WATERFORD COUNTY COUNCIL

COMHAIRLE CHONTAE PHORTLAIRGE

ANNUAL ENVIRONMENTAL REPORT 2008

TRAMORE WASTE DISPOSAL SITE

TRAMORE INTAKE & TRAMORE BURROWS

TRAMORE CO. WATERFORD

Waste Licence Register No. W0075-02

Report Compiled by; Mr David Regan, Facility Manager Tramore Landfill Mr Paul Carroll, Executive Scientific Officer, Adamstown Laboratory

Table of Contents

Introdu	uction		5
1.	Report	ting Period	6
2.	Waste	Activities Carried Out at the Facility	6
3.	-	ities and Composition of Material Received, Disposed of, ecovered during 2008.	8
4.	Calcul	ating the remaining capacity of the site.	8
5.	Date w	when final capacity of Landfill is expected to be reached.	8
6.	Metho	ds of deposition of waste.	8
7.	Enviro	onmental Monitoring	9
	7.1	Surface Water	10
	7.2	Ground Water	16
	7.3	Leachate	26
	7.4	Leachate and Groundwater Levels	32
	7.5	Landfill Gas	37
	7.6	Noise	42
	7.7	Leachate Toxicity	44
	7.8	Chemical Analysis of Estuarine Sediment and Benthic Macrafauna	46
	7.9	Ecological Survey of Back Strand and & Dunes	53
	7.10	General Conclusions	58
	7.11	Meteorological Data.	59
	7.12	Nuisance Monitoring	59
	7.13	Ambient Monitoring	59
8.	Topog	raphical Survey	60
9.	Boreh	ole Summary	60

10. Proposed Development of Facility and Time Scale of Development.	68
11. Volume of Leachate produced and Volume transported off site.	68
12. Report of Development work undertaken during report Period.	68
13. Annual Water Balance Calculation and Interpretation.	70
14. Report on the Progress towards Achievement of the Environmental objectives and targets contained in the previous years report.	70
15. Schedule of environmental objectives and targets for the forthcoming year.	71
16. Reported Incidents and Complaints.	72
17. Reports on Financial Provisions.	73
18. Management and Staffing Structure of the Facility.	73
19. Programme for Public Information.	73
20. Reports of Training of Staff.	73
21. Construction and Demolition Waste used in Remediation	73
22. Maintenance Program	73

List of Appendices

- Appendix AQuantities and Composition of Material Received, Disposed
of, and Recovered during 2008
- Appendix B Monitoring Locations
- Appendix C Surface Water Results
- Appendix D Ground Water Results
- Appendix E Leachate Results
- Appendix F Meteorological Data
- Appendix G Topographical Survey
- Appendix H Energy Efficiency Audit
- Appendix I Borehole Summary
- Appendix J Management Structure
- Appendix KPollutant Release Transfer Register (PRTR)

Introduction

Waterford County Council was granted a Waste License (Ref 75 – 1) by the Environmental Protection Agency for the continued operation of an existing unlined landfill and civic waste facility at Tramore Co. Waterford on 25^{th} September 2001. This is the sixth Annual Environmental Report, which has been prepared to meet the requirements of Condition 11.8 of Waste License W0075-02 and includes the monitoring period 1^{st} January 2008 to 31^{st} December 2008.

1. Reporting Period

This is the Sixth Annual Environmental Report for the Tramore Landfill Facility, which covers the period 1st January 2008 to 31st December 2008.

2. Waste Activities carried out at the Facility

Part 1 of the Waste Licence details the activities authorised by the licence:

Waste Management Act 1996: Third Schedule

Class 12. Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule:

This activity is limited to the storage of waste at the Civic Waste Facility

Class 13. Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced:

Waste Management Act, 1996, Fourth Schedule

Class 2. Recycling or reclamation of organic substances, which are not used as solvents (including composting and other biological transformation processes): This activity is limited to recycling of paper at the Civic Waste Facility

Class 3.Recycling or reclamation of metals and metal compounds:This activity is limited to the storage of metal cans at the Civic Waste Facilityy

Class 4. Recycling or reclamation of other inorganic materials:

This activity is limited to the receipt, holding and recovery of inert wastes (such as bricks, cement, ceramics, soils) to be sent off site for reprocessing or to be used in the restoration of Tramore landfill site subject to the prior agreement of the Agency.

Class 10. The treatment of any waste on land with a consequential benefit for an agricultural activity or ecological system.

Class 11. Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule:

This activity is limited to the use of inert material diverted from the landfill to be used as cover material, intermediate cover or the formation of embankments at the site.

Class 13. Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than the temporary storage, pending collection, on the premises where such waste is produced:

This activity is limited to the temporary storage of waste on site prior to being recycled, reused or reclaimed.

3. Quantity and Composition of Waste Received, Disposed of and Recovered during the year & each year previous.

The quantity and composition of waste received, disposed of and removed for the reporting period 1^{st} January $2008 - 31^{st}$ December 2008 is attached in Appendix A.

The waste intake prior to 1995 is unknown as there was no weighbridge at the site. The 1995 estimation is taken from the EPA National Waste Database (1995). The 1996 figures have

been extracted from the Waterford County Council Waste Management Plan (1997). The 1997, 1998, 1999, 2000 and 2001 estimations are based on the 1996 figure assuming a 3% increase in waste growth per annum.

4. Calculated Remaining Capacity of the Site

The Landfill has ceased accepting waste after 31st December 2005.

5. Year in which Final Capacity is expected to be reached

Final capacity has been reached on the 31st December 2005.

6. Methods of Deposition of Waste

All waste, except residual household waste and hazardous waste, is recycled. Members of the public have no access to the landfill but utilise the civic amenity area, which was upgraded in 2003. The civic amenity area has receptacles, which accept the following materials: scrap metal, timber, household bulky items, dry recyclables, domestic waste, paint, fridges/freezers, cookers, washing machines, dryers, fluorescent tubes, waste oil (cooking and car), aerosols, textiles, pesticides, batteries (domestic and car) and glass. The civic amenity site accepts waste from domestic householders only.

7. Environmental-Monitoring

INTRODUCTION

This report is a compilation of environmental monitoring carried out on behalf of Waterford County Council at Tramore Landfill during the period January 2008 to December 2008.

Monitoring of surface waters, groundwaters, and leachate quality, as well as ecological monitoring, was carried out in accordance with the waste licence 75-1, conditions 8, and schedule D.

Sampling sites are as set out in table 1, and appendix 1.

SURFACE	GROUNDWATER	LEACHATE	NOISE	TOXICITY	ECOLOGICAL	SEDIMENT &
WATER	STATIONS	STATIONS		ASSESSMENT	SURVEY	SHELLFISH
STATIONS						
SW 1,2,3,4,5,6	BH 2,5,8,9,10	BH 1/1, 7	B1, B2	Leachate	Annual ecological	Annual chemical
	RC 4,5	RC 6a			/ biological survey	quality of sediments,
Weekly	Monthly levels.	LT1, LT2, LT3, LT4,	Annual survey	Annual assessment of	of backstrand.	cockles and mussels
visual/odour	Quarterly and annual	LT5		toxicity of leachate	Survey of birdlife	from backstrand.
inspection	chemical &	Weekly levels.		using appropriate	and habitats.	Microbiological
Quarterly and	microbiological analysis	Quarterly and annual		organisms.		quality of shellfish
annual	Note: BH2 to be	chemical analysis				from backstrand.
chemical	redesignated a leachate					
analysis	borehole.					

 Table 1. Sampling sites and monitoring requirements

Baseline Monitoring

One of the purposes of compliance monitoring is to determine if there has been a release of contaminants to the environmental media, and to demonstrate compliance with landfill licence conditions. *Baseline monitoring* is monitoring which serves as a reference point to which later monitoring results are compared. For the purpose of this report, results obtained during the first licensed year of operation, September 2001 to September 2002, will be used as baseline monitoring data.

Key Parameters

In line with EPA reporting recommendations¹, results trends for key parameters are presented for surface waters (BOD), groundwaters (Ammonia & Iron) and leachates (Ammonia and COD).

¹ EPA – Landfill Monitoring Manual, 2nd Ed, 2004

Interference in metals analysis of aqueous samples from Tramore landfill and environs due to salinity.

The test method used to determine metals concentrations in aqueous samples from Tramore landfill is ICP-MS. Elements present in seawater can interfere with the test. The presence of chloride and other elements present in seawater combine with each other and the test carrier gas to form compounds which have the same atomic weights as some of the target test elements. The detector then wrongly identifies and measures these compounds as target test elements and thus gives falsely high results.

According to the Varian ICP-MS Application Note 32, the analysis of samples containing high levels of chloride typically produces polyatomic species in the plasma, which cause major interference in the most abundant isotopes of As V, Cr and Ni. The presence of other major elements such as Na, Ca and Mg in seawater can also produce polyatomic interference on isotopes of Cu, Co and Zn.

An example of this is the interference by chloride in the ICP-MS test for Arsenic. Chlorine, which has an atomic weight of c35, combines with the test carrier gas argon (mass 40). This Ar Cl complex has a combined mass of c75, which is close to atomic weight of Arsenic (75), and which leads to falsely high results.

A list of typical polyatomic interferences for the elements arsenic, chromium, copper and zinc are given in table 1.

Test target element	Polyatomic interference
⁷⁵ Arsenic	⁴⁰ Ar ³⁵ Cl, ⁴⁰ Ca ³⁵ Cl
⁵² Chromium	40 Ar 12 C, 40 Ca 12 C, 35 Cl 16 O ¹ H, 38 Ar 14 N
⁶³ Copper	40 Ar 23 Na, 40 Ca 23 Na
⁶⁴ Zinc	32 S 16 O ₂ , 32 S ₂ , 36 Ar 14 N ₂ , 40 Ar 23 Na ¹ H,
	$^{40}\mathrm{Ar}^{24}\mathrm{Mg}$

Table 1. Typical polyatomic interference – extract from Varian ICP-MS Application note 32.

Examination of the Q2 2006 results of metals analysis from Tramore landfill provides evidence for such interference. Using conductivity as a proxy measure of salinity, it can be seen – see figures 1ad - that there is a direct and strong correlation between salinity and measured metal concentration for arsenic, chromium, copper and zinc. This holds true, even for open seawater samples, which would be expected to have very low levels of these metals.

Thus the reported results for these metals in saline samples (conductivity > 5000 us/cm) are unreliable and should be disregarded.

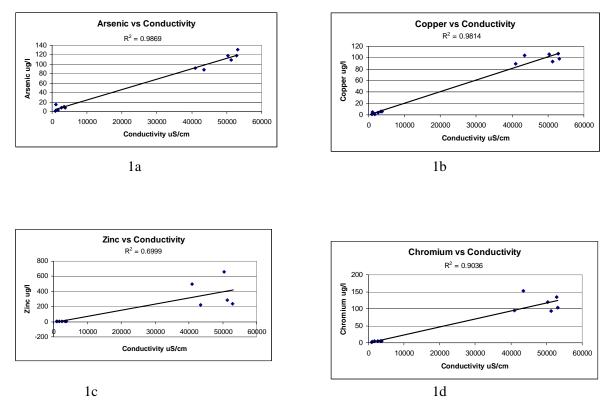


Figure 1a-1d. Relationship between metals concentrations and conductivity in aqueous samples from Tramore landfill and environs, for the 2nd quarter period 2006.

7.1. SURFACE WATER.

7.1.1 Introduction

The surface water sampling sites are SW 1, 2, 3,4,5,6, as per appendix 1. Sampling was carried out in each quarter of 2008.

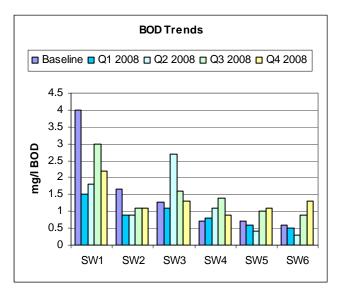
Results are presented in tables 1.1 to 1.4, and appendix C.

There are difficulties involved in monitoring surface water pollution from landfills adjacent to estuaries, as the salinity of the samples can interfere with many of the tests, (*ammonia, COD, arsenic, copper*). Additionally, many of the ions, which are considered indicators of leachate contamination, are also major components of sea/brackish water, (*chloride, sulphate, sodium, magnesium, calcium, boron*).

Following the convention of previous reports on Tramore landfill, the results are compared to the standards in the Drinking Water Regulations (SI no. 106, 2007), and Bathing Water Regulations (SI no. 155, 1992). Additionally, water quality criteria used in a recent DOELG / EPA report ("An Assessment of the Trophic Status of Estuaries and Bays in Ireland", DOELG/EPA, 2001) are used also. These standards are presented in the tables of results for comparison. Where possible, results are also compared to results of <u>baseline monitoring</u> carried out between September '01 and September '02

7.1.2 Results

Visual and odour examination indicated that there was no obvious contamination at any of the sites. There was no observed odour or floating materials, which would interfere with bathing water use. Some of the samples at sites SW1-3 from the inner back strand were cloudy, but this is normal due to the effect of tidal flushes on silt and sand.


The conductivity results indicate that site S1 is brackish water while sites SW2 to SW6 are saline. pH and temperature are normal at all sites over the monitoring period and fall within relevant quality standards.

Dissolved oxygen levels were generally satisfactory at all the sites. The suspended solids levels seem quite high at all stations, and this may be due to silt/sand entrainment in the samples, as the BOD values do not indicate the presence of significant amounts of organic matter.

Ammonia and BOD were elevated at site SW1. The somewhat elevated ammonia levels recorded at sites SW2 to SW6 are most likely due to interference by salinity.

The BOD test is a measure of the amount of oxygen consumed by microorganisms in breaking down organic matter in water.

Respiration by phytoplankton or their decay, can also lead to oxygen depletion during the BOD test resulting in a high BOD value. Natural seawaters are likely to have a BOD value < 2 mg/l BOD.

BOD was slightly elevated at times at SW1, but satisfactory at the other surface water sites. There was an elevated BOD recorded at SW3 in Q2. This spike is suspected to be due to algal activity.

7.1.3 Discussion

The results of analysis are in line with previous reports that indicated a slight elevation in organic matter and nutrients at site SW1. It is known that an off-site source is contributing to the organic load at SW1. There is no indication of any effect from the landfill on the surface water sites.

Table 1.1Tramore Landfill Surface Water Monitoring Q1 2008

			<i></i>			(1)	Drinking Water	Bathing Water Standards	Estuarine Water	Comment	Environmental significance
Test	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	Standards (SI 81 1988)	(SI 155 1992)	Standards (DOELG 2001)		
Ammonia mg/l N	0.53	0.1	nr	nr	nr	nr	0.23			Elevated at SW1. This is stormwater drain. The landfill is not deemed to be a factor.	No environmental effect from landfill
BOD mg/l O2	1.5	0.9	1.1	0.8	0.6	0.5				satrisfactory at all stations	none
202 118 2 2								70-120	70-130		none
Dissolved Oxygen % Sat	84.5	95.8	96.2	98.1	99.1	98.7	-	95% compliance	(Brackish) 80-120 (Saline)	satisfactory at all stations	none
Conductivity	1714	nm	nm	nm	nm	nm		compliance	(Sanne)	satisfactory at an stations	none
μS/cm	1/14	mm				mm				brackish at SW1.	none
COD mg/l O2	45	nm	nm	nm	nm	nm				not measured in saline stations	n/a
Nitrite	0.005		0.006	0.002	0.002	0.001	0.1			satisfactory at all stations	none
Chloride	>237	>4300	>534	>556	>552	>552	250			chloride reflects brackish/saline	none
										nature of samples	none
pH	7.7	7.6	7.9	8	8	8	7-9			satisfactory at all stations	none
Suspended Solids mg/l	149	nm	46	41	167	86	None visible			Elevated at SW1, storm drain. Slightly elevated levels at SW3 to 6 may be due to saline interference in	
0	10	9.2	9,9	10	9.8	9.7	25			test.	none expected
Temperature °C	-	9.2		-						satisfactory at all stations	none
Orthophosphate mg/l P	0.03		0.037	0.035	0.033	0.033	2180			satisfactory at all stations	none
Total Oxidised Nitrogen mg/l N	0.9		< 0.1	<0.1	<0.1	< 0.1	11.3 N		1.4 (Brackish) 0.2 (saline)	satisfactory at all stations	none
Arsenic ug/l	4	53.9	23	49.2	53.2	50.9				apparently elevated levels in saline samples due to saline interference	
										in test. See fig 1.	none
Cadium mg/l	4	<5	<5	<5	-5	<5				satisfactory at all stations	none
Calcium mg/l	46.2	262	132	248	259	260				results reflect presence of calcium in seawater.	none
Chromium ug/l	12.3	33.5	21.2	30.9	32.6	33.5				apparently elevated levels in saline samples due to saline interference in test. See fig 1.	none
Copper ug/l	7.68	124	44.5	101	116	125				apparently elevated levels in saline samples due to saline interference in test. See fig 1.	none
Iron ug/l	2020	882	898	883	940	972				there may be some salinity interference in iron test. This to be investigated.	none expected
Lead ug/l	4	<5	<5	<5	-5	<5	-			satisfactory at all stations	none
Magnesium mg/l	21.4	806	351	709	744	767				results reflect presence of calcium	
	221	-50	-50	-50	-50	-50	<u> </u>	L		in seawater.	none
Manganese ug/l	231	<50	<50	<50	<50	<50	I			satisfactory at all stations	none
Mercury ug/l	-5	<5	<5	<5	<5	<5				satisfactory at all stations	none
Potassium mg/l	8.74	248	108	224	236	241				results reflect presence of calcium in seawater.	none
Sodium mg/l	147	7240	2680	6520	6120	6440				results reflect presence of calcium	
Zinc ug/l	46.5	109	52.8	70.7	75	93.2				in seawater. apparently elevated levels in saline samples due to saline interference	none
										in test. See fig 1.	none

At high saline concentrations salinity results are given instead of conductivity results. COD and ammonia results are not reported for high saline concentrations as the high salinities cause problems with the test methods.

Table 1.2	Surface	Water	Monitoring	Q2 2008
-----------	---------	-------	------------	---------

							<u> </u>	In all more		1	
J	1	1 '	1 '	1 '	1 '	1 '	Drinking	Bathing Water		Comment	Environmental significance
Test	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	Water Standards	Standards (SI 155 1992)	Water Standards	1 '	1
rest	5.01	⁵ ^w ²	5115	514	5005	500	(SI 278	(81 155 1952)	(DOELG	1 '	1
J	1	1 '	1 '	1 '	1 '	1 '	2007)	1 '	2001)	1 '	1
Ammonia mg/l N	1.8	0.33	0.09	0.016	0.016	0.023	0.23	· ['		Elevated at SW1. This is	Г
	1	1 '	1 '	1 '	1 '	1 '	1	1 '		stormwater drain. The landfill is not	No environmental effect from
J.	1	1 '	1 '	1 '	1 '	1 '	1 '	1 '	1 '	deemed to be a factor.	landfill
Arsenic ug/l	<50	<50	<50	52.5	55.3	54.5	10	1		apparently elevated levels in saline	
	1	1 '	1 '	1 ' '	1 1	1 1	1 ' '	1 '	1 '	samples due to saline interference	1
J	1	1 '	1 '	1 '	1 '	1 '	1 '	1 '	1 /	in test. See fig 1.	none
BOD mg/l O2	1.8	0.9	2.7	1.1	0.4	0.3		·,			none
Cadmium mg/l	<50	<50	<50	<50	<50	<50	5	1 '	1 '	· · · ·	none
Calcium mg/l	82	256	356	367	355	322	<u> </u>	ł'	·	results reflect presence of calcium	
Culorum mg -	1 7	1 '	1	1 "	1 '	1 '	1 '	1 '	1 '		none
Chloride	386	697	699	696	696	697	250	t'		chloride reflects brackish/saline	
Chioriae	1 '	1	1 " '	1 " '	1 7	1	250	1 '			none
Chromium ug/l	<50	<50	<50	<50	<50	<50	50	ł'	·		none
COD mg/l O2	52	\vdash	<u>←</u>	<u>←</u>	<u>↓</u>	<u>⊢</u>	<u> </u>	+'	·'	not measured in saline stations.	none
COD Ing/102	32	1 '	1 '	1 '	1 '	1 '	1 '	1 '	1 /		n/a
Conductivity	3810	nm	nm	nm	nm	nm	2500	+'	t'	not measured in saline stations.	
μS/cm	3010	1	1 "	1 "	1 ^{mm} 1	1 "	2300	1 '	1 '	Slughtly elevated at SW1 at SW2	none
Copper ug/l	<50	145	163	219	244	251	2000	+'	·/	apparently elevated levels in saline	
Copper ug/1	1	1	1 100 1	1 " '	1	1	2000	1 '	1 /	samples due to saline interference	1
i – 1	1	1 '	1 '	1 '	1 '	1 '	1 '	1 '			none
Dissolved Oxygen % Sat	. ———́	├ ──'	t'	t'	łł	r+	†'	70-120	70-130		
Distance		1'	1	1	1	1	1 '	95%		Somewhat elevated at SW2 and	1
i J	116.3	3 106.7	7 160.2	2 137.5	5 109.1	109.6	4 '	compliance		SW3. Most likely due to algal	1
i – 1	1	1 '	1 '	1 '	1 '	1 '	1 '	1			none expected
Iron ug/l	<500	<500	<500	<500	<500	<500	200	ļ,			none
Lead ug/l	<50	<50	<50	<50	<50	<50	25	· ['			none
Magnesium mg/l	51.6	754	681	709	1155	1057	´	+'	t'	results reflect presence of calcium	
Magnesium mg/1	1	1	001	1 100 1	1 1.22	1 1057	1 '	1 '	1 '		none
Manganese ug/l	<500	<500	<500	<500	<500	<500	50	ł'	·'		
		nm	nm	nm	nm	nm	30	+'	t'		none
Mercury ug/l	·'	_						↓ ′	 '	not measured this round	n/a
Orthophosphate mg/l P	1	nm	nm	nm	nm	nm	2180	1 '	1 '	not measured this round	n/a
pH	8	8	8.3	8.3	8	8.1	7-9	+'			none
Potassium mg/l	<50	233	346	352	351	314	<u>+ · · · · · · · · · · · · · · · · · · ·</u>	+'	·'	results reflect presence of calcium	
Potassium mg/1	I	1 200 1	1	, 352	1 331	1 ,14	1 '	1 '	1 /	in seawater.	none
Salinity %	1.9	29.9	27.3	28.8	31.2	31.2	·'	·'		SW2, 3, 4, 5 and 6 are saline	none
	517	8058	7198	7456	7760	7801	200	+'	·'	results reflect presence of calcium	none
Sodium mg/l	, ³¹⁷	8056	/150	/450	//00	/001	200	1 '	1 /		none
Suspended Solids	30	43	80	70	+	t	None	+'		Slightly elevated levels at SW2 to 4	
Suspended Solids mg/l	50	4.3	00	1 /0 /	nr	nr	visible	1 '		may be due to saline interference in	
1 . J	1	1 '	1 '	1 '	1 '	1 '	VISIOIC	1 '		test. SW5 and SW6 not reported	1
()	1	1 '	1 '	1 '	1 1	1 '	1 '	1 '		this round	none expected
Temperature °C	18.2	13.4	15.8	13.5	12.7	14.5	25	+'	·'		
Temperature C Total Oxidised	10.2	+ 10.4 V	15.0	10.0 Y	<u> </u>	← ^{17.2}	<u> </u>	↓ ′	+ <u> </u>	satisfactory at all stations	none
	1	I !	1	1	1	1	11.2 M	1 '	0.2 saline	1 '	1
Nitrogen mg/l N	1	nm	nm	nm	nm	nm	11.3 N	1 '	1.4 (Brackish)	not measured this round	n/a
Zinc ug/l	<300	<300	<300	<300	<300	<300	·'	+'		Below limit of detection at all	n/a
Zhic ug/1	<300 ,	<500	<300	< 300	<300	<300	1 '	1 '			none
ب	·′	ى	<u>ب الم الم الم الم الم الم الم الم الم الم</u>	ب	بــــــ	ليسببه	vity results. C	ب	·′	stations	none

At high saline concentrations salinity results are given instead of conductivity results. COD results are not reported for high saline concentrations as the high salinities cause problems with the test methods.

				I			Water quality	Comment	Environmental significance
SURFACE WATER	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	standard (see key at bottom of	Connikit	Environnentar significance
Test							(
Aluminium ug/l	-250	-500	-500	-500	-500	-500	200 DW	low	none
Ammonia mg/l N	1.7	0.4	0.12	0.021	0.009	-0.003	0.23 DW	elevated at SW1 and SW2, non- landfill source	slight local enrichment, non-landfill source
Antimony ug/l	-10	-20	-20	-20	-20	-20	5 DW	low	none
Arsenic µg/l	-10	69.2	67.2	66.6	65.4	64.4	10 DW	saline interference in test	none
Barium ug/l	-60 -10	-120 -20	-120 -20	-120 -20	-120 -20	-120 -20		low	none
Beryllium ug/l Boron µg/l	2158	-20 4740	-20 4400	4380	4208	4156	1000 DW	low	none
Cadmium µg/l	-10	-20	-20	-20	-20	-20	5 DW	reflects salinity low	none
Calcium mg/l	228	-20	-20 436	-20	435	428	5 DW	reflects salinity	none
BOD mg/l	3	1.1	1.6	1.4	1	0.9		satisfactory	none
Chloride mg/l Cl	nr	nm	nm	nm	nm	nm	250 DW	nm	
Chromium µg/l	16.4	41.4	38	38.2	36.8	36.8	50 DW	saline interference in test	none
Cobalt ug/l	-10	-20	-20	-20	-20	-20		low	none
COD mg/l	272	nr	nr	nr	nr	nr		likely saline interference at SW1	none
ConductivityµS/cm	19040	nm	nm	nm	nm	nm	2500 DW	reflects brackish water at SW1	none
Copper µg/l	49.5	151	150	154	146	143	2000 DW	saline interference in test	none
Dissolved Oxygen % sat	134.5	111.9	137.7	160	103.6	113.5	70-130 EST	elevated at SW3 and SW4, reflects algal activity in backstrand	natural biological activity in backstrand
Faecal Coliforms	4	1	2	0	0	0	1000 BW	low	none
Fluoride mg/l	nm	nm	nm	nm	nm	nm	0.8 DW	nm	
Iron μg/l	1781	-1000	-1000	-1000	-1000	-1000	200 DW	slightly elevated at SW1 -non- landfill source	2020
Lead µg/l	-10	-20	-20	-20	-20	-20	25 DW	landilli source	none
List I/II Organic	-10 nm	-20	=20	-20 nm	-20 nm	=20	100 DW	1010	lione
substances							100 2 11	nm	
Magnesium mg/l	424	1162	1068	1073	1066	1034		reflects salinity	none
Manganese µg/l	717	-1000	-1000	-1000	-1000	-1000	50 DW	low	none
Mercury ug/l	-5	-5	-5	-5	-5	-5	1 DW	low	none
Molybdenum ug/l	-10	-20	-20	-20	-20	-20		low	none
Nickel ug/l	-10	-20	-20	-20	-20	-20	20 DW	low	none
Nitrite as N	0.11 0.11	0.015	0.002	-0.001	-0.001	0.005	0.03 DW	low	none
Orthophosphate mg/l P pH	8	0.042	0.022	0.006	0.007	-0.006		low	none
рн	8	8	8.2	8.4	8.1	8.2	6.5-9.5	slightly alkaline water, as expected	none
Potassium mg/l	169	414	390	400	399	394		reflects	none
Salinity o/oo	11	34.4	33.8	34.1	34.3	34.3		SW1 brackish, other sites fully saline	none
Selenium ug/l	-10	218	202	213	106	205		saline interference in test	none
Silver ug/l	-10	-20	-20	-20	-20	-20		low	none
Sodium mg/l	4092	10510	9786	9896	9748	9550		reflects salinity	none
Sulphate mg/I SO4	778.3	2799	3023.5	2829.8	2939.5	2778.8		reflects salinity	none
Temperature °C	22.3	24.9	23.5	23.2	16.8	16.4		normal range	none
Thallium ug/l	-10	-20	-20	-20	-20	-20		low	none
Tin ug/l Tatal California (100	-20	-40	-40	-40	-40	-40		low elevated SW1 to SW4, reflecting	none
Total Coliforms /100 mls	>2419	1733	>2419	1553	17	9	5000 BW	high level of microbial activity. Open water sites low	none - sites near bathing area satisfactory
Total Cyanide mg/l	>2419 nm	nm	>2419 nm	nm	nm	nm	0.05 DW	nm	Salisiaciory
Total Organic Carbon							0.00 DW		
mg/l C	nm	nm	nm	nm	nm	nm		nm	
Total Oxidised									none - levels comply with estuarine
Nitrogen mg/l N	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	1.4 EST	low	quality standard
Total Phenols	nm	nm	nm	nm	nm	nm		nm low, suspected saline interference	
Uranium ug/l	-10	-20	-20	-20	78	-20		at SW5	none
Vanadium ug/l	30	80.4	78	80.2	-120	78.8		suspected saline interference	none
Zinc µg/l	-60	-120	-120	-120		-120	PW/ Pathing wata	low	none

Table 1.3Tramore Landfill Surface Water Monitoring Q3 2008

 Zinc µg/l
 -60
 -120
 -120
 -120
 -120
 100

 DW - Drinking Water Regulations 2007, EST - DoEHLG Estuarine water report 2001, BW - Bathing water Regulations 2001
 IOW
 IOW

Table 1.4	Tramore Landfill Surface Water Monitoring Q4 2008
-----------	---

SUR FACE WATERS							Water quality	Comment	Environmental significance
- samples taken 6th and 20th Oct 2008	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	standard (see key at bottom of table)		
Test									
Aluminium ug/l	-250	-250	-250	140	-250	-250	200 DW	low	none
Ammonia mg/l N	1.2	nr	nr	0.044	nr	nm	0.23 DW	Slightly elevated at SW1 (non- landfill stormwater source)	slight local enrichment, non-landfill source
Antimony ug/l	-5	6.1	5.5	-5	5.7	-5	5 DW	low	none
Arsenic µg/l	-5	36.5	21.9	34	36.5	-5	10 DW	saline interference in test.	lione
income µg/i	_						10 2 11	Suspected dilution/reporting error for SW6	none
Barium ug/l	-60	80.1	82.6	79	80.1	72.8		low	none
Beryllium ug/l	-5	-5	-5	-5	-5	-5		low	none
Boron µg/l	244	3510	2600	3800	3140	244	1000 DW	reflects salinity. Suspected	2020
Codminum vod	E	5	E	E	5	5	5 DW	dilution/reporting error for SW6 low	none
Cadmium µg/l Calcium mg/l	-5 147	-5 408	-5 324	-5 450	-5 416	-5 47.7	5 DW	reflects salinity. Suspected	libile
Carefulli high		100	521	150	110			dilution/reporting error for SW6	none
BOD mg/l	2.2	1.1	1.3	0.9	1.1	1.3		satisfactory	none
Chloride mg/l Cl	>2632	>4861	>4472	>1171	>5103	>4949	250 DW	nm	
Chromium µg/l	-5	27.2	25.2	17	29.5	6	50 DW	saline interference in test. Suspected dilution/reporting error	
Cabalt we d	-			-	-			for SW6 low	none
Cobalt ug/l	-5 nm	-5 nm	-5 nm	-5 nm	-5 nm	-5 nm		Not measured due to saline	none
COD mg/l					iiiii			interference	none
ConductivityµS/cm	nm	nm	nm	nm	nm	nm	2500 DW	not measured	none
Copper µg/l	-50	194	161	180	222	-50	2000 D W	saline interference in test.	libile
Copper µg/i	-50	174	101	180	222	-50	2000 D W	Suspected dilution/reporting error for SW6	none
Dissolved Oxygen	12.9	116	105	99.5	97.2	97.4	70-130 EST	Very low at SW1, possible units	
% sat								error as BOD at SW1 was satisfactory	natural biological activity in backstrand
Faecal Coliforms /100mls	2419	8	173	11	3	0	1000 BW	Somewhat eleveated at SW1, satisfactory at other sites	none
Fluoride mg/l	nm	nm	nm	nm	nm	nm	0.8 DW	nm	
Ir on µg/l	1640	547	606	470	574	113	200 DW	slightly elevated at SW1 -non-	
Lead µg/l	-5	-5	-5	-5	-5	-5	25 DW	landfill source low	non e non e
List I/II Organic substances	nm	nm	nm	nm	nm	nm	100 DW	nm	lione
Magnesium mg/l	255	1140	847	1100	1210	121		reflects salinity. Suspected dilution/reporting error for SW6	non e
Manganese µg/l	301	-250	-250	-250	-250	-250	50 DW	low	none
Mercury ug/l	nm	nm	nm	nm	nm	nm	1 DW	low	none
Molybdenum ug/l	-5	17.3	14.2	14	17	7		low	none
Nickel ug/l	-5	-5	-5	-5	-5	-5	20 DW	low	non e
Nitrite as N	nm	nm	nm	nm	nm	nm	0.03 DW	low	none
Orthophosphate mg/l P	nm 8.1	nm	nm	nm	nm	nm		low	none
pH	0.1	8.1	8.1	8	8	8	6.5-9.5	slightly alkaline water, as expected reflects salinity. Suspected	non e
Potassium mg/l	117	396	303	440	398	62.1		dilution/reporting error for SW6	none
Salinity o/oo	6.6	32.6	22.4	32.3	33.5	33.8		SW1 brackish, other sites close to fully saline	none
		02.0	22.1	02.0	00.0	00.0		saline interference in test. Suspected dilution/reporting error	hono
Selenium ug/l	-5	156	111	190	161	-5		for SW6	none
Silver ug/l	nm	nm	nm	nm	nm	nm		low	non e
Sodium mg/l							I	reflects salinity. Suspected	
0.11.1	2590	1470	7010	9500	10300	1070	ļ	dilution/reporting error for SW6	none
Sulphate mg/I SO4	nm 23	nm	nm	nm	nm	nm	<u> </u>	nm Somewhat elevated, possible saline	none
Suspended solids mg/l	23	26	38	276	46	nm		interference in test	none
Temperature °C	15.6	14.2	14.6	13	14.2	14.1	l	normal range	
Thallium ug/l	-5	-5	14.6 -5	-5	14.2 -5	14.1 -5	<u> </u>	low	non e non e
Tin ug/l	49.8	108	107	120	107	106		Somewhat elevated, possible saline interference in test	
Total Coliforms /100 mls	-3.0	100	101	120	107	100		elevated SW1 to SW3, reflecting	1010
Control in States	2419	105	2419	105	12	10	5000 BW	high level of microbial activity. Open water sites low	none - sites near bathing area satisfactory
Total Cyanide mg/l	nm	nm	nm	nm	nm	nm	0.05 DW	nm	
Total Organic Carbon mg/1C	nm	nm	nm	nm	nm	nm		nm	

7.2.1 INTRODUCTION

Samples were taken at sites BH2, BH5, BH8, BH9, BH10 and RC4. The frequency of sampling and range

of parameters analysed were determined by schedule D of the licence.

Borehole locations are shown on appendix 1. Drilling records, where available, for groundwater boreholes are shown on table .

Nominal Type GW		Table . I	Drilling records	for groundwate	er boreholes.			
Total Depth (m)4.23.957.78.71315.325Made ground: hardcore fill (0-0.5) Made ground: loose mixture of gravel and rubble with fill (0.5-1.0) Made ground: soft black sandy silt with domestic refuse (1.0- 1.7)Made ground: clay and sand fill (0-0.8) Made ground: loose sand with black domestic refuse (1.0- 1.7)Made ground: clay and sand fill (0-0.8) medium dense silty sand with black domestic refuse (1.0- 1.7)Made ground: clay and sand fill (0.5-1.0) medium dense silty sand with black domestic refuse (1.2- 1.3)Made ground: clay and sand fill (0-0.8) Made ground: clay with sand with black domestic refuse (1.0- 1.7)Made ground: clay and sand fill (0.5-1.0) medium dense wilt gravelly clay with sand with black some gravel (1.2- soulders (1.2-7.4)Made ground: clay some gravel (0.4-2.2) brown silty sandy gravelly clay with some gravel (1.2- builders (2.2-7.4)Made ground: soft hown silty sandy gravelly clay with some gravel (1.2- boulders (2.2-7.4)Made ground: brown some gravel (1.2- boulders (2.2-7.4)Made ground: brick, hown silty sandy gravelly clay with sandy clay with some gravel (1.2- boulders (2.2-7.4)Made ground: brown some gravel (1.2- boulders (2.2-7.4)Made ground: brown some gravel (1.2- boulders (2.2-7.4)Made ground: brown some gravel (2.2-7.4)Made ground: brown some gravel (2.2-7.4)Tot prove silty clay: (3.0-4.2)gravelly clay (2.9- 3.95)Siff to very stiff thrown gravelly clay with cobbles and boulder size fragments of shale boulders (11.8-13.0)Sifitstone (11.7) Sititstone (20-25)Respon	Name	BH2	BH5	BH8	BH9	BH10A	RC4	RC5
Made ground: hardcore fill (0-0.5) Made ground; clay and sand fill (0-0.8) Made ground; clay with sandy silty clay; (0.3- Stiff to very stiff brick and cobbles (0 Strata (m) Made ground; firm to Soff grey brown sand with black Soff grey brown sandy silty clay; (0.3- Stiff to very stiff 1.3) Made ground; firm to Soft grey brown sandy clay with sand	Nominal Type	GW	GW	GW	GW	GW	GW	GW
Made ground: hardcore fill (0-0.5)Made ground; clay and sand fill (0-0.8)silty clay with wood, paper and plastic (0- 0.4)Made ground : stiff firm grey brown sandy clay with sandy clay with clay with concrete, soft grey brownMade ground : stiff firm grey brown sandy clay with sandy clay with clay with concrete, soft grey brownMade ground : stiff firm grey brownStrata (m)Made Grount: soft black sandy silt with domestic refuse (1.0- 1.7)medium dense silty domestic refuse (0.8- 1.7)Soft grey brown sandy silty clay: (0.3- sandy silty clay: (0.2- silt and gravel: (1.7-2.5) gravelly clay with graded silty gravel: (2.5- 2.9)Soft from gravel (1.2- boulders (2.2-7.4brown silty and send till (1.2- boulders (2.2-7.4Ade ground: brick, 4.2)Soft/loose mixture of silt and gravel: (1.7-2.5) medium dense well graded silty gravel: (2.5- 3.0)Stiff to very stiff very stiffIaminated clay with some gravel! (1.2- boulders (2.2-7.4Soft grey very silty sandy clay with sandy clay with sandy clay with soft grey very siltyopen hole (0- silt and gravel (1.7- soft fught brown gravelly clay with gravelly clay with some gravell (2.2-Soft frequent coble and shells (4.2-10.2)open hole (0- siltstone (11.7- Overburden (0- Siltstone (11.7- Overburden (0- silty clay: (3.0-4.2)Soft grey very silty gravelly clay with gravelly clay with solders (1.9-7.7)Soft grey nown (7.4-8.7-Solders size boulders (11.8-13.0)Siltstone (20.2-25Response zone (m)none givennot givennot giveninstillation sheet12 to 14 m21 to 24.5 <td>Total Depth (m)</td> <td>4.2</td> <td>3.95</td> <td>7.7</td> <td>8.7</td> <td>13</td> <td>15.3</td> <td>25</td>	Total Depth (m)	4.2	3.95	7.7	8.7	13	15.3	25
Response zone (m) none given not given installation sheet 12 to 14 m 21 to 24.5	Strata (m)	fill (0-0.5) Made ground; loose mixture of gravel and rubble with fill (0.5-1.0) Made Ground: soft black sandy silt with domestic refuse (1.0- 1.7) Soft/loose mixture of silt and gravel: (1.7-2.5) medium dense well graded silty gravel: (2.5- 3.0) Frim brown gravelly	and sand fill (0-0.8) Made ground: medium dense silty sand with black domestic refuse (0.8- 1.8) Made ground: firm to stiff light brown gravelly clay with traces of reduse (1.8- 2.9) Very stiff light brown gravelly clay (2.9-	Soft grey brown sandy silty clay: (0.3- 1.2) Firm grey brown sandy clay with some gravel: (1.2- 1.9) Stiff to very stiff brown silty sandy gravelly clay with cobbles and boulders: (1.9-7.7)	silty clay with wood, paper and plastic (0- 0.4) Firm grey brown sandy clay with some gravel (0.4-2.2 Stiff to very stiff brown silty sandy gravelly clay with cobbles and boulders (2.2-7.4 Hard brown silty laminated clay with frequent cobble and boulder size fragments of shale	brown silty gravelly clay with concrete, brick and cobbles (0 1.3) Made ground: brick, ash, wood, plastic, paper and steel (1.3- 4.2) Soft grey very silty sandy clay with shells (4.2-10.2) Large limestone cobbles and	open hole (0- 9.7 gravel (9.7- 11.7 Siltstone (11.7-	Overburden (0-20 Siltstone (20-25)
	Response zone (m) Designation based on drill record	none given	not given		GW	GW	12 to 14 m GW	21 to 24.5 GW

7.2.2 RESULTS

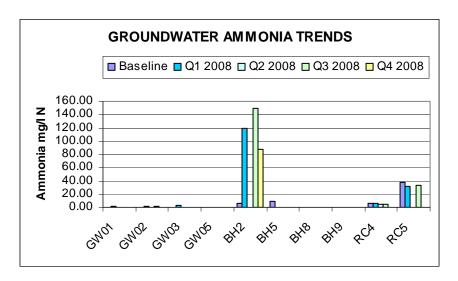
Results are presented in table 2.1 to 2.4, and appendix D.

