

BALLEALLY LANDFILL, BALLEALLY, LUSK, CO. DUBLIN

ANNUAL ENVIRONMENTAL REPORT 2008 WASTE LICENCE REF. NO. W0009-02

ORIGINAL

January 2009

BALLEALLY LANDFILL, BALLEALLY, LUSK, COUNTY DUBLIN

ANNUAL ENVIRONMENTAL REPORT 2008 WASTE LICENCE REF. NO. W0009-02

User is Responsible for Checking the Revision Status of This Document

Rev. Nr.	Description of Changes	Prepared by:	Checked by:	Approved by:	Date:
1	Original	ML	DH	AM	28/01/08

Keywords: Annual Environmental Report (AER), landfill monitoring

Abstract:

This report represents the monitoring results for Balleally landfill, Balleally, Lusk, Co. Dublin. This report covers the annual reporting period of 2008 in accordance with Waste Licence Reg. No. W0009-02.

BALLEALLY LANDFILL, BALLEALLY, LUSK, COUNTY DUBLIN

TABLE OF CONTENTS.

1.	INTI	RODUCTION	1
	1.1	REPORTING PERIOD	1
	1.2	FACILITY LOCATION	
	1.3	Environmental Policy for Balleally Landfill	
•	CITT	DESCRIPTION	1
2.	SITE		
	2.1	LICENSED WASTE ACTIVITIES AT THE FACILITY	
	2.2	TOTAL QUANTITY OF WASTE ACCEPTED AND DEPOSITED	
	2.3	REMAINING LANDFILL CAPACITY	
	2.3.1	J J	
	2.4	LOCAL ENVIRONMENTAL CONDITIONS	0
3.	ENV	IRONMENTAL MONITORING	7
	3.1	GROUNDWATER	7
	3.1.1	Location Description	
	3.1.2	•	
	3.2	SURFACE WATER	
	3.2.1	Introduction	9
	3.2.2	T	
	3.2.3	J T	
		LEACHATE	
	3.3.1		
	3.3.2	£ ,	
	3.3.3	J	
	3.3.4 3.4		
	3.4.1	NOISE Equipment and Measurement Conditions	
	3.4.1	Measurement Units and Standards	
	3.4.3	NM1	
	3.4.4	NM2	
	3.4.5		
	3.4.6		
	3.4.7	NM5	20
	3.4.8	Interpretation of Results	21
	3.5	DUST AND PM ₁₀ MONITORING	
	3.5.1	Dust Results	
	3.5.2	<i>I</i>	
	3.6:	PM ₁₀ MONITORING	
	3.5.3	T	
		LANDFILL GAS	
	3.5.4 3.5.5	r	
	3.5.6		
	3.6	METEOROLOGICAL MONITORING	
	3.7	RESOURCE CONSUMPTION	
	3.8	FCC	
	3.8.1	Resource Use and Energy Efficiency Audit	
	3.9	LANDFILL GAS UTILISATION	
	3.10	REVIEW OF NUISANCE CONTROLS	
	3.11	REVIEW OF BIRD CONTROL JANUARY TO DECEMBER 2008.	
	3.12	RECOMMENDATIONS	41
4.	SITE	DEVELOPMENT WORKS	42
-		Work carried out in the reporting period 2008	
	<i>4.1 4.2</i>	WORK CARRIED OUT IN THE REPORTING PERIOD 2008 WORKS FOR NEXT REPORTING PERIOD (2009)	
	4.2 4.3	PROGRESS ON SITE RESTORATION	
	4.5 1.1	ANNUAL TODOGRADUICAL SURVEY	45 17

4.5 SI	OPE STABILITY	. 47
5. WASTI	E RECEIVED & CONSIGNED FROM THE FACILITY	. 48
5.1 W	ASTE ACCEPTANCE & HANDLING	. 48
5.1.1	Waste Reception	. 48
5.1.2	Waste Inspection	
5.1.3	Inspection/Quarantine Area	
	UARANTINE REGISTER	
	ISCUSSION OF FINGAL COUNTY COUNCIL'S WASTE CONSIGNED TO BALLEALLY LANDFILL	
	ONMENTAL INCIDENTS & COMPLAINTS	
	eported Incidents	
7. ENVIR	ONMENTAL MANAGEMENT PROGRAMME	. 56
7.1 E	NVIRONMENTAL OBJECTIVES AND TARGETS FOR 2008	.56
	VMMARY OF WRITTEN PROCEDURES	
	OMMUNICATIONS PROGRAMME FOR PUBLIC INFORMATION	
	NANCIAL PROVISIONS	
7.5 M	ANAGEMENT STRUCTURE	. 60
LIST OF T		
<i>TABLE 2.1</i>	QUANTITY AND COMPOSITION OF WASTE RECEIVED AT THE FACILITY 2008	
<i>TABLE 2.2</i>	AIR SPACE RECONCILIATION FOR THE FACILITY FOR 2008	
TABLE 2.3	VOID SPACE AT BALLEALLY LANDFILL EXTENSION,	
TABLE 3.1	GROUNDWATER MONITORING LOCATIONS	
TABLE 3.2	SURFACE WATER MONITORING LOCATIONS NOISE MONITORING LOCATIONS	
TABLE 3.3 TABLE 3.4	NOISE RESULTS 2008	
TABLE 3.4	DUST MONITORING LOCATIONS	
TABLE 3.6:	DUST DEPOSITION RESULTS (MG/M²/DAY) 2008.	
<i>TABLE 3.7</i>	PM_{10} Monitoring Results.	
TABLE 3.8	GAS MONITORING LOCATIONS	
<i>TABLE 3.9</i>	GAS MONITORING LOCATIONS (OUTSIDE WASTE)	
<i>TABLE 3.10</i>	LEACHATE / GAS MONITORING LOCATIONS	. 26
<i>TABLE 3.11</i>	RESULT OF EMISSIONS TESTING OF LANDFILL GAS PLANT 2008	
<i>TABLE 3.12</i>	AVERAGE DAILY WIND SPEED & DIRECTION BY MONTH 2008.	
<i>TABLE 3.13</i>	SUMMARY OF RESOURCES USED ON SITE FOR THE REPORTING PERIOD	
<i>TABLE 3.14</i>	ELECTRICITY CONSUMPTION ON SITE FOR THE PERIOD JANUARY 2008 TO DECEMBER 200 35	08.
<i>TABLE 3.15</i>	EQUIPMENT AND PLANT LIST AT BALLEALLY LANDFILL AND QUANTITIES 2008	. 36
<i>TABLE 3.16</i>	ELECTRICITY OUTPUT (MWHR) FROM THE ON SITE POWER STATION AT BALLEALLY	
	Landfill per year 2003-2008	
<i>TABLE 3.17</i>	ELECTRICITY OUTPUT (MW) FROM THE ON SITE POWER STATION AT BALLEALLY LANDFILM	
TABLE 7.1	REPORTS AND INFORMATION AVAILABLE FOR PUBLIC INSPECTION 1993-2008.	. 57
LIST OF F	IGURES	
FIGURE 3.1	CONDUCTIVITY LEVELS AT GROUNDWATER MONITORING POINTS 2008	
FIGURE 3.2	Ammoniacal nitrogen levels at groundwater monitoring points 2008	9
FIGURE 3.3	ELECTRICAL CONDUCTIVITY AT SURFACE WATER MONITORING POINTS 2008	
FIGURE 3.4	CHLORIDE VALUES AT SURFACE WATER MONITORING POINTS 2008	
FIGURE 3.5	AMMONIACAL NITROGEN AT SURFACE WATER MONITORING POINTS 2008	
FIGURE 3.6	BOD AT SURFACE WATER MONITORING POINTS 2008	
FIGURE 3.7	MONTHLY METHANE LEVELS 2008.	
FIGURE 3.8	Monthly Carbon dioxide levels 2008 Average daily temperatures (min./max.) by month 2008	
FIGURE 3.9 FIGURE 3.10	AVERAGE DAILY TEMPERATURES (MIN./MAX.) BY MONTH 2008TOTAL PRECIPITATION VOLUME BY MONTH 2008	
FIGURE 5.10	TOTAL FRECIFITATION VOLUME DI MONTA 2000	. 51

