Sonja Smith

From:	Marie O'Connor
Sent:	21 December 2009 16:55
То:	Sonja Smith
Subject:	FW: Rilta Environmental Ltd. (W0192-03) Additional Information

Attachments: Additional Info 0.5 Ash limit Dec09.docx; Oil Combustion Emissions Report Signed Front Page.pdf; Rilta Oil Combustion Report.pdf; Ashphalt Batching Plant.pdf

Sonia

Can you process this as unsolicitated information.

Thanks Marie

Telephone : +353 21 4875540

From: Hussey, Colm [mailto:Colm.Hussey@rilta.ie] Sent: 21 December 2009 16:50 To: Marie O'Connor Subject: Rilta Environmental Ltd. (W0192-03) Additional Information

Marie.

is and the any other use. Subsequent to our meeting last Friday (Dec 18th), I hereby furnish the following information in relation to what we believe to be a suitable limit for maximum ash content for a re-processed oil product to be used in the hot road surfacing industry 200

The documents included are:

- Ash limit.docx Our criteria for the choices a maximum 0.5% ash content.
- Oil Combustion Emissions Signed Front Page.pdf •
- Rilta Oil Combustion Report.pdf Main body of the report (As requested at Friday's • meeting)
- Asphalt Batching Plant.pdf schematic view of a HRS Plant. •

I trust the information contained is of benefit to the application, but if you have any questions, by all means contact me at 087 9176264.

Colm Hussey B.Sc. (Hons) M.Sc. EHS & Waste Treatment Manager Rilta Environmental Ltd. 402 Greenogue Business Park Rathcoole Co. Dublin

Email: colm.hussey@rilta.ie

Tel.: 01 4018000 Fax.: 01 4018080

Rilta.ie

This e-mail and any attachment transmitted with it are confidential and intended solely for the person or entity to whom it is addressed. If you receive this message in error please contact the sender immediately. Any views expressed in this e-mail are those of the individual sender and do not necessarily reflect the views of Rilta Ltd. Please note that Rilta Ltd. reserves the right to monitor e-mail communications through its networks at all times.

Rilta Ltd is registered in the Ireland. Company No: 374937 Registered office: 151 Thomas Street , Dublin 8.

This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email

Statistic monoral and the

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of REC Ltd Sampling identified as UKAS accredited was conducted in accordance with REC Ltd accredited Methods. Subcontract analyses identified as UKAS accredited were conducted in accordance with SAL Ltd SOPs.

EMISSION MONITORING OF THE WASTE OIL BURNING PROCESS 10 & 13 January, 2009

For Trident Waste Oil Solutions Ltd

	Prepared for: Under Use Trident Waste Oil Solutions Ltd Stockpit Road
	Trident Waste Oil Solutions Ltd
	Stockpit Road
	Knowsley Industrial Park North
	Liverpool
	JELSS 7TQ
	FOSTINE
	S ^P repared by:
	Consent REC Ltd
	Cov REC Ltd
	Osprey House
	Pacific Quay, Broadway
	Manchester
	M50 2UE
	Tel : 0161 868 1300
	Fax: 0161 868 1301
	E-mail : sales@recltd.co.uk
	Issued: 6 February, 2009
	Reference : 32352p1r0
Prepared by : _	ttalo
	J. Tate, Env Technician, MM 08 917, MCERTS L1
Reviewed by :	BL
	B. Jacob, Ops Manager, MM 06 693, MCERTS L2 TE1-4

Page 1 of 14

Consent of copyright owner convict for any other use.

.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of REC Ltd. Sampting identified as UKAS accredited was conducted in accordance with REC Ltd accredited Methods. Subcontract analyses identified as UKAS accredited were conducted in accordance with SAL Ltd SOPs.

EMISSION MONITORING OF THE WASTE OIL BURNING PROCESS 10 & 13 January, 2009

For Trident Waste Oil Solutions Ltd

J. Tate, Env Technician, MM 08 917, MCERTS L1

Reviewed by :

Prepared by :

B. Jacob, Ops Manager, MM 06 693, MCERTS L2 TE1-4

Page 1 of 14

CONTENTS	Page No.
PART 1: EXECUTIVE SUMMARY	4
Objectives of Monitoring	4
Monitoring Results	5
Operating Information	6
Monitoring Deviations	7
PART 2 SUPPORTING INFORMATION	9
General Information	9
Scope of the Survey	9
Sampling Personnel	9
Method Details	10
Method Details Monitoring Equipment Sampling Positions Uncertainty RESULTS AND DISCUSSION Initial Velocity and Temperature Particulates Hydrogen Chloride Hydrogen Fluoride	10
Sampling Positions	11
Uncertainty ion purper equit	11
RESULTS AND DISCUSSION	12
Initial Velocity and Temperature Traverse	12
Particulates consent	12
Hydrogen Chloride	12
Hydrogen Fluoride	12
Heavy Metals	12
Mercury	13
PCDDs and PCDFs & PCBs (WHO 12)	13
PAHs (US EPA 16)	14
Combustion Gases	14
Total VOC Emission Data	14

,

.

APPENDICES (FOR EACH STACK)

- 1 Site Worksheets and Diagrams (15 Additional Pages)
- 2 Flow Data (1 Additional Pages)
- 3 Tables of Results & Figures (10 Additional Pages)
- 4 Laboratory Submission Sheet (2 Additional Pages) & Analytical Results (28 Additional Pages)
- 5 Calculations (1 Additional Page)

Consent of copyright owner required for any other use.

PART 1: EXECUTIVE SUMMARY

Objectives of Monitoring

Resource & Environmental Consultants (REC) Ltd was commissioned by Trident Waste Oil Solutions Ltd to monitor emissions of pollutants released from a waste oil burning process at their site in Liverpool.

