Appendix 9.1.3 Geotechnical Report PM 2009

Meath Waste Management Facility

Factual Ground Investigation Report (Project No. 14039)

Indaver Ireland PM Group

May 2009

Meath Waste Management Facility Carranstown, Duleek, Co. Meath

Factual Geotechnical Investigation Report (Report No. 14039)

> Client: Indaver Ireland Engineer: PM Group Ltd

> > May 2009

IGSL Ltd

Distribution	Copies	Rev.	Date of Issue	Report Prepared By:
PM Dublin	Draft – 1 No hard copy & PDF by email	A	20 March 2009	TD / PQ
PM Dublin	Final – 3 No hard copies & PDF on CD	В	30 March 2009	TD / PQ
PM Dublin	Final with addendum (stabilization test data)– 1 No hard copy & PDF by email	С	18 May 2009	TD / PQ

DOCUMENT ISSUE REGISTER

TABLE OF CONTENTS

Foreword

- 1. Introduction
- 2. Fieldwork
 - 2.1 General
 - 2.2 Rotary Drillholes
 - 2.3 Percolation tests
 - 2.4 Geophysical Surveying
 - 2.5 Trial Pits & Bulk Sampling for Stabilization Testing
- 3. Laboratory Testing

References

APPENDICES

Appendix 1	- Rotary Drillhole Records (Geobor Core Drilholes)
Appendix 2	- Rotary Drillhole Records (Conventional Core Drilholes)
Appendix 3	- Percolation Test Records
Appendix 4	- Geotechnical Soil Laboratory Test Data
Appendix 5	- Geotechnical Rock Laboratory Test Data
Appendix 6	- Core Photographs
Appendix 7	- Exploratory Hole Site Plan
Appendix 8	- Stabilization Test Data

FOREWORD

The following conditions and notes on site investigation procedures should be read in conjunction with this report.

General

The ground investigation works have been carried out in accordance with BS 5930 (1990) and the IEI Specification & Related Documents for Ground Investigation in Ireland (2006). No responsibility can be held for conditions which have not been revealed by exploratory work, or which occur between exploratory hole locations.

Whilst the report may suggest the likely configuration of strata, both between exploratory hole locations, or below the maximum depth of the investigation, this is only indicative, and liability cannot be accepted for its accuracy. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

Boring Procedures

Unless otherwise stated, the 'Shell and Auger' technique of soft ground boring has been employed. All boring operations sampling and/or logging of soils and in-situ testing complies with the recommendations of the British Standard Code of Practice BS 5930 (1981), 'Site Investigation' and BS 1377:1990, 'Methods of test for soils for civil engineering purposes'.

Whilst the technique allows the maximum data to be obtained in soft ground, some disturbance and variation of soft and layered soils is unavoidable. Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

Where peat has been encountered during siteworks, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 & Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986).

Routine Sampling

Undisturbed samples of soils, predominantly cohesive in nature are obtained unless otherwise stated by a 104mm diameter open-drive tube sampler. In granular soils, and where undisturbed sampling is inappropriate, disturbed samples are collected. Smaller disturbed samples are also recovered at intervals to allow a visual examination of the full strata section.

In-Situ Testing

Standard penetration tests, utilising either the standard split spoon sampler or solid cone and automatic trip-hammer are conducted unless otherwise where required by instruction. Subsequent to a seating drive of 150mm, a summation for the number of blows for 300mm penetration is recorded on the boring records together with the blow count for each 75mm penetration. In cases where incomplete penetration is obtained, the number of blows for the depth of penetration are recorded. In coarse granular soils, a cone end is fitted to the sampler and a similar procedure adopted.

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage condition, tidal variation or other causes.

Retention of Samples

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material will be discarded. Unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

Disclaimer

This report has been prepared for Project Management Group / Indaver Ireland and the information should not be used without prior approval or written permission of either party. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

1. INTRODUCTION

At the request of Project Management (PM) and Indaver Ireland, IGSL has undertaken a programme of geotechnical investigation works for a waste to energy facility at Carranstown, Duleek, Co. Meath. The works were performed as directed by PM Group, consulting engineers for the project. The site is located at Carranstown, Duleek, Co. Meath and encompasses an area of approximately 25 acres. The site is bounded to the south by the R150 Duleek to Navan Road, to the east by the Platin Cement Works and farmland to the west and north.

It is understood that the proposed development will involve the construction of a waste management facility and include a waste handling area (bunker & furnace), emissions stack, ash bunker, workshop, office and administration buildings and general site infrastructure (i.e. roads, drainage, service utilities, culverts etc). The waste handling area will require a basement type structure (bunker) with a proposed dig depth of the order of 7m below existing ground level (i.e. formation of c23m OD). Site enabling works were completed prior to IGSL commencing the geotechnical investigations and produced a platform level of 30.5m OD. It is noted that a programme of geotechnical investigations were originally carried out in 2007 and details are presented in a report prepared by Byrne Looby Partners (B580 May 2007).

The geophysical and geotechnical fieldworks works for this phase were carried out in accordance with BS 5930, Code of Practice for Site Investigations (1999) and the IEI Specification & Related Documents for Ground Investigation in Ireland (2006). The fieldworks included geophysical surveying, rotary core drillholes and percolation tests. Core drillholes GC 1 to GC 5 were positioned at the footprint of the bunker (note the location of this structure was subsequently altered) while RP 1, 2 and 5 were located at a zone where karst weathering was identified in the original investigations. The geophysical surveying was performed by Apex Geoservices and included seismic refraction spreads and surface wave analysis (MASW) to determine small strain stiffness. Geotechnical soil and rock laboratory testing was performed on selected samples in accordance with BS 1377 and ISRM.

The primary objectives of the investigation were as follows:

- Evaluate rock quality, weathering profile, strength and fracture state of the bedrock at the proposed bunker & emissions stack
- Recover samples for geotechnical laboratory testing (soil & rock)
- Assess percolation characteristics of the upper soils at designated locations

This report presents the factual geotechnical data obtained from the exploratory locations and laboratory testing. A separate geotechnical interpretative report (GIR) has been prepared and includes a discussion of the ground conditions, engineering properties of the soils and bedrock and recommendations developed on the key geotechnical issues impacting on the proposed development. The locations of the exploratory holes are presented on a site plan in Appendix 7. It is noted that sampling of the glacial till from the waste bunker and stockpiles were scheduled by PM in March 2009 and this information is included in Appendix 8 (addendum to the final report issued on 30 March 2009).

2. FIELDWORK

2.1 General

The fieldworks were carried out during the period February 2009 and comprised the following:

- Rotary core drillholes (9 No.)
- Percolation tests (2 No.)
- o Geophysical surveying

2.2 Rotary Drillholes

Rotary drilling was undertaken at nine locations using a top drive Knebel rig. Geobor core drilling methods were utilized at six locations (denoted GC 1 to GC 6) with conventional air mist drilling employed at three locations (RP 1, 2 & 5). The Geobor drilling system used polymer gel flush and recirculation tanks, with the emphasis on high quality recovery in the glacial soils and upper bedrock zone.

The Geobor coring produced 102mm diameter cores while the conventional coring produced 80mm diameter cores using air mist flush. Recovery in the Geobor holes was excellent with 100% recovery in the majority of the runs. The Geobor drillholes achieved depths of between 11.80 and 15.10m while each of the conventional holes terminated at depths of 10.50m. Each of the core drillholes were backfilled with cement/bentonite grout (tremmied) as directed by PM.

The rock cores were placed in 3m capacity timber boxes and logged by an IGSL engineering geologist. This included photography of the cores with a digital camera. The core log records are presented in Appendices 1 and 2 and include engineering geological descriptions of the rock cores, details of the bedding / discontinuities and mechanical indices (TCR, SCR and RQD's) for each core run.

Where rock core was recovered, a graphic fracture log is also presented alongside the mechanical indices. This illustrates the fracture state of the rock cores and allows easy identification of highly fractured / non-intact zones and discontinuity spacings. It should be noted that no correction for dip of the joints has been made and that the spacings shown are successive joint / core intersections within the core.

2.3 Percolation Tests

Percolation or soakaway tests were performed at two locations to evaluate the infiltration potential of the upper soils. The tests were conducted in accordance with BRE 365 guidelines and the data sheets are presented in Appendix 3. The infiltration rate values (F Values) were calculated using the field data and are shown on each of the logs.

2.4 Geophysical Surveying

Geophysical surveying was carried out by Apex Geoservices and included resistivity profiling, seismic refraction spreads and multi-channel analysis of surface waves to assess soil stiffness (GMax v depth). Details of the methodologies used, x-sections / profiles and maps are presented in a separate report by Apex Geoservices.

2.5 Trial Pits & Bulk Sampling for Stabilization Testing

Samples of the glacial till were taken from the footprint of the waste bunker and stockpiles to facilitate earthwork and stabilization testing. Two trial pits were excavated at the waste bunker footprint and both extended to a depth of 4m bgl. Large bulk disturbed samples were recovered (c 50 kg) and placed in heavy duty polyethene bags and returned to Naas for testing. The trial pit logs and associated laboratory test data are presented in Appendix 8.

3. LABORATORY TESTING

Geotechnical soil laboratory testing was performed on selected Geobor core samples in accordance with BS 1377 (1990). The soils testing included the following and results are presented in Appendices 4 and 8.

- o Moisture content
- o Particle size analysis
- Atterberg Limits (Liquid & Plastic Limits)
- o Consolidated quick undrained triaxial
- o Consolidation (oedometer)
- o pH & sulphate
- California Bearing Ratio (CBR)
- Moisture Condition Value (MCV)
- o CBR, MCV & sulphates following the addition of lime or cement binders

Rock testing was undertaken on representative core samples and focused on Point Load Strength Index (PLSI)) and unconfined compressive strength (UCS) tests in accordance with ISRM. The results of the rock testing are presented in Appendix 5.

References

- 1. BRE Digest 365 Soakaway Design
- 2. BS 5930 (1999) Code of Practice for Site Investigation, British Standards Institution (BSI).
- 3. BS 1377 (1990) Methods of Testing of Soils for Civil Engineering Purposes, BSI.
- 4. Indaver, Carranstown Geotechnical Assessment Report (B580), May 2007, Byrne Looby Partners
- 5. Site Investigation Practice: Assessing BS 5930 (1986), Geological Society Special Publication, No. 2.

KEY TO EXPLORATORY RECORDS

Cable Percussion Boreholes

D	Small Disturbed Sample
B	Large Disturbed Sample
T	Tub Sample (for moisture content profiling)
U100	Undisturbed Sample (driven tube sample)
W	Groundwater Sample
C	SPT N-Value (Solid Cone)
S	SPT N-Value (Split Spoon / Open Shoe)
FHT	Falling Head Permeability Test
RHT	Rising Head Permeability Test

Rotary Core Drillholes

Log
L

Trial Pits

В	Bulk Disturbed Sample
T	Tub Sample
VT	Vane Test (KPa) Using Genor H-70 Hand Vane
HP	Hand Penetrometer Test (KPa)
W	Groundwater Sample

Groundwater Installations

SP	Standpipe (uPVC 50mm diameter with 1mm slots)
Piez	Casagrande Piezometer (19mm diameter)

Strata Legends / Symbolic Logs

•		:	

Strata legends / symbolic logs are in accordance with BS 5930 (1999). Legend codes are selected from Holebase / GINT to reflect stratum.

Appendix 1

Rotary Core Drillhole Records (Geobor Holes)

REPORT NUMBER

ONTRACT	Indav	er Waste Managen	nent Facili	ty, Duleek					DRILL SHEE	HOLE N	0	RC Shee	GC1 t 1 of 2	
O-ORDINAT	ES	306,263.87 E 270,930.70 N		GROUND	GROUND LEVEL (m) 30.10 CORE DIAMETER (mm) 102					DATE STARTED DATE COMPLETED			17/02/2009 17/02/2009	
:LIENT ENGINEER	Indav PM G	er roup		FLUSH	INCLINATION -90 FLUSH Polymer Ge					DRILLED BY LOGGED BY			Petersen A. Mahony	
Llownhole Uepth (m) Core Run Depth (m) T.C.R.%	S.C.R.% R.Q.D.%	Fracture Spacing (mm) 0 250 500	se Strata	a description		Depth (m)	Disc	continuities		Elevation	Standpipe Details	SPT (N Value)		
0.80	0 0			OPEN DRILLI by drille brown s gravelly Soft bro gravelly	HOLE NG: Observe as returns o sility, very sand clay own sandy cLAY, Grave	ed of dy el is	0.80				29.30			
2 1.50 80	0 0			sub-ang medium Brown of fine SA rounded and fine grained	gular and n grained. clayey gravell ND. Gravel is d to sub-angu to medium	y s ilar	1.30				28.60			
3.00	0 0			Brown Brown gravelly Gravel angular coarse	SILT slightly silty fine SAND. is rounded to and fine to grained.		3.16 3.40 4.25				26.94 26.70			
4.50	0 0		, x, o, x, x	Firm to sandy g Gravel sub-rou coarse Brown s fine SA	stiff brown gravelly CLAY is sub-angula inded and fine grained. silty very grav ND with	r, er to e to relly	<u>4.95</u> 5.80				25.15			
6.00			× × ×	occasio (5.3m-5 sub-ang sub-rou	nal cobbles 5.8m. Gravel gular to inded and fine	is e to	<u>6.20</u> 6.60				24.30 23.90			
7 7.50 9	27 27			Coarse Firm to sandy v CLAY v sub-ang coarse CLAY v sub-ang coarse Eirm bo	grained. stiff brown ery gravelly Gravel is gular to mded and fine grained.	e to		Discontin and undu Apertures local clay smearing zones). I commoni variable fi	uities are ro lose to irreg s are open v sand /infill (non i Dips are y sub-45° v ractures	ough gular. with ntact vith	23.50			
9.00	61 61			sandy g (sand la Gravel sub-rou coarse Strong	gravelly SILT ayer at 6.4m). is sub-angula inded and fine grained. to very strong	e to	8.55	throughou	jt		21.55			
100	99 94			strong,	medium to									
Core boxes, ncountered. 00% flush los	10.7m C Grout 0. ss from 1	Core liner used. No 0m-12.0m. 50% fl 11.8m.	groundw ush loss f	ater rom 7.5m,	Water Strike	Casir Dept	ng ih	Sealed At	Rise To	V Time (min)	VATER Comm No w	ents ater st	KE DETAIL	
NSTALLATIC	N DETA	ALS			Date Hole Casing Depth to Comments					en MA	ICK DETAIL			
Date Ti	ip Depth	RZ Top RZ Base	9	уре	-		epth Depth		1 Water					

REPORT NUMBER

*		Transfer and the second s																	
co	NTR	АСТ	lr	ndave	er Waste M	/lanageme	ent Fac	ility, D	uleek						DRILL	HOLE N	0	RC Shee	GC1
CO-ORDINATES 306,263.87 E 270,930.70 N GROUN CORE I CORE I										_EVEL (m) VIETER (mr	n)		30.10 102		DATE	START	ed .eted	17/02 17/02	2/2009 2/2009
CLI	CLIENT Indaver ENGINEER PM Group									INCLINATION -90 FLUSH Polymer Gel				Gel	DRILLED BY			Petersen A. Mahony	
Downhole Depth (m)	Core Run Depth (m)	Fracture Spacing % 2 C C % 2 C C C C % 2 C C C C C % 2 C C C C C C C C C C C C C C C C C C						Non-intact zones	Strata description			Depth (m)	Di	sconti	nuities		Elevation	Standpipe Details	SPT (N Value)
10	10.50	100	79	79					thickly b grey, me LIMEST and foss Fresh to weather Very stri- strong, t blue gree (siliceou fossilifer locally s weather End of C (m)	edded, blue adium grain ONE (silice siliferous). o slightly ed. ong, locally hickly bedd y, fine to cc LIMESTON is and ous). Fres lightly ed. (<i>continu</i> Corehole at	ed ous ed, varse iE h to <i>ved</i>) 12	12.00	Discont and unc are ope smearir are sub sub-ver (10.0-11 10.5-10	inultie dulose n with ng surt -10° v tical fr 0.4m, .97m)	s are ro . Apert clay sa faces. I vith actures). (conti	ugh ures nd Dips nued)	18.10		
RE	MAR	KS]	l	<u> </u>				I							1	WATE	R STRI	KE DETAILS
7 C enc 100	ore b ount % flu	oxes ered. Ish lo	s, 10. Gro oss fr	7m C out 0. rom 1	ore liner u 0m-12.0m 1.8m.	ised, No ç 1. 50% flu	ground\ sh loss	vater from	7.5m,	Water Strike	Casi Dep	ng th	Sealed At	Ris To		rime (min)	No w	vater st	trike recorded
INC	T۵i				JLS					Date	H	lole	Casing	De	pth to	Comm	nents	AD SAM	
INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type							Туре			D	epth	Depth	V	vater					
										1			1			1			

REPORT NUMBER

0-OR	DINA	TES		306,28	6.09 E		G	ROUND	D LEVEL (m) 30.00					ATE STARTED			Sheet 1 of 2 11/02/2009	
				270,89	2.7 Z IN		C	CORE DIAMETER (mm) 102					D/	DATE COMPLETED			12/02/2009	
	ER	lr P	ndave M Gr	oup			F	FLUSH -90					DF Gel LC	DRILLED BY LOGGED BY			Petersen A. Mahony	
o Downhole Depth (n Core Run Depth (n Core Run Depth (n Sbacing (mm) Core Run Depth (n (mm) Core Run Depth (n Room Room O O O O O O O O O O O O O O						Non-Intact zones	Strata description			Depth (m)	Di	scontinui	ties		Elevation	Standpipe Details	SPT (N Value)	
								OPEN H DRILLIN by drille brown s gravelly	HOLE NG: Observ r as returns ilty, very sau clay	red of ndy	1.50							
1.50	100	0	0					Brown v gravelly occasior (sandy g 2.95m-3	rery sandy, CLAY with nal cobbles gravel at 3.05m).	very						28.50		
3.00	100	0	0								3.40				:			
3.50	100	0	Q			0000		Brown v sandy G occasior Gravel is rounded	ery clayey, RAVEL with nal cobbles. s angular to l, predomina	very n antiy						26.60		
4.50	100	0	0			R POLD		fine grai	ned.		5 30							
5.30	100	10	0				0000	Strong to locally m	o very stron noderately	g,		Discont and und	inuities ai lulose. A	re roi perti	ugh Ires	24.70		
6.00	100	96	96				000	thickly b grey, fin grained (siliceou	edded, blue e to mediur LIMESTON is and	n E		clay sar (5.3m-6 6.73-6.1 8.09-8.1	id smeari 0.0m6.31- 0m, 7.69- 1m, 9.22-	6.33 7.72 9.3n	nfill m, m, 1,			
6.90	100	58	58				<u>°0 °</u> 0	locally s weather	rous). Fres lightly ed.	n to		10.46-1 11.55-1 14.13-1	0.61m, 1.75m, 4.28m), a	and le	ocal			
7.50	100	80	64		******		0000					surface 14.69m sub-0°-/ local su	s (9.22-9). Dips a 20° locall b-vertical	.3m, re y 45° frac	' and tures	-		
8.40	100	100	100		601							9.3-9.6	7m).	, .U~+I	14,			
9.00	100	61	53				000											
EMAR	KS	J	l			<u>I </u>		L		~	اـــــــا 				<u> </u>	NATEF		KE DETAIL
Core & ncount 00% fli	ooxes tered. ush lo	s, 13.6 . Gro oss fre	6m Co out 0.0 om 7.	ore liner u)m-15.0m .5m. Mov	ised. No g n. 50% flus /e & Setup	roundv sh loss 1hr.	vater from	6.0m,	Water Strike	Casi Dep	ng h	Sealed At	Rise To		time (min)	Comm	ients	
		-									*****					NO W	ater sl	nke recorde
									L	<u>г</u> п		Casing	Doneh	. +~		GROUN	NDWA	TER DETAI
STAL	LAT)ETA	ILS	DZ Deres		Turne		Date		oie epth	Depth	Wate	i iO er	Comm	ents		
Date Tip Depth RZ Top RZ Base Typ)e									

REPORT NUMBER

	0													
DRILLHOLE NORC GC2SHEETSheet 2 of 2														
DATE STARTED DATE COMPLETED			11/02/2009 12/02/2009											
DRILLED BY LOGGED BY			Petersen A. Mahony											
3	Elevation	Standpipe Details	SPT (N Value)											
rough irtures														
th local /infill 33m, 72m, 3m, 3m, 1 local			- - - - -											
n, 15° and actures 64m, <i>ued)</i>														
	14.90													
	WATEF	STR												
Time (min)	Comm No w	vater s	trike recorded											
	GROUI	AMONA	HER DETAILS											
Comm	INCONTRACTOR													
	3m, d local ined m, 45° and actures 34m, <i>nued</i>)	3m, d local ined m, 45° and actures 34m, nued) 14.90 WATEF WATEF Time Comments GROUI Comments	3m, d local ined m, 45° and actures 34m, nued) 14.90 14.90 WATER STR Time Comments GROUNDWA to Comments											

GEOTECHNICAL CORE LOG RECORD

REPORT NUMBER

		COLUMN COLUMN	l																
cc	NTR	ACT	In	dave	r Waste M	lanageme	int Faci	lity, C	uleek					DRIL	LHOLE N ET	10	RC Shee	GC3 at 1 of 2	
cc	-ORI	DINA	TES		306,299 270,902	0.12 E 2.06 N		c c	GROUND LEVEL (m)30.14CORE DIAMETER (mm)102				DAT	DATE STARTED DATE COMPLETED			2/2009 2/2009		
CL EN	CLIENT Indaver ENGINEER PM Group								INCLINATION -90 FLUSH Polymer Ge					DRIL el LOG	DRILLED BY LOGGED BY			rsen ahony	
Downhole Depth (m)	Core Run Depth (m) Core Run Depth (m) F.C.R.% Sbacing (mm) R.O.D.% R.O.D.% Legend Non-intact zones							Strata	descriptior	1	Depth (m)	Dis	continuitie	s	Elevation	Standpipe Details	SPT (N Value)		
	0.70	100	0	0					OPEN F DRILLIN by driller brown si gravelly Firm bro 0 7-0 85	HOLE IG: Observ r as returns ilty, very sa clay own (soft m) clayey (red of ndy	0.70				29.44			
2	1.50 2.40	100	0	0			× × × × × × × × × × × × × × × × × × ×		sandy (c gravelly Gravel is sub-rour coarse g	bccasionally layers) SIL s sub-angul nded and fil grained.	T. larto he to	2.00				28.14			
3	3.40	100	0	0					sandy/g gravel, r from 2.2 with occ	ravelly (fine nostly sand 25m) SILT/(asional cob	CLAY bles	3.65				26.40			
4	4.10	100	0 0 Image: Constraint of the second						with occasional gravel Firm brown very sandy gravelly SILT with							26.49 26.39 25.99			
5	4.50	100	10	10			\$\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		occasion Firm bro gravelly (local sa 4.28m & Brown s	nal cobbles wn very sa SILT/CLAY and layer at 5.02m illty fine SA	ndy	5.15 5.40 5.55				24.99 24.74 24.59			
- 6 	6.00	100	0 0 0 0 COBE							Brown sitty very sandy GRAVEL 6.45 (predominantly fine to medium) with occasional cobbles. Dark brown, gravelly, sithy fine to medium						23.89 23.69			
60/	7.50	100	31	31					SAND Brown s gravelly (possible weather bedrock	ilty clayey s , COBBLES e highly ed upper)	sandy	8.00				22.14			
1 IGSL.GDT 30/5	9.00	100	15	15						I									
B RE	MAR	KS						unt		Water	Caei	na	Sealed	Rise	Time	WATE	< STR	IKE DETAILS	
క్ష] 7 Core boxes, 11.1m Core liner used. No groundwat encountered. Grout 0.0m-11.8m. 100% flush loss f ద జ									n 7.0m.	Strike	Dep	th	At	To	(min)	Comn No v	vater s	trike recorded	
06 16											J	l	l.	I		GROU	NDWA	TER DETAILS	
INSTALLATION DETAILS										Date Hole				Depth t Water	0 Comr	ments			
GSL RC N	Date		Tip D	epth	RZ Top	RZ Base		Туре											

REPORT NUMBER

	<u> </u>															
CONTRAC	T I	ndave	er Waste N	lanageme	ent Fac	ility, D)uleek					DRIL SHEE	LHOLE N	10	RC Shee	GC3 et 2 of 2
CO-ORDIN	ATES		306,299 270,902	9.12 E 2.06 N		c c	Round I Ore diai	LEVEL (m) METER (mr	n)		30.14 102	DATI DATI	E START E COMPL	ed .eted	12/0: 13/0:	2/2009 2/2009
CLIENT ENGINEER	. F	ndave PM Gr	er oup		1	ll F	ICLINATIO	NC		¢	-90 Polymer G	ei LOG	LED BY GED BY		Pete A. M	rsen ahony
Downhole Depth (m) Core Run Depth (m)	S.C.R.%	R.Q.D.%	Fract Spac (mr 0 250	ture sing n) 500	Legend	Non-intact zones	Strata	description		Depth (m)	Dis	continuities	3	Elevation	Standpipe Details	SPT (N Value)
10 10.30 11 10.30 11 10.30 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10	15	11					Strong t strong, r blue gre grained (fossilife siliceous infilled v clay/san 9.4m-10 variably upper bo <i>(continu</i>) End of C (m)	o moderate nedium bec y medium LIMESTON s). Heavily vith id/gravel (es 0.03m) (pos weathered edrock <i>red</i>) Corehole at	y ded, E sp. sible	11.80				18.34		
REMARKS	i es, 11.	.1m C	Core liner u	ised. No g	ground	water	-	Water	Casi	ng	Sealed	Rise	Time	WATER Comn	R STR	IKE DETAILS
	ed. Gr	out 0.	.0m-11.8m	a. 100% fÌ	ush lo:	ss fror	n 7.0m.	Strike	Dep	<u>th</u>	At	10	(min)	Nov	vater s	trike recorded
00									F 1	lala	Casher	D	. 1	GROU	NDWA	TER DETAILS
	TION	DETA	AILS					Date		iole epth	Depth	Depth to Water	Comn	nents		
ਹ <mark>ੋ Date</mark> ਤ	Tip E	Depth	RZ Top	RZ Base		Туре										