Page 2 January 2009

FIGURE 3.11	AVERAGE DAILY ATMOSPHERIC PRESSURE BY MONTH 2008	32
<i>TABLE 3.12</i>	AVERAGE DAILY WIND SPEED, MIN, MAX, STANDARD DEVIATION & DIRECTION BY MOR	NTH
	2008	32
<i>FIGURE 3.12</i>	AVERAGE DAILY WIND SPEED BY MONTH 2008.	33
FIGURE 3.13	AVERAGE DAILY RELATIVE HUMIDITY BY MONTH 2008	33
FIGURE 3.14	AVERAGE DAILY EVAPORATION AND POTENTIAL EVAPOTRANSPIRATION BY MONTH 200	98 <i>34</i>

APPENDICES

Appendix I	DRAWINGS
Appendix II	GROUNDWATER MONITORING RESULTS
Appendix III	SURFACE WATER MONITORING RESULTS
APPENDIX IV	LEACHATE LEVELS
APPENDIX V	LEACHATE QUALITY
Appendix V	LANDFILL GAS MONITORING RESULTS
Appendix VI	STAFF STRUCTURE

Page 3 January 2009

1. INTRODUCTION

In 2000 Fingal County Council was granted a Waste Licence (Reg. 9-1) to continue operating Balleally Landfill. In July 2001 Fingal County Council applied for a review of this licence. On the 8th January 2003 the Environmental Protection Agency (EPA) issued Fingal County Council a second waste licence for Balleally Landfill: Waste Licence W0009-02. This licence supersedes the previous licence 9-1 and it permits the operation of a non-hazardous landfill. In accordance with the requirements of Condition 11.6 of the Waste Licence, an Annual Environmental Report (AER) for the facility must be submitted to the EPA.

1.1 Reporting Period

The reporting period for the AER is 1st January to 31st December 2008. This is the 9th AER for the facility as required by the waste licence. This AER applies to the licence W0009-02.

1.2 Facility Location

Fingal County Council has responsibility for the management and operation of the facility. The facility is located at:

Balleally Landfill,
Balleally Lane,
Lusk,
Co. Dublin
Tel. (01) 8071835 Fax. (01) 8431600

National Grid reference 322500 252200.

Drawing DE07-164-03-001, Appendix I present a map of the facility and the surrounding locations.

1.3 Environmental Policy for Balleally Landfill

- Comply with the terms of our waste licence and all other relevant legislation and codes of practice.
- Strive for continuous improvement in the running of the facility, in order to minimise the effects of the landfill on the environment.
- Create better awareness and training for all staff involved in the running of the landfill.
- Develop a good relationship with local residents around Balleally for the betterment of the surrounding area.

Page 1 January 2009

2. SITE DESCRIPTION

2.1 Licensed Waste Activities at the Facility

Balleally Landfill is situated in Lusk, Co. Dublin. It has been in operation since 1971. Waste activities at the facility include landfill, special handling, a construction and demolition (C&D) recycling facility (which ceased in August 2005 due to capping commitments) and a civic amenity site.

Condition 4.2 of W0009-02 restricts waste filling activities to meet Figure 2 of the 'Landscape Master Plan'. The final height of the facility shall be as shown in Figure 2 of the 'Landscape Master Plan'. The final height of the facility peak shall not exceed 40 mOD Malin Head.

On January 8th 2003 Fingal County Council was licensed to carry out the following waste activities at Balleally Landfill, Lusk, Co. Dublin subject to twelve conditions.

Licensed waste disposal activities, in accordance with the Third Schedule of the Waste Management Act, 1996.

- Class 1: Deposit on, in or under land (including landfill).
- Class 5 Specially engineered landfill, including placement into lined discrete cells, which are capped and isolated from one another and the environment.
- Class 10 Release of waste into a water body (including a seabed insertion).
- Class 12 Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule.
- Class 13 Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced.

Licensed waste recovery activities, in accordance with the *Fourth Schedule* of the Waste Management Act, 1996.

- Class 2: Recycling or reclamation of organic substances, which are not used as solvents (including composting and other biological transformation processes).
- Class 3: Recycling or reclamation of metals and metal compounds.
- Class 4: Recycling or reclamation of other inorganic metals.
- Class 9: Use of any waste principally as a fuel or other means to generate energy.

Page 2 January 2009

Class 11: Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule.

Class 13: Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced.

2.2 Total Quantity of Waste Accepted and Deposited

Waste received at Balleally to be disposed of at the landfill is weighed at the weighbridge on entry. Construction and demolition (C&D) material is also weighed and then stockpiled or used immediately for use in Specified Engineering Works (SEW). The quantity and composition of waste received, disposed of and recovered during the reporting period is detailed in Table 2.1.

Table 2.1 Quantity and composition of waste received at the facility 2008

Table does not include materials used in specified engineering works.

Location & Waste Type	Waste Deposited (tonnes) in 2005	Waste Deposited (tonnes) in 2006	Waste Deposited (tonnes) in 2007	Waste Deposited (tonnes) in 2008
Tipface				
Household	66,203	62,056	63,708	50,489
Commercial/Trade	49,195.57	63,819	61,773	46,248
Sewage Sludge	3,402.24	4,623	7,466	5,091
Industrial Non-Hazardous Sludge	6,635	6,825	7,061	6,660
Civic Amenity				
Household	5,801	4,891	4,867	3,959
Local Fly Tipped			62	10
Total	131,236.81	142,214	144,937	112,457

2.3 Remaining Landfill Capacity

As part of the Waste Management Strategy for the Dublin Region an extension to the landfill facility was applied for by reviewing the then current licence W0009-02. This was granted on 8th January 2003 (W0009-02) and Priority Construction Ltd. under the supervision RPS-MCOS were appointed to construct 6 No. lined cells at Balleally to provide an additional capacity of 1.29 million m³. Filling of Cell 1 started on 1st April, 2004 – Table 2.2 for information on inputs to date.

Filling of:

- Cell 1 commenced 1st April, 2004.
- Cell 2 commenced 8th June, 2004.

Page 3 January 2009

- Cell 3 commenced-22nd June, 2005.
- Cell 4 commenced 6th October, 2006.
- Cell 5 commenced 23rd August, 2007.
- Cell 6 commenced 15th December, 2008.

Table 2.2 Air space reconciliation for the facility for 2008

Table does not include materials used in specified engineering works.

Description	Tonnes	Cubic Metres
Waste Inputs Jan – Mar 2004	48,802	61,003
Landfill Extension	Tonnes	Cubic Metres
Total Inputs Apr-Dec 2004	145,223.10	
Total Inputs Jan-Dec 2005	131,236.81	
Total Inputs Jan-Dec 2006	142,215.75	
Total Inputs Jan-Dec 2007	144,937.00	
Total Inputs Jan-Dec 2008	112,457.00	
TOTAL	676,069.66	795,376
ORIGINAL LICENCE LIMIT WL0009-02	1,040,000	1,223,529
Remaining Capacity	363,930	428,153

Waste density of 0.85 tonnes/m³ used for above calculations

Void Space: Total Filled + Total Remaining 795,376m³ + 428,153m³ = 1,223,529m³

2.3.1 Balleally Landfill - Short Term Extension

The extension to the facility is approximately 98,200 m² (surface area) with composite liner system and leachate collection system together leachate collection chambers. It provided for approximately 1.04 million tonnes of waste.

Table 2.3 Void Space at Balleally Landfill Extension,

Cell	Plan Area m ²	Surface Area m ²	Void Space m³	Void Space Tonnes
Cell 1	15000	18000	193,373.00	164,367.05
Cell 2	18200	19000	306,338.00	260,387.30
Cell 3	13600	14300	204,001.00	173,400.85
Cell 4	15300	16500	265,933.00	226,043.05
Cell 5	16200	17300	283,991.00	241,392.35
Cell 6	12200	13100	160,101.00	136,085.85
Total	90,500	98,200	1,413,737	1,201,676.45

Page 4 January 2009

Assumptions:

- Geosynthetic Capping of 1.06 m.
- 10% Daily cover to be absorbed by settlement
- Waste density of 0.85 tonnes/ m³

The remaining capacity in the landfill was surveyed in February 2008 (See Table 2.4). Remaining capacity at the end of 2008 is estimated in Table 2.5.

TABLE 2.4: TOTAL VOID SPACE REMAINING AS SURVEYED ON 21/2/2008.

