Comhairle Contae Chorcaí Cork County Council

Environmental Directorate, Inniscarra, Co. Cork.

Tel. No. (021) 4532700 • Fax No. (021) 4532727 Web: www.corkcoco.ie

An Stiúrthóireacht Comhshaoil,

Suíomh Grássáin: www.corkcoco. CE

WATER SERVICES - MAINTENANCE

WATER SERVICES - MAINTENANCE SOUTH CORK

CORK COUNTY COUNCIL, CORK

18th March 2009

Re: Monitoring Results for 2008

Dear Sir/Madam,

Enclosed are the licensed discharge wastewater monitoring results for your facility for 2008. Please note that Total Nitrogen and Total Phosphorus tests were subcontracted to an outside laboratory since early October 2008.

Measurements of uncertainty values for the test are as follows:

Test	Range mg/l	Estimated Uncertainty
TN		+ 3.8 mg/l
TP	रूवी और 0.5	+ 0.04 mg/l
TP	5 mg/l	+ 0.44 mg/l
TP	erit 10 mg/l	+ 0.87 mg/l

Please accept my apologies for the late arrival of results but due to circumstances outside my control. I was unable to issue results in February.

If you have any queries in relation to the results, please do not hesitate to contact me.

Yours sincerely,

Valerie Hannon,

A/Senior Executive Scientist,

Wastewater Laboratory.

Direct Dial:

021 - 4532707

Fax:

021 - 4532777

Email:

valerie.hannon@corkcoco.ie

Laboratory Test Report Cork County Council Waste Water Laboratory Inniscarra, Co. Cork

Page of 1

March 19,2009

Industry Name Address

Dripsey Sewage Treatment Plant

Dripsey,

Co. Cork

Industry Code No.

335

Report Ref No. 119-03-09-123

Issued to No Malion

Licence No.

Type

Licence Limit	Volume m3 999999	pH 12.99 3.99	B.O.D. mg/l 25	C.O.D. mg/l 125	S.Solids mg/l 35	TP-P mg/l 99.9			Code	Com	ments
Date		7.1	7.5	20	1.5	1.45	7-1		00004	-	ODO4 D 1 22 #
06/05/08		7.1	7.5	29	15	1.47			GS384		OPO4-P=1.33mg/l
10/07/08			22	69	26	2.15			GS632	G	TN-N\$=21.8mg/L
09/10/08			5.1	26	7				GS1036	G	
16/10/08		7.1	5.0	32	17				GS1089	G	NH3-N= 2.8mg/l, OPO4-P=
% Compl.	***	100	100	100	100	100	*** *** Here	***			
Average	****	7.10	9.90	39.00	16.25	1.81	**** ** 119**	* **			
							4. 114 ott.				
						262 Y	ioia				
					Ó	hibos differ					
					action v	er to					
					inspector.						
				Ŷ	CODALIS						
				antof							
				Course							

The samples are received at the Laboratory on the day of sampling. The above test methods are based on Standard Methods for the examination of Water and Waste Water, 21st Edition 2005, APHA, AWWA, WEF. C = Composite Sample, G = Grab Sample.

The compliance value may be varied on items marked with an * by the application of uncertainty of measurement values on reverse Page Chemical Procedure Numbers(CP No.) for INAB accredited tests are as follows:

CP NO. 1 = B.O.D.

CP NO. 3 = S.S.

CP NO.20 = TP-P

CP NO. 6 = C.O.D.

-CP NO. 7 - CI

CP NO.22=Ammonia(KONELAB)

CP NO. 5 = pH CP NO.23 = OPO4-P(KONELAB)CP NO.24 = Chloride (KONELAB)

CP NO.25=Sulphate(KONELAB)

This report relates only to the samples listed above. This report shall not be reproduced except in full and only with with the approval of the testing laboratory. Cork County Council is not accredited by INAB for tests marked with \$. Kg loadings based on flows as supplied by the company. ~ indicates results that have been edited.

Reported by:

Ms. V. Hannon

Technical Manager

Deputy Technical Manager

CTR 001

Issue No 56

November 2007 October 2008

Wastewater Laboratory Cork County Council- Test Report Addendum

- a. Sample date reported in column 1 on this report is the date of collection of the sample from the industry name and address as outlined at the top of the report.
- b. Cork County Council wastewater laboratory are not accredited for sample collection.
- c. Data reported in (d) below is defined in section 5.10.3 (c) in wastewater laboratory quality manual.

d. Table of Uncertainty Of Measurement – Estimate Of Values For Accredited Tests

Chemical Procedure No.	range	Test Name	Estimated Uncertainty	Units
CP No. 1	1 - 8 mg/l	Biochemical Oxygen Demand (BOD)	± 0.30	mg/l
CP No. 1	9 –70 mg/l	Biochemical Oxygen Demand (BOD)	±3.2	mg/l
CP No. 1	71 - 700 mg/l	Biochemical Oxygen Demand (BOD)	± 40	mg/l
CP No. 3	35 mg/l	Suspended Solids (SS)	± 6.4	mg/l
CP No. 3	200 - 400mg/l	Suspended Solids (SS)	±41.6	mg/l
CP No. 3	700 – 1000mg/l	Suspended Solids (SS)	± 80.0	mg/l
CP No. 5	2 - 12	pH	±0.12	pH Units
CP No. 6	< 6 mg/l	Chemical Oxygen Demand (COD LR)	± 5.6	mg/l
CP No. 6	15 – 75 mg/l	Chemical Oxygen Demand (COD LR)	± 10.6	mg/l
CP No. 6	100 –135 mg/l	Chemical Oxygen Demand (COD LR)	± 17.4	mg/l
CP No. 6	120 – 1500mg/l	Chemical Oxygen Demand (COO) High Range	± 26.8	mg/l
CP No. 20	0.2 – 2.5 mg/l	Total Phosphorus (TR-P)	± 0.22	mg/l
CP No. 22	0.1 – 0.9 mg/l	Ammonia (Konelah)	± 0.04	mg/l
CP No. 22	1.0 – 2.0 mg/l	Ammonia (Konelab)	± 0.10	mg/l
CP No. 22	2 – 10 mg/l	Amazonia (Konelab)	±0.32	mg/l
CP No. 22	11 – 19 mg/l	Ananonia (Konelab)	±0.72	mg/l
CP No. 22	20 – 25 mg/l	Ammonia (Konelab)	±1.56	mg/l
CP No. 23	0.05 – 1.00 mg/l sett 01	Orthophosphate as P (Konelab)	± 0.04	mg/l
CP No. 24	25.00 – 99.00 mg/l	Chloride (Konelab)	± 3.04	mg/l
CP No. 24	100.00 – 200.00 mg/l	Chloride (Konelab)	±11.16	mg/l
CP No. 25	30.00 – 199.00 mg/l	Sulphate (Konelab)	±3.42	mg/l
CP No. 25	200.00 - 250.00 mg/l	Sulphate (Konelab)	± 8.70	mg/l
168	The second secon	man a complete and the control of th	Acta Til Lord Acta Land S & 1975.	The state of the

January 2009

The raw data used to evaluate the above estimations is stored in the Wastewater Laboratory, Cork County Council

The method followed is located in the Uncertainty of Measurement file and in the Eurachem Guidelines for Quantifying Uncertainty in Analytical Measurement.

Full Report for Waterbody Dripsey, Trib of Lee

south western

Summary Information:

WaterBody Category: Subbasin Waterbody

WaterBody Dripsey,

WaterBody IE_SW_19_1713

Overall Good

Overall Protect

Overall Risk: 2b Not At Risk

Applicable Unsewered;

SupplementaryReport data

Consent of copyright owner required for any other use.

Status Report

WaterBody Category: Subbasin

WaterBody Name: Dripsey,

WaterBody Code: IE_SW_19_1713

Overall Status Result: Good

	Status Element Description	Result
EX	Status from Monitored or Extrapolated Waterbody	
	Biological Elements	
Q	Macroinvertebrates (Q-Value)	Good
F	Fish	n/a
DI	Phytobenthos (Diatoms)	n/a
FPM	Status value as determined by Margartifera	n/a
	Supporting Elements	
MOR	Hydromorphology golfy, and	n/a
SP	Specific Pollutants	n/a
PC	General Physico-Chemical	n/a
	Chemical Status	
PAS	Status value as determined by Margartifera Supporting Elements Hydromorphology Specific Pollutants General Physico-Chemical Chemical Status Chemical Status Overall Ecological Status Overall Ecological Status	n/a
	Overall Ecological Status	
0	Overall Ecological Status	Good

Risk Report

WaterBody Category: Subbasin

WaterBody Name: Dripsey,

WaterBody Code: IE_SW_19_1713

Overall Risk Result: 2b Not At Risk

Risk Test Description

Point Risk Sources

RP1 WWTPs (2008)

RP2 CSOs

RP3 IPPCs (2008)

RP4 Section 4s (2008)

RPO Overall Risk from Point Sources - Worst Case (2008)

Diffuse Risk Sources

RD1 EPA diffuse model (2008)

RD2a Road Wash - Soluble Copper

RD2b Road Wash - Total Zinc

RD2c Road Wash - Total Hydrocarbons

RD3 Railways

RD4a Forestry - Acidification (2008)

RD4b Forestry - Suspended Solids (2008)

RD4c Forestry - Eutrophication (2008)

RD5a Unsewered Areas - Pathogens (2008)

RD5b Unsewered Phosphorus (2008)

RD5 Overall Unsewered (2008)

RD6a Arable

RD6b Sheep Dip

RD6c Forestry - Dangerous Substances

RDO Diffuse Overall -Worst Case (2008)

Morphological Risk Sources

RM1 Channelisation (2008)

RM2 Embankments (2008)

RM3 Impoundments

RM4 Water Regulation

RMO Morphology Overall - Worst Case (2008)

2b Not At Risk

Risk

1b Probably At Risk

2b Not At Risk

2b Not At Risk

Probably At Risk

1b Probably At Risk

2b Not At Risk

2a Probably Not At Risk

2a Probably Not At Risk

2b Not At Risk

2b Not At Risk

2a Probably Not At Risk

2b Not At Risk

2b Not At Risk

1b Probably At Risk

2b Not At Risk

	Q/RDI or Point/Diffuse	
QPD	Q class/EPA Diffuse Model or worst case of Point and Diffuse (2008)	2b Not At Risk
	Hydrology	
RHY1	Water balance - Abstraction	2b Not At Risk
	Overall Risk	
RA	Rivers Overall - Worst Case (2008)	2b Not At Risk

Objectives Report

WaterBody Subbasin Category: Subbasin Waterbody

WaterBody Name: Dripsey,

WaterBody Code: IE_SW_19_1713

Overall Objective: Protect

	Objectives Description	Result
	Objectives	
OB1	Objective 1 - Protected Areas	Not Applicable
OB2	Objective 2 - Protect High and Good Status	Protect
OB3	Objective 3 - Restore Less Than Good Status	Not Applicable
OB4	Objective 4 - Reduce Chemical Pollution	Not Applicable
ОВО	Overall Objective	Protect
	Objective 4 - Reduce Chemical Pollution Overall Objective Deadline Default Year by which the objective must be got to the property of the chief by the objective must be got to the chief by the objective must be got to the objective must be got t	
YR	Default Year by which the objective must be met	2015
EX	Revised Objective Deadline	2007
ОВО	Default Year by which the objective must be met Revised Objective Deadline Overall Objective and Deadline	Protect

Basic Measures Report

WaterBody Subbasin Waterbody

Category:

WaterBody Name: Dripsey, Trib of Lee

WaterBody Code: IE_SW_19_1713

	Basic Measures Description	Applicable
	Key Directives	
ВА	Bathing Waters Directive	No
BI	Birds Directive	No
HA	Habitats Directive	No
DW	Drinking Waters Directive	Yes
SEV	Major Accidents and Emergencies (Seveso) Directive	Yes
EIA	Environmental Impact Assessment Directive	Yes
SE	Sewage Sludge Directive	Yes
UW	Urban Waste Water Treatment Directive	No
PL	Plant Protection Products Directive	Yes
NI	Nitrates Directive Hongier Park	Yes
IP	Integrated Pollution Prevention Control Directive	Yes
	Environmental Impact Assessment Directive Sewage Sludge Directive Urban Waste Water Treatment Directive Plant Protection Products Directive Nitrates Directive Integrated Pollution Prevention Control Directive Other Stipulated Measures Cost recovery for water use. Promotion of efficient and sustainable water use Protection of drinking water sources	
CR	Cost recovery for water use	Yes
SU	Promotion of efficient and sustainable water use	Yes
DWS	Protection of drinking water sources	Yes
AB	Control of abstraction and impoundments	Yes
PT	Control of point source discharges	Yes
DI	Control of diffuse source discharges	Yes
GWD	Authorisation of discharges to groundwater	No
PS	Control of priority substances	Yes
MOR	Control of physical modifications to surface waters	Yes
OA	Controls on other activities impacting on water status	Yes
AP	Prevention or reduction of the impact of accidental pollution incidents	Yes

Urban and Industrial Discharges Supplementary Measures Report

WaterBody Category: Subbasin Waterbody

WaterBody Name: Dripsey, Trib of Lee

WaterBody Code: IE_SW_19_1713

	Point discharges to waters from municipal and industrial sources	Result
PINDDIS	Is there one or more industrial discharge (Section 4 licence issued by the local authority or IPPC licence issued by the EPA) contained within the water body?	No
PINDDISR	Are there industrial discharges (Section 4 licence issued by the local authority or IPPC licence issued by the EPA) that cause the receiving water to be 'At Risk' within the water body?	No
PB1	Basic Measure 1 - Measures for improved management.	No
PB2	Basic Measure 2 - Optimise the performance of the waste water treatment plant by the implementation of a performance management system.	No
PB3	Basic Measure 3 - Revise existing Section 4 license conditions and reduce allowable pollution load.	No
PB4	Basic Measure 4 - Review existing IPPC license conditions and reduce allowable pollution load.	No
PB5	Basic Measure 5 - Investigate contributions to the collection system from unlicensed discharges.	No
PB6	Basic Measure 6 - Investigate contributions to the collection system of specific substances known to impact ecological status.	No
PB7	Basic Measure 7 - Upgrade WWTP to increase capacity.	No
PB8	Basic Measure 8 - Upgrade WWTP to provide nutrient removal treatment.	No
PS1	Supplementary Measure 1 - Measures intended to reduce loading to the treatment plant.	No
PS2	Supplementary Measure 2 - Impose development controls where there is, or is likely to be in the future, insufficient capacity at treatment plants.	No
PS3	Supplementary Measure 3 - Initiate investigations into characteristics of treated wastewater for parameters not presently required to be monitored under the urban wastewater treatment directive.	No
PS4	Supplementary Measure 4 - Initiate research to verify risk assessment results and determine the impact of the discharge.	No
PS5	Supplementary Measure 5 - Use decision making tools in point source discharge management.	No
PS6	Supplementary Measure 6 - Install secondary treatment at plants where this level of treatment is not required under the urban wastewater treatment directive.	No
PS7	Supplementary Measure 7 - Apply a higher standard of treatment (stricter emission controls) where necessary.	No
PS8	Supplementary Measure 8 - Upgrade the plant to remove specific substances known to impact on water quality status.	No

PS9	Supplementary Measure 9 - Install ultra-violet or similar type treatment.	No
PS10	Supplementary Measure 10 - Relocate the point of discharge.	No

Physical Modifications Supplementary Measures Report

WaterBody Category: Subbasin

WaterBody Name: Dripsey,

WaterBody Code: IE_SW_19_1713

	Physical Modifications Supplementary Measures	Applicable
	Reduce	
SM1	Codes of Practice	Yes
SM2	Support for voluntary initiatives	Yes
	Remediate	
SM3	Channelisation impact remediation schemes	No
SM4	Channelisation investigation	No
SM5	Overgrazing remediation Impassable barriers, impact confirmed, investigation into	No
SM6	Impassable barriers, impact confirmed, investigation into feasibility of remediation required Impassable barriers investigation	No
SM7	Impassable barriers investigation	Yes
	Impassable barriers investigation Fed in particular pa	

Unsewered Properties Supplementary Measures Report

WaterBody Subbasin Waterbody

WaterBody Name: Dripsey, Trib of Lee

WaterBody IE_SW_19_1713

	Supplementary Measures for	Applicable
	Unsewered Properties	
SP1	Amend building regulations	Yes
SP2	Establish certified expert panels for site investigation and certification of installed systems	Yes
SP3	Assess applications for new unsewered systems by applying risk mapping/decision support systems and codes of practice	Yes
SP4	Carry out an inspection programme in prioritised locations for existing systems and record results in an action tracking system	No
SP5	Enforce requirements for percolation	No
SP6	Enforce requirements for de-sludging	Yes
SP7	Consider connection to municipal systems	No
	estion dufte quite	
	Systems and record results in an action tracking system Enforce requirements for percolation Enforce requirements for de-sludging Consider connection to municipal systems Consider to	