The operations at Trident Waste Oil Solutions are not authorised under an IPPC permit issued by the EA or Local Authority under the Pollution Prevention & Control Regs 2000.

The monitoring which was carried out was a 'one off' test to assess potential emissions from a particular batch of waste oil imported form Ireland.

Emission Parameter Other use Total Particulate Matter onthis use Hydrogen Chloride (as HCl) putpose colspan="2">putpose colspan="2">putpose colspan="2">putpose colspan="2">colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2"	Emission Point Identification Steam Generator
لمربع المربع	√
- Total Particulate Watter	
Hydrogen Chloride (as HCl)	✓
Hydrogen Fluoride (as HF)	\checkmark
Nitrogen Oxides (NO _x)	✓
Carbon Monoxide (CO)	1
Carbon Dioxide (CO ₂)	 ✓
Sulphur Dioxide (SO ₂)	\checkmark
PCDDs & PCDFs (i-TE)	✓
PCBs (WHO 12)	
PAHs (US EPA 16)	\checkmark
Heavy Metals (suite including As, Co, Cu, Cr, Pb, Mn, Cd, Tl, V, Ni, Sb)	✓
Mercury (Hg)	1
Total VOCs as C	4

Monitoring has been undertaken for the following parameters:-

<u>Monitoring Results – 10 January, 2009</u>

Emission Point Reference	Parameter	Emission Limit	Monitoring Result	Uncertainty	Units	Reference conditions	Date of Sampling	Start & End Times	Reference Method	Accreditation Status ⁽¹⁾	Operating Status
Stearn Generator	TPM	None Set	248.4	±10%	mg/m³	STP	10/01/09	11:30- 12:30	BS EN 13284	A	4 I/min waste oil
Steam Generator	ЮН	None Set	12.0	±15%	mg/m³	STP	10/01/09	11:30- 12:30	BS EN 1911	۵	4 I/min waste oil
Steam Generator	NOX	None Set	123	±10%	mg/m³	STP	10/01/09	11:26- 17:00	BS EN 14792	A	4 l/min waste oil
Steam Generator	° O	None Set	14.6	±10%01	%vol	STP	10/01/09	11:26- 17:00	BS EN 14789	4	4 l/min waste oil
Steam Generator	00	None Set	81	+10%	C LAPEC	STP	10/01/09	11:26- 17:00	BS EN 15058	A	4 l/min waste oil
Steam Generator	CO ₂	None Set	4.3	±10%	owner owner	STP STP	10/01/09	11:26- 17:00	ISO 12039	A	4 l/min waste oil
Steam Generator	s02	None Set	2	±10%	mg/m³	anty anty	10/01/09	12:40- 14:40	ISO 7935	A	4 I/min waste oil
Stearn Generator	Heavy Metals	None Set	<2.12	±15%	mg/m³	STPR	10/01/09	13:00- 15:00	BS EN 14385	m	4 I/min waste oil
Steam Generator	Cd & TI	None Set	<0.01	±15%	mg/m ³	STP	140/01/09	13:00- 15:00	BS EN 14385	ш	4 l/min waste oil
Stearn Generator	β̈́Η	None Set	<0.005	±15%	mg/m ³	STP	10/01/09	15:30- 17:30	BS EN 13211	m	4 l/min waste oil
NOTE (1) : UK accredited for s	AS/MCERTS status sampling. analysis r	s:- (A) REC Ltd &	accredited for samu	pling and analysis. (not accredited for s	B) REC Ltd sampling, Uk	accredited for sar (AS accredited ar	mpting only, UKA halysis conducted	S accredited and d by SAL Ltd. (E	alysis conducted b) REC Ltd not ac	NOTE (1): UKAS/MCERTS status:- (A) REC Ltd accredited for sampling and analysis. (B) REC Ltd accredited for sampling only. UKAS accredited analysis conducted by SAL Ltd or AES Ltd. (C) REC Ltd accredited for sampling. analysis not UKAS accredited for sampling. analysis not UKAS accredited for sampling. analysis not UKAS accredited for sampling.	(C) REC Ltd analysis not

accredited for sampling, anali UKAS accredited.