Void Space	Source	Void Space Tonnes
Cells 4-6	RPS	276,250

TABLE 2.5: REMAINING VOID SPACE AT BEGINNING OF JANUARY 2009.

Void Space	Waste Deposited (tonnes) Since March 2008	Remaining Void Space (tonnes) 21-2-2008
		276,250.00
Mar 2008	9,987.98	266,262.02
April 2008	12,014.11	254,247.91
May 2008	10,842.60	243,405.31
June 2008	10,695.76	232,709.55
July 2008	9,704.31	223,005.24
Aug 2008	9,637.27	213,367.97
Sept 2008	11,017.44	202,350.53
Oct 2008	10,535.95	191,811.14
Nov 2008	9,052.95	182,758.19
Dec 2008	7,986.71	174,771.48

A proposal was sent to The Agency (Ref: FCC-W0009-02-020) on 22/9/2008 to provide for a second lift "piggybacking" between "new cells" and Top Lobe of the old landfill. This proposal would give a void space of 176,000 tonnes. This proposal was agreed to, subject to conditions, by *The Agency*, (Ref: W0009-02 / ak61em).

Page 5 January 2009

2.4 Local Environmental Conditions

The landfill site covers 50 ha in total. The east face of the landfill is bordered by the Dublin-Belfast railway line and to the south by Rogerstown Estuary. See Figure DE07-164-03-001, Appendix I.

The former landfill facility was approx. 40ha. The extension to this facility to the north west of the site (OS National Grid Ref. 3225E 2522N) consists of a new engineered lined cell (approx. 10 Ha). The primary objective of its design is to prevent or reduce negative effects on the environment arising from landfilling of waste.

All waste is deposited in a limited working face, covered daily and surrounded by soil bunds. The entire site is surrounded by perimeter berms to reduce the visual impact and to create shelter to minimise the conditions that create windblown litter.

Page 6 January 2009

3. ENVIRONMENTAL MONITORING

3.1 Groundwater

There are 20 No. groundwater monitoring points in the waste licence listed in Schedule D of the waste licence. The grid references and borehole I.D for these are shown in Table 3.1 below. These sample locations can also be seen in Figure DE07-164-03-001, Appendix I.

Table 3.1 Groundwater Monitoring Locations

Station	Classification	Easting	Northing
MB18	Eastern Upgradient	323 245	252 783
RC3	Western Upgradient	321 906	252 729
MB35	South-western Downgradient	322 029	251 906
CD1	Control Drain N/W of Cell 1	322 008	252 356

3.1.1 Location Description

Borehole MB35

This borehole is situated 190 m south of the landfill on the edge of the Inner Rogerstown Estuary, downgradient of the landfill.

Location CD1

The control drain sampling location CD1 is situated 30 m south of Balleally Lane west of the landfill extension. This drain collects freshwater run-off from underneath the newly constructed lined cells.

MB18

This is an upgradient private well of Rogerstown House which lies to the north east of the landfill site along the estuary.

RC3

This upgradient borehole is situated 535 m north of the landfill on private agricultural land.

The groundwater results have been compared to the relevant Interim Guideline Value (IGV) set out in the EPA report 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'. It should be noted that the groundwater beneath the landfill is likely to be estuarine in nature and would not generally be considered to be potable water.

Page 7 January 2009

3.1.2 Interpretation of Results

This section presents a summary of the chemical results. The groundwater dataset is included in Appendix II.

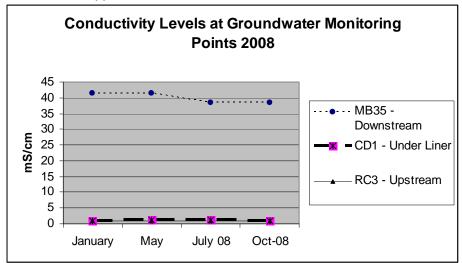


Figure 3.1 Conductivity levels at groundwater monitoring points 2008

At location MB35, chloride and electrical conductivity values are indicative of saline water due to its position in close proximity to the Rogerstown estuary. Results for chloride levels appear stable during quarters 1-3 and increase in quarter 4.

Elevated sulphate, magnesium and manganese levels were recorded at MB35 during quarter 3 (annual sampling round), similar to the elevated results recorded in previous years (2006-2007). Unlike previous years, elevated levels of Orthophosphate, Boron, Calcium and Lead above IGV were recorded at MB35. On the other hand levels of potassium, sodium and chromium have fallen from previous years to under IGV values.

Results upgradient of the landfill, at locations RC3 and CD1, indicate conductivity levels close to the recommended IGV. Results obtained from RC3 exceeded the IGV value of 1000 μ S/cm during quarter 2 and quarter 4 of monitoring period. Results obtained from CD1 exceeded the IGV value of 1000 μ S/cm during quarter 2 and quarter 3 of the monitoring period. Calcium, Sodium and potassium are trending upward from 2007 and are above IGV at CD1 and RC3.

Chloride values remain above the IGV (30 mg/l) for all locations during the monitoring period except at CD1, during quarter 1. These values are particularly high at MB35 due to saline intrusion. Groundwater quality deteriorated upgradient of the landfill at RC3 when compared to 2007 annual results (Appendix II). Sulphate levels at CD1 and MB35 were elevated over the IGV; however, levels of sulphate were recorded over its IGV value in previous Annual Environmental Reports (2006-2007).

Page 8 January 2009

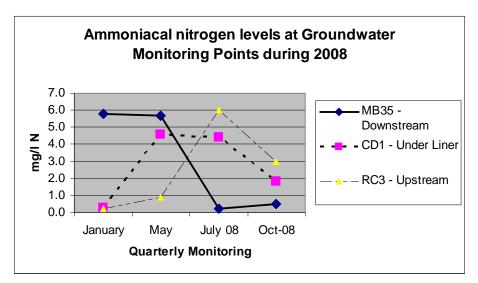


Figure 3.2 Ammoniacal nitrogen levels at groundwater monitoring points 2008

A similar trend to 2007 is evident in Ammoniacal nitrogen levels at groundwater monitoring locations in that they fell in quarter 4. High Ammoniacal Nitrogen levels could be indicative of leachate impact. High levels of Ammoniacal nitrogen were recorded upgradient and downgradient of the facility. Levels of ammoniacal nitrogen at RC3 and CD1 are up whereas levels at MB35 are down on 2007 results (Appendix II).

3.2 Surface Water

3.2.1 Introduction

Schedule D of the waste licence requires the monitoring of surface water at 7 no. locations. The sample locations can be seen in Table 3.2 and Figure DE07-164-03-001, Appendix I.

Table 3.2 Surface water monitoring locations

Station	Easting	3.2.1.1 Northing
SW1* (Renamed SWFD)	322 036	252 412
SWV1	321 980.2	252 187.4
S3*	322 985	252 692
S7	322 646	253 213
SW20a	322 897	252 687

From licence 9-2

The full surface water analysis datasets as issued by Alcontrol are included in Appendix III.

Page 9 January 2009

The water quality results have been compared to the Maximum Admissible Concentration (M.A.C.) for surface water (A1) intended for Abstraction for Drinking Water.

Description of Sampling Points:

SWFD: Discharges water from a French Drain receiving surface water shed from the northern slopes of the landfill. It is an open drain located immediately west of the entrance to the wastewater treatment plant.

SWV1: The surface water discharge point at the Western Point of the landfill before discharge to the inner estuary. The samples are collected in the open channel immediately upstream of the discharge pipe/cut-off flap.

This sampling point is located on a stream to the north east edge of the landfill site prior to its discharge to the outer estuary.

S7: This sampling point is located upstream of the site on the stream to the north of the landfill site.

SW20a: This sampling point is located at a drainage ditch to the east of Rogerstown Lane, close to the north-eastern tip of the landfill. The drainage ditch is preceding SW20 which lies to its east.

Page 10 January 2009

3.2.2 Interpretation of Results:

The surface water results have been compared to maximum admissible concentrations (MAC) as outlined in the Surface Water Regulations, 1989. It can be seen from the results that over the course of the year, several parameters were in exceedence of the regulations (Appendix III).

