ANNUAL ENVIRONMENTAL REPORT Year End December 2008

Dunmore Landfill Dunmore County Kilkenny

Waste Licence Register Number W0030-02

Kilkenny County Council

County Hall John Street Kilkenny

Telephone – (056)7794470 environment@kilkennycoco.ie

Table of Contents

1.	Introduction	1
2.	 Waste Acceptance 2.1. Waste Activities 2.2. Recycling 2.3. Quantity and Composition 2.4. Capacity 2.5. Area of Waste 2.6. Deposition Methods 	1
3.	Environmental Monitoring3.1. Report on Emissions3.2. Interpretation of Environmental Monitoring3.3. Meteorological Report	9 16 18
4.	 Site Infrastructure and Development 4.1. Resource and Energy Consumption 4.2. SCADA Systems 4.3. Development Works 4.4. Tank and Pipeline Integrity Tests 4.5. Restoration Plan 4.6. Site Survey 	
5.	Environmental Targets and Objectives 5.1. Schedule of Environmental Targets and Objectives	27
6.	Procedures6.1. Waste Acceptance Procedures6.2. Emergency Response Procedures	
7.	Nuisance 7.1. Nuisance Control	45
8.	Incidents and Complaints 8.1. Incident/Complaints Reports	47
9.	Staffing9.1. Staffing Structure9.2. Monitoring and sampling	49 50
10.	Financial Provision 10.1. Financial Provision for the Site	53
11.	Public Information 11.1. Procedure for Public Consultation	55
12.	Compliance with Licence 12.1. Compliance 12.2. Summary of Non Compliance	57

Appendices

- A Waste Quantities
- B Gas Monitoring
- C Water Monitoring
- D Sampling Points
- E Meteorological Data
- F Restoration Plan
- G Objectives and Targets
- H Waste Acceptance Procedure
- I Bird Control
- J Management Structure
- K Sample Flare Data

1. Introduction

Kilkenny Council's Landfill Site at Dunmore received its first Waste Licence (30/1) from the Environmental Protection Agency on the 23rd November 1999. In March 2001 an application was made to review this Licence, to incorporate an enhanced entrance, better infrastructural features and a further four cells. The EPA granted the review of the licence in May 2002 register no. 30/2. The reporting period for this Annual Environmental Report is from 01/01/08 to the 31/12/08.

Records for gas production and waste quantities are based on the waste quantities entering the landfill over the weighbridge. Accurate records are available from July 1997 when the weighbridge was installed and used for cells 8 - 14; estimated figures are used for waste deposited since 1989. All water balance calculations, site area etc. refer to the entire licensed boundary of the site incorporating cells 1-14 (area for potential leachate generation).

2. Waste Acceptance

2.1 Waste Activities

The categories of waste listed below may be accepted at the landfill site: -

- Household refuse collected by refuse contractors in the functional areas of Kilkenny Council and Kilkenny Borough Council.
- Commercial refuse (similar in character to household refuse) collected by private refuse contractors in the functional areas of Kilkenny County Council and Kilkenny Borough Council. Restrictions on commercial recyclable waste have been in force since September 2001 and will continue under the terms of the Waste Management (Packaging) Regulations and the terms of the Waste Licence.

- Household refuse which is transported directly by householders to the landfill site or brought to the C.A. site which is in turn is deposited to landfill, including green waste.
- Commercial refuse (similar in character to household refuse) which is transported directly to the landfill site. Restrictions on Commercial recyclable waste have been in force since September 2001 and will continue under the terms of the Waste Management (Packaging) Regulations and the terms of the Waste Licence.
- Household waste for recycling which is temporarily stored on site (Mixed Electrical Goods, Steel/Aluminium Cans, Clear/Green/Brown Glass, Mixed Paper, Cardboard, Plastic Packaging, Tetra pack, Gas Cylinders, Timber, Metal, Waste Oils, Household Hazardous Waste, Textiles, Lead Acid/Primary Batteries)
- Non-hazardous construction and demolition waste which is specifically required for the site and is accepted by agreement with Kilkenny County Council.
- Non-hazardous industrial waste. Restrictions on Industrial recyclable waste have been in force since September 2001.
- Lime treated sewage sludge from Kilkenny Main Drainage treatment plant at Purcellsinch may be accepted as a soil conditioner in landfill cover.
- Litter, street sweepings and gully cleanings.
- Bonded asbestos, double bagged in small quantities, subject to 5 tonnes as specified in the licence (None accepted since August 2001).
- Imported cover and road material in quantities as required

WASTE TYPE	MAX (PER ANNUM)	TOTAL 2008
Household	20,995 ^{Note 1}	12,263
Commercial	14,000 ^{Note 1}	5,816
Industrial Non-Hazardous Solids	5,000 ^{Note 1}	0.94
Treated Sewage Sludge	1,000 Note 2	0
Construction and Demolition Waste	1,000 ^{Note 3&4}	160
Green Waste for Composting	1,500 ^{Note 5}	0
TOTAL FOR DISPOSAL	40,000	18,239.94

The total maximum amount of each waste that may be accepted is listed in the table below.

Note 1: - The tonnage of household waste, commercial waste and industrial non-hazardous solid waste may be increased with the prior agreement of the Agency provided that the total amount of these wastes accepted at the landfill for disposal does not exceed the combined total of 40,000 tonnes per annum.

Note 2: - Treated sewage sludge may only be accepted at the facility for recovery and in accordance with Condition 5.7.1.

Note 3: - Construction & Demolition Waste shall not be disposed of at the facility but may be accepted for recovery for use as daily cover, in site construction works and landfill restoration. This quantity may be increased subject to agreement with the Agency.

Note 4: - A maximum of 5 tonnes per annum of construction waste containing asbestos may be disposed of in accordance with Condition 5.7.3.

Note 5: - Limited to 1,000 m3 at any time.

Dunmore Landfill Site accepts only non-hazardous waste however hazardous waste in small quantities may be present in domestic refuse and in commercial refuse, particularly in skips. Kilkenny County Council has provided a separate area for the collection of white goods, brown goods and a household hazardous waste container. Specialised companies (Indaver, KMK Metals Recycling Ltd, Irish Lamp Recycling Co. Ltd and Enva Ireland Ltd) remove all of this waste from site and dispose/recycle it in accordance the relevant legislation. Kilkenny County Council also provides a mobile Chemcar collection of household hazardous waste at various times through out the year at different locations around the county.

From September 2001 restrictions were put on the acceptance of all recyclable commercial and industrial waste, including white & brown goods, paper, cardboard, metal, timber, glass and cans.

The demand for recycling services and quantities of recyclable materials increased through out 2008. Kilkenny City and County have 43 Bring Site accepting glass, cans, newspapers and plastic bottles. It is hoped that the CAS and the Bring Sites will encourage recycling and reduce the amounts of domestic waste being landfilled. In addition to this over 8000 home compost units have been distributed throughout the county. It is hoped that this will result in a significant reduction in the amounts of kitchen green waste going for disposal.

Animal waste such as hide and skin trimmings and fish offal has been restricted from the site since the 30th November 2001, which is now policy at the site.

Kilkenny Council may prohibit the importation of specific waste categories from time to time to conserve void space and/or to comply with any requirements, which the Council may decide from time to time.

2.2 Recycling

In October 2003 Kilkenny Council opened a dedicated recycling facility. The materials accepted at the site include: -

- Mixed Paper
- Cardboard
- Glass (Brown, Green, Clear)
- Batteries (Primary, Lead Acid, fence batteries)
- White Goods
- Brown Goods

- Household Hazardous waste
- Waste Oils/filters
- Steel/Aluminium Cans
- Mixed Metal
- Timber
- Textiles
- Tetra Pack
- Plastics
- Reading Books

Since opening in 2003 there has been a significant increase in the quantities accepted for recycling at the facility. The quantities of recyclable material accepted at the C.A. site and the category breakdown can be found in Appendix A. Since opening an extra member of staff has been employed specifically to supervise the centre, with security systems to monitor activity. There is a nominal charge levied for using the centre to assist with the running cost.

From the 13th August 2005 Dunmore Civic Amenity Site accepts WEEE (Waste Electronic & Electrical Equipment) free of charge from householders under the Waste Management (waste Electrical and Electronic Equipment) Regulations 2005. Registered retailers are permitted to deliver the WEEE (collected from a like for like take back scheme) to the CA site by prior agreement.

2.3 Quantity and Composition

The quantities of waste accepted at the landfill since July 1997 and the categorised breakdown can be found in Appendix A. The recyclable waste removed from the site i.e. white/brown goods, bottles (green, brown and clear), metal, timber, paper/cardboard, tetra and mixed plastic are also listed.

2.4 Capacity

The remaining capacity (January 2009) at Dunmore was approximately 11,500 tonnes, which is around 2/3 year at current filling rates. An agreement to revise the final contours together with a reduction in the tonnage accepted at Dunmore helped to prolong the life of the old site during 2002. An interim agreement was reached with Carlow County Council to accept some waste (up to 7000 tonnes, 2,500 tonnes actually diverted); from March 2002 to September 2002 which also assisted in prolonging the life until new void space was provided. This is a reciprocal arrangement.

2.5 Area Occupied by the Waste

Cell Number	Area (sqm)	Area (Hectares)	Area (Acres)	Comment
1	5304	0.53	1.31	Full
2	3546	0.35	0.865	Full
3	3142	0.31	0.766	Full
4	6169	0.62	1.532	Full
5	3872	0.39	0.964	Full
6	4888	0.49	1.211	Full
7	2921	0.29	0.717	Full
8	7464	0.75	1.853	Full
9	4360	0.44	1.087	Full
10	6163	0.62	1.532	Full
11	6500	0.65	1.61	Full
12	3050	0.31	0.75	Full
13	6170	0.62	1.52	Full
14	5390	0.54	1.33	¹∕₂ Full
Total	68939	6.9	17.03	

The area occupied by the waste is shown in the table below:-

Filling is currently taking place in cell 14. Cell 13 is full as at August 2008. The capping to cells 7, 8, 9, 10, 11 and 12 was largely completed during 2008 with the final capping of cell 7 to be completed in early 2009.

2.6 Deposition Methods

Waste presented at Dunmore landfill for disposal is handled in the following ways: -

Household and commercial waste collected by private refuse contractors and Kilkenny Corporation is deposited at the active land filling face. The waste is then spread and compacted as soon as it becomes practical to do so, by the site staff.

Waste brought directly to the site by householders is placed by them in the container located in the recycling centre. When this container is full, it is weighed and transported to the active tipping face for disposal. All recyclables brought to the site are directed to the appropriate location and are placed in the appropriate receptacle for temporary storage on site. As soon as these receptacles are full, site staff arranges for the removal of the material to an authorised materials recycling centre. From the start of 2002 some white goods and brown goods have been reclassified in the European Waste Catalogue and these goods will be handled in accordance with this directive (EC) No. 2557/2001.

Bonded asbestos in small quantities is accepted at the site provided it is double bagged and secured in strong polythene bags. Prior arrangement with the site staff is required. A pit is excavated in the main body of deposited waste to a minimum depth of 3 metres. The bags are carefully placed in the pit and covered with excavated material up to original levels. Asbestos has not been accepted at the site since 2001 and it is intended to continue this practice.

Lime treated sewage sludge may be accepted at the site for use as a soil conditioner in capping works at the site. No sludge was accepted as part of such works in 2008.

Small amounts of construction/demolition waste are accepted at the site. This waste is

tipped away from the tip face. An assessment is carried out on the waste and is used for internal haul roads, inert cover material and strengthening the tipping face. Any recoverable metal is placed in the metal recycling skip. Any material unsuitable for these operations is landfilled, which would only be from a domestic source. A separate construction and demolition facility does not operate at present.

The site is licensed to set up a composting facility but this did not commence in 2008. Christmas trees brought to Dunmore during January 2008 were shredded and used as capping on the site.

3. Environmental Monitoring

3.1 Report on Emissions

3.1.1 Landfill Gas

Landfill gas monitoring locations at Dunmore are set out in the following locations. Perimeter Gas Migration Monitoring Locations

Station	Easting	Northing
GM1	249524	160493
GM2	249587	160435
GM3	249804	160270
GM4	249867	160441
GM5	249765	160510
GM7	249732	160623
GM8	249845	159922
GM9	249529	160616
GM10	249900	160467
GM11	249930	160497
GM12	249930	160535
GM13	249900	160568
GM14	249879	160632
GM15	249848	160668
GM16	249820	160707
GM17	249709	160660
GM18	249671	160714
GM19	249818	160545
GM20	249754	160497
GM21	249751	160443
GM22	249764	160401
GM23	249811	160374

Vent Pipe Locations (harnessed gas wells)

Station	Easting	Northing
VP1	249785	160305
VP2	249752	160329
VP3	249771	160357
VP4	249735	160378
VP5	249718	160350
VP6	249688	160376
VP7	249704	160398
VP8	249650	160395

VP9	249674	160427
VP10	249696	160466
VP11	249718	160496
VP12	249682	160499
VP13	249655	160465
VP14	249637	160423
VP15	249611	160445
VP16	249607	160483
VP17	249644	160503
VP18	249508	160564
VP19	249537	160593
VP20	249565	160621
VP21	249593	160649
VP22	249623	160676
VP23	249606	160546
VP24	249591	160571
VP25	249559	160586
VP26	249566	160554
VP27	249532	160563
VP28	249540	160537
VP29	249565	160516
VP30	249832	160014
VP31	249630	160664
VP32	249884	160007
VP33	249608	160611
VP34	249918	160038
VP35	249577	160592
VP36	249953	160070
VP37	249589	160528
VP38	249647	160526
VP39	249674	160565
VP40	249685	160589
VP41	249618	160562
VP42	249673	160623
VP43	249654	160604
VP44	249628	160588
VP45	249633	160622
VP46	249582	160623
VP47	249728	160577
VP48	249758	160574
VP49	249760	160543
VP50	249787	160570
VP51	249759	160600
VP52	249739	160585
VP53	249809	160615
VP54	249780	160638
VI J4	247000	100036

Gas monitoring and migration results are submitted to the Agency biannually. Results for 2008 are available in Appendix B. The gas extraction and enclosed flare system which controls gas venting and migration was extended during 2008 with the addition of gas wells in cells 8, 9, 12, 13 & 14. All gas wells on the site are harnessed and the gas is burnt off thus reducing the landfills contribution to ozone depleting gases by 90%, and also reduces landfill gases odour.

Gas Quantity Emissions from the Landfill

The initial aerobic phase and the first transition stage only take a couple weeks. During these phases there is no gas produced as a result of degradation. In the second transition phase there is no longer oxygen intake to the site and the anaerobic phase begins. This results in methane production and will continue for up to two years. In this period of time the production of gas is not stable and the full annual production of gas is not reached. When gas production stabilizes in the methanogenic phase and total expected time until the end of methane production is approximately twenty years. The table below is an estimate based on the tonnages accepted since the weighbridge was installed (07/97) and since waste input (in tonnes) records were kept. The figures in the table below are based on an estimated gas production of 75 l/kg (which includes an assumption of 60% wet waste). A detailed discussion of landfill gas production since the site opened is contained in the EIS submitted as part of the licence review.

Year	Annual Tonnage Waste		Annual Gas Production Rate Methane (Mm3/yr)	Cumulative Methane Gas Production Rate (Mm3)	Annual Landfill Gas Production (Mm3/yr)
1997					
(6mths)	12,793.65	0.02	0.02	0.02	0.04
1998	21,828.05	0.04	0.09	0.07	0.16
1999	27,853.72	0.05	0.18	0.24	0.33
2000	33,593.38	0.06	0.30	0.53	0.54
2001	29,805.96	0.06	0.42	0.95	0.76
2002	17,651.90	0.03	0.51	1.48	0.92
2003	17,259.53	0.03	0.57	2.05	1.04
2004	23,334.00	0.04	0.65	2.69	1.18
2005	19,266.00	0.04	0.73	3.42	1.32
2006	18,516.00	0.03	0.80	4.22	1.45
2007	22,267.00	0.04	0.87	5.09	1.59
2008	18,239.94	0.03	0.95	6.46	1.73

In November 2003 a temporary gas extraction and flare system was introduced at the site in cells 8-10. This resulted in a noticeable improvement in the air quality within the site, a reduction in odour problems and a reduction in measured exceedance levels adjacent to these cells. During 2004 a permanent gas extraction and enclosed flare system was installed. This system controls all gas venting and migrating from cells 1 to 14, the gas is drawn out of the cell and is burnt off. Since the installation of this system the landfill gases have been significantly reduced by 90%. This system was extended during 2008 to extract gas from Cell 13 & 14.

3.1.2 Surface Water, Groundwater and Leachate

Surface Water: - Surface water is analysed quarterly and the results are submitted to the Agency. The monitoring locations are listed below: -

Station	Easting	Northing
Stream A -Upstream	249978	160617
- Downstream	249544	160503

Results of the surface water monitoring are available in Appendix C

Groundwater: - Groundwater well quality is tested quarterly, and results are submitted to the Agency as set out in condition 9.1 and schedule F of the licence. The monitoring locations are listed on below: -

Station	Easting	Northing
No. 3	250011	160551
GW1	249675	160924
No. 14	249547	160507
GW2	249867	160440
GW3	249500	160511
GW4	249562	160456
MW1	249619	160383
No.15	249454	159728
No. 6	249488	160191

Results throughout the year have shown no adverse effects to the ground water as a result of landfilling in the area, and are listed in Appendix C.

Leachate: - The composition of leachate is tested at leachate manholes and holding lagoon quarterly and results are submitted to the Agency as set out in condition 9.1 and schedule F of the licence. The results are listed in Appendix C. The monitoring locations are listed below: -

Monitoring	Easting	Northing
Locations		
Holding Lagoon	249566	160484
Manhole 1	249649	160608
Manhole 2	249600	160604
Manhole 3	249521	160536
Manhole 4	249526	160507
Manhole 5	249566	160480

The volume of leachate produced and removed from the site is as follows: -

The water balance equation was calculated as follows: -

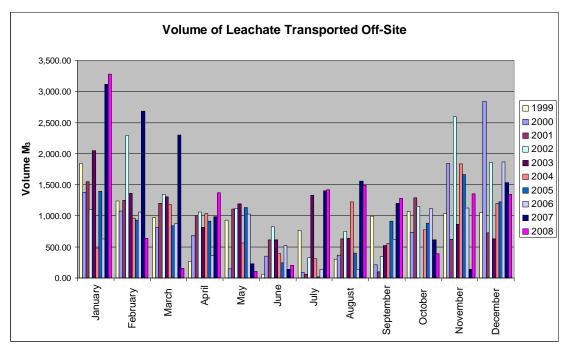
Amount of Leachate on Site = (effective rainfall * area cell 1-7 * % area not yet capped) + (effective rainfall * area cell 8-10 * % area not yet capped) + (effective rainfall * area cell 11-12* % area not yet capped) + (effective rainfall * area cell 13-14* % area not yet capped)-(leachate removed)-(primary absorption factor)-(degradation water usage2008)

Where: -

Effective Rainfall = Total Rainfall - Potential Evapotranspiration (Met Eireann Figures)

Primary absorption may be taken as 100 l/tonne for 10% of waste as the amount of dry materials is decreasing from domestic sources.

Volume required for degradation = 2mm per square meter


Amount of Leachate on Site = (3126.25) + (942.16) + (1000.46) + (6055.13) -(12546.6) - (182.4) - (137.87)

Amount of Leachate on Site = $-1,742.89 \text{ m}^3$

The amount of leachate removed from site and frequency was in response to the amount of rainfall and potential evapo-transpiration at the site i.e. the rate of leachate

production. In 2008 the rainfall was in line with the average rate and similar to the amount in 2007 with a small increase of 8.1% in 2008. More leachate was removed off site than was produced on site during 2008 as it was necessary to store some leachate on site at the end of 2007. This leachate was then tankered off site in early 2008. A second leachate lagoon was installed during 2003 which provides for a much greater storage capacity at the site. The following graph shows the amounts of leachate taken from the site: -

During 2004 leachate recirculation tankers were installed in cells 8-10 to reduce the cost of leachate collection and disposal, enhance settlement with the aim of recovering air space, to encourage gas production and to promote early stabilisation. The leachate recirculation tanks are listed below.

Leachate recirculation Tanks

Station	Easting	Northing
LR 1	249515	160572
LR 2	249553	160605
LR 3	249602	160643
LR 4	249647	160670

3.1.3 Dust monitoring

Dust Monitoring: - Dust Monitoring takes place three times a year and the results are submitted to the Agency. The monitoring locations are listed below: -

Station	Easting	Northing
DG 1	249565	160453
DG 2	249756	160467
DG3	249700	160638
DG 4	249870	160671
DG 5	249940	160588

3.1.4 Noise Monitoring

Noise Monitoring: - Noise Monitoring is analysed annually and the results are submitted to the Agency. The monitoring locations are listed below: -

Station	Easting	Northing	
NS 1	249725	160830	
NS 2	249852	160740	
NS 3	250006	160593	
NS 4	250003	160571	
N1	249803	160290	
N2	249489	160927	
NS 5	249981	160510	
Dunmore Cottage	249442	160896	

The locations of all sampling and monitoring points can be found in the attached drawing in Appendix D.

3.2 Interpretation of Environmental Monitoring

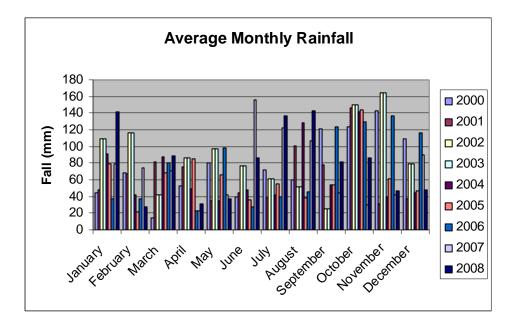
Gas: - Gas monitoring took place on the site at both gas well locations and migration points. The results from the wells indicted that approximately 2/3 of the gas in the vents was methane with the remaining 1/3 carbon dioxide. These are the normal levels that can be expected in a landfill of this age.

Results from the migration points around the site indicated a number of exceedances in the set trigger levels, which are given in Schedule C of the licence. An Assessment of Landfill Gas Measurements at Dunmore Landfill, Co. Kilkenny analysing the processes responsible for these exceedence levels was carried out in March 2006 and submitted to the agency in 2007. This report concluded that there is CO_2 naturally occurring in the Dunmore Area. To allow for this finding the Agency agreed to increase the tolerance of the CO₂ trigger level, from 1.5% v/v to 3% v/v, therefore any levels =>3% v/v would be treated as an incident and reportable to the Agency. During 2008, 30.43% of the monitoring migration analysis points had trigger levels = or > than 1.5%, 90.91% of these exceedences had values in the range of = or > 1.5% v/v & <3% v/v, and 9.09% of these exceedences were in the range of = or > 3% v/v. The number of exceedences in the gas migration monitoring points was slightly higher than that in 2007 however the overall number of exceedences = or > 3% v/v had decreased from 6.72% in 2007 to 2.77% in 2008. There were no exceedences of methane at any of the migration locations during 2008. If a trigger level was exceeded, the Agency was notified in writing and an investigation was carried out into the cause. In most cases once a cause was established, remedial measures were put in place. These resulted in the measures of carbon dioxide to fall within acceptable levels or be eliminated.

Ground/Surface Water: - Primary indicator parameters used to detect the presence of any leachate infiltration to groundwater are conductivity and chloride levels. The levels of chloride and conductivity are within acceptable levels and there is no noticeable increases in these levels since records began.

Dust Monitoring: - Dust monitoring was carried out at five different locations during the months of August/September, April/May and February/March. There was one exceedence in dust deposition limits during 2008. The exceedence in the trigger level was due to construction works adjacent to the dust monitoring point.

Noise Monitoring:-Noise monitoring was carried out during March 2009. Six sensitive locations and two boundary locations were monitored during daytime landfill operations. Results indicated that the local noise environment was primarily impacted by passing traffic on the N77 Kilkenny-Durrow Road, and that the noise from the landfill was negligible.



3.3 Meteorological Monitoring

Meteorological Report

The following is a summary of the rainfall amounts and potential evapo-transpiration rates at Dunmore. The results were obtained from Met-Eireann.

Month	Rainfall (mm)	Potential Evapotrans. (mm)
January	141.9	13.0
February	27.3	17.6
March	89.0	36.7
April	31.8	51.7
Мау	37.1	75.4
June	86.8	75.1
July	136.7	76.1
August	142.4	60.9
September	81.5	41.6
October	87.0	23.4
November	47.4	12.6
December	47.8	7.0
Total	956.7	491.1

The rainfall rate in 2008 was higher to that of the previous year. See appendix E for Metrological data.

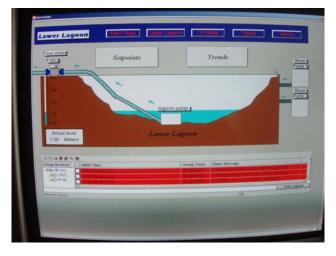
4. Site Infrastructure and Development

4.1 Resource and Energy Consumption

The following raw materials are used as a result of the land filling process at Dunmore landfill facility:

4.1.1 Diesel Fuel: -The amount of fuel consumed per week at the landfill site averages at approximately 982 litres, by the loading shovel, tractor, excavator, and compactor. There was a decrease in diesel consumption by 17.13% in 2008 compared to previous year. The rate of fuel use is relatively constant throughout the year, with increases in use, when additional plant and machinery are on site to facilitate development works.

4.1.2 Electricity: -. Electricity is used in the following buildings; weighbridge office, main offices and recycling centre office. It is also used to operate the weighbridge computer, pump, lights, heating and cooling appliances, CCTV cameras etc. In 2003 a new three phase supply was installed to meet the demands of the revised licence and supply the recycling centre, gas flare, pumps, SCADA system and extended office.



4.1.3 Sprinkling Water: - During periods of dry weather water is used to suppress dust on the site haul roads. Occasionally water maybe taken from the river Nore located adjacent to the site. The quantities of water used would vary but would not exceed 8,000 gallons per day during dry weather. The entrance and weighbridge area are watered down and cleaned using the road sweeper or a power washer and a 300 gallon reused oil tank as a water reservoir filled from the site water supply. Some sprinkling around the weighbridge is carried out using local groundwater sources.

4.2 SCADA System:-

4.2.1 Leachate Monitoring

Supervisory Control and Data acquisition to facilitate monitoring and management of Leachate levels in the Leachate lagoons and new cells is in operation at the facility. This system allows for constant monitoring of all pumps, leachate levels in wells and lagoons, to ensure the levels in cells do not rise above 1m and that leachate level in lagoons shall always maintain a minimum freeboard of 0.75m. Alarms will be raised should any of the levels be reached. (see below typical screen showing level in lower lagoon). The SCADA system was upgraded during 2008 to facilitate the control of the additional leachate pumps in Cells 13 & 14.

4.2.2 Gas collection and flaring system

Collection and flaring of gas commenced August 2004. The flare operates 24hr a day 7 days a week at temperatures of approx 1020°C. SCADA system on site constantly monitors and records the flaring system. Data is down loaded on a monthly basis from the flare system to an excel spread (see Appendix K for sample of data) the

Ambient temperature
Atmospheric Pressure
Carbon Dioxide
Flow
Methane
Oxygen
Pressure
Flare Temperature
Carbon Monoxide

following parameters are recorded:

Closed Flare System

4.3 Development Works

4.3.1. Development Works over during the Reporting Period

Over the past year the following development works have been carried out at the facility:

- Installation of gas monitoring wells in Cells 13 & 14, with the approval of the agency.
- Connection of additional gas wells in Cells 8, 9, 12 & 13 to the gas extraction and flaring system.
- Completion of capping works to Cells 8, 9, 10, 11 & 12.
- Continuation of capping works to Cell 7.
- Continuation of restoration of lined cells.
- SCADA system for leachate monitoring upgraded to facilitate the control of the additional leachate pumps in Cells 13 & 14.
- Removal of haulage roads to facilitate the completion of capping works. •
- Further signage installed in Civic Amenity Site. •
- Additional signage installed at site entrance.
- Installation of weighbridge software system upgrade. •

4.3.2 Proposed Development Works

It is proposed to carry out the following developments at Dunmore in the year 2009 in accordance with the EIS and subsequent Waste Licence.

- Complete remaining capping of Cell 7.
- Installation of additional gas wells in Cell 14, with the approval of the agency.
- Connection of further gas wells in Cell 14 to the gas extraction and flaring system.
- Extension of leachate recirculation system.
- Install further signage at site entrance.
- Upgrade SMS texting system and data logging system on SCADA software for gas flare.
- Customer characterisation survey to be carried out to identify customer needs post closure of landfill.
- Review of traffic management measures on site.
- Review of Civic Amenity Site Services.

4.4 Tank and Pipeline Integrity Tests

In respect of Condition 5.12.2, an integrity test on the leachate-holding lagoon and pipeline outside the cells was carried out.

'Geomembrane Testing Services Limited', carried out an integrity test on the leachate holding lagoon which was submitted to the Agency on 2nd September 2003. Air pressure and high frequency spark tests were carried out over the lined area of the lagoon. It was found that 'the geomembrane liner was free of defects at the time of final inspection'. Lagoon structures were retested in 2007 with the final part of the test completed in early 2008. Upon completion of the integrity test on both leachate holding lagoons, results were forwarded to the Agency.

4.5 Restoration Plan and Aftercare Plan

The final ground level contours of the landfill are shown on Drawing No. 30-2-DWG03, contours map, while the restoration plan for the area is shown on Drawing No. 30-2-DWG02, Landscaping Plan. These are available in appendix F.

Phase I of the Restoration in Cells 1 - 7 was completed with a temporary cap after it was filled between 1989 and 1998. Three acres of leased land has been seeded with grass and a small yard area is provided. The remaining six acres had been planted with native woodland species and fenced with a rabbit-proof fence. As part of the revised licence all seeded areas and trees were removed and a revised impermeable capping system commenced in 2003. 90% of this capping layer was completed in 2004 the remaining capping works to be completed in early 2009 as part of phase III capping. The area will be restored as outlined previously with a mix of grass and planting.

Phase II of the Restoration Scheme comprises Cells 8 - 10. As part of the licence conditions and landfill directive partial capping of cells 8 - 10 commenced in 2003. At the end of 2004 50% of this capping layer was completed. Completion of the remaining capping works to cells 8, 9, 10, 11 & 12 took place during 2008. Final capping will consist of a gas drainage layer, a bentonite enhance liner, an impermeable plastic layer, surface water drainage layer, subsoil and topsoil. The restored area will be a combination of seeded and planted areas. The final capping detail was submitted to the Agency for approval and is in accordance with details shown in the EPA Landfill Manual on Restoration and Aftercare.

Phase III of the Restoration Scheme comprises Cells 8 - 14. The remainder of the site will be capped progressively within 12 months of the final filling of cells to level. Final capping will consist of a gas drainage layer, a bentonite enhance liner, an impermeable plastic layer, surface water drainage layer, subsoil and topsoil. The restored area will be a combination of seeded and planted areas. The final capping detail was submitted to the Agency for approval and is in accordance with details

shown in the EPA Landfill Manual on Restoration and Aftercare.

Prior to completion of the restoration, the gas pipework system shall be modified. Tree and shrub planting will be delayed until all remedial work on the gas system has been carried out and initial settlement has occurred. Areas subject to delays shall be restored on an interim basis and seeded with grass.

All leachate collection and control systems shall be maintained.

Upon completion of the landfill activities the following restoration/reinstatement works will be carried out: -

- 1. Removal of all litter screen fencing.
- 2. Removal of weighbridge, site offices and canteen.
- 3. Weighbridge and offices area no longer required shall be topsoiled and seeded with grass, those required for the operation of the civic amenity site will be maintained as required.
- 4. Any litter from perimeter hedging, ditches and surrounding land shall be removed.
- 5. All boundary fences on the site shall be secured. Hedge rows will be retained and renewed as necessary.
- 6. All unsurfaced roadways with the exception of the access to the leachate lagoon and civic amenity site shall be removed.
- 7. Decommission and removal of services, e.g. telephone, ESB, no longer required on site.
- 8. Erect signage indicating that the landfilling facility is closed and directing users of the civic amenity facility to the correct locations.
- 9. The boundary at the access road (from the Bleech Road) will be secured, all unsurfaced roadway shall be removed apart from access to the lagoon.

In the long term and subject to Waste Licence conditions and monitoring results, any appurtenances no longer required for the monitoring or maintenance programmes shall be removed off site. The localised areas affected by these works will be restored to the condition of the surrounding ground.

The leased area of land (O'Neill's pit) will be returned to the owner for agricultural grazing use, all fence boundaries restored and its maintenance, apart from monitoring points and gas wells, will no longer be the responsibility of Kilkenny County Council.

The remaining areas of land subject to agreement with the agency will be woodland/grassland after the restoration and landscaping plan is complete and specialist forestry management firms under contract with Kilkenny Council will manage these areas.

4.6 Site Survey

The site topographical survey is completed at least once a year. This survey was submitted to the Agency previously under condition 8.8.1 (ref. LC-41-MG) and will be submitted annually thereafter. Last topographical (Revision K) survey was carried out the March 2009 and sent to the Agency.

5. Environmental Targets and Objectives

5.1 Objectives and Targets

Objective 1

Ensure that all waste acceptance requirements are met

Target 1.1	All waste accepted at the facility is within the criteria set out in
	Part I of the Waste Licence
Target 1.2	The amounts of each category of waste recovered and disposed
	if at the facility does not exceed that specified in Schedule A of
	the Waste Licence
Target 1.3	Any restriction on waste entering the facility shall be strictly
	enforced
Target 1.4	All waste accepted for recovery and disposal shall be done so
	within the opening hours specified in condition 1.6

Objective 2

Establish and Environmental Management System to fulfil the obligation of the Waste Licence.

- Target 2.1 The facility shall employ a suitably qualified facility manager as the person in charge and that this person or a nominated deputy shall be present at all times at the facility, this person will be in place from the grant date of the licence.
- Target 2.2 The facility manager and deputy shall complete the FAS Waste Management Training Program with 12 months of their appointment.
- Target 2.3 All personnel performing specially assigned tasks shall receive all appropriate instruction prior to carrying out that function
- Target 2.4 Submission of details of management structure for Dunmore Landfill Facility by the end of August 2002, which will be

Annual Environmental Report Waste Licence Register Number W0030-02

reviewed annually or as required.

- Target 2.5Preparation and submission of an Environmental Management
Program (EMP) to the Environmental Protection Agency by the
end of November 2002, which will be reviewed annually in
November and submitted to the Agency or as required.
- Target 2.6Preparation and submission of an Environmental ManagementSystem (EMS) to the Environmental Protection Agency by theend of November 2002, which will be reviewed annually inNovember and submitted to the Agency or as required.
- Target 2.7Establish awareness and training procedures for personnel at
Dunmore Landfill Facility which will form part of the EMS
- Target 2.8Submission to the EPA of a communications program as part of
the EMS
- Target 2.9Preparation and submission of a corrective action procedure,
which will be submitted to the Agency as part of the EMS
- Target 2.10First Annual Environment Report (AER) of Waste Licence 30-
2 submitted to Agency by the end of January 2003.
- Target 2.11
 Review of AER by the end of January annually thereafter

Objective 3

Provision of required infrastructure at the facility with the agreement of the agency

- Target 3.1An updated site notice board will be provided at the new
facility entrance by end June 2002. The new Waste Licence
reference number will be provided, contacted details including
revised telephone numbers and location of all environmental
monitoring information
- Target 3.2Security fencing and security measures will be provided as part
of the provision of the new access by May 2003
- **Target 3.3** A new access will be provided from the N77 by April 2003.

Detailed SEW will be submitted on the project will be submitted to the Agency, when the safety audit on the alignment has been approved by the NRA.

- **Target 3.4** Facility roads and hardstanding areas will be provided at the new access by April 2003, which will be designed to ensure safe access and movement within the site. All areas will be provided with appropriate surface water drainage systems.
- Target 3.5 New facility offices, will be provided, which will incorporate telephones and an electronic communication facility by April 2003. Offices shall be fitted with gas monitoring equipment, in accordance with 'Protection of New Buildings and Occupants from Landfill Gas.
- Target 3.6A Waste Inspection and Quarantine Area will be provided by
May 2003, subject to Agreement with the Agency. Drainage
from these areas will go directly to the leachate lagoon.
- **Target 3.7** The present weighbridge at the facility will be relocated or a new weighbridge will be provided at the new facility entrance, subject to agreement with the Agency, by May 2003. This weighbridge will not be made operational until approval is given by Legal Metrology Services.
- **Target 3.8** A wheel cleaning as set out in the EIS area will be provided at the facility entrance by May 2003, subject to agreement with the Agency.
- **Target 3.9** As part of the development of the new offices, a wastewater treatment plant will be provide at the new facility offices by May 2003, subject to agreement with the Agency. The discharge from this unit will go directly to the new leachate lagoon.
- Target 3.10A revised tank and drum storage area will be provided by April2003, to ensure any spillage that may occur is contained.
- Target 3.11 Four new cells will be provided (cell 11-14), between 2002

and 2005 and will be constructed to that specified in condition 3.13, subject to agreement with the Agency.

- Target 3.12 A new larger leachate lagoon shall be construction to the specified standard to provide sufficient capacity for storage by May 2003, subject to agreement with the Agency.
- **Target 3.13** A new gas management system is in place, analysis and written procedure on the system will be prepared and submitted to the agency by 2006.
- **Target 3.14** A SCADA system or equivalent will be installed at the facility by April 2003, where the hardware and software will be incorporated into the new facility offices, subject to the Agencies agreement.
- **Target 3.15** A full surface water management system will be incorporated as infrastructure and capping is provided, subject to the Agencies agreement. Surface water from the extension will be diverted to the surface water stream once the capping system is provided.
- **Target 3.16**All new infrastructure provided will have regard to the ground
water in the area which is monitored on a monthly basis.
- **Target 3.17** A construction and demolition storage area will be provided by April 2003 as part of the revised access, subject to the agreement of the Agency.
- **Target 3.18** The civic amenity site will be provided by May 2003 and will be maintained to the highest environmental standards. It is anticipated that this area in conjunction with other County Council initiatives will increase recovery rates in the County.
- **Target 3.19** A household hazardous waste facility will be provided at the new civic waste facility. This facility will be widely advertised and will raise awareness of the need to source segregate household hazardous waste.
- Target 3.20 A proposal on the provision of compost facilities will be

completed by May 2003 and submitted to the Agency. Composting/shredding facilities will increase recovery rates for green waste in the County.