REPORT NUMBER

No.		And a state of the								···· · · · · · · · · · · · · · · · · ·								
co	NTR	ACT	lr.	ndave	er Waste M	Vianageme	ent Fac	ility, C)uleek					DRIL SHE	LHOLE N ET	10	RC Shee	GC4 at 1 of 2
со	-ORI	DINA	TES		306,27 270,93	5.13 E 8.38 N		c	ROUND I	LEVEL (m) VIETER (mn	n)		30.02 102	DAT	E START E COMPI	ed Leted	16/0 17/0	2/2009 2/2009
CLI	ENT	ER	lr P	ndave M Gr	er oup			۱۱ F	ICLINATIO	N		-	-90 Polymer G	DRIL el LOG	LED BY GED BY		Pete A. M	rsen ahony
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa (m 0 250	ture cing m) ⁰ 500	Legend	Non-intact zones	Strata	description		Depth (m)	Dis	continuitie	5	Elevation	Standpipe Details	SPT (N Value)
0									OPEN H DRILLIN by drille	IOLE IG: Observer r as returns	ed of	0.70						
-1	0.70	63	0	0					brown s gravelly Soft bro cream/b	ilty, very sar clay wn mottled lack/dark	idy /	4.50				29.32		
2	1.50	97	0	0					brown, v gravelly occasion Gravel i sub-rou	very sandy, v CLAY with nal cobbles. s sub-angula nded and fin	very ar to ie to	1.50				28.52		
3	3.00	87	0	0			x x x x		Coarse c Firm rec very sar CLAY (li soft 1.5 Gravel is and fine	grained. Idish brown, ndy, very gra ocally slightl m-2.0m). s sub-angula to coarse	velly velly y	3.30				26.72		
4	4.50	100	0				* • × · · · · · · · · · · · · · · · · · ·		Firm yel slightly (/coarse	low brown, gravelly(fine) sandy SILT]) /	4.50				25.52		
5	5.10	100	17	17			X		Firm dar gravelly Very gra medium	L rk brown sar SILT/CLAY avelly (fine to), dark brow	ndy ndy	5.10				25.42 25.12 24.92 24.77		
6	6.00	100	0	0			0 0 x		fine to c COBBL Brown c gravelly	oarse SANE E :layey/silty , medium SA		6.00				24.02		
7	6.90 7.50	100	60	53					Gravel i sub-ang medium Firm bro	s rounded to jular and fine grained.	e to	<u>6.90</u> 7.15	Discontir and undi	nuities are ulose to irro	rough egular.	23.12 22.87		
8	0.50	100	53	53				0.00	gravelly occasion (becomi towards	CLAY with nal cobbles ing sandier 6.9m)			local clay smearing zones). common	s are open / sand g/infill (non Dips are ly sub-45°	intact with			
9	9.00	100	56	40				0000 000 000 000	Strong t iocally n strong, i	, medium SA o very stron noderately medium to	ND g,		variable througho	fractures out.				
		100	15	10				000	thickly b grey, m	edded, blue edium graine	ed	10.00						
REI 7 C	MAR ore b	KS oxe	s, 10.	85m	Core liner	used. No	ground	dwate	r	Water	Casi	ing	Sealed	Rise	Time (min)	Comn	nents	KE DETAILS
enc	ount	ered	. Gro	iut 0.	um-12.1m	2.				CUINC					<u>,,,,,,,,,,</u>	No v	vater s	trike recorded
											[]	lole	Casing	Donth t		GROU	NDWA	TER DETAILS
INS	Date		Tip D	DETA	NLS RZ Top	RZ Base		Туре		Date		epth	Depth	Water	' Comr	nents		
										ļ				1				

REPORT NUMBER

	ACT	' ir	ndave	er Waste I	Manageme	ent Fac	ility, C	uleek					ľ	RILL	HOLEN	10	RC	GC4
D-ORI	DINA	TES		306,27	5.13 E		0	ROUND I	_EVEL (m)			30.02	s	SHEET DATE	START	ED	Shee 16/0	et 2 of 2 2/2009
				270,93	8.38 N		c	ORE DIA	VIETER (mr	n)		102		DATE	COMPL	ETED	17/0	2/2009
	ER	lr P	ndave M Gr	er oup				ICLINATIO				-90 Polymer (Gel L	DRILL .OGG	ED BY ED BY		Pete A. M	rsen ahony
Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa (m 0 ²⁵	cture cing m) ⁰ 500	Legend	Non-intact zones	Strata	description		Depth (m)	Dis	scontin	uities		Elevation	Standpipe Details	SPT (N Value)
10.00	100	100	100		52			LIMEST	ONE (silice siliferous). slightly	ous /		Disconti and und	nuities ulose.	are ro Apert lav sa	ugh ures nd	20.02		
10.50	100	98	98		71	C 0000000	00001	Very strong, t biue gre	ed. ong, locally hickly bedd y, fine to co	ed, arse		smearin are sub- sub-vert (11.6-12	g surfa 10° wil ical fra 2.07m).	ces. [h ctures	Dips			
11.50	100	28	15	ar an ann an tha th			0000	(siliceou fossilifei	is and rous). Fres	n to	10 15							
12.15	2							locally s weather End of (12.15 (r	lightly ed. Corehole at n)	/	12.13					17.87		
3																		
5	a da da la calenda da venando de entre entre dete desenta de																	
6																		
,																		
3																		
9																		
=MAR Core b	KS boxe	s, 10.8	85m	Core liner	used. No	ground	dwate	r	Water	Casi	ng	Sealed	Rise		Time (min)	Comm	nents	NE DETAILS
icount	ered	i, Gro	nut 0.1	um-12.1n	٦.				SUINE	Uepi		<u></u>	10		<u>((())</u>	No w	ater s	trike recorded
										11		L Crain-		<u> </u>	1	GROUI	NDWA	TER DETAIL
STAL Date		ION C Tip D	DETA epth	ILS RZ Top	RZ Base		Туре		Date		ole epth	Depth	Dep Wa	ith to ater	Comm	nents		
												<u> </u>						

REPORT NUMBER

	ACT	. ł	ndave	er Waste i	Manageme	ent Fac	ility, C	Juleek						DRILI	LHOLEN	 0	RC	GC5
0-OR	DINA	TES		306,28 270,91	0.57 E 6.06 N		0		LEVEL (m)			30.08		DATE	T START	ED	Shee 13/0	et 1 of 2 2/2009
LIENT	•	lr	ndave	er.			1	NCLINATIO	ON	117		-90		DRIL	LED BY		Pete	rsen
	ER	۹ 	PM Gr	oup		1	F	LUSH			1	Polymer	Gel	LOG	SED BY	1	A. M	ahony
Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa (m 0 25	ture cing m) 0 ₅₀₀	Legend	Non-intact zones	Strata	a description		Depth (m)	D	isconti	inuities		Elevation	Standpipe Details	SPT (N Value)
0.70								OPEN H DRILLIN by driller	HOLE NG: Observ r as returns ilty: very sar	ed of	0.70							
0.70	88	0	0					gravelly Brown n black/da	clay nottled ark brown, sa	andy	1.50					29.38		
1.50	100	0	0					gravelly occasion Brown v gravellv	CLAY with nal cobbles /ery sandy SILT/CLAY	/ with	2.20					28.58		
2.50	100	0	0					Occasion Brown S	nal cobbles SILT/CLAY	/						27.88		
3.00	100	0	0					Brown n	nottled		3.20					26.88		
4.00				-				slightly s (fine), C	sandy grave LAY with nal cobbles	ily /	3.90					26.18		
4.50	100		U	m				Dark browith occ	own fine SA asional grav own gravelly	ND ret	4.60					25.78 25.68 25.48		
5 50	100	0	0	-		* X * *	- - -	Dark bro	silty fine SAI own silty, SAND.									
6.00	100	58	58	-			0_ 0_	gravelly occasion	ery sandy SILT/CLAY nal cobbles	with	5.80	Discont and un	tinuitie dulose	s are r	ough gular.	24.28		
	100	20	20				0000 0000	GRAVE silty/clay Strong to strong a	L (very yey 5.5m-5.8 o moderatel ind locally very where intact	Sm) y y y		clay/sai and infi oxide s sub-0° fracture	nd/gra lled, s tained with si s corr	vel sm lightly i . Dips ub-vert imon.	eared ron are ical			
7.50	100	53	53				0.00	blue gre coarse (LIMEST and foss Slightly weather	y, medium t grained ONE (silice siliferous). to moderate ed.	o ous ly								
9.00						99999999	°0 ≥ 0 °0 ≥ 0 99999											
	100	83	76						1		<u> </u>						. 670	VE DETA"
Core b	ns Doxe	s, 11.	2m C	ore liner ı	used. No d	groundv	water		Water	Casi	ng	Sealed	Ris	se	Time	Com	vo i Ki vents	
count	ered	Gro	out 0.	0m-12.2n	n. 100% fÌ	ush los	s fron	n 6.5m,	Strike	Dep	th	At	<u> </u>	2	<u>(min)</u>	No v	vater sl	rike recorde
									1				L			GROU	NDWA	TER DETA
STAL	LAT		DETA	ILS					Date	H De	lole epth	Casing Depth		epth to Vater	Comm	ients		
Date	;	Tip D	epth	RZ Top	RZ Base		Туре		-									
										1								

REPORT NUMBER

NTR	ACT	l	ndave	er Waste	Manageme	ent Fac	ility, D	Duleek						DRILL	HOLE N	0	RC	GC5
		TES		306.28	0.57 E			GROUND	LEVEL (m)			30.08		SHEET	C7407		Shee	et 2 of 2
UK:	UINP	163		270,91	6.06 N		c	ORE DIA	METER (mn	n)		102		DATE	COMPL	ed Eted	13/0: 16/0:	2/2009 2/2009
IENT GINE	ER	lr P	ndave M Gr	er roup			II F	NCLINATI LUSH	ON			-90 Polymer G	Sel	DRILL LOGG	ED BY ED BY		Peter A. M	rsen ahony
Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa (m	cture cíng m) ⁰ 500	Legend	Non-intact zones	Strata	a description		Depth (m)	Dis	conti	nuities		Elevation	Standpipe Details	SPT (N Value)
10.60	100	90	90				0 -	Strong t strong a strong v blue gre coarse e LIMEST and fos Slightly weather End of ((m)	to moderately and locally ve where intact, ay, medium the rONE (siliced siliferous). to moderately red. (continu Corehole at	y ry o us (y (y () () () () () () () () () () () () ()	12.20	Discontil and und Aperture clay/san and infill oxide sta sub-0° v fractures (continu	nuitie ulose d/grav ed, sl ained. /ifth su ed)	s are ro to irreg open v vel sme jghtly ir Dips a ib-vertio mon.	ugh Iular. /ith ared on are cal	17.88		
MAR ore t	KS boxes tered	s, 11.2 . Gro	2m C out 0.	Fore liner 1 0m-12.2n	used. No g n. 100% fl	ground ¹ ush los	water s fror	n 6.5m,	Water Strike	Casi Dep	ng	Sealed At	Ris Tc	e	Time (min)	VATE Comm	t STRI nents	KE DETAILS
																No w	ater sl	TIKE RECORDED
						<u> </u>				Γ E.I		Caping	D -	nth to	1	GROUI	NDWA	TER DETAILS
TAL	LAT		DETA		1075		.		Date		epth	Depth	De W	oth to later	Comm	ents	_	
Date		<u>Up</u> D	epth	RZ TOP	RZ Base		туре		4									
					1	1			1	1								

REPORT NUMBER

ONTRACT Endower Wask Managemont Faculty, Duleex Difference Difference <thdifference< th=""> Difference Difference</thdifference<>	New Concerner		I															
CORDINATES 306.325.72 E 270.960.28 N GROWD LEVEL (m) 30.37 100 DATE STARTED 1:30220000 DATE COMPLETED LENT Indexer Indexer Indexer Deleter (mm) 102 LENT Indexer PACORD Fracture (mm) Status Polymer Cell DOE DRULED BY Petersen LENT Indexer Practure (mm) Status description E E E E E A Matrix E E Status description E	:ONTR/	ACT	lr	ndave	r Waste I	Managem	ent Fac	ility, C	Juleek					DR SHI	eet	NO	RC Shee	GC6 et 1 of 2
LENT Indexer PALENT Indexer PALENT Depart Call DRILLED BY Petersin MOMEER PM Grups Fracture PLUSH Polymer Call Discontinuities 0 Notestand A. Mehory Big grad Strate description E E Discontinuities 0	:0-ORE	dina	TES		306,32 270,96	5.72 E 0.26 N			GROUND	LEVEL (m) METER (m	m)		30.27 102	DA' DA'	TE STAR TE COMI	TED PLETED	18/0 18/0	2/2009 2/2009
Example Produce Spacing (mm) Fracture (mm) Strata desciption Example Discontinuities Image: Spacing (mm) Image: Spacing (mm) <td></td> <td>ER</td> <td>lr P</td> <td>ndave M Gr</td> <td>r ouo</td> <td></td> <td></td> <td></td> <td>NCLINATI</td> <td>ON</td> <td></td> <td></td> <td>-90 Polymer (</td> <td>DR</td> <td>ILLED B</td> <td> ((</td> <td>Pete</td> <td>rsen</td>		ER	lr P	ndave M Gr	r ouo				NCLINATI	ON			-90 Polymer (DR	ILLED B	 ((Pete	rsen
0.80 0	Downhole Uepth (m) Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa (m	cture cing m) ⁰ 500	Legend	Non-intact zones	Strata	a description	η	Depth (m)	Dis	scontinuiti	es	Elevation	Standpipe Details	SPT (N Value)
1.50 1.50	0.80	100	0	0					OPEN H DRILLIM by drille brown s gravelly Brown v gravelly	HOLE VG: Obsen r as returns ility, very sa clay /ery sandy, CLAY/SII 1	ved s of indy /	0.80				29.47		
2.50 100 0 <td>1.50</td> <td>100</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>) x</td> <td></td> <td>(Gravel sub-rou Brown s Brown v</td> <td>is fine to co nded to ang silty fine SA very silty,</td> <td>barse, gular) / ND</td> <td>2.00</td> <td></td> <td></td> <td></td> <td>28.77 28.27</td> <td></td> <td></td>	1.50	100	0	0) x		(Gravel sub-rou Brown s Brown v	is fine to co nded to ang silty fine SA very silty,	barse, gular) / ND	2.00				28.77 28.27		
Image: Status Image: S	2.50	100	0	0					gravelly grained is fine to sub-rou	tine to med SAND. (G coarse, nded to and	tium ravel gular) /	2.50				27.77		
4.00 100 0 <td>3.00</td> <td>100</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>× 0</td> <td></td> <td>Brown s gravelly is fine to sub-rou</td> <td>silty, sandy, CLAY. (Gr coarse, nded to</td> <td>ravel</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3.00	100	0	0			× 0		Brown s gravelly is fine to sub-rou	silty, sandy, CLAY. (Gr coarse, nded to	ravel							
5.50 100 0 <td< td=""><td>4.00 4.50</td><td>100</td><td>0</td><td>0</td><td></td><td></td><td>X X</td><td></td><td>sub-ang</td><td>jular)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	4.00 4.50	100	0	0			X X		sub-ang	jular)								
5.50 100 0 <td></td> <td>100</td> <td>0</td> <td>0</td> <td></td> <td>-</td>		100	0	0														-
100 9 9 9 9 9 9 9 9 9 0	5.50 6.00	100	0	0					ali ne ne vicio de la companya de la									
7.40 100 0 <td></td> <td>100</td> <td>9</td> <td>9</td> <td></td>		100	9	9														
9.00 100 18	7.40 7.50	100 100	0	7				°0 = °0				8.25	Disconti and und are wide sandy/cl smeared infilling.	nuities are ulose. Ap to very w ayey/grav surfaces Dips app with veri	erough ertures ide with elly and ear	22.02		
EMARKS Water Casing Sealed Rise Time Comments Core boxes, 12.2m Core liner used. No groundwater iccountered. Grout 0.0m-13.5m. 50% flush loss from 9.0m. rd ayworks - laid 60m of Geogrid to improve access to cation. Water Casing Sealed Rise Time Comments Variation. Strike Depth At To Min) No water strike record GROUNDWATER DETAI Strike Date Hole Casing Depth to No water Date Tip Depth RZ Top RZ Base Type Variation Comments	9.00	100	18	18		-7							dipping t through	fractues	ыу			
Core boxes, 12.2m Core liner used. No groundwater countered. Grout 0.0m-13.5m. 50% flush loss from 9.0m. hr dayworks - laid 60m of Geogrid to improve access to cation. Water Strike Casing Depth Sealed At Rise To Time (min) Comments Strike Depth At To Time (min) Comments No water strike record Strike Depth At To No water strike record Strike Date Hole Depth Casing Depth to Depth Comments Date Tip Depth RZ Top RZ Base Type Comments	EMAR	KS	I	J					L			1	l			WATE	R STR	KE DETAIL
ISTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type Type Date Tip Depth RZ Top RZ Base Type Type Type Type Type Type Type Typ	Core b acounte hr daya cation.	oxes ered. work	i, 12.2 Gro s - lai	2m Co out 0.0 d 60r	ore liner t)m-13.5m n of Geog	used. No n. 50% flu grid to imp	groundv ish loss irove ac	vater from cess	9.0m. to	Water Strike	Casi Dep	ng th	Sealed At	Rise To	Time (min)	Comn No v	nents vater s	trike recorde
ISTALLATION DETAILS Date Hole Depth Casing Depth Depth to Water Comments											I	_			<u> </u>	GROU	NDWA	TER DETA
Date Tip Depth RZ Top RZ Base Type	ISTALI	_ATI	ON D)ETA	ILS					Date	H	ole	Casing	Depth	to Com	ments		
	Date		Tip D	epth	RZ Top	RZ Base		Туре				JUII						

REPORT NUMBER

	COLONG AND																	
CONTR	RACT	' Ir	ndave	er Waste I	Vanageme	ent Fac	ility, C)uleek						DRILL SHEET	HOLE N r	0	RC Shee	GC6 at 2 of 2
CO-OR	DINA	TES		306,32	5.72 E 0.26 N		0	SROUND I	LEVEL (m)			30.27	ŀ	DATE	STARTI	ED	18/02	2/2009
	_							ORE DIAI	METER (mr ON	n)		102 .an	-	DATE	COMPL	ETED	18/02	2/2009
ENGIN	EER	ار P	ndave M Gr	er oup			F	LUSH				Polymer G	Sel		ED BY ED BY		Peter A. Mi	rsen ahony
Downhole Depth (m) Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa (m 0 25	sture cing m) 0 ₅₀₀	Legend	Non-intact zones	Strata	a description		Depth (m)	Dis	contir	nuities		Elevation	Standpipe Details	SPT (N Value)
10 10.5 11 12	90	13	13					Strong t strong, r grey, m grained (fossilife siliceous infilled v clay/sar (10.5m- 11.17m sandy c weather structum prosent	o moderatel medium bed edium to coa edium to coa trous and s). Heavily with d/gravel. 10.9m, -11.76m, m layey highly red rock - e locally ed tock -	y Ided, arse E arly,		Discontii and und are wide sandy/cl. smeared infilling, sub-40° dipping f throughd	nuities ulose. ayey/g surfa Dips with v fractue but. (c	are rc Apert ry wide gravelly cces an appear ariably es ontinue	ugh with d			
12.0 13 13 13.5 14 15 16 16 17	100	42	42				00000000000000000000000000000000000000	End of ((m)	Corehole at	13.5	13.50					16.77		
19 19 REMAF 8 Core encoun ½hr da locatior	RKS boxe tterec yworl	s, 12.	2m C 2m C Dut 0. id 60	Dore liner (0m-13.5n m of Geog	used. No g n. 50% flu grid to imp	ground sh loss rove ac	water s from	9.0m. to	Water Strike	Casi Dep	ng	Sealed At	Ris	e	Time (min)	WATEF Comn No v	R STRI nents vater s	KE DETAILS
		<u> </u>	,							H	ole	Casing	Do	nth to	-	GROU	NDWA	TER DETAILS
INSTAI Dat	LLAT	Tip D	DETA Depth	ILS RZ Top	RZ Base		Туре		Date	De	epth	Depth	N	later	Comm	ents		

Appendix 2

Rotary Core Drillhole Records (Conventional P Drillholes)

REPORT NUMBER

CONTRACT Indave	er Waste Managem	ent Facilit	ty, D	uleek					DRILLI SHEET	HOLE N	0	RC Shee	RP1 et 1 of 2
CO-ORDINATES(_)	306,246.51 E 270,914.34 N		G C	Round I Ore diai	_EVEL (m) VIETER (mm)	i	:	29.94 30	DATE DATE	STARTE	ED ETED	10/0: 10/0:	2/2009 2/2009
CLIENT Indave ENGINEER PM G	er oup		IN FI	LUSH	ON 		- /	90 Air/Mist	DRILLI LOGGI	ED BY ED BY		Pete A. M	rsen ahony
Downhole Depth (m) Core Run Depth (m) T.C.R.% S.C.R.% R.Q.D.%	Fracture Spacing (mm) 0 ²⁵⁰ 500	Legend	Non-intact zones	Strata	description	Depth (m)	× •	Disc	continuities		Elevation	Standpipe Details	SPT (N Value)
0 -1 -2 -3 -3 -4 -4 -4 -5 -5 -5 -6 -6 -6 -6 -6 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8				OPEN H DRILLIN brown s gravelly	fOLE G: Observer r as returns o lity, very sanc clay fOLE G: Observer r as angular ize returns of	d f f y d d <u>6.9</u>	0				23.54		
1 Core box. No ground 150m of Geogrid to imp	dwater encountered. prove access to loca	2hrs day ition.	ywoi	rks - laid	INSTALLA	TION REI	VI A	ARKS					
					GROUNDW	ATER D	ET	AILS					
					Date	Hole Depth		Casing Depth	Depth to Water	Comm	ents		
Date Tip Depth	RZ Top RZ Base	<u> </u>	ype										

REPORT NUMBER

² Downhole Depth (m) AD	NT (W) (W)	R	lr P)dav#				-		BAETTERS ()		00					0.0000
¹ Downhole Depth (m) Corp Due Douth (m)	l Depth (m)			M Gr	er roup		,,,,	[]	IORE DIA NCLINATI	ON		-90 Air/Mist		LLED BY	LEIED	Pete A. M	rsen
7	Core Kur	T.C.R.%	s.c.R.%	R.Q.D.%	Frac Spa (m	cture acing am)	Legend	Non-intact zones	Strate	a description	Depth (m)	Dis	continuitie	95	Elevation	Standpipe Details	SPT (N Value)
8	50	87	79	79					limestor variably bedrock OPENT DRILLII by drille gravel s limestor bedrock Strong f thickly b grey, m LIMEST and fos Fresh to	ne (probable weathered c) HOLE NG: Observed r as angular ras angular ras angular ras angular ras angular ras angular ras angular (continued) to very strong, bedded, blue edium grained TONE (siliceous siliferous). b locally slidhtly	7.50	Discontir and undu are open smearing 8.84-9.5 and local stained s (8.84m-9 sub-0°-2 sub-0°-2 sub-verti (8.84m-9	uities are lose. Ap with loca (7.79m- 7m, 9.72- slight irou urfaces (.57m). 0° with ion cal fractur (.57m,	rough ertures I clay I clay 7.88m, 9.91m), n oxide ips are cal es	23.04		
10	.50	97	21	21					End of C (m)	red. Cavity d by driller at 9m) Corehole at 10.5	10.50	9.72-9.9	1m).		19.44		
12																	
13																	
Core 50m	a RK e box of G	S x, N Geog	lo gro prid to	ound > imp	water end rove acce	countered. ess to loca	2hrs o tion.	laywo	rks - laid	INSTALLATIO	NREM	ARKS					
										GROUNDWAT	ER DE	TAILS					
										Date ,	Hole)enth	Casing	Depth to Water	Comm	ents		•••••
			•								/cpm	- Debru	*Yaidi				
ISTA		ATIC	DN D	ETA	ILS												

	¥.
(E)	Ì
ligsi	J
	and a

REPORT NUMBER

CONTRAC	T Ind	aver	Waste N	Vanageme	ent Faci	iity, C	uleek					DRIL SHEI	LHOLE N ET	10	RC Shee	RP2 et 1 of 2
CO-ORDIN	ATES(_)	306,24 270,900	1.74 E 5.39 N		c c	ROUND I	_EVEL (m) METER (mm)	i	30.03 80	DATI	E START E COMPL	ED _ETED	10/0) 10/0)	2/2009 2/2009
CLIENT ENGINEER	Ind PM	aver I Grou	up			lî F	ICLINATK LUSH	N			-90 Air/Mist	DRIL	LED BY GED BY		Pete A. M	rsen ahony
Downhole Depth (m) Core Run Depth (m) T.C.R %	S.C.R.%	R.Q.D.%	Frac Spac (m) 250	ture cing m) ^D 500	Legend	Non-intact zones	Strata	description		Depth (m)	Dis	continuities	5	Elevation	Standpipe Details	SPT (N Value)
0 1 2 3 4 5 6							OPEN H DRILLIN by driller brown s gravelly OPEN H DRILLIN by driller gravel si limeston variably bedrock	HOLE IG: Observe as returns o lity, very sand clay HOLE IG: Observe as angular ze returns o e (probable weathered)	d f dy d	5.70				24.33		
REMARKS	No aroi	undw	/ater enc	ountered.	·····			INSTALLA	TION	REM/	ARKS					
	3.5															
								GROUNDV		R DE1	Casing	Denth to				
								Date	De	pth	Depth	Water	Comn	nents		
NSTALLA ⁻ Date	TION DE	TAIL	_S RZ Top	RZ Base		Туре										

REPORT NUMBER

No. of Concession, Name			<u> </u>											1				BBA
ON	TR/	ACT	lr	ndave	er Waste	Manageme	ent Fac	ulity, C	Juleek					DRIL SHEE	LHOLE N ET	ю	RC Shee	KP2 et 2 of 2
0-0	ORE	NNA	TES(306,24 270,90	1.74 E 6.39 N		(LEVEL (m)			30.03	DATI	E START	ED	10/0	2/2009
.	6 FT		le.		·····			U		METER (MM ON	1)		80 -90	DATI		EIED	10/0.	2/2009
		ER	וו P	M G	roup			F	LUSH				Air/Mist	LOG	GED BY		Pete A. M	rsen ahony
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa (m	cture icing im)	Legend	Non-intact zones	Strata	description		Depth (m)	Dis	continuities	5	Elevation	Standpipe Details	SPT (N Value)
, 7. 8 9 9	.50	100	78	72					DPEN F DRILLIN by driller gravel s limestor bedrock Strong t locally m strong, r thickly b medium LIMEST and foss Fresh to weather	HOLE JG: Observer, ras angular ize returns c te (probable) o very strong noderately medium to edded, grey, grained ONE (siliceo siliferous). o slightly ed.	ed of 1,	7.50	Discontin and unde are oper smearing 8.28m). sub-0°-1 sub-verti fractures	uities are n ulose. Ape with local g (7.84m-8 Dips are 0° with loc cal and 45 t.	ough rtures clay 06m, al	22.53		
10).50	97	63	63					End of C (m)	Corehole at 1	0.5	10.50				19.53		
12																		
REM		٨S	l	I				l	I									<u> </u>
Cor	e b	ох. I	No gr	ounc	lwater end	countered.				INSTALLA	TION	REM	ARKS					
										0000000			5 A 11 C					
										GROUNDV	VATE H	R DE	Casing	Denth to				
										Date		epth	Depth	Water	Comn	nents		
Jet	A1 1	<u>م</u> ۳:		ETA														
יו ביי D:	ate	1		epthl	RZ Top	RZ Base		Type										
		-						1.0 10.00										
														I				

REPORT NUMBER

JOr		401		dave	er vvaste	wanageme	an Fac	inty, D					SHEET		, 	Shee	KP5 et 1 of 2	
CO-ORDINATES(_) 306,255.43 E 270,916.96 N								c c	GROUND LEVEL (m)30.18CORE DIAMETER (mm)80			DATE DATE	DATE STARTED DATE COMPLETED		19/02/2009 19/02/2009			
CLIENT Indaver ENGINEER PM Group								IN F	INCLINATION FLUSH			-90 DRILL Air/Mist LOGG			LED BY GED BY		Petersen A. Mahony	
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frad Spa (m	cture acing 1m) ⁵⁰ 500	Legend	Non-intact zones	Strata	description	Depth (m)	Dis	continuities		Elevation	Standpipe Details	SPT (N Value)	
0 1 2 3 4 5 6									OPEN H DRILLIN by driller brown gravelly	HOLE IG: Observe as returns o Ity, very sand clay	d f jy 6.70				23.48			
REN I Co	hAR	KS ox. I	√o gr	ound	lwater en	countered.	Grout	0.0m	-10.5m.	INSTALLA	TION REM	ARKS						
										GROUNDW						·····		
									J.	Date	Hole	Casing	Depth to	Comme	ents		<u> </u>	
											Depth	Depth	vvaler					
														,				

