Volatiles and semivolatiles parameters were either below the IGV/DWR or less than the

detection limit for those comparable (the detection limit of 0.1µg/l is higher than the IGV/DWR

for a number of parameters). Cis-1,2-dichloroethene was detected in BH4 (0.332µg/l) and is

below the DWR of 30µg/l. Note: Cis-1,2-dichloroethene was also detected in this borehole in

2007.

IBR0078/Reports/AER 2008

Status: Final

Issue Date: April 2009

9

5.5 **DOWNSTREAM**

The pH levels for all boreholes remain between the IGV and DWR of 6.5 to 9.5 pH units

throughout the monitoring period.

Downstream boreholes Electrical Conductivity were below the DWR level in all locations.

BH11A exceeded the IGV in January with a recording of 1531 µS/cm.

TON levels are highest downstream in BH11A (7.65mg/l) in January and the concentrations in

each borehole show no significant fluctuations over the past year of monitoring.

Ammonia levels for the reporting period downstream have all been below the IGV of 0.15mg/l

and the DWR of 0.3mg/l

Cadmium, Chromium, Sodium, Zinc, Nickel and Barium were below the relevant IGV and/or

DWR throughout the monitoring period.

Nitrite is below the IGV and DWR except for BH6A and BH10A which exceed the IGV and

DWR in August.

Manganese concentrations exceed the IGV and DWR in BH6A, BH9A, BH10A and BH11A at

different periods of the year. Iron concentrations exceeded the IGV and DWR in all boreholes

at different periods throughout the year.

Chloride levels do not exceed the DWR of 250 mg/l, however all boreholes except BH8A in

January exceed the IGV of 30mg/l throughout the monitoring. Lead levels were below the

DWR in this monitoring period and only BH6A exceeded the IGV in June and August.

Potassium levels are below the IGV in all boreholes except BH10A and BH11A throughout the

monitoring period.

Trends for remaining parameters are presented in Appendix B. The results show that the

groundwater has been contaminated downstream.

Status: Final

5.6 ANNUAL MONITORING RESULTS

In all the down-gradient boreholes, Boron, Calcium, Copper, Fluoride and Mercury values

were all below the DWR and/ or IGV.

Sulphate concentrations are below IGV and DWR, except for BH11A which recorded

347.7mg/l.

Ortho-phosphate values down-gradient levels range from <0.02 to 0.03mg/l, below or equal to

the IGV.

Cyanide concentrations of <0.05mg/l are recorded in all the boreholes and are below the

lower limit of detection for the methodology; however these are higher than the appropriate

IGV (0.001mg/l).

Total Coliforms were recorded in all down-gradient boreholes in April. Total Coliforms ranged

from 5/100ml (BH9A) to 33/100ml (BH10A). Faecal Coliforms were also recorded in BH8A

(2/100ml), BH11A (3/100ml) and BH10A (6/100ml).

Annual analysis for List I and II substances were undertaken at BH6A, BH9A, BH10A and

BH11A down-gradient of the site. These results are included in Appendix C.

Analysis for Polycyclic Aromatic Hydrocarbons (total 16 EPA PAHs) recorded <10ng/l and is

below the DWR of 0.1µg/l for PAH.

Phenols levels were analysed by an external lab and were <0.01mg/l. These concentrations

are lower than the limit of detection for the methodology used for Phenols however this is

higher than the appropriate IGV of 0.5µg/l.

Pesticide analysis was carried out in April. These results are below the parametric value for

individual pesticides of 0.1µg/l as per the Drinking Water Regulation and the IGV for those comparable. The IGV for Total pesticides is 0.5µg/l. Total pesticides means the sum of all

individual pesticides detected and quantified in the course of the monitoring procedure. As

these were all less than the lower detection limit used they cannot be quantified and therefore

compared to the IGV.

Total-Trihalomethanes (THM) were below the lower detection limit for the analytical

methodology used (>0.1 μ g/l) and are below the DWR of 100 μ g/l (THM).

IBR0078/Reports/AER 2008

Status: Final Issue Date: April 2009

Volatiles and semivolatiles parameters were either below the IGV/DWR or less than the detection limit for those comparable. The detection limit of 0.1ug/l is higher than the IGV/DWR for a number of parameters.

5.7 SURFACE WATER

Schedule F of the waste licence requires the monitoring of certain parameters on either a quarterly or annual basis; the frequency of the monitoring of surface water parameters are shown in Table 5.

Table 5 Surface Water Monitoring Frequency

Monitoring Frequency	Parameter
Quarterly	Ammoniacal Nitrogen, BOD, COD, Chloride, Dissolved
	Oxygen, Electrical Conductivity, pH, Total Suspended Solids,
	Temperature, Cadmium, Chromium, Iron, Lead, Potassium,
	Total Phosphorous, Barium, Nickel, Nitrate, Nitrite, and Phenol
Annually	Calcium, Copper, Magnesium, Manganese, Mercury, Sulphate,
	Sodium, Total Alkalinity, TON, and Zinc

Chloride, Conductivity, Total suspended solids, Cadmium, Chromium, Nickel and Nitrite were all below the SWQS and/or IGV in all surface water locations. pH was recorded outside the SWQS limit of 5.5-9.0 pH units in SW3 in July.

Surface water results are presented in Appendix D.

5.8 QUARRY LAKE

Monitoring points SW1 and SW3 are within the Quarry Lake. BOD is an indicator of the deoxygenating potential of waste in water. BOD has been classified as SWQS A1 in both monitoring locations. COD was highest in October at 42mg/l in SW3. The highest Potassium level recorded was 39.48mg/l in SW1 during the month of January. The highest Ammonia level was 0.13mg/l in SW3 in January therefore all recordings fall into the A1 SWQS classification. The highest Barium Level recorded was 79.5mg/l in SW3 in January, fitting into the SWQS A1 Classification. Dissolved Oxygen levels show over saturation in SW1 in April and July and in SW3 in January and April, this may have been due to photosynthesis. Phenol levels in SW1 and SW3 were less than the lower detection limit during the year except in January and October.

5.9 Pond

SW2 sample is taken from the cement works pond, which is adjacent and up gradient of the

site. The highest Ammonia levels recorded during the monitoring period was 0.13mg/l.

Potassium levels remain high in SW2 showing a peak value of 35.50mg/l. Phenol levels in

SW2 were less than the lower detection limit during the year except in January and October

where the readings were 0.020mg/l and 0.030mg/l respectively. The highest Barium level

recorded in SW2 was 80.50mg/l in January. Dissolved oxygen ranged from 74% in January to

112% in April. BOD falls into the SWQS A1 classification with the highest reading being

2.9mg/l. COD is above the SWQS in October at 54mg/l.

5.10 CAPPED AREA

SW4 and SW5 monitor the surface water arising from the capped area. BOD ranged from

<1.5mg/l to <2.0mg/l fitting into the SWQS A1 Classification. The highest COD recording was

in SW5 in October, 57mg/l which is above the SWQS of 40mg/l. SW5 in October is below the

IGV of 5mg/l for potassium, all other recording are above the IGV. All Ammonia results fall into the SWQS A1 classifications of 0.2mg/l. Barium had a recording of <50µg/l for both

locations which is below the SWQS. Phenol levels in SW4 and SW5 were less than the lower

detection limit in April. In October the readings were both 0.03mg/l. Dissolved oxygen ranged

from 80% to 92%.

5.11 ANNUALLY

Annual analysis for List I and II substances were undertaken at SW1 in April. These results

are included in Appendix D.

Analysis for Polycyclic Aromatic Hydrocarbons (total 16 EPA PAHs) recorded <10ng/l and is

below the DWR of 0.1µg/l for PAH.

Phenols levels were analysed by an external lab and were <0.01mg/l. These concentrations

are lower than the limit of detection for the methodology used for Phenols however this is

higher than the appropriate IGV of 0.5µg/l.

Pesticide analysis was carried out in April. These results are below the parametric value for

individual pesticides of 0.1µg/l as per the Drinking Water Regulation and the IGV for those

comparable. The IGV for Total pesticides is 0.5µg/l. Total pesticides means the sum of all

individual pesticides detected and quantified in the course of the monitoring procedure. As

these were all less than the lower detection limit used they cannot be quantified and therefore

compared to the IGV.

IBR0078/Reports/AER 2008

Status: Final Issue Date: April 2009

DROGHEDA BOROUGH COUNCIL

Total-Trihalomethanes (THM) were below the lower detection limit for the analytical

methodology used (>0.1μg/l) and are below the DWR of 100μg/l total trihalomethanes.

Volatiles and semivolatiles parameters were either below the IGV or less than the detection

limit for those comparable. The detection limit of 0.1ug/l is higher than the IGV for a number

of parameters.

5.12 **DISCHARGE TO SEWER**

There are two discharge points to sewer, treated condensate from the methane stripper (S1)

and the discharge point to sewer from Civic Waste Facility (S2).

Monitoring at S1 during the year indicated a reduction of pH and increase in sulphate

concentrations which exceeded licence requirement. Further sampling of condensate within

the gas extraction system (condensate traps) indicated similar concentrations. Condensate is

now being tankered from site following agreement with EPA and Waste Water Treatment

Plant Operator.

5.13 **PERIMETER GAS MONITORING**

The licence requirements of the following landfill gases are greater than or equal to 1.0% v/v

Methane and greater than or equal to 1.5% v/v Carbon dioxide. Landfill gas monitoring results

have been provided for the period and are shown in Appendix E.

Methane was recorded along the perimeter of the site (LG1 - LG7) throughout the monitoring

period except in June, July and November. Methane levels ranged from 0.1%v/v - 0.2%v/v

which is below the trigger level.

Carbon Dioxide levels from LG1, LG2, LG3, LG4, LG5 and LG6 were above 1.5% v/v at

various stages of the monitoring period. LG5 recorded the highest Carbon Dioxide level of

6.9% v/v. in November The results do not correspond with increase of methane levels, nor is

the exceedances in results in the direction of groundwater flow, however landfill gas can

migrate in all directions away from the site above the groundwater flow.

High naturally occurring Carbon Dioxide levels can occur due to microbial activity with the

roots of many types of vegetation, which can be found at shallow depths of up to 2 metres.

These can provide concentration of up to 7% v/v by volume in certain soils (silty clays).

Borehole logs for piezometers installed at the site (LG1-LG7) indicate the presence of silty

clays. Other sources of Carbon Dioxide at greater depths may arise from the action of acidic

water on limestone rocks.

IBR0078/Reports/AER 2008

Issue Date: April 2009

Status: Final

14

An active landfill gas collection and flaring system has been installed and has been commissioned.

5.14 DUST MONITORING

Dust monitoring was carried out on three occasions during this monitoring period. Table 6 details the results of the dust monitors installed on site. The waste licence requires dust deposition limits to be no more than 350 mg/m²/day. The results are all below the required limit of the licence requirements except in June in DG4, which exceed the licence requirements. Capping works at the site were completed in 2007. No complaints in relation to dust were recorded in this monitoring period.

Table 6 Results from Dust Monitoring Analysis, Drogheda Landfill Site (mg/m²/day)

Sampling	DG1	DG2	DG3	DG4
Period	(mg/m²/day)	(mg/m²/day)	(mg/m²/day)	(mg/m²/day)
06/06/2008				
07/07/2008	76.8		98.8	1231.3
30/07/2008				
28/08/2008	107.3	56.8	14.3	
01/12/2008				
30/12/2008	47		5.7	7.4

5.15 METEOROLOGICAL MONITORING

A summary of meteorological monitoring for the reporting period is presented in Table 7.

Table 7 Summary of Meteorological Monitoring for the Reporting Period

Total r	ainfall	in mill	imetres	for Du	ıblin A	irport							
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2008	97.4	14.7	101.8	27.6	32.7	76.4	111.4	189.9	114.1	92.5	44.7	39.4	942.6
mean	69.5	50.4	53.5	51.1	54.8	55.8	50.0	71.1	66.4	70.1	64.3	75.8	732.7

Mean	temper	ature i	n degre	es C. 1	for Duk	olin Air	port						
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2008	6.4	5.8	6.0	7.6	11.6	12.8	14.8	15.2	12.4	8.9	6.9	4.4	9.4
mean	5.0	5.0	6.3	7.9	10.5	13.4	15.1	14.9	13.1	10.6	7.0	5.9	9.6

6.0 **VOLUME OF LEACHATE PRODUCED**

The site was permanently capped during 2007 except for an area along boundary of the site (approximately 3,000m²). No leachate is collected from the facility. A water balance calculation for 2008 is presented in Appendix F. Infiltration in restored areas would be in the range of 2-10% in the worst case scenario for a geosynthetic clay liner cap. This estimates the leachate production for 2008 will be in the range of 2,781 m³ at 11,076 m³.

7.0 REPORT ON RESTORATION

Phase 1 of the Restoration Capping Works for Drogheda Landfill Site has been completed satisfactorily in accordance with the contract specification, the licence conditions and EPA correspondence Ref W0033-01/AK17EM. The CQA report has been completed and is available on site for inspection.

8.0 SITE SURVEY SHOWING EXISTING LEVELS OF THE FACILITY AT THE END OF THE REPORTING PERIOD

A topographical survey was undertaken at the site in 2007 following the completion of Phase 1 restoration. This survey was submitted to EPA in December 2007.

9.0 ESTIMATED ANNUAL AND CUMULATIVE QUANTITIES OF LANDFILL GAS (LFG) **EMITTED FROM THE SITE**

A 750m³/hr flare has been installed at the facility. Field balancing is undertaken at the facility as required. The average flow rate from the flare is approximately 240m³/hr at 24% methane.

Status: Final Issue Date: April 2009

Condition 7.1 of Waste Licence W0033-01 notes that no specified emission from the facility shall exceed the emission limit values set out in Schedule G. There is however no reference made to emissions from the landfill gas flare in Schedule G. In the absence of any licence limits for emissions to atmosphere from the flare unit in Waste Licence W0033-01, monitored emissions have been compared to guideline values given in the *TA Luft: Technical Guidelines for Air Pollution Control (TA Luft)*, 2002. All measured parameters were found to be below the relevant guideline values given in *TA Luft*, 2002.

10.0 ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMISSIONS TO GROUNDWATER

As previously stated in 6.0 a water balance calculation has been carried out and is presented in Appendix F. The estimated annual leachate production for 2008 will be in the range of 2,781 m³ and 11,076 m³.

11.0 MONTHLY WATER BALANCE CALCULATION AND INTERPRETATION

A monthly water balance calculation has not been carried out as the site is closed. Refer to Section 6.0.

The meteorological data used in the calculations are from Dublin Airport. Rainfall can vary significantly over short distances and therefore the data may have resulted in the under/over estimation of the leachate production.

12.0 REPORT ON ENVIRONMENTAL MANAGEMENT PROGRAMME

The Environmental Management Programme (EMP) for the facility was updated in 2007 to take into consideration works undertaken at the site. This has been forwarded to the OEE under a separate cover.

13.0 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS FOR THE FORTHCOMING YEAR

Objectives and targets undertaken in 2008 for Drogheda Landfill Site were as follows:

Completion of a compactor at the site

Objectives and targets to be undertaken in 2009 for Drogheda Landfill Site are as follows:

Completion of a canopy for WEEE goods

RPS

Issue Date: April 2009

14.0 FULL TITLE AND A WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY THE LICENSEE IN THE YEAR, WHICH RELATES TO THE FACILITY OPERATION

The Environmental Management System (EMS) for the facility was updated in 2007 to take into consideration works undertaken at the site. This has been forwarded to the OEE under a separate cover.

15.0 REPORTED INCIDENTS AND COMPLAINTS SUMMARIES, CORRESPONDENCE TO/FROM EPA

No complaints or incidents were reported to the EPA during the monitoring period. One site inspections were carried out in 2008. A number of observations were noted in the site inspections.

Table 8 Summary Audit Observations noted during Audits/Landfill Site Inspections undertaken during the Reporting Period by EPA

Date and	Summary of Inspection Report/Audit	Correspondence to EPA
Reference		
13/10/2008 W0033/01/08/ S117EM Date of Inspection	Date of Inspection 05/09/2008 Inspection observations 1. Landfill Gas Collection System. 2. Waste Deposited Outside the Facility Boundary. 3. Road sweeper Waste Acceptance and handling Area	Correspondence DBC 13 th December 2007. Correspondence DBC 30 th July 2008.

RPS

16.0 REVIEW OF NUISANCE CONTROLS

16.1 LITTER

As the facility is currently not taking in waste for disposal there is no windblown litter arising from active working faces and so there is no requirement to remove and dispose of waste on a daily basis.

16.2 BIRDS

As the facility is not operational, and all areas formerly used for placement of municipal waste have been covered by clay and topsoil materials, there is no incidence of scavenging birds.

16.3 PEST CONTROL (FLIES AND VERMIN)

Bate traps are positioned around the Civic Waste Facility.

The bait traps are checked weekly and topped up with poison if necessary.

16.4 ODOUR

The occurrence of odour is significantly reduced as the facility is closed. An active landfill gas collection and flaring system has been installed. This was commissioned in May, 2006.

17.0 REPORT ON FINANCIAL PROVISIONS MADE UNDER THIS LICENSE, MANAGEMENT AND STAFFING STRUCTURE OF THE FACILITY AND A PROGRAMME FOR PUBLIC INFORMATION

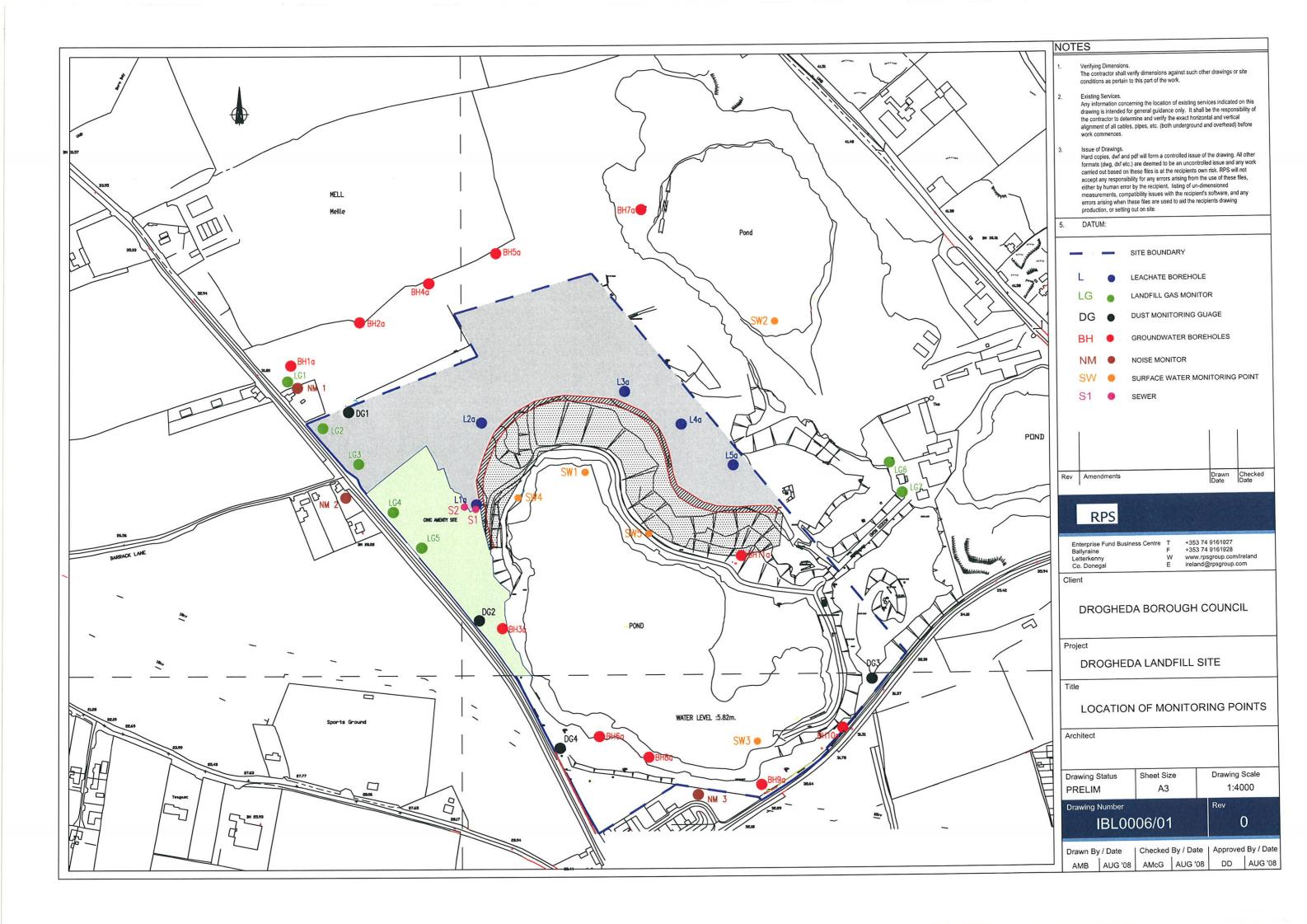
The management and staffing structure for the facility is as follows:

Borough Engineer (Dermot Agnew) Senior Executive Engineer (Padraig Judge) Assistant Engineer (Patrick Rodgers) Landfill Civic Waste Facility Mr William Martin (General Overseer) Ms Imelda Smith (Manager)

MANAGEMENT STRUCTURE AT DROGHEDA LANDFILL SITE

The public information programme is provided in the Environmental Management System for the site.

18.0 PRTR REPORTING


Under EPA licensing and following the coming into force of the PRTR Regulations on 22 March 2007, there is now an obligation on all EPA-licensed facilities, and on operators in certain other industrial sectors, to make returns, in the form and content specified by the EPA, of their annual Releases (emissions) and Off-Site Waste Transfers for each calendar year. PRTR reporting was undertaken for 2008. A copy of the PRTR EPA returns worksheet is provided in Appendix G.

RPS

APPENDIX A

DRAWINGS

APPENDIX B GROUNDWATER RESULTS

								Š		50000	MUWALE	Drogneda Landfill Site Groundwater Quality							
Mentioning Doint																			
Date Collected		31-Jul-07	28-Aug-0	31-Jul-07 28-Aug-07 25-Sen-07 24-Oct-07 28-Nov.07 18-Dec-07	24-Ort-07	28-Nov.07	18-Dec-07	22, 12m, 08 26, Coh, 09 10, Mar. 09	26 Eak no		20 Apr 00 27 May 00					X 20			
Alkalinity	mg/l CaCO3							20			360		20~UU-02	31-Jui-36 27-Aug-08		30-Sep-us	ZG-OCT-08 Z	ZP-NON-02	16-Dec-08
Ammonia	mg/l N	20.0	0.07	0.06	<0.03	0.03	<0.03	<0.03	<0.03	0 03	000	0 03	50.03	0.43	90.0	200	200	200	60 07
Barium	l/bn	58.7	58.3	<50	<50	nu u	-\$50	- C50	\$50	250	200	1	20.05	250	9.50	20.0	# 150.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500	3.5
B.O.D.	mg/1 02										3	3	3	*		3.10	66.5	3	***************************************
Boron	l/gu										<50								
Cadmium	l/gu	<0.10	<0.10	<0.10	0.2	<0.10	0.4	0.4	9.0	0.5	03	0.3	11	5.0	40	0.0	04.02	20	0.4
Calcium	mg/I Ca							;	1		135.57	}	-	2	r.	4	2		t S
C.O.D.	mg/I 02		ļ																
Chloride	mg/I CI	25	24	29	30	30	33	32	30	32	28	28	36	33	35	30	28	32	31
Chromium	hg/l	<1	⊽	۲۷	2.3	۸1	2.4	٧	⊽	3.5	٧	2.4	11.4	٧	₽	7	⊽	! ₹	₹
Conductivity	µS/cm @ 25	710	675	069	684	727	1577	816	840	929	725	716	824	765	760	752	709	812	796
Copper	l/gr/										4								
Cyanide	l/6m										<0.05								
Depth	ш	21.4	24.1	27.1	23.1	24.6	24.3	25.1	24.6	24.3	24.4	24.1	23.4	24	24.4	24.8	Шu	24.8	24.3
D.O.	% Saturation	99			53			20			45			34			47		
Faecal Coliforms	No/100 mi										0				-			-	
Fluoride	mg/l										<0.150								
Iron	l/6n	396.4	357.7	354.5	308.8	291.2	236	186	285	293.3	212.5	376.6	375.3	262.1	292.6	245.5	329.2	220.4	180.1
Lead	l/6rl	3.4	2.8	2.2	2.6	2.8	۲۷	۲	3	2.5	2.7	4.4	4.6	3.2	5	3.1	5.6	2.8	2
Magnesium	mg/I Mg										9.75								
Manganese	l/Brl	254.9	64.2	26.5	31.7	39.8	54.4	27.1	91.3	9/	58.2	70.9	255.4	119.1	93.4	40.6	70.8	66.4	30.7
Mercury	l/grl										<0.10								
Nickel	µg∕l	26.2	4.4	5.8	5.8	7.5	13.1	10.6	13.3	13.1	6	8.4	38.3	11.3	9.4	5.5	6.5	10.8	10.6
Nitrite	mg/i N	0.018	0.011	0.014	0.011	0.013	0.004	0.007	900.0	0.007	0.019	600.0	0.004	0.024	0.149	0.01	0.01	0.003	0.003
o-Phosphate	mg/i P										0.03								
ЬH		7.1	7.0	7.1	7.2	7.2	7	6.9	6.9	7	_	7.2	6,9	7	7.2	7.1	7.2	6.9	7.1
Phenoi	mg/il	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.03	0.02	<0.01	<0.01	<0.01	眶	0.03	<0.01	0.03	<0.01	
Potassium	mg/l	3.95	2.69	3.36	4.19	4.83	7,52	6.33	6.6	6.72	4.92	4.04	6.59	5.34	5.72	3.83	3.41	6.76	6.24
Residue on Evaporation	l/gm	_									497								
Sodium	mg/l	14.46	15,31	14.46	16.49	19.08	23.76	19.57	18.82	20.98	16.44	14.21	18.55	16.52	17.76	16.69	16.28	17.81	18.34
Sulphate	mg/I SO4										20.9								
Тетр	၁	19.6	15.0	10,0	12.6	12	11	6	£	13	12	mu	15.6	15.5	14	13	8.3		9
Time sampled		11.15	11.20	11.35	11.25	10	11.55	nt	11.35	11.3	11.3	11.15	11.15	11.1	11.25	11.35	11	11.3	10.55
Total Coliforms	No/ 100 mf										36								
T.O.C.	l/bm	2.3			<1.5			1.7			2.9			1.7			<1.5		
T.O.N	N I/Sm	2.95	1.96	2.34	2.95	3.41	5.29	4.7	4.88	4.46	3.38	3.31	5.56	4.3	4.01	2.7	2.27	5.1	4.31
Total S Solids	mg/l															, ;	,		* 00
Zinc	µg/l	9.9	16.2	10.7	38.3	31.7	32.6	30.2	23	29.8	25.3	6.8	59.4	23.4	29.3	7.77	20.3	23.6	7.87