- **Target 3.21** A revised proposal for the provision of berms at the facility will be submitted to the Agency by January 2003. All revision made will be as a result of consultation with adjacent properties.
- **Target 3.22** All monitoring points required to meet the conditions of the Waste Licence will be provided as infrastructure develops, subject to the Agencies agreement.
- **Target 3.23** The landfill gas management system shall be extended to extract gas from the new cells as they develop, subject to agreement with the agency.
- Target 3.24The leachate extraction system shall be extended as the cells
develop, subject to agreement with the Agency.
- Target 3.23A storage and shredding area for Christmas Trees shall be
provided and shredded trees to be reused as landfill cover

Objective 4

Establishment of a detailed plan for the restoration and aftercare of the facility

- Target 4.1A full revised restoration and aftercare plan will be submitted
to the Agency by May 2003, which will incorporate a proposal
for treatment of cells 1-7
- **Target 4.2** Capping at the facility will commence in May 2003 in accordance with condition 4.3, subject to agreement with the Agency and will continue on a phased basis as the facility develops.
- Target 4.3 Assessment of the capping adequacy of cells 1-7 will commence in February 2003. A proposal for the capping and collection of gas from cells 1-7 will be submitted to the Agency by May 2003. All works on this area will be completed by May 2004.

Target 4.4	All material excavated for the purpose of the development of
	infrastructure will be reused with the facility boundary and will
	be stored appropriately until required.
Target 4.5	Proposals for the Phase II extension of capping of cells 10 & 11 will be submitted to the agency, it is proposed that works on

Target 4.6Proposals for the Phase III capping of cells 7, 8, 9, 10, 11 & 12will be submitted to the agency, it is proposed that works on
this capping will be complete by end of 2009.

this capping will be complete by October 2006.

Objective 5

The facility shall be operated to ensure there are no adverse environmental effects as a result of the operation of the facility.

- **Target 5.1**Waste shall not be disposed of in any part of the facility until
approval is sought and granted by the Agency
- Target 5.2A procedure for the acceptance of waste at the facility has been
submitted and approved by the Agency and shall be updated
annually thereafter.
- **Target 5.3**All waste shall be covered appropriately at the end of each day
- Target 5.4 A full leachate management plan will be drawn up which shall include procedures for monitoring leachate levels, removal of leachate by tanker and control procedures to ensure that leachate levels remain within parameters set out in condition 5.11. This plan will form part of the AER and will be revised as necessary.
- Target 5.5Written records of maintenance of all monitoring and emission
equipment. Maintenance of these systems will take place as
recommended by the manufacturer
- Target 5.6All lagoons structures at the site will be independently tested
every three years.
- Target 5.7The wheel wash at the site entrance shall be maintained and
cleaned as required.

Objective 6

Control of emissions at the facility

- Target 6.1 Any emission exceeding trigger levels or unauthorised emission will be notified to the Agency.
- Target 6.2 Monitoring of the landfill gas flare will commence once the installation of the flare is complete. All emission values shall comply with the terms of the Waste Licence.
- Target 6.3 Flare unit efficiency shall be tested once it is installed and once every three years.

Objective 7

Continuing minimisation of Environmental Nuisances associated with Dunmore Landfill Facility.

Target 7.1 That any potential nuisance resulting from the operation of the facility will be minimised and any methods that may eliminate implemented. nuisance will be Ongoing community consultation and inspections at the facility will ensure nuisance is minimised. Full compliance with the requirements set out in Condition 7 of the Waste Licence will continue.

Objective 8

Continuation of Environmental Monitoring at the facility

- All environmental monitoring at the facility as specified in Target 8.1 Schedule D of the Waste Licence shall commence by 10th July, 2002.
- Target 8.2 An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter.
- Target 8.3 A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be communicated to the Agency.
- Target 8.4 A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency.
- Target 8.5 A revised weekly nuisance monitoring system will be introduced at the site and implemented by January 2003; all records will be held at the site.

Objective 9

Contingency measures shall be put in place in the event of an incident or emergency at the site

- Target 9.1 An Emergency response procedure will be developed and submitted to the Agency by November 2002 and submitted to the Agency. The procedure will be revised as necessary.
- Target 9.2 An adequate supply of absorbent booms and material will be provided and maintained at the site.
- Target 9.3 All waste oil storage containers shall be bunded.

Objective 10

Records shall be maintained and available for inspection at all reasonable times

- Target 10.1 All records for the site shall be available at the facility office for inspection
- Target 10.2 Ongoing maintenance of waste records as per Condition 10.2 of the Waste Licence.
- Target 10.3 A procedure shall be developed to log all waste leaving the civic amenity site once the project has been completed.
- Target 10.4 A complaints book shall be kept at the facility office and any complaint shall be logged as per condition 10.4
- A record of all leachate leaving the facility shall be kept in Target 10.5 accordance with condition 10.5
- Target 10.6 A record shall be kept of the program for the control of vermin and flies as per condition 10.7
- Target 10.7 A record of bird control activities shall be kept and regular bird counts made.
- Target 10.8 A written record shall be kept of the type of daily cover that is used on the site as per condition 10.9
- Target 10.9 Long term environmental monitoring to continue a set out in the table below: -

Report Title	Report Submission				
Environmental Management System	Annually in November				
Updates					
Annual Environmental Report (AER)	Annually at the start of February				
Bund, tank and container integrity	Every three years in September				
assessment					
Monitoring of landfill gas	Quarterly up to December 2004				
	biannually there after				
Monitoring of Surface Water Quality	Quarterly				
Monitoring Ground Water Quality	Quarterly				
Monitoring of Leachate	Quarterly				
Meteorological Monitoring	Annually				
Dust Monitoring	Three times a year				
Noise Monitoring	Annually				
Site Topographic Survey	Annually				

Objective 11

To submit all relevant reports and notifications to the Agency in the timeframes specified

Target 11.1 Any incident at the site shall be notified in accordance with the corrective action procedure

- Target 11.2 A new contract will be entered into for the recovery/disposal white goods/brown goods by end May 2003
- **Target 11.3** Waste recovery reports shall be submitted to the Agency by November 2002 as outlined in condition 11.3
- Target 11.4 A report on the achievement of the final profile at the site shall be submitted by November 2002
- Target 11.5 An operations procedure shall be developed for operation in adverse wind conditions and submitted to the agency by November 2002.
- Target 11.6 A report on procedure to control vermin and flies shall be submitted to the Agency by November 2002
- Target 11.7 The first AER of the License will be submitted by May 2003
- Target 11.8 A conditioning plan in accordance with Council Directive 1991/31/EC shall be submitted to the Agency by 16th July 2002

Objective 12

To operate the landfill to compliment relevant legislation and the Landfill Directive

- Target 12.1 All packaging waste as defined in SI No. 61 of 2003 will be restricted from the landfill
- Target 12.2 All contractors using the site shall be in full compliance with SI No. 402 of 2001
- Whole used tyres shall be restricted from the site from 1st of Target 12.3 June 2003, in compliance with Council Directive 1991/31/EC.

Shredded tyres will be restricted from 1st June 2006.

Target 12.4The landfill site will be operated with regard to the South East
Waste Management and any measures necessary to meet the
terms and targets of the plan shall be implemented. This will
include the acceptance of waste from outside the Kilkenny area
from the partners in the South East Region

Objective 13

To provide infrastructure to reduce visual impact and minimise nuisance

- **Target 13.1** Continuation of odour modelling and testing at the site and local properties. Odour survey monitoring shall be sent to the agency at the end of each month. Recommendations will be implemented.
- Target 13.2 Provision of extensive planting and renewal of hedgerows. Berms will be placed in locations in order to minimise visual impact.
- **Target 13.3** The road access and roadway along the front of the site will be maintained and cleaned in order to minimise visual nuisance at the entrance to the facility.

Details of the status of the objectives and targets can be found in Appendix G.

6. Procedures

6.1 Waste Acceptance Procedure

Municipal Waste defined as household waste as well as commercial and other waste which, because with nature or composition, is similar to household waste is accepted at Dunmore Landfill. Municipal Waste accepted at Dunmore Landfill Site will be subject to municipal waste characterisation surveys on a regular basis, at least once per annum.

Since the commencement of landfill operations at Dunmore a regular client base has been established of waste producers and waste contractors depositing waste at Dunmore Landfill. The waste producer and/or waste contractor have established with Kilkenny Council if their waste is acceptable at the site. Any new waste producer or waste contractor wishing to dispose of waste at Dunmore Landfill Site is obliged to inform Kilkenny County Council of their operation. Similarly if the existing clientele have any reason to believe that the waste previously accepted has changed this information is brought to the attention of Kilkenny County Council. A correct and adequate description of the waste is sought and a determination whether the waste is acceptable or not is provided. If the waste is unacceptable at the Landfill Site then the waste producer/contractor is advised to find an alternative method of recovery or disposal and under the Waste Management Act, inform Kilkenny County Council of the alternative used.

When waste arrives at the Landfill the weighbridge operator notes the haulier/waste contractor and the vehicle registration number. The weighbridge operator determines the origin of the waste and the class of waste and inspects the covering of the waste. The weighbridge operator then confirms the type of waste by visual inspection. If the waste is acceptable the waste is directed to the tipping area where it is discharged from the vehicle. After discharge at the tipping area the compactor or loader operator inspects the waste. If the waste is acceptable the compactor operator proceeds to dispose and compact the waste in the active cell.

Annual Environmental Report Waste Licence Register Number W0030-02

If the weighbridge operator determines that the waste is not acceptable, the site supervisor is informed. The site supervisor will then inspect the waste load. If the supervisor considers the waste acceptable the waste may be deposited in the active cell or if he/she requires to inspect the load it will be discharged on the active tipping area where it will be inspected and checked. The tipping area thus serves as an inspection area also. If the supervisor determines that the load is acceptable after inspection it is disposed of in the active cell. If the supervisor determines that the load is not acceptable the load will be directed to the waste quarantine area.

Once the site supervisor determines that a load prior to discharge from the vehicle is not acceptable or if a load is quarantined the site engineer is informed. The site engineer together with the site supervisor will discuss the waste load with the waste producer/contractor. Any further information as may be required or checks including analysis of the waste load will be undertaken. A decision on what action to be taken shall then be made and recorded. If it is determined at this stage that the load is acceptable it will be disposed of within the active. If the load is not acceptable the waste contractor/producer will be obliged to remove the load from the site and take it for an alternative recovery operation or to a disposal facility where the waste is accepted. Under section 18&34 of the Waste Management Act, Kilkenny County Council requires the Waste Contractor to record where all of the waste collected is disposed/recovered and such reports as required will be submitted to Kilkenny County Council.

A flow chart outlining the details of the procedure is outlined in Appendix H.

Emergency Response Procedure

Following an assessment of risk at the site in Dunmore, as part of our ongoing safety audits, procedures were put in place to deal with any emergency that may arise at the site.

The main risks identified at the site are explosion, fire, oil/leachate spillage and injury to persons.

During the end of 2004 a gas extraction and enclosed flare system was installed on site. This system extracts gases present in the cells and treats the gas on site by flaring thus significantly reducing its accumulation on site, its migration into the atmosphere and minimises the risk to human health. Field balancing of the wells are regularly carried out to ensure each well in all areas of the site are not being over or under pumped which would effect the combustion of the gas at the flare stage, and to ensure concentrations of landfill methane gas being transmitted are not within the explosive range of 5-15%. It is not permissible to set a fire or smoke at Dunmore, but with the nature of the gases present there remains a risk of fire on the active site. Also there is a quantity of diesel stored at the site. This tank will be secured in a fire prove vault. Again there is a slight risk of fire at this area. If a fire is identified at the site and it is safe to do so, the fire would be covered with inert material. If it is considered that the fire is unsafe and out of control, the fire service would be contacted immediately. Any fire at the site is immediately reported to the Engineer in charge and the site will be fully inspected.

The possibility of fire on one of the site vehicles or site offices was also identified as a potential risk. All site vehicles and site offices have been fitted with a fire extinguisher. In the case of a fire being detected in either, the fire extinguishers shall be used initially to control the fire. If the fire is unsafe or out of control the fire the fire brigade will be called. In the event of fire on any of the vehicles the vehicle owner/Machinery Yard Engineer shall be contacted immediately.

Site staff have received instruction in the use of this equipment and there is regular servicing of any fire control equipment on the site.

The storage of fuel on site, the presence of methane gas and other containers that may be on site from time to time, may pose a potential risk of explosion at the site. If there is an explosion on the site, all personnel on the site should be evacuated immediately. The fire service and the Engineer in charge are to be called immediately. A full investigation of the site is to be carried out to establish the cause of the explosion. Any resultant fire shall be brought under control as described above. The site may not be re-opened until clearance has been received from the Chief Fire Officer and the Engineer in charge.

Any fire or explosion on the site would be considered an incident and a full report will be made to the EPA as per condition 11.2.

Any spillage of leachate at the site is regarded as an incident under the terms of the waste licence. The source of any spillage is to be identified immediately and the course of action to be taken will be decided on or booms stored on the site. Any spillage would be contained by a clay bund. If necessary any watercourses in the area should be dammed to prevent any reception of leachate to surface water supply. A vacuum or leachate tanker will take the excess spilled leachate away. The surface/ground water should be sampled to assess the impact of the spill. Monitoring controls would then be put in place to ensure that levels do not breach the bunds. Extra leachate tankers will be employed to remove the excess leachate produced (a number of companies are available to provide this service); until monitoring results show that they are unnecessary. If there is any spillage of leachate, the Engineer in charge, is to be notified. An incident report will be prepared by the Engineer and sent to the EPA. In the event of any incident which relates to the discharges to surface water, the Southern Regional Fishery Board will be notified as soon as practicable and in any case not later than 10:00am on the following working day after such an incident.

Oil spillage at the site will be contained with oil sorbant material. This sorbant when cleaned up will be stored in secure storage containers, supplied by the fire service, pending collection by an authorised waste facility. If any oil spillage occurs on site, the Engineer in charge should be notified.

All staff on site has been issued with personal protective equipment. All footwear is to SP3 standard (pierce proof, steel toed), hi-visibility clothing, gas masks and ear protection. Anti-bacterial wipes and bio guard wipes (which include protection from leptosporosis and other viruses) are provided on site. A number of first aid kits are available on site and they are regularly checked to ensure they are fully stocked. Some site staff have completed manual handling and first aid course and further courses are planned for the remainder. A full round of injections will be administered to the staff of Dunmore including Hepatitis A&B, Tetanus and Polio as required. All visitors to the site must report to the site offices and are restricted to certain areas within the site.

In the event of injury to any person, a member of the site staff will apply first aid. If it is necessary an ambulance will be called and the injured person will be taken to hospital. Any injury must be reported to Safety Co-ordinator and the Safety Officer to record the incident. The Safety Officer will then notify the HSA as required.

A summary chart of the procedures to be followed is shown on the following page. This chart along with all relevant phone numbers are posted in the site offices and all site staff has been made aware of this.

Emergency	Response	Procedure
Linergenej	response	lioceaule

Emergency	Response	Notify
Explosion	 Call-out Fire Brigade Evacuate Site 	Engineer in Charge Chief Fire Officer EPA
Fire-Vehicle	 Control with Vehicle or site fire extinguishers. If unsafe or out of control, call out Fire Brigade 	Machinery Yard Engineer Vehicle Owner Engineer in Charge
Fire-Site	 Cover with Inert Material. If unsafe, or out of control evacuate site and call-out Fire Brigade. 	Engineer in charge. EPA
Oil Spillage	Contain with oil sorbent material	Engineer in charge. EPA Southern Regional Fishery Board
Leachate Spillage	 Contain with clay bunds, Dam watercourses, if necessary. Suction up spillage with Vacuum tanker or leachate tanker 	Engineer in charge. EPA Southern Regional Fishery Board
Injury to Persons	 Call Ambulance Apply First Aid 	Engineer in charge.

Emergency Response Numbers: -

Gardai Station Dominic St Kilkenny.

(056) 7722222

Fire Station (056) 7794400 Gaol Rd Kilkenny.

Ambulance

(056) 7751133

Environmental Protection Agency – OEE

(056) 7796700 LoCall 1890 335599

Southern Regional Fisheries Board (052) 80055

7. Nuisance

7.1 Nuisance Control

The following measures are employed at Dunmore to control nuisance: -

7.1.1 Bird Control: - 'Bird Control Ireland' (BCI) have been employed since 2000 to regulate and monitor the bird control on site. A number of different techniques for controlling birds are used and specific non-native species of bird that come into the area are targeted. The methods employed are acoustic scarers, visual scarecrows such as helekite, eagle kites and weekly falcon flights. Personnel visit the site weekly and provide a detailed monthly report of the bird populations observed on site. Instructions are left on a white board in the weighbridge for daily actions to be performed by site staff. A daily log sheet of on site activities is complete by site personnel and reviewed by both the facility manager and BCI to ensure the program remains successful.

During 2004 a marine signal pistol was purchased and is being used on the site to scare the birds. A number of staff on site have been trained in correct use of bird scaring pistol. A new acoustic scarer has recently been purchased for the site, which has a larger range of distress calls than on the previous machine. The distress calls added are designed to target the observed non native species that have tried to make raids on the site. A new contract was signed with Bird Control Ireland for the forthcoming year. Sample data logs and End of Year report are available in Appendix I.

7.1.2 Vermin Control: - 'Pestkill-Pest Control Services' visit the site on a regular basis, to place bait for vermin control at the site. There are 49 no. specific and labelled locations at and surrounding the site where bait is placed in custom made boxes. Pestkill inspects these monitoring points monthly to see if the bait was taken or rodent activity if any are noted and bait re-stock if necessary. The bait points are moved or the number shall be increased should it be deemed necessary by 'Pestkill'. Monthly record sheets of the findings at the site are logged and kept on site. There is

also a monthly meeting between the vermin control company and the facility manager to discuss findings and any improvements to be made.

In April 2002, 'Pestkill' installed bait boxes in three adjoining properties to ensure that any vermin attracted by the Landfill to these properties would be controlled. Monthly inspections of these points are also made; notes of any bait take are made and restocked if necessary.

It is considered that adequate covering of the waste is also a necessary measure that is carried out. This will ensure that the food supply for vermin is kept at a minimum and therefore is a control measure for vermin.

7.1.3 Fly Control: - 'Pestkill-Pest Control Services' is under contract to spray the face of the landfill and machinery during the late Spring, Summer and early Autumn, and at other times if necessary.

It is considered that good site practice should eliminate the need for spraying. These measures include good compaction and mixing of the waste with inert clay. This leads to flies on the waste and their larva being compacted and buried with the waste, which in turn leads to the life cycle being stopped. When this is complete the active face of the landfill is covered with inert clay material as soon as is practical.

The use of Hessian material has discontinued as this has lead producing an environment suitable for the propagation of flies. Once the site has reached its agreed height the site is covered with appropriate soil cover and a permanent cap will be in place within twelve months of this final agreed height being reached.

8. Incidents and Complaints

8.1 Incident Reports

The following incidents took place at Dunmore during the reporting period. As a condition of the waste licence, the Agency was informed of these incidents. Details of the incidents are as follows: -

Gas Migration: - Under condition 6.3.1 of the licence, results showing a Methane level greater than or equal to 1 v/v or a CO_2 value greater than or equal to 1.5 v/v, is regarded as an exceedance. An Assessment of Landfill Gas Measurements at Dunmore Landfill, Co. Kilkenny analysing the processes responsible for these exceedence levels was carried out and submitted to the agency at the end of 2004. This report concluded that there is CO₂ is naturally occurring in the Dunmore Area. To allow for this finding the Agency agreed to increase the tolerance of the CO₂ trigger level, from 1.5% v/v to 3% v/v, therefore any levels =>3% v/v would be treated as an incident and reportable to the Agency. For the purpose of this report I have included both ranges of CO₂ from between 1.5 % to <3% v/v (Italic text) and values=>3% v/v (Normal bold test). During the reporting period a number of points showed an exceedance and once this was noticed investigations were completed to ascertain the cause. The exceedances were at the following points (please refer to drawing indicating monitoring point): -

	1	2	3	4	5	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Jan							1.9	2.1														
Feb									2.0				3.8	2.0		2.8	2.5					
Mar	1.5	1.9							2.0									1.6			1.8	
Apr		3.1			2.0	2.0			2.5	2.6							1.5	1.5			1.7	1.7
May					1.8			2.3	2.5	2.0						1.8	1.5					2.1
Jun	2.2	3.6			1.7		1.5		3.6	2.5			1.6			2.2	3.7	2.4				1.9
Jul					1.7			1.8	2.0	1.8	1.6		1.5			1.7	1.6	1.7			1.5	2.6
Aug					1.6	1.6		7.5	1.6				3.2			1.7	1.8	1.5				1.7
Sep		1.7			1.6				1.6		2.0		1.6			1.9	1.8	1.7				2.3
Oct									2.4							1.5		1.5				
Nov																						
Dec					1.7									1.5		1.6		1.6	1.5		1.5	

Exceedance in CO_2 value greater than or equal to 1.5 v/v

Carbon Dioxide at low levels was found in some of the migration point in the site throughout the year. There were no recorded exceedances of =>3% v/v in GM1, GM3, GM4, GM5, GM7, GM8, GM11, GM12, GM13, GM15, GM16, GM17, GM19, GM20, GM21, GM22 and GM23. A report examining the landfill gas was compiled and submitted to the agency in 2004 to assess contributing factors in landfill gas migration.

A report titled 'An assessment on Landfill Gas' was carried out by consultant Fehily Timony & Co and submitted to the agency. It was found that there are naturally occurring levels of CO2 in Dunmore.

	1	2	3	4	5	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Jan																						
Feb																						
Mar																						
Apr																						
May																						
Jun																						
Jul																						
Aug																						
Sep																						
Oct																						
Nov																						
Dec																						

Exceedance in CH_4 level greater than or equal to 1 v/v

In 2008 there was no exceedance in the methane trigger level of 1.0 v/v.

9. Staffing

9.1 Staffing Structure

Kilkenny Council own and manage the landfill site at Dunmore. The County Council with Philip O'Neill as Director of Service and Simon Walton as Senior Engineer are presently appointed as the project supervisors for design and construction phase.

The Environment Section manages the facility on behalf of Kilkenny County Council with Carol McCarty BA BAI, MIEI, as Senior Executive Engineer of the Section and also Eimear Doyle BSc as Facility Manager.

On site John Bolger is Caretaker at the site. The operatives at the site also include three drivers (Compactor, Traxcavator and Leachate Tanker), weighbridge operator, C.A. operator and a general operative.

The site is open Monday – Friday, 8.00 to 4.30 and on Saturday from 8.00 to 12.00. The phone numbers at the site are 056-7761999 and 056 7767848. Any queries or complaints may be made to the site or to the Environment Section in County Hall (056-7794470). A flow chart outlining the management structure is attached in Appendix J.

9.2 Monitoring and Sampling

The monitoring and sampling at Dunmore is carried out by the staff of the Environment Section of Kilkenny Council, personnel from the Environmental Protection Agency, Regional Inspectorate, Seville Lodge, Callan Rd., Kilkenny and personnel from environmental consultants Fehily, Timoney & Co. The list of all duties required and the relevant personnel are listed below: -

Interpretation of Results: -

Simon Walton, Senior Engineer Environment Section Kilkenny Co. Co. January 2007 - Present Landfill Duties Senior Engineer Environment

Carol McCarthy BA BAI MIEI, Senior Executive Engineer, Completed FAS Waste December 2001, Environment Section Kilkenny Co. Co. August 1990 - August 1994 and October 2001 - Present, Environment Section Laois County Council Sept. 1996 - June 1997 Head of Environment Section Landfill Duties

Eimear Doyle BSc, Environmental Biologist, Completed FAS Waste Management Certificate May 2007 Environment Section Kilkenny Co. Co. January 2006 – Present *Landfill Duties* Facility Manager

Maeve Good BA BAI MIEI, Assistant Engineer,Completed FAS Waste Management Certificate Feb 2005Environment Section Kilkenny Co. Co. October 2004 - PresentLandfill DutiesDeputy Facility Manager

Water Sampling (Condition 8.1 Schedule D.5): -

Michael Daly NCEA Diploma in Environmental Protection, Technician,
Diploma in Environment Protection
Environment Section Kilkenny Co. Co. Nov. 1982 – Present
Landfill Duties Water/Leachate and Dust Monitoring/Noise Monitoring

Water sampling at the site is carried out by Jean Smith and Jim McGarry of the Environmental Protection Agency, Regional Inspectorate, Seville Lodge, Callan Rd., Kilkenny. Quarterly sampling is carried out on all parameters listed in accordance with Condition 9.1 and Schedule F.4 of the Licence

Gas Monitoring (Condition 8.1 and Schedule D.2): -

Eimear Doyle BSc Facility Manager, Environment Section Kilkenny Co. Co.Jan. 2006 – PresentLandfill DutiesGas Monitoring

Noise Monitoring (Condition 8.1 Schedule D.4): -

Michael Daly NCEA Diploma in Environmental Protection, Technician, **Diploma in Environment Protection** Environment Section Kilkenny Co. Co. Nov. 1982 - Present Landfill Duties Water/Leachate and Dust Monitoring/Noise Monitoring

Fehily Timoney & Co., Core Hse., Pouladuff Rd., Cork.

Director for Kilkenny Area Mr. Gerry O'Sullivan BE CEng Consulting Engineers/Noise Monitoring Landfill Duties

Dust Monitoring (Condition 8.1 Schedule D.3): -

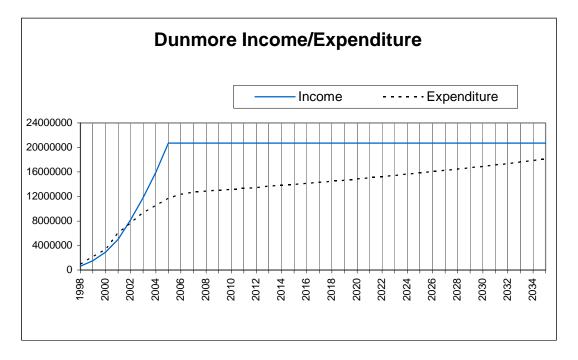
Michael Daly NCEA Diploma in Environmental Protection, Technician, **Diploma in Environment Protection** Environment Section Kilkenny Co. Co. Nov. 1982 - Present Landfill Duties Water/Leachate/Noise and Dust Monitoring

Meteorological Monitoring (Condition 8.1 Schedule D.6): -

Meteorological Monitoring was carried out by Met Eireann at the Kilkenny Meteorological Station, Granges Road, Kilkenny up to the end of March 2008. Meteorological Monitoring is now carried out by Met Eireann at the Carlow (Oakpark) station for the Kilkenny area. Results are submitted to Kilkenny County Council on a monthly basis.

10. Financial Provision

10.1 Financial Provision for the Site


The estimated costs for the operation, development, restoration and aftercare of Dunmore Landfill Site are presented to Kilkenny Council at its annual estimates meeting, whereby the proposed expenditure and income accruing from the Landfill Site for the coming year is decided.

When the landfill opened in 1997 landfill gate fees was £10 per tonne in 1997. The Council increased this fee numerous times over the years; the current fee of €150 inclusive of levy of €20 was introduced in January 2003. The gate fee has increased dramatically in this period in order to complete development works, ensure full compliance with the licence conditions, restoration and aftercare of the facility until 2035. The charge applied at the gate is in line with the polluter pays principle.

It is anticipated that the proposed extension to the landfill will extend the life of the site to 2009. The pricing structure is so devised that at closure of the site in 2009 a sufficient fund will be accumulated to provide for the aftercare of the site to the year 2035. This projection is indicated on the attached graph showing cumulative income/expenditure at Dunmore Landfill over the period 1998 – 2035.

The Agency will appreciate that the detailed figures upon which the attached chart is based include projections which will be subject to decision of elected members of the Council and which may be subject to change. However the philosophy for financial provision remains to accumulate a fund during the active phase of the landfill, which will be available for the aftercare subsequently.

11. Public Information

11.1 Procedure for Public Consultation

Dunmore Landfill is established since 1989 and good communication has developed between the site staff and the local community. The site staff in a spirit of good neighbourliness promptly deals with any issues arising locally.

During the development of proposals for an extension to the landfill site at Dunmore, intensive consultation has taken place especially with the immediate neighbours of the site and with other local residents. This consultation process commenced in November 2000 and was ongoing during the development stage. Arising out of these consultations, Kilkenny Council had set up a Community Liaison Group, which met on a monthly basis to discuss a typical agenda

- Previous minutes
- **Environmental Monitoring Results**
- Monitoring Queries •
- Public Queries
- Development Works
- Any other business

The group comprises of seven members of the local community representing the different areas in the vicinity on the landfill, two local elected representatives, Senior Executive Engineer and the facility manager.

In addition to the above, the Kilkenny Area Committee of the County Council, comprising elected members of the Kilkenny Electoral Area are briefed on the developments at Dunmore.

The full Council are briefed on all waste management issues on a regular basis including developments at Dunmore, pricing structure, staff changes etc.

The Strategic Policy Committee on Environment (SPC 3), which comprises of council officials elected representatives and community representatives are briefed on developments at the landfill site and policy decisions are drafted as a result of the meetings.

All environmental monitoring results are held in the Dunmore Landfill, Dunmore, Co. Kilkenny and any member of the public is free to inspect them at any time during normal office hours (08:00 to 16:30 hours). Arrangements can be made to view the information at an alternative location by prior arrangement.

The Site Notice board contains information on where and when environmental information can be obtained.

There is a fax and phone located at the site where queries can be made during opening hours i.e. 08:00 to 16:30, or a message can be left on the answering machine and if required will be contacted as soon as the message is received.

11.2 Complaints

A complaints register is located on site and any complaint regarding the operation of the facility is recorded and the action taken to address the complaint/observation.

Date	Summary	Actions Taken						
28/01/08	Landfill odour detected late	Gas wells located in Cell 13 were						
	at night and early morning	permanently connected to the gas						
	in the vicinity of Dunmore	extraction and flaring system in February						
	Landfill during beginning	2008 reducing any associated landfill gas						
	of 2008.	odours significantly						
		Daily odour monitoring surveys continue						
		to be carried out at seven locations within						
		the vicinity of Dunmore Landfill.						

11.2 Summary	of Complaints
--------------	---------------

20/08/08	Concerns regarding the	Following correspondence issued by the				
	acceptance of gypsum	EPA in June 2007 in relation to the				
	waste at Dunmore Landfill	disposal of non-hazardous gypsum based				
	were raised.	products; Dunmore Landfill no longer				
		accepts gypsum waste. Customers were				
		verbally informed of these restrictions				
		and as part of the waste acceptance				
		procedures at the facility, all incoming				
		loads are visually inspected and any				
		unauthorised material including gypsum				
		waste are rejected.				

12. Compliance

12.1 Summary of Compliance

A summary of compliance under licence as part of our objectives and targets in Appendix G.

12.2 Summary of Non-Compliance

Date	NC Number	Summary	Action Taken
20/02/08	W0030- 02/nc08de	An intermittent moderate landfill odour was detected at McDermott's entrance on N77 (first stone wall entrance north of landfill entrance) on morning of 20/02/08.	The gas wells located in Cell 13 were permanently connected to the gas extraction and flaring system on 19/02/08 and resulted in a significant reduction in landfill gas odour. In addition, the use of intermediate cover material on waste in Cells 13 & 14 was increased.
20/02/08	W0030- 02/nc08de	The facility Manager or the Deputy Facility Manager were not present at the facility on day of audit.	As per condition 2.1.1 the Facility Manager/Deputy Facility Manager is available at the facility at all times during its operation.

20/02/08	W0030-	Intermediate cover	Intermediate cover as non-condition
20/02/08	02/nc08de	insufficient in Cell 13 &	Intermediate cover as per condition 5.4.1 was placed in Cell 13 & 14 area.
20/02/00		14 area.	
20/02/08	W0030-	Working face of cell 13 –	Excess exposed waste on the working
	02/nc08de	approximately 50m* 25m	face was covered with clay to
20/02/00			minimise the length.
20/03/08	W0030-	Working face of cell 13 –	Works were continued on site to
	02/nc09de	approximately 40m*25m	minimise the working face of Cell 13
			as per condition 5.3.1(c)
20/03/08	W0030-	Intermediate cover	Intermediate cover as per condition
	02/nc09de	insufficient in Cell 13 & 14	5.4.1 was placed in Cell 13 & 14 area.
19/05/08	W0030-	Intermediate & daily	Additional daily cover material was
	02/nc10de	cover was not adequate	placed on waste at the end of each
		on waste outside of the	working day as per Condition 5.4.2
		working face of Cells 13	together with maintaining a record of
		& 14.	these cover activities as per condition
			10.9. Additional intermediate cover
			material was placed on waste areas
			identified within the Cell 13 & 14 area
			in accordance with condition 5.3.1(c)
19/05/08	W0030-	Small section of Cells 8	This area was permanently capped by
	02/nc10de	& 12 was not yet	end of summer 2008.
		permanently capped.	
05/11/08	W0030-	Working face of Cell 14	Works were carried out following site
	02/NC11ID	– approximately 25m by	inspection to minimise the working
		50m.	face in Cell 14. In addition a record of
			the size of the working face is being
			maintained as part of daily cover
			activities record.
05/11/08	W0030-	Intermediate cover	Additional cover material was placed
	02/NC11ID	material in Cell 14 -	on dry commercial waste in cell 14
		insufficient	area.
05/11/08	W0030-	Barrels containing waste	Fuel oil stored by contractor on site is
	02/NC11ID	cooking oil in the oil	contained within bunded container.
		storage area of CAS were	All tank and drum storage areas in the
		not bunded. There was an	civic amenity site are bunded and all
		unbunded barrel	the receptacles used to store fuels and
		containing waste oils in	liquid wastes are appropriately sized
		CAS. Fuel oil stored by	and bunded in accordance with
		contractor on site in an	conditions 3.12.2, 5.6.7 and 5.9.4.
		unbunded container.	