Trident Waste Oil Solutions Ltd

Page 5 of 14

REC Ltd 32352p1r0 6 February, 2009

<u>Monitoring Results - 13 January, 2009</u>

Emission Point Reference	Parameter	Emission Limit	Monitoring Result	Uncertainty	Units	Reference conditions	Date of Sampling	Start & End Times	Reference Method	Accreditation Status ⁽¹⁾	Operating Status
Steam Generator	PCDDs & PCDFs (i-TE)	None Set	0.01	±100%	ng/m ³	STP	13/01/09	08:08- 12:08	BS EN 1948	ш	4 l/min waste oil
Steam Generator	PCBs (WHO 12)	None Set	0.2	±100%	ng/m ³	STP	13/01/09	08:08- 12:08	BS EN 1948	۵	4 l/min waste oil
Steam Generator	PAHs (US EPA 16)	None Set	10.3	±100%	hg/m³	STP	13/01/09	12:32- 14:32	ISO 11338	ω	4 l/min waste oil
Stearn Generator	Ц. Т	None Set	<0.2	±20%	o mø/m³	STP	13/01/09	12:40- 14:40	BS ISO 15713	ш	4 l/min waste oil
Steam Generator	02	None Set	15	±10%	NECOTOS DYLSSIO	STP	13/01/09	09:03- 15:29	BS EN 14789	A	4 l/min waste oil
Steam Generator	ŇŎŊ	None Set	102	±10%	mg/m ³	Pur requi	13/01/09	09:03- 15:29	BS EN 14792	A	4 l/min waste oil
Steam Generator	00	None Set	40	±10%	mg/m ³	only an	13/01/09	09:03- 15:29	BS EN 15058	A	4 l/min waste oil
Steam Generator	CO ₂	None Set	4.0	±10%	% Vol	STP	13/01/09	09:03- 15:29	ISO 12039	A	4 l/min waste oil
Stearn Generator	SO ₂	None Set	5	±10%	mg/m³	STP	مرد 13/01/09	09:03- 15:29	ISO 7935	A	4 I/min waste oil
Steam Generator	Total VOCs	None Set	7	±10%	mg/m ³	STP	13/01/09	10:20- 14:20	BS EN 13526	A	4 l/min waste oil
NOTE (1) : UK	NOTE (1): UKAS/MCERTS status:- (A) REC Ltd accredited for sampling and analysis. (B) REC Ltd accredited for sampling only, UKAS accredited analysis conducted by SAL Ltd or AES I td. (C) REC Ltd	: (A) REC Ltd 8	accredited for sam	oling and analysis. (B) REC Ltd	accredited for sar	mpling only, UKA advis conducte	S accredited and	alysis conducted t	(B) REC Ltd accredited for sampling only, UKAS accredited analysis conducted by SAL Ltd or AES Ltd. (C) REC Ltd	I. (C) REC Ltd analysis not

5.5 ž LIQ. (E) REC LIQ accredited for sampling, analysis not UKAS accredited (D) REC Ltd not accredited for sampling, UKAS accredited analysis conducted by SA UKAS accredited.

Trident Waste Oil Solutions Ltd

Page 6 of 14

_
5
-
g
- 81
5
0
* =1
-
_
엄
- 51
- 11
2
0.1
ő
3
0

dic	Units	N/A	N/A		[<u> </u>	
Comparison of Operator CEMS and Periodic Monitoring Results	bu		A/N		Other Relevant Issues	On the stack, 2 x 4" BSP sampling ports were installed. The sampling points provided were 5 x hydraulic diameters from potential flow disturbance both downstream and upstream. Data has been taken from periods when the Generator was operating normally – coil over-heating problems caused fresh air intake and obvious potential dilution of emissions (see Figures 1 & 2).
son of Opera Monitorir	CEMS	A/A	A/N	_	Other Rel	On the stack, 2 x ports were install points provided w diameters from disturbance both upstream. Data has been ta when the Generat normally - coil over caused fresh air irr potential dilution o
Compari	Substance	N/A	N/A			Dat Potr Figu
Load		4 litres/min	4 litres/min		Monitoring Deviations	e vo vo
Abatement	Plant	None	None			Poses only: any other use. N
Feedstock		A/N	N/A	Consent of copyrig	at on	2 ²²⁴
Fuel Type		Waste oil REL 210	Waste oil REL 210	Consent	Substance Deviations	None
Process		Continuous	Continuous		Subs	
Process	226.	Waste oil burning	Waste oil burning		erence	ъ
Date		10/01/09	13/01/09	Monitoring Deviations	Emission Point Reference	Steam Generator
Emission Point	Keterence	Steam Generator	Steam Generator	Monitoring	Emissi	č,

Trident Waste Oil Solutions Ltd

REC Ltd 32352p1r0 6 February, 2009

PART 2 SUPPORTING INFORMATION

General Information

Trident Waste Oil Solutions Ltd commissioned REC Ltd to conduct an emission monitoring survey on their waste oil burning process, at their site in Liverpool.

The waste oil was burnt using a steam generator belonging to Trident. The reference number for the waste oil used was REL210.

As the steam generator used had undertaken many hundreds of hours use prior to testing, and was very difficult to clean, there was a heavy build up of carbon deposits on the coil clearly visible before testing. During sampling it became clear that these carbon deposits were present in the exhaust gas, and therefore may have had a negative influence on the results obtained.

Scope of the Survey

An emission monitoring survey was required to determine the release concentrations of various pollutants from the oil burning process. Concentrations of the following pollutants were quantified during the survey:

- Combustion Gases including O₂, CO, CO₂, NO_x, and SO₂
- Polychlorinated dibenzodioxins (PCDD) and polychlorinated dibenzofurans (PCDF)

Cowner requ

- Polychlorinated biphenyls (PCBs)
- Poly Aromatic Hydrocarbons (PAHs)
- Total Particulate Matter
- Hydrogen Chloride (HCI)
- Hydrogen Fluoride
- Heavy Metals including Pb. Cr. Cur Mn, As, Sb, Co, V, Sn, Hg, Cd & Tl
- Total Volatile Organic Compounds (VOCs) expressed as Carbon (C)

Ancillary measurements of stack dimensions, temperature and velocity were also made to assist in the calculation of isokinetic sampling rates.

Sampling for combustion gases and VOCs was carried out on a continuous basis with measured concentrations being data-logged at 1 minute intervals over the sampling period. All other pollutants were sampled in duplicate.

All results were to be reported at 273K, 101.3kPa, wet gas, without correction for oxygen.