							•	Sicae Earlain Sice Gloundwater Quality			7	uamy							
Monitoring Point:										вня									
Date Collected		31-Jul-07	7 28-Aug-0	31-Jul-07 28-Aug-07 26-Sep-07 24-Oct-07 28-Nov-07 18-Dec-0	24-Oct-07	28-Nov-07	1	22-Jan-08 26-Feb-08		8	29-Apr-08 27	27-May-08 26- 1111-08		34-141-08	PZ-Aug-DR	SO. Sen Ja	30. Sep. 08 30. Oct 08 25. Nov. 08 15. Dec. 08	SC.VON.B	16-Der
Alkalinity	mg/I CaCO3						\top				368	2 (200	200		
Ammonia	Mg/I N	60.0	90.0	<0.03	<0.03	<0.03	0.06	0.03	<0.03	<0.03	<0.03	0.03	<0.03	0.04	0.04	<0.03	<0.03	0.04	<0.03
Barium	l/Bn	61.4			64.5			65		-	58.8	}		63.7			65.6		
B.O.D.	mg/f 02					 				-	}		T				2		***************************************
Boron	l/gu										<50		-				-		
Cadmium	l/bri	<0.10			<0.10	 		<0.10		+	<0 10 ×			0,40			<0.10 <0.10		
Calcium	ma/f Ca						+			-	140.69			2			2		
C.O.D.	ma/f O2										200								
Chloride	mg/f Ci	12			13			17			18		T	2			18		
Chromium	1/6/1	۷			2.5			3		-	 			V			2 ₹		
Conductivity	µS/cm @ 25	644	899	676	2002	826	737	654	651	652	691	726	760	752	727	740	737	754	742
Copper	l/Brl	-						<u></u>			3.2								
Cyanide	l/bu										<0.05								
Depth	E	22.5	26.2	26.5	24.1	25.2	27.6	24.2	24.3	25.4	24.2	24.8	14.9	29.9	24.7	24.2	mu	22.8	22.8
0.0.	% Saturation	74			46			20			28			48			39		
Faecal Coliforms	No/100 mi									-	-						-		
Fluoride	mg/l										<0.150								
ron	l/grl	227.1			242.6			165			192			160.9			157.3		
ead	µg/l	3.0			2.6			۲			3.6			2.3			⊽		
Magnesium	mg/i Mg										10.77								
Manganese	l/grl	28.1			17.6			7.5			35.5			37.5			7.5		
Mercury	1,6/1										<0.10								
Nickel	hg/l	2.5			<1			<1				L		<1		-	۲,		
Nitrite	N I/bu	0.015			0.007			0.008			0.007			0.008			0.003		
o-Phosphate	mg/I P										0.04								
Hd		7.2	7.0	7.0	7.1	7.1	7.2	7	7.1	7.1	7	7	6.9	7	7	7	7	7	7.1
Phenol	mg/l	<0.01			<0.01			0.03			<0.01			0.01			0.03		
Potassium	mg/l	2.47			2.72			2.82			2.88			2.72			2.8		
Residue on Evaporation	1 mg/l										992								
Sodium	l/6m	8.66			10.67			10.35			11.08			11.49			10.89		
Sulphate	mg/I SO4										21.5								
Тетр	ပ္	18.7	14.0	0.6	12.3	12	11	6	11	12	12	ш	14.8	15.6	15	13	8.6	=	<u>- ا</u> ز
Time sampled		11.30	11.45	11.50	11.40	10.2	12.15	ŧ	11.5	11.5	11.5	11.35	11.4	11.35	11.45	11.5	11.2	11.45	11.2
Total Coliforms	No/ 100 ml	7.2							-	-	24								
T.O.C.	l/gm	2.00			3.5			4.4			2.9			2.7			2.5		
T.O.N	mg/! N				2.39			1,42			2.22			3.02			2.52		
Total S Solids	mg/l																		
Zinc	l/grl	4.2	 <1		12.2			6.6		_	9.7			8.8			12.5		

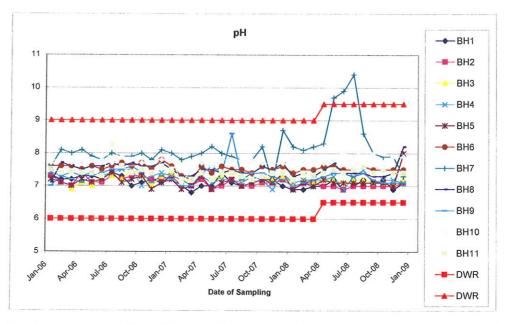
Monitoring Point:										S.Ha									
Date Collected		31-Jul-0	17 28-Aug-C	77 26-Sep-0	31-Jul-07 28-Aug-07 26-Sep-07 24-Oct-07 28-Nov-07 18-Dec-07	28-Nov-07	18-Dec-07	22-Jan-08 26-Feb-08	6-Feb-08 1	19-Mar-08 29-Anr-08 27-May-08 25-1:10-08	9-Anr-08 2	7-May-08 2		24 1.1 00	24 ful 00 27 Aug 00	100 000 00	2 00 100 00	1 200	200
Alkalinity	mg/I CaCO3										304	200		on-inc-ic	on-fine-17	20-26p-00 20-001-00 70-4004-00 10-Dec-00	7 C-120	00-AON-0	290-01
Ammonia	Mg/I N	0.04	0.07	<0.03	<0.03	<0.03	<0.03	90 0	<0.05	<0 US	3	50.0	50.05	0.05	90 0	20.07	30.0	200	50
Barium	l/bn	<50			<50			53		+	250	3	3	3,0	8.5	20.02	0.03	0.04	30.02
B.O.D.	mg/I 02							3			3			3	-		4:		
Boron	l/bri										68.4			-			***************************************		
Cadmium	l/bri	<0.10		-	<0.10		<u> </u>	<0.10			20.00			0,07			24.07		
Calcium	mg/l Ca							2 0			140 98			2			2.5		
C.O.D.	mg/I 02						1				00.01						***************************************		
Chloride	mg/! CI	30			34			36		-	40	-		36			40		
Chromium	1/61	2.7			3.1			7			₹		İ	₹			2 2		
Conductivity	µS/cm @ 25	899	765	781	746	797	791	799	787	824	830	864	813	805	805	824	812	833	820
Copper	l/grl							ļ			3.6								
Cyanide	mg/l										<0.05								
Depth	ш	27.0	29.0	28.7	26.8	27.9	28.9	25.1	27.9	26.3	29	28.3	28.7	28.7	28.4	26.8	28.3	28.8	28.9
D.O.	% Saturation	92			62			58	-		61			57			61		i
Faecal Coliforms	No/100 ml										0						-		
Fluoride	mg/i										<0.150								
ron	l/6rl	346.0			204.0			309.5			284.7			174.2			313.9		
Lead	101	7.8			2.2			3.2			4.4			2.5			3.6		
Magnesium	mg/l Mg										8.73								
Manganese	1,61	66.3			15.0			17.4			33.7			32.7			28.1		
Mercury	1/6/1										<0.10								
Nickel	l/Brl	2.9			٧			۲۷			۲			₽			₹		
Nitrite	mg/I N	0.007			0.005			0.023			0.012			600.0			0.004		
o-Phosphate	mg/I P		_								0.02								
H	;	7.5	7.2	7.2	7.3	7.2	7.3	7.1	7.2	7.1	7.2	7.2	7.1	7.2	7.2	7.1	7.1	7.1	7.2
Phenoi	mg/I	<0.01			<0.01			0.02		-	<0.01		 	<0.01			0.03		
Potassium		17.02			23.26			28.12			28.4			23.97			25.41		
Residue on Evaporation	_										557	••••							***************************************
Sodium	mg/l	15.31			20.09			22.14			21.6			19.92			19.54		
Sulphate	mg/i SO4	,									81.7								
lemp	ပ္	14.0	13.0	10.0	11.4	12	11	9.1	13	12	14	13	13.5	12.1	14	13	9.8	11	2 5
іте затріед		10.30	13,35	13.20	14.00	12.15	13.4	Ĕ	13.3	13.3	74.2	13.2	13.3	4	13.15	13.15	13.3	13.05	17.7
Total Coliforms	No/ 100 ml										133								
T.O.C.	l/gm	3.3			1.8			3.5			1.8			2			1.7		
T.O.N	Mg/I N	4.57			5.06			4.85		_	2.67	1		4.07			4.29		
fotal S Solids	mg/l						-							,				-	
Zinc	l/g/l				12.5			15.6	1		14.8			10.9			13.3		

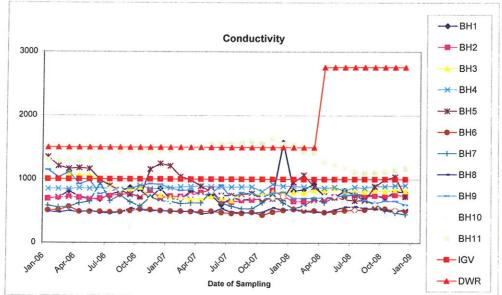
																i .			
								Drogheda	Drogheda Landfill Site Groundwater Quality	te Ground	fwater Qu	ality							
Monitoring Point:									ū	BHA									
Date Collected		31-Jul-0	31-Jul-07 28-Aug-07		25-Sep-07 24-Oct-07	28-Nov-07 18-Dec-	Ö	22~Jan-08 26-Feb-08		85	29-Apr-08 [27-May-08 26-Jun-08 31-Jul-08 27-Aug-08 30-Sep-08 30-Oct-08 26-Nov-08 16-Dec-08	May-08 26	Jun-08	1-Jul-08 27	'-Aug-08 3	0-Sep-08	0-Oct-08 26	-Nov-08 16	-Dec-08
	mg/I CaCO3								_		336								
8	N I/6m	0.22	0.08	0.03	0.04	0.19	0.26	0.03	-	0.04	0.04	0.11	<0.03	0.11	0.11	0.03	0.04	0.17	0.07
Barum	ug/i	050	57.1	<50	<50	Ē	<50	-\$0 	×50	+	+	+	& &	\$20	\$20	- 220	<50	\$2 20 20 20 20 20 20 20 20 20 20 20 20 20	
	mg/l Oz		_				-		+		02/	+		+					
Cadmin	180		C	× c	0.5		0,4	-0.40	07.07	60	200	0		2 0		2,5	44	9 0	9
Calcium	mg/l Ca	2	2	t S	2.0	2.5	6.1	2		\dagger	162 99	0.2	-	C.9		2 '0	20.75	C.2	0.0
	mg/I O2										2	-			-		***************************************		
	mg/l Ci	55	49	50	54	59	99	48	46	-	47	47	36	56	59	53	49	58	52
	1/6п	<.ا	3.5	₹	۷.	۲	3	۲	3.2	_	7.2	3.5	11.4	<50	5.8	۷,	2.4	3.9	٧
Conductivity	иЅ/ст @ 25	876	878	878	810	922	892	892	882	879	864	877	824	876	863	968	890	305	905
Copper	µ9/1										5.8					- 1			
Cyanide	mg/l	0.70	000	2	0	3			0 10	+	40.05				0,0	1.00			6
D.O.	M. Saturation	78	7.07	R.C.7	7.67	24.0	7.07	38	7.07	24.0	74	47	43,4	101	6.C2	707	E3 63	Z0.4	8.07
Faecal Coliforms	No/100 mi							 }			0	-					3		
Finoride	mg/l							Н	Н	Н	20							H	
Iron	ng/l	594.6	2167.7	628.4	302.1	299.8	1557.3	229.5	2	_	\dashv	.3	375.3	345	491.3	359.7	530	ωį	1004.6
Lead	ug/l	₹	₹	₹	₹	₹	۶	<u>~</u>	- V	3.2	13 34	₹	4.6	7	7	₹	V	√	⊽
Mandanese	Sim Maria	277.6	908.2	179.9	155.6	234 9	796.9	57.4	475 B	269.5	+	1432 1	255.4	179.7	290.1	152.8	220.8	566.8	467.1
Mercury	l/6rl	0.74	300.5	2,0,0	200	2.50	20.00	5		+-	╅┈	+	+	7.6.1	700.	0.50	2000	0.00	
Nickel	µg/I	8.1	22.9	7.5	5.5	6.4	27	<1	9.6	11.9	H	80.1	38.3	9.1	15.8	3.3	4.1	12.1	12
Nitrite	mg/! N	0.094	0.074	<0.003	0:030	0.045	960.0	0.016	-	+	0.013	\dashv		0.039	0.221	0.036	0.008	0,016	0.009
o-Prosphate	mg/l r	7.2	7.4	7.3	7.0	9	7.4	7.1	+	+	+	73		7.3	7.5	7.1	7.2	7.2	7.1
Phenoi	ma/l	<0.01	11 190	<0 O	<0.01	\$0.0×	<0.0	0.03	0.02	<0.01	╁┈	<0.01	<0.01	uu u	0.03	<0.01	0.03	<0.01	
Potassium) DE	104	1 02	113	1.14	133	1 32	1.27	\vdash	╀┈	╁	101	6.59	1.08	1.21	1,14	1.13	1.35	1.25
Residue on Evaporation	1				***************************************				Н	\vdash	841								
		16.33	17.13	15.32	17.30	20.57	21.72	20.84	19.73	22.65	19.28	16.8	18.55	18.07	17.38	18.29	18.59	20.19	22.33
ıte	mg/I SO4		,			,	,		Ç	+	47.4		, i	7 7 7	**	4,0	c	7.7	ç
	ဌ	19.1	14.0	10.0	12.3	13	10.	4. 4	2 ,	707	12 45	11 55	13.0	12	12.05	12.4	11 45	12.05	11.4
Total Coliforms	No/ 100 ml	11.40	67.73	12.10	12.00	=	C#.7	=				3	2	7	20.5		2		
T.O.C.	l/bm	3.0			1.8			1.5			2.1	L		1.6			<1.5		
T.O.N	M I/bm	5.73	5.63	6.01	5.85	6.12	5.81	5.63	5.57	5.18	5.62	5.66	5.56	5.76	4.94	5.47	5.47	5.39	4.99
Total S Solids	mg/l		7.8.7	**	12.1	Ÿo	348	2.5	113	14.8	33	100.5	59.4	13.7	24.5	5.1	6.5	15.8	15.6
Z.III.	ng.										1								

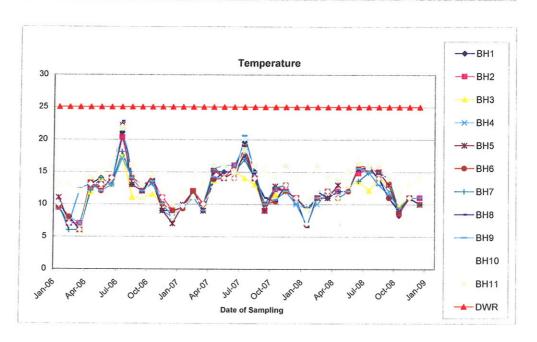
								Drogheda	Drogheda Landfill Site Groundwater Quality	ite Groun	dwater Q	uality							
Monitoring Point:										BHS									
Date Collected		31-Jul-0	7 28-Aug-0	7 26-Sep-0	31-Jul-07 28-Aug-07 26-Sep-07 24-Oct-07 28-Nov-07 18-Dec-07 22-Jan-08 26-Feb-08	28-Nov-07	18-Dec-07	22-Jan-08 2		-Mar-08 2	9-Apr-08 2	19-Mar-08 29-Apr-08 27-May-08 26-11m-08	-lin-08	24. hil-98 27. Aug-08		30. Son 08 3	30 Sep 08 30 Oct 08 26 Nov 08 16 Dec 08	Nov. 00	90 000
Alkalinity	mg/f CaCO3			-							788	3		7		00-020-00	00-100-0	On-AON-	07-747-0
Ammonia	Mg/f N	3.71	3.89	0.20	3.32	2.96	2.82	7.35	10.94	5.36	3,63	2.89	2.49	2.59	2.09	5.88	8 18	9 58	<0.03
Barium	ug/l	<50			<50			76.2		-	250) 			3	63	25.5	3
B.O.D.	mg/i O2									-	+			3			3		
Boron	l/Brl									-	125.3			\dagger					
Cadmium	l/Brl	0.4			<0.10			0.5			<0 10 <0 10			0,00			90		
Calcium	mg/I Ca							+			100.45	-		2	-		0.0		
C.O.D.	mg/I 02									$\frac{1}{1}$									
Chłoride	mg/I CI	54			55			89		-	52			47	-		- 62		
Chromium	l/grl	5.9			9.9			5.6			9			: ⊽	-		į v		
Conductivity	µS/cm @ 25	744	762	780	693	969	969	952	1068	884	743	715	687	664	670	884	800	1038	775
Copper	l/gu										2.5			+	;		200	3	2
Cyanide	ma/l	ļ						$\frac{1}{1}$			<0.05				T		-		
Depth	ε	26.4	28.0	28.7	27.2	28.1	27.2	27.9	26.1	26.2	25	26.3	28.5	26.6	27	25.8	ac	25.7	25.8
D.O.	% Saturation	39			48			35		-	44	+		38	1	2	34	-	20.04
Faecal Coliforms	No/100 ml									-	0	+		3			;		
Fluoride	mg/i										<0.150								
Iron	l/g/l	319.7			166.5			315,6			171.2			106.5			314		
Lead	110/1	3.0			!>			6.8		-	₽			۲			5.2		
Magnesium	mg/i Mg										13.56					_			
Manganese	l/Brl	263.8			73.9			463.5			173.8			54.4			524.9		
Mercury	1/6/1										<0.10								
Nickei	ng/i	11,4			8.4			30.3			9.1			5.5			31		
Nitrite	Mg/I N	0.026			0.013			0.309			0.02			0.013			0.029		
o-Phosphate	mg/1 P									L	0.04	_							
ЬН		7.2	7.0	7.1	7.2	7.1	7.4	6.9	7.1	7	7.2	7.1	7.1	7.1	7.1	7.1	7.1	7	8
Phenol	mg/l	<0.01			<0.01			0.02			<0.01			<0.01			0.03		
Potassium	mg/l	6.28			6.39		••••	12.51			96.9			4.46			11.73		
on Evaporation	mg/l										431								
Sodium	l/bul	26.98			28.60			45.36			28.07			22.72			44.36		
Sulphate	mg/I SO4										19								
Temp	၁	18.8	14.0	9.0	12.8	12	11	9.2	11	11	13	mu	15.5	15.5	15	13	8.9	11	10
Time sampled		12.30	12.30	12.20	12.20	11.2	13.1	nt	12.3	12.35	12.45	12.15	12.35	12.25	12.2	14.1	12.1	12.3	12
Total Coliforms	No/ 100 mi										9						·		
T.O.C.	l/bul	3.0			1.6			3.4			<1.5			<1.5			က		
T.O.T	M I/gm	7.50			66.9			10.75			10.31			6.57	us de la constante de la const		9.77	+	
Total S Solids	l/6m													1					
Zinc	l/grl	2.4	3.3	14.7	8.0			33.8		_	4.1			5.9			38		

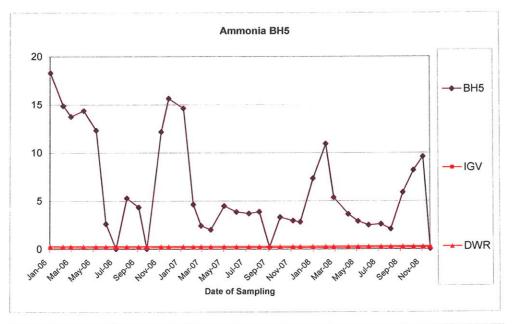
Monitoring Point:										SH8									
Date Collected		31-101-0	7 28-Aug-0	7 25-Sep-07	31-Jul-07 28-Aug-07 25-Sep-07 24-Oct-07 28-Nov-07 18-Dec-07 22-Jan-08 26-Feb-08	28-Nov-07	18-Dec-07	2-Jan-08 2		19-Mar-08 29-Apr-08 27-May-08 26-110-08 31-111-08 27 8115-08 30 Son 08 30 Oct 08 30 Nov. 08	3-Apr-08 2	7-May-08	6. hin-08	21.1.1.08	7.6.10.08	SO Con Oak	20 20 00	Se Moy 08	16 200 00
Alkalinity	mg/I CaCO3						-				162			3	S S	2	2	20 4041-03	200
Ammonia	mg/I N	<0.03	0.05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	000	<0.03	V 0 03	80.0	0 03	×0.03	\$0.03	200	<0.03
Barium	l/gu	<50	<50	<50	<50	EU.	<50	51.4	514	250 50	200	250	2020	250		250	250	7.50	20.0
B.O.D.	mg/I 02											3		;	3				
Boron	l/gu										63.4			+		+	-		
Cadmium	ua/	<0.10	<0.10	< 0 10	<0.10 <0.10	40.4	V 02	20 10	040	040	100	040	4	1	9	,	ç	070	,
Calcium	mg/I Ca				;		21.5	2	2	2	77.40		2		20.00	2	2	20.10	2
C.O.D.	mg/I O2										?								
Chloride	mg/I CI	25	26	30	38	41	48	49	49	42	64	45	64	52	75	64	53	47	45
Chromium	l/grt	۷	V	۲۷	۲	۲,	۲	۷۲	۲		₹	₽	9	₽	3.4	\ \ \	3 5	₽	₹
Conductivity	µS/cm @ 25	463	465	480	439	486	514	531	531	909	480	490	510	516	522	556	537	514	506
Copper	l/gri										2.6								
Cyanide	l/bu								-		<0.05			·	-				
Depth	E	28.4	29.0	29.4	28.7	29.3	30.1	29.6	29.6	29	29.9	28.5	28.1	28.5	28.1	28.9	53	59	28.9
D.O.	% Saturation	82			90			51	51		8			52			53		
Faecal Coliforms	No/100 ml										0	-							
Fluoride	mg/l										0.16								
ron	l/Bri	166.9	192.7	169.7	137.7	175.1	212.1	240.2	240.2	102.8	113.4	103.4	227.4	125.1	115	139.9	158.4	137.4	87
ead	l/Br/	18.0	12.7	4.9	6.0	6	9.5	9.4	9.4	5.5	9.6	4.2	17.4	8.5	11.6	6.7	6.4	7.5	₹
Magnesium	mg/l Mg										2.73								
Manganese	ng/l	48.4	56.9	8.8	16.1	35.9	35.5	36.4	36.4	6	15.6	6.1	43.4	18.6	37.9	174.2	19	16.2	9,4
Mercury	l/Bri						***************************************				<0.10					•••••			
Nickel	l/6ri	۲.	۲,	Ý	₽	2.1	2.6	2.3	2.3	<1	77	<u>-</u>	2.3	۲	۲×	¥.	1>	1 >	۶
Nitrite	mg/I N	0.003	0.005	0.003	0.005	<0.003	900.0	900'0	900.0	<0.003	9000	<0.003	900'0	0.005	7.27.0	0.055	<0.003	<0.003	<0.003
o-Phosphate	mg/i P										0.03								
표		7.5	7.5	7.4	7.6	7.5	7.6	7.4	7.4	7.5	7.6	7.6	7.5	7.5	7.6	7.5	7.5	7.5	7.5
Phenol	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	0.03	0.02	<0.01	<0.01	<0.01	шu	0.02	<0.01	0.05	<0.01	
Potassium	l/bu	7		<u>``</u>	⊽	۶	₹	1.89	1.89	۲,		۲,	۲,	۲	96.0	۲	۲	⊽	۲
Residue on Evaporation	l/b∭ u			-							289	_			-				
Sodium	mg/l	15.81	16.79	15.10	19.03	23.18	25.78	25.1	25.1	27.54	23.82	20.1	23.99	23.92	25.75	26.12	26.21	26.89	28.36
Suiphate	mg/I SO4		3								21.8								
Temp	ပ္	18.4	14.0	10.0	10.4	13	1,1	6.8	6.8	12	11	12	15.9	15.8	14	11	8.9	77	6
Time sampled		11.30	11.10	11.15	11.10	9.15	11.3	ıt.	nt	11.15	11,15	11	11	11.15	11	11.15	10.5	11.05	10,15
Total Coliforms	No/ 100 mi										22								
T.O.C.	l/bm/	<1.5			<1.5			<1.5	<1.5		<1.5			<1.5			<1.5		
1.0.N	M l/gm	1.08	1.30	1.12	0.79	0.65	0.52	0.73	0.73	1.19	1.09	6.0	99.0	0.7	0.5	0.49	0.83	0.92	0.95
Total S Solids	mg/l					***************************************		+						ļ		,		,	
Zinc	µg/I				6.0	8.6	7.3	15.5	15.5	8.3	12.4	 - -	18.1	13.9	18./	16.1	12.3	8.5	C.O