Groundwater monitoring results are compared with the Interim Guideline Values (IGVs) as outlined in the interim report by the environmental Protection agency, "*Towards Setting Guidelines for the Protection of Groundwater in Ireland*".

Elevated values for *Boron, Calcium, Chloride, Conductivity, Potassium and Sodium* reflect the impact of saline intrusion on borehole water characteristics. Additionally, the salinity of the samples interfered with some of the tests, (*ammonia, arsenic, copper*). Accordingly interpretation of test results for some parameters must bear this in mind.

Conductivity values were elevated in many of the boreholes, reflecting significant saline intrusion at this estuarine site. A discussion of the extent of saline intrusion is beyond the scope of this

environmental report, however detailed studies² of saline intrusion into these boreholes was carried out in 2002 and 2006.


Heavy metals, list I/II organics, phenols and coliform bacteria were low at all boreholes throughout the monitoring period.

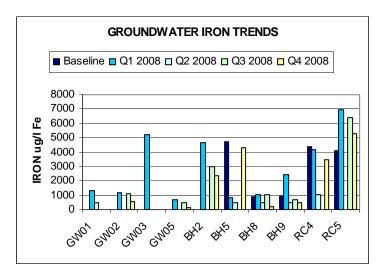
² Waterford County Council, Investigation into the Occurrence of Salinity Intrusion at Tramore Landfill Site, MCOS, 2002 and RPS 2006.

Key Parameter – Ammonia

AMMONIA

Ammonia occurs naturally in water bodies, including estuarine and marine waters, arising from the microbiological decomposition of nitrogenous organic matter. Fish and other aquatic organisms also excrete ammonia. Therefore unpolluted waters contain ammonia, usually < 0.1 mg/l N, although groundwaters in reducing conditions can contain higher levels.

Groundwater ammonia levels 2008


Ammonia levels were high (>5mg/l) in BH2, RC4 and RC5.

Results for 2008 were similar to baseline monitoring in most boreholes. A sharp decrease in ammonia in RC5 was observed in Q4, though ongoing monitoring will show if this trend continues.

Key Parameter - Iron

Iron is present in significant amounts in soils and rocks, principally in insoluble forms. However, many complex reactions, which occur naturally in ground formations can give rise to more soluble forms of iron, which will therefore be present in water passing through such formations.

Appreciable amounts of iron may therefore be present in groundwaters, especially in reducing conditions. Landfill leachate also contains significant amounts of iron. Leachate from Irish/UK landfills accepting mainly domestic waste, have been found to contain between 0.4 to 664 mg/l Fe, with a median value of 12 mg/l Fe. (Source: Department of the Environment, 1995).

Groundwater iron levels 2008

Iron levels were high (>5000ug/l) in GW3 and RC5 during the monitoring period. Results for 2008 were similar to baseline monitoring.

7.2.3 DISCUSSION

The results of groundwater monitoring are in line with results from previous rounds of testing carried out since 1999. As indicated in previous reports, it appears that groundwater quality within the current working area is impacted by leachate from the landfill, as evidenced by elevated ammonia and iron levels at BH2, BH10 and RC4. Further investigation will be required to determine the cause of elevated iron and ammonia at RC5, which is some distance away from the current landfill site. Heavy metals, List I/II Organics, and phenols were low at all boreholes throughout the monitoring period.

Table 2.1 Tramore Landfill Groundwater Monitoring Q1	2008
--	------

Test	GW 01	GW 02	GW 03	GW 04	GW 05	BH2	BH 5	BH 8	BH 9	RC 4	RC 5	IGV	Comment	Environmental significance
Ammonia mg/l N												0.15		given the volume of leachate produced and the dilution available (>50,000), no
														environmental effect is
	1.2	2	2.9		0.4	120	0.05	0.003	0.24	5.7	>32		elevated BH2, RC4 and RC5	expected
Arsenic µg/l												10	The apparent elevated levels are associated with high chloride/conductivity,	
	20.3	25.0	34.1		.5	32	37.4	<5	<5	64.2	62.3		indicative of saline interference in the test	
Chloride mg/l Cl	20.3	25.8	34.1		<5	32	37.4	<0	<0	64.3	02.3	30	Chloride associated with	none
	>2700	>3100	>2800		180	555	>4600	348	>109	>5200	>539	•••	salinity	none
ConductivityµS/cm	19000	18000	17000		938	3500	42000	nm	922	51000	nm	1000	Conductivity associated with salinity	none
Dissolved Oxygen	19000	10000	17000		930	3500	42000	nm	922	51000	nm	no	Saminy	none
	95.3	75.5	69		53.7	1.8	77.3	35.5	28.4	27.7	23.3	abnormal change	low DO in BH2, indicative of reducing conditions	none, given dilution availabl in receiving waters (>50,000
pH	7.8	7.6	7.2	-	7.7	7	7.7	7.6	7.3	7.2	6.9	6.5 to 9.5	within normal range	none
Temperature °C	11.4	11.2	11.1		10.3	11.7	10.7	nm	11.6	12.4	12	25	within normal range	none
Boron µg/l												1000	Elevated boron levels	
Codminue and	831	980	734 <5	•	83.1	1220	1900 <5	184	87.6	2930	943	5	associated with salinity	none
Cadmium µg/l Calcium mg/l	<5	<5	<0		<5	<5	<0	<5	<5	<5	<5	200	low in all groundwaters elevated calcium associated	none
Culcium mg/r	179	242	293	-	56.2	123	219	101	38.2	351	330	200	with salinity	none
Chromium µg/l	26.7	25.5	21.3		14.1	31.3	27.8	15.3	15.7	39.6	32.2	30	The apparent elevated levels are associated with high chloride/conductivity, indicative of saline interference in the test	none
Copper µg/l	54.6	44.5	40.5	- -	8.02	10.3	83.5	21.5	12.7	147	121	30	The apparent elevated levels are associated with high chloride/conductivity, indicative of saline interference in the test	none
Iron μg/l	1330	1160	5250		705	4650	856	1010	2430	4190	6960	200	associated with landfill leachate, though RC5 requires further investigation as this is remote from the landdfill site.	given the volume of leachat produced and the dilution available (>50,000), no environmental effect is expected
Lead µg/l	<5	<5	<5	-	<5	<5	5.81	<5	<5	<5	<5	10	low at all sites	none
Magnesium mg/l	253	272	254		14.7	90.7	556	53	18.9	927	799	10	Magnesium associated with salinity	none
Manganese µg/l	775	439	1080		1120	1390	<50	190	761	6490	821	50		given the volume of leachate produced and the dilution available (>50,000), no environmental effect is expected
Mercury µg/l	<5	<5	<5		<5	<5	<5	<5	<5	<5	<5		low at all sites	none
Potassium mg/l												5	potassium associated with	
Sodium mg/l	74.2	72.8	57.3	-	1.88	90.1	166	7.57	4.11	271	147	150	salinity sodium associated with	none
Sourum mg/1	2920	2490	2350		84.6	330	5030	412	73	8700	7030	150	salinity	none
Orthophosphate mg/l P		-		· ·		-			<0.006	<0.006	0.14	0.03		
P Fotal Oxidised Nitrogen	-	-		· .	-	-	-	-	<0.000	<0.000	0.14	no		
mg/l N	-	nm	nm		-	nm	nm	<0.1	0.5	nm	<0.1	abnormal		
Total Organic Carbon mg/l C	19.7	15.5	10.6	-	1.3	30	2.6	<0.5	<0.5	2.2	4		some variation between boreholes, but no extreme levels recorded.	given the volume of leachate produced and the dilution available (>50,000), no environmental effect is expected
Zinc µg/l	146	46	61.3		34.7	52	132	39.1	58.3	114	81.2	100	The apparent elevated levels are associated with high chloride/conductivity, indicative of saline interference in the test	none
Faecal Coliforms	140	-10	01.0	L.	04.7	02	102	00.1	00.0	114	01.2			
/100mls	0	10	24		2	3	0	<10	<10	0	<10	0	low numbers present in some of boreholes. Presence most likely due to surface sources, such as wildlife.	none, levels in boreholes lower than background level in surface waters
Total Coliforms /100	0											0		none, levels in boreholes

Values in bold indicate exceedance GW 04 No sample-Borehole to be redrilled Total Oxidised Nitrogen (TON) was not analysed on the samples due to an oversight in the laboratory

Test	GW 01	GW 02	GW 02	GW 04	GW 05c	BH 1/1	BH 5	BH 8	BH 9	RC 4	RC 5	IGV	Comment	Environmental significance
Ammonia mg/l N	6 10 01	G W 02	911 03	G 11 04	G m 05a	DII 1/1	DI1 3	0110	ылу	NC 4	AC 3	0.15	Comment	given the volume of leachate
Annionia mg/i N												0.15		produced and the dilution available
														(>50,000), no environmental effect is
	0.59				0.11	18	0.71	0.18	0.19	4.7			elevated BH1/1 and RC4	expected
Arsenic µg/l												10	The apparent elevated level at	
													RC4 associated with high	
													chloride/conductivity,	
													indicative of saline	
	<50				<50	<50	53.6	<50	<50	55			interference in the test	none
Boron µg/l								=	=			1000	Elevated boron level at RC4	
a 1 : a	667				<500	<500	2266	<500	<500	3686		~	associated with salinity low in all groundwaters	none
Cadmium µg/l Calcium mg/l	<50				<50	<50	<50	<50	<50	<50		5 200	elevated calcium associated	none
Calcium mg/1	145				58.3	112	339	117	<50	409		200	with salinity	none
Chloride mg/l Cl	140				00.0	112	000		~00	400		30	Chloride associated with	
cilionae ingri cr	596				100	158	659	409	149	>700		50	salinity	none
Chromium µg/l	<50				<50	<50	<50	<50	<50	<50		30	low in all groundwaters	none
ConductivityµS/cm												1000		
										33			Conductivity associated with	
	17420				921	1470	48700	4310	1096	salinity			salinity	none
Copper µg/l												30	The apparent elevated level at	
													RC4 are associated with high	
													chloride/conductivity,	
	58.5				<50	.50	226	.50	.50	258			indicative of saline	
Disastrat Osuras	58.5				<00	<50	220	<50	<50	208			interference in the test	none
Dissolved Oxygen												no		
% sat												abnormal		none, given dilution available in
	58				93.9	9.1	97.8	16.8	13.7	32.2		change	reducing conditions	receiving waters (>50,000)
Faecal Coliforms														
/100mls													Very low numbers present in some of boreholes. Presence	
													most likely due to surface	none, levels in boreholes lower than
	0				0	0	0	0	1	0		0	sources, such as wildlife.	background levels in surface waters
Iron μg/l	0				- v	0	0	v				200	Somewhat elevated iron at	given the volume of leachate
non µg/1												200	BH1/1. This may be	produced and the dilution available
													associated with landfill	(>50,000), no environmental effect is
	<500				<500	3849	<500	<500	<500	1059			leachate.	expected
Lead µg/l	<50				<50	<50	<50	<50	<50	<50		10	low at all sites	none
Magnesium mg/l												10	Magnesium associated with	
	209				<50	<50	890	57	<50	998			salinity	none
Manganese µg/l												50		given the volume of leachate
													elevated at RC4. May be associated with landfill	produced and the dilution available
	<500				848	507	<500	<500	619	5392			leachate	(>50,000), no environmental effect is expected
Orthophosphate mg/l	<300				040	307	<300	<300	019	5592		0.03	leachate	expected
P	0.053				< 0.006	0.22	0.076	0.006	0.006			0.05	low at all sites	none
pH	7.7				7.9	6.9	7.7	7.6	7.4	7.1		6.5 to 9.5	within normal range	none
Potassium mg/l												5	potassium associated with	
	70.9				<50	<50	291	<50	<50	309		-	salinity	none
Sodium mg/l	Γ	Γ										150	sodium associated with	
	2854				74.6	99.2	8113	530	105	11969			salinity	none
Temperature °C	11.5				11.4	10	11.3	11.9	12.7	13.2		25	within normal range	none
Total Coliforms /100												0	moderate numbers present in	none, levels in boreholes close to
mls	>2419				1	150	3106	1	4	0			boreholes.	background levels in surface waters
Total Organic Carbon														given the volume of leachate
mg/l C													some variation between	produced and the dilution available
	40.0				<u> </u>				4 -				boreholes, but no extreme	(>50,000), no environmental effect is
Tetel Order 1075	16.6				2.5	nm	2.6	1.9	1.5	3.2	<u> </u>		levels recorded.	expected
Total Oxidised Nitrogen mg/l N												no		
ing/1 iv	0.5				nr	<0.1	1.1	0.2	0.1	<0.1		abnormal	Low values recorded.	none
Total Phenols	0.5 <0.01				nr <0.01	<0.1	<0.01	0.2	0.1	<0.1		change	Low values recorded.	none
Zinc µg/l	<300				<300	<300	<300	<300	<50	<300		100	low at all sites	none
z.mc μg/1	-000				~000	-000	~000	-000	~00	~000		100		

Tramore Landfill Groundwater Monitoring Q2 2008 Table 2.2

 Zinc µg/l
 |
 300 |
 |
 |
 300 |

 GW 2, GW3 and GW4 No sample-no footvalve/tubing
 Unable to access RC5. BH10 discontinued. BH2 under construction

Table 2.3Tramore Landfill Groundwater monitoring (Q3 2008
--	---------

GROUNDWATE					D75.0	D77 0	nc :	nc -	C .					
Test														
Aluminium ug/l	<250	296	<250	-2500	547	496	-2500	-2500	low to moderate levels	none				
Ammonia mg/l N									elevated BH2, RC4, leachate likely source.	24, leachate likely source, RC5, unknown source, hate unlikely none, given dilution available in backstrand low levels none IGW2, BH2, likely saline none ects salinity none low levels none ects salinity none moderate levels none ects salinity none moderate levels none ects salinity none ow levels none low levels none ow levels none low none <td< td=""></td<>				
									Also elevated RC5, unknown source,					
	1.9	0.63	150	0.38	0.077	0.29	5.1	33	leachate unlikely	none, given dilution available in backstrar				
ntimony ug/l	<10	<1	<10	-100	-1	-1	-100	-100	low levels	ely source. source, source, inone, given dilution available in backstrand none inone				
arsenic µg/l									slightly elevated GW2, BH2, likely saline					
	30.6	1.9	27.2	-100	3.5	-1	-100	-100	interference	none				
arium ug/l	122	45.7	631	-600	69.4	48.2	-600	-600	reflects salinity	none				
Beryllium ug/l	<10	<1	<10	-100	-1	-1	-100	-100	low levels					
loron μg/l	1846	56.3	2117	3675	135	69.1	4852	1475						
Cadmium µg/l	<10	<1	<10	-100	-1	-1	-100	-100	low to moderate levels					
alcium mg/l	28.6	87.3	2123	357	133	54.8	532	647						
hloride mg/l Cl	592	104												
hromium μg/l	14.1	1.7	10.5	-100	2.3	1.1	-100	-100						
obalt ug/l	<10	1.4	-10	-100	1.1	-1	-100	-100	low levels	none				
onductivityµS/c														
1	1160	937	8230	nm	3290	943	nm	nm	reflects salinity	none				
opper µg/l														
	43.8	2	16.8	-100	7.9	2.8	126	-100	generally low, salinity interference likely RC4	none				
Dissolved														
Dxygen	1													
6 sat	16.7	13.1	4.2	99.7	102.9	14.8	21.8	25.8	reflects aeration	none				
Faecal Coliforms														
100mls	0	0	0	0	0	0	0	0	low	none				
luoride mg/l	3.5	0.13	1.57	4.75	0.82	0.14	3.4	3.2		none				
on μg/l														
									elevated RC5, unknown source, leachate					
	1127	461	2962	-1000	1023	723	-1000	6395	,	none				
.ead µg/l	<10	<1	-10	-100	1.4	-1	-100	-100	low	none				
ist I/II Organic				Xylene 0.6										
ubstances				ug/l										
				1.3 Toluene										
	< 0.5	<0.5	< 0.5	<0.5 others	<0.5	< 0.5	<0.5	<0.5	low or not detected	none				
/lagnesium mg/l	303	17.9	184	938	54.7	23.4	1263	1038	reflects salinity					
/anganese µg/l	503	1173	1161	-1000	509	955	-1000	-1000	elevated GW05, likely source is leachate					
Aercury ug/l	<5	<5	-5	-1000	-5	-5	-5	-1000						
/lolybdenum ug/l	<10	<1	-10	-100	-5	-5	-100	-100						
			-											
lickel ug/l	<10	2.7	-10	-100	3.2	1.7	-100	-100						
litrite as N	< 0.001	< 0.001	-0.001	0.01	-0.001	0.01	-0.001	-0.001	low	none				
Orthophosphate	0.025	< 0.006	-0.006	0.11	-0.006	-0.006	-0.006	0.16	low	none				
ng/l P									10 W	none				
Н	7.6	7.8	7.3	7.8	8	7.5	7.4	7.2	normal range	none				
otassium mg/l	11.5	1.2	171	293	8.2	4.7	386	193	reflects salinity	none				
alinity o/oo	9.7	nm	4.5	31.2	1.7	nm	33	30.9	BH5, RC4 and RC5 highly saline					
elenium ug/l	47.9	1.9	21.9	147	9.2	1.6	185	142	low, except where saline interference likely					
ilver ug/l	<10	<1.9	-10	-100	-1	-1	-100	-100	· · ·					
			-						low					
odium mg/l	3055	89.7	1104	8349	443	111	10831	9307	reflects salinity					
Sulphate mg/I S		66.5	72.3	2492	141.5	26.9	1442.1	1750	reflects salinity	none				
emperature °C	13.3	13.1	15.6	13.2	15.6	13.4	15.3	13	normal range	none				
'hallium ug/l	<10	<1	-10	-100	-1	-1	-100	-100	low	none				
Tin ug/l	<20	<2	-20	-200	-2	-2	-200	-200	low	none				
otal Coliforms	>2419	0	>2419	194	0	0	0	0	elevated at GW02, BH2, reflects					
100 mls		1			1	1		1	mocrobiological activity associated with					
		1	1		1	1		1	biodegradation	none				
otal Cyanide	< 0.05	<0.05	<0.05	nm	<0.05	-0.05	< 0.05	-0.05	biodogradation	none				
	~0.05	0.05 <0.05 <0.05 nm <0.05 -0.05 <0.05 -0.05		1										
ng/l	10.7				low	none								
otal Organic	12.7	2.1	33	2.2	1.5	0.6	3.9	4						
						relatively low	none							
	< 0.1	< 0.1	-0.1	-0.1	0.2	0.1	-0.1	-0.1						
Carbon mg/l C Total Oxidised		1					low	none						
			0.01 <0.01 <0.01 nm -0.01 0.01 -0.01 -0.01											
otal Oxidised litrogen mg/l N	< 0.01	<0.01	< 0.01	nm	-0.01	0.01	-0.01	-0.01	low	none				
otal Oxidised litrogen mg/l N otal Phenols	<0.01	<0.01	< 0.01	nm -100	-0.01	0.01	0.01	0.01	low	none				
otal Oxidised litrogen mg/l N otal Phenols Iranium ug/l	<10	1.4	-10	-100	2.9	-1	-100	-100	low	none				
otal Oxidised							0.01	0.01						

GW 1, GW3 and GW4 No sample-no footvalve/tubing BH10 discontinued.

GROUNDWATER samples taken June 2008		GW 05		вн 5	BH 8	BH 9	RC 4	RC 5	IGV	Comment	Environmental significance
Aluminium ug/l	45	74	<250	<250	<250	<250	<250	<250	0.15	none	none
Ammonia mg/l N	0.18	0.09	87	<0.01	<0.01	0.58	nr	0.19	0.15	Elevated BH1/1 (19 mg/l), BH2 (150 mg/l), Probable source landfill leachate. RC5(33 mg/l) unknown cause	given the volume of leachate produced an the dilution available (>50,000), no environmental effect i expected
Antimony ug/l	<5	<5	<5	<5	<5	<5	5.4	<5	10	none The experient elevated	none
Arsenic µg/l									10	The apparent elevated level at BH2 associated with high chloride/conductivity, indicative of saline	
	15	<5	<5	nr	<5	<5	38.5	40		interference in the test	none
Barium ug/l Beryllium ug/l	120 <5	93 <5	320 <5	99 <5	100 <5	102 <5	100 <5	110 <5		Elevated Barium levels associated with salinity none	none
Boron µg/l	1100	<50	1300	3400	<50	<50	3510	980	1000	Elevated boron levels associated with salinity	none
Cadmium µg/l	<5	<5	<5	<5	<5	<5	<5	<5	5	low in all groundwaters	none
Calcium mg/l Chloride mg/l Cl	220	98	190	490	120	67.2	555	550	200	elevated calcium associated with salinity Chloride associated with	none
	>1839	87	>79	>1006	>363	182	>4912	>1490		salinity	none
Chromium µg/l	<10	<10	29	120	<10	6.1	41.8	26	30	Slightly elevated results linked to salinity interference	none
Cobalt ug/l	<5	<5	<0.5	<5	<5	<5	5.5	<5	1000	none Conductivity associated	none
ConductivityµS/cm	11970	937	4150	nm	2860	930	51000	nm	1000	with salinity	none
Copper µg/l									30	The apparent elevated levels at GW2, RC4 and RC5 indicative of saline	
Disculued Occurry	<30	<30	<30	190	<30	<50	223	200		interference in the test	none none, given dilution
Dissolved Oxygen % sat										Low DO in BH1/1, BH2, BH(indicative of reducing	available in receiving waters (>50,000) of
Faecal Coliforms /100mls	3	93.8	6.8	73.3	30.8	16.9	28.6	26.5	0	conditions	backstrand
		4	.1	.1	-1	<2	<2	-1		Not detected or very low numbers present in some of boreholes. Presence most likely due to surface sources, such as wildlife.	none, levels in boreholes lower thar background levels ir surface waters
Fluoride mg/l	nm	<1	<1	<1	<1	<2	<2	<1		Elevated Fluoride in BH5 and RC5 associated with	Surface waters
	nm	nm	nm	nm	nm	nm	nm	nm		salinity	none
Iron μg/l									200	Elevated iron at BH1/1, BH2. This may be associated with landfill leachate. Elevated at RC5 unknown cause.	given the volume of leachate produced an the dilution available (>50,000), no environmental effect
x 1 4	550	170	2400	4300	230	475 <5	3450	5300	10	Distance from landfill low at all sites	expected none
Lead µg/l List I/II Organic substances	<5	<5	<5	<5	<5	<0	<5	<5	10	IOW at all sites	none
Magnesium mg/l	nm	nm	nm	nm	nm	nm	nm	nm		Magnesium associated	
Manganese µg/l	250	30	130	1400	57	35.4	1200	1300	50	with salinity elevated at RC4. May be associated with landfill	none given the volume of leachate produced an the dilution available (>50,000), no environmental effect
Mercury ug/l	410 nm	890 nm	960 nm	1000 nm	620 nm	1040 nm	7290 nm	1100 nm		leachate	expected
Molybdenum ug/l	20	<5	<5	<5	<5	6	13.4	<5			
Nickel ug/l Nitrite as N	<5 nm	<5 nm	<5 nm	<5 nm	<5 nm	<5 nm	<5 nm	<5 nm			
Orthophosphate mg/l P	nm	nm	nm	nm	nm	nm	nm	nm			
рН	7.6	7.8	7.2	7.6	7.6	7.4	7.5	7		low at all sites within normal range	none
Potassium mg/l Salinity o/oo	160 nm	<5 nm	180 nm	420 31.1	11 nm	7.3 nm	425 nm	240 30.2	5	potassium associated with salinity	none
										selenium associated with salinity - possible	
Selenium ug/l Silver ug/l	<5 nm	<5 nm	<5 nm	180 nm	<5 nm	<5 nm	167 nm	170 nm	<u> </u>	interference	
Sodium mg/l	4300	220	570	13000	440	210	10400	12000	150	sodium associated with salinity	none
Sulphate mg/I SO4 Temperature °C	nm 12.9	nm 13	nm 14	nm 13.6	nm 12.6	nm 13.2	nm 13.3	nm 12.4		within	
Temperature C Thallium ug/l	<5	් ර	5	<5	<5	් ්	<5	< <u>5</u>		within normal range	none
Tin ug/l	<10	<10	<10	<10	<10	106	107	<10		tin associated with salinity - possible interference	
Total Coliforms /100 mls	nm	2	54	<1	<1	<2	<2	<1	0	moderate numbers present in boreholes.	none, levels in boreholes close to background levels in surface waters
Total Cyanide mg/l Total Organic Carbon mg/l C	nm nm	nm nm	nm nm	nm nm	nm nm	nm nm	nm nm	nm nm	-	n/a	n/a
Total Oxidised Nitrogen mg/l N	0.2		0.1	<0.1	0.2	0.1	0.2	<0.1		n/a	n/a
Total Phenols mg/l	0.02	0.03	0.03	0.02	0.02	0.04	0.02	0.01		Low values recorded. Low values recorded.	none
										Relatively low values	none
Uranium ug/l	<5	<5	<5	⊲	⊲	4	15.5	⊲	-	recorded vanadium associated with salinity - possible	none
Vanadium ug/l	<5 <100	<5	<5	40	5	13	689	38		interference	
Zinc µg/l		<100	< 100	<100	79	< 100	<100	<100	1	low at all sites	none

Table 2.4 Tramore Landfill Groundwater monitoring Q4 2008

7.3 LEACHATE

7.3.1 INTRODUCTION

Leachate boreholes, BH1, BH 7 and RC6 have been routinely sampled since Sept 2001. Supplementary

boreholes LT 1-5 were constructed in late 2001, and sampled since 2002.

Borehole locations are shown on appendix 1. Drilling records, where available, for groundwater boreholes are shown on table .

		Table 5. Lea	chate bore	note arm	ing recor	us		
Name	BH1/1	BH7A	LT1	LT2	LT3a	LT4a	LT5a	RC6A
Nominal Type	GW + L	leachate	L	L	L	L	L	L
Total Depth (m)	4.5	6	8.4	4.8	6	6	6	9
Strata (m)	(3.7-4.2) Firm brown sandy		mixture of rubbish and black	4.5) Made ground	Clay with cobbles (0-6)	Made ground clay occasional cobbles (0-0.7) Made ground: clay/waste (0.7 - 6)	and boulder obs (0-2) Made ground: clay (2 - 3) Made ground clay with traces of refuse (3 - 3.8) Made ground; domestic	Made ground light brown clay with gravel, cobbles and concrete (0-1) Made ground: black silty clay with gravel and plastic (1-3.2) Firm light brown grey gravelly clay with cobbles (3.2- 7) Light brown clay with gravel and abundant cobbles (7-8.3) Light brown clay with gravel and large cobbles (8.3- 9)
Response zone (m)	0.80m to 4.0m	3.5m to 6.0m	1.8 to 7.2	1.3 to 4.6	1.5 to 5.6	1.5 to 5.2	2.8 to 6.35	3 to 9
Designation based on drill record	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate

 Table 5. Leachate borehole drilling records

Results of analysis are presented in tables 3.1 to 3.4, and appendix E, and are compared with the median of "typical" landfill leachate, as published in the EPA document "*Landfill Operational Practices*", 1998.

7.3.2 RESULTS

Saline intrusion is evident in many of the leachate boreholes, reflected in the high concentrations of ions associated with seawater, such as *chloride, sodium, magnesium calcium and boron*, and subsequent interference in some of the tests normally used to characterise landfill leachate, as discussed in the introduction.

Heavy metal concentrations (*cadmium, lead*) are generally low, being at about drinking water standard levels. There is a strong relationship between salinity and measured levels of zinc, copper, chromium and arsenic, which strongly indicate interference in tests due to salinity – see introduction.

Key Parameter – Ammonia

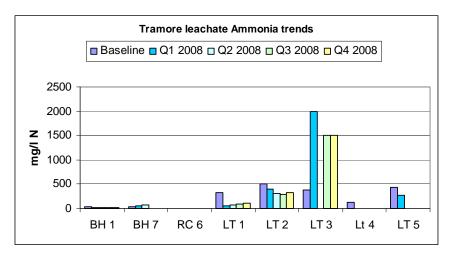
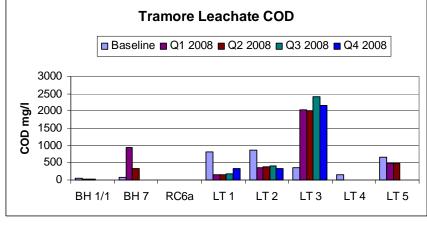



Fig 3.1 Leachate ammonia levels 2008

Ammonia concentrations were elevated at Sites LT1 to LT5, and relatively low at BH1, BH7 and RC6. This variation appears to indicate different stages of biodegradation within the landfill.

Key Parameter – COD

Fig 3.2 leachate COD levels 2008

The COD test measures the organic matter in a sample that is amenable to chemical oxidation. The COD test is usually applied to polluted waters and waste-waters.

7.3.3 Discussion

There were relatively low COD at BH1/1and BH7, indicating low waste-decomposition activity at these sites. In contrast, levels for these parameters were quite high at sites LT 1-5, indicating active waste-decomposition at these sites.

Table 3.1	Tramore Landfill Leachate Monitoring	01 2008
Table 5.1	Tranore Lanum Leachate Montoring	JI 2000

Iable	5.1		110	intor		uun		cacin			1 2000
Test	BH 1/1	BH 7	RC 6a	LT 1	LT 2	LT 3	LT 4	LT 5	Typical Leachate Analysis (EPA, 1997)	Comment	Environmental significance
Ammonia mg/l N	>10	52	0.49	59	390	2000	-	270	453	Levels were within the range expected for municipal landfill leachate. LT3 was highest.	Some local enrichment of ammonia levels in adjacent groundwaters possible, but given the volume of leachate produced and the dilution available in the wider environment (>50,000), no environmental effect is expected
Chloride mg/l Cl	142	31	114	213	657	3374	-	41	-	LT5 is low relative to conductivity and may be an error.	none given the saline receiving environment.
ConductivityµS/cm	1576	2000	1075	2800	5500	25000	-	7000	7180	Conductivity levels mirror chloride levels. Elevated level at LT3 may be due to saline intrusion effects.	none given the saline receiving environment.
pH	6.8	6.9	7.4	6.7	7	7.6	-	7.1	7.1	results within normal range	none
BOD mg/l O ₂	1	>410	1	16.8	20	130		22.5	270	Somewhat elevated at BH7	given the volume of leachate produced and the dilution available (>50,000), no environmental effect is expected
COD mg/l O ₂	19 943 8 140 353 2030 - 482 954 result for LT3 ma		COD at BH7 mirrors elevated BOD result. High result for LT3 may be due to interference due to salinity.	given the volume of leachate produced and the dilution available (>50,000), no environmental effect is expected							
Temperature °C	9.9	13	11	11	13	15	-	13	-	results within normal range	none
Total Organic Nitrogen mg/l N Orthophosphate mg/l P	0.4 0.046	nm	nm <0.006	nm	nm	nm	-	nm	- 1.1	low at BH1/1 low where measured	none none
Cadmium µg/l	<5	- <5	<5	- <5	- <5	- <5	-	- <5	<10	results low	none
Calcium mg/l	102	188	51.5	230	116	34.1	-	113	155	results as expected for municipal leachate	given the volume of leachate produced and the dilution available (>50,000), no environmental effect is expected
Chromium µg/l	18.8	39	13.3	16	19.4	408	-	50.7	50	Apparently elevated chromium at LT3 and LT5 linked to salinity interference in test	none
Arsenic µg/l	<5	90.9	<5	8.1	20.1	40	-	13.1	7	Apparently elevated arsenic at BH7, LT3 and LT5 linked to salinity interference in test.	none
Copper µg/l	12.1	15.5	10.1	7.96	8.08	37.1	-	12	40	relatively low results at all sites measured	none
Îron μg/l	13100	57200	1340	27200	6120	5970	-	10300	12100	Elevated at BH1/1, BH7 and LT1. Results typical of municipal leachate	Some local enrichment of iron levels in adjacent groundwaters and sediment possible, but given the volume of leachate produced and the dilution available in the wider environment (>50.000), no environmental effect is expected
Lead µg/l	<5	5.56	<5	<5	<5	10.5	-	9.06	90	low at all sites examined	none
Magnesium mg/l	22.6	59.6	23.3	31.6	86.6	300	-	130	125	Elevated magnesium linked to salinity at LT3 and LT5	none
Manganese µg/l	646	11000	866	4870	2210	172	-	995	500	Elevated at BH1/1, BH7, LT1, LT2 and LT5. Results typical of municipal leachate	Some local enrichment of manganese levels in adjacent groundwaters and sediment possible, but given the volume of leachate produced and the dilution available in the wider environment (>50,000), no environmental effect is expected
			1		164	883	-	217	492	elevated potassium at LT3	none
Potassium mg/l	14.1	35.7	3.6	39						linked to salinity	1
-	14.1 70.1	35.7 193	3.6 82.2	39 89.5	282	2210	-	515	688	elevated sodium at LT3	none
Sodium mg/l			82.2	89.5		2210 5700	-	515 1950	688 -	linked to salinity elevated boron at LT3	none
-	70.1	193			282		-		-	linked to salinity	none given the volume of leachate produced and the
Sodium mg/l Boran ug/l	70.1 314	193 279	82.2 93.3	89.5 521	282 945	5700	-	1950	688 - - 160	linked to salinity elevated boron at LT3 linked to salinity elevated nickel at LT3 may be linked to salinity. Further testing needed to confirm this. elevated zinc at LT3 linked	none given the volume of leachate produced and the dilution available (>50,000), no environmental effect is
Sodium mg/l Boran ug/l Nickel ug/l	70.1 314 10.8	193 279 30.9	82.2 93.3 8.76	89.5 521 6.24	282 945 15.8	5700 273	-	1950 32.9	-	linked to salinity elevated boron at LT3 linked to salinity elevated nickel at LT3 may be linked to salinity. Further testing needed to confirm this.	none given the volume of leachate produced and the dilution available (>50,000), no environmental effect is expected

nm - not monitored LT 4 No sample, Dry

	-	aun									
Test	BH 1/1	BH 7	RC 6a	LT 1	LT 2	LT 3a	LT 4	LT 5	Typical Leachate Analysis (EPA, 1997)	Comment	Environmental significance
Ammonia mg/l N	18	64	0.5	72	300	<0.003		<0.003	453	Levels were within the range expected for municipal landfill leachate. BH7 was highest.	Some local enrichment of ammonia levels in adjacent groundwaters possible, but given the volume of leachate produced and the dilution available in the wider environment (>50.000), no environmental effect is expected
Arsenic µg/l	<50	<50	<50	<50	<50	<50		<50	7	low at all sites examined	none
BOD mg/l O ₂	0.9	6		16.9	14				270	low at all sites examined	given the volume of leachate produced and the dilution available (>50,000), no environmental effect is expected
Boron ug/l	<500	<500	<500	524	1015	3672		1748	-	elevated boron at LT3 linked to salinity	none
Cadmium µg/l	<50	<50	<50	<50	<50	<50		<50	<10	results low	none
Calcium mg/l	112	196	58.6	251	137	38		140	155	results as expected for municipal leachate	given the volume of leachate produced and the dilution available (>50,000), no environmental effect is expected
Chloride mg/l Cl	158	195	119	181	331	550		386	-	Chloride elevated at LT3. May be due to saline intrusion effects.	none given the saline receiving environment.
Chromium µg/l	<50	<50	<50	<50	<50	107		<50	50	Apparently elevated chromium at LT3a linked to salinity interference in test	none
COD mg/l O ₂	30	326		162	372	2010		495	954	High result for LT3 most likely due to interference due to salinity.	given the volume of leachate produced and the dilution available (>50,000), no environmental effect is expected
ConductivityµS/cm	1470	3110	1087	3300	6210	24500		7990	7180	Conductivity levels mirror chloride levels. Elevated level at LT3 may be due to saline intrusion effects.	none given the saline receiving environment.
Copper µg/l	<50	<50	<50	<50	<50	81.8		<50	40	relatively low results at all sites measured. Slightly elevated at LT3a most likely due to salinity interference.	none
Faecal Coliforms /100mls	0		0						0	none detected at BH1/1 or RC6a	none
Iron µg/l	3849	2199	<500	22119	3094	7903		6255	12100	Elevated at BH 1/1, BH7 and LT1. Results typical of municipal leachate	Some local enrichment of iron levels in adjacent groundwaters and sediment possible, but given the volume of leachate produced and the dilution available in the wider environment (>50,000), no environmental effect is expected
Lead µg/l	<50	<50	<50	<50	<50	<50		<50	90	low at all sites examined	none
Magnesium mg/l	<50	55.3	<50	<50	92.6	259		142	125	Elevated magnesium linked to salinity at LT3 and LT5	none
Manganese µg/l	507	5773	<50	4133	1696	<500		796	500	Elevated at BH1/1, BH7, LT1, LT2 and LT5. Results typical of municipal leachate	Some local enrichment of manganese levels in adjacent groundwaters and sediment possible, but given the volume of leachate produced and the dilution available in the wider environment (>50,000), no environmental effect is expected
Nickel ug/l	<50	60.4	<50	<50	<50	270		<50	-	elevated nickel at LT3a may be linked to salinity. Further testing needed to confirm this.	given the volume of leachate produced and the dilution available (>50,000), no environmental effect is expected
Orthophosphate mg/l P	0.22	< 0.006	0.012	< 0.006	0.16	6.2		0.13	1.1	relatively low	none
pH	6.9	7.2	7.7	6.8	7.3	7.7		7	7.1	results within normal range	none
Potassium mg/l	<50	<50	<50	6.8	192	884		241	492	elevated potassium at LT3 linked to salinity	none
Sodium mg/l	99.2	143	100	50	362	1901		574	688	elevated sodium at LT3 linked to salinity	none
Temperature °C	10	14	11.7	12	13			13	-	results within normal range	none
Total Coliforms / 100mls	150		0						0	low levels detected at BH1/1 and RC6a	none
Total Organic Nitrogen mg/l N	< 0.1	NR	0.1	NR	NR	0.3		< 0.1	-	low at BH1/1 and RC6a	none
Total Phenols	0.01		< 0.01							low at BH1/1 and RC6a	none
Zinc µg/l	<300	<300	<300	<300	<300	<300		<300	160	low at all sites examined	none