05/11/08	W0030-	A small area in Cell 12	As outlined the small area remaining
	02/NC11ID	that forms the boundary	uncapped in Cell 12 will form part of
		with Cell 13 was not	the permanent capping of Cell 13 as it
		permanently capped. In	forms the boundary between the 2
		addition a section of	cells. Capping works were completed
		Cells 4 & 7 were yet to	in Cell 4 & 7 area in early 2009.
		be capped	

Appendix A

Waste Quantities

&

Recycling Rates

DUNMORE LANDFILL

2008

007 Local authority, 008 Domestic brought by house holders, 009 Domestic (contractors) 010 Litter & street sweepings, 011 Commercial, 012 Industrial, 013 Construction & demolition. 014 Sewage sludge, 015 Agricultural, 017 Asbestos waste

		WASTE	CATEGORIES						
<u>MONTHS</u>	Local 007 (t)	House 008 (t)	Contractors 009 (t)	Street 010 (t)	Commercial 011 (t)	Industrial 012 (t)	Construction 013 (t)	Sewage 016(t)	Agricultural 015 (t)
January	40.24	340.36	915.43	153.48	688.14		8.98		
February	37.48	301.29	646.36	104.32	559.49		89.37		
March	21.36	254.24	541.82	88.2	471.1	0.12	6.34		
April	32.86	315.14	523.16	114.84	589.10	0.16	11.02		
Мау	27.96	272.82	579.84	202.54	388.10	0.24	12.34		
June	28.12	328.58	416.20	135.86	340.08		13.40		
July	32.58	329.38	491.38	197.24	591.96		3.88		
August	28.12	276.10	718.28	84.96	454.88		12.54		
September	22.44	199.18	647.38	93.52	442.72		0.4		
October	26.26	247.3	525.36	157.22	454.72		0.94		
November	13.54	338.9	365.92	120.72	409.5		0.8		
December	37.42	323.94	479.04	84.28	425.8	0.42	0.32		
TOTAL	348.38	3527.23	6850.17	1537.18	5815.59	0.94	160.33	0	0
%	2%	19%	38%	8%	32%	0%	1%	0%	0%

				WASTE	CATEGORIES						
MONTHS	Asbestos 017(t)	Clay	Roads	Stone	Gravel	Filt. Gravel	Sand	Topsoil	WEEE	Check	TOTAL
January			58.32	57.68			302.54				2146.63
February			177.38	13.58	505.28		676				1738.31
March		327.08	250.08		157.78		22.26				1383.18
April		12,539.80	207.60		86.52	17.18					1586.28
May		1,335.10	129.26	37.08	49.34	2.76					1483.84
June		244.82	41.02	11.96							1262.24
July		430.74	42.72	11.5							1646.42
August	0	1156.98	11.90	296.58	51.19	2.48					1574.88
September	0	2781.88	91.12	87.28	194.02						1405.64
October	0	1,089.30	65.02		441.14		111.46				1411.80
November	0	255.74	73.02		382.82		584.78				1249.38
December	0	164.28	125.60		581.10		96.70				1351.22
TOTAL	0	20325.72	1273.04	515.66	2449.19	22.42	1793.74	0.00	0.00		18239.82
%	0%										100%

Recycling Rates 2008

	Cardboard	Paper	Plastic	Timber	Metal	Fridges	Batteries	Textiles	Hazar dous	Fluoresc ent tubes	Glass	White & brown goods	Tetra	Oil	Oil filters	Tyres	Total per	Total WEEE
Jan	11.2	26.16	8.28	4.14	15.58	0	0	8.62	1.32	0.06	12.3	22.26	1.22	1.56	0	0	112.7	22.26
Feb	9.38	27.68	5.82	1.4	10	0	0.3	4.54	1.62	0	9.6	17.22	0.92	0	0	0	88.48	17.22
Mar	8.98	24.3	6.1	1.56	6.52	0.4	2.98	4.56	0	0.6	10.46	16.6	1.72	0	0	0	84.78	17
Apr	8.52	23.92	5.74	2.04	19.24	0.5	0.6	4.9	0	0.04	6.82	24.92	0.5	0	0	0	97.74	25.42
May	7.64	27.88	7.58	2.54	15.54	0	0	4.96	1.56	0.06	13.28	23.14	1.08	1	0	0	106.26	23.14
Jun	5.78	28.8	4.64	1.44	14.16	1.34	1.38	4.66	2.46	0	7.86	20.38	0.82	0	0	0	93.72	21.72
Jul	7.32	42.06	9.34	4.34	12.72	0	0.52	8.68	1.44	0.06	4.46	29.54	1.56	0	0	13.84	135.88	29.54
Aug	7.08	22.44	5.06	2.78	18.6	0	1	5.54	1.32	0.04	9.38	28.62	1.16	0.8	0	0	103.82	28.62
Sep	4.1	23.48	5.32	3.14	10.9	0.78	0	4.18	1.5	0	10.76	18.08	1.12	1.6	0	0	84.96	18.86
Oct	4.36	23.92	7.84	0	10.08	0.2	1.26	3.74	1.38	0.06	7.44	18.16	1.59	0	0	0	80.03	18.36
Nov	5.14	24.84	5.38	3.24	17.2	2.88	1.58	3.58	0	0.06	9.6	20.48	0.74	0	0	0	94.72	23.36
Dec	5.68	29.8	6.84	1.84	20.41	2.38	0	4.98	2.18	0.04	3.3	13.9	0.96	0	0	0	92.31	16.28
	85.18	325.28	77.94	28.46	170.95	8.48	9.62	62.94	14.78	1.02	105.26	253.3	13.39	4.96	0	13.84	1175.4	261.78

Appendix B

Gas Monitoring

&

Gas Migration

Site Nam				Site Address:					
D Operator	unmore Lan	atill Site		Dunmore, Co. Kilkenny					
-	kenny Count	ty Counci	I	National Grid Reference: 160572N 249519E					
Site Statu		<u>,</u>		Date: 04/03/0		Time: 10:17			
	Active	9							
Instrume						ration: March '07			
	Infra Red G		ser - GA		Next Calibrat	ion Due: April '08 Barometric Pressure			
Monitorir	ng Personne	1:		Weather:		(mb) :			
	Alan Rhat	igan			ry	1024			
		1		RESULTS					
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO₂ % v/v	O ₂ % v/v	Comments			
VP1	Cell No. 1 Vent	600mm	28.10	24.00	3.40	New gas well			
VP2	Cell No. 1 Vent	600mm	16.50	12.30	10.70	New gas well			
VP3	Cell No. 1 Vent	600mm	19.90	17.70	6.90	New gas well			
VP4	Cell No. 3 Vent	600mm	17.50	17.60	7.50	New gas well			
VP5	Cell No. 2 Vent	600mm	28.90	19.50	8.20	New gas well			
VP6	Cell No. 2 Vent	600mm	27.50	18.90	7.00	New gas well			
VP7	Cell No. 3 Vent	600mm	35.10	17.40	10.00	New gas well			
VP8	Cell No. 7 Vent	600mm	34.70	17.20	10.30	New gas well			
VP9	Cell No. 7 Vent	600mm	23.20	19.70	6.40	New gas well			
VP10	Cell No. 6 Vent	600mm	44.60	22.30	3.90	New gas well			
VP11	Cell No. 6 Vent	600mm	38.90	19.80	6.20	New gas well			
VP12	Cell No. 5 Vent	600mm	52.30	25.90	1.90	New gas well			
VP13	Cell No. 5 Vent	600mm	0.30	4.20	17.90	New gas well			
VP14	Cell No. 7 Vent	600mm	58.40	31.00	1.60	New gas well			
VP15	Cell No. 7 Vent	600mm	7.50	4.00	16.40	New gas well			
VP16	Cell No. 4 Vent	600mm	45.70	22.20	5.00	New gas well			
VP17	Cell No. 4 Vent	600mm	11.00	8.70	12.50	New gas well			
VP18	Cell No. 10 Vent	600mm	37.00	27.70	1.80	New gas well			

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP19	Cell No. 10 Vent	600mm	6.90	6.10	16.10	New gas well
VP20	Cell No. 10 Vent	600mm	23.20	16.70	9.50	New gas well
VP21	Cell No. 9 Vent	600mm	16.10	8.70	15.10	New gas well
VP22	Cell No. 8 Vent	600mm	16.10	8.80	15.30	New gas well
VP23	Cell No. 11 Vent	600mm	40.30	21.70	7.70	New gas well
VP24	Cell No. 11 Vent	600mm	65.90	30.90	0.80	New gas well
VP25	Cell No. 11 Vent	600mm	63.30	36.20	0.90	New gas well
VP26	Cell No. 11 Vent	600mm	41.10	25.50	3.00	New gas well
VP27	Cell No. 11 Vent	600mm	63.50	31.30	2.00	New gas well
VP28	Cell No. 11 Vent	600mm	38.40	26.60	0.20	New gas well
VP29	Cell No. 11 Vent	600mm	39.20	27.60	1.20	New gas well
VP30	Cell No. 8 Vent	600mm	57.60	28.80	1.80	New gas well
VP31	Cell No. 8 Vent	600mm	54.10	30.90	0.20	New gas well
VP32	Cell No. 9 Vent	600mm	50.00	29.90	1.10	New gas well
VP33	Cell No9 Vent	600mm				out of commission
VP34	Cell No10 Vent	600mm	12.30	6.70	16.10	New gas well
VP35	Cell No. 10 Vent	600mm	23.60	13.40	13.40	New gas well
VP36	Cell No. 10 Vent	600mm	63.00	34.50	1.30	New gas well
VP37	Cell No. 11 Vent	600mm	43.60	31.90	0.50	New gas well
VP38	Cell No. 12 Vent	600mm	32.50	26.80	0.20	New gas well
VP39	Cell No. 12 Vent	600mm	34.80	26.40	2.90	New gas well
VP40	Cell No. 12 Vent	600mm				out of commission

Site Nam D	e: unmore Lan	dfill Site		Site Address: Dunmore,					
Operator			1	Co. Kilkenny National Grid Reference: 160572N 249519E					
Site Statu	-	-	-	Date: 02/05/0		Time: 11:55			
Instrume		;			Date of Calib	ration: May'08			
	Infra Red G		ser - GA		Next Calibrat	ion Due: May'10 Barometric Pressure			
Monitorir	ng Personne			Weather:		(mb) :			
	Alan Rati	gan		RESULTS	ry	1005			
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments			
VP1	Cell No. 1 Vent	600mm	37.00	27.10	2.10	New gas well			
VP2	Cell No. 1 Vent	600mm	27.80	18.80	5.90	New gas well			
VP3	Cell No. 1 Vent	600mm	4.60	21.70	5.50	New gas well			
VP4	Cell No. 3 Vent	600mm	21.40	15.00	8.50	New gas well			
VP5	Cell No. 2 Vent	600mm	27.90	19.60	5.70	New gas well			
VP6	Cell No. 2 Vent	600mm	25.20	17.80	7.90	New gas well			
VP7	Cell No. 3 Vent	600mm	41.10	21.10	7.10	New gas well			
VP8	Cell No. 7 Vent	600mm	0.60	2.60	18.90	New gas well			
VP9	Cell No. 7 Vent	600mm	9.50	15.80	9.90	New gas well			
VP10	Cell No. 6 Vent	600mm	29.80	18.60	5.90	New gas well			
VP11	Cell No. 6 Vent	600mm	28.40	17.50	6.80	New gas well			
VP12	Cell No. 5 Vent	600mm	35.90	22.60	3.30	New gas well			
VP13	Cell No. 5 Vent	600mm	16.30	11.00	12.70	New gas well			
VP14	Cell No. 7 Vent	600mm	28.40	16.90	9.40	New gas well			
VP15	Cell No. 7 Vent	600mm	28.80	17.20	9.40	New gas well			
VP16	Cell No. 4 Vent	600mm	18.60	9.80	13.80	New gas well			
VP17	Cell No. 4 Vent	600mm	3.60	1.10	19.30	New gas well			

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP18	Cell No. 10 Vent	600mm	32.30	22.60	7.10	New gas well
VP19	Cell No. 10 Vent	600mm	25.40	17.60	9.00	New gas well
VP20	Cell No. 10 Vent	600mm	36.60	23.60	5.80	New gas well
VP21	Cell No. 9 Vent	600mm	22.70	15.20	9.00	New gas well
VP22	Cell No. 8 Vent	600mm	26.10	14.10	11.90	New gas well
VP23	Cell No. 11 Vent	600mm	34.60	22.70	6.00	New gas well
VP24	Cell No. 11 Vent	600mm	34.40	27.00	0.40	New gas well
VP25	Cell No. 11 Vent	600mm	63.40	36.70	0.20	New gas well
VP26	Cell No. 11 Vent	600mm	40.20	27.40	0.80	New gas well
VP27	Cell No. 11 Vent	600mm	63.20	32.70	1.00	New gas well
VP28	Cell No. 11 Vent	600mm	49.60	31.40	0.30	New gas well
VP29	Cell No. 11 Vent	600mm	50.10	31.20	0.60	New gas well
VP30	Cell No. 8 Vent	600mm	58.40	29.60	1.50	New gas well
VP31	Cell No. 8 Vent	600mm	58.10	31.10	1.90	New gas well
VP32	Cell No. 9 Vent	600mm	32.90	8.10	3.30	New gas well
VP33	Cell No9 Vent	600mm	34.20	19.20	5.80	New gas well
VP34	Cell No10 Vent	600mm	17.70	8.60	15.20	New gas well
VP35	Cell No. 10 Vent	600mm	29.20	17.30	11.80	New gas well
VP36	Cell No. 10 Vent	600mm	56.60	32.60	1.70	New gas well
VP37	Cell No. 11 Vent	600mm	43.10	31.00	1.90	New gas well
VP38	Cell No. 12 Vent	600mm	40.10	29.50	0.50	New gas well
VP39	Cell No. 12 Vent	600mm	31.20	25.70	2.60	New gas well
VP40	Cell No. 12 Vent	600mm	31.70	26.10	3.30	New gas well
VP41	Cell No. 12 Vent	600mm	60.60	37.30	0.90	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO2 % v/v	O ₂ % v/v	Comments
VP42	Cell No. 8 Vent	600mm	32.90	26.70	0.30	New gas well
VP43	Cell No. 8 Vent	600mm	49.90	31.30	0.60	New gas well
VP44	Cell No. 9 Vent	600mm				Disconnected
VP45	Cell No. 9 Vent	600mm				Disconnected
VP46	Cell No. 9 Vent	600mm	22.30	17.80	6.30	New gas well
VP47	Cell No. 13 Vent	600mm	27.40	26.80	1.50	New gas well
VP48	Cell No. 13 Vent	600mm	43.90	33.70	1.60	New gas well
VP49	Cell No. 13 Vent	600mm	40.00	32.00	0.20	New gas well
VP50	Cell No. 13 Vent	600mm	23.40	23.40	1.70	New gas well
VP51	Cell No. 13 Vent	600mm	26.60	19.70	9.70	New gas well

Site Nam	e: unmore Lan	dfill Site		Site Address				
Operator			1	Dunmore, Co. Kilkenny National Grid Reference: 160572N 249519E				
Site Statu		y counci	•	Date: 16/05/0		Time: 12:07		
	Active	;			Detroit O III	notions Marilaa		
Instrume	nt Used: Infra Red G	as Analy	ser - GA	94		ration: May'08 ion Due: May'10		
Monitorir	ng Personne			Weather:		Barometric Pressure (mb) :		
	Alan Rati	gan			ry	1002		
				RESULTS				
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments		
VP1	Cell No. 1 Vent	600mm	53.30	30.60	0.80	New gas well		
VP2	Cell No. 1 Vent	600mm	37.10	20.60	4.70	New gas well		
VP3	Cell No. 1 Vent	600mm	43.90	26.40	0.80	New gas well		
VP4	Cell No. 3 Vent	600mm	33.10	21.30	4.90	New gas well		
VP5	Cell No. 2 Vent	600mm	42.00	24.40	1.80	New gas well		
VP6	Cell No. 2 Vent	600mm	52.80	27.30	2.20	New gas well		
VP7	Cell No. 3 Vent	600mm	46.60	23.80	5.40	New gas well		
VP8	Cell No. 7 Vent	600mm	15.50	8.20	14.80	New gas well		
VP9	Cell No. 7 Vent	600mm	59.40	28.80	1.80	New gas well		
VP10	Cell No. 6 Vent	600mm	53.50	25.20	0.70	New gas well		
VP11	Cell No. 6 Vent	600mm	47.10	26.80	0.50	New gas well		
VP12	Cell No. 5 Vent	600mm	42.80	24.80	1.90	New gas well		
VP13	Cell No. 5 Vent	600mm	51.70	28.40	2.60	New gas well		
VP14	Cell No. 7 Vent	600mm	17.30	9.20	13.60	New gas well		
VP15	Cell No. 7 Vent	600mm	46.00	26.40	5.40	New gas well		
VP16	Cell No. 4 Vent	600mm	50.90	28.50	4.20	New gas well		
VP17	Cell No. 4 Vent	600mm	19.50	12.20	10.70	New gas well		

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP18	Cell No. 10 Vent	600mm	39.10	25.40	6.00	New gas well
VP19	Cell No. 10 Vent	600mm	32.20	21.20	7.50	New gas well
VP20	Cell No. 10 Vent	600mm	45.70	27.30	5.10	New gas well
VP21	Cell No. 9 Vent	600mm	43.80	26.60	4.90	New gas well
VP22	Cell No. 8 Vent	600mm	30.60	17.60	10.20	New gas well
VP23	Cell No. 11 Vent	600mm	37.00	24.10	6.50	New gas well
VP24	Cell No. 11 Vent	600mm	43.10	29.20	0.90	New gas well
VP25	Cell No. 11 Vent	600mm	63.50	36.50	0.30	New gas well
VP26	Cell No. 11 Vent	600mm	53.40	30.40	0.30	New gas well
VP27	Cell No. 11 Vent	600mm	63.50	33.50	0.90	New gas well
VP28	Cell No. 11 Vent	600mm	40.20	28.80	0.20	New gas well
VP29	Cell No. 11 Vent	600mm	42.10	29.00	0.60	New gas well
VP30	Cell No. 8 Vent	600mm	9.10	5.10	18.30	New gas well
VP31	Cell No. 8 Vent	600mm	52.70	30.80	3.00	New gas well
VP32	Cell No. 9 Vent	600mm	66.30	32.90	0.20	New gas well
VP33	Cell No9 Vent	600mm	64.00	36.60	2.50	New gas well
VP34	Cell No10 Vent	600mm	22.40	10.60	13.80	New gas well
VP35	Cell No. 10 Vent	600mm	21.40	12.20	13.80	New gas well
VP36	Cell No. 10 Vent	600mm	63.20	35.10	0.40	New gas well
VP37	Cell No. 11 Vent	600mm	55.30	34.30	1.70	New gas well
VP38	Cell No. 12 Vent	600mm	46.60	31.10	0.20	New gas well
VP39	Cell No. 12 Vent	600mm	45.70	31.40	1.40	New gas well
VP40	Cell No. 12 Vent	600mm	41.80	30.20	3.70	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP41	Cell No. 12 Vent	600mm	39.90	29.10	0.30	New gas well
VP42	Cell No. 8 Vent	600mm	63.80	39.00	0.10	New gas well
VP43	Cell No. 8 Vent	600mm	54.10	32.90	0.20	New gas well
VP44	Cell No. 9 Vent	600mm				disconnected
VP45	Cell No. 9 Vent	600mm				disconnected
VP46	Cell No. 9 Vent	600mm	31.80	25.10	1.90	New gas well
VP47	Cell No. 13 Vent	600mm	27.40	27.70	1.50	New gas well
VP48	Cell No. 13 Vent	600mm	52.50	39.30	0.30	New gas well
VP49	Cell No. 13 Vent	600mm	26.30	23.30	4.40	New gas well
VP50	Cell No. 13 Vent	600mm	20.20	16.30	10.60	New gas well
VP51	Cell No. 13 Vent	600mm	25.90	22.60	5.60	New gas well

Site Nam	-			Site Address					
Operator				National Orid	Dunmore, Co. Kilkenny National Grid Reference: 160572N 249519E				
Site Statu	kenny Count	ty Counci	1	Date: 09/06/0		60572N 249519E			
Sile Statt	Active	9		Date: 09/00/0	0	1111 6 . 12.15			
Instrume				04		ration: May'08			
NA ¹ 4 ¹	Infra Red G		ser - GA		Next Calibrat	ion Due: May'10 Barometric Pressure			
Monitorir	ng Personne			Weather:		(mb) : 1021			
	Alan Rhat	igan		RESULTS	ry	1021			
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments			
VP1	Cell No. 1 Vent	600mm	47.90	29.20	0.80	New gas well			
VP2	Cell No. 1 Vent	600mm	11.10	15.70	6.50	New gas well			
VP3	Cell No. 1 Vent	600mm	16.40	19.20	4.40	New gas well			
VP4	Cell No. 3 Vent	600mm	23.10	17.00	7.80	New gas well			
VP5	Cell No. 2 Vent	600mm	30.90	21.70	2.00	New gas well			
VP6	Cell No. 2 Vent	600mm	29.90	19.80	6.90	New gas well			
VP7	Cell No. 3 Vent	600mm	43.90	23.50	5.70	New gas well			
VP8	Cell No. 7 Vent	600mm	16.20	8.20	14.80	New gas well			
VP9	Cell No. 7 Vent	600mm	14.80	10.70	12.50	New gas well			
VP10	Cell No. 6 Vent	600mm	6.70	11.10	11.30	New gas well			
VP11	Cell No. 6 Vent	600mm	6.40	8.60	13.20	New gas well			
VP12	Cell No. 5 Vent	600mm	44.20	25.10	3.00	New gas well			
VP13	Cell No. 5 Vent	600mm	32.70	23.40	4.70	New gas well			
VP14	Cell No. 7 Vent	600mm	25.80	14.60	10.60	New gas well			
VP15	Cell No. 7 Vent	600mm	25.50	18.80	8.40	New gas well			
VP16	Cell No. 4 Vent	600mm	32.10	19.10	8.40	New gas well			
VP17	Cell No. 4 Vent	600mm	25.70	16.30	9.70	New gas well			

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP18	Cell No. 10 Vent	600mm	25.50	18.30	9.70	New gas well
VP19	Cell No. 10 Vent	600mm	18.30	13.50	11.60	New gas well
VP20	Cell No. 10 Vent	600mm	29.70	19.20	8.60	New gas well
VP21	Cell No. 9 Vent	600mm	23.10	17.70	9.20	New gas well
VP22	Cell No. 8 Vent	600mm	36.80	21.50	7.90	New gas well
VP23	Cell No. 11 Vent	600mm	28.30	19.40	8.10	New gas well
VP24	Cell No. 11 Vent	600mm	36.20	27.30	0.40	New gas well
VP25	Cell No. 11 Vent	600mm	60.50	36.00	0.30	New gas well
VP26	Cell No. 11 Vent	600mm	48.80	29.90	0.50	New gas well
VP27	Cell No. 11 Vent	600mm	60.30	33.70	0.90	New gas well
VP28	Cell No. 11 Vent	600mm	41.00	29.70	0.20	New gas well
VP29	Cell No. 11 Vent	600mm	42.40	29.90	0.60	New gas well
VP30	Cell No. 8 Vent	600mm	30.20	43.40	2.00	New gas well
VP31	Cell No. 8 Vent	600mm	40.40	29.30	1.60	New gas well
VP32	Cell No. 9 Vent	600mm	53.30	30.50	1.00	New gas well
VP33	Cell No9 Vent	600mm	63.00	36.10	0.40	New gas well
VP34	Cell No10 Vent	600mm	45.20	23.30	6.00	New gas well
VP35	Cell No. 10 Vent	600mm	32.10	19.10	9.70	New gas well
VP36	Cell No. 10 Vent	600mm	64.50	35.90	0.50	New gas well
VP37	Cell No. 11 Vent	600mm	50.80	33.90	1.70	New gas well
VP38	Cell No. 12 Vent	600mm	43.10	30.80	0.20	New gas well
VP39	Cell No. 12 Vent	600mm	36.80	27.70	2.30	New gas well
VP40	Cell No. 12 Vent	600mm	40.40	30.30	3.10	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP41	Cell No. 12 Vent	600mm	31.60	26.40	1.00	New gas well
VP42	Cell No. 8 Vent	600mm	60.90	38.20	0.30	New gas well
VP43	Cell No. 8 Vent	600mm	38.50	29.60	0.50	New gas well
VP44	Cell No. 9 Vent	600mm				disconnected
VP45	Cell No. 9 Vent	600mm				disconnected
VP46	Cell No. 9 Vent	600mm	27.20	22.90	3.50	New gas well
VP47	Cell No. 13 Vent	600mm	58.40	40.90	0.10	New gas well
VP48	Cell No. 13 Vent	600mm	60.30	39.00	0.00	New gas well
VP49	Cell No. 13 Vent	600mm	49.40	37.70	0.00	New gas well
VP50	Cell No. 13 Vent	600mm	23.20	20.00	7.50	New gas well
VP51	Cell No. 13 Vent	600mm	21.20	18.10	9.70	New gas well

Site Nam D	e: unmore Lan	dfill Site		Site Address	: Dunn	nore.		
Operator Kill	: kenny Count	ty Counci	I	Co. Kilkenny National Grid Reference: 160572N 249519E				
Site Statu	-	-		Date: 30/06/0		Time: 16:07		
Instrume		;			Date of Calib	ration: May'08		
	Infra Red G		ser - GA		Next Calibrat	ion Due: May'10 Barometric Pressure		
Monitorir	ng Personne			Weather:		(mb) :		
	Alan Rhat	igan		RESULTS	ry	1009		
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments		
VP1	Cell No. 1 Vent	600mm	46.50	29.70	1.30	New gas well		
VP2	Cell No. 1 Vent	600mm	31.80	19.40	4.20	New gas well		
VP3	Cell No. 1 Vent	600mm	19.70	19.10	2.90	New gas well		
VP4	Cell No. 3 Vent	600mm	22.60	17.70	7.40	New gas well		
VP5	Cell No. 2 Vent	600mm	30.80	22.20	2.00	New gas well		
VP6	Cell No. 2 Vent	600mm	33.90	22.10	5.20	New gas well		
VP7	Cell No. 3 Vent	600mm	44.00	25.20	5.10	New gas well		
VP8	Cell No. 7 Vent	600mm	21.00	10.50	13.50	New gas well		
VP9	Cell No. 7 Vent	600mm	20.30	14.80	9.40	New gas well		
VP10	Cell No. 6 Vent	600mm	14.10	12.20	10.00	New gas well		
VP11	Cell No. 6 Vent	600mm	8.60	8.60	13.30	New gas well		
VP12	Cell No. 5 Vent	600mm	45.40	26.90	2.40	New gas well		
VP13	Cell No. 5 Vent	600mm	21.30	15.40	9.70	New gas well		
VP14	Cell No. 7 Vent	600mm	60.00	32.10	1.20	New gas well		
VP15	Cell No. 7 Vent	600mm	18.70	11.10	12.60	New gas well		
VP16	Cell No. 4 Vent	600mm	34.70	20.20	7.80	New gas well		
VP17	Cell No. 4 Vent	600mm	11.30	10.20	13.40	New gas well		

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP18	Cell No. 10 Vent	600mm	52.50	31.60	2.40	New gas well
VP19	Cell No. 10 Vent	600mm	50.00	30.70	3.10	New gas well
VP20	Cell No. 10 Vent	600mm	47.10	29.00	4.20	New gas well
VP21	Cell No. 9 Vent	600mm	23.00	13.60	12.00	New gas well
VP22	Cell No. 8 Vent	600mm	28.60	16.90	10.40	New gas well
VP23	Cell No. 11 Vent	600mm	34.30	22.60	5.80	New gas well
VP24	Cell No. 11 Vent	600mm	41.40	28.50	0.60	New gas well
VP25	Cell No. 11 Vent	600mm	62.70	36.50	0.10	New gas well
VP26	Cell No. 11 Vent	600mm	54.40	31.30	0.30	New gas well
VP27	Cell No. 11 Vent	600mm	61.00	34.20	0.80	New gas well
VP28	Cell No. 11 Vent	600mm	43.70	30.30	0.30	New gas well
VP29	Cell No. 11 Vent	600mm	44.00	30.20	0.60	New gas well
VP30	Cell No. 8 Vent	600mm	58.10	34.30	0.30	New gas well
VP31	Cell No. 8 Vent	600mm	52.10	36.10	0.30	New gas well
VP32	Cell No. 9 Vent	600mm	65.30	33.10	0.20	New gas well
VP33	Cell No9 Vent	600mm	62.10	36.50	0.40	New gas well
VP34	Cell No10 Vent	600mm	43.30	21.60	6.50	New gas well
VP35	Cell No. 10 Vent	600mm	43.40	26.20	5.80	New gas well
VP36	Cell No. 10 Vent	600mm	61.50	36.20	1.20	New gas well
VP37	Cell No. 11 Vent	600mm	60.60	37.60	0.10	New gas well
VP38	Cell No. 12 Vent	600mm	44.80	31.70	0.00	New gas well
VP39	Cell No. 12 Vent	600mm	31.70	26.90	2.50	New gas well
VP40	Cell No. 12 Vent	600mm	33.70	27.50	2.40	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP41	Cell No. 12 Vent	600mm	41.90	30.10	0.20	New gas well
VP42	Cell No. 8 Vent	600mm				Disconnected
VP43	Cell No. 8 Vent	600mm	61.50	37.60	0.30	New gas well
VP44	Cell No. 9 Vent	600mm				Disconnected
VP45	Cell No. 9 Vent	600mm				Disconnected
VP46	Cell No. 9 Vent	600mm	62.20	33.10	0.10	New gas well
VP47	Cell No. 13 Vent	600mm	36.20	32.70	0.00	New gas well
VP48	Cell No. 13 Vent	600mm	54.70	39.90	0.40	New gas well
VP49	Cell No. 13 Vent	600mm	32.10	26.20	3.60	New gas well
VP50	Cell No. 13 Vent	600mm	26.70	21.50	7.20	New gas well
VP51	Cell No. 13 Vent	600mm	36.70	28.80	4.60	New gas well

Site Nam				Site Address				
Operator				Dunmore, Co. Kilkenny National Grid Reference: 160572N 249519E				
	kenny Count	ty Counci						
Site Statu	Active	9		Date: 07/08/0		Time: 11:50		
Instrume			~ ~	~ /		ration: May'08		
	Infra Red G		ser - GA		Next Calibrat	tion Due: May'10 Barometric Pressure		
Monitorir	ng Personne Alan Rhat			Weather:		(mb) : 1000		
		iyan		RESULTS	ry	1000		
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments		
VP1	Cell No. 1 Vent	600mm	53.10	32.60	0.40	New gas well		
VP2	Cell No. 1 Vent	600mm	48.70	24.20	0.90	New gas well		
VP3	Cell No. 1 Vent	600mm	34.70	27.00	0.60	New gas well		
VP4	Cell No. 3 Vent	600mm	36.90	24.50	2.20	New gas well		
VP5	Cell No. 2 Vent	600mm	43.50	25.30	1.20	New gas well		
VP6	Cell No. 2 Vent	600mm	50.80	29.60	2.20	New gas well		
VP7	Cell No. 3 Vent	600mm	49.70	27.30	3.90	New gas well		
VP8	Cell No. 7 Vent	600mm	31.40	18.70	8.90	New gas well		
VP9	Cell No. 7 Vent	600mm	51.80	27.20	1.90	New gas well		
VP10	Cell No. 6 Vent	600mm	47.90	26.50	1.20	New gas well		
VP11	Cell No. 6 Vent	600mm	41.70	22.60	0.00	New gas well		
VP12	Cell No. 5 Vent	600mm	47.30	28.50	1.40	New gas well		
VP13	Cell No. 5 Vent	600mm	33.50	20.20	5.40	New gas well		
VP14	Cell No. 7 Vent	600mm	24.20	14.00	11.30	New gas well		
VP15	Cell No. 7 Vent	600mm	59.70	33.00	0.70	New gas well		
VP16	Cell No. 4 Vent	600mm	12.10	18.30	11.40	New gas well		
VP17	Cell No. 4 Vent	600mm	47.70	32.70	3.00	New gas well		

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP18	Cell No. 10 Vent	600mm	59.70	38.80	0.60	New gas well
VP19	Cell No. 10 Vent	600mm	53.10	32.90	2.70	New gas well
VP20	Cell No. 10 Vent	600mm	62.00	37.10	0.10	New gas well
VP21	Cell No. 9 Vent	600mm	55.40	33.00	0.20	New gas well
VP22	Cell No. 8 Vent	600mm	45.90	28.30	4.60	New gas well
VP23	Cell No. 11 Vent	600mm	45.50	27.00	4.40	New gas well
VP24	Cell No. 11 Vent	600mm	62.20	33.90	0.30	New gas well
VP25	Cell No. 11 Vent	600mm	62.00	37.10	0.10	New gas well
VP26	Cell No. 11 Vent	600mm	66.50	32.50	0.20	New gas well
VP27	Cell No. 11 Vent	600mm	59.40	35.40	0.90	New gas well
VP28	Cell No. 11 Vent	600mm	53.90	32.40	0.10	New gas well
VP29	Cell No. 11 Vent	600mm	53.30	32.40	0.60	New gas well
VP30	Cell No. 8 Vent	600mm	55.80	32.80	0.90	New gas well
VP31	Cell No. 8 Vent	600mm	55.90	38.60	0.00	New gas well
VP32	Cell No. 9 Vent	600mm	65.10	33.10	0.00	New gas well
VP33	Cell No9 Vent	600mm	53.90	32.40	2.10	New gas well
VP34	Cell No10 Vent	600mm	64.20	33.90	0.00	New gas well
VP35	Cell No. 10 Vent	600mm	61.90	36.40	0.00	New gas well
VP36	Cell No. 10 Vent	600mm	57.50	33.30	0.60	New gas well
VP37	Cell No. 11 Vent	600mm	51.70	34.30	2.20	New gas well
VP38	Cell No. 12 Vent	600mm	55.50	33.10	0.00	New gas well
VP39	Cell No. 12 Vent	600mm	56.20	36.00	0.00	New gas well
VP40	Cell No. 12 Vent	600mm	55.80	35.70	0.30	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP41	Cell No. 12 Vent	600mm	59.90	33.70	0.30	New gas well
VP42	Cell No. 8 Vent	600mm				Disconnected
VP43	Cell No. 8 Vent	600mm	61.50	35.40	0.00	New gas well
VP44	Cell No. 9 Vent	600mm	64.90	32.10	0.20	New gas well
VP45	Cell No. 9 Vent	600mm	63.10	34.30	0.00	New gas well
VP46	Cell No. 9 Vent	600mm	64.90	33.60	0.00	New gas well
VP47	Cell No. 13 Vent	600mm				Disconnected
VP48	Cell No. 13 Vent	600mm	53.70	39.40	0.00	New gas well
VP49	Cell No. 13 Vent	600mm	32.40	29.10	2.40	New gas well
VP50	Cell No. 13 Vent	600mm	31.40	30.50	0.40	New gas well
VP51	Cell No. 13 Vent	600mm	55.00	36.90	0.60	New gas well

Site Nam				Site Address					
Operator				Notional Crid	Dunmore, Co. Kilkenny National Grid Reference: 160572N 249519E				
Site Statu	kenny Count	ty Counci	1	Date: 15/09/0		Time: 09:46			
She Statt	Active	9		Date. 15/05/0	0	Time: 03.40			
Instrume						ration: May'08			
	Infra Red G	as Analys	ser - GA	94	Next Calibrat	tion Due: May'10			
Monitorir	ng Personne			Weather:		Barometric Pressure (mb) :			
	Alan Rhat	igan		RESULTS	ry	11019			
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments			
VP1	Cell No. 1 Vent	600mm	48.20	30.60	2.00	New gas well			
VP2	Cell No. 1 Vent	600mm	33.50	23.10	3.40	New gas well			
VP3	Cell No. 1 Vent	600mm	22.60	22.00	1.50	New gas well			
VP4	Cell No. 3 Vent	600mm	27.00	20.90	5.50	New gas well			
VP5	Cell No. 2 Vent	600mm	29.20	22.50	1.60	New gas well			
VP6	Cell No. 2 Vent	600mm	44.50	28.00	2.60	New gas well			
VP7	Cell No. 3 Vent	600mm	54.10	30.30	2.60	New gas well			
VP8	Cell No. 7 Vent	600mm	36.50	23.00	5.50	New gas well			
VP9	Cell No. 7 Vent	600mm	40.60	25.30	2.20	New gas well			
VP10	Cell No. 6 Vent	600mm	10.30	17.90	3.80	New gas well			
VP11	Cell No. 6 Vent	600mm	43.90	29.00	0.60	New gas well			
VP12	Cell No. 5 Vent	600mm	46.50	28.90	1.20	New gas well			
VP13	Cell No. 5 Vent	600mm	23.20	16.30	11.10	New gas well			
VP14	Cell No. 7 Vent	600mm	25.40	22.20	7.90	New gas well			
VP15	Cell No. 7 Vent	600mm	64.50	33.50	0.20	New gas well			
VP16	Cell No. 4 Vent	600mm	24.60	17.20	10.90	New gas well			
VP17	Cell No. 4 Vent	600mm	31.30	23.50	5.50	New gas well			

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP18	Cell No. 10 Vent	600mm	60.60	37.90	0.30	New gas well
VP19	Cell No. 10 Vent	600mm	53.50	32.10	2.80	New gas well
VP20	Cell No. 10 Vent	600mm	36.50	22.40	7.80	New gas well
VP21	Cell No. 9 Vent	600mm	51.50	31.30	3.30	New gas well
VP22	Cell No. 8 Vent	600mm	38.20	22.90	7.30	New gas well
VP23	Cell No. 11 Vent	600mm	27.60	17.40	10.60	New gas well
VP24	Cell No. 11 Vent	600mm	23.60	7.00	8.20	New gas well
VP25	Cell No. 11 Vent	600mm	63.30	36.70	0.10	New gas well
VP26	Cell No. 11 Vent	600mm	66.70	32.50	0.00	New gas well
VP27	Cell No. 11 Vent	600mm	63.60	36.50	0.00	New gas well
VP28	Cell No. 11 Vent	600mm	64.50	34.20	0.00	New gas well
VP29	Cell No. 11 Vent	600mm	63.80	34.30	0.20	New gas well
VP30	Cell No. 8 Vent	600mm	58.20	34.40	0.60	New gas well
VP31	Cell No. 8 Vent	600mm	58.70	37.90	0.30	New gas well
VP32	Cell No. 9 Vent	600mm	65.70	32.90	0.10	New gas well
VP33	Cell No9 Vent	600mm	62.10	37.00	0.60	New gas well
VP34	Cell No10 Vent	600mm	28.50	9.50	6.10	New gas well
VP35	Cell No. 10 Vent	600mm	62.10	36.20	0.00	New gas well
VP36	Cell No. 10 Vent	600mm	58.90	35.10	0.40	New gas well
VP37	Cell No. 11 Vent	600mm	63.10	35.90	0.30	New gas well
VP38	Cell No. 12 Vent	600mm	48.40	32.20	0.30	New gas well
VP39	Cell No. 12 Vent	600mm	52.40	35.30	1.60	New gas well
VP40	Cell No. 12 Vent	600mm	52.30	35.70	0.00	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP41	Cell No. 12 Vent	600mm	62.90	34.40	0.30	New gas well
VP42	Cell No. 8 Vent	600mm	62.40	37.20	0.00	New gas well
VP43	Cell No. 8 Vent	600mm	59.80	34.30	0.00	New gas well
VP44	Cell No. 9 Vent	600mm	58.90	33.20	0.10	New gas well
VP45	Cell No. 9 Vent	600mm	65.90	33.20	0.00	New gas well
VP46	Cell No. 9 Vent	600mm	65.90	33.10	0.00	New gas well
VP47	Cell No. 13 Vent	600mm	44.40	37.30	0.30	New gas well
VP48	Cell No. 13 Vent	600mm	23.70	21.00	7.80	New gas well
VP49	Cell No. 13 Vent	600mm	34.50	31.10	0.00	New gas well
VP50	Cell No. 13 Vent	600mm	26.80	28.20	0.80	New gas well
VP51	Cell No. 13 Vent	600mm	40.20	35.00	0.70	New gas well

Site Nam D	e: unmore Lan	dfill Site		Site Address	: Dunn	nore.
Operator			1	National Grid	Co. Kil	
Site Statu	us: Active	9		Date: 29/09/0	8	Time: 09:06
Instrume			ser - GA	<u> </u>		ration: May'08 tion Due: May'10
Monitorir	ng Personne			Weather:		Barometric Pressure (mb) :
	Alan Rhat	igan			ry	1016
				RESULTS		
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO₂ % v/v	O ₂ % v/v	Comments
VP1	Cell No. 1 Vent	600mm	58.40	31.80	0.70	New gas well
VP2	Cell No. 1 Vent	600mm	65.10	24.50	0.30	New gas well
VP3	Cell No. 1 Vent	600mm	46.70	24.90	0.30	New gas well
VP4	Cell No. 3 Vent	600mm	36.60	23.70	2.90	New gas well
VP5	Cell No. 2 Vent	600mm	45.50	25.20	1.50	New gas well
VP6	Cell No. 2 Vent	600mm	54.80	30.00	2.00	New gas well
VP7	Cell No. 3 Vent	600mm	52.10	27.70	3.40	New gas well
VP8	Cell No. 7 Vent	600mm	28.00	15.10	10.90	New gas well
VP9	Cell No. 7 Vent	600mm	45.80	25.30	2.70	New gas well
VP10	Cell No. 6 Vent	600mm	44.60	23.00	2.00	New gas well
VP11	Cell No. 6 Vent	600mm	51.40	29.40	0.20	New gas well
VP12	Cell No. 5 Vent	600mm	48.10	27.90	1.60	New gas well
VP13	Cell No. 5 Vent	600mm	61.40	37.20	0.00	New gas well
VP14	Cell No. 7 Vent	600mm	30.40	12.60	7.90	New gas well
VP15	Cell No. 7 Vent	600mm	64.40	34.20	0.30	New gas well
VP16	Cell No. 4 Vent	600mm	34.20	14.70	6.40	New gas well
VP17	Cell No. 4 Vent	600mm	60.70	37.00	0.30	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	Comments
VP18	Cell No. 10 Vent	600mm	48.10	30.50	2.60	New gas well
VP19	Cell No. 10 Vent	600mm	30.60	21.00	7.00	New gas well
VP20	Cell No. 10 Vent	600mm	31.20	19.90	7.10	New gas well
VP21	Cell No. 9 Vent	600mm	38.90	26.50	4.10	New gas well
VP22	Cell No. 8 Vent	600mm	33.80	18.60	9.10	New gas well
VP23	Cell No. 11 Vent	600mm	21.70	14.20	11.10	New gas well
VP24	Cell No. 11 Vent	600mm	11.00	8.30	13.80	New gas well
VP25	Cell No. 11 Vent	600mm	63.80	35.00	0.20	New gas well
VP26	Cell No. 11 Vent	600mm	50.60	28.70	0.00	New gas well
VP27	Cell No. 11 Vent	600mm	61.90	33.30	0.70	New gas well
VP28	Cell No. 11 Vent	600mm	39.90	27.40	1.20	New gas well
VP29	Cell No. 11 Vent	600mm	60.60	36.30	0.80	New gas well
VP30	Cell No. 8 Vent	600mm	42.60	23.50	6.40	New gas well
VP31	Cell No. 8 Vent	600mm	40.70	26.70	6.10	New gas well
VP32	Cell No. 9 Vent	600mm	59.60	30.40	0.60	New gas well
VP33	Cell No9 Vent	600mm	64.40	35.70	0.00	New gas well
VP34	Cell No10 Vent	600mm	54.00	29.90	0.10	New gas well
VP35	Cell No. 10 Vent	600mm	59.20	33.00	2.30	New gas well
VP36	Cell No. 10 Vent	600mm	61.60	34.50	0.80	New gas well
VP37	Cell No. 11 Vent	600mm	61.00	36.50	0.00	New gas well
VP38	Cell No. 12 Vent	600mm	38.30	27.50	0.90	New gas well
VP39	Cell No. 12 Vent	600mm	55.70	36.50	0.00	New gas well
VP40	Cell No. 12 Vent	600mm	54.30	36.70	0.80	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP41	Cell No. 12 Vent	600mm	16.40	10.40	12.90	New gas well
VP42	Cell No. 8 Vent	600mm	54.60	36.60	0.40	New gas well
VP43	Cell No. 8 Vent	600mm	45.90	29.70	0.20	New gas well
VP44	Cell No. 9 Vent	600mm	40.10	27.30	0.40	New gas well
VP45	Cell No. 9 Vent	600mm	59.60	34.40	3.80	New gas well
VP46	Cell No. 9 Vent	600mm	50.60	31.10	0.40	New gas well
VP47	Cell No. 13 Vent	600mm	56.40	38.00	1.80	New gas well
VP48	Cell No. 13 Vent	600mm	57.80	39.70	1.20	New gas well
VP49	Cell No. 13 Vent	600mm	49.90	31.40	3.50	New gas well
VP50	Cell No. 13 Vent	600mm	49.50	33.90	2.10	New gas well
VP51	Cell No. 13 Vent	600mm	52.40	36.90	0.60	New gas well