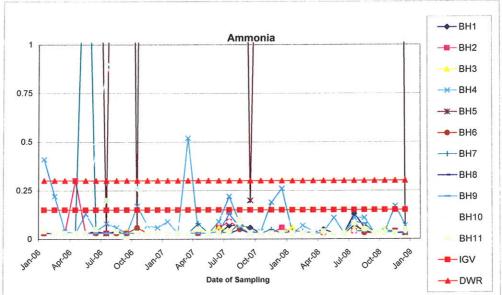
								Droghed	a Landfill	Drogheda Landfill Site Groundwater Quality	ndwater (Suality							
Monttoring Point:										50									
Date Collected		31-78-5	07 28-Aug-	31-Jul-07 28-Aug-07 26-Sep-07 24-Oct-07 28-Nov-07 18-Dec-0	7 24-Oct-07	28-Nov-07	1	22. Jan 08	26-Eah OR	10. Mar. 00 .	, 90 - 50	700	100						
Alkalinity	mg/I CaCO3	-					\neg		200	27-Aug-08	00-14-00	ci-iviay-uo ,	90-Unc-ay	33-711-08	27-Aug-08	30-Sep-08 30-Oct-08 26-Nov-08	30-Oct-08 2	6-Nov-08	16-Dec-08
Ammonia	mg/l N	<0.03	60.0	0.04	\$0 0×	0.05	50 03	80.0	200	800	8 8		100			1			-
Barium	/bn	×50			<50	3	20.07	250	5.5	0.05	50.03	0.03	×0.03	0.04	0.04	<0.03	0.04	9.0	0.03
B.O.D.	mg/I 02							3			200	+		062			950		
Boron	l/gri										250						***************************************		
Cadmium	l/gri	<0.10		-	0.2			<0.10			40 40			600			,		
Calcium	mg/I Ca										48.62	+		7.7			01.70		
C.O.D.	mg/I 02										30.01								
Chloride	mg/I CI	25			77			38			59			20			22		
Chromium	l/grl	5.0			18.1			10.1			14.7			25.1			27		-
Conductivity	µS/cm @ 25	27.2	535	539	632	754	632	543	585	691	633	737	744	764	664	647		475	3,
Copper	l/grl									2	5.1	5	*	0	100	/10	210	6/4	427
Cyanide	l/gm										<0.05								
Depth	ш	13.5	14.2	12.9	12.4	12.2	12.2	12.2	12.2	12.2	12.8	12.2	12	12	12.2	12.2	8	σ	0
D.O.	% Saturation	109			65			87			76		!	28	-	7:7	8	,	
Faecal Coliforms	No/100 ml										0						3		
Fluoride	mg/l										0.41								
Iron	l/6rl	189.0			87.0			95.7			244.7			<50			149.9		
Lead	hg/!	۲			۲>			₹			4.1			⊽			V		
Magnesium	mg/l Mg										5.14								
Manganese	l/Br/	65.6			51.2			8.7			9.66			13.2			45.3		
Mercury	119/1										<0.10								
Nickei	hg/i	2.5			2.5			۲۶			2.9			۲			۲		
Nitrite	N I/6m	<0.003			600.0			0.005			0.007			0.004			0.004		
0-Filospinate	r ige	2	100	c ?	C	ļ		4		4	0.03								
Dhand	11000	9. C	0.7	0.	0.7	1.1	0.7	8.2		2.2	8.3	9.7	6.6	10.4	8.6	89	7.9	7.9	7.3
Dotocium	200	2.0.5			40.70			20.02	1	+	70.U2			<0.01			0.03		
Residue on Evanoration	7	2		 -	10,73			18.00			79.42	+		145.08			12.12		
Sodium		11 29			23.01			12.50			41.0	+		03.00			40,		
Sulphate	ma/1 SO4				2			200			7.W	+		24.30			0.01		
Temp	ွိ	16.9	14.0	10.0	12.6	13	-	9.4	13	12	7	au.	13.6	14.9	15	14	9.1	11	10
Time sampled		12.45	13.10	12.50	12.45	12	13.4	Ħ	13.1	13.1	13.15	12.5	13	13.2	12.5	12.45	12.4	13.05	12.2
Total Coliforms	No/ 100 ml										13								
T.O.C.	l/gm	3.9			2.2			2.2			2.2			1.5			2.2		
T.O.N	N l/gm	0.26			0.82			0.33			0.71			1.29			0.24		
Total S Solids	l/gm																		
7:10			ſ																

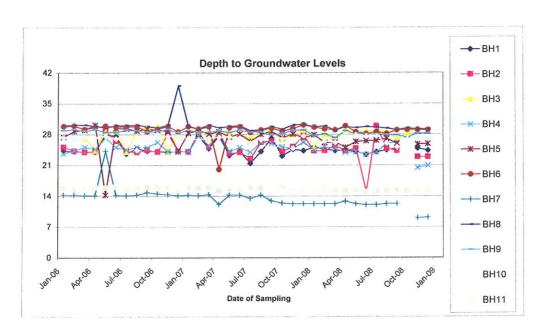

Monitoring Point:										BHB									
Date Collected		31-Jul-0	17 28-Aug-t	77 26-Sep-0	31-Jul-07 28-Aug-07 26-Sep-07 24-Oct-07 28-Nov-07 18-Dec-07	28-Nov-07	18-Dec-07	22-Jan-08 26-Feb-08		19-Mar-08 29-Apr-08 27-May-08 26-Jun-08	39-Apr-08	7-May-08	16-Jun-08	31-1408	31Int-08 274.10-08 30.Sep-08 30-Oct-08	30-Sep-08	20-5-08	26.Nov.08 15.Dec.08	18.Dec
Alkalinity	mg/I CaCO3										196				25 621	200			2
Ammonia	N I/6m	0.03	0.05	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	<0.03	<0.03	0.03	<0.0>	0 0 1	0.04	50 0×	\$0.03	0.03	50.05
Barium	l/gu	<50			<50			- 2 00			950			- 20°			\$50	3	3
B.O.D.	mg/I 02												ľ				3		
Boron	l/gri			***************************************							<50				T			•	
Cadmium	l/Brl	<0.10			<0.10			<0.10			<0.10 0.10	+	†	<0.10	<u> </u>		<0.10	***************************************	***************************************
Calcium	mg/I Ca									İ	83.58						?		
C.O.D.	mg/I 02																		
Chloride	mg/I CI	13			41			13			31	-	1	64	-		21		
Chromium	l/Brl	V			₹			7			₽			V			ū		
Conductivity	µS/cm @ 25	484	478	472	483	550	520	526	495	489	481	521	566	570	549	534	522	498	528
Copper	l/gr/										₹						-		
Cyanide	l/bu										<0.05								
Depth	E	28.8	29.1	29.7	29.2	30.1	30.3	29.7	29.9	28.9	29.7	29.5	29.7	29.6	29.3	29	29.4	29.1	29.2
D.O.	% Saturation	86			70			82			91			81			80		
Faecal Coliforms	No/100 mi										2								
Fluoride	mg/l										<0.150								
ron	µg/l	206.4			145.6			164.6			99.2			96.7			255.3		
ead	hg/l	3.6			٧			2.3			٧			₹			7.8		
Magnesium	mg/l Mg	***************************************									2.91								
Manganese	hg/l	28.0			7.9			11.4	-		10.4		***************************************	6.1			33.3		
Wercury	ng/	***************************************									<0.10								***************************************
Nickel	l/grl	۷,			V						٧			₽			7		
Nitrite	mg/! N	<0.003			0.003			0.008			0.004			0.003			<0.003		
o-Phosphate	mg/I P										<0.02								
Hd		7.5	7.4	7.4	7.6	7.5	7.7	7.3	7.4	7.3	7.5	7.7	7.4	7.4	7.4	7.3	7.3	7.4	8.2
Phenoi	₩g/f	<0.01			<0.01			0.02			<0.01			<0.01			0.03		
Potassium	mg/i	₹			₹			1.36			⊽			۲			۲		
Residue on Evaporation	n mg/i										282								
Sodium	l/bul	11.72			19.24			15.32			13.52			30.19			13.95		
Sulphate	mg/I SO4										15.6								
Temp	၁့	17.6	14.0	11.0	10.5	13	11	6.5	12	11	12	12	15.5	15.7	14	11	6	7	2
Time sampled		11.50	11.25	11.35	11.35	9.35	11.5	nt	11.2	11.4	11.4	11.2	11.3	11.45	11.2	11.35	11.1	11.2	10.35
Total Coliforms	No/ 100 ml										26								***************************************
T.O.C.	l/gm	2.1			1,6			1.5			<1.5			<1.5			<1.5	-	
T.O.N	mg/l N	0.57			0.33			26.0			0.65			0.55			1.13	-	
Total S Solids	mg/l																		
Zinc	l/grl		27.2	7.5	2.8			4.3			⊽			3.3			14.4		

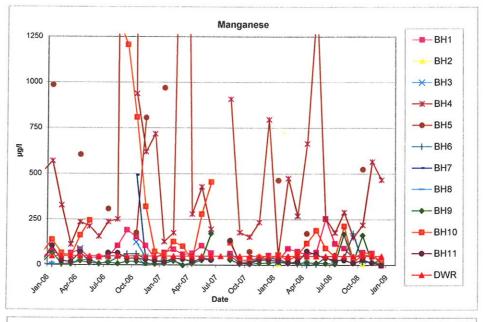

							Dro	gheda La	Drogheda Landfill Site Groundwater Quality	Groundw	ater Qual	lity						
Monitoring Point:									910									8
Date Collected		31-Jul-(77 28-Aug-0	77 25-Sep-0	31-Jut-07 28-Aug-07 25-Sep-07 24-Oct-07 28-Nov-07 22-Jan-08 26-Feb-08 19-Mar-08 29-Apr-08 27-May-08 26- Him-08	28-Nov-07	22-Jan-08	26-Feb-08	19-Mar-08	29-Anr-08	27-May-08	26. lim-08	24 101 00	27 A 22 A	00 500	20 0-4 00	00 1121	
Alkalinity	mg/I CaCO3				-					238	23 fram	200	00-INC-10	on-fina-17	on-dac-no	00-100-100-100-100-100	OF-AON-O	sn-par-ai
Ammonia	N I/gm	0.13	90.0	<0.03	<0.03	<0.03	<0.03	<0.03	0.03	200	<0.03	×0.03	800	80.0	500	60 0	× c	8
Barium	l/gu	55.9	<50	<50	<50	ш	<50	<50	250	250	550	250	250	33.5	20:02	0.63	5.0	0.03
B.O.D.	mg/I 02									3	3	3	37	2	7	200	?	
Boron	l/grl									76.5							-	
Cadmium	1/51	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0 10 <0 10	20,00	9,00	0,00	0,00	5	0.40	ç	9,00	2
alcium	ima/I Ca							2	2	120.78	20.00	20,10	21.07	4,7	2	20.12	V0.10	2
C.O.D.	mg/I 02			-						120.10								-
Chloride	mg/I CI	136	81	95	108	87	57	58	88	7.1	78	20	28	B.F.	``	2	9	cc
Chromium	l/Brt	₹	ĭ	V	۷	٧	⊽	2.4	41	V	2 5	5,2	77	8 6	1 7	200	77	3 2
Conductivity	uS/cm @ 25	269	790	777	723	782	701	700	200	743	733	755	77.0	0.0	000	, 000	7 0	7 8
Copper	l/bri							3	3	2	3	3	7,,	2/0	670	100	600	S S S S S S S S S S S S S S S S S S S
Cyanide	mg/l	-								<0.05								
Depth	ε	28.5	28.5	27.9	28.2	28.9	27.7	28.1	27.2	28.8	28.1	80	28	27.8	9.7.C	27.3	080	200
D.O.	% Saturation	107			48		96			14		2	59	2: 12	2:14	7.5	7.07	40.4
Faecal Coliforms	No/100 mi									0			3			2		
Fluoride	mg/l									<0.150								
ron	11g/l	91.1	212.3	237.9	175.7	146.2	227.3	146.3	164.7	121.2	174.7	176	129	548.7	183	468.1	136.2	165.8
Lead	110/8	<u>^</u>	4.0	2.5	∇	1>	5.2	₹	⊽	1.4	2.7	2.3	₽	5.3	₹	6.4	۲۷	₹
Magnesium	mg/i Mg									5.87								
Manganese	1/611	96.9	29.6	9.8	5.9	11.7	17.5	11.5	11	14.9	12.2	10.7	7.4	170.1	18.9	164.2	14.3	27.2
Mercury	ng/!	_								<0.10								
Nickel	11g/l	8.7	<u>۲</u>	3.7	2.2	2.9	۲	₹		₹	۲	2.3	2.4	12.7	٧	9	Į,	⊽
Nitrite	N l/gm	0.010	0.004	0.004	0.003	<0.003	0.007	<0.003	0.003	0.004	<0.003	<0.003	<0.003	0.019	0.005	0.005	<0.003	0.003
o-ruospnate	mg/i P		i	-						<0.02								
		8.6	7.2	7.4	7.4	7.3	7	7.1	7.2	7.3	7.4	7.4	7.3	7.4	7.2	7.1	7.1	7.1
Phenot	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	0.02	0.01	<0.01	<0.03	<0.01	mu	0.03	<0.01	0.02	<0.01	
Potassium	- 1	13.92	1.62	2.82	2.72	2.05	٧	۲	1.34	1.17	۲	1.25	2.13		۲	<1	<1	٧
Residue on Evaporation	7	1								488								
Sodium	mg/l	68.71	26.86	33.83	42.44	42.56	8.29	11.09	24.68	22.52	21.71	26.9	38.05	8.91	8.14	9.55	9.48	7.29
Sulphate	mg/I SO4									15.7								
Тетр	ပ္	20.6	15.0	10.0	10.7	12	6.9	13	12	#	12	15.5	15	13	11.5	9.5	11	1
Time sampled		12.15	11.45	11.55	11.5	10	nt	11.5	11.55	12	11.45	11.5	12.05	11.5	11.55	11.35	11.4	-
Total Coliforms	No/ 100 mi									5								
T.O.C.	mg/i	11.2			2.4		<1.5			2.2			1.9			<1,5		
N.O.	mg/i N	(<0.05	0.13	<0.05	<0.05	<0.05	0.15	90.0	0.11	0.12	0.14	0.11	0.12	0.13	0.12	60'0	0.05	0.1
Total S Solids	l/gm				_													
Zinc	Table							-					1			_		

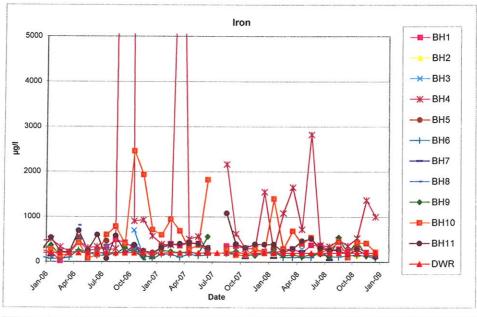

Monitoring Point:										BH10									
Date Collected		31-Juf-0	7 28-Aug-0	7 25-Sep-0	31-Jul-07 28-Aug-07 25-Sep-07 24-Oct-07 28-Nov-07 18-Dec-07 22-Jan-08 26-Feb-08	28-Nov-07	18-Dec-07	2-Jan-08 2		19-Mar-08 29-Apr-08 27-May-08 26-Jun-08	3-Apr-08 2	7-May-08		31~lui-08 27-Aug-08		30-Sep-08 30-Oct-08 26-Nov-08 16-Dec-08	30-Oct-08	6-Nov-08	fs-Dec-4
Alkalinity	mg/l CaCO3							 			140								
Ammonia	N I/6m	60.0	90.0	<0.03	<0.03	<0.03	<0.03	0.11	0.03	0.05	<0.03	0.03	<0.05	40.0	0.05	€0.03	0.04	200	0.04
Barium	l/gu	69.4	54.8	<50	62.6	E	950	<50 <50	\$20	54	80	70.3	\$50	V20	>50	<50	<50	050	
B.O.D.	mg/I 02								-				3		3	3	3	3	
Boron	l/Brl										302.2				-	***************************************			
Cadmium	na/l	<0.10	<0.10	<0.10	90	<0.10	<0.10	<0.10	<0.10	<0.10	20 10	<0.10	20,40	40.40	40.10	20.00	67 62	20.70	A 10
Calcium	ma/l Ca							2	2	2	58.76		2	2	2	2		2	?
C.O.D.	ma/I O2										2								
Chloride	mg/I CI	135	107	109	134	92	125	39	63	66	125	133	>80	92	124	118	9	76	63
Chromium	l/bri	2.3	<u>^</u>	۲	V	۲	۲	3.3	₹	3.4	₽	V	3.6	₹	2.4	⊽		v	٧
Conductivity	µS/cm @ 25	717	711	728	714	712	727	344	555	616	736	730	655	516	609	605	418	515	567
Copper	l/grl										5.4								
Cyanide	mg/l									•	<0.05								
Depth	Ε	26.0	26.8	23.5	26.9	24.8	27.6	25.9	26.4	26.1	27.4	27.8	27.5	27.5	25.9	25.1	56.9	27.1	27
D.O.	% Saturation	60			41			91			73			51			25		
Faecal Coliforms	No/100 ml										9			*****					
Fluoride	mg/l							-			<0.150								
Iron	hg/l	11114.7	273.7	154.7	151.7	287.2	210.8	1403.6	290	9,889	407.3	545	230.4	278.3	448.4	105.8	435.5	416.5	223.1
Lead	l/grd	4.4	<1	<1	2.0	₹	۲,	4.3	<1	3	2.7		<1) >	2.7	۲ ٠	2.3	3.1	۲۷
Magnesium	mg/I Mg										13,34								
Manganese	l/grl	316.8	124.0	15.4	22.5	43	36	56.9	27.1	57.1	120.3	190.1	93.8	46.1	213.8	18.3	58	29	22.8
Mercury	1/6/1										<0.10								
Nickel	l/6d	13.4	7.2	8.2	7.4	8.6	7.7	6.3	4.1	7.6	8.8	9.2	8.5	5.3	8.6	5.3	4.6	2	5.6
Nitrite	mg/i N	0.013	0.004	0.004	0.007	0.003	900.0	0.089	0.012	0.027	0.006	0.004	0.009	0.013	0.762	<0.003	0.02	0.017	0.008
o-Phosphate	mg/! P					*****					0.02								
þН		7.8	7.8	7.8	7.7	7.7	7.7	7.8	7.8	7.8	7.7	7.8	8	7.9	8.1	æ	æ	7.9	7.9
Phenol	l/bu	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	0.02	0.01	<0.01	<0.01	<0.01	шu	0.03	<0.01	0.03	<0.01	
Potassium		13.36	12.98	12.79	13.99	15.06	13.69	4.55	6.81	10.07	13.29	10.21	11.4	9.38	13.07	11.31	7.4	8.84	9.65
Residue on Evaporation	l/bm								-		470								
Sodium		70.49]70.87	71.02	74.70	76.73	77.08	27.1	41.36	66.44	69.47	56.82	64.44	45.74	67.51	59.14	34.23	45.4	57.79
Sulphate	mg/l SO4										42.9								
Temp	ပ္	20.1	14.0	16.0	14.1	13	11	7	12	12	11	13	16.8	16.5	14	15	10.4	17	2
Time sampled		12.45	12.15	12.20	12.15	10.2	12.35	nt	12.1	12.15	12.2	12.15	12.25	12.45	12.15	12.2	11.55	12.05	11,2
Total Coliforms	No/ 100 ml										33						(-	
T.O.C.	mg/l	9.5			7.0			2.2			6.7			<1.5			3.3		
T.O.T	mg/I N	0.31	0.23	0.23	0.22	0.81	0.84	0.88	1.63	1.47	0.84	0.32	0.14	0.82	0.13	0.23	0.57	0.38	0.29
Total S Solids	mg/l										,	,				,	,	0	ч
Zinc	l gu	29.5	9.7	5,4	6.4	3.6	۷(10.7	3.4	7.1	6.7	<u>۲</u>	10.9	3.5	8.2	2.1	11.5	5.9	י

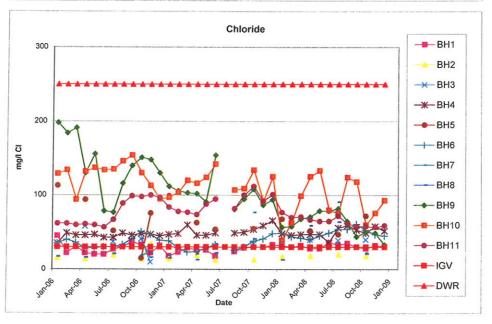

								Drogheda Landfill Site Groundwater Quality	Landfill Si	te Ground	fwater Q	uality							
Monitoring Point:									ă	DUARA									
Date Collected		31-Jul-0	7 28-Aug-0.	7 25-Sep-0	31-Jul-07 28-Aug-07 25-Sep-07 24-Oct-07 28-Nov-07 18-Dec-07 22, 12p-08 26-Eeb-08	28-Nov-07	18-Dec-07 2	2- Ian-08 25		2	20 Ac. 00 2	7 BB AG							
Aikalinity	mg/l CaCO3			-				200		_	7 00-10-00	21-may-vo 26-Jun-u8	20-unc-4:	7 201-08 Z	31-Jul-08 27-Aug-08 30-Sep-08 30-Oct-08 26-Nov-08 16-Dec-08	0-Sep-08	0-Oct-08 2	6-Nov-08	6-Dec-08
Ammonia	Mg/∤ N	<0.03	0.10	0.03	<0.03	<0.03	<0.03	+	<0.03	0.03	727	60 07	500	9	100	000			
Barium	ug/1	53.0	62.7	<50	58.2	mu	<50	55.5	2050	250	100	50.0	50.05	0.00	0.03	50.03	<0.03	0.03	0.05
B.O.D.	mg/I O2							2	2	3	3	7		8	OF.	₹	0 \$ 0	₽ 200	
Boron	l/gri									1	7 000	+			\dagger				
Cadmium	l'ad/	<0.10	<0.10	<0.10	<0.10	40.40	01.07	0,0	+	+	309.7			!					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Calcium	ma/I Ca			2	2		2	70.10	20.70	2002	QF.10	<0.10	<0.10	<0.10	40.10 	\$ 0.10	6 6 6	<0,10	0.10
C.O.D.	mg/I 02										15.00		1			-			
Chloride	mg/I Cl	88	82	100	112	65	101	-22	202	7.1	7.3	190	9	,	+	5	-	1	
Chromium	l/6rl	2.8	3.3	V	2.3	22	3.5	7. 7.	2.5		36	9.7	CG S	7/	70	20,	82	/4	gg (
Conductivity	uS/cm @ 25	1555	1576	1600	1561	1650	1549	1534	7777		27.7	2007		nc/	0.0	- 4	4.4	3.5	3.5
Copper	l/ori					222	2	3	*	+	6/7/	7777	\$/E	275	3601	1110	1130	1149	1170
Cyanide	ma/i										4.4	+	1	+					
Depth	E	16.0	15.8	æ	16.1	15.2	45	7 2 7	15.0	+	\$0.05			-					
OG	% Saturation	74	25		37	0.5	2	- 0	0	7.5	15.1	15.3	14.9	15	15.1	15.2	15.1	15.2	15.3
Faecal Coliforms	No./100 ml				37			89			72			83			65		
Fluorido	and the second										3							-	
Iron	1/6/11	2003	0 7007					\dashv	\dashv		<0.150								
100	V6.7	332.2	8.100	400.4	319.9	394.9	388.2	+	4	က	466.1	516.4	305.8	270.2	256.7	172.4	277.5	169.2	116.1
npan .	1.51	4.5	4.3	<	, ·	2.6	₹	2.2	۲		5.1	4	2.6	٧	3.9	۲	2.6	⊽	⊽
maglicaluli:	mg/l mg		-								92.07								
manganese	l/drl	54.6	135.7	10.8	9.2	29.3	29.1	22.9	13.7	19.1	76.8	58.4	40.5	28.6	28.3	11.8	29.8	13.9	5.4
Mercury	l/6ri										<0.10						-		
Nickel	lig/l	4.7	5.0	3.8	2.2	4.4	4.6	3.4	2.7	2.7	3.8	3.8	5.9	2.4	2.5	2.1	2.7	٧	₹
Nitrite	mg/l N	0.005	0.003	0.006	900.0	<0.003	0.008	600.0	0.004	0.004	0.011	<0.003	0.011	0.016	0.017	0.008	0.004	0.031	<0.003
o-Phosphate	mg/I P										<0.02								-
, i		7.4	7.3	7.2	7.3	7.4	7.4		7.4		7.4	7.5	7.4	7.5	7,6	7.4	7.5	7.4	7.4
Phenoi	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.02	_	<0.01	<0.01	<0.01	e c	0.03	0.01	0.03	<0.01	
Potassium		22.09	20.85	22.52	24.86	28.6	27.34			27.27	27.76	25.13	23.47	22.53	24.02	21.84	23.16	22.2	23.13
Residue on Evaporation		~~~									439								
Sodium	mg/l	63.88	63.53	99.69	78.24	83.42	91.25	76.35	66.42	64.19	54.56	44.75	46.50	43.81	41.56	39.54	41.89	44.31	49.61
Suiphate	mg/I SO4	******									347.7								
Temp	ပ္	18.4	16.0	15.0	14.3	16	14	6	16	14	14	15	16.3	15.7	16	41	11.8	13	14
Time sampled		13.30	12.45	12.55	12.50	11	13	Ħ	12.4	12.45	13.3	12.55	12.55	13	12.55	13	12.3	12.2	11.45
Total Coliforms	No/ 100 ml		,								20								
T.O.C.	mg/I	5.3	~~~		4.5			4.7			2.9			2			2.6		
N.O.T	Mg/I N	7.82	9.21	8.61	9.58	10.36	8.44	7.65	7.4	5.09	6.05	5.04	4.59	3.84	3.47	3.89	4.31	4.64	4.34
iotal S Solids	mg/I																		
Zinc	hg/l	2.1	9.9	16.1	14.1	14.4	17	21.3	16.4	13.5	15	⊽	13.1	10.1	13.3	9.2	18.9	9.2	10.7