REPORT NUMBER

CO-ORDINATES(_) 306,255.43 E GRC 270,916.96 N COR CLIENT Indaver								C IN	ROUND LEVEL (m)30.18CORE DIAMETER (mm)80NCLINATION-90			- SHEET DATE STARTED DATE COMPLETED DRILLED BY		D ETED	Sheet 2 of 2 19/02/2009 19/02/2009 Petersen		
	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.O.D.%	oup Fract Spac (mr	ure ing n) 500	Legend	Non-intact zones	Strata	description	Depth (m)	Air/Mist Discor	LOGG	ED BY	Elevation	Standpipe Details Y	ahony SPT (N Value)
	7.50	64	0	0					OPEN H DRILLIN by driller angular returns o (probabl weather (continu Moderat moderat medium	IOLE IG: Observed ras clayey gravel size of limestone e variably ed bedrock) ed) ely strong to ely strong to ely weak, grey, to coarse	7.50				22.68		
+	9.70	91	63	63					grained (siliceou fossilifer Moderat Non inta with clay gravel as returns. Strong to moderat	LIVES I ONE s and ous). ely weathered. lot throughout rey (dry) sandy nd cobble size	6.03	Discontinuit and undulos are wide wit surfaces. V fractues and sub-vertical (8.91m-8.98 9.22m-9.41 planar breat	es are ro se. Aperti h sandy ariably di l locally fractures 3m, m) and su < at 9.85n	ugh ures pping ub-45 n,	21.53		
0	0.50	100	84	72				0.0.0	medium bedded, to coarse LIMEST and foss Fresh to locally m weathen End of C (m)	to thinly grey, medium e grained ONE (siliceous siliferous). silghtly and hoderately ed. Corehole at 10.5	10.50				19.68		
2																	
ŝ																	
	IARI ore b	(S ox.	No gr	ounc	water enc	ountered.	Grou	t 0.0m	-10.5m.	INSTALLATIO		ARKS					
										GROUNDWAT Date	ER DE Hole Depth	TAILS Casing [Depth	Depth to Water	Comme	ents		
18.	۲ALI	ΑΤΙ		FTΔ													

Appendix 3

Percolation Test Records

Soaka	way De	esign f -value from	n field tests	IGSL
Contract:	Indaver Irel	land	Contract No.	14039
Fest No.	PP2			
Engineer	PM Group			
Date:	· <u>_</u> ······			
Summary o	of ground co	pnditions	······	RMA-D-1020s1
from	to	Description		Ground water
0.00	0.20	Soft brown SILT/CLAY with some or	ganic matter	
0.20	1.20	Firm brown sandy gravelly CLAY with	sub-angular and angular cobbles	None
1.20		Stiff brown sandy gravelly CLAY with	n pockets of sandy SILT and many	
I - 4	2.00	sub-angular and angular cobbles		
NOLES.				
ield Data		Field Tes	<u>st</u>	
Denth to	Flancod	Denth at		22
Water	Time	Width at	F Pit (B)	m
(m)	(min)	l anath r	of Pit (L) 1.20	ยา m
(111)	(124413 <i>f</i>			111
0.300	0.00	Initial de	oth to Water = 0.30	m
0.310	1.00	Final der	$\frac{0.30}{0.80}$	m
0.325	2.00	Flancad	time (mins)= 90.00	
0.335	3.00	Liopou		
0.345	4 00	Ton of n		m
0.365	5.00	Rase of	permeable coil	m
0.005	7 50			111
0.430	10.00			
0.480	15.00			
0.100	20.00			
0.580	30.00	Base are	a= 0.48	m2
0.630	40.00	*Av. side area of permeable stratum	over test period= 4.64	m2
0.670	50.00	Total Fxi	posed area = 5.12	m2
0.690	60.00		<u> </u>	
0.740	70.00			
0.800	90.00	Infiltration rate (f) = Volume	of water used/unit exposed area /	unit time
		f= 0.00052 m/min	or 8.6806E-06	m/sec
	100.00 T	Depth of water vs Elaps	ed Time (mins)	
	90.00 +	······································	······································	
	80.00 +		· · · · · · · · · · · · · · · · · · ·	_
US .	70.00		&	
(J			-	1
Лe	00.00			1
Ē	50.00 +			
ed	40.00 +			-
SQ	. 30.00 +		······	
ша Ш	20.00 +		•	_
	10.00	\$		
	+ 0.00 0.00	00 0.200 0.400	0.600 0.800 1.	000

Appendix 4

Geotechnical Soil Laboratory Test Records

		; <u>449</u> 97777777777777777777777777777777777			S	ummary o	f Classifi	cation T	ests		
					BS1	377:Part 2:19	90, clauses	3.2, 4.3, 5	5.3 & 5.4	••••••••••••••••••••••••••••••••••••••	
BH/TP No.	Sample No.	Depth (m)	Sample Type	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	<425μm %	Preparation	Description	Classification
GC1	AH2527	2.60	GCS	23	31	19	12	88	ws	Orangish brown slightly sandy slightly gravelly CLAY	CL
GC2	AH2529	2.50	GCS	11.3	34	19	15	28	ws	Grey brown silty very sandy GRAVEL	
GC2		4.50	GCS	8.1	36	23	13	13	ws	Grey brown silty sandy GRAVEL	СІ
GC3	AH2525	2.00	GCS	20	46	21	25	95	ws	Orangish brown slightly sandy slightly gravelly CLAY	СІ
GC3		4.50	GCS	13	25	NP		69	ws	Light brown slightly sandy slightly gravelly SILT	ML
GC4	AH2526	3.20	GCS	19.6	39	20	19	98	ws	Light brown slightly sandy slightly gravelly CLAY	СІ
GC5	AH2528	3.00	GCS	18.7	37	18	19	79	ws	Brown slightly sandy slightly gravelly CLAY	СІ
GC6+	AH2524	2.50	GCS	10.9	23	15	8	56	ws	Orangish brown slightly sandy slightly gravelly CLAY	CL
							·····				
						·······					
Notes:	NAT - tes	ted as re	ceived W	S - Wet sieve	ed (425µm)	NP - Non Pl	astic				
			Contract		INDAVER	WASTE MAI	NAGEMENT	FACILITY	Y, DULEEK	Contract No. 14039	
	IGSL		Issued By	1/17	ø	Date				Page	
						27/03/2009				of	

	Manual of	Soll Labora	tory lesting	Volume 3 KH	Head Clause	19.3.3	**************************************
вн	RC1		Sample	AH2527		Depth (m)	2.6
Condition: I	Undisturbed	i					
Corrections		2 membrar	nes and side (drains			
Description		Orangish b	rown sandy g	gravelly CLA	(,		
Initial Conditio	ns						
Height (mm) Area (mm ²)	200 8332.29		Diameter Volume (c	(mm) cm ³)	103 1666.46		
% Moisture Co	ontent	23	Bulk Dens Dry Densi	sity (Mg/m ³) ity (Mg/m ³)	2.06 1.68		
Final Conditio	ns						
% Moisture Co	ontent	20	Bulk Dens Dry Dens	sity (Mg/m ³) ity (Mg/m ³)	2.02 1.69		
T ff a all and a line		E 0	Coturation		all Droceuro	oramanta	
Effective stres	ss (kPa)	50 0.82	Saturation Final B Va	n by 50kPa C alue	ell Pressure Ir 0.96	crements	
Effective stres	ss (kPa)	50 0.82	Saturation Final B Va	h by 50kPa C alue	ell Pressure Ir 0.96	icrements	
Effective stres	ss (kPa)	50 0.82	Saturation Final B Vi	h by 50kPa C alue	ell Pressure Ir		
Effective stres	ss (kPa)	50 0.82	Saturation Final B Va	h by 50kPa C alue	ell Pressure Ir 0.96	icrements	
Effective stres	ss (kPa)	50 0.82	Saturation	h by 50kPa C alue	ell Pressure Ir		
Effective stress Initial B Value 0.9 0.8 0.7 0.6 0.6 0.5	ss (kPa)	50 0.82	Saturation	h by 50kPa C alue	ell Pressure Ir		
Effective stress Initial B Value 0.9 0.8 0.7 9 0.6 9 0.6 8 0.5 8 0.4 0.4	ss (kPa)	50 0.82	Saturation	h by 50kPa C alue	ell Pressure Ir		
Effective stres	ss (kPa)	50 0.82	Saturation	h by 50kPa C alue	ell Pressure Ir		
Effective stress Initial B Value 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.2 0.1	ss (kPa)	50 0.82	Saturation	h by 50kPa C alue	ell Pressure Ir		
Effective stress Initial B Value 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.2 0.1 0 0 0 0.2 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	ss (kPa)	50 0.82	Saturation Final B Va	alue	ell Pressure Ir		
Effective stress Initial B Value 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.2 0.1 0 0	50 (kPa)	50 0.82	Saturation Final B Va	alue alue 200 25 essure (kPa)	ell Pressure Ir 0.96	icrements	400

ou	RC3	ganty-1000000-00000000	Sample	AH2525		Depth (m)	2
Condition: Un	disturbed		oampic	M 12.02.0			
Corrections	2 r	nembran	es and side c	rains			
Description	Or	angish bı	rown sandy C	LAY			
Initial Conditions	:	U U	-				
Height (mm) Area (mm ²) 8	200 8011.85		Diameter (Volume (c	mm) m ³)	101 1602.37		
% Moisture Con	tent	14	Bulk Dens Dry Densi	ity (Mg/m ³) y (Mg/m ³)	2.29 2.01		
Final Conditions % Moisture Con	tent	14	Bulk Dens	ity (Mg/m ³) w (Mg/m ³)	2.29		
Saturation stage	, (kPa) 50)	Saturation	by 50kPa C	ell Pressure In	crements	
Saturation stage Effective stress Initial B Value	(kPa) 50 0.1) 84	Saturation Final B Va	by 50kPa Co	ell Pressure In 0.96	crements	
Saturation stage Effective stress Initial B Value	(kPa) 50 0.1	84	Saturation Final B Va	by 50kPa Co	ell Pressure In 0.96	crements	
Saturation stage Effective stress Initial B Value	(kPa) 50 0.1	84	Saturation Final B Va	by 50kPa Collue	ell Pressure In 0.96	crements	
Saturation stage Effective stress Initial B Value	(kPa) 50 0.1	84	Saturation Final B Va	by 50kPa C	ell Pressure In 0.96	crements	
Saturation stage Effective stress Initial B Value	(kPa) 50 0.1	84	Saturation Final B Va	by 50kPa Co	ell Pressure In 0.96	crements	
Saturation stage Effective stress Initial B Value	(kPa) 50 0.1	84	Saturation Final B Va	by 50kPa Co	ell Pressure In 0.96	crements	
Saturation stage Effective stress Initial B Value	(kPa) 50 0.1	84	Saturation Final B Va	by 50kPa Co	ell Pressure In 0.96	crements	
Saturation stage Effective stress Initial B Value	(kPa) 50 0.1	84	Saturation Final B Va	by 50kPa Co	ell Pressure In	crements	
Saturation stage Effective stress Initial B Value 1 0.9 0.8 0.7 0.6 1 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.4 0.3 0.2 0.1 0 0	(kPa) 50 0.1	100	Saturation Final B Va	by 50kPa Co lue	ell Pressure In 0.96	crements	400
Saturation stage Effective stress Initial B Value	(kPa) 50 0.1	84	Saturation Final B Va	by 50kPa Co ilue	ell Pressure In 0.96	crements	400

mbranes wish brown	sandy gravelly CLA	ć		
mbranes wish brown	sandy gravelly CLAN	(
wish brown	sandy gravelly CLA	(
Di Vo	ameter (mm) olume (cm ³)	100 1575.51		
9.9 Bi Di	ılk Density (Mg/m ³) y Density (Mg/m ³)	2.36 2.15		
9.7 Bi D	ulk Density (Mg/m ³) ry Density (Mg/m ³)	2.37 2.16		
S	aturation by 50kPa C	ell Pressure Ir	orements	
F	nal B Value	0.95		
		anue		
			ar	
			350	400
100 1	Cell Pressure (kPa))	330	400
	9.9 Bu Dr 9.7 Bu Di Si Fi 100 1	9.9 Bulk Density (Mg/m ³) Dry Density (Mg/m ³) 9.7 Bulk Density (Mg/m ³) Dry Density (Mg/m ³) Saturation by 50kPa C Final B Value	9.9 Bulk Density (Mg/m³) 2.36 Dry Density (Mg/m³) 2.15 9.7 Bulk Density (Mg/m³) 2.37 Dry Density (Mg/m³) 2.37 Dry Density (Mg/m³) 2.16 Saturation by 50kPa Cell Pressure In Final B Value 0.95 Dry Density (Mg/m³) Dry Density (Mg/m³) One of the second s	9.9 Bulk Density (Mg/m³) 2.36 Dry Density (Mg/m³) 2.15 9.7 Bulk Density (Mg/m³) 2.37 Dry Density (Mg/m³) 2.16 Saturation by 50kPa Cell Pressure Increments Final B Value 0.95 100 100 150 200 250 300 350

	muar of Soli Labora				Danth (-)	
BH F	RC4	Sample	AH2526		Depth (m)	
Condition: Undi	sturbed					
Corrections	2 membra	nes and side o	trains			
Description	Orangish I	orown sandy g	ravelly CLA	(
Initial Conditions						
Height (mm) 2 Area (mm ²) 80	200 11.85	Diameter (Volume (c	(mm) :m ³)	101 1602.37		
% Moisture Conte	nt 23	Bulk Dens Dry Densi	sity (Mg/m ³) ty (Mg/m ³)	2.16 1.76		
Final Conditions						
% Moisture Conte	ent 22	Bulk Dens Dry Densi	sity (Mg/m ³) ity (Mg/m ³)	2.15 1.76		
Saturation stage						
•						
Effective stress (k	Pa) 50	Saturation	n by 50kPa C	ell Pressure Ind	crements	
Effective stress (k Initial B Value	Pa) 50 0.87	Saturation Final B Va	n by 50kPa C alue	ell Pressure Inc 0.97	crements	
Effective stress (k Initial B Value	Pa) 50 0.87	Saturation Final B Va	h by 50kPa C alue	ell Pressure Inc 0.97	crements	
Effective stress (k Initial B Value	Pa) 50 0.87	Saturation Final B Va	n by 50kPa C alue	ell Pressure Ind 0.97	crements	
Effective stress (k Initial B Value	Pa) 50 0.87	Saturation Final B Va	n by 50kPa C alue	ell Pressure Ind	crements	
Effective stress (k Initial B Value	Pa) 50 0.87	Saturation Final B Va	n by 50kPa C alue	ell Pressure Ind	crements	
Effective stress (k Initial B Value	Pa) 50 0.87	Saturation Final B Va	h by 50kPa C alue	ell Pressure Ind	crements	
Effective stress (k Initial B Value	Pa) 50 0.87	Saturation Final B Va	n by 50kPa C alue	ell Pressure Ind	crements	
Effective stress (k Initial B Value 1 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.4 0.3 0.2 0.1	Pa) 50 0.87	Saturation Final B Va	n by 50kPa C alue	ell Pressure Ind	crements	
Effective stress (k Initial B Value 1 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.4 0.3 0.2 0.1 0	Pa) 50 0.87	Saturation Final B Va	h by 50kPa C alue	ell Pressure Ind	crements	
Effective stress (k Initial B Value	Pa) 50 0.87	Saturation Final B Va	alue	ell Pressure Ind	crements	40
Effective stress (k Initial B Value	Pa) 50 0.87	Saturation Final B Va	alue	ell Pressure Ind	crements 350	40
Effective stress (k Initial B Value	Pa) 50 0.87	Saturation Final B Va	alue	ell Pressure Ind	crements 350	40

BH	RC5		Sample	AH2528		Depth (m)	3.
Condition: Ur	disturbed						
Corrections	2	2 membran	es				
Description	(Orangish bi	own sandy g	ravelly CLAY	/		
Initial Conditions	5						
Height (mm) Area (mm ²)	200 8091.37		Diameter Volume (d	(mm) cm ³)	101.5 1618.27		
% Moisture Con	itent	11	Bulk Dens Dry Dens	sity (Mg/m ³) ity (Mg/m ³)	2.32 2.10		
Final Conditions	3						
% Moisture Cor	ntent	11	Bulk Den Dry Dens	sity (Mg/m ³) ity (Mg/m ³)	2.35 2.11		
Initial B Value		0.88	Final B V	alue	0.97		
1 0.9 0.8							
1 0.9 0.8 0.7 2 0.6			· ·				
1 0.9 0.8 0.7 0.6 0.5 0.5							
1 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.3							
1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.2 0.1							
1 0.9 0.8 0.7 9 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.2 0.1 0		100	150	200 2/	50 300	350	400
1 0.9 0.8 0.7 9 0.6 0.5 0.5 0.5 0.5 0.4 0.3 0.2 0.1 0 0	50	100	150 Cell Pr	200 2 essure (kPa)	50 300	350	400

AV. HEIGHT 18.804 18.701 18.579 18.431 18.401 INDAVER WASTE MANAGEMENT FACILITY, DULEEK 18.644 18.514 18.348 18.758 18.454 18.85 CONSOLIDATION TEST CALCULATIONS HEIGHT H MV (m2/MN.) 0.245 0.203 0.140 0.090 0.032 0.360 0.353 0.344 0.333 average e 0.331 AH2524 GCS 2.50 GC6 e at end of stage Sample No: Sample Type Depth: **Borehole No:** 0.349 0.339 0.335 0.363 0.357 0.327 Contract: change in Ht. |change in e 0.007 0.008 0.009 -0.008 0.012 2.65 Assumed 0.3347698 0.0723296 *change in Ht. 18.454 0.114 0.166 0.092 0.13 -0.106 89.3 11.8% 12.6% 18.85 278.7 280.1 258.7 increment -180 100 20 30 50 Pressure range 100 200 2 3 2 20 Wt. soil+ring final wet wt. final dry wt nitial height change in e Final Height wt. of ring w/c initial w/c final S.G. e final from 200 100 20 50 0

0.335

0.335 0.335 0.335 0.335

NEWf Gint Consol GC6

1.G.S.L. Cv=0.111H2 t90 32.44 47.93 22.67 37.71 Cv =0.026H2 t50 INDAVER WASTE MANAGEMENT FACILITY, DULEEK GC6 av. Height 18.804 18.701 18.579 18.431 **CV** calculations t 90 mins AH2524 1.21 0.81 1.69 1 2.5 Borehole No. Sample No. t 50 mins Contract Depth Pressure Range from to 0 20 50 100 100 200 200 200

NEWf Gint Consol GC6

	CONSOLIDATI	ON TEST	RESULT((0)		GSL
Sample Des	cription: Orangish brown slightly sanc	ly slightly gravelly (сгау			
	voids ratio	Pressure Range from	(kN/M2) to	Voids Ratio e	MV(m2/MN)	CV(m2/year)
voids ratio(e)		0 200 200 200	20 50 200 200	0.357 0.349 0.339 0.335 0.335	0.20 0.14 0.03 0.03	32.44 47.93 22.67 37.71
0.320	1000 1000 pressure(kN/m2)	Contract: Borehole No. Sample No. Depth:	INDAVER WAS GC6 AH2524 2.50	TE MANAGEME	NT FACILITY, DULI	

NEWF Gint Consol GC6

し の の AV. HEIGHT 18.512 18.343 18.305 18.792 18.662 INDAVER WASTE MANAGEMENT FACILITY, DULEEK 18.434 18.252 18.358 18.734 18.59 18.85 CONSOLIDATION TEST CALCULATIONS HEIGHT H MV (m2/MN.) 0.309 0.257 0.169 0.099 0.032 0.366 0.357 0.346 0.334 0.331 average e AH2529 GCS 2.50 GC2 e at end of stage Sample Type Depth: **Borehole No:** Sample No: 0.327 0.362 0.352 0.340 0.335 0.335 0.335 0.335 0.371 Contract: change in e -0.008 0.008 0.013 0.011 18.358 0.3347698 0.0727078 *change in Ht. change in Ht. 89.3 11.8% 12.6% 2.65 Assumed 0,156 0,182 -0,106 0.116 0.144 18.85 278.7 280.1 258.7 increment -180 <u>0</u>2030 Pressure range Wt. soil+ring final wet wt. final dry wt Final Height nitial height change in e wt. of ring w/c initial w/c final e final from 200 100 S O S 20 20 0

1.G.S.L. Cv=0.111H2 t90 8.10 26.85 31.44 37.35 <u>Cv =0.026H2</u> t50 INDAVER WASTE MANAGEMENT FACILITY, DULEEK GC2 av. Height 18.792 18.662 18.512 18.343 CV calculations t 90 mins AH2529 4.84 1.44 1.21 2.5 Borehole No. Sample No. t 50 mins Contract Depth Pressure Range from to 0 20 20 50 50 100 100 200 200 20

NEWf Gint Consol GC2XX

	CONSOLIDATI	ON TEST	RESULTS	0		GSL
Sample Des	scription: Grey brown silty very sandy	GRAVEL	na fara da manda manana ang kang kang kang kang kang kang	A DESCRIPTION OF THE OWNER AND A DESCRIPTION OF THE	o dave et en museur para proprio de ette en mont han de dave da dave da dave da dave da dave da dave da da da d	
	voids ratio	Pressure Range from	(kN/M2) to	Voids Ratio e	MV(m2/MN)	CV(m2/year)
(e) voids ratio(e) 0.350 0.350 0.360 0.370 0.360 0.360 0.370 0.360 0.370 0.360 0.370		0 20 2000 2000	20 50 2000 2000	0.362 0.352 0.340 0.335 0.335	0.31 0.26 0.17 0.10	8.10 26.85 31.44 37.35
0.330	100 1000 pressure(kN/m2)	Contract: Borehole No. Sample No. Depth:	INDAVER WAS GC2 AH2529 2.50	STE MANAGEMER	NT FACILITY, DULI	ЩШ

NEWf Gint Consol GC2XX

EPORT NO.		SULPI	HATE AN	VALYS	ŝ				<u>B</u> SP
DNTRACT:	INDAVER	WASTE M	ANAGEMEN	IT FACILI	τγ, מענב	ĒX		CONTRACT NO	14039
BH/TP	DEPTH	SAMPLE	SAMPLE	TEST	<u> </u> %	SULPHUR	TRIOXIDE	(so3 X 1.2)	Hq
NO.	(W)	ON	ТҮРЕ	CODE	Passing 2mm	2:1WATER SOIL EXTRACT So3_g/L	TOTAL SOIL so3 %	2:1WATER SOIL EXTRACT So4 g/L	VALUE
GC1	2.60	AH2527	ecs	A	67	0.01		0.012	7.2
GC2	2.50	AH2529	ecs	4	53	0.02		0.029	7.5
GC3	2.00	AH2525	ecs	¥	96	0.01		0.007	7.0
GC4	3.20	AH2526	GCS	×	66	0.03		0.032	7.1
GC5	3.00	AH2528	GCS	¥	84	0.01		0.012	7.2
* 00 00	5.50	AH2524	S O O	<	7	0.02		60	2.7
TEST CODE	W = W	ATER	S = SOIL /	A = AQUE	ions sol	IL EXTRACT(2:1)			

Appendix 5

Geotechnical Rock Laboratory Test Records

			a	OINT LOAE	TEST	RESULTS				
Contract: Indave	r Duleek			Sample Type:				IMESTONE		
Date of test: 12/0	3/2009	Tested by:	A. Mahony							
Sample Dep	th Width1	Width2	Diameter	¢.	LI	*!S	*ls(50)	*UCS		
E ON	ш	E	шш	КN		Mpa	Mpa	MPa	Type	
6G1 11.	 		102	48.0	1.378	4.61	6.36	127	œ.	
			20 50	1.02	1.3/8	4.81	6.67 1	132	- O	
			201	44.0	1.3/8	4 23	5.83	111		
			200	40.0	0/01	4.00 0 + v	0.30	ŝ:	σ.	
				4 4 C C	1.378	5 CC *	5.70	114		
			201	49:0	2/2	20.4 20.0	197. 197. 197. 197. 197. 197. 197. 197.	119		
			701	38.0	3/8	3.65	5.03	101	q	
			102	47.0	1.378	4.52	6.23	125	q	
GC2 8.0			102	21.0	1.378	2.02	2.78	38	đ	
			102	29.0	1.378	2.79	3.84		σ	
			102	51.0	1.378	4.90	6.76	135	q	
CC3			102	53.0	1.378	5.09	7.02	140	σ	
GC3 9.11	<u> </u>		102	55.0	1.378	5.29	7.29	146	σ	
GC3 11.6	<u>س</u>		102	42.0	1.378	4.04	5.56	111	σ	
6C3 10.1	00.66 0	87.00	ŝ	28.0	1.086	7.78	8.44	169	G	
GC4 11.4	0		102	57.0	1.378	5.48	7.55	151	o,	
GC4 8.4	_	T	102	45.0	1.378	4.33	5.96	119	q	
GC4 8.6			102	48.0	1.378	4.61	6.36	127	q	
GC4 7.4			102	32.0	1.378	3.08	4.24	85	ъ	
GC4 10.6			102	53.0	1.378	5.09	7.02	140	q	
GC5 5.9			102	57.0	1.378	5.48	7.55	151	J.	
GC5 8.81			102	21.0	1.378	2.02	2.78	56	מ	
GC5 11.4			102	52.0	1.378	5.00	6.89	138	q	
GC5 10.3	0		102	46.0	1.378	4.42	6.09	122	10	
GC6 10.0	б		102	32.0	1.378	3.08	4.24	85	q	
GC6 11.1	0		102	37.0	1.378	3.56	4.90	96	đ	
GC6 13.2			102	22.0	1.378	2.11	2.91	58	ס	
000			102	46.0	1.378	442	6.09 	122	q	
11-0	Ctatiotical Cum	active Data		0//0	2/0 ·	0.40	LOC Morriel	Totals and Carrie	4447	
Number of Samole	ac Toetod	and have		1 100/61		0.45				EvideUIIS
Minimum v ound				6 C C						iliregular
				0/.7		t Lo o	Ç		су.	axial
Average				0.00	11/	- 68.0			.a	block
Maximum				8.44	169	0.3			σ	diametral
Standard Dev.				1.49	30	0.25	~			
Upper 95% Confic	lence Limit			8.76	175.18	00	-			
Lower 95% Confic	lence Limit			2.93	58.65					
						- ci.n	_			
Comments:						0.1				
*UCS (Uniaxial Cc	impressive Stru	ength) taken	as k x Point Loa	d Is(50): k=	20	0.05 7				
*Is = Index Streng	th. *Is(50) =	Corrected Ir	idex Strength			0	- 400 - 100	160 200 250		
T = raiure Load							201 IN		300	

				POINT	LOAD TEST	RESUL	rs				
Contract: In	idaver Dul	eek			Sample Type:			LIMESTONE			
Contract no.	. 14039										/ICSSL/
Date of test.	12:03:00	50	Tested by:	A. Mahony							$\Big)$
Sample	Deptr	Width1	Width2	Diameter	4	u.	<u>9</u> 2	*Is(50)	*UCS		
	0.05				NY C		Mpa		Mra	- Ype	TRANSPORTER AND TRANSPORTER AND A CONTRACT OF
	α.80 • • •			90	31.0	1.236	4.84	5.98	120	σ.	
	7.7			90 08 08	35.0 58.0	1 236	0.4/	0./0	135	στ	
852	9.30			8	24.0	1 236	3.75	463	t 50	יכ	
RP2	8.10			8 8	36.0	1.236	5.63	6.95	139	סינ	
RP5	10			80	39.0	1.236	6.09	7.53	151	ס נ	
RP5	9.6			80	40.0	1.236	6.25	7.72	154	o	
RP5	8.80			80	42.0	1.236	6.56	8.11	162	σ	

						·					

	Sta	atistical Summ	hary Data		ls(50)	UCS*	*UCS I	Normal Distributic	on Curve	Abb	reviations
Number of S	amples To	ested			8	9 8	60.0	(irregular
Minimum					4.63	-) 	.08	\langle		с	axial
Average					7.36	147 C	- 201	<		٩	block
Maximum					11.20	224 c	- 90'(σ	diametral
Standard De	Ň.				1.90	38	.05				
Upper 95% (Confidence	e Límit			11.09	221.73 6	- 104				
Lower 95% (Confidence	e Limit			3.63	72.68	.03				iteret filmete
- decement						<u> </u>	.02 -	_			le o l'un de s
*UCS (Unia)	dal Compr	essive Strei	nath) taken	as k x Point Loa	d Is(50) k=	50 20	.01				<u>Skoningstade</u>
*Is = Index S	strength.	* s(50) = C	Corrected Inc	dex Strength							
*P = Failure	Load						0	100	00 300		des dans est

Uniaxial	Compression]	Fest Report S	Sheet	1.G.S.L.
Sample Identification				
Contract Name: Job Number: Hole No: Depth (m):	Indaver Duleek 14039 RC GC1 8.80			
Sample Description	anning ann an an an an an ann an ann an ann an a	an		
Colour: Grain size: Weathering Grade: Rock Type:	Blue grey Medium Fresh LIMESTONE			
Weathering Grade Criteria I. Fresh: II. Slightly weathered: III. Moderately weathered: IV. Highly weathered:	Unch Slight discolouration, Considerable weakening Considerable weak	anged from original stat slight weakening , penetrative discoloura (ening, penetrative disco	te tion olouration, breaks ir	n hand
Sample Measurements			Sketch of	Failure Surfaces
Length Diameter (Ø)	251.5 102	mm		7
<u>Testing</u> Load Rate Load at Failure (P)	42 217.9	kN/min kN		
Strength Calculations		ann an an Anna		
Uniaxial Compressive Str	rength =	2	17900 167.14	
	=	1000 x P ∏ x (Ø/2)^2		
	<u></u>	26.67	(Mpa)	
Bulk Density	=	2.66	(Mg/m ³)	
Notes:				

IGSL Ltd.