Site Nam	e: unmore Lan	dfill Site		Site Address	: Dunn	Pore			
Operator			1	National Grid	Co. Kilkenny National Grid Reference: 160572N 249519E				
Site Statu		•	-	Date: 30/10/0		Time: 13:00			
Instrume	nt Used:			04		ration: May'08			
Monitorir	Infra Red G		ser - GA	Weather:	Next Calibrat	ion Due: May'10 Barometric Pressure			
	Alan Rhat			d	ry	(mb) : 995			
				RESULTS					
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO₂ % v/v	O ₂ % v/v	Comments			
VP1	Cell No. 1 Vent	600mm	51.00	27.10	1.80	New gas well			
VP2	Cell No. 1 Vent	600mm	30.40	18.50	5.60	New gas well			
VP3	Cell No. 1 Vent	600mm	30.70	22.00	2.10	New gas well			
VP4	Cell No. 3 Vent	600mm	20.20	14.20	10.10	New gas well			
VP5	Cell No. 2 Vent	600mm	33.50	18.70	2.90	New gas well			
VP6	Cell No. 2 Vent	600mm	35.70	21.40	5.90	New gas well			
VP7	Cell No. 3 Vent	600mm	42.60	23.10	6.50	New gas well			
VP8	Cell No. 7 Vent	600mm	2.90	7.30	16.80	New gas well			
VP9	Cell No. 7 Vent	600mm	33.50	21.30	5.50	New gas well			
VP10	Cell No. 6 Vent	600mm	56.10	21.00	2.00	New gas well			
VP11	Cell No. 6 Vent	600mm	50.20	28.60	0.40	New gas well			
VP12	Cell No. 5 Vent	600mm	50.00	30.10	0.10	New gas well			
VP13	Cell No. 5 Vent	600mm	48.00	27.30	3.80	New gas well			
VP14	Cell No. 7 Vent	600mm	8.90	6.30	16.10	New gas well			
VP15	Cell No. 7 Vent	600mm	52.40	30.80	1.50	New gas well			
VP16	Cell No. 4 Vent	600mm	20.80	14.10	12.90	New gas well			
VP17	Cell No. 4 Vent	600mm	18.90	12.80	14.00	New gas well			

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	0 ₂ % v/v	Comments
VP18	Cell No. 10 Vent	600mm	24.40	17.90	10.10	New gas well
VP19	Cell No. 10 Vent	600mm	35.50	19.70	9.00	New gas well
VP20	Cell No. 10 Vent	600mm	25.10	16.30	10.50	New gas well
VP21	Cell No. 9 Vent	600mm	24.20	17.60	10.30	New gas well
VP22	Cell No. 8 Vent	600mm	29.20	21.50	8.50	New gas well
VP23	Cell No. 11 Vent	600mm	51.70	32.60	0.40	New gas well
VP24	Cell No. 11 Vent	600mm	23.50	23.30	0.90	New gas well
VP25	Cell No. 11 Vent	600mm	64.50	35.80	0.00	New gas well
VP26	Cell No. 11 Vent	600mm	38.80	25.60	1.70	New gas well
VP27	Cell No. 11 Vent	600mm	66.00	34.60	0.00	New gas well
VP28	Cell No. 11 Vent	600mm	47.20	27.70	1.50	New gas well
VP29	Cell No. 11 Vent	600mm	62.50	37.70	0.20	New gas well
VP30	Cell No. 8 Vent	600mm	25.90	5.90	7.10	New gas well
VP31	Cell No. 8 Vent	600mm	58.90	33.70	2.20	New gas well
VP32	Cell No. 9 Vent	600mm	64.00	32.30	0.60	New gas well
VP33	Cell No9 Vent	600mm	62.80	34.60	0.60	New gas well
VP34	Cell No10 Vent	600mm	12.70	2.00	16.00	New gas well
VP35	Cell No. 10 Vent	600mm	64.20	36.10	0.60	New gas well
VP36	Cell No. 10 Vent	600mm	63.30	35.40	1.00	New gas well
VP37	Cell No. 11 Vent	600mm	57.90	35.80	0.00	New gas well
VP38	Cell No. 12 Vent	600mm	43.50	29.70	0.20	New gas well
VP39	Cell No. 12 Vent	600mm	56.80	37.70	0.30	New gas well
VP40	Cell No. 12 Vent	600mm	56.60	37.60	0.00	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP41	Cell No. 12 Vent	600mm	20.80	23.10	1.30	New gas well
VP42	Cell No. 8 Vent	600mm	59.70	18.70	3.90	New gas well
VP43	Cell No. 8 Vent	600mm	41.60	29.60	0.00	New gas well
VP44	Cell No. 9 Vent	600mm	50.40	29.60	0.30	New gas well
VP45	Cell No. 9 Vent	600mm	47.10	30.70	1.90	New gas well
VP46	Cell No. 9 Vent	600mm	38.00	27.90	1.30	New gas well
VP47	Cell No. 13 Vent	600mm	60.90	39.40	0.10	New gas well
VP48	Cell No. 13 Vent	600mm	60.90	39.60	0.70	New gas well
VP49	Cell No. 13 Vent	600mm	61.30	39.50	0.00	New gas well
VP50	Cell No. 13 Vent	600mm	63.90	37.50	0.00	New gas well
VP51	Cell No. 13 Vent	600mm	62.60	39.60	0.00	New gas well

Site Nam				Site Address				
Operator	Dunmore La	andfill Site	9	Dunmore, Co. Kilkenny				
-	(ilkenny Cou	inty Coun	cil	National Grid	160572N 249519E			
Site Statu				Date: 30/10/0)8	Time: 13:00		
Instrume	Acti	ve			Data of Cali	bration: May'08		
mstrume		Gas Anal	yser - GA 9	94		ation Due: May'10		
Monitorir	ng Personne	1:		Weather:		Barometric Pressure (mb) :		
	Alan Rh	atigan		dı	ry	(IIID) . 995		
				RESULTS	•			
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments		
VP1	Cell No. 1 Vent	600mm	No Results			New gas well		
VP2	Cell No. 1 Vent	600mm				New gas well		
VP3	Cell No. 1 Vent	600mm				New gas well		
VP4	Cell No. 3 Vent	600mm				New gas well		
VP5	Cell No. 2 Vent	600mm				New gas well		
VP6	Cell No. 2 Vent	600mm				New gas well		
VP7	Cell No. 3 Vent	600mm				New gas well		
VP8	Cell No. 7 Vent	600mm				New gas well		
VP9	Cell No. 7 Vent	600mm				New gas well		
VP10	Cell No. 6 Vent	600mm				New gas well		
VP11	Cell No. 6 Vent	600mm				New gas well		
VP12	Cell No. 5 Vent	600mm				New gas well		
VP13	Cell No. 5 Vent	600mm				New gas well		
VP14	Cell No. 7 Vent	600mm				New gas well		
VP15	Cell No. 7 Vent	600mm				New gas well		
VP16	Cell No. 4 Vent	600mm				New gas well		
VP17	Cell No. 4 Vent	600mm				New gas well		

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP18	Cell No. 10 Vent	600mm				New gas well
VP19	Cell No. 10 Vent	600mm				New gas well
VP20	Cell No. 10 Vent	600mm				New gas well
VP21	Cell No. 9 Vent	600mm				New gas well
VP22	Cell No. 8 Vent	600mm				New gas well
VP23	Cell No. 11 Vent	600mm				New gas well
VP24	Cell No. 11 Vent	600mm				New gas well
VP25	Cell No. 11 Vent	600mm				New gas well
VP26	Cell No. 11 Vent	600mm				New gas well
VP27	Cell No. 11 Vent	600mm				New gas well
VP28	Cell No. 11 Vent	600mm				New gas well
VP29	Cell No. 11 Vent	600mm				New gas well
VP30	Cell No. 8 Vent	600mm				New gas well
VP31	Cell No. 8 Vent	600mm				New gas well
VP32	Cell No. 9 Vent	600mm				New gas well
VP33	Cell No9 Vent	600mm				New gas well
VP34	Cell No10 Vent	600mm				New gas well
VP35	Cell No. 10 Vent	600mm				New gas well
VP36	Cell No. 10 Vent	600mm				New gas well
VP37	Cell No. 11 Vent	600mm				New gas well
VP38	Cell No. 12 Vent	600mm				New gas well
VP39	Cell No. 12 Vent	600mm				New gas well
VP40	Cell No. 12 Vent	600mm				New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP41	Cell No. 12 Vent	600mm				New gas well
VP42	Cell No. 8 Vent	600mm				New gas well
VP43	Cell No. 8 Vent	600mm				New gas well
VP44	Cell No. 9 Vent	600mm				New gas well
VP45	Cell No. 9 Vent	600mm				New gas well
VP46	Cell No. 9 Vent	600mm				New gas well
VP47	Cell No. 13 Vent	600mm				New gas well
VP48	Cell No. 13 Vent	600mm				New gas well
VP49	Cell No. 13 Vent	600mm				New gas well
VP50	Cell No. 13 Vent	600mm				New gas well
VP51	Cell No. 13 Vent	600mm				New gas well

Site Nam	e:			Site Address		
	unmore Lan	dfill Site		Dunmore,		
Operator				Co. Kilkenny		
	kenny Count	ty Counci				60572N 249519E
Site Statu	us: Active)		Date: 08/01/0	9	Time: 10:51
Instrume			~ ~ ~			ration: May'08
Monitorin	Infra Red G		ser - GA	Weather:	Next Calibrat	ion Due: May'10
wonitori	Alan Rhat				ry	Barometric Pressure (mb) : 1019
		<u> </u>		RESUL	,	
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP1	Cell No. 1 Vent	600mm	52.30	27.00	0.60	New gas well
VP2	Cell No. 1 Vent	600mm	33.40	19.20	4.00	New gas well
VP3	Cell No. 1 Vent	600mm	40.60	25.90	1.00	New gas well
VP4	Cell No. 3 Vent	600mm	48.90	23.50	2.30	New gas well
VP5	Cell No. 2 Vent	600mm	44.10	23.60	1.30	New gas well
VP6	Cell No. 2 Vent	600mm	62.80	28.80	1.10	New gas well
VP7	Cell No. 3 Vent	600mm	54.90	26.60	3.20	New gas well
VP8	Cell No. 7 Vent	600mm	54.60	26.80	3.30	New gas well
VP9	Cell No. 7 Vent	600mm	51.70	25.80	1.80	New gas well
VP10	Cell No. 6 Vent	600mm	24.00	18.10	4.40	New gas well
VP11	Cell No. 6 Vent	600mm	50.20	26.60	0.50	New gas well
VP12	Cell No. 5 Vent	600mm	52.00	27.10	0.40	New gas well
VP13	Cell No. 5 Vent	600mm	41.80	24.10	4.30	New gas well
VP14	Cell No. 7 Vent	600mm	7.60	4.00	17.50	New gas well
VP15	Cell No. 7 Vent	600mm				Disconnected due to capping works
VP16	Cell No. 4 Vent	600mm				Disconnected due to capping works
VP17	Cell No. 4 Vent	600mm	51.30	26.00	5.00	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO₂ % v/v	O ₂ % v/v	Comments
VP18	Cell No. 10 Vent	600mm	30.20	23.10	6.40	New gas well
VP19	Cell No. 10 Vent	600mm	29.30	17.00	8.80	New gas well
VP20	Cell No. 10 Vent	600mm	58.80	29.70	3.00	New gas well
VP21	Cell No. 9 Vent	600mm	59.40	29.90	2.00	New gas well
VP22	Cell No. 8 Vent	600mm	58.40	29.30	2.40	New gas well
VP23	Cell No. 11 Vent	600mm	59.80	30.00	0.20	New gas well
VP24	Cell No. 11 Vent	600mm	36.00	23.70	0.00	New gas well
VP25	Cell No. 11 Vent	600mm	65.90	35.60	0.00	New gas well
VP26	Cell No. 11 Vent	600mm	40.00	24.00	2.00	New gas well
VP27	Cell No. 11 Vent	600mm	67.30	32.30	0.00	New gas well
VP28	Cell No. 11 Vent	600mm	58.20	25.00	2.30	New gas well
VP29	Cell No. 11 Vent	600mm	64.30	36.30	0.20	New gas well
VP30	Cell No. 8 Vent	600mm	51.20	29.10	1.20	New gas well
VP31	Cell No. 8 Vent	600mm	63.80	34.70	0.60	New gas well
VP32	Cell No. 9 Vent	600mm	64.70	35.30	0.30	New gas well
VP33	Cell No9 Vent	600mm	55.80	30.00	1.50	New gas well
VP34	Cell No10 Vent	600mm	9.10	3.20	18.60	New gas well
VP35	Cell No. 10 Vent	600mm	64.60	35.30	1.20	New gas well
VP36	Cell No. 10 Vent	600mm	65.60	34.40	0.30	New gas well
VP37	Cell No. 11 Vent	600mm	55.10	28.80	1.10	New gas well
VP38	Cell No. 12 Vent	600mm	64.30	30.30	0.30	New gas well
VP39	Cell No. 12 Vent	600mm	43.80	31.90	0.30	New gas well
VP40	Cell No. 12 Vent	600mm	50.10	32.70	0.00	New gas well

Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments
VP41	Cell No. 12 Vent	600mm	32.70	23.40	0.00	New gas well
VP42	Cell No. 8 Vent	600mm	65.90	36.10	0.00	New gas well
VP43	Cell No. 8 Vent	600mm	65.70	35.50	0.00	New gas well
VP44	Cell No. 9 Vent	600mm	68.70	32.60	0.00	New gas well
VP45	Cell No. 9 Vent	600mm	69.10	31.20	0.00	New gas well
VP46	Cell No. 9 Vent	600mm	39.50	24.50	4.00	New gas well
VP47	Cell No. 13 Vent	600mm	26.50	26.60	1.70	New gas well
VP48	Cell No. 13 Vent	600mm	42.60	32.20	0.70	New gas well
VP49	Cell No. 13 Vent	600mm	67.50	35.00	1.10	New gas well
VP50	Cell No. 13 Vent	600mm	24.00	25.10	0.60	New gas well
VP51	Cell No. 13 Vent	600mm	24.20	20.10	9.10	New gas well

	LANDFILL GAS MIGRATION MONITORING FORM											
Site Name:				Site Address:								
	Dunmore Lanc	Ifill Site		Dunmore,								
Operator:				Co. Kilkenny								
· ·	Kilkenny County	y Council		National Grid Reference: 160572N 249519E								
Site Status:				Date: 30/01/08		Time:17:13						
	Active											
Instrument	Used:				Date Of Calibrat	ion: March '07						
	Infra red G	as Analyser -	GA 94		Next Calibration	Due: April '08						
Monitoring				Weather:	-	Barometric Pressure (mb):						
	Alan Rhati	aan			Dry	1017						
_	,	<u>9</u>		RESULTS	Si y							
Sample												
Station	Borehole/	Survey	CH₄	CO ₂ % v/v	O ₂ % v/v	Comments						
Number	Spike/ Other	Depth	% v/v	_	_							
GM1	Spike	600mm	0.00	0.60	20.00							
GM2	Spike	600mm	0.00	0.80	19.20							
GM3	Spike	600mm	0.00	0.80	20.30							
GM4	Spike	600mm	0.00	0.10	20.80							
GM5	Spike	600mm	0.00	1.40	19.00							
GM7	Spike	600mm	0.00	1.30	18.80							
GM8	Spike	600mm	0.00	1.90	18.90							
GM9	Spike	600mm	0.00	2.10	19.20							
GM10	Spike	600mm	0.00	1.00	19.9							
GM11	Spike	600mm	0.00	0.30	20.8							
GM12	Spike	600mm	0.00	0.30	20.8							
GM13	Spike	600mm	0.00	0.10	20.8							
GM14	Spike	600mm	0.00	0.50	20.50							
GM15	Spike	600mm	0.00	0.40	20.70							
GM16	Spike	600mm	0.00	0.30	20.60							
GM17	Spike	600mm	0.00	0.30	20.70							
GM18	Spike	600mm	0.00	0.20	20.80							
GM19	Spike	600mm	0.00	0.60	17.60							
GM20	Spike	600mm	0.00	0.00	20.90							
GM21	Spike	600mm	0.00	0.00	21.00							
GM22	Spike	600mm	0.00	0.00	21.00							
GM23	Spike	600mm	0.00	0.70	19.80							

	LAI	NDFILL GA	S MIGF	RATION	MONI	TORIN	NG FOR	Μ	
Site Name:				Site Ad	dress:				
	Dunmore Land	Ifill Site		Dunmore,					
Operator:	Operator: C								
- I	Kilkenny County	/ Council		Nationa	l Grid R	eferen	ce: 1605	72N	249519E
Site Status:				Date: 04	4/03/08				Time:9:45
	Active								
Instrument l	Jsed:			•		Date	Of Calibr	ation	March '07
	Infra red G	as Analyser -	GA 94			Next	Calibrati	on Du	e: April '08
Monitoring F	Personnel			Weathe	r-				ometric Pressure
intering i				Weathe				(mb)	
	Alan Rhati	gan			Dr	'y			1024
			R	ESULT	S				
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO2	% v/v	O ₂	% v/v		Comments
GM1	Spike	600mm	0.00	0.2	20	2	0.40		
GM2	Spike	600mm	0.00	0.2	20	2	0.40		
GM3	Spike	600mm	0.00	0.0	00	2	1.00		
GM4	Spike	600mm	0.00	0.4	10	2	0.80		
GM5	Spike	600mm	0.00	1.0		1	9.90		
GM7	Spike	600mm	0.00	0.9			8.60		
GM8	Spike	600mm	0.00	1.0			0.40		
GM9	Spike	600mm	0.00	1.3			0.20		
GM10	Spike	600mm	0.00	2.0	-		19.7		
GM11	Spike	600mm	0.00	0.7			20.6		
GM12	Spike	600mm	0.00	0.2	-		20.8		
GM13	Spike	600mm	0.00	0.0			21		
GM14	Spike	600mm	0.00	3.8	-	-	5.90		
GM15	Spike	600mm	0.00	2.0			6.90		
GM16	Spike	600mm	0.00	0.3			0.70		
GM17	Spike	600mm	0.00	2.8	-		7.00		
GM18	Spike	600mm	0.00	2.5	-	-	8.20		
GM19	Spike	600mm	0.00	0.5			2.40		
GM20	Spike	600mm	0.00	0.2			1.00		
GM21	Spike	600mm	0.00	0.0			1.00		
GM22	Spike	600mm	0.00	0.0			1.10		
GM23	Spike	600mm	0.00	0.7	70	2	0.50		

	LAN	IDFILL GA	AS MIG		NITORING FO	RM			
Site Name:				Site Address:					
	Dunmore Land	ill Site		Dunmore,					
Operator:				Co. Kilkenny					
-	ilkenny County	Council		National Grid	National Grid Reference: 160572N 249519E				
Site Status:				Date: 02/05/08	8		Time: 09:15		
	Active								
Instrument l	Jsed:				Date Of Calibrat	tion:	March '07		
	Infra red Gas	s Analyser -	GA 94		Next Calibration				
Monitoring F				Weather:		Bar	ometric Pressure		
j					D	(mb	-		
	Alan Rhatig	an	-		Dry	Ļ	1005		
	T		ŀ	RESULTS		T			
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v		Comments		
GM1	Spike	600mm	0.00	1.50	17.40				
GM2	Spike	600mm	0.00	1.90	17.10				
GM3	Spike	600mm	0.00	1.10	20.10				
GM4	Spike	600mm	0.00	0.10	20.20				
GM5	Spike	600mm	0.00	1.40	19.10				
GM7	Spike	600mm	0.00	0.00	20.90				
GM8	Spike	600mm	0.00	0.10	20.40				
GM9	Spike	600mm	0.00	0.10	20.70				
GM10	Spike	600mm	0.00	2.00	18.90				
GM11	Spike	600mm	0.00	0.30	20.40				
GM12	Spike	600mm	0.00	0.40	20.30				
GM13	Spike	600mm	0.00	0.10	20.40				
GM14	Spike	600mm	0.00	0.80	20.50				
GM15	Spike	600mm	0.00	0.30	20.80				
GM16	Spike	600mm	0.00	0.20	20.70				
GM17	Spike	600mm	0.00	0.90	20.00				
GM18	Spike	600mm	0.00	0.90	20.50				
GM19	Spike	600mm	0.00	1.60	18.90				
GM20	Spike	600mm	0.00	0.00	20.70				
GM21	Spike	600mm	0.00	0.10	20.70				
GM22	Spike	600mm	0.00	1.80	18.60				
GM23	Spike	600mm	0.00	1.00	18.80				

	LAI	NDFILL GA	S MIGR	ATION MON	LANDFILL GAS MIGRATION MONITORING FORM											
Site Name:				Site Address:												
	Dunmore Land	fill Site		Dunmore,												
Operator:				Co. Kilkenny	•											
	Kilkenny County		National Grid Reference: 160572N 249519E													
Site Status:				Date: 16/05/08	5		Time:12:27									
	Active															
Instrument l					Date Of Calibrat		•									
	Infra red Ga	s Analyser - (GA 94	l	Next Calibration		e: May '10 ometric Pressure									
Monitoring F	Personnel:			Weather:		mt (mt										
	Alan Rhatig	yan		[Dry		1002									
			R	ESULTS		•										
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v		Comments									
GM1	Spike	600mm	0.00	0.30	19.90											
GM2	Spike	600mm	0.00	3.10	13.50											
GM3	Spike	600mm	0.00	0.20	20.60											
GM4	Spike	600mm	0.00	0.60	19.90											
GM5	Spike	600mm	0.00	2.00	15.60											
GM7	Spike	600mm	0.00	2.00	16.30											
GM8 GM9	Spike Spike	600mm 600mm	0.00 0.00	1.30 0.10	19.60 20.90											
GM9 GM10	Spike	600mm	0.00	2.50	17.50											
GM10 GM11	Spike	600mm	0.00	2.60	16.90											
GM12	Spike	600mm	0.00	1.30	18.40											
GM12	Spike	600mm	0.00	0.90	17.50											
GM14	Spike	600mm	0.00	0.40	20.50											
GM15	Spike	600mm	0.00	0.10	20.80											
GM16	Spike	600mm	0.00	0.30	20.70											
GM17	Spike	600mm	0.00	1.20	19.90											
GM18	Spike	600mm	0.00	1.50	19.70											
GM19	Spike	600mm	0.00	1.50	7.70											
GM20	Spike	600mm	0.00	0.60	19.80											
GM21	Spike	600mm	0.00	1.20	17.40											
GM22	Spike	600mm	0.00	1.70	18.70											
GM23	Spike	600mm	0.00	1.70	18.70											

	LANDFILL GAS MIGRATION MONITORING FORM											
Site Name:				Site Address:								
Operator:	Dunmore Lan	dfill Site		Dunmore, Co. Kilkenny								
	Kilkenny Count		National Grid Reference: 160572N 249519E									
Site Status:				Date: 06/06/08	8		Time: 09:05					
	Active	9										
Instrument l	Jsed:				Date Of Cali	bratio	on: May '08					
	Infra red G	as Analyse	r - GA 94		Next Calibra	tion	Due: May '10					
Monitoring F	Personnel:			Weather:		Bar (mb	ometric Pressure					
	Alan Rhat	igan		Dr	v	(,,. 1011					
		- <u></u>	RES	SULTS	<u>,</u>	ļ						
Comple						1						
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v		Comments					
GM1	Spike	600mm	0.00	0.70	19.40							
GM2	Spike	600mm	0.00	0.80	19.20							
GM3	Spike	600mm	0.00	0.10	20.60							
GM4	Spike	600mm	0.00	0.20	20.20							
GM5	Spike	600mm	0.00	1.80	16.70							
GM7	Spike	600mm	0.00	0.60	20.00							
GM8	Spike	600mm	0.00	1.40	19.50							
GM9	Spike	600mm	0.00	2.30	18.90							
GM10	Spike	600mm	0.00	2.50	18.4							
GM11	Spike	600mm	0.00	2.00	19.4							
GM12	Spike	600mm	0.00	0.80	19.8							
GM13	Spike	600mm	0.00	0.90	17.2							
GM14	Spike Spike	600mm 600mm	0.00	0.90	20.00							
GM15 GM16	Spike Spike	600mm	0.00 0.00	0.20 0.40	20.60 20.40							
GM10 GM17	Spike	600mm	0.00	0.40 1.80	20.40							
GM17 GM18	Spike	600mm	0.00	1.50	20.00							
GM19	Spike	600mm	0.00	0.40	18.50							
GM20	Spike	600mm	0.00	0.40	20.00							
GM21	Spike	600mm	0.00	0.50	19.80							
GM22	Spike	600mm	0.00	0.60	20.10							
GM23	Spike	600mm	0.00	2.10	18.50							

	LA	LANDFILL GAS MIGRATION MONITORING FORM											
Site Name:				Site Address	:								
	Dunmore Lan	dfill Site		Dunmore,									
Operator:				Co. Kilkenny									
	Kilkenny Coun	ty Council				0572N 249519E							
Site Status:	A = 45 m			Date: 30/06/08	8	Time: 12:37							
Instrument l	Active	2			Data Of Calibr	ation: May '08							
Instrument		as Analyse	r - GA 94			on Due: May '10							
Monitoring F		as Analyse	1 - 07 34	Weather:	Next Calibrati	Barometric Pressure							
		ison				(mb): 1011							
	Alan Rhat	igan	DE	<u>.</u>	lry								
			KE	SULTS									
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments							
GM1	Spike	600mm	0.00	2.20	17.40								
GM2	Spike	600mm	0.00	3.60	16.40								
GM3	Spike	600mm	0.00	0.30	20.30								
GM4	Spike	600mm	0.00	0.10	20.30								
GM5	Spike	600mm	0.00	1.70	14.90								
GM7	Spike	600mm	0.00	0.00	19.50								
GM8	Spike	600mm	0.00	1.50	17.70								
GM9	Spike	600mm	0.00	0.10	20.30								
GM10	Spike	600mm	0.00	3.60	15.3								
GM11	Spike	600mm	0.00	2.50	17								
GM12	Spike	600mm	0.00	0.50	19.5								
GM13	Spike Spike	600mm 600mm	0.00 0.00	0.30	20 18.30								
GM14 GM15	Spike	600mm	0.00	1.60 0.90	20.00								
GM15 GM16	Spike	600mm	0.00	1.00	19.80								
GM10 GM17	Spike	600mm	0.00	2.20	18.30								
GM18	Spike	600mm	0.00	3.70	16.90								
GM19	Spike	600mm	0.00	2.40	4.40								
GM20	Spike	600mm	0.00	0.30	19.80								
GM21	Spike	600mm	0.00	1.10	18.90								
GM22	Spike	600mm	0.00	0.90	18.90								
GM23	Spike	600mm	0.00	1.90	17.60								

	LANDFILL GAS MIGRATION MONITORING FORM											
Site Name:				Site Address:								
Operator:	Dunmore Lan	dfill Site		Dunmore, Co. Kilkenny								
-	Kilkenny Count	ty Council		National Gr	id Reference: 1	160572N 249519E						
Site Status:		,		Date: 07/08		Time: 09:19						
	Active	•										
Instrument L	Jsed:				Date Of Calibr	ation: May '08						
	Infra red Ga	s Analyser	- GA 94		Next Calibration	on Due: May '10						
Monitoring F	Personnel:			Weather:		Barometric Pressure (mb):						
	Alan Rhat	igan			Dry	999						
			RES	SULTS								
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH ₄ % v/v	CO ₂ % v/v	O ₂ % v/v	Comments						
GM1	Spike	600mm	0.00	0.10	20.20							
GM2	Spike	600mm	0.00	0.20	19.80							
GM3	Spike	600mm	0.00	0.50	19.40							
GM4	Spike	600mm	0.00	0.80	19.30							
GM5	Spike	600mm	0.00	1.70	15.80							
GM7	Spike	600mm	0.00	1.10	18.40							
GM8	Spike	600mm	0.00	1.20	18.70							
GM9	Spike	600mm	0.00	1.80	17.10							
GM10	Spike	600mm	0.00	2.00	15.9							
GM11	Spike Spike	600mm 600mm	0.00 0.00	1.80 1.60	17.8 15.8							
GM12 GM13	Spike	600mm	0.00	0.90	15.8							
GM13 GM14	Spike	600mm	0.00	1.50	18.10							
GM14 GM15	Spike	600mm	0.00	0.20	20.20							
GM16	Spike	600mm	0.00	1.10	19.50							
GM17	Spike	600mm	0.00	1.70	18.40							
GM18	Spike	600mm	0.00	1.60	17.40							
GM19	Spike	600mm	0.00	1.70	11.90							
GM20	Spike	600mm	0.00	0.30	19.30							
GM21	Spike	600mm	0.00	1.40	18.90							
GM22	Spike	600mm	0.00	1.50	18.70							
GM23	Spike	600mm	0.00	2.60	16.10							

	LAN	DFILL GA	S MIGF		IITORING FO	RM		
Site Name:				Site Address:	:			
	Dunmore Land	ill Site		Dunmore,				
Operator:				Co. Kilkenny				
ĸ	ilkenny County	Council		National Grid Reference: 160572N 249519E				
Site Status:				Date: 15/09/08	8		Time: 09:15	
	Active							
Instrument l	Jsed:			•	Date Of Calibr	ation	: May '08	
	Infra red Gas	s Analyser -	GA 94		Next Calibration	on Du	ue: May '10	
Monitoring I	Personnel			Weather:			ometric Pressure	
Montoling						(mb	-	
	Alan Rhatig	an			lry		1019	
	I		R	ESULTS	Γ	1		
Sample	Develo-	Survey	CH₄	CO ₂ % v/v	O₂ % v/v		Comments	
Station Number	Borehole/ Spike/ Other	Depth	% v/v				Commente	
GM1	Spike	600mm	0.00	0.40	20.10			
GM2	Spike	600mm	0.00	0.20	20.40			
GM3	Spike	600mm	0.00	0.10	20.40			
GM4	Spike	600mm	0.00	1.00	19.10			
GM5	Spike	600mm	0.00	1.60	16.90			
GM7	Spike	600mm	0.00	1.60	19.20			
GM8	Spike	600mm	0.00	1.40	18.70			
GM9	Spike	600mm	0.00	7.50	13.60			
GM10	Spike	600mm	0.00	1.60	17.5			
GM11	Spike	600mm	0.00	1.40	16.6			
GM12	Spike	600mm	0.00	1.40	15.4			
GM13	Spike	600mm	0.00	0.90	16.4			
GM14	Spike	600mm	0.00	3.20	16.70			
GM15	Spike	600mm	0.00	1.00	18.80			
GM16	Spike	600mm	0.00	1.30	19.20			
GM17	Spike	600mm	0.00	1.70	17.30			
GM18	Spike	600mm	0.00	1.80	16.10			
GM19	Spike	600mm	0.00	1.50	13.00			
GM20	Spike	600mm	0.00	0.10	20.40			
GM21	Spike	600mm	0.00	0.90	18.70			
GM22	Spike	600mm	0.00	0.90	18.40			
GM23	Spike	600mm	0.00	1.70	17.50			

	LA	NDFILL G	AS MIGRA	TION MONI	TORING FOR	Μ			
Site Name:				Site Address	:				
	Dunmore Lan	dfill Site		Dunmore,					
Operator:			Co. Kilkenny						
	Kilkenny Coun	ty Council			National Grid Reference: 160572N 249519E				
Site Status:	Active	•		Date: 29/09/08	8		Time: 11:48		
Instrument l		-			Date Of Calibr	ation) . May '08		
		as Analyse	r - GA 94		Next Calibration		•		
Monitoring F				Weather:		Bar	ometric Pressure		
J	Alan Rhat	ligan			ry	(mb): 1015		
		ilgan	DE	SULTS	n y		1013		
				30113		1			
Sample Station	Borehole/	Survey Depth	CH₄ % v/v	CO2 % v/v	O ₂ % v/v		Comments		
Number	Spike/ Other	-	0.00	0.00	10.70				
GM1 GM2	Spike Spike	600mm 600mm	0.00 0.00	0.80 1.70	19.70 14.40				
GM2 GM3	Spike	600mm	0.00	1.20	17.60				
GM3 GM4	Spike	600mm	0.00	0.30	20.10				
GM5	Spike	600mm	0.00	1.60	18.20				
GM7	Spike	600mm	0.00	1.30	15.10				
GM8	Spike	600mm	0.00	0.90	18.80				
GM9	Spike	600mm	0.00	1.30	18.30				
GM10	Spike	600mm	0.00	1.60	17.1				
GM11	Spike	600mm	0.00	1.00	19.7				
GM12	Spike	600mm	0.00	2.00	18.8				
GM13	Spike	600mm	0.00	0.90	16.9				
GM14	Spike	600mm	0.00	1.60	19.00				
GM15	Spike	600mm	0.00	0.40	19.70				
GM16	Spike	600mm	0.00	0.00	20.70				
GM17	Spike	600mm	0.00	1.90	19.20				
GM18	Spike	600mm	0.00	1.80	18.50				
GM19	Spike	600mm	0.00	1.70	9.50				
GM20	Spike	600mm	0.00	0.60	19.70				
GM21	Spike	600mm	0.00	1.40	18.50				
GM22 GM23	Spike Spike	600mm 600mm	0.00 0.00	0.00 2.30	20.50				
GIVIZS	Spike	00011111	0.00	2.30	17.40				

	LA	NDFILL G	AS MIGRA	TION MONI	TORING FOR	М
Site Name:				Site Address	:	
	Dunmore Lan	dfill Site		Dunmore,		
Operator:				Co. Kilkenny		
	Kilkenny Coun	ty Council				0572N 249519E
Site Status:	A = 45 - 4			Date: 29/10/08	8	Time: 10:30
Inctrument		2			Data Of Calibr	ation: May '08
instrument		ae Analveo	r - GA 9/			on Due: May 10
Monitoring		as Analyse		Weather:	Next Calibrati	Barometric Pressure
		icon				(mb): 1002
	Alan Rhai	ligan	DE	<u>.</u>	lry	1002
			RE	SULTS		
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO2 % v/v	O ₂ % v/v	Comments
GM1	Spike	600mm	0.00	0.20	20.70	
GM2	Spike	600mm	0.00	0.00	20.80	
GM3	Spike	600mm	0.00	0.90	18.40	
GM4		600mm	0.00	1.10	19.30	
GM5			0.00	1.00	16.80	
GM7			0.00	1.00	20.00	
GM8			0.00	0.70	20.00	
GM9			0.00	1.30	18.40	
GM10			0.00	2.40	18.9	
GM11			0.00 0.00	1.40 1.20	17.1	
GM12 GM13			0.00	0.30	16.6 20	
GM13 GM14			0.00	1.30	20	
GM14 GM15			0.00	0.30	20.90	
GM16			0.00	0.00	21.00	
GM17			0.00	1.50	20.40	
GM18		600mm	0.00	1.30	19.90	
GM19	Spike	600mm	0.00	1.50	7.30	
GM20	Spike	600mm	0.00	0.40	19.30	
GM21	Spike	600mm	0.00	0.50	19.70	
GM22	Spike	600mm	0.00	0.70	19.50	
GM23	Spike	600mm	0.00	1.00	18.90	
	e: Dunmore Landfill Site : Kilkenny County Council us: Active nt Used: Infra red Gas Analys ng Personnel: Alan Rhatigan Market Spike 600mm					
	e: Dunmore Landfill Site : Kilkenny County Council Us: Active nt Used: Infra red Gas Analys Tg Personnel: Alan Rhatigan Alan Rhatigan Borehole/ Spike/Other Spike 600mm					

	LAN	IDFILL GA	S MIGRA	TION MONIT	ORING FO	RM
Site Name:				Site Address:		
	Dunmore Lan	dfill Site		Dunmore,		
Operator:	Kilkenny Count			Co. Kilkenny National Grid	Reference: 1	60572N 249519E
Site Status:	Kinkering Count	y council		Date: 29/10/08		Time: 10:30
	Active	;				
Instrument l	Jsed:				Date Of Cali	bration: May '08
	Infra red G	as Analyse	r - GA 94		Next Calibra	tion Due: May'10
Monitoring F	Personnel:			Weather:		Barometric Pressure (mb):
	Alan Rhat	igan		Dr	у	1002
			RE	SULTS		
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO2 % v/v	O ₂ % v/v	Comments
GM1	Spike	600mm				No Results
GM2	Spike	600mm				
GM3	Spike	600mm				
GM4	Spike Spike	600mm 600mm				
GM5 GM7	Spike	600mm				
GM7 GM8	Spike	600mm				
GM9	Spike	600mm				
GM10	Spike	600mm				
GM11	Spike	600mm				
GM12	Spike	600mm				
GM13	Spike	600mm				
GM14	Spike	600mm				
GM15	Spike	600mm 600mm				
GM16 GM17	Spike Spike	600mm				
GM17 GM18	Spike	600mm				
GM19	Spike	600mm				
GM20	Spike	600mm				
GM21	Spike	600mm				
GM22	Spike	600mm				
GM23	Spike	600mm				
1				1		

