ANNEX 1: TABLES / ATTACHMENT

Attachment	Description
A1 Map 1	1:50,000 Location Map
A1 Map 2	Site Location of WWTP
A1 Map 3	Wastewater Treatment Plant – Site Layout
B1 Map 4	Agglomeration
B2 Map 5	Layout of Waste Water Treatment Plant
B3 Map 6	Location of Primary Discharge Point SW01 BALLY
B3 Map 7	Location of Sampling Points
B4	Not Applicable
B5	Not Applicable
B6	Part VIII
B7	Not Applicable
B8 Map 8	Location of Site Notice
B8	Notice & Advertisement
B10	Not Applicable
B 11	Not Applicable
B 12	Not Applicable
C1 Map 9	Layout Wastewater Treatment Plant
C1 Drg 1	Schematic of Wastewater Treatment Plant
C2	Not Applicable 200501
D1	Not Applicable
Section D2	Not Applicable Discharge Points
E2	Not Applicable 🌼 🔗
Section E3	Monitoring & Sampling Points
E4	Sampling Results
F1	Draft River basin Management Plan for the SWRBD
	SAC Blackwater River Site Synopsis
F2	Not Applicable
G1	SAC Blackwater River Site Synopsis
G2	Not Applicable
G3	Not Applicable
G4	Not Applicable

Agglomeration details

Leading Local Authority	Cork County Council
Co-Applicants	
Agglomeration	Ballyhooley
Population Equivalent	900
Level of Treatment	Secondary
Treatment plant address	Conva, Ballyhooley, Fermoy, Co. Cork
Grid Ref (12 digits, 6E, 6N)	172668 / 099051
EPA Reference No:	

Contact details

Contact Name:	Frank Cronin	
Contact Address:	Water Services Section Cork County Council Northern Division Annabella Mallow Co Cork	
Contact Number:	022-21023	
Contact Fax:	022-21983	
Contact Email:	Frank.cronin@corkcoco.ie	

Table D.1(i)(a): EMISSIONS TO SURFACE/GROUND WATERS (Primary Discharge Point)

Discharge Point Code: SW-1

Local Authority Ref No:	SW-01 BALY		
Source of Emission:	Ballyhooley Wastewater Treatment Plant		
Location:	Conva, Ballyhooley		
Grid Ref (12 digits, 6E, 6N)	172596 / 099026		
Name of Receiving waters:	Blackwater		
Water Body:	River Water Body		
River Basin District	South Western RBD		
Designation of Receiving Waters:	Salmoid River		
Flow Rate in Receiving Waters:	4 m³.sec-1 Dry Weather Flow		
-	6.8 m³.sec-1 95% Weather Flow		
Additional Comments (e.g. commentary on zero flow or other information deemed of value)			

Emission Details:

(i) Volume emitted		4.9	July 1		
Normal/day	220 m³	Maximum/daxx ***	660 m ³		
Maximum rate/hour	27.5 m³	Period of emission (avg)	60 min/hr	24 hr/day	365 day/yr
Dry Weather Flow	0.0025 m³/sec	gection net			
	Consent	For in all the formation of contribution of co			

Table D.1(i)(b): EMISSIONS TO SURFACE/GROUND WATERS - Characteristics of The Emission (Primary Discharge Point)

Discharge Point Code: SW-1

Substance	As discharged				
	Unit of Measurement	Sampling Method	Max Daily Avg.	kg/day	
рН	рН	24 hr composite	= 9		
Temperature	°C	24 hr composite	= 30		
Electrical Conductivity (@ 25°C)	μS/cm	24 hr composite	= 1000		
Suspended Solids	mg/l	24 hr composite	= 35	23.1	
Ammonia (as N)	mg/l	24 hr composite	= 0	0	
Biochemical Oxygen Demand	mg/l	24 hr composite	= 25	16.5	
Chemical Oxygen Demand	mg/l	24 hr composite	= 125	82.5	
Total Nitrogen (as N)	mg/l	24 hr composite	= 35	23	
Nitrite (as N)	mg/l	24 hr composite	= 0	0	
Nitrate (as N)	mg/l	24 hr composite	= 0	0	
Total Phosphorous (as P)	mg/l	24 hr composite	= 8	5.28	
OrthoPhosphate (as P)	mg/l	24 hr composite	= 6	3.96	
Sulphate (SO ₄)	mg/l	24 hr composite	= 0	0	
Phenols (Sum)	μg/l	24 hr composite	√ ≌.0	0	

For Orthophosphate: this monitoring should be undertaken on a sample filtered on 0,45µm filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent, and the standard Method 624

WWD Licence Application - Ballyhooley - Page: 3

Table D.1(i)(c): DANGEROUS SUBSTANCE EMISSIONS TO SURFACE/GROUND WATERS - Characteristics of The Emission (Primary Discharge Point)

Discharge Point Code: SW-1

Substance			As discharged	
	Unit of Measurement	Sampling Method	Max Daily Avg.	kg/day
Atrazine	μg/l	24 hr composite	= 0	0
Dichloromethane	μg/l	24 hr composite	= 0	0
Simazine	μg/l	24 hr composite	= 0	0
Toluene	μg/l	24 hr composite	= 0	0
Tributyltin	μg/l	24 hr composite	= 0	0
Xylenes	μg/l	24 hr composite	= 0	0
Arsenic	µg/l	24 hr composite	= 0	0
Chromium	μg/l	24 hr composite	= 0	0
Copper	μg/l	24 hr composite	= 0	0
Cyanide	µg/l	24 hr composite	= 0	0
Flouride	μg/l	24 hr composite	= 0	0
Lead	μg/l	24 hr composite	= 0	0
Nickel	μg/l	24 hr composite	= 0	0
Zinc	μg/l	24 hr composite	= 0	0
Boron	μg/l	24 hr composite) = 0	0
Cadmium	μg/l	24 hr composite	= 0	0
Mercury	μg/l	24 hr composite	= 0	0
Selenium	μg/l	24 ho composite	= 0	0
Barium	μg/l	24 hr composite	= 0	0

For Orthophosphate: this monitoring should be undertaken on a sample filtered on 0.45µm filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

TABLE E.1(i): WASTE WATER FREQUENCY AND QUANTITY OF DISCHARGE – Primary and Secondary Discharge Points

Identification Code for Discharge point	Frequency of discharge (days/annum)	Quantity of Waste Water Discharged (m³/annum)
SW-1	365	80300

TABLE E.1(ii): WASTE WATER FREQUENCY AND QUANTITY OF DISCHARGE – Storm Water Overflows

Identification Code for Discharge Frequency of discharge (days/annum)	Quantity of Waste Water Discharged (m³/annum)	Compiles with Definition of Storm Water Overflow
---	---	--

TABLE F.1(i)(a): SURFACE/GROUND WATER MONITORING

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1d
Grid Ref (12 digits, 6E, 6N)	172931 / 098752

Parameter	Results (mg/l)				Sampling method	Limit of Quantitation	Analysis method / technique
	01/01/09	19/03/09	17/04/09	14/05/09			
рН		= 7.9	= 7.7	= 8	Grab	2	Electrochemic al
Temperature	= 0				Grab	0.5	Electrochemic al
Electrical Conductivity (@ 25°C)		= 328	= 209	= 297	Grab	0.5	Electrochemic al
Suspended Solids		< 2	< 9	= 2.5	Grab	0.5	Gravimetric
Ammonia (as N)		< 0.05	= 0.07	< 0.1	Grab	0.02	Colorimetic
Biochemical Oxygen Demand			= 3	= 1	Grab	0.06	Electrochemic al
Chemical Oxygen Demand		< 5	= 19	< 21 other than	Grab	8	Digestion & Colorimetic
Dissolved Oxygen	= 0			H. ally	Grab	0	ISE
Hardness (as CaCO ₃)	= 0		ر چ	cot	Grab	0	Titimetric
Total Nitrogen (as N)		= 2.8	= 2 right sire	= 3.88	Grab	0.5	Digestion & Colorimetic
Nitrite (as N)			oecton per red	< 0.1	Grab	0.013	Colorimetric
Nitrate (as N)			oect with	= 2.96	Grab	0.04	Colorimetic
Total Phosphorous (as P)		= 0.15	੍ਰੇਜ਼ ਹ .13	< 0.05	Grab	0.2	Digestion & Colorimetic
OrthoPhosphate (as P)		< 0.05	= 0.06	< 0.05	Grab	0.02	Colorimetic
Sulphate (SO₄)		ator		< 30	Grab	30	Turbidimetric
Phenols (Sum)		Consent		< 0.1	Grab	0.1	GC-MS2

For Orthophosphate: this monitoring should be undertaken on a sample filtered on 0.45µm filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

Additional Comments:	01/01/09 and 0 used where results are not available

WWD Licence Application Annex I

Parameter		Results (mg/l)		Sampling Limit method Quar		Analysis method / technique
	25/05/09					
рН	= 7.7			Grab	2	Electrochemic al
Temperature				Grab	0.5	Electrochemic al
Electrical Conductivity (@ 25°C)	= 256			Grab	0.5	Electrochemic al
Suspended Solids	= 9			Grab	0.5	Gravimetric
Ammonia (as N)	= 0.07			Grab	0.02	Colorimetic
Biochemical Oxygen Demand	= 2			Grab	0.06	Electrochemic al
Chemical Oxygen Demand	= 22			Grab	8	Digestion & Colorimetic
Dissolved Oxygen				Grab	0	ISE
Hardness (as CaCO₃)				Grab	0	Titimetric
Total Nitrogen (as N)	= 2.81			Grab	0.5	Digestion & Colorimetic
Nitrite (as N)				Grab	0.013	Colorimetric
Nitrate (as N)				Grab	0.04	Colorimetic
Total Phosphorous (as P)	= 0.11			Grab	0.2	Digestion & Colorimetic
OrthoPhosphate (as P)	= 0.07			Grab	0.02	Colorimetic
Sulphate (SO ₄)				Grab	30	Turbidimetric
Phenols (Sum)			0.*	Grab	0.1	GC-MS2

For Orthophosphate: this monitoring should be undertaken on a sample filtered on 0.45 µm filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent of the control of the contr

Additional Comments: 01/01/09 and 0 used where results are not available

Leafur of Control of the Control of Control of

TABLE F.1(i)(b): SURFACE/GROUND WATER MONITORING (Dangerous Substances)

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1d
Grid Ref (12 digits, 6E, 6N)	172931 / 098752

Parameter		Re	sults (µg/l)		Sampling method	Sampling Limit of Quantitation	
	01/01/09	19/03/09	17/04/09	14/05/09			
Atrazine				< 0.01	Grab	0.96	HPLC
Dichloromethane				< 1	Grab	1	GC-MS1
Simazine				< 0.01	Grab	0.01	HPLC
Toluene				< 0.28	Grab	0.02	GC-MS1
Tributyltin	= 0				Grab	0.02	GC-MS1
Xylenes				< 1	Grab	1	GC-MS1
Arsenic				< 0.96	Grab	0.96	ICP-MS
Chromium		< 20	< 20	< 20	Grab	20	ICP-OES
Copper		< 20	< 20	< 20	Grab	20	ICP-OES
Cyanide				< 5 met	Grab	5	Colorimetric
Flouride				< 5 100 Otto	Grab	100	ISE
Lead		< 20	< 20	oY <<20	Grab	20	ICP-OES
Nickel		< 20	< 20	20 ≥ 20	Grab	20	ICP-OES
Zinc		= 33.3	< 20 ptr 10 pt	< 20	Grab	20	ICP-OES
Boron		= 86.8	2007	< 20	Grab	20	ICP-OES
Cadmium		< 20	< 2011 ct	< 20	Grab	20	ICP-OES
Mercury			· (V) ⇒ (V 2	< 0.2	Grab	0.2	ICP-MS
Selenium		Ę0 [†]	21/20	= 1.2	Grab	0.74	ICP-MS
Barium		< 20	< 20	= 31.675	Grab	20	ICP-OES

Additional Comments:	TBT value is 0.02ug/ras Sn
	TBT testing not required

WWD Licence Application Annex I

Parameter		Results (μg/l)	Sampling method	Limit of Quantitation	Analysis method / technique	
	25/05/09					
Atrazine			Grab	0.96	HPLC	
Dichloromethane			Grab	1	GC-MS1	
Simazine			Grab	0.01	HPLC	
Toluene			Grab	0.02	GC-MS1	
Tributyltin			Grab	0.02	GC-MS1	
Xylenes			Grab	1	GC-MS1	
Arsenic			Grab	0.96	ICP-MS	
Chromium	< 20		Grab	20	ICP-OES	
Copper	< 20		Grab	20	ICP-OES	
Cyanide			Grab	5	Colorimetric	
Flouride			Grab	100	ISE	
Lead	< 20		Grab	20	ICP-OES	
Nickel	< 20		Grab	20	ICP-OES	
Zinc	< 20		Grab	20	ICP-OES	
Boron	< 20		Grab	20	ICP-OES	
Cadmium	< 20		Grab	20	ICP-OES	
Mercury			Grab	0.2	ICP-MS	
Selenium			Grab	0.74	ICP-MS	
Barium	< 20		Grab	20	ICP-OES	