Forestry Measures Report

WaterBody Subbasin Category: Subbasin Waterbody

WaterBody Name: Dripsey, Trib of Lee

WaterBody Code: IE_SW_19_1713

	Forestry Measures for	Applicable
	Forestry	
SF1	Management Instruments - Ensure regulations and guidance are cross referenced and revised to incorporate proposed measures	No
SF2	Acidification - Avoid or limit afforestation on 1st and 2nd order stream catchments in acid sensitive areas	No
SF3	Acidification - Revise the Acidification Protocol to ensure actual minimum alkalinities are detected and revise boundary conditions for afforestation in acid sensitive areas	No
SF10	Pesticide Use - Pre-dip trees in nurseries prior to planting out	No
SF11	Pesticide Use - Maintain registers of pesticide use	No
SF12	Acidification - Restructure existing forests to include open space and structural diversity through age classes and species mix, including broadleaves	No
SF13	Acidification - Mitigate acid impacts symptomatically using basic material	No
SF14	Acidification - Manage catchment drainage to increase residence times and soil wetting	No
SF15	Acidification - Implement measures to increase stream production.	No
SF16	Eutrophication - Establish riparian zone management prior to clearfelling	No
SF17	Eutrophication and Sedimentation - Enhance sediment control	No
SF18	Eutrophication - Manage catchment drainage to increase residence times and soil wetting, including no drainage in some locations	No
SF19	Sedimentation - Establish riparian zone management prior to clearfelling	No
SF20	Sedimentation - Enhance sediment control	No
SF21	Sedimentation - Manage catchment drainage to increase residence times and soil wetting, including no drainage in some locations	No
SF22	Hydromorphology - Enhance drainage network management, minimise drainage in peat soils	No
SF23	Pesticide Use - Develop biological control methods	No

SF4	Eutrophication and Sedimentation - Avoid or limit forest cover on peat sites	No
SF5	Eutrophication and Sedimentation - Change the tree species mix on replanting	No
SF6	Eutrophication and Sedimentation - Limiting felling coup size	No
SF7	Eutrophication and Sedimentation - Establish new forest structures on older plantation sites	No
SF8	Hydromorphology - Audit existing drainage networks in forest catchments	No
SF9	Pesticide Use - Reduce pesticide usage	No

			Parameter	Nitrite	Molybdate	Ammoniun	Nitrate
				NO2	Р	NH4	NO3
			Max.	0.05	Varies	0.5	25
			Target				
			Min.				
	e Location	Sample Date	Comments	mg/l	mg/l	mg/l	mg/l
The Dripsey	Dripsey Br.	09-Jan-02		0.02	0.022	0.05	18.43
The Dripsey	Luskins Br.	09-Jan-02		0.267	0.018	0.05	15.81
The Dripsey	Dripsey br u/s	09-Jan-02		0.013	0.006	0.05	10.45
The Dripsey	Dripsey Br.	13-Feb-02		0.029	0.021	0.05	20
The Dripsey	Dripsey Br.	13-Mar-02		0.016	0.02	0.03	14.28
The Dripsey	Dripsey Br.	12-Mar-03		0.017	0.026	< 0.02	18.01
The Dripsey	Dripsey br u/s	12-Mar-03		0.017	0.024	< 0.02	16.6
The Dripsey	Luskins Br.	12-Mar-03		0.017	0.023	0.02	15.8
The Dripsey	Dripsey Br.	14-Aug-03	SG out of water	0.016	0.036	0.03	14.63
The Dripsey	Luskins Br.	28-Mar-07		0.02	< 0.006	0.035	15
The Dripsey	Dripsey Br.	13-Jun-07		0.048	0.035	0.035	21.9
The Dripsey	Luskins Br.	13-Jun-07		0.028	0.016	< 0.026	16.9
The Dripsey	NW Toureen	13-Jun-07		< 0.013	0.012	< 0.026	< 1.8
The Dripsey	NW Toureen	20-Sep-07		0.014	0.013	0.047	
The Dripsey	Luskins Br.	20-Sep-07		< 0.013	0.008	0.038	
The Dripsey	Dripsey Br.	20-Sep-07		0.019	0.019	< 0.026	
The Dripsey	Dripsey Br.	15-Nov-07		0.019	0.029	0.03	17.5
The Dripsey	Luskins Br.	15-Nov-07		< 0.013	0.008	0.032	13.9
The Dripsey	NW Toureen	15-Nov-07		< 0.013	0.016	0.045	< 1.8
The Dripsey	Dripsey Br.	12-Mar-08		0.046	0.027	0.026	18.9
The Dripsey	NW Toureen	12-Mar-08		₹ 0.013	0.006	0.078	< 1.8
The Dripsey	Luskins Br.	12-Mar-08	39.3	o.013	0.016	0.028	14.9
The Dripsey	NW Toureen	11-Jun-08	as offord	0.014	0.02	0.05	4.1
The Dripsey	Dripsey Br.	11-Jun-08	2000 red	0.075	0.03	0.034	19.3
The Dripsey	Luskins Br.	11-Jun-08	Durkallir	0.018	0.015	0.029	15.6
The Dripsey	NW Toureen	13-Aug-08	tion exte	0.035	0.014	0.066	2.1
The Dripsey	Luskins Br.	13-Aug-08	ectalit	0.038	0.063	0.082	4.1
The Dripsey	Dripsey Br.	08-Oct-08	dit	0.019	0.029	0.031	16.5
The Dripsey	Dripsey Br.	04-Dec-08	ection but poses only. A	0.034	0.053	0.09	12
The Dripsey	Luskins Br.	04-Dec-08	ection but poses only, of a	0.029	0.036	0.103	8.6
The Dripsey	NW Toureen	04 ,0 ec-08		0.023	0.015	0.031	< 1.8
The Dripsey	Dripsey Br.	្ត្រី-Feb-09		0.016	0.023	0.026	26.2
The Dripsey	NW Toureen	25-Feb-09		< 0.013	0.015	0.032	< 1.8
The Dripsey	Luskins Br.	25-Feb-09		< 0.013	0.01	0.016	18.5
The Dripsey	Dripsey Br.	12-Mar-09		0.022	0.019	0.027	17.37
The Dripsey	Dripsey Br.	08-Apr-09		0.028	0.019	0.055	15

		Parameter	Nitrite	Molybdate F	Ammonium	Nitrate
Rep No. 3	18/09		NO2	Р	NH4	NO3
		Max.	0.05	0.035	0.5	25
		Target				
		Min.				
Project	Project Re Location Sample Dat	Comments	mg/l	mg/l	mg/l	mg/l
Lee	Rooves B€ 09-Jan-07		0.022	0.018	0.094	8.7
Lee	Rooves B∈ 17-Jan-07		0.023	0.014	0.041	9.9
Lee	Rooves B∈ 08-Feb-07		0.029	0.013	0.07	
Lee	Rooves B∈ 15-Mar-07		0.029	0.019	0.067	
Lee	Rooves B∈ 18-Apr-07		0.025	< 0.006	< 0.026	9.8
Lee	Rooves B∈ 09-May-07		0.038	< 0.006	0.038	
Lee	Rooves B∈ 13-Jun-07		0.043	< 0.006	0.039	
Lee	Rooves B∈ 11-Jul-07		0.039	< 0.006	0.039	
Lee	Rooves B∈ 07-Aug-07		0.035	0.008	< 0.026	3.5
Lee	Rooves B∈ 20-Sep-07		0.074	< 0.006	0.073	
Lee	Rooves B∈ 10-Oct-07		0.043	< 0.006	< 0.026	
Lee	Rooves B∈ 15-Nov-07		0.051	0.008	0.076	4.3
Lee	Rooves B∈ 12-Dec-07		0.025	0.018	0.053	
Lee	Rooves B∈ 21-Feb-08		0.022	0.014	0.101	8.9
Lee	Rooves Be 12-Mar-08		0.015	< 0.006	0.027	8.1
Lee	Rooves Be 10-Apr-08		0.017	< 0.006	< 0.026	
Lee	Rooves Be 14-May-08		< 0.013	o.006 >ري	0.045	
Lee	Rooves B∈ 11-Jun-08		0.045	< 0.006	0.031	
Lee	Rooves B∈ 09-Jul-08		0.045 of 0.03 ther	< 0.006	0.062	
Lee	Rooves B∈ 13-Aug-08		0110.034	0.008	0.081	4.9
Lee	Rooves B∈ 10-Sep-08	جو ^و	0.027	0.014	0.061	
Lee	Rooves B∈ 08-Oct-08	altport	0.028	0.006	0.058	
Lee	Rooves B∈ 12-Nov-08	ion of red	0.021	0.014	0.041	
Lee	Rooves B∈ 10-Dec-08	Decti wite	0.03	0.016	0.061	
Lee	Rooves Be 15-Jan-09	inst diff.	0.029	0.021	0.072	
Lee	Rooves B∈ 11-Feb-09	OYTHE	0.017	0.012	0.061	
Lee	Rooves Be 12-Mar-09	17	0.023	0.008	0.039	5.6
Lee	Rooves Be 13-Aug-08 Rooves Be 10-Sep-08 Rooves Be 08-Oct-08 Rooves Be 12-Nov-08 Rooves Be 10-Dec-08 Rooves Be 15-Jan-09 Rooves Be 11-Feb-09 Rooves Be 08-Apr-09		0.02	0.007	0.015	

			Parameter	Temperatur	Dissolved O	рН	BOD	Nitrite	Molybdate	Ammoniur	Nitrate	Hardness	Alkalinity	Appearance	Dissolved	Suspende	Colour	Chloride	Conductivi	Copper (D	Total Zinc
Rep. No.	322/09				O2		02	NO2	Р	NH4	NO3	CaCO3	CaCO3				Hz	CI		Diss. Cu.	
			Max.		15	9	5	0.05	0.035	0.5	25				150		500				
			Target																		
			Min.		5	6									50						
Project		Sample Date	Comments	Degrees C	mg/l	pH units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	Descriptive	% O2	mg/l	Hazen	mg/l	μS/cm	mg/l	mg/l
Lee	Carrigadrohid	09-Jan-07		5.3	11.9	7.5	< 1	0.021	0.016	0.06	8.6	47	28	clear	96	1	45		144		
Lee	Carrigadrohid	17-Jan-07		7.8	10.8	7.5	< 1	0.024	0.013	0.046	8.8	42	24		92	2	44	16.2	122		
Lee	Carrigadrohid	08-Feb-07		5.7	12.1	7.7	< 1	0.025	0.012	0.052			34		100	2	25		142	< 0.001	0
Lee	Carrigadrohid	15-Mar-07		9.7	10.7	7.2	< 1	0.024	0.018	0.057		63		clear	94	4				0.001	< 0.002
Lee	Carrigadrohid	18-Apr-07		15	9.4	7.7	< 1	0.04	< 0.006	0.034	8.9	65	40	clear	92	1				0.002	0.003
Lee	Carrigadrohid	09-May-07		14.7	7.8	7.5	< 1	0.056	< 0.006	0.062		66	56	clear	78	1	28			0.001	< 0.001
Lee	Carrigadrohid	11-Jul-07		17.6	9.7	7.5	1.1	0.026	< 0.006	< 0.026		37	24		101	3				0.001	< 0.025
Lee	Carrigadrohid	07-Aug-07		18.3	10.1	7.8	1.3	0.029	< 0.006	< 0.026	3.1	56	32		105	2					
Lee	Carrigadrohid	14-May-08		17.2	9.2	7.6	< 1	< 0.013	< 0.006	0.044					96	1			131		
Lee	Carrigadrohid	11-Jun-08		16.3	6.8	7.4	< 1	0.036	< 0.006	0.093				Clear	68	2			129		
Lee	Carrigadrohid	09-Jul-08		15.3	8.8	7.3	1.6	0.027	0.013	0.063				clear	89	3.8					
Lee	Carrigadrohid	13-Aug-08		16.6	9.9	7.6	1.7	0.035	0.007	0.075	4.5			Clear	106	8			122		
Lee	Carrigadrohid	10-Sep-08		15.1	9.1	7.3	1.5	0.026	0.012	0.069			_		91	4			105		
Lee	Carrigadrohid	08-Oct-08		13.6	9.8	7.7	< 1	0.028	< 0.006	0.033		N.	6.		93	1					
Lee	Carrigadrohid	12-Nov-08		7.4	11.1	7.4	< 1	0.017	0.025	0.056		05			92	1					
Lee	Carrigadrohid	10-Dec-08		5.8	10	7.4	< 1	0.024	0.013	0.049		diffe		clear	81	1					
Lee	Carrigadrohid	15-Jan-09		7.2	11.2	7.3	< 1	0.022	0.017	0.068	.4.	A		clear	95	3					
Lee	Carrigadrohid	11-Feb-09		5	11	7.6	< 1	0.015	0.012	0.033	only.	dir.		clear	85		38		158		
Lee	Carrigadrohid	12-Mar-09		8	11.1	7.5	< 1	0.019	0.007	0.056	\$ 4.20			clear	94	2			106		
Lee	Carrigadrohid	08-Apr-09		10.9	11	7.8	< 1	0.019	< 0.006	0.011	Ses 4.20°			clear	100	3			141		

		Parameter	Temperature	Dissolved C	pН	BOD	Nitrite	Molybdate	Ammoniun	Nitrate	Hardness	Alkalinity	Appearanc	Dissolved	Suspended	Zn	Colour	Chloride	Conductiv	i Copper (D	Total Zinc
Rep. No.	322/09			O2		02	NO2	Р	NH4	NO3	CaCO3	CaCO3				Zn	Hz	CI		Diss. Cu.	
		Max.		15	9	5	0.05	0.035	0.5	25		1		150		500	500				
		Target		-					-			1				-					
		Min.		5	6				-			1		50		-					
Project	Location	Sample Dat Comments	Degrees C	mg/l	pH units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	Descriptive	% O2	mg/l	μg/l	Hazen	mg/l	μS/cm	mg/l	mg/l
Lee	Rooves Beg	09-Jan-07	5.2	11.9	7.4	1.1	0.022	0.018	0.094	8.7	46	28	clear	95	1						
Lee	Rooves Beg	17-Jan-07	8.3	10.6	7.4	< 1	0.023	0.014	0.041	9.9	42	24		91	2		51	16.1	123		
Lee	Rooves Beg	08-Feb-07	5.9	11.7	7.6	< 1	0.029	0.013	0.07			30		95	2		37		133		< 0.025
Lee	Rooves Beg	15-Mar-07	9.1	11	7.5	< 1	0.029	0.019	0.067		48		clear	94	4					0.001	
Lee	Rooves Beg		16.4	8.9	8.1	1.1	0.025	< 0.006	< 0.026	9.8	66	44	clear	91	2					0.001	< 0.002
Lee	Rooves Beg	09-May-07	14.2	9.5	7.6	< 1	0.038	< 0.006	0.038		66	44	Copepods	94	1		29			0.001	< 0.025
Lee	Rooves Beg	13-Jun-07	20	9.2	7.9	1.7	0.043	< 0.006	0.039		66	42	copepods	102	1		18			0.001	< 0.001
Lee	Rooves Beg		17.9	9.6	7.3	2.4	0.039	< 0.006	0.039		43	30		101	5					0.002	< 0.025
Lee	Rooves Beg	07-Aug-07	19.5	10.4	7.8	1.9	0.035	0.008	< 0.026	3.5	63	32		114	3						
Lee	Rooves Beg	20-Sep-07	16.9	6.8	7.6	1.1	0.074	< 0.006	0.073		66	40		70	1						< 0.025
Lee	Rooves Beg	10-Oct-07	15.7	7.5	7.9	< 1	0.043	< 0.006	< 0.026		64	42		75	2			13.2			
Lee	Rooves Beg	15-Nov-07	11.4	8.5	7.8	< 1	0.051	0.008	0.076	4.3	26	36		77	< 1			13.7	125		< 0.025
Lee	Rooves Beg	12-Dec-07	8.2	10.3	7.2	< 1	0.025	0.018	0.053		41	30	clear	87	3						
Lee	Rooves Beg	21-Feb-08	8.4	11	7.6	< 1	0.022	0.014	0.101	8.9		.0	clear	94	2	< 25				< 0.004	
Lee	Rooves Beg	12-Mar-08	7.5	12.3	7.8	< 1	0.015	< 0.006	0.027	8.1	47	other 150	clear	104	< 1	< 25	60			< 0.004	
Lee	Rooves Beg	10-Apr-08	9.9	12.1	8	1.3	0.017	< 0.006	< 0.026			West.	clear	109	3						
Lee	Rooves Beg	14-May-08	18.1	9.2	7.8	< 1	< 0.013	< 0.006	0.045			Olli		98	2				149		
Lee	Rooves Beg	11-Jun-08	18.5	9.4	7.8	< 1	0.045	< 0.006	0.031		ारित आप्रे		Clear	98	1				139		
Lee	Rooves Beg	09-Jul-08	16.9	8.7	7.4	1.3	0.03	< 0.006	0.062		Official		clear	91	2						
Lee	Rooves Beg	13-Aug-08	16.6	10.4	7.5	< 1	0.034	0.008	0.081				Clear	110	3				116		
Lee	Rooves Beg		15	9	7.3	1.1	0.027	0.014	0.061	4.9 ce	S _C		clear	90	3				107		
Lee	Rooves Beg	08-Oct-08	14.4	11.2	7.7	< 1	0.028	0.006	0.058	Why will	55			109	1						
Lee	Rooves Beg	12-Nov-08	8	11	7.5	< 1	0.021	0.014	0.041	12 CON				93	2						
Lee	Rooves Beg	10-Dec-08	8	11.8	7.5	< 1	0.03	0.016	0.0610	, Set ,			clear	105	2						
Lee	Rooves Beg	15-Jan-09	7.4	10.8	7.2	< 1	0.029	0.021	0.041 0.061 0.072 0.061	wher t			clear	93	4						
Lee	Rooves Beg	11-Feb-09	5.1	12.1	7.5	< 1	0.017	0.012	0.061				clear	94			56		135		
Lee	Rooves Beg	12-Mar-09	8.9	11.1	7.5	< 1	0.023	0.008	₹0.639	5.6			clear	93	2				123		
Lee	Rooves Beg	08-Apr-09	10.3	11.3	7.8	1	0.02	0.00 2	0.015				clear	103	1				130		