	LAN	IDFILL GA	AS MIGRA	TION MONIT	ORING FOR	RM	
Site Name:				Site Address	:		
Operator:	Dunmore Lan	dfill Site		Dunmore, Co. Kilkenny			
	Kilkenny Count	ty Council		National Grid	Reference: 1	6057	2N 249519E
Site Status:	-	-		Date: 08/01/0	9		Time: 11:02
	Active	e					
Instrument l	Jsed:				Date Of Cali	bratio	on: May '08
	Infra red G	as Analyse	r - GA 94		Next Calibra		
Monitoring F	Personnel:			Weather:		Bar (mb	ometric Pressure):
	Alan Rhat	igan		Dr	у	•	1019
			RES	SULTS			
Sample Station Number	Borehole/ Spike/ Other	Survey Depth	CH₄ % v/v	CO2 % v/v	O ₂ % v/v		Comments
GM1	Spike	600mm	0.00	0.70	19.90		
GM2	Spike	600mm	0.00	0.00	21.00		
GM3	Spike	600mm	0.00	0.20	20.90		
GM4	Spike	600mm	0.00	0.20	20.70		
GM5	Spike	600mm	0.00	1.70	13.50		
GM7	Spike	600mm	0.00	0.00	20.50		
GM8	Spike	600mm	0.00	0.40	20.90		
GM9	Spike	600mm	0.00	0.90	20.40		
GM10	Spike	600mm 600mm	0.00 0.00	0.90	20.3		
GM11	Spike Spike	600mm	0.00	0.30 0.20	20.7 20.7		
GM12 GM13	Spike Spike	600mm	0.00	0.20	20.7		
GM13 GM14	Spike	600mm	0.00	1.40	19.80		
GM14 GM15	Spike	600mm	0.00	1.50	18.70		
GM16	Spike	600mm	0.00	0.10	20.10		
GM17	Spike	600mm	0.00	1.60	18.50		
GM18	Spike	600mm	0.00	1.30	19.50		
GM19	Spike	600mm	0.00	1.60	7.90		
GM20	Spike	600mm	0.00	1.50	18.80		
GM21	Spike	600mm	0.00	1.00	20.60		
GM22	Spike	600mm	0.00	1.50	19.40		
GM23	Spike	600mm	0.00	1.40	19.10		

Appendix C

Surface, Ground Water Monitoring

&

Leachate Monitoring

	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4
Upstream 'A'	2004	2004	2004	2004	2005	2005	2005	2005	2006	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008
PH	8.1	8.4		8.3	8.2	8.3			8	8.3	-	8.3	7.4			8	8.3	_	8.1	8.3
Temperature oC	9.3	11.7		11.3	8.6	10.1			7.3	8.1	-	12.8	7.4			11.1	6.7	_	13.2	8.2
Conductivity uS/CM 20oC	-	-																		
Conductivity uS/CM 25oC	389	410	Ð	434	382	390	e	e	367	418	е	434	412	e	Θ	420	317	e	381	558
C.O.D.	25	<8	_	10	<8	16	_	—	22	8	—	<8	27	_	_	<8	38	—	22	24
B.O.D.	0.5	1.3	q	0.8	0.7	1	q	q	0.8	0.5	٩	0.9	1.5	q	A	0.8	1.6	q	1.2	1.2
Ammonia mg/l N	0.01	0.034	ъ	0.008	0.022	0.018	а	а	0.007	0.01	а	0.011	0.003	ъ	ъ	0.019	0.012	а	0.021	0.022
Dissolved Oxygen %sat	96.8	102.4	_	95.2	96.4	91.5	_	_	113.5	101	-	112	99.3	_	_	92	99.2		97.2	100
Calcium mg/l Ca	55.3	-								64.5								. _		
Cadmium mg/l Cd	<0.0001	-	а				а	а		<.0001	σ			а	Ø			σ		
Chromium mg/l Cr	0.00241	-	>				>	>		<.001	>			>	>			>		
Chloride mg/l Cl	18	21	A	18	18	18	A	A	15	18	A	18	15	A	\triangleleft	14	14	A	13	54
Copper mg/l Cu	<0.001									<.001										
Iron mg/l Fe	0.163	-	e				e	Ð		0.0815	e			e	Ð			e		
Lead Mg/I Pb	< 0.0001	-	—				_	—		0.001	l —			—	—			1 —		
Magnesium mg/l Mg	5.26	-	d				d	d		6.01	٩			d	٩			٩		
Manganese mg/l Mn	0.00466	-	Е				Е	Е		0.0027	ε			Е	ε			٤		
Mercury mg/I Hg	-	-	а				а	а			а			а	ъ			а		
Nickel mg/l Ni	<0.001	-	S				S	S		<.001	S			S	S			S		
Potassium mg/l K	1.1	-								0.78								1		
Sodium mg/l Na	8.95		0				0	0		8.37	0			0	0			0		
Sulphate mg/l SO4	13.5	-	z				z	z			z			z	z			z		

Upstream 'A'	1st 1/4 2004	2nd 1/4 2004	3rd 1/4 2004	4th 1/4 2004	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
Zinc mg/l Zn	0.00831	-								<.001										
Alkalinity CaCO3	-	-				161				157										
TOC mg/I C	-	-																		
TON mg/l N	4.5	4.2		3.7	2.8	3.3			3.7	6		5.2	4							
o-Phosphate mg/l P	0.009	0.048		0.014	0.013	0.021			0.011	0.0037		0.02	0.01							
Flouride mg/l F	<0.1	-																		
Phosphorous mg/l P	-	-																		
Nitrite mg/I N	0.002	0.013			0.001	0.005			0.002	0.006		0.005	0.001							
Nitrate mg/I N	-	-	1	0.003							1									
Suspended Solids mg/l	-	<6		<6	9	<6			<10	65.4		<6.0	<6.0				7		34	42
Colour Hazen	-	-																		
Total Coliforms/100ml	-	-																		
Faecal Coliforms/100ml	-	-																		

Downstream 'A'	1st 1/4 2004	2nd 1/4 2004	3rd 1/4 2004	4th 1/4 2004	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	8.1	8.6			8.4	8.4			7.9	8.1			8			8.2	8.3		8.2	8.3
Temperature oC	8.2	7.1	Ð	Φ	8.1	9.5	Φ	Φ	7.9	8.1	θ	Θ	7.1	Φ	Θ	11.1	7.5	θ	13	8
Conductivity uS/CM 20oC	-	-	_	-			—	—			_	—		—	_			—		
Conductivity uS/CM 25oC	459	367	q	q	402	360	q	q	487	412	q	م	408	q	q	455	294	٩	411	487
C.O.D.	29	<8	а	σ	<8	9	Ø	σ	16	24	g	g	31	ъ	σ	<8	46	σ	13	<8
B.O.D.	1	0.6	_	—	0.7	1.6	—	—	1	0.6	—	—	0.9	—	—	0.8	2.2	—	0.7	0.9
Ammonia mg/l N	2.1	<0.003			0.004	0.12	·	· —	0.4	0.008	·		0.009			0.012	0.031		0.059	0.018
Dissolved Oxygen %sat	89	103.6	Ø	а	98.4	94.2	ø	а	114.4	104	a	ອ	99.9	ອ	ອ	89	101.2	Ø	98	100
Calcium mg/l Ca	44.2	-	>	>			>	>		64.5	>	>		>	>			>		
Cadmium mg/l Cd	<0.0001	-	∢	∢			A	A		<.0001	∢	∢		\triangleleft	∢			∢		
Chromium mg/l Cr	0.00354	-								0.00242										
Chloride mg/l Cl	31	19	Ð	Ф	17	19	e	Ф	19	17	Ð	Ð	15	Ф	Ф	14	14	Ð	14	30
Copper mg/l Cu	0.00177	-	1 —	_			—	—		0.00289	—	—		—	—			—		
Iron mg/I Fe	0.135		р	d			d	d		0.0778	d	d		d	d			d		
Lead Mg/l Pb	<0.001	-	E	Е			Ε	Е		<.001	ε	ε		E	ε			Е		
Magnesium mg/l Mg	6.25	-	a	ŋ			а	ъ		6.08	Ø	σ		Ø	σ			ອ		
Manganese mg/I Mn	0.00443	-	S	ა			S	ა		0.0335	S	S		ა	S			S		
Mercury mg/l Hg	-	-																		

Downstream 'A'	1st 1/4 2004	2nd 1/4 2004	3rd 1/4 2004	4th 1/4 2004	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
Nickel mg/l Ni	0.00224	-	0	0			0	0		<.001	0	0		0	0			0		
Potassium mg/l K	5.74	-	z	z			z	z		0.92	z	z		z	z			z		
Sodium mg/l Na	25.1									9.5										
Sulphate mg/l SO4	7.1	-																		
Zinc mg/l Zn	0.00893	-								<1										
Alkalinity CaCO3	-	-				153				150										
TOC mg/I C	-	-																		
TON mg/l N	6.9	4			3.1	3			6.1	5.7			5							
o-Phosphate	0.000	0.044			0.04	0.040			0.000	0.000			0.04							
mg/I P	0.009	0.041	-		0.01	0.012			0.008	0.006	-		0.01							
Flouride mg/l F	0.19	-	-																	-
Phosphorous mg/l P	-	-																		
Nitrite mg/I N	0.035	0.01			0.002	0.007			0.001	0.004			0.003							
Nitrate mg/l N	-	-	1																	
Suspended Solids mg/l	-	<6.3			<6	<6			21.6	61.3			<6.0				8		<6	<7.5
Colour Hazen	-	-																		
Total Coliforms/100ml	-	-																		
Faecal Coliforms/100ml	-	-																		

GW2	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	7.5	7.5	7.1	7.3	7.4		7.5	7.3	7.6	7.3	7.5	7.4	7.4	7.4	7.4	7.6
Temperature °C	10.8	10.5	10.9	10.9	10.5		11.9	11.7	10.7	11.4	11	11.2	10.3	11.3	10.9	10.3
Conductivity uS/CM 20°C																
Conductivity uS/CM 25°C	632	629	621	631	647	е	653	639	592	600	593	602	607	617	625	621
Ammonia mg/l N	0.031	0.008	< 0.003	0.004	<.003	—	0.065	0.026	< 0.003	0.014	0.016	0.011	0.005	0.008	0.005	0.008
Dissolved Oxygen %sat	67.2	57.8	51	32.6	78.5	٩	55.1	55	71.8	65.2	85.2	31.1	84.8	64.9	68.9	58
Calcium mg/l Ca			95	96	99	а	108	100	95	91.7	96.5			106		
Cadmium mg/I Cd				<0.0001] —				<0.005	<0.005			<0.001		
Chromium mg/I Cr				0.00741		·				<0.005	<0.005			0.00197		
Chloride mg/l Cl	19	18	17	21	16	а	19	20	20	20	19	18	18	19	18	17
Copper mg/I Cu				<.001		>				<0.005	<0.005			0.00107		
Iron mg/I Fe	0.505	0.769	1.66	1.13	2.79	∢	0.109			0.162	0.134			0.633		0.846
Lead Mg/I Pb										<0.005	<0.005			<0.001		
Magnesium mg/l Mg			14.3	18.2	15.1	Ð	14.1	15.5	13.3	1.4	11.9			14.4		
Manganese mg/l Mn				0.326						<0.050	<0.050			0.158		
Mercury mg/I Hg						٩				<0.0005	<0.005			<0.0005		
Nickel mg/l Ni				0.00389		ε				<0.005	<0.005			0.00194		
Potassium mg/l K		0.4	0.9	1.15	0.9	а	0.9	1.7	0.8	<1	<5.0			1.34		1.1
Sodium mg/l Na		11.6	11.3		11.1	S	11	12.3	10.5	10.6	9.78			14.1		9.5
Sulphate mg/I SO ₄				18.3						16.4				17.9		
Zinc mg/l Zn				0.0289		0				<0.030	< 0.03			0.0168		
Alkalinity CaCO ₃		288		289		Z				256				285		
TOC mg/I C	-	1.2		<0.5]		1.7	1	0.8	0.6	<0.5	1.1	<0.5	0.9	0.7
TON mg/I N	5.6	5.3	3.5	2.3	5.7		5	3.1	5.3	6.4	6.4	2.2	5	4.1	4.6	3.4
Nitrate+Nitrite mg/I N																

GW2	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
Flouride mg/l F				0.3						0.26				0.21		
Phosphorous mg/I P																
Nitrite mg/I N	<0.001	<0.001	<0.001	<0.001	<.001		<.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	
Suspended Solids mg/l																
o-Phosphate mg/I P	<0.006	<0.006	<0.006	<0.006	<.006		<0.006	<0.006	<0.006	<0.006	<0.006	0.33		<0.006		
Colour Hazen																
Total Coliforms/100ml	0	0	0	0	0		63	0	2	0	<10	10	0	0	0	<10
Faecal Coliforms/100ml																
Aluminium mg/l				0.668						0.167	0.025			0.418		
e-coli	0	0	0	0	0		<10	0	0	0	<10	<10	0	0	0	<10

GW 3	1st 1/4 2004	2nd 1/4 2004	3rd 1/4 2004	4th 1/4 2004	1st1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	2006	2007	2008
PH	7.3	7.3	7.3		7.4						
Temperature °C	11.6	12	13.2		12.2						
Conductivity uS/CM 20°C	-	-	-	-	-						
Conductivity uS/CM 25°C	755	777	748		751	Ø	Φ	Φ	Φ	Φ	Ο
Ammonia mg/l N	0.006	<0.003	<0.003		< 0.003	—	—	—	—	—	—
Dissolved Oxygen %sat	73.6	71.2	75.3		72.5	م	٩	م	٩	٩	٩
Calcium mg/l Ca	121	-	-			ອ	ອ	ອ	ອ	ອ	ອ
Cadmium mg/I Cd	<0.0001	-	-] —	—	—	—	—	—
Chromium mg/I Cr	0.0060										
Chloride mg/l Cl	19	18	18		20	b	ອ	b	b	b	ອ
Copper mg/l Cu	0.00197	-	-			>	>	>	>	>	>
Iron mg/I Fe	0.187	<0.060	<0.006		<60	<	< <	<	<	< <	< <
Lead Mg/I Pb	<0.0001	-	-								
Magnesium mg/l Mg	10.4	-	-			Ð	Ð	Ð	Ф	Θ	Θ
Manganese mg/I Mn	<0.001	-	-			—	—	—	—	—	—
Mercury mg/l Hg	-	-	-			٩	d	d	d	٩	٩
Nickel mg/l Ni	0.00184	-	-			E	E	E	E	E	Е
Potassium mg/I K	1.76	2.1	1.6			а	g	ы	ы	Ø	Ø
Sodium mg/l Na	9.5	9	9.1			S	S	S	S	S	S
Sulphate mg/I SO ₄	13.3										
Zinc mg/l Zn	0.013	-	-			0	0	0	0	0	0
Alkalinity CaCO ₃	-	-	-			Z	z	z	z	z	z
TOC mg/I C	0.68	-	0.42		0						
TON mg/l N	8.5	8.6	8.1		8.9						

GW 3	1st 1/4 2004	2nd 1/4 2004	3rd 1/4 2004	4th 1/4 2004	1st1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	2006	2007	2008
Nitrate+Nitrite mg/l N	-	-	-								
Flouride mg/l F	<0.1	-	-								
Phosphorous mg/l P	-	-	-								
Nitrite mg/I N	<0.001	0.001	<0.001		<0.001						
Suspended Solids mg/l	-	-	-								
o-Phosphate mg/I P	<0.006	<0.006	<0.006		<0.006						
Colour Hazen	-	-	-								
Total Coliforms/100ml	0	0	0		0						
Faecal											
Coliforms/100ml	-	-	-								
Aluminium mg/l	<0.05	-	-]					
e-coli					0						

GW 4	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	7.4	7.3	7	7.3	7.3	7.2	7.5	7.2	7.4	7.2	7.3	7.2	7.2	7.3	7.3	7.2
Temperature °C	11.6	11.3	12.4	12.3	11.6	11.8	13.1	13	11.4	13.1	12.4	12.4	12	13	12.6	12.4
Conductivity uS/CM 20°C																
Conductivity uS/CM 25°C	677	734	737	766	694	638	643	748	688	720	695	698	712	731	701	699
Ammonia mg/l N	<0.003	<0.003	< 0.003	<0.003	< 0.003		0.032	0.021	0.003	0.006	0.013	0.063	0.008	0.51	0.004	0.04
Dissolved Oxygen %sat	46.9	48.9	54.5	59.4	65.8	62.2	61.2	64.5	61.2	62.9	56.8	51.6	63.4	62.5	56.5	61
Calcium mg/l Ca			113	127	124	110	113	135	120		119			139		
Cadmium mg/l Cd				<01		<.1					<0.005			<0.001		
Chromium mg/l Cr				0.0107		0.00223					<0.005			0.00221		
Chloride mg/l Cl	21	22	20	22	20		22	23	22	22	23	22	20	21	22	19
Copper mg/l Cu				0.00311		<.001					<0.005			0.00193		
Iron mg/I Fe	0.599	0.875	0.321	0.266	0.139	0.203	0.06				0.152			0.184		0.116
Lead Mg/I Pb				<.001		<.001					<0.005			<0.001		
Magnesium mg/l Mg			9	8.48	9.3	7.8	7	9.8	8.6		8.24			8.99		
Manganese mg/l Mn				0.018		0.0154					<0.050			<0.01		
Mercury mg/I Hg											<0.0005			<00005		
Nickel mg/l Ni				0.00213		0.001					<0.005			0.00122		
Potassium mg/l K		4.3	2.2	1.99	2	1.92	1.9	2.1	2		<5.0			3.24		<0.3
Sodium mg/l Na		11.2	11.5	7.3	10.5		9.8	10	10.8		10.1			13.8		17.5
Sulphate mg/I SO ₄				14.2		12.3				18.5				35.3		
Zinc mg/l Zn				0.0172		0.101					<0.030			0.0154		
Alkalinity CaCO ₃		317		324		241				279						
TOC mg/I C	-	1.89	<0.05	<0.5				1.2	1.1	1	0.7	<0.5	1.2		0.9	1.2
TON mg/l N	7.6	10	9.5	10	9.5		10	10	12	14	12	11	9.9	10	9.7	9.5
Nitrate+Nitrite mg/l N																

GW 4	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
Flouride mg/I F				<0.1		<0.1				0.13				<0.10		
Phosphorous mg/I P																
Nitrite mg/I N	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		0.007	<0.001	
Suspended Solids mg/l																
o-Phosphate mg/l P	<0.01	<0.006	<0.006	<0.006	0.056		<0.006	<0.006	<0.006	<0.006	0.025	0.29		<0.006		
Colour Hazen																
Total Coliforms/100ml	0	0	0	1	0	0	<10	0	0	0	<5	<5	0	0	0	<10
Faecal Coliforms/100ml																
Aluminium mg/l				98.4		0.0691					<0.025			<0.005		
e-coli	0	0	0	0	0	0	<10	0	0	0	<5	<5	0	0	0	<10

MW 1	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	7.3	7.3	7	7.5	7.2	7.1	7.3	7.2	7.2	7.1	7.3	7.2	7.2	7.2	7.2	7.3
Temperature °C	11.3	11.2	12.4	11.5	10.7	11.6	14.1	11.9	10.8	12.2	11.8	11.6	10.9	12.1	11.7	10.3
Conductivity uS/CM 20°C																
Conductivity uS/CM 25°C	797	803	776	776	788	799	789	768	808	807	759	743	760	793	748	755
Ammonia mg/l N	0.041	< 0.003	< 0.003	0.004	0.01		0.042	0.014	< 0.003	0.014	0.058	0.015	0.008	0.007	0.004	0.011
Dissolved Oxygen %sat	53.8	39.2	38	35.9	54.9	53.3	55.6	50.3	47	52.2	53.6	54.8	49	59.1	53	60
Calcium mg/l Ca			135	128	143	139	142	137	146	147	128					
Cadmium mg/I Cd				<.0001		0.0001				<0.005	<0.005					
Chromium mg/I Cr				<.00643		0.00373				<0.005	<0.005					
Chloride mg/l Cl	23	23	18	22	21		22	22	21	22	23	24	21	23	21	21
Copper mg/l Cu				<.0107		0.001				<0.005	<0.005					
Iron mg/I Fe	0.754	0.07	0.106	0.143	0.183	0.141	<.06			0.0637	0.125					0.175
Lead Mg/I Pb				<0.001		<.001				<0.005	<0.005					
Magnesium mg/l Mg				12.3	13	12.1	11.4	11.3	12.7	1.4	11.6					
Manganese mg/l Mn				0.00233		<.001				<0.050	<0.050					
Mercury mg/I Hg										< 0.0005	<0.0005					
Nickel mg/l Ni				<.001		<0.001				<0.005	<0.005					
Potassium mg/l K		2.2	1.4	1.4	1.3	1.23	1.4	1.2	1.1	<1	1.06					1.2
Sodium mg/l Na		12.3	11.6	11.2	11.5		11.1	11.2	11	12.6	10.7					9.9
Sulphate mg/l SO₄				13.8		11.7				15.8				30.6		
Zinc mg/l Zn				0.0206		<.001				<0.030	<0.030					
Alkalinity CaCO ₃		364	343	343						239				364		
TOC mg/I C	-	1.22	0.6					1.2	1.3	1	<0.5	<0.5	1.1	0.9	0.9	1
TON mg/l N	7.5	8	6.8	7.5	7.8		12	8.1	8.5	10	9.3	8.3	7.7	8.4	7.9	7.1
Nitrate+Nitrite mg/I N																

MW 1	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
Flouride mg/l F		2000	2000	<.1	2000	<0.1		2000	2001	0.1	2001		2000	<0.1	2000	2000
Phosphorous mg/I P																
Nitrite mg/I N	<0.001	<0.001	<0.001	<0.001	<.001		<0.001	<0.001	<0.001	<0.001	0.001	0.005		<0.001	<0.001	
Suspended Solids mg/l																
o-Phosphate mg/I P	0.007	< 0.006	<0.006	<0.006	0.062		<.006	< 0.006	< 0.006	<0.006	0.12	0.31		0.006		
Colour Hazen																
Total Coliforms/100ml	1046	51	99	816	1203	659	>2419	225	2419	79	2359	1533	1	115	>2419	2247
Faecal Coliforms/100ml																
Aluminium mg/l				0.005		0.005				<0.025	<0.025					
e-coli	0	0	0	0	0	0		0	0	0	<10	<10	0	0	0	<10

Well 3	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	7.5	7.5	7.3	7.6			7.5	7.4	7.4	7.3	7.5	7.3	7.5	7.3	7.5	
Temperature °C	8.2	9.2	14.3	7.2			16.3	12.3	7.1	14.5	12.7	10.5	7.4	12.1	12.2	
Conductivity uS/CM 20°C	-	-														
Conductivity uS/CM 25°C	590	620	648	599	e	Θ	656	644	592	637	648	625	589	653	596	Ð
Ammonia mg/l N	0.009	< 0.003	0.22	< 0.003	—	—	0.021	0.01	0.013	< 0.003	0.013	0.02	0.005	< 0.003	0.003	_
Dissolved Oxygen %sat	36	38.4	71.6	103.1	q	q	50.5			61.3	82.4	58	36.7	67.8	43.7	P
Calcium mg/l Ca	-	-	109	100	а	σ	113	111	91	102	106					ø
Cadmium mg/l Cd	-	-			_	-				<0.005	<0.005] —
Chromium mg/I Cr										<0.005	<0.005					
Chloride mg/l Cl	22	25	23	21	а	а	25	25	23	22	23	19	22	23	23	а
Copper mg/l Cu	-	-			>	>				0.0127	0.0116					>
Iron mg/I Fe	<0.06	0.089	<0.06	0.156	∢	∢	<.06			0.0986	0.113					∢
Lead Mg/I Pb	-	-								<0.005	<0.005					
Magnesium mg/l Mg	-	-	8.4	12.1	Φ	Φ	7.8	8	15.5	<1	8.59					Φ
Manganese mg/l Mn	-	-			—	-				<0.050	<0.050					
Mercury mg/l Hg	-	-			٩	d				<0.0005	<0.0005					٩
Nickel mg/l Ni	-	-			ε	E				<0.005	<0.005					E
Potassium mg/l K		0.4	0.8	1	а	σ	0.9	1	1.3	<1	<1.0					а
Sodium mg/l Na		12.1	11.9	11.2	S	S	11.8	12.3	11	12	12					S
Sulphate mg/I SO ₄										22				33.4		
Zinc mg/l Zn	-	-			0	0				0.227	0.113					0
Alkalinity CaCO ₃	-	271			z	z				231				252		z
TOC mg/I C	-	1.24						1	0.7	0.7	1.1	0.6	10	1	0.9	1
TON mg/I N	2.1	5.3	9.2	3.7			9.7	8.7	2.5	9.8	10	7.5	2.8	9.4	2.9	

Well 3	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
Nitrate+Nitrite mg/l N	-	-														
Flouride mg/l F	-	-								0.12				<0.10] '
Phosphorous mg/I P	-	-]
Nitrite mg/I N	<0.001	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001]
Suspended Solids mg/l	-	-														
o-Phosphate mg/l P	<0.006	<0.006	<0.006	0.0041			<0.006	<0.006	<0.006	<0.006	<0.006	0.012		<0.006		
Colour Hazen	-	-														
Total Coliforms/100ml	102	173	2419	249			167	57	96	501	455	29	38	308	613	
Faecal Coliforms/100ml	-	-]
Aluminium mg/l	-	-								<0.025	<0.025					
e-coli	0	1	0	0			19	3	1	0	<5	0	0	1	0	

Well 6	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th1/4 2005	1st1/4 2006	2nd1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	7.3	7.4	7.3	7.8	7.3	7.2	7.6	7.2	7.3	7.2	7.3	7.2	7.3	7.3	7.3	7.4
Temperature °C	10.9	10.5	13.1	12.3	9.7	10.7	15.3	12.9	10.8	12.2	11.4	10.6	10.4	11.9	11.8	9.8
Conductivity uS/CM 20°C		-														
Conductivity uS/CM 25°C	737	739	730	780	741	749	631	744	769	724	756	748	760	766	750	753
Ammonia mg/l N	< 0.003	0.023	<.003	0.004	<.003		0.21	0.01	< 0.003	0.12	0.028	0.013	< 0.003	< 0.003	0.006	0.005
Dissolved Oxygen %sat	14.7	16.8	30	66.7	27.4	15.3	46	51.5	18.1	35.4	16.5	22	25	27.1	27.5	39
Calcium mg/l Ca		-	122	129	129	129	107	130	132	125	121					
Cadmium mg/I Cd		-		<0.0001		<.0001				<0.005	<0.005					
Chromium mg/I Cr				0.00531		0.00373				<0.005	<0.005					
Chloride mg/l Cl	21	23	21	24	16		19	22	23	22	23	23	22	22	22	22
Copper mg/I Cu		-		<.0227		<.001				<0.005	<0.005					
Iron mg/I Fe	<0.06	<0.06	0.085	0.143	<0.06	137	<.06			0.05	0.119					0.23
Lead Mg/I Pb		-		<.001		<.001				<0.005	<0.005					
Magnesium mg/l Mg		-		11.3	13.3	12.3	10.6	11.4	13.3	1.3	11.6					
Manganese mg/l Mn		-	12.3	0.015		0.0915				<0.050	<0.050					
Mercury mg/I Hg		-								<0.0005	<0.0005					
Nickel mg/l Ni		-		0.00213		<.001				<0.005	<0.005					
Potassium mg/l K		3	2.6	2.33	2.6	2.61	2.4	2.8	2.7	<1	2.7					2.6
Sodium mg/l Na		13.5	12.8	10.9	12.2		10.5	11.1	13.1	12	10.9					9.8
Sulphate mg/I SO ₄				-		9.2				19.2				31.2		
Zinc mg/l Zn		-		0.122		<.001				< 0.030	<0.030					
Alkalinity CaCO ₃		322		306						297				341		
TOC mg/I C		1.56	-	-				1.6	0.8	1.2	0.5	<0.5	3	<0.5	1.2	1.1
TON mg/l N	7.2	8.2	7.9	6.2	7.6		7.8	8.5	8.3	9.6	9.9	9	8.8	9	8.9	8.5
Nitrate+Nitrite mg/I N		-														

Well 6	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th1/4 2005	1st1/4 2006	2nd1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
Flouride mg/l F		-		-		<0.1				0.12				0.1		
Phosphorous mg/l P		-														
Nitrite mg/I N	<0.001	<0.001	<0.001	<0.001	<.001		0.012	<0.001	<0.001	0.003	<0.001	<0.001		0.001	0.001	
Suspended Solids mg/l		-														
o-Phosphate mg/I P	<0.006	0.02	<0.006	<0.006	0.027		0.024	<0.006	0.022	<0.006	0.019	0.026		0.01		
Colour Hazen		-														
Total Coliforms/100ml	387	2419	47	>2420	12	30	>2419	461	3	866	1049	34	16	>2419	51	<10
Faecal Coliforms/100ml		-														
Aluminium mg/l		-		<0.05		<.050				<0.025	<0.025					
e-coli	0	1	0	517	0	0	0	0	0	0	<5	0	1	0	10	<10

Well 14	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	7.5	7.7	7.1	7.5	7.5	7.4	7.4	7.5	7.6	7.2	7.4	7.5	7.6	7.6	7.6	7.7
Temperature °C	10.7	10.8	14.3	16.5	11	11.9	16.7	16.4	9.5	14.3	14.9	13.4	10.6	13.9	14.8	9.8
Conductivity uS/CM 20°C	-	-														
Conductivity uS/CM 25°C	414	434	524	585	539	438	567	532	441	679	771	637	508	582	459	436
Ammonia mg/l N	0.006	0.018	0.05	0.033	< 0.003		0.082	0.022	0.024	0.012	0.023	0.019	0.017	0.23	0.02	0.14
Dissolved Oxygen %sat	71.6	63.3	21	44.2	102.5	72	46.2	67.3	78.5	37.9	58.3	61.3	74	51.1	75.6	91
Calcium mg/l Ca	-	-	89	96.3	92	69.8	90	77	71	110	133			102		
Cadmium mg/I Cd	-	-		<.0001		<.0001				<0.005	<0.005			<0.001		
Chromium mg/I Cr				0.00562		<.001				<0.005	<0.005			0.00191		
Chloride mg/l Cl	16	18	17	18	17		26	49	16	24	13	16	17	15	13	14
Copper mg/l Cu	-	-		0.01		0.0224				<0.005	<0.005			0.00126		
Iron mg/I Fe	0.1	0.153	0.077	0.605	0.785	0.329	0.062			0.0572	0.166			0.152		0.199
Lead Mg/I Pb	-	-		<.001		<.001				<0.005	<0.005			<0.001		
Magnesium mg/l Mg	-	-		6.16	6.6	5.54	5.5	4.1	6.3	<1	9.43			7.92		
Manganese mg/l Mn	-	-	6.4	45.4		0.0136				<0.050	0.0663			0.0156		
Mercury mg/I Hg	-	-								<0.0005	<0.005			<0.0005		
Nickel mg/l Ni	-	-		0.00294		0.00208				<0.005	<0.005			0.00114		
Potassium mg/I K		2	1.8	2.11	1.7	1.33	1.7	1.5	1	<1	1.49			1.99		<0.3
Sodium mg/l Na		10.4	10.6	12	11.1		16	23	10.5	19.2	14.9			14.6		6.9
Sulphate mg/I SO ₄				-		9.7				73.8				50.2		
Zinc mg/l Zn	-	-		0.0213		<.001				<0.030	< 0.030			0.0188		
Alkalinity CaCO ₃	-	177		272						226						
TOC mg/I C	-	4.48		-				3.6	4.2	3.7	2.5	3.3	3.1		5.3	3.9
TON mg/I N	2.9	3.6	2.7	2.2	6.7		5.9	4.9	4.1	5.1	3	3	4.7	4	3.5	3.3
Nitrate+Nitrite mg/l N	-	-														

Well 14	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
Flouride mg/l F	-	-		-		<.1				0.16				<0.10		
Phosphorous mg/I P	-	-														
Nitrite mg/I N	0.002	0.003	0.004	0.003	0.001		0.016	0.006	0.002	0.016	0.015	0.002		0.006	0.002	
Suspended Solids mg/l	-	-														
o-Phosphate mg/I P	0.016	0.026	<0.006	<0.006	0.019		<.006	<0.006	0.012	0.012	0.03	0.036		0.04		
Colour Hazen	-	-														
Total Coliforms/100ml	>2419	>2419	3448	2420	>2419	549	>2419	1986	>2419	>2419	6867	5475	>2419	1986	>2419	1198
Faecal Coliforms/100ml	-	-														
Aluminium mg/l	-	-		0.439		0.22				<0.025	<0.025			0.0322		
e-coli	27	147	89	161	649	17	613	108	38	326	<10	275	1203	99	461	74

Well 15	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	7.1	7.3	7.2	7.2	7.2	7.2	7.3	7.2	7.2	7.1	7.3	7.5	7.2	7.2	7.2	7.3
Temperature °C	10.1	9.7	13.4	13.4	9.2	9.5	14.3	14.5	9	12.8	13.4	11.4	8.5	12.1	13.7	8.5
Conductivity uS/CM 20°C	-	-														
Conductivity uS/CM 25°C	739	727	744	742	721	730	734	737	705	721	714	637	721	734	732	728
Ammonia mg/l N	0.005	< 0.003	0.75	< 0.003	0.087		0.032	0.008	0.005	0.036	0.075	0.024	1.2	0.009	< 0.003	0.017
Dissolved Oxygen %sat	16.3	16.9	31	25.1	21	31.4	25.9	47	23.1	20.1	16.3	15.2	22.5	16.9	24.1	34
Calcium mg/l Ca	-	-	130	122	130	129	136	131	126	116	121					
Cadmium mg/l Cd	-	-		<0.001		<.0001				<0.005	<0.005					
Chromium mg/l Cr				0.00604		0.00406				<0.005	<0.005					
Chloride mg/l Cl	21	21	21	27	19		22	23	21	22	22	21	25	22	23	23
Copper mg/l Cu	-	-		0.00773		<.001				<0.005	<0.005					
Iron mg/I Fe	0.278	0.466	1.24	0.502	0.526	0.479	<.06			0.14	0.158					0.382
Lead Mg/I Pb	-	-		<0.001		<.001				<0.005	<0.005					
Magnesium mg/l Mg	-	-	11.2	11.5	11.6	11	10.8	10.7	10.9	1	9.98					
Manganese mg/l Mn	-	-		0.297		0.151				0.101	0.0813					
Mercury mg/I Hg	-	-								<0.0005	<0.0005					
Nickel mg/l Ni	-	-		0.00253		2.68				<0.005	<0.005					
Potassium mg/l K		2.2	2.1	2.16	1.8	1.73	2	2.1	1.7	<1	1.95					1.8
Sodium mg/l Na		10.5	10.7	10.1	10		10.4	10.8	9.9	9	9.08					7.9
Sulphate mg/I SO ₄				19.3		14.6				16.7				26.8		
Zinc mg/l Zn	-	-		0.0216		0.00653				<0.030	<0.030					
Alkalinity CaCO ₃	-	330		324										323		
TOC mg/I C	-	1.58		<.5				1.8	1.7	<0.5	0.8	<0.5	1.4	0.6	2.1	1.1
TON mg/l N	5	5.6	6.9	6.7	5.5		6	6.5	5.6	7.5	7.8	6.1	6.5	7.5	6.8	7
Nitrate+Nitrite mg/I N	-	-														

Well 15	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
Flouride mg/l F	-	-		<0.1		<.1				0.13				<0.10		
Phosphorous mg/I P	-	-														
Nitrite mg/I N	0.002	0.001	<0.001	<0.001	<.001		<0.001	<0.001	<0.001		0.006	0.001		0.001	0.007	
Suspended Solids mg/l	-	-														
o-Phosphate mg/I P	0.011	<0.006	<0.006	<0.006	<.009		<0.006	<0.006	<0.006	0.016	0.019	0.035		0.006		
Colour Hazen	-	-														
Total Coliforms/100ml	548	1414	20	11	86	93	8664	727	1733	10	1266	66	435	22	2419	295
Faecal Coliforms/100ml	-	-														
Aluminium mg/l	-	-		0.16		0.138				<0.025	<0.025					
e-coli	75	225	9	0	4	14	52	0	46	0	265	26	23	3	345	74

Leachate Lagoon	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	7.5	7.8	7.8	8	7.5	7.3	8.2	7.2	7.3	2007	2007	2007	7.7	7.8	7.5	7.1
Temperature oC	9	11	17	13	8	14	20	20	10			7.3	7	14	15	13.1
Conductivity uS/CM 20oC					0		20	20				1.0				10.1
Conductivity uS/CM 25oC	10810	12160	17050	12720	6690	5900	8930	6910	7870	Ð	Ф	6750	4910	14650	6200	4540
C.O.D.	726	1097	2135	1036	436	454	660	791	910	—	_	903	1484	1291	659	696
B.O.D.	-	150	720	140	10	88	60	248	440	q	Р	45	548	45	158	150
Ammonia mg/l N	570	680	310	780	330	290	680	470	850	а	ъ	330	100	670	260	150
Dissolved Oxygen %sat										—	—					
Calcium mg/l Ca				95.1		193				·—	·—			164		
Cadmium mg/I Cd				0.21		>0.002				а	σ			<0.001		
Chromium mg/I Cr				115		0.0601				>	>			0.0582		
Chloride mg/l Cl	1535	1846	727	1756	762	666	1782	1575	1093	A	\triangleleft	909		>1416	811	475
Copper mg/I Cu				28.4		0.0165								0.0285		
Iron mg/I Fe				4.42		8.55				ө	Ф			10.12		
Lead Mg/I Pb				0.00383		>0.02				—	—			0.00257		
Magnesium mg/l Mg				169		72.2				d	٩			98.9		
Manganese mg/l Mn				570		2.03				Е	E			1.27		
Mercury mg/I Hg										ъ	ъ			<0.0005		
Nickel mg/l Ni				0.136		0.073				S	S			0.15		
Potassium mg/l K				583		197								510		
Sodium mg/l Na						503				0	0			1750		
Sulphate mg/I SO4				106		24.4				Z	Z			185.9		
Zinc mg/l Zn				0.107		0.666								0.0601		
Alkalinity CaCO3																
TOC mg/I C																
TON mg/l N	<0.06	0.2	0.6	0.2	<10	0.4	5.8	8.9	0.3			12	0.2	1.1	0.4	0.2