Tramore Landfill Leachate Monitoring Q2 2008 Table 3.2

Zinc µg/l nr - not reported nm - not monitored LT 4 No sample, Dry

Table 3.3Tramore Landfill Leachate Monitoring Q3 2008

		ne 5.3					Leachate Monitoring Q5 2	000
LEACHATES	BH 1/1 RC 6a LT 1 LT 2 LT 3a Typical Leachate Analysis (EPA, 1997) -250 781 -250 230 -250 low to moderate			Comment	Environmental significance			
Test Aluminium ug/l	250	704	250	220	250		lourte moderate louele	
Ammonia mg/l N	19	0.49 84 290 1500 453 elevated lev -10 -10 -1 -10 low levels -10 -10 23.1 42.8 7 elevated lev -10 -10 23.1 42.8 7 interference -60 224 185 102 moderately et 94.3 845 1427 7185 reflects salin -10 -10 -1 -10 low levels 97.3 372 198 54.2 moderately et 17.8 10.5 320 270 elevated at 1 120 184 344 nr moderate lev -10 134 329 low LT1 and					elevated levels typical of leachate	none may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000).
Antimony ug/l	-10	-10	-10	-1	-10			none
Arsenic µg/l	-10	-10	-10	23.1	42.8	7	elevated level at LT3 linked to salinity	none
Barium ug/l	265		224	185	102		moderately elevated, linked to salinity	none
Beryllium ug/l	-10				-10			none
Boron µg/l	462						reflects salinity	none
Cadmium µg/l	-10							none
Calcium mg/l BOD mg/l	141	75.3			1		moderately elevated	none none, given dilution available
BOD llig/1		17.8 10.5 320 270 elevated at LT3, other					elevated at LT3, other locations low	(>1/50,000)
Chloride mg/l Cl	nr	120	184	344	nr		moderate levels	none in saline environment
Chromium µg/l	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10					low LT1 and 2, elevated levels LT3 indicative of interference in test due to salinity	none	
Cobalt ug/l	-10	-10 -10 3.6 51 low LT1 and 2, elevated I interference in test due to					low LT1 and 2, elevated levels LT3 indicative of interference in test due to salinity	none
COD mg/l ConductivityµS/c		-10 Interference in test due t					moderate levels, typical of leachate, possible saline interference LT3	none
m	1500	1083	3400	6440	24500	7180	reflects salinity	none
Copper µg/l	-10	-10	-10	8.2	36.8		low LT1 and 2, elevated levels LT3 indicative of interference in test due to salinity	none
Dissolved Oxygen % sat	13.1	58.5	nm	nm	nm		reflects aeration	none
Faecal Coliforms			-2	-2	0		low	none
/100mls Fluoride mg/l	0 0.83	0.15	1.43	1.9	57.4		generally low, reflects salinity	none in saline environment
Iron µg/l	9367	1491	28987	2411	9034	12100	elevated across leachate boreholes, typical of landfill leachate	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000).
Lead µg/l	-10	-10	-10	1.3	-10	90	low	none
List I/II Organic substances	Xylene 0.8 ug/l Trimethylbenzene 1.4 ug/l		nm	nm	nm		low in sites tested	
/		NO.0						
Magnesium mg/l	27	hylbenzene 1.4 ug/l nm nm nm nm nm low in sites tested 0.5 others <0.5		reflects salinity	none			
Magnesium mg/l Manganese µg/l	660	28.4 960	51.5 5706	126 1799	373 -500	125 500	reflects salinity elevated LT1 and 2, typical of leachate	none may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000).
Manganese µg/l Mercury ug/l	660 -5	960 -5	5706	1799 -5	-500		elevated LT1 and 2, typical of leachate	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none
Manganese µg/l	660	960	5706	1799	-500		elevated LT1 and 2, typical of leachate	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l	660 -5 -10 -10	960 -5 -10 -10	5706 -5 -10 18.4	1799 -5 -1 11.9	-500 -5 -10 292		elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none none, given dilution available (>1/50,000)
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate	660 -5 -10	960 -5 -10	5706 -5 -10	1799 -5 -1	-500 -5 -10		elevated LT1 and 2, typical of leachate low low	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N	660 -5 -10 -0.001	960 -5 -10 -10 0.001	5706 -5 -10 18.4 -0.001	1799 -5 -1 11.9 0.022	-500 -5 -10 292 -0.001		elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH Potassium mg/l	660 -5 -10 -10 -0.001 0.076 7.1 20.8	960 -5 -10 -10 0.001 -0.006 7.6 -10	5706 -5 -10 18.4 -0.001 -0.006	1799 -5 -1 11.9 0.022 0.18	-500 -5 -10 292 -0.001 4.5		elevated LT1 and 2, typical of leachate low generally low, somewhat elevated LT3 low elevated LT3, otherwise low.	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000)
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH	660 -5 -10 -0.001 0.076 7.1 20.8 0.5	960 -5 -10 0.001 -0.006 7.6 -10 0.3	-5 -10 18.4 -0.001 -0.006 6.9	-5 -1 11.9 0.022 0.18 7.6	-500 -5 -10 292 -0.001 4.5 7.8	500	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P PH Potassium mg/l Salinity o/oo	660 -5 -10 -10 -0.001 0.076 7.1 20.8	960 -5 -10 -10 0.001 -0.006 7.6 -10	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2	1799 -5 -1 11.9 0.022 0.18 7.6 282	-500 -5 -10 292 -0.001 4.5 7.8 1209	500	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH Potassium mg/l	660 -5 -10 -0.001 0.076 7.1 20.8 0.5	960 -5 -10 0.001 -0.006 7.6 -10 0.3	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm	500	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH Potassium mg/l Salinity o/oo Selenium ug/l	660 -5 -10 -10 -0.001 0.076 7.1 20.8 0.5 -10	960 -5 -10 0.001 -0.006 7.6 -10 0.3 -10	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1	500	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH Potassium mg/l Salinity o/oo Selenium ug/l Silver ug/l Solium mg/l Solphate mg/l SO4	660 -5 -10 -10 -0.001 0.076 7.1 20.8 0.5 -10 -10 87.2 2	960 -5 -10 0.001 -0.006 7.6 -10 0.3 -10 107 30.3	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10 -10 158 20	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5 -1 438 46.8	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1 -10 2565 18.1	500 492	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference low reflects salinity low	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none none
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH Potassium mg/l Salinity o/oo Selenium ug/l Silver ug/l Soldum mg/l Sulphate mg/l SO4 Temperature °c	660 -5 -10 -0.001 -0.001 0.076 7.1 20.8 0.5 -10 -10 87.2 2 13.8	960 -5 -10 0.001 -0.006 7.6 -10 0.3 -10 107 30.3 13.4	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10 -10 158 20 12	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5 -1 438 46.8 14	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1 -10 2565 18.1 15	500 492	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference low reflects salinity low normal range	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none none none non
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P PH Potassium mg/l Salinity o/oo Selenium ug/l Silver ug/l Sodium mg/l Sulphate mg/l SO4 Temperature °c Thallium ug/l	660 -5 -10 -10 -0.001 0.076 7.1 20.8 0.5 -10 87.2 2 13.8 -10	960 -5 -10 0.001 -0.006 7.6 -10 0.3 -10 107 30.3 13.4 -10	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10 -10 158 20 12 -10	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5 -1 438 46.8 14 -1	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1 -10 2565 18.1 15 -10	500 492	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference low reflects salinity low normal range low	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none none none non
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH Potassium mg/l Salinity o/oo Selenium ug/l Silver ug/l Sold Sulphate mg/l SO4 Temperature °c Thallium ug/l Tin ug/l Total Coliforms	660 -5 -10 -10 -0.001 0.076 7.1 20.8 0.5 -10 -10 87.2 2 13.8	960 -5 -10 0.001 -0.006 7.6 -10 0.3 -10 107 30.3 13.4	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10 -10 158 20 12	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5 -1 438 46.8 14	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1 -10 2565 18.1 15	500 492	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference low reflects salinity low normal range low low generally low, somewhat elevated at LT3,	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none none none non
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH Potassium mg/l Salinity o/oo Selenium ug/l Silver ug/l Sodium mg/l Solybate mg/l SO4 Temperature °C Thallium ug/l Tiotal Coliforms Total Coliforms Total Cyanide	660 -5 -10 -10 -0.001 0.076 7.1 20.8 0.5 -10 87.2 2 1.0 87.2 2 1.1 -10 -20	960 -5 -10 0.001 -0.006 7.6 -10 -10 107 30.3 13.4 -10 -20	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10 -10 158 20 12 -10 -20	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5 -1 438 46.8 14 -1 -2	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1 -10 2565 18.1 15 -10 22.1	500 492	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference low reflects salinity low normal range low low	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none none none non
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH Potassium mg/l Salinity o/oo Selenium ug/l Silver ug/l Sodium mg/l Sodium mg/l Sodium mg/l Sodium ug/l Tomperature °c Thallium ug/l Total Coliforms /100 mls Total Cyanide mg/l	660 -5 -10 -0.001 0.076 7.1 20.8 0.5 -10 -10 87.2 2 13.8 -10 -20 0	960 -5 -10 0.001 -0.006 7.6 -10 0.3 -10 107 30.3 13.4 -10 -20 0	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10 -10 158 20 12 -10 -20 -2	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5 -1 438 46.8 14 -1 -2 -2 -2	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1 -10 2565 18.1 15 -10 22.1 >9677	500 492	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference low reflects salinity low normal range low low generally low, somewhat elevated at LT3, reflects higher microbial activity at this site	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none none none non
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrie as N Orthophosphate mg/l P PH Potassium mg/l Salinity o/oo Selenium ug/l Silver ug/l Sodium mg/l Soluphate mg/l Sodium mg/l Sodium ug/l Tim ug/l Total Coliforms /100 mls Total Cyanide mg/l Total Organic Carbon mg/l C Total Oxidised Nitrogen mg/l N	660 -5 -10 -0.001 0.076 7.1 20.8 0.5 -10 -10 -87.2 2 13.8 -10 -20 0 <0.05	960 -5 -10 0.001 -0.006 7.6 -10 0.3 -10 107 30.3 13.4 -10 -20 0 <0.05	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10 -10 158 20 12 -10 -20 -2 <0.05	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5 -1 438 46.8 14 -1 -2 -2 <0.05	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1 -10 2565 18.1 15 -10 22.1 >9677 <0.05	500 492	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference low reflects salinity low normal range low generally low, somewhat elevated at LT3, reflects higher microbial activity at this site low	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none none none non
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH Potassium mg/l Salinity o/oo Selenium ug/l Silver ug/l Sodium mg/l Sulphate mg/l SO4 Total Coliforms /l00 mls Total Coliforms /l00 mls Total Cyanide mg/l Total Organic Carbon mg/l C Total Oxidised Nitrogen mg/l N Total Phenols	660 -5 -10 -0.001 0.076 7.1 20.8 0.5 -10 -10 87.2 2 13.8 -10 -20 0 <0.05	960 -5 -10 0.001 -0.006 7.6 -10 0.3 -10 107 30.3 13.4 -10 -20 0 <0.05	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10 -10 -10 158 20 12 -10 -20 -2 <0.05 nm -0.1 nm	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5 -1 438 46.8 14 -1 -2 -2 <0.05 nm -0.1 nm	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1 -10 2565 18.1 15 -10 22.1 >9677 <0.05 nm nr nm	500 492	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference low reflects salinity low generally low, somewhat elevated at LT3, reflects higher microbial activity at this site low nm low nm	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none none none non
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrie as N Orthophosphate mg/l P PH Potassium mg/l Salinity o/oo Selenium ug/l Silver ug/l Sodium mg/l Soluphate mg/l Sodium mg/l Sodium ug/l Tim ug/l Total Coliforms /100 mls Total Cyanide mg/l Total Organic Carbon mg/l C Total Oxidised Nitrogen mg/l N	660 -5 -10 -0.001 0.076 7.1 20.8 0.5 -10 -10 87.2 2 13.8 -10 -20 0 <0.05 -10 <0.05 -10 -10 -10 -10 -10 -10 -10 -10	960 -5 -10 0.001 -0.006 7.6 -10 -10 107 30.3 13.4 -10 -20 0 <0.05	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10 -10 158 20 12 -10 -20 -2 <0.05 nm -0.1	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5 -1 438 46.8 14 -1 -2 -2 <0.05 nm -0.1	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1 -10 2565 18.1 15 -10 22.1 >9677 <0.05 nm nr	500 492	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference low reflects salinity low normal range low generally low, somewhat elevated at LT3, reflects higher microbial activity at this site low nm low low nm low	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none none none non
Manganese µg/l Mercury ug/l Molybdenum ug/l Nickel ug/l Nitrite as N Orthophosphate mg/l P pH Potassium mg/l Salinity o/oo Selenium ug/l Silver ug/l Sodium mg/l Sulphate mg/l SO4 Total Coliforms /l00 mls Total Coliforms /l00 mls Total Cyanide mg/l Total Organic Carbon mg/l C Total Oxidised Nitrogen mg/l N Total Phenols	660 -5 -10 -0.001 0.076 7.1 20.8 0.5 -10 -10 87.2 2 13.8 -10 -20 0 <0.05	960 -5 -10 0.001 -0.006 7.6 -10 0.3 -10 107 30.3 13.4 -10 -20 0 <0.05	5706 -5 -10 18.4 -0.001 -0.006 6.9 84.2 nm -10 -10 -10 158 20 12 -10 -20 -2 <0.05 nm -0.1 nm	1799 -5 -1 11.9 0.022 0.18 7.6 282 nm 14.5 -1 438 46.8 14 -1 -2 -2 <0.05 nm -0.1 nm	-500 -5 -10 292 -0.001 4.5 7.8 1209 nm 31.1 -10 2565 18.1 15 -10 22.1 >9677 <0.05 nm nr nm	500 492	elevated LT1 and 2, typical of leachate low low generally low, somewhat elevated LT3 low elevated LT3, otherwise low. normal range reflects salinity nm generally low, elevated level at LT3 probably due to saline interference low reflects salinity low generally low, somewhat elevated at LT3, reflects higher microbial activity at this site low nm low nm	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000). none none, given dilution available (>1/50,000) none none, given dilution available (>1/50,000) none none none none none none none non

BH7 no sample L4 dry

L5 no tubing

31

LEACHATES	BH 1/1	RC 6a	LT 1	LT 2	LT 3a	Typical Leachate Analysis (EPA, 1997)	Comment	Environmental significance
Test								
Aluminium ug/l	-250	-250	nm	-25	-250		low levels	none
Ammonia mg/l N	22	1.2	110	330	1500	453	elevated levels typical of leachate	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000).
Antimony ug/l	-5	-5	nm	5.5	9.9		low levels	none
Arsenic µg/l	-5	-5	nm	-0.5	27	7	elevated level at LT3 linked to salinity interference	none
Barium ug/l	270	240	nm	170	150		moderately elevated, linked to salinity	none
Beryllium ug/l	-5	-5	nm	-0.5	-5		low levels	none
Boron µg/l	320	270	nm	1100	6500		reflects salinity	none
Cadmium µg/l	-5	-5	nm	-0.5	-5		low levels	none
Calcium mg/l	180	160	nm	170	56		moderately elevated	none
BOD mg/l	nm	nm	19	14	200	270	elevated at LT3, other locations low	none, given dilution available (>1/50,000)
Chloride mg/l Cl	167	186	282	712	>1936		linked to salinity	none in saline environment
Chromium µg/l	22	22	nm	39	380		low LT1 and 2, elevated levels LT3 indicative of interference in test due to salinity	none
Cobalt ug/l	-5	-5	nm	-0.5	57		low LT1 and 2, elevated levels LT3 indicative of interference in test due to salinity	none
COD mg/l	nm	nm	320	330	2165	954	moderate levels, typical of leachate, possible saline interference LT3	none
Conductivityµ S / cm	1652	1083	3790	4990	25300	7180	reflects salinity	none
Copper µg/l	-50	-50	nm	-3	41		elevated levels LT3 indicative of interference in test due to salinity	none
Dissolved								
Oxygen % sat	16.7	79.3	nm	nm	nm		reflects aeration	none
Faecal Coliforms /100mls	-2	-2	nm	nm	nm		low	none
Fluoride mg/l	nm	nm	nn	nm	nm		n/a	n/a
Iron μg/l	15000	13000	nm	3200	7400	12100	elevated across leachate boreholes, typical of landfill leachate	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50,000).
Lead µg/l	-5	-5	nm	-0.5	-5	90	low	none
List I/II Organic substances	nm	nm	nm	nm	nm		n/a	n/a
Magnesium mg/l	42	38	nm	100	340	125	reflects salinity	none
Manganese µg/l	870	740	nm	2000	-250	500	elevated LT2, typical of leachate	may influence adjacent groundwater, but not expected to affect the wider environment, given the dilution available (>1/50.000).
Mercury ug/l	nm	nm	nm	nm	nm		n/a	n/a
Molybdenum			nm	6.6	7.3		low	none
ug/l	6	5.9	1111	0.0	1.5		-	
Nickel ug/l	7.7	-5	nm	-0.5	320		generally low, somewhat elevated LT3	none, given dilution available (>1/50,000)
Nitrite as N	nm	nm	nm	nm	nm		n/a	n/a
Orthophosphate	nm	nm	nm	nm	nm		n/a	n/a
mg/l P pH	7	7.8	6.9	7.6	7.7		normal range	none
pH Potassium mg/l	41	7.8 36	6.9 nm	7.6 240	1300	492	reflects salinity	none
Salinity o/oo	nm	nm	nm	nm	nm		nm	
Selenium ug/l	-5	-5	nm	-0.5	-5		low	none
Silver ug/l	nm	nm	nm	nm	nm		nm	none
Sodium mg/l Sulphate mg/l	210 nm	180	nm	370	2600	688	reflects salinity	none
SO4		nm	nm	nm	nm		nm	none
Temperature °C Thallium ug/l	14.1 -5	14.2 -5	13 nm	14 -0.5	15 -5		normal range low	none
Tin ug/l	110	110	nm	110	130		Tin levels associated with salinity - possible saline interference	none
Total Coliforms /100 mls	32	143	nm	nm	nm		generally low	none
Total Cyanide mg/l	nm	nm	nm	nm	nm		nm	n/a
Total Organic Carbon mg/l C Total Oridicad	nm	nm 0.1	nm	nm	nm		nm	
Total Oxidised Nitrogen mg/l N	-0.1	0.1	0.1	0.2	0.5		low	none
Total Phenols	0.04	0.02	nm	nm	nm		low	
Uranium ug/l	-5	-5	nm	-0.5	-5		low generally low, elevated level at LT3	none
Vanadium ug/l	16	14	nm	20	94		probably due to saline interference	none
Zinc µg/l	-100	-100	nm	-10	-5	160	low	none
		L5 no						

Table 3.4 **Tramore Landfill Leachate Monitoring Q4 2008**

 Vanadium ug/l
 16
 14

 Zinc μg/l
 -100
 -100

 BH7 no access
 L4 dry
 tubing

7.4. Leachate Levels

7.4.1 Introduction

Leachate levels are determined weekly, by dip meter, at boreholes BH1/1, BH7, RC6, LT1, LT2, LT3, LT4, and LT5.

7.4.2 Results

Results of monitoring are presented in tables 4.1 to 4.4. There were fluctuations in levels in BH7, LT1, LT2 and LT5.

7.4.3 Discussion

The variation in groundwater and leachate levels may be due to air pressure, changes in landfill water balance or tidal effects.

Tidal intrusion into the landfill boreholes was the subject of special reports in 2002 and 2006; Waterford County Council, *Investigation into the Occurrence of Salinity Intrusion at Tramore Landfill Site*, MCOS, 2002 and *Investigation into the possible occurrence of salinity intrusion at Tramore Landfill*, RPS 2006.

Table 4.1 Tramore Landfill Leachate & Groundwater Levels Q1 2008

Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7a	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW 1	GW 2	GW 3	GW 4	GW 5	GW 6	GW 7	GW 8
1	04/01/2008	TL	2.2	-	-	-	1.9	-	-	-	-	2.2	4.3	3.3	4.7	0.1	3.6	-	-	-	-	-	-	-	-
2	09/01/2008	TL	2.2	-	-	-	1.8	-	-	-	-	2.2	4.2	3.3	4.7	0.1	3.7	-	-	-	-	-	-	-	-
3	15/01/2008	TL	2.4	1.8	-	1.9	1.9	1.6	2.2	1.1	1.2	2.4	4.3	3.3	4.9	0.2	3.7	-	-	-	-	-	-	-	-
4	25/01/2008	TL	2.3	-	-	-	1.9	-	-	-	-	2.2	4.2	3.4	4.7	0.1	3.7	-	-	-	-	-	-	-	-
5	01/02/2008	TL	2.3	-	-	-	2.1	-	-	-	-	2.1	4.2	3.3	4.7	0.2	3.4	-	-	-	-	-	-	-	-
6	07/02/2008	TL	2	1.7	-	1.9	1.7	1.5	2.1	1	1.2	2.3	4.1	3.2	4.3	0.1	3.5	-	-	-	-	-	-	-	-
7	13/02/2008	TL	2.1	-	-	-	1.6	-	-	-	-	2.1	3.9	3.1	4.5	3.4	3.4	-	-	-	-	-	-	-	-
8	19/02/2008	TL	2.2		-	-	1.7	-	-	-	1	2.1	4	3.1	4.5	0.2	3.5	1	-	-	-	-	-	-	-
9	28/02/2008	TL	2.1	-	-	-	1.6	-	-	-	-	2.2	3.9	3	4.5	0.2	3.4	-	-	-	-	-	-	-	-
10	07/03/2008	TL	0.6	-	-	-	1.3	-	-	-	-	1.1	1.1	1.7	3.1	DRY	0.8	-	-	-	-	-	-	-	-
11	13/03/2008	TL	0.7	-	-	-	1.1	-	-	-	-	1.2	1.1	1.7	3.2	DRY	0.8	-	-	-	-	-	-	-	-
12	21/03/2008	TL	0.6	-	-	-	1.2	-	-	-	-	1.2	1.8	3.2	2.8	DRY	0.9	-	-		-		-		-
13	28/03/2008	TL	0.5	1.3	-	0.7	1.2	1.5	1.9	0.9	0.2	1.1	1.1	1.6	3.1	DRY	0.8	0.3	0.8	0.1	1.3	0.1	0.6	0.1	0.2

na No Access Heights of monitoring wells were adjusted from 07/03/08 onwards due to updated GPS locations

Date	18/04/2008	15/05/2008	13/06/2008	16/06/2008
	Level m	Level m	Level m	Level m
BH 1/1	0.5	0.7	0.5	0.4
BH2	1	1.1	1.3	1.1
BH4A				
BH5	0.7	0.7	0.7	0.7
BH7B	1	1.4	1.2	1.4
BH8	1.5	1.6	1.5	1.4
BH9	1.9	1.9	1.9	1.9
RC4	0.9	1	0.9	1
RC5	0.2	0.2	0.2	0.1
RC6A	1	1.1	1.1	1.1
LT1	1	1	1.1	1
LT2	1.5	1.7	1.6	1.6
LT3A	3	3.5	3.1	3.2
LT4B				
LT5	0.8	1.1	0.8	0.6
GW1	0.2	0.2	0.3	0.4
GW2	0.7	0.7	0.8	0.5
GW3	0.1	0.1	0.1	0.1

Table 4.2 Tramore Landfill Leachate & Groundwater Levels Q2 2008

Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7a	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW 1	GW 2	GW 3	GW 4	GW 5	GW 6	GW 7	GW 8
14	03/04/2008	TL	0.6	-	-	-	1.3	-	-	-	-	1.1	1.3	2	3.2	Dry	0.8	-	-	-	-	-	-	-	-
15	09/04/2008	TL	0.7	-	-	-	1.3	-	-	-	-	1.2	1.3	2.1	3.2	Dry	0.8	-	-	-	-	-	-	-	-
16	17/04/2008	TL	0.6		-		1.3					1	1.3	2	3.2	Dry	0.9	-	-	-	-	-	-	-	-
17	18/04/2008	TL	0.5	1	-	0.7	1	1.5	1.9	0.9	0.2	1	1	1.5	3	Dry	0.8	-	-	-	-	-	-	-	-
18	21/04/2008	TL	0.5	-	-	-	1.1	-	-	-	-	1.1	1	1.9	3.1	Dry	0.8	-	-	-	-	-	-	-	-
19	02/05/2008	DR	0.7		-		1.2					1	0.8	1.9	3	Dry	0.9	-	-	-	-		•		-
20	06/05/2008	DR	0.7	-	-	-	1.1	-	-	-	-	1.1	1	1.9	2.9	Dry	1	-	-	-	-		-		-
21	15/05/2008	DR	0.7	1.1	-	0.7	1.4	1.6	1.9	1	0.2	1.1	1	1.7	3.5	Dry	1.1	-	-	-	-		1.1		-
22	23/05/2008	DR	0.8	-	-	-	0.9	-	-	-	-	1.1	1.1	2	2.9	Dry	1.1	-	-	-	-		-		-
23	06/06/2008	DR	0.7	-	-	-	1	-	-	-	-	1	1	2.2	3	Dry	1.1	-	-	-	-		-		-
24	12/06/2008	DR	0.6	-	-	-	1.3	-	-	-	-	1	1.1	2	2.9	Dry	1.2	-	-	-	-		-		-
25	16/06/2008	DR	0.4	1.1	-	0.7	1.4	1.4	1.9	1	0.1	1.1	1	1.4	2.8	Dry	0.6	0.4	0.5	0.1	-	-	-	-	-
26	26/06/2008	DR	0.7		-		1.3					1.1	1.2	2.2	3	Dry	1.3								
	na No Access																								
eights of r	monitoring wells	s were adjus	sted fro	m 07/	03/08 c	onward	s due to u	pdate	d GPS	locati	ions														

Table 4.3	Tramore Landfill	Leachate &	Groundwater	Levels Q3 2008
-----------	------------------	------------	--------------------	----------------

Date	16/07/2008	18/08/2008	29/09/2008
Bore	Level	Level	Level
BH 1/1	0.5	0.8	0.9
BH2	1.1	1.1	1
BH4A			
BH5	0.7	0.9	0.7
BH7B	1.2	0.9	1.1
BH8	1.5	1.3	1.6
BH9	1	1.7	1.9
RC4	0.8	1	0.8
RC5	0.3	0.4	0.3
RC6A	1.1	1.2	1.2
LT1	1	1.4	1.1
LT2	1.6	1.8	1.3
LT3A	3.1	2.9	2.9
LT4B			
LT5	0.8	0.9	0.8
GW1	0.1	0.2	0.2
GW2	0.7	1	1
GW3	0.3	0.1	0.3

Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7a	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW 1	GW 2	GW 3	GW 4	GW 5	GW 6	GW 7	GW 8
																									1
27	03/07/2008	DR	0.8	-	-	-	1.4	-	-	-	-	1.2	1.4	2.3	3.3	Dry	1.4	-	-	-	-	-	-	-	-
28	11/07/2008	DR	0.6	-	-	-	1.1	-	-	-	-	1.1	1.3	2.1	3	Dry	1.2	-	-	-	-	-	-	-	-
29	16/07/2008	DR	0.5	1.1	-	0.7	1.2	1.5	1	0.8	0.3	1.1	1	1.6	3.1	Dry	0.8	0.1	0.7	0.3	-	-	-	-	-
30	22/07/2008	DR	0.5		-		1.1					1	1.1	1.8	2.9	Dry	0.9	-			-	-	-	-	-
31	31/07/2008	DR	0.8	-	-	-	1.5	-	-	-	-	1.2	1.3	2.1	3.1	Dry	1.1	-			-	-	-	-	-
32	07/08/2008	DR	0.9		-		1.3					1.2	1.4	2.1	3	Dry	1				-	-	-	-	-
33	14/08/2008	DR	1	-	-	-	1.2	-	-	-	-	1.3	1.4	2.2	3.1	Dry	1.1	-	-	-	-	-	-	-	-
34	18/08/2008	DR	0.8	1.1	-	0.9	0.9	1.3	1.7	1	0.4	1.2	1.4	1.8	2.9	Dry	0.9	0.2	1	0.1	-	-		-	-
35	28/08/2008	DR	0.8	-	-	-	1	-	-	-	-	1.2	1.5	2.3	3.2	Dry	1.3	-	-		-	-	-	-	-
36	02/09/2008	DR	0.9	-	-	-	1	-	-	-	-	1.3	1.6	2.3	3.2	Dry	1.4	-	-	-	-	-	-	-	-
37	12/09/2008	DR	0.8	-	-	-	1	-	-	-	-	1.3	1.5	2.3	3.1	Dry	1.4	-	-	-	-	-	-	-	-
38	19/09/2008	DR	0.7		-		1.2					1.2	1.3	2	2.8	Dry	1.3				-	-	-	-	-
39	29/09/2008	DR	0.9	1	-	0.7	1.1	1.6	1.9	0.8		1.2	1.1	1.3	2.9	Dry	0.8	0.2	1	0.3					
	na No Access nonitoring wells	s were adju	sted fro	m 07/	03/08 c	onward	ls due to u	update	d GPS	locati	ons														

Table 4.4	Tramore Landfill Le	eachate & Groundwater	Levels Q4 2008
-----------	---------------------	-----------------------	----------------

Date	24/10/2008	14/11/2008	30/12/2008
Bore	Level	Level	Level
BH 1/1	0.7	0.5	0.5
BH2	1.2	1.1	1.2
BH4A			
BH5	0.8	0.9	0.9
BH7B	0.8	1.1	1.1
BH8	1.4	1.5	1.3
BH9	1.8	1.5	1.4
RC4	0.9	0.9	0.8
RC5	0.4	0.3	0.2
RC6A	1.2	1.1	1
LT1	1.3	1.2	1
LT2	1.7	1.5	1.5
LT3A	2.8	3.1	2.9
LT4B			
LT5	0.8	0.4	0.9
GW1	0.1	0.2	0.3
GW2	1	0.9	1
GW3	0.2	0.2	0.1

Week No	Date	Operator	BH 1/1	BH 2	BH4A	BH 5	BH 7a	BH 8	BH 9	RC 4	RC 5	RC 6a	LT 1	LT 2	LT 3a	LT 4a	LT 5	GW 1	GW 2	GW 3	GW 4	GW 5	GW 6	GW 7	GW 8	
																									1	
40	07/10/2008	DR	0.9	-	-	-	1.1	-	-	-	-	1.3	1.2	1.9	2.7	Dry	1.2	-	-	-	-	-	-	-	-	
41	13/10/2008	DR	0.9	-	-	-	1.1	-	-	-	-	1.2	1.2	1.9	2.6	Dry	1.1	-	-	-	-	-	-	-	-	
42	24/10/2008	DR	0.7	1.2	-	0.8	0.8	1.4	1.8	0.9	0.4	1.2	1.3	1.7	2.8	Dry	0.8	0.1	1	0.2	-	-	-	-	-	
43	27/10/2008	DR	0.8		-		0.9					1	1.1	1.8	2.6	Dry	1.1	-	-	-	-	-	-	-	-	
44	09/11/2008	DR	1	•	-	-	1.1	-	-	1	-	1.2	1.2	1.9	2.8	Dry	1.2	-	-	-	-	-	-	-	-	
45	14/11/2008	DR	0.5	1.1	-	0.9	1.1	1.5	1.5	0.9	0.3	1.1	1.2	1.5	3.1	Dry	0.4	0.2	0.9	0.2	-	-	-	-	-	
46	19/11/2008	DR	0.9	-	-	-	1	-	1	1	-	1	1	1.9	2.6	Dry	1.1	-	-	-	-	-	-	-	-	
47	27/11/2008	DR	0.8		-		1					1	0.9	1.9	2.6	Dry	1.1				-	-		-	-	
48	05/12/2008	DR	0.8	-	-	-	0.9	-	1	1	-	0.9	0.9	2	2.6	Dry	1	-	-	-	-	-	-	-	-	
49	09/12/2008	DR	0.8	-	-	-	1	-	1	1	-	1.3	1.6	2.3	3.2	Dry	1.4	-	-	-	-	-	-	-	-	
50	17/12/2008	DR	0.8	-	-	-	1	-	1	1	-	0.9	0.9	2.1	2.7	Dry	1	-	-	-	-	-	-	-	-	
51	22/12/2008	DR	0.5		-		0.8					0.8	0.6	1.9	2.5	Dry	0.9				-	-	-	-	-	
52	30/12/2008	DR	0.5	1.2	-	0.9	1.1	1.3	1.4	0.8	0.2	1	1	1.5	2.9	Dry	0.9	0.3	1	0.1						
	na No Access																									
Heights of	monitoring wells	s were adju	sted fro	m 07/	03/08 c	onward	ls due to ι	update	d GPS	S locat	ions															

7.5. Landfill Gas

7.5.1 Introduction

The main landfill gases, Methane and Carbon dioxide, as well as Oxygen, were measured in monitoring boreholes within [BH1/1, BH2, BH7, BH10, RC4, L1, L2, L3, L4, L5] and outside [BH8, BH9, RC5] the landfill area, and in the site hut.

7.5.2 Results

Results are presented in tables 5.1 to 5.4

Key parameter – methane

Methane is a product of the breakdown of biodegradable material in the landfill.

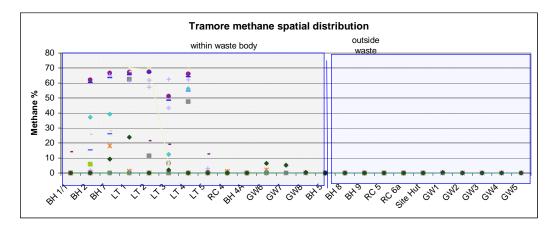


Fig 5.1 Methane spatial distribution

7.5.3 Discussion

There was no landfill gas detected in the site building.

Relatively high levels of methane, consistent with the breakdown or organic waste, were present at boreholes BH1/1, BH2, LT1, LT2, LT3, and LT4, within the landfill area. Other monitoring sites within the landfill area, BH7, BH10 and LT5 had none or only trace levels of methane and carbon dioxide (<1%).

No landfill gases were detected at monitoring sites BH8, BH9, RC4 and RC5, outside the landfill area. The amount of landfill gas being generated has been reduced significantly following the installation of the temporary flare in late May. A permanent flare has since been installed.

Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT 1	LT 2	LT 3A	LT 4A	LT 5	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8
1	04/01/2008	TL	CH4, CO _{2,} O ₂ Air Pressare	0 0 20.9 986	-	-	-		-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	09/01/2008	TL	CH4, CO ₂ , O2 Air Pressare	0 0 20.9 991	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	15/01/2008	TL	CH4, CO2, O2 Air Pressure	0 0 20.9 973	0 0 20.9 973	62.1 31.4 0.8 973	0 0 20.9 973	0 0 20.9 973	66.7 30.2 1.2 972	0 0 20.9 973	0 0 20.9 973	0 0 20.9 973	0 0 20.9 973	0 0 20.9 973	67.1 37.3 1.4 972	67.5 27.4 2.1 972	51.2 40.7 4.4 972	66.1 26.3 1.7 972	0.6 0.8 20.4 973	0 0 20.9 973	0 0 20.9 973	0 0 20.9 973	Not complete	0 0 20.9 973	-	-	-
4	25/01/2008	TL	CH4, CO ₂ , O ₂ Air Pressure	0 0 20.9 1022	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
5	01/02/2008	TL	CH4, CO2, O2 Air Pressare	0 0 20.9 986	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-
6	07/02/2008	TL	CH4, CO2, O2 Air Pressare	0 0 20.9 1020	0 0 20.9 1020	60.4 29.7 0.9 1020	0 0 20.9 1021	0 0 20.9 1020	63.6 32.2 1.9 1021	0 0 20.9 1021	0 0 20.9 1020	0 0 20.9 1020	0 0 20.9 1020	0 0 20.9 1021	65.6 34.8 1.7 1020	67.2 29.2 1.6 1021	48.5 36.7 4.9 1021	64.2 19.9 3.2 1021	0.4 0.4 20.6 1020	0 0 20.9 1020	0 0 20.9 1020	0 0 20.9 1021	Not complete	0 0 20.9 1020	-	-	-
7	13/02/2008	TL	CH4, CO ₂ O ₂ Air Pressure	0 0 20.9 1028	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	19/02/2008	TL	CH4, CO _{2,} O2 Air Pressure	0 0 20.9 1014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	28/02/2008	TL	CH4, CO2, O2 Air Pressure	0 0 20.9 1012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	07/03/2008	TL	CH4, CO ₂ O ₂ Air Pressare	0 0 20.9 1001	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11	13/03/2008	TL	CH ₄ , CO ₂ , O ₂ Air Pressare	0 0 20.9 991	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	21/03/2008	TL	CH4, CO2, O2 Air Pressure	0 0 20.9 995	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13	28/03/2008	TL	CH4, CO ₂ , O ₂ Air Pressure	0 0 20.9 988	0 0 20.9 988	1.9 2.2 18.6 988	0 0 20.9 988	0 0 20.9 987	65.1 31.2 2.1 987	0 0 20.9 988	0 0 20.9 988	0 0 20.9 988	0 0 20.9 988	0 0 20.9 988	61.1 31.7 4.1 987	57.2 28.6 4.4 987	62.5 31.4 2.1 987	62.2 31.5 4.2 987	3.2 2.6 18.1 987	0 0 20.9 988	0 0 20.9 988	0 0 20.9 988	0 0 0 20.9 987	0 0 20.9 987	0 0 20.9 988	0 0 20.9 988	0 0 20.9 988

Table 5.1Gas Levels Q1 2008

Table 5.2 Gas Levels Q2 2008

Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT1	LT 2	LT 3A	LT 4A	LT5	GW1	GW2	GW3	GW4
14	03/04/2008	TL	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 1028	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	09/04/2008	TL	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 1017	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16	17/04/2008	TL	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 998																			
17	21/04/2008	TL	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 1027	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
18	01/02/2008	TL	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 998	2.8 0.6 19.3 996	9.9 3.7 16.3 995	0 0 20.9 995	0 0 20.9 995	62.1 34.1 1.1 984	0 0 20.9 995	0 0 20.9 996	65.5 30.1 6.1 996	0 0 20.9 996	0 6.0 20.9 996	64.0 35.1 3.0 994	68.0 32.4 15.0 994	60.1 30.3 6.0 996	65.4 33.7 0.6 996	15.6 12.2 4.1 984	0 0 20.9 994	0 0 20.9 994	0 0 20.9 994	0 0 20.9 994
19	02/05/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 993																			
20	06/05/2008	DR	CH _{4,} CO ₂ O ₂ Air Pressure	0 0 20.9 982	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21	15/05/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 988	0 0 20.9 988	5.8 3.1 18.0 988	0 0 20.9 988	0 0 20.9 988	64.0 33.3 1.6 987	0 0 20.9 988	0 0 20.9 996	0 0 20.9 988	0 0 20.9 987	0 6.0 20.9 987	605 322 3.2 987	64.0 31.3 9.4 987	61.3 30.0 5.1 987	65.4 33.7 0.6 987	85 5.1 3.1 987	0 0 20.9 988	0 0 20.9 988	0 0 20.9 988	0 0 20.9 988
22	23/05/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 996	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
23	06/06/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 21.0 1015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24	12/06/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 21.0 1015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25	16/06/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 1009	0 0 20.9 1011	5.8 0 19.1 1009	0 0 20.9 1011	0 0 20.9 988	0 0 20.9 1010	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 0 20.9 1011	0 9.0 9.7 1011	0 2.7 9.7 1011	0 0 20.9 1010	0 0 20.9 1011	0 0 20.9 1010	0 0 20.9 1010	0 0 20.9 1010	0 0 20.9 1010	0 0 20.9 1011
26	26/06/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 21.1 1010																			
Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT1	LT 2	LT 3A	LT 4A	LT5	GW1	GW2	GW3	GW4

Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT1	LT2	LT 3A	LT 4A	LT5	GW1	GW2	GW3	GW4
27	03/07/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 998	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28	11/07/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 998	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
29	16/07/2009	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 1023	0 0 20.9 1023	0 0 20.3 1023	0 0 20.9 1022	0 0 20.9 1022	18.1 12.1 1.3 1021	0 0 20.4 1021	0 0 20.9 1023	1.1 0.0 19.2 1023	0 0 209 1023	0 6.0 20.9 1022	1.2 112 4.3 1023	0 0 20.4 1022	0 0 20.6 1022	0 0 205 1023	0 0 20.4 1022	0 0 20.9 1023	0 0 20.9 1022	0 0 20.6 1022	0 0 20.4 1022
30	22/07/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 1010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
31	31/07/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.9 1016																			
32	07/08/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 20.6 1003																			
33	14/08/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.8 1003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
34	18/08/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.4 1021	0 0 18.4 1021	0 0 18.5 1022	0 0 18.4 1022	0 0 18.4 1021	0 0 18.4 1021	0 0 18.5 1022	0 0 18.5 1022	0 0 18.5 1022	0 0 185 1022	0 0 185 1022	0 0 185 1022	0 0 18.5 1022	0 0 18.5 1022	0 0 185 1022	0 0 18.5 1022	0 0 18.5 1021	0 0 18.5 1021	0 0 18.5 1022	0 0 18.5 1021
35	28/08/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.5 988	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
36	02/09/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.9 1012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
37	12/09/2008	DR	CH _{4,} CO ₂ O ₂ Air Ressure	0 0 18.4 1023	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
38	19/09/2008	DR	CH _{4,} CO ₂ O ₂ Air Pressure	0 0 18.8 1000																			
39	29/09/2008	DR	CH ₄ , CO ₂ O ₂ Air Ressure	0 0 18.8 1020	0 0 18.7 1020	0 0 18.9 1021	0 0 18.4 1021	0 0 18.9 1021	0 0 19.2 1021	0 0 18.9 1020	0 0 18.7 1021	0 0 18.7 1020	0 0 18.6 1020	0 0 18.8 1021	0 0 189 1022	0 0 18.8 1022	0 0 18.6 1020	0 0 18.7 1022	0 0 18.6 1022	0 0 18.8 1021	0 0 18.9 1021	0 0 18.9 1021	0 0 18.7 1021
Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT1	LT2	LT 3A	LT 4A	LT5	GW1	GW2	GW3	GW4

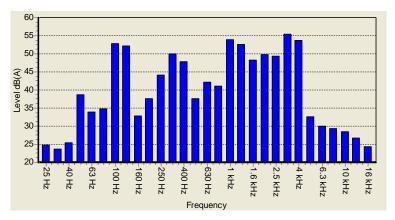
Table 5.3Gas Levels Q3 2008

Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT1	LT2	LT 3A	LT 4A	LT5	GW1	GW2	GW3	GW4
40	07/10/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.6 1015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
41	13/10/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.6 1016	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-
42	24/10/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.8 1023	0 0 18.8 1023	0 0 18.9 1023	0 0 18.8 1023	0 0 18.9 1023	0 0 18.8 1023	0 0 18.9 1023	0 0 18.8 1023	0 0 18.8 1023	0 0 18.8 1023	0 0 18.8 1023	0 0 18.8 1023	0 0 18.9 1023	0 0 18.8 1023	0 0 189 1023	0 0 18.8 1023	0 0 18.8 1023	0 0 18.8 1023	0 0 18.9 1023	0 0 18.8 1023
43	27/10/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.8 1010	-	-	-	1	-	-		-	-	-		-	-	-	1	-	-	-	-
44	09/11/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.4 1002																			
45	14/11/2008	DR	CH ₄ , CO ₂ O ₂ Air Ressure	0 0 18.2 1025	0 0 18.3 1025	0 0 18.2 1025	0 0 18.2 1025	0 0 18.1 1025	0 0 18.1 1025	0 0 18.1 1025	0 0 18.1 1025	0 0 18.2 1025	0 0 18.1 1025	0 0 18.1 1025	0 0 18.1 1025	0 0 17.9 1025	0 0 18.2 1025	0 0 182 1025	0 0 18.2 1025	0 0 18.2 1025	0 0 18.1 1025	0 0 18.1 1025	0 0 18.8 1025
46	19/11/2008	DR	CH ₄ , CO ₂ O ₂ Air Ressure	0 0 18.8 998	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47	27/11/2008	DR	CH ₄ , CO ₂ O ₂ Air Ressure	0 0 18.8 1015	0 0 18.4 1021	0 0 18.5 1022	0 0 18.4 1022	0 0 18.4 1021	0 0 18.4 1021	0 0 18.5 1022	0 0 18.5 1022	0 0 18.5 1022	0 0 185 1022	0 0 185 1022	0 0 185 1022	0 0 18.5 1022	0 0 18.5 1022	0 0 185 1022	0 0 18.5 1022	0 0 18.5 1021	0 0 18.5 1021	0 0 18.5 1022	0 0 18.5 1021
48	05/12/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.3 1005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
49	09/12/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.5 1001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
50	17/12/2008	DR	CH _{4,} CO ₂ O ₂ Air Pressure	0 0 18.8 1016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
51	22/12/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.5 1021																			
52	30/12/2008	DR	CH ₄ , CO ₂ O ₂ Air Pressure	0 0 18.1 1024	0 0.1 17.9 1024	0 0 18.1 1024	0 0.0 17.9 1024	0 0 18.0 1024	9.2 4.6 14.6 1024	0 0 17.9 1024	0 0 17.9 1024	0 0 18.3 1024	0 0 18.6 1020	0 0 18.0 1024	23.8 12.0 11.2 1024	0 0 18.2 1024	2.1 1.4 17.6 1024	0 0 182 1024	0 0.1 17.9 1024	0.4 0 18.0 1024	0 0 18.3 1024	0 0.5 18.1 1024	0 0 18.1 1024
Week No	Date	Operator	Gas	Site Hut	BH 1/1	BH 2	BH 4A	BH 5	BH 7A	BH 8	BH 9	RC 4	RC 5	RC 6A	LT1	LT2	LT 3A	LT 4A	LT5	GW1	GW2	GW3	GW4

Table 5.4Gas Levels Q4 2008

7.6 NOISE

7.6.1 Introduction


Daytime noise levels were recorded on 11/01/07 at two locations at Tramore Landfill Site, B1 and B2, as specified in the licence monitoring schedule D. These locations are shown in appendix 1. There are limits of 55 dB Leq(30) daytime, and 45 dB Leq(30) night-time imposed as a condition of the licence. A Cirrus 800A Sound Level Meter was used. The meter was calibrated and checked with a 94 dB calibrator before and after each measurement. Broadband and Frequency Band analysis measurements were conducted at each location. A summary of results is presented in table 6.1, below.