	Parameter	Conductivity	Dissolved O	Temperature	Dissolved O	Molybdate F	рН	Nitrite	Ammoniur	Nitrate	Chlorophyl	Total Phos	Alkalinity	Hardness	Sechi Disk	Colour	Chloride
Rep. No. 32	21/09		O2			Р		NO2	NH4	NO3		Р	CaCO3	CaCO3		Hz	CI
	Max.		15		150		9	0.05			25	-					
	Target																
	Min.		5		50		6								0.25		
	Sample Date Comments	μS/cm	mg/l	Degrees C	% O2	mg/l	pH units	mg/l	mg/l	mg/l	mg/m3	mg/l	mg/l	mg/l	m	Hazen	mg/l
Inniscarra	08-Aug-07	118	10.5	19.3	111.8	< 0.006	7.9	0.033	< 0.026	3.55	29		36	53	1.7	64	
Inniscarra	30-Aug-07	121	9.5	19.1	100	< 0.006	7.9	0.039	0.043	3.85	42.4	0.013	36	62	2.5	63	
Inniscarra	20-Sep-07	131	9.4	14.5	100.4	< 0.006	7.6	0.087	0.104		12.1	0.013	36	65	2.5		
Inniscarra	17-Oct-07	126	9.1	15.1	89.3	< 0.006	7.6	0.04	0.056		17.3	0.014	36	45	2.48	34	
Inniscarra	14-Nov-07	125	9.3	11.6	85	0.006	7.8	0.059	0.056	4.23	12.9	0.014	36	36	3.1	50	
Inniscarra	10-Dec-07	111	10.7	8.7	93		7.5		0.057			0.042	28	39	1	88	
Inniscarra	16-Jan-08	117	11.1	7.1	94.9	< 0.023	7.3	0.018	0.059	8.26			36	54	1.5	76	
Inniscarra	21-Feb-08	136	10.7	8.1	91.5	0.011	7.6	0.02	0.065	8.57			36	48	2.7	49	
Inniscarra	27-Mar-08	140	12.3	9.8	110	< 0.006	8	0.013	< 0.026	6.97		0.022	34	55	2.2	47	
Inniscarra	29-Apr-08	142	11	10.7	102.4	< 0.006	7.8		< 0.026	7.06	14.1	0.016	46	47	2.1		
Inniscarra	27-May-08	136	10.1	16	103	< 0.006	7.7	0.03	0.08	5.11	20.8	0.016	24	54	2.1		
Inniscarra	25-Jun-08	133	9.6	16.8	99.7	< 0.006	7.7	0.071	0.026	4.53	18.9	0.025	60	49	2		
	[Chloride;								met.	•							
Inniscarra	29-Jul-08 13.06mg/l 08/08/2008	117	9.5	18.9	106.5	0.012	7.9	0.04 0.025 1170 jiji	. 0.053	4.13	59	0.018	36	40	1.9		
	16:18.]							~ O1.	oi "								
Inniscarra	27-Aug-08	108	9.4	19.1	100.4	0.009	7.6	0.025	0.042	4.13	16.3	0.021	42	38		84	
Inniscarra	18-Sep-08	116	10.7	15.2	106.1	0.007	7.7	Majiro Are		5.2	71.4	0.042	38	42	1.7	85	
Inniscarra	16-Oct-08	95	8.6	13	82.4	< 0.006	7.3	III TO HITE	0.039	3.15	5.8	0.018	28	30		77	
Inniscarra	19-Nov-08 Surface water	114	10.6	9.1	91.3	0.012	Uzbergenia	0.017	0.044	5.73	1.6	0.021	36	42	2.5	43	12.2
Inniscarra	03-Dec-08	125	10.6	6.9	89	0.013	15/76	0.024	0.074	6.13	2.1	0.013	42	42	3	45	11.9

	Pa	rameter (Conductivi	Dissolved	Temperatu	Dissolved	Molybdate	рН	Nitrite	Ammoniun	Nitrate	Chlorophyl	Total Phos	Alkalinity	Hardness	Sechi Disk	Colour	Silica	Chloride
Rep No. 321	1/09			02			Р		NO2	NH4	NO3		Р	CaCO3	CaCO3		Hz	SiO2	CI
	Ma			15		150		9	0.05			25							
		rget																	
	Mir			5		50		6								0.25			
	Sample Dat Co	mments	μS/cm	mg/l	Degrees C	% O2	mg/l	pH units	mg/l	mg/l	mg/l	mg/m3	mg/l	mg/l	mg/l	m	Hazen	mg/l	mg/l
Inniscarra			116	8.6	18.3	91.5	< 0.006	7.7	0.026	0.054	3.34	8.4		38	46	1.2	57		
Inniscarra			116	8.6	17.5	88	< 0.006	7.8	0.023	0.032	2.93	12.9	0.014	36	62	1.9	60		
	20-Sep-07		133	8.7	17.2	91.1	0.007	7.6	0.036	0.086		1.2	0.014	42	69	1.7			
	17-Oct-07		128	8.6	13.9	84.6	0.006	7.5	0.043	0.112		3.8	0.016	40	46	0.5	33		
	14-Nov-07		110	9	10.7	85	0.008	8.1	0.037	0.089	3.59	5.3	0.013	32	39	2.1	71		
	10-Dec-07		111	10.7	8.1	91	0.029	7.7	< 0.013	0.086	7.2		0.045	24	38	1.1	95		
	16-Jan-08		115	11.1	7	94.3	< 0.016	7.4	0.019	0.075	7.37			26	49	1.3	58		
	21-Feb-08		140	11.2	7.9	94	0.011	7.7	0.023	0.093	9.33			34	50	1.5	45		
	27-Mar-08		142	12.6	8.4	109.3	< 0.006	8	0.013	< 0.026	6.8		0.017	40	47	1.1	43		
	29-Apr-08		146	11	11.2	104	< 0.006	7.9		< 0.026	9.42	14.9	0.016	44	51	1.6			
Inniscarra			126	9.4	14.6	93	0.007	7.5	0.035	0.139	4.19	6.4	0.016	62	52	1.6			
Inniscarra	25-Jun-08		130	10.7	16.7	110	0.006	7.5	0.04	0.033	3.59	, 15 ² 17.1	0.016	46	57	1.9			
	[Ch	nloride;									200	>							
	13	22mg/l									100								
Inniscarra		08/200	125	9.1	19	98.7	< 0.006	7.7	0.03	0.082	4501	11.7	0.014	42	46	1.2			
		16:18.]								0.082 n	O)								
lauda a aus		- 1	100	0.0	47.5	00.0	0.000	7.0	0.000	7111 0.073ed	0.00	44.0	0.010	00	44		00		
Inniscarra			106	8.6	17.5	88.3	0.008	7.8	0.026	THE CHAS	3.99	11.8	0.019	32	41	4.0	82		
Inniscarra			114	8.8	13.9	85.8	0.01	7.3	0.0400	July Colum		6.2	0.017	36	52	1.6	56		
Inniscarra	16-Oct-08		96	9.1	12.9	86.5	0.007	7.3	0.0190	0.056	3.17	6.2	0.028	32	32		80		
Inniscarra	19-Nov-08 Sui	rface ter	120	10.8	9.5	94.2	0.01	7.9	11:00:020	0.056 0.046	5.91	1.6	< 0.01	38	46	1	37	1.42	12.5
Inniscarra	03-Dec-08		121	11	6.2	89.5	0.011	7.6	0.02	0.041	5.42	2	0.016	44	41	0.3	47	1.4	11.9

			Parameter	Nitrite	Molybdate	Ammoniun	Nitrate
			raramotor	NO2	P	NH4	NO3
			Max.	0.05	Varies	Varies	Varies
			Target				
			Min.				
Project	Project Re Location	Sample Date		mg/l	mg/l	mg/l	mg/l
Lee	Ang.Rest.Br	09-Jan-07	T.P.<0.02	0.033	0.023	0.079	11.2
Lee	Inniscarra	09-Jan-07		0.032	0.021	0.103	10.8
Lee	Co.Corp.Int	09-Jan-07		0.037	0.029	0.085	13.7
Lee	Carrigadrohid	09-Jan-07		0.021	0.016	0.06	8.6
Lee	Inchigeelagh Br. Dromcarra B	09-Jan-07		< 0.013	0.007	0.047	3.4
Lee	Bealahaglashin Br.	09-Jan-07 09-Jan-07		< 0.013 0.016	0.009 0.014	0.062 0.049	5 6
Lee	Rooves Beg	09-Jan-07		0.010	0.014	0.049	8.7
Lee	Inch/sig Br	09-Jan-07		< 0.022	< 0.006	< 0.026	2.3
Lee	Bealahaglashin Br.	17-Jan-07		0.032	0.01	0.04	6.9
Lee	Inchigeelagh Br.	17-Jan-07		< 0.013	0.006	0.032	2.9
Lee	Rooves Beg	17-Jan-07		0.023	0.014	0.041	9.9
Lee	Ang.Rest.Br	17-Jan-07		0.041	0.024	0.057	11.5
Lee	Inniscarra	17-Jan-07		0.035	0.022	0.062	11.5
Lee	Dromcarra B	17-Jan-07		0.014	0.009	0.026	4.8
Lee	Carrigadrohid	17-Jan-07		0.024	0.013	0.046	8.8
Lee	Co.Corp.Int	17-Jan-07		0.059	0.029	0.103	13.6
Lee	Inch/sig Br	17-Jan-07		< 0.013	< 0.006	< 0.026	2
Lee	Inch/sig Br	08-Feb-07		0.021	0.008	0.069	
Lee	Ang.Rest.Br	08-Feb-07		0.078	0.176	0.435	
Lee	Dromcarra B	08-Feb-07		0.014 0.029	0.014	0.093	
Lee	Rooves Beg	08-Feb-07	14. nd	0.029	0.013 <i>0.14</i>	0.07 0.314	
Lee	Inniscarra Inchigeelagh Br.	00-Feb-07	Official.	< 0.039	0.006	0.038	
Lee	Co.Corp.Int	08-Feb-07	oses die	0.013 0.08	0.000 0.166	0.533	
Lee	Carrigadrohid	08-Feb-67	Adilia	0.025	0.012	0.052	
Lee	Bealahaglashin Br.	08-Feb-07 08-Feb-07 08-Feb-07 08-Feb-07 08-Feb-07 15-War-07		< 0.013	< 0.006	< 0.026	
Lee	Ang.Rest.Br	15-Mar 07		0.035	0.022	0.066	9.2
Lee	Carrigadrohid	15-Mar-07		0.024	0.018	0.057	
Lee	Inniscarra	\$ 15-Mar-07		0.03	0.021	0.058	
Lee	Dromcarra B	₹ [©] 15-Mar-07		< 0.013	< 0.006	0.027	
Lee	Inchigeelagh Br. Inch/sig Br Co.Corp.Int	15-Mar-07		< 0.013	< 0.006	0.03	
Lee	Inch/sig Br	15-Mar-07		< 0.013	< 0.006	< 0.026	2.5
Lee				0.035	0.022	0.061	0.5
Lee	Inchigeelagh Br.	15-Mar-07		< 0.013	< 0.006	0.026	2.5
Lee	Bealahaglashin Br. Rooves Beg	15-Mar-07		0.016 0.029	< 0.006 0.019	0.038 0.067	
Lee Lee	Bealahaglashin Br.	15-Mar-07 18-Apr-07		0.029 0.058	< 0.019	0.067	7
Lee	Carrigadrohid	18-Apr-07		0.04	< 0.006	0.074	8.9
Lee	Ang.Rest.Br	18-Apr-07		0.04	0.01	0.026	11.6
Lee	Inch/sig Br	18-Apr-07		< 0.013	< 0.006	< 0.026	2.4
Lee	Inniscarra	18-Apr-07		0.024	0.007	0.035	11.2
Lee	Rooves Beg	18-Apr-07		0.025	< 0.006	< 0.026	9.8
Lee	Dromcarra B	18-Apr-07		0.015	< 0.006	< 0.026	3.8
Lee	Co.Corp.Int	18-Apr-07		0.039	0.017	0.042	15.4
Lee	Inchigeelagh Br.	18-Apr-07		< 0.013	< 0.006	0.026	2.6
Lee	Co.Corp.Int	09-May-07		0.092	0.036	0.034	
Lee	Bealahaglashin Br.	09-May-07		<i>0.052</i>	< 0.006	0.119	
Lee	Dromcarra B	09-May-07		< 0.013	< 0.006	< 0.026	
Lee Lee	Carrigadrohid Inchigeelagh Br.	09-May-07		<i>0.056</i> < 0.013	< 0.006 < 0.006	0.062 < 0.026	
Lee	Ang.Rest.Br	09-May-07 09-May-07		< 0.013 0.064	< 0.006	0.026	
Lee	Rooves Beg	09-May-07		0.038	< 0.006	0.048	
Lee	Inniscarra	09-May-07		0.038 0.063	0.016	0.032	
Lee	Inch/sig Br	09-May-07		< 0.013	< 0.006	< 0.026	< 1.8
Lee	Ang.Rest.Br	13-Jun-07		0.039	0.011	< 0.026	11.2
Lee	Dromcarra B	13-Jun-07		< 0.013	< 0.006	0.029	
Lee	Inch/sig Br	13-Jun-07		< 0.013	< 0.006	< 0.026	2.1
	-						_