Leachate Lagoon	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
o-Phosphate mg/I P	0.86	0.97	0.9	1.7	0.68	0.27	0.26	0.62	0.62			0.22		1.9		
Flouride mg/l F				<1		0.75								3.46		
Phosphorous mg/I P																
Nitrite mg/I N	<0.001	<0.001	<0.001	<0.001	0.036	>0.001	0.039		<0.001			0.75		<0.001		
Nitrate mg/I N																
Suspended Solids mg/l																
Colour Hazen																
Total Coliforms/100ml				5510		4044								7945		
E Coli/100ml				4718		1514								30		
Faecal Coliforms/100ml																
Aluminium mg/l				0.21		>1								0.203		

Manhala 1	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4
Manhole 1	2005	2005	2005	2005	2006	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008
PH								7.2								
Temperature oC								14								
Conductivity uS/CM 20oC																
Conductivity uS/CM 25oC								15920	Φ	Φ	θ	Φ	Ð	Φ	Φ	Ð
C.O.D.								1281	—	-	—	—	_	—	-	—
B.O.D.								188	р	q	q	q	Q	P	Q	q
Ammonia mg/l N								1200	а	g	ъ	g	g	b	а	а
Dissolved Oxygen %sat									—	—	—	_	—	—	—	—
Calcium mg/l Ca											·—		·—		·—	·—
Cadmium mg/l Cd									ъ	σ	ъ	σ	Ø	σ	ъ	а
Chromium mg/I Cr									>	>	>	>	>	>	>	>
Chloride mg/l Cl								2493	∢	∢	\triangleleft	\triangleleft	∢	\triangleleft	<	∢
Copper mg/l Cu																
Iron mg/I Fe									Ф	Ф	ө	Ф	Ф	Ф	Ð	Ð
Lead Mg/I Pb									—	—	—	_	—	—	—	—
Magnesium mg/l Mg									٩	d	d	٩	d	d	٩	٩
Manganese mg/l Mn									Е	E	Е	Е	Е	Е	Е	ε
Mercury mg/l Hg									ъ	g	ъ	g	g	g	а	а
Nickel mg/l Ni									S	S	S	S	S	S	S	S
Potassium mg/l K																
Sodium mg/l Na									0	0	0	0	0	0	0	0
Sulphate mg/l SO4									Z	Z	Z	Z	Z	Z	z	z
Zinc mg/l Zn																
Alkalinity CaCO3																
TOC mg/I C																

	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4												
Manhole 1	2005	2005	2005	2005	2006	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008
																Í
TON mg/l N								6.6								Í
o-Phosphate mg/l P								1.2								
Flouride mg/l F																
Phosphorous mg/I P																
Nitrite mg/I N																
Nitrate mg/I N																
Suspended Solids mg/l																
Colour Hazen																
Total Coliforms/100ml																
E Coli/100 ml																
Faecal Coliforms/100ml																
Aluminium mg/l																

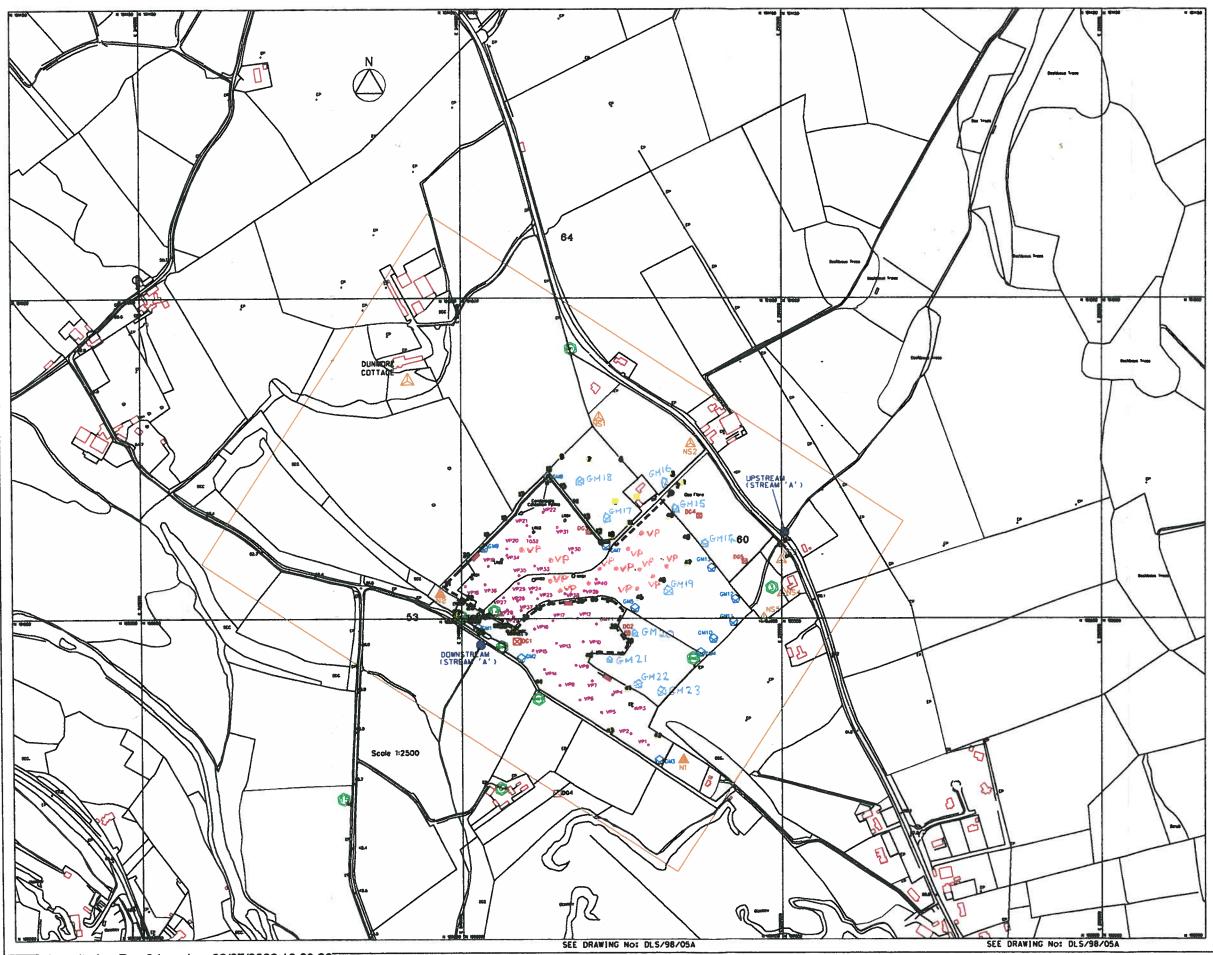
Manhala 2	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4	1st 1/4	2nd 1/4	3rd 1/4	4th 1/4
Manhole 2	2005	2005	2005	2005	2006	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008
PH		7.3	7.2	7.3	7.2	8	7.3	7.3	7.3	7.1						
Temperature oC		18	18	17	18	16	18	17	14	16						
Conductivity uS/CM 20oC																
Conductivity uS/CM 25oC		15370	15960	15130	14060	13900	13600	12000	4800	10890	θ	Ð	Θ	Φ	θ	Ð
C.O.D.		1275	1274	919	933	881	851	715	741	571	—	-	-	—	_	—
B.O.D.		87	116	60	70	10	97.5	40	>320	54	q	q	q	q	q	q
Ammonia mg/l N		960	540	930	610	610	710	1200	570		а	ъ	а	σ	ъ	а
Dissolved Oxygen %sat											_	-	-	—	_	—
Calcium mg/l Ca				132		180				187		·—	·—			·—
Cadmium mg/l Cd				<0.0001		>.002				<0.005	а	ъ	а	σ	ъ	а
Chromium mg/l Cr				0.0749		0.102				0.0338	>	>	>	>	>	>
Chloride mg/l Cl	C	2337	1519	2441	1911	2229	1944	2002	535		A	<	<	∢	∢	<
Copper mg/l Cu	taken			0.0428		0.0418				0.0269						
Iron mg/l Fe				17400		3.73				14	ө	Ф	Ф	Ф	Ф	Ð
Lead Mg/l Pb	ple			3.64		>0.2				<0.005	—	-	-	—	—	-
Magnesium mg/l Mg	sample			137		158				9.5	d	٩	٩	d	٩	d
Manganese mg/l Mn				1.01		0.572				2.34	Е	Е	Е	Е	Е	E
Mercury mg/I Hg	Р С									<0.0005	а	а	а	ъ	ъ	а
Nickel mg/l Ni				0.111		0.136				0.0883	S	S	S	S	S	S
Potassium mg/I K				545		550				30						
Sodium mg/l Na				1640		1520				33.8	0	0	0	0	0	0
Sulphate mg/l SO4				35.6		47.8				69	Z	z	z	z	Z	z
Zinc mg/l Zn				0.0791		1.62				0.0516						
Alkalinity CaCO3																
TOC mg/I C																

Manhole 2	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
TON mg/l N		2.9	70	13	41		48	17	6.3							
o-Phosphate mg/I P		1.4	0.86	1.7	0.79	0.29	0.64	0.55	0.38							
Flouride mg/l F				<0.1		1.2				8.4						
Phosphorous mg/l P																
Nitrite mg/I N		1.1	8.8	0.22	0.23	0.54	0.19	0.53	0.001							
Nitrate mg/I N																
Suspended Solids mg/l																
Colour Hazen																
Total Coliforms/100ml				>2419		>24192				19860						
E Coli/100 ml				54		0				60						
Faecal Coliforms/100ml	1										1					
Aluminium mg/l				147		1				0.0677						

Manhole 3	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	7.7	7.8	7.6	7.3	7.4	7.3	7.3	7.6	7.2	7.3	7.5	7	7.3	7.2	7.4	7.1
Temperature oC	13	15	16	16	15	15	17	17	11	15	15	12	10	14	16	13.5
Conductivity uS/CM 20oC																
Conductivity uS/CM 25oC	10330	12300	12970	16340	16400	15930	14160	4450	5900	10890	4960	4110	16490	5710	2330	6690
C.O.D.	531	787	997	935	109 8	1075	890	210	1527	1059	226	273	1144	374	94	557
B.O.D.		19.5	6	52.5	50	45	80	8	>656	42	22.6	10	79	31	4.4	109.5
Ammonia mg/l N	580	750	280	990	920	980	940	300	240	630	>298	200	< 0.003	190	78	0.98
Dissolved Oxygen %sat																
Calcium mg/l Ca				96		110				149				306		
Cadmium mg/l Cd				<0.0001		>0.002				<0.005				<0.001		
Chromium mg/I Cr				0.142		0.142				0.0319				0.0234		
Chloride mg/l Cl	1576	1835	272	2551	1648	2248	2241	679	688	1503	690	570		>696	269	825
Copper mg/l Cu				25.5		0.0309				0.0126				0.0112		
Iron mg/I Fe				8260		8.53				9.28				7.823		
Lead Mg/I Pb				<1		>0.02				<0.005				0.00186		
Magnesium mg/l Mg				132		145				0.012				69.3		
Manganese mg/l Mn				0.838		0.657				1.66				3.549		
Mercury mg/I Hg										<0.0005				< 0.0005		
Nickel mg/l Ni				0.116		0.146				0.0767				0.0581		
Potassium mg/I K				572		575				37.5				194		
Sodium mg/l Na				1680		1660				32.6				581		
Sulphate mg/I SO4				27		>2				26.5				330.9		
Zinc mg/l Zn				0.0421		1.36				0.0343				0.11		
Alkalinity CaCO3																
TOC mg/I C																
TON mg/l N	<0.06	0.5	1.4	0.5	<10	3.1	7.5	8.4	4	17	1.3	17	0.3	1.1	0.1	0.1

Manhole 3	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
o-Phosphate mg/l P	0.22	0.72	0.59	1.7	2.1	2.2	1.3	0.039	0.28	0.55	0.32	0.1		0.25		
Flouride mg/l F				1.3		1				8.07				1.31		
Phosphorous mg/I P																
Nitrite mg/I N	0.016	0.017	0.63	<0.001	<0.001	>0.001	0.071		<0.001	0.18	0.48	0.085		<0.001		
Nitrate mg/l N																
Suspended Solids mg/l																
Colour Hazen																
Total Coliforms/100ml				4660		>9677				24190				>9677		
E Coli/100 ml				8		30				10				147		
Faecal Coliforms/100ml																
Aluminium mg/l				69.1		>1000				0.268				0.0876		

Manhole 4	1st1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH											7.3					
Temperature oC											15					
Conductivity uS/CM																
20oC																
Conductivity uS/CM 25oC	Ф	Φ	Φ	Φ	Φ	θ	Φ	θ	Ф	Ð	6660	Φ	Φ	Φ	Φ	Ф
C.O.D.	1 —	_	_	_	_	_	_	_	_	_	623	l _	_	_	_	_
B.O.D.	q	م	q	٩	a	q	a	q	q	٩	129.6	q	q	م	٩	٩
Ammonia mg/l N	ອ	σ	ອ	ອ	b	ອ	b	а	а	ອ	>326	g	ອ	ອ	ອ	σ
Dissolved Oxygen %sat	1 —	_	—	—	—	—	—	—	—	_			—	—	—	—
Calcium mg/l Ca	·		·—	·—	·—	·—	·—	·—	·—	·—		·	·—		·—	·—
Cadmium mg/I Cd	g	ъ	ъ	g	g	ъ	g	ъ	а	ъ		а	ъ	ъ	g	а
Chromium mg/I Cr	>	>	>	>	>	>	>	>	>	>		>	>	>	>	>
Chloride mg/l Cl	∢	∢	∢	∢	∢	\triangleleft	∢	A	\triangleleft	∢	746	∢	∢	∢	∢	<
Copper mg/I Cu]				
Iron mg/I Fe	е	Ф	Ð	Ф	Ф	е	Ф	Э	Ф	Θ		e	Ð	Ф	Ф	Ф
Lead Mg/I Pb	—	—	—	—	—	—	—	—	—	—		_	—	—	—	—
Magnesium mg/l Mg	d	d	d	٩	d	d	d	d	d	d		٩	d	d	٩	٩
Manganese mg/l Mn	Я	Е	Е	Е	Е	Е	Е	Е	Е	E		E	Е	Е	Е	ε
Mercury mg/I Hg	а	σ	σ	σ	ອ	ъ	ອ	а	а	b		a	σ	σ	σ	а
Nickel mg/l Ni	S	S	S	S	S	S	S	S	S	S		S	S	S	S	S
Potassium mg/l K																
Sodium mg/l Na	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
Sulphate mg/I SO4	Z	Z	z	Z	Z	Z	Z	Z	Z	Z		Z	z	Z	Z	Z
Zinc mg/l Zn																
Alkalinity CaCO3																
TOC mg/I C																


Manhole 4	1st1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
TON mg/I N											0.4					
o-Phosphate mg/I P											1.6					
Flouride mg/l F																
Phosphorous mg/l P																
Nitrite mg/I N											<0.001					
Nitrate mg/I N																
Suspended Solids mg/l																
Colour Hazen																
Total Coliforms/100ml																
Faecal Coliforms/100ml																

Manhole 5	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
PH	7.5	7.3	7.7	7.8	7.5	7	7.6	7.2	7.3	7.2	7.3	7.2	7.7	7.8	7.3	7
Temperature oC	9	11	16	14	9	12	16	19	10	13	15	13	7	14	14	11.2
Conductivity uS/CM 20oC																
Conductivity uS/CM 25oC	9040	15110	17900	13710	8120	5740	15870	7690	7970	15280	6640	7730	5250	14770	7380	5090
C.O.D.	685	979	2570	1169	547	309	1071	756	915	5380	666	814	1575	1196	524	435
B.O.D.		52.5	760	132	48	39	96	208	380	>2400	126.6	46	540	39	110	114
Ammonia mg/l N	430	1100	748		450	320	1200	420	850	840	>350	410	110	980	390	260
Dissolved Oxygen %sat																
Calcium mg/l Ca				97.8		178				532				157		
Cadmium mg/I Cd				0.22		0.002				< 0.005				<0.001		
Chromium mg/I Cr				0.17		0.0718				0.0635				0.0641		
Chloride mg/l Cl	1151	2390	1110		924	592	2664	1083	1054	2248	872	960		>1676	1009	525
Copper mg/l Cu				0.0557		0.0286				0.0667				0.0229		
Iron mg/I Fe				4.49		22.8				8.15				6.239		
Lead Mg/I Pb				0.00294		>0.02				<0.005				0.00198		
Magnesium mg/l Mg				161		61.9				22.1				126		
Manganese mg/l Mn				586		1.67				6.33				1.296		
Mercury mg/I Hg										<0.0005				<0.0005		
Nickel mg/l Ni				0.135		0.0624				0.0902				0.1564		
Potassium mg/I K				593		185				41				569		
Sodium mg/l Na				1380		453				43.7				1922		
Sulphate mg/I SO4						17.9				34.7				197.2		
Zinc mg/l Zn				0.125		1.47				0.209				0.0504		
Alkalinity CaCO3																
TOC mg/I C														4		
TON mg/I N	<0.06	0.4	0.1		<10	0.7	6.7	6.8	2.6	<0.1	0.4	3.2	0.2	1.1	0.4	0.7

Manhole 5	1st 1/4 2005	2nd 1/4 2005	3rd 1/4 2005	4th 1/4 2005	1st 1/4 2006	2nd 1/4 2006	3rd 1/4 2006	4th 1/4 2006	1st 1/4 2007	2nd 1/4 2007	3rd 1/4 2007	4th 1/4 2007	1st 1/4 2008	2nd 1/4 2008	3rd 1/4 2008	4th 1/4 2008
o-Phosphate mg/l P	0.52	2	0.86		0.95	0.26	1.8	0.57	0.62	1.5	29	0.37		2		
Flouride mg/l F				<0.1		0.2				98.7				4.77		
Phosphorous mg/l P																
Nitrite mg/I N	<0.001	<0.001	0.028		<0.001	>0.001	<0.001		<0.001	<0.005	<0.001	<0.001		<0.001		
Nitrate mg/I N																
Suspended Solids mg/l				101.1												
Colour Hazen																
Total Coliforms/100ml				>48400		2764				>24190				>9677		
E Coli/100 ml				2240		575				19863				54		
Faecal Coliforms/100ml																
Aluminium mg/l				164		>1				0.219				0.227		

Appendix D

Sampling Points Drawing

...\monitoring-Rev-2dmg.dgn 06/07/2006 10:03:26

EXTRACT FROM O.S.S. Nos: 4645-C & 4645-D OS Licence No.Kilkenny CCMA9802

LEGEND:

REVISION	DESCRIPTION	BY	DATE
٨	ROC	AUG 'S AUG '9 AUG '96 AUG '96	
8	GAS MONITORING POINTS (VP18 & VP18) ADDED	ROC	NOA .8
с	GAS MONITORING POINTS (VP17 & VP18) Added Groundwater Monitoring Points GW1 to GW4 Added	ROC	APR '9
D	ORDURDWATER MONITORING POINTS NW1 ADDED	ROC	MAY '9
2	GAS MONITORING POINTS (VPI9, VP20 & VP23) ADDED DUST MONITORING POINT IDG & ADDED	100	IO' MAL
r	Vermin Bail Box Points Added Pis. 1-40	190D	D. KVP
C	Vermin Beile Pis. 7-11 Removed	BOD	88P '0
H	Alteration of Noise Monitoring Points	BOD	OCT 10
I	Alteration of Gas Well Points	NG	O' HAL
3	Alteration of Bait Monitoring Points	NG	Mar 'O
ĸ	Alteration of Noise, Dust, Leachate, Gas Monitoring Points	NG	0' פתטי

ENVIRONMENT SECTION KILKENNY CO.CO. COUNTY HALL, JOHN STREET. KILKENNY.

DESC: HONITORINO POINTS DATE: MAY '99 BY:ROC SCALES: Not to Scale DRAWING NO: DLS/98/05/RevE

Appendix E

Meteorological Monitoring

	METEOROLOGICAL DATA							
				Jan 2008				
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)
2008	1	1	11.1	7.4	0.7	7.7	91.0	1009.3
2008	1	2	7.9	3.8	0.0	11.7	73.6	1000.1
2008	1	3	3.9	-1.7	0.0	9.2	70.7	993.9
2008	1	4	7.8	-2.0	6.6	7.1	92.7	984.9
2008	1	5	7.1	1.4	3.5	9.8	85.7	987.9
2008	1	6	6.5	-2.0	4.1	5.8	93.5	995.4
2008	1	7	7.2	2.1	3.3	12.5	80.0	998.9
2008	1	8	10.5	1.3	16.7	12.0	91.5	992.4
2008	1	9	9.0	0.7	18.7	9.0	90.5	993.3
2008	1	10	9.9	-1.2	14.9	6.0	93.0	985.9
2008	1	11	4.9	-1.5	0.0	4.3	92.2	989.7
2008	1	12	10.6	-1.4	8.9	6.2	95.9	993.1
2008	1	13	10.7	5.0	8.4	10.8	94.1	980.7
2008	1	14	9.1	5.9	4.0	9.6	90.2	979.3
2008	1	15	9.5	1.8	0.7	5.2	93.6	971.0
2008	1	16	6.0	0.1	1.3	3.2	94.5	984.0
2008	1	17	9.9	2.6	6.7	12.0	85.4	987.3
2008	1	18	13.9	3.9	9.4	11.6	92.2	995.4
2008	1	19	12.6	8.7	10.3	5.8	96.7	1006.2
2008	1	20	12.7	9.5	2.9	7.2	94.6	1008.6
2008	1	21	12.1	2.6	2.9	11.2	88.8	1002.3
2008	1	22	11.7	2.1	4.0	4.3	98.0	1012.2
2008	1	23	13.9	7.7	1.3	11.0	89.5	1009.4
2008	1	24	8.3	2.5	0.2	9.5	77.7	1018.9
2008	1	25	12.6	7.0	0.0	11.5	75.0	1024.1
2008	1	26	11.8	3.9	0.0	7.2	81.2	1024.7
2008	1	27	12.7	0.4	0.0	4.2	87.9	1025.5
2008	1	28	10.7	-0.1	0.2	4.4	94.0	1021.9
2008	1	29	11.5	2.8	6.4	8.3	87.9	1016.1
2008	1	30	7.4	-0.9	0.1	9.3	83.1	1019.6
2008	1	31	8.5	1.5	5.7	16.0	79.6	993.5
	-		Total monthly	na hafall	141 9	-		-

Total monthly rainfall 141.9

potential	Class A pan
evapotranspiration	evaporation
(mm)	(mm)
13.0	

	METEOROLOGICAL DATA							
				-eb 2008				
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)
2008	2	1	3.9	-2.3	0.1	8.8	85.6	997.5
2008	2	2	8.7	-3.0	0.6	9.7	88.2	999.8
2008	2	3	8.7	-1.6	9.5	12.7	88.0	979.2
2008	2	4	9.5	-2.6	5.5	8.2	87.8	983.3
2008	2	5	10.9	4.9	1.4	11.0	86.6	982.7
2008	2	6	10.0	-0.4	2.2	7.8	83.3	1014.1
2008	2	7	14.9	9.5	0.6	12.9	90.0	1016.0
2008	2	8	11.1	9.9	1.4	13.9	91.5	1014.6
2008	2	9	12.4	8.1	0.0	10.5	86.8	1017.6
2008	2	10	8.6	6.7	0.0	5.0	87.2	1023.5
2008	2	11	12.6	1.6	0.0	6.0	90.2	1022.2
2008	2	12	13.5	-2.1	0.1	2.2	89.1	1025.7
2008	2	13	15.9	-2.1	0.0	1.5	83.7	1028.5
2008	2	14	8.9	-2.4	0.0	2.9	88.4	1029.0
2008	2	15	6.0	-2.5	0.0	2.4	90.7	1030.4
2008	2	16	6.6	-0.4	0.0	2.8	82.5	1032.9
2008	2	17	8.1	-4.3	0.0	2.4	88.8	1030.9
2008	2	18	9.6	-6.2	0.1	2.5	89.8	1024.3
2008	2	19	7.2	-4.6	0.0	2.8	91.3	1014.7
2008	2	20	9.2	-1.1	0.0	3.9	92.5	1010.1
2008	2	21	12.7	5.2	0.0	12.2	80.8	1010.4
2008	2	22	13.2	2.2	0.2	10.6	79.8	1012.6
2008	2	23	12.5	3.0	0.0	11.6	84.4	1010.8
2008	2	24	10.9	-0.7	2.4	7.0	79.3	1008.2
2008	2	25	10.9	-1.7	1.3	13.8	86.0	1001.0
2008	2	26	11.1	3.6	0.6	10.8	73.9	998.4
2008	2	27	12.5	0.3	0.0	3.2	83.6	1009.6
2008	2	28	10.0	0.7	0.0	3.1	88.8	1012.4
2008	2	29	12.8	1.5	1.3	15.9	87.6	1000.6
			Total monthly	rainfall	27.3			

potential	Class A pan
evapotranspiration	evaporation
(mm)	(mm)
17.6	

	METEOROLOGICAL DATA							
			Γ	Mar 2008				
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)
2008	3	1	12.8	6.1	0.2	13.4	74.8	1002.6
2008	3	2	11.6	2.0	0.7	9.3	70.8	1004.5
2008	3	3	5.3	0.0	7.8	9.5	88.8	1004.7
2008	3	4	10.0	1.8	0.2	7.2	78.5	1024.4
2008	3	5	9.5	2.2	0.0	6.2	83.6	1026.8
2008	3	6	10.3	4.3	4.7	11.6	77.4	1012.9
2008	3	7	10.4	1.4	1.6	9.9	83.3	1001.4
2008	3	8	12.2	3.0	1.2	13.5	80.6	989.3
2008	3	9	8.6	0.8	7.6	10.5	81.5	983.6
2008	3	10	8.7	1.8	11.6	13.4	85.7	957.9
2008	3	11	12.0	2.8	2.5	15.3	75.1	976.2
2008	3	12	10.1	3.4	2.2	15.2	71.1	994.0
2008	3	13	12.0	2.2	0.5	6.2	86.0	1001.3
2008	3	14	9.2	3.0	0.0	4.0	91.2	1001.8
2008	3	15	10.2	7.7	4.4	4.9	96.1	993.3
2008	3	16	10.4	3.3	2.5	7.4	79.1	1002.3
2008	3	17	9.9	0.4	0.0	5.6	71.2	1012.4
2008	3	18	9.8	-0.5	0.0	4.7	69.4	1017.1
2008	3	19	10.8	-0.4	0.0	5.5	77.7	1020.9
2008	3	20	11.8	2.6	0.2	11.6	86.4	1010.1
2008	3	21	10.8	2.3	1.2	14.8	69.1	995.1
2008	3	22	8.7	1.2	0.0	11.6	62.9	1005.1
2008	3	23	10.1	1.8	0.3	10.7	70.8	999.6
2008	3	24	10.0	1.3	2.1	5.5	83.5	998.5
2008	3	25	11.6	-2.1	0.0	4.6	82.1	1001.2
2008	3	26	10.0	3.5	0.8	7.2	78.2	993.4
2008	3	27	11.9	-2.2	0.9	6.2	76.3	993.0
2008	3	28	11.1	2.3	6.0	12.7	81.5	985.3
2008	3	29	11.8	1.6	5.1	12.9	80.9	986.5
2008	3	30	11.1	0.7	24.0	6.8	85.7	988.3
2008	3	31	12.1	2.2	0.7	9.5	83.4	1003.0
			Total monthly		89.0			

89.0

potential	tion Class A pan
evapotranspira	evaporation
(mm)	(mm)
36.7	

METEOROLOGICAL DATA									
	Apr 2008								
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)	
2008	4	1	13.4	8.1	0.1	17.4	68.9	1008.9	
2008	4	2	14.9	8.1	0.0	9.7	86.2	1019.4	
2008	4	3	17.4	7.3	0.0	3.1	80.3	1024.4	
2008	4	4	13.3	6.5	0.8	6.7	81.0	1020.4	
2008	4	5	9.9	1.1	0.7	9.8	74.0	1014.7	
2008	4	6	7.7	-0.3	1.6	9.8	78.4	1006.1	
2008	4	7	8.7	0.2	2.1	6.2	84.5	998.8	
2008	4	8	8.7	-0.6	0.0	2.6	85.0	996.1	
2008	4	9	10.4	1.8	0.0	4.4	78.9	992.3	
2008	4	10	9.3	1.8	0.5	6.9	80.1	987.4	
2008	4	11	10.1	3.5	2.3	10.1	83.3	985.8	
2008	4	12	10.8	2.2	3.0	6.5	86.0	994.0	
2008	4	13	12.0	3.4	0.7	5.7	84.1	1003.6	
2008	4	14	12.2	2.3	0.0	4.9	73.0	1014.5	
2008	4	15	12.7	0.1	0.0	2.6	74.5	1015.2	
2008	4	16	10.9	1.3	0.0	7.7	76.6	1009.4	
2008	4	17	9.4	3.9	0.0	10.3	71.2	1000.5	
2008	4	18	11.7	1.1	0.0	10.3	73.3	993.4	
2008	4	19	9.6	6.6	0.0	9.1	72.8	993.7	
2008	4	20	10.6	6.8	0.0	5.1	83.7	997.8	
2008	4	21	14.7	4.3	0.0	3.6	78.3	1001.6	
2008	4	22	14.9	1.4	4.1	7.5	85.4	1001.0	
2008	4	23	15.6	4.6	1.1	9.8	83.8	1005.2	
2008	4	24	14.4	6.2	3.2	9.3	79.3	1007.6	
2008	4	25	13.7	7.6	0.4	10.9	91.8	1012.7	
2008	4	26	14.5	7.2	1.1	9.1	90.8	1009.7	
2008	4	27	15.6	4.1	7.1	4.8	84.7	1003.4	
2008	4	28	13.5	3.7	2.8	6.0	86.3	993.7	
2008	4	29	13.1	2.0	0.0	7.0	77.2	987.2	
2008	4	30	12.0	4.8	0.2	9.6	79.0	986.2	

potential	Class A pan
evapotranspiration	evaporation
(mm)	(mm)
51.7	

	METEOROLOGICAL DATA								
	May 2008								
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)	
2008	5	1	14.9	3.4	7.4	6.4	82.3	995.9	
2008	5	2	15.3	2.5	0.8	8.4	83.7	1007.6	
2008	5	3	17.3	9.8	0.3	12.7	83.0	1007.2	
2008	5	4	18.7	8.6	6.4	9.2	80.2	1008.8	
2008	5	5	18.9	5.9	0.0	5.0	79.8	1017.3	
2008	5	6	20.0	8.4	0.0	5.3	74.0	1014.1	
2008	5	7	20.9	6.7	0.0	4.5	77.1	1010.2	
2008	5	8	22.1	8.7	0.4	6.1	75.8	1003.6	
2008	5	9	15.1	11.6	0.7	4.6	91.2	1005.0	
2008	5	10	16.5	10.4	4.7	4.3	94.9	1011.0	
2008	5	11	22.1	10.4	0.1	2.9	86.2	1013.1	
2008	5	12	21.9	11.1	0.0	3.9	75.3	1011.8	
2008	5	13	21.0	8.9	0.0	4.7	72.6	1012.2	
2008	5	14	18.5	7.4	0.0	5.4	76.5	1009.3	
2008	5	15	16.6	6.4	0.0	5.6	77.4	1005.0	
2008	5	16	16.3	6.6	0.0	3.4	83.5	1002.4	
2008	5	17	14.4	4.1	0.0	3.6	85.1	1002.6	
2008	5	18	13.7	4.9	0.0	4.2	79.2	1008.5	
2008	5	19	14.1	5.0	0.0	5.6	75.3	1010.5	
2008	5	20	14.0	2.8	0.0	5.9	74.5	1009.5	
2008	5	21	13.8	9.9	0.7	9.3	76.4	1005.4	
2008	5	22	13.2	9.4	4.0	7.3	93.7	1002.7	
2008	5	23	18.1	8.6	3.9	5.3	84.3	1004.2	
2008	5	24	17.6	9.0	0.6	7.7	73.1	1007.7	
2008	5	25	17.6	7.0	0.0	11.9	72.0	1009.7	
2008	5	26	15.8	9.8	0.7	12.4	60.1	1009.5	
2008	5	27	12.6	8.7	0.8	7.4	82.8	1005.9	
2008	5	28	14.9	7.1	0.0	3.7	88.1	999.4	
2008	5	29	18.1	8.5	0.0	4.8	81.0	1004.7	
2008	5	30	19.6	11.8	0.2	2.4	85.5	1007.6	
2008	5	31	22.8	10.6	5.4	2.9	86.3	1010.2	
			Total monthly	na hafall	37 1				

potential	Class A pan
evapotranspiration	evaporation
(mm)	(mm)
75.4	

year	month		J	lun 2008									
year	month				Jun 2008								
		day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)					
2008	6	1	21.4	8.0	0.1	4.6	81.7	1008.9					
2008	6	2	19.8	7.2	0.1	4.9	84.2	1005.3					
2008	6	3	18.4	7.0	0.0	6.9	69.6	1007.4					
2008	6	4	13.2	6.3	5.7	6.8	91.6	1005.9					
2008	6	5	14.4	5.9	2.0	4.3	84.5	1009.2					
2008	6	6	16.1	5.9	4.1	4.1	83.4	1012.5					
2008	6	7	20.1	4.6	0.0	3.6	76.1	1014.4					
2008	6	8	21.3	7.6	0.0	2.2	82.0	1018.1					
2008	6	9	22.6	13.7	0.0	7.1	80.3	1019.8					
2008	6	10	20.7	13.0	0.0	6.5	72.4	1020.3					
2008	6	11	15.3	10.2	7.2	4.8	93.5	1017.9					
2008	6	12	15.4	7.6	0.1	6.6	77.8	1015.6					
2008	6	13	16.2	8.9	0.0	5.3	73.8	1012.8					
2008	6	14	16.8	6.2	0.8	3.7	77.2	1009.4					
2008	6	15	15.7	6.1	0.0	4.7	77.4	1006.3					
2008	6	16	16.3	6.7	0.0	4.3	71.7	1006.0					
2008	6	17	18.1	9.8	2.9	10.5	73.6	1000.1					
2008	6	18	14.4	9.3	11.2	7.7	93.6	994.8					
2008	6	19	18.8	7.6	0.0	10.2	76.9	1000.6					
2008	6	20	18.5	7.2	0.0	5.1	71.6	1009.0					
2008	6	21	16.2	10.6	31.3	7.2	95.7	1001.4					
2008	6	22	16.3	8.3	1.2	15.7	80.7	997.5					
2008	6	23	17.3	6.7	0.1	4.7	83.2	1011.4					
2008	6	24	15.7	10.9	2.2	9.0	88.5	1006.1					
2008	6	25	18.9	11.0	0.3	13.3	75.6	1002.4					
2008	6	26	15.4	8.8	13.8	6.5	90.5	1005.8					
2008	6	27	19.8	8.1	2.1	8.2	91.3	1006.2					
2008	6	28	19.1	12.2	0.2	9.4	80.0	1007.5					
2008	6	29	18.4	11.1	1.4	9.2	79.6	1007.7					
2008	6	30	18.9	11.1	0.0	11.4	81.0	1008.6					

potential	Class A pan
evapotranspiration	evaporation
(mm)	(mm)
75.1	

	METEOROLOGICAL DATA								
	Jul 2008								
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)	
2008	7	1	17.4	13.2	7.4	13.9	85.4	997.7	
2008	7	2	16.8	11.2	3.0	8.5	86.1	995.5	
2008	7	3	16.9	9.8	16.5	4.1	91.5	1000.6	
2008	7	4	17.0	6.4	5.2	6.8	84.5	1003.3	
2008	7	5	16.6	12.1	21.1	8.4	91.4	992.3	
2008	7	6	17.4	11.8	8.0	6.3	93.2	989.1	
2008	7	7	17.5	10.3	0.4	7.8	83.4	992.1	
2008	7	8	18.4	9.8	0.0	7.5	74.0	1000.0	
2008	7	9	19.8	12.3	1.8	7.6	91.9	996.2	
2008	7	10	16.9	12.2	7.7	7.1	89.3	994.0	
2008	7	11	15.7	10.9	0.9	6.9	83.3	999.8	
2008	7	12	17.6	8.4	0.0	5.7	77.4	1004.3	
2008	7	13	20.2	5.9	0.0	5.7	82.3	1007.1	
2008	7	14	22.7	14.4	0.0	6.3	87.3	1013.4	
2008	7	15	21.7	12.2		8.8	74.6	1017.7	
2008	7	16	17.3	11.4		8.2	76.1	1016.4	
2008	7	17	18.5	13.0	0.1	8.5	77.9	1007.3	
2008	7	18	20.8	13.6	3.0	8.8	81.1	1001.7	
2008	7	19	18.7	9.6	0.0	9.3	70.9	1004.3	
2008	7	20	18.8	8.1	0.0	7.0	70.5	1015.2	
2008	7	21	19.5	6.1	0.0	5.0	77.4	1019.6	
2008	7	22	22.3	13.6	0.0	4.4	78.6	1018.5	
2008	7	23	20.8	11.2	0.0	4.9	86.0	1014.7	
2008	7	24	23.4	14.7	1.0	5.4	77.0	1006.7	
2008	7	25	21.6	15.3	0.5	4.6	81.0	1001.4	
2008	7	26	22.2	12.6	0.0	4.5	74.3	1008.4	
2008	7	27	22.7	11.8	0.0	4.7	77.5	1010.3	
2008	7	28	24.6	9.4	8.0	3.9	78.1	1006.0	
2008	7	29	19.7	13.7	3.4	8.1	86.5	999.4	
2008	7	30	20.2	13.5	24.2	8.9	85.0	1001.0	
2008	7	31	18.3	12.9	24.5	7.2	93.8	997.9	
		1	Total monthly		136.7	1		-	