Additional Comments:	TBT value is 0.02ug/l as Sn TBT testing not required
	TBT testing not required Consent of congright owner required for high congrigation for high congrigation fo
	n Purpo
	a Specific Miner
	Ed High
	ent of contract of the contrac
	Course

WWD Licence Application - Ballyhooley - Page: 10

TABLE F.1(i)(a): SURFACE/GROUND WATER MONITORING

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1u
Grid Ref (12 digits, 6E, 6N)	171490 / 099111

Parameter		Result	ts (mg/l)		Sampling Limit of method Quantitation		Analysis method / technique	
	01/01/09	19/03/09	17/04/09	14/05/09				
рН		= 7.9	= 7.8	= 8	Grab	2	Electrochemic al	
Temperature	= 0		·		Grab	0.5	Electrochemic al	
Electrical Conductivity (@ 25°C)		= 330	= 210	= 210	Grab	0.5	Electrochemic al	
Suspended Solids		< 2	= 10	< 2.5	Grab	0.5	Gravimetric	
Ammonia (as N)		< 0.05	= 0.06	< 0.1	Grab	0.02	Colorimetric	
Biochemical Oxygen Demand		< 2	= 3	= 1	Grab	0.06	Electrochemic al	
Chemical Oxygen Demand		< 5	= 31	< 21 after the	Grab	8	Digestion & Colorimetric	
Dissolved Oxygen	= 0			197. SUA	Grab	0	ISE	
Hardness (as CaCO₃)	= 0		څ	50	Grab	0	Titimetric	
Total Nitrogen (as N)		= 2.8	= 2 JIIPOSOS	= 3.38	Grab	0.5	Digestion & Colorimetric	
Nitrite (as N)			Oction pir real	< 0.1	Grab	0.013	Colorimetric	
Nitrate (as N)			accid with	= 2.62	Grab	0.04	Colorimetric	
Total Phosphorous (as P)		= 0.12	30.07	< 0.05	Grab	0.2	Digestion & Colorimetric	
OrthoPhosphate (as P)		< 0.05	= 0.06	< 0.05	Grab	0.02	Colorimetric	
Sulphate (SO ₄)		, of		< 30	Grab	30	Turbidimetric	
Phenols (Sum)		asetti		< 0.1	Grab	0.1	GC-MS2	

For Orthophosphate: this monitoring should be undertaken on a sample filtered on 0.45µm filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

Additional Comments:	default of 01/01/09 and 0 used in locations where results are not available

WWD Licence Application Annex I

Parameter		Results (mg/l)	Sampling method	Limit of Quantitation	Analysis method / technique
	25/05/09				
рН	= 7.8		Grab	2	Electrochemic al
Temperature			Grab	0.5	Electrochemic al
Electrical Conductivity (@ 25°C)	= 257		Grab	0.5	Electrochemic al
Suspended Solids	= 6		Grab	0.5	Gravimetric
Ammonia (as N)	= 0.08		Grab	0.02	Colorimetric
Biochemical Oxygen Demand	< 2		Grab	0.06	Electrochemic al
Chemical Oxygen Demand	= 21		Grab	8	Digestion & Colorimetric
Dissolved Oxygen		:	Grab	0	ISE
Hardness (as CaCO ₃)			Grab	0	Titimetric
Total Nitrogen (as N)	= 2.84		Grab	0.5	Digestion & Colorimetric
Nitrite (as N)			Grab	0.013	Colorimetric
Nitrate (as N)			Grab	0.04	Colorimetric
Total Phosphorous (as P)	= 0.07	,	Grab	0.2	Digestion & Colorimetric
OrthoPhosphate (as P)	= 0.05		Grab	0.02	Colorimetric
Sulphate (SO ₄)			Grab	30	Turbidimetric
Phenols (Sum)			Grab	0.1	GC-MS2

For Orthophosphate: this monitoring should be undertaken on a sample filtered on 0.45 um filter paper For Phenols: USEPA Method 604, AWWA Standard Method 6240, or equivalent

Additional Comments: default of 01/01/09 and 0 used in locations where results are not available

TABLE F.1(i)(b): SURFACE/GROUND WATER MONITORING (Dangerous Substances)

Primary Discharge Point

Discharge Point Code:	SW-1
MONITORING POINT CODE:	aSW-1u
Grid Ref (12 digits, 6E, 6N)	171490 / 099111

Parameter		Re	sults (µg/l)		Sampling method	Sampling Limit of Quantitation	
	01/01/09	19/03/09	17/04/09	14/05/09			
Atrazine				< 0.01	Grab	0.96	HPLC
Dichloromethane				< 1	Grab	1	GC-MS1
Simazine				< 0.01	Grab	0.01	HPLC
Toluene				< 0.28	Grab	0.02	GC-MS1
Tributyltin	= 0				Grab	0.02	GC-MS1
Xylenes				< 1	Grab	1	GC-MS1
Arsenic				< 0.96	Grab	0.96	ICP-MS
Chromium		< 20	< 20	< 20	Grab	20	ICP-OES
Copper		< 20	< 20	< 20		20	ICP-OES
Cyanide				< 5	Grab	5	Colorimetric
Flouride				< 5 < 100 offer	Grab	100	ISE
Lead		< 20	< 20	3 1<20	Grab	20	ICP-OES
Nickel		< 20	< 20	× 20	Grab	20	ICP-OES
Zinc		< 20	< 20 urleni	< 20	Grab	20	ICP-OES
Boron		< 20	< 200 7 1000	< 20	Grab	20	ICP-OES
Cadmium		< 20	<00 10°	< 20	Grab	20	ICP-OES
Mercury			in hit	< 0.2	Grab	0.2	ICP-MS
Selenium		ÇÓ	in Sur On	< 0.74	Grab	0.74	ICP-MS
Barium		= 26.2	< 20	= 115.19	Grab	20	ICP-OES

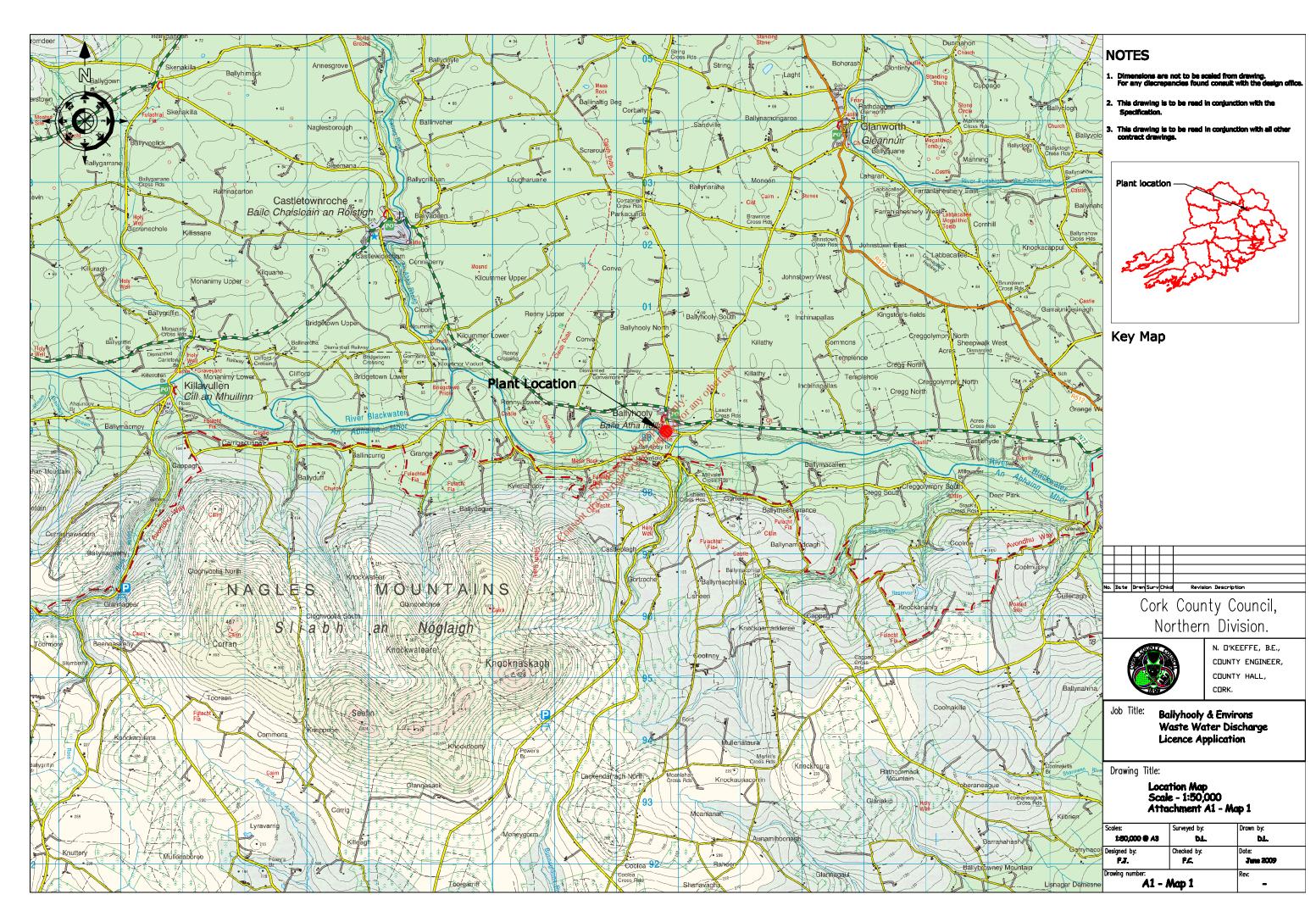
Additional Comments:	TBT value is 0.02ug/kas Sn
	TBT testing not required

WWD Licence Application Annex I

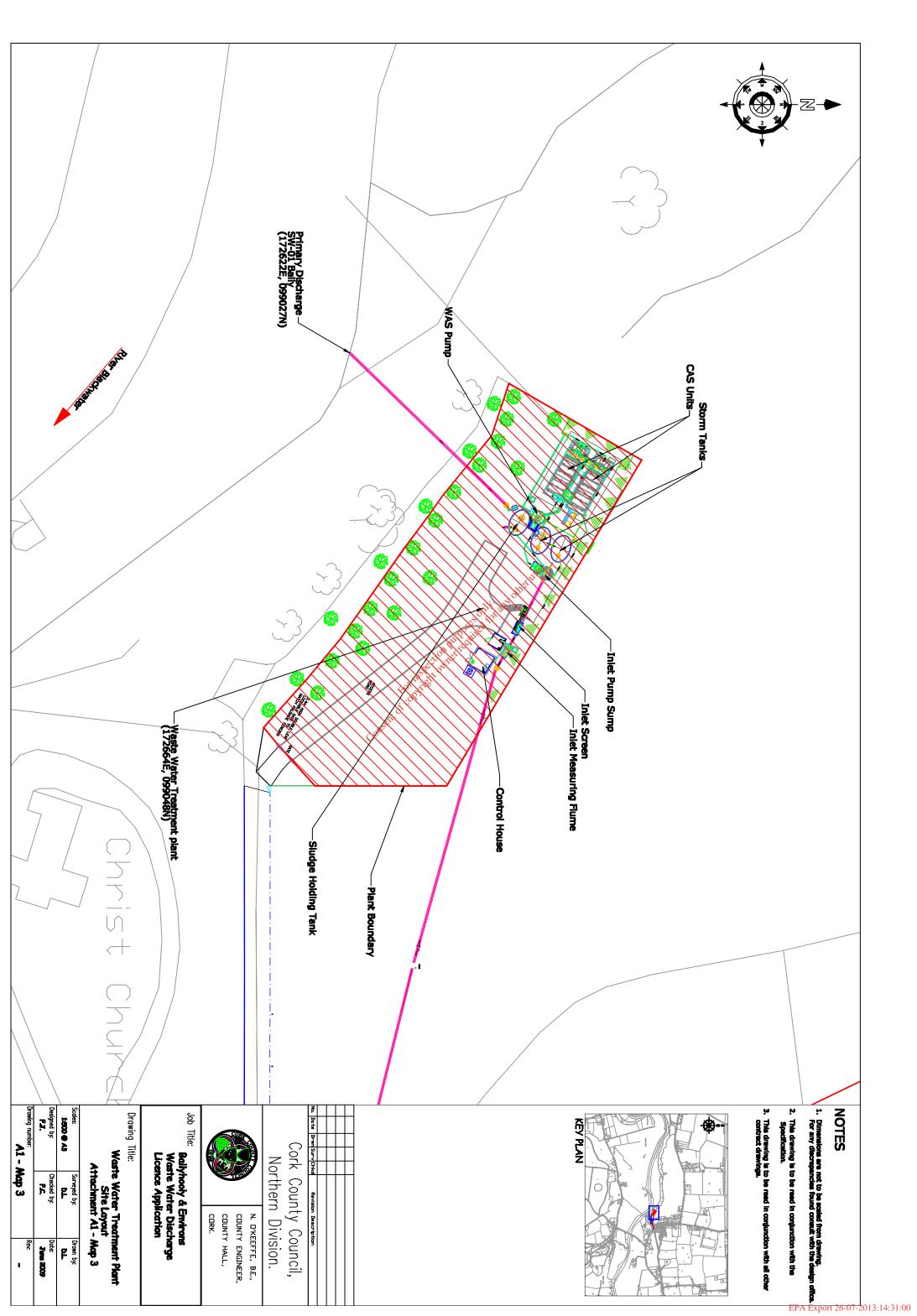
Parameter		Results (μg/l)	Sampling method	Sampling Limit of Quantitation	
	25/05/09				technique
Atrazine			Grab	0.96	HPLC
Dichloromethane			Grab	1	GC-MS1
Simazine			Grab	0.01	HPLC
Toluene			Grab	0.02	GC-MS1
Tributyltin			Grab	0.02	GC-MS1
Xylenes			Grab	1	GC-MS1
Arsenic			Grab	0.96	ICP-MS
Chromium	< 20		Grab	20	ICP-OES
Copper	< 20		Grab	20	ICP-OES
Cyanide			Grab	5	Colorimetric
Flouride			Grab	100	ISE
Lead	< 20		Grab	20	ICP-OES
Nickel	< 20		Grab	20	ICP-OES
Zinc	< 20		Grab	20	ICP-OES
Boron	= 31.5		Grab	20	ICP-OES
Cadmium	< 20		Grab	20	ICP-OES
Mercury			Grab	0.2	ICP-MS
Selenium			Grab	0.74	ICP-MS
Barium	< 20		Grab	20	ICP-OES