7.6.2 Summary of Results / Discussion

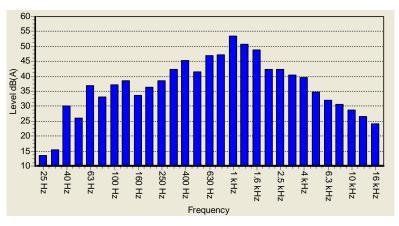

Site	Date of	Time of commencement	L(A)eq[30mins]	L(A)10 [30 mins]	L(A)90 [30 mins]
	Monitoring	of monitoring	dB		
B1	15/4/2008	14.04	48.2	48.3	42.0
B2	15/4/08	15.08	49.8	53.8	44.0

Table 6.1 Summary of noise measurements at Tramore landfill 15/4/08.

Average noise levels, LAEQ(30), at sites B1 and B2 were within the daytime limits of 55dB. Night-time measurements were not made, as the landfill is not operational outside of daytime hours.

B1 1/3 Octave Noise Analysis, (A weighting) 15/4/08

B2 1/3 Octave Noise Analysis, (A weighting) 15/4/08

Frequency analysis at sites B1 and B2 indicated a broad range of frequencies, with no particular tonal emissions, consistent with a variety of noise sources, such as wind and machinery and traffic.

7.7 LEACHATE TOXICITY

7.7.1 Introduction / Methodology

Leachate toxicity tests were carried out at the Aquatic Toxicity Laboratory, Enterprise Ireland, Shannon.

A representative sample of leachate was obtained by compositing grab samples, taken in December 2008, from leachate boreholes.

Two test species were used, namely *Tisbe battagliai* (marine copepod), and *Skeletonema costatum* (marine alga).

The tests consisted of exposing populations of the tests species to various concentrations of the leachate sample, and noting the concentration at which the species exhibited a response (usually mortality or growth inhibition) for 50% of the population thus exposed. This concentration is termed the EC50 (Effective concentration for 50% of the exposed population). The EC50 can also be expressed as *Toxic Units*, which are calculated by dividing 100 by the EC50.

7.7.2 Results

SPECIES	T. battaglia	S. costatum
EC50	17.9% vol/vol	1.7 % vol/vol
	48 hr LC50	72 hr IC50
TOXIC UNITS	5.6	58.8

Table 7.1 Summary of Tramore leachate toxicity tests December 2007

7.7.3 Discussion

The highest toxicity result of 58.8 Toxic units was obtained with *Skeletonema costatum*, the marine alga. The nature of algal testing is a growth rate inhibition measurement over 72 hours compared to a control. This is in effect akin to a <u>chronic</u> more than an <u>acute</u> test in that many replications of algal cells occur during 72 hours. A factor of 10 is normally used to relate acute to chronic toxicity, (J O'Neill, Shannon Toxicity Laboratory, *pers. Comm*). Therefore the <u>acute</u> toxicity of the leachate to *Skeletonema* would be approximately 5.8 TU.

Where a potentially toxic discharge is entering a waterbody, it is usually considered that 20 dilutions per Toxic Unit are required to protect the receiving environment from toxic effects.

In the case of the leachate sample tested, a dilution of 1176 would be required, taking the highest toxicity value obtained of 58.8 Toxic Units against the marine alga *Skeletonema costatum*.

The actual dilution available to leachate from Tramore Landfill is estimated to be at least 1/38,000*, therefore <u>no toxic effect from the leachate is expected.</u>

* Calculation of Dilution available:

Estimated volume of leachate produced per tidal flush: 19.8 m³, calculated using formula in accordance with the EPA Landfill Design Manual.

Tidal Flush Volume:

Assume conservative tidal range 1 metres X inner backstrand area 760,000 $m^2 = 760,000 m^3$ per tidal flush

Estimated Dilution available: = 19.8/760,000 = 1/38,000 approx.

7.8 CHEMICAL ANALYSIS OF ESTUARINE SEDIMENT AND BENTHIC MACROFAUNA 7.8.1 BENTHIC MACROFAUNA (SHELLFISH)

7.8.1.1 METHODS

Shellfish samples – cockles (*Ceracostaderma edule*) and mussels (*Mytilis edulis*) were taken from the backstrand, within 200 metres of the landfill, on 17/12/08.

Approximately 50 individuals of each type were sampled along the sampling zone, figure 8.1. These individuals were mixed well and a subset of 10 individuals of each type was taken for processing and testing.

Shellfish were depurated overnight in clean aerated seawater, before de-shelling. The flesh was blotted dry, and dried at 60degC for 3 days. The dried flesh was ground to powder at Waterford County Council's laboratory and portions were analysed for metals at Environmental Services Laboratory, Cork. QC and reference materials were processed with the samples.

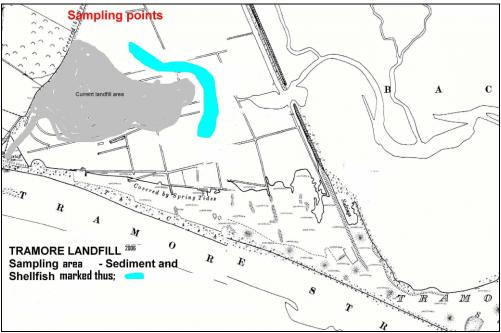


Fig 8.1. Tramore backstrand shellfish and sediment sampling areas

7.8.1.2 RESULTS

Results of analysis are presented in table 1.

PARAMETER	Cockle flesh Cardium edule	Mussel flesh Mytilis edulis	Shellfish Quality Standards *		
mg/Kg wet weight *	December 2008	December 2008			
Arsenic	1.96	4.64			
Cadmium	<0.1	0.26	1		
Chromium	<1	<1			
Copper	<1	1.94	20		
Iron	35.2	90.2			
Lead	<0.3	0.96	1.5		
Manganese	<1	1.78			
Zinc	6.5	22.4			

Table 1. Trace metal	concentrations in sh	ellfish samples from
Tramore inner backs	trand, December 200	8 mg/Kg wet weight

7.8.1.3 COMPARISON WITH STANDARDS

*EU Commission Regulation 466/2001/EC (as amended by Regulation 221/2002/EC) came into effect on 5th April 2002. This set maximum levels for mercury, cadmium and lead in bivalve molluscs of 0.5mg kg⁻¹, 1mg kg⁻¹, and 1.5mg kg⁻¹ wet weight respectively. In the absence of EU standards for other contaminants in shellfish, monitoring results have been compared to strictest guidance or standard values available in other OSPAR Convention contracting countries; hence the Spanish guideline for copper is applied.

Discussion

All mussel and cockle samples from Tramore backstrand complied with shellfish quality standards.

7.8.1.4 TRENDS AND COMPARISON WITH PREVIOUS RESULTS

The results obtained for mussels and cockles in the 2008 survey are presented in table 2 for comparison with previous results for this site.

Table 2(a) Trace metal concentrations in mussels in Tramore backstrand for years 2002, 2003, 2004,
2005, 2006 and 2008

Parameter	MUSSEL												
mg/kg wet weight *													
	July 2002	Jan 2003	Oct 2003 (average of 5 sampling sites)	Sept 2004	Aug 2005	Dec 2006	Dec 2008						
Arsenic			3.18	2.57	3.5	3.35	4.64						
Cadmium	0.24	0.15	0.22	0.16	0.16	0.26	0.26						
Chromium			0.98		0.36	0.36	<1						
Copper	1.88	1.39	1.72		1.05	0.95	1.94						
Iron			101		71.9	55.66	90.2						
Lead	1.21	0.73	0.68	0.8	0.52	0.56	0.96						
Manganese			1.16		1.8	1.03	1.78						
Zinc	23.38	24.8	14.0	14.15	12.98	22.64	22.4						

Table 2(b) Trace metal concentrations in cockles fromTramore backstrand for years 2002, 2003, 2004, 2005, 2006 and 2008

Parameter		COCKLE												
mg/kg wet weight *														
	July 2002	Oct 2003 (average of 6 sampling sites)	Sept 2004	Aug 2005	December 2006	December 2008								
Arsenic		2.47	2.77	2.71	2.04	1.94								
Cadmium	0.04	0.038	0.04	0.03	0.03	< 0.1								
Chromium		0.95		0.82	0.36	<1								
Copper	1.48	2.9		2.02	0.86	<1								
Iron		137		129.3	42.12	35.2								
Lead	0.296	0.26	0.16	0.53	0.03	<0.3								
Manganese		1.55		2.55	0.96	<1								
Zinc	11.86	7.85	6.9	7.68	6.04	6.5								

7.8.1.5 Discussion

Results for December 2008 were similar to previous years. Some minor fluctuations from year to year are apparent, but there is no clear trend and the differences are likely due to natural variations.

7.8.1.6 COMPARISON WITH OTHER SITES

Trace metal concentrations in mussel samples from Tramore inner backstrand are compared in table 3 with

levels found in the following surveys;

- a) Marine Institute survey of 25 shellfish growing areas around the Irish coast, sampled 2004 and 2005.
- b) EPA surveys of Waterford and Wexford Harbours, 2004 and 2005.

Table 3. Trace metal concentrations in mussels from Tramore backstrand, and at other estuarine and

		coastai	SILLS						
	Tramore inner backstrand	Wexford Harbour,	Waterford Harbour	Metals levels in mussel samples from 25 locations on the Irish coast, Marine Institute Surveys 2004 - 2005 Refs 1 and 2					
mg/kg wet weight		EPA survey, Ref 3	EPA survey, Ref 3						
		2004	2005						
	17 December 2008	Mean of 4	Mean of 4	Mean	90%ile	Max			
	_	samples	samples						
Arsenic	4.64	3.6	2.6						
Cadmium	0.26	0.3	0.25	0.15	0.2	0.35			
Chromium	<1	4	1.4	0.18	0.33	0.66			
Copper	1.94	2.2	2.9	1.39	1.57	1.97			
Iron	90.20								
Lead	0.96	1.3	2.1	0.23	0.52	0.85			
Manganese	1.78								
Mercury				0.027	0.03	0.04			
Zinc	22.40	15.6	25.4	15.69	19.1	27			

coastal sites

7.8.1.7 Discussion

Metals levels recorded in Tramore backstrand mussels in December 2008 were similar to that found at other estuarine and coastal sites.

7.8.2. Sediment.

7.8.2.1 Introduction

A composite sample of sediment (approx 2 kg) was taken at ten sampling points along a sampling zone adjacent to Tramore landfill, see fig 8.1. This was hand mixed on-site, and a portion (approx 200g) taken for analysis. The composite sample was dried at 105 deg for two days, and pulverized with mortar and pestle in Waterford County Council's laboratory. Portions of the powdered samples were analysed for metals at Environmental Services Laboratory, Cork. QC and reference materials were processed with the samples.

7.8.2.2 Results

Parameter	Units	Tramore inner	S	Sediment Quality Standards								
		backstrand, December 2008	Baseline *	Threshold **	ERL ***	Proposed Irish sediment guidance levels ****						
Arsenic	mg/Kg dry wt.	6.1										
Cadmium	mg/Kg dry wt.	<0.5	0.5	1.5	5	1						
Chromium	mg/Kg dry wt.	16.4	5	50	80	100						
Copper	mg/Kg dry wt.	10.6	5	50	70	50						
Iron	mg/Kg dry wt.	13094										
Lead	mg/Kg dry wt.	19.4				50						
Manganese	mg/Kg dry wt.	242										
Zinc	mg/Kg dry wt.	52.6	20	100	120	400						

Table 4. Trace metal concentrations in sediment from Tramore inner backstrand, and comparison with environmental standards

7.8.2.3 Comparison with Standards.

Based on field investigations and literature data, Jeffrey et al (1995) ref 4, established <u>baseline</u> and <u>threshold</u> values for organic matter and heavy metals in estuarine sediments.

* The baseline concentration is defined as "that of the natural unpolluted estuary and corresponds to the authors views of the pre-industrial situation for sediments".

** The threshold is "the pollutant concentration beyond which deleterious environmental change is observable".

*** The National Oceanic and Atmospheric administration in USA (Long and Man, 1995) also established sediment quality guidelines. The guidelines are based on a review of numerous studies of the correlation between the toxicity of sediments and the content of pollutants. The ERL limits shown represent the concentration above which there may be a risk of deleterious impacts on fauna.

**** Proposed new Irish sediment guidance levels. Cronin et al, *Guidelines for the assessment of dredge* material for disposal in Irish waters. Marine Institute, 2006

Discussion

Chromium, copper and Zinc at Tramore were above baseline levels. However, all values were below threshold and ERL limits, and proposed Irish standards for non-contaminated sediment, and were well below concentration where deleterious impacts on fauna can be expected.

7.8.2.4 Comparison with previous surveys and other sites

				Tran Backs		Waterford Estuary ref 3	Wexford Hbr ref 3			
Parameter	Units	2008	2006	2005	2004	2003	2002	1998	2001	2004
Arsenic	mg/kg dry wt	6.1	4.96	5.2	5.2	7.1	5.6		8	10
Cadmium	mg/kg dry wt	<0.5	0.063	0.1	<0.44	<0.04	0.123	0.42	0.04	0.3
Chromium	mg/kg dry wt	16.4	16.4	14.3				65.6	35	31
Copper	mg/kg dry wt	10.6	6.98	8.1	10.7	8.6	5.4	11	9.8	13
Iron	mg/kg dry wt	13094	12,880	9721	13106	14048	15500		17466	24689
Lead	mg/kg dry wt	19.4	9.6	11.3	14.5	11	15.1		26	20
Manganese	mg/kg dry wt	242	225	215	263	398	270		622	385
Zinc	mg/kg dry wt	52.6	41.2	34	48.5	35	51.4	55.3	141	83

Table 5. Trace metal concentration in sediment from Tramore inner backstrand and other estuarine and coastal sites

7.8.2.5 Discussion

•

December 2008 Tramore backstrand sediment metal levels were similar to levels found at that site in previous years.

The majority of sediment metal levels at Tramore backstrand were lower than that found in samples from Waterford and Wexford Estuaries. Copper was slightly higher at Tramore in 2008 than found at wexford, but was lower than at the Waterford Estuary site.

7.9 ECOLOGICAL SURVEY OF BACKSTRAND AND DUNES

7.9.1 INTRODUCTION AND SCOPE OF WORKS

Limosa Environmental was commissioned by Waterford County Council to conduct ecological surveys of Tramore Landfill and surrounding environment in fulfilment of the requirements of the Tramore Landfill waste licence (Environmental Protection Agency Reg No. 75-1, Condition 8.10.1).

The scope of works, executive summary and conclusions are reproduced below.

The scope of works as outlined in the tender request is as follows:

1. Habitat types at landfill, backstrand and dunes: Mapping of main habitat types as identified in previous surveys, including fixed dunes, salt marsh, muddy shore, muddy sand shore. Description of main flora and fauna present. Interpretation of findings with regard to previous surveys.

2. Faunal analysis of the backstrand: Sampling, identification and enumeration of fauna at sample sites along two transects as per previous survey. Interpretation of results with regard to previous surveys.

3. Interpretation and comment on bird count data – to be obtained from annual IWeBs counts by BirdWatch Ireland, and the landfill bird control contractor.

7.9.2 EXECUTIVE SUMMARY

Limosa Environmental was commissioned by Waterford County Council to conduct ecological surveys of Tramore Landfill and surrounding environment in fulfilment of the requirements of the Tramore Landfill waste licence. Tramore Landfill ceased accepting waste on 31st December 2005.

The scope of works included mapping the main habitat types and identification of flora and fauna within a pre-determined survey area, an intertidal survey of Tramore Backstrand and a review and assessment of waterbird data for Tramore Backstrand.

Habitats within the boundary of Tramore Landfill have undergone a process of steady change in recent years due to the capping and rehabilitation process. In 2008, the landfill was dominated by one habitat type – amenity grassland (GA2), as the majority of the site has recently been seeded.

As mentioned in previous annual reports, rehabilitation of the landfill site should consider not only the desired end-result habitat within the landfill site but also the ecological sensitivities of the habitats surrounding the site. The colonisation of invasive or non-native species (which could pose a threat to the surrounding semi-natural habitats) should therefore be monitored.

Habitats outside of the landfill site do not appear to have undergone significant change over recent years. As in previous annual reports we discuss several pressures upon these habitats, including the on-going encroachment of the mudflats by Common Cord-grass, erosion of the sand dunes by the frequent passage of walkers and the occurrence of the alien, invasive species, Japanese Knotweed.

The scarce plant Golden-samphire was recorded within the survey area in November 2008; it was undetected in 2005, 2006 and 2007 and its identification this year is welcomed.

The 2008 survey also confirmed the continued presence of the Otter, a highly protected mammal, within the survey area.

The macrofaunal community of Tramore Backstrand remains diverse, and abundances are in some cases, greater than in recent years. The long-term data-set available from annual landfill monitoring clearly shows the decline in the population of Common Cockles since 2000 and we speculate that this may be linked to mechanical cockle harvesting which was banned within Tramore Backstrand in 2007. Results of recent annual surveys suggest levels of organic enrichment across the inner Backstrand have decreased and overall, there is no evidence to suggest that the landfill site has had any deleterious effects on the macroinvertebrate fauna of the inner Backstrand.

Tramore Bay is recognised as being of international importance for Light-Bellied Brent Geese, which appear to have a relatively stable population at this site during winter. The site remains nationally important for a range of waterbird species. Overall waterbird numbers across the site are highly variable but decreases are apparent for two species: Teal and Dunlin, the latter consistent with national trends. Overall, the 2008 survey reports that Tramore Backstrand and environs continues to support a rich and

diverse flora and fauna.

Observations from the current survey confirm the continued presence of the highly protected mammal species Otter within the survey area.

The macrofaunal community of Tramore Backstrand remains diverse with a total 22 species recorded this year; the greatest diversity recorded during the seven-year monitoring period.

7.10 CONCLUSIONS – Impact of Tramore Landfill on Surrounding Environment

There is no indication of any effect from the landfill on the surface water sites SW1 to SW6.

The results of groundwater monitoring are in line with results from previous rounds of testing carried out since 1999. As indicated in previous reports, it appears that groundwater quality within the current working area is impacted by leachate from the landfill, however the naturally reducing conditions found in the area may be contributing to elevated iron and ammonia levels in groundwater. Groundwater outside the landfill site was generally satisfactory.

Leachate quality was as expected for a landfill accepting mainly domestic and inert waste. Based on toxicity tests carried out, and available dilution, no toxic effect from landfill leachate is expected.

No noise nuisance was indicated during the annual noise survey.

The metal concentrations in shellfish from Tramore inner backstrand complied with relevant shellfish quality standards and were similar to that found at other estuarine and coastal sites around the country. Trace metal concentrations in sediment samples from the inner backstrand were well below the concentration where deleterious impacts on fauna can be expected and were lower than average levels from Waterford and Wexford Harbours.

Monitoring results indicate that the landfill is having no significant impact on adjacent sediment and shellfish.

The 2007 ecological survey showed that Tramore Backstrand and environs continues to support a rich and diverse flora and fauna.

The environmental monitoring carried out during 2008 indicates that the landfill has no detrimental impact on the surrounding environment.

7.11 Meteorological Data

Monthly meteorological data is attached in Appendix F.

7.12 Nuisance Monitoring

Nuisance Control is carried out in accordance with Condition 7 and 8.12 of the Waste Licence. The site is inspected weekly by the Landfill Manager and recorded on inspection sheets. The inspection sheet records environmental nuisances such as birds, loose litter, odour, dust, mud and vermin and also provides for the recording of description works. The inspection sheet also provides for the recording of nuisances as well as site security, infrastructure and housekeeping. A road sweeper cleans site access roads as required.

Dust control was carried out in accordance with 7.4 of the Waste Licence. A slight – moderate nuisance was observed during the monitoring period particularly in dry weather conditions however site roads and any other areas used by vehicles are sprayed with water as and when required. Prior to exiting the facility all vehicles enter the wheel wash so as to minimise airborne dust nuisance.

Vermin and Fly control was carried out in accordance with Condition 11.5 of the waste licence. Vermin and fly activity was very low for the reporting period due implementation of a good eradication programme.

Litter control was carried out in accordance with Condition 7.3 and 11.4.2 of the Waste Licence. As the landfill is no long active, litter control only applies to the Civic Amenity area of the site. The caretaker collects any loose material which may have been caught by the wind and returns it to the appropriate receptacle. In the event of an extremely windy day a litter picker would be employed to pick the area around the Civic Amenity site.

A slight nuisance was caused by mud in wet weather conditions around the facility during the reporting period. A metre of clay has to be placed on top of the LLDPE liner to complete the capping works, this equates to 200,000 tonnes of clay. Some mud was transported from the landfill to the entrance road due to the high volume of vehicles entering and exiting the facility In accordance with Condition 7.5 of the Waste Licence prior to exiting the facility all vehicles use the wheel wash so as to minimise mud in the Civic Amenity Area and adjacent entrance road. Bowsers and road sweepers are also used to clean this area.

7.13 Ambient Monitoring

It is proposed that a monthly Odour Monitoring Survey be incorporated into the monthly monitoring program. This would involve visiting each of the 37 gas extraction wells and checking for releases of any odour. A Leak Detection Survey would also be conducted on an annual basis. No composting occurred on site in 2008.

8 Topographic survey

A topographic survey is included in this report. This is attached in Appendix G

9 Borehole Summary

Due to the remediation works being carried out at the Tramore Landfill, many of the boreholes on site had to be refurbished during 2007. In addition a further eight groundwater wells were installed at the request of the Agency. A borehole review is included in Appendix I. This review was conducted between the end of 2007 and the start of 2008 and includes the location and designation of each borehole. During the current reporting period further works were carried on, principally with the erection of additional protective barriers at BH1/1, BH8, RC4 and BH2. 2 boreholes were decommissioned, one adjacent to the site hut and another on the northern boundary of the adjoining caravan park close to where the new Tramore Relief Road is being constructed.

10. Proposed development of the facility and timescales of such development

a) Landfill Capping and Restoration

A Closure Restoration and Aftercare Plan was sent to the EPA during 2007 and capping was completed in 2008.

b) Landfill Gas Management

Under condition 3.12.1 of the Waste Licence "infrastructure for the active collection and flaring of landfill gas shall be installed at the facility. The flare shall be of an enclosed type design". The gas collection system was installed in tandem with the final capping of the landfill. Gas wells were bored in 2006 and the quantity of gas in these boreholes was recorded. A temporary flare was installed in May 2008. The permanent flare is now operational and landfill gas emissions are now minimal.

11. Volume of leachate produced and volume of leachate transported / discharged offsite.

The annual volume of leachate generated was estimated for the Waste Licence Application in 1998 to be in the order of 14087m³. A saline intrusion study was conducted on the Landfill in 2005 and submitted to the Agency. A leachate extraction system has been installed in tandem with the final capping of the landfill. Leachate extraction wells were bored in 2006 and wells were monitored. The leachate collection tank has been installed but unfortunately there has been a delay in the commencement of pumping. It is expected that pumping of leachate will commence in May 2009. Leachate will then be tankered from the site. A final destination for the leachate will be indentified with the most likely destination being the Tramore Waste Water Treatment Plant. Leachate levels are expected to reduce due to the capping works, which will keep rainwater from entering the landfill, also the pumping of the leachate wells will reduce the leachate head. It is proposed that this leachate be brought to the Tramore Waste Water Treatment plant. To date no leachate has been removed from the site. This work will be carried out in conjunction with the Closure Restoration and Aftercare Plan.

12. Report on Development works undertaken during the Reporting Period Remediation of Landfill

Landfill Capping Works

The capping contractor, FLI, mobilised to site on 7th November 2006 and commenced lining on the 9th November. However poor weather conditions and related programming difficulties with other onsite works (particularly unavailability of suitable capping soil) resulted in multiple mobilisations and demobilisations, significantly extending the duration of works. The lining works were

substantially completed on 28th January 2008.

The following summarises progress in 2008:

January: lining works substantially completed by FLI

February: finalising capping earthworks

March: finalising capping earthworks

April: Plant installed the surface water drainage system along the southern boundary of the site.May: Farm Relief Services repaired the boundary fence on the southern boundary of the site. Other plant on hire was assisting Lining Technology with the gas and leachate pipework.

June: Clay was imported to regrade any low points that existed on the flat surface of the landfill. The surface water drainage outfalls were also installed and the placing of the rock armour continued. July: The rock armour on the southern slope was completed. Clay was imported to grade around the wellheads. The surface water drainage up to the location of the flare and also on the North Western boundary was completed.

August: Three weeks of bad weather beginning at the start of the month prevented any soil importation throughout the month of August.

September: Acceptance of clay began in mid September from three sources. Material accepted was mainly a very good subsoil material. 1^{NO.} Dozer was on site to spread out this material. **October to December:** No works onsite

Landfill Gas / Leachate Extraction System

Lining Technology, contractor for the Gas / Leachate Extraction System, mobilised to site the week commencing 4th December 2006 to install all 37 No. extraction well boreholes. Following installation of temporary pipework from the extraction wells to the location of the temporary flare in

January 2007 they demobilised from the site. They undertook a leachate investigation between February and April 2007, but as the results were inconclusive RPS carried out their own analysis.

The following works have been carried out in 2008:

January: no works on this element

February: ESB connected the new three phase power supply

March: Lining Technology remobilised to site and commenced excavating the trenches for the gas and leachate extraction pipework

April: The gas and leachate pipework was installed and tested. Knockout pots were also installed.May: The temporary flare was commissioned and the pumping trials commenced towards the end of the month of May.

June: Pumping trial was ongoing. The possibility of gas utilisation was also being looked into while the pumping trials were being carried out.

July: Ground improvement works for the leachate tank were carried out.

August: Irish Industrial Tanks ltd. arrived on site to install the leachate tank.

October to December: No works onsite

Erosion Protection Works

The EPA and the National Parks and Wildlife Service approved the erosion protection works proposal submitted by RPS. The erosion protection is on a section of the northern slope and continues around the eastern point and along the southern side of the eastern peninsula. Suitable rock had to be selected from Roadstone's quarry in Kilmacow and brought to site by trucks on hire to Waterford County Council during November and December 2007.

The rock armour was completed in July with the last section being placed on the southern boundary.

13. Annual Water Balance Calculation and Interpretation

The annual water balance could not be determined as the site is subject to saline intrusion. Meteorological data from Rosslare weather station is collected for the facility on a daily basis. (Appendix F).

14. Report on the progress towards achievement of the Environmental Objectives and Targets contained in the previous year's report. (*Pleases refer to the* ^{AER} 2006 for the previous years Objectives and Targets)

- 1. Under Condition 2.3.1 an Environmental Management System was compiled for the facility and was submitted to the Agency in March 2003.
- All site infrastructures have been maintained to the standards outlined in Condition 3 of the Waste Licence.
- 2. The effect of environmental nuisances was kept to a minimum during the reporting period. On occasions there was some dust was prevalent around the site particularly during the Summer months when the weather was very dry but this was kept under control by having a water sprinkler come on site at various times throughout the days. Likewise, when extremely wet conditions were experienced, problems with mud occurred. This problem was resolved by the hiring of extra road sweepers and water bowsers.
- 4. In the first quarter relatively high levels of methane, consistent with the breakdown or organic waste, were present at boreholes BH7, LT1, LT2, LT3, LT4 and LT5, within the landfill area. Other monitoring sites within the landfill area, BH10 and LT5 had none or only trace levels of methane and carbon dioxide (<1%). However methane levels have been significantly reduced following the initial installation of the temporary flare and subsequent installation of the permanent flare.</p>
- 5. The Monitoring Programme as outlined under condition 8 and Schedule D of the Waste Licence has been maintained during the reporting period and all reports have been submitted to the Agency. There have been times that reports were submitted late as samples being analysed by the EPA Regional Laboratory in Kilkenny were slow to arrive.
- 6. The Facility Office has a comprehensive set of records for 2003, 2004, 2005, 2006, 2007 and 2008.
- 7. No emergency or complaint occurred on site during the reporting period
- 8. A Closure Restoration and Aftercare plan has been approved by the Agency. Outstanding works have been identified in the Schedule of Environmental Objectives and Targets for the forthcoming year.

16. Schedule of Environmental Objectives and Targets for the forthcoming year

Objective 1 – To maintain site infrastructure to the standards outlined in Condition 3 of the Waste Licence

Target 1.1 - Any defect to the existing infrastructure will be repaired / replaced as quickly as possible on an on going basis.

Objective 2 – To minimise the effect of environmental nuisances

Target 2.1 – To implement the procedures outlined in Condition 7 of the Waste Licence on an ongoing basis throughout the year. Waterford County Council have endeavoured to achieve compliance with this condition and have to date been successful.

Objective 3 – That no specified emissions from the facility, shall exceed the limit values, set out in Condition 6 and Schedule C of the Waste Licence.

Objective 4 – To maintain the Monitoring Programme as outlined in Condition 8 and Schedule D of the Waste Licence.

Target 4.1 – To carry out the monitoring programme as outlined in Condition 8 and Schedule D of the Waste Licence.

Target 4.2 – To submit Monitoring Reports to the Agency within the timescale as outlined in Schedule E of the Waste Licence.

Objective 5 – To establish good record keeping and that all records are held at the facility office to comply with Condition 10 of the Waste Licence.

Objective 6 – That no emergency situation occurs on the site.

Target 6.1 – Ensure the contingency arrangements as outlined in Condition 9 of the Waste Licence are implemented throughout the year and to follow the procedure set out in the Emergency Response Procedures.

Objective 7 – Ensure the there is sufficient funds available to comply with Condition 12 of the Waste Licence.

The gate fee was the only avenue available to Waterford County Council to raise funds to ensure financial stability of the facility. When the landfill closed other options to increase revenue had to be explored. Fee increases were necessary during the past year to maintain the high standards and to continue with the development programme.

Objective 8 – To restore the landfill in accordance with the Plan agreed with the Agency and in such a way that final works have a minimal impact on the surrounding environment.

Target 8.1 – Completion of all required landscaping including removal of stones from landfill cap and any necessary replanting.

Target 8.2 – Completion of Surface Water Drainage system including inspection manholes at outfalls.

Target 8.3 – Completion of Gas Collection Infrastructure and Leachate Management system including identification of final destination for leachate that is removed off site. Proposals in this regard to be approved by the Agency.

16 Reported Incidents and Complaints Summary

16.1 Incidents

No incident occurred during the reporting period.

17.1 Complaints

No complaint in relation to the operation of the Facility was received during the reporting period.

18. Reports on Financial Provisions

Waterford County Council is responsible for providing annual fees to the Agency for monitoring and inspection of the site. The annual fee for 2008 for monitoring was €23,011 and €19,831 for the licence.

19. Management and Staffing Structure of the Facility

This can be viewed in Appendix J – Management Structure of Waterford County Council.

20. Programme for Public Information

A record of all monitoring results and reports are maintained both at the facility office and within the Environment Section of Waterford County Council at the Civic Offices in Dungarvan Co. Waterford.

21. Reports on Training of Staff

Both the Facility Manager and Deputy Manager have completed the Fás Waste Management Training Course. Site personnel have attended the Fás Safe Pass program, Waste Facility Operative Course and site operatives attended a course in the handling, storage and removal of Waste from the Civic Amenity Site. A Fire Handling and Evacuation Training course was also attended by site caretakers. Courses for 2008 will include manual handling training, Waste Facility Operative Course, and a First Aid Course.

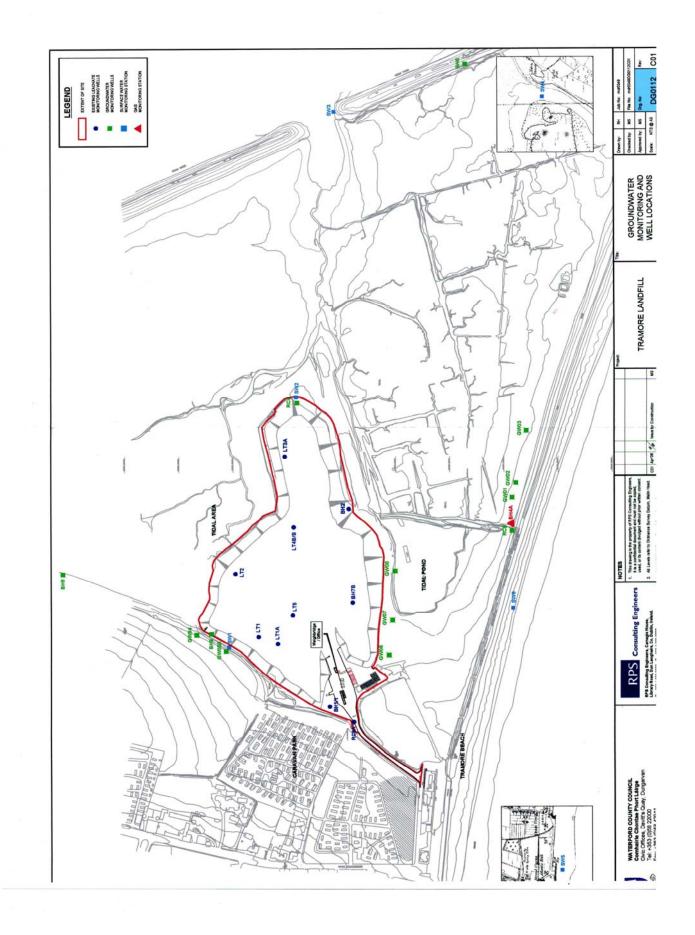
Туре	Jan-08	Feb-08	Mar-08	Apr-08	May-08	Jun-08	
Clay on Purchase	0	0	0	0	3446.00	2693.32	
Rock Armour	0.00	0.00	0.00	0.00	0.00	342.10	
Туре	Jul-08	Aug-08	Sep-08	Oct-08	Nov-08	Dec-08	Total
Clay on Purchase	27713.90	444.34	14951.89	0	0	0	24308.74
Rock Armour	856.90	0	0	0	0	0	1199.00

22. Construction and Demolition Waste used in Remediation

23. Maintenance Program

Waterford County Council commissioned an electronic Preventative Maintenance Program (PEMAC) which was completed by MJM Technologies Ltd. This Program covers all aspects of site maintenance and include monitoring and reporting, health and safety, maintenance and all training.

APPENDIX A


Quantity & Composition of Waste Received, Disposed of & Recovered during the reporting period.

		Tramore Landfill Tonnages 1 st Jan 08 - 31 st Dec 08												
Туре	EWC Code	Jan-08	Feb-08	Mar-08	Apr-08	May-08	Jun-08	Jul-08	Aug-08	Sep-08	Oct-08	No v-08	Dec-08	Total
Dry Materials	15 01 01	10.34	5.82	6.82	5.24	4.88	7.08	5.26	4.90	3.60	16.50	4.92	1.12	76.48
Textiles	04 02 22	0.00	0.46	0.64	0.00	0.00	0.12	0.00	0.00	0.10	0.10	0.40	0.06	1.88
Oil	13 02 06	0.00	0.00	0.00	0.00	0.00	0.00	0.34	0.00	0.00	0.78	0.00	0.00	1.12
weee	16 02 13	3.44	2.20	1.98	0.00	3.78	0.00	3.24	7.86	2.84	2.70	0.00	0.00	28.04
Fridges	16 02 11	0.00	2.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.14
Small Household	16 02 13	0.00	0.00	0.00	0.00	3.22	3.42	0.00	0.00	0.00	0.00	0.00	0.00	6.64
Large Household	16 02 13	4.40	0.00	5.12	0.00	3.90	0.00	0.00	0.00	4.12	0.00	4.00	0.00	21.54
TVs Monitors	16 02 09	0.00	1.50	0.00	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.54
Polluted Appliances	16 02 09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Scrapmetal	17 04 07	1.64	0.00	3.04	1.82	3.50	1.04	2.74	2.46	1.44	0.00	1.68	0.00	19.36
Domestic Bulky Co Co	20 03 01	7.90	9.54	5.54	8.60	9.24	8.66	8.56	8.30	7.34	7.28	5.30	2.10	88.36
CivicSkip	20 03 99	9.12	4.40	5.36	7.50	7.86	5.20	6.72	5.40	3.52	2.16	3.28	1.34	61.86
Clay		0.00	0.00	0.00	0.00	86.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	86.42
Clay on Purchase		0.00	0.00	0.00	0.00	3446.00	2693.32	2773.19	444.34	14951.89	0.00	0.00	0.00	24308.74
Rubble	17 01 07	0.00	5.94	0.00	10.60	10.72	0.00	10.28	0.00	0.00	0.00	0.00	0.00	37.54
Rock Armour		0.00	0.00	0.00	0.00	0.00	342.10	856.90	0.00	0.00	0.00	0.00	0.00	1199.00
Garden Waste to Dvan	02 01 07	2.38	2.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.88	17.78
Timber	17 02 01	5.18	2.56	2.50	4.56	3.22	4.78	3.24	5.38	0.92	2.02	2.76	1.48	38.60
Flat Glass	17 02 02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.28	0.00	0.00	0.00	0.00	3.28
Paint	08 01 21	0.00	0.00	0.00	0.54	0.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.28
Batteries	16 06 01	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.16
Obsolete Medicines		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Aerosols	16 05 04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.10
Fluorescent Lamps	16 02 11	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10
		44.40	37.08	31.00	42.00	3583.48	3065.72	3670.63	481.92	14975.77	31.64	22.34	18.98	26004.96

waste Transfered														
Flat Glass	17 02 02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.28	0.00	0.00	0.00	0.00	3.28
Garden Waste to Dvan	02 01 07	2.40	2.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.88	17.78
Fridges	16 02 11	0.00	2.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.16
Dry Materials	15 01 01	10.42	5.70	6.82	5.26	5.66	6.60	0.00	0.00	4.40	6.38	4.88	1.02	57.14
Textiles	04 02 22	0.00	0.46	0.64	0.00	0.00	0.12	0.00	0.00	0.10	0.10	0.20	0.08	1.70
weee	16 02 13	3.40	2.22	1.98	0.00	3.76	0.00	0.00	0.00	2.84	2.70	0.00	0.00	16.90
Small Household	16 02 13	0.00	0.00	0.00	0.00	3.18	3.30	0.00	0.00	0.00	0.00	0.00	0.00	6.48
Large Household	16 02 13	4.28	0.00	5.12	0.00	3.88	4.34	0.00	0.00	4.12	0.00	4.02	0.00	25.76
TVs Monitors	16 02 09	0.00	1.50	0.00	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.54
Domestic Bulky Co Co	20 03 01	7.76	9.52	5.54	8.08	12.10	8.64	0.00	0.00	7.34	7.34	5.32	1.18	72.82
Civic Skip	20 03 99	9.16	4.28	5.36	7.50	6.06	5.10	0.00	0.00	9.62	2.14	3.30	1.34	53.86
Polluted Appliances	16 02 09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Scrapmetal	17 04 07	1.56	0.00	3.04	1.82	3.50	1.14	0.00	0.00	1.46	0.00	1.70	0.00	14.22
Timber	17 02 01	5.20	2.56	2.50	4.48	3.12	4.78	0.00	0.00	0.92	2.02	2.76	1.48	29.82
Rubble	17 01 07	0.00	5.96	0.00	10.60	10.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27.28
Oil	13 02 06	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.80	0.00	0.00	0.80
Medicine		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Batteries	16 06 01	0.00	0.00	0.00	0.00	0.00	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.26
Paint	08 01 21	0.00	0.00	0.00	0.54	0.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.28
Aerosols	16 05 04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.14
Fluorescent Lamps	16 02 11	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10
Total Transferred		44.18	36.86	31.00	41.42	52.72	34.28	0.00	3.28	30.80	21.62	22.18	17.98	336.22

Appendix B

Monitoring Locations

Appendix C

Surface Water Results

I CPOO	Environn Regional Seville L Kilkenny	Environmental Precetion Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny	Agency Id,
Report of:	Analysis of lar	Analysis of landfill site sample(s)	
Report to:	Waterford County Council	Inty Council	
Report date:	16/06/08		
Facility:	Tramore Waste Disposal Site Tramore Intake & Tramore Bun	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford	ramore. Co. Waterfo
Reference No:	W0075-01		
Date collected:		Date received:	02/04/2008

Report number:KK2800745/1

Page 1 of 4

		Laboratory Ref: Type of sample: Location code: Sampling point:	\$ 10	2801695 Sunface Watter WST-W0075-01- SW2 Clear sample Jim McGann	2801695 Surface Water WST-W0075-01- SW3 Clear sample Jim McGarry	Surface Water WST-W0075-01- SW0 Clear sample Jim McGany	Surface Water WST-W0075-01- SW5 Clear sample Jim McGany	- # ¥ 4
		Sampling point:	Jim McGarry	Jim McGany	Jim McGarry	Jim McGany		im McGarry
		Time Sampled:	an .	15:40	14:42	16:30		13:55
	Start/End - Da	Start/End - Dates of Analysis:	1			;	-	
	s	Status of results:	Final Report	Final Report	Final Report	Final Report	-	Hinal Report
Parameter	Units	Limits			17.20	135	-	12.7
Temperature	°C			1.0.4	0.01	1975	T	109.1
Dissolved Oxygen	% Saturation			106.7	160,2	137.5	-	102.1
PH	pH			8.0	8.3	8.3	+	8.0
Saliniv	r.			29.9	27.3	28.8		31.2
Ammonia	N I/BW			0.33	60.0	0.016	1.1.1.1.1	0.016
Chindre	mg/i Cl			697	669	696		696
Biochemical Oxygan Demand	mg/i O2			0,9	2.7	1.1		0.4
Susnanded Solids	Ngm		,	43	80	70		n
Total coliforms	No/100 ml			76	365	96		ŋr
E Coli	per 100ml			1	3	5		ą
Aluminum	li6n			<250	<250	<250		<250
Antimony	hôn			<50	-50	<50		<50
Arsenic	1,6n			<50	<50	52.5		55.3
Barlum	ljūn			<300	<300	300		<300
Berylium	ug/l			<50	<50	<50		-90
Boron	μĜin		,	2296	2979	1968	1	2076
Cadmium	Vôn			-56	40	-50		6
Calcium	₩ĝm			256	356	367	1	Cec
Chromium	l/Gn			<50	<50	<50	1	- 40
Cobalt	1/6n		-	-60	<50	<50		<50
Copper	ng/l			145	163	219		244
Iron	Ngu			<500	<500	<500		<500
Lead	ybn			ŝ	-50	06>		200

	Vanadium	Uranium	Tin	Thorium	Thallum	Sodium	Silver	Selenium	Potassium	Nickel	Molybdenum	Manganese	Magnesium	Parameter		Sta						
	l/gu	l/Bn	l/6n	ly6n	lygu	NBW	Ngu	γßn	mg/l -	hôn	l/Bn	l/gu	hôu	Units Limits	Status of results:	Start/End - Dates of Analysis:	Time Sampled:	Sampled by:	Sampling point:	Location code:	Type of sample:	Laboratory Ref:
			,	ı		1									Final Report		nm	: Jim McGarry	t: no sample	2: WST-W0075-01- SW1	: Surface Water	f: 2 394
200	53.5	<50	<100	mu	<50	8058	<50	94	233	C(9>	<60	<500	754		Final Report		15:40	Jim McGany	Clear sample	WST-W0075-01- SW2	Surface Water	2801695
4300	51.9	<50	<100	nu	<50	7198	<50	143	346	<50	<50	<500	631		Final Report		14;42	Jim McGarry	Clear sample	WST-W0075-01- SW3	Surface Water	2801696
<00	60.4	<50	<100	m	<50	7456	<50	167	352	<50	650	<500	709		Final Report		16:30	Jim McGany	Clear sample	WST-W0075-01- SW4	Surface Water	280 .
<300	64	<50	<100	au	<50	7760	<50	178	361	<50	<50	<500	1155		Final Report		13:55	Jim McGarry	Clear sample	WST-W0075-01- SW5	Surface Water	2801698
<300	63.7	<50	<100	nm	-50	7801	<50	177	314	<50	<50	<500	1057		Final Report		14:12	Jim McGarry	Clear sample	WST-W0075-01- SW6	Surface Water	2801699

Report number.KK2800745/1

Page 3 of 4

Report number:KK2800745/1

Page 4 of 4

k

COD analysis was not carried out due to the high saline concentrations causing interference with the test method. Salinity results are given instead on conductivity results.