Sampling Personnel

Monitoring was conducted by the following REC Ltd permanent staff:-

- Brian Jacob Team Leader, MM06 693, MCERTS Level 2, TE 1-4
- Jeff Tate
 Assistant, MM08 917., MCERTS Level 1

Method Details

Species	UKAS/ MCERTS Status	Method	Uncertainty ±%	Limit of Detection
Moisture	A	In house method MM0010 based on BS EN 14790	20	0.1%vol
Particulates	A	In house method MM0004 based on BS EN 13284	10	1 mg/m ³
Hydrogen Chloride	В	In house method MM0006 based on BS EN 1911	20	0.1 mg/m ³
Hydrogen Fluoride	В	In house method MM0004 based on BS ISO 15713	20	0.1 mg/m ³
Metals	В	In house method MM0007 based on BS EN 14385	15	0.01 - 0.1 mg/m ³
Mercury	В	In house method MM0008 based on BS EN 13211	15	0.005 mg/m ³
Dioxins / furans	В	In house method MM0005 based on BS EN 1948 Pt 1.	100	0.01 ng/m ³
PCBs	В	In house method MM0005 based on BS EN 1948 Pt 1	100	0.01 ng/m ³
PAHs	В	In house method MM0005 based on ISO 14938	100	0.01 ug/m ³
Sulphur Dioxide	А	In house method MM0002 based on SO 7935	10	1 mg/m ³
Nitrogen Oxides (NO _x)	A	In house method MM0002 based on BS EN 14792	10	1 mg/m ³
Carbon Monoxide	A	In house method MM0002 based on BS EN 15058	10	1 mg/m ³
Carbon Dioxide	A	In house method MM0002 based on ISO 12039	10	1 mg/m ³
Oxygen	A	In house method MM0002 based on BS EN 14789	10	0.1%vol
Total VOCs (as C)	A	In house method MM0002 based on BS EN 13526	10	1 mg/m ³

NOTE : UKAS/MCERTS status:- (A) REC Ltd accredited for sampling and analysis. (B) REC Ltd accredited for sampling only, UKAS accredited analysis conducted by SAL Ltd or AES Ltd. (C) REC Ltd accredited for sampling, analysis not UKAS accredited for sampling, UKAS accredited analysis conducted by SAL Ltd or AES Ltd. (C) REC Ltd accredited for sampling, analysis not UKAS accredited for sampling, uKAS accredited analysis conducted by SAL Ltd. (E) REC Ltd not accredited for sampling, analysis not UKAS accredited.

Monitoring Equipment

All monitoring equipment used at Trident Waste Oil Solutions was calibrated before use in accordance with in house procedures. The equipment used is recorded on the field workbook(s). Copies of Sampling Worksheets are included in Appendix 1.

Sampling Positions

On the stack, 2 x 4" BSP sampling ports were installed. The sampling points provided were 5 x hydraulic diameters from potential flow disturbance both downstream and upstream.

The sample port size does not fully comply with the positional requirements of Environment Agency Technical Guidance Note M1 (TGN M1). TGN M1 requires 5" BSP sockets. The sampling location and the initial temperature and velocity traverse conducted along the sample plane showed that the flow requirements of TGN M1 were met.

Uncertainty

All the methods were fully complied with and therefore the stated uncertainties apply.

REC has calculated uncertainty budgets for all of the pollutants listed in the Method Details Table above in accordance with calculations and methodology supplied by the Source Testing Association (STA).

Conserved copyright owner required for any other use.

RESULTS AND DISCUSSION

Initial Velocity and Temperature Traverse

An initial pitot-static pressure and temperature traverse was carried out. From these data stack velocity, expressed in metres per second (m/s), and volumetric flowrates expressed in cubic metre per hour (m³/hr) have been calculated.

The results are reported at actual stack conditions and the volumetric flowrate is further expressed at the standard reference conditions of 273K, 101.3kPa i.e. standard temperature and pressure (STP). The results are summarised in Table 1.

Particulates

The results of the particulate sampling runs are summarised in Table 2. From the mass of particulate matter on the filter and in the acetone/water wash residue and volume sampled an emission concentration and mass emission was calculated.

The results are expressed in mg/m³ at 273K, 101.3kPa, on a wet gas basis, without correction for oxygen content.

Hydrogen Chloride

The results of the volatile chloride sampling runs are summarised in Table 2. From the concentration of CI and the measured volume of absorbing solution a total mass of HCI in microgram (µg) was determined. From the measured sample volume, an emission DUTP requi concentration has then been calculated.

The results are expressed in mg/m³ at 273K, 101.3kPa, on a wet gas basis, without Forin correction for oxygen content. ofcopy

Hydrogen Fluoride

The results of the volatile fluende sampling runs are summarised in Table 3. From the concentration of F⁻ and the measured volume of absorbing solution a total mass of HF in microgram (µg) was determined. From the measured sample volume, an emission concentration has then been calculated.

The results are expressed in mg/m³ at 273K, 101.3kPa, on a wet gas basis, without correction for oxygen content.

Heavy Metals

The results of the heavy metal sampling runs are summarised in Tables 4 and 5. The total mass of each metal in up was calculated from the filter/probe wash and impinger solution contributions.

The results are expressed in mg/m³ at 273K, 101.3kPa, on a wet gas basis, without correction for oxygen content.

<u>Mercury</u>

The results of the mercury sampling runs are summarised in Table 6. The total mass of Hg in µg was calculated from the filter/probe wash and impinger solution contributions.

The results are expressed in mg/m³ at 273K, 101.3kPa, on a wet gas basis, without correction for oxygen content.

PCDDs, PCDFs & PCBs

The results of the PCDD, PCDF & PCB sampling run are presented in Table 7. The PCDD and PCDF concentrations are expressed in terms of nanogrammes per cubic metre (ng/m³) at the standard reference conditions of 273K, 101.3kPa, wet gas, without oxygen correction.

PCDDs and PCDFs are chlorinated tricyclic aromatic compounds with similar chemical properties. The chlorine content is indicated by a prefix thus: tetra (T), penta (Pe), hexa (Hx), hepta (Hp) and octa (O). The position at which the chlorine atoms are substituted is indicated by the preceding numerals. Thus, 2,3,7,8 - tetrachlorodibenzo-para-dioxin is abbreviated to 2,3,7,8 -TCDD.