	Compression	ı Test Repor	t Sheet	1.G.S.
Sample Identification				
Contract Name:	Indaver Duleek			
Job Number:	14039			
Hole No:	RC GC2			
Depth (m):	6.50			
Sample Description	титтиствания боло 2000 година и то			• • • • • • • • • • • • • • • • • • •
Colour:	Blue grey			00000000000000000000000000000000000000
Grain size:	Medium			
Weathering Grade:	Fresh			
Rock Type:	LIMESTONE			
Weathering Grade Criteria				
I. Fresn:	Uni Slight dissolauratia	changed from original s	tate	
III. Moderately weathered	Considerable weakenii	n, siigni weakening na nenetrative discolou	ration	
IV. Highly weathered:	Considerable weaterin	akening, penetrative dis	scolouration breaks i	n hand
			1	
Length	253			
Length Diameter (Ø)	<u> </u>	mm		
Length Diameter (Ø) <u>Testing</u>	<u>253</u> 102	mm		
Length Diameter (Ø) <u>Testing</u>	253 102 88	mm		
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P)	253 102 88 589.8	mm kN/min kN		
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P)	253 102 88 589.8	mm kN/min kN		
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P) <u>Strength Calculations</u>	253 102 88 589.8	kN/min kN		
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P) <u>Strength Calculations</u> Uniaxial Compressive Stre	253 102 88 589.8 ength =	mm kN/min kN	589800	
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P) <u>Strength Calculations</u> Uniaxial Compressive Stre	253 102 88 589.8 ength =	mm kN/min kN	589800 3167.14	
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P) <u>Strength Calculations</u> Uniaxial Compressive Stre	253 102 88 589.8 ength =	mm kN/min kN 	589800 5167.14	
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P) <u>Strength Calculations</u> Uniaxial Compressive Str	253 102 88 589.8 ength =	mm kN/min kN 	589800 3167.14	
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P) <u>Strength Calculations</u> Uniaxial Compressive Str	253 102 88 589.8 ength =	mm kN/min kN 	589800 8167.14	
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P) <u>Strength Calculations</u> Uniaxial Compressive Str	253 102 88 589.8 ength = =	mm kN/min kN 	589800 3167.14	
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P) <u>Strength Calculations</u> Uniaxial Compressive Stre Bulk Density	253 102 88 589.8 ength = = =	mm kN/min kN kN 1000 x P ∏ x (Ø/2)^2 72.18 2.68	589800 8167.14 (Mpa) (Mg/m ³)	
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P) <u>Strength Calculations</u> Uniaxial Compressive Stre Bulk Density	253 102 88 589.8 ength = = =	mm kN/min kN kN <u>1000 x P</u> ∏ x (Ø/2)^2 72.18 2.68	589800 8167.14 (Mpa) (Mg/m ³)	
Length Diameter (Ø) <u>Testing</u> Load Rate Load at Failure (P) <u>Strength Calculations</u> Uniaxial Compressive Stre Bulk Density	253 102 88 589.8 ength = = =	mm kN/min kN 	589800 3167.14 (Mpa) (Mg/m ³)	

Uniaxial	Compression	Test Report	Sheet	1.G.S.L.
Sample Identification				
Contract Name: Job Number: Hole No: Depth (m):	Indaver Duleek 14039 RC GC4 10.30			
<u>Sample Description</u>				
Colour: Grain size: Weathering Grade:	Blue grey Medium Fresh			
Rock Type:	LIMESTONE			
Weathering Grade Criteria I. Fresh: II. Slightly weathered: III. Moderately weathered: IV. Highly weathered:	Unch Slight discolouration, Considerable weakening Considerable weal	nanged from original sta slight weakening g, penetrative discoloura kening, penetrative disc	ate ation colouration, breaks in han	d
Sample Measurements			Sketch of Failu	ire Surfaces
Length Diameter (Ø)	251.5 102	mm		
<u>Testing</u> Load Rate Load at Failure (P)	<u>52.5</u> 293.6	kN/min kN		
Strength Calculations		мили на каланите на полити и на		
Uniaxial Compressive Str	ength =	2 81	93600 167.14	
	=	1000 x P ∏ x (Ø/2)^2		
· · · · · · · · · · · · · · · · · · ·	2 2	35.93	(Mpa)	
Bulk Density	=	2.69	(Mg/m ³)	
Notes:				

Uniaxial	Compression	Test Repo	ort Sheet	1.G.S.L.
Sample Identification		2703-2006-2777-2007-28774-297-2977-2977-2977-2977-2977-2977-29		
Contract Name: Job Number: Hole No: Depth (m):	Indaver Duleek 14039 RC GC5 7.90			
Sample Description			ении — — — — — — — — — — — — — — — — — —	иолинетноколодили — — — — — — — — — — — — — — — — — —
Colour:	Blue grey			
Grain size: Weathering Grade:	Medium Fresh			
Rock Type:	LIMESTONE		······································	
Weathering Grade Criteria I. Fresh: II. Slightly weathered: III. Moderately weathered: IV. Highly weathered:	Unc Slight discolouratior Considerable weakenin Considerable wea	hanged from origina , slight weakening g, penetrative disco akening, penetrative	al state louration discolouration, breaks in han	d
Sample Measurements			Sketch of Failt	ire Surfaces
Length Diameter (Ø)	250 102	mm		
<u>Testing</u> Load Rate Load at Failure (P)	46.5 310.8	kN/min kN		
Strength Calculations	······································		······································	
Uniaxial Compressive Str	ength =		310800 8167.14	
	Ξ	1000 x ∏ x (Ø/2)	P	
	=	38.04	(Mpa)	
Bulk Density	=	2.68	(Mg/m ³)	
Notes:				

Uniaxial	Compressior	ı Test Repo	rt Sheet	1.G.S.L.
Sample Identification				
Contract Name:	Indaver Duleek			
JOD Number:	14039 BC CCC			
Depth (m):	RC GC6 9.20			
bopin (in).	3.20			
Sample Description				
Colour:	Blue grey			
Grain size:	Medium		······································	
Weathering Grade:	Fresh			
поск туре.	LIMESTONE			
Weathering Grade Criteria	11			
II. Slightly weathered	Uno Slight discolouration	changed from original	state	
III. Moderately weathered:	Considerable weakenir	n, signt weakening	uration	
IV. Highly weathered:	Considerable we	akening, penetrative d	iscolouration, breaks in ha	nd
			······································	
Sample Moasuromonto				
Sample Measurements			Sketch of Fail	ure Surfaces
Length	251			X
Diameter (Ø)	102	mm		X
Testing				N
Load Rate	53	kN/min		
Load at Failure (P)	321.7	kN		
Strength Calculations			20	
Uniaxial Compressive Str	ength ==		321700	
			8167.14	•
	=	1000 v P		
		Π x (Ø/2)^:	2	
		, r · · · · - / ·		
	<u></u>	39.37	(Mpa)	
Bulk Density	<u></u>	2.66	(Mg/m ³)	
		.	, 、 、 、 ,	
	·····			
Notes:			····	
Uniaxial	Compression '	Test Report	Sheet	1.G.S.L.
--	--------------------------------	--	---	--
Sample Identification		2022/2022/2022/2022/2022/2022/2022/202	nt maarkkolaaliikoon kunsen maaan maan maan maan maan maan maan m	ขึ้งของการจากการจากจากจากจากจากจากจากจากจากจากจากจากจากจ
Contract Name:	Indaver Duleek			
Job Number:	14039			
Hole No: Depth (m):	RP1			
	0.10			
Sample Description				
Colour:	Blue grey			
Grain size:	Medium			
Rock Type:	LIMESTONE			
rioon rypo.				
Weathering Grade Criteria I. Fresh:	Uncha Slight dissolouration	anged from original st	ate	
III. Moderately weathered:	Considerable weakening,	penetrative discolour	ration	
IV. Highly weathered:	Considerable weak	ening, penetrative dis	colouration, breaks in han	d
Sample Measurements			Sketch of Fail	ire Surfaces
Length	202			
Diameter (Ø)	80	mm		
Testing				
Load Rate	34.5	kN/min		
Load at Fallure (P)	185.2	KN		<u>.888</u>
Strength Calculations			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Uniaxial Compressive Str	ength =	······	<u>185200</u> 5024	•
			0.0201	
	=	1000 x P		
		∏ x (Ø/2)^2		
		36.84	(Mpa)	
Bulk Density	=	2.68	(Mg/m [~])	
<u>Notes:</u>				

Uniaxial	Compression	Test Report	Sheet	1.G.S.L.
Sample Identification				
Contract Name: Job Number: Hole No: Depth (m):	Indaver Duleek 14039 RP2 7.70			
Sample Description	2001-0414	0003111010934111-11-1-7 -7-7-7-200-000000-00000-00000-0000		
Colour: Grain size: Weathering Grade: Rock Type: <u>Weathering Grade Criteria</u> I. Fresh: II. Slightly weathered: III. Moderately weathered: IV. Highly weathered:	Grey Medium Fresh LIMESTONE Unch Slight discolouration, Considerable weakening Considerable weak	anged from original sta slight weakening I, penetrative discoloura kening, penetrative disc	te tíon olouration, breaks in ha	and
Sample Measurements			Sketch of Fai	lure Surfaces
Length Diameter (Ø)	<u>112</u> 80	mm		
Load Rate Load at Failure (P)	<u>46.5</u> 274	kN/min kN		
Strength Calculations				
Uniaxial Compressive Stre	ength =	27	<u>4000</u> 024	
	=	<u>1000 x P</u> ∏ x (Ø/2)^2		
	=	54.51	(Mpa)	
Bulk Density	=	2.68	(Mg/m ³)	
Notes:				

Uniaxial	Compression T	est Report	Sheet	1.G.S.L.
Sample Identification		ul na se		
Contract Name: Job Number: Hole No: Depth (m):	Indaver Duleek 14039 RP5 10.20			
Sample Description				
Colour: Grain size: Weathering Grade: Rock Type: <u>Weathering Grade Criteria</u> I. Fresh: II. Slightly weathered:	Grey Medium Fresh LIMESTONE Uncha Slight discolouration, s	nged from original sta light weakening	ate	
III. Moderately weathered: IV. Highly weathered:	Considerable weakening, Considerable weake	penetrative discolour ening, penetrative dis	ation colouration, breaks in hai	nd
Sample Measurements			Sketch of Fail	ure Surfaces
Length Diameter (Ø)	200 80	mm		
<u>Testing</u> Load Rate Load at Failure (P)	<u>48.5</u> 299.7	kN/min kN		
Strength Calculations				
Uniaxial Compressive St	rength =		299700 5024	
	=	<u>1000 x P</u> ∏ x (Ø/2)^2		
	=	59.62	(Mpa)	
Bulk Density	=	2.68	(Mg/m ³)	
Notes:				

RC GC6 BOX 3 OF 8

RC GC6 BOX 4 OF 8

RC GC6 BOX 5 OF 8

RC GC6 BOX 6 OF 8

RC GC6 BOX 7 OF 8

RC GC6 BOX 8 OF 8

RC RP1 BOX 1 OF 1

RC RP2 BOX 1 OF 1

RC RP5 box 1 of 1

ų,

.0

Appendix 7

Exploratory Site Plan

EXPLORATORY NO.	EASTING (m)	NORTHING (m)	HEIGHT (m)
GC1	306263.874	270930.70	30.096
GC2	306286.093	270892.715	30.003
GC3	306299.117	270902.057	30.144
GC4	306275.131	270938.384	30.019
GC5	306280.567	270916.062	30.081
GC6	306325.715	270960.256	30 269
PP2	306334.870	271034.982	30.788
PP3	306229.147	270963.299	29.350
RP1	306246.509	270914.342	29.943
RP2	306241.735	270906.390	30.026
RP5	306255.430	270916.960	30.175

GPS SURVEY - INDAVER PROJECT

Appendix 8

Stabilization Test Data

(2) IGSL		TRIAL PIT R	ECO	RD		<u></u>			REPORT NI 141	JMBER	
CONTRACT	Indaver Waste Management Facil	ity					TRIAL P	IT NO.	TP1		
		CO-ORDINATE	:S(_)				DATE S	TARTEL	Shee 30/03	t 1 of 1 3/20093	0/03/200
			EL (m)				DATE C	OMPLE	TED		
ENGINEER	Indaver PM Group			·		. .	METHO	D	131 1	гаскео	
								Sample	s)a)	meter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KF	Hand Penetro (KPa)
- 0.0 Very fir	m brown very sandy gravelly CLAY	ND		1.90			AD1376 AD1377	LB LB	1.50-1.50 1.50-1.50		
3.0 Dense cobbles	brown clayey sandy GRAVEL with oc	casional <u>?</u>		3.30			AD1378 AD1379	LB LB	3.00-3.00 3.00-3.00		
4.0 End of	Trial Pit at 4.00m		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.00			AD1380 AD1381	LB LB	4.00-4.00 4.00-4.00		
Groundwater Pit dry Stability Pit Stable	Conditions										
General Rem	arks										

Cluber Indeed ENGINEER PM Group Geotechnical Description Image: state	LOG	ITRACT	Indaver Waste Manag	CO-ORDIN GROUND	CO-ORDINATES(_) GROUND LEVEL (m)					IT NO. TARTEI OMPLE	ETED 13T Tracked	
Geotechnical Description End of Trial Pit at 4.00m Geotechnical Description End of Trial Pit at 4.00m End	ENG	INEER	PM Group		Normal and a control of the				METHO	Samala		
10 Loose grey slightly clayey very sandy GRAVEL 0 1 </th <th></th> <th></th> <th>Geotechnical I</th> <th>Description</th> <th>regend</th> <th>Depth (m)</th> <th>Elevation</th> <th>Water Strike</th> <th>Sample Ref</th> <th>ad J</th> <th>Septh</th> <th>/ane Test (KPa)</th>			Geotechnical I	Description	regend	Depth (m)	Elevation	Water Strike	Sample Ref	ad J	Septh	/ane Test (KPa)
	- 1.0	Medium occasion End of T	dense grey/brown very s al cobbles	sandy clayey GRAVEL wit		3.00			AD1382 AD1383 AD1384 AD1385 AD1386 AD1387	LB LB LB LB	1.50-1.50 1.50-1.50 2.90-3.00 2.90-3.00 3.90-4.00 3.90-4.00	

REPORT NO.		SULPI	НАТЕ А	NALY	SIS				IGSL
CONTRACT:	Indaver Was	te Manag	gement Fac	cility				CONTRACT NO	14039
BH/TP	DEPTH	SAMPLE	SAMPLE	TEST	%	SULPHUR	TRIOXIDE	(so3 X 1.2)	pН
NO.	(M)	NO.	TYPE	CODE	Passing	2:1WATER SOIL	TOTAL	2:1WATER SOIL	VALUE
					<u> </u>	EXTRACT So3 g/L	SOIL SO3 %	EXTRACT SO4 g/L	
COMBINED SAMPLES	TREATED WITH 1%LIME TESTED AFTER 14 TREATED	SP1A	S	A	N/A	0.41		0.492	11.9
FROM STOCKPILE 1,2 & 4	WITH 2%LIME TESTED AFTER 14 TREATED	SP1B	S	A	N/A	0.007		0.008	12.8
	WITH 1%LIME & 1% CEMENT TESTED	SP1C	S	A	N/A	0.014		0.017	12.6
COMBINED SAMPLES FROM STOCKPILE 3	TREATED WITH2% LIME TESTED AFTER 14 DAYS	SP2A	S	А	N/A	0.017		0.020	12.4
COMBINED SAMPLES FROM TRIAL PIT 1	TREATED WITH 1%LIME TESTED AFTER 14 DAYS	TP1A	S	A	N/A	0.031		0.037	11.7
COMBINED SAMPLES FROM TRIAL PIT 2	TREATED WITH 1%CEMENT TESTED AFTER 14 DAYS	TP2A	S	A	N/A	0.141		0.169	11.0
TEST CODE	W = WAT	ER	S = SOIL	A = AQU	EOUS SC	IL EXTRACT(2:1)			

Report No.		MCV S	UMMARY				I.G.S.L.
Contrac	t:	Indaver Wa	ste Management Facility			CONT	RACT No 14039
Location	Sample No.	Depth (m)	Sample Description	MCV	MC %	% Passing 20mm	REMARKS
COMBINED SAMPLES FROM TRIAL PIT 1	TP1A		NATURAL NATURAL TREATED WITH 1% LIME TESTED AFTER 3 HRS TREATED WITH 1% LIME TESTED AFTER 3 HRS	10.5 9.8 13.6 12.9	12.1 11.7 11.5 11.6	93.9 93.9 93.9 93.9 93.9	REMARKS
Test Code:		99000000000000000000000000000000000000				n an	n de la companya de l

Report No.		MCV S	SUMMARY				I.G.S.L.	
Contrac	t:	Indaver Wa	iste Management Facility			CONT	RACT No 14039	
Location	Sample No.	Depth (m)	Sample Description	MCV	MC %	% Passing 20mm	REMARKS	
COMBINED	TP2A		NATURAL NATURAL	9.0 8.9	12.0 12.6	81.7 81.7		
FROM TRIAL PIT 2			TREATED WITH 1%CEMENT TESTED AFTER 3 HRS	9.7 10.1	13.3	81.7		
Test Code:	thin many a many long to pay the state of the							

Report No.		MCV S	UMMARY				I.G.S.L.
Contrac	t:	Indaver Wa	ste Management Facility			CONT	RACT No 14039
Location	Sample No.	Depth (m)	Sample Description	MCV	MC %	% Passing 20mm	REMARKS
COMBINED SAMPLES FROM STOCKPILE 3	SP2A		NATURAL NATURAL TREATED WITH 2% LIME TESTED AFTER 3 HRS TREATED WITH 2% LIME TESTED AFTER 3 HRS	2.9 3.2 5.6 5.5	23.2 23.9 25.9 26.5	92.8 92.8 92.8 92.8	
Test Code:		anner och bergen ann man ann an					

Report No.		MCV S	SUMMARY				I.G.S.L.	
Contrac	t:	Indaver Wa	ste Management Facility			CONT	RACT No 14039	
Location	Sample No.	Depth (m)	Sample Description	MCV	MC %	% Passing 20mm	REMARKS	
COMBINED SAMPLES FROM STOCKPILE 1,2 & 4	SP1A		NATURAL NATURAL TREATED WITH 1% LIME TESTED AFTER 3 HRS TREATED WITH 1% LIME TESTED AFTER 3 HRS	3.0 2.7 6.3 7.6	16.6 16.8 18.3 18.6	91.5 91.5 91.5 91.5		
Test Code:		9799792792792797979797979797979797777777		tan na manana ang kang kang kang kang kang kang		200720100000000000000000000000000000000	ntrastronamisyonnya ang ang ang ang ang ang ang ang ang an	

Report No.		MCV S	UMMARY				I.G.S.L.
Contrac	t:	Indaver Wa	ste Management Facility			CONT	RACT No 14039
Location	Sample No.	Depth (m)	Sample Description	MCV	MC %	% Passing 20mm	REMARKS
COMBINED SAMPLES FROM STOCKPILE 1,2 & 4	SP1B		NATURAL NATURAL TREATED WITH 2% LIME TESTED AFTER 3 HRS TREATED WITH 2% LIME TESTED AFTER 3 HRS	3.0 2.7 7.9 8.4	16.6 16.8 17.8 17.3	91.5 91.5 91.5 91.5	
Test Code:	n de la de la desta de la d			kinin an	Rendoratuurikkusseesennikkouuvateeseese	ร็สต์แห่งมหาวางและการวง (Instantia)	genne ander en

Report No.		MCV S	UMMARY				I.G.S.L.
Contrac	t:	Indaver Wa	ste Management Facility	7.		CONT	RACT No 14039
Location	Sample No.	Depth (m)	Sample Description	MCV	MC %	% Passing 20mm	REMARKS
COMBINED SAMPLES FROM STOCKPILE 1,2 & 4	SP1C	Т	NATURAL NATURAL REATED WITH 1%LIME & 1% CEMENT TESTED AFTER 3 HF REATED WITH 1%LIME & 1% CEMENT TESTED AFTER 3 HF	3.0 2.7 7.5 7.5	16.6 16.8 17.6 18.0	91.5 91.5 91.5 91.5	
Test Code:	dikistan da masaran kada kada kada kada kada kada kada ka	**************************************		den Marken gezeren an den gehieren zuen den den den den den den den den den d	มีรายักระบบสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามา สามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามา	มให้และและแรงแรงและได้ประจังหมายังและจากเรื่องเรื่องไป	NA NA MARANA MANA MANA MANA MANA MANA MA

Report No.		(CALIFORNIA BEARING F	ratio				S7.6291252482548			I.G.S.L.				
Contra	ct:	Indaver Wa	ste Management Facility	DATE	संदर्शकालकालकालकालकाल स च ६ च दे	12/	12/05/2009 CC					ONTRACT No 14039			
	Sample	Depth	na mananaki kaona amini kaona kaomini kaona k	Water	Test	Test	Water	Content				C.B.R.			
Location	No.	of Sample	Sample Description	Content %	Code	Code	Тор %	Bottom %	Bulk Density Mg/M3	% Passing 20mm	Top %	Base %	Average %		
	TP1A		NATURAL	11.9	NAT	L/St	12.0	11.8	2.25	93.9	16.5	18.2	17.4		
			NATURAL	11.8	NAT	L/St	11.9	11.7	2.25	93.9	18.5	18.2	18.3		
COMBINED SAMPLES									0.00						
FROM			IREATED WITH 1%LIME	11.4	1 DAY	L/St	11.3	11.4	2.20	93.9	38.9	36.4	37.6		
			TREATED WITH 1%LIME	11.5	1 DAY	L/St	11.5	11.5	2.20	93.9	33.9	38.1	36.0		
			TREATED WITH 1%LIME	11.4	3 DAY	L/St	11.5	11.3	2.20	93.9	33.5	30.5	32.0		
			TREATED WITH 1%LIME	11.7	3 DAY	L/St	11.8	11.5	2.20	93.9	38.2	38.4	38.3		
			TREATED WITH 1%LIME	11.2	14 DAY	L/St	11.3	11.1	2.20	93.9	44.4	54.7	49.6		
			TREATED WITH 1%LIME	11.4	14 DAY	L/St	11.6	11.2	2.20	93.9	48.3	53.4	50.9		
								11111 - 11111 - 1111-111 - 1111-111							
											and the Debut Manual And Andreas				
Test Code	UUndist	urbed Sample	L2.5Kg. Rammer A/55% Air Void	ls Ratio		V Vib	rating H	l ammer			l <u></u>	<u> </u>			
	DDynan	nic Compaction	H4.5Kg. Rammer A1010% Air V	oids Ratio		M Me	thod Nu	Imber							
	StStatic	compaction	RN29 Road N	ote 29 (St. 959	% H.)							amoreana			

Report No.			CALIFORNIA BEARING RA	TIO							I.G.S.L.			
Contra	ct:	Indaver	Waste Management Facility	DATE		12/	05/20	09		СС	ONTRACT No 14039			
	Sample	Depth		Water	Test	Test	Water	Content				C.B.R.		
Location	No.	of Sample	Sample Description	Content %	Code	Code	l lop %	Bottom %	Bulk Density Mg/M3	% Passing 20mm	Тор %	Base %	Average %	
	TP2A		NATURAL	13.2	NAT	L/St	13.2	13.1	2.24	81.7	23.3	17.6	20.5	
			NATURAL	13.3	NAT	L/St	13.0	13.5	2.24	81.7	16.4	17.4	16.9	
COMBINED SAMPLES														
FROM			TREATED WITH 1% CEMENT	13.4	1 DAY	L/St	13.3	13.5	2.23	81.7	55.5	55.6	55.6	
TRIAL PH 2			TREATED WITH 1% CEMENT	13.4	1 DAY	L/St	13.3	13.4	2.23	81.7	58.7	49.6	54.1	
			TREATED WITH 1% CEMENT	13.5	3 DAY	L/St	13.3	13.6	2.23	81.7	58.1	43.3	50.7	
			TREATED WITH 1% CEMENT	13.1	3 DAY	L/St	13.1	13.0	2.23	81.7	69.2	67.4	68.3	
			TREATED WITH 1% CEMENT	12.4	14 DAY	L/St	12.4	12.4	2.23	81.7	69.0	78.4	73.7	
			TREATED WITH 1% CEMENT	12.9	14 DAY	L/St	12.9	12.8	2.23	81.7	74.1	65.0	69.6	
											ny sang pang na tu wasaaw			
												1999 (1997) - 1997 (1997) - 19		
											A STATE OF CONTRACT OF			
Test Code	UUndist	urbed Sam	ple L2.5Kg. Rammer A/55% Air Voids R	atio		V Vib	L rating H	L ammer				<u>]</u>	<u> </u>	
	DDynan	nic Compac	tion H4.5Kg. Rammer A1010% Air Voids	Ratio		М Ме	ethod Nu	Imber						
	StStatic	compaction	n RN29 Road Note	29 (St. 95	% Н.)									