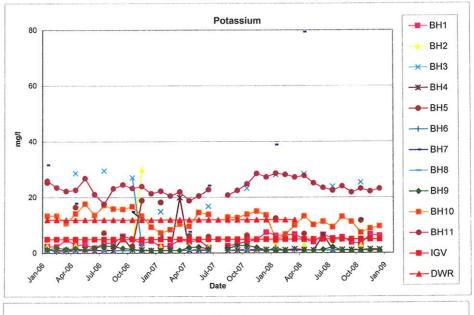

;

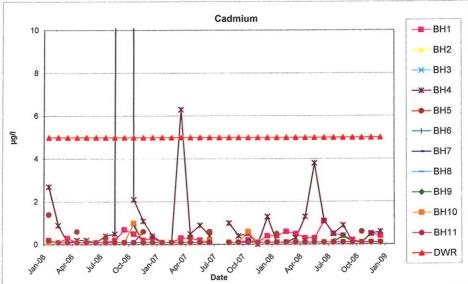


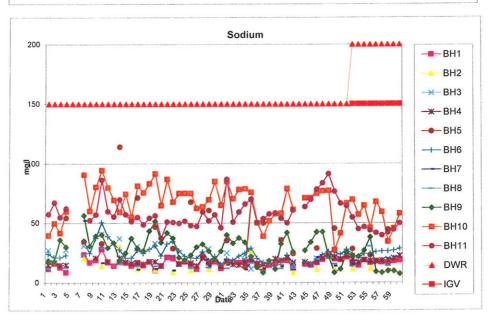


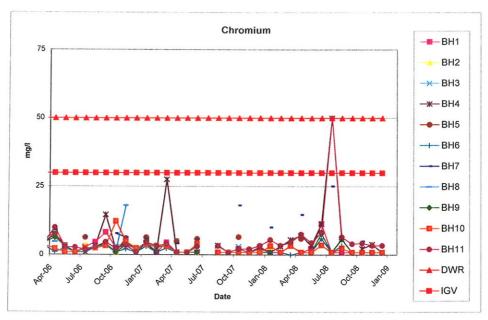


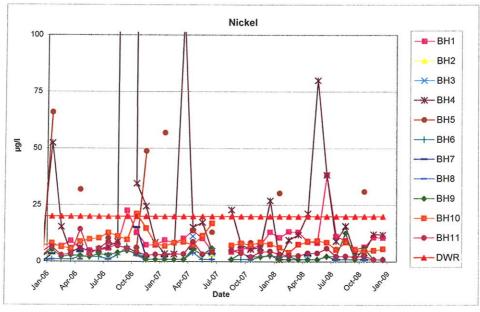


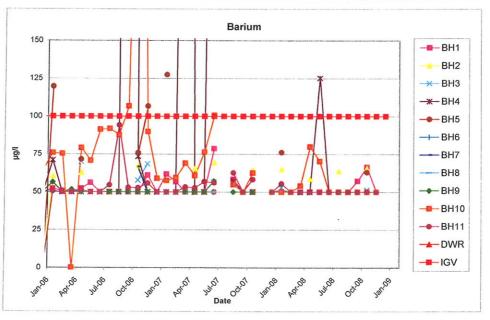


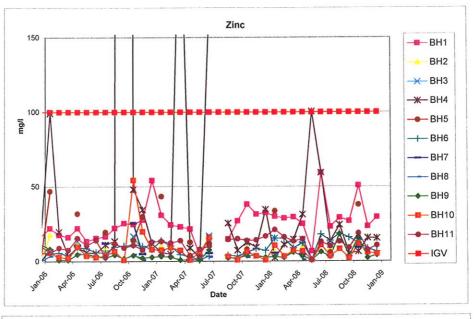


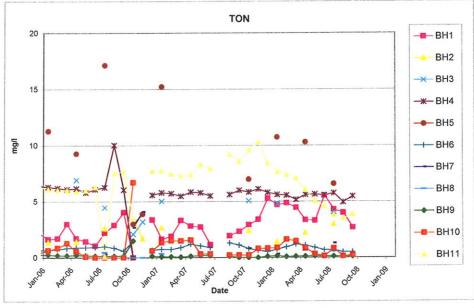


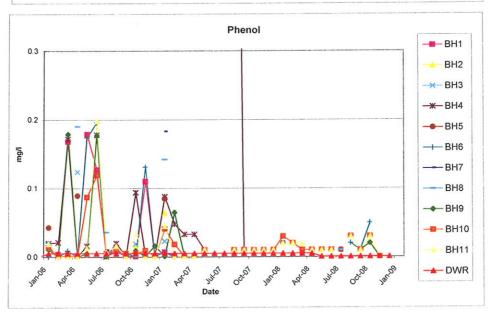


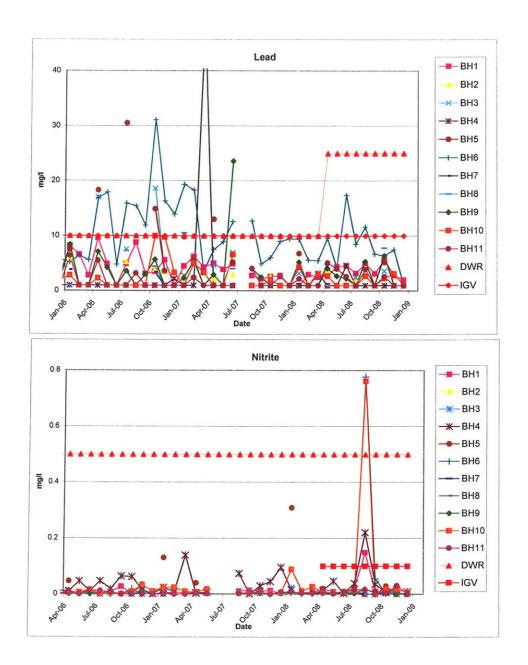


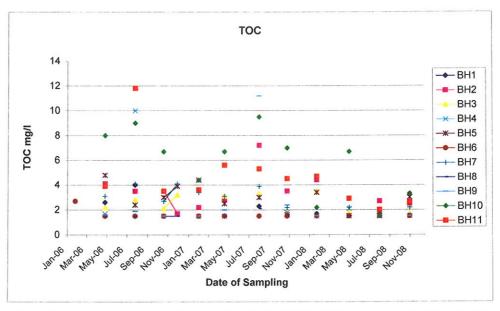


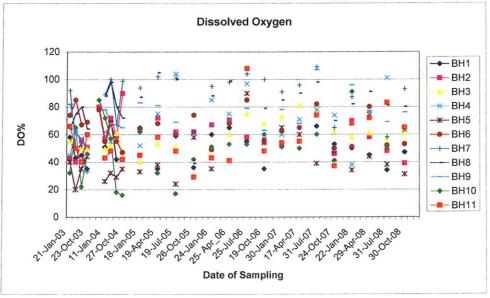


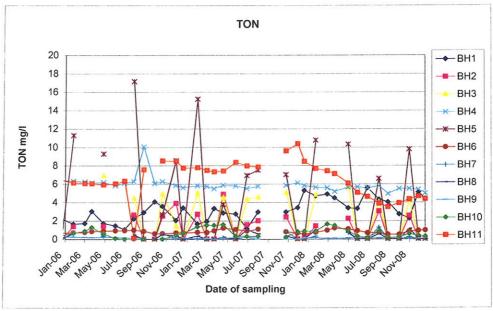


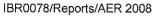












APPENDIX C

ANNUAL LIST I &II MONITORING RESULTS

Status: Final Issue Date: April 2009

Results of VOC Analysis

A Report To: Office of Environmental Enforcement VOC-2008-29

Laboratory Reference	2801280
Number	
Sampling Location	Drogheda Corporation, Drogheda Landfill Site.
	DA LFS BH G1 Annual
	BHI
Date Sampled &	29/04/08
Sampled By	G Crawley
Date Reported	15/05/08

VOC	Detection Limit (µg/l)	Result (μg/l)
1,1-dichloroethene	0.1	<0.1
Dichloromethane	0.1	<0.1
trans-1,2-dichloroethene	0.1	<0.1
1,1-dichloroethene	0.1	<0.1
2,2-dichloropropane	0.1	<0.1
cis-1,2-dichloroethene	0.1	<0.1
bromochloromethane	0.1	<0.1
Chloroform	0.1	<0.1
1,1,1-trichloroethane	0.1	<0.1
carbon tetrachloride	0.1	<0.1
1,1-dichloropropene	0.1	<0.1
Benzene	0.1	<0.1
1,2-dichloroethane	0.1	<0.1
trichloroethene	0.1	<0.1
1,2-dichloropropane	0.1	<0.1
dibromomethane	0.1	<0.1
bromodichloromethane	0.1	<0.1
cis-1,3-dichloropropene	0.1	<0.1
Toluene	0.1	<0.1
trans-1,3-dichloropropene	0.1	<0.1
1,1,2,-trichloroethane	0.1	<0.1
tetrachloroethene	0.1	<0.1
1,3-dichloropropane	0.1	<0.1
dibromochloromethane	0.1	<0.1
1,2-dibromoethane	0.1	<0.1
chlorobenzene	0.1	<0.1
1,1,1,2-tetrachloroethane	0.1	<0.1
ethylbenzene	0.1	<0.1
m,p-xylene	0.1	<0.1
o-xylene	0.1	1.0>
styrene	0.1	<0.1
bromoform	0.1	<0.1
isopropylbenzene	0.1	<0.1

Page 1of 2

A Report To: Office of Environmental Enforcement VOC-2008-29

immental chiological	Y () () "2000-27
Detection Limit (μg/l)	Result (μg/l)
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
0.1	<0.1
	Detection Limit (μg/l) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.

Notes

- (1) Samples were analysed by Purge & Trap & GC-MS.
- (2) MAC (European Communities (Quality of Water Intended for Human Consumption) Regulations, 1988) is 100ug/l total trihalomethanes.

Rain	C	Date:	18/5/08
Regina McGinn B.Sc., M.Sc Analytical Chemist		-	•

Page 2 of 2

Results of VOC Analysis

A Report To: Office of Environmental Enforcement VOC-2008-30

A report to: Ollico of F	ATVITOTITION CONTEST OF THE PROPERTY OF THE PR	OC-2000-50
Laboratory Reference	2801281	
Number		
Sampling Location	Drogheda Corporation, Drogheda Landfil	l Site.
	DA LFS BH G1 Annual	
	BH4	
Date Sampled &	29/04/08	
Sampled By	G Crawley	
Date Reported	15/05/08	
	1.500000	

VOC	Detection Limit (µg/l)	Result (μg/l)
1,1-dichloroethene	0.1	<0.1
Dichloromethane	0.1	<0.1
trans-1,2-dichloroethene	0.1	<0.1
1,1-dichloroethene	0.1	<0.1
2,2-dichloropropane	0.1	<0.1
cis-1,2-dichloroethene	0.1	0.332
bromochloromethane	0.1	<0.1
Chloroform	0.1	<0.1
1,1,1-trichloroethane	0.1	<0.1
carbon tetrachloride	0.1	<0.1
1,1-dichloropropene	0.1	<0.1
Benzene	0.1	<0.1
1,2-dichloroethane	0.1	<0.1
trichloroethene	0.1	<0.1
1,2-dichloropropane	0.1	<0.1
dibromomethane	0.1	<0.1
bromodichloromethane	0.1	<0.1
cis-1,3-dichloropropene	0,1	<0.1
Toluene	0.1	<0.1
trans-1,3-dichloropropene	0.1	<0.1
1,1,2,-trichloroethane	0.1	<0.1
tetrachloroethene	0.1	<0.1
1,3-dichloropropane	0.1	<0.1
dibromochloromethane	0.1	<0.1
1,2-dibromoethane	0.1	<0.1
chlorobenzene	0.1	<0.1
1,1,1,2-tetrachloroethane	0.1	<0.1
ethylbenzene	0.1	<0.1
m,p-xylene	0.1	<0.1
o-xylene	0.1	<0.1
styrene	0.1	<0.1
bromoform	0.1	<0.1
isopropylbenzene	0.1	<0.1

Page 1of 2

A Report To: Office of Environmental Enforcement VOC-2008-30

A Report 10: Office of Enviro	mmemai Emorcement	V () C-2000-30
VOC	Detection Limit (µg/l)	Result (µg/l)
bromobenzene	0.1	<0.1
1,1,2,2-tetrachloroethane	0.1	<0.1
1,2,3-trichloropropane	0.1	<0.1
n-propylbenzene	0.1	<0.1
2-chlorotoluene	0.1	<0.1
4-chlorotoluene	0.1	<0.1
1,3,5-trimethylbenzene	0.1	<0.1
t-butylbenzene	0.1	<0.1
1,2,4-trimethylbenzene	0.1	<0.1
sec-butylbenzene	0.1	<0.1
1,3-dichlorobenzene	0.1	<0.1
1,4-dichlorobenzene	0.1	<0.1
p-isopropyltoluene	0.1	<0.1
1,2-dichlorobenzene	0.1	<0.1
n-butylbenzene	0.1	<0.1
1,2-dibromo-3-chloropropane	0.1	<0.1
1,2,4-trichlorobenzene	0.1	<0.1
Naphthalene	0.1	<0.1
hexachlorobutadiene	0.1	<0.1
1,2,3-trichlorobenzene	0.1	<0.1

Notes:

- (1) Samples were analysed by Purge & Trap & GC-MS.
- (2) MAC (European Communities (Quality of Water Intended for Human Consumption) Regulations, 1988) is 100ug/l total trihalomethanes.

Rogare Mi Ci	Date:	15/5/=8	
Regina McGinn B.Sc.,M.Sc			
Analytical Chemist			

Results of VOC Analysis

A Report To: Office of Environmental Enforcement VOC-2008-31

AN AROPOTO TO: OTHIOU OF L	art it of the content of the content	1 C C 2000 D X
Laboratory Reference Number	2801282	
Sampling Location	Drogheda Corporation, Drogheda L DA_LFS_BH_G1_Annual	andfill Site.
Date Sampled & Sampled By	BH6 29/04/08 G Crawley	
Date Reported	15/05/08	

VOC	Detection Limit (µg/l)	Result (μg/l)
1,1-dichloroethene	0.1	<0.1
Dichloromethane	0.1	<0.1
trans-1,2-dichloroethene	0.1	<0.1
1,1-dichloroethene	0.1	<0.1
2,2-dichloropropane	0.1	<0.1
cis-1,2-dichloroethene	0.1	<0.1
bromochloromethane	0.1	<0.1
Chloroform	0.1	<0.1
1,1,1-trichloroethane	0.1	<0.1
carbon tetrachloride	0.1	<0.1
1,1-dichloropropene	0.1	<0.1
Benzene	0.1	<0.1
1,2-dichloroethane	0.1	<0.1
trichloroethene	0.1	<0.1
1,2-dichloropropane	0.1	<0.1
dibromomethane	0.1	<0.1
bromodichloromethane	0.1	<0.1
cis-1,3-dichloropropene	0.1	<0.1
Toluene	0.1	<0.1
trans-1,3-dichloropropene	0.1	<0.1
1,1,2,-trichloroethane	0.1	<0.1
tetrachloroethene	0.1	<0.1
1,3-dichloropropane	0.1	<0.1
dibromochloromethane	0.1	<0.1
1,2-dibromoethane	0.1	<0.1
chlorobenzene	0.1	<0.1
1,1,1,2-tetrachloroethane	0.1	<0.1
ethylbenzene	0.1	<0.1
m,p-xylene	0.1	<0.1
o-xylene	0,1	<0.1
styrene	0.1	<0.1
bromoform	0.1	<0.1
isopropylbenzene	0.1	<0.1

Page 1of 2

A Report To: Office of Environmental Enforcement VOC-2008-31

A Report to: Onice of Enviro	innental Enforcement	7 O C - 2000 - D I
Voc	Detection Limit (µg/l)	Result (μg/l)
bromobenzene	0.1	<0.1
1,1,2,2-tetrachloroethane	0.1	<0.1
1,2,3-trichloropropane	0.1	<0.1
n-propylbenzene	0.1	<0.1
2-chlorotoluene	0.1	<0.1
4-chlorotoluene	0.1	<0.1
1,3,5-trimethylbenzene	0.1	<0.1
t-butylbenzene	0.1	<0.1
1,2,4-trimethylbenzene	0.1	<0.1
sec-butylbenzene	0.1	<0.1
1,3-dichlorobenzene	0.1	<0.1
1,4-dichlorobenzene	0.1	<0.1
p-isopropyltoluene	0.1	<0.1
1,2-dichlorobenzene	0.1	<0.1
n-butylbenzene	0.1	<0.1
1,2-dibromo-3-chloropropane	0.1	<0.1
1,2,4-trichlorobenzene	0.1	<0.1
Naphthalene	0.1	<0.1
hexachlorobutadiene	0.1	<0.1
1,2,3-trichlorobenzene	0.1	<0.1

Notes

(1) Samples were analysed by Purge & Trap & GC-MS.

(2) MAC (European Communities (Quality of Water Intended for Human Consumption) Regulations, 1988) is 100ug/l total trihalomethanes.

Regina McGinn B.Sc., M.Sc

Analytical Chemist

Page 2 of 2

Results of VOC Analysis

A Report To: Office of Environmental Enforcement VOC-2008-32

da Landfill Site.
-

VOC	Detection Limit (µg/l)	Result (µg/l)
1,1-dichloroethene	0.1	<0.1
Dichloromethane	0.1	<0.1
trans-1,2-dichloroethene	0.1	<0.1
1,1-dichloroethene	0.1	<0.1
2,2-dichloropropane	0.1	<0.1
cis-1,2-dichloroethene	0.1	<0.1
bromochloromethane	0.1	<0.1
Chloroform	0.1	<0.1
1,1,1-trichloroethane	0.1	<0.1
carbon tetrachloride	0.1	<0.1
1,1-dichloropropene	0.1	<0.1
Benzene	0.1	<0.1
1,2-dichloroethane	0.1	<0.1
trichloroethene	0.1	<0.1
1,2-dichloropropane	0.1	<0.1
dibromomethane	0.1	<0.1
bromodichloromethane	0.1	<0.1
cis-1,3-dichloropropene	0.1	<0.1
Toluene	0.1	<0.1
trans-1,3-dichloropropene	0.1	<0.1
1,1,2,-trichloroethane	0.1	<0.1
tetrachloroethene	0.1	<0.1
1,3-dichloropropane	0.1	<0.1
dibromochloromethane	0.1	<0.1
1,2-dibromoethane	0.1	<0.1
chlorobenzene	0.1	<0.1
1,1,1,2-tetrachloroethane	0.1	<0.1
ethylbenzene	0.1	<0.1
m,p-xylene	0.1	<0.1
o-xylene	0.1	<0.1
styrene	0.1	<0.1
bromoform	0.1	<0.1
isopropylbenzene	0.1	<0.1

A Report To: Office of Environmental Enforcement

VOC VOC		VOC-2008-32
bromobenzene	Detection Limit (μg/l)	Result (μg/l)
	0.1	<0.1
1,1,2,2-tetrachloroethane	0.1	<0.1
1,2,3-trichloropropane	0.1	<0.1
n-propylbenzene	0.1	<0.1
2-chlorotoluene	0.1	<0.1
4-chlorotoluene	0.1	
1,3,5-trimethylbenzene	0.1	<0.1
t-butylbenzene	0.1	<0.1
1,2,4-trimethylbenzene	0.1	<0.1
sec-butylbenzene	0.1	<0.1
1,3-dichlorobenzene	0.1	<0.1
1,4-dichlorobenzene		<0.1
p-isopropyltoluene	0.1	<0.1
1,2-dichlorobenzene	0.1	<0.1
1-butylbenzene	0.1	<0.1
,2-dibromo-3-chloropropane	0,1	<0.1
,2,4-trichlorobenzene	0.1	< 0.1
Naphthalene	0.1	<0.1
	0.1	<0.1
exachlorobutadiene	0.1	<0.1
,2,3-trichlorobenzene	0.1	<0.1

Notes:

(1) Samples were analysed by Purge & Trap & GC-MS.

(2) MAC (European Communities (Quality of Water Intended for Human Consumption) Regulations, 1988) is 100ug/l total trihalomethanes.

Regina McGinn B.Sc., M.Sc Date: Date:

Analytical Chemist

Results of VOC Analysis

A Report To: Office of Environmental Enforcement

gheda Landfill Site.
ala I. Y. ICH CI
gneda Landfill Site.

VOC	Detection Limit (μg/l)	Result (µg/l)
1,1-dichloroethene	0.1	<0.1
Dichloromethane	0.1	<0.1
trans-1,2-dichloroethene	0.1	<0.1
1,1-dichloroethene	0.1	<0.1
2,2-dichloropropane	0.1	<0.1
cis-1,2-dichloroethene	0.1	<0.1
bromochloromethane	0.1	<0.1
Chloroform	0.1	<0.1
1,1,1-trichloroethane	0.1	<0.1
carbon tetrachloride	0.1	<0.1
1,1-dichloropropene	0.1	<0.1
Benzene	0.1	<0.1
1,2-dichloroethane	0.1	<0.1
trichloroethene	0.1	<0.1
1,2-dichloropropane	0.1	<0.1
dibromomethane	0.1	<0.1 <0.1
bromodichloromethane	0.1	<0.1
cis-1,3-dichloropropene	0.1	<0.1
Toluene	0.1	<0.1
trans-1,3-dichloropropene	0.1	<0.1
1,1,2,-trichloroethane	0.1	<0.1
tetrachloroethene	0.1	
1,3-dichloropropane	0.1	<0.1
dibromochloromethane	0.1	<0.1
1,2-dibromoethane	0.1	<0.1
chlorobenzene	0.1	<0.1
1,1,1,2-tetrachloroethane	0.1	<0.1
ethylbenzene	0.1	<0.1
m,p-xylene	0.1	<0.1
o-xylene	0.1	<0.1
styrene	0.1	<0.1
bromoform	0.1	<0.1
sopropylbenzene	0.1	<0.1
	Page 1of 2	<0.1

A Report To: Office of Environmental Enforcement VOC-2008-33

ZEXCOPORT TO: OTHER OF ENTRE		
VOC	Detection Limit (μg/l)	Result (µg/l)
bromobenzene	0.1	<0.1
1,1,2,2-tetrachloroethane	0.1	<0.1
1,2,3-trichloropropane	0.1	<0.1
n-propylbenzene	0.1	<0.1
2-chlorotoluene	0.1	<0.1
4-chlorotoluene	0.1	<0.1
1,3,5-trimethylbenzene	0.1	<0.1
t-butylbenzene	0.1	<0.1
1,2,4-trimethylbenzene	0.1	<0.1
sec-butylbenzene	0.1	<0.1
1,3-dichlorobenzene	0.1	<0.1
1,4-dichlorobenzene	0.1	<0.1
p-isopropyltoluene	0.1	<0.1
1,2-dichlorobenzene	0.1	<0.1
n-butylbenzene	0.1	<0.1
1,2-dibromo-3-chloropropane	0.1	<0.1
1,2,4-trichlorobenzene	0.1	<0.1
Naphthalene	0.1	<0.1
hexachlorobutadiene	0.1	<0.1
1,2,3-trichlorobenzene	0.1	<0.1

Notes:

- (1) Samples were analysed by Purge & Trap & GC-MS.
- (2) MAC (European Communities (Quality of Water Intended for Human Consumption) Regulations, 1988) is 100ug/l total trihalomethanes.

Regio Mi ani	Date:	15	5	08
Regina McGinn B.Sc.,M.Sc			,	
Analytical Chemist				

Page 2 of 2

Results of VOC Analysis

A Report To: Office of Environmental Enforcement VOC-2008-34

With the first control of the
2801285
Drogheda Corporation, Drogheda Landfill Site.
DA_LFS_BH_G1_Annual
BHII
29/04/08
G Crawley
15/05/08

VOC	Detection Limit (μg/l)	Result (μg/l)
1,1-dichloroethene	0.1	<0.1
Dichloromethane	0.1	<0.1
trans-1,2-dichloroethene	0.1	<0.1
1,1-dichloroethene	0.1	<0.1
2,2-dichloropropane	0.1	<0.1
cis-1,2-dichloroethene	0.1	<0.1
bromochloromethane	0.1	<0.1
Chloroform	0.1	<0.1
1,1,1-trichloroethane	0.1	<0.1
carbon tetrachloride	0.1	<0.1
1,1-dichloropropene	0.1	<0.1
Benzene	0.1	<0.1
1,2-dichloroethane	0.1	<0.1
trichloroethene	0.1	<0.1
1,2-dichloropropane	0.1	<0.1
dibromomethane	0.1	<0.1
bromodichloromethane	0.1	<0.1
cis-1,3-dichloropropene	0.1	<0.1
Toluene	0.1	<0.1
trans-1,3-dichloropropene	0.1	<0.1
1,1,2,-trichloroethane	0.1	<0.1
tetrachloroethene	0.1	<0.1
1,3-dichloropropane	0.1	<0.1
dibromochloromethane	0.1	<0.1
1,2-dibromoethane	0.1	<0.1
chlorobenzene	0.1	<0.1
1,1,1,2-tetrachloroethane	0.1	<0.1
ethylbenzene	0.1	<0.1
m,p-xylene	0.1	<0.1
o-xylene	0.1	<0.1
styrene	0.1	<0.1
bromoform	0.1	<0.1
isopropylbenzene	0.1	<0.1

Page 1of 2

A Report To: Office of Environmental Enforcement	VOC-2008-34
--	-------------

A Report 10: Office of Enviro	illiental Enforcement	VOC-2008-34
VOC	Detection Limit (µg/l)	Result (µg/l)
bromobenzene	0.1	<0.1
1,1,2,2-tetrachloroethane	0.1	<0.1
1,2,3-trichloropropane	0.1	<0.1
n-propylbenzene	0.1	<0.1
2-chlorotoluene	0.1	<0.1
4-chlorotoluene	0.1	<0.1
1,3,5-trimethylbenzene	0.1	<0.1
t-butylbenzene	0.1	<0.1
1,2,4-trimethylbenzene	0.1	<0.1
sec-butylbenzene	0.1	<0.1
1,3-dichlorobenzene	0.1	<0.1
1,4-dichlorobenzene	0.1	<0.1
p-isopropyltoluene	0.1	<0.1
1,2-dichlorobenzene	0.1	<0.1
n-butylbenzene	0.1	<0.1
1,2-dibromo-3-chloropropane	0.1	<0.1
1,2,4-trichlorobenzene	0.1	<0.1
Naphthalene	0.1	<0.1
hexachlorobutadiene	0.1	<0.1
1,2,3-trichlorobenzene	0.1	<0.1

Notes

(1) Samples were analysed by Purge & Trap & GC-MS.