	5 · 5 · 0 · 1 · · ·	40 1 07	0.010	0.000	0.000	0.0
Lee	Foot Br. Castlemasters	13-Jun-07	< 0.013	< 0.006	< 0.026	2.9
Lee	Rooves Beg	13-Jun-07	0.043	< 0.006	0.039	
Lee	Inchigeelagh Br.	13-Jun-07	< 0.013	< 0.006	< 0.026	
Lee	Inniscarra	13-Jun-07	0.045	< 0.006	< 0.026	10.9
Lee	Bealahaglashin Br.	13-Jun-07	0.049	< 0.006	0.066	
Lee	Co.Corp.Int	13-Jun-07	0.088	0.045	0.048	
Lee	Co.Corp.Int	11-Jul-07	0.08	0.016	0.034	9.6
Lee	Bealahaglashin Br.	11-Jul-07	0.014	< 0.006	< 0.026	
Lee	Carrigadrohid	11-Jul-07	0.026	< 0.006	< 0.026	
Lee	Rooves Beg	11-Jul-07	0.039	< 0.006	0.039	
Lee	Inch/sig Br	11-Jul-07	< 0.013	< 0.006	< 0.026	1.8
Lee	Inniscarra	11-Jul-07	0.113	0.008	0.04	7.3
Lee	Ang.Rest.Br	11-Jul-07	0.094	0.022	0.03	7.9
Lee	Foot Br. Castlemasters	11-Jul-07	< 0.013	0.007	0.139	< 1.8
Lee	Dromcarra B	11-Jul-07	< 0.013	0.006	< 0.026	
Lee	Rooves Beg	07-Aug-07	0.035	0.008	< 0.026	3.5
Lee	Inch/sig Br	07-Aug-07	< 0.013	< 0.01	0.04	< 2
Lee	Bealahaglashin Br.	07-Aug-07 07-Aug-07	0.013	< 0.006	< 0.04	2.9
	_	•				
Lee	Co.Corp.Int	07-Aug-07	0.042	0.021	0.026	13.6
Lee	Inniscarra	07-Aug-07	0.068	0.022	0.044	8.3
Lee	Ang.Rest.Br	07-Aug-07	0.06	0.018	0.026	9.5
Lee	Dromcarra B	07-Aug-07	< 0.013	< 0.006	< 0.026	< 2
Lee	Foot Br. Castlemasters	07-Aug-07	0.014	< 0.006	0.039	< 1.8
Lee	Carrigadrohid	07-Aug-07	0.029	< 0.006	< 0.026	3.1
Lee	Dromcarra B	20-Sep-07	< 0.013	< 0.006	0.045	
Lee	Inch/sig Br	20-Sep-07	< 0.013	< 0.006	< 0.026	
Lee	Foot Br. Castlemasters	20-Sep-07	< 0.013	< 0.006	< 0.026	
Lee	Bealahaglashin Br.	20-Sep-07	့လိ 0.063	< 0.006	0.033	
Lee	Co.Corp.Int	20-Sep-07	0.043	0.033	< 0.026	
Lee	Inchigeelagh Br.	20-Sep-07	< 0.013	< 0.006	< 0.026	
Lee	Inniscarra	20-Sep-07	0.088	< 0.006	0.036	
Lee	Ang.Rest.Br	20-Sep-67 CULT	0.041	0.017	< 0.026	
Lee	Rooves Beg	20-Sep-07 20-Sep-07 20-Sep-07 20-Sep-07 20-Sep-07 20-Sep-07 10-Oct-07	0.074	< 0.006	0.073	
Lee	A D 1 D	100ct 07	0.034	0.039	0.026	8.8
Lee		10-Oct-07	0.049	0.01	0.036	6
Lee	Rooves Beg	1000ct-07 1000ct-07 10-Oct-07	0.043	< 0.006	< 0.026	· ·
Lee	Bealahaglashin Br.	10-Oct-07	0.022	0.007	0.093	
Lee	Inchigeelagh Br.	10-Oct-07	< 0.013	< 0.006	0.034	< 2
Lee	Foot Br. Castlemasters	10-Oct-07	< 0.013	< 0.006	0.052	`-
Lee	Co.Corp.Int	10-Oct-07	0.03	0.028	0.049	
Lee	Dromcarra B	10-Oct-07	< 0.03	< 0.006	0.05	
	Inch/sig Br	10-Oct-07	< 0.013	0.007	< 0.03	4
Lee	_					
Lee	Inniscarra	24-Oct-07 GR1016	0.028	0.015	< 0.026	7.3
Lee	Ang.Rest.Br	25-Oct-07 GR1017	0.031	0.014	< 0.026	7.2
Lee	Ang.Rest.Br	15-Nov-07	0.035	0.016	< 0.026	6.6
Lee	Inniscarra	15-Nov-07	0.047	0.009	< 0.026	6.2
Lee	Foot Br. Castlemasters	15-Nov-07	0.024	< 0.006	0.07	< 1.8
Lee	Dromcarra B	15-Nov-07	0.015	0.006	0.031	2.8
Lee	Inch/sig Br	15-Nov-07	< 0.013	< 0.006	< 0.026	2
Lee	Inchigeelagh Br.	15-Nov-07	0.015	< 0.006	0.094	< 2
Lee	Rooves Beg	15-Nov-07	0.051	0.008	0.076	4.3
Lee	Co.Corp.Int	15-Nov-07	0.031	0.045	0.037	9.3
Lee	Bealahaglashin Br.	15-Nov-07	0.056	< 0.006	0.123	3.8
Lee	Ang.Rest.Br	12-Dec-07 t.cliform=1		0.023	0.069	8.2
Lee	Dromcarra B	12-Dec-07	0.018	0.009	0.071	
Lee	Inch/sig Br	12-Dec-07	< 0.013	< 0.006	0.026	< 1.8
Lee	Co.Corp.Int	12-Dec-07	0.039	0.021	0.092	
Lee	Inniscarra	12-Dec-07	0.038	0.02	0.07	10.1
Lee	Inchigeelagh Br.	12-Dec-07	0.014	0.009	0.087	
Lee	Rooves Beg	12-Dec-07	0.025	0.018	0.053	
Lee	Foot Br. Castlemasters	12-Dec-07	0.015	0.006	0.055	3.2
Lee	Bealahaglashin Br.	12-Dec-07	0.027	< 0.006	0.086	5.8
Lee	Bealahaglashin Br.	21-Feb-08	0.019	0.009	0.078	9.1
Lee	Inniscarra	21-Feb-08	0.029	0.017	0.069	13.8
	= = ==	-				

						_
Lee	Inchigeelagh Br.	21-Feb-08	< 0.013	< 0.006	0.068	3.3
Lee	Rooves Beg	21-Feb-08	0.022	0.014	0.101	8.9
Lee	Dromcarra B	21-Feb-08	< 0.013	0.007	0.063	5.6
Lee	Co.Corp.Int	21-Feb-08	0.031	0.031	0.072	16.6
Lee	Bealahaglashin Br.	12-Mar-08	< 0.013	< 0.006	0.027	4.1
Lee	Foot Br. Castlemasters	12-Mar-08	< 0.013	< 0.006	0.026	2.8
Lee	Dromcarra B	12-Mar-08	< 0.013	< 0.006	0.05	3.5
Lee	Inchigeelagh Br.	12-Mar-08	< 0.013	< 0.006	0.034	2.8
Lee	Inniscarra	12-Mar-08	0.024	0.013	0.085	12
Lee	Rooves Beg	12-Mar-08	0.015	< 0.006	0.027	8.1
Lee	S S	12-Mar-08	0.025	0.017	0.027	12.9
	Co.Corp.Int					
Lee	Inniscarra	10-Apr-08	0.022	< 0.006	< 0.026	3
Lee	Inchigeelagh Br.	10-Apr-08	< 0.013	< 0.006	< 0.026	
Lee	Bealahaglashin Br.	10-Apr-08	0.015	< 0.006	< 0.026	
Lee	Dromcarra B	10-Apr-08	0.013	< 0.006	< 0.026	
Lee	Co.Corp.Int	10-Apr-08	0.024	0.009	0.053	
Lee	Rooves Beg	10-Apr-08	0.017	< 0.006	< 0.026	
Lee						
	Rooves Beg	14-May-08	< 0.013	< 0.006	0.045	44.5
Lee	Inniscarra	14-May-08	< 0.013	< 0.006	0.027	11.5
Lee	Co.Corp.Int	14-May-08	0.015	0.02	0.036	
Lee	Carrigadrohid	14-May-08	< 0.013	< 0.006	0.044	
Lee	Foot Br. Castlemasters	14-May-08	< 0.013	< 0.006	< 0.026	2.9
Lee	Dromcarra B	14-May-08	< 0.013	< 0.006	< 0.026	
Lee	Bealahaglashin Br.	14-May-08	< 0.013	< 0.006	0.083	
Lee	Inchigeelagh Br.		< 0.013	< 0.006	< 0.026	
	5 5	14-May-08				
Lee	Rooves Beg	11-Jun-08	0.045	< 0.006	0.031	
Lee	Carrigadrohid	11-Jun-08	0.036	< 0.006	0.093	
Lee	Inniscarra	11-Jun-08	ຸ∂ຶ 0.175	0.008	0.027	9.9
Lee	Inchigeelagh Br.	11-Jun-08	21.013 × 11.013	< 0.006	0.068	
Lee	Dromcarra B	11-Jun-08	0.015	< 0.006	0.037	
Lee	Co.Corp.Int	11- Jun-08-0	0.112	0.036	0.055	
		11-Jun-00	0.112			
Lee	Bealahaglashin Br.	1 1-Juli-00	0.036	< 0.006	0.046	
Lee	Dromcarra B	11-Jun-08 11-Jun-08 11-Jun-08 11-Jun-08 11-Jun-08 09-Jul-08	0.015	< 0.006	< 0.026	
Lee	Inchigeelagh Br.	09°Jur08	< 0.013	< 0.006	0.033	
Lee	Bealahaglashin Br.	80-Jul-08	0.019	< 0.006	0.034	
Lee	Carrigadrohid	09-Jul-08 09-Jul-08 09-Jul-08	0.027	0.013	0.063	
Lee	Inniscarra	09lul-08	0.05	0.018	0.059	10.1
Lee	Co.Corp.Int	09-Jul-08	0.047	0.035	0.04	10.1
	30.00.p	00 1.1.00				
Lee	Rooves Beg	09-Jul-08	0.03	< 0.006	0.062	
Lee			0.035	0.007	0.075	4.5
Lee	Rooves Beg	13-Aug-08	0.034	0.008	0.081	4.9
Lee	Bealahaglashin Br.	13-Aug-08	0.023	0.009	0.045	3.2
Lee	Inniscarra	13-Aug-08	0.049	0.021	0.107	9.2
Lee	Inchigeelagh Br.	13-Aug-08	0.016	0.006	0.034	< 2
Lee	Foot Br. Castlemasters	13-Aug-08	0.015	0.006	0.044	< 1.8
Lee	Dromcarra B	13-Aug-08	0.013	0.008	0.044	< 2
Lee	Co.Corp.Int	13-Aug-08	0.051	0.04	0.095	12.2
Lee	Dromcarra B	10-Sep-08	0.014	0.007	0.031	
Lee	Rooves Beg	10-Sep-08	0.027	0.014	0.061	
Lee	Bealahaglashin Br.	10-Sep-08	0.024	0.009	0.073	
Lee	Co.Corp.Int	10-Sep-08	0.043	0.021	0.041	
Lee	Carrigadrohid	10-Sep-08	0.026	0.012	0.069	
Lee	Inniscarra	10-Sep-08	0.047	0.015	0.083	7.6
Lee	Inchigeelagh Br.	10-Sep-08	0.047	< 0.013	0.035	7.0
		•				
Lee	Co.Corp.Int	08-Oct-08	0.039	0.028	< 0.026	
Lee	Rooves Beg	08-Oct-08	0.028	0.006	0.058	
Lee	Inch/sig Br	08-Oct-08	< 0.013	< 0.006	< 0.026	
Lee	Inchigeelagh Br.	08-Oct-08	< 0.013	< 0.006	0.064	
Lee	Foot Br. Castlemasters	08-Oct-08	< 0.013	< 0.006	0.06	< 1.8
Lee	Carrigadrohid	08-Oct-08	0.028	< 0.006	0.033	
Lee	Inniscarra	08-Oct-08	0.046	0.014	0.035	9.4
						J.4
Lee	Bealahaglashin Br.	08-Oct-08	0.02	< 0.006	< 0.026	
Lee	Dromcarra B	08-Oct-08	< 0.013	< 0.006	< 0.026	
Lee	Inchigeelagh Br.	12-Nov-08	< 0.013	< 0.006	0.04	

Lee	Carrigadrohid	12-Nov-08	0.017	0.025	0.056	
Lee	Dromcarra B	12-Nov-08	< 0.013	< 0.006	0.042	
Lee	Inniscarra	12-Nov-08	0.025	0.018	0.084	7
Lee	Rooves Beg	12-Nov-08	0.021	0.014	0.041	
Lee	Bealahaglashin Br.	12-Nov-08	0.015	< 0.006	0.028	
Lee	Co.Corp.Int	12-Nov-08	0.024	0.016	0.034	
Lee	Inchigeelagh Br.	10-Dec-08	< 0.013	0.006	0.047	
Lee	Rooves Beg	10-Dec-08	0.03	0.016	0.061	
Lee	Inniscarra	10-Dec-08	0.03	0.019	0.045	
Lee	Co.Corp.Int	10-Dec-08	0.031	0.025	0.056	
Lee	Dromcarra B	10-Dec-08	0.013	0.007	0.031	
Lee	Bealahaglashin Br.	10-Dec-08	0.099	0.009	0.027	
Lee	Carrigadrohid	10-Dec-08	0.024	0.013	0.049	
Lee	Inchigeelagh Br.	15-Jan-09	0.014	0.012	0.048	
Lee	Rooves Beg	15-Jan-09	0.029	0.021	0.072	
Lee	Co.Corp.Int	15-Jan-09	0.033	0.032	0.09	
Lee	Dromcarra B	15-Jan-09	< 0.013	0.01	0.034	
Lee	Inniscarra	15-Jan-09	0.027	0.021	0.069	7.6
Lee	Bealahaglashin Br.	15-Jan-09	0.021	0.013	0.051	
Lee	Foot Br. Castlemasters	15-Jan-09	< 0.013	0.01	0.042	2.3
Lee	Carrigadrohid	15-Jan-09	0.022	0.017	0.068	
Lee	Inchigeelagh Br.	11-Feb-09	< 0.013	< 0.006	0.026	
Lee	Rooves Beg	11-Feb-09	0.017	0.012	0.061	
Lee	Inniscarra	11-Feb-09				
Lee	Carrigadrohid	11-Feb-09	0.015	0.012	0.033	
Lee	Dromcarra B	11-Feb-09	< 0.013	0.007	0.008	
Lee	Bealahaglashin Br.	11-Feb-09	0.013	0.006	0.02	
Lee	Co.Corp.Int	11-Feb-09	30 .035	0.028	0.035	
Lee	Inchigeelagh Br.	12-Mar-09	d < 0.013	< 0.006	0.029	2
Lee	Co.Corp.Int	12-Mar-09	0.024	0.019	0.016	13.8
Lee	Carrigadrohid	11-Feb-09 12-Mar-09 12-Mar-09 12-Mar-09 12-Mar-09 12-Mar-09	0.019	0.007	0.056	4.2
Lee	Rooves Beg	12-Mar-69 (%)	0.023	0.008	0.039	5.6
Lee	Dromcarra B	12-Mar-09	< 0.013	< 0.006	0.006	2.7
Lee	Inniscarra	12-Mar 09	0.023	0.009	0.021	10.1
Lee	Bealahaglashin Br.	TE UNICH US	0.017	< 0.006	0.011	3.3
Lee	Inchigeelagh Br.	98-Apr-09	< 0.013	< 0.006	0.006	
Lee	Bealahaglashin Br.	08-Apr-09	0.013	< 0.006	0.032	
Lee	Diomouna D	00 / tp: 00	< 0.013	< 0.006	0.01	
Lee	Foot Br. Castlemasters	08-Apr-09	< 0.013	< 0.006	0.01	< 1.8
Lee	Co.Corp.Int	08-Apr-09	0.038	0.028	0.142	
Lee	Rooves Beg	08-Apr-09	0.02	0.007	0.015	
Lee	Carrigadrohid	08-Apr-09	0.019	< 0.006	0.011	
Lee	Inniscarra	08-Apr-09	0.046	0.021	0.093	11.3

		Parameter	Nitrite	Molybdate F	Ammonium	Nitrate
Rep. No. 318/09			NO2	Р	NH4	NO3
		Max.	0.05	Varies	0.5	25
		Target				
		Min.				
	Sample Date	Comments	mg/l	mg/l	mg/l	mg/l
Lee Inniscarra	09-Jan-07		0.032	0.021	0.103	10.8
Lee Inniscarra	17-Jan-07		0.035	0.022	0.062	11.5
Lee Inniscarra	08-Feb-07		0.059	0.14	0.314	
Lee Inniscarra	15-Mar-07		0.03	0.021	0.058	
Lee Inniscarra	18-Apr-07		0.024	0.007	0.035	11.2
Lee Inniscarra	09-May-07		0.063	0.016	0.032	
Lee Inniscarra	13-Jun-07		0.045	< 0.006	< 0.026	10.9
Lee Inniscarra	11-Jul-07		0.113	0.008	0.04	7.3
Lee Inniscarra	07-Aug-07		0.068	0.022	0.044	8.3
Lee Inniscarra	20-Sep-07		0.088	< 0.006	0.036	
Lee Inniscarra	10-Oct-07		0.049	0.01	0.036	6
Lee Inniscarra	24-Oct-07	GR1016	0.028	0.015	< 0.026	7.3
Lee Inniscarra	15-Nov-07		0.047	0.009	< 0.026	6.2
Lee Inniscarra	12-Dec-07		0.038	0.02	0.07	10.1
Lee Inniscarra	21-Feb-08		0.029	0.017	0.069	13.8
Lee Inniscarra	12-Mar-08		0.024	0.013	0.085	12
Lee Inniscarra	10-Apr-08		0.022	< 0.006	< 0.026	3
Lee Inniscarra	14-May-08		< 0.013	< 0.006 √°	0.027	11.5
Lee Inniscarra	11-Jun-08		0.175 med	0.008	0.027	9.9
Lee Inniscarra	09-Jul-08		0.05	0.018	0.059	10.1
Lee Inniscarra	13-Aug-08		0.049	0.021	0.107	9.2
Lee Inniscarra	10-Sep-08	100°	0.047	0.015	0.083	7.6
Lee Inniscarra	08-Oct-08	2 Pulted	0.046	0.014	0.035	9.4
Lee Inniscarra	12-Nov-08	ctioners	0.025	0.018	0.084	7
Lee Inniscarra	10-Dec-08	Sper on	0.03	0.019	0.045	
Lee Inniscarra	15-Jan-09	Tight	0.027	0.021	0.069	7.6
Lee Inniscarra	11-Feb-09	367,				
Lee Inniscarra	12-Mar- 6 9		0.023	0.009	0.021	10.1
Lee Inniscarra	08-Apr-09	is positor purpo printe or metres	0.046	0.021	0.093	11.3

SURFACE WATER - Introduction

Scores should be inserted (where appropriate) into the blue boxes in Sections 1 to 10. The scores for each section will be automatically totalled (in the yellow box) and a summary of the scores for each section will appear on this sheet. The section scores will be totalled automatically on this summary sheet. The population of supply should be entered into the blue box below on this page and the overall Cryptosporidium Risk Assessment Score will be automatically calculated for the supply.