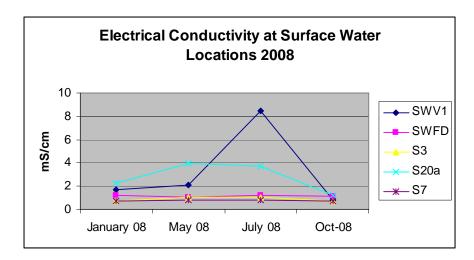


Figure 3.3 Electrical conductivity at surface water monitoring points 2008

Electrical conductivity values tend to be higher in quarters 2 & 3 than quarters 1 & 4. At location SW20a, conductivity values appear to noticeably increase from 2.298 mS/cm in quarter 1 to 3.952 mS/cm in quarter 2. These values are slightly less than the peak conductivity value of 4.330 mS/cm which was achieved during the second quarter of 2006. Conductivity values declined again to 1.2 mS/cm in quarter 4. Conductivity levels reached a high of 8.5mS/cm during Q3 at SWV1; this had reduced to 0.815mS/cm by quarter 4. Conductivity values exceeded the maximum admissible concentration at all locations except upstream of the landfill at S7.

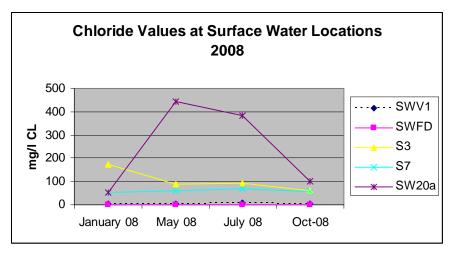


Figure 3.4 Chloride values at surface water monitoring points 2008

Page 11 January 2009

Chloride (CI) values follow a similar pattern to those of conductivity, with quarters 2 and 3 tending to be higher than quarters 1 and 4. Values are below the MAC of 250mg/l CI for all locations, except at SW20a in quarters 2 and 3. These parameters were chosen because they are indicators of leachate impact, but they also may demonstrate impact by other sources, such as sewage or the nearby estuary.

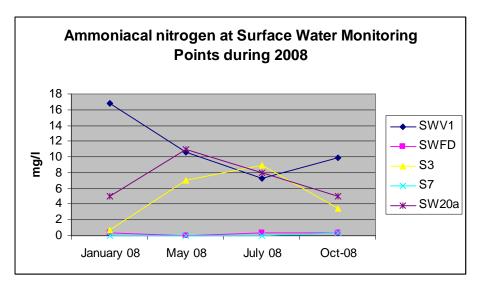


Figure 3.5 Ammoniacal nitrogen at surface water monitoring points 2008

Overall, Ammoniacal Nitrogen levels have been variable during the monitoring period. Elevated levels of Ammoniacal nitrogen have been recorded from all surface water monitoring locations but particularly so at SWV1, SW20a and S3.

From Q3 2007 to Q3 2008, BOD levels have increased beyond IGV at SWV1 (Appendix II). BOD levels are high particularly at SW20a and SWV1. Over the same period BOD levels at SW20a have improved slightly, yet still remaining above its IGV.

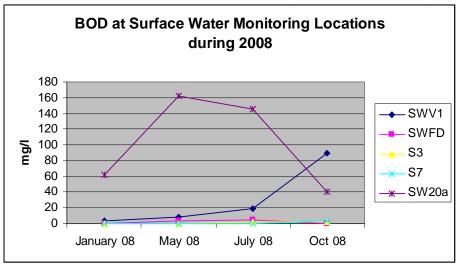


Figure 3.6 BOD at surface water monitoring points 2008

Page 12 January 2009

From Q3 2007 to Q3 2008 Sulphate levels have increased beyond IGV at SWV1 and SWFD, while COD and Manganese levels have increased at SWV1. On the other hand between Q3 2007 and Q3 2008 cadmium and lead levels have reduced to comply with their respective IGVs at SWV1 and SWFD.

In general, the analytical results are consistent with previous reported results and indicate that the surface water quality at SWV1, SWFD and SW20a is poor in quality, due to elevated levels of ammoniacal nitrogen, BOD and total suspended solids recorded.

3.2.3 Surface Water Improvements to Contamination at S3 & SWV1.

The Agency's observation (Ref.W0009-02\08\aro8mor) regarding Ammoniacal Nitrogen levels at surface water monitoring points S3, SWV1 and SW20a as reported in Quarterly Monitoring Reports Oct 2007 - Dec 2007 indicating that contamination of surface water is still occurring; is noted. Contamination is identified as ongoing.

Corrective action

(i) CAUSE OF CONTAMINATION AT SWV1

An investigation into the cause of contamination at SWV1 and S3 was undertaken on 4/10/2007 and reported to The Agency, (Our Reference 2007FCC030). This report suggested that the source of the contamination at SWV1 was the water collecting at the entrance to the facility. This water was contaminated with leachate contaminated water running out the entrance onto Balleally Lane. This was being conveyed to the surface water infrastructure through P2 and discharged to the estuary near SWV1. This is a plausible cause of the contamination at SWV1 and no further investigation is required at the moment but to take corrective actions (see below).

CORRECTIVE ACTION AT SWV1

The contaminated surface water interception drain (Hauraton, Category F900) which was proposed by the licensee (FCC-2008-9-2-003) and agreed by The Agency (W009-02/ak57em) was installed WE7/3/2008. This seems to have helped the flooding situation at the entrance. It also intercepts the contaminated surface water before it leaves the facility. The surface water previously collected from the entrance area which was directed to the estuary from P2 is now sent to the treatment plant. It was expected that these measures would reduce contamination at SWV1.

There has not been a consistent improvement in surface water quality since this corrective measure has been taken. However during quarter 4, 2008 an incident was noted whereby leachate was being pumped directly into the inner Rogerstown Estuary at SWV1 from cell 2. This incident occurred due to a plumbing error. This was notified to The Agency on 19/11/2008 and has now been corrected. It is hoped that this discovery and corrective action will yield improvements in surface water quality at SWV1 during 2009.

It is proposed to continue to track these corrective measures during future monitoring. If there is no significant improvement, or deterioration occurs, there will be a review of the situation and of the mitigation measures in place.

Page 13 January 2009

(ii) CAUSE OF CONTAMINATION AT S3

For reasons discussed during the 2008 annual audit, the contamination at S3 is no longer considered to be the waste water treatment plant located upstream of S3. It is possible that the cause is related to the contamination at SW20a and seepage through the bung at this point which eventually discharges at S3. In this regard, no further investigation is required at the moment but to take corrective actions and monitor results.

CORRECTIVE ACTION AT S3

The bung next to SW20a will be replaced to ensure that there is no seepage through it to cause contamination at S3. Subsequent monitoring at S3 will determine the success of this measure. Further measures will be required if this measure is not successful.

Remediation works are required at SW20a and will be completed as soon as possible. These relate to the excavation and cleaning of the drain/ditch at SW20a. If subsequent monitoring at SW20a indicates continued contamination further mitigation measures will be proposed to *The Agency*.

Remediation works were not completed during 2008. They were not executed as there was significant traffic along the access lane leading to the outer estuary for the first three quarters relating to works on the railway line. Following the completion of the Irish rail works on the Dublin-Belfast line the week ending the 4 July 2008, there were further issues relating to gaining access to the ditch from a private landowner. The access issue was resolved during quarter 4 and it is envisaged that these works will be completed during 2009.

Quarterly monitoring reports from 2009 shall include progress updates resulting from actions (i) and (ii) above.

Furthermore, the ongoing capping programme and final restoration of the landfill will control and contain the breakouts which occasionally occur near the entrance. The shallow vertical barrier surrounding the facility will be completed at the entrance as part of the closure plan. This should help contain any contamination of surface water with leachate into the future.

These mitigation measures should yield improvements in water quality at SW20a, S3, SWV1 & SWFD.

Page 14 January 2009

3.3 Leachate

Leachate monitoring was carried out at the monitoring locations as defined in Schedule D of Waste Licence W0009-02 and shown on Figure DE07-164-03-001, Appendix I. Additional leachate monitoring wells have been installed, namely L19-L24. During the annual round of monitoring a number of wells were destroyed or inaccessible with the result that no sample was obtained for analysis, namely: -LMW2 (destroyed), LMW3 (blocked), LMW8 (blocked), LMW15 (Missing), LMW16 (Casing too high), L19 - 22 (No Access Safety), MB18 (No access to land granted).

3.3.1 Leachate Level Results

Waste Licence W0009-02 requires that a visual assessment is undertaken and the leachate level in every second well is monitored and recorded monthly and that chemical analysis of leachate samples is undertaken annually.