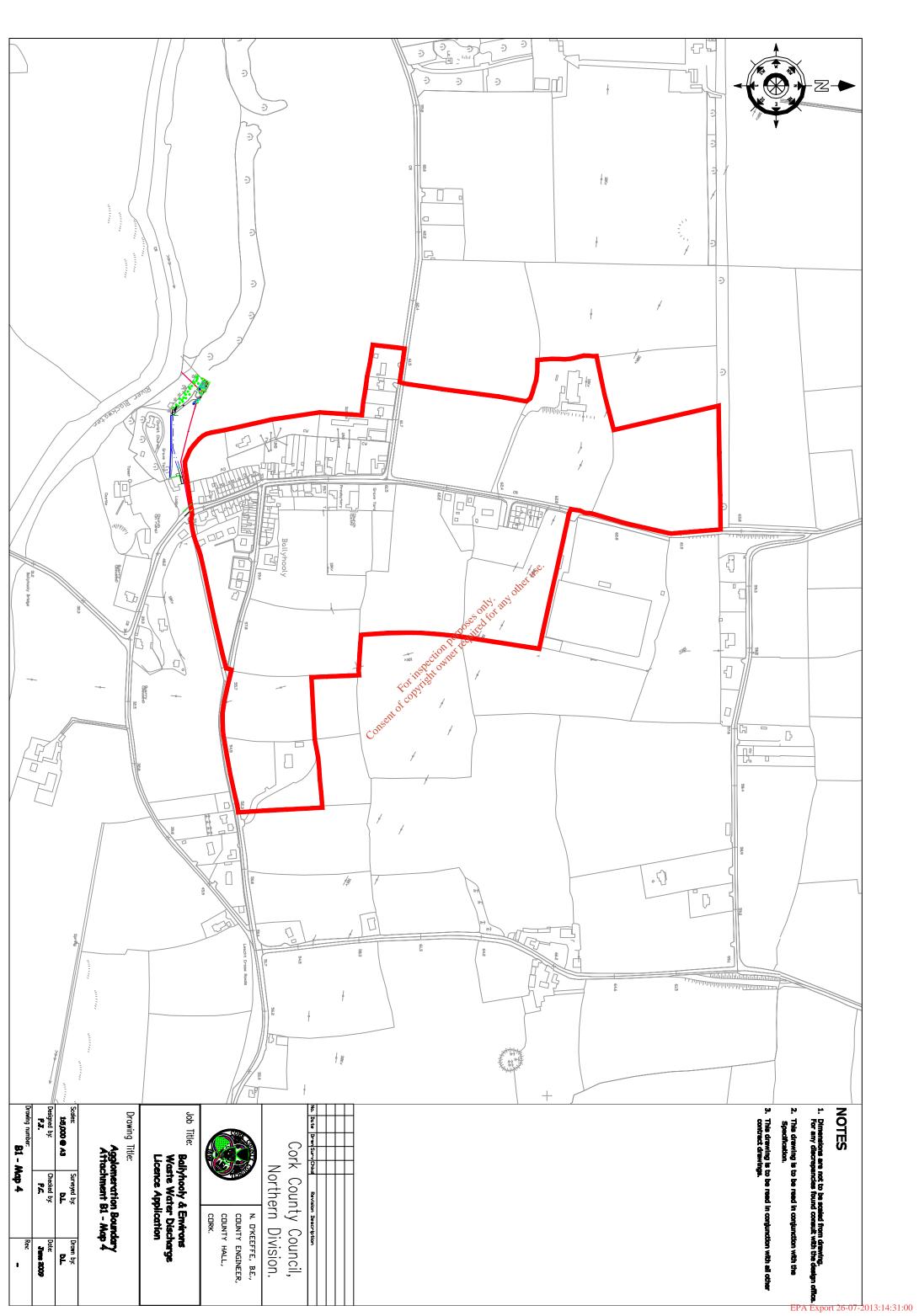
Additional Comments:	TBT value is 0.02ug/l as Sn TBT testing not required
	TBT testing not required For its pediton the produced for any and the control of the pediton the produced for any and the control of the pediton the pediton that the pediton the pediton that t
	ion Perfective
	arilis dittorite
	Grand Contraction of the Contrac
	Consent.

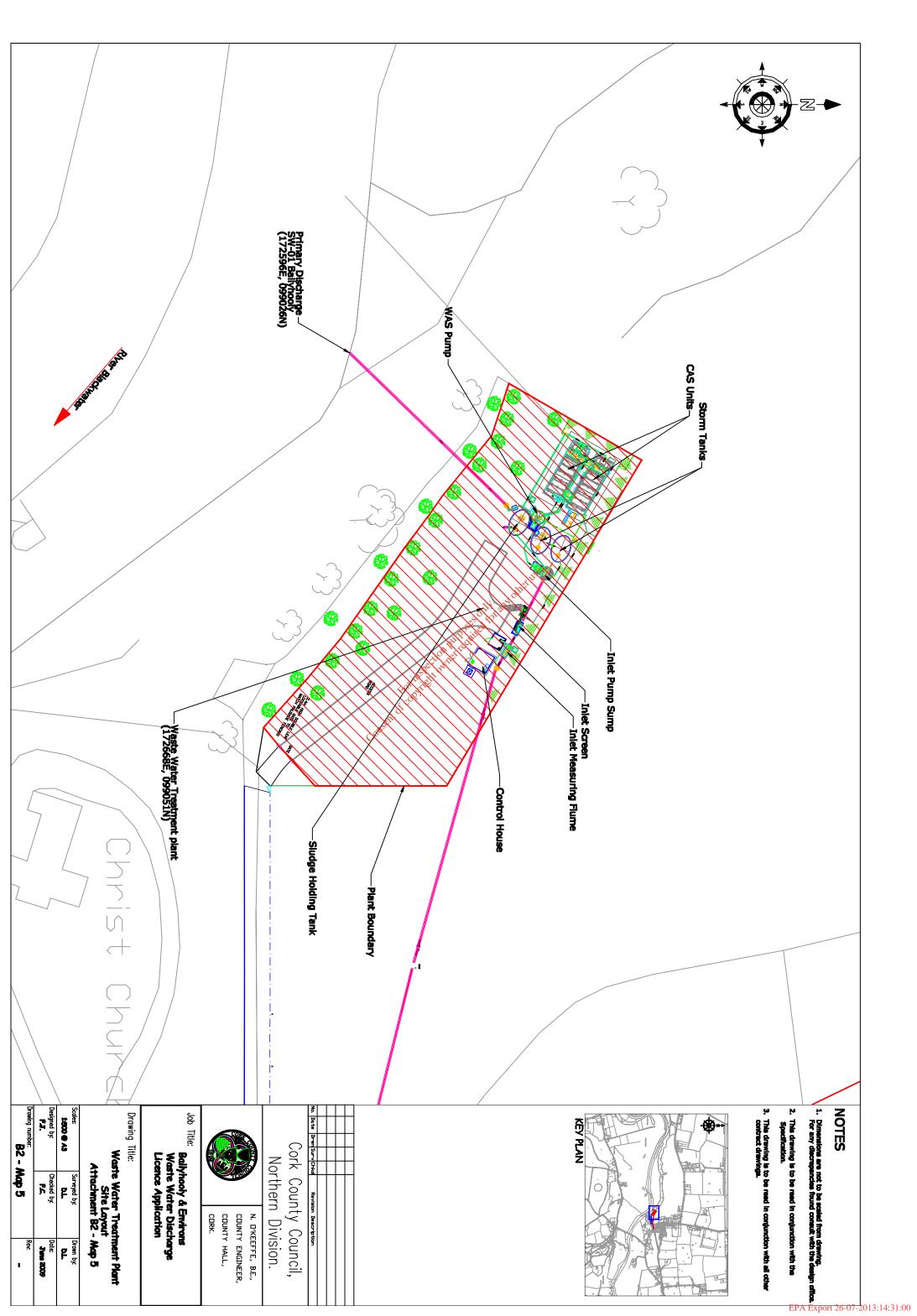
Annex 2: Check List For Regulation 16 Compliance

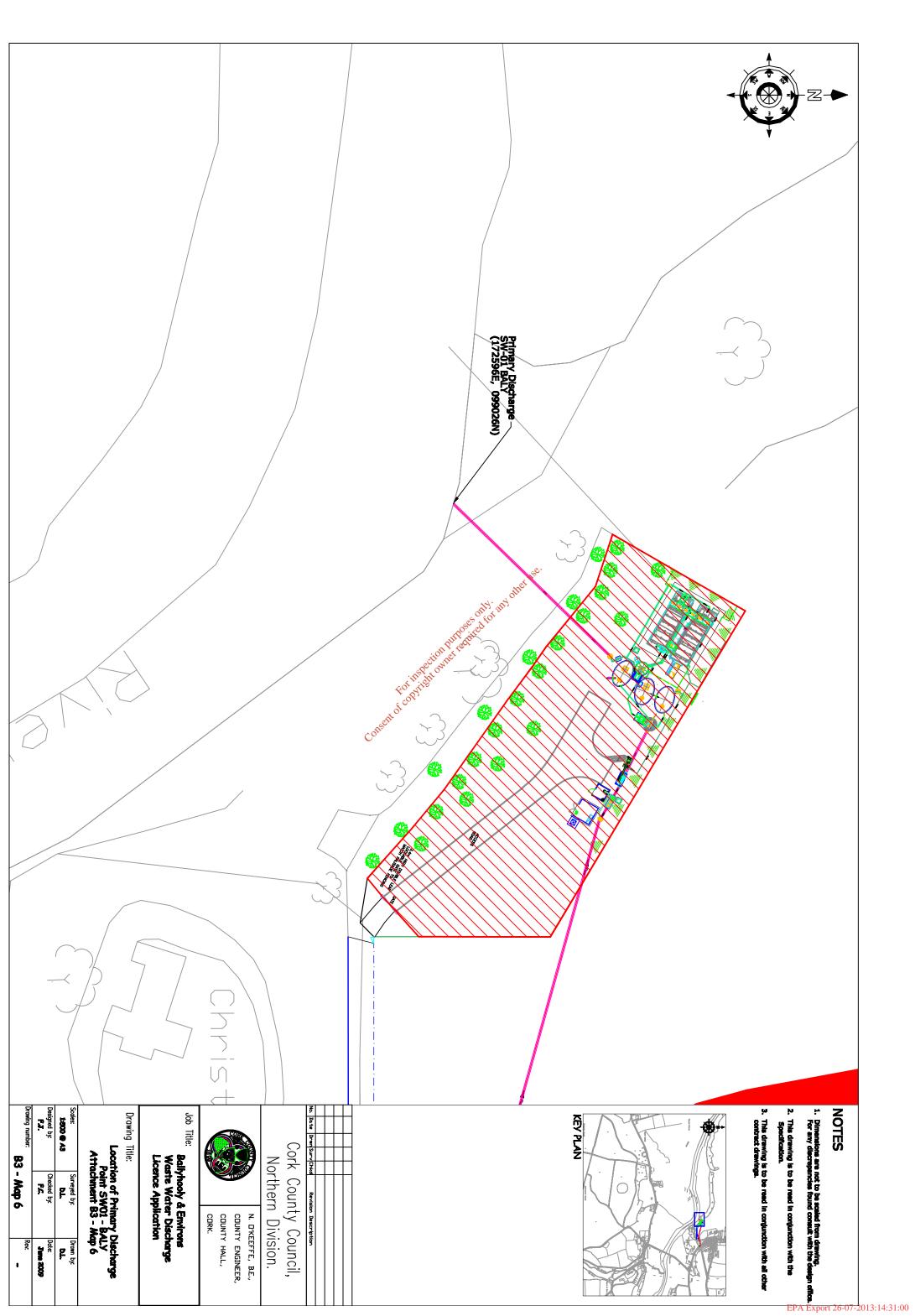

Regulation 16 of the waste water discharge (Authorisation) Regulations 2007 (S.I. No. 684 of 2007) sets out the information which must, in all cases, accompany a discharge licence application. In order to ensure that the application fully complies with the legal requirements of regulation 16 of the 2007 Regulations, all applicants should complete the following.