Cork Harbour and City Water Supply Scheme at Inniscarra Waterworks

22/02/2008

Surface Water Catchment Risk Scores	Section Score	Total Score
Section 1 - Animals within the Catchment	(10+5+0+2+4)	21
Section 2 - Agricultural Practices within the Catchment	(6+3+3+6+8)	26
Section 3 - Discharges to the Catchment/Water Source	(6+6+2)	و٠ 14
Section 4 - Water Source Type	4	Legi ^{US} 4
Section 5 - Catchment Inspections	(-3-3)	4 -6
Section 6 - Raw Water Intake Management for Abstractions	(-2-4) all of	-6
Total Surface Water Catchment Risk Scor	(-3-3) (-2-4) only of re (-2-4) only only only only only only only only	53
	ality alite	
Surface Water - Treatment and Supply Risk Score	ion of rect	
Section 7 - Water Treatment Processes	section 10	-10
Section 8a - Treatment Works Monitoring of Coagulation and Filtration	institut -5	-5
Section 8b - Treatment Works Monitoring of Coagulation and Filtration	FOR THE -1	-1
Section 8c - Treatment Works Monitoring of Coagulation and Filtration	(-5-2+5-2)	-4
Section 8d - Treatment Works Monitoring of Coagulation and Filtration		
Section 8e - Treatment Works Monitoring of Coagulation and Filtration		
Section 8f - Treatment Works Monitoring of Coagulation and Filtration		
Section 9 - Rapid Gravity and Pressure Filter Works Performance	(0+6-2-2)	2
Section 10 - Treatment Works Operation	(-2+1-4+4-2+2+4)	3
Total Surface Water - Treatment and Supply Risk Scor	'e	-15
Surface Water Risk Assessment Score		38
Population		111,000
Population Weighting Factor (0.4 x log10(population))		2.018129192
Final Weighted Risk Assessment Score		76.68890928
Water Supply Risk Classification		High Risk

21/04/2008

Since the assessment was made the sand filters were upgraded and the media depth is now above the minimum design level. Therefore the scoring for Section 9 is now -6 resulting in an overall score of 60.54 and a risk classification of Moderate.

The new assessment reads as follows:

Surface Water Catchment Risk Scores	Section Score	Total Score
Section 1 - Animals within the Catchment	(10+5+0+2+4)	21
Section 2 - Agricultural Practices within the Catchment	(6+3+3+6+8)	26
Section 3 - Discharges to the Catchment/Water Source	(6+6+2)	14
Section 4 - Water Source Type	4	4
Section 5 - Catchment Inspections	(-3-3)	<u>چ</u> 6
Section 6 - Raw Water Intake Management for Abstractions	(-2-4)	refine -6
Total Surface Water Catchment Risk Scot	` ,	4 of 1 53
	re	> 1
Surface Water - Treatment and Supply Risk Score	-08es of the	
	70 alite	-10
Section 8a - Treatment Works Monitoring of Coagulation and Filtration	ion este	-5
Section 8b - Treatment Works Monitoring of Coagulation and Filtration	Dectowite1	-1
Section 8c - Treatment Works Monitoring of Coagulation and Filtration	For its (-5-2+5-2)	-4
Section 8d - Treatment Works Monitoring of Coagulation and Filtration	FORMEN	
Section 8e - Treatment Works Monitoring of Coagulation and Filtration	of Co.	
Section 8f - Treatment Works Monitoring of Coagulation and Filtration		
Section 9 - Rapid Gravity and Pressure Filter Works Performance	(0-2-2-2)	-6
Section 10 - Treatment Works Operation	(-2+1-4+4-2+2+4)	3
Total Surface Water - Treatment and Supply Risk Scot		-23
	. •	
Surface Water Risk Assessment Score		30
Population		111,000
Population Weighting Factor (0.4 x log10(population))		2.018129192
Final Weighted Risk Assessment Score		60.54387575
Water Supply Risk Classification		Moderate
water Supply firsk Classification		Moderate

ABS_CD 0500PUB3401	AGG_SERVED	ABS_VOL	PT CD	DIS_DS	EASTING	NORTHING	VERIFIED
0500PLIB3/01	95,000	338 000	PT_CD Label Not Assigned	5568	153486	72314	N
J300F 0B340 I	95,000	228,000	Laber Not Assigned	3366	133466	72314	111
							1
					1150		
					(N ²)		
					otherite		
				OF A CONTROL OF THE PROPERTY O	, o ^v		
				24. 25	<i>B</i>		
				OFICE			
				(C) X (V)			
				202,760			
				all all			
				2 con			
				itor et r			
				ec with			
				ASSEX OF			
				7. 30c			+
			₹ _O r	AU.			
			, c	<i>S</i> ,			
			£0				
			at 6				
			ر والم				
			COA2				
			Careel de				1
							1
							<u> </u>
							1
							1
	1						1
							
							1
							<u> </u>
							1
							1
i .							1

Cork County

Water Services Investment Programme 2007 - 2009

Schemes at Construction	W/S	Est. Cost	Schemes to start 2009 contd.	W/S	Est. Cost
Cork North			Cork South		
Mitchelstown Sewerage Scheme			Ballincollig Sewerage Scheme (Upgrade) (G)	S	22,248,000
(Nutrient Removal)	S	221,000	Cork Lower Harbour Sewerage Scheme (excl. Crosshaven		73,542,000
			Shannagarry/ Garryvoe/ Ballycotton Sewerage Scheme	S	3,780,000
Cork South			Youghal Sewerage Scheme	S	14,420,000
Ballyvourney/ Ballymakeery Sewerage Scheme	S	3,049,000	roughal Sewerage Scriente	3	14,420,000
Cobh/ Midleton/ Carrigtwohill Water Supply Scheme Cork Lower Harbour Sewerage Scheme	W	10,135,000	Cork West		
(Crosshaven SS) (G)	S	4,850,000		C	692,000
Cork Water Strategy Study (G)	W	941,000	Ballydehob Sewerage Scheme	S	683,000
Kinsale Sewerage Scheme	S	20,000,000	Bantry Water Supply Scheme	W	14,935,000
Midleton Sewerage Scheme (Infiltration Reduction) (G	a) S	2,078,000	Clonakilty Sewerage Scheme (Plant Capacity Increase)	S	3,677,000
		41,274,000	Courtmacsherry/ Timoleague Sewerage Scheme	S	2,472,000
Schemes to start 2007			Dunmanway Regional Water Supply Scheme Stage 1	W	12,669,000
					164,629,000
Cork North			Serviced Land Initiative		
North Cork Grouped DBO Wastewater Treatment	0	5 450 000			
Plant (Buttevant, Doneraile & Kilbrin)	S	5,150,000	Cork North		
Cork West			Ballyclough Water Supply Scheme	W	139,000
Skibbereen Sewerage Scheme	S	20,000,000	Ballyhooley Improvement Scheme	W/S	139,000
Onibboroon Coworage Conomic	U	25,150,000	Broghill-Raingoggin Sewerage Scheme	S	406,000
Schemes to start 2008		,	Bweerg Water Supply Scheme	W	115,000
		~5	Coorchtown Sewerage Scheme (incl. Water)	W/S	543,000
Cork North		action ar	Clondulane Sewage Treatment Plant	S	417,000
Mallow/ Ballyviniter Regional Water Supply Scheme (I	H) W	8,652,000 8,400,000	Freemount Sewerage Scheme	S	150,000
Mallow Sewerage Scheme (H)	S	£5,408,000	Pike Road Sewerage Scheme (incl. Water)	W/S	2,080,000
		948,000 1,296,000	Rathcormac Sewerage Scheme (incl. Water)	W/S	555,000
Cork South		040,000	Spa Glen Sewerage Scheme	S	736,000
Ballincollig Sewerage Scheme (Nutrient Removal) (G) Ballingeary Sewerage Scheme	CONSO	948,000 1,296,000	Uplands Fermoy Sewerage Scheme (incl. Water)	W/S	1,174,000
Bandon Sewerage Scheme Stage 2	S	14,729,000	Watergrasshill Water Supply Scheme (incl. Sewerage) (G)	W/S	4,151,000
City Environs (CASP) Strategic Study (G)	S	153,000			
Cloghroe Sewerage Scheme (Upgrade)	S	683,000	Cork South		
Coachford Water Supply Scheme	W	1,318,000	Ballincollig Sewerage Scheme (Barry's Rd Foul and		
Garrettstown Sewerage Scheme	S	2,153,000	Storm Drainage) (G)	S	1,164,000
Inniscarra Water Treatment Plant Extension Phase 1	W	2,678,000	Belgooley, Water Supply Scheme (incl. Sewerage)	W/S	2,913,000
Little Island Sewerage Scheme (G)	S	2,200,000	Blarney Water Supply Scheme (Ext. to Station Rd) (G)	W	416,000
			Carrigtwohill Sewerage Scheme (Treatment and	VV	410,000
			Storm Drain) (G)	0	7 622 000
Cork West	C	7 140 000	Castlematyr Wastewater Treatment Plant Extension	S S	7,632,000
Bantry Sewerage Scheme Dunmanway Sewerage Scheme	S S	7,148,000 2,153,000			1,200,000
Leap/ Baltimore Water Supply Scheme	W	6,365,000	Crookstown Sewerage Scheme (incl. Water)	W/S	1,200,000
Schull Water Supply Scheme	W	5,253,000	Dripsey Water Supply Scheme (incl. Sewerage)	W/S	1,112,000
Contain Francis Cappy Contoins		61,137,000	Glounthane Sewerage Scheme (G)	S	1,576,000
Schemes to start 2009		, ,	Innishannon Sewerage Scheme	S	277,000
			Innishannon Wastewater Treatment Plant	S	694,000
Cork North			Kerrypike Sewerage Scheme	S	832,000
Banteer/Dromahane Regional Water Supply Scheme	W	1,576,000	Kerrypike Water Supply Scheme	W	416,000
Conna Regional Water Supply Scheme Extension	W	2,627,000	Killeagh Wastewater Treatment Plant Extension	S	1,200,000
Cork NE Water Supply Scheme	W	4,326,000	Killeagh Water Supply Scheme (includes Sewerage)	W/S	485,000
Cork NW Regional Water Supply Scheme	W	6,046,000	Killeens Sewerage Scheme	S	420,000
Millstreet Wastewater Treatment Plant (Upgrade)	S	1,628,000	Kilnagleary Sewerage Scheme	S	694,000
			Midleton Wastewater Treatment Plant Extension	S	4,050,000

Cork County contd.

Water Services Investment Programme 2007 - 2009

Serviced Land Initiative contd.	W/S	Est. Cost	Schemes to Advance through Planning cond.	W/S	Est. Cost
Cork South contd.			Cork South		
Mogeely, Castlemartyr & Ladysbridge Water Supply Schem	ne W	2,566,000	Carrigtwohill Sewerage Scheme (G)	S	20,000,000
North Cobh Sewerage Scheme (G)	S	3,193,000	Cork Sludge Management (G)	S	14,420,000
Riverstick Water Supply Scheme (incl. Sewerage)	W/S	525,000	Cork Water Supply Scheme (Storage - Mount Emla,		
Rochestown Water Supply Scheme	W	2,700,000	Ballincollig & Chetwind) (G)	W	8,500,000
Saleen Sewerage Scheme	S	1,051,000	Inniscarra Water Treatment Plant (Sludge Treatment)(G)W	5,356,000
Youghal Water Supply Scheme	W	2,300,000	Macroom Sewerage Scheme	S	5,150,000
			Minane Bridge Water Supply Scheme	W	1,421,000
Cork West					
Castletownshend Sewerage Scheme	S	1,576,000	Cork West		
		50,797,000	Bantry Regional Water Supply Scheme (Distribution)	W	9,455,000
Rural Towns & Villages Initiative			Cape Clear Water Supply Scheme	W	1,679,000
			Castletownbere Regional Water Supply Scheme	W	8,405,000
Cork North			Glengarriff Sewerage Scheme	S	2,500,000
Buttevant Sewerage Scheme (Collection System)	S	2,446,000	Roscarberry/Owenahincha Sewerage Scheme	S	1,576,000
Doneraile Sewerage Scheme (Collection System)	S	1,738,000	Skibbereen Regional Water Supply Scheme Stage 4	W	7,880,000
			Water Conservation Allocation Water Conservation Allocation Water Conservation Allocation South Western River Basin District (WFD) Project 1		95,646,000
Cork South			94. M4 ₀ .		
Innishannon (Ballinadee/ Ballinspittle/ Garrettstown)			Water Conservation Allocation		12,206,000
Water Supply Scheme	W	6,726,000	Water Conservation Allocation Little Conservation Allocation Asset Management Study South Western River Basin District (WFD) Project 1		
			Asset Management Study		300,000
Cork West		applied the said	\$		
Ballylicky Sewerage Scheme	S	2,158,000	South Western River Basin District (WFD) Project ¹		9,400,000
Baltimore Sewerage Scheme	S	<03,162,000			
Castletownbere Sewerage Scheme	S	5,202,000			
Schull Sewerage Scheme	S S Consen	3,523,000	Programme Total	48	5,489,000
	COUSE	24,950,000			
Schemes to Advance through Planning	Č				
Cork North					
Mitchelstown North Galtees Water Supply Scheme	W	3,152,000			
Mitchelstown Sewerage Scheme	S	3,000,000			
Newmarket Sewerage Scheme	S	3,152,000			

¹ This project is being led by Cork County Council on behalf of other authorities in the River Basin District

⁽H) Refers to a Hub as designated in the National Spatial Strategy

⁽G) Refers to a Gateway as designated in the National Spatial Strategy

Mr. Noel O'Keefe,
Senior Executive Officer,
Water Services – Capital,
South Cork Rural,
Cork County Council,
County Hall,

AN ROINN COMHSHAOIL

OIDHREACHTA AGUS

RIALTAIS ÁITIÚIL

DEPARTMENT OF

THE ENVIRONMENT, HERITAGE

AND LOCAL GOVERNMENT

BLOC I, URLÁR 2

FOIRGNIMH IRISH LIFE

SR. NA MAINISTREACH ÍOCHT.

BAILE ÁTHA CLIATH I

BLOCK 1, FLOOR 2

IRISH LIFE CENTRE

LOWER ABBEY STREET

DL .I

Tel No: +353 | 888 2000

LoCall No: 1890 20 20 21

Fax No: +353 1 888 2687

14th September 2006

Re: Dripsey Water and sewerage Serviced Land Initiative
Approval of Preliminary Report for Sewerage element

A Chara,

I am directed by the Minister for the Environment Heritage and Local Government to convey approval to the Preliminary Report for the sewerage element of the above scheme.

The Preliminary Report is approved subject to the following:

- The level of narrogen removal recommended in the wastewater treatment plant is not acceptable. The local authority's letter of 28th March 2006 amending this issue is noted and accepted.
- The wastewater hydraulic load of 180 l/head/day is to be reviewed.
- Statutory Instrument 419 of 1994, referenced in Section 6.3.5, has been withdrawn and is replaced by SI 254 2001. This withdrawn SI is also referred to in the Dixon Brosnan Report.
- The level of nitrate application allowed under the Nitrate Regulations, SI 788, Good Agricultural Practices for the Protection of Waters, is 170 kg/Ha and not 210 kg/Ha as indicate in the Dixon Brosnan Report

SOUTH CORK RURAL

1 R SFP 2006

CORK COUNTY COUNCIL COUNTY HALL - CORK

Website: www.environ.ie

- A Statutory Instrument is now in place dealing with odour and noise arising from wastewater treatment plants, SI 787 of 2005.
- A review of the BOD and SS concentration limits of 20 mg/l and 30 mg/l is to be carried out as the UWWT Regulations allow 25 mg/l and 35 mg/l respectively for these parameters

Public Private Partnership Assessment Report

There are a number of anomalies in the Public Private Partnership Assessment Report, which need correction. These are as follows:

- In Section 2.2 the estimate for the Phase 1 wastewater treatment plant upgrading does not agree with the estimate given in the preliminary report.
- In Section 2.3 the Dripsey WWTP is estimated to be 5% of the capacity of the overall Western Bundle. This is correct in terms of O/M. However, in terms of the D/B element, it equates to 18% if the Phase 1 and 2 capacity is taken into account. It is only 10% if the 600 p.e., Phase 1 capacity is taken into account.
- In Section 3.1 incorrect Total Nitrogen final effluent standards are outlined. The local authority wrote to the Department on 28th march 2006 and outlined that there was a typographical error in the recommended nitrogen concentration.