Comments:

4

Results highlighted and in told are cutside specified limits.
 All Melais Analysed in the EPA Coubin Laboratory. Cyanide Analysed in the EPA Cork Laboratory.
 Phenois Analysed in the EPA Castlebar Laboratory.
 nd "None detected"
 nd "None detected"
 hte "None interview to count"
 F "Flect measured perameters"

Signed: L 5 Michael Neill, Regional Chemist Sun A Mund

Date: 14/6/08

78

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Report to: \	Analysis of land Waterford Cour 16/06/08	dfill site sample(s) nty Council	
	Tramore Waste Tramore Intake & W0075-01	그는 말에 가지 것이 같은 것 것이 같아요. ㅠㅠㅠㅠㅠㅠㅠㅠ	ramore, Co. Waterford
	WST-W0075-01-SW Water Monitoring F		- W0075-01 SW1 - Surface
Date collected:	03/04/2008	Date received:	03/04/2008
	Start/E	Laboratory Ref: Type of sample: Sampling point: Sampled by: Time Sampled: nd - Dates of Analysis: Status of results:	2801737 Surface Water Clear sample Jim McGarry 13:55 Final Report
Parameter	Units	Limits	
F Temperature	°C		18.2
F Dissolved Oxygen	% Saturation		116.3
pH	pH		8.0
Conductivity	µS/cm		3810
Salinity	%e		1.9
Ammonia	mg/l N		1.8
Chloride	mg/l Cl		386
Biochemical Oxygen Demi	and mg/IO2		1.8
Chemical Oxygen Demand	d mg/l O2		52
Suspended Solids	mg/l		30
Total coliforms	No/100 ml		>2419
E Coll	per 100ml		>2419
Aluminium	ug/l		<250
Antimony	ug/l		<50
Arsenic	ug/l		<50
Barium	ug/l	and the second	<300
Beryllium	ug/l		<50
and the second sec			<500
Boron .	ug/i		
Discourse	ug/l		<50
Boron			<50 82

Report number:KK2800763/1

		Laboratory Ref:	2801737
		Type of sample:	Surface Water
		Sampling point:	Clear sample
E.		Sampled by:	Jim McGarry
3		Time Sampled:	13:55
	Start/I	End - Dates of Analysis:	
		Status of results:	Final Report
arameter	Units	Limits	
Cobalt	ug/l		<50
Copper	ug/l		<50
Iron	ug/l		<500
Lead	ugA		<50
Magnesium	mg/l		51.6
Manganese	ug/l		<500
Molybdenum	ug/l	Contrast of Contra	<50
Nickel	ug/4	E 15-10.0	<50
Potassium	mg/l		<50
Selenium	ug/1	- 0/L 2	<50
Silver	ug/l		<50
Sodium	mg/l		517
Thallium	ug/l		~50
Thorium	ug/l		nm
Tin	ug/l		<100
Uranium	ug/l		<50
Vonadium	Ngu		<50
Zinc	ug/l		<300

Comments:

1) Results highlighted and in bold are outside specified limits.

All Metals Analysed in the EPA Dublin Laboratory, Cyanide Analysed in the EPA Cork Laboratory Phenols Analysed in the EPA Castlebar Laboratory.

nm "Not measured" ad "None detected" nt "No time" - Time not recorded tate "Too numerous to count" F "Field measured parameters"

3) 4] 5) 6) 7)

Signed: Michael Neill, Regional Chemist

16/6/08 Date:

ALcontrol Laboratories (Dublin)

18a Rosemount Business Park, Ballycoolin, Dublin 11 Ireland Tel: +353 (0) 1 8829893 Fax: +353 (0) 1 8829895

CERTIFICATE OF ANALYSIS

Client:

EPA (Kilkenny)

Seville Lodge Callan Road Kilkenny

Attention:Jean SmithDate:8 May, 2008Our Reference:08-B02544/01Your Reference:75/2

Location:

A total of 9 samples was received for analysis on Monday, 28 April 2008 and authorised on Thursday, 8 May 2008. Accredited laboratory tests are defined in the log sheet, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation. We are pleased to enclose our final report, it was a pleasure to be of service to you, and we look forward to our continuing association.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Signed

Compiled By

Loraine Nr Nomera

Lorraine McNamara Laboratory Technical Manager

Paint Bany

Printed at 10:15 on 09/05/2008 Acontrol Coothers Indend is a trading revision of Account dk trained.

Registered Office: fampleboraugh House, Will Close, Rotherheim, SGO 182. Registered in England and Wates No. 4957191

Paul Barry

Test Schedule

Sample Type: WATER

Ref Number: 08-B02544/01

			UKAS Acc	eonereiteR lortnooJA	08-802544-S0022-A01	08-802544-50024-M01	08-802514-S0025-A01	08-802544-S0026-A01	08-902544-50027-A01 08-902544-50028-A01	09-002544-S0029-A01	03-902544-50030-A01			-			
		Dete	UKAS Accredited [Testing Laboratory] No. 1291	Sample Identity	1 8H8-1740 8H9-1741	1		1 GW5A-1748	1		BLANK		the second second	4 (1	1		
Date		Detection Method	.aboratory]	Other ID	LINKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN					1	the same
Client: EPA (Kilken Date of Receipt: 28/04/2008		-	No. 1291	۸۱۹	Glass Bettle + NaOH	Glass Bothe + MICH	1.1	1	Gianti Tetrite + NicOl	Gass South + NUCH	Gama Bothar + NuCer				-		
Client: EPA (Kilkenny) eceipt: 28/04/2008		HPLC		Speciated Phenola by Βρεςίατες Phenola by	- ×	×	×	×	×;	×	×		1			*	
(enny) 08						-	-			-		i 					
							-	1		1 				+			
													- # - ; ;		-		
															1		
Client							+		r 							(404) and (404)	
Location: Contact:	Client Ref: 75/2				1		-				4 .			J		-	
Location: Client Contact: Jean Smith	75/2	-	-			-			ę.,	100 C 100	1	1		 _1			1
7			+		 . 1	2)÷.	2				1	; ; ;	14	а. Л.	2		
					<u>.</u>		- 1	ti		-1		:	1	1			10.00
			T		1	3		1	1	- 35		1	10	-			1

,

Notes : NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 10:15 on 09/05/2008

* SUBCONTRACTED TO OTHER LABORATORY / ** SAMPLES ANALYSED AT THE CHESTER LABORATORY

Test Schedule Summary

Sample Type: WATER
Location:
Client Contact: Jean Smith
Client Ref: 75/2

METHOD	TEST NAME	TOTAL	
HPLC	Speciated Phenols by HPLC	9	
	Tarkes and		

Printed at 10:15 on 09/05/2008

.

✓ Validated Interim

Table Of Results

Ref Number: 08-B02544/01 Client: EPA (Kilkenny)

Location:

Sample Type: WATER

	٦	-	UKAS Accredited	oneneter loutroo.JA	a	08-802544-50022	00-01/044-00024	08-802544-SD025	08-802544-50026	08-802544-50027	09-002-011-00424 09-002544-50020	08-802544-50030				
	Detection Method	Method Detection Limit	UKAS Accredited [Testing Laboratory] No.	Sample Identity	1	BH8-1740	BH1/1-1700	BHS-1739	GW5A-1748	RC6A-1738	GW1-1744	BLANK				
Client: EPA (Niker Date of Receipt: 28/04/2008 (of first sample)	ТĿ.	on Limit	Y] No. 1291	Ofher ID		UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN				
of Receipt: (of first sample)	HPIC	<0.01mg/l		loningsN r	(/gm	<0,01	<0.01	<0.01	<0.01	10.0>	<0.01	<0.01	1			
client: EPA (Nikeriiry) soeipt: 28/04/2008 sample)	HPLC	<0.01mg/l <0.01mg/l <0.01mg/l <0.01mg/l <0.01mg/l		2- Isopropyl Phenol	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	¢0.01		11		1
DO8	HPLC	<0.01mg/%		lonerte lyriteminT- 2,2,2	mg/l	<0.01	<0.01	<0.01	<0.01	A0.01	<0.01	\$0.01				
	HPLC	<0.01mg/l		lortseteC	I/gm	×0.0	-0.01	<0.01	<0.01	10.0>	<0.01	10'0>				1
	HPLC			lonadq	Ngm	0.02	0.01	<0,01	<0.01	<0.01	<0.01	<0.01				
	HPLC	<0.01mg/f <0.01mg/l		Ioniวาอรงหี	1/6u	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
	HPLC			SlosonO letoT	mg/l	<0.01	<0.01	<0.01	A0.01	<0.01	<0.01	<0.01	1			1
	HPLC	<0,01mg/l		alonad9 (MoT	l/6w	0.02	0.01	10.02	×0,01	<0.01	<0.01	10.01				
Client O	HPLC	<0.01mg/l		złonej X letoT	mg/l	<0.01	<0.01	×0.01	<0.01	<0.01	<0.01	-0.01				
nt Contact: Jear Client Ref: 75/2							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						1		i	
Client Contact: Jean Smith Client Ref: 75/2						1	1							-		-
nith								-	4		14			ī		1
													t	l.		
																-
							(H						-	1		

Checked By : Paul Barry

* SUBCONTRACTED TO OTHER LABORATORY / ** SAMPLES ANALYSED AT THE CHESTER LABORATORY

Printed at 10:15 on 09/05/2008

lpage4 / 6

APPENDIX

- Results are expressed as mg/kg dry weight (dried at 30°C) on all soil analyses except for the following: NRA Leach tests, flash point, and ammoniacal N₂ by the BRE method, VOC, PRO, Cyanide, Acid Soluble Sulphide, SVOC, DRO, PAH, PCB, TPH CWG, TPH by IR, OFGs and SEM.
- Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. A sub sample of all samples received will be retained free of charge for one month for soils and one month for waters (sample size permitting), but may then be discarded unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage.
- With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, an asbestos screen is done in-house on soils and if no fibres are found will be reported as NFD no fibres detected. If fibres are detected, then identification and quantification is carried out by ALcontrol Technichem or Alcontrol Shutlers in the UK. If a sample is suspected of containing asbestos, then drying and crushing will be suspended on that sample until the asbestos results are known. If asbestos is present, then no analysis requiring dry sample are undertaken.
- If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample – similarly, if a headspace is present in the volatile sample.
- 8. NDP No Determination Possible due to insufficient/unsuitable sample.
- Metals in water are performed on a filtered sample, and therefore represent dissolved metals – total metals must be requested separately.
- A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

Last updated February 2005

Printed at 10:31 on 18/08/2008

* SUBCONTRACTED 1 /THER LABORATORY / ** SAMPLES ANALYSED AT THE STER LABORATORY

Checked By : Paul Barry

THE DATA ON THIS PRELIMINARY REPORT IS NOT VALIDATED AND MAY BE SUBJECT TO CHANGE.

<0.05
<0.01 <0.01
0.02 <0.01 <0.01 <0.05
<0.01 <0.01
-
<0.01 <0.01
<0.01 <0.01
<0.01
•
<0.01 <0.01
<0.01
<0.01 <0.01
Total Cyanide Total Phenols** Total Cresols**
< < <
<0.01mg/l <0.01mg/l <0.01mg/l <0.05mg/l
HPLC HPLC HPLC SPECTRO
Client Ref: 75/2
Client Contact: Jean Smith
Location:
Sample Type: WATER

.

Validated

Lcontrol Laboratories Irel. d Table Of Results Report number:KK2801255/1

	·· • •	· - 1	F	T	T		T	- т				r		- 1	- 1	- 1	- 1		···-T					·					
	Zinc	Vanadium	Uranium	Tin	Thallium	Socium	Silver	Selerium	Potassium	Nickel	Molybdenum	Mercury	Manganese	Magnesium	Lead	Iron	Copper	Cobalt	Onromium	Calcium	Parameter								
-	l/ĝn	l/ĝn	l/gu	l/gu	l/gu	l;5uu	l/ĝn	l/gu	ngri	l/gn	l/gu	l/Bn	líĝn	ng/l	lígu	líĝn	líĝn	lígn	l/Bn	ng/l	Units		Start/Er						
																					Limits	Status of results:	Start/End - Dates of Analysis:	Time Sampled:	Sampled by:	Sampling point:	Location code:	Type of sample:	Laboratory Ref
	<120	80.4	<20	<40	<20	10510	<20	218	414	<20	<20	6	<1000	1162	<20	<1000	151	<20	41.4	441		Final Report		14:50	Jim McGany	Clear sample - low tide	WST-W0075-01-SW2	Surface Water	2802936
	<120	78	<20	<40	02>	9786	<20	202	06£	-20	03>	\$	0001>	1068	<20	<1000	150	<20	38	436		Final Report		18:35	Jim McGarry	Clear sample	WST-W0075-01-SW3	Surface Water	2802937
	<120	80.2	<20	<40	<20	9886	<20	213	400	<20	<20	<5	<1000	1073	<20	<1000	154	<20	38.2	434		Final Report		17:15	Jim McGarry	Clear sample	WST-W0075-01-SW4	Surface Water	1938
	<120	78	<20	<4Q	<20	9748	<20	106	399	<20	<20	6	<1000	1066	<20	<1000	146	20	36.8	435		Final Report		14:10	Jim McGany	Clear sample	WST-W0075-01-SW5	Surface Water	2802939
	<120	78.6	<20	40	<20	9550	<20	205	394	<20	~20	\$	<1000	1034	<20	<1000	143	<20	36.8	428		Final Report		14:30	Jim McGarry	Clear sample	WST-W0075-01-SW6	Surface Water	2802940

Page 3 of 4

	Laboratory Ref:	2805151	2805162	2805163	2805164	2805165
	Type of sample:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
	Location code:	WST-W0075-01-SW1	WST-W0075-01-SW2	WST-W0075-01-SW3	WST-W0075-01-SW5	WST-W0075-01-SW6
	Sampling point:	Clear sample	Clear sample	Clear sample	Clear sample	Clear sample
	Sampled by:	Jim McGarry	Jim McGany	Jim McGarry	Jim McGarry	Jim McGarry
	Time Sampled:	13:55	12:43	15:25	14-55	14:20
Start/End	- Dates of Analysis:	ĥ , l				
	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report
Units	Limits					
Ngu		G	đ	G	G	\$
mg/l		255	1140	847	1210	121
Ngu		301	<250	<250	<250	<250
Ngu		s	17.3	14.2	17	7
Ngu		G	5	6	Å	\$
mg/l		117	396	303	398	62.1
Vgu		\$	156	111	161	G
ngi		2590	1470	7010	10300	1070
Vgu		\$	<5	\$	A	۵
Ngu		49,8	108	107	107	106
Vgu		4	6.4	5.6	64	۵
Vgu		\$	6.66	59.7	71.6	25.2
		<100	<100	<100	<100	<100
	Units Units Ug/ Ug/ Ug/ Ug/		Laboratory Ref: Type of sample: Location code: Sampling point Sampled by: Time Sampled by: Status of Analysis: Status of results: Limits	Laboratory Ref: 2805151 Type of sample: Surface Water Location code: WST-W0075-01-SW1 Sampling point: Clear sample Sampled by: Jim McGarry Time Sampled: 13:55 VEnd - Dates of Analysis: Final Report Status of results: Final Report Limits	Laboratory Ref. 2805151 2805151 2805162 Type of sample: Surface Water Surface Water Surface Water Sampling point Clear sample Clear sample Clear sample VEnd - Dates of Analysis: Final Report Final Report Final Report Limits 5 5 5 Limits 55 1140 Status of results: 117 396 117 396 156 117 396 1470 55 5 5 55 5 5 55 5 5 55 5 5 55 5 5 55 5 5 55 5 5 55 5 5 55 5 5 55 5 5 55 5 5 55 5 5 55 5 5 55	Laboratory Ref. 2805151 2805162 2805162 2805162 Type of sample: Surface Water WST-W0075-01-SW2 Tipe Sample Jim McGary 115.25 Tipe Sample Sample<

Report number/KK2802126/1

1 5

Page 3 of 4

+

Comments: COD was not carried as the high salinity of the samples causes interference with the test method. Insufficient sample volume in sample SW6 to carry out suspended solids analysis.

-

.....

Results highlighted and in bold are outside specified limits.

8 3

Alt Metals Analysed in the EPA Dublin Laboratory, Cyanide Analysed in the EPA Cork Laboratory, Phenols Analysed in the EPA Castlebar Laboratory

- ~ <u>g</u> a a g
- 39999
- "Not measured" None detected" "No time" Time not recorded a "Too inumeruus to count" "Field measured parameters"

Signed Michael Neill, Regional Date: 14/1/04

ALcontrol Laboratories (Dublin)

18a Rosemount Business Park, Ballycoolin, Dublin 11 Ireland Tel: +353 (0) 1 8829893 Fax: +353 (0) 1 8829895

CERTIFICATE OF ANALYSIS

Client:

EPA (Kilkenny)

Seville Lodge Callan Road Kilkenny

Attention: Jean Smith

Date: 11 November, 2008

Our Reference: 08-B06318/01

Your Reference: 75/2

Location:

A total of 12 samples was received for analysis on Monday, 3 November 2008. Accredited laboratory tests are defined in the log sheet, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation. We are pleased to enclose our final report, it was a pleasure to be of service to you, and we look forward to our continuing association.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Dyle- Halpin

Signed

Dyle Halpin

<u>Dylan Halpin</u> Team Leader Project Co-ordination

Loranice Nr Nomerco

Lorraine McNamara General Manager

Compiled By

Dylan Halpin

Printed at 14:41 on 13/11/2008

(b) starting the start of the output start and the starting of the start of the start were the start wave to start and the start wave to st

Test Schedule

06-806318-S0015-A01 08-806318-S0012-A0I 08-806318-50006-401 08-806318-50016-A01 08-906318-S0013-A01 08-80E318-S0011-A01 08-806318-S0010-A01 08-906318-50007-001 08-80£318-50014-A00 08-806318-S0009-A01 0A-800318-S0008-A01 08-E06318-50005-A01 UKAS Accredited [Testing Laboratory] No. 1291 ALcontrol Reference BH2 - 5495 BH5 - 5496 BH8 - 5497 RC5 - 5499 RC6a - 5167 BH9 - 5168 RC4 - 5169 GW2 - 5501 GW5 - 5504 BH1/1 5166 Blank Blank Sample Identity **Detection Method** 06/10/2008 06/10/2008 06/10/2008 06/10/2008 20/10/2008 20/10/2008 20/10/2008 20/10/2008 20/10/2008 20/10/2008 20/10/2008 20/10/2008 Date of Receipt: 03/11/2008 Ofher ID Ref Number: 08-B06318/01 Glass Borble + NOO Glass Borne + NaO Class Bortle Gen Bothe -Glass Bottle + NarCh Olass Romle -Jass Bothe + NaO Hass Bottle + ikas Bottle - Naci are Bottle - NaO AS BOTHE ss Bortle + Client: EPA (Kilkenny) A/d ż -Neg Nati NINO Neo 1 HPLC IoditideN 1 ********** HPLC 2- Isopropyl Phenol ********** HIPLC loned9 lydtemhT- 2,5,5 ********** HPLC Catechol ******* HPLC phonel ********** HPLC Kesotcinol ********** HPLC ********** Total Cresols Sample Type: WATER Client Contact: Jean Smith HPLC Total Phenols ********** Client Ref: 75/2 Location: HPLC slonalyX letoT *********

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 14:41 on 13/11/2008

SUBCONTRACTED OTHER LABORATORY / ** SAMPLES ANALYSED AT THE CHESTER LABORATORY

Test Schedule Summary

Ref Number:	08-B06318/01
Client:	EPA (Kilkenny)
Date of Receipt:	03/11/2008

Sample Type: WATER Location: Client Contact: Jean Smith Client Ref; 75/2

* SUBCONTRACTED TO OTHER LABORATORY / ** SAMPLES ANALYSED AT THE CHESTER LABORATORY

SCHEDUL	E METHOD	TEST NAME	TOTAL
x	HPLC	Speciated Phenols by HPLC	12

-

	08-806318-50013 BH8 08-806318-50014 RC5 08-806318-50015 GW2 08-806318-50015 GW2				08-806318-S0005 BH1	ериелера и оптиор А	UKAS Accredited [Testing Laboratory] No. 1291	Meth	p					Va	Int
	BH8 - 5497 RC5 - 5499 GW2 - 5501 GW5 - 5504	BH2 - 5495 BH5 - 5496	Blank	RC6a - 5167 BH9 - 5168	BH1/1 5166	Sample Identity	1g Laborator	Method Detection Limit	Detection Method					Validated	Interim
	20/10/2008 20/10/2008 20/10/2008 20/10/2008	20/10/2008 20/10/2008 20/10/2008	06/10/2008	06/10/2008	06/10/2008	Other ID	y] No. 1291	_	thod	(of firs	Date of Receipt 03/11/2008		Ref Nu		
	60.01 60.01	60.01 60.01	60.01 0.01	-0.01	<0.01	IortiriqeN t		<0.0:mg/t	HPLC	(of first sample)	teceipt	Client	Ref Number: 08-B06318/01		
2. 1. 1. 1.	<0.01 <0.01 <0.01	10'05 10'05	<0.01	10'0y	10.0>	2- Isopropyl Phenol		<0.01mg/l	HPLC		03/11/2	Client: EPA (Kilkenny)	08-B06		-
- 14 - E	<0.01 <0.01 <0.01	<0.01	<0.01	<0.01	<0.01	2,3,5 -Trimerthyl Phenol		<0.01mg/l	HPLC		800	lkenny)	318/01		ALco
2 - 202 - 20	<0.01 <0.01	<0.01	<0.01	<0.01	<0.01	Catechol		<0.01mg/T	HPLC						ALcontrol Laboratories
	0.01 20'0 20'0	0.03	0.02	0.02	0.04	Phenol		<0.01mg/1	HPLC					Table	l Lab
		~0.01 ~0.01	~0.01	<0.01	<0.01	Resorcinol		<0.01mg/l	HPLC					Table Of Results	orato
	10.01 10.02 10.02	<0.01	<0.01	10'00	<0.01	Total Cresols		<0.01mg/l	HPLC					sults	ories]
	0.01 0.02	0.02 0.02	0.02	000	0.04	aloneria IstoT		<0.01mg/	HPLC				6	0	Ireland
	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01	<0.01	slonalyX listoT		<0.01mg/1	HPLC	Client Ref: 75/2	Client Contact: Jean Smith	Location:	Sample Type: WATER		ıd
Υ.					-					f: 75/2	t: Jean Smith	10	: WATER		
					-								a Î		
														page4	/6

Printed at 14:41 on 13/11/2008

Checked By : Dylan Halpin

* SUBCONTRACTE[] O OTHER LABORATORY / ** SAMPLES ANALYSED AT THE CHESTER LABORATORY

APPENDIX

- Results are expressed as mg/kg dry weight (dried at 30°C) on all soil analyses except for the following: NRA Leach tests, flash point, and ammoniacal N₂ by the BRE method, VOC, PRO, Cyanide, Acid Soluble Sulphide,TPH by IR, OFGs and SEM.
- Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. A sub sample of all samples received will be retained free of charge for one month for soils and one month for waters (sample size permitting), but may then be discarded unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, an asbestos screen is done in-house on soils and if no fibres are found will be reported as NFD no fibres detected. If fibres are detected, then identification and quantification is carried out by ALcontrol Technichem or Alcontrol Shutlers in the UK. If a sample is suspected of containing asbestos, then drying and crushing will be suspended on that sample until the asbestos results are known. If asbestos is present, then no analysis requiring dry sample are undertaken.
- If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample – similarly, if a headspace is present in the volatile sample.
- 8. NDP No Determination Possible due to insufficient/unsuitable sample.
- Metals in water are performed on a filtered sample, and therefore represent dissolved metals – total metals must be requested separately.
- A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

Last updated February 2005

Appendix D

Ground Water Results

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Report of: Report to: Report date:		nalysis of land Vaterford Cour 6/06/08	Ifill site sample(s) hty Council	
	-		Course and the second sec	ramore, Co. Waterford
Ref	ference No:	N0075-01		
			1/1, Tramore landfill site nate monitoring point Date received:	- W0075-01 BH1/1 - 02/04/2008
		Start/Er	2801700 Groundwater Clear sample Jim McGarry 15:58 Final Report	
Pa	rameter	Units	Limits	
F	Depth of Borehole	m		4
F	Water Level	m		2.6
F	Temperature	*C		10.0
F	Dissolved Oxygen	% Saturation		9.1
	pН	pH		6.9
	Conductivity	µS/cm		1470
-	Ammonia	mg/l N		18
	Chloride	mg/l Cl		156
	Nitrite	mg/l N		<0.001
	Ortho-Phosphate	mg/I P		0.22
	Total Oxidised Nitrogen	mg/l N		<0.1
	Chemical Oxygen Demand	mg/I O2		30
F	Biochemical Oxygen Dema	and mg/i O2		0.9
	Total Organic Carbon	mg/I C		nm
-	Total coliforms	No/10D mi		150
-	E Colt	per 100ml		0
F	Aluminium	ug/l	2	<250
-	Antimony	ug/l		<50
F	Arsenic	ug/l		<50
F	Barium	ug/l		<300
1	Beryllium	ug/l		<50

Report number:KK2800746/1

		Laboratory Ref:	2801700
		Type of sample:	Groundwater
		Sampling point:	Clear sample
:		Sampled by:	Jim McGarry
		Time Sampled:	15:58
	Start/F	End - Dates of Analysis:	
	ouio	Status of results:	Final Report
arameter	Units	Limits	
Boron	ug/l		<500
Cadmium	ug/l		<50
Calcium	mg/l		112
Chromium	идЛ		<50
Cobait	ug/i		<50
Copper	ug/l		<50
Iron	ug/l		3849
Lead	ug/l		<50
Magnesium	mg/l		<50
Manganese	ugA		607
Molybdenum	ug/l		<50
Nickel	ug/l		<50
Potassium	mg/l		<50
Selenium	ug/l		<50
Silver	ug/l		<50
Sodium	mg/l		99.2
Thallium	ug/l		<50
Thorium	ug/i		nm
Tin	ug/l		<100
Uranium	ug/l		<50
Vanadium	ug/l		<50
Zinc	ug/l		<300

Comments:

1) Results highlighted and in bold are outside specified limits.

All Motals Analysed in the EPA Dublin Laboratory, Cyanide Analysed in the EPA Cork Laboratory, Phenols Analysed in the EPA Castlebar Laboratory. 2)

- 3) nm "Not measured"
 4) nd "Non detected"
 6) nt "No time" Time not recorded
 6) thtc "Too numerous to count"
 7) F "Field measured parameters"

Signed: (A

Michael Neill, Regional Chemist

16/6/08 Date:

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Re	eport of: eport to: eport date:		andfill site sam ounty Council	ple(s)		
	cility: ference No:		te Disposal Site e & Tramore Bur		Co. Waterford	
Dat	te collected:	02/04/2008	Date receiv	red: 02/04/	2008	
		Start/End	Laboratory Ref: Type of sample: Location code: Sampling point: Sampled by: Time Sampled: - Dates of Analysis: Status of results:	2801701 Groundwater WST-W0075-01-BH2 Borehole under construction Jim McGerry 12:50 / Final Report	2801702 Groundwater WST-W0075-01-RC4 Clear sample Jim McGarry 12:15 Final Report	
Par	ameter Depth of Borehole	Units	Limits		16	
F	Water Level	m	CAR	-	12.5	-
-	Temperature	°C			13.2	
=	Dissolved Oxygen	% Saturation			32.2	
-	pH	pH			7.1	
	Salinity	%			33.0	
_	nmonia	mg/i N		-	4.7	
7	Chloride	mg/l Cl			>700	
	Total Oxidised Nitrogen	mg/I N	ere al alconomica de		<0.1	
Π	Total Organic Carbon	mg/I C			3.2	
-	Total coliforms	No/100 ml	- 		0	-
-	E Coli	per 100ml		-	0	
	Aluminium	ug/l	1000	· · ·	<250	
	Antimony	ug/l			<50	
	Arsenic	ug/l			55	
	Barium	ug/l			<300	
	Berylöum	ug/i			<50	
	Boron	ug/l		•	3686	
	Cadmium	ug/l		•	<50	
	Calcium	mg/l		•	409	
	Chromium	ug/i	01-0220-0235		<50	
	Cobalt	ug/l			<50	
	Copper	ug/l		•	258	
	Iron	ug/l			1059	

		Laboratory Ref:	2801701	2601702	a a a a a a a a a a a a a a a a a a a
		Type of sample:	Groundwater	Groundwater	
		Location code:	WST-W0075-01-BH2	WST-W0075-01-RC4	
2		Sampling point:	Borehole under construction	Clear sample	
		Sampled by:	Jim McGarry	Jim McGarry	
		Time Sampled:	12:50	12:15	
	Start/En	d - Dates of Analysis:	1		
		Status of results:	Final Report	Final Report	
rameter	Units	Limits			
Lead	ug/l	11.5	•	<50	
Magnesium	mg/l			998	
Manganese	ug/l		· ·	5392	
Molybdenum	ug/i		-	<50	
Nickel	ug/l		•	<50	
Potassium	тдл		-	309	
Selenium	ug/l		*	174	
Silver	ug/i			<50	
Sodium	mg/l			11969	
Thaillum	ug/l			<50	
Thorium	ugЛ	-	•	nm	
Tin	ug/i			<100	
Uranium	ug/l		•	<50	
Vanadium	ug/i	k		57.8	100.000
Zinc	ug/l			<300	

Comments:

The sampling pump could not be mounted on borehole RC4.

1) Results highlighted and in bold are outside specified limits.

All Metals Analysed in the EPA Dublin Laboratory, Cyanide Analysed in the EPA Cork Laboratory. Phenois Analysed in the EPA Castlebar Laboratory. 2)

nm nd

nt

"Not measured" "None detected" "No time" - Time not recorded "Too numerous to count" "Field measured parameters" 3) 4) 5) 6) 7) tntc F

Signed:

18 Midhael Neill, Regional Chemist

16 6 08 Date:

Report number:KK2800747/1

1.0 1000

Roga Emissional Protection Agents		Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny
Report of:	Analysis of landfill site sample(s) Waterford County Council	ample(s) cil
Report date:	16/06/08	C ::
Facility:	Tramore Waste Disposal Site	
Reference No:		Site Burrows, Tramore, Co.
	W0075-01	6/06/08 Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford W0075-01

ł

*

Report number:KK2800765/1

Page 1 of 4

÷

.

Report number:KK2800765/1

Caldum mg/l	Cadmium ug/I	Boron ug/t	Beryllium ug/i	Barium ug/i	Arsenic ug/l	Antimony ug/l	Aluminium ug/l	E Coli per 100ml	Total coliforms No/100 mll	Total Organic Carbon mg/l C	Total Oxidised Nitrogen mg/l N	Ortho-Phosphate mg/i P	Nitrite mg/l N	Chloride mg/l Cl	Ammonia mg/i N	Salinity 💑	Conductivity µS/cm	pH pH	F Dissolved Oxygen % Saturation	F Temperature °C	F Water Level m	F Depth of Borehale In			Start/End						
																							Limits	Status of results:	Start/End - Dates of Analysis:	Time Sampled:	Sampled by:	Sampling point:	Location code:	Type of sample:	Laboratory Ref:
339	<50	2266	<50	<300	53.6	<50	<250	0	3106	26	11	0.075	0.003	659	0.71	30.7	48700	7.7	97.8	11.3	am	4.4		Final Report		15:16	Jim McGarry	Clear sample	WST-W0075-01-BH5	Groundwater	2801739
117	<50	<500	<50	-300	-90	-30	<250	0	1	1.9	0.2	0.006	<0.001	409	0.18	2.2	4310	7.5	16,8	11.9	5.2	7.2		Final Report		14:49	Jim McGarry	Light brown colour	WST-W0075-01-BHB	Groundwater	2801740
<50	\$5	<500	¢	-300	4	e e	<250	1	4	1.5	0.1	0,006	0.006	149	0.19		5601	7.4	13.7	12.7	5,4	σ		Final Report		14:10	Jim McGarry	Brown colour	WST-W0075-01-BH9	Groundwater	2861741
	L						,									,								ниа кероп	; -	, ma	Jim McGarry	discontinued	WST-W0075-01-8H10	Groundwater	24/1007
																								rinai kepon		10.00	Jim McGarry	access the burehole	WSI-WUU/D-UI-RCD	Groundwater	

Page 2 cf 4

		Laboratory Ref.	2801739	2801740	2 741	2801742	42
		Type of sample:	Groundwater	Groundwater	5	Groundwater	Groundwater
		Location code:	WST-W0075-01-8H5	WST-W0075-01-BH8	WST-W0075-01-BH9	WST-W0075-01-BH10	WST-W0075-01-RC5
ĩ	3	Sampling point:	Clear sample	Light brown colour	Brown colour	oiscontinued	no sample - unable to access the borehole
		Sampled by:	Jim McGany	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGarry
		Time Sampled:	15:16	14:49	14:10	nm	16:00
	Start/En	Start/End - Dates of Analysis:				ł.	
		Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report
Parameter	I Units	Limits					
Chromlum	l/gu		<50	<50	<50		
Cobalt	l/gu		<50	<50	<50		
Copper	1/gu		226	<50	<50		•
lion	liðn		<500	<500	<500		-
Lead	l/6n		<50	<50	<50		3
Magnesium	ng/i		068-	57	<50		
Manganese	lyGn		<500	<500	619		
Molybdenum	NGn		<50	<50	65>		
Nickel	l/gu		\$	<50	<50		
Potassium	1/5u		291	<50	<50		
Selenium	l/Bn		187	<50	<50		-
Silver	ljőn		<50	<50	<50		
Sodium	l/gm		8113	530	105	10	
Thallium	ng/1		<50	<50	<50		
Thorium	ľĝu		INU	nn	un		-
Tu	līgu		<100	<100	<100		
Uranium	líðn		-50	<50	<50	1	
Vanadium	ľĝu		53.5	<50	<50	1940 1940	5.5
Zinc	ngr		<300	0002	<50		1. C.

Comments:

- Results highlighted and in bold are outside specified limits.
 All Metals Analysed in the EPA Dublin Laboratory. Cyanide Analysed in the EPA Cork Laboratory. Phenols Analysed in the EPA Castlebar Laboratory.

- 3) nm "Not measured" 4) nd "None detected" 5) nt "No trna"- Time not recorded 6) trite "Too numerous to count" 7) F "Fleid measured parameters"

Signed: Utam Michael Neill, Regional me 19

Date

20/9/31

Report number.KK2800765/1

Page 4 of 4 ł,

		Facility: Reference No:	Report of: Report to: Report date:	R R R R R R R R R R R R R R R R R R R
03/04/2000	AUCU FUICE	Tramore Waste Tramore Intake W0075-01	Analysis of landfill site san Waterford County Council 16/06/08	Environm Regional Seville Lo Kilkenny
	Date received:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, W0075-01	Analysis of landfill site sample(s) Waterford County Council 16/06/08	Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny
	03/04/2008	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford W0075-01		Agency ad,

ł

•

Report number:KK2800766/1

÷

Page 1 of 4

Report number:KK2300766/1

Ð
еš-
Ū.
No.
-
×,

		Laboratory Ref: Type of sample:	2801744 Groundwater	2801745 Groundwatar WST-W0075-01-	2801746 Groundwater WST-W0075-01-	2801747 Groundwater WST-W0075-01-	2801748 Groundwater WST-W0075-0
		Location code:	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	WST-W0075-01- GW4	GWS
		Sampling point Sampled by:	Grey, muddy sample Jim McGarry	no sample Jim McGarry	no sample Jim McGarry	Jim McGarry	Jim McGany
		Time Sampled:	16:00	15:26 /	15:30	13:49 /	14:28
	Start/En	Start/End - Dates of Analysis: Status of results:	Final Report	/ Final Report	Final Report	Final Report	Final Report
Parameter	Units	Limits	63				4.3
rebrit of potenting			4.6				2.7
r Water Level	5		11.5				11.4
remperature	t/ Columbian		58.C				93.9
r Uissolved Oxygen	nH		7.7				6.4
pri	uS/cm		17420				921
Conductivity	R.		10.1				
Samue	mo/l N		0.59			,	0.11
Chiorida	ma/ICI		596				100
Nitrile	N l/Bu		0.027				<0.001
Ortho-Phosphate	mg/l P		0.053			,	<0.006
Total Oxidised Nilrogen	N 1/6m		0.5				2
Total Organic Carbon	mg/IC		16.6	0		,	2.5
Total coliforms	No/100 ml		>2419				
E Coli	per 100ml		0	•			<250
Aluminium	1,Bn		<250				-50
Antimony	ŋĝn		<50				~60
Arsenic	l,Bn		<50	1¢			005
Barium	ng/l		<300				
Beylium	ug/s		<50				
Boron	N ⁶ n		667				~~~~
Cadmium	Ngu		\$0				583
Calcium	Ngm		145		,		

	222	
- 12	30	
14	£	
	<u> </u>	
- 1		
100	-	
	<u> </u>	
	з.	
2.3	2	
22	-	
	-	
	er.	
	÷.	
	16	
	- 1	
	~	
	-	
	£2	
	2	
	œ	
	0	
	0	
	-	
	÷.	
	*	
	10.0	

	Start/En	Location code: Sampling point: Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results:	WST-W0075-01- GW1 Grey, muddy sample Jim McGarry 16:00	WST-W0075-01- GW2 no sample Jim McGarry 15:26 / Final Report	WST-W0075-01- GW3 no sample Jim McGarry 15:30 / Final Report	WST-W0075-01- GW4 no sample Jim McGarry 13:49 / Final Report	GW5a - muddy sample Jim McGarry 14:28 Final Report
	otarven	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Repo
	Units	Limits					-50
Chromium	l/Gn		60				ŝ
Cobalt	ljān		-50				
Capper	l/Bn		58.5				
Iron	hBn		<500				
Lead	Ngu		450				50
Magnesium	mg/l		209				-50
Mandanese	lyon		<500				848
Molybdenum	NGu -		<50				e e
Nickel	1/6n		-50				San
Potassium	ng/l		70.9				ŝ
Selenium	l/gu		<50				60
Silver	1/60		<50				60
Sodium	l/6w		2854				/4.5
Thalium	ligu		<50				
Thorium	ľ/gu		tutu				
Tin	l/6n		<100				~100
Uranium			<50	+		,	- COL
Vanadium	1/Ĝn		<50				200
COMPANY OF CALLS	l/5n h/ôn		-200				

Page 3 of 4

Report number:KK2800766/1

14

Page 4 of 4

2

No footvalve/tubing present in boreholes GW2, GW3 and GW4.