A large number of positions of substitution and number of chlorine atoms are possible and, as a result, there are 75 different PCDDs and 135 PCDFs. The groups of compounds having the same basic structure and the same number of chlorine atoms (regardless of the position of substitution) are referred to as homologues of as homologue groups.

The OCDD and OCDF homologues consist of only one compound each, but all other homologues are made up of a number of different compounds which are referred to as isomers. For example, 1,2,3,4-TCDD and 2,3,7,8-TCDD are isomers in the TCDD homologue.

Most toxicological studies on PCDDs and PCDFs have been carried out on the most toxic compound 2,3,7,8-TCDD. Few studies have been carried out on the other PCDDs and PCDFs, although the available stata indicates that only those with chlorine atoms in the 2,3,7 and 8 position are likely to be important toxicologically, with increasing substitution from four (tetra) to eight (octa) atoms, generally resulting in a marked decrease in potency.

As the PCDDs and PCDFs occur as complex mixtures, an assessment of the toxicity of such mixtures is necessary and the concept of Toxic Equivalents was developed. This method uses the available toxicological and in-vitro biological data to generate a set of weighting factors, each of which express the toxicity of a particular PCDD or PCDF isomer, in terms of an equivalent amount of 2,3,7,8-TCDD.

Multiplication of the concentration of the isomer by this toxic equivalent factor (TEF) gives a 2,3,7,8-TCDD toxic equivalence (TEQ). The toxicity of any mixture relative to 2,3,7,8-TCDD is thus taken to be the sum of the individual TEQs.

A number of different weighting schemes are available. The PCDD and PCDF concentrations quoted in the tables are based on European Community (EC)/NATO TEFs. A summary of the TEFs for all PCDD and PCDF isomers is given in the SAL report.

The individual TEFs of the 17, 2,3,7,8 substituted isomers, also referred to as the 2,3,7,8 congener group are used to produce a total PCDD and PCDF equivalent amount for all homologues. EC/NATO standards assign no TEFs to the 193 non-2,3,7,8 substituted isomers.

Details of the surrogate recovery experiment are enclosed on page 5 of the SAL analytical report with recoveries ranging from 77 to 115%.

The dioxin and furan values reported in the tables include those calculated with "none detects" reported as zero values (lower band) and those derived using individual congener detection limits based upon recovery experiments rather than zero values (higher band).

An aliquot of the dioxin sample extract was also analysed for the WHO suite of twelve polychlorinated biphenyls (PCBs) and the results of this also shown in Table 7. Nearly all were less than the limit of detection of the methodology employed with only BZ#77 reporting above the LOD of 0.5 ng/sample at 1.0 ng/sample.

<u>PAHs</u>

The results of the PAH sampling run are summarised in Table 8. To determine the concentration of PAHs in emissions, isokinetic stack sampling equipment satisfying the requirements of BS EN 13284 was employed. The equipment also satisfies the requirements of ISO 11338 (in house method MM0005).

The sampling protocol used follows the same procedure as for PCDDs, PCDFs. However the probe and all glassware were rinsed with acetone, dichloromethane and toluene and all the washings collected in a clean, labelled container for transport back to the laboratory.

The PAH suite includes: Naphthalene, acenaphthylene, acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)Anthracene, Chrysene, Benzo(b/k)Fluoranthene, Benzo(a)Pyrene, indeps(123-cd)Pyrene, Dibenzo(ah)Anthracene, & Benzo(ghi)Perylene.

The mass of PAHs was determined on a aliquot of solvent extract by high resolution GC/MS and laboratory data is reported expressed in ug/sample.

Concentrations are expressed in mg/m³ at the standard reference conditions of 273K 101.3kPa wet gas without oxygen correction.

Combustion Gases

The results of the combustion gas monitoring tests are summarised in Table 9 and Figures 1 & 2. The table presents the averages of concentrations measured throughout each sample period.

Concentrations are expressed in mg/m³ at the standard reference conditions of 273K 101.3kPa wet gas without oxygen correction.

Total VOC Emission Data

The results of the VOC monitoring tests are summarised in Table 9. The table presents the averages of concentrations measured throughout each sample period.

Concentrations are expressed in mg/m³ as carbon at the standard reference conditions of 273K 101.3kPa wet gas without oxygen correction.

====== END OF REPORT =======

APPENDIX 1 STEAM GENERATOR

SITE WORKBOOKS, INCLUDING DIAGRAMS

APPENDIX 2 STEAM GENERATOR

FLOW DATA

FLOW	DATA

Stack Ref.	Stack Temp	Av Pitot ΔP	X-Sect. Area	Velocity (actual)	Volum (m³	
	(⁰ C)	(Pa)	(m²)	(m/s)	(actual)	(@ ntp)
10/01/09	445	247	0.023	31.6	2,580	982
13/01/09	264	107	0.023	18.2	1,487	756

Consent of copyright on performing for any other use.