Total monthly rainfall 136.7

potential	Class A pan
evapotranspiration	evaporation
(mm)	(mm)
76.1	

	METEOROLOGICAL DATA							
				Aug 2008				
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)
2008	8	1	21.3	12.4	18.5	8.2	84.2	997.3
2008	8	2	21.8	11.4	0.8	6.9	77.4	1001.7
2008	8	3	19.6	13.6	2.3	7.2	75.0	1000.6
2008	8	4	19.9	13.2	0.0	4.9	76.8	1002.4
2008	8	5	20.9	13.3	5.1	7.5	89.8	999.8
2008	8	6	20.8	13.7	12.9	6.8	89.9	998.3
2008	8	7	19.5	12.8	0.4	6.2	87.1	999.2
2008	8	8	18.7	12.3	0.0	5.8	72.2	1006.7
2008	8	9	21.5	13.9	10.4	10.6	88.6	995.4
2008	8	10	19.6	12.5	1.1	12.3	79.5	991.3
2008	8	11	18.7	12.4	17.6	9.3	84.7	988.3
2008	8	12	16.0	10.8	0.9	7.3	84.9	980.5
2008	8	13	15.6	10.8	4.5	7.8	89.3	990.6
2008	8	14	19.7	9.0	0.0	6.7	72.8	1002.8
2008	8	15	17.2	11.1	1.5	7.9	82.0	1003.8
2008	8	16	17.0	11.8	47.7	9.6	89.4	991.1
2008	8	17	16.9	12.1	2.6	10.0	86.8	991.6
2008	8	18	18.0	12.8	4.4	7.7	91.8	984.4
2008	8	19	19.0	13.9	0.5	8.5	83.5	994.7
2008	8	20	18.1	13.3	6.6	3.9	87.7	1000.4
2008	8	21	19.8	10.8	0.1	5.3	79.4	1006.1
2008	8	22	17.3	10.0	0.0	5.2	75.4	1010.9
2008	8	23	15.4	9.8	4.3	9.2	90.8	1003.1
2008	8	24	19.6	12.6	0.0	8.4	78.7	998.2
2008	8	25	18.7	14.8	0.0	9.8	83.3	1000.9
2008	8	26	19.5	15.7	0.0	8.2	83.8	1009.0
2008	8	27	18.4	15.6	0.0	7.4	84.0	1012.8
2008	8	28	22.3	14.7	0.0	6.6	83.6	1013.7
2008	8	29	21.2	14.4	0.0	5.4	89.0	1011.5
2008	8	30	17.1	13.2	0.2	6.5	88.0	1006.2
2008	8	31	18.3	12.2	0.0	5.3	78.4	1003.6

potential	Class A pan
evapotranspiration	evaporation
(mm)	(mm)
60.9	

	METEOROLOGICAL DATA								
	Sep 2008								
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)	
2008	9	1	18.7	10.4	4.7	7.9	80.1	998.4	
2008	9	2	16.2	8.7	3.7	9.3	84.6	990.7	
2008	9	3	16.7	8.1	8.7	9.8	85.9	988.1	
2008	9	4	16.6	9.1	1.2	3.8	83.0	988.2	
2008	9	5	16.1	9.2	25.0	7.0	92.5	981.0	
2008	9	6	15.3	9.2	4.6	10.4	83.5	992.3	
2008	9	7	16.9	7.1	0.0	4.3	78.9	1002.6	
2008	9	8	16.3	8.8	0.7	6.2	85.0	1003.3	
2008	9	9	17.4	10.3	8.8	13.4	88.4	993.5	
2008	9	10	16.6	7.2	6.8	12.8	90.8	992.9	
2008	9	11	16.6	9.6	0.1	12.1	83.8	991.4	
2008	9	12	17.3	8.6	0.6	4.4	87.3	1006.7	
2008	9	13	18.6	6.5	0.0	4.9	83.8	1011.7	
2008	9	14	14.8	13.1	9.2	6.8	93.1	1014.2	
2008	9	15	16.5	9.7	2.5	4.3	89.8	1015.2	
2008	9	16	14.4	9.1	1.2	4.9	92.0	1016.3	
2008	9	17	17.6	8.7	0.0	3.7	83.1	1015.6	
2008	9	18	17.3	7.9	0.1	6.7	85.7	1015.4	
2008	9	19	17.1	11.7	0.0	4.4	85.4	1019.5	
2008	9	20	19.0	9.9	0.0	6.1	82.7	1021.3	
2008	9	21	18.3	7.3	0.2	3.6	83.4	1019.4	
2008	9	22	16.3	7.3	0.0	7.4	80.3	1022.8	
2008	9	23	16.5	4.8	0.0	5.3	81.5	1022.3	
2008	9	24	15.6	4.0	0.1	2.6	87.5	1022.4	
2008	9	25	18.0	5.7	0.0	2.3	88.5	1026.2	
2008	9	26	17.4	6.1	0.0	3.8	88.4	1027.0	
2008	9	27	17.7	7.8	0.2	3.6	85.3	1023.4	
2008	9	28	14.6	7.3	0.3	4.3	80.8	1020.7	
2008	9	29	14.7	6.0	0.1	9.4	84.7	1012.7	
2008	9	30	15.4	11.8	2.7	14.4	87.7	998.6	
			Total monthly		81 5				

potential	Class A pan
evapotranspiration	evaporation
(mm)	(mm)
41.6	

	METEOROLOGICAL DATA								
	Oct 2008								
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)	
2008	10	1	13.4	6.9	0.6	12.6	75.7	995.8	
2008	10	2	11.2	5.1	0.5	10.8	78.6	1001.0	
2008	10	3	11.0	4.7	0.0	6.8	70.6	1011.9	
2008	10	4	16.0	6.5	12.0	10.0	87.8	996.1	
2008	10	5	12.3	3.3	10.0	6.9	82.6	994.6	
2008	10	6	15.7	3.3	1.1	8.3	91.8	996.7	
2008	10	7	14.4	7.4		6.3	93.1	993.3	
2008	10	8	16.0	5.1	0.1	3.7	85.5	1011.8	
2008	10	9	15.0	5.9	1.0	12.4	91.4	1016.2	
2008	10	10	15.6	11.4	6.4	12.9	95.2	1012.3	
2008	10	11	15.3	6.9	0.0	3.1	89.3	1015.4	
2008	10	12	15.8	5.3	0.2	3.7	95.1	1012.9	
2008	10	13	16.8	10.3	2.1	7.0	89.0	1008.8	
2008	10	14	14.4	8.1	16.9	4.2	98.4	1007.5	
2008	10	15	12.9	5.9	0.2	6.6	90.0	1005.9	
2008	10	16	12.8	4.6	0.0	6.5	83.0	1010.6	
2008	10	17	12.8	2.5	0.1	5.2	90.0	1012.4	
2008	10	18	13.4	6.0	0.4	7.7	90.3	1008.7	
2008	10	19	14.4	9.0	2.5	14.5	90.1	1000.7	
2008	10	20	14.3	5.1	1.5	14.6	79.6	992.2	
2008	10	21	10.9	4.1	0.8	8.8	78.7	1003.3	
2008	10	22	13.3	4.5	0.1	8.2	82.0	1011.0	
2008	10	23	14.9	8.0	10.3	16.1	88.8	1001.2	
2008	10	24	12.2	4.9	0.0	9.1	78.1	1012.9	
2008	10	25	14.7	6.6	7.8	14.7	88.5	1009.7	
2008	10	26	13.5	3.9	3.3	9.1	82.4	1006.7	
2008	10	27	8.8	2.8	0.1	7.5	82.5	1006.3	
2008	10	28	7.0	-2.2	0.3	7.3	83.6	1008.6	
2008	10	29	7.6	-2.2	8.2	5.8	91.8	997.0	
2008	10	30	6.4	1.6	0.5	8.4	85.8	993.4	
2008	10	31	8.2	0.6	0.0	6.6	83.1	1006.9	
	-		Total monthly		87.0	-			

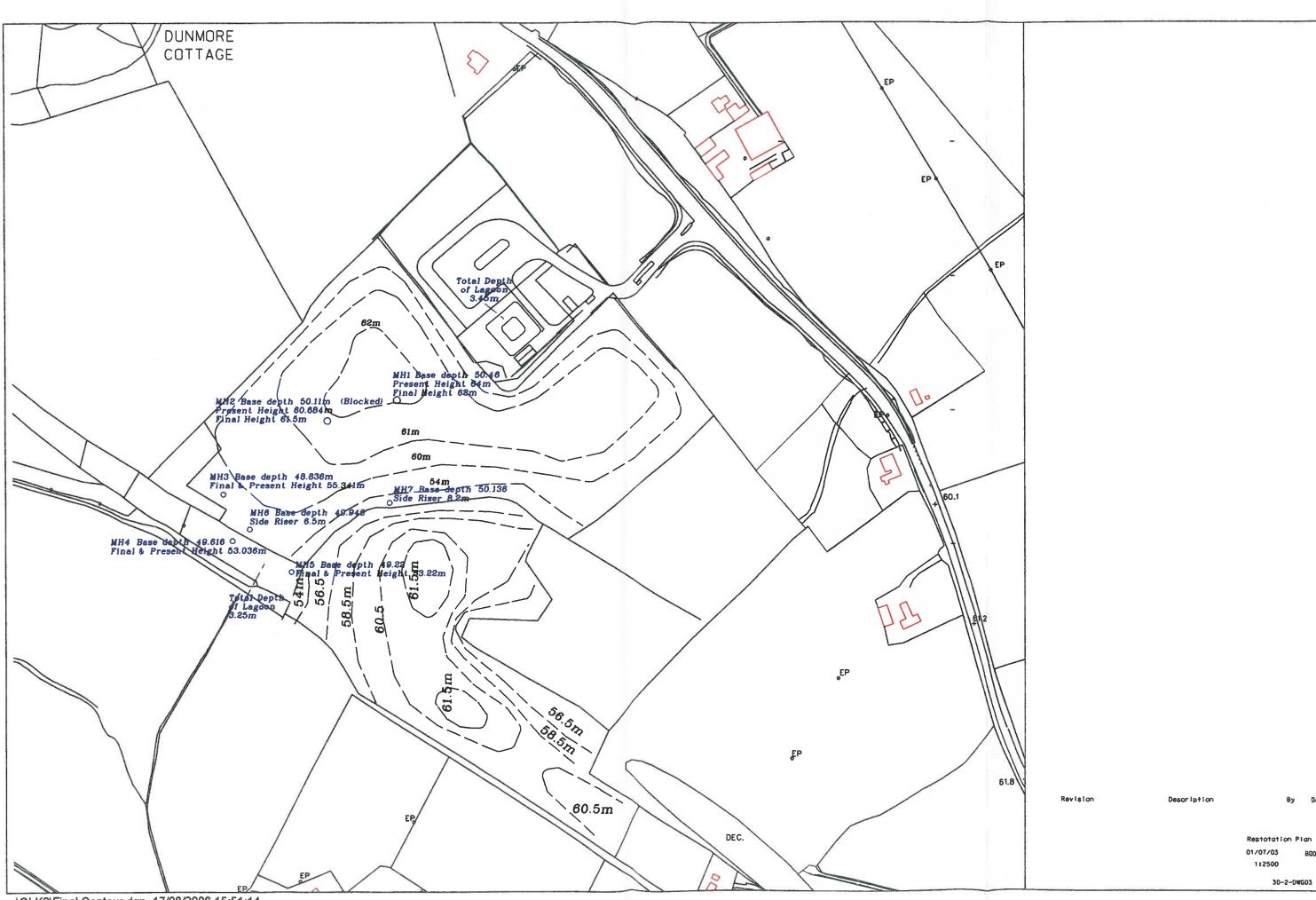
potential	Class A pan
evapotranspiration	evaporation
(mm)	(mm)
23.4	

year r	month	day		Nov 2008 min.												
year r		day		min				Nov 2008								
4 I			max. temperature (degrees Celsius)	temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)								
2008	11	1	8.9	0.7	0.0	6.5	85.0	1008.7								
2008	11	2	10.1	2.0	0.0	5.1	88.0	1014.1								
2008	11	3	10.5	2.6	0.1	6.3	94.5	1013.4								
2008	11	4	9.6	4.0	0.1	3.0	94.8	1013.3								
2008	11	5	10.8	4.8	0.1	1.2	97.0	1014.0								
2008	11	6	10.5	5.3	5.5	6.3	95.6	1002.6								
2008	11	7	9.6	5.2	1.7	12.1	86.1	990.3								
2008	11	8	11.9	4.5	12.8	11.6	90.0	988.8								
2008	11	9	8.0	2.3	7.2	13.4	86.8	990.7								
2008	11	10	9.4	3.3	2.5	14.0	77.7	988.8								
2008	11	11	10.3	4.8	0.7	11.6	82.0	998.8								
2008	11	12	10.4	3.8	0.1	5.9	88.4	1012.0								
2008	11	13	12.6	6.6	2.9	9.4	91.6	1012.7								
2008	11	14	13.1	11.2	0.0	8.1	86.1	1015.3								
2008	11	15	12.6	9.7	0.7	5.1	90.6	1017.7								
2008	11	16	12.0	8.0	3.6	5.4	96.0	1024.1								
2008	11	17	11.5	8.4	1.6	9.4	94.3	1016.6								
2008	11	18	10.9	7.4	0.0	7.7	87.2	1015.8								
2008	11	19	12.2	4.2	0.1	8.3	91.7	1018.5								
2008	11	20	12.7	10.9	0.0	11.8	84.9	1014.7								
2008	11	21	11.3	7.5	0.2	11.0	83.9	1015.1								
2008	11	22	9.5	6.6	1.2	7.5	89.5	1014.7								
2008	11	23	10.9	3.7	2.7	14.6	84.5	995.8								
2008	11	24	7.4	0.2	2.3	11.9	82.9	1001.3								
2008	11	25	7.9	1.5	0.1	7.1	87.6	1020.8								
2008	11	26	12.3	7.6	0.1	7.7	90.0	1019.3								
2008	11	27	9.6	1.8	1.1	9.5	82.3	1001.0								
2008	11	28	6.3	-2.7	0.0	3.1	89.0	990.2								
2008	11	29	0.8	-4.0	0.0	2.5	99.0	990.0								
2008	11	30	2.7	-1.7	0.0	4.4	96.5	995.6								

potential evapotranspiration (mm)	Class A pan evaporation (mm)
12.6	

	METEOROLOGICAL DATA							
	Dec 2008							
year	month	day	max. temperature (degrees Celsius)	min. temperature (degrees Celsius)	rainfall (mm)	mean wind speed (knots)	mean relative humidity (%)	mean CBL pressure (hPa)
2008	12	1	5.0	-2.3	0.0	4.4	92.5	1004.1
2008	12	2	4.9	0.2	0.7	5.9	90.4	998.4
2008	12	3	6.4	-2.8	7.3	5.8	94.5	993.3
2008	12	4	8.0	3.8	9.1	10.5	87.4	971.5
2008	12	5	8.4	1.9	0.6	8.8	88.8	984.7
2008	12	6	2.7	-3.5	0.0	2.3	98.0	1009.0
2008	12	7	5.8	-5.0	0.0	3.5	95.6	1017.8
2008	12	8	6.8	2.2	4.1	6.2	91.9	1013.6
2008	12	9	6.2	0.4	0.0	6.9	84.8	1019.2
2008	12	10	6.5	-0.8	0.0	3.9	96.2	1015.5
2008	12	11	5.9	0.2	5.3	2.7	99.0	1004.7
2008	12	12	10.2	0.7	14.0	10.1	94.3	992.7
2008	12	13	6.4	1.2	0.0	5.1	89.7	980.8
2008	12	14	4.1	0.1	0.0	6.8	92.0	996.3
2008	12	15	6.1	-1.9	0.0	4.2	90.8	1011.0
2008	12	16	10.5	4.2	3.0	9.8	91.7	1002.9
2008	12	17	11.0	1.6	0.0	8.6	87.5	1006.3
2008	12	18	11.1	2.1	1.2	9.9	83.2	1007.3
2008	12	19	12.1	1.8	0.5	13.0	88.4	1011.5
2008	12	20	12.9	8.9	2.0	9.0	90.7	1015.8
2008	12	21	13.0	9.6	0.0	8.8	89.0	1019.9
2008	12	22	12.2	7.5	0.0	8.6	90.2	1025.2
2008	12	23	8.2	2.6	0.0	6.2	85.2	1026.5
2008	12	24	7.7	2.5	0.0	1.5	93.0	1026.9
2008	12	25	8.1	5.0	0.0	3.1	83.7	1027.2
2008	12	26	6.8	-2.3	0.0	3.4	81.0	1029.7
2008	12	27	3.4	-4.2	0.0	1.9	96.0	1028.4
2008	12	28	6.1	-4.9	0.0	2.9	87.6	1021.7
2008	12	29	3.1	-4.6	0.0	4.1	88.5	1019.3
2008	12	30	5.4	2.1	0.0	7.3	86.4	1019.7
2008	12	31	6.4	-1.5	0.0	5.1	87.6	1019.3
	. – .		Total monthly		47.8			

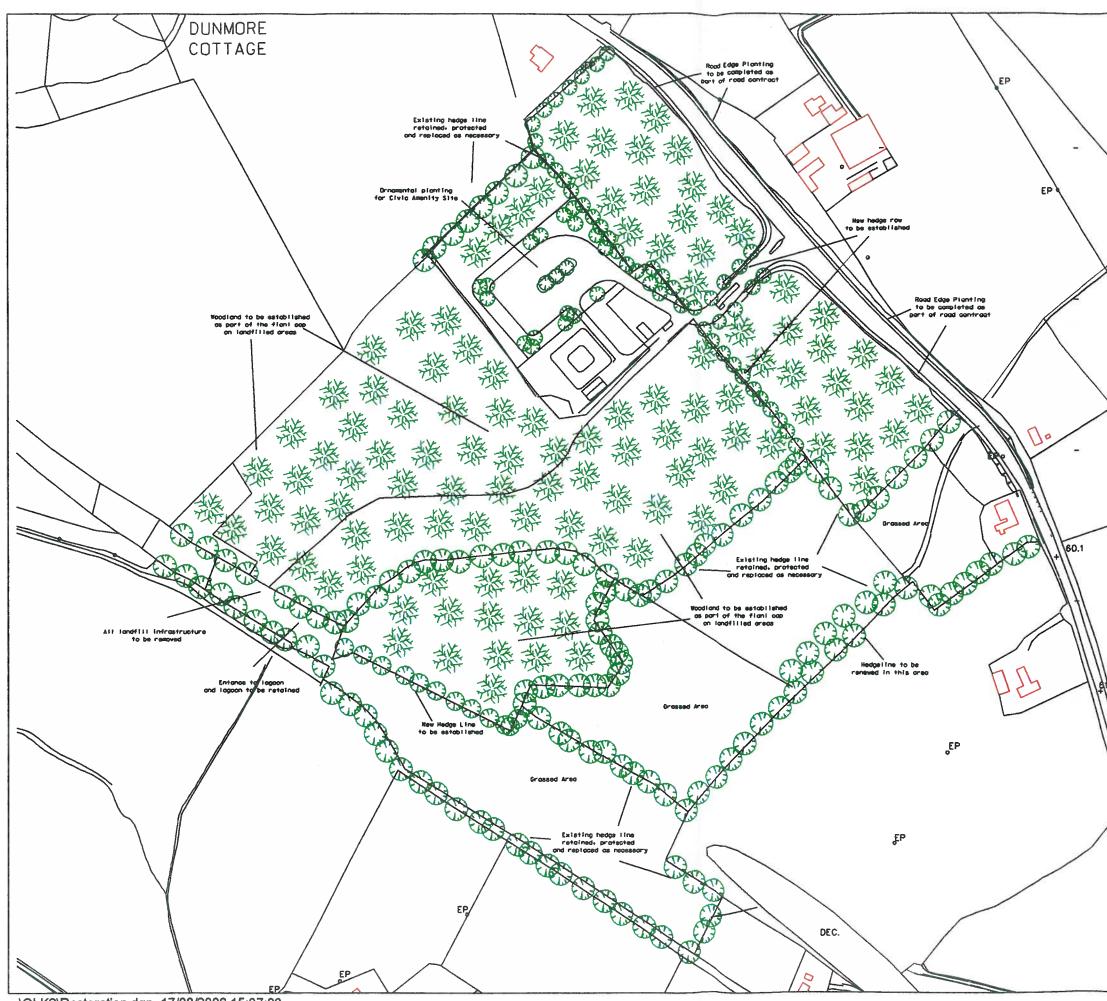
	47	.8


potential	Class A pan
evapotranspiration (mm)	evaporation (mm)
7.0	

Appendix F

Restoration Plan

&


Aftercare Plan

^{...\}OLK2\Final Contour.dgn 17/08/2006 15:51:14

800

By Da

^{...\}OLK2\Restoration.dgn 17/08/2006 15:37:03

List of Species to be Used

Tree/plant type	Species
Common Ash	Fraxinus Excelsior
Hawthorn	Crataegus Monogyna
Whitebeam	Sorbus Hibernica
Blackthorn	Prunus Spinosa
Elder	Sambucas Nigra
Cherry	Prunus Avium
Gorse	Ulex Europaeus
Bristly ox tongue	Picris Hieracioides
Holly	llex Aquifolium
Hazel	Corylus Avellana
Common Beech	Figus Sylvatica
Silver Beech	Betula Pendula

OS Licence Number Kilkenny CCMA 9802

Revision

61.8

EP

Description

8y 0a

Restotation Plan 01/07/03 800 1:2500

30-2-DWGO2

Appendix G

Status of Objectives and Targets

		Status	Commonta
Objectives		<u>Status</u>	<u>Comments</u>
Objective 1	Objective 1		
Ensure that a	ll waste acceptance requirements		
are met			
Target 1.1	All waste accepted at the facility	Compliant	
	are within the criteria set out in		
Tongot 1.2	Part I of the Waste Licence	Compliant	
Target 1.2	The amounts of each category of waste recovered and disposed if	Compliant	
	at the facility does not exceed		
	that specified in Schedule A of		
	the Waste Licence		
Target 1.3	Any restriction on waste entering	Comuliant	
	the facility shall be strictly	Compliant	
	enforced		
Target 1.4	All waste accepted for recovery	Compliant	
	and disposal shall be done so		
	within the opening hours i.e.		
	8.00 – 4.30 Mon – Fri. and 8.00		
	12.00 Sat.		
Objective 2			
Establish and Enviro	Establish and Environmental Management System to		
fulfil the obligation of	of the Waste Licence.		
Target 2.1	The facility shall employ a	In place	
	suitably qualified facility	since licence	
	manager as the person in charge	granted	

[and that this name on a		
	and that this person or a		
	nominated deputy shall be		
	present at all times at the facility,		
	this person will be in place from		
	the grant date of the licence.		
Target 2.2	The facility manager and deputy	Completed	
	shall complete the FAS Waste	-	
	Management Training Program		
	within 12 months of their		
	appointment.		
Target 2.3	All personnel performing	Ongoing as	
	specially assigned tasks shall	part of awareness	
	receive all appropriate	and	
	instruction prior to carrying out	training	
	that function		
Target 2.4	Submission of details of	Completed	Submitted
	management structure for	and	04/12/02
	Dunmore Landfill Facility by the	reviewed as required	Oct 2004 Jan 2007
	end of August 2002, which will	asrequired	
	be reviewed annually or as		
	required.		
Target 2.5	Preparation and submission of an	Completed	
	Environmental Management	and	
	Program (EMP) to the	reviewed as required	Submitted 09/04/04
	Environmental Protection	as required	09/04/04
	Agency by the end of November		
	2002, which will be reviewed		
	annually in November and		
	submitted to the Agency or as		
	required.		
Target 2.6	Preparation and submission of an	Completed	
	-	-	

	Environmental Management	and reviewed	Submitted
	System (EMS) to the	as required	09/04/04
	Environmental Protection		
	Agency by the end of November		
	2002, which will be reviewed		
	annually in November and		
	submitted to the Agency or as		
	required.		
Target 2.7	Establish awareness and training	Ongoing	
	procedures for personnel at		
	Dunmore Landfill Facility which		
	will form part of the EMS		
Target 2.8	Submission to the EPA of a	Completed	
	communications program as part		Submitted as
	of the EMS		part of EMS
Target 2.9	Preparation and submission of a	Completed	09/04/03
	corrective action procedure,	Completed	
	which will be submitted to the		Submitted as part of EMS
	Agency as part of the EMS		09/04/03
Target 2.10	First Annual Environment	Completed	
	Report (AER) of Waste Licence	Completed	
	30-2 submitted to Agency by the		Submitted 14/08/03
	end of January 2003.		11,00,00
Target 2.11	Review of AER by the end of	Every	
	January annually thereafter	January	
Objective 3			
Provision of required infrastructure at the facility with			
the agreement of the Target 3.1	agency An updated site notice board		
1 alget 3.1	will be provided at the new	Completed by 08/03	
	will be provided at the new	09 00/05	

	facility entrance by end June	
	2002. The new Waste Licence	
	reference number will be	
	provided, contacted details	
	including revised telephone	
	numbers and location of all	
	environmental monitoring	
	information	
Target 3.2	Security fencing and security	Completed
	measures will be provided as	07/03
	part of the provision of the new	
	access by May 2003	
Target 3.3	A new access will be provided	Completed
	from the N77 by April 2003.	04/03
	Detailed SEW will be submitted	
	on the project will be submitted	
	to the Agency, when the safety	
	audit on the alignment has been	
	approved by the NRA.	
Target 3.4	Facility roads and hardstanding	
	areas will be provided at the	Complete
	new access by April 2003,	04/03
	which will be designed to ensure	
	safe access and movement	
	within the site. All area will be	
	provided with appropriate	
	surface water drainage systems.	
Target 3.5	New facility offices, will be	Completed
	provided, which will incorporate	Completed 04/03
	telephones and an electronic	
	communication facility by April	
	······································	

	2002 065	
	2003. Offices shall be fitted with	
	gas monitoring equipment, in	
	accordance with 'Protection of	
	New Buildings and Occupants	
	from Landfill Gas.	
Target 3.6	A Waste Inspection and	Completed
	Quarantine Area will be	05/03
	provided by May 2003, subject	
	to Agreement with the Agency.	
	Drainage from these areas will	
	go directly to the leachate	
	lagoon.	
Target 3.7	The present weighbridge at the	Completed
	facility will be relocated or a	05/03
	new weighbridge will be	
	provided at the new facility	
	entrance, subject to agreement	
	with the Agency, by May 2003.	
	This weighbridge will not be	
	made operational until approval	
	is given by Legal Metrology	
	Services.	
Target 3.8	A wheel cleaning as set out in	Completed
	the EIS area will be provided at	05/03
	the facility entrance by May	
	2003, subject to agreement with	
	the Agency.	
Target 3.9	As part of the development of	Complete by 05/03
	the new offices, a wastewater	by 05/05
	treatment plant will be provide	
	at the new facility offices by	
	- •	

	M 2002 1: //		
	May 2003, subject to agreement		
	with the Agency. The discharge		
	from this unit will go directly to		
	the new leachate lagoon.		
Target 3.10	A revised tank and drum storage	Completed	
	area will be provided by April	by 04/03	
	2003, to ensure any spillage that		
	may occur is contained.		
Target 3.11	Four new cells will be provided	One and a	QA/QC for
	(cell 11-14), between 2002 and	half cells completed	cell 11a submitted
	2005 and will be constructed to	by 12/02	24/10/02
	that specified in condition 3.13,	Others	QA/QC for
	subject to agreement with the	ongoing	cell12 30/05/03
	Agency.	until 12/05	
Target 3.12	A new larger leachate lagoon	Completed	
	shall be construction to the	by 05/03	
	specified standard to provide		
	sufficient capacity for storage by		
	May 2003, subject to agreement		
	with the Agency.		
Target 3.13	A revised landfill gas	Completed	
	management system will be	by 11/03	
	provided by November 2003,		
	which will contain a proposal		
	for the utilisation of Landfill		
	Gas as an energy source. A		
	proposal on the system will be		
	submitted to the Agency by		
	March 2003.		
Target 3.14	A SCADA system or equivalent	Phase I	
	will be installed at the facility by	completed	
		•	

		1
	April 2003, where the hardware	by 11/03 other
	and software will be	phases as
	incorporated into the new	landfill
	facility offices, subject to the	develops
	Agencies agreement.	
Target 3.15	A full surface water	Ongoing as
	management system will be	part of
	incorporated as infrastructure	develop.
	and capping is provided, subject	
	to the Agencies agreement.	
	Surface water from the	
	extension will be diverted to the	
	surface water stream once the	
	capping system is provided.	
Target 3.16	All new infrastructures provided	Ongoing
	will have regard to the ground	
	water in the area which is	
	monitored on a monthly basis.	
Target 3.17	A construction and demolition	Will not be
	storage area will be provided by	provided C&D waste
	April 2003 as part of the revised	Accepted
	access, subject to the agreement	direct to tip face
	of the Agency.	luce
Target 3.18	The civic amenity site will be	Completed
	provided by May 2003 and will	by 05/03
	be maintained to the highest	
	environmental standards. It is	
	anticipated that this area in	
	conjunction with other County	
	Council initiatives will increase	
	recovery rates in the County.	

Target 3.19	A household hazardous waste	Completed
	facility will be provided at the	by 05/03
	new civic waste facility. This	
	facility will be widely advertised	
	and will raise awareness of the	
	need to source segregate	
	household hazardous waste.	
Target 3.20	A proposal on the provision of	Proposal
	compost facilities will be	will be
	completed by May 2003 and	examined and
	submitted to the Agency.	submitted
	Composting/shredding facilities	to the Agency
	will increase recovery rates for	rigency
	green waste in the County.	
Target 3.21	A revised proposal for the	Complete
	provision of berms at the facility	by 01/03
	will be submitted to the Agency	
	by January 2003. All revision	
	made will be as a result of	
	consultation with adjacent	
	properties.	
Target 3.22	All monitoring points required	Ongoing
	to meet the conditions of the	ongoing
	Waste Licence will be provided	
	as infrastructure develops,	
	subject to the Agencies	
	agreement.	
Target 3.23	A storage and shredding area	Set up
	for Christmas Trees shall be	December
	provided and shredded trees to	2003 Annually
	be reused as landfill cover	there after

Objective 4		
Establishment of a detailed plan for the restoration and		
aftercare of the facility		
Target 4.1	A full revised restoration and	
	aftercare plan will be submitted	Complete by 05/03
	to the Agency by May 2003,	09 00/00
	which will incorporate a	
	proposal for treatment of cells 1-	
	7	
Target 4.2	Capping at the facility will	
	commence in May 2003 in	To commence
	accordance with condition 4.3,	05/03
	subject to agreement with the	Ongoing
	Agency and will continue on a	until site is
	phased basis as the facility	complete
	develops.	
Target 4.3	Assessment of the capping	Ongoing
	adequacy of cells 1-7 will	88
	commence in February 2003. A	
	proposal for the capping and	
	collection of gas from cells 1-7	
	will be submitted to the Agency	
	by May 2003. All works on this	
	area will be completed by May	
	2004.	
Target 4.4	All material excavated for the	
	purpose of the development of	Ongoing
	infrastructure will be reused	
	with the facility boundary and	
	will be stored appropriately until	

	required.		
Objective 5			
The facility shall be of adverse environments operation of the facility			
Target 5.1	Waste shall not be disposed of		
	in any part of the facility until	Ongoing	
	approval is sought and granted		
	by the Agency		04/12/03
Target 5.2	A procedure for the acceptance	~	
	of waste at the facility shall be	Completed	
	submitted to the Agency for		
	agreement by August 2002 and		
	updated annually thereafter.		
Target 5.3	All waste shall be covered	Ongoing	
	appropriately at the end of each		
	day		
Target 5.4	A full leachate management	Completed	
	plan will be drawn up which	as part of	
	shall include procedures for	AER	
	monitoring leachate levels,	SCADA	
	removal of leachate by tanker	System- on Going	
	and control procedures to ensure	monitoring	
	that leachate levels remain	Of leachate Levels in	
	within parameters set out in	cells and	
	condition 5.11. This plan will	lagoons	
	form part of the AER and will		
	be revised as necessary.		
Target 5.5	Written records of maintenance		
	of all monitoring and emission	Ongoing	
	equipment. Maintenance of	0.50	

	these systems will take place as	
	recommended by the	
	manufacturer	
Target 5.6	All lagoons structures at the site	Ongoing
	will be independently tested	
	every three years.	
Target 5.7	The wheel wash at the site	Ongoing
	entrance shall be maintained and	Wheel shakeout
	cleaned as required	unit by
		06/03
Objective 6 Control of emissions	at the facility	
Target 6.1	Any emission exceeding trigger	
Turget 0.1	levels or unauthorised emission	Ongoing
	will be notified to the Agency.	
Target 6.2	Monitoring of the landfill gas	
1.1.900 012	flare will commence once the	New flare
	installation of the flare is	unit installed
	complete. All emission values	07/04
	shall comply with the terms of	
	the Waste Licence.	
Objective 7		
Continuing minimisation of Environmental Nuisances associated with Dunmore Landfill Facility.		
Target 7.1	That any potential nuisance	Ongoing
	resulting from the operation of	Ongoing
	the facility will be minimised	
	and any methods that may	
	eliminate nuisance will be	
	implemented. Ongoing	

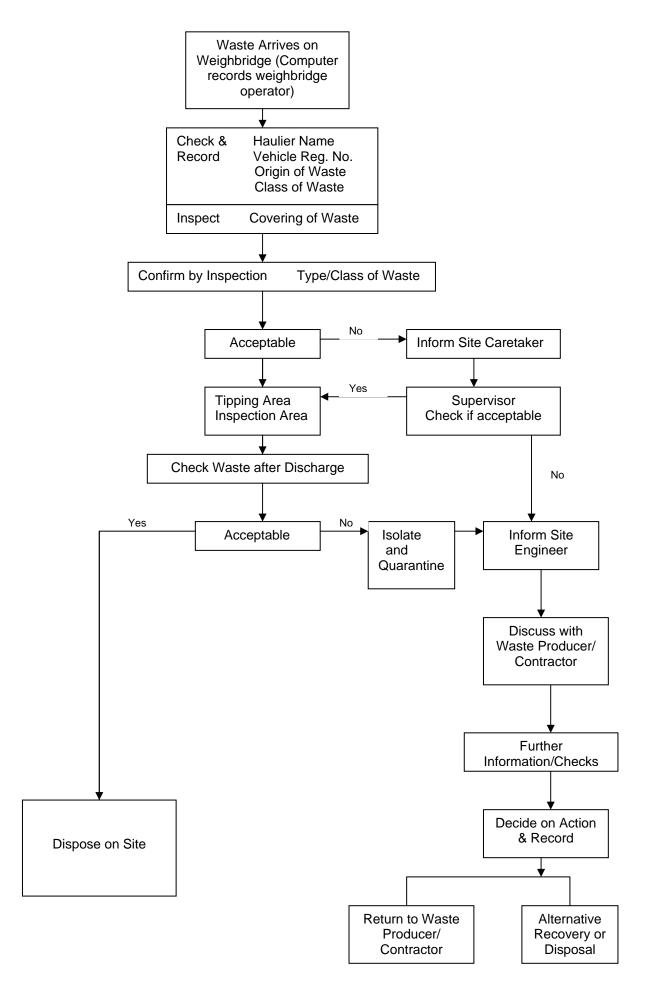
community consultation and inspections at the facility will ensure nuisance is minimised. Full compliance with the requirements set out in Condition 7 of the Waste Licence will continue. Objective 8 Continuation of Environmental Monitoring at the facility Target 8.1 All environmental monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10 th July, 2002. Target 8.2 An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter. Target 8.3 A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be communicated to the Agency. Target 8.4 A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency. Target 8.4 A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency. Target 8.4 A revised weekly nuisance				
 ensure nuisance is minimised. Full compliance with the requirements set out in Condition 7 of the Waste Licence will continue. Objective 8 Continuation of Environmental Monitoring at the facility Target 8.1 All environmental monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10th July, 2002. Target 8.2 An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter. Target 8.3 A drawing of all monitoring locations will be summitted to the Agency. Target 8.4 A stability assessment of the site will be completed by November 2002 an annually thereafter and submitted to the Agency. 		community consultation and		
Full compliance with the requirements set out in Condition 7 of the Waste Licence will continue.Image: Continuation of Environmental Monitoring at the facilityImage: Continuation of Environmental Monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10 th July, 2002.OngoingTarget 8.1All environmental monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10 th July, 2002.OngoingTarget 8.2An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by Junuary 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter.OngoingTarget 8.3A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be communicated to the Agency.OngoingTarget 8.4A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency.Complete by 05/03		inspections at the facility will		
requirements set out in Condition 7 of the Waste Licence will continue. Objective 8 Continuation of Environmental Monitoring at the facility Target 8.1 All environmental monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10 th July, 2002. Target 8.2 An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter. Target 8.3 A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be communicated to the Agency. Target 8.4 A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency.		ensure nuisance is minimised.		
7 of the Waste Licence will continue.7Objective 80Continuation of Environmental Monitoring at the facility0Target 8.1All environmental monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10 th July, 2002.0Target 8.2An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter.OngoingTarget 8.3A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be communicated to the Agency.OngoingTarget 8.4A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency.Complete by 05/03		Full compliance with the		
continue. Cobjective 8 Continuation of Environmental Monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10 th July, 2002. Target 8.2 An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter. Target 8.3 A drawing of all monitoring locations shall be submitted to the Agency. Target 8.4 A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency.		requirements set out in Condition		
Objective 8Continuation of Environmental Monitoring at the facilityAll environmental monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10 th July, 2002.OngoingTarget 8.2An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter.CompletedTarget 8.3A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be completed by November Z002 and annually thereafter and submitted to the Agency.Ongoing		7 of the Waste Licence will		
Continuation of Environmental Monitoring at the facilityOngoingTarget 8.1All environmental monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10 th July, 2002.OngoingTarget 8.2An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter.CompletedTarget 8.3A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be completed by November 2002 and annually thereafter and submitted to the Agency.Ongoing		continue.		
facilityTarget 8.1All environmental monitoring at the facility as specified in Schedule D of the Waste Licence shall commence by 10 th July, 2002.OngoingTarget 8.2An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter.OngoingTarget 8.3A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be communicated to the Agency.OngoingTarget 8.4A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency.Ongoing	Objective 8			
 the facility as specified in Schedule D of the Waste Licence shall commence by 10th July, 2002. Target 8.2 An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter. Target 8.3 A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be communicated to the Agency. Target 8.4 A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency. 		ronmental Monitoring at the		
 Target 8.2 An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June 2002, and two more survey to be completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter. Target 8.3 A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be communicated to the Agency. Target 8.4 A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency. 	Target 8.1	the facility as specified in Schedule D of the Waste Licence shall commence by 10 th July,	Ongoing	Submitted
 completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter. Target 8.3 A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be communicated to the Agency. Target 8.4 A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency. 	Target 8.2	An initial topographical survey of cells 1-10 and all areas to be developed as part of the revised licence to be completed by June	Completed	
Target 8.4A stability assessment of the site will be completed by November 2002 and annually thereafter and submitted to the Agency.Complete by 05/03	Target 8.3	completed by January 2003 and May 2003, to map development of the site. A topographical survey shall be completed by January each year thereafter. A drawing of all monitoring locations shall be submitted to the Agency by August 2002. Any changes to the location of monitoring locations will be immediately updated on this drawing and will be	Ongoing	
submitted to the Agency.	Target 8.4	A stability assessment of the site will be completed by November	-	
monitoring system will be Completed introduced at the site and	Target 8.5	submitted to the Agency. A revised weekly nuisance monitoring system will be		

У

	condition 10.4	
Target 10.5	A record of all leachate leaving	
	the facility shall be kept in	Ongoing
	accordance with condition 10.5	
Target 10.6	A record shall be kept of the	
	program for the control of	Ongoing
	vermin and flies as per condition	
	10.7	
Target 10.7	A record of bird control activities	Ongoing
	shall be kept and regular bird	
	counts made.	
Target 10.8	A written record shall be kept of	
	the type of daily cover that is	Ongoing
	used on the site as per condition	
	10.9	
Target 10.9	Long term environmental	
	monitoring to continue.	
Objective 11		
To submit all relevant	t reports and notifications to the	Ongoing
Agency in the timeframes specified		
Target 11.1	Any incident at the site shall be	Complete
	notified in accordance with the	05/03
	corrective action procedure	
Target 11.2	A new contract will be entered	
	into for the recovery/disposal	Completed
	white goods/brown goods by end	04/03
	May 2003	
Target 11.3	Waste recovery reports shall be	
	submitted to the Agency by	Form part
Target 11.2	notified in accordance with the corrective action procedure A new contract will be entered into for the recovery/disposal white goods/brown goods by end May 2003 Waste recovery reports shall be	Completed

			[
	November 2002 as outlined in	of SEW	Report
	condition 11.3	reports	06/12/03
Target 11.4	A report on the achievement of	Submitted	
	the final profile at the site shall		
	be submitted by November 2002		
Target 11.5	An operations procedure shall be		
	developed for operation in		Report
	adverse wind conditions and	Submitted	04/12/03
	submitted to the agency by		
	November 2002.		
Target 11.6	A report on procedure to control		
	vermin and flies shall be	Submitted	
	submitted to the Agency by	14/08/03	Report
	November 2002	Complete	12/07/02
Target 11.7	The first AER of the License will	1	
	be submitted by May 2003		
Target 11.8	A conditioning plan in		
	accordance with Council		
	Directive 1991/31/EC shall be		
	submitted to the Agency by 16 th		
	July 2002		
Objective 12			
To operate the landfil	ll to compliment relevant	In place	
legislation and the Landfill Directive		since 03/02	
Target 12.1	All packaging waste as defined	Phased in	
	in SI No. 61 of 2003 will be	through	
	restricted from the landfill	2002	
Target 12.2	All contractors using the site	Complete	
	shall be in full compliance with	by 06/03	
	SI No. 402 of 2001		
L		1	1

T (10.0	XX71 1 1 1 1 1 1	
Target 12.3	Whole used tyres shall be	
	restricted from the site from 1 st	
	of June 2003, in compliance with	
	Council Directive 1991/31/EC.	Ongoing
	Shredded tyres will be restricted	
	from 1 st June 2006	
Target 12.4	The landfill site will be operated	
	with regard to the South East	
	Waste Management and any	
	measures necessary to meet the	
	terms and targets of the plan	
	shall be implemented. This will	
	include the acceptance of waste	
	from outside the Kilkenny area	
	from the partners in the South	
	East Region	
Objective 13		
To provide infrastruc	ture to reduce visual impact and	Ongoing
minimise nuisance		Oligonig
Target 13.1	Continuation of odour modelling	
	and testing at the site and local	Onacina
	properties. Recommendations	Ongoing
	will be implemented.	
Target 13.2	Provision of extensive planting	
	and renewal of hedgerows.	
	Berms will be placed in locations	Ongoing
	in order to minimise visual	
	impact.	
Target 13.3	The road access and roadway	
	along the front of the site will be	
	along the front of the site will be	


	maintained and cleaned in order	
	to minimise visual nuisance at	
	the entrance to the facility.	
Objective 14		
To reduce the	quantity of recycling and biodegradable materials going to landfill.	
Target 14.1	To achieve a 50% reduction by commercial establishments.	Dec 06
Target 14.2	To set up a communication procedure and reporting mechanism between landfill and enforcement officers regarding offenders.	Completed Jan 06
Target 14.3	Provide awareness to companies of restricted landfill materials.	Ongoing

Appendix H

Waste Acceptance Procedure Flowchart

DUNMORE LANDFILL

WASTE ACCEPTANCE PROCEDURE

Appendix I

Bird Control

Littlebridge Inches, Cappoquin, Co. Waterford, Ireland

Year End Report for Dunmore Landfill Site

April 2007 - March 2008

- Location: Dunmore Landfill, Dunmore, Kilkenny
- Type: Landfill Site
- Client: Kilkenny, County Council

Bird Control Ireland Ltd operated a bird control programme and Dunmore Landfill Site between April 2007 and March 2008.