Comments:

Results highlighted and in bold are outside specified limits.

k

.

2) All Metals Analysed in the EPA Dublin Laboratory, Openide Analysed in the EPA Cork Laboratory, Phenols Analysed in the EPA Castleber Laboratory.

3) nm "Not cheatsured" 4) nd "Nore detected" 5) nt "No time" - Trive not recorded 6) tritt "Too numerous to count" 7) F "Fleich measured parameters"

Signed: AND AND (Jan <

1

Date:

16/6/08

Miphael Neill, Regional Chemist

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	07/08/08

Facility: **Tramore Waste Disposal Site** Tramore Intake & Tramore Burrows, Tramore, Co. Waterford W0075-01

Reference No:

Date collected: 10/06/2008 Date received: 10/06/2008

			Laboratory Ref:	2802941	2802942	
•			Type of sample:	Groundwater	Groundwater	
			Location code:	WST-W0075-01-BH2	WST-W0075-01-RC4	
			Sampling point:	Clear with a lot of sediment	Clear with sediment	
			Sampled by:	Jim McGarry	Jim McGarry	
			Time Sampled:	15:55	15:15	
		Start/En	d - Dates of Analysis:			
			Status of results:	Final Report	Final Report	
	rameter	Units	Limits			1
	Depth of Borehole	m		6.9	16	
	Water Level	m		3.4	12.5	
	Temperature	°C		15.6	15.3	· · · · · ·
	Dissolved Oxygen (as %Sat)	% Saturation		4.2	21.8	· · · · ·
	рН	ρΗ		7.3	7.4	
	Conductivity @25°C	µ\$/cm		8230	ា៣	
	, alinity	%0		4.5	33.0	
_	Ammonia	mg/l N		150	5.1	
	Chloride	mg/I CI		456	nr	
	Nitrite (as N)	mg/l N		<0.001	<0.001	
	ortho-Phosphate (as P)	mg/I P		<0.006	<0.006	
	Total Oxidised Nitrogen (as N)	mg/I N		<0.1	<0.1	· · · ·
	Fluoride	mg/l F		1.57	3.4	
	Sulphate	mg/i SO4		72.3	1442.1	
	Total Organic Carbon	mg/I C		33.0	3.9	
	Total coliforms	No/100 ml		>2419	0	
	E Coli	per 100ml		0	0	
	1,1,1,2-Tetrachloroethane	µg/l		<0.5	<0.5	
	1,1,1-Trichloroethane	µg/l		<0.5	<0.5	
	1,1,2,2-Tetrachloroethane	µg/∣		<0.5	<0.5	
	1,1,2-Trichloroethane	μg/l	· · · · ·	<0.5	<0.5	
	1,1-Dichloroethane	µg/l		<0.5	<0.5	· · · · · · · · · · · · · · · · · · ·
	1,1-Dichloroethene	µg/l		<0.5	<0.5	
	1,1-Dichloropropene	μg/l		<0.5	<0.5	

Report number:KK2801256/1

				2202044	0000040	
]			Laboratory Ref:	2802941	2802942	
			Type of sample:	Groundwater	Groundwater	
			Location code:	WST-W0075-01-BH2	WST-W0075-01-RC4	
			Sampling point:	Clear with a lot of sediment	Clear with sediment	
			Sampled by:	Jim McGarry	Jim McGarry	
			Time Sampled:	15:55	15:15	
		Start/Er	nd - Dates of Analysis:			
			Status of results:	Final Report	Final Report	
Pau	ameter	Units	Limits			
	1,2,3-Trichlorobenzene	µg/l		<0.5	<0.5	
	1,2,3-Trichloropropane	µg/l		<0.5	<0.5	
	1,2,4-Trichlorobenzene	µg/l		<0.5	<0.5	
	1,2,4-Trimethylbenzene	µg/l		<0.5	<0.5	
	1,2-Dibromo-3-Chloropropane	µg/l		<0.5	<0.5	
	1,2-Dibromoethene	µg/l		<0.5	<0.5	
	1,2-Dichlorobenzene	µg/)		<0.5	<0.5	
	1,2-Dichloroethane	µg/l		<0.5	<0.5	
	1.2-Dichloropropane	µg/l		<0.5	<0.5	
Γ	,5-Trimethylbenzene	µg/l		<0.5	<0.5	
	1,3-Dichlorobenzene	µg/l		<0.5	<0.5	· · ·
	1,3-Dichloropropane	µg/l		<0.5	<0.5	
-	1,4-Dichlorobenzene	µg/l	······································	<0.5	<0.5	
⊢	2,2-Dichloropropane	µg/I		<0.5	<0.5	
	2-Chloratoluene	µg/I		<0.5	≤0.5	
	4-Chlorotoluene	µg/l		<0.5	<0.5	
	4-Isopropyltoluene	µg/l		<0.5	<0.5	
F	Benzene	µg/l		<0.5	<0.5	
	Bromobenzene	µg/l		<0.5	<0.5	
	Bromochloromethane	µg/l		<0.5	<0.5	
	Bromodichloromethane	µg/l		<0.5	<0.5	
	Bromoform	µg/1		<0.5	<0.5	<u> </u>
┝	Bromomethane	μg/l		<0.5	<0.5	+
┝	1,2-Dichloroethene	μg/l		<0.5	<0.5	· · · · · · · · · · · · · · · · · · ·
H	Ic-1,3-Dichloropropene	µg/l		<0.5	<0.5	
-	Carbon Tetrachloride	µg/l		<0.5	<0.5	
⊢	Chlorobenzene	µg/l		<0.5	<0.5	
-	Chloroform	μg/l		<0.5	<0.5	. <u> </u>
⊢	Dibromochloromethane	µg/l		<0.5	<0.5	<u> </u>
 	Dibromomethane	μg/l		<0.5	<0.5	
┝	Dichlorodifluoromethane	µg/i		<0.5	<0.5	
\vdash	Ethylbenzene	μg/i		<0.5	<0.5	
\vdash	Hexachlorobutadiene	hð\l		<0.5	<0.5	
-	Isopropylbenzene			<0.5	<0.5	
-	m,p-Xylene	μg/I μg/I	· · · · · · · · · · · · · · · · · · ·	<0.5		·
\vdash	Methylene Chloride				<0.5	
		µg/l		<0.5	<0.5	· · · · · ·
	Naphthalene	µg/l	· ·	<0.5	<0.5	
	n-Butylbenzene	µg/l		<0.5	<0.5	
	n-Propylbenzene	µg/l		<0.5	<0.5	
	o-Xylene	µg/I	L	<0.5	<0.5	1

Page 2 of 4

		Laboratory Ref:	2802941	2802942	
		Type of sample:	Groundwater	Groundwater	
		Location code:	WST-W0075-01-BH2	WST-W0075-01-RC4	
		Sampling point:	Clear with a lot of sediment	Clear with sediment	
		Sampled by:	Jim McGarry	Jim McGarry	
		Time Sampled:	15:55	15:15	
	Start/En	d - Dates of Analysis:			
		Status of results:	Final Report	Final Report	
rameter	Units	Limits			
sec-Butylbenzene	μg/l	Linus	<0.5	<0.5	
Styrene	µg/l		<0.5	<0.5	
t-1,2-Dichloroethene	hā\j		<0.5	<0.5	
t-1,3-Dichloropropene	µg/l		<0.5	<0.5	
tert-Butylbenzene	µg/l		<0.5	<0.5	
Toluene	μg/l		<0.5	<0.5	
Trichloroethene	µg/l		<0.5	<0.5	
Trichlorofluoromethane	µg/l		<0.5	<0.5	l
1. /inyl Chloride	µg/l		<0.5	<0.5	
Aluminium	ug/l		<250	<2500	
Antimony	ug/l		<10	<100	
Arsenic	ug/l		27.2	<100	
Barium	ug/l		631	<600	· · · · · · · · · · · · · · · · · · ·
Beryilium	ug/l	· · · ·	<10	<100	
Boron	ug/l		2117	4852	
Cadmium	ug/l		<10	<100	
Calcium	mg/l		212	532	
Chromium	ug/l		10.5	<100	t
Cobalt	ug/l		<10	<100	
Copper	ug/l		16.8	126	
Iron	ug/l		2862	<1000	
Lead	ug/l		<10	<100	
Magnesium	mg/l		184	1263	
anganese	ug/ł		1161	<1000	
Mercury	ug/l		<5	<5	
Molybdenum	ug/l		<10	<100	
Nickel	ug/l		<10	<100	
Potassium	mg/l		171	386	
Selenium	ug/l		21.9	185	1
Silver	ug/l		<10	<100	
Sodium	mg/l		1104	10831	
Thallium	ug/i		<10	<100	+
Tin	ug/l		<20	<200	
Uranium	ug/l		<10	<100	1
Vanadium	ug/l		12	<100	
Zinc	ug/l		<60	<600	

.....

Page 3 of 4

_

Comments:

Conductivity and chloride are not reported where high salinity causes interference with the test method.

1) Results highlighted and in bold are outside specified limits.

•

- All Metals Analysed in the EPA Dublin Laboratory, Z} Cyanide Analysed in the EPA Cork Laboratory. Phenols Analysed in the EPA Castlebar Laboratory.
- 3) nm "Not measured"
- 4) nd "None detected"
- nt "No time" - Time not recorded
- 5) 6) 7) thte "Too numerous to count" "Field measured parameters"
- F

2.

Signed: Michael Neill, Regional Chemist h

Date:

218/05

Report number: KK2801279/1

<0.5	
<0.5 <0.5	
<0.5 <0.5	
<0.5 <0.5	
<0.5 <0.5	
<0.5 <0.5	
<0.5 <0.5	
<0.5 <0.5	
<0.5 <0.5	
<0.5 <0.5	
<0.5 <0.5	
<0.5 <0.5	
<0.5	<0.5
A0.5	<0.5
6.0 C 0	
Final Report Final Report	
13:40 16:24	
iny Jin	Jim McGarry Jim
Clear sample Brown colour	
WST-W0075-01- WST-W0075-01- BH5 BH8	WST
	Groundwater
2803000 280	

Page 3 of 6

-Report number:KK2801279/1

WST-W0075-01- RC6ary Jim RC6ary Jim McGary Jis 06 WST-W0075-01- BH5 WST-W0075-01- BH5 Brown colour Jim McGary Jim McGar
Groundwater Groundwater Groundwater Groundwater WST-W0075-01- WST-W0075-01- WST-W0075-01- BH9 Clear sample Erown colour BH9 Brown colour Jim McGarry Jim McGarry Jim McGarry Jim McGarry 13:40 Final Report Final Report Final Report 60.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Groundwater RC6an Groundwater WST-W0075-01- RC6any Groundwater WST-W0075-01- Brown colour Groundwater WST-W0075-01- WST-W0075-01- WST-W0075-01- WST-W0075-01- Brown colour Groundwater WST-W0075-01- WST-W0075-01- Brown colour Final Report Final Report 13:40 Final Report 6:24 Final Report 11:54 Final Report 6:24 Final Report 11:54 -0.5
Groundwater Groundwater Groundwater Groundwater WST-W0075-01- BH8 Brown colour BH9 Clear sample Erown colour Im McGarry Jim McGarry Jim McGarry 13:40 16:24 Final Report Final Report Final Report Final Report <
Groundwater WST-W0075-01- Jim McGarry 11:54 Final Report <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Groundwater BH10 Borehole Sisconnected Jim McGarry 12:00 Final Report
Groundwater WST-W0075-01- Brown colour Jim McGarry 14:40 Final Report <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 4 of 6

ı.

Report number:KK2801279/1

_

																							Par	•							
Nickel	Molybdenum	Mercury	Manganese	Magnesium	Lead	iron	Coppe"	Cobalt	Chromium	Calcium	Cadmium	Вогол	Beryllium	Barium	Arsenic	Antimony	Aluminium	Vinyl Chloride	Trichlorofluoromethane	Trichloroethene	Toluene	tert-Butylbenzene	Parameter								
l/gu	lj	l,6n	ľ, gn	ng/t	l,6n	l;ên	l/Bn	l,6n	l,ñn	/gm	l;bn],6n	l/6n	t/6n	lígn	l,6n	ligu	ا ^ر وµ	μgi	l'Bri	l/6rt	l/6rl	Units		Start/End - D						
																							Limits	Status of results:	Start/End - Dates of Analysis:	Time Sampled:	Sampled by:	Sampling point:	Location code:	Type of sample:	Laboratory Ref:
<10	<10	<5	039	27	<10	9367	, <10	<10	<10	141	<10	462	<10	265	<10	<10	<250	<0.5	<0.5	<0.5	<0.5	<0.5		Final Report		12:22	Jim McGarry	Clear sample	WST-W0075-01- BH1/1	Groundwater	866
<10	<10	ß	960	28.4	<10	1491	<10	<10	<10	75.3	<10	94,3	<10	<60	<10	<10	781	<0.5	<0.5	<0.5	<0.5	<0.5		Final Report		15:06	Jim McGarry	Brown colour with sediment	WST-W0075-01- RC6a	Groundwater	2802999
<100	<100	ß	<1000	938	<100	000:>	<100	<100	<100	357	<100	3657	<100	<600	<100	<100	<2500	<0.5	<0.5	<0.5	1.3	<0.5		Final Report		13:40	Jim McGarry	Clear sample	WST-W0075-01- BH5	Groundwater	2803000
3.2	<1.0	6	509	54.7	1,4	1023	7.9	1_1	2.3	133	<1.0	135	<1.0	69.4	3.5	<1.0	547	<0.5	<0.5	<0,5	<0.5	<0.5	2	Final Report	ı	16:24	Jim McGarry	Brown colour	WST-W0075-01- BH8	Groundwater	28(,)
1.7	<1.0	Ĝ	955	23.4	4.0	723	2.8	<1.0	1.1	54.8	<1.0	69.1	<1.0	48.2	<1.0	<1.0	496	<0.5	<0.5	<0.5	<0.5	^(L) G		Final Report		11:54	Jim McGarry	Brown colour	WST-W0075-01- BH9	Groundwater	2803002
1					-	,	1		1		1	L						-	1		•			Final Report		12:00	Jim McGarry	Borehole	BH10	Groundwater	2803003
<100	<100	Ĝ	<1000	1038	<100	6395	<100	<100	<100	647	<100	1475	<100	<600	<100	UDL>	<2500	<0.5	<0.5	<0.5	0.6	-0.0	No n	Final Report		14:40	Jim McGarry	Brown colour	RC5	Groundwater	2803004

Page 5 of 6

Report number:KK2802128/1	Date collected:	Facility: Reference No:	Report of: Report to: Report date:	epo
	06/10/2008	Tramore Wast Tramore Intake W0075-01	Analysis of landfill site san Waterford County Council 14/01/09	Environm Regional Seville Lo Kilkenny
· · }	Date received:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, T W0075-01	Analysis of landfill site sample(s) Waterford County Council 14/01/09	Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny
	05/10/2008	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford W0075-01		Agency Id,
** 2				

Report number: KK2302128/1

-	Be	Be	Ba	Ba	An	A	3	3	à	AL	То	m	To	To	C7	An	8	pH	FDIS	F Te	FWa	F De	Parameter					-		
	Beryllium	Beryllium	Barium	Barium	Arsenic	Arsenic	Antimony	Antimony	Aluminium	Aluminium	Total coliforms	E Coli	Total Organic Carbon	Total Oxidised Nitrogen (as N)	Chloride	Ammonia	Conductivity @25°C		Dissolved Oxygen (as %Sat)	Temperature	Water Level	Depth of Borehole	leter							
	l/gu	ng/l	Ngu	Ng/I	ug/I	ug/I	l/gu	ug/I	l/gu	ug/I	No/100 ml	per 100ml	mg/l C	N VGu	mg/i Cl	N Ngm	µS/cm	рн	% Saturation	°	э	я	Units		Start/End					
																							Limits	Status of results:	Time Sampled: Start/End - Dates of Analysis:	Sampled by:	Sampling point:	Location code:	Type of sample:	Laboratory Ref:
	6		270		6		6		<250	ł	32	\$	nn	<0.1	167	22	1652	7.C	16.7	14,1	2.5	6'E		Final Report	16:03	Jim McGarry	Clear sample	WST-W0075-01-BH1/1	Groundwater	2805166
	\$		240		~5		\$	•	<250	•	143	2	nn	0.1	186	12	1083	7.8	79.3	14.2	4.4	5.3		Final Report	1619	Jim McGarry	Clear sample with mud	WST-W0075-01-RC6a	Groundwater	2805167
~50	×	S		102		<5	μ.	6		<250	\$	<2	a.u	0.1	182	0.58	056	7.4	16.9	13.2	5.6	6-		Final Report	14:00	Jim McGarry	Clear sample with mud	WST-W0075-01-BH9	Groundwater	2. 168
3610		6	1	100		38.5		5.4		<250	2	~2	mm	0.2	>4921	20	51000	7.5	28.6	13.3	12.6	15.3		Final Report	12:50	Jim McGarry	Clear sample	WST-W0075-01-RC4	Groundwater	2805169

Page 2 of 5

Potassium	Nickel	Nickel .	Molybdenum	Molybdenum	Manganese	Manganese	Magnesium	Magnesium	Lead	Lead	Iron	Iron	Copper	Copper	Cobalt	Cobalt	Chromium	Chromium	Calcium	Calcium	Cadmium	Cadmium	Baron	Parameter						
/bw	ug/i	μgu	lígu	ţ6n	lígu	ngu	ng/l	hõw.	líðn	l/gu	l/Bn	l/gu	(Bn	lígn	lığı	ug/	l/gu	lığı	l/gm	l/đuu	lığı	l,ĝn	rgu	Units	Start/En					
								6																Limits	Start/End - Dates of Analysis: Status of results:	Time Sampled:	Sampled by:	Sampling point:	Location code:	Type of sample:
	7.7		6		870		42	•	A		15000		<50		G		22		180		G		320		Final Report	16:03	Jim McGarry	Clear sample	WST-W0075-01-BH1/1	Groundwater
	5	•	5.9		740		38		\$		13000	1	<50	•	G		22		160		\$		270		Final Report	16:19	Jim McGarry	Clear sample with mud	WST-W0075-01-RC6a	Groundwater
7.3		6		6		1040		35.4		\$		475		<50		ŝ		6.1		67.2	•	ŝ			Final Report	14:00	Jim McGarry	Clear sample with mud	WST-W0075-01-BH9	Groundwater
425		6	•	13,4		7290		1200	*	G		3450		223	•	5.5		41.8	•	555		Ġ.			Final Report	12:50	Jim McGarry	Clear sample	WST-W0075-01-RC4	Groundwater

Uranum Uranum Vanadium Vanadium ug/i ug/i						Tin ug/l	Tin ug/l	Thalium ug/l	Thailum ug/l	Sodium mg/i	Sodium mg/l	Selenium ug/l	Selenium ug/l	Potassium mg/l	Parameter Units	Start/E						
															Limits	Start/End - Dates of Analysis: Status of results:	Time Sampled:	Sampled by:	Sampling point:	Location code:	Type of sample:	Laboratory Ref:
		16		-5		110		6	•	210	-	â		41		Final Report	16:03	Jim McGarry	Clear sample	WST-W0075-01-BH1/1	Groundwater	2805166
~100		14	1	۵		110	•	ß	•	180		\$		36		Final Report	15:19	Jim McGarry	Clear sample with mud	WST-W0075-01-RC6a	Groundwater	2805167
	<100	•	13		\$		301		-5		210		G			Final Report	14:00	Jim McGarry	Clear sample with mud	WST-W0075-01-BH9	Groundwater	2, 168
	<100	•	689		15.5		107	÷	-5		10400	1	167			Final Report	12:50	Jim McGarry	Clear sample	WST-W0075-01-RC4	Groundwater	2805169

Report number KK2802128/1

Comments:

- Fesuits highlighted and in bold are outside specified limits.
 All Metals Analysed in the EPA Dublin Laboratory. Cyanide Analysed in the EPA Cork Laboratory Phenols Analysed in the EPA Castlebar Laboratory.
 nm "Not measured"
 nd "None detacted"
 nut: "No numerous to count"
 F "Field measured parameters'
- 24225

Signed: Signed Date: 14-1-01

Report number:KK2802128/1

 $|h_{0}|^{\mu}$

7

Page 5 of 5

Report number:KK2602218/1	Date collected:	Facility: Reference No:	Report of: Report to: Report date:	epge insuma house of a second
	20/10/2008	Tramore Waste Disposal Site Tramore Intake & Tramore Burr W0075-01	Analysis of landfill site san Waterford County Council 14/01/09	
3	Date received:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford W0075-01	Analysis of landfill site sample(s) Waterford County Council 14/01/09	Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny
	20/10/2008	ramore, Co. Waterfr		Agency d,
		ord		,

×.

Page 1 of 4

		Laboratory Ref: Type of sample: Location code: Sampling point:	2805495 Groundwater WST-W0C75-01-BH2	2805496 Groundwater WST-W0075-01-BH5 Clear sample Jim McGamy	2, J497 Groundwater WST-W0076-01-8H8 Brown colour Jim McGarry	1-8H8 v
		Sampling point: Sampled by: Time Sampled:	Jim McGarry 16:30	Clear sample Jim McGarry 14:55		Brown colour Jim McGarry 13:55
	Start/Enc	Start/End - Dates of Analysis:				
		Status of results:	Final Report	Final Report		Final Report
Parameter	Units	Limits				
F Depth of Borehole	З		6.6	4.4		7
F Water Level	э		3	un.		6
F Temperature	°С		14.0	13.6		12.5
F Dissolved Oxygen (as %Sat)	% Saturation		6.8	73 3		30.8
pH	PI		7.2	7.6		7.6
Conductivity @25°C	µS/cm		4150			2860
Salinity	5			31.1		
Ammonia	N ://Buu		78	<0.01		<0.01
Chioride	mg/I CI		>79	>1006		>363
Total Oxidised Nitrogen (as N)	mg/i N		0.1	<0.1		0.2
Total coliforms	No/100 ml		54	4		4
E Coli	per 100mi		4	4	- 1	4
Aluminium	ng/l		<250	<260	- 1	<250
Antimony	l/Qu		-5	6		6
Arsenic	l/gu		G	n		6
Barium	l/ĝu		320	66	1	100
Beryllum	l/gu		6	G		\$
Boron	ug/l		1300	3400		<50
Cadmium	ug/l		\$	\$		6
Calcium	ng/l		190	490		120
Chromium	l/Qu		29	120		<10
Cobalt	hôn		<0.5	6		\$
Copper	l/Ĝn		<30	190		<30

Report number:KK2802218/1

Page 2 of 4

		Laboratory Ref. Type of sample: Location code: Sampling point: Sampled by:	2805495 Groundwater WST-W0075-01-BH2 Jim McGarry	2805496 Groundwaler WST-W0075-01-BH5 Clear sample Jim McGarry		5497 Groundwater WST-W0075-01-BH8 Brown colour Jim McGarry
	Start/Er	Time Sampled: Start/End - Dates of Analysis:	16:30	14:55		13:55
		Status of results:	Final Report	Final Report		Final Report
Parameter Iron	Units vg/l	Limits	2400	4300		230
Lead	l/gu		<5	5	- 1	G
Magnesium	l/Bw		130	1400	_ 1	57
Manganese	l/gu		960	1000	- I	620
Molybdenum	ng/1		-6	\$	_ 1	G
Nickel	l/gu		-5	\$		6
Polassium	ng/i		180	420	-	11
Selenium	l/Gn		\$	081	- 1	6
Sodium	Ngm		570	13000	S	440
Thallum	l,6n		6	\$		6
Tin	ug/I		<10	<10		<10
Uranium	(,6n		-5	\$		-5
Vanadium	lign		6	40		8
Zinc	li6n		<100	<100		79

-

	20/10/2008	Date received:	20/10/2008	Date collected:
			W0075-01	Reference No:
aterford	framore, Co. W	Tramore Waste Disposal Site	Tramore Waste	racility:
			0.14.4.5 TV TVD.05 4.4.5 4.5.4 5.4 5.4 5.4 5.4 5.4 5.4	
			14/01/09	Report date:
		unty Council	Waterford County Council	Report to:
		Analysis of landfill site sample(s)	Analysis of lar	Report of:
		NY Y	1.00	Constants and Protections Ages as
	ă	Regional Inspectorate Seville Lodge, Callan Road	Regior	20
	Agency	Environmental Protection Agency	Enviro	لل
				•

~

-

Report number: KK2802219/1

-

-
.9
ж.
Ж.
N
Q
-
_

3

6 6 6

<50

83

6 7 4

G

G

170

-	Water Level	п		5.5	, i	
	Temperature	°C		129		
-	Dissolved Oxygen (as %Sat)	% Saturation		3.0		
-	Hq	PH		7.6	•	•
-	Conductivity @25°C	µS/cm		11970		1
~	Ammonia	IN I/Eu	•	0.18	•	
_	Chloride	mg/I Cl		>1839	,	×
	Total Oxidised Nitrogen (as N)	mg/iN		02	ĩ	
	Total coliforms	No/100 mil		mu		
-	E Cali	per 100ml		unu .		,
1	Aluminium	l/Bn		45		E.
-	Antimony	l/Bn		\$		
5	Arsenic	l/gu		15		
-	Barium	l/gu		120	•	2
	Beryllium	l/Bn	•	\$	140	,
-	Boron	l/Bn		1100		
~	Cadmium	l/Ĝn		\$		4
-	Calcium	I/gm		220	ŧ	e
-	Chromium	l/gu		<10	•	
-	Cobalt	l/gu		6		
-	Copper	lgu		-20		
-	lion	liên		550		

F Depth of Borehole

Units

Limits

6.5

6.4

3.3

7.8

0.083

01 87

N

7.8

93.8

42

Start/End - Dates of Analysis:

Time Sampled:

Sampled by:

Sampling point:

WST-W0075-01-GW1 No sample - no tubing

WST-W0075-01-GW2 Clear sample with mud

WST-W0075-01-GW3 No sample - no tubing

WST-W0075-01-GW4 No sample - no tubing

WST-W0075-01-GW5 Clear sample with mud

Jim McGarry

13:25

Jim McGarry

13:00

-

Jim McGany

15:10

-

Jim McGarry

15:18

Jim McGarry

15:10

-

Laboratory Ref: Type of sample:

Groundwater

Groundwater

Groundwater

2805503 Groundwater

Groundwater

2805504

2. 1502

2805501

2805500

Location code:

Status of results:

Final Report

Final Report

Final Report

Final Report

Final Report

Report number: KK2802126/1

		Laboratory Ref:	2805161	2805162	20-163	2805164	2805165
		Type of sample:	Surface Water				
		Location code:	WST-W0075-01-SW1	WST-W0075-01-SW2	WST-W0075-01-SW3	WST-W0075-01-SW5	WST-W0075-01-SW6
		Sampling point:	Clear sample	Clear semple	Clear sample	Clear sample	Clear sample
		Sampled by:	Jim McGany	Jim McGarry	Jim McGarry	Jim McGany	Jim McGarry
		Time Sampled:	13:55	12:43	15:25	14.55	14:20
	Start/En	Start/End - Dates of Analysis:					
		Status of results:	Final Report				
Parameter	Units	Limits		6.			
Temperature	°C		15.6	14.2	14,6	14.2	14.1
Dissolved Oxygen (as %Sat)	% Saturation		12.9	116.0	105.0	97.2	97.4
Ŧ	рН		8,1	8.1	8.1	8.0	80
Salinity	ş		6.6	32.6	22.4	33.5	33.8
Ammonia	N NGu		1.2	'n	N	n	
Chloride	mg/i Cl		>2632	>4861	>4472	>5103	>4949
Total Oxidised Nitrogen (as N)	N VGui			0.4			
Biochemical Oxygen Demand	mg/I 02		2.2	1.1	1.3	11	1.3
Suspended Solids	ng/i		23	26	38	46	uu
Total coliforms	No/100 ml		>2419	105	>2419	12	10
E Coli	per 100ml		>2419	8	173	ω	0
Aluminium	1/Bin		<250	<250	<250	<250	<250
Antimony	l/ân		\$	6.1	5.5	5.7	-5
Arsenic	1/Bin		6	36.5	219	36.5	\$
Barium	l/Bn		<60	80.1	82.6	80.1	72.8
Beryllium	1/5n		6	Ğ	G	6	6
Boron	l/Qu		244	3510	2600	3140	244
Cadmium	lıðn		-5	â	<5	6	6
Caldum	ng/l		147	408	324	416	47.7
Chromium	l/ðn		G	27.2	25.2	29.5	6
Cobait	l/ôn		\$	G	6	6	6
Copper	l/gu		<50	194	161	222	06>
lion	l/Bn		1640	547	606	574	113

ă,

Page 2 of 4

		Laboratory Ker.	COCCO07	1000007		COCC007	40CCU07
		Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
		Location code:	WST-W0075-01- GW1	WST-W0075-01- GW2	WST-W0075-01- GW3	WST-W0075-01- GW4	WST-W0075-01- GW5
		Sampling point:	No sample - no tubing	Clear sample with mud	No sample - no tubing	No sample - no tubing	Clear sample with mud
		Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	Jim McGany	Jim McGarry
		Time Sampled:	15:10	15-18	15:10	13.00	13:25
	Start/End	Start/End - Dates of Analysis:			1	1	
		Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report
arameter	Units	Limits					
Lead	l/Bn			G		and the second	-5
Magnesium	ng/l		*	250		,	30
Manganese	Ngu			410	-	•	068
Molybdenum	liên			20			6
Nickel	l/gu			æ			6
Potassium	mg/I		*	160		4	6
Selenium	Ngu		35	G		•	G
Sodium	ng/l		e	4300	4		220
Thalium	lygu		,	S			6
Tin	I/6n		2	<10	-	2	01>
Uranium	l/6n			ß			ŝ
Vanadium	r/gu			\$			\$
Zinc	1/Bn			<100			<100

Report number:KK2802219/1

- Results highlighted and in bold are ourside specified limits.
 All Metals Analyzed in the EPA Dublin Laboratory. Cyanide Analyzed in the EPA Cork Laboratory. Phenols Analyzed in the EPA Castlebar Laboratory.

- 1) nm "Nol measured"
 4) nd "None detected"
 5) nt "Not time' Time not recorded
 6) time "Too rumercus to count"
 7) F "Field measured parameters"

Signed: Yun Suth Michael Neill, Regional Chemist Date:

14-1-09

Report number: KK2802219/1

-

-

-

Appendix E

Leachate Results

Report of:Analysis of landfill site sarReport to:Waterford County CouncilReport date:16/06/08			ple(s)	1. augusta		
Facility: Reference No:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford W0075-01					
Date collected:	02/04/2008	Date receiv	ved: 02/04/	2008		
	Start/End	Laboratory Ref: Type of sample: Location code: Sampling point: Sampled by: Time Sampled: I - Dates of Analysis: Status of results:	Leachate WST-W0075-01-L13a	2801704 Leachate WST-W0075-01-LT4 Dry- no sample Jim McGarry 12:39 / Final Report	2801705 Leachate WS'I'-W0075-01-LT5 Black colour Jim McGarry 15:15 Final Report	
Parameter	Units	Limits	1			
Depth of Borehole	m		4.4		7.9	
Temperature	°C			(13.0	
рH	pH		7.7	-	7.0	
Conductivity	µS/cm		24500	*	7990	
Ammonia	mg/t N		<0.003		<0.003	
Chloride	mg/l Cl		550		386	
trite	mg/l N	42. 1	<0.001		0.056	
Ortho-Phosphate	mg/I P	2278 	6.2	-	0.13	
Total Oxidised Nitrogen	mg/1 N	1007 (115	0.3	-	<0.1	
Chemical Oxygen Deman	State 100079-00-0000		2010		495	
Biochemical Oxygen Dem	and mg/I O2		110.0	-	16.5	
Aluminium	ug/l		<250	•	<250	
Antimony	ug/l		<50		<50	
Arsenic	ug/l		<50	-	<50	
Barium	ug/!		<300	-	<300	
Beryllium	ug/l		<50		<50	
Boron	ug/l		3672	÷	1748	
Cadmium	ugA		<50		<50	
Calcium	mg/l	ingli - Sabi	38	-	140	
Chromium	ug/l	Via definition	107	-	<50	
Cobalt	ug/l		50.1		<50	
Copper	ug/ī		81.8		<50	
Iron	ug/l-		7903		6255	
		14.526.6257		2000-22	2012 2012 Color	

	Sampling point: Sampled by: Time Sampled: Dates of Analysis: Status of results:		Leachate WST-W0075-01-LT4 Dry- no sample Jim McGarry 12:39 7 Final Report	Leachate WST-W0075-01-LT5 Black colour Jim McGarry 15:15 Final Report
	Limits			
mg/l				142
· ug/l		<500	•	796
ug/l		<50	-	<50
ug/l		270	•	<50
mg/l		884		241
ug/l		<50		<50
ug/l		<50		<50
mg/l		1901	-	574
ug/l		<50		<50
ug/l	et to the	nm	• 4	ńm
ug/l	1910 III	<100	6 G	<100
ug/l		<50		<50
ug/l		- 67.8	•	<50
ug/i		<300		<300
	Units mg/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l u	Location code: Sampling point: Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results: Units Limits mg/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l u	Location code: Sampling point: Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results:WST-W0075-01-LT3aUnitsLimite Sampled: 12:40Jim McGarry 12:40UnitsLimitsFinal Reportmg/l259ug/l<500	Units Limits WST-W0075-01-LT3a WST-W0075-01-LT4 Dry- no sample Jim McGarry Jim McGarry Jim McGarry Time Sampled: Jim McGarry 12:40 12:39 Start/End - Dates of Analysis: 7 Final Report Final Report Mg/l 259 - - ug/l <500

1) Results highlighted and in bold are outside specified limits.

All Metals Analysed in the EPA Dublin Laboratory, Cyanide Analysed in the EPA Cork Laboratory, Phenols Analysed in the EPA Castlebar Laboratory. 2)

 3)
 nm
 "Not measured"

 4)
 nd
 "None detected"

 5)
 nt
 "No time" - Time not recorded

 6)
 tntc
 "Too numerous to count"

 7)
 F
 "Field measured parameters"

ar Signed:

Date: 16 6 08

28

Michael Neill, Regional Chemist

1

Re	eport of: Analysis of landfill site sample(s) eport to: Waterford County Council eport date: 16/06/08					
Facility: Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. W Reference No: W0075-01						
Sai	mpling location:	WST-W0075-01-RC	6a, Tramore landfill site ate monitoring point	- W0075-01 RC6a -		
Dat	te collected:	03/04/2008	Date received:	2801738		
			Laboratory Ref: Type of sample: Sampling point:	Leachate WST-W0075-01-RC6a		
		Start/Er	Sampled by: Time Sampled: nd - Dates of Analysis: Status of results:	Jim McGarry 13:32		
Pa	arameter	Units	Limits	Final Report		
F	Depth of Borehole	m		5.3		
F	Water Level	m		4.2		
F	Temperature	'C		11.7		
F	Dissolved Oxygen	% Saturation		89.0		
-	pH	pH		7.7		
-	Conductivity	µS/cm		1087		
	Ammonia	mg/l N		0.5		
-	Chloride	mg/l Cl		119		
-	Nitrite	mg/l N		0.007		
F	Ortho-Phosphate	mg/l P		0.012		
1	Total Oxidised Nitrogen	mg/l N	-	0.1		
	Aluminium	ngy		<250		
F	Antimony	ug/i	-	<50		
	Arsenic	ug/l		<50		
F	Barium	ug/l		<300		
F	Beryllium	ug/i		<50		
F	Boron	ug/l		<500		
1	Cadmium	ugi		<50		
F	Calcium	mg/l		58.6		
1-	Chromium	ug/l		<50		

Report number:KK2800764/1

		Laboratory Ref:	2801738
		Type of sample:	Leachate
		Sampling point:	WST-W0075-01-RC68
		Sampled by:	Jim McGarry
		Time Sampled:	13:32
	Start/Er	nd - Dates of Analysis:	
		Status of results:	Final Report
arameter	Units	Limits	9
Copper	ug/l	t.	<50
Iron	ug/i		<500
Lead	ug/l		<50
Magnesium	mg/l		<50
Manganese	ug/l		748
Molybdenum	ug/l	-	<50
Nickel	ug/l		<50
Potassium	mg/l		<50
Selenium	ug/l		<50
Silver	ug/l		<50
Sodium	mg/l		100
Thallium	ug/l		<50
Thorium	ug/l		nm
Tin	ug/l		<100
Uranium	ug/l		<50
Vanadium	ug/l		<50
Zino	ug/I		<300
E Coli	per 100ml		0
Total coliforms	No/100 ml		0

1) Results highlighted and in bold are outside specified limits.

All Metals Analysed in the EPA Dublin Laboratory. Cyanide Analysed in the EPA Cork Laboratory. Phenols Analysed in the EPA Casilebar Laboratory.

an "Not measured"
 nd "None detected"
 s nt "No time" - Time not recorded
 thtc "Too numerous to count"
 F "Field measured parameters"

Signed: Yau

Date:

the second second

Michael Neill, Regional Chemist

R	eport to: W		andfill site sam ounty Council	ple(s)		
	Т		ste Disposal Site ke & Tramore Bur		Co. Waterford	
D	ate collected: 03	/04/2008	Date receiv	red: 03/04/	2008	
		Start/End	Laboratory Ref: Type of sample: Location code: Sampling point: Sampled by: Time Sampled: I - Dates of Analysis: Status of results:	2801749 Leachate WST-W0075-01-BH7 BH7b - Black colour Jim McGarry 14:40 Final Report	2801750 Leachate WST-W0075-01-LT1 Brown colour Jim McGarry 12:26 Final Report	2801751 Leachate WST-W0075-01-LT2 Black colour Jim McGarry 12:05 Final Report
Pa	arameter	Units	Limits			
F	Depth of Borehole	m		7.5	7.2	5.5
-	Temperature	°C		14.0	12.0	13.0
ĺ.	pH	pН		7.2	6.8	7.3
	Conductivity	µS/cm		3110	3300	6210
	Ammonia	mg/l N		64	72	- 300
Ì.	Chloride	mg/I Cl		195	181	331
	Inte	mg/I N		<0.001	<0.001	<0.001
l	Ortho-Phosphate	mg/I P		<0.006	<0.006	0.16
	Total Oxidised Nitrogen	mg/l N		nr	nr	nr
	Chemical Oxygen Demand	mg/I O2		326	162	372
Ì	Biochemical Oxygen Demand	mg/I O2		6.0	16.9	14.0
	Aluminium	ug/l		<250	<250	<250
_	Antimony	ug/l		<50	<50	<50
	Arsenic	ug/l		<50	<50	<50
	Barium	ug/l		<300	<50	<300
_	Beryllium	ug/l		<50	<50	<50
_	Boron	ug/1		<500	524	1015
_	Calaium	ug/i	1++ 10	<50	<50	<50
1	Calcium	mg/l	100 AND	196	251	137
	Cobalt	ug/l		<50	<50	<50
	Copper	ug/l ug/l		<50	<50	<50
-		• U0/I		\$50	<50	<50
	liron	ug/l		2199	22119	3094

	Start/End	Laboratory Ref: Type of sample: Location code: Sampling point: Sampled by: Time Sampled: d - Dates of Analysis: Status of results:	2801749 Leschate WST-W0075-01-BH7 BH7b - Black colour Jim McGarry 14:40 Final Report	2801750 Loachate WST-W0075-01-LT1 Brown colour Jim McGarry 12:26 Final Report	2801751 Leachate WST-W0075-01-LT2 Black colour Jim McGarry 12:05 Final Report
Parameter	Units	Limits			
Magnesium	mg/t		55.3	<50	92.6
Manganese	ugA		5773	4133	1696
Molybdenum	ug/l		<50	<50	<50
Nickel	ug/l		60.4	<50	<50
Potassium	mg/l		<50	50	192
Selenium	ug/l		<50	<50	<50
Silver	ug/l		<50	<50	<50
Sodium	mg/l	the second s	143	113	362
Thallium	ug/l	8.94	<50	<50	<50
Thorium	ug/l		ណា	nm	nm
Tin	ug/l		<100	<100	<100
Uranium	ug/l		<50	<50	<50
Vanadium	ug/l		<50	<50	<50
Zinc	ug/l		<300	<300	<300

1) Results highlighted and in bold are outside specified limits.

All Metals Analysed in the EPA Dublin Laboratory, Cyanide Analysed in the EPA Cork Laboratory. Phenois Analysed in the EPA Castlebar Laboratory.