Report No.			CALIFORNIA BEARING RA	ATIO							I.G.S.L.		
Contra	ct:	Indaver W	Vaste Management Facility	DATE	NAKAANQTOZHRAFIZIOO FR MI TI	12/	05/20	09		CC) NTRA	CT No	14039
Annosistation and a second	Sample	Depth	nen hen en e	Water	Test	Test	Water	Content	1243998.44698	894/846986 (2011)	[C.B.R.	
Location	No.	of Sample	Sample Description	Content %	Code	Code	Top %	Bottom %	Bulk Density Mg/M3	% Passing 20mm	Top %	Base %	Average %
	SP1A		NATURAL	19.5	NAT	L/St	19.5	19.5	2.07	91.5	1.0	0.8	0.9
			NATURAL	19.7	NAT	L/St	19.2	20.1	2.07	91.5	1.1	0.6	0.9
COMBINED SAMPLES													
FROM STOCKPILE			TREATED WITH 1%LIME & 1% CEMENT	18.1	1 DAY	L/St	18.1	18.1	2.10	91.5	10.3	10.1	10.2
1,2 & 4			TREATED WITH 1%LIME & 1% CEMENT	18.7	1 DAY	L/St	18.4	19.0	2.10	91.5	10.1	10.2	10.1
			TREATED WITH 1%LIME & 1% CEMENT	18.4	3 DAY	L/St	18.4	18.4	2.10	91.5	10.6	10.5	10.6
			TREATED WITH 1%LIME & 1% CEMENT	18.8	3 DAY	L/St	18.8	18.7	2.10	91.5	13.9	14.5	14.2
			TREATED WITH 1%LIME & 1% CEMENT	18.6	14 DAY	L/St	18.7	18.4	2.09	91.5	19.1	12.8	16.0
			TREATED WITH 1%LIME & 1% CEMENT	18.1	14 DAY	L/St	17.8	18.4	2.09	91.5	15.7	16.2	16.0
								1977-1977-1977-1977-1977-1977-1977-1977					
											Socialization for the social socia		
											n an		
Test Code	UUndist	urbed Samol	e L2.5Kg. Rammer A/55% Air Voids	Ratio	activities and a second	V Vih	l rating H	l ammer		an a	Į		<u> </u>
	DDynam	ic Compaction	on H4.5Kg. Rammer A1010% Air Void	Is Ratio	У H \	M Me	thod Nu	Imber					
	StStatic	compaction	RN29 Road Note	e 29 (St. 95	% H.)								

Report No.			CALIFORNIA BEARING R	ATIO							I.G.S.L.		
Contrac	ct:	Indaver W	aste Management Facility	DATE	20 4) 21 4) 22 4)	12/	05/20	09		CC)NTRA	CT No	14039
Location	Sample No.	Depth of Sample	Sample Description	Water Content %	Test Code	Test Code	Water Top %	Content Bottom %	Bulk Density Mg/M3	% Passing 20mm	Top %	C.B.R. Base %	Average %
	SP2A		NATURAL	27.8	NAT	L/St	27.0	28.6	1.89	92.8	0.3	0.2	0.3
COMBINED SAMPLES FROM STOCKPILE 3			TREATED WITH 2%LIME	26.7	1 DAY 1 DAY	L/St L/St	26.3 26.8	26.1 25.4	1.95 1.95	92.8 92.8 92.8	4.2 3.7	4.2	0.3 4.2 4.2
			TREATED WITH 2%LIME TREATED WITH 2%LIME	26.4 26.6	3 DAY 3 DAY	L/St L/St	26.3 26.5	26.4 26.6	1.95 1.95	92.8 92.8	2.8 3.4	2.7 3.1	2.7 3.3
			TREATED WITH 2%LIME	25.3 25.8	14 DAY 14 DAY	L/St L/St	25.0 25.2	25.6 26.3	1.95 1.95	92.8 92.8	5.6 6.1	5.6 6.2	5.6 6.1
Test Code	est Code UUndisturbed Sample L2.5Kg. Rammer A/55% Air Voids Ratio V Vibrating Hammer DDynamic Compaction H4.5Kg. Rammer A1010% Air Voids Ratio M Method Number StStatic compaction RN29 Road Note 29 (St. 95% H.)												

Report No.		CALIFORNIA BEARING RATIO										I.G.S.L.				
Contrac	st:	Indaver Wa	iste Management Facil	ity	DATE	во лики на продажники. 8 9 я # 4	12/	05/20	09	adaya zakiran mewana	CONTRACT No 14039					
	Sample	Depth	n y postanen and the barket and the first and the first is a state of the first and the first and the state of the	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Water	Test	Test	Water	Content				C.B.R.	da) men gal dal mandal den senanga ta pakalan dalah		
Location	No.	of	Sample Descri	otion	Content	Code	Code	Тор	Bottom	Bulk	%	Тор	Base	Average		
		Sample			%			%	%	Density Mg/M3	Passing 20mm	%	%	%		
	SP1A		NATURAL		19.5	NAT	L/St	19.5	19.5	2.07	91.5	1.0	0.8	0.9		
			NATURAL		19.7	NAT	L/St	19.2	20.1	2.07	91.5	1.1	0.6	0.9		
COMBINED SAMPLES	-															
FROM STOCKPILE			TREATED WITH 2	%LIME	18.9	1 DAY	L/St	18.7	19.0	2.11	91.5	11.1	5.9	8.5		
1,2 & 4			TREATED WITH 2	%LIME	19.0	1 DAY	L/St	19.0	19.0	2.11	91.5	12.7	11.9	12.3		
			TREATED WITH 2	%LIME	18.1	3 DAY	L/St	18.3	17.8	2.11	91.5	15.1	11.2	13.1		
			TREATED WITH 2	%LIME	18.5	3 DAY	L/St	18.5	18.5	2.11	91.5	16.9	16.4	16.6		
			TREATED WITH 2	%LIME	18.0	14 DAY	L/St	18.0	18.0	2.11	91.5	17.3	19.2	18.2		
			TREATED WITH 2	%LIME	17.6	14 DAY	L/St	17.1	18.0	2.11	91.5	16.5	17.4	16.9		
Test Code	UUndist	urbed Sample	L2.5Kg. Rammer	A/55% Air Void	s Ratio			Juntaria H	ammer							
	DDynan StStatic	nic Compaction	H4.5Kg. Rammer	A1010% Air Vold RN29 Road No	oids Ratio ote 29 (St. 95)	% H.)	v vic M Me	ethod Nu	umber		1941-1940-1940-1940-1940-1940-1940-1940-		700000000000000000000000000000000000000			
	. •													- 		

Report No.			CALIFORNIA BEARING F	RATIO							1.(3.S.	line a		
Contrac	ot:	Indaver W	aste Management Facility	DATE		12/	05/20	09		CC	ONTRACT No 14039				
	Sample	Depth	<mark>na ny amin'ny fisika kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia</mark>	Water	Test	Test	Water	Content				C.B.R.			
Location	No.	of Sample	Sample Description	Content %	Code	Code	Top %	Bottom %	Bulk Density Mg/M3	% Passing 20mm	Тор %	Base %	Average %		
	SP1A		NATURAL	19.5	NAT	L/St	19.5	19.5	2.07	91.5	1.0	0.8	0.9		
			NATURAL	19.7	NAT	L/St	19.2	20.1	2.07	91.5	1.1	0.6	0.9		
COMBINED SAMPLES															
FROM STOCKPILE			TREATED WITH 1%LIME	19.3	1 DAY	L/St	19.8	18.7	2.09	91.5	5.4	5.5	5.4		
1,2 & 4			TREATED WITH 1%LIME	19.4	1 DAY	L/St	19.0	19.7	2.09	91.5	4.6	6.3	5.4		
			TREATED WITH 1%LIME	19.3	3 DAY	L/St	19.4	19.1	2.09	91.5	5.4	5.8	5.6		
			TREATED WITH 1%LIME	18.8	3 DAY	L/St	18.8	18.7	2.09	91.5	3.4	5.9	4.7		
			TREATED WITH 1%LIME	18.9	14 DAY	L/St	19.1	18.6	2.09	91.5	8.0	6.5	7.2		
			TREATED WITH 1%LIME	17.9	14 DAY	L/St	18.1	17.6	2.09	91.5	8.6	9.7	9.2		
Toot Code	المامة	urbod Commi		la Datia											
Test Code UUndisturbed Sample L2.5Kg. Rammer A/55% Air Voids Ratio V Vibrating Hammer DDynamic Compaction H4.5Kg. Rammer A1010% Air Voids Ratio M Method Number St -Static compaction RN29 - Road Note 29 (St 95% H.)															

Meath Waste Management Facility

Carranstown, Co. Meath

Geotechnical Interpretative Report

(Report No. 14039)

Client: Indaver Ireland Engineer: PM Group Ltd

May 2009

Distribution	Copies	Rev.	Date of Issue	Report Prepared By:
PM Dublin	Draft - by email (PDF)	A	30 March 2009	PQ
PM Dublin	Final - by email (PDF) & 2 hard copies	F) & B 14 Ma		PQ

DOCUMENT ISSUE REGISTER

.

TABLE OF CONTENTS

Foreword

- 1. Introduction
- 2. Fieldwork
 - 2.1 General
 - 2.2 Rotary Drillholes
 - 2.3 Percolation Tests
 - 2.4 Geophysical Surveying

3. Laboratory Testing

- 4. Ground Conditions & Engineering Properties
 - 4.1 Ground Profile
 - 4.2 Glacial Deposits
 - 4.3 Bedrock
 - 4.4 Groundwater
- **5.** Discussion & Recommendations
 - 5.1 General
 - 5.2 Bearing Capacity
 - 5.3 Foundations
 - 5.4 Floor Slabs
 - 5.5 Excavatability
 - 5.6 Earthworks & Modification of Glacial Soils
 - 5.7 Pavement
 - 5.8 Groundwater
 - 5.9 Slopes
 - 5.10 Ground Retention
 - 5.11 Karst Weathering
 - 5.12 Geotechnical Risk Management

References

FIGURES

- Figure 1 SPT Data Plot
- Figure 2 Shear Wave Velocity Data Plot
- Figure 3 Small Strain Stiffness (GMax) Plot

TABLES

- Table 1 Summary Details of Consolidated Undrained Triaxial Tests
- Table 2- Summary Details of Rotary Core Drillholes
- Table 3 Summary Details of Safe Bearing Capacities
- Table 4
 - Suggested Foundation Solutions
- Table 5 Sample of Geotechnical Risk Register / Log

PLATES

.

- Plate 1 Example of Geobor Recovery in Glacial Till
- Plate 2 Example of Limestone Bedrock at Waste Bunker

FOREWORD

The following conditions and notes on site investigation procedures should be read in conjunction with this geotechnical report.

General

The ground investigation works for the Meath Waste Management Facility, Duleek have been carried out in accordance with BS 5930 (1990) and the IEI Specification & Related Documents for Ground Investigation in Ireland (2006).

Recommendations made and opinions expressed in this report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory test data. No responsibility can be held for conditions which have not been revealed by exploratory work, or which occur between exploratory hole locations.

Whilst the report may suggest the likely configuration of strata, both between exploratory hole locations, or below the maximum depth of the investigation, this is only indicative, and liability cannot be accepted for its accuracy. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

Disclaimer

The geotechnical interpretative report has been prepared for Project Management Group / Indaver Ireland and the information should not be used without prior approval or written permission of either party. The recommendations developed in this report are based on the IGSL factual ground investigation data (IGSL Project No. 14039), Byrne Looby Geotechnical Assessment Report (B580) and Apex Geophysical Report. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

1. INTRODUCTION

At the request of Project Management (PM) and Indaver Ireland, IGSL has undertaken a programme of geotechnical investigation works for a waste to energy facility at Carranstown, Duleek, Co. Meath. The works were performed as directed by PM Group, consulting engineers for the project. The site is located at Carranstown, Duleek, Co. Meath and encompasses an area of approximately 25 acres. The site is bounded to the south by the R150 Duleek to Navan Road, to the east by the Platin Cement Works and farmland to the west and north.

It is understood that the proposed development will involve the construction of a waste management facility and include a waste handling area (bunker & furnace), emissions stack, ash bunker, workshop, office and administration buildings and general site infrastructure (i.e. roads, drainage, service utilities, culverts etc). The waste handling area will require a basement type structure (bunker) with a proposed dig depth of the order of 7m below existing ground level (i.e. formation of c23m OD). Site enabling works were completed prior to IGSL commencing the geotechnical investigations and produced a platform level of 30.5m OD. It is noted that a programme of geotechnical investigations were originally carried out in 2007 and details are presented in a report prepared by Byrne Looby Partners (B580 May 2007).

The geophysical and geotechnical fieldworks works for this phase were carried out in accordance with BS 5930, Code of Practice for Site Investigations (1999) and the IEI Specification & Related Documents for Ground Investigation in Ireland (2006). The fieldworks included geophysical surveying, rotary core drillholes and percolation tests. Core drillholes GC 1 to GC 5 were positioned at the footprint of the bunker (note the location of this structure was subsequently altered) while RP 1, 2 and 5 were located at a zone where karst weathering was identified in the original investigations. The geophysical surveying was performed by Apex Geoservices and included seismic refraction spreads and surface wave analysis (MASW) to determine small strain stiffness.

Geotechnical soil and rock laboratory testing was performed on selected samples in accordance with BS 1377 and ISRM. In addition, modification / stabilization trial testing was performed in the laboratory to evaluate the behaviour of the glacial till, following the addition of lime (calcium oxide) and ordinary portland cement. This element of the testing focused on MCV, CBR and sulphates.

The primary objectives of the investigation were as follows:

- Evaluate rock quality, weathering profile, strength and fracture state of the bedrock at the proposed bunker & emissions stack
- Recover samples for geotechnical laboratory testing (soil & rock)
- Assess percolation characteristics of the upper soils at designated locations

This report presents an interpretation of the ground conditions and engineering properties of the soils and bedrock. Recommendations are developed and provided on the key geotechnical issues impacting on the proposed development. A separate factual report has been prepared and this includes the rotary drillhole records, percolation test data and laboratory test results.

2. FIELDWORK

2.1 General

The fieldworks were carried out during the period February 2009 and comprised the following:

- Rotary core drillholes (9 No.)
- Percolation tests (2 No.)
- Geophysical surveying

2.2 Rotary Drillholes

Rotary drilling was undertaken at nine locations using a top drive Knebel rig. Geobor core drilling methods were utilized at six locations (denoted GC 1 to GC 6) with conventional air mist drilling employed at three locations (RP 1, 2 & 5). The Geobor drilling system used polymer gel flush and recirculation tanks, with the emphasis on high quality recovery in the glacial soils and upper bedrock zone.

The Geobor coring produced 102mm diameter cores while the conventional coring produced 80mm diameter cores using air mist flush. Recovery in the Geobor holes was excellent with 100% recovery in the majority of the runs. The Geobor drillholes achieved depths of between 11.80 and 15.10m while each of the conventional holes terminated at depths of 10.50m. Each of the core drillholes were backfilled with cement/bentonite grout (tremmied) as directed by PM.

The rock cores were placed in 3m capacity timber boxes and logged by an IGSL engineering geologist. This included photography of the cores with a digital camera. The core log records are presented in Appendices 1 and 2 of the factual report and include engineering geological descriptions of the rock cores, details of the bedding / discontinuities and mechanical indices (TCR, SCR and RQD's) for each core run.

Where rock core was recovered, a graphic fracture log is also presented alongside the mechanical indices. This illustrates the fracture state of the rock cores and allows easy identification of highly fractured / non-intact zones and discontinuity spacings. It should be noted that no correction for dip of the joints has been made and that the spacings shown are successive joint / core intersections within the core.

2.3 Percolation Tests

Percolation or soakaway tests were performed at two locations to evaluate the infiltration potential of the upper soils. The tests were conducted in accordance with BRE 365 guidelines and the data sheets are presented in Appendix 3 of the factual report. The infiltration rate values (F Values) were calculated using the field data and are shown on each of the logs.

2.4 Geophysical Surveying

Geophysical surveying was carried out by Apex Geoservices and included resistivity profiling, seismic refraction spreads and multi-channel analysis of surface waves to assess soil stiffness (GMax v depth). Details of the methodologies used, x-sections / profiles and maps are presented in a separate report by Apex Geoservices.

3. LABORATORY TESTING

Geotechnical soil laboratory testing was performed on selected Geobor core samples in accordance with BS 1377 (1990). The soils testing included the following and results are presented in Appendix 4 of the factual report.

- o Moisture contents
- o Particle size analysis
- Atterberg Limits (Liquid & Plastic Limits)
- o Consolidated quick undrained triaxial tests
- o Consolidation (oedometer) tests
- o pH & sulphates

Soil modification / stabilization testing was carried out on samples of the glacial till recovered from stockpiles and at the bunker footprint. The results of these tests are presented in Appendix 6 of the factual report. Rock testing was undertaken on representative core samples and focused on Point Load Strength Index (PLSI)) and unconfined compressive strength (UCS) tests in accordance with ISRM. The results of the rock testing are presented in Appendix 5 of the factual report.

4. GROUND CONDITIONS & ENGINEERING PROPERTIES

4.1 Ground Profile

The exploratory holes have revealed the ground conditions at this site to comprise:

- o Glacial deposits
- o Limestone Bedrock

4.2 Glacial Deposits

The Byrne Looby (BLP) investigatory works show the indigenous soils at this site comprise low plasticity, brown very sandy gravelly CLAY with cobbles (locally grading to SILT). Subordinate horizons or pockets of sandy GRAVEL and gravelly or clayey SAND were also uncovered during the aforementioned investigations (trial pits). The cohesive or fine grained material is referred to as 'glacial till', while the subordinate coarse or granular dominant materials are typical of fluvio-glacial deposits. Ground levels (mOD) were not reported on the BLP records, however it appears that the cable percussion boreholes refused on cobble / boulder obstructions.

The soils are thought to represent over-consolidated lodgement till and examination of the BLP borehole and trial pit descriptions show changes in colour and grading with depth. The gravel constituents or clasts range from fine to coarse, are subrounded to subangular and predominantly limestone in origin. Recovery of the glacial till in the Geobor drillholes was good to excellent and the cores show a complex and variable stratigraphy. An example of the core recovery in the glacial till is presented in Plate 1.

Plate 1 – Geobor Recovery in Glacial Till (GC 3)

No undisturbed samples (U100's) were recovered by BLP/GII for laboratory strength testing. However, the SPT test is widely used in establishing the strength or relative density of glacial till deposits and relationships exist between SPT N-Value (blows for 300mm penetration) and undrained shear strength (C_u). The most widely used correlation between N-Value and C_u for glacial till soils is that proposed by Stroud & Butler where $C_u \approx 4$ to 6N. An SPT data plot has been prepared using the relevant BLP/GII borehole data and this is presented in Figure 1. The N-Values show the upper glacial till to be principally firm in consistency, becoming firm / stiff with depth.

Consolidated quick undrained (CQu) triaxial compression and odeometer consolidation tests were performed by IGSL on selected Geobor samples. The CQu tests produced cohesion values of between 91 and 241 kN/m² (mean value of 166 kN/m²) and these indicate stiff and very stiff glacial soils. Bulk densities range from 2.06 to 2.36 Mg/m³ and these are characteristic of over-consolidated gravel or cobble dominant glacial till.

Inspection of the oedometer test data shows Modulus of Volume compressibility (Mv) values typically around 0.3 m²/MN in the 100 to 200 kN/m² pressure range. Coefficients of consolidation (Cv) were also calculated and appear to be quite consistent, with values typically of the order of 20 to 30 m²/yr. It is highlighted that the oedometer test is performed on a 76mm diameter sample and in glacial till materials, this can produce higher Mv's as the gravel and cobble constituents are excluded in the laboratory test.

On a field scale, the gravel / cobble constituents tend to enhance the stiffness of a glacial till deposit. The oedometer consolidation tests produced higher Mv's than expected and the values suggest the till is of medium compressibility (Mv of 0.1 to 0.30 m²/MN). For settlement calculations, a Modulus of Volume Compressibility value of 0.2 to 0.25 m²/MN for the firm glacial till is deemed reasonable.

Geobor Drillhole	Sample Depth (m bgl)	Dry Density (Mg/m³)	Bulk Density (Mg/m³)	NMC (%)	Cohesion (kN/m²)
RC 1	2.60	1.68	2.06	20	91
RC 3	2.00	2.01	2.29	14	214
RC 3	4.50	2.10	2.36	9.7	260
RC 4	3.20	1.76	2.16	22	96
RC 5	3.00	2.10	2.32	11	168

Table 1 - Summary Details of Consolidated Quick Undrained (CQu) Tests

Natural moisture contents were determined on representative Geobor core samples and produced values mostly in the range 11 to 19%. Liquid and Plastic Limit tests (consistency indices) were also performed on selected samples and these show the till to be predominantly of low plasticity (CL). With the exception of one sample (GC 3 at 4.50m) the remainder of the tests plot above the A-Line on the Casagrande Chart. The majority of the plasticity Indices are in the 12 to 19% range. Fines contents (i.e. silt & clay) vary considerably in the Geobor drillholes, with the till having between and 30 and 70% fines. Applying the Hazen or Sherard equations, the boulder clay is classed as being of low permeability, with coefficients of permeability (K) of the order of 10⁻⁸to 10⁻⁹m/s.
Figure 2 - SPT Data Plot

Surface wave velocities (Rayleigh waves) were measured by Apex Geoservices at five spread locations using an array of geophones at designated spacings. The shear wave velocity data (Vs) was used to derive small strain shear modulus or stiffness values (G_{max}) with depth. The shear wave velocity and small strain stiffness plots have been combined and are presented in Figures 2 and 3 respectively. The shear wave velocities increase with depth and this data can be used to derive Bulk Modulus, Youngs Modulus, Poisson's Ratio and G_{max} . Values of dynamic moduli (G_{max}) are typically an order of magnitude *greater* than static values, established by routine in-situ testing. Ground strains are generally accepted to be < 0.1% and therefore small strain stiffness values can be used to make reasonable predictions of deformations (Jardine et al. 1986). The Apex geophysical report presents values of Vs, Vp, Density, Poissons Ratio, Youngs Modulus (dynamic & static)) and Bulk Modulus.

The data shows of G_{Max} values in the upper glacial soils typically ranging from around 50 MPa to 150 MPa (firm / stiff boulder clay), increasing to 500 MPa in the very stiff till /upper variably weathered bedrock. The variations in the small strain stiffness values correlate well with the variations in soil composition as indicated by the Geobor core recovery. There is a noticeable 'kick' at a depth of approximately 5 to 6m, this correlates with the core drillhole data (GC 1 to 5) where rockhead was confirmed at depths of 5.30 to 8.00m.

Figure 2 – Shear Wave Velocities v Depth

Figure 3 – Small Strain Stiffness (GMax) v Depth

4.3 Bedrock

.

The core drilholes show that bedrock consists of mid grey and grey blue, fine to medium grained silileous and fossiliferous LIMESTONE belonging to the Platin Formation (GSI Sheet 13, Geology of Meath). The limestone appears to be have been silicified, and is classed as being predominantly slightly weathered to fresh, though zones of moderately weathered and heavily fractured (non-intact) limestone were also uncovered. Table 1 presents summary details of the rotary drillholes, and includes rockhead depths and an overview of rock quality at each exploratory location. Not

unexpectedly, rockhead elevation appears to be irregular at the site and appears to be deepest in GC 3 and GC 6 (east of the turbine and auxillaries).

Plate 2 – Example of Limestone Bedrock at Waste Bunker (RP 2)

The Geobor drillholes produced high quality core recovery in the variably weathered upper bedrock. Prominent clay, sand and gravel infill was noted in a number of the drillholes and there is clear evidence that the bedrock has been subjected to karst weathering / alteration. It should be noted that the siliceous limestone is more resistant to solution weathering (as opposed to the more calcareous fine grained limestone which is much more susceptible) and this may 'mask' the true rock mass quality. There is good reason to suspect that a paleokarst system could be present at the site and this will be discussed further in Section 5.

Discontinuities are generally rough and undulose while apertures appear to have widths of around 1 to 2mm. Dips mostly vary between sub-horizontal and 45° and surfaces show iron staining or discolouration. There is also evidence of clay smearing or infill along discontinuity surfaces. Discontinuity spacings are principally close (60 to 200mm) and medium (200 to 600mm) spaced though GC 3 shows very closely spaced (20 to 60mm) discontinuities, with much of the core more akin to a coarse angular gravel.

Point load strength index (PLSI) tests were carried out on a number of core samples and results are presented in Appendix 5 of the factual report. Inspection of the data sheets shows Is_{50} values of between 2.78 and 11.2 MPa with a mean value of 6.6 MPa. The compressive strength of the rock (q_c) can be established using a correlation suggested by Goodman where $q_c \approx 18$ to 24 x Is_{50} . Using a correlation value of 20, the point load test data shows the limestone to be predominantly strong (i.e. 50 to 100 MPa) to locally very strong (100 to 200 MPa).

Unconfined compressive strength (UCS) tests were also undertaken on selected rock cores and produced values of 27, 72, 35, 38, 39, 36, 54 and 59 MPa respectively. The UCS test data classes the limestone as moderately strong to locally strong and this is clearly at variance with the PLSI data. It is thought that the core samples failed prematurely during UCS testing (failure along

incipient discontinuities as the principal stress was applied) and hence does not truly reflect the inherent strength of the limestone bedrock.

Rotary Hole	Total Depth (m bgl)	Rockhead (m bgl)	Rock Quality Characteristics
GC 1	12.00	6.60m (23.5m OD)	Strong to very strong (where intact) and locally moderately strong, fresh to slightly weathered LIMESTONE. Very closely fractured from 6.60 to c8.7m. Dry.
GC 2	15.10	5.30 (24.70m OD)	Strong to very strong (where intact) and locally moderately strong, fresh to locally slightly weathered LIMESTONE. Dry.
GC 3	11.80	8.00 (22.14m OD)	Strong to moderately strong, slightly to locally moderately weathered LIMESTONE. Dry. Prominent infill with sand, gravel & clay throughout, indicative of karst weathering / alteration.
GC 4	12.15	7.15 (23.12m OD)	Strong to very strong (where intact) and locally moderately strong, fresh to locally slightly weathered LIMESTONE. Locally highly fractured (8.60 to 9.80m). Dry.
GC 5	12.20	5.80 (24.28m OD)	Strong to moderately strong, fresh to slightly weathered LIMESTONE. Dry.
GC 6	13.50	8.25 (22.02m OD)	Strong to moderately strong, fresh to locally slightly weathered LIMESTONE. Highly fractured with very prominent clay, sand, gravel infill, indicative of karst weathering / alteration. Dry.
RP 1	10.50	6.40 (23.54m OD)	Strong to very strong (where intact), fresh to locally slightly weathered LIMESTONE. <u>Cavity</u> noted by driller from 8.70 to 8.90m, indicative of karst weathering / alteration. Dry.
RP 2	10.50	5.70 (24.33m OD)	Strong to very strong (where intact) and locally moderately strong, fresh to locally slightly weathered LIMESTONE. Dry.
RP 5	10.50	6.70 (23.48m OD)	Moderately strong (where intact) to moderately weak, moderately to locally highly weathered LIMESTONE. Becoming strong to moderately strong from c8.60m.

Table 2 - Summary Details of Rotary Drillholes

.

	upper bedrock zone highly weathered / non-intact (6.70 to c8.60m). Dry.

4.4 Groundwater

Groundwater was not encountered in any of the nine IGSL rotary core drilholes. It is highlighted that loss of water flush was observed during drilling and this is characteristic of karst bedrock. It is noted that standpipes were not installed in the rotary drillholes to establish equilibrium groundwater levels.