(2) MAC (European Communities (Quality of Water Intended for Human Consumption) Regulations, 1988) is 100ug/l total trihalomethanes.

	Δ_		
Regina	McGinn	B.Sc.	,M.Sc

Analytical Chemist

Date: 15 | 5 | 5 |

Client Contact: Maeve Quinn Sample Type: WATER Client Ref. 29/04/08 ALcontrol Laboratories Ireland Table Of Results Client: EPA (Monaghan) Ref Number: 08-B02819/01 Date of Receipt: 07/05/2008 (of first sample) <0.001mg/l GC FID 40.00 1004 Dissolved Methane as CH4** Detection Method
Method Detection Limit
UKAS Accredited [Testing Laboratory] No. 1291 UNKNOWN Other ID ✓ Validated 280 1296 280 1297 Interim Sample Identity 08-802819-S0011 08-802819-S0012

ALcontrol Reference

9 / #e6sq1

Dylan Halpin Checked By:

Notes: METHOD DETECTION LIMITS ARE NOT ALWAYS ACHIEVABLE DUE TO VARIOUS CIRCUMSTANCES BEYOND OUR CONTROL

NDP = NO DETERMINATION POSSIBLE

DROGHEDA LFS

| Interim

✓ Validated

ALcontrol Laboratories Ireland

Table Of Results

Client: EPA (Monaghan)

Date of Receipt: 07/05/2008

(of first sample)

Ref Number: 08-B02817/01

Sample Type: WATER

81 \ 39Bed

Location:

Client Contact: Maeve Quinn

	Doctooties West .									Ĕ	Client Ref: 29/04/08	23/04/0	20			
	Dollar Innana	SCMS	ecws	SCMS	GCMS	GCMS	GCMS	GCMS	GCMS GCMS	_	CCMS	GCMS GCMS	GCMS	GCMS GCMS	GCMS	COMS
	meraga Detection Limit	E/u	<1ug/	<1uq/	<0.01ug/	<0.01ug/	<0.01ug/ <0.01ug/ <0.01ug/	11 <0 01:04 <0 01:08	1001100/	70 01.128	0		20 00 00 00 00 00 00 00 00 00 00 00 00 0			
redi	ted [Testing Laboratory] No. 1301							The state of the s	N.O. O.	10.01Ug/	N.O.Lugjii	<0.010g/i	<0.01ug/t	<0.01ug/I	<0.01ug/il <	20,01ug
	TETT ONE TAKEN OF A 1400 TEXT												-	-	-	

	S GCMS		Igni <u.u.iug <="" th=""><th></th><th>Parathion**</th><th>1/0/1</th><th>╂</th><th>┼-</th><th>1 <0.01</th><th>┼-</th><th>-</th><th>+</th><th>-</th><th>┝</th><th>*</th><th>-</th><th>1</th><th>5</th><th>,</th><th></th><th>,</th><th>ı</th><th></th><th></th><th></th></u.u.iug>		Parathion**	1/0/1	╂	┼-	1 <0.01	┼-	-	+	-	┝	*	-	1	5	,		,	ı			
	GCMS		71 < 0.0 I		Aldrin**	l/on	0.0	0.00	<0.0	0.0×	0°0	0.0	0.0>	,		-	-	-		,	,	,		-	
	GCMS		1 < U.U.U.		Malathion**	l/an	V0.05	V0.0>	<0.0>	<0.03	<0.0	40.0°	<0.05		,		'	-	ı	,					ļ
œ	GCMS	70.00	What was a state of the second state of the se		Fenitrothion**	na/I	<0.01	\ 000×	<0.01	<0.01	<0.01	<0.01	<0.01		,	,	,	,	-		,	,			
29/04/0	GCMS	0.100	foro-o-		Heptachlor**	l/on	<0.03	<0.03	<0.03	<0.05	<0.01	0.05	\$0.0 10.0		•			1	,		,				ļ
Client Ref: 29/04/08	GCMS	60 0 1 mg/8	Minion		Methyl parathion**	l/bn	<0.01	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01			-	1	1	1		•	,			[
ਹੈ	GCMS	<0 01mg	160 TOO		Dlazinon**	j/bn	<0.01	<0.03	<0.01	<0.01	<0.01	<0.01	<0.01		3	,	ſ	ı	1	-	,	1			: L_
	GCMS	<0.01110/			gamma-BHC (Lindane)**	l/bn	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	,			,	1	,	-	,	ŧ	_		L
	GCMS	<0.01110/	in the second		beta-BHC**	l/gu	<0.01	<0.01	<0.01	<0.01	<0.01	<0.03	<0.01	-		,	-	-	-			,			L
	GCMS	<0.01ug/			alpha-BHC**	l/on	<0,01	<0.01	<0.01	<0.01	<0,01	<0.01	<0.01	,	-	-	,	-	,	,					_
	GCMS	<0.01ug/l			Mevinphos**	l/bn	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		,	,	-	ſ	1	,		,			
	GCMS	<0.01ug/l			Dichtorvos**	l/6n	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	,	-	-	1	1	,	,	1	_			
	GCMS	<1ug/			Simazine**	j/6n	<1	7	₹	<1	<1	<1	<1	1	i		,	1	ŧ	1	ı	-			
	GCMS	<1ug/l			Atrazine**	l/bn	7	⊽	7	7	₽	⊽	⊽	•	,	1	_		•	-	,				
	6CMS	n/a			Semi Volatile Organics		Done	ı	,	١	,	1	-	,	r	•									
	ernoa	ion Limit	ry] No. 1291	-	Other ID		UNKNOWN																		
Take at the	הביברתמון שבישסם	Method Detection Limit	UKAS Accredited [Testing Laboratory] No. 1291		Sample Identity		280 1291	280 1285	280 1281	280 1280	280 1282	280 1283	280 1284	280 1286	280 1288	280 1290	280 1289	280 1287	280 1294	280 1295	280 1292	280 1293			
			UKAS Accredite		ALcontrol Reference		08-802817-50011	U8-602817-50012	08-502817-50013	08-E02817-S0014	08-802817-50015	08-802817-50016	08-802817-50017	08-802817-50018	08-802817-50019	08-B02817-S0020	08-802817-50021	08-B02817-S0022	08-802817-50023	08-B02817-S0024	08-802817-50025	08-B02817-S0026			

Notes: METHOD DETECTION LIMITS ARE NOT ALWAYS ACHIEVABLE DUE TO VARIOUS CIRCUMSTANCES BEYOND OUR CONTROL.

Paul Barry Checked By: 81 | Yeged

ALcontrol Laboratories Ireland

Table Of Results

Ref Number: 08-B02817/01

✓ Validated ☐ Interim

Client: EPA (Monaghan)

Date of Receipt: 07/05/2008

(of first sample)

Sample Type: WATER

Client Contact: Maeve Quinn

Client Ref: 29/04/08

UKAS Accredited [Testing Laboratory] No. 1291 Sample Identity Alcountrol Reference Alcountrol Reference	(₽)							}	?	2	2		,		
edited [Testing Laboratory] No. Sample Identity									-		-			+	2
Sample Identity No.		1g/l <0.01ug/l	٧	0.01ug/i <0.01ug/i	<0.01ug/ <0.01ug/		<0.01ug/l <0.01ug/l <0.01ug/l <0.01ug/l <0.01ug/l <0.01ug/l	:0.01ug/l <	:0.01ug/l	<0.01ug/I	<0.01ug/I		<10ng/l	<10ng/1	<10ng/l
esperanting a refer of a paper in the relativistic field of the distribution of the result in the manufacture of the result in the second of the result in the second of the result in the second of the result in the second of the result in the second of the result in the second of the result in the second of t	He														
	ptachlor epoxide** Other ID	Endosulfan 1**	p,p'-DDE**	Dieldrin**	Endrin**	Endosulfan 2**	p,p'-DDD**	Ethion**	p,p'-DDT**	Endosulfan sulphate**	p,p'-Methoxychlor**	Azinphos methyi**	Naphthalene	Acenaphthylene	Acenaphthene
	/bn	l/bn	I/6n	l/gn	l/Bn	l/6n	l/gu	l/gu	l/bn	l/gn	1/60	l/bn	l/g⊓	ng/i	l/gu
08-802817-S0011 280 1291 UNKN	UNKNOWN <0.01	Ľ	<0.01	<0.01	40.0 10.0	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<10	<10	<10
280 1285	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<10	<10	<10
280 1281	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.03	<0.01	<0.01	<0.01	<0.01	<10	<10	<10
280 1280		_	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<10	<10	<10
280 1282	-	10'0> 10'01	<0.01	<0.01	<0,05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<10	<10	₹
280 1283	UNKNOWN <0.01	┝	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<10	Q 70 70	¢30
280 1284	┡	├-	<0.01	<0.0>	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<10	<10	<10
280 1286	-	-	•		1	•	1	1	1	•	1	,	-	•	
280 1288	UNKNOWN -	,	-	1	1	٠,	1	1	1	,		'	,	'	١
	UNKNOWN	-	1	1	ſ		•	•	+	•	'	1	,	,	
	JINKNOWN	1	•	•		•	-	,	<u>'</u>	,	'	'		'	•
08-B02817-S0022 280 1287 UNK	- NWONNU	1	_	-	•	1	•	,	1	•	-	,	'	'	'
_	UNKNOWN	1	1	ſ	1	,	-	•	'	•	,	1	-	,	
	UNKNOWN -			,	-	1	-	'	1	,	1	-	•	,	,
08-802817-S0025 280 1292 UNK	UNKNOWN	1	-	ı	,	•	•	5	-	1	-	'	'	•	
280 1293	UNKNOWN		-	•	•		+	ı	-		,	-	-	,	1

Notes: METHOD DETECTION LIMITS ARE NOT ALWAYS ACHIEVABLE DUE TO VARIOUS CIRCUMSTANCES BEYOND OUR CONTROL.

Paul Barry Checked By: 8t \ 8egsb

ALcontrol Laboratories Ireland

Table Of Results

✓ Validated ☐ Interim

Ref Number: 08-B02817/01

Client: EPA (Monaghan)

Date of Receipt: 07/05/2008

(of first sample)

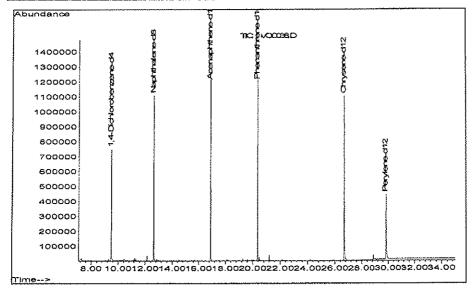
Sample Type: WATER

Location:

Client Contact: Maeve Quinn

	COFTRO		<0.05mg/	>	Total Cyanide	mo/l	<0.05	70 D	<0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05			_	,			1
	HPIC CP	3 1	<0.01mg/il <0.	,	Total Phenols	נום/ן	+	+	<0.01	┼-	-	┞	-	-	-	-				1.01	1.01	<0.01	-	-	-
	GCMS I H		<1010g/1 <0.0		Total Aqueous 16 EPA	-	╁	╁	+	-	\vdash	_	-	-		-	\$		7	₩	0>	9	***************************************		
	-				РАНв	l/au	₹10	V10	⊽	210	⊽	<10	<10	<u>'</u>	ľ	'	_	'	,	'			-	-	_
80	GCMS	4-	< Jung/1		Benzo(ghl)perylene	no/I	<10 <10	×10	<10	<10	×10	<10 <10	210	1	,	,	-	1	,	,	,	•	 ***********		
29/04/	GCMS	1,40-	₹SUNG/4		Dibenzo(ah)anthracene	ng/l	<10	<10	<10	0 <u>1</u> 2	<10	<10	<10	,		1	1	,		ŧ	,	•			
Client Ref: 29/04/08	GCMS	130000	\tanınt\		indeno(123cd)pyrene	I/bu	<10	<10	<10	<10	<10	<10	<10	,	١		,	,	-		,	l			
Ç	GCMS	1 Onu /1	1701101	~~~	Benzo(a)pyrene	I/gn	<10	<10	<10	<10	<10	<10	<10	-	,	,	ı	1	·	,	'	-			
	GCMS	10001	1,50		Benzo(b)+Benzo(k) fluoranthene	ng/i	0f V	₽ 0 7	<10	<10	<10	<10	<10	1	-	•	•	,	1	,	,	,	****		
	GCMS	<10ng/	ž.		Chrysene	1/6u	<10	<10	<10	<10	<10	<10	<10	-	ŀ	-	-	,	'	•	,	-			- 0
	GCMS	<10no/l	4-		Benzo(a)anthracene	1/Bu	<10	<10	<10	<10	<10	<10	<10	,	,		'	,	1	,	1	•			TO THE POST OF THE
	GCMS	<10no/l	1		Pyrene	1/6u	<10	<10	<10	<10	<10	<10	<10	('	,	1	1	'	١.	'	,			T
	GCMS	<10ng/f	\$		Fluoranthene	l/6u	<10	01V	<10	<10	<10	√10 √10	<10	'	•	-	'	ı	•	1	,	,			- C.
	GCMS	<1.0ng/I	;		Anthracene	l/gu	<10	<10	<10	<10	~30 230	o <u>1</u> 20	0€ 50	3	1	1	1	,	-	,	ι	•			
	GCMS	<10ng/l	-		Phenanthrone	ng/l	<10	<10	210	010 010	~10 ~10	√ 710	~10 ~10	•	1	'	,	'	-	3	•	-			
for d	G G MS	<10ng/f			Fluorene	l/gn	~10	20€ 20	<10	×10	V-10	V 10	<10	-		ı		1	1	'	1	,	 -		A 2000000
	thod	on Limit	vi No. 1791	**************************************	Other ID		UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	CINKNOWN	UNKNOWN	CINKNOWN	CINKNOWN	UNKNOWN	UNKNOWN	CINKINGWIN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN			TOWN OFFI
	Detection Method	Method Detection Limit	UKAS Accredited [Testing Laboratory] No. 1791		Sample Identity		280 1291	280 1285	280 1281	0871 087	7871 087	280 1783	280 1284	780 1786	780 1788	280 1290	5871 087	780 1787	280 1294	280 1295	280 1292	280 1293			WASACA METUDD DESECTIONS YMOTO ADD NOT ASSESSED.
L	i_		UKAS Accredited		ALcontrol Reference		08-802817-50011	18-EU281/-50012	08-802817-50013	00-502817-50014	00 5020 C00015	arnac-/razac-on	1005-71870g-20	00.000-71870-80	08-50281/-50019	08-802817-50020	17005-/18708-90	7700S-/1970a-on	U8-802817-S0023	08-802817-50024	08-802817-50025	08-802817-50026			Moses A

Paul Barry Checked By:

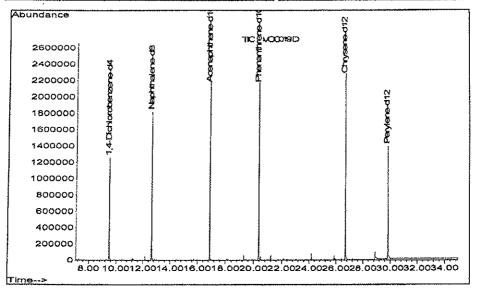

Printed at 15:56 on 29/05/2008

* SUBCONTRACTED TO OTHER LABORATORY / ** SAMPLES ANALYSED AT THE CHESTER LABORATORY

Semivolatiles

Sample Identity - B02817-S0011 / 280 1291 Client / Sample matrix - EPA (Monaghan) / water Units - µg/l

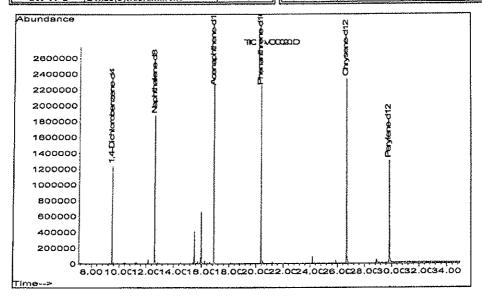
CAS No	Compound	Conc.	CAS No	Compound	Conc.
108-95-2	Phenol	<1	207-08-9	Benzo(k)fluoranthrene	<1
95-57-8	2-Chlorophenol	<1	50-32-8	Benzo(a)pyrene	<1
95-48-7	2-Methylphenol	<1	193-39-5	Indeno(1,2,3-cd)pyrene	<1
106-44-5	4-Methylphenol	<1	53-70-3	Dibenzo(a,h)anthracene	<1
88-75-5	2-Nitrophenol	<1	191-24-2	Benzo(ghi)perylene	</td
100-02-7	4-Nitrophenol	<1	91-58-7	2-Chloronaphthalene	</td
120-83-2	2,4-Dichlorophenol	<1	91-57-6	2-Methylnaphthalene	</td
105-67-9	2,4-Dimethylphenol	<1	86-74-8	Carbazole	<1
59-50-7	4-Chloro-3-methylphenol	<1	78-59-1	Isophorone	<1
88-06-2	2,4,6-Trichlorophenol	<1	132-64-9	Dibenzofuran	<1
95-95-4	2,4,5-Trichlorophenol	<1	131-11-3	Dimethyl phthalate	<1
87-86-5	Pentachlorophenol	<}	84-66-2	Diethyl phthalate	<1
541-73-1	1,3-Dichlorobenzene	<1	84-74-2	Di-n-butylphthalate	<1
106-46-7	1,4-Dichlorobenzene	<1	117-84-0	Di-n-octylphthalate	<1
95-50-1	1,2-Dichlorobenzene	<}	117-81-7	Bis(2-ethylhexyl)phthalate	<1
120-82-1	1,2,4-Trichlorobenzene	</td <td>85-68-7</td> <td>Butylbenzylphthalate</td> <td><1</td>	85-68-7	Butylbenzylphthalate	<1
98-95-3	Nitrobenzene	<1	106-47-8	4-Chloroaniline	<1
103-33-3	Azobenzene	<1	88-74-4	2-Nitroanaline	<1
118-74-1	Hexachlorobenzene	<1	99-09-2	3-Nitroaniline	<1
91-20-3	Naphthalene	<}	100-01-6	4-Nitroaniline	<1
208-96-8	Acenaphthylene	<1	121-14-2	2,4-Dinitrotoluene	<1
83-32-9	Acenapitthene	<1	606-20-2	2,6-Dinitrotoluene	<)
86-73-7	Fluorene	<1	111-44-4	Bis(2-chloroethyl)ether	<1
85-01-8	Phenanthrene	<1	101-55-3	4-Bromophenylphenylether	<1
120-12-7	Anthracene	<}	7005-72-3	4-Chlorophenylphenylether	<1
206-44-0	Fluoranthrene	<1	67-72-1	Hexachioroethane	<i< td=""></i<>
129-00-0	Pyrene	<1	87-68-3	Hexachlorobutadiene	<1
56-55-3	Benzo(a)anthracene	<i< td=""><td>77-47-4</td><td>Hexchlorocyclopentadiene</td><td><1</td></i<>	77-47-4	Hexchlorocyclopentadiene	<1
218-01-9	Chrysene	<1	111-91-1	Bis(2-chloroethoxy)methane	<1
205-99-2	Benzo(b)fluoranthrene	<1	621-64-7	N-nitrosodi-n-propylamine	<1



Date Extracted: ___28/05/08 Authorised By: Colm O'Leary/Nicolas Sallaberry

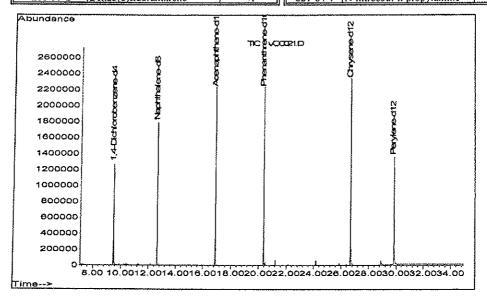
Semivolatiles

Sample Identity - B02817-S00012 / 280 1285 Client / Sample matrix - EPA (Monaghan) / water Units - µg/l


CAS No	Compound	Conc.	CAS No	Compound	Conc.
108-95-2	Phenol	<1	207-08-9	Benzo(k)fluoranthrene	<1
95-57-8	2-Chlorophenol	<1	50-32-8	Benzo(a)pyrene	<1
95-48-7	2-Methylphenol	<1	193-39-5	Indeno(1,2,3-cd)pyrene	<1
106-44-5	4-Methylphenol	<1	53-70-3	Dibenzo(a,h)anthracene	<1
88-75-5	2-Nitrophenol	<1	191-24-2	Benzo(ghi)perylene	<1
100-02-7	4-Nitrophenol	<1	91-58-7	2-Chioronaphthalene	<1
120-83-2	2,4-Dichlorophenol	<1	91-57-6	2-Methylnaphthalene	<1
105-67-9	2,4-Dimethylphenol	<1	86-74-8	Carbazole	</td
59-50-7	4-Chloro-3-methylphenol	< 1	78-59-1	Isophorone	<i< td=""></i<>
88-06-2	2,4,6-Trichlorophenol	<1	132-64-9	Dibenzofuran	<1
95-95-4	2,4,5-Trichlorophenol	<1	131-11-3	Dimethyl phthalate	<1
87-86-5	Pentachlorophenol	<1	84-66-2	Diethyl phthalate	<1
541-73-1	1,3-Dichlorobenzene	<1	84-74-2	Di-n-butylphthalate	</td
106-46-7	1,4-Dichlorobenzene	<1	117-84-0	Di-n-octylphthalate	<1
95-50-1	1,2-Dichlorobenzene	<1	117-81-7	Bis(2-ethylhexyl)phthalate	<1
120-82-1	1,2,4-Trichlorobenzene	<1	85-68-7	Butylbenzylphthalate	<1
98-95-3	Nitrobenzene	<1	106-47-8	4-Chloroaniline	<1
103-33-3	Azobenzene	<1	88-74-4	2-Nitroanaline	<1
118-74-1	Hexachlorobenzene	<1	99-09-2	3-Nitroaniline	<1
91-20-3	Naphthalene	<1	100-01-6	4-Nitroaniline	<1
208-96-8	Acenaphthylene	<1	121-14-2	2,4-Dinitrotoluene	<1
83-32-9	Acenaphthene	<1	606-20-2	2,6-Dinitrotoluene	<1
86-73-7	Fluorene	<1	111-44-4	Bis(2-chloroethyl)ether	<1
85-01-8	Phenanthrene	<1	101-55-3	4-Bromophenylphenylether	<1
120-12-7	Anthracene	<	7005-72-3	4-Chlorophenylphenylether	<1
206-44-0	Fluoranthrene	<	67-72-1	Hexachioroethane	<1
129-00-0	Pyrene	<1	87-68-3	Hexachlorobutadiene	</td
56-55-3	Benzo(a)anthracene	<j< td=""><td>77-47-4</td><td>Hexchlorocyclopentadiene</td><td><1</td></j<>	77-47-4	Hexchlorocyclopentadiene	<1
218-01-9	Chrysene	<1	111-91-1	Bis(2-chloroethoxy)methane	<1
205-99-2	Benzo(b)fluoranthrene	<1	621-64-7	N-nitrosodi-n-propylamine	<1

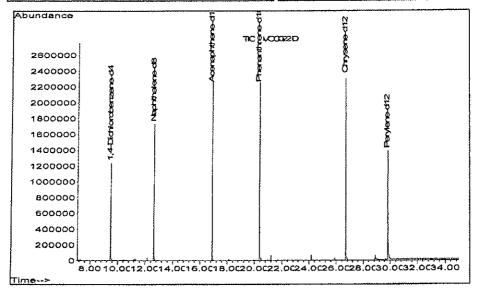
Semivolatiles

Sample Identity - B02817-S00013 / 280 1281 Client / Sample matrix - EPA (Monaghan) / water Units - µg/l