- 3) nm
 "Not measured"

 4) nd
 "None detected"

 5) nt
 "No time" Time not recorded

 6) tntc
 "Too numerous to count"

 7) F
 "Field measured parameters"

Signed: U an

Date: 16/1/08

Michael Neill, Regional Chemist 11

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	07/08/08

Facility:

Tramore Waste Disposal Site

Tramor

Tramore Intake & Tramore Burrows, Tramore, Co. Waterford

Reference No: W0075-01

Date collected: 10/06/2008 Date received: 10/06/2008

		00.2000	Date recen		2000	
			Laboratory Ref:	2802943	2802944	2802945
			Type of sample:	Leachate	Leachate	Leachate /
			Location code:		WST-W0075-01-LT4	WST-W0075-01-LT5
	Eduation obud.			Black colour - pumped by hand	No sample - Borehole dry	No sample-no tubing i borehole
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry
			Time Sampled:	15:25	15:35	14:40
		Start/Er	nd - Dates of Analysis:		1	1
			Status of results:	Final Report	Final Report	Final Report
a	rameter	Units	Limits	-		
	Depth of Borehole	m		4.4	-	-
	Leachate Level	m		ាញ	-	
	Temperature	°C		15.0	-	-
	рН	pН		7.8	*	-
	Conductivity @25°C	µS/cm		24500	-	-
•	Ammonia	mg/I N		1500	-	-
	`hloride	mg/I CI		nr	-	-
_	Nitrite (as N)	mg/l N	· <u> </u>	<0.001		-
	ortho-Phosphate (as P)	mg/i P		4.5	-	-
	Total Oxidised Nitrogen (as N)	mg/l Ni		nr	-	-
	Biochemical Oxygen Demand	mg/I O2		320.0	-	
	Chemical Oxygen Demand	mg/l O2		2406	-	-
	Fluoride	mg/l F	· · · · ·	57.4	-	-
	Sulphate	mg/I SO4		18.1		- '
	Total coliforms	No/100 ml		>9677	-	-
	E Coli	per 100ml		0	-	
-	Aluminium	ug/l	u .	<250	-	-
	Antimony	ug/l		<10	-	•
	Arsenic	ug/l		42.8	-	-
	Barium	ug/l	<u> </u>	102	-	
	Beryllium	ug/l		<10	-	
	Boron	ug/l		7185	-	-
	Cadmium	ug/l		<10	-	
	Calcium	mg/l		54.2	-	-

Report number:KK2801257/1

Page 1 of 2

Report date: 07/08/08 Facility: Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford Reference No: W0075-01
Report to: Waterford County Council
Report of: Analysis of landfill site sample(s)

Report number:KK2801255/1

		Laboratory Ref:	2802943	2802944	2802945
		Type of sample:	Leachate	Leachate	Leachate
Location code: V				WST-W0075-01-LT4	WST-W0075-01-LT5
		Biack colour - pumped by hand	No sample - Borehole dry	No sample-no tubing in borehole	
		Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry
		Time Sampled:	15:25	15:35	14:40
	Start/En	d - Dates of Analysis:		1	l l
		Status of results:	Final Report	Final Report	Final Report
Parameter	Units	Limits			
Chromium	ug/l		329	-	-
Cobalt	ug/l		51	-	•
Copper	ug/l		36.8	-	-
Iron	ug/I		9034	-	+
Lead	ug/l		<10	-	-
Magnesium	mg/l	· · · · · · · · · · · · · · · · · · ·	373	-	
Manganese	ug/l		<500	-	-
Мегсигу	ug/l		<5	-	
Molybdenum	ug/l	· · · • =	<10	-	
skel	ug/l		292	-	-
Potassium	mg/l	<u> </u>	1209	-	-
Selenium	ug/l		31.1		-
Silver	ug/l	· · ·	<10	-	
Sodium	mg/l		2565	-	-
Thallium	ug/l		<10	=	=
Tin	ug/l		22.1		
Uranium	ug/l		<10	-	-
Vanadium	ug/i		67.8	-	-
Zinc	ug/i		140		

High chloride results can cause interference with the TON test method and may not be reported.

1) Results highlighted and in bold are outside specified limits. All Metals Analysed in the EPA Dublin Laboratory,

Cyanide Analysed in the EPA Cork Laboratory. Phenols Analysed in the EPA Castlebar Laboratory.

nm "Not measured"
 nd "None detected"
 nt "No time" - Time not recorded.
 tntc "Too numerous to count"
 F "Field measured parameters"

Signed: ()

ff

- -._

218/08 Date:

Michael Neill, Regional Chemist

Report of: Report to: Report date:	Analysis of landfill site sample(s) Waterford County Council 07/08/08			
Facility:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford			
Reference No:	W0075-01			

Sampling location: WST-W0075-01-SW1, Tramore Landfill Site - W0075-01 -- SW1 - Surface Water Monitoring Point

Date collected:	11/06/2008	Date received:	11/06/2008
		Laboratory Ref:	2802997
		Type of sample:	Surface Water
		Sampling point:	Clear sample
		Sampled by:	Jim McGarry
		Time Sampled:	11:52
	Start/E	nd - Dates of Analysis:	
		Status of results:	Final Report
Parameter	Units	Limits	
Temperature	°C		22.3
Dissolved Oxygen (as %Sa	it) % Saturation		134.5
рн	рН		8.0
Conductivity @25°C	µS/cm	•••••••	19040
Salinity	%10		11.0
Ammonia	mg/l N		1.7
Chloride	mg/I Cl		nr
Nitrite (as N)	mg/l N		0.11
ortho-Phosphate (as P)	mg/I P		0.11
Total Oxidised Nitrogen (a:	s N) mg/l N		<0.1
Biochemical Oxygen Dema	and mg/l Ó2		3.0
Chemical Oxygen Demand	I mg/I O2		272
Sulphate	mg/l SO4		778.3
Suspended Solids	mg/l		nm
Total coliforms	No/100 ml		>2419.2
E Coli	per 100ml		4
Alumínium	ug/l	·	<250
Antimony	ug/l	· .	<10
Arsenic	ug/l		<10
Barium	ug/l		<60
Beryllium	ug/i	I	<10

Report number:KK2801276/1

arameter Boron		Type of sample: Sampling point: Sampled by: Time Sampled: End - Dates of Analysis: Status of results:	Surface Water Clear sample Jim McGarry 11:52
		Sampled by: Time Sampled: End - Dates of Analysis;	Jim McGarry
		Time Sampled: End - Dates of Analysis:	-
		Time Sampled: End - Dates of Analysis:	11:52
		Status of results:	
	L lucitor		Final Report
Boron	Units	Limits	
Doron	ug/l		2158
Cadmium	ug/l	<u> </u>	<10
Calcium	mg/1		228
Chromium	ug/l		16.4
Cobalt	ug/l		<10
Copper	ug/l	······	49.5
fron	ug/l	·····	1781
Lead	ug/l		<10
Magnesium	mg/l		424
Manganese	ug/l		717
Mercury	ug/l		<5
Molybdenum	ug/i		<10
Nickel	ug/I	·	<10
Potassium	mg/l		169
Seleníum	ug/l		<10
Silver	ug/l		<10
Sodium	mg/l		4092
Thallium	ug/l		<10
Ŧin	ug/l		<20
Uranium	ug/l	····	<10
Vanadium	ug/l		30
Zinc	ug/l		<60

.

COD, conductivity and chloride may not reported as high salinity causes interference with the test method.

- 1) Results highlighted and in bold are outside specified limits.
- 2)
- All Metals Analysed in the EPA Dublin Laboratory, Cyanide Analysed in the EPA Cork Laboratory. Phenols Analysed in the EPA Castlebar Laboratory.
- nm nd nt tntc F 3) 4) 5) 6) 7)
- "Not measured" "None detected" "No time" Time not recorded "Too numerous to count" "Field measured parameters"

Signed: \bigcirc 63 Michael Neill, Regional Chemist

711/09 Date:

Report of:	Analysis of landfill site sample(s)
Report to:	Waterford County Council
Report date:	07/08/08

Facility:

Reference No:

Tramore Waste Disposal Site

Tramore Intake & Tramore Burrows, Tramore, Co. Waterford W0075-01

Date collected: 11	/06/2008	Date receiv	red: 11/06/			
		Laboratory Ref:	2803010	2803011	2803012	
f		Type of sample:	Leachate	Leachate	Leachate	
		Location code:	WST-W0075-01-BH7	WST-W0075-01-LT1	WST-W0075-01-LT2	
		Sampling point:	No sample	Brown colour	Black colour	
		Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry	
		Time Sampled:	12:12	11:05	11:25	
	Start/Er	nd - Dates of Analysis:	1			
		Status of results:	Final Report	Final Report	Final Report	
Parameter	Units	Limits				
F Depth of Borehole	m		-	, 7.2	5.5	
F Leachate Level	m		-	nm	nm	
F Temperature	°C		-	12.0	14.0	
рН	рH		-	6.9	7.6	
Conductivity @25°C	µS/cm		-	3400	6440	
Ammonia	mg/l N		-	84	290	
hloride	mg/I Cl	•. 	-	184	344	
vitrite (as N)	mg/l N		-	<0.001	0 022	
ortho-Phosphate (as P)	mg/l P			<0.006	0.18	
Total Oxidised Nitrogen (as N)	mg/l N		-	<0.1	<0.1	
Biochemical Oxygen Demand	mg/l O2	· · · ·	-	17.8	10.5	
Chemical Oxygen Demand	mg/I O2		-	183	404	
Fluoride	mg/l F		-	1.43	1.9	
Sulphate	mg/I \$Q4			20.0	46.8	
Total coliforms	No/100 ml		-	<2	<2	
E Coli	per 100ml		-	<2	<2	
Aluminium	ug/l		-	<250	230	
Antimony	ug/l		-	<10	<1.0	
Arsenic	ug/l		-	<10	23.1	
Barium	ug/l		-	224	185	
Beryllium	ug/1	· · ·	-	<10	<1.0	
Boron	-0" ug/l		-	845	1427	
Cadmium	ug/l			<10	<1.0	
Calcium	mg/l	· · · · ·		372	198	
	тųл		-	372	198	

Report number:KK2801281/1

		Laboratory Ref:	2803010	2803011	2803012	
		Type of sample:	Leachate	Leachate	Leachate	
		Location code:	WST-W0075-01-BH7	WST-W0075-01-LT1	WST-W0075-01-LT2	
	Sampling point: Sampled by:		No sample	Brown colour	Black colour	
,			Jim McGarry	Jim McGarry	Jim McGarry	
		Time Sampled:	12:12	11:05	11:25	
Start/End - Date		- Dates of Analysis:	1			
		Status of results:	Final Report	Final Report	Final Report	
arameter	Units	Limits				
Chromium	ug/l		-	<10	13.4	
Cobalt	ug/l		-	<10	3.6	
Copper	ug/i		-	<10	8.2	
Iron	ug/ł		-	28987	2411	
Lead	ug/l			<10	1.3	
Magnesium	mg/l		-	51.5	126	
Manganese	ug/l		-	5706	1799	
Mercury	ug/l			<5	<5	
Molybdenum	ug/l		-	<10	<1.0	
Frickel	ug/l		-	18.4	11.9	
Potassium	mg/l	······································	-	84.2	282	
Selenium	ug/l		-	<10	14.5	
Silver	ug/l		-	<10	<1.0	
Sodium	mg/l		-	158	438	
Thallium	ug/l		-	<10	<1.0	
Tin	ug/l		-	<20	<2.0	
Uranium	ug/l		-	<10	<1.0	
Vanadium	ug/l			<10	5.3	
Zinc	ug/l			<60	21.3	

Conductivity and chloride may not reported as high salinity causes interference with the test method.

Date:

1) Results highlighted and in bold are outside specified limits.

All Metals Analysed in the EPA Dublin Laboratory, Cyanide Analysed in the FPA Cork Laboratory. Phonols Analysed in the EPA Castlebar Laboratory.

 nm "Not measured"
 nd "None detected"
 nd "No ime" - Time
 tntc "Too numerous to
 F "Field measured" nd "None detected" nt "No time" - Time not recorded tntc "Too numerous to count" F "Field measured parameters"

Signed: Michael Neill, Regional Chemist

2/5/56

Report number KK2802126/1		Date collected:	Facility: Reference No:	Report of: Report to: Report date:	R R M M M M M M M M M M M M M M M M M M
		06/10/2008	Tramore Wast Tramore Intake W0075-01	Analysis of landfill site san Waterford County Council 14/01/09	Environn Regional Seville L Kilkenny
4		Date received:	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford W0075-01	Analysis of landfill site sample(s) Waterford County Council 14/01/09	Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny
		06/10/2008	ramore, Co. Waterford		Agency d,
	¥.				

Page 1 of 4

Reference No:

Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Facility:	Tramore Waste Disposal Site
Report date:	14/01/09
Report to:	Waterford County Council
Report of:	Analysis of landfill site sample(s)

Disposal Site

Tramore Intake & Tramore Burrows, Tramore, Co. Waterford W0075-01

-			Laboratory Ref:	2805170	2805171	2805172
				Leachate	Leachate	Leachate
***			Type of sample:	WST-W0075-01-LT2	WST-W0075-01-LT3	WST-W0075-01-LT4
			Location code:			
			Sampling point:	Black colour	Black colour	Borehole dry
			Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry
			Time Sampled:	13:39	13:11	13:24
		Start/End	- Dates of Analysis: Status of results:	Final Report	Final Report	Final Report
Parameter		Units Limits				
T	Depth of Borehole	m		6.2	6.6	5.9
1	Leachate Level	m		1.4	2.6	
1	Temperature	°C	- Alex Sector Mesha	14.0	15.0	
1	pH	рН		7.6	7.7	
1	Conductivity @25°C	µS/cm		4990	25300	-
1	Ammonia	mg/î N		330	1500	
4	Chloride	mg/I CI	_	712	>1936	2
ī	Total Oxidised Nitrogen (as N)	mg/î N	1	0.2	0.5	÷
-	Chemical Oxygen Demand	mg/I O2		330	2165	
1	Biochemical Oxygen Demand	mg/I O2		14.0	200.0	
7	Aluminium	ug/l		<25	<250	
1	Antimony	ug/l		5.5	9.9	
1	Arsenic	ug/l	- Catellion -	<0.5	27	•
ŧ	Barium	ug/l		170	150	
1	Béryllium	ug/l		<0.5	<5	
1	Boron	ug/l		1100	6500	-
-	Cadmium	ug/l		<0.5	<5	
-	Calcium	mg/l		170	56	
(Chromium	ug/1		39	380	
(Cobalt	ug/l		<0.5	57	
1	Copper	ug/l		<3	41	-
1	ron	ug/l		3200	7400	
I	Lead	ug/l	1.127	<0.5	ব্য	
-	Magnesium	mg/l		100	340	

	THE HEAT OF CREATING CONTINUES			10.0					
Report of: Report to: Report date:	, 1993 (1997) ⁻ 1993 (1997) (1977) (1977) (1977) (1977) (1977) (1977)	landfill site sam County Council	ple(s)						
Facility:	Tramore Inta	Tramore Waste Disposal Site Tramore Intake & Tramore Burrows, Tramore, Co. Waterford							
Reference No:	W0075-01								
Date collected:	20/10/2008	Date receiv	ved: 20/10/	2008					
		Laboratory Ref:	2805505	2805506	2805507				
		Type of sample:	Leachate	Leachate	Leachate 🧅				
1		Location code:	WST-W0075-01-BH7	WST-W0075-01-LT1	WST-W0075-01-LT5				
		Sampling point:	Unable to access borehole - concrete on lock	Brown colour	No lubing - no sample				
		Sampled by:	Jim McGarry	Jim McGarry	Jim McGarry				
		Time Sampled:	16:25	16:06	16:14				
	Start/Er	nd - Dates of Analysis:	1		1				
		Status of results:	Final Report	Final Report	Interim				
F Depth of Borehole	m		7.5	7.1	7.9				
F Leachate Level	m			3.1					
F Temperature	°C			13.0					
pH	рН		*	6.9					

Comments:

Conductivity @25°C

Total Oxidised Nitrogen (as N)

Biochemical Oxygen Demand

Chemical Oxygen Demand

Ammonia

Chloride

1) Results highlighted and in hold are outside specified limits.

µ\$/cm

mg/I N

mg/I CI

mg/IN

mg/I O2

mg/I 02

- 2) All Metals Analysed in the EPA Dublin Laboratory.
- Cyanide Analysed in the EPA Cork Laboratory. Phenois Analysed in the EPA Castlebar Laboratory.
- "Not measured"
- "None detected" "No time" Lime not recorded "Too numerous to count" "Field measured parameters"
- tntc
- 3) nm 4) nd 5) nt 6) tntc 7) F

Signed: Jan 3 Michael Neill, Regional 10 Chemist

Date: 14-1-09

.

-

.

-

-

3790

110

282

0.1

320

19.0

•

•

.

.

.

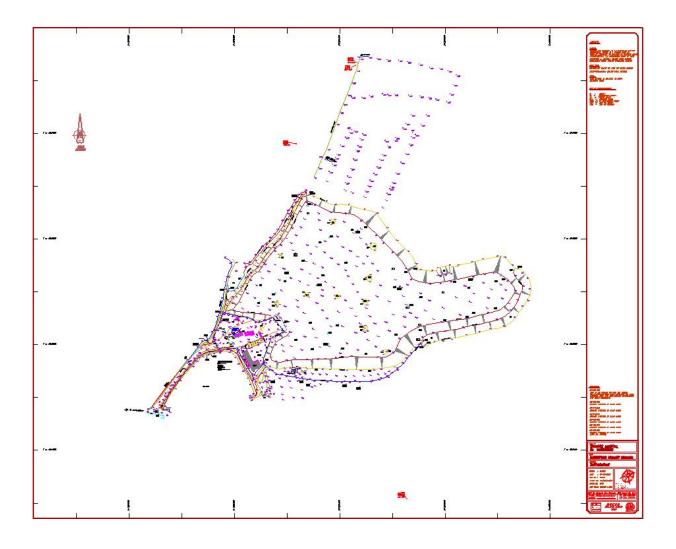
Appendix F

Meteorological Data

DAIL'I KAI	FADDAI	INAMORE	AND IEM		perature		nean wind	INSTOWN CASILE IN 2008
month	day	rain	ind	max	•	grass min	speed	
1	1	0.0	0	11.0	9.9	8.9	n/a	Rainfall in mm.
1	2	0.0	0	7.4	6.9	5.0	17.8	Temperature in degrees Celsius
1	3	0.3	0	3.5	2.8	1.2	15.7	Speed in knots
1	4	10.2	0	8.5	-4.4	-7.8	9.7	
1	5	1.3	0	7.9	-1.2	-1.3	10.7	Terminal hour of readings shown is 09h to 09h UTC
1	6	0.5	0	9.9	1.2	-2.8	9.9	for rainfall and temperature but 00h to 24h UTC for wind.
1	7	6.5	0	9.3	2.6	-1.5	13.8	
1	8	4.6	0	10.7	5.0	0.7	16.7	Daily Rain Indicator:
1	9	30.0	0	10.2	2.2	-0.7	14.8	0. Satisfactory
1	10	2.0	0	8.2	4.2	0.9	11.2	1. Estimated
1	11	0.0	0	5.7	1.2	-2.8	7.5	2. Cumulative, no reading
1 1	12 13	24.1 0.4	0 0	10.8 9.4	-0.2 2.8	-4.2 -0.7	11.0 15.0	 Estimated cumulative total Trace
1	13	0.4 5.1	0	9.4 9.9	2.8 6.8	-0.7 3.5	14.2	5. Estimated trace.
1	14	0.3	0	9.9 8.7	5.9	1.7	7.3	6. Cumulative trace
1	16	2.7	0	10.2	2.8	-1.8	5.9	7. Estimated cumulative trace
1	17	8.8	0	11.7	3.0	-0.2	14.2	8. Not available
1	18	5.7	0	13.0	6.2	2.2	16.4	9. Cumulative total
1	19	2.9	0	11.4	9.1	8.3	9.3	
1	20	5.0	0	12.2	9.2	8.8	13.6	
1	21	5.1	0	12.7	10.2	9.3	n/a	
1	22	2.4	0	11.2	2.2	0.2	8.8	
1	23	0.7	0	12.5	7.7	4.7	15.9	
1	24	0.0	0	9.7	3.5	1.0	10.2	
1 1	25	0.0	0 0	11.2	3.5	1.7	16.0	
1	26 27	0.0 0.0	0	11.0 11.3	8.2 5.7	4.6 2.1	n/a 6.8	
1	28	0.0	4	10.4	6.0	1.9	9.3	
1	29	5.4	0	11.8	8.0	6.2	10.6	
1	30	2.7	0	9.2	1.3	-1.8	10.0	
1	31	0.4	0	7.5	2.9	0.1	15.8	
2	1	0.4	0	6.1	1.2	-1.5	9.0	
2	2	4.1	0	9.0	-2.1	-6.3	12.8	
2	3	0.0	0	9.0	1.9	-0.3	16.4	
2	4	9.0	0	9.9	0.5	-3.5	12.7	
2	5	2.1	0	10.2	5.1	3.4	14.9	
2	6	0.0	0	11.0	1.8	-2.5	8.7	
2	7	0.1	0	12.4	2.7	0.2	15.5	
2 2	8 9	0.0 0.0	0 0	11.3 10.1	9.2 9.0	8.3 7.4	15.5 9.2	
2	9 10	0.0	0	9.5	9.0 7.3	7.4 6.4	9.2 83.7	
2	10	0.0	0	11.2	3.9	-1.7	5.9	
2	12	0.0	ů 0	11.6	4.2	-1.7	4.8	
2	13	0.0	0	11.8	4.9	-1.1	4.3	
2	14	0.0	0	7.2	3.8	-1.1	6.7	
2	15	0.1	0	6.2	3.8	0.5	7.3	
2	16	0.0	0	5.3	1.7	-1.7	n/a	
2	17	0.0	0	7.5	-0.3	-5.8	8.7	
2	18	0.0	0	7.7	0.4	-3.7	175.0	
2	19 20	0.0 0.4	0	7.2 10.7	1.5 3.8	-5.8 -1.0	4.9 7.0	
2 2	20 21	0.4	0 0	10.7	3.8 5.1	-1.0 2.7	7.0 14.9	
2	22	0.0	0	13.4	9.3	8.2	14.9	
2	23	0.0	0	11.4	3.0	-1.1	15.7	
2	24	0.0	0 0	9.3	6.7	6.1	8.1	
2	25	3.8	0	10.1	1.6	-2.0	15.8	
2	26	0.0	0	11.1	4.5	1.1	11.5	
2 2 2	27	0.0	0	11.4	2.7	-1.5	4.5	
	28	1.4	0	9.7	2.4	-1.4	4.5	
2	29	1.6	0	13.1	4.8	0.2	15.8	
2 3 3 3	1	0.7	0	12.8	6.9	3.4	n/a	
3	2	0.0	0	11.0	5.8	1.4 -2.4	9.4 11.2	
3	3 4	1.2 0.0	0 0	6.7 10.7	0.3 1.7	-2.4 -1.1	11.2 9.0	
3	4 5	0.0	0	9.8	3.7	-1.1	9.0 7.8	
3	6	2.4	0	10.3	5.8	5.2	15.0	
3	7	0.5	õ	10.2	2.3	-0.8	11.3	
3	8	0.2	0	11.8	5.6	3.4	15.0	
3	9	13.1	0	9.2	2.2	-1.2	11.5	
3	10	6.4	0	9.4	2.7	0.1	16.7	
3	11	0.8	0	13.0	4.1	1.1	12.8	
3	12	0.0	0	10.7	3.3	0.8	14.1	

DAILY RAINFALL AT TRAMORE AND TEMPERATURE AND WIND SPEED AT JOHNSTOWN CASTLE IN 2008

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4	$\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 23\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 2\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\end{array}$	$\begin{array}{c} 0.6\\ 3.1\\ 3.5\\ 0.0\\ 0.0\\ 0.0\\ 1.0\\ 0.4\\ 0.0\\ 1.6\\ 1.0\\ 0.0\\ 7.8\\ 5.6\\ 2.2\\ 16.5\\ 0.5\\ 0.0\\ 0.0\\ 0.7\\ 2.2\\ 1.0\\ 4.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.5\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 1.1\\ 4.5\\ 3.1\\ 3.4\\ 3.2\\ 1.7\\ 2.5\\ 1.1\\ 0.0\\ 0.0\\ 0.0\\ 10.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $	$\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} 10.0\\ 9.5\\ 10.5\\ 9.7\\ 9.2\\ 9.1\\ 10.7\\ 11.4\\ 10.3\\ 8.2\\ 9.8\\ 9.6\\ 10.6\\ 11.2\\ 10.9\\ 11.5\\ 10.7\\ 12.4\\ 15.7\\ 12.4\\ 15.7\\ 12.4\\ 11.2\\ 9.3\\ 8.9\\ 11.2\\ 11.3\\ 11.7\\ 11.5\\ 12.4\\ 11.2\\ 9.3\\ 13.9\\ 13.8\\ 13.1\\ 11.9\\ 13.0\\ 14.0\\ 13.7\\ 16.7\\ 16.2\\ 16.3\\ 15.2\\ 18.2 \end{array}$	3.2 4.9 6.5 6.4 2.8 2.2 1.8 2.2 3.2 -0.3 2.2 3.8 -0.3 4.3 0.2 6.6 3.7 2.2 3.8 7.7 5.3 6.1 2.2 0.0 -0.7 0.5 2.7 3.7 1.7 4.0 3.7 0.28 6.6 7.7 6.6 7.2 3.8 7.7 3.7 1.7 4.0 3.7 0.28 6.6 7.7 6.6 7.7 3.7 1.7 4.0 3.7 0.08 6.6 7.7 6.6 7.7 6.6 7.7 6.6 7.7 6.6 7.7 6.6 7.7 6.6 7.7 6.6 7.7 6.6 7.7 6.6 7.7 6.6 7.7 6.2 7.8 9.2 1.1 6.6 3.7 6.6 7.7 6.2 7.8 9.2 1.1 6.6 3.7 6.2 7.8 9.2 1.1 5.6 4.9 6.6 3.7 6.2 7.8 9.2 1.2 8.5 1.28 8.5	$\begin{array}{c} -0.7\\ 2.0\\ 5.9\\ 6.4\\ 1.1\\ 0.0\\ 0.5\\ 0.2\\ 3.0\\ -0.8\\ -0.2\\ 3.0\\ -0.8\\ -0.2\\ 3.0\\ -0.8\\ -0.2\\ -3.4\\ 1.5\\ -3.5\\ 5.5\\ 0.9\\ -1.5\\ 5.5\\ 0.9\\ -1.5\\ 5.5\\ 0.9\\ -1.5\\ 5.5\\ 0.9\\ -1.5\\ 5.5\\ 0.9\\ -1.5\\ 5.5\\ 0.9\\ -1.5\\ 5.7\\ 0.2\\ 7.8\\ 10.2\\ 3.3\\ 6.2\\ 7.8\\ 10.2\\ 3.3\\ 6.2\\ 7.8\\ 10.2\\ 6.8\\ 5.7\\ 0.2\\ 2.7\\ 8.1\\ 10.2\\ 6.8\\ 5.7\\ 0.2\\ 2.7\\ 8.1\\ 10.2\\ 6.8\\ 5.7\\ 0.2\\ 2.7\\ 8.1\\ 10.2\\ 6.8\\ 5.7\\ 0.2\\ 2.7\\ 8.1\\ 10.2\\ 6.8\\ 5.7\\ 0.2\\ 2.7\\ 8.1\\ 10.2\\ 6.8\\ 5.7\\ 0.2\\ 1.8\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	8.8 3.79 19.9 14.5 7.0 9.9 19.3 19.5 12.7 a 6.6 7.0 8.0 14.4 16.0 8.6 7.0 8.0 14.4 16.0 8.6 7.0 8.0 4.7 16.0 8.6 5.2 4.2 16.0 8.3 6.4 5.5 8.4 4.5 12.7 8.0 8.0 4.7 5.8 8.6 5.2 4.2 15.8 8.6 5.2 4.2 15.8 8.6 5.2 8.4 12.8 8.6 5.2 8.4 12.8 8.6 5.2 8.4 12.7 8.0 8.0 8.5 8.6 5.2 8.4 12.8 8.6 5.2 8.4 12.8 8.6 5.2 8.6 12.8 8.6 5.2 8.6 12.8 8.6 5.2 8.6 12.8 8.6 5.2 8.6 12.8 8.6 5.2 8.6 12.8 8.6 5.2 8.6 12.8 8.6 12.7 8.6 8.6 8.6 5.2 8.6 12.8 8.6 12.7 8.6 8.6 8.6 5.2 8.4 12.8 8.6 8.6 8.6 8.6 7.0 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6
4	7	1.0	0	9.3	0.0	-2.3	5.2
4	9	0.6	0	11.2	0.5	-0.8	4.1
4	14	0.0	0	11.5	3.7	0.8	5.4
4				11.2		-1.2	
4	19	0.1	0	8.9	6.5	5.7	11.3
4	21	0.0	0	12.7	7.7	7.4	6.9
				13.8	6.2	3.3	8.6
	26	3.2	0	13.0	10.1	10.2	8.0
4	28	2.5	0	13.7	6.6	6.2	6.2
4	30	0.0	0		6.6		
5 5							
5 5	3	10.2		16.2			11.2
5	5	0.0	0	15.2	8.8	6.2	3.6
5 5	7	0.1	0	20.2	9.8	6.3	4.7
5 5	8 9	7.5 1.6	0 0	19.3 16.3	11.3 11.4	8.4 11.8	6.0 2.8
5 5	10 11	0.1 0.0	0 0	15.6 17.2	11.2 10.9	9.8 9.2	5.6 5.1
5	12	0.0	0	18.4	12.8	10.8	5.6
5 5	13 14	0.0 0.0	0	17.2 18.5	11.9 10.2	9.5 8.5	7.8 8.2
5 5	15 16	0.0 0.0	0 0	13.3 15.0	9.0 10.8	7.5 8.8	7.5 4.7
5 5	17 18	7.1 0.0	0 0	15.0 13.2	7.7 8.8	6.2 6.6	5.3 6.3
5	19	0.0	0	14.4	8.2	7.2	4.5
5 5	20 21	0.0 19.2	0 0	13.3 14.0	6.3 10.2	2.2 9.7	7.1 8.7
5 5	22 23	1.2 0.0	0 0	13.8 16.2	10.5 10.2	10.7 8.4	6.3 5.6
5	24 25	0.0 2.1	0 0	16.3 15.3	12.0 9.0	10.0 7.3	10.2 12.4
5 5	26	5.7	0	15.0	10.4	8.5	13.8


5 5 5 5 5 6 6 6	27 28 29 30 31 1 2 3	0.0 0.0 0.1 0.0 2.1 0.0 0.6	0 0 0 0 0 4 0	14.8 16.7 15.8 19.1 20.2 19.2 17.0 18.1	9.3 8.8 8.9 11.7 8.6 11.2 9.4 8.8	8.3 7.5 9.8 11.5 7.0 8.6 8.4 6.0	9.0 5.2 4.7 3.8 3.1 5.4 4.4 7.3
6 6 6 6	4 5 6 7 8	6.2 1.1 0.0 0.0 0.0	0 0 0 0	13.4 18.2 16.6 17.7 19.6	8.2 9.4 8.3 9.0 9.6	5.6 9.2 6.5 7.8 10.2	6.6 5.2 5.2 5.2 5.2
6 6 6 6 6	9 10 11 12 13	0.0 0.0 3.0 0.0 0.0	0 0 0 0	23.1 21.8 18.8 15.2 15.8	14.6 11.6 12.3 9.2 9.3	14.0 8.5 10.3 7.8 6.9	4.1 5.3 4.1 5.9 4.1
6 6 6 6 6	14 15 16 17 18 19	0.0 0.0 4.4 25.3 0.0	0 0 0 0 4	17.3 15.0 15.7 16.5 15.2 17.0	9.8 9.4 8.2 10.2 12.0 8.2	7.9 7.7 6.9 9.1 12.0 7.2	5.4 4.0 5.4 10.3 9.9 6.9
6 6 6 6 6	20 21 22 23 24	40.1 8.0 0.0 0.6 3.1	0 0 0 0 0	17.3 15.0 17.1 16.4 16.4	10.8 10.3 11.8 8.4 10.5	7.8 10.2 10.7 6.2 7.7	4.6 9.5 12.4 5.0 7.2
6 6 6 6	25 26 27 28 29	3.2 8.7 0.4 2.1 0.0	0 0 0 0	17.5 15.8 17.1 17.0 19.0	11.8 11.7 8.9 11.7 12.0	12.4 10.3 7.6 11.5 11.4	11.8 11.3 8.5 8.7 6.5
6 7 7 7 7	30 1 2 3 4	8.5 6.7 4.7 0.8 23.6	0 0 0 0	17.4 16.0 17.1 16.6 16.4	10.9 13.8 13.1 11.0 8.8	10.0 13.8 12.5 11.1 7.3	9.0 10.4 8.6 5.1 9.0
7 7 7 7 7 7	5 6 7 8 9 10	1.3 7.5 1.7 7.3 0.3 0.9	0 0 0 0 0	16.1 17.7 17.4 17.7 16.3 17.7	11.7 11.2 12.0 10.6 12.7 12.7	12.8 10.5 11.2 10.0 13.2 12.0	8.4 5.6 7.6 8.0 9.4
7 7 7 7 7 7	10 11 12 13 14 15	0.0 0.0 0.8 0.0 0.0	0 0 0 0 0	17.7 17.2 18.7 21.0 21.7	11.8 10.7 10.4 14.4 15.0	10.8 9.3 8.2 14.4 15.0	6.6 5.1 6.2 5.2 6.3
7 7 7 7 7	16 17 18 19 20	0.2 0.5 0.0 0.0 0.0	0 0 4 0 0	18.3 19.2 21.2 19.7 19.2	11.8 12.3 14.1 11.3 8.3	10.7 11.2 13.2 10.2 5.5	5.4 6.2 6.3 6.3 4.7
7 7 7 7 7 7 7	21 22 23 24 25 26	0.0 0.0 0.4 3.3 0.0	0 0 0 0	20.2 19.8 17.2 21.8 20.0 21.5	9.2 13.2 13.3 13.6 15.2	7.2 10.2 12.0 12.5 11.8	5.0 5.6 4.6 5.6 4.4
7 7 7 7 7 7 7	26 27 28 29 30 31	0.0 0.0 41.4 22.9 22.1 24.3	0 0 0 0 0	21.5 21.5 20.9 19.9 19.2 16.9	12.8 13.1 12.0 14.1 13.8 14.3	8.3 8.3 8.0 12.8 13.0 13.7	4.6 3.6 5.2 7.2 9.0 8.6
8 8 8 8 8	1 2 3 4 5	0.0 0.2 0.5 13.1 9.7	2 9 0 0 0	18.9 19.7 19.3 19.0 19.0	13.0 12.8 13.6 12.5 13.6	9.5 9.1 10.6 8.3 11.9	9.7 7.9 5.9 5.6 8.3
8 8 8	6 7 8 9	0.4 0.3 22.9 2.9	0 0 0 0	18.6 19.5 18.1 17.7	15.4 15.1 12.8 14.3	13.3 12.5 9.4 11.5	7.6 4.6 5.4 11.1

8888888888888888888888999999999	10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 526 27 28 29 30 31 2 34 56 7 8	$\begin{array}{c} 5.3\\ 20.5\\ 16.6\\ 1.0\\ 0.0\\ 12.5\\ 21.3\\ 17.4\\ 1.9\\ 1.1\\ 2.4\\ 1.8\\ 0.0\\ 9.5\\ 0.3\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 5.4\\ 5.2\\ 1.1\\ 0.6\\ 0.7\\ 27.8\\ 4.4\\ 0.0\\ 0.0\\ 15.2 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 18.8\\ 17.7\\ 16.5\\ 15.7\\ 17.2\\ 19.2\\ 17.3\\ 16.5\\ 17.7\\ 20.9\\ 17.9\\ 19.6\\ 18.6\\ 16.2\\ 17.7\\ 18.6\\ 16.2\\ 17.7\\ 18.5\\ 17.2\\ 19.0\\ 21.3\\ 19.2\\ 17.3\\ 18.8\\ 16.8\\ 17.1\\ 15.7\\ 17.2\\ 18.0\\ 15.2\\ 18.5\\ 16.7\\ \end{array}$	$\begin{array}{c} 13.3\\ 12.4\\ 11.2\\ 11.0\\ 9.2\\ 10.6\\ 13.5\\ 11.3\\ 12.7\\ 14.0\\ 12.7\\ 13.1\\ 10.3\\ 10.1\\ 12.1\\ 14.7\\ 14.9\\ 14.6\\ 14.8\\ 13.3\\ 14.2\\ 13.0\\ 11.6\\ 10.6\\ 8.9\\ 10.0\\ 10.4\\ 12.4\\ 9.1\\ 9.3\\ \end{array}$	$\begin{array}{c} 10.3\\ 8.5\\ 8.6\\ 6.7\\ 4.8\\ 5.5\\ 11.6\\ 8.2\\ 10.6\\ 11.5\\ 9.5\\ 10.8\\ 7.5\\ 5.8\\ 8.3\\ 12.7\\ 13.6\\ 12.5\\ 12.8\\ 9.2\\ 13.5\\ 11.4\\ 9.4\\ 6.5\\ 4.2\\ 7.2\\ 6.2\\ 9.3\\ 5.6\\ 5.6\end{array}$	10.3 7.9 5.1 6.9 6.3 7.0 9.0 8.5 6.0 8.8 4.4 7.9 8.9 12.4 11.7 6.6 5.3 4.2 3.8 5.3 8.0 8.9 9.1 4.9 8.9 9.1 4.9 7.4 5.7 5.4
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 3 4 5 6 7	$\begin{array}{c} 2.4 \\ 1.8 \\ 0.0 \\ 9.5 \\ 0.3 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 5.4 \\ 5.2 \\ 1.1 \\ 0.6 \\ 0.7 \\ 27.8 \\ 4.4 \\ 0.0 \\ 0.0 \\ \end{array}$	0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17.9 19.6 18.6 16.2 17.7 18.5 17.2 19.0 21.3 19.2 17.3 18.8 16.8 17.1 15.7 17.2 18.0 15.2 18.5	12.7 13.1 10.3 10.1 12.1 14.7 14.9 14.6 14.8 13.3 14.2 13.0 11.6 10.6 8.9 10.0 10.4 12.4 9.1	9.5 10.8 7.5 5.8 8.3 12.7 13.6 12.5 12.8 9.2 13.5 11.4 9.4 6.5 4.2 7.2 6.2 9.3 5.6	6.8 3.8 4.4 7.9 8.9 12.4 11.7 6.6 5.3 4.2 3.8 5.3 8.0 8.9 9.1 4.9 8.0 7.4 5.7
10 10 10 10 10 10 10 10 10 10 10 10 10 1	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	$\begin{array}{c} 0.9\\ 8.5\\ 0.0\\ 2.8\\ 10.6\\ 6.4\\ 0.0\\ 1.1\\ 6.7\\ 35.9\\ 1.0\\ 0.0\\ 0.0\\ 2.2\\ 8.2\\ 0.0\\ 0.4\\ 3.9\\ 9.8 \end{array}$	0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13.2 15.0 13.2 16.2 14.7 14.2 16.5 16.1 16.7 14.2 13.3 13.6 13.0 13.9 14.4 14.6 12.1 13.6 13.9	$\begin{array}{c} 7.7 \\ 4.7 \\ 11.2 \\ 6.5 \\ 8.6 \\ 13.7 \\ 12.3 \\ 8.9 \\ 10.8 \\ 11.8 \\ 7.2 \\ 6.5 \\ 5.7 \\ 6.8 \\ 9.2 \\ 11.8 \\ 5.0 \\ 4.2 \\ 9.5 \end{array}$	7.5 2.5 11.6 3.4 4.6 12.4 12.2 7.0 9.1 11.7 7.3 5.5 4.2 4.3 6.0 10.0 3.7 3.2 9.3	6.9 7.6 5.6 4.1 11.0 13.2 3.1 4.2 7.1 9.0 4.9 4.5 6.5 14.8 11.0 6.1 7.6

10 10 10 10 10 10 11 11 11 11 11 11 11 1	24 26 27 28 29 30 1 1 2 3 4 5 6 7 8 90 11 2 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 2 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 1.3\\ 15.6\\ 0.0\\ 0.4\\ 6.7\\ 3.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.5\\ 5.0\\ 7.3\\ 14.4\\ 5.4\\ 0.5\\ 7.3\\ 14.4\\ 5.4\\ 0.7\\ 3.5\\ 0.0\\ 0.0\\ 0.0\\ 4.6\\ 0.8\\ 0.0\\ 0.0\\ 3.1\\ 0.2\\ 5.4\\ 1.4\\ 0.0\\ 0.0\\ 3.7\\ 7.7\\ 2.5\\ 0.1\\ 0.0\\ 0.0\\ 0.3\\ 3.7\\ 7.7\\ 2.5\\ 0.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$\begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 12.4\\ 13.5\\ 15.0\\ 8.9\\ 8.0\\ 9.2\\ 10.8\\ 12.3\\ 10.2\\ 11.7\\ 11.3\\ 12.1\\ 12.1\\ 12.1\\ 13.1\\ 14.2\\ 12.2\\ 11.4\\ 11.6\\ 12.7\\ 12.2\\ 10.8\\ 8.8\\ 7.8\\ 10.0\\ 9.6\\ 8.1\\ 3.0\\ 5.7\\ 9.0\\ 7.3\\ 8.2\\ 9.2\\ 7.3\\ 6.3\\ 5.7\\ 10.3\\ 6.0\\ 4.2\\ 9.7\\ 10.1\\ 9.9\\ 11.1\\ 11.0\\ 12.9\\ 9.7\\ 9.3\\ 9.1\\ \end{array}$	52 82 9.8 3.0 1.0 0.0 2.4 2.9 2.9 4.5 5.7 2.9 4.5 7.0 8.7 4.5 4.2 4.5 3.9 9.3 9.6 10.4 9.1 8.3 7.5 8.3 9.0 7.4 6.9 4.1 3.1 3.3 8.1 2.1 -0.7 0.0 0.2 1.2 0.7 1.2 3.9 2.4 -0.1 0.7 2.2 -0.6 0.1 0.7 2.1 3.0 3.1 7.9 8.1 -0.2 0.7 2.2 -0.6 0.1 0.7 2.1 3.0 3.1 7.9 8.1 -0.2 0.7 2.2 -0.6 0.1 0.7 2.1 3.0 3.1 7.9 8.1 -0.7 2.2 -0.6 0.1 0.7 2.1 3.0 3.1 7.7 9.8 9.1 7.9 5.2	$\begin{array}{c} 3.0\\ 7.2\\ 9.3\\ 2.0\\ 0.1\\ -2.7\\ 2.0\\ -0.1\\ 1.2\\ 2.5\\ 4.9\\ 9.5\\ 4.6\\ 9.9\\ 4.6\\ 5.9\\ 4.6\\ 5.9\\ 4.6\\ 5.9\\ 4.6\\ 9.5\\ 6.8\\ 5.0\\ 4.2\\ 9.5\\ 6.8\\ 5.0\\ 9.1\\ -2.5\\ -1.2\\ -0.9\\ -0.3\\ -2.0\\ 1.1\\ -5.3\\ -3.2\\ -5.5\\ -3.9\\ -2.2\\ -1.7\\ 3.2\\ -3.5\\ -3.2\\ -5.5\\ -3.9\\ -2.2\\ -1.7\\ 3.5\\ -3.2\\ -5.5\\ -3.9\\ -2.2\\ -1.7\\ 3.5\\ -3.2\\ -5.5\\ -3.9\\ -2.2\\ -1.7\\ 3.5\\ -3.2\\ -5.5\\ -3.9\\ -2.2\\ -1.7\\ 3.5\\ -3.2\\ -5.5\\ -3.9\\ -2.2\\ -1.7\\ 3.5\\ -3.2\\ -5.5\\ -3.9\\ -2.2\\ -1.7\\ -3.5\\ -3.2\\ -5.5\\ -3.9\\ -2.2\\ -1.7\\ -3.5\\ -3.2\\ -5.5\\ -3.9\\ -2.2\\ -1.7\\ -3.5\\ -3.2\\ -5.5\\ -3.9\\ -2.5\\ -3.$	$\begin{array}{c} 6.4\\ 15.3\\ 6.6\\ 8.9\\ 8.3\\ 7.2\\ 4.5\\ 2.2\\ 5.3\\ 13.1\\ 11.2\\ 10.0\\ 10.7\\ 7.4\\ 3.3\\ 6.5\\ 5.3\\ 10.1\\ 10.7\\ 7.4\\ 8.3\\ 6.5\\ 5.3\\ 10.1\\ 10.7\\ 7.4\\ 8.3\\ 6.5\\ 8.8\\ 6.9\\ 5.2\\ 7.0\\ 4.7\\ 6.3\\ 6.8\\ 3.7\\ 2.1\\ 9.4\\ 5.5\\ 5.8\\ 8.2\\ 7.4\\ 8.6\\ 11.3\\ 10.3\\ 7.3\\ 3.7\\ 1.7\\ \end{array}$
12 12 12 12 12	19 20 21 22 23	0.0 0.3 0.1 0.2 0.0	0 0 0 0	11.0 13.2 12.9 9.7 9.3	3.1 7.7 9.8 9.1 7.9	-1.2 4.3 6.5 7.6 5.7	11.3 10.1 12.3 7.3 3.7

Appendix G

Topographical Survey

Appendix H

Energy Efficiency Audit

Tramore Landfill & Civic Amenity Site Energy Audit Report

Client: Waterford County Council, Civic Offices, Dungarvan

Carried Out by Waterford Energy Bureau Civic Offices, Tankfield, Tramore, Co. Waterford

- 1. Summary
- 2. Electrical Tariff Analysis
- 3. Break Down in Electrical Consumption
- 4. Land Fill Gas Potential
- 5. Wind Turbine Installation & upgrade to installation
- 6. Recommendations

1. Summary

Waterford Energy Bureau as part of its role for Waterford County Council Environment Dept. has Carried out an energy audit of the Civic Amenity site / landfill in Tramore. The purpose of the energy Audit is to meet requirements set out in "Annual Environmental Report" (AER) by the Environmental Protection Agency & meet the Climate Change Strategy of Waterford County Council.