5. DISCUSSION & RECOMMENDATIONS

5.1 General

It is understood that a waste to energy facility will be constructed at this site. In light of this and the geotechnical / geophysical findings, the following ground engineering issues are developed and discussed:

- Bearing capacity
- Foundations & floor slabs
- Excavatability
- Earthworks & modification of glacial soils
- Groundwater
- Slopes & ground retention
- Karst weathering & geotechnical risk management

5.2 Bearing Capacity

The strength and relative density of the soils has been discussed previously in Section 4.2. The upper glacial till is principally firm and firm / stiff in consistency, while the lower till is typically stiff to locally very stiff. The weathering and strength of the limestone bedrock has been discussed in Section 4.3 and on foot of the strengths established by the laboratory testing, safe bearing and recommended allowable capacities (as defined in Section 2.2.8 of Tomlinson, 7th Ed) are presented in Table 2.

Table 2 - Summary Details of Safe Bearing Capacities

Stratum	Characteristic Strength or Relative Density Range	Assumed Safe Bearing Capacity (kN/m²)	Recommended Allowable Bearing Capacity* (kN/m²)
Upper till - firm and firm / stiff brown and grey brown sandy gravelly CLAY / SILT (N- Values of 15 to 20)	75 to 100 kN/m ²	175 to 225	200
Lower till – stiff and very stiff sandy very gravelly CLAY / SILT with cobbles (N-Values of 20 or greater)	125 to 150 kN/m ²	250 to 300	275
Variably weathered (slightly to moderately weathered) upper LIMESTONE	Moderately strong to strong	1250 to 1500	1250

* Recommended allowable bearing pressures presented are proposed to limit differential settlement

The upper glacial till is typically firm / stiff and should provide an allowable bearing capacity of 200 kN/m^2 . The Geobor cores and associated laboratory testing indicates the lower till to be stiff / very stiff and this should safely support loads of the order of 250 kN/m^2 . It is highlighted that the low plasticity glacial till will be particularly susceptible or sensitive to small increases in moisture content and should be protected without delay to avoid degradation.

An allowable bearing capacity of 1250 kN/m² is suggested for pad or spread foundations located on the upper variably weathered limestone bedrock. Should foundations be located on the slightly weathered / fresh strong or very strong limestone, then an allowable bearing capacity of 1750 to 2000 kN/m² could be adopted.

5.3 Foundations

It is understood that the waste to energy facility building will be on two levels (34.00 & 30.50m OD) while the bunker will have a formation level of 22.60m OD. Building column loads are typically of the order of 500 KN, though equipment loads vary greatly, with the heavier structures having loads of 2000 kN and in some areas up to 3900 kN (furnace boiler). The reception hall building is expected to have column loads of approximately 350 kN while the ash (slag) storage building will have column loads of c500 kN.

In light of these loads and the geotechnical findings, foundation solutions for the principal structures are <u>suggested</u> in Table 3. This is to provide guidance to the designer and he must consider all of the relevant geotechnical data and impact of differential settlement with regard to the foundation design for the structure.

Structure	Column Loads	Floor Slab Loads	Proposed Foundation Solution
Reception Hall	350 kN	Axle loads 13t Truck load 30t	Pads / strip footings founded on stabilized fill or imported granular fill with ground bearing floor slabs
Waste / Ash Bunker	1600 kN/m along retaining wall	100kN/m ² on bunker slab	Raft founded on upper limestone bedrock (remove glacial till & replace with lean mix concrete)
Furnace Boiler	+ 500kN along building perimeter Equipment 1500 to 3900 kN	20 kN/m ²	Piles
Turbine Area	+ 500 kN along building perimeter Equipment loads 2000 to 3500 kN	20 kN/m ²	Piles
Furnace Boiler Turbine Area	+ 500kN along building perimeter Equipment 1500 to 3900 kN + 500 kN along building perimeter Equipment loads 2000 to 3500 kN	20 kN/m ² 20 kN/m ²	Piles Piles

Table 3 - Suggested Foundation Solutions

Slag Storage	+ 500 kN building loads	20 kN/m ²	Pads & strip footings*
Lab Area	+500 kN building loads Equipment 800 to 3500 kN	20 kN/m ²	Piles

** refer to text

Reception Hall / Building

It is understood that the reception hall / building will have a floor level of 34.00m and with ground levels at c30.0m, this will entail approximately 3.5 to 4m of engineering fill. Either modified glacial till (use of lime or cement to increase strength / stiffness) or imported granular fill (6F1 / 6F2 capping or 6N) could be used to achieve the platform level. If modified glacial till is selected, it should be placed in layers not exceeding 300mm and high quality compaction should be attained using either smooth drum or sheepsfoot rollers having a minimum mass per metre width of roll of not less than 5400kg. Modified / stabilized glacial till should be compacted to achieve a minimum of 95% of Proctor optimum (as determined by the 2.5kg rammer method) or air voids not exceeding 5%. Geotechnical testing should form an integral part of the modification works, with plate tests to derive CBR values and modulus of sub-grade reaction (Ks) values.

Waste Ash Bunker

Formation level for the waste ash bunker will be 22.60m OD and this will involve removing approximately 8m of glacial till and limestone. The rotary core drillholes (BLP/IGSL) have established rockhead at elevations of 23 to 24.3m OD at the northern section and 24.9m OD at the south / southeast corner. Based on this, it is expected that the waste bunker foundations will be located on the upper limestone bedrock. (Bedrock topography map will be produced by Apex Geoservices afer completion of the additional site works on 31/3/09). Given the variability in weathering and irregular rockhead profile, provision should be made for excavating pockets or zones of moderately to highly weathered limestone and replacing with lean mix concrete. It appears from the two phases of geotechnical investigations that cavities are present in the limestone at Carranstown (note adjacent Irish Cement Platin Works site is known to contain prominent karst features) and these should be a key consideration during the construction works at Indaver.

Both the BLP and IGSL geotechnical investigations encountered cavities within the upper limestone bedrock. RP 1 identified a cavity between 8.70 and 8.90m while RC 7 encountered a cavity between 8.50 and 9.90m. It is strongly advised that the bedrock formation material at the waste bunker be closely inspected by an experienced geotechnical engineer. In addition, provision shoud be made for geophysical surveying (ground probing radar & resistivity profiling methods) to be carried out when excavation works are complete. A reinforced concrete raft foundation is advised for the bunker, and should be designed to deal with a potential open void or cavity span of at least 1m.

Furnace Boiler

With equipment loads of 1500 to 3900 kN at the furnace boiler, it is advised that piles are utilized. The expectation is that bored piles would be used and formed by odex / symmetrix methods, extending through the superficial deposits and into the limestone bedrock. The rotary core drillholes undertaken at this area (GC 1, GC 5 & RP 5) encountered rockhead at elevations of 23.5 to 24.3m OD. The aforementioned drillholes showed significant variations in rock mass quality (i.e. weathering and strength) and this has to be considered in pile design. RP 5 showed a distinctive

highly weathered profile from 23.5 to 21.5m OD. On the evidence of the rotary holes (particularly RP 5) pile lengths are expected to vary considerably, with load capacity dependant on variation in strengths and alteration due to karst weathering.

For preliminary foundation design purposes, it would be reasonable to assume that 600mm diameter piles, founded in the limestone bedrock, would provide a safe working load of the order of 1500kN. Therefore, pile groups of 3 or 4 could be designed to accommodate equipment loads of 4000 to 5000 kN. The piles should achieve adequate socket depths and rely largely on skin friction developed within the glacial till and limestone bedrock. If end bearing is to be relied upon, then core drilling should be carried out to validate rock quality below the pile toe. In view of the variably weathered nature of the karst altered limestone bedrock, the emphasis should be on reducing pile capacity and ensuring that the pile group can safely accommodate the column loads. It is expected that bored piles would have a minimum socket depth of 2.5 to 3m but this will be governed by the <u>actual</u> weathering profile and degree of intactness of the limestone bedrock at each pile group location.

Turbine Area

The ground conditions at the turbine area comprise stiff glacial till underlain by strong and very strong limestone bedrock (at an elevation of approximately 21.3m OD based on RC 2 BLP/GII Report). Again, equipment loads are considerable at the turbine area (up to 3500 kN), hence piles are recommended. It is expected that the piles for this structure will extend into the limestone bedrock (to provide an adequate socket). There was no evidence of cavities or voids in RC 2 and total core recovery (TCR) was fair to good. The limestone appears to be largely intact (though non-intact zone was present from 19 to 18.2m OD) and should provide a competent founding medium. Again, 600 or 900mm diameter bored piles are expected to be used and extend sufficiently into the intact or competent limestone.

Slag Storage Building

Building column loads at the slag storage building are estimated at +500 kN. GC 1 and GC 4 are most relevant to this area (note an absence of geotechnical information at the northern portion) and showed the glacial till materials to be generally stiff or upperbound medium dense. It is expected that pad and strip footing foundations will be utilized at this area and should be sized using an allowable bearing capacity of 200 kN/m². The real concern with utilizing pads at this building is the potential for differential settlement and the impact this would have on the structure.

In karst altered terrain, the strength / stiffness of glacial till soils can be highly variable (due to migration into voided zones) and this should be considered. Before foundations are finalized for the slag storage building, a programme of dynamic probing should be considered (grid of 5 x 5m) to evaluate the strength of the upper soils (i.e. within 3 to 4m of existing ground level). This data should be subsequently reviewed with the small strain stiffness geophysical data (Gmax profiles).

5.4 Floor Slabs

Anticipated floor slab loadings are presented in Table 2 and are generally of the order of 20 kN/m². Ground bearing floor slabs are expected to be suitable for the reception hall, slag storage, administration and laboratory buildings. Ground bearing floor slabs should not be located on made ground / fill material. This is due to its inherent variability and likely poor compaction (or no compaction), hence total and differential settlement would be a real concern. Made ground / fill materials should be removed and replaced with suitable approved engineering fill (i.e. imported granular fill or stabilized glacial till).

Given the silt dominant nature of the glacial till and proposed floor slabs loadings of 20 kN/m² a minimum granular layer thickness (6F1 / 6F2) of 500 mm is recommended. However, where floor slab loading are > 20 kN/m² an enhanced modulus granular layer should be considered. A granular

layer thickness of 600 to 800mm should be considered where modulus of sub-grade reaction values (Ks) are < 20 MPa/m or CBR < 1%.

If imported limestone / mudstone derived granular fill is used under floor slabs or structures, then it should have a minimum Ten Per Cent Fines Value of 130 kN and minimum CBR value of 15% (derived using plate bearing plate method). From a chemical and pyrite degradation aspect, granular fill material should have a maximum equivalent pyrite content of < 1% (i.e. low to medium swelling potential in accordance with CTQ-M200), maximum total sulphur content of 1.0% (or < 0.4% if pyrrhotite is suspected) and maximum acid soluble sulphate of 0.2% in accordance with IS EN 13242:2002.

If pyrite is present in granular fill, this may lead to problems with oxidation, weathering and adverse reaction with carbonate minerals. Potentially expansive fill materials should not be used under structures. Imported granular fill material (e.g. capping or sub-base) should be thoroughly checked for total sulphur and soluble sulphates (SO₄). Thin section petrographic analysis should also be carried out to determine mineralogical composition, particularly for the presence of pyrite in the rock matrix (especially more reactive fine grained or framboidal pyrite).

5.5 Excavatability

The key factors which govern or control excavation methods in glacial till / boulder clay and hence production rates are the strength of the matrix and frequency or predominance of boulders. On the basis of the SPT Values and strength descriptors on the logs, excavation of the glacial till is expected to be efficiently carried out using 20t tracked excavators.

The three key factors, which govern or control excavation methods and hence production rates in bedrock are:

- compressive strength of the rock
- discontinuity / bed spacings
- orientation and tightness of the discontinuities or bedding

A number of methods are available to assess the excavatability characteristics of the limestone bedrock, including the Pettifer & Fookes chart, Weaver rating chart etc. On the basis of the mechanical indices (SCR/RQD), discontinuity characteristics and strengths established by the point load tests, heavy digging and hydraulic breaking (6 or 8t breakers mounted on 50t excavators) is anticipated to efficiently loosen or fracture the upper bedrock. The strong / very strong siliceous or fossiliferous limestone bedrock will be more onerous to loosen and this should be considered by civil engineering contractors.

Trench excavations in the strong / very strong limestone bedrock will be very onerous (due to the lack of a free face) and the siliceous limestone will tend to reduce to a powder. It is highlighted that the Pettifer & Fookes excavatability chart (nomogram) tends to be very optimistic for indurated lrish bedrock deposits, particularly strong / very strong materials. It provides no information on production rates and serves only as a guide in assessing possible excavation methods digging/ripping/hydraulic breaking/blasting).

5.6 Earthworks & Modification of Glacial Soils

In view of the variability of the glacial till soils and concerns regarding their re-use potential, a programme of laboratory modification / stabilization testing was carried out by IGSL. Moisture Condition Value (MCV) and California Bearing Ratio (CBR) tests were undertaken on samples of the glacial till recovered from the bunker footprint and stockpiles constructed by Sisk. This focused on two modes of testing following the addition of calcium oxide (supplied by White Rhino, Clogrennane) or OPC to the glacial till. MCV's were carried out after a period of circa 3 hours and

CBR tests following curing for periods of 1, 3 and 14 days respectively. The CBR and MCV tests were performed on unsoaked samples, where the material was allowed to cure at a laboratory temperature of 16 to 18°C.

Inspection of the laboratory test data in the factual report shows MCV's increased significantly after lime or cement binder was added. The MCV's were undertaken after mixing and curing for 3 hours. In the majority of cases, the MCV's increased to +7 with the material from the bunker footprint (TP 1A & 1B) performing best. The samples from the stockpiles were considerably wetter and the MCV's on these samples increased modestly after adding 1 or 2% calcium oxide. With regard to the CBR test data, the glacial till material showed a good exothermic reaction with calcium oxide, particularly the samples from the bunker (TP 1A & 1B), which produced high CBR values. The CBR values from the stockpile samples were considerably lower and more erratic, even with 2% binder.

It is concluded from the modification / stabilization laboratory trial testing that the glacial till has the capacity to produce a good quality engineering fill, following the addition of 1 to 2% calcium oxide or OPC. It is expected that a minimum CBR value of 5% will be required for bulk engineering fill (after curing for a period of 7 days) under structures and floor slabs. In view of the laboratory CBR values obtained from the stockpiles, provision should be made for at least 2% binder. Given the composition and variability of the glacial till, a combination of lime and cement (e.g. 2% lime with 1% cement) should be considered for the variable stockpiled material. Field trials are advised during the early stages of the modification / stabilization works to determine dosage or consumption quantities to achieve an MCV of 8 to 14 and minimum CBR value of 5% or modulus of sub-grade reaction (Ks) value of 40 MPa/m.

5.7 Pavement

Capping material (6F1 / 6F2) is used to protect the sub-grade and the sub-base material and increase the stiffness modulus and strength of the formation. In accordance with DMRB Design Guidance for Road Pavement (HD 25) the lower-end equilibrium CBR values should be used to determine appropriate capping layer thickness. Remoulded CBR values were carried out by BLP/GII on the soils at depths from 0.5 to 3.50m and values range from 1.0 to 18%. Taking a characteristic lower end CBR value of around 2%, a capping layer thickness of the order of 400 to 450mm is recommended.

Provision should be made for additional CBR tests to be carried out during the earthworks phase at the principal access roads and pavement formations (i.e. preferably plate bearing tests to derive CBR values). It is expected that this would be undertaken during the early earthworks phase to confirm design CBR value and validate appropriate capping layer thickness. A geotextile fabric (PB 120 or similar) should be used for separation at roads, car park and general pavement areas.

5.8 Groundwater

As set out in Section 4.4, groundwater was not encountered in any of the IGSL rotary drillholes. Groundwater was locally intercepted in the BLP/GII trial pits (i.e. 1.9 to 3.5m bgl). These levels are unlikely to reflect long term equilibrium water conditions but should be considered in terms of ingress during excavation works. Packer tests were not carried out to evaluate the permeability or water-tightnes of the bedrock. However, on the evidence of the discontinuity spacings and fracture state of the cores, the bedrock would be expected to be of medium permeability (i.e. Lugeon Values of 5 to 20).

In light of the BLP/GII borehole and trial pit findings, provision should be made for sump pumping in excavations. It is possible that some groundwater pumping may be required at the bunker and other deeper foundations areas (chambers or waste sump tanks etc). Perimeter drains and sumps should be carefully located and constructed, to ensure that groundwater is efficiently removed from excavations and trenches.

5.9 Slopes

On the basis of the strength of the material from the SPT's,and Gebor cores and groundwater conditions, a slope batter of 33° (1V:1.5H) is suggested for temporary excacations in the firm / stiff glacial till. Temporary slope protection measures should be installed to prevent the risk of spalling. To mitigate against cobbles, boulders or loose blocks / clods spalling, either galvanised mesh or a geogrid (Tensar SS 30 or similar) should be fixed against the crest, mid-point and toe of the batter. This is normally carried out with upturned reinforcing bars or a bulb of concrete at the toe.

Temporary slopes should be regularly inspected during the course of any excavation works by an experienced geotechnical engineer. The purpose of this is to evaluate unfavourable or potentially unstable ground conditions, general slope behaviour and groundwater. The slope batters should be inspected daily by an experienced site engineer. If there are concerns with instability, then advice should be sought from a suitably experienced geotechnical engineer.

5.10 Ground Retention

With an excavation depth of the order of 7m required for the bunker, ground retention is expected to be used. Considering the prevailing ground and groundwater conditions at the bunker footprint, it is believed that either a contiguous bored piled wall or king post wall is most appropriate, Given the space constraints within the excavation (19m wide), a cantilever contiguous bored piled (600mm diameter) wall or unpropped king post wall would be preferred. With groundwater largely absent in the boreholes / drillholes, king posts could be constructed with universal columns at 5m centres and utilizing precast concrete panels.

To progress through the strong limestone bedrock and attain the required embedment depths for either solution, robust bored piling methods will be necessary. The use of CFA piling techniques is not recommended, as this system is not expected to penetrate through strong limestone bedrock. Odex / symmetrix or down the hole hammer methods are considered most suitable.

Geotechnical instrumentation should form a key part of the ground retention works. Inclinometers (minimum of 2 No.) should be installed to measure lateral wall deflections. The actual deflections should be compared with the predicted values and ensure that they do not exceed threshold limits agreed with the Engineer.

5.11 Karst Weathering

Karst subsidence is a function of groundwater movement and hydrogeological changes in surface water. Groundwater play a <u>key role</u> in the formation of subsidence sinkholes. A subsidence sinkhole was defined by Waltham (1989) as a 'failure of soil or weak rock into underlying cavernous limestone'. Newton & Waltham (1989) identified sinkholes into two types: firstly those resulting from water level decline and secondly, those resulting from diversion or impoundment of surface drainage.

Temporary lowering of the water table down to bedrock level is known to be a significant contributory factor in sinkhole development. It is also well established, that periods of dry weather followed by very heavy prolonged rainfall can trigger subsidence. Similarly, stripping of topsoil or vegetation increases the rate of infiltration of surface water and redirection of run-off can cause preferential flow and initiate subsidence. Subsidence sinkholes can develop very quickly following heavy rainfall and earthworks stripping.

As noted in Section 4.3, there is evidence of solution weathering or karstification in the limestone bedrock at this site. Karstification is known to occur in the Duleek / Carranstown area and the Platin Formation is known to be very susceptible to karst weathering. Considering all of this, the potential or likelihood for karst subsidence features to occur <u>should be strongly considered</u> in both foundation and drainage design. The site development earthworks (completed in January 2009)

have produced a platform level of 30m OD. Surface water was present during the course of the rotary drilling works (early to mid February) but there was no evidence of sinkholes or depressions. It is noted that significant water flush loss during drilling was recorded by the driller and this suggests fissures or voids in the limestone bedrock.

A number of measures can be taken to minimise the risk associated with excavation works and foundations. Surface water should be carefully managed and controlled, so as to avoid indiscriminate run-off or dissipation into the formation soils. The civil engineering contractor should be aware of the risks associated with this particular site and provide tool box talks to engineering staff and site operatives. Bunds or swales should be constructed to control surface water run-off and discharge to attenuation ponds.

The groundwater levels in the BLP/GII standpipes should be monitored during the course of the excavation works for the bunker and should groundwater levels drop below equilibrium levels, this should be a cause for concern, as significant lowering of the groundwater table (as noted previously) can trigger or initiate subsidence sinkholes. Piling contractors should also be made aware of the potential issues with ground engineering works in karst altered limestone. Earthwork and piling contractors should evaluate the risk of ground hazards and address in method statements. As regards foundations located on the limestone bedrock (i.e. waste bunker), the recommendations outlined in Section 5.3 should be considered and implemented.

5.12 Geotechnical Risk Management

Reference should be made to the ICE / DETR 'Managing Geotechnical Risk' report which addresses the principles of managing geotechnical risk, steps in risk management, undertaking risk analysis and setting up a risk register with designers, contractors and of course the client. Given the scale of the main structures and the fact that karst limestone is present, a risk assessment is suggested. Geotechnical risk management provides a means of:

- Identifying potential geotechnical or ground related hazards
- Reducing the uncertainty of geotechnical or ground related hazards
- Evaluating the vulnerability of construction activities (particularly foundations & earthworks) to the geotechnical risks
- Producing robust geotechnical designs with back-up plans in the event that unforeseen conditions arise

A key part of geotechnical risk management is the setting up of a risk register or risk management log. The risk register provides a means of recording potential uncertainties or hazards before and during construction. The type of risk can be identified, consequences established and the risk classed accordingly (low, medium, high or very high). A risk management register is strongly recommended for this project and both the designer and contractor should identify particular geotechnical risks or hazards pertaining to the main structures.

Examples of a risk register are presented in Appendix A of the aforementioned ICE / DETR report and a sample version is presented in Table 5. This presents an outline of the <u>key geotechnical</u> <u>risks</u> for four key areas at the site. The design strategy or risk control measures (RCM) must be adequately robust to deal with uncertainties identified by the geotechnical investigations and requirements of the client.

The risk register should be reviewed and updated as design and construction progresses. This can be used to re-assess risk and re-rank the key risks accordingly. On-going assessment is

particularly important in karst affected sites, where subsidence features can develop randomly and without warning.

Structure	Key Risks	Probability (1,2,3)	Impact (1,2,3)	Risk Class (L,M,H.C)	Design Strategy
Reception Hall	Ability of modification / stabilization works to achieve target strength / stiffness.				
	Differential settlement of pad or strip footing foundations. Elevated sulphates in modified glacial till.				
Waste Bunker	Rock excavatibility. Ability of contiguous bored piles or king posts to attain design embedment depth. Potential for subsidence (voids / cavities) to develop under foundations or void migration.				
Turbine & Auxillaries	Differential settlement between pads. Piles failing to achieve adequate embedment or socket depth in limestone bedrock. Possibility of void migration under turbine and auxillary structures.				
Slag Storage	Differential settlement between pads. Stiffness of formation soils to accommodate floor slab loads. Possibility of void migration under slag storage.				

Table 5 -	Sample of	Geotechnical	Risk Registe	r / Loa fo	r Indaver	Carranstown	Project
	• • • • • • • • • • • • • • • • • • •			.,		•	

Probability (1=Low, 2=Medium, 3= High) **Risk Class** (Low, Medium, High, Critical)

.

References

- 1. BS 5930 (1999) Code of Practice for Site Investigation, British Standards Institution (BSI) incorporating Amendment No. 1 (December 2007)
- 2. BS 1377 (1990) Methods of Testing of Soils for Civil Engineering Purposes, BSI
- 3. BS 8004 (1986) Code of Practice for Foundations, BSI
- 4. Indaver, Carranstown Geotechnical Assessment Report (B580), May 207, Byrne Looby Partners
- **5.** IS EN 13242:2002, Aggregates For Unbound and Hydraulically Bound Materials for use in Civil Engineering and Road Construction, January 2003
- 6. Managing Geotechnical Risk, DETR / ICE, Thomas Telford, 2001
- 7. NRA Specification for Road Works, March 2000
- Site Investigation Practice: Assessing BS 5930 (1986), Geological Society Special Publication, No. 2
- 9. Tomlinson, M.J. Foundation Design & Construction, 7th Edition
- 10. Waltham, A.C. (1989). Sinkholes on Limestone. Ground Subsidence, Blackie, Glasgow, 17-40

.

Appendix 9.2 Trial Pit Logs 2000

Project No.: 2175	Location : Duleek, Co. Meath Date : 28/4	/00
Drilling Method : JCB	Supervisor : Amy Brennan	
	TRIAL PIT NO.1	
Geology :		
0 - 0.25	Dark brown organic-rich TOPSOIL	
0.25 - 0.9	Medium brown silty CLAY with occasional subrounded pebbles.	
0.9 - 3.0	Fine grained, homogeneous, brown SAND.	
3.0 - 3.2	Brown BOULDER CLAY with occasional large limestone boulders	
3.2 - 3.3	Stiff, black BOULDER CLAY	
Depth to Rock :	>3.3m	
Rock Type :		
Water Entry :	None	
Static Water :		
Total Depth :	3.3m	
Comments :	Composite soil samples taken; Dry deposits. No unusual colours o odo noted.	ur
	•	

K.T.Cullen & Co. Ltd.

Project No.: 2175	Location: Duleek, Co. Meath	Date: 28/4/00
Drilling Method : JCB	Supervisor: Amy Brer	nan
	TRIAL PIT NO.2	
	· ·	
Geology :		
0 - 0.2	Brown organic-rich TOPSOIL	
0.2 - 1.1	Medium brown silty CLAY with occasional suba	ngular pebbles.
1.1 - 1.6	Medium brown, silty BOULDER CLAY with larg	e limestone boulders
1.6 - 3.4	Extremely coarse, clayey GRAVEL deposits (bo with water.	oulders up to 40 - 45cm),
	τ.	
Depth to ROCK :	>3.4m	
Коск туре :		
Water Entry :	3.2m	
Static Water :	3.2	
Total Depth :	3.4m	
Comments :	Water seen to be flowing in through the gravels taken. No unusual colours or odours noted.	. Composite soil sample
	-	

K.T.Cullen & Co. Ltd.

Project No.: 2175 Drilling Method : JCB	Location : Duleek, Co. Meath Date : 28/4/00 Supervisor : Amy Brennan
-	
-	TRIAL PIT NO 3
Geology :	
0 - 0.15	Dark brown organic-rich TOPSOIL
0 15 - 1.9	Dark brown moderately well-sorted dry clavey sandy GRAVE
0.10 110	Dark brown, moderately weir-soned, dry, oldycy, bandy chiny EL.
1.9 - 3.4	Lighter brown, clayey SAND with occasional pebbles up to 3-4cm in size.
Depth to Rock :	>3.4m
Rock Type :	
Water Entry :	Seepage into the excavation from approx. 1.9m
Static Water :	
Total Depth :	2 4m
Comments :	Water was seen to be seeping in through the clayey SAND layer. Composite soil sample was taken. No unusual colours or odours.

K.T.Cullen & Co. Ltd.

		. 7
Project No.: 2175	Location : Duleek, Co. Meath Date : 28/4/00	
Drilling Method: JCB	Supervisor: Amy Brennan	
	TRIAL PIT NO.4	
Geology :		
0 - 0.15	Brown organic-rich TOPSOIL	
0.15 - 0.4	Medium brown subsoil.	
0.4 - 1.25	Loose, light brown, silty, sandy, CLAY with occasional rounded pebbles.	
1.25 - 3.45	Poorly sorted, subrounded, brown, clayey, sandy, GRAVEL with some	
	black colouration due to presence od shaley tragments.	
Depth to Rock :	>3.45m	
Rock Type :		\square
Water Entry :	Gravels moist- Very small amount of seepage.	
Static Water :		
Total Depth :	3.45m	
Comments :	Gravel layer collapsing into the hole. No unusual colours or odours noted. Composite soil samples taken.	
· · · ·		
	-	

K.T.Cullen & Co. Ltd.