Results from the 2008 monitoring period are included in Appendix IV.

A trigger level of 5.5 meters above ordnance datum (m AOD) for leachate wells between LMW1 –to- LMW18 has been established, to indicate when leachate levels are approaching the top of the shallow vertical barrier at 6.0m above ordnance datum. Leachate was recorded above the trigger level at a number of leachate locations, particularly LMW3-6.

It is observed by site management that the leachate monitoring wells are set back from the vertical clay barrier by 18-20 m. The hydraulic gradient is likely to fall between the leachate monitoring wells and the vertical clay barrier. Consequently the levels at these wells may not reflect the leachate levels at the vertical clay barrier.

It is further observed by site management that P1a & b are fully open and thus the northern and southern leachate lines are fully open. Therefore leachate should not be building up in the body of the landfill.

Nevertheless, In accordance with the ERP trigger levels visual assessments were conducted on these slopes and there is no evidence of leachate break-out. This would corroborate the comments outlined above.

3.3.2 Leachate Quality Results

This section presents a summary of the chemical results. The full leachate datasets are included in Appendix V.

High levels of Ammoniacal Nitrogen, sodium, chloride and electrical conductivity, dominate the results from all leachate monitoring wells. It is noted that the levels for these parameters tend to be higher along the southern boundary than the eastern boundary.

The pumping chamber receives leachate from a number of different locations on-site. As it collects leachate from a number of different areas over the site it is representative of general leachate quality over a greater time period than the

Page 15 January 2009

individual grab samples from each of the leachate wells. The pumping chamber collects leachate from:

- Pipe1A New cells
- Pipe 1B Old northern boundary
- Pipe 1C Southern boundary

The results in the pumping chamber reflect the results obtained from the individual wells on the landfill. High sodium and chloride correlate with high readings for electrical conductivity.

High levels of Conductivity, Ammoniacal Nitrogen, COD, Biological Oxygen Demand (BOD), total Phosphorous, ortho Phosphate, Sodium and Potassium, were also recorded in the pumping chamber at P1a, P1b and P1c

Results indicated that the annual composition of leachate at all monitoring locations at Balleally Landfill is those expected from leachate samples in an estuarine setting.

3.3.3 Volume of Leachate transported off-site.

The approximate volume of leachate tankered off-site for treatment in 2008 was 55,000m³, this compares with 65,000m³ in 2007 and 51,000m³ in 2006.

3.3.4 Leachate Treatment Plant

As part of the Waste Licence W0009-02, Fingal County Council have to treat all leachate produced at Balleally Landfill, to levels specified by the Environmental Protection Agency, before it is safely discharged. The Balleally Landfill extension consists of six lined cells, with a network of slotted pipes for the collection of leachate in the base of each cell, connected to a pumping system for transfer to the Leachate Treatment Plant.

In addition to leachate that will arise from the landfill extension, the Leachate Treatment Plant will treat the contaminated surface runoff from the existing landfill and leachate from the southern and northern vertical barriers of the landfill.

Fingal County Council called for tenders for the Design and Construction of Leachate Treatment Plant during mid 2004. After assessment by RPS-MCOS Consulting Engineers, Response Engineering was appointed as successful Design and Construct Contractors for the Leachate Treatment Plant.

The leachate treatment plant is still at the commissioning stage. Treating residual hard COD to the licence Emission Limit Value of 125 mg/l has proved difficult. Fingal County Council will apply for a licence review during 2009 to amend the Emission Limit Values and Interpretations for given parameters in treated leachate before discharge to surface water.

During 2008 leachate was tankered from Balleally directly to Waste Water treatment facilities in Swords and/or via the 9C sewer to the Waste Water treatment facilities Ringsend.

Page 16 January 2009

3.4 Noise

Noise surveys were undertaken during every quarter of the monitoring period (2008) in order to assess the existing noise emissions from the site and to establish the existing noise environment at potentially sensitive receptors near the site in accordance with Schedule D of Waste Licence Reference 9-2. The location of noise monitoring points can be seen in Figure DE07-164-03-001, Appendix I.

Table 3.3 Noise Monitoring Locations

MONITORING LOCATION	DESCRIPTION	Northings	EASTINGS
NM1	Situated adjacent to the north-eastern boundary of the site.	321 919	252 357
NM2	Situated north east of the site boundary adjacent to Balleally Lane.	321 779	252 415
NM3	Situated East of the landfill 120m along Balleally Lane.	321 459	252 383
NM4	Situated north of the landfill along Rogerstown Lane.	322 604	252 962
NM5	Situated north of the landfill along Rogerstown Lane.	322 970	254 004

3.4.1 Equipment and Measurement Conditions

All measurements were taken in accordance with ISO 1996 (Description and Measurement of Environmental Noise) and the EPA Environmental Noise Survey Guidance Document.

The survey was carried out using a Brüel and Kjær 2260 Type 1 Sound Level Meter (SLM) with an outdoor microphone unit Type 4198. The instrument was calibrated prior to commencing each survey using the recommended calibration procedure and a known pure tone noise source. The unit was again calibrated on completion of each survey to record drift during the course of the day. Drift is normally associated with battery fade and temperature. The unit did not drift significantly during any of the surveys.

Good measurements require calm conditions to avoid spurious effects on the microphone, particularly at low frequencies. An average wind speed of less than 5 m/s is the preferred limit when noise measurements are being taken, with an upper

Page 17 January 2009

limit of 7 m/s. Weather conditions during all monitoring surveys were dry and calm and wind speed was observed to be less than 7 m/s for the monitoring period.

3.4.2 Measurement Units and Standards

The unit of sound pressure level is the decibel (dB). This is calculated as a logarithm of sound. A change of 10 dB corresponds approximately to halving or doubling the loudness of sound. The use of decibels (A-weighted), dB (A), as the basic unit for general environmental and traffic noise is widely accepted. Decibels measured on a sound level meter incorporating this frequency weighting differentiates between sounds of different frequencies in a manner similar to the human ear. That is, measurements in dB (A) broadly agree with human beings assessment of loudness. It has been demonstrated that noise levels in dB (A) from a wide range of sources adequately represent loudness.

In order to understand the terms used below, some definitions of the terms used are outlined as follows:

- L_{AF10} Refers to those noise levels in the top 10 percentile of the sampling period; it is the level which is exceeded for 10% of the measurement period. It is used to determine the intermittent high noise level features of locally generated noise and usually gives an indicator of the level of traffic.
- **L**_{AF90} Refers to those noise levels in the lower 90th percentile of the sampling interval; it is the level which is exceeded for 90% of the measurement period. It will therefore exclude the intermittent features of traffic and is used to estimate a background level.
- L_{Aeq} The average level recorded over the sampling period. The closer the L_{Aeq} value is to either the L_{AF10} or L_{AF90} value indicates the relative impact of the intermittent sources and their contribution. The relative spread between the values determines the impact of intermittent sources such as traffic on the background.

Impulsive noise: a noise of short duration (typically less than one second), the sound pressure level of which is significantly higher than the background.

Tonal noise: A noise source that is concentrated in a narrow band of the frequency spectrum.

Page 18 January 2009

Table 3.4 Noise results 2008

LOCATION		Q1 2008			Q2 2008			Q3 2008			Q4 2008	
LOCATION	L(A) _{EQ}	L(A)F ₉₀	L(A)F ₁₀	L(A) _{EQ}	L(A)F ₉₀	L(A)F ₁₀	L(A) _{EQ}	L(A)F ₉₀	L(A)F ₁₀	L(A) _{EQ}	L(A)F ₉₀	L(A)F ₁₀
NM1	53	43	56	57	57	56	59	34	62	65	43	67
NM2	58	39	56	58	40	54	66	39	64	67	46	69
NM3	63	41	61	64	40	54	66	45	69	62	46	65
NM4	59	45	54	57	40	54	64	46	66	55	46	54
NM5	50	45	45	45	38	45	63	45	67	52	44	50

Page 19 January 2009

3.4.3 NM1

During 2008, the dominant noise sources at this monitoring point were from local traffic on Balleally Lane, particularly passing over the speed ramps. Distant motorway noise, passing trains and birdsong contributed to background noise levels. Site plant associated with the capping programme and noise from bird scare devices on site and on tillage farms.