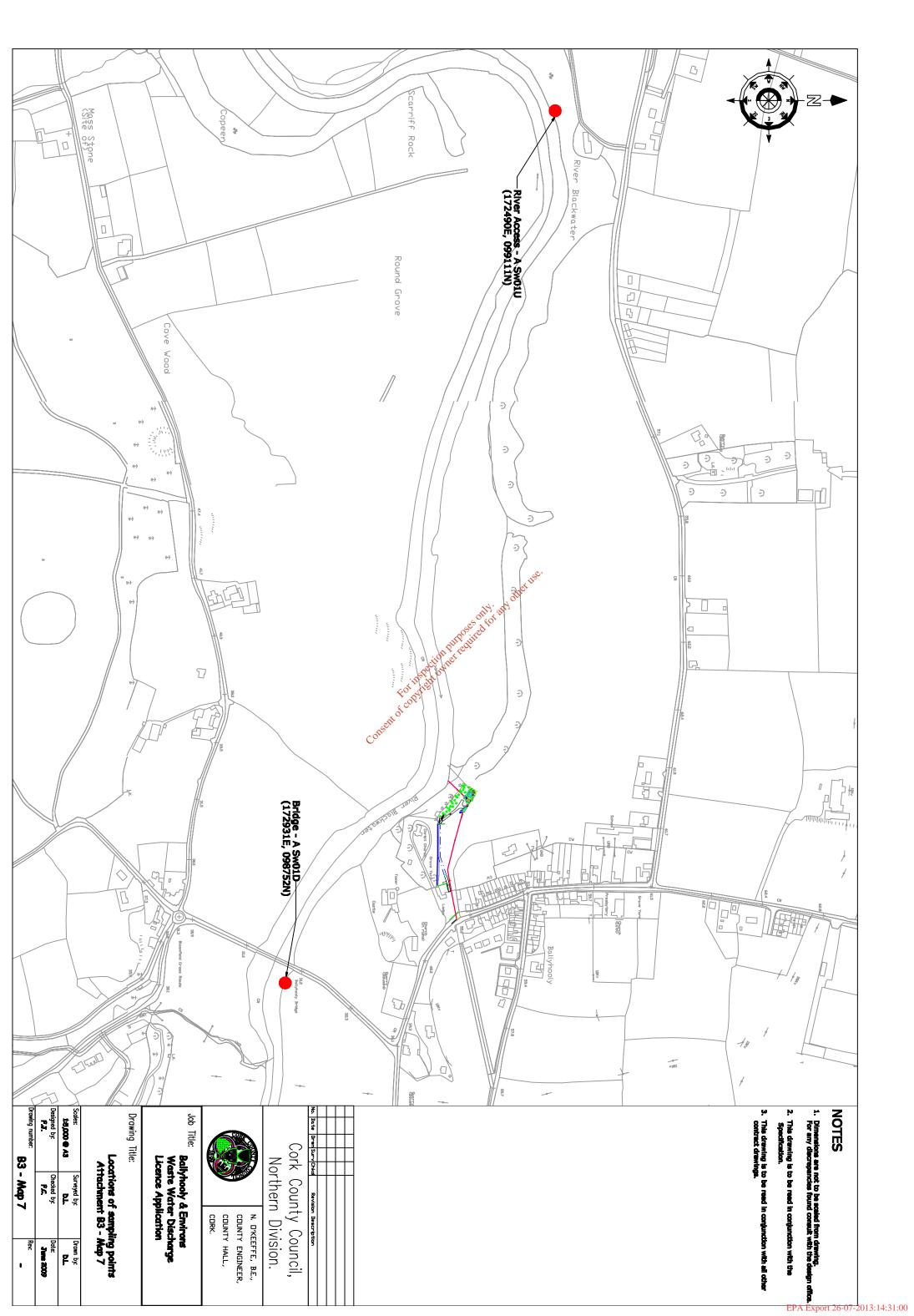
In each case, refer to the attachment number(s), of your application which contains(s) the information requested in the appropriate sub-article.


Regul	ation 16(1) case of an application for a waste water discharge licence, the application shall -	Attachment Number	Checked by Applicant
(a)	give the name, address, telefax number (if any) and telephone number of the applicant (and, if different, of the operator of any treatment plant concerned) and the address to which correspondence relating to the application should be sent and, if the operator is a body corporate, the address of its registered office or principal office,	B1	Yes
(b)	give the name of the water services authority in whose functional area the relevant waste water discharge takes place or is to take place, if different from that of the applicant,	Not Applicable	Yes
(c)	give the location or postal address (including where appropriate, the name of the townland or townlands) and the National Grid reference of the location of the waste water treatment plant and/or the waste water discharge point or points to which the application relates,	B2	Yes
(d)	state the population equivalent of the agglomeration to which the application relates,	Not Applicable	Yes
(e)	specify the content and extent of the waste water discharge, the level of treatment provided, if any, and the flow and type of discharge,	C, D	Yes
(f)	give details of the receiving water body, including its protected area status, if any, and details of any sensitive areas or protected areas or both in the vicinity of the discharge point or points likely to be affected by the discharge concerned, and for discharges to ground provide details of groundwater protection schemes in place for the receiving water body and all associated hydrogeological and geological assessments related to the receiving water environment in the vicinity of the discharge.	F1	Yes
(g)	identify monitoring and sampling points and indicate proposed arrangements for the monitoring of discharges and, if Regulation 17 does not apply, provide details of the likely environmental consequences of any such discharges,	E3	Yes
(h)	in the case of an existing waste water treatment plant, specify the sampling data pertaining to the discharge based on the samples taken in the 12 months preceding the making of the application,	E4	Yes
(i)	describe the existing or proposed measures, including emergency procedures, to prevent unintended waste water discharges and to might be the impact on the environment of any such discharges,	Not Applicable	Yes
(j)	give particulars of the nearest downstream drinking water abstraction point or points to the discharge point or points,	Not Applicable	Yes
(k)	give details, and an assessment of the effects, of any existing or proposed emissions on the environment, including any environmental medium other than those into which the emissions are, or are to be made, and of proposed measures to prevent or eliminate or, where that is not practicable, to limit any pollution caused in such discharges,	F1	Yes
[1)	give detail of compliance with relevant monitoring requirements and treatment standards contained in any applicable Council Directives of Regulations,	E4	Yes
(m)	give details of any work necessary to meet relevant effluent discharge standards and a timeframe and schedule for such work.	Not Applicable	Yes
n)	Any other information as may be stipulated by the Agency.	Not Applicable	Yes
Mithou	tion 16(3) t prejudice to Regulation 16 (1) and (2), an application for a licence shall be panied by -	Attachment Number	Checked by Applicant
a)	a copy of the notice of intention to make an application given pursuant to Regulation 9.	B8	Yes
b)	where appropriate, a copy of the notice given to a relevant water services authority under Regulation 13,	Not Applicable	Yes
c)	Such other particulars, drawings, maps, reports and supporting documentation as are necessary to identify and describe, as appropriate -	В	Yes
c) (i)	discharges take place or are to take place, and	В3	Yes
c) (ii)	undertaken,	E3	Yes
d)	such fee as is appropriate having regard to the provisions of Regulations 38 and 39.	Not Applicable	Yes


An or	ation 16(4) Iginal application shall be accompanied by 2 copies of it and of all accompanying nents and particulars as required under Regulation 16(3) in hardcopy or in an electronic er format as specified by the Agency.	Attachment Number	Checked by Applicant
1	An Original Application shall be accompanied by 2 copies of it and of all accompanying documents and particulars as required under regulation 16(3) in hardcopy or in electronic or other format as specified by the agancy.		Yes
E4	lation 16(5) le purpose of paragraph (4), all or part of the 2 copies of the said application and clated documents and particulars may, with the agreement of the Agency, be submitted in actionic or other format specified by the Agency.	Attachment Number	Checked by Applicant
1	Signed original.		Yes
2	2 hardcopies of application provided or 2 CD versions of application (PDF files) provided.		Yes
3	1 CD of geo-referenced digital files provided.		Yes
Wher subje to 200 respe- state	lation 17 e a treatment plant associated with the relevant waste water works is or has been ct to the European Communities (Environmental impact Assessment) Regulations 1989 01, in addition to compliance with the requirements of Regulation 16, an application in oct of the relevant discharge shall be accompanied by a copy of an environmental impact ment and approval in accordance with the Act of 2000 in respect of the said development may be submitted in an electronic or other format specified by the Agency	Attachment Number	Checked by Applicant
1	EIA provided if applicable		Yes
2	2 hardcopies of EIS provided if applicable.		Yes
3	2 CD versions of EIS, as PDF files, provided.		Yes







Comhairle Chontae Chorcaí Cork County Council

Cork, Ireland.

Fax No: (021) 427689

Ms. Tess Kelleher, Senior Staff Officer, Water Services Section, Cork County Council, Annabella, Mallow, Co. Cork. Web: http://www.corkcoco.com/

Direct Dial: 021-4285454
Fax: 021-4345425

Email: corporate.affairs@corkcoco.ie

15th March, 2005

Re: Report under Article 179(3)(b) of the Planning & Development Act, 2000

Upgrading of existing Sewerage Treatment Plant, Ballyhooly, Mallow

I refer to your letter dated 28th February, 2005, in connection with the above.

At the meeting of Cork County Council held on 14th March, 2005, the recommendation of the Northern Committee was approved.

MARIAN McCARTEY, ASENIOR EXECUTIVE OFFICER.

CORK COUNTY COUNCIL. (NORTH)

LOCAL GOVERNMENT PLANNING AND DEVELOPMENT ACT 2000

REPORT PURSUANT TO SECTION 179

DEVELOPMENT: Upgrading of existing Sewerage Treatment Plant

LOCATION: Ballyhooly, Mallow, Co. Cork

NATURE/EXTENT/PRINCIPLE FEATURES OF PROPOSED DEVELOPMENT: Upgrading of existing Sewerage Treatment Plant

PERSONS OR BODIES WHO MADE SUBMISSIONS OR OBSERVATIONS: None

LIKELY IMPLICATIONS WITH RESPECT TO THE PROPER PLANNING AND DEVELOPMENT OF THE AREA: None

IT IS PROPOSED: To proceed with the development

This report is submitted to the members of Cork County Council in the course of compliance with Section 2 (7) of the City and County Management (Amendment) Act, 1995.

SIGNED: LOS LOS FOR HEAD OF CORPORATE AFFAIRS

DATE: 13-12-04

CORK COUNTY COUNCIL SITE NOTICE

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Waste Water Discharge (Authorisation) Regulations 2007, Water Services Northern Division, Cork County Council, Annabella, Mallow is applying to the Environmental Protection Agency for a Waste Water Discharge Licence for the agglomeration of Ballyhooley Cork at the following locations:

Plant Name	Location	National Grid Ref.
Ballyhooley WWTP	Conva, Ballyhooley	E172668 N099051

Discharge	Function	Townland	Receptor	Grid Reference
Primary	Main	Conva	Blackwater	E172596
-			ool ked t	N099026

A copy of the application for the Waste Water Discharge Licence and such further information relating to the application as may be furnished to the Agency in the course of the Agency's consideration of the Application shall as soon as is practicable after receipt by the Agency be available for inspection or purchase at the

- Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335599 Telephone: 053-9160600 Fax: 053-9160699 Email:info@epa.ie and at
- Cork County Council Offices, Annabella, Mallow, Co. Cork, Telephone: 022-21123 Fax: 022-21983

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above.

Cork County Council Northern Division

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Waste Water Discharge (Authorisation) Regulations 2007, Water Services Northern Division, Cork County Council, Annabella, Mallow is applying to the Environmental Protection Agency for a Waste Water Discharge Licence for the agglomeration of Ballyhooley at the following locations:

Plant Name	Location	National Grid Ref.
Ballyhooley WWTP	Conva, Ballyhooley	E172668 N099051

Discharge	Function	Townland	Receptor	Grid Reference
Primary	Main	Conva	Blackwater	E172596
			.ق.	N099026

A copy of the application for the Waste Water Discharge Licence and such further information relating to the application as may be furnished to the Agency in the course of the Agency's consideration of the Application shall as soon as is practicable after receipt by the Agency be available for inspection or purchase at the

• Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335599 Telephone: 053-9160600 Fax: 053-9160699 Email:info@epa.ie

and at

• Cork County Council Offices, Annabella, Mallow, Co. Cork, Telephone: 022-21123 Fax: 022-21893.

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above.

CORK COUNTY COUNCIL

COMHAIRLE CHONTAE CHORCAÍ

PUBLIC NOTICES

SOUTHERN DIVISION

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Wastewater Discharge (Authonsation)
Regulations 2007. Water Services Southern Division, Cork Coun
Council, Carrigrohane Road, Cork is applying to the
Environmental Protection Agency for a Wastewater Discharge
Licence for Ringaskiddy Village agglomeration with a discharge
point at the following location.