APPENDIX 3 STEAM GENERATOR

TABLES OF RESULTS & FIGURES

PARTICULATES & HCL EMISSION DATA

DATE: 10/1/09	11:30-12:30
Sampling Data	
Run Time (min)	60
Total mass H ₂ O collected (g)	74.9
Pitot tube constant, Cp	0.81
Dry gas meter (DGM) volume (litres)	1640.00
Temperature DGM (°C)	10
Temperature stack (°C)	491
Mean pitot tube pressure drop, delta P (cm H ₂ O)	2.78
Orifice meter pressure drop, delta H (cm H ₂ O)	12.25
Barometric Pressure (kPa)	102.1
X-sectional area of stack (m ²)	0.023
Nozzle size (mm)	7.90
Flow Data	
25 Moral	00.0
Velocity, actual (m/s)	28.0
Velocity, ntp (m/s)	10.1 2292
Vol. Flow, actual (m/nr) $\sqrt{2}$	822
Volume sampled into $dr(as(m^3), \sqrt{m^2})$	1,795
Volume sampled, ntp, wet gas (m [*])	1.889
Flow Data off Velocity, actual (m/s) Velocity, ntp (m/s) Vol. Flow, actual (m³/hr) Vol. Flow, ntp (m³/hr) Volume sampled, ntp, dry gas (m³) Volume fraget (not for the formed for the form	
	291.4
Acetone Wash Residue Weight (mg) Total Particulates (mg)	177 <i>.</i> 7 469.1
Mass HCI Impingers 1+2 (ug)	22065
Mass HCI Impinger 3 (ug)	629
Partics Field Blank (mg)	1.7
Blank %ELV	1.8
HCl in Impingers 1+2 (%)	97
Emission Data	
	4.9
H ₂ O (% vol) Percentage Isokinetic	4.9
Particulates (mg/m ³)	248.4
HCl (mg/m ³)	12.0
tion (mg/m)	12.0

HF EMISSION DATA

Sampling Data	Steam Generator
Sampling Date	13/01/2009
Sampling Period	12:40-14:40
DGM Start (m ³)	462.1156
DGM End (m ³)	462.4790
DGM Temp (°C)	13
Ambient Pressure (kPa)	99.6
Volume Sampled (m ³ , STP, dry)	0.341
Analytical Data	
HF in NaOH soln (mg/l)	<0.5
HF in NaOH blank soln (mg/l)	<0.5
Volume of NaOH Imp Soln (ml)	<160
Total Mass HF (µg)	يي. <80
	a line
Emission Data	NOU
HF (mg/Nm ³)	<0.2
HF In NaOH blank soln (mg/) Volume of NaOH Imp Soln (ml) Total Mass HF (µg) Emission Data HF (mg/Nm ³) HF (mg/Nm ³)	

HEAVY METALS EMISSION DATA

DATE:	10/01/09	13:00-15:00
Sampling Data		
Run Time (min)		120
Total mass H ₂ O	collected (g)	109.0
Pitot tube consta	ant, Cp	0.81
Dry gas meter (D)GM) volume (litres)	2833.00
Temperature DG	M (°C)	14
Temperature sta	ck (°C)	449
Mean pitot tube	pressure drop, delta P (cm H₂O)	1.90
	essure drop, delta H (cm H ₂ O)	8.36
Barometric Pres		102.0
X-sectional area		0.023
Nozzle size (cm)		7.90
Flow Data	(m/s) s) (m ³ /hr) (m ³ /hr) l, ntp, dry gas (m ³) l, ntp, wet gas (m ³) Fot propriet cont	11 ⁵⁰
Velocity, actual ((m/s) 33. 39	22.5
Velocity, ntp (m/	s)	8.6
Vol. Flow, actual	(m ³ /hr)	1842
Vol. Flow, ntp (m	1 ³ /hr)	699
Volume sampled	l, ntp, dry gas (m ³)	3.055
Volume sampled	l, ntp, wet gas (m ³)	3.201
Analytical Data	5000	
Total Hagay Mat	ale (total up in million of 0)	6779.1
	als (total ug in suite of 9)	<4.5
Total Cd & TI (to	als Field Blank (total ug in suite of 9)	<4:5 <7.8
% of ELV	and i ford blank (rotal ug in suite of a)	<1
	ld Blank (total ug)	<1
% of ELV		<1
% Metals in Imps	s 1+2	63-91
Emission Data		
H₂O (% vol)		4.5
Percentage Isoki	netic	106.1
-	als, suite of 9 (mg/m ³)	2.12
Total Cd & TI (m		<0.01
······································		

Mass Sb	Sb (Measd)	Mass As	As (Measd)	Mass Tl	TI (Measd)
total ug	(mg/m³)	total ug	(mg/m ³)	total ug	(mg/m ³)
224	0.0700	23.38	0.0073	<0.4	<0.0001
Mass Cr	Cr (Measd)	Mass Co	Co (Measd)	Mass Cu	Cu (Measd)
total ug	(mg/m ³)	total ug	(mg/m³)	total ug	(mg/m ³)
397.4	0.1242	293.2	0.0916	1958	0.6118
Mass	Pb	Mass	Mn	Mass	Ni
Pb	(Measd)	Mn	(Measd)	Mass Ref ^{use} Ni	(Measd)
total ug	(mg/m ³)	total ug	(mg/m ³) ³¹	total ug	(mg/m³)
821	0.2565	1660	(mg)(133) th (mg)(133) th (mg)(15187	598.2	0.1869
Mass	V	Mass of the	Cd		
v	(Measd)	A.Or	(Measd)		
total ug	(mg/m ³)	onset total ug	(mg/m ³)		
803.9	0.2512	4.12	0.0013		