CAS No	Compound	Conc.	CAS No	Compound	Conc.
108-95-2	Phenol	<1	207-08-9	Benzo(k)fluoranthrene	<}
95-57-8	2-Chlorophenol	<1	50-32-8	Benzo(a)pyrene	<1
95-48-7	2-Methylphenol	<1	193-39-5	Indeno(1,2,3-cd)pyrene	<1
106-44-5	4-Methylphenoi	<j< td=""><td>53-70-3</td><td>Dibenzo(a,h)anthracene</td><td><1</td></j<>	53-70-3	Dibenzo(a,h)anthracene	<1
88-75-5	2-Nitrophenol	<1	191-24-2	Benzo(ghi)perylene	<1
100-02-7	4-Nitrophenol	</td <td>91-58-7</td> <td>2-Chloronaphthalene</td> <td><[</td>	91-58-7	2-Chloronaphthalene	<[
120-83-2	2,4-Dichlorophenol	<1	91-57-6	2-Methylnaphthalene	<1
105-67-9	2,4-Dimethylphenol	<1	86-74-8	Carbazole	<1
59-50-7	4-Chloro-3-methylphenol	<1	78-59-1	Isophorone	<1
88-06-2	2,4,6-Trichlorophenol	<1	132-64-9	Dibenzofuran	<1
95-95-4	2,4,5-Trichlorophenol	<l< td=""><td>131-11-3</td><td>Dimethyl phthalate</td><td><1</td></l<>	131-11-3	Dimethyl phthalate	<1
87-86-5	Pentachlorophenol	<1	84-66-2	Diethyl phthalate	<1
541-73-1	1,3-Dichlorobenzene	<1	84-74-2	Di-n-butylphthalate	<1
106-46-7	1,4-Dichlorobenzene	<1	117-84-0	Di-n-octylphthalate	<1
95-50-1	1,2-Dichlorobenzene	<1	117-81-7	Bis(2-ethylhexyl)phthalate	<1
120-82-1	1,2,4-Trichtorobenzene	<1	85-68-7	Butylbenzylphthalate	<1
98-95-3	Nitrobenzene	<1	106-47-8	4-Chloroaniline	<1
103-33-3	Azobenzene	<1	88-74-4	2-Nitroanaline	<1
118-74-1	Hexachlorobenzene	<1	99-09-2	3-Nitroaniline	<}
91-20-3	Naphthalene	<1	100-01-6	4-Nitroaniline	<1
208-96-8	Acenaphthylene	<1	II IR	2,4-Dinitrotoluene	<1
83-32-9	Acenaphthene	<1		2,6-Dinitrotoluene	<1
86-73-7	Fluorene	<1	111-44-4	Bis(2-chloroethyl)ether	<1
85-01-8	Phenanthrene	<1	101-55-3	4-Bromophenylphenylether	<1
120-12-7	Anthracene	<1	7005-72-3	4-Chlorophenylphenylether	<1
206-44-0	Fluoranthrene	<1	67-72-1	Hexachloroethane	<1
129-00-0	Pyrene	<1	87-68-3	Hexachlorobutadiene	<1
56-55-3	Benzo(a)anthracene	<1	77-47-4	Hexchlorocyclopentadiene	<i< td=""></i<>
218-01-9	Chrysene	<1	111-91-1	Bis(2-chloroethoxy)methane	<1
205-99-2	Benzo(b)fluoranthrene	<1	621-64-7	N-nitrosodi-n-propylamine	<1

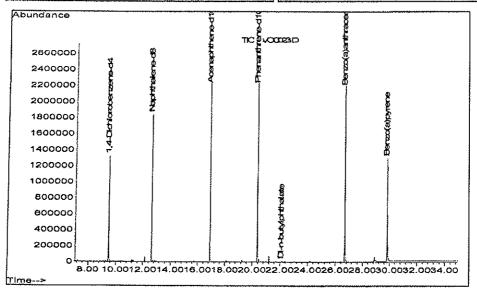
Semivolatiles

Sample Identity - B02817-S00014 / 280 1280 Client / Sample matrix - EPA (Monaghan) / water Units - µg/l


CAS No	Compound	Conc.	CAS No	Compound	Conc.
108-95-2	Phenol	<1	207-08-9	Benzo(k)fluoranthrene	<1
95-57-8	2-Chlorophenol	<1	50-32-8	Benzo(a)pyrene	<1
95-48-7	2-Methylphenol	<}	193-39-5	Indeno(1,2,3-cd)ругеле	<1
106-44-5	4-Methylphenol	<1	53-70-3	Dibenzo(a,h)anthracene	<]
88-75-5	2-Nitrophenol	<1	191-24-2	Benzo(ghi)perylene	<1
100-02-7	4-Nitrophenol	<1	91-58-7	2-Chloronaphthalene	<1
120-83-2	2,4-Dichlorophenol	<i< td=""><td>91-57-6</td><td>2-Methylnaphthalene</td><td><1</td></i<>	91-57-6	2-Methylnaphthalene	<1
105-67-9	2,4-Dimethylphenol	<1	86-74-8	Carbazole	<1
59-50-7	4-Chloro-3-methylphenol	<1	78-59-1	Isophorone	<1
88-06-2	2,4,6-Trichlorophenol	</td <td>132-64-9</td> <td>Dibenzofuran</td> <td><1</td>	132-64-9	Dibenzofuran	<1
95-95-4	2,4,5-Trichlorophenol	<1	131-11-3	Dimethyl phthalate	<1
87-86-5	Pentachlorophenol	<1	84-66-2	Diethyl phthalate	<1
541-73-1	1,3-Dichlorobenzene	<1	84-74-2	Di-n-butylphthalate	<1
106-46-7	1,4-Dichlorobenzene	<1	117-84-0	Di-n-octylphthalate	<1
95-50-1	1,2-Dichlorobenzene	<1	117-81-7	Bis(2-ethylhexyl)phthalate	<1
120-82-1	1,2,4-Trichlorobenzenc	<1	85-68-7	Butylbenzylphthalate	<
98-95-3	Nitrobenzene	<1	106-47-8	4-Chloroaniline	<}
103-33-3	Azobenzene	<1	88-74-4	2-Nitroanaline	<1
118-74-1	Hexachlorobenzene	</td <td>99-09-2</td> <td>3-Nitroaniline</td> <td><1</td>	99-09-2	3-Nitroaniline	<1
91-20-3	Naphthalene	<1	100-01-6	4-Nitroaniline	<1
208-96-8	Accnaphthylene	<1	121-14-2	2,4-Dinitrotoluene	<1
83-32-9	Acenaphthene	<1	606-20-2	2,6-Dinitrotoluene	<1
86-73-7	Fluorene	<1	111-44-4	Bis(2-chloroethyl)ether	<1
85-01-8	Phenanthrene	<1	101-55-3	4-Bromophenylphenylether	<1
120-12-7	Anthracene	<]	7005-72-3	4-Chlorophenylphenylether	<1
206-44-0	Fluoranthrene	<}	67-72-1	Hexachloroethane	<1
129-00-0	Pyrenc	<1	87-68-3	Hexachlorobutadiene	<1
56-55-3	Benzo(a)anthracene	<1	77-47-4	Hexchlorocyclopentadiene	<1
218-01-9	Chrysene	<1	111-91-1	Bis(2-chloroethoxy)methane	<1
205-99-2	Benzo(b)fluoranthrene	<1	621-64-7	N-nitrosodi-n-propylamine	<1

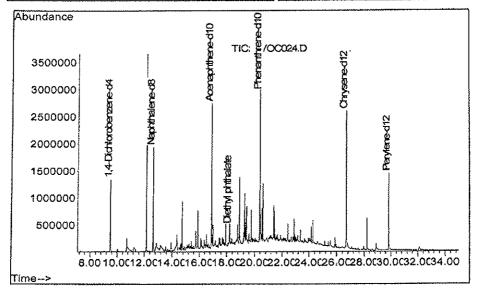
Semivolatiles

Sample Identity - B02817-S00015 / 280 1282 Client / Sample matrix - EPA (Monaghan) / water Units - µg/l


CAS No	Compound	Conc.	CAS No	Compound	Conc.
108-95-2	Phenol	<1	207-08-9	Benzo(k)fluoranthrene	<1
95-57-8	2-Chlorophenol	<1	50-32-8	Benzo(a)pyrene	. <1
95-48-7	2-Methylphenol	<1	193-39-5	Indeno(1,2,3-cd)pyrene	<1
106-44-5	4-Methylphenol	<1	53-70-3	Dibenzo(a,h)anthracene	<1
88-75-5	2-Nitrophenol	<1	191-24-2	Benzo(ghi)perylene	<1
100-02-7	4-Nitrophenol	<1	91-58-7	2-Chloronaphthalene	<1
120-83-2	2,4-Dichlorophenol	<1	91-57-6	2-Methylnaphthalene	<1
105-67-9	2,4-Dimethylphenol	<}	86-74-8	Carbazole	<1
59-50-7	4-Chloro-3-methylphenol	<1	78-59-1	Isophorone	</td
88-06-2	2,4,6-Trichlorophenol	<1	132-64-9	Dibenzofuran	<1
95-95-4	2,4,5-Trichlorophenot	</td <td>131-11-3</td> <td>Dimethyl phthalate</td> <td><1</td>	131-11-3	Dimethyl phthalate	<1
87-86-5	Pentachlorophenol	<]	84-66-2	Diethyl phthalate	<1
541-73-1	1,3-Dichlorobenzene	<1	84-74-2	Di-n-butylphthalate	<1
106-46-7	1,4-Dichlorobenzene	<1	117-84-0	Di-n-octylphthalate	<i< td=""></i<>
95-50-1	1,2-Dichlorobenzene	<1	117-81-7	Bis(2-ethylhexyl)phthalate	<1
120-82-1	1,2,4-Trichlorobenzene	<]	85-68-7	Butylbenzylphthalate	<1
98-95-3	Nitrobenzene	<1	106-47-8	4-Chloroaniline	<1
103-33-3	Azobenzene	<1	88-74-4	2-Nitroanaline	<1
118-74-1	Hexachtorobenzene	</td <td>99-09-2</td> <td>3-Nitroaniline</td> <td><1</td>	99-09-2	3-Nitroaniline	<1
91-20-3	Naphthalenc	<1	100-01-6	4-Nitroaniline	<1
208-96-8	Acenaphthylene	<1	121-14-2	2,4-Dinitrotoluene	<1
83-32-9	Acenaphthene	<1	606-20-2	2,6-Dinitrotoluene	<1
86-73-7	Fluorene	<1	111-44-4	Bis(2-chloroethyl)ether	<1
85-01-8	Phenanthrene	<1	101-55-3	4-Bromophenylphenylether	<}
120-12-7	Anthracene	<]	7005-72-3	4-Chlorophenylphenylether	<1
206-44-0	Fluoranthrene	<1	67-72-1	Hexachioroethane	<1
129-00-0	Pyrene	<1	87-68-3	Hexachlorobutadiene	<1
56-55-3	Benzo(a)anthracene	<1	77-47-4	Hexchlorocyclopentadiene	<1
218-01-9	Chrysene	<1	111-91-1	Bis(2-chloroethoxy)methane	<1
205-99-2	Benzo(b)fluoranthrene	<1	621-64-7	N-nitrosodi-n-propylamine	<i< td=""></i<>

Semivolatiles

Sample Identity - B02817-S00016 / 280 1283 Client / Sample matrix - EPA (Monaghan) / water Units - µg/l


CAS No	Compound	Conc.	CAS No	Compound	Conc.
108-95-2	Phenol	<1	207-08-9	Benzo(k)fluoranthrene	<1
95-57-8	2-Chlorophenol	<1	50-32-8	Benzo(a)pyrene	<1
95-48-7	2-Methylphenol	<1	193-39-5	Indeno(1,2,3-cd)pyrene	<1
106-44-5	4-Methylphenol	<1	53-70-3	Dibenzo(a,h)anthracene	<1
88-75-5	2-Nitrophenol	<]	191-24-2	Benzo(ghi)perylene	<1
100-02-7	4-Nitrophenol	<1	91-58-7	2-Chloronaphthalene	<1
120-83-2	2,4-Dichlorophenol	</td <td>91-57-6</td> <td>2-Methylnaphthalene</td> <td><1</td>	91-57-6	2-Methylnaphthalene	<1
105-67-9	2,4-Dimethylphenol	<1	86-74-8	Carbazole	<1
59-50-7	4-Chloro-3-methylphenol	<1	78-59-1	Isophorone	1 >
88-06-2	2,4,6-Trichlorophenol	<}	132-64-9	Dibenzofuran	<1
95-95-4	2,4,5-Trichlorophenol	<1	131-11-3	Dimethyl phthalate	<1
87-86-5	Pentachlorophenol	<1	84-66-2	Diethyl phthalate	<1
541-73-1	1,3-Dichlorobenzene	<]	84-74-2	Di-n-butylphthalate	<1
106-46-7	1,4-Dichlorobenzene	<1	117-84-0	Di-n-octylphthalate	<1
95-50-1	1,2-Dichlorobenzene	<1	117-81-7	Bis(2-ethylhexyl)phthalate	<1
120-82-1	1,2,4-Trichlorobenzene	<1	85-68-7	Butylbenzylphthalate	</td
98-95-3	Nitrobenzene	<i< td=""><td>106-47-8</td><td>4-Chloroaniline</td><td><{</td></i<>	106-47-8	4-Chloroaniline	<{
103-33-3	Azobenzene	<1	88-74-4	2-Nitroanaline	<1
118-74-1	Hexachlorobenzene	<1	99-09-2	3-Nitroaniline	<1
91-20-3	Naphthalene	<i< td=""><td>100-01-6</td><td>4-Nitroaniline</td><td><1</td></i<>	100-01-6	4-Nitroaniline	<1
208-96-8	Acenaphthylene	</td <td>121-14-2</td> <td>2,4-Dinitrotoluene</td> <td><1</td>	121-14-2	2,4-Dinitrotoluene	<1
83-32-9	Acenaphthene	<1	606-20-2	2,6-Dinitrotoluene	<i< td=""></i<>
86-73-7	Fluorene	<1	111-44-4	Bis(2-chloroethyl)ether	<1
85-01-8	Phenanthrene	<i td="" <=""><td>101-55-3</td><td>4-Bromophenylphenylether</td><td><1</td></i>	101-55-3	4-Bromophenylphenylether	<1
120-12-7	Anthracene	<1	7005-72-3	4-Chlorophenylphenylether	<1
206-44-0	Fluoranthrene	<1	67-72-1	Hexachloroethane	<1
129-00-0	Pyrene	<1	87-68-3	Hexachlorobutadiene	<i< td=""></i<>
56-55-3	Benzo(a)anthracene	</td <td>77-47-4</td> <td>Hexchlorocyclopentadiene</td> <td><1</td>	77-47-4	Hexchlorocyclopentadiene	<1
218-01-9	Chrysene	<1	111-91-1	Bis(2-chloroethoxy)methane	<1
205-99-2	Benzo(b)fluoranthrene	<1		N-nitrosodi-n-propylamine	<1

Semivolatiles

Sample Identity - B02817-S00017 / 280 1284 Client / Sample matrix - EPA (Monaghan) / water Units - µg/I

CAS No	Compound	Conc.	CAS No	Compound	Conc.
108-95-2	Phenol	<1	207-08-9	Benzo(k)fluoranthrene	<1
95-57-8	2-Chlorophenol	<1	50-32-8	Benzo(a)pyrene	<1
95-48-7	2-Methylphenol	<]	193-39-5	Indeno(1,2,3-cd)pyrene	<1
106-44-5	4-Methylphenol	<1	53-70-3	Dibenzo(a,h)anthracene	<1
88-75-5	2-Nitrophenol	<1	191-24-2	Benzo(ghi)perylene	<1
100-02-7	4-Nitrophenol	<1	91-58-7	2-Chloronaphthalene	<1
120-83-2	2,4-Dichlorophenol	<1	91-57-6	2-Methylnaphthalene	<}
105-67-9	2,4-Dimethylphenol	<1	86-74-8	Carbazole	<1
59-50-7	4-Chloro-3-methylphenol	<1	78-59-1	Isophorone	<1
88-06-2	2,4,6-Trichlorophenol	<1	132-64-9	Dibenzofuran	<1
95-95-4	2,4,5-Trichlorophenol	<1	131-11-3	Dimethyl phthalate	<1
87-86-5	Pentachlorophenol	i>	84-66-2	Diethyl phthalate	3
541-73-1	1,3-Dichlorobenzene	<1	84-74-2	Di-n-butylphthalate	<1
106-46-7	1,4-Dichlorobenzene	<1	117-84-0	Di-n-octylphthalate	<1
95-50-1	1,2-Dichlorobenzene	<1	117-81-7	Bis(2-ethylhexyl)phthalate	<1
120-82-1	1,2,4-Trichlorobenzene	<1	85-68-7	Butylbenzylphthalate	<1
98-95-3	Nitrobenzene	<1	106-47-8	4-Chloroaniline	</td
103-33-3	Azobenzene	<1	88-74-4	2-Nitroanaline	<1
118-74-1	Hexachiorobenzene	<1	99-09-2	3-Nitroaniline	<1
91-20-3	Naphthalene	<1	100-01-6	4-Nitroaniline	<1
208-96-8	Acenaphthylene	<1	121-14-2	2,4-Dinitrotoluene	<1
83-32-9	Acenaphthene	<)	606-20-2	2,6-Dinitrotoluene	<1
86-73-7	Fluorene	<1	111-44-4	Bis(2-chloroethyl)ether	<i< td=""></i<>
85-01-8	Phenanthrene	<1	101-55-3	4-Bromophenylphenylether	<
120-12-7	Anthracene	<1	7005-72-3	4-Chlorophenylphenylether	<
206-44-0	Fluoranthrene	</td <td>67-72-1</td> <td>Hexachloroethane</td> <td><1</td>	67-72-1	Hexachloroethane	<1
129-00-0	Pyrene	<1	87-68-3	Hexachlorobutadiene	<1
56-55-3	Benzo(a)anthracene	<1	77-47-4	Hexchlorocyclopentadiene	</td
218-01-9	Chrysene	<1	111-91-1	Bis(2-chloroethoxy)methane	<1
205-99-2	Benzo(b)fluoranthrene	<1	621-64-7	N-nitrosodi-n-propylamine	<1

Date Extracted: ___15/05/08

Authorised By: Nicolas Sallaberry / Colm O'Leary

APPENDIX D SURFACE WATER RESULTS

IBR0078/Reports/AER 2008

Status: Final Issue Date: April 2009

Collected Coll	(8)					Droghed	Drogheda Landfill Site Groundwater Quality	Site Grou	undwater	Quality				
Section Sect	Monitoring Point:													
Include mg/l GacO3 C4-Jan'08 Z5-Api-08 Z5-Api-09 Z5-Ap	Date Online							SW1						
In this might cack 101 1	Date Collected		24-Jan-06		25-Jul-06	09-Oct-06	30-Jan-07	17-Apr-07	31-Jul-07	24-Oct-07	22-Jan-08	29-Apr-08	31~Jul-08	30-Oct-08
mg Mg Mg GF	Alkalinity	mg/I CaCO3		101				158				138		
Mail	Ammonia	Mg/I N	0.19	0.15	<0.03	0.04	0.49	0.29	<0.03	0.11	0.1	<0.03	0.04	<0.03
mgl O2	Barium	ng/l	67.9	67.6	<50	<50	99	71	<50	57.3	<50	68.7	<50	<50
um lugil -0.10 -0	B.O.D.	mg/I 02	<1.5	1.5	4.8	41.5	4.5	1.5	<1.5	<1.5	×1.5	1.5	7 t /	300
um ingil Ca <0.10	Boron	l/gn						?!	2:	2	?	5.	5.	V. J
m mg/l Ca 42.43 2 2 5 10 48 48 49 11 de mg/l Oz 136 132 62 78 641 648 764 48 49 17 tium light 4.4 3.2 <1	Cadmium	l/grl	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0 10 0 10	<0.10	40
High Collision Collision High Collision Collision High Collision		mg/l Ca		42.43				51.87		21.5		53.10	2.5	01.07
Head May C 136 133 62 78 137 140 73 118 69		mg/l 02	19	22	22	5	10	48	48	49	-	18	17	24
Interpretation Inte		mg/I CI	136	133	62	78	137	140	73	118	. 09	125	7.7	147
Coliforms µSicm @ 25 786 786 641 648 764 818 616 704 644	Chromium	l/grl	4.4	3.2	٧	V	2.9	Ž V	Ş V	2	8 5	27	7 7	= 7
Figure High Figure Figure High Figure Figure High Figure High Figure High Figure Figure High Figure Figure High Figure Figure High Figure Fi	Conductivity	uS/cm @ 25	786	785	641	648	764	818	618	204	844	736	200	7/2
Fig.	Copper	l/bri		6.7				5.1	2		5	130	020	200
Movitodinal Movitodinal	Cyanide	ma/I						5				9.4		
Coliforms % Saturation 98 116 108 90 92 103 105 91 88 de mo/100 mil Mo/100 mil 38 95.8 73.1 73.9 121.2 118.6 91 88 leg mof <1	Depth	Ξ												
Coliforms Morittomia Mori	D.O.	% Saturation	86	116	108	00	co	403	105		0		, ,	
teh mg/l 38 95.8 73.1 73.9 121.2 118.6 102.7 87.8 <50	Faecal Coliforms	No/100 ml		2	2	B	76	3	COL	5	99	611	101	36
High 38 95.8 73.1 73.9 121.2 118.6 102.7 87.8 <50 1.55 1.25 1.25 1.308 1	Fluoride	ma/l												
Hg/II	Iron	uq/I	38	95.8	73.1	73.9	121.2	1186	1027	878	750	750	70.2	750
Silum mg/l Mg 12.5	Lead	ua/I	V	V	۷,	T _V	1	200			3 7	37	C.6.	3
right mage 3.7.7 13.00 ry light 3.7.8 2.5 4.1 9 1.1 2.7 7.6 2.5 ry light 8.2 7.8 2.5 4.1 9 11 2.7 7.6 2.5 ry light 8.2 7.8 2.5 4.1 9 11 2.7 7.6 2.5 ry light 0.022 0.011 0.006 <0.023	Wagnesium	ma/I Ma		12.5	-	,	7	43.00	7	7	7	17	1.	Lv
Part Part	E STATE OF THE STA	Sur HSIII		0.71				13.08				12.43		
ry μg/l 8.2 7.8 2.5 4.1 9 11 2.7 7.6 2.5 sphate mg/l N 0.022 0.011 0.006 <0.023	wanganese	/br		31.7				21.7				6.7		
pg/I 8.2 7.8 2.5 4.1 9 11 2.7 7.6 2.5 sphate mg/I N 0.022 0.011 0.006 <0.003	Mercury	119/1		9.0				<0.10				<0.10		
sphate mg/l N 0.022 0.011 0.006 <0.003	Nickel	µg/l	8.2	7.8	2.5	4.1	6	11	2.7	9.7	2.5	7.3	2.5	5.8
sphate mg/l P < 0.02		mg/I N	0.022	0.011	900.0	<0.003	0.023	0.024	<0.003	0.007	0.011	0.01	0.004	<0.003
Mg/I Mg/I C _{0.001} C _{0.086} C _{0.099} C _{0.067} C _{0.001} C _{0.002} C _{0.002} C _{0.005} C _{0.00}	hosphate	mg/I P	<0.02	<0.02	9.0	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	ши
Image co.001 c.0.086 0.009 0.048 0.067 c.0.01 c.0.02 c.0.03 c.0.03 <th></th> <th></th> <th>7.9</th> <th>8.5</th> <th>8.5</th> <th>8.3</th> <th>8.1</th> <th>8.2</th> <th>8.8</th> <th>7.9</th> <th>8.1</th> <th>8.5</th> <th>8.6</th> <th>8.3</th>			7.9	8.5	8.5	8.3	8.1	8.2	8.8	7.9	8.1	8.5	8.6	8.3
sium mg/l 14.46 14.58 38.74 36.16 12.9 14.68 36.04 14.53 39.48 n mg/l 77.66 mg/l 77.66 mg/l 76 41 21.4 mg/l 78 13.4 26 14.4 6.8 15.6 14 11 8 11 8 12 13.1 13.15 13.15 13.1 13.15 13.1	Phenol	mg/l	<0.001	0.086	600.0	0.048	0.067	<0.001	<0.01	<0.01	0.03	<0.01	<0.01	90.0
ne on Evaporation in mg/l 77.66 Problem of the composition of the comp		mg/I	14.46	14.58	38.74	36.16	12.9	14.68	36.04	14.53	39.48	13.89	31.25	11.6
n mg/l 77.66 n 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 77.66 76 76 77.66 76 77.67 77.67 77.67 77.67 77.67 77.67 77.67 77.74 77	on Evaporation	mg/l												
ate mg/l SO4 35.7 26 14.4 6.8 41 21.4 11 8 7 campled °C 6.5 13.4 26 14.4 6.8 15.6 14 11 8 14 coliforms No/ 100 ml 12.3 13.45 13.1 13.15 13.1 13.3 nt 8 12 mg/l No/ 100 ml 0.44 0.51 <0.05		mg/I		77.66				76				61.6		
"C 6.5 13.4 26 14.4 6.8 15.6 14 11 8 8 soliforms No/ 100 ml 12.3 13.45 13.1 13.15 13.1 13.3 nt 8 soliforms No/ 100 ml mg/l 0.44 0.51 <0.05	ate	mg/l SO4		35.7				14	21.4			44.8		
sampled 12.3 13.45 13.15 13.15 13.1 13.3 nt coliforms No/ 100 ml No/ 100 ml 13.3 nt 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 <th></th> <th>၁့ </th> <th>6.5</th> <th>13.4</th> <th>26</th> <th>14.4</th> <th>6.8</th> <th>15.6</th> <th>4</th> <th>11</th> <th>80</th> <th>13.2</th> <th>18</th> <th>7.4</th>		၁့	6.5	13.4	26	14.4	6.8	15.6	4	11	80	13.2	18	7.4
coliforms No/ 100 ml Mo/ 100	Time sampled			12.3	13.45	13.1	13.15	13.1		13.3	nt	13	12.45	12.4
mg/l N 0.44 0.51 <0.05	Total coliforms	No/ 100 ml												
Mg/l N 0.44 0.51 <0.05	T.O.C.	l/gm												
Suspended Solids mg/l	T.O.N	mg/l N	0.44	0.51	<0.05	<0.05	0.72	1.22	<0.05	<0.05	0.16	0.79	<0.05	<0.05
100/l	Suspended Solids	mg/l	<5	<5	9	<5	<5	6	<5	<5	9	G>	<5	
1.5.1	Zinc	hg/l		5.2		-		<u>۲</u>			*******	>		