 The Total Nitrogen limit should read 40.6 mg/l.
- In Section 7.1 the estimate for the Phase 1 wastewater treatment plant upgrading does not agree with the estimate given in the preliminary report.
- In Section 7.1 the local authority indicate that a short term operate contract is included in all DB Contracts. However, this should be part of the DB tests on completion that would be required under the MF1 Conditions of Contract.
- In Section 7.2, there is an incorrect reference to Bandon WWTP in the first paragraph. This should be Blarney WWTP.
- In Section 9, there is an incorrect reference to Directive 98/37/EC. This should read 93/37/EEC. In fact this Directive has now been superseded by Directive 2004/18/EC.

Cork County Council, should now proceed with the planning of the scheme, as advised above.

If you have any queries relating to the above, please contact the undersigned at (01) 8882152.

Mise le meas,

Anthony O'Grady,

Water Services Section

EPA Export 26-07-2013:14:32:29

Comhshaol, Oidhreacht agus Rialtas Áitiúil Environment, Heritage and Local Government

Circular L3/09

CO. MANAGERS OFFICE RECEIVED

2 1 APR 2009

COUNTY HALL, CORK 7 April 2009

Water Services Investment ProgrammeR0JECT OFFICE

Serviced Land Initiative

- 1. Since 1997 the Water Services Investment Programmek KasuneTye COUNCIL increase the supply of housing by supporting new redidential-development through the Serviced Land Initiative (SLI). In light of developments in the economy at large, and in the housing market in particular during 2008, the continued operation of this Initiative has been under review.
- 2. In some areas of the country there is at present, an oversupply of housing, with many recently completed dwellings lying unsold. In this context the SLI is of questionable continuing benefit to the housing market at this stage and is being withdrawn.
- 3. With immediate effect at existing approvals, for which contracts have not been signed or letters of intent have issued, are being withdrawn. Schemes already commenced may continue to completion in line with procedures outlined in Circular L1/07 provided all work is scheduled for substantial completion by end 2010. No payments will be made beyond 31 December 2011.
- 4. Where multi-phase projects (generally costing more than €5m) are partially completed, water services authorities should write to the Department (by Friday, 29 May 2009 at the latest) outlining the progress made to date, the scale of works to be completed, the expected timeframe to completion and the case, if any, for allowing the remainder of the scheme to proceed. In

Department of Environment, Heritage and Local Government Block 1, Floor 2, Irish Life Buildings, Lower Abbey Street, Dublin 1 Tel: 353 1 888 2000 LoCall: 1890 20 20 21 Fax: 353 1 888 2687 Web: www.environ.le

this context the authority should address the criteria set out in paragraph 5 immediately below.

- 5. Where a water services authority is of the opinion that the continuation of an approved scheme for which contracts <u>have not</u> been signed is necessary for the proper development of the area, it is open to that authority to make a case for the scheme. Any case being put to the Department should address, but not be limited to, the following:
 - the volume of unsold new housing in the area to be served by the proposed scheme;
 - the basis on which the water services authority believes that there is a continuing requirement for further housing to be built;
 - whether specific developers/contractors have entered formal agreements with the water services authority to meet the 60% local share of the cost of the proposal.

Any such case received by the Department by Friday, 29 May 2009 will be considered on its merits.

- 6. Water services authorities are required to complete the **Appendix** to this circular in respect of all approved SLI schemes for which they are responsible, irrespective of the scheme status (except schemes where final accounts have been approved by the Department). This Appendix should be returned to the Department by Friday, 29 May 2009. Where a water services authority does not submit the necessary return by the due date the Department will not, under any circumstances, accept liability for any costs incurred on schemes commenced by that authority.
- 7. The Department will not accept any new applications for SLI schemes but those applications presently under examination in the Department will be finalised based on the criteria set out in paragraph 5 above. Details of those schemes should be included in the **Appendix** to this circular.

8. This Circular should be brought to the attention of all administrative and engineering personnel involved in water services projects. Enquiries may be addressed to Mr. Tom Walsh, Tel: 01-8882168, e-mail: tom walsh@environ.ie.

Malia Glaham

Maria Graham
Principal Officer
Water Services Section

To: County and City Managers

Directors of Services (Water Services Infrastructure)

Directors of Services (Finance)

Appendix

Scheme Name	Approved Cost €	Current Estimated Cost €	Start Date or Expected Start Date	Completion Date or Expected Completion Date	Funding	Balance fo Drawdowr €
- 1267				Office Itse.		
(es of	A. Stay		
			atposited	•		
			OSP CHOMPET CON			
			OR'			
		ansent of C			# {	
					2	
	<u> </u>					

	Expected Drawdown 2009				
Q1 €	Q2 €	Q3 €	Q4 €	Expected Drawdown 2010 €	Expected Drawdown 2011 €
				2010 € Tot it specifor whet red Tot of high to whet red To oppyright to whet red To oppyright to whet red	anet 1
					could, any or
				Out of	Medie
-,-			·	specifor owner to	
				Forthall	
			seni	ठ	
			Cogn		
				1,000	
				121.4	
<u>,</u>				A7414 A74	

Department of Environment, Heritage and Local Government Block 1, Floor 2, Irish Life Buildings, Lower Abbey Street, Dublin 1 Tel: 353 1 888 2000 LoCall: 1890 20 20 21 Fax: 353 1 888 2687 Web: www.environ.ie

Cork County

Water Services Investment Programme 2007 - 2009

Schemes at Construction	W/S	Est. Cost	Schemes to start 2009 contd.	W/S	Est. Cost
Cork North			Cork South		
Mitchelstown Sewerage Scheme			Ballincollig Sewerage Scheme (Upgrade) (G)	S	22,248,000
(Nutrient Removal)	S	221,000	Cork Lower Harbour Sewerage Scheme (excl. Crosshaven		73,542,000
			Shannagarry/ Garryvoe/ Ballycotton Sewerage Scheme	S	3,780,000
Cork South			Youghal Sewerage Scheme	S	14,420,000
Ballyvourney/ Ballymakeery Sewerage Scheme	S	3,049,000	roughal Sewerage Scrieme	3	14,420,000
Cobh/ Midleton/ Carrigtwohill Water Supply Scheme Cork Lower Harbour Sewerage Scheme	W	10,135,000	Cork West		
(Crosshaven SS) (G)	S	4,850,000		C	692,000
Cork Water Strategy Study (G)	W	941,000	Ballydehob Sewerage Scheme	S	683,000
Kinsale Sewerage Scheme	S	20,000,000	Bantry Water Supply Scheme	W	14,935,000
Midleton Sewerage Scheme (Infiltration Reduction) (G	a) S	2,078,000	Clonakilty Sewerage Scheme (Plant Capacity Increase)	S	3,677,000
		41,274,000	Courtmacsherry/ Timoleague Sewerage Scheme	S	2,472,000
Schemes to start 2007			Dunmanway Regional Water Supply Scheme Stage 1	W	12,669,000
					164,629,000
Cork North			Serviced Land Initiative		
North Cork Grouped DBO Wastewater Treatment	0	E 450 000			
Plant (Buttevant, Doneraile & Kilbrin)	S	5,150,000	Cork North		
Cork West			Ballyclough Water Supply Scheme	W	139,000
Skibbereen Sewerage Scheme	S	20,000,000	Ballyhooley Improvement Scheme	W/S	139,000
Onibboroon Coworage Conomic	U	25,150,000	Broghill-Reingoggin Sewerage Scheme	S	406,000
Schemes to start 2008		,	Bweering Water Supply Scheme	W	115,000
		~S	Churchtown Sewerage Scheme (incl. Water)	W/S	543,000
Cork North		action of	Clondulane Sewage Treatment Plant	S	417,000
Mallow/ Ballyviniter Regional Water Supply Scheme (I	H) W	8,652,000 8,400,000	Freemount Sewerage Scheme	S	150,000
Mallow Sewerage Scheme (H)	S	6,408,000	Pike Road Sewerage Scheme (incl. Water)	W/S	2,080,000
		948,000 1,296,000	Rathcormac Sewerage Scheme (incl. Water)	W/S	555,000
Cork South		040,000	Spa Glen Sewerage Scheme	S	736,000
Ballincollig Sewerage Scheme (Nutrient Removal) (G) Ballingeary Sewerage Scheme	CONSO	948,000 1,296,000	Uplands Fermoy Sewerage Scheme (incl. Water)	W/S	1,174,000
Bandon Sewerage Scheme Stage 2	S	14,729,000	Watergrasshill Water Supply Scheme (incl. Sewerage) (G)	W/S	4,151,000
City Environs (CASP) Strategic Study (G)	S	153,000			
Cloghroe Sewerage Scheme (Upgrade)	S	683,000	Cork South		
Coachford Water Supply Scheme	W	1,318,000	Ballincollig Sewerage Scheme (Barry's Rd Foul and		
Garrettstown Sewerage Scheme	S	2,153,000	Storm Drainage) (G)	S	1,164,000
Inniscarra Water Treatment Plant Extension Phase 1	W	2,678,000	Belgooley, Water Supply Scheme (incl. Sewerage)	W/S	2,913,000
Little Island Sewerage Scheme (G)	S	2,200,000	Blarney Water Supply Scheme (Ext. to Station Rd) (G)	W	416,000
			Carrigtwohill Sewerage Scheme (Treatment and	VV	410,000
			Storm Drain) (G)	S	7,632,000
Cork West	0	7 1 40 000			
Bantry Sewerage Scheme Dunmanway Sewerage Scheme	S S	7,148,000 2,153,000	Castlematyr Wastewater Treatment Plant Extension	S	1,200,000
Leap/ Baltimore Water Supply Scheme	W	6,365,000	Crookstown Sewerage Scheme (incl. Water)	W/S	1,200,000
Schull Water Supply Scheme	W	5,253,000	Dripsey Water Supply Scheme (incl. Sewerage)	W/S	1,112,000
Contain Francis Cappy Contoins		61,137,000	Glounthane Sewerage Scheme (G)	S	1,576,000
Schemes to start 2009		, ,	Innishannon Sewerage Scheme	S	277,000
			Innishannon Wastewater Treatment Plant	S	694,000
Cork North			Kerrypike Sewerage Scheme	S	832,000
Banteer/Dromahane Regional Water Supply Scheme	W	1,576,000	Kerrypike Water Supply Scheme	W	416,000
Conna Regional Water Supply Scheme Extension	W	2,627,000	Killeagh Wastewater Treatment Plant Extension	S	1,200,000
Cork NE Water Supply Scheme	W	4,326,000	Killeagh Water Supply Scheme (includes Sewerage)	W/S	485,000
Cork NW Regional Water Supply Scheme	W	6,046,000	Killeens Sewerage Scheme	S	420,000
Millstreet Wastewater Treatment Plant (Upgrade)	S	1,628,000	Kilnagleary Sewerage Scheme	S	694,000
			Midleton Wastewater Treatment Plant Extension	S	4,050,000

Cork County contd.

Water Services Investment Programme 2007 - 2009

Serviced Land Initiative contd.	W/S	Est. Cost	Schemes to Advance through Planning cond.	W/S	Est. Cost
Cork South contd.			Cork South		
Mogeely, Castlemartyr & Ladysbridge Water Supply Schem	ne W	2,566,000	Carrigtwohill Sewerage Scheme (G)	S	20,000,000
North Cobh Sewerage Scheme (G)	S	3,193,000	Cork Sludge Management (G)	S	14,420,000
Riverstick Water Supply Scheme (incl. Sewerage)	W/S	525,000	Cork Water Supply Scheme (Storage - Mount Emla,		
Rochestown Water Supply Scheme	W	2,700,000	Ballincollig & Chetwind) (G)	W	8,500,000
Saleen Sewerage Scheme	S	1,051,000	Inniscarra Water Treatment Plant (Sludge Treatment)(G)W	5,356,000
Youghal Water Supply Scheme	W	2,300,000	Macroom Sewerage Scheme	S	5,150,000
			Minane Bridge Water Supply Scheme	W	1,421,000
Cork West					
Castletownshend Sewerage Scheme	S	1,576,000	Cork West		
		50,797,000	Bantry Regional Water Supply Scheme (Distribution)	W	9,455,000
Rural Towns & Villages Initiative			Cape Clear Water Supply Scheme	W	1,679,000
			Castletownbere Regional Water Supply Scheme	W	8,405,000
Cork North			Glengarriff Sewerage Scheme	S	2,500,000
Buttevant Sewerage Scheme (Collection System)	S	2,446,000	Roscarberry/Owenahincha Sewerage Scheme	S	1,576,000
Doneraile Sewerage Scheme (Collection System)	S	1,738,000	Skibbereen Regional Water Supply Scheme Stage 4	W	7,880,000
			Water Conservation Allocation Water Conservation Allocation Water Conservation Allocation South Western River Basin District (WFD) Project 1		95,646,000
Cork South			74. W40		
Innishannon (Ballinadee/ Ballinspittle/ Garrettstown)			Water Conservation Allocation		12,206,000
Water Supply Scheme	W	6,726,000	Water Conservation Allocation Little Conservation Allocation Asset Management Study South Western River Basin District (WFD) Project 1		
		~5	Asset Management Study		300,000
Cork West		action of	S		
Ballylicky Sewerage Scheme	S	2,153,000	South Western River Basin District (WFD) Project ¹		9,400,000
Baltimore Sewerage Scheme	S	Q 3,162,000			
Castletownbere Sewerage Scheme	S	5,202,000			
Schull Sewerage Scheme	S	3,523,000	Programme Total	48	5,489,000
	S S Consen	24,950,000			
Schemes to Advance through Planning	O				
Cork North					
Mitchelstown North Galtees Water Supply Scheme	W	3,152,000			
Mitchelstown Sewerage Scheme	S	3,000,000			
Newmarket Sewerage Scheme	S	3,152,000			

¹ This project is being led by Cork County Council on behalf of other authorities in the River Basin District

⁽H) Refers to a Hub as designated in the National Spatial Strategy

⁽G) Refers to a Gateway as designated in the National Spatial Strategy

Comhairle Contae Chorcaí Cork County Council

Environmental Directorate, Inniscarra, Co. Cork.

Tel. No. (021) 4532700 • Fax No. (021) 4532727 Web: www.corkcoco.ie

An Stiúrthóireacht Comhshaoil,

Suíomh Grássáin: www.corkcoco. CE

WATER SERVICES - MAINTENANCE

WATER SERVICES - MAINTENANCE SOUTH CORK

CORK COUNTY COUNCIL, CORK

18th March 2009

Re: Monitoring Results for 2008

Dear Sir/Madam,

Enclosed are the licensed discharge wastewater monitoring results for your facility for 2008. Please note that Total Nitrogen and Total Phosphorus tests were subcontracted to an outside laboratory since early October 2008.

Measurements of uncertainty values for the test are as follows:

Test	Range mg/l	Estimated Uncertainty
TN		+ 3.8 mg/l
TP	रूवी और 0.5	+ 0.04 mg/l
TP	5 mg/l	+ 0.44 mg/l
TP	ent 10 mg/l	+ 0.87 mg/l

Please accept my apologies for the late arrival of results but due to circumstances outside my control. I was unable to issue results in February.

If you have any queries in relation to the results, please do not hesitate to contact me.

Yours sincerely,

Valerie Hannon,

A/Senior Executive Scientist,

Wastewater Laboratory.

Direct Dial:

021 - 4532707

Fax:

021 - 4532777

Email:

valerie.hannon@corkcoco.ie

Laboratory Test Report Cork County Council Waste Water Laboratory Inniscarra, Co. Cork

Page of 1

March 19,2009

Industry Name Address

Dripsey Sewage Treatment Plant

Dripsey,

Co. Cork

Industry Code No.

335

Report Ref No. 119-03-09-123

Issued to No Malier

Licence No.