· · ·	
Project No.: 2175	Location: Duleek, Co. Meath Date: 28/4/00
Drilling Method: JCB	Supervisor: Amy Brennan
	· · · ·
	TRIAL PIT NO.5
Geology :	
0 - 012	Medium brown organic-rich TOPSOIL
0.40 1.2	Lesse light brown, condu CLAY
0.12 - 1.3	Loose, light brown, sandy CLAT.
1.3 - 2.7	Loose, fine grained, homogeneous brown SAND.
2.7 - 3.4	Quite stiff, light brown BOULDER CLAY
Depth to Rock ·	~3 4m
Depth to nock .	~0. ~ 111
Носк Туре :	the second of the second of the second of the second
Water Entry :	water seeping into the noie at approx 2.7m through the bottom of the sands.
Static Water :	Not available. Hole filled up with sand.

Total Depth: 3.4m

Comments : Walls of the excavation very unstable and sand collapsing into the hole. No unusual colours or odours noted. Composite soil samples taken.

Drilling Method : JCB	Location : Duleek, Co. Meath Date : 28 Supervisor : Amy Brennan					
	TRIAL PIT NO.6					
Geology :						
0 - 0.15	Dark brown organic-rich TOPSOIL					
0.15 - 0.6	Medium brown silty CLAY with only occasional su	ubrounded pebbles.				
0.6 - 1.85	Grey brown, loose, silty CLAY with boulders up to	o 25cm in size.				
1.85 - 3.15	Moderately well sorted, clayey GRAVEL, with occ up to 30cm).	casional large boulders (
Depth to Rock :	>3.15m					
Rock Type :	· · ·					
Water Entry :	Spring seen to be flowing into the excavation at a	pprox 1.85m				
Static Water :	3.0m and rising					
Total Depth :	3.15m					
Comments :	Spring flowing in from the northern side of the exe unusual colours or odours. Composite soil samp	cavation, quite quickly. No le taken.				

K.T.Cullen & Co. Ltd.

Project No.: 2175	Location : Duleek, Co. Meath	Date: 28/4/00
Drilling Method: JCB	Supervisor: Amy Brennan	
	TRIAL PIT NO.7	
Geology :		
0 - 0.3	Dark brown organic-rich TOPSOIL & subsoil	
0.3 - 0.95	Dark brown, clayey, sandy, SILT with occasional pebb	bles
0.95 - 3.1	Moderatley well-sorted, dark brown, sandy, clayey, Gl	RAVEL
3.1 - 3.3	Tight, dark brown BOULDER CLAY .	
Depth to Rock :	>3.3m	
Rock Type :		
Water Entry :	None	
Static Water :		
Total Depth :	3.3m	

Comments : Composite soil samples taken; Dry deposits. No unusual colours or odours noted.

K.T.Cullen & Co. Ltd.

Ľ.

b ...

Appendix 9.3 Soil Sampling Results Tables

Sample Identity	Depth (m)	Arsenic mg/kg	Cadmium mg/kg	Chromium mg/kg	Copper mg/kg	Mercury mg/kg	Nickel mg/kg	Lead mg/kg	Selenium mg/kg	Zinc mg/kg	Total Phenols mg/kg
TP1	0 - 3.3	<1	2	16	37	2	33	10	<1	54	0.01
TP2	0 - 3.4	1	<1	44	48	<1	58	13	<1	72	<0.01
TP3	0 - 3.4	<1	<1	46	26	1	46	9	<1	54	<0.01
TP4	0 - 3.5	<1	<1	49	30	<1	54	12	<1	66	<0.01
TP5	0 - 3.4	19	<1	43	25	<1	43	11	<1	51	<0.01
TP6	0 - 3.1	<1	<1	36	29	3	47	11	<1	59	<0.01
TP7	0 - 3.3	23	<1	39	37	<1	55	13	<1	60	<0.01
TP-7 Duplicate	0 - 3.3	3	<1	42	38	<1	39	9	<1	46	n.a.
outch MAC S Val	ues	29	0.8	100	36	0.3	35	85	-	140	-
Dutch MAC I Valu	ies	55	12	380	190	10	210	530	-	720	-
<u>_egend</u> ng/kg: milligra	ms per kild	ogram									

S Value: Dutch Guidline for normal uncontaminated soil

I Value: Dutch Guideline for Intervention

"-": MAC Guideline not available

n.a. = not analysed

"<" = below detection limit

Table 9.2: Soil Analytical Results - VOCs (28/4/00)

	1 1		1	1	1					
Trace Organics (VOCs)		TP1	TP2	TP3	TP4	TP5	TP6	TP7	S-Value	I-Value
Dichlorofluoromethane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
Chloromethane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
Vinylchloride	µg/kg	<1	<1	<1	<1	<1	<1	<1		100
Bromomethane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	
Chloroethane	µg/kg	<1	<1	<1	<1	<1	<1	<1		-
Trichlorofluoromethane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	
trans-1.2-Dichloroethene	ua/ka	<1	<1	<1	<1	<1	<1	<1	-	-
Dichloromethane	ug/kg	-1	-1	-1	-1	-1	-1	-1		20.000
1 1 Dichleresthane	ug/kg	-1	-1	-1	-1	-1	-1	-1		20,000
1.1 Dichloroethene	pg/kg	.1			-1		-1			-
1,1 Dichloroethane	ру/ку	<1	<1	<1	<1	<1	<1	<1	-	-
cis-1,2-Dichloroethene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
Bromochloromethane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
Chloroform	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
2,2-Dichloropropane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
1,2-Dichloroethane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	4,000
1,1,1-Trichloroethane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
1,1-Dichloropropene	µg/kg	<1	<1	<1	<1	<1	<1	<1	<u> </u>	-
Benzene	µg/kg	<1	<1	<1	<1	<1	<1	<1	50	1,000
Carbontetrachloride	µg/kg	<1	<1	<1	<1	<1	<1	<1		-
Dibromomethane	µg/kg	<1	<1	<1	<1	<1	<1	<1		-
1,2-Dichloropropane	µg/kg	<1	<1	<1	<1	<1	<1	<1	L-	-
Bromodichloromethane	µg/ka	<1	<1	<1	<1	<1	<1	<1	-	-
Trichloroethene	ug/kg	<1	<1	<1	<1	<1	<1	ح1	1	60.000
cis-1 3-Dichloropropene	LIG/kg	-1	-1	-1	-1	-1	-1	- 1		
trans_1 3-Dichloropropene	PG/KG			-1	1	-1	-1	-1		-
trans-1,3-Dichloropropene	ру/ку	<1	<1	<1	<1	<1	<1	<1	-	-
1,1,2-1 richioroethane	µg/кд	<1	<1	<1	<1	<1	<1	<1	-	-
loluene	µg/kg	<1	<1	<1	<1	<1	<1	<1	50	130,000
1,3-Dichloropropane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
Dibromochloromethane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
1,2-Dibromoethane	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
Tetrachloroethene	µg/kg	<1	<1	<1	<1	<1	<1	<1	10	4,000
1,1,1,2 -Tetrachloroethane	µg/kg	<1	<1	<1	<1	<1	<1	<1		
Chlorobenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	
Ethylbenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1	50	50,000
p/m Xylenes	µg/kg	<1	<1	<1	<1	<1	<1	<1	50	25,000
Bromoform	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
Styrene	µg/kg	<1	<1	<1	<1	<1	<1	<1	100	100,000
1,1,2,2-Tetrachloroethane	µg/kg	<1	<1	<1	<1	<1	<1	<1		-
o - Xylene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	
1.2.3-Trichloropropane	ua/ka	<1	<1	<1	<1	<1	<1	<1	-	-
Isopronylbenzene	ug/kg	-1	-1	-1	-1	-1	-1	-1		
Bromobenzeno	P9/19		-1	-1	-1	-1	-1	-1		_
2 Chleveteluene	µу/кд	<1	<1	<1	<1	<1	<1	<1	-	-
2-Childrotoluene	µg/кд	<1	<1	<1	<1	<1	<1	<1	-	-
Propylbenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
4-Chlorotoluene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
1,2,4-Trimethylbenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
4-Isopropyltoluene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
1,3,5-Trimethylbenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
1,2-Dichlorobenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1	10	-
1,4-Dichlorobenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1	10	-
sec-Butylbenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1		-
tert-Butylbenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
1,3-Dichlorobenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1	10	-
n-Butylbenzene	µg/kg	<1	<1	<1	<1	<1	<1	<1		-
1,2-Dibromo-3-Chloropropane	µg/ka	<1	<1	<1	<1	<1	<1	<1		
1,2,4-Trichlorobenzene	µa/ka	<1	<1	<1	<1	<1	<1	<1	10	-
	10/64		-1	-1	-1	-1	-1	-1	-	
Nanhthalene	P9/K9			~				~	-	-
1 2 2 trichlorabarran	111000	<1	<1	<1	<1	<1	<1	<1		
Naphthalene	µg/kg									

		TP1	TP2	TP3	TP4	TP5	TP6	TP7		
Parameters	Depth (m)	-	-	-	-	-	-	-	Dutch MA	C Values
	Units								S-Value	I-Value
Acenaphthene	µg/kg	<1	12	<1	<1	<1	<1	5	-	-
Acenaphthylene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
Benzo(B)fluoranthene	µg/kg	38	25	5	9	5	11	9	-	-
Dibenz(AH)anthracene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
Fluorene	µg/kg	5	25	3	12	4	3	3	-	-
Pyrene	µg/kg	12	25	6	7	9	16	4	-	-
PAHs included in 'PAH	(Sum of 10)' D	utch S and	d I MAC val	ues for PA	Hs in soil					
Anthracene	µg/kg	28	13	9	7	4	9	5	-	-
Benzo(a)anthracene	µg/kg	65	18	5	<1	6	4	10	-	-
Benzo(a)pyrene	µg/kg	21	21	<1	<1	<1	<1	<1	-	-
Benzo(ghi)perylene	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
Benzo(k)flouranthene	µg/kg	22	15	4	4	2	6	4	-	-
Chrysene	µg/kg	51	28	7	<1	2	10	7	-	-
Fluoranthene	µg/kg	17	28	8	9	12	14	5	-	-
ndeno(123-cd)pyrene	µg/kg	4	10	<1	<1	<1	<1	3	-	-
Naphthalene	µg/kg	67	148	59	94	40	54	34	-	-
Phenanthrene	µg/kg	120	63	13	21	16	18	12	-	-
PAH (Sum of 10)	µg/kg	395	344	105	135	82	115	80	1000	40000
	-	440	432	118	162	100	146	100	-	

Results awaiting confirmation

"-": MAC not available

< = below laboratory detection limit

Table 9.4: Soil Analytical Results - Polychlorinated Biphenyls (28/4/00)

Parameters		TP1	TP2	TP3	TP4	TP5	TP6	TP7	Dutch M	AC Values
	Depth								S	I
	Units		_		-	-	-			-
PCB Aroclor 1016	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
PCB Aroclor 1221	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
PCB Aroclor 1232	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
PCB Aroclor 1242	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
PCB Aroclor 1248	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
PCB Aroclor 1254	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
PCB Aroclor 1260	µg/kg	<1	<1	<1	<1	<1	<1	<1	-	-
PCB total	µg/kg	<1	<1	<1	<1	<1	<1	<1	20	1000

Legend

µg/kg: micrograms per kilogram

MAC: Maximum admissable concentration

S-level: Dutch guideline for normal uncontaminated soil

I-Level: Dutch guideline for Intervention

-: MAC not available

< = below laboratory detection limit

Table 9.5: Soil Analytical Results - Pesticide Analysis (28/4/00)

									Dutcl
Pesticide	Units	TP 1	TP 2	TP 3	TP 4	TP 5	TP 6	TP 7	S- Value
Dichlorvos	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Mevinphos	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Phorate	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Alpha-BHC	µg/kg	<1	<1	<1	<1	<1	<1	<1	2.5
Beta-BHC	µg/kg	<1	<1	<1	<1	<1	<1	<1	1
Gamma-BHC	µg/kg	<1	<1	<1	<1	<1	<1	<1	0.05
Diazinon	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Disulfoton	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Delta-BHC	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Methyl Parathion	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Heptachlor	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Fenitrothion	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Aldrin	µg/kg	<1	<1	<1	<1	<1	<1	<1	2.5
Malathion	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Parathion	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Heptachlor Epoxide	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Endosulfan I	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Dieldrin	µg/kg	<1	<1	<1	<1	<1	<1	<1	0.5
4,4-DDE	µg/kg	<1	<1	<1	<1	<1	<1	<1	2.5
Endrin Ketone	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Endosulfan II	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
4,4-DDD	µg/kg	<1	<1	<1	<1	<1	<1	<1	2.5
Ethion	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Endrin	µg/kg	<1	<1	<1	<1	<1	<1	<1	1
Endosulfan Sulphate	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
4,4-DDT	µg/kg	<1	<1	<1	<1	<1	<1	<1	2.5
Methoxychlor	µg/kg	<1	<1	<1	<1	<1	<1	<1	-
Azinphos Methyl	µg/kg	<1	<1	<1	<1	<1	<1	<1	-

Dutch Values

I Value

--

-

-

-

-

-

-

-

-

-

--

-

-

-

-

-

4000

-

-

4000

-

--

4000

--

Legend

µg/kg: micrograms per kilogram

MAC: Maximum Admissable Concentration

S-level: Dutch guideline for normal uncontaminated soil

I-Level: Dutch guideline for Intervention

-: MAC not available

< = below laboratory detection limit

Appendix 9.4 Puraflo Report

Original to File No: Rec'd. 002666.21.001 0 9 JAN 2001 Date: Copy to: CANAVAN Action:

Report on the Suitability of a Site for the Installation of a Puraflo[™] System at Carranstown, Co Louth.

December 2000

Prepared by:

K.T. Cullen & Co. Ltd., Hydrogeological & Environmental Consultants, Bracken Business Park, Bracken Road, Sandyford Industrial Estate, Dublin 18.

K.T.Cullen & Co. Ltd. Hydrogeological & Environmental Consultants

TABLE OF CONTENTS

ITEM		PAGE
1.	Introduction	1
2.	Field Work	1
2.1	On-Site Assessment	1
2.2	Trial Pits	1
2.3	Percolation Pits	2
3.	Conclusions	3
4.	Recommendations	3

Figures

Figure 1: Site LocationFigure 2: Design of the Percolation Pits as recommended by the EPA Wastewater TreatmentManual.

Appendix

Appendix A: Trial Pit Logs

BRACKEN BUSINESS PARK, BRACKEN ROAD, SANDYFORD IND. ESTATE, DUBLIN 18, IRELAND. V.A.T. REG. NO. IE 6554210 F TEL. +353 | 2941717 FAX +353 | 2941823 EMAIL: INFO@KTCULLEN.IE

Report on the Suitability of a Site for the Installation of a Puraflo[™] System at Carranstown, Co. Louth.

1. Introduction

K.T Cullen & Co. were requested by Project Management to carry out trial pitting and percolation tests at a site in Carranstown Co. Louth. The purpose of the work was to assess the suitability of the site for the installation of a PurafloTM system with associated septic tank and percolation area. The system was designed to cater for a maximum of 100 people.

2. Field Work

2.1 On Site Assessment

The site is underlain by limestone bedrock. No outcrops, springs or karst features were seen at the site. Monitoring wells and trial wells drilled at the site in May 2000 indicate relatively deep overburden deposits varying from approximately 5 metres to 21 metres of clays and gravels. The water table in one of these boreholes (MW1) was measured as being approximately 10.5 metres below the ground level at the time of trial pitting (12/12/00).

The field in which the work was carried out has a shallow ditch to the south-east which had water in it at the time of trial pitting. Prior to fieldwork, the weather in general had been extremely wet and parts of the field near the ditch were experiencing ponding of surface water.

The site is presently under grass and apart from the localised ponding appears to be well-drained. The brown/red colour of the subsoil would also indicate a well-drained site.

2.2 Trial Pits

Two trial pits were dug at the site of the proposed percolation area. The trial pit logs are shown in Appendix A and their location is shown in Figure 1. The trial pits were excavated to a depth of 2.8 m and 3 m respectively. Both encountered similar overburden deposits-1.2-1.8 m of boulder clay and then

a clayey gravel which became more gravely with depth. No seepages were encountered during the digging and after 48 hours, no water had entered the hole.

2.3 Percolation Pits

Four percolation pits were dug at the site of the proposed percolation area. The top 0.30 metres of soil was removed at the location of each of the four pits by the JCB. 0.30 metres was chosen as this is the depth at which effluent will be introduced to the soil according to PurafloTM Agrément Certificate 97/00060. The pits were then dug in these depressions with in accordance to dimensions specified in the EPA's Wastewater Treatment Manuals. The percolation pits measured 0.3 m by 0.3 m and were completed at a depth of 0.4 m-approximately 0.7 m below the ground surface.

Figure 2: Design of the Percolation Pits as recommended by EPA Wastewater Treatment Manual.

The sides of the percolation pits were scored with a trowel and filled with water to simulate fully saturated soil conditions. The pits were then left overnight to soak.

On the following day the water had still not drained completely out of the holes even though it had dropped in each of them. The holes were refilled to a depth of 0.30 m with water, in order to assess the time taken for the water level to drop 0.1 m (100 mm). After 4 hours the water level had dropped 0.04 m in Percolation Pits 1 and 4, 0.01 m in Percolation Pit 2 and 0 m in Percolation Pit 3. This would give a minimum T value of 150.

Conclusions 3.

The site has failed the percolation test as the T value obtained was greater than 50 (EPA Wastewater Manual). This is due to the presence of clays beneath the site which had become highly saturated during the recent bad weather.

The water table at the site is not high and no seepages were seen in the trial pits.

Recommendations 4.

- We would recommend, in accordance with EPA Guidelines, that the site be engineered to meet the 0 required specifications. This will involve the removal of the existing overburden material over an area of 300 m² and the importing of material with a suitable T value-preferably a fine sand or clayey sand with a T value of between 5 and 15. The imported soil can be placed in layers 0.3 m thick and each layer should be compacted lightly prior to the adding of the next layer. Percolation tests should be carried out on every 0.3 m thick layer. The depth of the fill should be approximately 2 metres to allow at least 1 m between the lowest level of a percolation trench (0.7 m below ground level) and the original soil level. This is a total volume of material of 600 m³. Once the overburden material is in place a full percolation test should be carried out. A reserve percolation area should also be constructed in the event of the main area malfunctioning.
- Alternatively, a sand filter could be constructed with associated polishing filter. The loading rate on ۲ this constructed filter is recommended to be 50 l/m²/day. The advantage of this type of sand filter is that it takes up considerably less area than the trenched percolation area. The disadvantages are that a polishing filter is necessary and pumping of wastewater might be needed to transfer effluent from the sand filter to the polishing filter. Sand filters are used in conjunction with septic tanks in soil which is unsuitable for conventional percolation areas. The filter system consists of 600-900 mm of graded sand underlain by 200 mm of gravel. The filter system is overlain by the natural topsoil but is separated from it by a geotextile membrane. The wastewater is treated by moving through the sand filter and can then be directed under gravity or pumping to a final polishing filter. (EPA Wastewater Treatment Manual).

Respectfully Submitted

dua

Victoria Conlon B.Sc.M.Sc.

Kieran O Dwyer BE MIEI

FIGURE

APPENDIX A

Trial Pit Records

Project No.: 2622

Location : Carranstown Duleek

Date: 12/12/00

Drilling Method : JCB

Supervisor : VC

TRIAL PIT NO. 1

Geology :

- 0 0.1 Grass and Topsoil
- 0.1 1.8 Light Brown Silty BOULDER CLAY with pebbles and cobbles
 - **1.8-2.8** Light Grey Clayey Sandy GRAVEL with well rounded boulders, becoming more gravelly with depth.

- Depth to Rock : >2.8
 - Rock Type : None Encountered
 - Water Entry: None Encountered
 - Static Water : None after 48 hours
 - Total Depth: 2.8 metres

Elevation

Comments : N/A

K.T.Cullen & Co. Ltd.

Hydrogeological & Environmental Consultants

Trial Pit Records

Drilling Method : JCB Supervisor : VC TRIAL PIT NO. 2 Ceology : 0-0.1 Grass and Topsoil 0.1-1.2 Light Brown Silty BOULDER CLAY with pebbles and cobbles 1.2-3.0 Light Grey Clayey, Sandy GRAVEL with well rounded boulders, becoming m gravelly with depth. Mostly limestone boulders Depth to Rock : >3 metres Rock Type : None Encountered Static Water : None after 48 hours Total Depth : 3 metres Elevation Simetres	Project No.: 2622	Location : Carranstown Duleek	Date : 12/12/00
TRIAL PIT NO. 2 Geology: 0 - 0.1 Grass and Topsoil 0.1 - 1.2 Light Brown Silty BOULDER CLAY with pebbles and cobbles 1.2 - 3.0 Light Grey Clayey, Sandy GRAVEL with well rounded boulders, becoming m gravelly with depth. Mostly limestone boulders Depth to Rock: >3 metres Rock Type: None Encountered Static Water: None after 48 hours Total Depth: 3 metres Elevation Comments:	Drilling Method: JCB	Supervisor : VC	
Ceology : 0 - 0.1 Grass and Topsoil 0.1 - 1.2 Light Brown Silty BOULDER CLAY with pebbles and cobbles 1.2 - 3.0 Light Grey Clayey, Sandy GRAVEL with well rounded boulders, becoming m gravelly with depth. Mostly limestone boulders Depth to Rock : >3 metres Rock Type : None Encountered Water Entry : None after 48 hours Total Depth : 3 metres Elevation Comments :		TRIAL PIT NO. 2	
Geology : 0 - 0.1 Grass and Topsoil 0.1 - 1.2 Light Brown Silty BOULDER CLAY with pebbles and cobbles 1.2 - 3.0 Light Grey Clayey, Sandy GRAVEL with well rounded boulders, becoming m gravelly with depth. Mostly limestone boulders Depth to Rock : >3 metres Rock Type : None Encountered Water Entry : None Encountered Static Water : None after 48 hours Total Depth : 3 metres Elevation Comments :			
 0-0.1 Grass and Topsoil 1.1 Light Brown Silty BOULDER CLAY with pebbles and cobbles 1.2 - 3.0 Light Grey Clayey, Sandy GRAVEL with well rounded boulders, becoming m gravelly with depth. Mostly limestone boulders Depth to Rock : >3 metres Rock Type : None Encountered Water Entry : None Encountered Static Water : None after 48 hours Total Depth : 3 metres Elevation Comments :	Geology :		
0.1 - 1.2 Light Brown Silty BOULDER CLAY with pebbles and cobbles 1.2 - 3.0 Light Grey Clayey, Sandy GRAVEL with well rounded boulders, becoming m gravelly with depth. Mostly limestone boulders Depth to Rock : >3 metres None Encountered Water Entry : None Encountered Static Water : None after 48 hours Total Depth : 3 metres Elevation Elevation Comments :	0 - 0.1	Grass and Topsoil	
 1.2 - 3.0 Light Grey Clayey, Sandy GRAVEL with well rounded boulders, becoming m gravelly with depth. Mostly limestone boulders Depth to Rock : >3 metres Rock Type : None Encountered Water Entry : None Encountered Static Water : None after 48 hours Total Depth : ³ metres Elevation Comments : 	0.1 - 1.2	Light Brown Silty BOULDER CLAY with pebbles	and cobbles
Depth to Rock : >3 metres Rock Type : None Encountered Water Entry : None Encountered Static Water : None after 48 hours Total Depth : ³ metres Elevation Comments :	1.2 - 3.0	Light Grey Clayey, Sandy GRAVEL with well rougravelly with depth. Mostly limestone boulders	unded boulders, becoming m
Depth to Rock : >3 metres Rock Type : None Encountered Water Entry : None Encountered Static Water : None after 48 hours Total Depth : 3 metres Elevation Comments :			
Depth to Rock : >3 metres Rock Type : None Encountered Water Entry : None Encountered Static Water : None after 48 hours Total Depth : 3 metres Elevation Comments :			
Depth to Rock : >3 metres Rock Type : None Encountered Water Entry : None Encountered Static Water : None after 48 hours Total Depth : 3 metres Elevation Comments :			
Rock Type : None EncounteredWater Entry : None EncounteredStatic Water : None after 48 hoursTotal Depth : 3 metresElevationComments :	Depth to Rock :	>3 metres	
Water Entry : None Encountered Static Water : None after 48 hours Total Depth : ³ metres Elevation Comments :	Rock Type :	None Encountered	
Static Water : None after 48 hours Total Depth : ³ metres Elevation Comments :	Water Entry :	None Encountered	
Total Depth: ^{3 metres} Elevation Comments:	Static Water :	None after 48 hours	
Elevation Comments :	Total Depth :	3 metres	
Comments :	Elevation		
	Comments :		

K.T.Cullen & Co. Ltd.

Hydrogeological & Environmental Consultants

Appendix 9.5 Puraflo Design and Certification Indaver

Appendix D4: Puraflo Brochure

The Peat Bio-Filter Process

The treatment process is based on simple bio filtration principles. The bio-fibrous peat media in the system is home to a complex and diverse ecological population, ranging from large numbers of aerobic and facultatively aerobic micro organisms to a wide varietyof protozoans, rotifers and higher life forms. These organisms biologically degrade and assimilate the organic material in the wastewater

Effluent is dispersed evenly onto the surface of the peat fibre and percolates through the media. Treatment of the wastewater within the system is achieved by a combination of unique physical chemical and biological interactions between the wastewater and the fibrous media Considerable BOD, SS and NH3. N reductions are achieved and the system is also very effective at eliminating enteric bacteria contained in the waste The Peat Bio-Filter is a Tow maintenance system and requires no desludging or backwashing

Peat Bio-Filter

Bord na Móna's Peat Bio-Filter is designed to provide effective, cost efficient, low maintenance, secondary and/or tertiary wastewater treatment. The company's extensive experience with the Peat Bio-Filter and long-term research on the performance of the system shows extremely high treatment efficiency with significant reductions in the BOD and TSS content of wastewater and similarly, high reductions in faecal coliform and bacterial numbers

The modular nature of the system provides maximum design flexibility for secondary and tertiary treatment, across a range of applications. The peat media can also be housed in site constructed retaining structures dependant on requirements.

	Performance			
	PARAMETER	INFLUENT	EFFLUENT	% REDUCTION
	BOD (mg/l)	296	Less than 10	96 +
	LSS (mg/l)	195	Less than 10	95 4
•	NH3-N (mg/l)	47	Less than 5	90 +
Ì	Tot Coliforms*	28x10	3.3 x 10 ⁴	999+
:	E coll*	11 x 10	18 × 10 [*]	99.9 +
1.	Pathogenic Bacteria**	Present	Absent	
1				

oza -energia a conta a la la la conta e

" CFU's per 100ml -" inclusing Scimuncili, Staphylococcus and Shigella species, Pseudomenes or origineen and Sulphide reducing Closeridia

Intermittent and Seasonal Use of the Peat Bio-Filter System

The Bord ina Móna Peat Bio-Filter system is proven effective in situations of intérmittent or seasonal loading. Due to the water binding properties of the peat the media and consequently the microbial film does not dry out upon reduction or complete cessation of wastewater. supply. This unique property combined with the physical and chemical processes which take place in the peat ensure that a high level of treatment is maintained under variable loading conditions:

Why Choose the Peat Bio-Filter System?

- Simplicity of design, installation and operation.
- Secondary and/or tertiary treatment.
- High effluent quality.
- Low capital and operating costs.
- No desludging or backwashing required.
- Flexible, modular design.
- Seasonal or intermittent use.
- Retrofits existing plants to improve effluent quality.