Discharge.	Function	Townsand	Receptor	Grid Rei
Primary	Major	Loughbog	Cork Harbour	E178202
	Outfall		(West Passage)	N064723

It is intended to submit the Environmental Impact Statement associated with the proposed provision of a Wastewater Treatme associated with the proposed provision of a Wastewater Treatme Plant in the Lower Harbour to the Agency along with the Applicati

A copy of the application for the Wastewater Discharge Licence, the Environmental Impact Statement and such further informative relating to the application is may be furnished to the Agency in the course of the Agency's consideration of the Application shall, as soon as is practicable after receipt by the Agency, be available for inspection or purchase at the

- Environmental Protection Agency, PO Box 3000. Johnstown Castle Estate, Co Wexford, Lo Call 1890 335 599; Tel: 053-9160600; Fax: 053-9160699; Email: info@epa.ic
- nd at Cork County Council Offices, Water Services South, County Hall, Carrigrohane Road, Cork Tel: 021-4276891; Fax: 021-4276321.

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Wastewater Discharge (Authorisation) Regulations 2007, Water Services Southern Division of Cork County Council, Cardigrobane Road, Coxik is applying to the Environmental Protection Agency for a Wastewater Discharge Licence for the agglomeration of Kilbritian at The following locations

Plant Name Kilbrittain WWTP		Location Kilbrittain		
Discharge		Townland		Grid Red
Primary	Main	Kilbrittain	Kilbrittain River	E152671 N46831

and such further information relating to the application as may be furnished to the Agency in the course of the Agency's consideration of the Application shall, as soon as is practicable after receipt by the Agency, be available for inspection or purchase at the

- Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335 599; Tel: 053-9160600; Fax: 053-9160699; Email: info@epa.ie
- d at Cork County Council Offices, Water Services South. County Hail: Carrigrohane Road, Co. Cork. Tel: 021-4276891; Fax: 021-4276321

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Wastewater Discharge: (Authorisation) Regulations 2007; Water Services Southern Division of Cork Con-Council, Carrigrobine Road, Cork is applying to the Environment Protection Agency for a Wastewater Discharge: Lecture for the agglomentation of Ballingeary at the following bootstims.

Plant Name Ballingeary WWIP		Dromanallig Ballingeary	. E11	Grid Ref. 5181 56906
Discharge Primary	Function Main	Ballingeary	Receptor Bunsheelin River	Grid Ref. E115239 N066876
A copy of th	e application	n for the Waste	water Dischar	ge Licence

PUBLIC NOTICES

SOUTHERN DIVISION APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

n accordance with the Wastewater Discharge (Authonsation) kegulations 2007, Water Services Southern Division of Cork Cou-council, Carrigrohaue Road, Cork is applying to the Environmen rivolection Agency for a Wastewater Discharge Licence for the gglomeration of Mogeely at the following locations.

	Location	Teamorn	Grid Ref.
TP	Killamucky, Mogeely	E19 N07	5119 4683
Function	Townland	Receptor	Grid Ref.
Main	Mogeely	Kiltha	E196000 N074644
	Fenetic	Mageely Fenction Townland	Mageely N07 Function Townland Receptor

- the Application shall, as soon as is practicable after receipt by a Agency, be available for inspection or purchase at the
- Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890-345-599, Tel: 053-9160600, Fax. 053-9160699; Email: info@epa.ie

nd at Cork County Conneil Offices, Water Services South, County Hall, Caringrohane Road, Co. Cork Tel-021-4276891; Fax: 021-4276321 Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above.

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

n accordance with the Wasiewater Discharge (Authorisation) Regulations 2007, Water Services Southern Division of Cork Count Janucil, Carrigrohane Road, Cork is applying to the Environmental protection Agency for a Wasiewater Discharge Licence for the aggloureration of Riversitic At the following locations.

Plant Nam	e	Location		Grid Ref.
Riverstick W	rstick WWTP Curra, Riverstick		E 165912 N057429	
Discharge	Function	Townland	Receptor	Grid Ref.
Primary	Main	Riverstick	Slick River	E165975 N057389

of the Application shall, as soon as is practicable after receipt by the Agency, be available for inspection or purchase at the.

Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335 599; Tel: 053-9160600; Fax: 053-9160699; Email: info@epa.ie nd at Cork County Council Offices, Water Services South County Hall, Carrigrobane Road, Co. Cork Tel: 021-4276891; Fax. 021-4276321.

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

n accordance with the Wassewater Discharge (Authorisation) egulations 2007, Water Services Southern Division of Cork Count ouncil, Carrigonhane Road, Cork is applying to the Environmental notection Agency for a Wastewater Discharge Licence for the agriculture of the Whitegate Aghada at the following locations: Discharge | Dunction | Townland | Becenter | | Grid Ref

		1 PARETTERENT LINE		CALLES KACH
Primary	Main	Whitegate	Cork Harbour	E183337
			1	N064664
Secondary	Secondary	Farsid	Cork Harbour	E186873
_				N065803
Secondary	Secondary	Lower	Cork Marbour	E185465
		Aghada		N065780
Secondary	Secondary	Arknabourkey	Percolation	E184543
			Area	N063066

PUBLIC NOTICES

NORTHERN DIVISION APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Wastewater Discharge (Authorsation) Regulations 2007, Water Services Northern Division, Cork County Council, Annabella, Mallow is applying to the Euronomental Protection Agency for a Wastewater Discharge Leacnee for the agglomeration of Bweeng at the following locations.

Plant Nam Bweeng WV	unt Name Location eeing WWTP Beennam Bweeng		 National Grid N E150293 N088061 		
Discharge	Function	Townland	Receptor	Grid Ref.	
Primary	Main	Beennamweel	Cummen Stream	E150251 N088034	

- copy of the application for the Wastewater Discharge (accessed such further information relating to the application as may be mished to the Agency or the course of the Agency's consideration the Application as still, as soon as is practicable after receipt by a Agency, by available for inspection or purchase at the
- Environmental Protection Agency, PO Box 3000. Johnstown Castle Estate, Co. Wextord, Lo. Call 1890 335-599; Tel. 053-9160600; Fax. 053-9160699, Email, info@epa æ

omissions in relation to the application may be made to Environmental Protection Agency at its headquarters

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

a accordance with the Westewater Discharge (Authorisation) egolations 2007. Water Services Northern Division. Cork County muncil, Annabella, Mallow is apalying to the Environmental muncil annabella, Wallow is apalying to the Environmental global discharge of County of the County of the County global discharge of County of the County of the County global discharge of County of the County of the County and the County of the County of the County of the County the County of the County of the County of the County of the County the County of the County

Plant Nat	ne .	Location	National (Grid Ref.
Castlelyon	WWTP	Kill St. Anne, Castlelyons	E184 N092	
			A	
Discharge	Function	Townland R	ecaptor	Grid Re

- Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co Wexford, Lo Call 1890 335 599; Tel: 053-9160600: Fax: 053-9160699; Email: mfo@epa.e
- Cork County Council Offices, Annabella, Mallow, Co. Cork Tel: 022-21123: Fax: 022-21893 thmissions in relation to the application may be made to Environmental Protection Agency at its headquarters

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

in accordance with the Wastewater Discharge (Authorisation) Regulations 2007. Water Services Northern Division. Cork Courts Jouncil, Annabella, Mallow is applying to the Environmental Protection Agency for a Wastewater Discharge Licence for the agglomeration of Churchivowi. Cork at the following lecutions Plant Name Location | National Grid Ref.

Churchtown	rchtown WWTP Ballyadam, E150273 Churchtown N113258			
Discharge	Function	Townland	Receptor	Grid Ref.
Primary	Main	Ballyadam	Percolation Area	E150281 N113298
and such fur	thei miori	nation relation	g to the appli	harge Licence cation as may be y's consideration

of the Application shall, as socious is practicable after receipt by the Agency, be available for inspection or porchase at the Environmental Protection Agency, PO Box 3000.

PUBLIC NOTICES

NORTHERN DIVISION

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Wastewater Discharge (Authorisation) Regulations 2007. Water Services Northern Division, Cark Control Council, Annabella, Mallow is applying to the Environmental Protection Agency for a Wastewater Discharge Licence for the agglomeration of Conna at the following locations:

Plant Name	4	Location	National	Grid Ref.		
Conna WWTP		Conna Villag		E192575 N093434		
Discharge	Function	Townland	Receptor	Crid Re		
Primary	Main	Conna	River Bride	1192689		

- copy of the application for the Wastewater Discharge Leener and such for their information relating to the application as may be roushed to the Agency in the course of the Agency's consideration of the Application shall, as soon as is practicable after receipt by the Agency, be available for inspection or purchase at the.
- Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335 599; Tel: 053-9160600; Fax: 053-9160699; Email: into@epa.ic Cork County Council Offices, Annabella, Mallow, Co. Cork. Tel: 022-21123, Fax: 023-21893.

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Wastewater Discharge (Authoris Regulations 2007, Water Services Northern Division. Cork County Council, Amabella, Mallow is applying to the Environmental Protection Agency for a Wastewater Discharge Licence for the agglomeration of Glanworth: at the following locations:

ı	Plant Nam	e	Location	National	Grid Ref.
ı	Glanworth	WWTP	Glanworth Village	E175 N103	
ŀ	Discharge	Function	Townland	Receptor	Grid Ref.
I	Primary	Main	Glanworth	River Funshion	E175870 N103919

- Environmental Protection Agency, PO Box 3000, foliostown Castle Estate, Co. Wextord, Lo Call 1890 335 599, Fel: 053-9160609; Fax: 053-9160009, Email: mfo@epa.ic
- Cork County Council Offices, Annabella, Mallow, Co. Cork. Tel. 022/21123; Fax: 022-21893

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above.

In accordance with the Wastewater Discharge (Authorisation) Regulations 2007. Water Services Northern Division, Cork Con Council, Annabella, Mallow is applying to the Environmental Protection Agency for a Wastewater Discharge Userice to the agglomeration of Clondulane at the following locations:

и	Plant Name	Location	National Grid Ref.	
ı	Clondulane WWTF	Clondulane	E185341	
1		North	N98981	
ł				
ı	Discharge Function	Townland Re	ceptor Grid Ref.	
•	Committee Commit			

PUBLIC NOTICES

WESTERN DIVISION APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Wastewater Discharge (Authorisation) Regulations 2007, Water Services Western Division, Cork County Council, Courthouse, Skibbereen is applying to the Environmental Protection Agency for a Wastewater Discharge Licence for Gengarriff agglomeration at the following locations:

Plant Nam		Location	National (
Glengarriff WWTP		Glengarriff	E093292 N056304	
Discharge	Function	Townland	Receptor	Grid Ref.

A copy of the application for the Wastewater Discharge Leence and such further information relating to the application as may to urmshed to the Agency in the course of the Agency's considerable of the Application shall, as soon as is practicable after receipt by the Agency, be available for insupertion or purchase at the

Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 3; Tel; 053-9160600; Pax. 053-9160609; Email: info@epa.ie

d at . Cork County Council Water Services (Western Division). Courthouse, Skibbereen, Co. Cork. Tel: 028-21299; Fax: 028-21995 Submissions in relation to the application may be made to he Environmental Protection Agency at its headquarters

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

in accordance with the Westerwater Discharge (Authorisation) Regulations 2007, Water Services Western Division, Coric County owned, Courthouse, Skibbereen is applying to the Environmenta Protection Agency for a Wastewater Discharge Leence for Union fall agglomeration at the following locations:

Plant Nam Union Half	Location Union Hall	Natio	mai Grid Ref. E121147 N034582
Discharge Primary	Townland	Receptor Glandore	Grid Ref.
	 	Harbour	N034613

copy of the application for the Wastewater Discharge Licence of such further information relating to the application as may be insided to the Agency in the course of the Agency's considerable inside the Agency in the course of the Agency's considerable with the Agency of the Agency

- Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1880 335 598 Tel: 053-9160600; Fax: 053-9160699; Email: Info@epa.te
- d at Cork County Council Water Services (Western Division) Courthouse, Skibbereen, Co. Cork Tel: 028-21299: Fax: 028-21995.

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE accordance with the Wastewater Discharge (Authorisation) egulations 2007, S.I. No. 684 of 2007, Water Services (Wester

negutations 2007, S.I. No. 684 of 2007, Water Services (Western Division), Cark County Council, Courthouse, Skibbereen, Co. Cork is applying to the Enricommental Protection Agency for a Wastisware Discharge Leener for the Ballineen/Enniskeane Agglomeration at the following locations.

LAIDT INBUDIO	EAR HOOT	CERTOTIAL CALMS COM.
Illineen WWTP	Derrigra	E134640
		N053975
. 144	1340 VIII K 1746	Total Telephone

- Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co Wexford, Lo Call 1890 335 599; Tel: 053-9160600; Fax: 053-9160699; Email: uto@epa.ic
- d at Cork County Council Offices. Water Services South. County Hall, Carrigrohane Road, Co. Cork. Tel: 021-4276891; Fax: 021-4276321.

sions in relation to the application may be made to vironmental Protection Agency at its headquarters

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

AGENCY FOR A MASSEWATER Discharge (Authorisation) In accordance with the Wastewater Discharge (Authorisation) Regulations 2007, Water Services Southern Division of Cork Counts Council, Carngrohane Road, Cork is applying to the Environmental Protection Agency for a Wastewater Discharge Licence for the westernerstein of Canciliford at the following locations.