Type

								<u> </u>		
Licence	Volume m3	pH 12.99	B.O.D. mg/l	C.O.D. mg/l	S.Solids mg/l	TP-P mg/l			Code	Comments
Limit	999999	3.99	25	125	35	99.9				
Date				20		- A-			00001	G ODO4 D 122 4
06/05/08		7.1	7.5	29	15	1.47			GS384	G OPO4-P=1.33mg/l
10/07/08			22	69	26	2.15			GS632	G TN-N\$=21.8mg/L
09/10/08			5.1	26	7				GS1036	G
16/10/08		7.1	5.0	32	17				GS1089	G NH3-N= 2.8mg/l, OPO4-P=
% Compl.	***	100	100	100	100	100	***	***		
Average	****	7.10	9.90	39.00	16.25	1.81	**** **	****		
							A. Wall			
						્રહેર પ્ર	foi di			
						nithos differ				
					ection.	eric				
					of inspector					
				√	CODALIC					
				aent of						
				Cons			*** *** *** *** *** *** *** *** *** **			

The samples are received at the Laboratory on the day of sampling. The above test methods are based on Standard Methods for the examination of Water and Waste Water, 21st Edition 2005, APHA, AWWA, WEF.

C = Composite Sample, G = Grab Sample. The compliance value may be varied on items marked with an * by the application of uncertainty of measurement values on reverse Page Chemical Procedure Numbers(CP No.) for INAB accredited tests are as follows:

CP NO. 1 = B.O.D.

CP NO. 3 = S.S.

CP NO.20 = TP-P

CP NO. 5 = pH CP NO.23 = OPO4-P(KONELAB)

CP NO. 6 = C.O.D.

-CP NO. 7 - CI CP NO.24 = Chloride (KONELAB)

CP NO.22=Ammonia(KONELAB) CP NO.25=Sulphate(KONELAB)

This report relates only to the samples listed above. This report shall not be reproduced except in full and only with with the approval of the testing laboratory. Cork County Council is not accredited by INAB for tests marked with \$.

Kg loadings based on flows as supplied by the company. ~ indicates results that have been edited.

Reported by:

Ms. V. Hannon

Technical Manager

Deputy Technical Manager

CTR 001

Issue No 56

November 2007 October 2008

Wastewater Laboratory Cork County Council- Test Report Addendum

- a. Sample date reported in column 1 on this report is the date of collection of the sample from the industry name and address as outlined at the top of the report.
- b. Cork County Council wastewater laboratory are not accredited for sample collection.
- c. Data reported in (d) below is defined in section 5.10.3 (c) in wastewater laboratory quality manual.

d. Table of Uncertainty Of Measurement - Estimate Of Values For Accredited Tests

Chemical Procedure No.	range	Test Name	Estimated Uncertainty	Units	
CP No. 1	1 - 8 mg/l	Biochemical Oxygen Demand (BOD)	± 0.30	mg/l	
CP No. 1	9 –70 mg/l	Biochemical Oxygen Demand (BOD)	± 3.2	mg/l	
CP No. 1	71 - 700 mg/l	Biochemical Oxygen Demand (BOD)	± 40	mg/l	
CP No. 3	35 mg/l	Suspended Solids (SS)	± 6.4	mg/l	
CP No. 3	200 - 400mg/l	Suspended Solids (SS)	±41.6	mg/l	
CP No. 3	700 – 1000mg/l	Suspended Solids (SS)	± 80.0	mg/l	
CP No. 5	2 - 12	pH	± 0.12	pH Units	
CP No. 6	< 6 mg/l	Chemical Oxygen Demand (COD LR)	± 5.6	mg/l	
CP No. 6	15 – 75 mg/l	Chemical Oxygen Demand (COD LR)	± 10.6	mg/l	
CP No. 6	100 –135 mg/l	Chemical Oxygen Demand (COD LR)	±17.4	mg/l	
CP No. 6	120 – 1500mg/l	Chemical Oxygen Demand (COD) High Range	± 26.8	mg/l	
CP No. 20	0.2 – 2.5 mg/l	Total Phosphorus (TR-P)	± 0.22	mg/l	
CP No. 22	0.1 – 0.9 mg/l	Ammonia (Konerab)	± 0.04	mg/l	
CP No. 22	1.0 – 2.0 mg/l	Ammonia (Konelab)	± 0.10	mg/l	
CP No. 22	2 – 10 mg/l	Ammonia (Konelab)	± 0.32	mg/l	
CP No. 22	11 – 19 mg/l	Ammonia (Konelab)	± 0.72	mg/l	
CP No. 22			± 1.56	mg/l	
CP No. 23	20 – 25 mg/l 0.05 – 1.00 mg/l 25 00 – 90 00 – 1/4	Orthophosphate as P (Konelab)	± 0.04	mg/l	
CP No. 24	25.00 – 99.00 mg/l	Chloride (Konelab)	± 3.04	mg/l	
CP No. 24	100.00 - 200.00 mg/l	Chloride (Konelab)	±11.16	mg/l	
CP No. 25	30.00 – 199.00 mg/l	Sulphate (Konelab)	± 3.42	mg/l	
CP No. 25	200.00 – 250.00 mg/l	Sulphate (Konelab)	± 8.70	mg/l	

January 2009

The raw data used to evaluate the above estimations is stored in the Wastewater Laboratory, Cork County Council.

The method followed is located in the Uncertainty of Measurement file and in the Eurachem Guidelines for Quantifying Uncertainty in Analytical Measurement.

Cork County

Water Services Investment Programme 2007 - 2009

Schemes at Construction	W/S	Est. Cost	Schemes to start 2009 contd.	W/S	Est. Cost
Cork North			Cork South		
Mitchelstown Sewerage Scheme			Ballincollig Sewerage Scheme (Upgrade) (G)	S	22,248,000
(Nutrient Removal)	S	221,000	Cork Lower Harbour Sewerage Scheme (excl. Crosshaven		73,542,000
			Shannagarry/ Garryvoe/ Ballycotton Sewerage Scheme	S	3,780,000
Cork South			Youghal Sewerage Scheme	S	14,420,000
Ballyvourney/ Ballymakeery Sewerage Scheme	S	3,049,000	roughal Sewerage Scrieme	3	14,420,000
Cobh/ Midleton/ Carrigtwohill Water Supply Scheme Cork Lower Harbour Sewerage Scheme	W	10,135,000	Cork West		
(Crosshaven SS) (G)	S	4,850,000		C	692,000
Cork Water Strategy Study (G)	W	941,000	Ballydehob Sewerage Scheme	S	683,000
Kinsale Sewerage Scheme	S	20,000,000	Bantry Water Supply Scheme	W	14,935,000
Midleton Sewerage Scheme (Infiltration Reduction) (G	a) S	2,078,000	Clonakilty Sewerage Scheme (Plant Capacity Increase)	S	3,677,000
		41,274,000	Courtmacsherry/ Timoleague Sewerage Scheme	S	2,472,000
Schemes to start 2007			Dunmanway Regional Water Supply Scheme Stage 1	W	12,669,000
					164,629,000
Cork North			Serviced Land Initiative		
North Cork Grouped DBO Wastewater Treatment	0	E 450 000			
Plant (Buttevant, Doneraile & Kilbrin)	S	5,150,000	Cork North		
Cork West			Ballyclough Water Supply Scheme	W	139,000
Skibbereen Sewerage Scheme	S	20,000,000	Ballyhooley Improvement Scheme	W/S	139,000
Onibboroon Coworage Conomic	U	25,150,000	Broghill-Reingoggin Sewerage Scheme	S	406,000
Schemes to start 2008		,	Bweering Water Supply Scheme	W	115,000
		~S	Churchtown Sewerage Scheme (incl. Water)	W/S	543,000
Cork North		action of	Clondulane Sewage Treatment Plant	S	417,000
Mallow/ Ballyviniter Regional Water Supply Scheme (I	H) W	8,652,000 8,400,000	Freemount Sewerage Scheme	S	150,000
Mallow Sewerage Scheme (H)	S	£5,408,000	Pike Road Sewerage Scheme (incl. Water)	W/S	2,080,000
		948,000 1,296,000	Rathcormac Sewerage Scheme (incl. Water)	W/S	555,000
Cork South		040,000	Spa Glen Sewerage Scheme	S	736,000
Ballincollig Sewerage Scheme (Nutrient Removal) (G) Ballingeary Sewerage Scheme	CONSO	948,000 1,296,000	Uplands Fermoy Sewerage Scheme (incl. Water)	W/S	1,174,000
Bandon Sewerage Scheme Stage 2	S	14,729,000	Watergrasshill Water Supply Scheme (incl. Sewerage) (G)	W/S	4,151,000
City Environs (CASP) Strategic Study (G)	S	153,000			
Cloghroe Sewerage Scheme (Upgrade)	S	683,000	Cork South		
Coachford Water Supply Scheme	W	1,318,000	Ballincollig Sewerage Scheme (Barry's Rd Foul and		
Garrettstown Sewerage Scheme	S	2,153,000	Storm Drainage) (G)	S	1,164,000
Inniscarra Water Treatment Plant Extension Phase 1	W	2,678,000	Belgooley, Water Supply Scheme (incl. Sewerage)	W/S	2,913,000
Little Island Sewerage Scheme (G)	S	2,200,000	Blarney Water Supply Scheme (Ext. to Station Rd) (G)	W	416,000
			Carrigtwohill Sewerage Scheme (Treatment and	VV	410,000
			Storm Drain) (G)	S	7,632,000
Cork West	0	7 1 40 000			
Bantry Sewerage Scheme Dunmanway Sewerage Scheme	S S	7,148,000 2,153,000	Castlematyr Wastewater Treatment Plant Extension	S	1,200,000
Leap/ Baltimore Water Supply Scheme	W	6,365,000	Crookstown Sewerage Scheme (incl. Water)	W/S	1,200,000
Schull Water Supply Scheme	W	5,253,000	Dripsey Water Supply Scheme (incl. Sewerage)	W/S	1,112,000
Contain Francis Cappy Contoins		61,137,000	Glounthane Sewerage Scheme (G)	S	1,576,000
Schemes to start 2009		, ,	Innishannon Sewerage Scheme	S	277,000
			Innishannon Wastewater Treatment Plant	S	694,000
Cork North			Kerrypike Sewerage Scheme	S	832,000
Banteer/Dromahane Regional Water Supply Scheme	W	1,576,000	Kerrypike Water Supply Scheme	W	416,000
Conna Regional Water Supply Scheme Extension	W	2,627,000	Killeagh Wastewater Treatment Plant Extension	S	1,200,000
Cork NE Water Supply Scheme	W	4,326,000	Killeagh Water Supply Scheme (includes Sewerage)	W/S	485,000
Cork NW Regional Water Supply Scheme	W	6,046,000	Killeens Sewerage Scheme	S	420,000
Millstreet Wastewater Treatment Plant (Upgrade)	S	1,628,000	Kilnagleary Sewerage Scheme	S	694,000
			Midleton Wastewater Treatment Plant Extension	S	4,050,000

Agglomeration details

Leading Local Authority	Cork County Council
Co-Applicants	
Agglomeration	Dripsey
Population Equivalent	600
Level of Treatment	Secondary
Treatment plant address	Agharinagh, Dripsey.
Grid Ref (12 digits, 6E, 6N)	148619 / 074844
EPA Reference No:	

Contact details

Contact Name:	Patricia Power
Contact Address:	Area Operations South, Cork County Council, County Hall, Carrigrohane Road,
Contact Number:	021 4285 2850 (4)
Contact Fax:	021 4276 32 100
Contact Email:	patricia power@corkcoco.ie
Consen	patricia power@corkcoco.ie

WWD Licence Application - Dripsey - Page: 1

Table D.1(i)(a): EMISSIONS TO SURFACE/GROUND WATERS (Primary Discharge Point)

Discharge Point Code: SW-1

Local Authority Ref No:	SW01 - Dripsey				
Source of Emission:	Treated Effluent				
Location:	Agharinagh				
Grid Ref (12 digits, 6E, 6N)	148607 / 074817				
Name of Receiving waters:	Dripsey River				
Water Body:	River Water Body				
River Basin District	South Western RBD				
Designation of Receiving Waters:	Good				
Flow Rate in Receiving Waters:	0 m³.sec-1 Dry Weather Flow				
	0.24 m ³ .sec ⁻¹ 95% Weather Flow				
Additional Comments (e.g. commentary on zero flow or other information deemed of value)	The 95%ile flow is taken from available South Western River Basin District data there are no figures available for DWF				

Emission Details:

(i) Volume emitted			other		
Normal/day	135 m³	Maximum/dayouth of the	810 m ³		
Maximum rate/hour	33.75 m³	Period of emission (avg)	60 min/hr	24 hr/day	365 day/yr
Dry Weather Flow	0.00156 m³/sec	action let			
	College	For insight o			

WWD Licence Application - Dripsey - Page: 2

Table D.1(i)(b): EMISSIONS TO SURFACE/GROUND WATERS - Characteristics of The Emission (Primary Discharge Point)

Discharge Point Code: SW-1

Substance		As discharged					
	Unit of Measurement	Sampling Method	Max Daily Avg.	kg/day			
рН	рН	Grab	= 9				
Temperature	°C	Grab	= 25				
Electrical Conductivity (@ 25°C)	μS/cm	Grab	= 1000				
Suspended Solids	mg/l	Grab	= 50	6.75			
Ammonia (as N)	mg/l	Grab	= 0	0			
Biochemical Oxygen Demand	mg/l	Grab	= 50	6.75			
Chemical Oxygen Demand	mg/l	Grab	= 200	27			
Total Nitrogen (as N)	mg/l	Grab	= 50	6.75			
Nitrite (as N)	mg/l	Grab	= 0	0			
Nitrate (as N)	mg/l	Grab	= 0	0			
Total Phosphorous (as P)	mg/l	Grab	= 8	1.08			
OrthoPhosphate (as P)	mg/l	Grab	= 6	0.81			
Sulphate (SO ₄)	mg/l	Grab	= 0	0			
Phenols (Sum)	μg/l	Grab	= 0	0			

For Orthophosphate: this monitoring should be undertaken on a sample filtered on 0.45µm filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent. on the standard Method 6240, or equivalent.

Table D.1(i)(c): DANGEROUS SUBSTANCE EMISSIONS TO SURFACE/GROUND WATERS - Characteristics of The Emission (Primary Discharge Point)

Discharge Point Code: SW-1

Substance		As discharged						
	Unit of Measurement	Sampling Method	Max Daily Avg.	kg/day				
Atrazine	μg/l	Grab	= 0	0				
Dichloromethane	μg/l	Grab	= 0	0				
Simazine	μg/l	Grab	= 0	0				
Toluene	μg/l	Grab	= 0	0				
Tributyltin	μg/l	Grab	= 0	0				
Xylenes	μg/l	Grab	= 0	0				
Arsenic	μg/l	Grab	= 0	0				
Chromium	μg/l	Grab	= 0	0				
Copper	μg/l	Grab	= 0	0				
Cyanide	μg/l	Grab	= 0	0				
Flouride	μg/l	Grab	= 0	0				
Lead	μg/l	Grab	= 0	0				
Nickel	μg/l	Grab	= 0	0				
Zinc	μg/l	Grab	= 0	0				
Boron	μg/l	Grab	, ≅ 0	0				
Cadmium	μg/l	Grab 💉	= 0	0				
Mercury	μg/l	Grab	= 0	0				
Selenium	μg/l	Grab or all	= 0	0				
Barium	μg/l	Grab Grab Grab Grab Grab Grab Grab Grab	= 0	0				

For Orthophosphate: this monitoring should be undertaken on a sample filtered on 0.45µm filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240 are quivalent.