Areas examined during the audit includes;

- To assess the current energy consumption trends of the Civic Amenity Site.
- To examine alternative's energy efficiency technology that could be used to reduce
- energy consumption.
- To examine better means of operation to reduce energy consumption at the Civic Amenity Site.
- To assess the feasibility of installing alternative renewable technology.
- To examine the feasibility of utalising the land fill gas resource.

Items highlighted within the energy audit noted that energy cost savings can be made through improving the operational efficiency of the Civic Amenity Site which includes change in tariff structure & improved operational efficiency. Further savings can be made through the installation of a large wind 3-phase 9 KW wind turbine. The current wind turbine which was installed as part of a display project requires maintenance to ensure that it returns to full operation.

Mechanisms are currently not available to facilitate the utilisation of the landfill gas, the methane volumes

/ concentrations and grid access issues has inhibited the installation of a large scale CHP Plant where by electricity would be sold to the grid & excess heat would be dumped. Other areas that were examined which turned out not to be feasible included the upgrading of methane for inclusion in converted vehicles or for pressurisation & export to the gas grid.

The installation of a three phase wind turbine & improved operational efficiency are the most feasible option to saving energy at the Civic Amenity Site.

2. Electrical Tariff Analysis

The Tramore Landfill is supplied with a low voltage maximum demand electrical tariff, which meets the electrical demand of the whole site including lechate pumping, electrical demand of flare, public lighting & porto cabin electrical demand. The current Maximum Import Capacity of 65 KVA is more than sufficient to meet electrical requirements of the site.

Tran	nore Land	dfill Elect	rical Co	onsump	tion Anal	ysis	
	Jan - Feb 09	Mar-April 09	May-June 08	July- August 08	Sept- Oct 09	Nov-dec 09	Total
Day Units Consumed High Rate	8950	7717	3026	12350	16250	14921	63214
Day Units Consumed Low Rate	0	0	1274	0	0	0	1274
Night Units	5700	5014	3350	7850	10300	9308	41522
Total Units	14650	12731	7650	20200	26550	24229	106010
MIC	65	65	65	65	65	65	
Maximum Demand	30	30	30	30	30	30	
Day Unit Cost	€1,592	€1,373	€576	€1,712	€2,252	€2,441	€9,946
Night Unit Cost	€445	€341	€228	€546	€716	€726	€3,001
MIC Cost	€285	€285	€285	€285	€285	€285	€1,708
Maximum Demand Cost	€174	€174	€174	€174	€174	€174	€1,046
Section 58 Tax	€15	€0	€0	€0	€0	€0	€15
Watless Units Penalty	€28	€28	€0	€51	€81	€64	€251
Standing Charge	€187	€187	€187	€187	€187	€187	€1,120
VAT 13.5%	€368	€322	€196	€399	€499	€523	€2,307
Total	€3,093	€2,710	€1,645	€3,353	€4,193	€4,400	€19,394
Typical Cost Per KW is €19,394 / 106010 = €0.182 per KWh							

- The wheel wash & the compost facility are currently inoperable & not expected to be re-operational in the near future due to the land fill being sealed & closure of compost facility.
- The installation of Power Factor Correction equipment will result in annual cost savings of €251 through elimination of penalties & further savings will be made through improvements in power quality to equipment on the site.

3. Break Down in Electrical Consumption

Tramore Landfill Electrical Consumption Breakdown for Office Area						
	Number of Items	Hours per year	Electrical Loading in Watts	Total electrical Load KWh.Y	% of Total	Note
External Lighting	9	2400	400	8640	8.15	metal halide lights
Computers	2	3000	300	1800	1.70	
Storage Heaters	3	3000	2000	18000	16.98	
Immersion Heaters	1	500	1500	750	0.71	
Lighting Internal	10	1250	57	712.5	0.67	
Network Connection	1	8760	1000	8760	8.26	
Fax Machine	1	8760	60	525.6	0.50	
				39188.1	36.97	

Tramore Landfill Electrical Consumption Breakdown for Office Area								
Number of ItemsHours per yearElectrical Loading in WattsTotal electricalNumber of ItemsHours per yearElectrical Loading in WattsTotal electrical								
Equipment Flaring	1	1800	3700	6660	6			
Pumping equipment & Lechate Tank				50162	47			
Miscellaneous	1			10000	9			

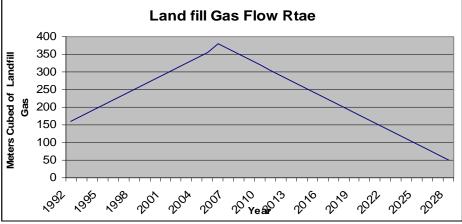
Note: Electrical loading of lechate pumps etc, was not known at the time of completion of audit.

Landfill Gas Energy utilisation Options

- The installation of a CHP Plant for the exporting of generated electricity to the grid is not feasible as the methane content is both too low and the flow rate too variable to generate electricity using reciprocating engines. The feasibility of increasing the low methane content by CO2 washing and limiting the O2 mix in the engine combustion (allowing for the high O2 content already present in the landfill gas), was examined however this was not feasible. Typical percentages of methane and flow rates to the minimum levels required (50% and 200kW/hour respectively) to support gas engine power generation.
- The capital cost of investing in infrastructure to up grade the land fill gas from its current level of
- 30%-50% methane to 95% methane for inclusion in specially converted vehicles is not economically feasible as the cost of the kit to up grade the gas including dryers etc. is approximately €700,000 -
 - €1,000,000.

The capital cost of investing in infrastructure to up grade the land fill gas from its current level of

30%-50% methane to 100% methane, which is then pressurised & upgraded for exported into the gas network at an alternative location is economically prohibitive. The approximate cost of such equipment including pressurisation cylinder system is approximately €900,000 – €1,200,000.


The technology that supports the installation of a Micro-CHP unit that would power the land fill site & dump excess capacity onto the grid via the micro renewable program is not feasible as such technology is not available in Ireland.

Land Fill Gas Potential

The volume of waste that was disposed at Tramore Landfill since 1977 is estimate at approximately 400,000 tonnes. Recording of quantity disposed at the site started in 2002, which results in records Being an approximate calculation. The land fill opened in 1930 however the material disposed prior to 1977 is regarded as being inert. A pumping trial took place in May 2008, initial flow rates of 300 M3/hr with a majority of gas wells showing methane content of above 50%.

4.

Estimate Gas volumes from the land fill is calculated & highlighted on the chart below.

5. Wind Turbine Installation & upgrade to installation

The installation of a 3-phase wind turbine to power the requirements of the landfill & export any excess electricity generated to the grid represents a credible option as the site location is significantly exposed.

The first 4,000 installations of small-scale wind turbines, photovoltaic, hydro and combined heat and power, will be offered 19 cent per kilowatt hour for the first 3,000 kWh generated per annum, and 9 cent above 3, 000 kWh. For any surplus energy sold back into the grid over the next three years under a five years contract.

Traditionally, the electricity network was designed to accommodate the flow of electricity from large centralised plants to costumers dispersed throughout the country. Micro-generation at local level now introduces two-way flows to the electricity system. Local generators will have the ability to be paid by the ESB for electricity that is surplus to their own requirements and exported. This Government measures includes grant assistance for 40% of the cost of 50 trial units (of up to 50 kW) countrywide. Applications are being accepted by SEI.

It is estimated that setting-up a micro-generated unit costs between €15,000 and €30,000 for a singlephase unit. A pay-back is estimated on 5 to 10 years period. The initiative could change the nature of electricity generation in Ireland and help reduce the State's € billion a year spend on fossil fuels. For a three-phase unit, typical costs for setting-up range from €40,000-€60,000. A pay-back is estimated on 5 to 10 years period. The maximum limit for the three-phase generator is 11kW, while the maximum limit for the single-phase generator is 5.75 kW. The ESB will not charge connection a micro-generator to the ESB network provided that turbine complies with EN50438.

Three Phase Turbine Installation at Civic Amenity Site							
Turbine Type	Output per year KWh	Cost	Unit Cost of Electricity displaced	Unit Cost of Electricity exported	Electric Cost Savings	Payback on installation Yrs	
Aircon 10 S 9.8 KW	42048	65,000	0.23	0.19	9671.04	7	
Note: The unit cost of electrici	Note: The unit cost of electricity also includes a factor for vat, & savings made for reduced maximum import capacity & maximum demand.						

Recommendations

Tramore Landfill Energy Audit					
Item	Cost	Payback	Note		
Change Maximum Import Capacity to match current demand	394	immediate	Reduce the maximum Import Capacity from 65 KVA to 50 KVA will have cost savings, which will be made every 2 months		
Rectify Power factor problem within Electrical panel	€600	Annual saving of €251	The improvements in Power factor will also reduce base loading electrical Consumption		
Replace Current wind turbine installation with alternative turbine	€65,000	€ 9671 annual cost saving, will have a resulting payback of 6/7 years	Note: significant wind speed at site however site exposed to sea conditions		
Repair Current Wind Turbine Installation	€1,500	1-2 yrs	Note: wind turbine installation is powering 6 containers via battery storage		
Purchase Electricity in deregulated electrical market	7-10 % electrical cost savings	immediate	Item Currently being implemented		
Replace light bulbs with high pressure sodium bulbs which use 50% of electrical demand of the site	€500	1-2 yrs			

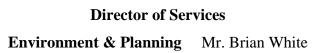
Appendix I

Borehole Summary

Name	BH1/1	BH2	BH8		BH5
Nominal Type	GW + L	GW	GW		GW
Total Depth (m)	4.5	4.2	7.7		3.95
Strata (m) Response zone (m) Designation based on drill record	Made ground: fill/clay with traces of rubble (0-1.7) Made ground; domestic refuse (1.7-3.7) Made ground: firm brown clay with traces of rubbish (3.7-4.2) Firm brown sandy gravelly clay: (4.2-4.5) 0.80m to 4.0m Leachate	Made ground: hardbore fill (0-0.5) Made ground; loose mixture of gravel and rubble with fill (0.5-1.0) Made Ground: soft black sandy silt with domestic refuse (1.0-1.7) Soft/loose mixture of silt and gravel (1.7-2.5) medium dense well graded silty gravel none given Leachate	with some gravel: (1.2-1.9)		Made ground; clay and sand fill (0-0.8) Made ground: medium dense silty sand with blac domestic refuse (0.8-1.8) Made ground: firm to stiff light brown gravelly clay with traces of reduse (1.8 2.9) Very stiff light brown gravelly clay (2.9-3.95) not given
Depth as measured by EPA May 2006	4	8.5	7.2		
Name	BH9	10A	RC4	RC5	RC6A
Nominal Type	GW	GW	GW	GW	L
Total Depth (m)	8.7	13	15.3	25	9
Strata (m) Response zone (m) Designation based on drill record	Made ground: grey sity clay with wood, paper and plastic (0-0.4) Firm grey brown sandy clay with some gravel (0.4-2.2 Stiff to very stiff brown sity sandy gravelly clay with cobbles and boulders (2.2- 7.4 Hard brown sity laminated clay with frequent cob		open hole (0-9.7 gravel (9.7-11.7 Siltstone (11.7-15.3 12 to 14 m GW	Overburden (0-20 Siltstone (20-25) 21 to 24.5 GW	Made ground light brown clay with gravel, cobbles and concrete (0-1) Made ground: black silty clay with gravel and plasti (1-3.2) Firm light brown grey gravelly clay with cobbles (3.2-7) Light brown clay with gravel and abundant cobbles (7-8.3) Light bro 3 to 9 Leachate
Depth as measured by EPA May 2006	8.4	3.5	15.5		7

Name	LT01	LT04B	GW01	BH 7B	GW02
Nominal Type	Leachate	Leachate	GW	leachate	GW
Total Depth (m)	5.3	6.7	10	8	10
Strata (m) Response zone (m) Designation based on drill record	Made ground: Gravelly clay with cobbles.Fill (0-1.5) Made ground; Landfill(1.5- 5.0) Made ground: Obstruction on wood and cobbles (5.0- 5.3) 1.0m to 5.3m Leachate	Made ground: Gravelly clay with cobbles.Fil(0-1.6) Made ground; Landfill (1.6-6.7) 2.0m-6.7m Leachate	Sand and Gravel: (0-1.0) silty sandy gravelly clay: (1.0- 2.5) Sand with pockets of silty clay and shells: (2.5-10.0) 9.0m-10.0m Groundwater	Made ground; gravelly day with cobbles and boulders (0-1.6) Made ground:Landfill (1.6- 8) 5.4m to 8.0m Leachate	Sand and gravel (0-1.0) Silty sandy gravelly clay (1.0-2.5) Sand with occasional pockets of silty clay and shells (2.5-10.0) 9.0m - 10.0m Groundwater
Name	GW03	GW04	GW05A	GW06	GW07
Nominal Type	GW	GW	GW	GW	GW
Total Depth (m)	10	8	4.1	10.5	11
					Made ground: Turf over

Name	GW08
Nominal Type	Groundwater
Total Depth (m)	10
	Made ground: Turf over topsoil(0-0.1) Made ground: Brown Clay with cobbles (0.1-1.4) Made ground: Landfill (2.0- 3.6)Grey sandy silt (3.6- 8.8)Brown gravelly clay(8.8- 10)
Strata (m)	
Response zone (m)	1.0m to 10.0m
Designation based on drill record	Groundwater


Appendix J

Management Structure

Management Structure of Waterford County Council

County Manager Mr Ray O' Dwyer

Senior Engineer

Mr. Gabriel Hynes

Senior Executive Engineer

Mr. Jimmy Mansfield

2 **Executive Scientific Officer Executive Engineer Environmental** Consultants (Deputy Manager) Mr. Paul Carroll Ms. Aoife O Flaherty MCOS

Landfill Manager

Mr. David Regan

Caretaker

Deputy Caretaker

Mr. Anthony Shanahan

Mr. Pat Jacob

Appendix K Pollutant Release Transfer Register (PRTR)

Version 1.1.04

AER Returns Worksheet

REFERENCE YEAR 2008

1. FACILITY IDENTIFICATION

Parent Company Name	Waterford County Council
Facility Name	Tramore Waste Disposal Site
PRTR Identification Number	W0075
Licence Number	W0075-02

Waste or IPPC Classes of Activity	
No.	class_name
	Recycling or reclamation of organic substances which are not used as
	solvents (including composting and other biological transformation
4.2	processes).
	Storage of waste intended for submission to any activity referred to in a
	preceding paragraph of this Schedule, other than temporary storage,
4.13	pending collection, on the premises where such waste is produced.
	Surface impoundment, including placement of liquid or sludge discards into
3.4	pits, ponds or lagoons.
	Repackaging prior to submission to any activity referred to in a preceding
3.12	paragraph of this Schedule.
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
	collection, on the premises where the waste concerned is produced.
	Recycling or reclamation of metals and metal compounds.
4.4	Recycling or reclamation of other inorganic materials.
4.9	Use of any waste principally as a fuel or other means to generate energy.
	The treatment of any waste on land with a consequential benefit for an
4.10	agricultural activity or ecological system.
	Use of waste obtained from any activity referred to in a preceding
4.11	paragraph of this Schedule.
	Exchange of waste for submission to any activity referred to in a preceding
4.12	paragraph of this Schedule.

	Tramore Intake & Tramore Burrows
	Trainore intake & Trainore Durrows
Address 2	Tramore
Address 3	Co. Waterford
Address 4	
Country	Ireland
Coordinates of Location	361400.000
River Basin District	IESE
NACE Code	382
Main Economic Activity	Waste treatment and disposal
AER Returns Contact Name	
AER Returns Contact Email Address	doregan@waterfordcoco.ie
AER Returns Contact Position	
AER Returns Contact Telephone Number	058 22063
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	058 45606
Production Volume	0.0
Production Volume Units	0
Number of Installations	
Number of Operating Hours in Year	
Number of Employees	0
User Feedback/Comments	
Web Address	www.waterfordcoco.ie

2. PRTR CLASS ACTIVITIES

Activity Number

Activity Name

4.1 RELEASES TO AIR

| PRTR# : W0075 | Facility Name : Tramore Waste Disposal Site | Filename : A

SECTION A: SECTOR SPECIFIC PRTR POLLUTANTS

		RELEASES TO AIR				
	POLLUTANT			METHOD		
				Method Used		
No. A	nnex II	Name	M/C/E	Method Code	Designation or Description	
					USEPA Landgem model	
01		Methane (CH4)	С	OTH	version 3.02	
					USEPA Landgem model	
03		Carbon dioxide (CO2)	С	OTH	version 3.02	
					USEPA Landgem model	
07		Non-methane volatile organic compounds (NMVOC)	С	OTH	version 3.02	
		* Select a row by double-clicking on the Pollutant Name (C dumn B) then dick the delete button				

Select a row by double-clicking on the Pollutant Name (Column B) then dick the delete button

SECTION B: REMAINING PRTR POLLUTANTS

	RELEASES TO AIR			
	POLLUTANT		I	NETHOD
			Method Used	
No. Annex II	Name	M/C/E	Method Code	Designation or Description

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C: REMAINING POLLUTANT EMISSIONS (As required in your Licence)

RELEASES TO AIR					
POLLUTANT METHOD				IETHOD	
		Method Used			
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	

* Select a row by double-clicking on the Pollutant Name (C dumn B) then dick the delete button

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KG/yr for Section A: Sector specific PRTR pollutants above. Please complete the table below:

Landfill

Tramore Waste Disposal Site

		Met	hod Used
			Designation or
T (Total) kg/Year	M/C/E	Method Code	Description
			USEPA Landgem model
1017000.0	С	OTH	version 3.02
503415.0	С	OTH	Assumed 50% capture and 9
0.0			
513585.0	С	OTH	Assumed 50% capture and 9
)	1017000.0 503415.0 0.0	1017000.0 C 503415.0 C 0.0	T (Total) kg/Year M/C/E Method Code 1017000.0 C OTH 503415.0 C OTH 0.0 0 0

		QUANTITY	-
Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
513585.0	513585.0	0.0	0.0
2790000.0	2790000.0	0.0	0.0
43710.0	43710.0	0.0	0.0

		QUANT	ITY	
Emission Point 1	T (Total) KG/Year	A (Accic	lental) KG/Year	F (Fugitive) KG/Year
	0.0	0.0	0.0	0.0

		QUANTITY	
Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year

4.2 RELEASES TO WATERS

CTION A: SECTOR SPECIFIC PR	RELEASES TO WATERS	Data on a	mbient monitoring	of storm/surface water or groundw
	POLLUTANT			
				Method Used
No. Annex II	Name	M/C/E	Method Code	Designation or Description Product of measured
				average leachate
				concentration and
	Arsenic and compounds (as As)	E	Estimate	calculated leachate flow
				Productofmeasured
				average leachate concentration and
	Cadmium and compounds (as Cd)	E	Estimate	calculated leachate flow
				Productofmeasured
				average leachate
		E	Estimate	concentration and calculated leachate flow
	Chlorides (as C I)	E	Estimate	Product of measured
				average leachate
				concentration and
	Chromium and compounds (as Cr)	E	Estimate	calculated leachate flow
				Product of measured
				average leachate concentration and
	Copper and compounds (as Cu)	E	Estimate	calculated leachate flow
				Productofmeasured
				average leachate
	Cyanides (as total CN)	E	Estimate	concentration and calculated leachate flow
	Cyandes (as total CN)	E	Estimate	Product of measured
				average leachate
				concentration and
	Dichlorom ethane (DC M)	E	Estimate	calculated leachate flow
				Productofmeasured averageleachate
				concentration and
	Fluorides (as total F)	E	Estimate	calculated leachate flow
				Productofmeasured
				average leachate
	Halogenated organic compounds (as AOX)	Е	Estimate	concentration and calculated leachate flow
		-	Lotinato	Product of measured
				average leachate
				concentration and
	Lead and compounds (as Pb)	E	Estimate	calculated leachate flow
				Productofm easured average leachate
				concentration and
	Mercury and compounds (as Hg)	E	Estimate	calculated leachate flow
				Productofmeasured
				average leachate concentration and
	Nickel and compounds (as N i)	E	Estimate	calculated leachate flow
				Product of measured
				average leachate
	Organotin compounds (as total Sn)	E	Estimate	concentration and calculated leachate flow
	Organotin compounds (as total Sir)	-	Estimate	Product of measured
				average leachate
				concentration (AS
		_	E a l'an a la	AMMONIA) and calculated
	Total nitrogen	E	Estimate	leachate flow Product of measured
				average leachate
				concentration and
	Total organic carbon (TOC) (as total C or COD/3)	E	Estimate	calculated leachate flow
				Productofmeasured
				average leachate concentration and
	Trichlorobenzenes (TCBs)(all isomers)	F	Estimate	concentration and calculated leachate flow

Product of measured average leachate concentration and0.1520.1520.00EEstimatecalculated leachate flow Product of measured average leachate concentration and0.00.00.0EEstimatecalculated leachate flow concentration and average leachate concentration and0.00.00.0EEstimatecalculated leachate flow average leachate concentration and average leachate concentration and9823.09823.00.0EEstimatecalculated leachate flow Product of measured average leachate concentration and everage leachate concentration and0.790.790.0EEstimatecalculated flow Product of measured average leachate concentration and0.790.000.0EEstimatecalculated leachate flow Product of measured average leachate concentration and0.0150.0150.0EEstimatecalculated leachate flow Product of measured average leachate concentration and0.00.00.0EEstimatecalculated leachate flow Product of measured average leachate concentration and concentration and average leachate concentration and concentration and concentratio	ugitive) KG/Year 0.0 0.0 0.0 0.0 0.0
Product of measured average leachate concentration and Product of measured average leachate concentration and0.1520.1520.00EEstimatecalculated leachate flow concentration and average leachate average leachate concentration and everage leachate concentration and everage leachate concentration and everage leachate concentration and 	0.0 0.0 0.0 0.0
EEstimateaverage leachate concentration and calculated leachate flow Product of measured average leachate0.1520.1520.0EEstimateconcentration and concentration and calculated leachate flow Product of measured average leachate0.00.00.0EEstimateconcentration and calculated leachate flow 	0.0 0.0 0.0 0.0
EEstimatecalculated leachate flow Product of measured average leachate concentration and average leachate concentration and average leachate concentration and average leachate concentration and 	0.0 0.0 0.0 0.0
Product of measured average leachate concentration and calculated leachate flow Product of measured average leachate concentration and calculated leachate flow Product of measured average leachate 	0.0 0.0 0.0 0.0
EEstimateaverage leachate concentration and calculated leachate flow Product of measured average leachate concentration and calculated leachate flow Product of measured average leachate concentration and 	0.0 0.0 0.0
EEstimateconcentration and calculated leachate flow average leachate concentration and calculated leachate flow Product of measured average leachate0.00.0EEstimatecalculated leachate flow 	0.0 0.0 0.0
EEstimatecalculated leachate flow Product of measured average leachate concentration and ecalculated leachate flow Product of measured average leachate 	0.0 0.0 0.0
EEstimateaverage leachate concentration and calculated leachate flow Product of measured average leachate9823.09823.00.0EEstimatecalculated leachate flow calculated leachate flow average leachate 	0.0
EEstimateconcentration and calculated leachate flow Product of measured average leachate concentration and concentration and everage leachate concentration and e9823.09823.00.0EEstimatecalculated leachate flow everage leachate concentration and everage leachate concentration and e0.150.150.0EEstimatecalculated leachate flow econcentration and calculated leachate flow0.00.00.0EEstimatecalculated leachate flow econcentration and calculated leachate flow0.00.00.0EEstimatecalculated leachate flow econcentration and calculated leachate flow verage leachate concentration and calculated leachate flow0.00.00.0	0.0
EEstimatecalculated leachate flow Product of measured average leachate concentration and Product of measured average leachate concentration and9823.09823.00.0EEstimatecalculated leachate flow Product of measured average leachate concentration and0.790.790.0EEstimatecalculated leachate flow concentration and average leachate concentration and everage leachate daverage leachate concentration and everage leachate concentration and calculated leachate flow Product of measured average leachate concentration and calculated leachate flow Product of measured average leachate concentration and calculated leachate flow product of measured average leachate concentration and concentration an	0.0
Froduct of measured average leachate concentration and 0.79 0.79 0.0 E Estimate calculated leachate flow Product of measured average leachate concentration and 0.15 0.15 0.0 E Estimate calculated leachate flow Product of measured average leachate concentration and 0.15 0.15 0.0 E Estimate calculated leachate flow Product of measured average leachate concentration and 0.0 0.0 0.0 E Estimate calculated leachate flow oncentration and average leachate concentration and average leachate concentration and average leachate concentration and calculated leachate flow oncentration and average leachate concentration and concentration and average leachate concentration and concentration and concentration and average leachate concentration and conconcentration and concentration and concent	0.0
average leachate concentration and calculated leachate flow Product of measured average leachate concentration and E0.790.790.0EEstimatecalculated leachate flow concentration and calculated leachate flow Product of measured average leachate concentration and calculated leachate flow Product of measured product of measured <th>0.0</th>	0.0
E Estimate concentration and calculated leachate flow Product of measured average leachate concentration and E 0.79 0.79 0.0 E Estimate calculated leachate flow concentration and average leachate concentration and average leachate concentration and calculated leachate flow 0.15 0.15 0.0 E Estimate calculated leachate flow concentration and calculated leachate flow concentration and calculated leachate flow product of measured average leachate concentration and calculated leachate flow product of measured 0.0 0.0 0.0	0.0
E Estimate Product of measured average leachate concentration and calculated leachate flow Product of measured average leachate concentration and calculated leachate flow 0.15 0.15 0.0 E Estimate Estimate Calculated leachate flow 0.00 0.0 0.0 E Estimate Calculated leachate flow 0.00 0.0 0.0 0.0 E Estimate calculated leachate flow 0.00 0.0 0.0 0.0 E Estimate calculated leachate flow 0.00 0.0 0.0 0.0 F Estimate calculated leachate flow 0.00 0.0 0.0 0.0	0.0
E Estimate average leachate concentration and Product of measured average leachate concentration and calculated leachate flow calculated leachate flow concentration and calculated leachate flow Product of measured average leachate concentration and calculated leachate flow Product of measured average leachate concentration and calculated leachate flow 0.15 0.15 0.0 E Estimate Estimate 0.0 0.0 0.0 0.0	
E Estimate concontration and calculated leachate flow Product of measured average leachate concentration and calculated leachate flow 0.15 0.15 0.0 E Estimate calculated leachate flow calculated leachate flow average leachate concentration and average leachate concentration and calculated leachate flow 0.0 0.0 0.0 E Estimate calculated leachate flow product of measured average leachate concentration and calculated leachate flow product of measured 0.0 0.0 0.0	
E Estimate calculated leachate flow Product of measured average leachate concentration and average leachate concentration and calculated leachate flow Product of measured 0.15 0.15 E Estimate calculated leachate flow average leachate concentration and calculated leachate flow Product of measured 0.0 0.0 E Estimate calculated leachate flow average leachate concentration and calculated leachate flow Product of measured 0.0 0.0	
E Estimate average leachate concentration and calculated leachate flow Product of measured average leachate concentration and calculated leachate flow Product of measured 0.0 0.0 E Estimate calculated leachate flow Product of measured 0.0 0.0	0.0
E Estimate concentration and calculated leachate flow 0.0 0.0 0.0 Product of measured average leachate concentration and E Estimate calculated leachate flow product of measured 0.0 0.0	0.0
E Estimate calculated leachate flow 0.0 0.0 0.0 Product of measured average leachate concentration and calculated leachate flow 0.0 0.0 0.0 Product of measured calculated leachate flow 0.0 0.0	0.0
E Estimate Product of measured average leachate concentration and calculated leachate flow 0.0 0.0 0.0 0.0	
E Estimate average leachate concentration and calculated leachate flow 0.0 0.0 0.0 0.0	0.0
E Estimate calculated leachate flow 0.0 0.0 0.0 0.0	
Product of measured	
	0.0
average leachate	
concentration and	
E Estimate calculated leachate flow 56.3 56.3 0.0	0.0
Product of measured	
average leachate concentration and	
E Estimate calculated leachate flow 0.0 0.0 0.0	0.0
Product of measured	
average leachate	
E Estimate calculated leachate flow 0.0 0.0 0.0	0.0
Product of measured Product of measured	0.0
average leachate	
concentration and	
E Estimate calculated leachate flow 0.0 0.0 0.0 0.0	0.0
average leachate	
concentration and	
E Estimate calculated leachate flow 0.52 0.52 0.0	0.0
Product of measured average leachate	
concentration and	
E Estimate calculated leachate flow 0.0 0.0 0.0	0.0
Product of measured	
average leachate	
concentration (AS AMMONIA) and calculated	
E Estimate leachate flow 3594.0 3594.0 0.0	0.0
Product of measured	
average leachate	
E Estimate calculated leachate flow 78.9 78.9 0.0	0.0
Product of measured	0.0
average leachate	
concentration and	
E Estimate calculated leachate flow 0.0 0.0 0.0 0.0	0.0
average leachate	
concentration and	
E Estimate calculated leachate flow 1.59 1.59 0.0	0.0
0.0 0.0 0.0	0.0

24	Zinc and compounds (as Zn)	F	Estimate	Product of measured average leachate concentration and calculated leachate flow
		-		

* Select a rowby double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B: REMAINING PRTR POLLUTANTS

RELEASES TO WATERS					
	POLLUTANT				
				Method Used	
No. Annex II	Name	M/C/E	Method Code	Designation or Description	
				Product of measured	
				average leachate	
				concentration and	
62	Benzene	E	Estimate	calculated leachate flow	
				Product of measured	
				average leachate	
		_		concentration and	
68	Naphthalene	E	Estimate	calculated leachate flow	
				Product of measured	
				average leachate	
		_		concentration and	
73	Tduene	E	Estimate	calculated leachate flow	
				Product of measured	
				average leachate	
		_	E di sata	concentration and	
78	Xylenes	E	Estimate	calculated leachate flow	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES TO WATERS			
	POLLUTANT			
				Method Used
Pollutant No.	Name	M/C/E	Method Code	Designation or Description

1.59	1.59	0.0	0.0
1.59 0.0	1.59 0.0	0.0	0.0

QUANTITY							
Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year				
0.002	0.002	0.0	0.0				
0.002	0.002	0.0	0.0				
0.01	0.01	0.0	0.0				
0.01	0.01	0.0	0.0				
0.084	0.084	0.0	0.0				

			QUANTITY		•	
Emission Point 1	т (т	otal) KG/Year	A (Accidental)	KG/Year	F (Fugitive)	KGNear
	0.0	0.0	A (Accidenta)	0.0	i (i ugitive)	0.0
	0.0	0.0		0.0		0.0

4.3 RELEASES TO WASTEWATER OR SEWER

SECTION A: PRTR POLLUTANTS

OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER									
	POLLUTANT		ME						
				Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1				
						0.0			

* Select a row by double-clicking on the Pollutant Name (C dumn B) then dick the delete button

SECTION B: REMAINING POLLUTANT EMISSIONS (as required in your Licence)

OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER									
PO	LLUTANT		METHO						
			Met	thod Used					
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1				
						0.0			

		QUANTITY		
T (Total) KG/Year		A (Accidental) KG/Year	F (Fugitive)	KG/Year
	0.0	0.0		0.0

	QUANTIT	Y		
T (Total) KG/Year	A (Accide	ntal) KG/Year	F (Fugitive)	KG/Year
	0.0	0.0		0.0

4.4 RELEASES TO LAND

| PRTR# : W0075 | Facility Name : Tramore Waste Disposal Site | Filename : Appendix K - W0075_2008(1)PRTR P

SECTION A : PRTR POLLUTANTS

POLLUTANT			METHO			
			Me	thod Used		
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	
						0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B: REMAINING POLLUTANT EMISSIONS (as required in your Licence)

RELEASES TO LAND								
POLLUTANT			METHOD					
				Met	hod Used			
Pollutant No.	Name		M/C/E	Method Code	Designation or Description	Emission Point 1		
							0.0	

C version Apr 14 2009 Uploaded. 28/05/2009 11:52

	QUANTITY
T (Total) KG/Year	A (Accidental) KG/Year
	0.0 0.0

	QUANTITY
T (Total) KG/Year	A (Accidental) KG/Year
	0.0 0.0

5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE

| PRTR# : W0075 | Facility Name : Tramore Waste Disposal Site | Filename : Appendix K - W0075_2008(1)PRTR PC version Apr 14

							Method Used	
Transfer Destination	Europæn Waste Code	Hazardous	Quantity T/Year	Description of Waste	Waste Treatment Operation	M/C/E	Method Used	Location of Treatment
Within the Country	17 02 02	No	3.28	Flat Glass	R5	Μ	Weighed	Offsite in Ireland
Within the Country	17 04 07	No	14.22	Scrap Mixed Metals	R5	М	Weighed	Offsite in Ireland
Within the Country	17 02 01	No	29.82	Timber	R5	М	Weighed	Offsite in Ireland
Within the Country	17 01 07	No		Construction Rubble	R5	М	Weighed	Offsite in Ireland
Within the Country	20 03 01	No		Large household Items such as carpets, linoleum, matresses etc	D1	М	Weighed	Offsite in Ireland
To Other Countries	16 02 11	Yes	2.16	Fridges	R4	М	Weighed	Abroad
To Other Countries	16 02 13	Yes	49.14	Washing Machines, Dryers etc.	R4	М	Weighed	Abroad
To Other Countries	16 02 09	Yes	4.54	Televisions, monitors	R4	М	Weighed	Abroad
To Other Countries	16 02 11	Yes	0.1	Flourescent Lamps	R5	М	Weighed	Abroad
Within the Country	15 01 01	No	57.14	Mixed Dry Recyclables	R3	М	Weighed	Offsite in Ireland
Within the Country	04 02 22	No	1.7	Textiles	R5	М	Weighed	Offsite in Ireland
Within the Country	13 02 06	Yes	0.8	Waste Engine Oil	R9	М	Weighed	Offsite in Ireland
Within the Country	16 06 01	Yes	0.28	Batteries	R6	М	Weighed	Offsite in Ireland
Within the Country	08 01 21	Yes	1.28	Waste Paint and Varnish	D5	М	Weighed	Offsite in Ireland
Within the Country	16 05 04	Yes	0.14	Aerosols	D5	М	Weighed	Offsite in Ireland

2009 Uploaded.xls | Return Year : 2008 |

28/05/2009 12:22

2009 Oploaded.xis Return Year : 20			28/05/2009 12:22
Name and Licence / Permit No. of Recoverer / Disposer / Broker	Address of Recoverer / Disposer / Broker	Name and Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)	Licence / Permit No. of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Mr. Binman WCP/KK/022(A)/05	Suir Island, Clonmel, Co. Tipperary		
Mr. Binman	Suir Island, Clonmel, Co.		
WCP/KK/022(A)/05	Tipperary		
Mr. Binman	Suir Island, Clonmel, Co.		
WCP/KK/022(A)/05	Tipperary		
Mr. Binman	Suir Island, Clonmel, Co.		
WCP/KK/022(A)/05 Mr. Binman	Tipperary Suir Island, Clonmel, Co.		
WCP/KK/022(A)/05	Tipperary		
	Cappincur Industrial Estate,		
KMK Metals Recycling -	Daingean Road, Tullamore,	Various International	
WCP/KK/069(A)/06	Co. Offaly	Locations	Not available from carrier
	Cappincur Industrial Estate,		
KMK Metals Recycling -	Daingean Road, Tullamore,	Various International	
WCP/KK/069(A)/06	Co. Offaly Cappincur Industrial Estate,	Locations	Not available from carrier
KMK Metals Recycling -	Daingean Road, Tullamore,	Various International	
WCP/KK/069(A)/06	Co. Offaly	Locations	Not available from carrier
	Cappincur Industrial Estate,		
KMK Metals Recycling -	Daingean Road, Tullamore,	Various International	
WCP/KK/069(A)/06	Co. Offaly	Locations	Not available from carrier
	Materials Recovery Facility,		
Waterford County Council -	Shandon, Dungarvan, Co.		
EPA Licence 189-1	Waterford		
Cookstown Textile Recyclers	Magherlane Road		
ROC 1929 Carrier/Broker	Randalstown, Co. Antrim		
	· · · · · · · · · · · · · · · · · · ·	Clonmanim Industrial Estate,	
ENVA Ireland	Portlaoise, Co. Laois	Portlaoise, Co. Laois	WCP/KK/059(A)07
	Olerene enire he due trial Estate	Claure animal a diversial E a tata	
ENVA Ireland	Portlaoise, Co. Laois	Clonmanim Industrial Estate, Portlaoise, Co. Laois	WCP/KK/059(A)07
	1 011100130, 00. Lauis	1 0110013C, 00. Lauis	
	Clonmanim Industrial Estate.	Clonmanim Industrial Estate,	
ENVA Ireland	Portlaoise, Co. Laois	Portlaoise, Co. Laois	WCP/KK/059(A)07
	· · · · · · · · · · · · · · · · · · ·	Clonmanim Industrial Estate,	
ENVA Ireland	Portlaoise, Co. Laois	Portlaoise, Co. Laois	WCP/KK/059(A)07