A MARK SCREEK	Furafia M	adules				
110000000000000000000000000000000000000	Population Equivalent	Average Cully	Applied Organic Load	No.ef	Associated Septer Link	Transment 205
1.45 CERTIFICATION OF			ks/3:000			or Modues
Conservation -	20	3.6	127	8	5.4	12
data a la	50		3	18	13.5	30
ATTENTS	100	18	6	36	27	60
THE REAL PROPERTY.	150	27	din 191	54) 1917 - 1915 - 1917	40.5	90
Contraction of the	200	36	12	72	54	120
ATTACK IN	250		15	90	67.5	150
	300	54	18	108	81	180
ALC: NO	350		21	126	94.5	210
Contraction of the second	400	72	24	144	108	240
		81	21/	162	121.5	27/0

Ireland Bord na Mons Environmer tal Ltd. Newbridge Co Kildare, keland. Tel: 00 353 (0)45 439000 Fax. 00 353 (0)45 432312 E Mail edinfo@born le www.br.n.ie

UK Briehre

Brightwater Engineering Ltd Brightwater House Unit 2, Business Centre East Avenue One, Letchworth Hens SG6 2H8, England Tel: 0044 (0)1462 485005 Fac: 0044 (0)1462 485003 Email:englies@Brightwaterick.com USA Bord ha Mona Environmental Products US Inc. RO Box 77457 Greensbord, NC 27417, USA Tel: 001 336 5479338 Jass 001 336 5478559 E Mall bord -us@born us.com uww.britshab.com

.

The first Agreement board is disagnated by diversimilar to issue comparing technical approval issh Agreement Board Certificates establish proof that the certified products are 'proper materials' suitable for their intended use under hish and conditions, and in accordance with the Building Regulations 1997. The Irish Agréement Board operates in association with the National Standards Authority of Ireland (NSAI) as the National Member of UEAte.

PRODUCT DESCRIPTION:

This Certificate relates to $\mathsf{Puraflo}^{\mathsf{in}}$ Liquid Effluent Treatment System

MANUFACTURING AND MARKETING:

The system is manufactured and marketed by: Bord na Móna Environmental Division Newbridge. Co Kildare Ireland

USE:

For the treatment of septic tank effluent from single dwellings.

1.1 ASSESSMENT

In the opinion of the Irish Agreement Board (IAB) the Puraflo[™] Liquid Effluent Treatment system is satisfactory for the purpose defined above, and meets the requirements of the Building Regulations 1997 as indicated in Section 1.2 of this Certificate

CERTIFICATION

1.2 BUILDING REGULATIONS 1997

Requirements:

Part D - Materials and Workmanship

The Puraflo[™] Liquid Effluent Treatment System is made of acceptable materials as indicated in Part 4 of this Certificate

Part H – Drainage and Waste Disposal

H1 – Drainage Systems:

The PurafloTM Liquid Effluent Treatment System is easily integrated with new and existing septic tanks constructed to meet Building Regulations requirements

H2 - Septic Tanks:

The PurafloTM Liquid Effluent Treatment System is an aerobic system and is used in addition to a septic tank fitted with an outlet filter system. The PurafloTM Liquid Effluent Treatment System can be used where septic tank systems and their percolation areas are not acceptable, or where sites do not comply with the recommendations of S R 6 1991 Septic Tank Systems Recommendations for Domestic Effluent Treatment and Disposal from a Single Dwelling House and/or where septic tank percolation systems have failed

TECHNICAL SPECIFICATION AND CONTROL DATA

2.1 DESCRIPTION

This Certificate relates to the Puraflo" Liquid Effluent Treatment System The system consists of a filter system fitted to the outlet of the connected septic tank. an effluent collecting chamber (sump), a pump and a number of biofibrous media containing modules. The Puraflo⁵⁴ modules (Figs. 1a and 1b) are manufactured from polyethylene Each module utilises approx. 2.5 cubic metres of biofibrous media which is compacted into 2 cubic metres. The effluent from the septic tank is evenly distributed over the surface of the biofibrous media and percolates through the media before emerging as a treated liquid at the base of the unit. The treatment of the waste within the system is achieved by a combination of physical chemical and biological interactions between the pollutants and the biolibrous media. The system is designed to treat the waste water from single dwellings with a total population of up to 15 persons using 2, 4 or 6 modules as required

Septic Tank Outlet Filter

A special baffle filter similar to that illustrated in Fig. 2 is fitted on the outlet pipe from the septic tank to retain solids

Pump Sump & Pump Unit

The pump sump consists of a concrete or corrosion free polyethylene sump (Figs. 3–4, 5) fitted with a submersible pump (0–30 kW rating single phase) with thermal overload protection. Effluent from the septic tank flows by gravity to the sump from where it is pumped via a 40-50mm (1–5-2 in.) pump line to the modules containing the biofibrous media. The standard pump can cater for a head of up to 6 metres. An alarm float is installed in the sump and a visual/audible warning unit is located in the dwelling served by the system to alert the owner to pump malfunctions

Puraflo[™] Modules

Biofibrous media is filled in layers into Puraflo^{ra} modules approx 0.76m deep x $2.5m^2$ with a contained volume of approximately $2m^2$ of compacted biofibrous media.

Product Range

The PurafloTH Liquid Effluent Treatment System is supplied in combinations of PurafloTH modules to suit the following applications:

- Single house unit using two modules of total area 5m to serve a population of up to 6 persons
- Single house unit using 3 modules of total area 7 5m² to serve a population of up to 9 persons
- Single house unit using 4 modules of total area 10m⁻ to serve a population of up to 11 persons
- Single house unit using 5 modules of total area 12 5m³ to serve a population of up to 13 persons
- Single house unit using 6 modules of total area 15m⁴ to serve a population of up to 15 persons

2.2 PIPEWORK/ASSEMBLY

Pipework used for the manifold and distribution system is in accordance with BS 3505: 1986 Specification for unplasticised polyvinyl chloride (PVC-U) pressure pipes for cold potable water and relevant parts of BS 4346: Joints and fittings for use with unplasticised PVC pressure pipes. A pump, a sampling chamber (Fig 6) and a PVC distribution manifold complete the pipework assembly All electrical connections are completed on site

2 3 DELIVERY, STORAGE AND MARKING

The PurafloTM modules are completed ready for delivery at the manufacturer's works. Off-loading of each individual module must be carefully supervised using chains, steel cables or lifting bars with SWL of 800kg and should conform with the requirements of the Safety. Health and Welfare at work Act, 1989. The manufacturer's instructions must be followed to avoid damage to the modules during off-loading and placing in the excavation. Suitable lifting equipment must be employed.

The modules are labelled on the outside to indicate the IAB identification Mark incorporating the number of this Certificate

2.4 INSTALLATION PROCEDURE

2.4.1 GENERAL

The Puraflo[™] modules can be installed above or at ground level depending on the height of the local watertable or vertical separation requirements

(i) For connection to a septic tank meeting the requirements of the Building Regulations 1997 and permitting the fitting of an outlet baffle filter, a concrete (or polyethylene) sump is installed adjacent to the septic tank as illustrated in Fig 7 (ii) For connection to septic tanks not permitting the fitting of an outlet baffle filter, a special concrete sump is installed as illustrated in Fig 8 This sump is comprised of 2 chambers with the first chamber designed to accommodate the outlet filter and to provide for desludging

Installation and the sequence of steps are detailed in the manufacturer's instruction manual must be followed exactly

242 SITE PREPARATION

Site Preparation is as follows.

- (i) Septic Tank For installations where a new septic tank is required excavations to the necessary depth are made to receive a septic tank conforming to the requirements of the Building Regulations 1997 including all necessary blinding of the base to ensure a uniform bearing support
- Pump Sump A suitable excavation is prepared downstream of the septic tank to receive the concrete or polyethylene pump sump
- (iii) Puraflo[~] Modules

An area is prepared and levelled to create an even surface on which to place concrete blocks and lintels to support the modules

Broken stone approx 25–50mm is filled level with the top of the concrete blocks and lintels over this area to a depth of 200mm approx

Depending on site conditions, various designed lengths of stone filled drain may be required extending from the stone base under the modules

A pipe trench 450mm deep (minimum) x 150mm wide is excavated from the sump to the modules

(iv) Electrical Supply

A trench 450mm deep (minimum) x 150mm wide is excavated from power source to the sump for an armoured cable electrical supply to the pump.

(v) Disposal of Treated Effluent

The disposal route for the treated effluent will depend on local conditions. Normally the treated effluent is disposed of by soil percolation. The materials in percolation areas are chosen and laid as described in Section 2.4.8 of this Certificate

2.4 3 PLACING AND LEVELLING OF MODULES

- Using a lifting frame, the modules are positioned carefully on the lintels. Each module is checked for level when fitted.
- (ii) Effluent inlet pipes are checked for proper orientation for connecting to the pump line

2 4 4 INSTALLATION OF SUMP AND ASSOCIATED PIPEWORK

- The sump is fitted at least 0 5m from a new septic tank or at least 1m from an existing septic tank
- (ii) The septic tank outlet is connected to the sump using a 110mm dia pipe at a gradient of 1 in 100

- (iii) Backfilling is compacted around the sump below the outlet pipe and the cable entry ensuing that the material used for backfilling is free of stones and material which could damage the sump
- (iv) A pump line 40-50mm dia is laid from the sump to the modules
- (v) The pump line is connected to the outlet from the pump
- (vi) The pump line is connected to the manifold at the modules
- (vii) The manifold is placed in position and connected by 40inm dia plastic flexible pipes to the effluent distribution grids in the modules

2.4.5 CONNECTION OF ELECTRICAL SUPPLY

- (i) The armoured cable from the power source to the sump is placed unstretched in the bottom of the cable trench A 5 core 5mm PVC SWA cable is used
- (ii) The armouted cable is connected to the terminal box provided in the sump.
- (iii) The control panel is installed. The power supply to the control panel is taken from an independent MCB to avoid nuisance tripping to existing circuits The control panel has an ELCB fitted to protect the pump and control system
- (iv) The cable from the sump is connected to the control panel

2.4.6 COMMISSIONING

- (i) The alarm float is suspended approximately 150mm above the submersible pump
- (ii) The pump MCB is switched off at the PurafloTh panel
- (iii) The sump is filled with clean water until the alarm float lifts; under these conditions the alarm should indicate a fault.
- (iv) The pump MCB is switched on to restore the power supply to the pump. With the pump operating properly the alarm will switch off when the water level in the sump drops below the level specified in (i) above
- (v) All pipe connections in the sump and at the modules are checked for leaks

2.47 LOCATION

The septic tank should not be closer than 7 m from the dwelling served and should not be nearer than 20 m from the nearest point of any other dwelling

The Puraflo¹ Liquid Effluent Treatment System and septic tank should not be located in any area where vehicles could traverse or clamage them and provision should be made for access for a tank emptying vehicle and its equipment

The separation distance from wells should be not less than 20 m except in the case of very sandy soils or gravels where a minimum distance of 40 m should be maintained. In all cases the percolation area should be located down gradient of any nearby well. Where it is not possible to locate the percolation area down gradient of any nearby well a separation distance of at least 100 m depending on percolation conditions must be maintained. If necessary a mound of top soil (of appropriate characteristics) may be constructed to achieve the required 0.5 m minimum vertical separation between the base of the Puraflo¹³ unit and the seasonally high water table. Typical setback distances for the Puraflo²⁴ system are shown in Table 1 below.

Feature	Minimum Setback Distances (m)			
	Trestment Modules		Percolatión Area	
Dwelling served	7		5	
Adjacent dwelling	10		5	
Site boundaries	3	inis ands middle damas		
Watercourse	3		3	
Roads	3.		1	
Walls	· · 3	, ,	1	
Dricking Water Scores	20		20 100	

 Table 1: Recommended setback distances for various elements

 of the Puraflo[™] Liquid Effluent Treasment System

2.4.8 TREATED WASTE WATER DISPOSAL

Treated waste water may be disposed of by either of the following means:

- (a) Sub-Surface Disposal
- The treated effluent from the base of the Puraflo⁵⁰ Liquid Effluent Treatment System passes downwards into a prepared area filled with 25-60mm approx broken stone to a depth of 250mm. The extent of the percolation area will be determined by the population served and the subsoil type at the site in accordance with the recommendations in Tables 2a 2b and 2c Percolation drains are constructed (see Fig. 9) adjacent to the Purafio³¹ modules to make up. the required percolation area Percolation drains, 400mm wide x 400mm deep (approx) depending on site conditions shall be filled to a depth of 250mm with 25-50mm (approx) broken stone and covered with geotextile or other protective material before backfilling (to prevent the entry of silt). A typical substurface disposal field is illustrated in Fig. 9
- (b) Alternatively the treated effuent can be collected and pumped to imigation in which case a site specific engineered design will be prepared

(c) Surface Water Disposal

Treated effluent from the base of the PurafloTH Liquid Effluent Treatment System can be discharged directly or via a stone filled drain to receiving waters (ditch or drain). If this option is selected a licence to discharge to waters (on a case by case basis) will be required from the local authority to comply with the Water Pollution Acts (1977–1990 incl. amendments)

2 4 8 1 GENERAL GUIDANCE FOR THE SIZING OF PERCOLATION AREA

The required percolation areas for treated effluent are derived from consideration of the effluent quality (e.g. 95% reduction in BOD and 99% reduction in faecal bacteria) and the soil percolation characteristics

Table 2a refers only to percolation characteristics Table 2a should be regarded as guidance only so that water logging of sites does not occur. For each site a test shall be carried out in accordance with approved percolation test procedures in order to confirm the suitability of the percolation system (see section 2.4.8.2).

Different configurations of percolation areas are acceptable. This also applies to sites where split percolation areas are needed to obtain the recommended total area

Soil Group	Soil Classification Description	Percolation Rate
1	Sand grevels ibam sand	Very good
- 2	Sandy loam, loan, sandy clay loan	Good
.3	Silty loans clay loam silty clay loarn	Maderate
4	Sandy clay silty clay, clay	Poer

Table 2a: Identification of soil groupings

2482 PERCOLATION TEST PROCEDURES

A standard "T" test (or other approved soil percolation test) is carried out by the developer/owner to identify the soil group and measured percolation rate. The size of the soil disposal area required is based on the results of this test used in conjunction with the physical properties of the soil and the level of effluent treatment achieved. The depth within the soil profile where this test should be conducted will reflect the invert level at which the effluent will be introduced to the soil. In the majority of instances this will be within 30cm of the surface

2483 SOIL PERCOLATION AREA

	Percolation area (m²)						
		Soil Group					
Population served	Group 1	Group 2	Group 3	Group 4			
ap to 6	10	20	45	65			
6 11	15:	30					
11-15	- 20	40	80	120			

 Table 2b: Soil percolation area with Puraño
 system in various

 soil classification groupings
 \$\$\$

2.48.4

The relationship between the percolation area reported in Table 2b and the linear pipe (m) length of percolation trench required is 1:1. In Table 2b the figures can be expressed as m' percolation area or linear m of percolation trench. An actual length of 10m is allowed within the prepared area beneath and surrounding the **Puraflo[™]** modules. Additional length of percolation trench is installed by inserting drains of up to 20m in length and a minimum of 2m apart.

2.4.8.5 MAXIMUM 'LONG TERM' HYDRAULIC LOADINGS

Maximum hydraulic loading l/m²/d						
Soil Group						
Group 1 Group 2	Group 3	Group 4				
135 68	34	23				

 Table 2c: Maximum long term hydraulic loadings applied to the soil percolation areas in each soil group.

2 5 COMMISSIONING

Commissioning will be carried out by Bord na Móna Environmental Division personnel or their appointed agents after installation is completed and all services are connected.

DESIGN DATA

3.1 GENERAL

The Puraflo[~] Liquid Effluent Treatment System has been designed to treat domestic waste water from up to 15 persons It is suitable for installation at sites where a septic tank and percolation system does not afford an environmentally safe and acceptable means of disposing of domestic waste water. Such sites include those where the water table is high and where soil types do not afford good percolation. To ensure optimum efficiency the drainage of the premises served must be checked to ensure that storm water from roofs and paved surfaces does not discharge into the system

The system is designed and installed in accordance with the Puraflo⁻ Liquid Effluent Treatment System Specifications Due to the high quality effluent freatment achieved (see Table 4, Section 3 2 10) the Puraflo⁻⁻ Liquid Effluent Treatment System may be installed close to habitable buildings as indicated in Section 2 4 7 subject to any special requirements of the particular site

The PurafloTM Liquid Effluent Treatment System is supplied with an alarm which will alert the owner to a pump malfunction and this will enable corrective action to be taken before overflow occurs. Details of corrective actions are contained in the PurafloTM maintenance manual supplied with the unit

3.2 DESIGN BASIS

The Puraflo^{∞} liquid effluent treatment system is supplied in a modularised configuration. Daily waste water loadings of up to 3 0m⁷/d (equivalent to a population of 15 persons) can be treated. Table 3 details the range of populations served, the associated hydraulic generation and the modular arrangement used in each case

Max Population Served	Daily Flow m ³ d ¹ (max)	Puraflo ^{***} area required (m [*])	No of Modules
6	12	5	2
9	1.8	7.5	3111
11	2.2	10	·
13	2.6	12.5	5
15	3.0	15	6

Table 3: Modular configuration

DESIGN CRITERIA

Assumptions:

Hydraulic loadings	200	l/p/d*
Diganic Loadings	60g	BOD./p/d
Solid Loadings	40g	TSS/p/d

Max. Application rates (to the biofilter after primary settlement)

Hydraulic loadings	240 l/m ⁻ /d
Organic loadings	average 72g BOD/m ^{-/} d
Solid Loadings	average 24g TSS/m ² /d

3.2.1 SEPTIC TANK

The Septic tank should meet the requirements of the Building Regulations 1997. The septic tank should allow for the fitting of an outlet baffle filter; otherwise the baffle wall sump shown in Fig 5 will be installed to provide for the fitting of the baffle filter in the first chamber of this sump, while the second chamber acts as the pump sump

3.2.2 FILTER

An outlet baffle filter (see Fig. 2) is installed upstream of the pump sump to retain solids

3.2.3 SUMP

The sump used may be single chamber concrete, single chamber polyethylene (Figs 3 and 4) or a concrete sump with baifle wall and baffle filter (Fig 5) as described in Section 2.4.1 Where the concrete sump with a baffle wall is employed access via a manhole is provided to facilitate desludging.

Pump sump dimensions are shown below with reference to Figs 3 4 and 5.

	DIM	ENSIONS (m	ım)
Sump type	A	B	C
Polyethylene	1840	720	
Concrete (standard)	1480	880	500
Baffle wall sump	1300	1440	380

3.2.4 Pump Unit and Electrical Installation

The irrigation pump used is of a standard submersible type which can vary in size depending on site conditions. It delivers a discharge volume of 0.2 to 2.0 J/s. against a discharge head of 1 to 6m. All models are single phase 220-240 volt 50 Hz motor with enclosures to IP 68. Effluent from the tank flows by gravity to the sump from where it is pumped via a 40-50mm diameter pumping main to the biofilter modules containing the biofibrous media. A visual/audible warning unit is installed to alert the owner to pump malfunctions

The design and installation of the pump and electrics are in compliance with The National Rules For Electrical Installations' (ETCI), published by the 'Electro-Technical Council of Ireland' (Document no ET101/1991: A1/1997)

3.2.5 MODULES and MEDIA

The Puraflo[™] modules (see Fig 1) are manufactured from high density polyethylene A minimum of two Biofilter modules shall be installed with dimensions as shown below

(i) Biofilter Module Dimensions. mm. are shown below and illustrated in Fig. 1

		DIMEN	SIONS	mm)	
Biofilter	A	В	C	D	E
Module	760	1185	1400	2150	1935

(ii) Fibre
 The peat fibres consist of root residues of eriophorum (cottongrass) plants extracted from bog peats

Specifications of Fibres

Moisture content	50-70% by weight
Fines content (<5mm)	30% max

(iii) Typical Physical Characteristics of Fibre Media

Loose density (range 350% m/c)	110-140 kg/m [°]
Organic matter content	>95% w/w
	(anhydrous basis)

(iv) Typical Botanical Composition of Fibre Media

Fibre (eriophorum)	50% (v/v)
Humic materials	40% (v/v)
Sphagnum materials	10% (v/v)

 (v) Typical Design Specification for Puraflo³ single house system.

PARAMEIER	SPECIFICATION	
Media Typp	100% fibre (Blofilwe)	
Compaction	50%	
Depth of compacted media	0.7m	
Distribution of septic tank effluent over modules	Rectangular pipe ynd	
Minimum Number of medules per installation	2 modules	
Total Hydraulic load (max)	3 0m/daş (6 modules)	
Total Organic loading (max)	0 900 kg/day (septic tack and Puratio ^{ne} System) 0 630 kg/day (Biofilter alone) (6 modules)	
Sample Chamber	In all installations	

3.2.6 BROKEN STONE

The stone filter under the Puraflo[®] modules and in the drainage trenches is composed of 25-50mm approx broken stone

3.2.7 LIQUID EFFLUENT ANALYSIS

The pH_BOD and suspended solids (TSS) concentrations demonstrated in Table 4 will be attained within a few weeks of commissioning. It is predicted that the stipulated nitrate (NO₂) and animonia (NH) values will be consistently achieved over the lifetime of the biofibrous media currently estimated to be at least 10 years

3.2.8 MONITORING SYSTEM ALARM

The installed electrical warning system will signal an alarm to indicate impending flooding or failure of the pump unit

329 COMMISSIONING

Commissioning of the unit must include testing of the alarm system and the completion of all safety checks

3 2 10 MAINTENANCE SYSTEM

During desludging of the septic tank the sump unit must also be de-sludged. Following removal of the sludge the pump should be hosed down and the resulting sludge removed from the sump

The units should not be opened of the media disturbed Any such disruption of the media may result in channelling of the effluent or over-compaction leading to flooding.

Table 4:	Treated	Waste	Water	Qualic
----------	---------	-------	-------	--------

PARAMETER	CONCENTRATION
pH (pH units)	5-8
BOD (mg/l)	< 15
TSS (mg/l)	15 ¹
NH N (mg/l)	<5
Nitrate N (mg4)	
iotal Coliforms elimination	> 99.9 %
Faecal Coliforms climination	> \$9 9%
"Pathogenic Bacteria	Alisent

"Including Sahnonélie spp. Singellé spp. Súlphide reducing Clostitidie Staphylococcus spp.and Psudomotas aeruginosa

TECHNICAL INVESTIGATIONS

4.1 ENVIRONMENTAL ASSESSMENT

The treated waste water from a number of working installations has been comprehensively monitored for 18 months. The test results show that values stated for the parameters listed in Table 4 are consistently achievable over a range of operating conditions.

4.2 STRENGTH

The design and testing of the plant has been assessed as satisfactory. The modules and sumps have adequate resistance to handling stresses the loads applied by ground pressure and internal liquid loads

4.3 WATER PENETRATION

The plant and modules with its pipe connections when correctly installed will not allow seepage either into or from the surrounding soil

4 4 DURABILITY

The blofibrous media when installed used and maintained in accordance with the requirements of this Certificate will have a life of at least 10 years. The mechanical components of the system excepting pumps will have a life in excess of 20 years.

Spent treatment media should be disposed of in accordance with National Waste Regulations

4.5 CLEANING AND MAINTENANCE

All PurafloTH units are inspected by Bord na Móna personnel for their performance after one year approx of operation and the effluent analysed. As part of routine maintenance the owner must keep the inlet and outlet from the septic tank free from blockages and desludge the septic tank. The septic tank and the first chamber of the two chamber sump (where this option is used) should be desludged at least once per annum

4.6 SAFETY

4.6.1 SAFETY OF PERSONNEL

The PurafloTM Liquid Effluent Treatment System is generally installed above ground level All pump sump covers are securely fixed to prevent unauthorised access.

The treatment system should be positioned or marked, or protected to prevent superimposed loading or accidental impact by vehicles and underground electric cables should be marked with warning tape

4.6.2 SAFETY OF SYSTEM

The Puraflo²⁴ Liquid Effluent Treatment System has a visual/audible warning device connected to the pump/sump unit to alert the owner to malfunctions of the pump.

4.7 TESTS AND ASSESSMENTS WERE CARRIED OUT TO DETERMINE

- Watertightness
- Strength of covers, modules & sumps
- Resistance of units to hydrostatic pressure
- Quality of treated effluent

4.8 OTHER INVESTIGATIONS

- (i) Existing data on the history of use of previous installations was assessed
- (ii) The manufacturing process was examined including the methods adopted for quality control, and details were obtained of the quality and composition of the materials used.
- (iii) Site visits were conducted to assess the practicability of installation
- (iv) A user survey and visits to established sites were conducted to evaluate performance in use.
- (v) No failures of the product in use have been reported to the IAB.

51 CONDITIONS OF CERTIFICATION

- The National Standards Authority of Ireland ("NSAI) following consultation with the Irish Agrement Board ("IAB") has assessed the performance and method of installation of the product/process and the quality of the materials used in its manufacture and certifies the product/process to be fit for the use for which it is certified provided that it is manufactured installed used and maintained in accordance with the descriptions and specifications set out in this certificate and in accordance with the manufacturer's instructions and usual trade practice. This certificate shall remain valid so long as:
- (a) the specification of the product is unchanged:
- (b) the Building Regulations 1997 and any other regulation or standard applicable to the product/process its use or installation remain unchanged;
- (c) the product continues to be assessed for the quality of its manufacture and marking by NSAI;
- (d) no new information becomes available which in the opinion of the NSA1 would preclude the granting of the certificate;
- (e) the product or process continues to be manufactured installed, used and maintained in accordance with the description specifications and safety recommendations set out in this certificate
- 5.2 The IAB mark and certification number may only be used on or in relation to products/processes in respect of which a valid certificate exists. If the certificate becomes invalid, the certificate holder must not use the IAB mark and certification number and must remove them from products already marked.
- 5.3 In granting this certificate, the NSAI makes no representation as to:

- (a) the presence or absence of patent rights subsisting in the product/process; or
- (b) the legal right of the certificate holder to market, install or maintain the product/process; or
- (c) whether individual products have been manufactured or installed by the certificate holder in accordance with the descriptions and specifications set out in this certificate
- 5.4 This certificate does not comprise all installation instructions and does not replace the manufacturers directions or any professional or trade advice relating to use and installation which may be appropriate
- 5.5 Any recommendations contained in this certificate relating to the safe use of the certified product or process are preconditions to the validity of the certificate However, the NSAI does not certify that the manufacture or installation of the certified product or process in accordance with the descriptions and specifications set out in this certificate will satisfy the requirements of the Safety, Health and Welfare at Work Act. 1989 or of any other current or future statute or current or future common law duty of care owed by the manufacture or by the certificate holder
- 5.6 The NSAI is not responsible to any person or body for loss or damage, including personal injury, arising as a direct or indirect result of the use of this product or process
- 57 Where reference is made in this certificate to any Act of the Oireachtas regulation made thereunder, statutory instrument code of practice, national standards manufacturer's instructions or similar publication it shall be construed as reference to such publication in the form in which it is in force at the date of this certification

THE IRISH AGRÉMENT BOARD

This Certificate No 99/0060 is accordingly granted to Bord na Móna on behalf of the Irish Agrément Board

Date of Issue 02 June 1995

Sim

Director of Standards, NSAI

Readers may check that the status of this Certificate has not changed by contacting the

Irish Agrément Board. NSAI Glasnevin Dublin 9 Ireland

Telephone: (01) 807 3800 Telex: 32501 Telefax: (01) 807 3838

Re-printed Feb 99