HEAVY METALS EMISSION DATA BREAKDOWN

MERCURY EMISSION DATA

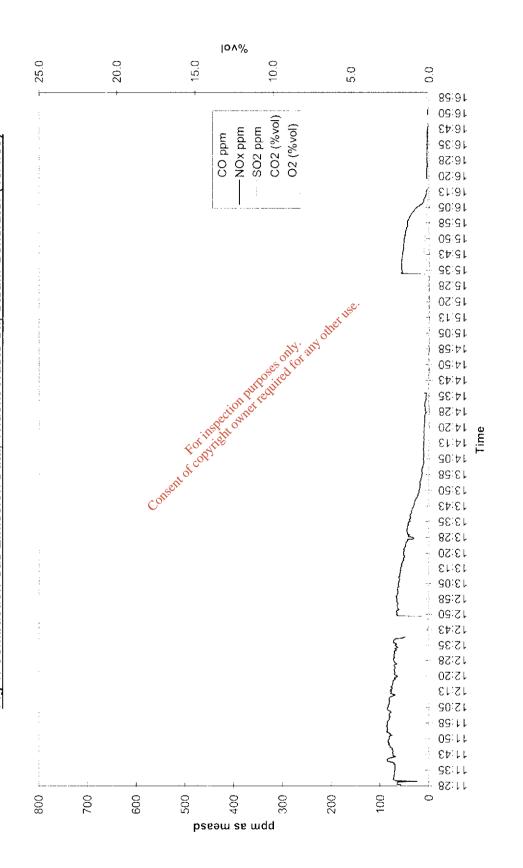
DATE: 10/1/09	15:30-17:30
Sampling Data	
Run Time (min)	120
Total mass H ₂ O collected (g)	98.6
Pitot tube constant, Cp	0.81
Dry gas meter (DGM) volume (litres)	2253.00
Temperature DGM (°C)	27
Temperature stack (°C)	252
Mean pitot tube pressure drop, delta P (cm H ₂ O)	0.96
Orifice meter pressure drop, delta H (cm H ₂ O)	4.22
Barometric Pressure (kPa)	102.0
X-sectional area of stack (m ²)	0.023
Nozzle size (cm)	7.90
Flow Data	1965
Flow Data	
Mala sites a stand (sela)	13.7
Velocity, actual (m/s)	7.1
Vel Elow actual (m ³ /br)	1117
Vol. Flow, actual (iii) (iii) 2^{10}	583
Volume sampled ntp dry gas (m^3)	2.325
Volume sampled, ntp, wet gas (m ³) ⁴	2.456
<u> </u>	
Analytical Data	
Flow Data offer Velocity, actual (m/s) Velocity, ntp (m/s) Vol. Flow, actual (m³/hr) Nol. Flow, ntp (m³/hr) Vol. Flow, ntp (m³/hr) Volume sampled, ntp, dry gas (m³) Volume sampled, ntp, wet gas (m³) Instruction network Analytical Data Consent Total Hg (ug) Total Hg Field Blank (ug)	<8
Total Hg Field Blank (ug)	<6
Blank %ELV	4.5
%Hg in Imps 1+2	100.0
Emission Data	
H ₂ O (% vol)	5.4
Percentage Isokinetic	97.6
Total Hg (mg/m³)	<0.005

PCDD/PCDF & PCB (WHO 12) EMISSION DATA

DATE:	13/01/09	08:08-12:08	
Sampling Dat	a		· · · · · · · · · · · · · · · · · · ·
Run Time (mi	n)	240	
	O collected (g)	240.7	
1	r (DGM) volume (litres)	6213.00	
Temperature	. , ,	15	
Temperature	stack (°C)	309	
Mean pitot tu	be pressure drop, delta P (cm H ₂ O)	1.51	
	pressure drop, delta H (cm H ₂ O)	9.04	
Barometric P		99.6	
X-sectional a	rea of stack (m ²)	0.023	
Nozzle Size (d		7.90	
Flow Data	al (m/s) (m/s) ual (m ³ /hr) (m ³ /hr) led, ntp, dry gas (m ³) led, ntp, wet gas (m ³) ta (in nanogram, ng), o ^t	, USC.	
		other	
Velocity, actu	al (m/s)	18.2 18.2	
Velocity, ntp	(m/s)		
Vol. Flow, act	ual (m³/hr)	1490.1	
Vol. Flow, ntp	(m ³ /hr) ion Street	693.1	
•	led, ntp, dry gas (m ³)	6.520	
Volume samp	led, ntp, wet gas (m ³)	6.841	
Analytical Da	ta (in nanogram, ng)	Lower Band	Upper Band
		0.004	0.006
Total PCDDs Total PCDFs	. ,	0.004	0.000
	and PCDFs (TEQ)	0.051	0.053
Field Blank (T		0.000	0.005
PCBs (WHO 1	•	1	-
Emission Dat	a		
H₂O (% vol)		4.7	
Percentage Is	okinetic	114.27	
Total PCDDs		0.001	0.001
Total PCDFs		0.007	0.007
	and PCDFs (ng/m ³ TEQ)	0.007	0.008
	/HO 12 (ng/m³)	0.2	-

PAH EMISSION DATA

DATE:	13/01/09	12:32-14:32
Sampling Data		
Dry gas meter	(DGM) volume (litres)	1966.00
Temperature D	OGM (°C)	18
Temperature s	tack (°C)	410
Mean pitot tub	e pressure drop, delta P (cm H₂O)	1.14
Orifice meter p	ressure drop, delta H (cm H₂O)	6.83
Barometric Pre	essure (kPa)	99.6
X-sectional are	ea of stack (m ²)	0.023
Nozzle Size (ci		7.90
Flow Data		
Velocity, actua		5 ^{115⁶} 17.2
Velocity, actual	n/s)	6.8
Vol. Flow, actu	(m^3/hr) (m^3/hr)	1407.3
Vol. Flow, ntp	(m ³ /hr)	557.8
	ed, ntp, dry gas (m ³)	2.042
	ed, ntp, wet gas (m ³)	2.180
Analytical Data	a (µg/sample)	······································
Total US EPA	16 PAHs certo	22.5
Field Blank	II (m/s) n/s) val (m ³ /hr) ed, ntp, dry gas (m ³) ed, ntp, wet gas (m ³) ed, ntp, wet gas (m ³) a (μg/sample) 16 PAHs	1.4
Emission Data		
H ₂ O (% vol)		6.3
Percentage Isc	okinetic	90.5
-	16 PAHs (μg/m³)	10.3