3.4.4 NM2

During 2008, the dominant noise source at this monitoring point was from local traffic on Balleally Lane and the sound of the traffic passing over speed ramps on the road. Sound from passing aircraft was noted during one of the quarterly rounds. Noise from bird-scare devices from tillage farms in the vicinity of the landfill also contributed to the dominant sound at this point. Birdsong contributed to background noise levels. No sounds from the site could be heard during the monitoring period.

3.4.5 NM3

During 2008 the dominant noise source at this monitoring point was from local traffic on Balleally Lane and the sound of the traffic passing over the speed ramps on the road. Passing aircraft were also sources of noise. Farm machinery in nearby fields, offsite bird-scare devices and a slow moving road sweeper were also noted during quarter 2 monitoring period. Birdsong contributed to background noise levels. Landfill activities were not considered contributory sources of noise during 2008.

3.4.6 NM4

During 2008, the dominant noise source at this monitoring point was from machinery working on-site and from vehicles passing on Rogerstown Lane. Bird-scare devices from local tillage farms in the vicinity of the landfill also contributed to the dominant sound at this point. Passing trains and aircraft contributed to non landfill source background noise levels.

3.4.7 NM5

During 2008, the dominant noise source at this monitoring point was from local traffic on Rogerstown Lane. Persistent noise came from M1 traffic, with intermittent birdsong, bird scarers, trains and aeroplanes contributing to background noise levels. Landfill activity sounds, engines and capping activities, contributed to background noise levels during the monitoring period.

Page 20 January 2009

3.4.8 Interpretation of Results

During the 2008 monitoring period, there was only two incidences were the EPA limit of 55 dB (A) for daytime noise was complied with, namely NM1 and NM5 in quarter 1. With the exception of NM4 and NM5, the dominant source of noise at these locations was not caused by activities at the Balleally facility. Local traffic on Balleally and Rogerstown lane are the main contributors to noise levels in the area, along with the noise from waste trucks travelling to and from the site.

3.5 Dust and PM₁₀ Monitoring

Dust monitoring was setup out at 4 locations in accordance with Schedule D of the licence. The locations of these monitoring points are shown on Figure DE07-164-03-001, Appendix 1. During 2008 dust monitoring was undertaken in May-June, June-July and July-August.

Bergerhoff style gauges were used to determine total dust deposition levels at the site. Four gauges were set up so that the dust jars were at a height of at least 1.5 m above the ground and the jars were set in place during the monthly monitoring events.

Table 3.5 Dust Monitoring Locations

Location	Easting	Northing
DM1 (PM1)	321 874	252 321
DM2	321 927	252 482
DM3 (PM2)	322 038	252 484
DM4 (PM3)	322 728	252 671

(PM Labels = PM10 monitoring locations)

Some dust stands were knocked over, blown over during June and the round had to be repeated again in July.

3.5.1 Dust Results

The dust monitoring results, as issued by Southern Scientific Services Ltd, for the 2008 monitoring periods are present in Table 3.6.

Page 21 January 2009

Table 3.6: Dust Deposition Results (mg/m²/day) 2008

	May-June 2008			JUNE-JULY 2008			Ju	LY-AUGUST 200	8
SAMPLING POINT	ORGANIC DUST	INORGANIC DUST	TOTAL DUST	ORGANIC DUST	INORGANIC DUST	TOTAL DUST	ORGANIC DUST	INORGANIC DUST	TOTAL DUST
	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d
D1	25	93	118	54	49	103	55	50	105
D2	48	29	77	95	38	133	70	45	115
D3	29	<10	39	100	40	140	132	20	152
D4	20	24	44	<10	<10	<10	39	41	80

Page 22 January 2009

3.5.2 Interpretation of Results

An organic and inorganic analysis of dust was performed in addition to the total dust deposition analysis to give a greater understanding of the results. All dust results were under the trigger level of (350 mg/m²/day).

Dust deposition monitoring has currently been undertaken 3 times during 2008, in compliance with Schedule D.3. of the waste licence W0009-02.

3.6: PM₁₀ Monitoring

FTC carried out monitoring of particulate matter (PM_{10}) levels at locations PM1, PM2 and PM3 in accordance with Schedule D of the Waste Licence W0009-02, in October 2008. The locations of these monitoring points are shown on Figure DE07-164-03-001, Appendix 1.

 PM_{10} monitoring was undertaken for a 24 hour sampling period at PM1-PM3. The PM_{10} filter was sent to Southern Scientific Services Ltd to be analysed for the presence of particulate matter in the air by gravimetric analysis.

3.5.3 Interpretation of Results

The PM₁₀ monitoring results for the 2008 monitoring period are presented in Table 3.7.

Table 3.7 PM₁₀ Monitoring Results

MONITORING PERIOD	MONITORING LOCATION	AVERAGE CONCENTRATION VALUE (µG/M3)
October	PM1	9.7
October	PM2	19.4
October	PM3	12.5

There is no emission limit set for PM_{10} in Schedule C of the licence but Condition 6.7 sets a trigger level of 50 μ g/m3 for a daily sample.

The results in Table 3.7 show that during monitoring period the air quality is good at PM1-PM3 and the results are under the trigger level of 50 µg/m3 for a daily sample.

Page 23 January 2009

3.7: Landfill Gas

The location of the monitoring positions is shown on Figure DE07-164-03-001, contained in Appendix I. The monitoring results for 2008 are outlined in Appendix VI attached.

The locations are presented in Table 3.8. In addition to the perimeter Landfill Gas Monitoring locations two leachate monitoring wells (chosen at random) from each of the southern and eastern boundaries LMW1-LMW18 and two manholes MHL33 and MHL40 (Table 3.9) along Balleally Lane were also monitored. LMW1 – LMW18 boreholes are located in front of the vertical barrier installed along these boundaries and are in the leachate that is collected at these points. It should be noted that boreholes LMW1-18 are leachate sampling wells and not specifically designed for monitoring landfill gas. See Table 3.10 for grid references.

The boreholes were monitored for Methane (CH₄), Carbon dioxide (CO₂), Oxygen (O²) and atmospheric pressure. It should be noted that the boreholes along the estuary were designed and constructed to sample leachate and groundwater and not specifically landfill gas.

Page 24 January 2009

Table 3.8 Gas Monitoring Locations

Borehole ID	Borehole Description	Easting	Northing	Depth of Borehole (m)	Top of casing level	Ground Level (m O.D.)	Sample
GA1	Northern corner of Cell 1	321 767	252 159	6	4.155	4.0	Perimeter Borehole
GA2	Western corner of Cell 1	321 986	252 383	6	4.314	3.3	Perimeter Borehole
GA3	Northern boundary of Cell 2	322 070	252 414	10	7.076	7.5	Perimeter Borehole
GA4	Northern boundary of Cell 3	322 170	252 415	10	7.370	7.66	Perimeter Borehole
GA5	Northern boundary of Cell 4	322 291	252 440	15	12.287	14.3	Perimeter Borehole
GA6	Northern boundary of Cell 5	322 389	252 467	15	11.864	13.3	Perimeter Borehole
GA7	Northern boundary of Cell 6	322 490	252 498	10	10.749	9.57	Perimeter Borehole
GA8	Northern boundary beside exit to landfill	322 614	252 542	6	5.503	4.981	Perimeter Borehole
GA9	North of cell 1 beside gate	321942	252347				Perimeter Borehole
GA10	Residents land opposite gate	321942	252393				Outside Perimeter Borehole
GA11	Residents land opposite gate	322039	252433				Outside Perimeter Borehole
GA12	Lands opposite entrance/exit between cell 6 and LMW18	322669	252575				Outside Perimeter Borehole
GA13	Field to North East of Site	322848	252666				Outside Perimeter Borehole

Page 25 January 2009

Table 3.9 Gas Monitoring Locations (outside waste)

Manhole ID	Manhole ID	Easting	Northing
MH L33	Across from Cell 1	322 001	252 416
MH L40	Across from Cell 6	322 654	252 566

Table 3.10 Leachate / Gas monitoring locations

Borehole ID	Easting	Northing	Sample
LMW1	322 006	252 143	Leachate/Gas
LMW2	322 077	252 115	Leachate/Gas
LMW3	322 169	252 084	Leachate/Gas
LMW4	322 271	252 053	Leachate/Gas
LMW5	322 368	252 022	Leachate/Gas
LMW6	322 461	251 991	Leachate/Gas
LMW7	322 559	251 958	Leachate/Gas
LMW8	322 651	251 933	Leachate/Gas
LMW9	322 749	251 903	Leachate/Gas
LMW10	322 844	251 877	Leachate/Gas
LMW11	322 846	251 974	Leachate/Gas
LMW12	322 853	252 074	Leachate/Gas
LMW13	322 859	252 175	Leachate/Gas
LMW14	322 863	252 274	Leachate/Gas
LMW15	322 873	252 375	Leachate/Gas
LMW16	322 880	252 473	Leachate/Gas
LMW17	322 885	252 572	Leachate/Gas
LMW18	322 890	252 657	Leachate/Gas

3.5.4 Interpretation of Results

The Landfill Gas (LFG) results are included in Appendix VI. The results for perimeter locations are summarised in Figure 3.6 and Figure 3.7.