During each visit to the site a visit log was completed giving details of activities undertaken during the period of time on site and also note was made of bird pressure and number of birds on site. A monthly report is then completed from these sheets and sent to Dunmore Landfill Site where the report is put into the Bird Control Manual.

Throughout the 12 month period of April 07 to March 08 various types of bird scaring devices were employed. A range of equipment is used to include:

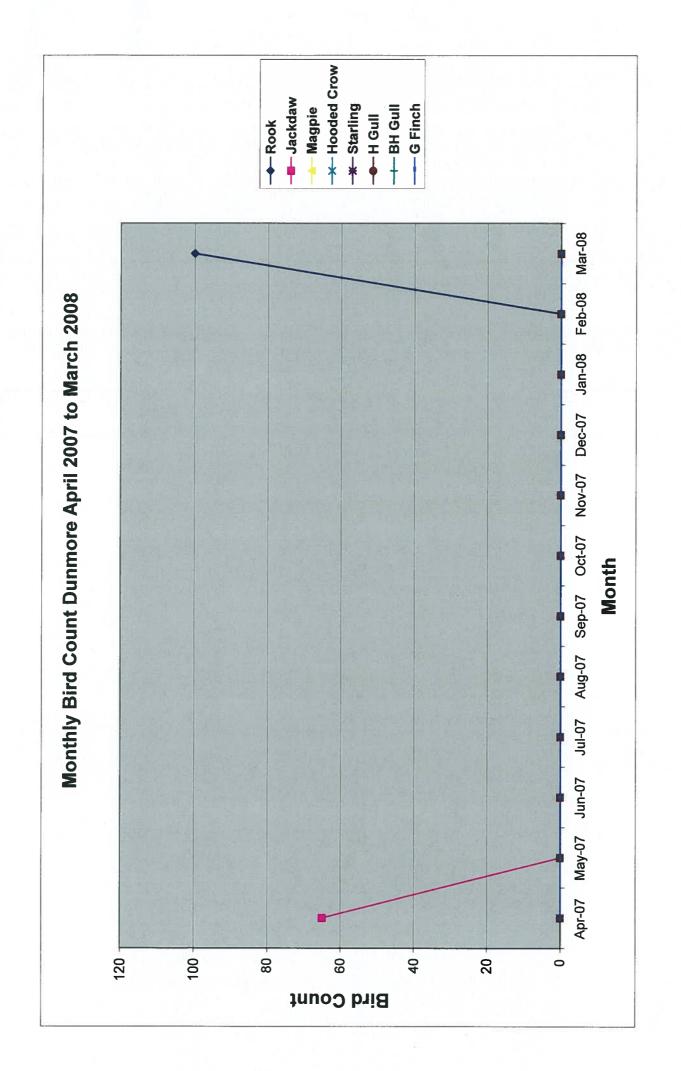
- Visual Deterrents Kites, falcons, hawks
- Acoustic Deterrents One shot system, handheld distress caller, and falcon
- Pyrotechnics Bird scaring pistol, shotgun

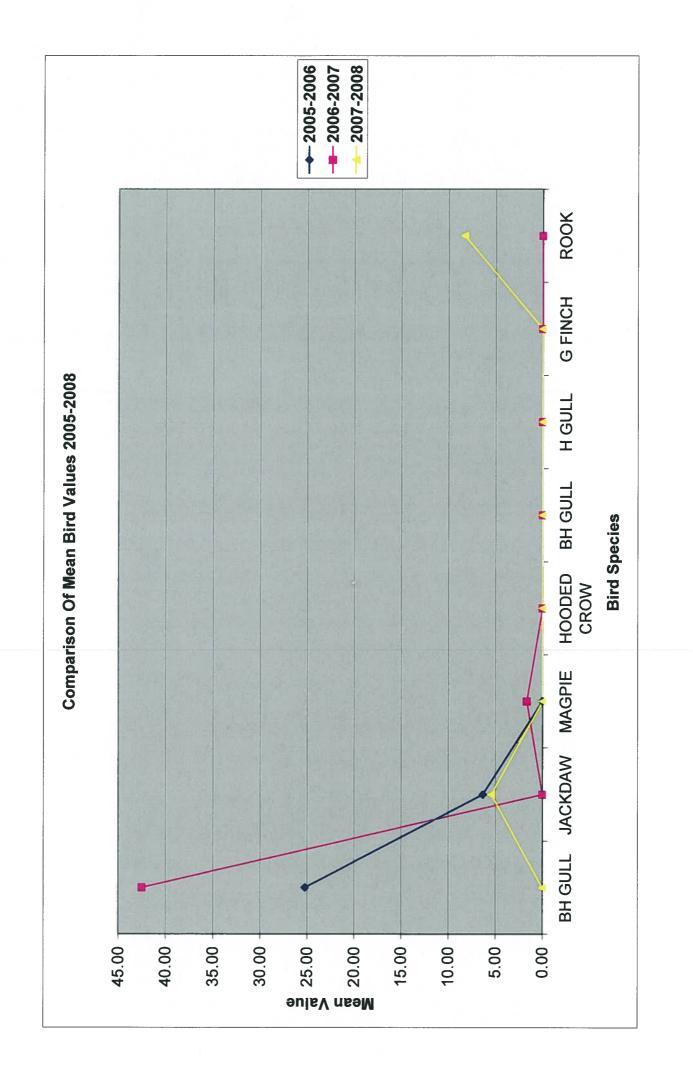
Site staff were responsible for the daily deployment of site equipment. A suggested plan of action was marked out on a site planner at the beginning of each week and staff adapted as necessary.

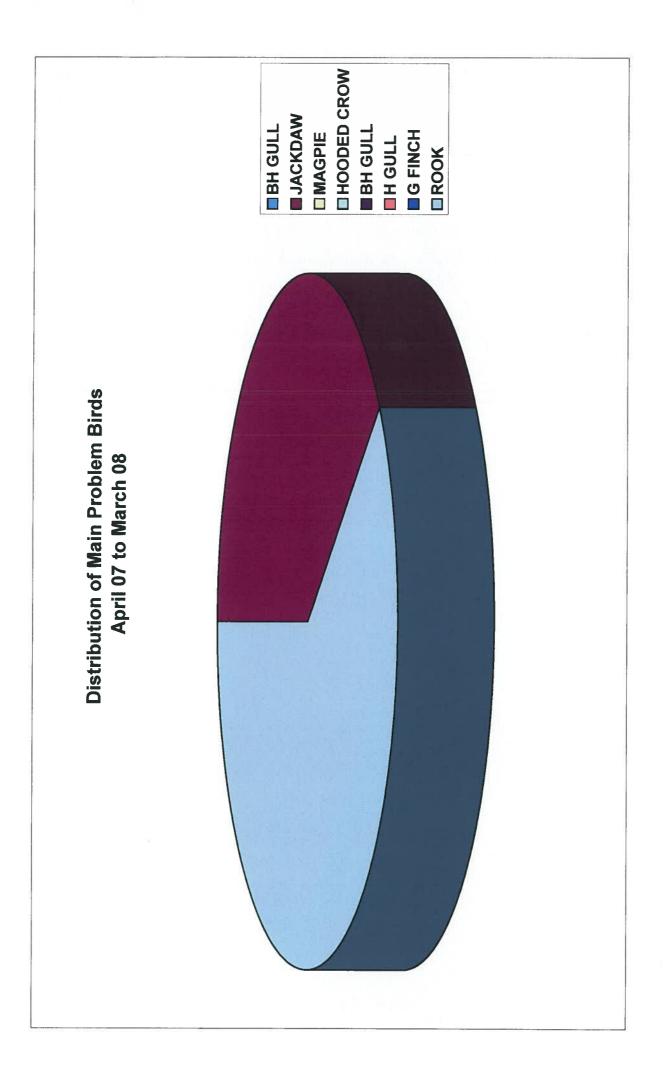
When visual deterrents such as kites and birds of prey could not be flown, the Bird Scaring Pistol was used as required. Every other bird control measure was then employed to ensure that no pest birds visited the site.

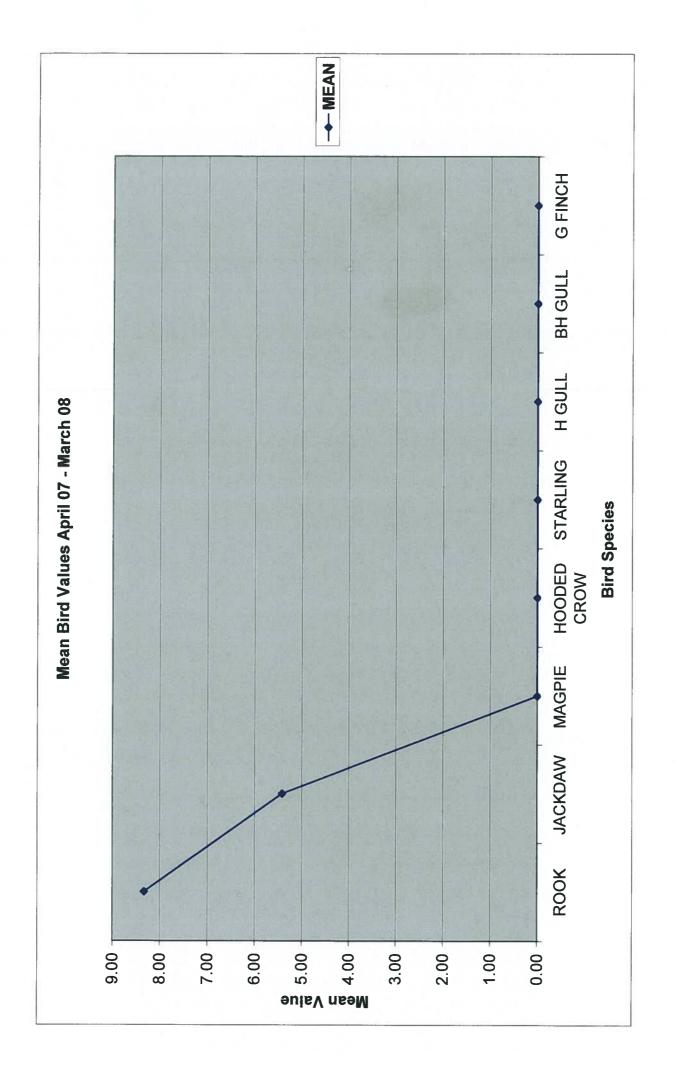
During the period of time on site birds were noted to be on site 2 out of 12 visits. This is an excellent level of bird control.

The mean of BH Gulls has decreased from 42.50(06/07) to 0.00 (07/08) and also Magpie 1.66 (06/07) to 0.00 (07/08). Rooks and Jackdaws are the main group of pest birds noted at Dunmore Landfill Site. These however were easily cleared and once moved on they would stay away fro extended periods of time.

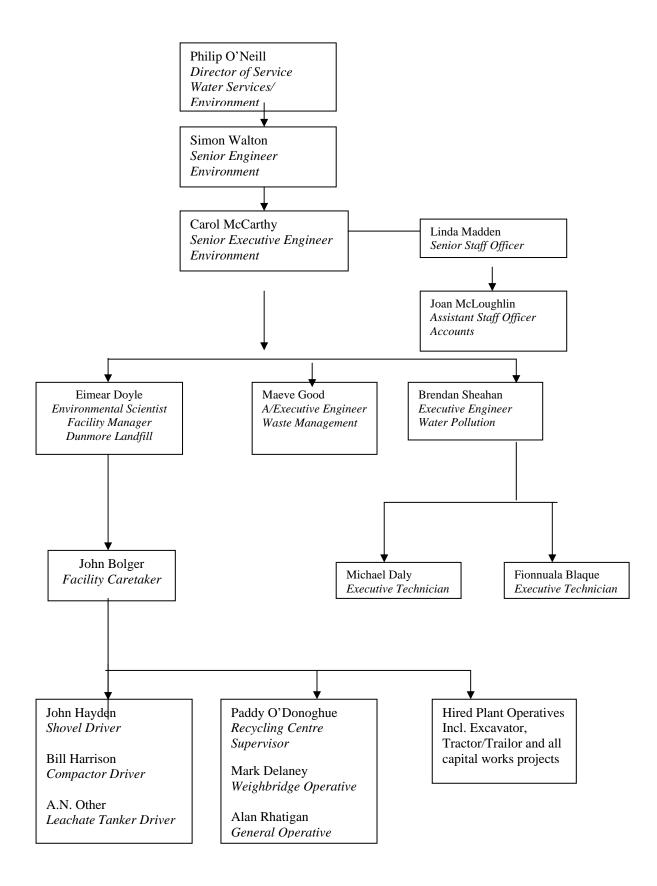

The site is virtually free of birds during operational hours.


Site staff were enthusiastic and helpful with the programme.


In conclusion, Bird Control Ireland Ltd are pleased with the excellent level of results that were achieved at Dunmore Landfill Site.


Jeremy Nicholson Managing Director

				LIN REPORT DURING LANGIN, NUKETINY APRIL 2007 TO MARCH 2006					
	Rook	Jackdaw	Magpie	Hooded Crow	Starling	H Gull	BH Gull	G Finch	Month Total
Apr-07	0	65	0	0	0	0	0	0	65
May-07	0	0	0	0	0	0	0	0	0
Jun-07	0	0	0	0	0	0	0	0	0
Jul-07	0	0	0	0	0	0	0	0	0
Aug-07	0	0	0	0	0	0	0	0	0
Sep-07	0	0	0	0	0	0	0	0	0
Oct-07	0	0	0	0	0	0	0	0	0
Nov-07	0	0	0	0	0	0	0	0	0
Dec-07	0	0	0	0	0	0	0	0	0
Jan-08	0	0	0	0	0	0	0	0	0
Feb-08	0	0	0	0	0	0	0	0	0
Mar-08	100	0	0	0	0	0	0	0	100
Total	100	65	0	0	0	0	0	0	
	ROOK	JACKDAW	MAGPIE	HOODED CROW	STARLING	H GULL	BH GULL	G FINCH	
MEAN	8.33	5.42	0.00	0.00	0.00	0.00	0.00	0.00	
STANDARD	28.87	18.76	0.00	0.00	0.00	0.00	0.00	0.00	
	2005-2006	2006-2007	2007-2008						
BH GULL	25.25	42.50	0.00						
JACKDAW	6.33	0.00	5.42						
MAGPIE	0.00	1.66	00.00						
HOODED CROW	0.00	0.00	0.00						
BH GULL	0.00	0.00	0.00						
H GULL	0.00	0.00	0.00						
G FINCH	0.00	0.00	0.00						
ROOK	0.00	0.00	8.33						



Appendix J

Management Structure

Staff Structure – Dunmore Landfill

Contingency Arrangements

The contingency arrangements for the absences of the main persons from the facility are outlined below;

Person Absent	Replacement
Senior Engineer,	Senior Executive Engineer,
Mr. Simon Walton	Ms. Carol McCarthy
Facility Manager,	Senior Executive Engineer,
Ms. Eimear Doyle	Ms. Carol McCarthy
Caretaker,	Facility Manager,
Mr. John Bolger	Ms. Eimear Doyle
Weighbridge Operator,	Caretaker/General Operative
Mr. Mark Delaney	_

Appendix K

Sample Flare Data

						
DATE	TIME	MS	MARKER	INDEX	STATUS	VALUE
01/08/2008	07:40:55	586	E	0		52.67774582
01/08/2008	07:40:55	586	Е	1		998.24554443
01/08/2008	07:40:55	586	E	2		19.47526550
01/08/2008	07:40:55	586	E	3		0.24033646
01/08/2008	07:40:55	586	E	4		84.82274628
01/08/2008	07:40:55	586	Е	5		40.55677795
01/08/2008	07:40:55	586	Е	6		1.29180849
01/08/2008	07:40:55	586	Е	7		2.13298607
01/08/2008	07:40:55	586	E	8		407.93911743
01/08/2008	08:41:48	17	В	0		54.55237198
01/08/2008	08:41:48	17	В	1		999.46325684
01/08/2008	08:41:48	17	В	2		19.72361183
01/08/2008	08:41:48	17	В	3		0.06008412
01/08/2008	08:41:48	17	В	4		165.23933411
01/08/2008	08:41:48	17	В	5		40.94532013
01/08/2008	08:41:48	17	В	6		1.32285190
01/08/2008	08:41:48	17	В	7		17.19607353
01/08/2008	08:41:48	17	В	8		1021.04547119
01/08/2008	09:41:47	593		0		54.68455505
01/08/2008	09:41:47	593		1		1000.96936035
01/08/2008	09:41:47	593		2		19.55137062
01/08/2008	09:41:47	593		3		0.02002804
01/08/2008	09:41:47	593		4		164.75865173
01/08/2008	09:41:47	593		5		40.70498657
01/08/2008	09:41:47	593		6		1.31884634
01/08/2008	09:41:47	593		° 7		16.77548599
01/08/2008	09:41:47	593		8		1022.19104004
01/08/2008	10:41:47	168		0		60.38854218
01/08/2008	10:41:47	168		1		1002.29919434
01/08/2008	10:41:47	168		2		19.63548851
01/08/2008	10:41:47	168		3		0.16823553
01/08/2008	10:41:47	168		4		163.63708496
01/08/2008	10:41:47	168		5		40.62086868
01/08/2008	10:41:47	168		6		1.34988976
01/08/2008	10:41:47	168		7		17.38233566
01/08/2008	10:41:47	168		8		1020.05609131
01/08/2008	11:41:46	744		0		65.40756989
01/08/2008	11:41:46	744		1		1003.66113281
01/08/2008	11:41:40	744 744		2		19.88784218
01/08/2008	11:41:46	744 744		2 3		0.30042058
01/08/2008	11:41:46	744 744		3 4		160.22430420
01/08/2008	11:41:46	744 744		4 5		40.02803802
	11:41:46	744 744				
01/08/2008		744 744		6		1.46304822
01/08/2008	11:41:46			7		16.66733360
01/08/2008	11:41:46	744		8		1017.76483154
01/08/2008	12:41:46	409		0		74.76466370
01/08/2008	12:41:46	409		1		1005.24731445
01/08/2008	12:41:46	409		2		19.46324730
01/08/2008	12:41:46	409		3		0.68896455
01/08/2008	12:41:46	409		4		150.59483337
01/08/2008	12:41:46	409		5		38.99459076
01/08/2008	12:41:46	409		6		1.58822346
01/08/2008	12:41:46	409		7		15.38754272
01/08/2008	12:41:46	409		8		1018.91046143
01/08/2008	13:41:46	17		0		71.66833496
01/08/2008	13:41:46	17		1		1006.30480957

01/08/2008	13:41:46	17	2	19.13478851
01/08/2008	13:41:46	17	3	1.38193464
01/08/2008	13:41:46	17	4	157.09992981
01/08/2008	13:41:46	17	5	37.86500931
01/08/2008	13:41:46	17	6	1.70438612
01/08/2008	13:41:46	17	7	17.47846985
01/08/2008	13:41:46	17	8	1019.63946533
01/08/2008	14:41:45	549	0	71.61625671
01/08/2008	14:41:45	549	1	1006.94567871
01/08/2008	14:41:45	549	2	18.33767128
01/08/2008	14:41:45	549	3	1.42599630
01/08/2008	14:41:45	549	4	158.81433105
01/08/2008	14:41:45	549 549	4 5	36.79951859
01/08/2008	14:41:45	549	6	1.80052066
01/08/2008	14:41:45	549	7	16.68535995
01/08/2008	14:41:45	549	8	1020.62884521
01/08/2008	15:41:45	159	0	66.37291718
01/08/2008	15:41:45	159	1	1006.59320068
01/08/2008	15:41:45	159	2	17.95313454
01/08/2008	15:41:45	159	3	1.41397953
01/08/2008	15:41:45	159	4	161.34587097
01/08/2008	15:41:45	159	5	36.12657547
01/08/2008	15:41:45	159	6	1.89164817
01/08/2008	15:41:45	159	7	17.74884796
01/08/2008	15:41:45	159	8	1024.69055176
01/08/2008	16:41:44	718	0	65.19126129
01/08/2008	16:41:44	718	1	1006.38494873
01/08/2008	16:41:44	718	2	16.91167641
01/08/2008	16:41:44	718	3	1.32585609
01/08/2008	16:41:44	718	4	162.67573547
01/08/2008	16:41:44	718	5	35.52172852
01/08/2008	16:41:44	718	6	1.93170428
01/08/2008	16:41:44	718	7	16.65531731
01/08/2008	16:41:44	718	8	1020.62884521
01/08/2008	17:41:44	298	0	60.85319138
01/08/2008	17:41:44	298	1	1005.76007080
01/08/2008	17:41:44	298	2	16.69537354
01/08/2008	17:41:44	298	3	1.20168233
01/08/2008	17:41:44	298	4	165.03103638
01/08/2008	17:41:44	298	5	35.27338028
01/08/2008	17:41:44	298	6	1.92469454
01/08/2008	17:41:44	298	7	17.26216698
01/08/2008	17:41:44	298	8	1018.70214844
01/08/2008	18:41:43	951	0	62.24313736
01/08/2008	18:41:43	951	1	1006.14459229
01/08/2008	18:41:43	951	2	16.19066620
01/08/2008	18:41:43	951	3	1.11756456
01/08/2008	18:41:43	951	4	164.24594116
01/08/2008	18:41:43	951	5	35.04105759
01/08/2008	18:41:43	951	6	1.89865804
01/08/2008	18:41:43	951 951	7	17.38834381
01/08/2008	18:41:43	951 951	8	1024.32604980
01/08/2008	19:41:43	480	8	61.21369553
01/08/2008	19:41:43	480	1	1006.30480957
01/08/2008	19:41:43	480 480	2	15.91427898
01/08/2008	19:41:43	480 480	2 3	1.03344679
01/08/2008	19:41:43	480 480	4	163.09231567
01/00/2000	13.41.43	400	4	103.09231307

01/08/2008	19:41:43	480	5	34.92088699
01/08/2008	19:41:43	480	6	1.88263559
01/08/2008	19:41:43	480	7	16.79951859
01/08/2008	19:41:43	480	8	1019.32702637
01/08/2008	20:41:43	108	0	57.99719238
01/08/2008	20:41:43	108	1	1006.27276611
01/08/2008	20:41:43	108	2	15.81814480
01/08/2008	20:41:43	108	3	1.06549168
01/08/2008	20:41:43	108	4	163.87742615
01/08/2008	20:41:43	108	5	35.15321350
01/08/2008	20:41:43	108	6	1.86260760
01/08/2008	20:41:43	108	7	17.03985596
01/08/2008	20:41:43	108	8	1025.00292969
01/08/2008	21:41:42	681	0	57.79691315
01/08/2008	21:41:42	681	1	1006.51312256
01/08/2008	21:41:42	681	2	15.96234703
01/08/2008	21:41:42	681	3	1.06148601
01/08/2008	21:41:42	681	4	163.55697632
01/08/2008	21:41:42	681	5	35.48567963
01/08/2008	21:41:42	681	6	1.82755852
01/08/2008	21:41:42	681	7	16.72741890
01/08/2008	21:41:42	681	8	1025.41955566
01/08/2008	22:41:42	322	0	54.28399658
01/08/2008	22:41:42	322	1	1005.67993164
01/08/2008	22:41:42	322	2	15.78209400
01/08/2008	22:41:42	322	3	0.73302621
01/08/2008	22:41:42	322	4	165.88021851
01/08/2008	22:41:42	322	5	35.83016205
01/08/2008	22:41:42	322	6	1.80252349
01/08/2008	22:41:42	322	7	16.81754494
01/08/2008	22:41:42	322	8	1018.12939453
01/08/2008	23:41:41	888	0	54.24393845
01/08/2008	23:41:41	888	1	1005.45562744
01/08/2008	23:41:41	888	2	16.13058281
01/08/2008	23:41:41	888	3	0.10014019
01/08/2008	23:41:41	888	4	162.30722046
01/08/2008	23:41:41	888	5	36.35489655
01/08/2008	23:41:41	888	6	1.76246738
01/08/2008	23:41:41	888	7	16.04846764
01/08/2008	23:41:41	888	8	<u>1</u> 017.71276855
Index	Name			
0	{::[Logix_	_PLC]F	Program:MainProgram.AMBIEN	
1	{::[Logix_	PLC]F	Program:MainProgram.ATMOS_	
2	{::[Logix_	_PLC]F	Program:MainProgram.C_DIOX	
3	{::[Logix_	PLC]F	Program:MainProgram.C_MONO	
4	{::[Logix_	_PLC]F	Program:MainProgram.FLOW}	
5			Program:MainProgram.METHAN	
6		-	Program:MainProgram.OXYGEN	
7		-	Program:MainProgram.PRESSU	
8		-	Program:MainProgram.TEMPER	
1	-			

Appendix L

AER Returns Worksheet

| PRTR# : W0030 | Facility Name : Dunmore Landfill | Filename : AER Returns Worksheet.xls | Return Year : 2008 |

AER Returns Worksheet

Version 1.1.04

REFERENCE YEAR 2008

1. FACILITY IDENTIFICATION

Parent Company Name	Kilkenny County Council
Facility Name	Dunmore Landfill
PRTR Identification Number	W0030
Licence Number	W0030-02

Waste or IPPC Classes of Activity

No.	
NO.	class_name
	Specially engineered landfill, including placement into lined discrete cells which are capped and isolated from one
3.5	another and the environment.
	Blending or mixture prior to submission to any activity
3.11	referred to in a preceding paragraph of this Schedule.
3.12	Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule.
3.12	in a preceding paragraph of this Schedule.
	Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the
3.13	waste concerned is produced.
	Recycling or reclamation of organic substances which are not used as solvents (including composting and other
4.2	biological transformation processes).
4.3	Recycling or reclamation of metals and metal compounds.
4.4	Recycling or reclamation of other inorganic materials.
	Use of any waste principally as a fuel or other means to
4.9	generate energy.
4.10	The treatment of any waste on land with a consequential benefit for an agricultural activity or ecological system.
	Use of waste obtained from any activity referred to in a
4.11	preceding paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises
4.13	
3.1	Deposit on, in or under land (including landfill).
	Land treatment, including biodegradation of liquid or sludge
3.2	discards in soils.
	Surface impoundment, including placement of liquid or
3.4	sludge discards into pits, ponds or lagoons.

A defense of	Durantees
Address 1	Dunmore
Address 2	Co. Kilkenny
Address 3	
Address 4	
Country	Ireland
Coordinates of Location	410200.000
River Basin District	IESE
NACE Code	382
Main Economic Activity	Waste treatment and disposal
AER Returns Contact Name	Eimear Doyle
AER Returns Contact Email Address	eimear.doyle@kilkennycoco.ie
AER Returns Contact Position	Landfill Manager
AER Returns Contact Telephone Number	056 7767848 /087 2290912
AER Returns Contact Mobile Phone Number	087 9933503
AER Returns Contact Fax Number	056 7767859
Production Volume	18240.0
Production Volume Units	tonnage
Number of Installations	1
Number of Operating Hours in Year	2418
Number of Employees	10
User Feedback/Comments	There were no release of emissions to waters, wastewater / sewer or land with regards to Dunmore Landfill. As per schedule D.7 of W0030-02 the monitoring frequency of nitrogen oxides and sulphur oxides is biannual and therefore no figures available for 2008.
Web Address	
1100 Add1000	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5d	Landfills
5c	Installations for the disposal of non-hazardous waste

3. SOLVENTS REGULATIONS (S.I. No. 543 of

2002)

Is it applicable?	No
Have you been granted an exemption ?	No
If applicable which activity class applies (as per Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being used ?	

4.1 RELEASES TO AIR

| PRTR# : W0030 | Facility Name : Dunmore Landfill | Filename : AER Returns Worksheet.xls | Return Year : 2008 |

06/05/2009 16:34

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

	RELEASES TO	AIR						
POLLUT	ANT		METHO)D			QUANTITY	
			Method Used					
			Designation or			T (Total)	A (Accidental)	F (Fugitive)
No. Annex II	Name	M/C/E	E Method Code Description		Emission Point 1	KG/Year	KG/Year	KG/Year
	Carbon monoxide							
02	(CO)	E	ESTIMATE		1.23	1.23	0.0	0.0

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO	AIR							
POLLUTA	NT		METHC	D			QUANTITY		
			Method Used						
			Designation or			T (Total)	A (Accidental)	F (Fugitive)	
No. Annex II	Name	M/C/E	C/E Method Code Description		Emission Point 1	KG/Year	KG/Year	KG/Year	
					0.0	0.0	0.0		0.0

SECTION C : REMAINING POLLUTANT EMISSIONS

(As required in your Licence)

	RELEASES TO	AIR							
POLLUTA	NT		МЕТНО	D		QUANTITY			
			Metho	od Used					
				Designation or		T (Total)	A (Accidental)	F (Fugitive)	
Pollutant No.	Name	M/C/E	Method Code	Description	Emission Point 1	KG/Year	KG/Year	KG/Year	
					0.0	0.0	0.0		0.0

Additional Data Request	ed from Landfill											
Operators For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KG/yr for Section A: Sector specific PRTR pollutants above. Please complete the table below:												
Landfill:	Dunmore Landfill											
Please enter summary data on the quantities of methane flared and / or												
utilised			Metho	d Used								
	T (Total) kg/Year	M/C/E	Method Code	Designation or Description	Facility Total Capacity m3 per hour							
Total estimated methane generation (as per site model)	0.0				N/A							
Methane flared	409000.0	E	ESTIMATE	ESTIMATE	500.0	(Total Flaring Capacity)						
						(Total Utilising						
Methane utilised in engine/s	0.0				0.0	Capacity)						
Net methane emission (as reported in Section A above)	0.0				N/A							

4.2 RELEASES TO WATERS

| PRTR# : W0030 | Facility Name : Dunmore Landfill | Filename : AER Returns Worksheet.xls | Return Year : 2008 |

06/05/2009 16:34

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

Data on ambient monitoring of storm/surface water or groundwater, conducted as part of your licence requirements, should NOT be submitted under AER / PRTR Reporting as this only concerns Releases from your facility

PULLUTANTS		under At	under AER / PRTR Reporting as this only concerns Releases from your facility								
	RELEASES T	O WATE	RS								
POLL	UTANT					QUANTITY					
			Method Used								
				Designation or		T (Total)	A (Accidental)	F (Fugitive)			
No. Annex II	Name	M/C/E	Method Code	Description	Emission Point 1	KG/Year	KG/Year	KG/Year			
					0.0	0.0	0.0	0.0			

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES	TO WATE	RS					
POLL	JTANT						QUANTITY	
			Me	ethod Used				
				Designation or		T (Total)	A (Accidental)	F (Fugitive)
No. Annex II	Name	M/C/E	Method Code Description		Emission Point 1	KG/Year	KG/Year	KG/Year
					0.0	0.0	0.0	0.0

SECTION C : REMAINING POLLUTANT

EMISSIONS (as required in your Licence)

	RELEASES 1	O WATE									
POLLU	JIANI						QUANTITY				
			Me	ethod Used							
				Designation or		T (Total)	A (Accidental)	F (Fugitive)			
Pollutant No.	Name	M/C/E	Method Code	Description	Emission Point 1	KG/Year	KG/Year	KG/Year			
						0.0 0.0	0.0	0.0			

4.3 RELEASES TO WASTEWATER OR SEWER

SECTION A : PRTR POLLUTANTS

OFFSITE TRANSFER OF POLLUTANTS DE SE									
POLLUTANT		METHOD	I				QUANTITY		
			Metho	d Used					
			Designation or				T (Total)	A (Accidental)	F (Fugitive)
No. Annex II	Name	M/C/E	Method Code Description		Emission Point 1		KG/Year	KG/Year	KG/Year
						0.0	0.0	0.0	0.0

SECTION B : REMAINING POLLUTANT EMISSIONS

(as required in your Licence)

OFFSITE TRANSFER OF POLLUTANTS DES	STINED F								
POLLUTANT		METHOD			QUANTITY				
		Metho	d Used Designation				A		
Pollutant No.	Name	M/C/E	or		Emission Point 1		T (Total) KG/Year	(Accidental) KG/Year	F (Fugitive) KG/Year
						0.0	0.0	0.0	0.0

4.4 RELEASES TO LAND

| PRTR# : W0030 | Facility Name : Dunmore Landfill | Filename : AER Returns Worksheet.xls | Return Year : 2008 |

06/05/2009 16:34

SECTION A : PRTR POLLUTANTS

	RELEASE	RELEASES TO LAND									
POLLUTA	NT		МЕТ	HOD			QUANTITY				
			М	ethod Used							
			Method	Designation or		T (Total)	A (Accidental)				
No. Annex II	Name	M/C/E	<u>Code</u>	Description	Emission Point 1	KG/Year	KG/Year				
					0.0	0.0	0.0				

SECTION B : REMAINING POLLUTANT

EMISSIONS (as required in your Licence)

	RELEASES	TO LAN	ID				
POLLUTANT			METH	OD			QUANTITY
		Met	hod Used				
			Method	Designation or		T (Total)	A (Accidental)
Pollutant No.	Name	M/C/E	<u>Code</u>	Description	Emission Point 1	KG/Year	KG/Year
					0.0	0.0	0.0

TRANSFERS	TRANSFERS OF WASTE													
						Me	ethod Used							
Transfer Destination	European Waste Code	Hazardo us	Quantity T/Year	Description of Waste	Waste Treatment Operation	M/C /E	Method Used	Location of Treatment	Name and Licence / Permit No. of Recoverer / Disposer / Broker	Address of Recoverer / Disposer / Broker				
Within the				Landfill				Onsite in	Purcellsinch Waste Water Treatment Plant	Purcellsinch County				

Μ

Weighed

Ireland

Kilkenny

Kilkenny

D6

5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE

19 07 03 No

13041.02

Leachate

Country

12/05/2009 14:58

Licence / Permit No. of Final

Destination i.e. Final Recovery /

Disposal Site (HAZARDOUS WASTE ONLY)

Name and

Address of Final

Destination i.e. Final Recovery /

Disposal Site (HAZARDOUS WASTE ONLY)