Namical Point Namical Poin	E					Droghed	a Landfill	Drogheda Landfill Site Groundwater Quality	ndwater	Quality				
SNY SNY	Monitoring Point:													
Included Maji CacCO3 CacO3 CacO3 CacO 3 CacO					· -	100	-	SW2						
thy magif GacO3 -0.03 -0.03 -0.04 0.04	ected		24~Jan-06	25-Apr-06				17-Apr-07	31-Jul-07	24-Oct-07	22~Jan-08	29-Apr-08	31-Jul-08	31-Jul-08 30-Oct-08
Note Note		mg/i CaCO3		138				144				141		
1		mg/I N	<0.03	<0.03	0.19	0.04	0.5	<0.03		0.1	0.13	0.03	90.0	0.13
mg/l O2 2 2 16 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15		ug/l	<50	<50	54.2	76.1	64.6	<50		58.3	80.5	71.5	<50	<50
upll 40fl 40fl <th< th=""><th></th><th>mg/I 02</th><th>2</th><th>2</th><th>1.6</th><th><1.5</th><th><1.5</th><th><1.5</th><th></th><th><1.5</th><th><1.5</th><th><1.5</th><th>2.9</th><th><2.0</th></th<>		mg/I 02	2	2	1.6	<1.5	<1.5	<1.5		<1.5	<1.5	<1.5	2.9	<2.0
nm μg/l -0.10 <0.10		ng/l												
Include mg/l Ca		hg/l	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10
He mg/102 22 25 32 9 11 31 31 31 31 31 31	=	mg/I Ca		41.87				38.55				52.24		
be mg/l Cl 76 78 161 153 133 73 134 ctivity bg/l 688 678 818 761 777 677 777 677 775 777 677 775<		mg/I 02	20	22	25	32	6	-		31	21	11	19	54
timm µg/l 44 3.5 <1		mg/I CI	9/	78	161	153	133	7.3		134	124	125	131	89
ctivity µS/cm @ 25 688 678 818 761 777 667 715 r pyli 3.1 70 71 71 715 715 r mgl m 11 11 101 91 105 86 Coliforms No/100 ml 115 111 101 91 105 86 coliforms Mo/100 ml 105 149 71 41 105 86 coliforms mgl 41 41 41 41 41 41 41 paper mgl 41 41 41 41 41 41 41 sium mgl Mg 41		l/grl	4.4	3.5	₹	⊽	2.7	¥		₹	۲	٧	Ÿ	₹
Part Part		µS/cm @ 25	688	678	818	761	777	657		715	731	729	610	626
Page Page		l/grl		3.1				<u>۲</u>				3.8		
Mathematical Math		mg/l												
Coliforms % Saturation in 109 115 111 101 91 105 86 Iee mg/I <50		E												
Not 100 m Not 100 m Not 100 m Not 100 m Moff		% Saturation	109	115	111	101	91	105		86	105	112	101	74
ride mg/l <50		No/100 ml												
Highl <50		l/gm												
sium mg/l Mg <1		l/brl	<50	149.6	76.2	617.9	111	83.8		76	95.5	59.5	<50	63.1
sium mg/l Mg 21.2 6 7 20.29 7 7 ry µg/l 3.2 3.0		l/grl	₹	₹	7	۲	₹	₹		₽	₹	V	⊽	-
ruese µg/l 18.8 8.7 R.7 ry µg/l 3.2 3.2 8.7 8.1 8.8 3.9 7.5 ry µg/l 3.2 3.2 8.7 8.1 8.8 3.9 7.5 sphate mg/l 0.004 <0.005		mg/I Mg		21.2				20.29				12.07		
ry lgl/l < 6.10		l/brl		18.8				8.7				8.8		
pg/I 3.2 3.2 8.7 8.1 8.8 3.9 7.5 sphate mg/I N 0.004 < 0.016		l/grl		<0.10				<0.10				<0.10		
sphate mg/l N 0.004 <0.005		l/brl	3.2	3.2	8.7	8.1	8.8	3.9		7.5	7.9	7.4	6.8	٧
sphate mg/l P 0.03 < 0.02		N I/bu	0.004	<0.003	0.016	0.004	0.022	0.004		0.007	0.016	0.01	0.004	<0.003
B.2 B.7 B.4 B.7 B.5 B.6 B.5 B.6 B.2	d I/bw	0.03	<0.02	0.05	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02	nm	
mg/l			8.2	8.7	8.4	8.7	8.2	8.6		8.2	8.1	8.4	9.3	8.1
sium mg/l 37.67 36.61 17.48 14.15 12.88 35.07 14.75 n n mg/l 29.9 mg/l 74 mg/l 74 76 14.3 6.3 15.2 mg/l 11.4 mg/l sampled no/100 ml 16.6 12.4 27.6 14.3 6.3 15.2 11.4 11.4 sampled No/100 ml 14.3 13.45 12.55 13.25 13.25 13.1 13.1 sulforms No/100 ml 0.07 <0.05		mg/l	0.024	0.107	0.019	0.006	<0.001	<0.001		<0.01	0.02	<0.01	<0.01	0.03
ne on Evaporation in g/l in the propertion in g/l in the properties in g/l in the g/l		l/bm	37.67	36.61	17.48	14.15	12.88	35.07		14.75	15.22	13.73	12.08	35.5
n mg/l 29.9 29.88 29.88 7 ate mg/l 504 74 7 70 70 sampled °C 6.6 12.4 27.6 14.3 6.3 15.2 11.4 soliforms No/ 100 ml 14.3 13.45 12.55 13.25 13.25 13.1 13.1 mg/l No/ 100 ml 0.07 <0.05	on Evaporation	l/gm												
ate mg/l SO4 74 76 76 77 77 sampled °C 6.6 12.4 27.6 14.3 6.3 15.2 11.4 11.4 soliforms No/ 100 ml 14.3 13.45 12.55 13.25 13.25 13.1 13.1 13.1 soliforms No/ 100 ml 0.07 <.0.05		l/bm		29.9				29.88				61.27		
ampled -C 6.6 12.4 27.6 14.3 6.3 15.2 11.4 coliforms No/ 100 ml 14.3 13.45 12.55 13.25 13.25 13.1 13.1 soliforms mg/l 0.07 <0.05		mg/I SO4		74				70				44.7		
ampled 14.3 13.45 12.55 13.25 13.25 13.25 13.1 coliforms No/ 100 ml mg/l Co.05		၁့	9.9	12.4	27.6	14.3	6.3	15.2		11.4	8	13.3	19.1	9.1
oliforms No/ 100 ml No/ 100 ml Company	Time sampled			14.3	13.45	12.55	13.25	13.25		13.1	ţ	13.5	12.15	13.1
mg/l 0.07 <0.05	Total coliforms	No/ 100 ml												
Suspended Solids mg/l <5		mg/i											100	100
Suspended Solids mg/l		mg/l N	0.07	<0.05	0.1	<0.05	0.72	<0.05		<0.05	1.07	0.78	<0.05	\$0.0>
D.C. 1011	Suspended Solids	mg/l	<5	\$5	\$	5	\$5	\$		\$2	12	8	Ç	ç
		µg/l		5.9				- -				7		

Monitoring Point:				Droghe	Drogheda Landfill Site Groundwater Quality	Site Grot	ındwater	Quality				
70												C AND STATE OF STATE
						SW3						
ected		24-Jan-06	25-Apr-06 25-Jul-(-06 19-Oct-06	5 30-Jan-07	17-Apr-07	31-Jul-07	24-Oct-07	22-Jan-08	29-Apr-08	31~101-08	30-Oct-08
	mg/I CaCO3		122			158				143		22
lia	mg/l N	0.19	0.1	0.03	0.04	0.03	0.12	<0.03	0.13	0.04	0.04	<0 03
	l/gu	63.9	68.4	73.9	<50	68.5	53.8	<50	79.5	<50	<50	\$50
B.O.D.	mg/I 02	2.7	<1.5	1.8	<15	\ \ \ \ \ \	2.5	<15 <15	27.5	2 7	3 4	3
	l/gu				2	9: [-	٨٨	C. 1	C: /	C. ^	o:	0.7×
E	l/gri	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0 10	-0.40	70 40	0,40	0,00
Calcium	mg/I Ca		41.23			51.68	2	21.0	2 7	20 03	2.0	20.10
	mg/I O2	21	67	31	23	32	20	17	19	25.30 <10	20	CV
	mg/l Cl	141	132	149	74	139	135	74	124	65	132	117
	hg/l	4.4	4	٧	2.2	\ \	V	\ \ \	V	Ş V	- V	V
tivity	µS/cm @ 25	779	784	758	658	815	869	909	732	628	613	588
	l/gri		5.9			4.2				V	2:5	ŝ
Cyanide m	l/bw											
lh.												
D.O.	% Saturation	110	114	101	6	100	105	83	105	901	00	70
Faecal Coliforms N	No/100 ml							3	3	3	3	10
Fluoride	mg/l											
Iron	hg/l	<50	116.3	253.6	66.1	116.3	126.9	59.3	76.1	<50	649	<50
	l/grl	<1	۲	V	⊽	₹	⊽	٧	\ \ \	\ V	₹	V
	mg/l Mg		15.31			13.15				19.59		
ese	hg/l		39.7			16.7				19.4		
y	l/grl		6.0			<0.10				<0.10		
	l/grl	8.1	8.1	7.8	2.5	11.1	8.7	٧	7.8	2.1	7.3	5.9
	mg/l N	0.017	0.011	<0.003	0.01	0.023	0.011	<0.003	0.014	0.003	0.003	<0.003
hosphate	mg/l P	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mu
		8.4	8.5	8.8	8.3	8.3	8.6	8.3	8.1	8.5	9.1	8.5
	mg/l	0.033	0.069	0.019	0.083	<0.001	<0.01	<0.01	0.02	<0.01	<0.01	0.03
-1	mg/l	14.04	14.58	13.84	36.36	15.09	14.64	35.19	15.12	35.58	12.41	11.75
on Evaporation	mg/l											
	mg/l		75.6			77.13				26.01		
Sulphate m	mg/I SO4		36.3			41.5				64.5		
	()	7	13.3	14.3	7.3	16.5	21	12.5	8	13.1	19	7.3
			13.15	13.15	13.15	13.3	14.3	13.25	nt	13.35	12.45	12.45
oliforms	No/ 100 ml											
T.O.C.	mg/l											
	mg/l N	0.45	0.51	<0.05	0.28	1.21	0.06	<0.05	1.05	<0.05	<0.05	<0.05
Suspended Solids	l/gm	~ 2	7	~	<5	<5	12	<5	<5	<5	<5	<5
Zinc	µg/l		4.7			۷,				~ 1		

					Droghed	Landfill	Site Grou	Drogheda Landfill Site Groundwater Quality	ıality				
Monitoring Point:													
							SW4						
Date Collected		24~Jan-06	25-Apr-06	25~Jul-06	19-Oct-06	30~Jan-07	17-Apr-07	31-Jul-07 24	24-Oct-07 2	22-Jan-08	29-Apr-08	31~Jul-08	31~Jul-08 30-Oct-08
Alkalinity	mg/l CaCO3										176		
Ammonia	mg/l N										<0.03		0.04
Barium	l/gn										<50		<50
B.O.D.	mg/I O2										<1.5		<2.0
Boron	l/gu												
Cadmium	l/Brl										<0.10		<0.10
Calcium	mg/l Ca										85.92		
C.O.D.	mg/l 02										<10		31
Chloride	mg/l Cl										10		10
Chromium	l/grl										V		2.4
Conductivity	µS/cm @ 25										548		711
Copper	l/grl										4.2		
Cyanide	l/6m												
Depth	m												
D.O.	% Saturation										32		76
Faecal Coliforms	No/100 ml												
Fluoride	mg/l												
Iron	l/grl										84.1		135.5
Lead	l/grl										۲		<1
Magnesium	mg/i Mg										6.54		
Manganese	l/brl										2.5		
Mercury	l/brl										<0.10		
Nickel	l/6rl										~1		~1
Nitrite	Mg/I N										0.01		0.006
o-Phosphate	mg/I P										0.02		nn
Hd.											8.3		8.1
Phenol	l/gm										<0.01		0.03
Potassium	l/gm										11.65		7.09
Residue on Evaporation	l/gm												
Sodium	l/gm										11.96		
Sulphate	mg/I SO4										77.4		
Temp	၁့										10		8.8
Time sampled											14.05		13
Total coliforms	No/ 100 ml												
T.O.C.	mg/l												60 4
T.O.N	mg/l N										4.84		1.05
Total Suspended Solids	mg/I										5		€
Zinc	l/g/l										7		

Monitoring Point:					Drogheda	Landfill	Site Grou	Drogheda Landfill Site Groundwater Quality	ality				
							SWS						
Date Collected		24~Jan-06	25-Apr-06	25-Jul-06	19-Oct-06 3	30-Jan-07	17-Apr-07	31-Jul-07 24-	24-Oct-07	22~Jan-08	29-Apr-08	34-14-08 30.0c+08	30.00
	mg/l CaCO3				_				+-		216	20 10	3
ija	mg/l N										0.03		<0.03
	l/gn										×50		25.05 250
	mg/I O2										×1.5		
	l/gn										2.1.		2.4
m	l/grl										<0.10		<0.10
Calcium	mg/l Ca										94.56		2
C.O.D.	mg/I 02										012		57
	mg/l Cl										6		10
	hg/I										₽		V
ivity	µS/cm @ 25										541		791
	hg/I										4		
e	mg/l												
th.	E												
	% Saturation										88		80
oliforms	No/100 ml												
ride	mg/l												
	l/g/l										68		152.7
	hg/l										۲		۲
	mg/l Mg										6.07		
ese	hg/l										⊽		
J.	µg/l										<0.10		
Nickel	l/brl										۲		⊽
	N I/6m										900.0		<0.003
o-Phosphate	mg/I P										0.02		mu
hd											8.3		6'2
	mg/l										<0.01		0.03
_	mg/l										8.88		3.1
Residue on Evaporation	mg/l												
	mg/l										10.85		
Sulphate	mg/I SO4										55.3		
	၁့										10.2		8.9
Time sampled											14.2		13.
oliforms	No/ 100 ml												
	mg/l										62.6		
	Mg/I N										2.58		
Suspended Solids	mg/l										6		\$
Zinc	hg/l										7		

Environmental Protection Agency, Regional Inspectorate, Monaghan

Results of VOC Analysis

A Report To: Office of Environmental Enforcement VOC-2008-35

Laboratory Reference Number	2801291	VOC-2008-35
Sampling Location	Drogheda Corporation, Drogheda La DA_LFS_SW_Annual SW1	andfill Site.
Date Sampled & Sampled By	29/04/08 G Crawley	
Date Reported	15/05/08	

VOC	Detection Limit (µg/l)	Result (µg/l)
1,1-dichloroethene	0.1	<0.1
Dichloromethane	0.1	<0.1
trans-1,2-dichloroethene	0.1	<0.1
1,1-dichloroethene	0.1	<0.1
2,2-dichloropropane	0.1	<0.1
cis-1,2-dichloroethene	0.1	<0.1
bromochloromethane	0.1	<0.1
Chloroform	0.1	<0.1
1,1,1-trichloroethane	0.1	<0.1
carbon tetrachloride	0.1	<0.1
1,1-dichloropropene	0.1	<0.1
Benzene	0.1	<0.1
1,2-dichloroethane	0.1	<0.1
trichloroethene	0.1	<0.1
1,2-dichloropropane	0.1	<0.1
dibromomethane	0.1	<0.1
bromodichloromethane	0.1	<0.1
cis-1,3-dichloropropene	0.1	<0.1
Toluene	0.1	<0.1
trans-1,3-dichloropropene	0.1	<0.1
1,1,2,-trichloroethane	0.1	<0.1
tetrachloroethene	0.1	<0.1
1,3-dichloropropane	0.1	<0.1
dibromochloromethane	0.1	
1,2-dibromoethane	0.1	<0.1
chlorobenzene	0,1	<0.1
1,1,1,2-tetrachloroethane	0.1	<0.1
ethylbenzene	0.1	<0.1
m,p-xylene	0.1	<0.1
o-xylene	0.1	<0.1
styrene	0.1	<0.1
bromoform	0.1	<0.1
isopropylbenzene	0.1	<0.1
	Page 1052	<0.1

Page 1of 2

Environmental Protection Agency, Regional Inspectorate, Monaghan

A Report To: Office of Environmental Enforcement VOC-2008-35

A ACPOIL TO: Office of Enviro	innental Emolecment	V O C-2000-33
VOC	Detection Limit (µg/l)	Result (μg/l)
bromobenzene	0.1	<0.1
1,1,2,2-tetrachloroethane	0.1	<0.1
1,2,3-trichloropropane	0.1	<0.1
n-propylbenzene	0.1	<0.1
2-chlorotoluene	0.1	<0.1
4-chlorotoluene	0.1	<0.1
1,3,5-trimethylbenzene	0.1	<0.1
t-butylbenzene	0.1	<0.1
1,2,4-trimethylbenzene	0.1	<0.1
sec-butylbenzene	0.1	<0.1
1,3-dichlorobenzene	0.1	<0.1
1,4-dichlorobenzene	0.1	<0.1
p-isopropyltoluene	0.1	<0.1
1,2-dichlorobenzene	0.1	<0.1
n-butylbenzene	0.1	<0.1
1,2-dibromo-3-chloropropane	0.1	<0.1
1,2,4-trichlorobenzene	0.1	<0.1
Naphthalene	0.1	<0.1
hexachlorobutadiene	0.1	<0.1
1,2,3-trichlorobenzene	0.1	<0.1

Notes:

(1) Samples were analysed by Purge & Trap & GC-MS.

(2) MAC (European Communities (Quality of Water Intended for Human Consumption) Regulations, 1988) is 100ug/l total trihalomethanes.

Rogia Mª Gan	Date:	15	5	28
Regina McGinn B.Sc., M.Sc				
Analytical Chemist				

<u>APPENDIX E</u>

LANDFILL GAS RESULTS

Issue Date: April 2009

Station	CH4	CO2	O2
ВН3А	0.1	0.7	19
BH6A	0	0.1	21.2
BH8A	0.1	0.9	20.2
BH9A	1.0	0.4	20.7
BH10A	0.1	0.1	21.1
BH11A	0.1	0.1	21.1
1G7	0.1	0.1	21.0
1G6	0.1	0.1	20.8
BH7	0.1	0.1	20.1
BH5A	0.1	2.3	16.0
BH4A	0.1	2.0	6.3
BH2A	0.1	0.3	20
BH1A	0.1	1.7	13.9
LG7	0.1	0.1	21.0
LG2	0.1	0.1	20.6
LG3	0.1	0.3	20.4
LG5	0.2	0.1	19.4
LG6	0.1	1.3	19.6

13th February 2008

Station	CH4	CO2	02
BH1A	0.1	1.4	15.4
BH2A	0.1	0.1	20.3
ВН3А	0.1	0.4	19.7
BH4A	0.1	1.5	13.7
BH5A	0.1	0.1	20.4
BH6A	0.1	0.1	20.0
BH8A	0.1	1.0	19.3
BH10A	0.2	0.1	20.1
BH11A	0.1	0.1	20.3
LG1	0.2	0.1	20.6
LG2	0.2	0.1	20.6
LG3	0.1	3.1	17.7
LG4	0.1	1.5	19.1
LG5	0.1	0.1	20.3
LG6	0.2	0.1	20.5
LG7	0.2	0.1	20.2

Station	CH4	CO2	O2
BH1A	0.3	0.7	18.7
BH2A	0.0	0.1	21.2
внза	0.1	1.5	18.8
BH4A	0.1	0.4	20.2
BH4	0.0	0.1	21.0
BH5A	0.1	1.2	18.7
BH6A	0.2	0.1	20.7
BH8A	0.1	1.1	19.9
BH9A	0.0	0.4	20.6
BH10	0.1	0.0	20.8
BH11A	0.0	0.1	20.8
LG1	0.1	0.1	21.2
LG2	0.1	0.1	21.1
LG3	0.1	0.7	20.2
LG4	0.1	0.7	20.2
LG5	0.1	1.1	20.4
LG6	0.2	0.0	20.9
LG7	0.0	0.1	20.9

29th April 2008

Station	CH4	CO2	O2
BH1A	0.1	0.2	20.2
BH2A	0.1	0.1	20.7
BH3A	0.1	1.9	17.4
BH4A	0.1	0.0	20.7
BH5A	0.1	1.3	18.6
BH6A	0.1	0.0	20.5
BH7A	0.1	0.1	20.6
BH8A	0.1	0.8	19.7
BH9A	0.1	0.1	20.5
BH10	0.1	0.0	20.5
BH11A	0.1	0.1	20.6
LG1	0.1	0.1	20.7
LG2	0.1	1.2	19.7
LG3	0.1	4.3	14.0
LG4	0.1	3.2	15.9
LG5	0.1	4.4	15.8
LG6	0.1	0.1	20.6
LG7	0.1	0.0	20.6

Station	CH4	CO2	O2
BH1A	0.0	0.5	20.4
BH2A	0.0	0.2	21.1
BH3A	0.0	1.7	17.8
BH4A	0.0	0.2	21.0
BH5A	0.0	0.9	19.5
BH6A	0.0	0.0	20.7
BH7A	0.0	0.3	20.9
BH8A	0.0.	0.0	20.7
BH9A	0.0	0.2	20.6
BH10	0.0	0.0	20.7
BH11A	0.0	0.0	20.7
LG4	0.0	1.1	19.7
LG5	0.0	1.1	19.1
LG6	0.0	0.1	20.7
LG7	0.0	0.1	20.7

30th July 2008

Cladian	CITA	CO3	03
Station	CH4	CO2	O2
BH1A	0.0	0.1	20.4
BH2A	0.0	0.1	20.6
BH3A	0.0	0.0	20.6
BH4A	0.0	0.0	20.6
BH5A	0.0	0.3	20.1
BH6A	0.0	0.0	20.6
BH7A	0.0	0.0	20.6
BH8A	0.0	0.0	20.6
BH9A	0.0	0.2	20.5
BH10	0.0	0.0	20.6
BH11A	0.0	0.0	20.5
LG1	0.0	0.1	21.2
LG2	0.0	0.1	21.1
LG3	0.0	0.7	20.2
LG4	0.0	0.8	20.4
LG5	0.0	1.8	19.5
LG6	0.0	0.1	20.8
LG7	0.0	0.1	20.9

Station	CH4	CO2	O2
BH1A	0.0	0.2	20.1
BH2A	0.0	0.0	20.5
ВН3А	0.0	0.3	19.9
BH4A	0.1	0.1	20.5
BH5A	0.0	0.3	20.1
BH6A	0.0	0.0	20.8
BH7A	0.0	0.0	20.6
BH8A	0.1	0.0	20.8
BH9A	0.0	0.0	20.8
BH10	0.1	0.0	20.8
BH11A	0.0	0.0	20.7
LG1	0.0	0.1	20.6
LG2	0.0	0.1	30.5
LG3	0.0	4.5	15.4
LG4	0.1	0.8	19.5
LG5	0.0	1.3	19.5
LG6	0.0	0.1	20.6
LG7	0.0	0.1	20.5

22nd September 2008

Station	CH4	CO2	O2
BH1A	0.1	0.3	20.1
BH2A	0.1	0.3	20.7
ВН3А	0.0	0.9	17.8
BH4A	0.0	0.3	20.3
BH5A	0.1	0.3	20.8
BH6A	0.0	0.0	20.7
BH7A	0.0	0.3	20.3
BH8A	0.0	0.0	20.6
ВН9А	0.0	0.2	20.4
BH10	0.0	0.1	20.7
BH11A	0.1	0.0	20.9
LG1	0.0	0.0	21.0
LG2	0.0	0.2	21.0
LG3	0.1	0.7	20.6
LG4	0.0	0.8	20.4
LG5	0.0	3.6	17.2
LG6	0.0	0.1	20.5
LG7	0.0	0.0	20.6

Station	CH4	CO2	O2
BH1A	0.0	1.0	17.2
BH2A	0.0	0.2	20.7
ВН3А	0.0	2.6	11.7
BH4A	0.0	0.8	19.2
BH5A	0.1	0.3	20.8
BH6A	0.0	0.0	20.7
BH7A	0.0	0.3	20.3
BH8A	0.0	0.0	20.7
BH9A	0.0	0.6	19.6
BH10	0.0	1.0	20.6
BH11A	0.0	0.1	20.6
LG1	0.0	0.1	20.8
LG2	0.0	0.8	20.6
LG3	0.0	1.4	19.9
LG4	0.0	2.4	18.1
LG5	0.0	1.2	19.9
LG6	0.0	0.2	20.5
LG7	0.1	0.2	20.6

26th November 2008

Station	CH4	CO2	O2
BH1A	0.0	0.1	20.0
BH2A	0.0	0.0	20.7
ВН3А	0.0	0.3	20.5
BH4A	0.0	0.0	20.6
BH5A	0.0	0.5	19.6
BH6A	0.0	0.0	20.9
BH7A	0.0	0.2	20.7
BH8A	0.0	0.0	20.7
BH9A	0.0	0.5	20.2
BH10	0.0	0.1	21.0
BH11A	0.0	0.1	20.9
LG1	0.0	0.0	20.7
LG2	0.0	0.2	20.5
LG3	0.0	0.2	20.5
LG4	0.0	1.3	19.1
LG5	0.0	6.9	13.2
LG6	0.0	0.1	20.6
LG7	0.0	0.0	20.6

APPENDIX F WATER BALANCE CALCULATION

IBR0078/Reports/AER 2008

Status: Final Issue Date: April 2009

							WATER BAL	ANCE CALC	WATER BALANCE CALCULATION - Drogheda	rogheda					
Year	Active Phase	Active Area	Waste	Active Area	Liquid		Temporary Restored area		Restored area	1		Absorptive	Cumulative Absorptive	Cumulative	Leachate
2008		A(m²)	tyear	R(A)(m³)	LW(m³)	Restored	IRCA(m³)	Permanently Restored Area	IRCA(m³)	lotal Water	Cumulative water	Capacity aW(m³)	Capacity	leachate	produced