TABLE	9
-------	---

Emission Parameter	Average Emission Concentration, (10/1/09) Waste Oil REL210	Average Emission Concentration, (13/1/09) Waste Oil REL210	Typical Releases Gas Oil (Low S)
O_2 (%vol) CO_2 (%vol) CO (mg/m ³) NOx as NO_2 (mg/m ³) SO_2 (mg/m ³) VOCs (mg/m ³)	14.6 4.3 81 123 2 -	15.0 4.0 40 102 2 <1	10 - 100 100 - 300 30 - 100

COMBUSTION GAS EMISSION DATA SUMMARY

Consent of copyright owner required for any other use.

Fig 1: Combustion Gas Emission Data, Trident Waste Oil, Steam Generator (10/1/09)

Trident Waste Oil Solutions Ltd.

REC Ltd 32352p1r0 6 February, 2009

Trident Waste Oil Solutions Ltd.

APPENDIX 4 STEAM GENERATOR

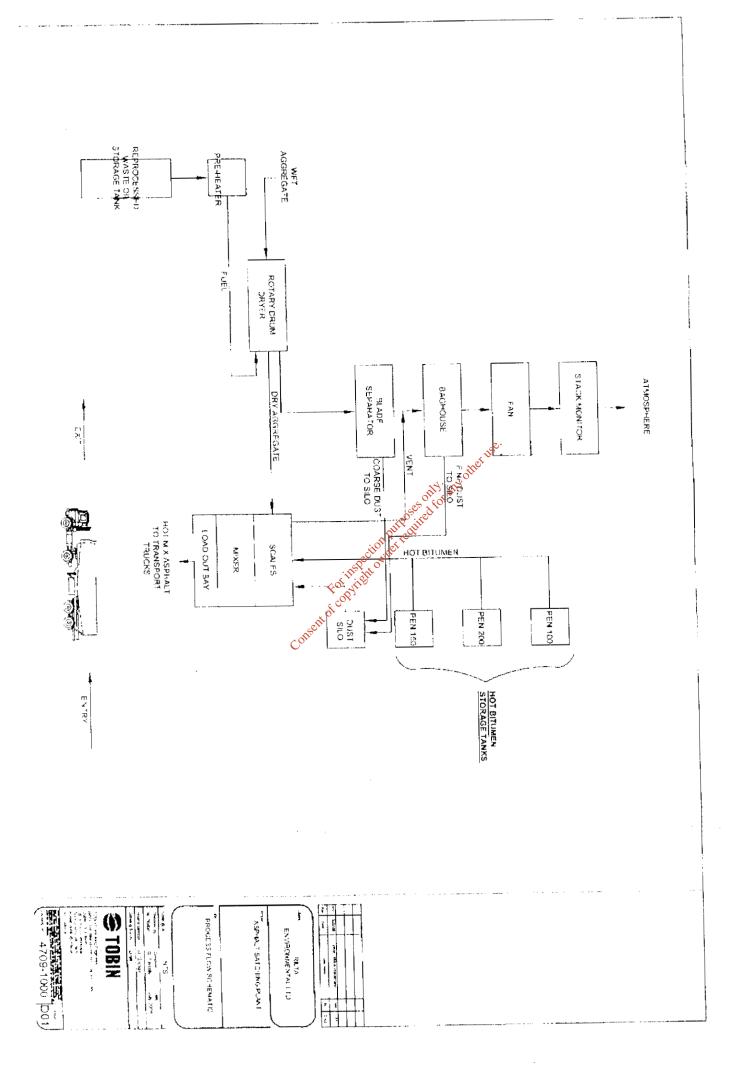
LABORATORY SUBMISSION SHEETS & ANALYTICAL RESULTS

APPENDIX 5

CALCULATIONS

Conversion Factors

ppm ® mg/Nm³ (at 273K, 101.3kPa: STP)				
CO	Х	1.25		
SO ₂	Х	2.86		
VOC's	Х	0.53	(as total Carbon)	
NO _x	Х	2.05	(as NO ₂)	


Oxygen Correction to Reference Value

Concentration at (STP) -> Concentration at 273K, 101.3kPa, reference O_2 and Dry Gas, i.e. Concentration X ((20.9- O_2 ref)/(20.9- O_2 measured)) = Concentration at ref Oxygen state.

Example Calculation	outrand			
SO ₂ concentration at STP =	0.7 mg/Nm ³			
Oxygen percentage in gas stream	2 13.8%			
Reference Oxygen	puposes officiany offician			
SO ₂ concentration at reference $\hat{O}_{2,\infty}^{(n)}$ inditio				
attol	= 238 mg/Nm³ at 273K, 101.3kPa,			
College	11% O_2 and Dry Gas			
Moisture Correction (Wet to Dry)				
Concentration of Gas Dry = Co	oncentration of x 100/100-Bws Gas Wet			
Concentration of Gas Wet = Co	oncentration of x 100-Bws/100 Gas Dry			
Where Bws = moisture content of gas stream in percent (Vol/Vol).				
Example				
VOC concentration =	25 mg/Nm³ (Wet)			
Moisture Content =	27.1%			
Concentration of VOC =	25 (100/(100-27.1))			
Carbon (C) to Trichloethylene (TCE)				

ppm TCE = ppm C x 0.6715 TCE in mg/m³ = TCE ppm x 5.864 (Mol Wt/22.4) Consent of copyright owner required for any other use.

•

Consent of copyright owner convict for any other use.

. .