Plant Nam	•	Location		Grid Ref.
Coachford V	4LM	Clontead Beg. Coachford		6003 3146
Discharge	Function	Townland	Receptor	Grid Ref.
Primary	Main	Nadrid	River Lee	E145231 N072297

nd such turther minormation remains; or one approximation running to the Agency in the course of the Agency in the course of the Agency are the Application shall, as soon as is practicable after receipt by the Agency, be available for inspection or purchase at the ne Agency, be available for inspection or purchase at the:

■ Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo. Call 1890 335 599, Tel: 053-9160600; Fax: 053-9160699; Email: info@epa.ie

nd at Cork County Council Offices, Water Services South, County Hall, Carrigrohane Road, Co. Cork Tel: 021-4276891, Fax: 021-4276321.

APPILICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE In accordance with the Wastewater Discharge (Authorisation) Regulations 2007, Water Services Southern Dission of Cork Council, Carrigrohane Road, Cork is applying to the Eurivonment Protection Agency for a Wastewater Discharge Licence for the agglomeration of Drissey at the following locations.

Plant Nam	e	Location	National		
Dripsey WWTP		Agharinagh. Dripsey		E1486190 N074844	
Discharge	Function	Townland	Receptor	Grid Ref.	
Primary	Main	Agharinagh	Dripsey River	E148607 N074817	

A copy of the application for the Wastewater Discharge Licence and such further information relating to the application as may be furnished to the Agency in the course of the Agency's consideration of the Application shall, as soon as is practicable after recept by the Agency, we available for inspection or purchase at the . Environmental Protection Agency, PO Box 3000, Johnstown Castle Estates, Co. Wexford, Lo Call 1890 335 599, Tel: 093-9160600; Fax: 053-9160609; Email: min@epa.te

nd at Cork County Council Offices, Water Services South, County Hall, Carrigrohane Road, Co. Cork Tel: 021-4276891; Fax: 021-4276321.

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above.

APPLICATION TO THE ENVIRONMENTAL PROTECTION
AGENCY FOR A WASTEWATER DISCHARGE LICENCE Agency For a Wastewater Discharge (Authorisation) Regulations 2007, Water Services Southern Division of Cork Co. Council, Carrigrohane Road, Cork is applying to the Environmen Protection Agency for a Wastewater Discharge Licence for the

rid Ref.	
E154792 N056931	
E154777 NOS6886	
9	

A copy of the application for the Wastewater Discharge Licence and such further information relating to the application as may be furnished to the Agency in the course of the Agency's consideratio of the Application shall, as soon as is practicable after receipt by the Agency, be available for inspection or purchase at the:

Environmental Protection Agency, PO Box 3000.
Johnstown Casale Estate, Co. Wexford, Lo Call 1890 335 599;
Tel: 053-9160600; Fax: 053-9160699; Email: info@epa.re and at

Cork County Council Offices, Water Services South
County Hall, Carrigrohane Road, Co. Cork
Tel: 021-4276891, Fax: 021-4276321.

ubmissions in relation to the application may be made to ne Environmental Protection Agency at its headquarters

d at Cork County Council Offices, Water Services South County Hall, Carrigrohane Road, Co. Cork Tel. 021-4276891; Fax: 021-4276321

ons in relation to the application may be made to onmental Protection Agency at its headquarters

NORTHERN DIVISION

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE AMENCIA FUNA A WASTEWALEK DISCHARGE LUENCE In accordance with the Wastewater Discharge (Authorisation) Regulations 2007, Water Services Northern Division, Cork County Council, Annabella, Mallow is applying to the Environmental Protection Agency for a Wastewater Discharge Liecure for the agglomeration of Kildotrery at the following locations.

Kildorrery		Scart, Kildorre	E171	
Discharge Primary	Punction Main	Scart	River Funshion	Grid Ref. E172300 N110754
A conv of th	e applicati	on for the V	/astewater Discharging to the application	N11075

and such hittner intormation relating to the application as may turnished to the Agency in the course of the Agency's consideration of the Application shall, as soon as is practicable after receipt by the Agency, be available for inspection or purchase at the:

- Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335 599; Tel: 053-9160600; Fax: 053-9160699; Email: infn@cpa.ie

bmissions in relation to the application may be made Environmental Protection Agency at its headquarters

in accordance with the Wastewater Discharge (Authorisation) Segulations 2007, Water Services Northern Division, Cork County Council, Annabelia, Mallow is applying to the Favironmental Protection Agency for a Wastewater Discharge Licence for the authorities of Ballybrandow at the following Lectures

Plant Name	Location	National	Grid Ref.
Ballyhooley WWTP	Conva, Ballyhooley	E17: N09	2668 9051
Discharge Function	n Townland	Receptor	Grid Ref.
Primary Main	Conva	Blackwater	E172596

A copy of the application for the Wastewater Discharge Licence and such further information relating to the application as may burnished to the Agency in the course of the Agency so consideration in the Application shell, as soon as is protucable after receipt by the Agency, be available for inspection or purchase at the:

- Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexlord, Lo Call 1890 335 599; Tel: 053-9160600; Fax. 053-9160699; Email. info@epa.ie
- Cork County Council Offices, Annabella, Mallow, Co. Cork. Tel: 022-21123; Fax 022-21893. ubmissions in relation to the application may be made to te Environmental Protection Agency at its headquarters

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE a accordance with the Wastewater Discharge (Authorisation) egulations 2007, Water Services Northern Division, Cork Count jouncil Appabella, Mallow is applying to the Environmental

Protection Ag agglomeratio	ency for a n of Boher	Wastewater D bue at the folio	ischarge Licence wing locations:	
Plent Name Boherbue W		Location Laharn We Boherbue	st. E126	655
Discharge Primary	Punction Main	Townland Laharn West	Receptor Brogeen River	Geld Ref. E126753 N101962

A copy of the application for the Wastewater Disknarge Licence and such further information relating to the application as may b furnished to the Agency in the course of the Agency's consideration of the Application shall, as soon as is practicable after receipt by the Agency, be available for inspection or purchase at the: Environmental Protection Agency, PO Box 3000. Johnstown Castle Estate, Co Wexford, Lo Call 1890 335 599; Tel: 053-9160600; Fax. 053-9160699; Email:info@epa.ic

Cork County Council Offices, Annabella, Mallow, Co. Cork, Tel: 022-21123, Fax: 022-21893. Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above.

Cork County Council Offices, Annabella, Mallow, Co. Cork Tel: 022-21123; Fax: 022-21893

Submissions in relation to the application may be made the Environmental Protection Agency at its headquarters APPLICATION TO THE ENVIRONMENTAL PROTECTION
AGENCY FOR A WASTEWATER DISCHARGE LICENCE

water Discha	Division, Cork County ne Environmental arge Licence for the g locations:
cation	National Grid Ref. E164897 N099517
	applying to the ewster Discha at the followin

Discharge Function Townland Receptor Grid Ref Primary Main Ballymacrnoy Ross River E164919

- A copy of the application for the Wastewater Discharge Licence and such further information relating to the application as may be furnished to the Agency in the course of the Agency's consideratic of the Application shall, as soon as is practicable after receipt by the Agency, the available for inspection or purchase at the Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335 599; Tel: 053-9160600; Fax. 053-9160699; Email: info@epaie
- n ar Cork County Council Offices, Annabella, Mallow, Co. Cork Tel: 022-21123; Fax: 022-21893. Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters tescribed above.

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

n accordance with the Wastewater Discharge (Authorisation) deguations 2007, Water Services Northern Division, Cork Count 'ounci', Annabella, Mallow is opplying to the Environmental 'trotection Agency for a Wastewater Discharge Licence for the ogglomeration of Ballyclough at the following locations:

Plant Name		Location	Netional (
Bailyclough	WWTP	Ballyclough	E149 N101	
Discharge	Function	Townlend		Grid Ref.
Primary	Main	Ballyclough	Finnow Stream	E149349 N101796

A copy of the application for the Wastewater Discharge Licence and such further information relating to the application as may burnshed to the Agency in the course of the Agency's consideration of the Agency since a first produced after receipt by the Agency, be available for inspection or purchase at the:

- Environmental Protection Agency, PO Box 3000. Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335 599: Tel: 053-9160600; Fax: 053-9160699; Email: info@epa.te Cork County Council Offices, Annabella, Mallow. Co. Cork Tel: 022-21123, Fax: 022-21893.
- Submissions in relation to the application may be made to he Environmental Protection Agency at its headquarters APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE n accordance with the Wastewater Discharge (Authorisation)
 Regulations 2007, Water Services Northern Division, Cork County

Regulations 200 Council, Annab Protection Ager agglomeration of	7, Water Servi elia; Mailow is ecy for a Waste	ices Northern applying to the water Dischar	Division, Co e Environne rge Licence	entai
Plant Name	La	cation	National (
Bantcer WWT		hidaly. nteer	E139139 N98377	
Discharge F		rnland Rec	e ptor Blackwater	Grid Ref. E139107 N98449

Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335 599; Tel: 053-9160600; Fax: 053-9160699; Email: info@epa.re Cork County Council Offices, Annabella, Mallow, Co. Cork Tel: 022-21123; Fax 022-21893.

A copy of the application for the Wastewater Discharge Licence and such further information relating to the application as may be urnished to the Agency in the course of the Agency a consideration of the Agency and shalf, as soon as is practicable after receipt by the Agency, he available for inspection or purchase at the:

Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335 599; Tel. 053-9160600; Fax. 053-9160699; Email: info@epa.ie Cork County Council Offices, Annabella, Mallow, Co. Cork. Tel: 022-21123; Fax: 022-21893.

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above.

WESTERN DIVISION APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

n accordance with the Wastewater Discharge (Authorisation) Regulations 2007, Water Services Western Division, Cork County Council, Courthuise, Skibbereen is applying to the Environment Protection Agency for a Wastewater Discharge Licence for Drimoleague agglomeration at the following locations.

P	Plant Nam	6	Location	National	Grid Ref.
	Drimoleagu		Drimoleagu	ie E11: N04	
				market market and the second of the	124.63 45.25
E	Discharge	Function	Townland	Receptor	PALIN WEST
F	Discharge Primary	Function Major	Townland Garranes	River Ruagagh	E112681 N045309

- A copy of the application for the Wastewater Discharge Leer and such further information relating to the application as in urnished to the Agency in the course of the Agency's consider the Application shall, as soon as is practicable after receipt he Agency, be available for inspection or purchase at the Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wextord, Lo Call 1890 335 599, Tel: 053-9160600, Fax: 053-9160699; Email: mfo@epa.re
- nd at Cark County Council Water Services (Western Division). Courthouse, Skibbereen, Co. Cork. Tel: 028-21299; Fax. 028-21995.

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above.

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE n accordance with the Wastewater Discharge (Authorisation) Regulations 2007, Water Services Western Division, Cork County Jouncil, Courthouse, Skibberen is applying to the Environmenta Protection Agency for a Wastewater Discharge Licence for Finedname, asgromeration at the following locations.

Discharge	Function	Townsand		Grid Rul.
	Main	Timoleague	Courtmacsherry Estuary	E147200 N043523
Secondary			Estuary	E147132 N043496
Secondary	Minor	Timoleague	Estuary	E147141 N043507
Secondary	Minor	Timoleague	Courtmacsherry Estuary	E147209 N043702
Secondary	Minor	Timoleague	Courtmacsherry Estuary	E147176 N043789

Cork County Council proposes to construct a new wastewater treatment plant at Cullenagh, Courtmacherry, Co. Cork, Grid Reference (E149710, N042520). It is proposed to discharge trea wastewater from this plant to courtmacsherry Estuary. The proposed discharge location is detailed in the table below

Discharge	Fraction	Townland	Receptor	Grid Ref.
	Main	Cullenagh	Courtmacsherry Estuary	E150732 N042818
and such fur furnished to of the Applic	ther inform the Agency ation shall.	nation relation in the course as soon as is	stewater Discharg g to the application of the Agency's s practicable after on or purchase at	on as may be consideration receipt by

Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co Wexford, Lo Call 1890 335 599; Tel: 053-9160600; Fax: 053-9160699; Email: info@epa.ie rk County Council Water Services (Western Division).

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above.

copy of the application for the Wastewster Discharge Licensed such further information relating to the application as may brinished to the Agency in the course of the Agency's consideration the Application shall, as soon as is practicable after receipt by e Agency, be available for inspection or purchase at the

- Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335 59st. Tel: 053-9160600; Fax: 053-9160699; Email: info@epa.re
- d at Cork County Council Water Services (Western Division) Courthouse, Skibbereen, Co. Cork. Tel. 028-21299; Fax. 028-21995. abmissions in relation to the application may be made to he Environmental Protection Agency at its headquarters

APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Wastewater Discharge (Authorisation)
Regulations 2007, Water Services Western Division, Cork County
Council, Courthouse, Silobbereen is applying to the Environmenta
Protection Agency for a Wastewater Discharge Licence for
Ballydehob agglomeration at the following locations.