Jan	Closed	0	0	97.40	0	3,000	73	110000	1071	1144	1124	-		777	****
Feb	Closed	0	0	14.70	0	3.000	11	110000	162	173	1917			1344	470
Mar	Closed	0	0	101.80	0	3,000	76	110000	1120	1196	2513		0	2513	2051
Apr	Closed	٥	0	27.60	0	3,000	21	110000	304	324	2838	0	0	2838	324
May	Closed	0	0	32.70	0	3,000	25	110000	360	384	3222	0		3222	384
un P	Closed	0	0	76.40	0	3,000	57	110000	840	898	4120			4120	808
Ιŋ	Closed	0	0	111.40	0	3,000	28	110000	1225	1309	5429			5420	1200
Ang	Closed	0	0	189.90	0	3,000	142	110000	2089	2231	7660		,	7660	2231
Sep	Closed	0	0	114.10	0	3,000	86	110000	1255	1341	9001	С		9001	1341
ğ	Closed	0	0	92.50	0	3,000	69	110000	1018	1087	10087			10087	1087
λôΝ	Closed	0	0	44.70	0	3,000	æ	110000	492	525	10613	0	0	10613	525
Dec	Closed	0	0	39.40	0	3,000	30	110000	433	463	11076	0	0	11076	463
otal				943											11076
										f					

		Assumptions		
1. IRCA =	Temporary		25%	% of annual rainfall
•	Permanently	(2-10%)	10%	% of annual rainfall
2. Absorptive Cap	2. Absorptive Capacity = Waste density	•		
of 0.8 tonnes/m³. Ł	of 0.8 tonnes/m3. Estimated absorptive			
capacity			90'0	t/m³
3. Rainfall data (R)	3. Rainfall data (R) taken from Dublin			
Airport (=			942.6	шш
4.Capping Area			110,000	m ²
Future permanent cap area	cap area		3,000	tm ²

APPENDIX G PRTR REPORTING

Issue Date: April 2009

| PRTR# : W0033 | Facility Name | Drogheda Landfill | Filename - W0033_2008(1) xis | | Return Year | 2008 |

AER Returns Worksheet

REFERENCE YEAR 2008

1. FACILITY IDENTIFICATION
Parent Company Name | Drogheda Borough Council
Facility Name | Drogheda Landill
PRTR Identification Number (W0033
Licence Number (W0033-01

Waste or IPPC Classes of Activity

No. class name 3.1 Deposit on, in or under land (including landfill). Storage paior to submission to any activity referred to in a preceding panagraph of this Schedule, other than temporary storage, pending any collection, on the premises where the waste concerned is produced. Recycling or reclamation of organic substances which are not used as cohern's (modifing compositing and other biological transformation 4.2 processes). 4.3 Recycling or reclamation of metals and metal compounds. The experience of any waste on land with a consequential benefit for an any activity or ecological system. Use of waste obtained from any activity referred to in a preceding 4.1 paragraph of this Schedule. Storage of waste intended for submission to any activity referred to in a preceding a preceding paragraph of this Schedule, other than temporary storage, a preceding paragraph of this Schedule, other than temporary storage.	CONTRACTOR OF THE PARTY OF THE	No. of the Control of	d to in a preceding	storage, pending erned is produced.	hich are not used as	ai ransiormanon	npounds.	ials.	quential benefit for an		o in a preceding		activity referred to in	in temporary storage,
3.10 Class	ss_name	posit on, in or under land (including landfill).	rage prior to submission to any activity referre	agraph of this Schedule, other than temporary ection, on the premises where the waste conc	cycling or reclamation of organic substances w	cesses).	cycling or reclamation of metals and metal cor	cycling or reclamation of other inorganic mater	treatment of any waste on land with a consec	icultural activity or ecological system.	e of waste obtained from any activity referred t	agraph of this Schedule.	rage of waste intended for submission to any	receding paragraph of this Schedule, other tha
	No. ck	3.1 De	ţ <u>i</u>	3.13 co	Re	4.2 pre	4.3 Re	4.4 Re	<u> </u>	4.10 ag	S	4.11 pa	<u>k</u>	a
		THE PRINCES												

Address 1	Address 1 Collon Koad
Address 2 Meli	Meli
Address 3 Drogheda	Drogheda
Address 4 Co. Louth	Co. Louth
Country Ireland	Ireland
Coordinates of Location 487200.000	487200.000
River Basin District IE-Eastern	E-Eastern
NACE Code 382	382
Main Economic Activity	Main Economic Activity Waste treatment and disposal
AER Returns Contact Name Paddy Rogers	Paddy Rogers
AER Returns Contact Email Address patrick.rogers@droghedaboro.ie	patrick.rogers@droghedaboro.ie
AER Returns Contact Position Assistant Engineer	Assistant Engineer
AER Returns Contact Telephone Number 041 9876163	041 9876163
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	
Production Volume	10000,0
Production Volume Units Tonnes	Tonnes
Number of Installations	2
Number of Operating Hours in Year	8760
Number of Employees	9
User Feedback/Comments	Landfill site is closed. Enclosed flare on site. Methane stripper. CA User Feedback/Comments site in operation. 5 employees on CA site.
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
pg pg	Landfills
50	Installations for the disposal of non-hazardous waste

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

03/04/2009 10.18

00000000 169000.0 4520000.0 13800.0 887.0 0.0 4,48419 Total Landfill Gas Emission Point Emission Point 1 GasSim Lite GasSim Lite GasSim Lite GasSim Lite GasSim Lite GasSim Lite Methane (CH4)
Carbon microde (CO2)
Carbon microde (CO2)
Particularies matter (PH4)
Particularies matter (PH4)
Particularies matter (PH4)
Not-methane volatile (SO/SSC)2
Hvdro-fluorocaticons (HFCs)
Not-methane volatile (solatile compounds (NMVOC) RELEASES TO AIR SECTION A: SECTOR SPECIFIC PRTR POLLUTANTS

SECTION B: REMAINING PRTR POLLUTANTS

200331

		10000	ME	METHOD	Hall come that the Control of the Co			QUANTITY		
				Method Used	Total Landfill Gas Emission Point					
No. Annex II	Name	MICIE	Method Code	Designation or Description	Emission Point 1	Emission Point 2	T (Total) KG/Vear	A (Accidental)	F (Fugitive)	•
1,1,2	,1,2,2-tetrachloroethane	O	SSC	GasSim Lite	0.191	0	0.191	-	0.0	ľ
Benz	Berzene	o	SSC	GasSim Lite	0.11	0	0		00	
Chlo	Chlorofluorocarbons (CFCs)	o	SSC	GasSim Lite	1.27	0	12	2	00	0
Halo	lalons	O	SSC	GasSim Lite	0.0	0	0	0	00	00
Hydr	Hydrochlorofluorocarbons (HCFCs)	o	SSC	GasSim Lite	0.562	0	0 567			0 0
Perfli	Perfluorocarbons (PFCs)	O	SSC	GasSim Lite	00	C				
Trich	Frichlorobenzenes (TCBs)(all isomers)	O	SSC	GasSim Lite	0.00024	0	0 0000			0.0
Trich	Trichloroethylene	o	SSC	GasSim Lite	0.139	00	,			000
Viny	/inyl chloride	O	SSC	GasSim Lite	0.17	0				0
1,2,3	1,2,3,4,5,6-hexachlorocyclohexane(HCH)	O	SSC	GasSim Lite	00	00			000	000

SECTION C.: REMAINING POLLUTANT EMISSIONS (As required in your Licence)
RELEASESTO AIR

82554887884

M/C/E Method Code

A (Accidental) KG/Year

T (Total) KG/Year

Emission Point 1

Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

For the purposes of the National Inventory on Gerenhouse Clases, Lindfll operators are requested to provide summary data on landfll gas (Mechanes) fauned of oldished on the Intallies are ecompany) the figure of the data mechanism should not by recompany the figure of the data mechanism should not by recompany the figure of the data mechanism of the removement under lindal Kidny for stacked, 2 sector specific RFIT pollutants above. Please complete the labe before.

Additional Data Requested from Landfill operators

Landfill:	Drogheda Landfill				
Please enter summary data on the quantities of methane flared and / or utilised			Meti	Method Used	
	T (Total) kg/Year	MICIE	M/C/E Method Code	Designation or Description	Facilit
Total estimated methane generation (as per site model)	Per 893520 C OTH	U	ОТН	As per formula EPA Training	
Methane flared	red 331278.05	O	ОТН	As per formula EPA Training	
Methane utilised in engine/s	e/s				
Net methane emission (as reported in Section A above)	Oco (1800)	O	ssc	GasSim Lite	

	Drogheda Landfill				
r summary data on the of methane flared and I or			Met	Method Used	
	T (Total) kg/Year	MICIE	M/C/E Method Code	Description Pacifity Total Capac	Facility Total Capac
imated methane generation (as per site model)	893520.0		отн	As per formula EPA Training	
Methane flared	331278.05	O	ОТН	As per formula EPA Training	
Methane utilised in engine/s	0.0				
ne emission (as reported in Section A above)	169000.0	O		GasSim Lite	NA

750.0 (Total Plaring Capacity)
0.0 (Total Utilising Capacity)

| PRTR# W0033 | Facility Name Drogheda Landfill | Filename W0033_2008(1) xis | Return Year 2008 |

T (Total) KG/Year A (Accidental) KG/Year F (Fugitive) KG/Year 0.0 RELEASES TO WATERS SECTION A: SECTOR SPECIFIC PRTR POLLUTANTS No. Annex II

erns Releases from your facility

03/04/2009 10 18

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B: REMAINING PRTR POLLUTANTS

POLLUTANT						QUANTITY	
			Method Used				一日 大学 一日 一日 一日 一日 一日 一日 一日 一日 一日 一日 一日 一日 一日
No. Annex II	Name M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Ye
				0	0	0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C: REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES TO WATERS				を の 人の 日本 経過場	の 本の 大学の できない ない	語と語るとはなると
POLLUTANT				THE RESERVE THE PROPERTY OF THE PARTY OF THE		QUANTITY	
		Ž	ethod Used				
tant No.	Name	E Method Code L	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
			· · · · · · · · · · · · · · · · · · ·	0	00	00	00

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

4.3 RELEASES TO WASTEWATER OR SEWER

S	
POLLUTANT	
PRTR	
d	
SECTION	

Wetho					CHANTIEN
	Method Used				GOANIII
No. Amex II Method Code	Designation or Description Emission Point 1	sion Point 1 Emission Point 2 Emission Point 3		T (Total) KG/Year	A F (Accidenta (Fugitive)
		0.0	0.0	00	0 00 00

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B: REMAINING POLLUTANT EMISSIONS (as required in your Licence)

				The state of the s	Street, or other Designation of the last o	Charles of the Control of the Contro		The second name of the second
	FOLLUIANI		METHOD				QUANTITY	
			Total Francis		Closed Landfill			
		1	Metrod Osed	CIVIC Waste Facility (S1)	Facility (SZ)			ı
Pollutant No.	Name	TO IN	Charles and Charle				A (Accidental)	(Fugitive)
000		2			Emission Point 2	Emission Point 2 I (Total) KG/Year	KG/Year	KG/Year
738	Ammonia (as N)	M Per	Per EPA Monaghan	405.47	0.25		0.0	00
306	C00	M Per	Per EPA Monaghan	476.69		477.06		0.0
343	Sulphate	M Per	Per EPA Monaghan	277.24	12.36			
				000				-

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

4.4 RELEASES TO LAND

		RELEASES TO LAND				この いんという はいかい はいしかり	
	POLLUTANT		No. Man to Man	METHOD			CHANTITY
				Method Used			
No. Annex II	Name	MICIE	Method Code	Designation or Description	escription Emission Point 1	T (Total) KG/Vear	A (Accidental) KG/Vear

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

POLLUTANT METHOD Method Used Designation or Description Emission Point 1 T (Total) KG/Year A (Accidental) KG/Year		RELEASES TO LAND	Q					
M/C/E Method Code Description Emission Point 1 T (Total) KG/Year A (Accident		POLLUTANT		はあるないなどのないは	METHOD			QUANTITY
M/C/E Method Code Designation or Description Emission Point 1 (Total) KG/Year A (Accidente					Method Used			
	tant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

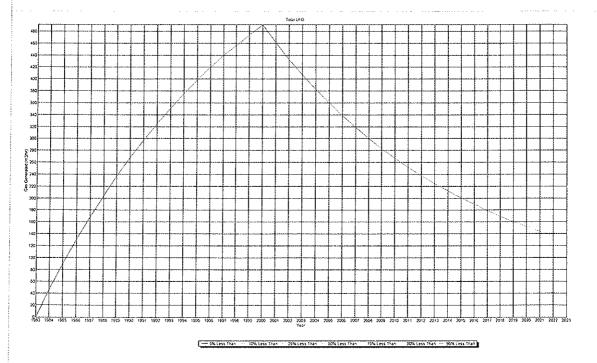
5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE | PRITR# W0033 | Facility Name | Drogheda Landfill | Filename | W0033_2008(1) xks | Return Year | 2008 |

												14
						Me	Method Used					
以											Name and Address of Final Licence / Permit No. of Final Destination i.e. Final	Licence / Permit No. of Final
	European Waste		Ouantity		Waste				Name and Licence / Permit	!	Recovery / Disposal Site	Recovery / Disposal Site
Transfer Destination		Hazardous		Description of Waste	Operation	M/C/E M	Operation M/C/E Method Used		No. of Recoverer / Disposer / Broker	Address of Recoverer / Disposer / Broker	(HAZARDOUS WASTE	(HAZARDOUS WASTE
										Newry Road, Dundalk, Co.	/ _	(13.15)
Within the Country 20 02 01	20 02 01	So.	721.92	721.92 Food and garden waste	R13 1	M	Neighed	Offsite in Ireland	Offsite in Ireland V & W Recycling W0034-02 Louth	Louth		
Within the Country	20 01 01	No	677.64	677.64 Cardboard, newspaper and other paper	R13	W	Veighed	Offsite in Ireland	Offsite in Ireland Smurfit Recycling 021-3	Walkinstown Dublin		
To Other Countries	20 01 02	No	167.42 Glass	Glass	R13	W	Veighed	Offsite in Ireland		Toomehidoe Co Antrim		
To Other Countries	20 01 40	No	181.28 Metal	Metal	R13	3	Veighed	Offsite in Ireland		Northern Ireland		
Within the Country	20 01 39	No	138.84	138.84 Plastic	R13	M	Veighed	Offsite in Ireland Shabra 15-5		Monaghan, Co. Monaghan		
To Other Countries 20 01 11	20 01 11	N	08 14	08 11 Textiles	2,0							
	11 12 22		100	Levilles	SIN	N N	veigned	Offsite in Ireland	Offsite in Ireland Cookstown NI WMEX01/11 Cookstown, Northern Ireland	Cookstown, Northern Ireland		
										Newry Road, Dundalk, Co.		
		No	613.32 Wood		R13	×	Veighed	Offsite in Ireland	Offsite in Ireland V & W Recycling W0034-02 Louth	Louth		
Within the Country	20 01 34	No	20.32	20.32 Small batteries	R13	M	Neighed	Offsite in Ireland	Offsite in Ireland Retumbatt W0105-01	Returnhatt I to Old Mill Indust	Returnhatt 1 td Old Mill Industrial Estate Kill Co Kildare Ireland	Due
Within the Country	20 01 35	Yes	551.04	551.04 WEEE	R13	W	Neighed	Offsite in Ireland	-	Dublin	יים באומים, ייווי, כס: ייווים באומים, ויים	2
										Clonminam Industrial Estate		
Within the Country 20 01 21	20 01 21	Yes	0.2006	0.2006 Fluorescent tubes and lighting	R13 I	M	Weighed	Offsite in Ireland	Offsite in Ireland ENVA Ireland W0184-1	Portlaois, Co. Laois		

Select a row by double-clicking the Description of Waste then click the delete button

GasSim Version 1.52 Project Name : Drogheda Landfill Site PRTR 2007 Client Name : DBC

		•		. ,
Gas	Reporting		Amount Produced	
	Threshold	Value to repor	t 25%	75%
Ammonia	1.00 t	Not Modelied	4 450 00 1	4 040 00 +
Carbon Dioxide	10,000.00 t	4,520.00 t	4,150.00 t 7.10 g	4,910.00 t 138.00 g
Carbon Disulphide	1,00 t 100,00 t	29.50 g 13.80 t	11.70 t	16.90 t
Carbon Monoxide	10.00 t	79.70 kg	9.72 kg	458.00 kg
Hydrogen Chloride	200.00 kg	Not Modelled	0.72 Ng	400.00 kg
Hydrogen Cyanide	5.00 t	304,00 kg	159.00 kg	425.00 kg
Hydrogen Fluoride Nitrous Oxide	10.00 t	Not Modelled	100.00 kg	420.00 Ng
	50.00 kg	Not Modelled		
Phosgene Sulphur Hexafluoride (SF6)	50.00 kg	Not Modelled		
Acetaldehyde (ethanai)	100.00 kg	79.10 g	26.30 g	235.00 g
Acetonitrile	50.00 kg	Not Modelled	-4.44 9	
Acrylamide	100.00 kg	Not Modelled		
Acrylonitrile	10.00 t	Not Modelled		
Aldrin	10.00 kg	Not Modelled		
Allyl alcohol	10.00 kg	Not Modelled		
Amitrole	10.00 kg	Not Modelled		
Anitine	50.00 kg	Not Modelled		
Atrazine	10.00 kg	Not Modelled		
Azinphos-Methyl	10.00 kg	Not Modelled		
Benzene	1.00 t	110.00 g	22.50 g	394.00 g
Benzo(a)pyrene	1.00 kg	0.00 g	0.00 g	0.00 g
Benzylbutylphthalate (BBP)	100.00 kg	Not Modelled		
Benzyl Chloride (chlorobenzene)	50.00 kg	13.70 g	1.52 g	86.90 g
Butadiene (modelled as 1,2-Butadiene)	1.00 t	46.70 g	9.51 g	145.00 g
Butene - all isomers	10.00 t	14.60 g	4.32 g	72.70 g
i-Butyraldehyde	50.00 kg	Not Modelled		
Calcium Cyanamide	10.00 kg	Not Modelled		
Carbon Tetrachloride (tetrachloromethane)	100.00 kg	14.90 g	2.70 g	36.00 g
Chloroform (trichloromethane)	100.00 kg	56.70 g	13.80 g	147.00 g
Cyanamide	50.00 kg	Not Modelled		
Di(2-ethylhexyl)phthalate (DEHP)	100.00 kg	Not Modelled		
Diallate	10.00 kg	Not Modelled		
Diaminotoluene - all isomers	50.00 kg	Not Modelled		
Dibutylphthalate (DBP)	100.00 kg	Not Modelled	0.66 **	72.60 ~
para-Dichlorobenzene (modelled as 1,4-Dichlorobenzene)	10.00 kg	6.53 g	2.56 g	23.60 g
Dichlorodiphenyltrichloroethane (DDT) - all isomers	10.00 kg	Not Modelled		
Dichlorvos	10.00 kg	Not Modelled		
Dieldrin Dieldrin	10.00 kg	Not Modelled Not Modelled		
Diethyl Sulphate	10.00 kg		23.50 g	349.00 g
Dimethyl Disulphide	10.00 kg	100.00 g Not Modelled	23.50 g	549.00 g
Dimethyl Sulphate	10.00 kg 10.00 t	Not Modelled		
Dimethylformamide	10.00 kg	Not Modelled		
Dinoseb Dioxane	50.00 kg	Not Modelled		
Endosulfan	10.00 kg	Not Modelled		
Endrin	10.00 kg	Not Modelled		
Epichlorohydrin	50.00 kg	Not Modelled		
2-Ethoxyethanol	50.00 kg	Not Modelled		
2-Ethoxyethylacetate	10.00 kg	Not Modelled		
Ethyl Acrylate	50.00 kg	Not Modelled		
Ethyl Bromide	100.00 kg	Not Modelled		
Ethyl Toluene (All Isomers)	50.00 kg	9.26 g	0.46 g	177. 0 0 g
Ethylene	10.00 t	1.34 kg	611.00 g	2.37 kg
Ethylene Dichloride	1.00 t	110.00 g	29.50 g	415.00 g
Ethylene Oxide	1.00 t	Not Modelled		
Formaldehyde	50.00 kg	51.00 g	16.50 g	123.00 g
Hexabromocyclododecane	100.00 kg	Not Modelled		
Hexachlorobenzene	10.00 kg	Not Modelled		
Hexachforocyclohexane (All Isomers)	10.00 kg	0.00 g	0.00 g	0.00 g
Hydroxyethył Acrylate	10.00 kg	Not Modelled		
Iodomethane	50.00 kg	Not Modelled		
Isophorone Di-Isocyanate	10.00 kg	Not Modelled		
Maleic Anhydride	50.00 kg	Not Modelled	10 (00)	040.001
Methane	10.00 t	169.00 t	134.00 t	213.00 t
Methyl Bromide	100.00 kg	Not Modelled	25 20 ~	4 40 1
Methyl chloride (chloromethane)	10.00 t	210.00 g	25.20 g	1.12 kg
Methyl chloroform (1,1,1-trichloroethane)	50.00 kg	39.00 g	7.71 g	205.00 g
Methyl Isocyanate	10.00 kg	Not Modelled		
3-Methyl-1-butene	100.00 kg	Not Modelled		
Methylamine	50.00 kg	Not Modelled	43 80 ~	長 1 長 レ ヘ
Methylene chloride (dichloromethane)	1.00 t	479.00 g	43.80 g	5.15 kg
4,4'-Methylene Dianiline	100.00 kg	Not Modelled		
Methylene Diphenyl Diisocyanate	10.00 kg	Not Modelled		
4,4'-Methylene-bis(2-Chloroanaline)	10.00 kg 50.00 kg	Not Modelled Not Modelled		
Nitrobenzene	20.00 Ng	AOL MIODOROX		


Gas	Reporting	Amount Produced		ed
	Threshold	Value to repor	t 25%	75%
2-Nitropropane	10.00 kg	Not Modelled		
Pentachlorophenol	10.00 kg	Not Modelled		
Pentane	100.00 kg	333.00 g	43.90 g	1.55 kg
Pentene (All Isomers)	10.00 t	66.70 g	16.30 g	336.00 g
Phenol	50.00 kg	0.00 g	0.00 g	0.00 g
Phorate	10.00 kg	Not Modelled	•	·
Propylene	10.00 t	Not Modelled		
Propylene Oxide	100.00 kg	Not Modelled		
Simazine	10.00 kg	Not Modelled		
Styrene	100.00 kg	Not Modelled		
Tetrachloroethane (modelled as 1,1,2,2-Tetrachloroethane)	50.00 kg	191,00 g	49.20 g	833.00 g
Tetrachioroethylene (tetrachloroethene)	1.00 t	256.00 g	12.90 g	1.94 kg
Toluene	100.00 kg	416.00 g	29.40 g	5.25 kg
Toluene Diisocvanate (All Isomers)	50.00 kg	Not Modelled	20.10 8	0.20 kg
Trichlorobenzene (All Isomers)	10.00 kg	0.24 g	0.13 g	0.44 g
Trichloroethylene	1.00 t	139.00 g	20.00 g	761.00 g
Trichlorotoluene	50.00 kg	Not Modelled	20.00 g	101.00 g
Trimellitic Anhydride	10.00 kg	Not Modelled		
Trimethylbenzene (All Isomers)	50.00 kg	3.76 g	0.67 g	39.40 g
Vinyl Chloride	10,00 kg	3.76 g 170.00 g	26.80 g	1.03 kg
		•	6.22 g	2.25 kg
Xylene (All Isomers)	10.00 t	194.00 g Not Modelled	0.22 g	2.25 Ng
Antimony	5.00 kg			
Arsenic	1.00 kg	Not Modelled		
Beryllium	1.00 kg	Not Modelled		
Boron	5.00 t	Not Modelled		
Cadmium	1.00 kg	Not Modelled		
Chromium	10.00 kg	Not Modelled		
Copper	10.00 kg	Not Modelled		
Lead	100.00 kg	Not Modelled		
Manganese	50.00 kg	Not Modelled		
Mercury	1.00 kg	Not Modelled		
Nickel	10.00 kg	Not Modelled		
Selenium	200.00 kg	Not Modelled		
Vanadium	50.00 kg	Not Modelled		
Zinc	100.00 kg	Not Modelled		
Brominated Diphenylethers (total as Br)	100.00 kg	Not Modelled		
Chlorine and total inorganic chlorine compounds - as HCI	10.00 t	Not Modelled		
Chlorofluorocarbons (CFCs)	50.00 kg	1.27 kg	94,00 g	4.95 kg
Dioxins and Furans (modelled as 2,3,7,8-TCDD)	0.01 g	0.00 g	0.00 g	0.00 g
Dioxins and furans (as WHO TEQ)	0.01 g	Not Modelled		
Fluorine and total inorganic fluorine compounds - as HF	5.00 t	Not Modelled		
Halons	50.00 kg	0.00 g	0.00 g	0.00 g
Hydrobromofluorocarbons (HBFCs)	100.00 kg	Not Modelled		
Hydrochlorofluorocarbons (HCFCs)	1.00 t	562.00 g	52.20 g	4.18 kg
Hydrofluorocarbons (HFCs)	100.00 kg	0.00 g	0.00 g	0. 0 0 g
Nitrogen Oxides (Except N2O, reported as NO2)	100.00 t	2.47 t	2.31 t	2.63 t
Non-methane volatile organic compounds (NMVOCs)	10.00 ŧ	34.00 g	1.24 g	392.00 g
Particulate Matter - PM10	10.00 ŧ	0.00 g	0.00 g	0.00 g
Particulate Matter - total	10.00 t	Not Modelled		
Perfluorocarbons (PFCs)	100.00 kg	0.00 g	0.00 g	0.00 g
Polychlorinated Biphenyls (PCBs) - total as WHO TEQ	0.01 g	Not Modelled		
PAHs (modelled as Naphthalene)	50.00 kg	Not Modelled		
Sulphur Oxides, SO2 and SO3 as SO2	100.00 t	887.00 kg	738.00 kg	1.01 t
		•		

GasSim Version V 1.54

Project Name: Drogheda Landfill Site PRTR 2007

Project Client: DBC

Total Bulk LFG Produced

IBR0021 drogheda landfill site PRTR 2007.gss 02/04/2009 15:11:02