Page 26 January 2009

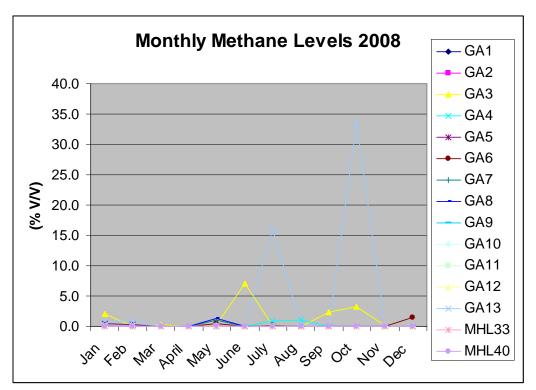


Figure 3.7 Monthly Methane levels 2008

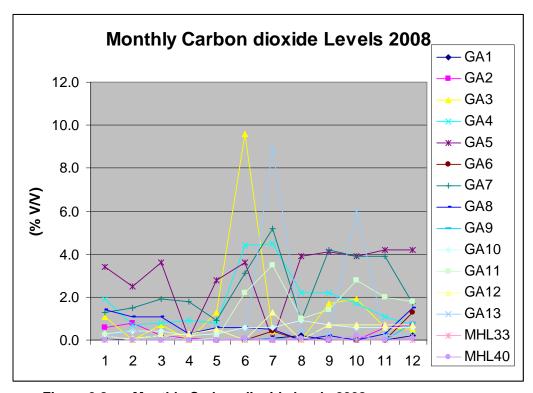


Figure 3.8 Monthly Carbon dioxide levels 2008

Page 27 January 2009

Results from monthly monitoring during 2008 are generally below the 1% trigger value for methane gas. However, there are exceedences of this limit at various locations during 2008; GA3 (three times), GA4 (once), GA6-8 (once) and also at GA13 (twice). These are situated along the north and north-eastern corners of the landfill. Sampling at greater distances from the northern perimeter G9 & G10 indicate that sensitive receptors are not at risk from these exceedences. FCC samples these locations weekly (except during the week upon which the monthly sampling occurs) and results are available for inspection at the facility office. The high CH₄ result in GA13 had led to daily monitoring by Fingal County Council (FCC) staff during the elevated period and the commissioning of a trace element analysis study. This report suggested that the source of the Methane at GA13 may not be landfill, but it was not conclusive, (Ref: FCC-W0009-02-2008-029).

Carbon dioxide levels exceeded the 1.5% trigger value at sampling locations GA3 (three times), GA4 (six times), GA5 (10 Times), GA7 (nine times), GA11 (five times) and GA13 (Twice) during monthly monitoring 2008. High concentrations of CO_2 can occur naturally at shallow depths of up to 2 m due to microbial activity associated with the roots of many types of vegetation.

Elevated levels of carbon dioxide were also reported at these locations during 2006 & 2007.

High methane and carbon dioxide values were also obtained at wells LMW1 – LMW18. However, the trigger levels set out in table C.2 of W0009-02 do not apply to LMW4, LMW5, LMW10, LMW14 or LMW18 as these monitoring locations are not located outside the waste body, as per condition 6.3.1 of the W0009-02. It would be expected that the in-waste gas wells have high LFG levels due to the degradation of waste material. The gas results obtained from sampling LMW1-LMW18 are those expected from the old unlined landfill, with mature waste.

In general, gas levels appear to be at their highest values during the third and fourth quarters of the monitoring period. This result is similar to values obtained during the 2006 and 2007 monitoring periods.

3.5.5 Installation of New Landfill Gas Management Infrastructure

10 No. 125mm diameter temporary gas extraction wells were drilled during Q2 2008 across Cell1, Cell 2 & Cell 3. The areas were selected after careful consultation with the staff at Balleally Landfill, in ascertaining the precise locations, which would reap the most gas based on what waste was landfilled. The spacing of the gas extraction system is approximately 45 m between each well on each line. The depth of each of the extraction wells is no deeper that 2 m above the base of the lined landfill at the point of each gas well. The wells were connected to the utilisation plant. Additionally six landfill gas monitoring / extraction wells were placed along the inner lower and upper haul roads and three rising landfill gas extraction wells were emplaced in Cell 5 in the active tipping area. These were installed in response to recommendations made by odour monitoring Ireland on foot of their surface emission survey of Balleally. The CQA document for these wells is available for inspection at the facility offices and was sent to The Agency (Ref: FCC-W0009-02-2008-030).

Page 28 January 2009

3.5.6 Summary report on emissions

As per Schedule D.7.1 of Waste Licence W0009-02 the licensee is required to carry out annual environmental monitoring of the Gas Combustion Plant/Enclosed Flare. Odour monitoring Ireland personnel conducted the survey on the 17th and the 18th November 2008.

The monitoring included the gas composition in the flue outlets from the four generators and flare in order to meet the requirements of the waste licence. The monitoring for CO, SO₂, NO_x, and O₂ was carried out *in-situ* using an electrochemical analyser. Temperature, velocity and flow rate were also monitored *in-situ* using a thermocouple and a pilot tube and manometer respectively. Samples were collected for analysis to determine TA Luft Class I, II, III organic substances. In addition, samples were collected for the landfill gas delivery system and determined for chlorine, fluorine and sulphur content.

The compliance status of emissions from the five generators with respect to the Waste Licence Limit is summarised below:

Table 3.11 Result of emissions testing of landfill gas plant 2008

ENGINE #	PARAMETER	COMPLIANCE STATUS
BY 01.	FLOW	COMPLIES
	СО	COMPLIES
	NOx	COMPLIES
	TA LUFT CLASS I ORGANICS	COMPLIES
	TA LUFT CLASS II ORGANICS	COMPLIES
	TA LUFT CLASS III ORGANICS	COMPLIES
	HCI	COMPLIES
	HF	COMPLIES
	PARTICULATES	COMPLIES
2.	FLOW	COMPLIES
	СО	NON COMPLIANCE
	NOx	COMPLIES
	TA LUFT CLASS I ORGANICS	COMPLIES
	TA LUFT CLASS II ORGANICS	COMPLIES
	TA LUFT CLASS III ORGANICS	COMPLIES
	HCI	COMPLIES
	HF	COMPLIES
	PARTICULATES	COMPLIES
3.	FLOW	COMPLIES
	CO	NON COMPLIANCE
	NOx	COMPLIES
	TA LUFT CLASS I ORGANICS	COMPLIES
	TA LUFT CLASS II ORGANICS	COMPLIES
	TA LUFT CLASS III ORGANICS	COMPLIES
	HCI	COMPLIES
	HF	COMPLIES
	PARTICULATES	COMPLIES
5.	FLOW	COMPLIES
	CO	NON COMPLIANCE
	NOx	COMPLIES
	TA LUFT CLASS I ORGANICS	COMPLIES

Page 29 January 2009

	TA LUFT CLASS II ORGANICS	COMPLIES
	TA LUFT CLASS III ORGANICS	COMPLIES
	HCI	COMPLIES
	HF	COMPLIES
	PARTICULATES	COMPLIES
FLARE	FLOW	COMPLIES
	CO	COMPLIES
	NOx	COMPLIES
	TA LUFT CLASS I ORGANICS	COMPLIES
	TA LUFT CLASS II ORGANICS	COMPLIES
	TA LUFT CLASS III ORGANICS	COMPLIES
	HCI	COMPLIES
	HF	COMPLIES

NO_x as No₂, particulates, Total Non Methane Volatile Organic Compounds, Hydrochloric acid and Hydrogen fluoride were low in the gas utilisation engines and within Emission Limit Values set out in Schedule C.5 of the Waste Licen

CO emission concentration values were above the 650 mg/Nm³ Emission Limit Value established for Waste Licence W0009-02 at BY02, 03 & 05. These gas utilization engines were below the Emission Limit Value (1400mg/m³) set for Carbon monoxide in other licences, e.g. W0127-01.