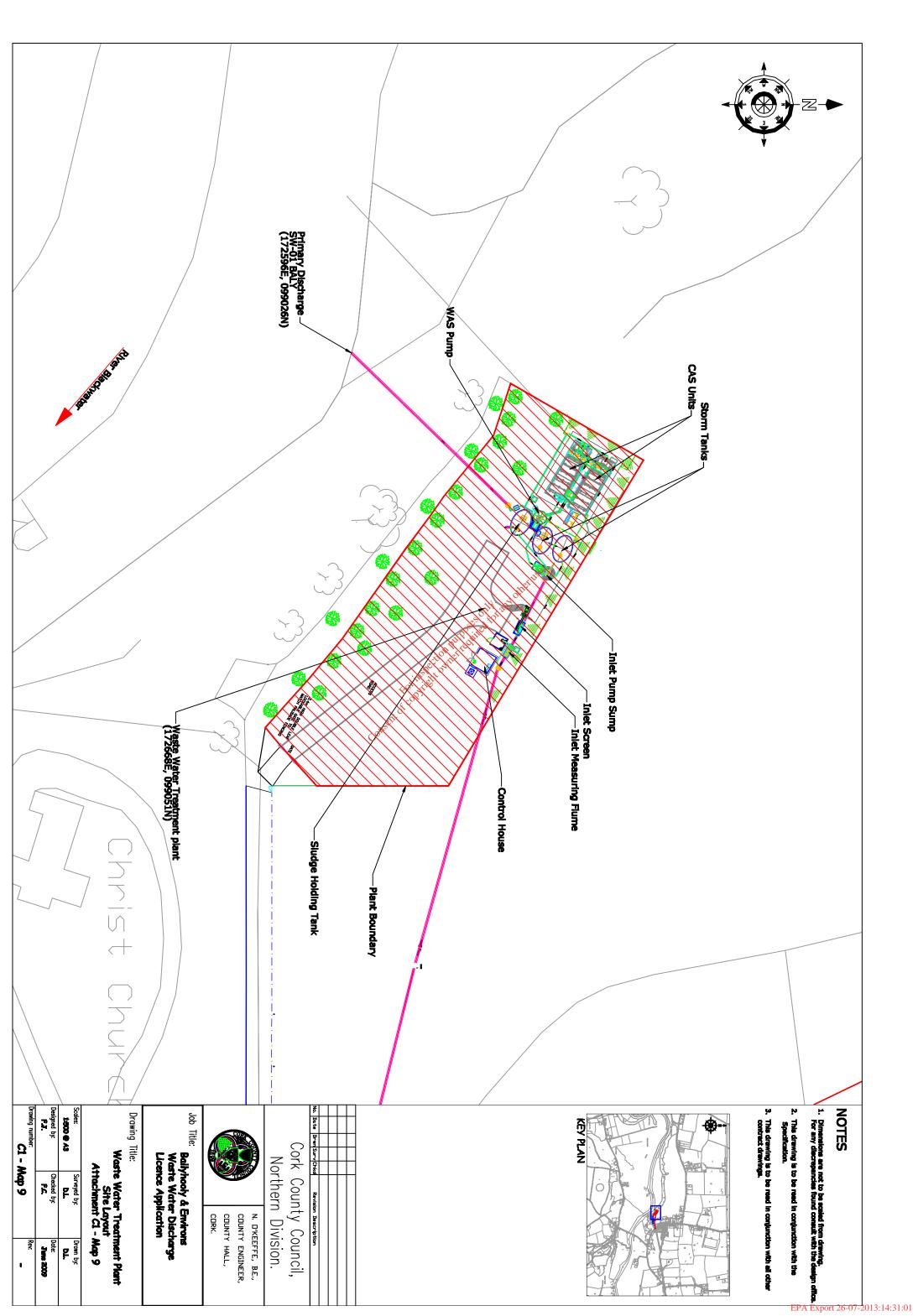
Plans Nam Ballydehob	wwrp	Location Ballydehob	National (E098 N035	960
Discharge Primacy	Function Main	Ballvdehob	Receptor 4 Ballydehob Bay	Grid Bet. E099090 N035000

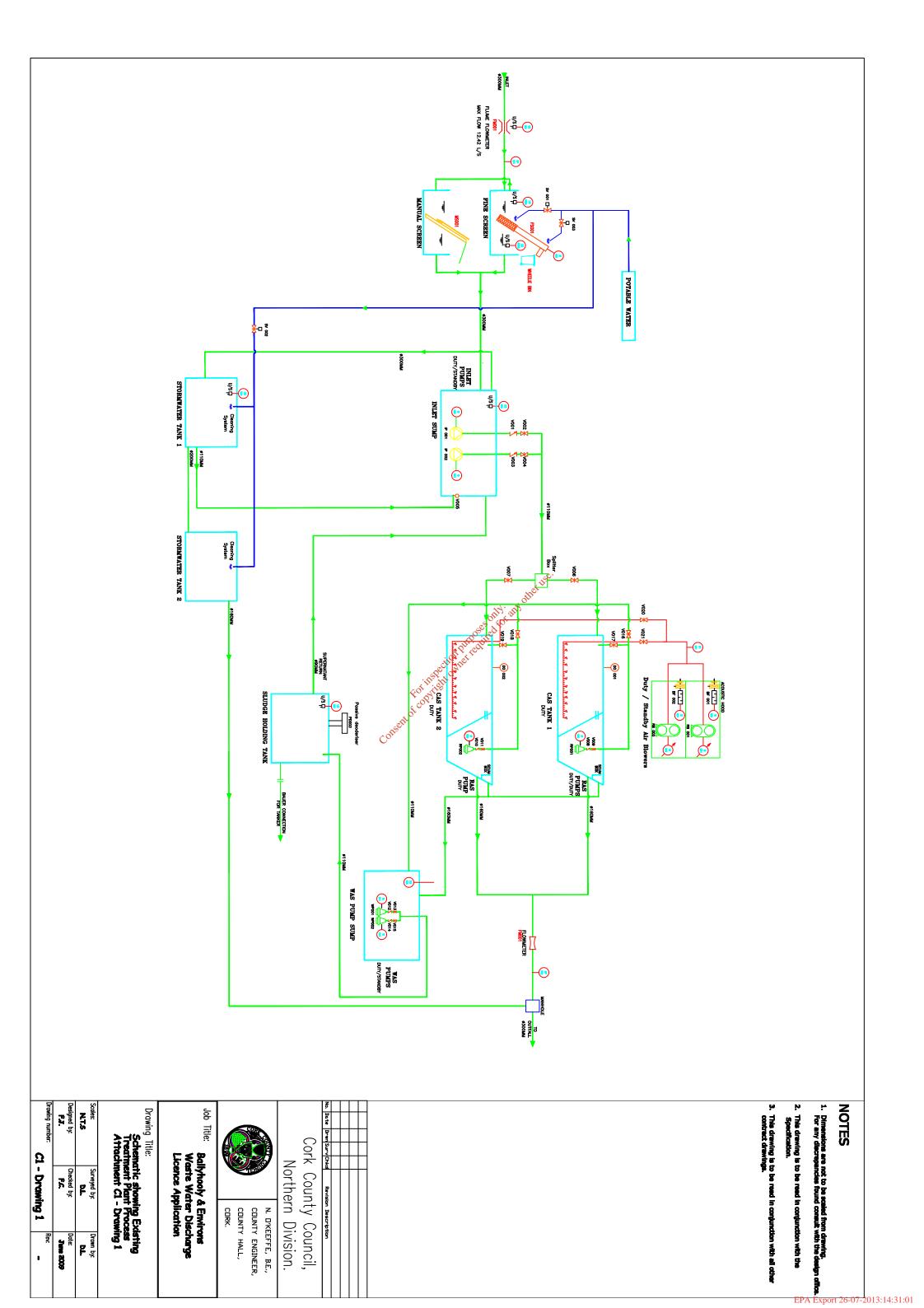
Cork County Council proposes to construct a new wastewater treatment plant at Ballydehob, Co. Cork, Grid Reference (E096949, N035278). It is proposed to discharge treated wastewater from this plant to Ballydehob Bay. The proposed ocation is detailed in the table below: Discharge Function Townland Receptor Grid Ref.
Primary Main Ballydehob Ballydehob Bay E099090

Copy of the application for the Wastewarer Discharge Licente and such further information relating to the application as may burnished to the Agency in the course of the Agency's consideration of the Application shall, as soon as is practicable after receipt by the Agency, be available for inspection or purchase at the. ⁷ Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, La Cail 1890 335 599; Tel: 053-9160600; Fax: 053-9160699; Email. into@epa.ie

id at Cork County Council Water Services (Western Division). Courthouse, Skibbereen, Co. Cork. Tel; 028-21299; Fax: 028-21995. Submissions in relation to the application may be made to the Environmental Protection Agency at its hendquarters described above.

APPLICATION TO THE ENVIRONMENTAL PROTECTION
AGENCY FOR A WASTEWATER DISCHARGE LICENCE


n accordance with the Wastewater Discharge (Authorisation) Regulations 2007, S.I. No. 684 of 2007, Water Services (Western Division), Card County Council, Courthouse, Skibberen, Co. Coo a applying to the Environmental Protection Agency for a Wastewa Discharge Licence for the Castletownshend agglomeration at the ollowing location.


Cork County Council proposes to construct a Wastewater Freatment Plant at Castletownshend Co. Cork. Grid Reference (EL18620 N031623). It is proposed to discharge treated wastewater from this Plant to Castlehaven Bay. The proposed location is detailed in the table below Discharge Function Townland Recorptor Grid Ref.
Primary Major Castletownshend Castlehaven 1021200

A copy of the application for the Wastewater Discharge Licence and such further information relating to the application as may I furnished to the Agency in the course of the Agency's consideratio of the Application shall, as soon as is practicable after receipt by the Agency, be available for inspection or purchase at the. Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335 599; Tel: 053 9160600; Fax: 053-9160699; Email: mfo@epa.te

di at Oark County Council Water Services (Western Division). Courthouse, Skibbereen, Co. Cork Tel: 028-21299, Fax: 028-21995.

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters

Olator Daties	PT_TYPE	LA_NAME	RWB_TYPE	RWB NAME	DESIGNATION	EASTING	NO. DELLA COLLAR	
PT_CD W01 BALLY	Primary	cork county council	river	RWB_NAME blackwater	Coloradid	EASTING	NORTHING	VERIFIED N
				Diackwatei	Salmonid	172596	99026	N
	i							
								
					i			
		·						
				<u> </u>				
_							J	
			+					
					or or other life.			
					1196			
· · · · · · · · · · · · · · · · · · ·								
			+		ine			
					100			
					32 30			
					of of			
				en de la companya de	10,			
			 		0			
	·			il Pill				
				000				
	1			100				
				- X10 COX				
				200 241				
				105/101				
				4 100				
				CON STATE				
			 	1 0				
	 			800				
				30				
				25	 			
		<u> </u>	 	~				
		- 	Care					
						 		
					+			
			 -					
			<u> </u>					
						 		
								
						 		
	1				+			
			 					
	+	 	 					
								
					 	+		
								
								
						+		

	At	tachment E	4 Ballvhoo	ley Inlet Table	E4	
Sample Date	17/04/2008		17/04/2009	14/05/2009	25/05/2009	
Sample	Influent	Influent	Influent	Influent	Influent	Average
Sample Code			GT711	GT652	GT793	
Flow M ³ /Day	*	*	*	*	*	
рН	8.1	8.5	8.6	8.2	8.1	8.3
Temperature °C	*	*	*	*	*	<u> </u>
Cond 20°C	1368	1238	1369	1128	2140	1448.6
SS mg/L	142	330	204	205	308	237.8
NH₃ mg/L	*	62.2	40	27.7	57	46.725
BOD mg/L	230	504	480	204	230	329.6
COD mg/L	452	917	1049	878	940	847.2
TN mg/L	*	75	62	51.1	127.8	78.975
Nitrite mg/L	*	*	*	<0.10	*	<0.10
Nitrate mg/L	*	*	*	<0.50	*	<0.50
TP mg/L	4	7.1	9	5.98	9.6	7.136
O-PO4-P mg/L	2	5.2	5	4.16	5.6	4.392
SO4 mg/L	*	*	*	78.2	*	78.2
Phenols μg/L	*	*	*	<0.10	*	<0.10
Atrazine μg/L	*	*	*	<0.01	*	<0.01
Dichloromethane µg/L	*	*	*	<1	*	<1
Simazine µg/L	*	*	*	<0.01	*	<0.01
Toluene μg/L	*	*	*	<0.28	*	<0.28
Tributyltin µg/L	*	*	*	not required	*	o ^c o
Xylenes μg/L	*	*	*	<1	*	<1 .70° ii
Arsenic μg/L	*	*	*	<0.96	*	<0.96, 7, 200
Chromium ug/L	*	*	<20	<20	<20	<20 wilet
Copper ug/L	*	*	59.4	42	56.6	52.66666667
Cyanide μg/L	*	*	*	<5	*	₹° 5×5
Fluoride μg/L	*	*	*	178	*	§ 178
Lead ug/L	*	*	<20	<20	<20	<u>zen <20</u>
Nickel ug/L	*	*	<20	<20	<20	° <20
Zinc ug/L	*	*	103.5	128	77.8	103.1
Boron ug/L	*	*	168.8	63	212.9	148.2333333
Cadmium ug/L	*	*	<20	<20	<20	<20
Mercury μg/L	*	*	*	<0.2	*	<0.2
Selenium µg/L	*	*	*	1.3	*	1.3
Barium ug/L	*	*	<20	23	<20	<20