TABLE E.1(i): WASTE WATER FREQUENCY AND QUANTITY OF DISCHARGE – Primary and Secondary Discharge Points

Identification Code for Discharge point	Frequency of discharge (days/annum)	Quantity of Waste Water Discharged (m³/annum)	
SW-1	365	49275	

TABLE E.1(ii): WASTE WATER FREQUENCY AND QUANTITY OF DISCHARGE – Storm Water Overflows

Identification Code for Discharge	Frequency of discharge		Complies with Definition of Storm
point	(days/annum)	Discharged (m³/annum)	Water Overflow

TABLE F.1(i)(a): SURFACE/GROUND WATER MONITORING

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1d
Grid Ref (12 digits, 6E, 6N)	148773 / 073895

Parameter		Result	Results (mg/l)			Limit of Quantitation	Analysis method / technique
	16/10/08	01/01/09	02/04/09	07/05/09			
рН				= 7.7	Grab	2	Electrochemic al
Temperature		= 0			Grab	0.5	Electrochemic al
Electrical Conductivity (@ 25°C)				= 163	Grab	0.5	Electrochemic al
Suspended Solids				< 2.5	Grab	0.5	Gravimetric
Ammonia (as N)				< 0.1	Grab	0.02	Colorimetric
Biochemical Oxygen Demand				= 2	Grab	0.06	Electrochemic al
Chemical Oxygen Demand				< 21 . USC.	Grab	8	Digestion & Colorimetric
Dissolved Oxygen		= 0		ather	Grab	0	ISE
Hardness (as CaCO₃)		= 0		4.44	Grab	0	Titrimetric
Total Nitrogen (as N)			2000	₹4.18	Grab	0.5	Digestion & Colorimetric
Nitrite (as N)			alifectiff	< 0.1	Grab	0.013	Colorimetric
Nitrate (as N)			ion Pries,	= 1.33	Grab	0.04	Colorimetric
Total Phosphorous (as P)		•	Section purposition	< 0.05	Grab	0.2	Digestion & Colorimetric
OrthoPhosphate (as P)	< 0.05	¢ot)	₹ 0.05	< 0.05	Grab	0.02	Colorimetric
Sulphate (SO ₄)		ें जे	₹,	< 30	Grab	30	Turbidimetric
Phenols (Sum)		entor		< 0.1	Grab	0.1	GC-MS2

For Orthophosphate: this monitoring should be undertaken on a sample filtered on $0.45\mu m$ filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

Additional Comments:	01/01/09 and 0 used as default settings where results are not available

TABLE F.1(i)(b): SURFACE/GROUND WATER MONITORING (Dangerous Substances)

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1d
Grid Ref (12 digits, 6E, 6N)	148773 / 073895

Parameter		Results (μg/l)			Sampling method	Limit of Quantitation	Analysis method / technique
	01/01/09	02/04/09	07/05/09				
Atrazine			< 0.01		Grab	0.96	HPLC
Dichloromethane			< 1		Grab	1	GC-MS1
Simazine			< 0.01		Grab	0.01	HPLC
Toluene			< 0.28		Grab	0.02	GC-MS1
Tributyltin	= 0				Grab	0.02	GC-MS1
Xylenes			< 1		Grab	1	GC-MS1
Arsenic			< 0.96		Grab	0.96	ICP-MS
Chromium		< 20	< 20		Grab	20	ICP-OES
Copper		< 20	< 20		Grab	20	ICP-OES
Cyanide			< 5	se.	Grab	5	Colorimetric
Flouride			< 100	A lot any there as	Grab	100	ISE
Lead		< 20	< 20	1. 3 Ob	Grab	20	ICP-OES
Nickel		< 20	< 20	off of all,	Grab	20	ICP-OES
Zinc		< 20	< 20	, d 100	Grab	20	ICP-OES
Boron		< 20	< 20 aliferili		Grab	20	ICP-OES
Cadmium		< 20	< 20 < 20 < 20 < 20 100.24111 200.24111		Grab	20	ICP-OES
Mercury			50.24 Th		Grab	0.2	ICP-MS
Selenium			x Y 6 X . 1		Grab	0.74	ICP-MS
Barium		= 69	20 100		Grab	20	ICP-OES

Additional Comments:	TBT value is 0.02ug/l as sn TBT testing not required
----------------------	--

TABLE F.1(i)(a): SURFACE/GROUND WATER MONITORING

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1u
Grid Ref (12 digits, 6E, 6N)	147700 / 075502

Parameter		Results (mg/l)			Sampling method	Limit of Quantitation	Analysis method / technique
	16/10/08	01/01/09	02/04/09	07/05/09			
рН				= 7.6	Grab	2	Electrochemic al
Temperature		= 0			Grab	0.5	Electrochemic al
Electrical Conductivity (@ 25°C)				= 156	Grab	0.5	Electrochemic al
Suspended Solids				< 2.5	Grab	0.5	Gravimetric
Ammonia (as N)				< 0.1	Grab	0.02	Colorimetric
Biochemical Oxygen Demand				= 2	Grab	0.06	Electrochemic al
Chemical Oxygen Demand				< 21 . USE.	Grab	8	Digestion & Colorimetric
Dissolved Oxygen		= 0		affer	Grab	0	ISE
Hardness (as CaCO₃)		= 0		14. my	Grab	0	Titimetric
Total Nitrogen (as N)			Sec.	3.79	Grab	0.5	Digestion & Colorimetric
Nitrite (as N)			aliferili	< 0.1	Grab	0.013	Colorimetric
Nitrate (as N)			ion of real	= 1.15	Grab	0.04	Colorimetric
Total Phosphorous (as P)		•	Special purposition	< 0.05	Grab	0.2	Digestion & Colorimetric
OrthoPhosphate (as P)	< 0.05	¢ot)	0.05	< 0.05	Grab	0.02	Colorimetric
Sulphate (SO ₄)		ें जे	?	< 30	Grab	30	Turbidimetric
Phenols (Sum)		entor		< 0.1	Grab	0.1	GC-MS2

For Orthophosphate: this monitoring should be undertaken on a sample filtered on $0.45\mu m$ filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

Additional Comments:	01/01/09 and 0 used as default settings where results are not available

TABLE F.1(i)(b): SURFACE/GROUND WATER MONITORING (Dangerous Substances)

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1u
Grid Ref (12 digits, 6E, 6N)	147700 / 075502

Parameter		Results (µg/l)				Limit of Quantitation	Analysis method / technique	
	01/01/09	02/04/09	07/05/09					
Atrazine			< 0.01		Grab	0.96	HPLC	
Dichloromethane			< 1		Grab	1	GC-MS1	
Simazine			< 0.01		Grab	0.01	HPLC	
Toluene			< 0.28		Grab	0.02	GC-MS1	
Tributyltin	= 0				Grab	0.02	GC-MS1	
Xylenes			< 1		Grab	1	GC-MS1	
Arsenic			< 0.96		Grab	0.96	ICP-MS	
Chromium		< 20	< 20		Grab	20	ICP-OES	
Copper		< 20	< 20		Grab	20	ICP-OES	
Cyanide			< 5	se.	Grab	5	Colorimetric	
Flouride			< 100	A lot any other as	Grab	100	ISE	
Lead		< 20	< 20	1. 4 Ott	Grab	20	ICP-OES	
Nickel		< 20	< 20	of air,	Grab	20	ICP-OES	
Zinc		< 20	< 20	,3	Grab	20	ICP-OES	
Boron		< 20	< 20 aliferili		Grab	20	ICP-OES	
Cadmium		< 20	< 20		Grab	20	ICP-OES	
Mercury			\$40.2		Grab	0.2	ICP-MS	
Selenium			. 15 = 15.4		Grab	0.74	ICP-MS	
Barium		= 72.7			Grab	20	ICP-OES	

Additional Comments:	TBT value is 0.02ug/l as sn TBT testing not required
----------------------	--

Annex 2: Check List For Regulation 16 Compliance

Regulation 16 of the waste water discharge (Authorisation) Regulations 2007 (S.I. No. 684 of 2007) sets out the information which must, in all cases, accompany a discharge licence application. In order to ensure that the application fully complies with the legal requirements of regulation 16 of the 2007 Regulations, all applicants should complete the following.

In each case, refer to the attachment number(s), of your application which contains(s) the information requested in the appropriate sub-article.

Regulation the co	ion 16(1) ase of an application for a waste water discharge licence, the application shall -	Attachment Number	Checked by Applicant		
(a)	give the name, address, telefax number (if any) and telephone number of the applicant (and, if different, of the operator of any treatment plant concerned) and the address to which correspondence relating to the application should be sent and, if the operator is a body corporate, the address of its registered office or principal office,	B1	Yes		
(b)	give the name of the water services authority in whose functional area the relevant waste water discharge takes place or is to take place, if different from that of the applicant,	B7	Yes		
(c)	give the location or postal address (including where appropriate, the name of the townland or townlands) and the National Grid reference of the location of the waste water treatment plant and/or the waste water discharge point or points to which the application relates,	B2	Yes		
(d)	state the population equivalent of the agglomeration to which the application relates,	B9	Yes		
(e)	specify the content and extent of the waste water discharge, the level of treatment provided, if any, and the flow and type of discharge,	C, D	Yes		
(f)	give details of the receiving water body, including its protected area status, if any, and details of any sensitive areas or protected areas or both in the vicinity of the discharge point or points likely to be affected by the discharge concerned, and for discharges to ground provide details of groundwater protection schemes in place for the receiving water body and all associated hydrogeological and geological assessments related to the receiving water environment in the vicinity of the discharge.		Yes		
(g)	identify monitoring and sampling points and indicate proposed arrangements for the monitoring of discharges and, if Regulation 17 does not apply, provide details of the likely environmental consequences of any such discharges,	E3	Yes		
(h)	in the case of an existing waste water treatment plant, specify the sampling data pertaining to the discharge based on the samples taken in the 12 months preceding the making of the application,	E4	Yes		
(i)	describe the existing or proposed measures, including emergency procedures, to prevent unintended waste water discharges and to minimise the impact on the environment of any such discharges,	G	Yes		
(j)	give particulars of the nearest downstream drinking water abstraction point or points to the discharge point or points,	F2	Yes		
(k)	give details, and an assessment of the effects of any existing or proposed emissions on the environment, including any environmental medium other than those into which the emissions are, or are to be made, and of proposed measures to prevent or eliminate or, where that is not practicable, to limit any pollution caused in such discharges,	F1	Yes		
(I)	give detail of compliance with relevant monitoring requirements and treatment standards contained in any applicable Council Directives of Regulations,	G	Yes		
(m)	give details of any work necessary to meet relevant effluent discharge standards and a timeframe and schedule for such work.	G3	Yes		
(n)	Any other information as may be stipulated by the Agency.		No		
Without	ion 16(3) prejudice to Regulation 16 (1) and (2), an application for a licence shall be anied by -	Attachment Number	Checked by Applicant		
(a)	a copy of the notice of intention to make an application given pursuant to Regulation 9,	B8	Yes		
(b)	where appropriate, a copy of the notice given to a relevant water services authority under Regulation 13,	Not Applicable	Yes		
(c)	Such other particulars, drawings, maps, reports and supporting documentation as are necessary to identify and describe, as appropriate -		No		
(c) (i)	the point or points, including storm water overflows, from which a discharge or discharges take place or are to take place, and	В3	Yes		
(c) (ii)	the point or points at which monitoring and sampling are undertaken or are to be undertaken,	E3	Yes		
(d)	such fee as is appropriate having regard to the provisions of Regulations 38 and 39.	B9(iii)	Yes		

WWD Licence Application Annex II

An origi	ion 16(4) nal application shall be accompanied by 2 copies of it and of all accompanying ints and particulars as required under Regulation 16(3) in hardcopy or in an electronic format as specified by the Agency.	Attachment Number	Checked by Applicant
1	An Original Application shall be accompanied by 2 copies of it and of all accompanying documents and particulars as required under regulation 16(3) in hardcopy or in electronic or other format as specified by the agancy.		Yes
For the associa	ion 16(5) purpose of paragraph (4), all or part of the 2 copies of the said application and ted documents and particulars may, with the agreement of the Agency, be submitted in tronic or other format specified by the Agency.	Attachment Number	Checked by Applicant
1	Signed original.		Yes
2	2 hardcopies of application provided or 2 CD versions of application (PDF files) provided.		Yes
3	1 CD of geo-referenced digital files provided.		Yes
subject to 2001 respect stateme	ion 17 a treatment plant associated with the relevant waste water works is or has been to the European Communities (Environmental Impact Assessment) Regulations 1989, in addition to compliance with the requirements of Regulation 16, an application in of the relevant discharge shall be accompanied by a copy of an environmental impact and approval in accordance with the Act of 2000 in respect of the said development by be submitted in an electronic or other format specified by the Agency	Attachment Number	Checked by Applicant
1	EIA provided if applicable	Not Applicable	Yes
2	2 hardcopies of EIS provided if applicable.	Not Applicable	Yes
3	2 CD versions of EIS, as PDF files, provided.	Not Applicable	Yes
Regulat In the c applicat	ion 24 ase of an application for a waste water discharge certificate of authorisation, the ion shall –	Attachment Number	Checked by Applicant
(a)	give the name, address, telefax number (if any) and telephone number of the applicant and the address to which correspondence relating to the application should be sent and, if the operator of the waste water works is a body corporate, the address of its registered office or principal office	٥٠	
(b)	give the name of the water services authority in whose functional area the relevanted waste water discharge takes place or is to take place, if different from that of the applicant,		
(c)	give the location or postal address (including where appropriate, the name of the townland or townlands) and the National Grid reference of the location of the discharge point or points to which the application relates,		
(d)	state the population equivalent of the agglomeration to which the application relates,		
(e)	in the case of an application for the review of a certificate, specify the reference number given to the relevant certificate in the register,		
(f)	specify the content and extent of the waste water discharge, the level of treatment provided and the flow and type of discharge,		
(g)	give details of the receiving water body, its protected area status, if any, and details of any sensitive areas or protected areas, or both, in the vicinity of the discharge point or points or likely to be affected by the discharge concerned,		
(h)	identify monitoring and sampling points and indicate proposed arrangements for the monitoring of discharges and of the likely environmental consequences of any such discharges,		
(i)	in the case of an existing discharge, specify the sampling data pertaining to the discharge based on the samples taken in the 12 months preceding the making of the application,		
(j)	describe the existing or proposed measures, including emergency procedures, to prevent unauthorised or unexpected waste water discharges and to minimise the impact on the environment of any such discharges,		
(k)	give particulars of the location of the nearest downstream drinking water abstraction point or points to the discharge point or points associated with the waste water works,		
(l)	give details of any designation under any Council Directive or Regulations that apply in relation to the receiving waters,		
(m)	give details of compliance with any applicable monitoring requirements and treatment standards,		
(n)	give details of any work necessary to meet relevant effluent discharge standards and a timeframe and schedule for such work,		
(o)	give any other information as may be stipulated by the Agency, and		
(p)	be accompanied by such fee as is appropriate having regard to the provisions of Regulations 38 and 39.		

Cork County contd.

Water Services Investment Programme 2007 - 2009

Serviced Land Initiative contd.	W/S	Est. Cost	Schemes to Advance through Planning cond.	W/S	Est. Cost
Cork South contd.			Cork South		
Mogeely, Castlemartyr & Ladysbridge Water Supply Scher	me W	2,566,000	Carrigtwohill Sewerage Scheme (G)	S	20,000,000
North Cobh Sewerage Scheme (G)	S	3,193,000	Cork Sludge Management (G)	S	14,420,000
Riverstick Water Supply Scheme (incl. Sewerage)	W/S	525,000	Cork Water Supply Scheme (Storage - Mount Emla,		
Rochestown Water Supply Scheme	W	2,700,000	Ballincollig & Chetwind) (G)	W	8,500,000
Saleen Sewerage Scheme	S	1,051,000	Inniscarra Water Treatment Plant (Sludge Treatment)(G)W	5,356,000
Youghal Water Supply Scheme	W	2,300,000	Macroom Sewerage Scheme	S	5,150,000
			Minane Bridge Water Supply Scheme	W	1,421,000
Cork West					
Castletownshend Sewerage Scheme	S	1,576,000	Cork West		
		50,797,000	Bantry Regional Water Supply Scheme (Distribution)	W	9,455,000
Rural Towns & Villages Initiative			Cape Clear Water Supply Scheme	W	1,679,000
			Castletownbere Regional Water Supply Scheme	W	8,405,000
Cork North			Glengarriff Sewerage Scheme	S	2,500,000
Buttevant Sewerage Scheme (Collection System)	S	2,446,000	Roscarberry/Owenahincha Sewerage Scheme	S	1,576,000
Doneraile Sewerage Scheme (Collection System)	S	1,738,000	Skibbereen Regional Water Supply Scheme Stage 4	W	7,880,000
			Water Conservation Allocation Water Management Study South Western River Basin District (WFD) Project 1		95,646,000
Cork South			ald, ald		
Innishannon (Ballinadee/ Ballinspittle/ Garrettstown)			Water Conservation Allocation		12,206,000
Water Supply Scheme	W	6,726,000	Water Conservation Allocation The Conservation Allocation Asset Management Study South Western River Basin District (WFD) Project 1		
		, and	Asset Management Study		300,000
Cork West		gections.	9		
Ballylicky Sewerage Scheme	S	2,158,000	South Western River Basin District (WFD) Project ¹		9,400,000
Baltimore Sewerage Scheme	S	3,02,000			
Castletownbere Sewerage Scheme	S	5,202,000		401	- 400 000
Schull Sewerage Scheme	S Consent	3,523,000	Programme Total	48	5,489,000
	Cotte	24,950,000			
Schemes to Advance through Planning					
Cork North					
Mitchelstown North Galtees Water Supply Scheme	W	3,152,000			
Mitchelstown Sewerage Scheme	S	3,000,000			
Newmarket Sewerage Scheme	S	3,152,000			

¹ This project is being led by Cork County Council on behalf of other authorities in the River Basin District

⁽H) Refers to a Hub as designated in the National Spatial Strategy

⁽G) Refers to a Gateway as designated in the National Spatial Strategy