value at 1/2 of LOD for stistical purposes =

	acnme	111 C4 C	Danyno	Oley D	ischarge	25/05/2009	LIADI	<i>,</i> _	
Sample Date		08/01/2009			14/05/2009		Average	Kg/Day	Valuer
Sample	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent GT794	Average	Ng/Day	Kg/year
Sample Code		GT007	GT413	GT712	GT653	G1/94 *			
Flow M ³ /Day	*	*	*	*	*				
рН	7.9	*	7.4	7.5	7.4	7.6	7.56		
Temperature °C	*	*	*	*	*	*			
Cond 20°C	505	*	1482	1182	1294	1511	1194.8		
SS mg/L	78	24	30	23	47	24	37.66667		
NH ₃ mg/L	22	2.4	2.3	4	2.8	2.2	5.95		
BOD mg/L	110	8	22	20	19	9	31.33333		
COD mg/L	377	51	69	74	124	75	128.3333		
TN mg/L	*	*	35	26	47.8	38.2	36.75		
Nitrite mg/L	*	*	*	*	0.419	*	0.419		
Nitrate mg/L	*	*	*	*	32.8	*	32.8		
TP mg/L	7	*	5	3.4	5.13	4	4.906		
P-PO4-P mg/L	3	3.97	4.2	2.7	4.72	3.3	3.648333		
SO4 mg/L	*	46.2	*	*	44.5	*	45.35		
Phenols µg/L	*	*	*	*	<0.10	*	<0.10		
Atrazine µg/L	*	*	*	*	<0.01	*	<0.01		
Dichloromethane	*	*	*	*	<1	*	<1		
Simazine µg/L	*	*	*	*	<0.01	*	<0.01		77.
Toluene µg/L	*	*	*	*	<0.28	*	<0.28		es of for
Tributyltin µg/L	*	*	*	*	not required	*	*		1205 ited
Xylenes μg/L	*	*	*	*	<1	*	<1		n Prizede
Arsenic µg/L	*	*	*	*	<0.96	*	<0.96	ecti	WIRI
Chromium ug/L	*	<20	<20	<20	<20	<20	<20	instr	
Copper ug/L	*	10	10	10	37	.10	15.4	Forpyile	
Cyanide µg/L	*	*	*	*	<5	*	<5		
Fluoride µg/L	*	*	*	*	153	*	153	ent	
Lead ug/L	*	<20	<20	<20	<20	<20	خى 20>	3	
Nickel ug/L	*	<20	<20	<20	<20	<20	<20		
Zinc ug/L	*	18-	10	10	72	32.2	26.84		
▶ Boron ug/L	*	10	10	10	- 40	73.9	22.78		
Cadmium ug/L	*	<20	<20	<20	<20	<20	<20		
Mercury µg/L	*	*	*	*	<0.2	*	<0.2		
Selenium µg/L	*	*	*	*	2.7	*	2.7		
Barium ug/L	*	10	25.6	10	30	<20	18.9		

value at 1/2 of LOD for stistical purposes =

Attachma		\ _ II _ I			
Sample Date	19/03/2000	Sallyno	Oley Do 14/05/2009	ownstr	eam Table E4
Sample	River	River			
Sample Code	GT415	GT714	River	River	Average
Flow M ³ /Day	*	G1714 *	GT654 *		
pH				*	
Temperature °C	7.9	7.7	8	7.7	7.825
Cond 20°C				*	
SS mg/L	328	209	297	256	272.5
	10.05	9	1,25	9	5.0625
NH ₃ mg/L	<0.05	0.07	<0.10	0.07	0.07
BOD mg/L		3	1	- 1	1.5
COD mg/L	<5	19	<21	22	20.5
TN mg/L	2.8	2	3.88	2.81	2.8725
Nitrite mg/L	*	*	<0.10	*	
Nitrate mg/L	*	*	2.96	*	2.96
TP mg/L	0.15	0.13	0.008	0.11	0.10375
O-PO4-P mg/L		0.06		0.07	0.045
SO4 mg/L	*	*	<30	*	<30
Phenols µg/L	*	*	<0.10	*	<0.10
Atrazine μg/L	*	*	<0.01	*	<0.01
Dichloromethane	*	*	<1	*	<1
Simazine µg/L	*	*	<0.01	*	<0.01
Toluene μg/L	*	*	<0.28	*	<0.28
Tributyltin µg/L	*	*	not required	*	
Xylenes μg/L	*	*	<1	*	<1
Arsenic μg/L	*	*	<0.96	*	<0.96
Chromium ug/L	<20	<20	<20	<20	<20
Copper ug/L	<20	<20	<20	<20	<20
Cyanide μg/L	*	*	<5	*	<5
Fluoride μg/L	*	*	<100	*	<100
Lead ug/L	<20	<20	<20	<20	<20
Nickel ug/L	<20	<20	<20	<20	<20
Zinc ug/L	33.3			<20	17.76666667
Boron ug/L	86.8	<20		<20	48.4
Cadmium ug/L	<20	<0.2	<20	<20	<20
Mercury μg/L	*	1.2	<0.2	*	<0.2
Selenium µg/L	*	*	1.2	*	1.2
Barium ug/L		10-	31.675	10	15.41875
value at 1/2 of LOD t	10.00000	The second secon			10.71070

spection Purposes only any other tre

County	Costello	19/05/2009 Atrazine	12	Ballyhooley inlet	<0.01	ug/L
County	Costello	19/05/2009 Simazine	12	Ballyhooley Inlet	<0.01	ug/L
County	Costello	19/05/2009 (Eff.)	12	Ballyhooley Inlet	<0.28	ug/L
County	Costello	19/05/2009 (Total)	12	Ballyhooley Inlet	<1	ug/L
County	Costello	19/05/2009 Xylene	12	Ballyhooley inlet	<0.73	ug/L
County	Costello	19/05/2009 (Eff.)	12	Ballyhooley Inlet	<0.35	ug/L
County	Costello	19/05/2009 ethane	12	Ballyhooley Inlet	<1	ug/L
County	Costello	19/05/2009 Arsenic	12	Ballyhooley Inlet		ug/L
County	Costello	19/05/2009 Mercury	12	Ballyhooley Inlet		ug/L
County	Costello	19/05/2009 Selenium	12	Ballyhooley Inlet		ug/L
County	Costello	19/05/2009 Cyanide	12	Ballyhooley Inlet		ug/L
County	Costello	19/05/2009 (Total)	12	Ballyhooley Inlet		ug/L
County	Costello	19/05/2009 Atrazine	13	Ballyhooley Downstream	<0.01	ug/L
County	Costello	19/05/2009 Simazine	13	Ballyhooley Downstream	<0.01	ug/L
County	Costello	19/05/2009 (Eff.)	13	Ballyhooley Downstream	<0.28	ug/L
County	Costello	19/05/2009 (Total)	13	Ballyhooley Downstream	<1	ug/L
County	Costello	19/05/2009 Xylene	13	Ballyhooley Downstream	<0.73	ug/L
County	Costello	19/05/2009 (Eff.)	13	Ballyhooley Downstream	<0.35	ug/L
County	Costello	19/05/2009 ethane	13	Ballyhooley Downstream	<1	ug/L
County	Costello	19/05/2009 Arsenic	13	Ballyhooley Downstream		ug/L
County	Costello	19/05/2009 Mercury	13	Ballyhooley Downstream		ug/L
County	Costello	19/05/2009 Selenium	13	Ballyhooley Downstream		ug/L
County	Costello	19/05/2009 Cyanide	13	Ballyhooley Downstream		ug/L
County	Costello	19/05/2009 (Total)	13	Ballyhooley Downstream	<0.10	ug/L
County	Costello	19/05/2009 Atrazine	14	Ballyhooley Upstream	<0.01	ug/L
County	Costello	19/05/2009 Simazine	14	Ballyhooley Upstream	<0.01	ug/L
County	Costello	19/05/2009 (Eff.)	14	Ballyhooley Upstream	<0.28	ug/L
County	Costello	19/05/2009 (Total)	14	Ballyhooley Upstream	<1	ug/L
County	Costello	19/05/2009 Xylene	14	Ballyhooley Upstream	<0.73	ug/L
County	Costello	19/05/2009 (Eff.)	14	Ballyhooley Upstream	<0.35	ug/L
County	Costello	19/05/2009 ethane	14	Ballyhooley Upstream	<1	ug/L
County	Costello	19/05/2009 Arsenic	14	Ballyhooley Upstream		ug/L
County	Costello	19/05/2009 Mercury	14	Ballyhooley Upstream		ug/L
County	Costello	19/05/2009 Selenium	14	Ballyhooley Upstream		ug/L
County	Costello	19/05/2009 Cyanide	14	Ballyhooley Upstream	-0.40	ug/L
County	Costello	19/05/2009 (Total)	14	Ballyhooley Upstream	<0.10	ug/L
County	Costello	19/05/2009 Atrazine	15	Ballyhooley STP	<0.01	ug/L
County	Costello	19/05/2009 Simazine	15	Ballyhooley STP	<0.01 <0.28	ug/L
County	Costello	19/05/2009 (Eff.)	15	Ballyhooley STP	<0.26 <1	ug/L ug/L
County	Costello	19/05/2009 (Total)	15	Ballyhooley STP Control	<0.73	ug/L
County	Costello	19/05/2009 Xylene	15	Ballyhooley STP	<0.75	ug/L
County	Costello	19/05/2009 (Eff.)	15	Ballyhooley Upstream Ballyhooley Upstream Ballyhooley Upstream Ballyhooley STP	<1	ug/L
County	Costello	19/05/2009 ethane	15	Ballyhooley STP	*1	ug/L
County	Costello	19/05/2009 Arsenic	15	Ballyhooley STP		ug/L
County	Costello	19/05/2009 Mercury	15	Ballyhooley STP		ug/L
County	Costello	19/05/2009 Selenium	15	Ballyhooley STP		ug/L
County	Costello	19/05/2009 Cyanide	15	Ballyhooley STP	<0.10	ug/L
County	Costello	19/05/2009 (Total)	15	Ballyhooley STP	-0110	J

Attachment E4 Ballyhooley Upstream Table E4									
Sample Date	19/03/2009	17/04/2009	14/05/2009	25/05/2009					
Sample	River	River	River	River	Average				
Sample Code	GT414	GT713	GT655	GT795					
Flow M ³ /Day	*	*	*	*					
Н	7.9	7.8	8.0	7.8	7.875				
Temperature °C	*		*	*					
Cond 20°C	330	210	210	257	251.75				
SS mg/L	<2	10	<2.5	6	8				
NH ₃ mg/L	<0.05	0.06	<0.1	0.08	0.07				
BOD mg/L	<2	3	1	<2	2				
COD mg/L	<5	31	<21	21	26				
TN mg/L	2.8	2	3.38	2.84	2.755				
Nitrite mg/L	*	*	<0.10	*					
Nitrate mg/L	*	*	2.62	*	2.62				
TP mg/L	0.12	0.07	<0.05	0.07	0.086666667				
O-PO4-P mg/L	<0.05	0.06	<0.05	0.05	0.055				
SO4 mg/L	*	*	<30	*	<30				
Phenols µg/L	*	*	<0.10	*	<0.10				
Atrazine µg/L	*	*	<0.01	*	<0.01				
Dichloromethane	*	*	<1	*	<1				
Simazine µg/L	*	*	<0.01	*	<0.01				
Toluene µg/L	*	*	<0.28	*	<0.28				
Tributyltin µg/L	*	*	not required	*	not required				
Xylenes µg/L	*	*	<1	*	<1				
Arsenic μg/L	*	*	<0.96	*	<0.96				
Chromium ug/L	<20	<20	<20	<20	<20				
Copper ug/L	<20	<20	<20	<20	<20				
Cyanide μg/L	*	*	<5	*	<5				
Fluoride μg/L	*	*	<100	*	<100				
Lead ug/L	<20	<20	<20	<20	<20				
Nickel ug/L	<20	<20	<20	<20	<20				
Zinc ug/L	<20	<20	<20	<20	<20				
Boron ug/L	10	10	- 10	31.5	15.375				
Cadmium ug/L	<20	<20	<20	<20	<20				
Mercury μg/L	*	*	<0.2	*	<0.2				
Selenium µg/L	*	*	<0.74	*	<0.74				
Barium ug/L	26.2	10	\$7,595	10	25.94875				

value at 1/2 of LOD for stistical purposes =

For its perior purposes only any other use

PT_CD	PT_TYPE	MON_TYPE	EASTING	NORTHING	VERIFIED
SWO1 aSW01u aSW01u	Primary	Sampling Sampling Sampling	172668	99051	N
aSW01u	u/s	Sampling	171490	99111	N
aSW01u	d/s	Sampling	172931	98752	N
,					
		,			
			· ·		
, , ,					

Sonsen of copyright owner tentine that any other use