3.6 Meteorological Monitoring

Condition 8 and Schedule D.6 of Waste Licence W0009-02 require daily monitoring of precipitation volume, temperature (max. /min.), wind force and direction, and atmospheric pressure.

It has been previously reported (AER, 2007), that there were a series of ongoing problems with the operation of the meteorological instrumentation and equipment on site and the retrieval of recorded information. Attempts to resolve the issues with the company have proved difficult. A consultant was engaged with a view to commissioning a new system. They recommended relocating the weather station approximately 200 m SW of existing station. The weather recording equipment has been ordered and procured. The civil engineering works have commenced. It is anticipated that the weather station will be assembled in 2009.

As a result of the problems encountered a summary of the meteorological data recorded at Dublin Airport is included for the period. Dublin Airport is situated 10 km southwest of Balleally landfill and the weather station is used by Met Éireann for official statistics. The package used by them was developed in-house and maintained by their own staff.

July had the highest maximum mean monthly temperatures. Rainfall was most intense during the summer and early autumn with July, August and September registering the highest volumes of rainfall. The site was predominantly affected by south westerly winds.

Page 30 January 2009

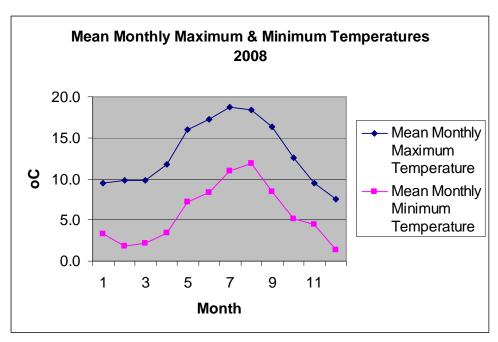


Figure 3.9 Average daily temperatures (min./max.) by month 2008.

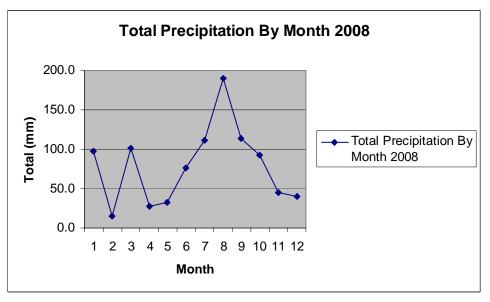


Figure 3.10 Total precipitation volume by month 2008

Page 31 January 2009

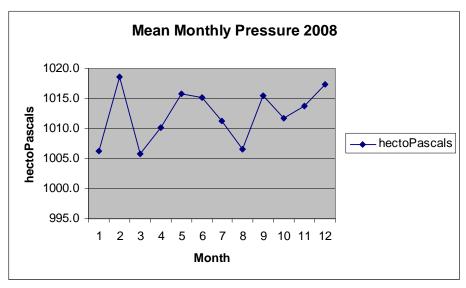


Figure 3.11 Average daily atmospheric pressure by month 2008.

Table 3.12 Average daily Wind Speed, Min / Max, Standard Deviation by month 2008.

Month	Mean Speed (knots)	Min Speed (Knots)	Max Speed (Knots)	Standard Deviation (Knots)	Direction (degrees)
Jan	14.6	0	39	7	214
Feb	12.2	0	36	8	186
Mar	15.0	3	41	6	233
Apr	11.7	2	31	5	205
May	9.7	0	26	5	115
Jun	10.0	0	33	5	229
Jul	10.8	0	21	4	200
Aug	10.4	2	24	4	225
Sept	9.5	1	25	5	210
Oct	12.6	0	28	6	234
Nov	12.4	1	25	5	241
Dec	10.2	0	31	5	215

Page 32 January 2009

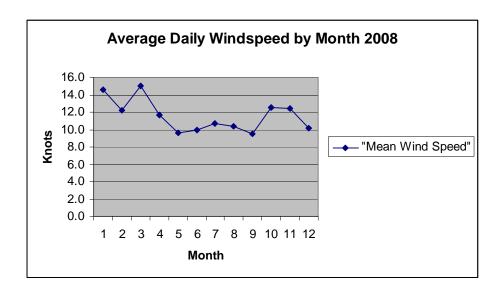


Figure 3.12 Average daily wind speed by month 2008.

The winds are predominantly South Westerly in direction.

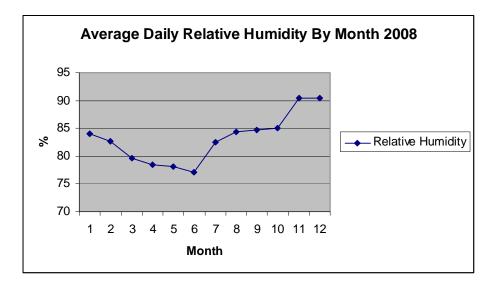


Figure 3.13 Average daily relative humidity by month 2008

Page 33 January 2009

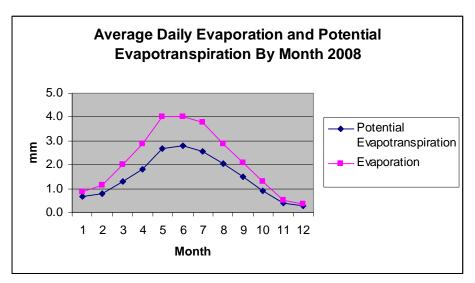


Figure 3.14 Average daily evaporation and potential evapotranspiration by month 2008.

3.7 Resource Consumption

Resources consumed at Balleally Landfill include diesel fuel, electricity, hydraulic oil and lubricating oil. Table 3.13 presents a summary of the quantities of each used on site for the period of this report. Electricity consumed on site was used for the purpose of heating, lighting, the operation of office equipment. The largest consumer of electricity is the leachate treatment plant.

There was a decrease in diesel consumption in 2008, reflecting less capping and tankering. No major generators were run this week year.

Table 3.13 Summary of resources used on site for the reporting period.

Resource	3.8 FCC
Electricity	295,921 KWh
Diesel	207,672 litres
Petrol	120 litres
Lube Oil	1000 litres (Estimate)

Page 34 January 2009

Table 3.14 Electricity consumption on site for the period January 2008 to December 2008.

Year	Site 900109623	Site 901532286	Leachate Treatment Plant 902446909	KWHr Total
2008	1,832*	91,350*	202,739*	295,921*
2007	1,726*	84,900*	202,669*	289,295*
2006	2,109*	97,600*	73,420*	173,129*
2005	1,033*	115,050*	N/R	115,050*
2004	NR	66,250*	N/R	66,250*
2003	NR	NR	N/R	89,155 @
2002	NR	NR	N/R	76,529 @
2001	NR	NR	N/R	55,453 @
2000	NR	NR	N/R	49,016 @

- * Data derived from ESB Energy Extra Website for three accounts registered to Balleally.
- N/R: Accounts not set up at these times.
- @ Data sourced from AER 2006.

Note:

- 1) There was a significant increase in electricity consumption in the period 2006 2008, from previous years as can be observed from Table 3.14. This is attributable to the operation of the new on-site leachate treatment plant, which has the capacity to treat 150m³/day.
- 2) The electricity consumption has increased consecutively since the year 2000 with the exception of 2004.

Page 35 January 2009

Table 3.15 Equipment and Plant list at Balleally Landfill and quantities 2008.

Plant 02	02 D 76790 Isuzu 4X4 * I D 45819 replaced by 04 D 68456 Ford Fiesta Van* 4 D 76878 Ford Transit Mini Bus* 03 D 4835 Isuzu 4X4* 6 D 77339 VW Twin Cab Pick Up* 04 D 64948 John Deere 4X4 Tractor* 07 D 7332 Same Tractor* 01 D 78637 Renault 7.5t Truck * 2 D 5577 Renault 4 axle skip lifter* Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller* 3 Ton Vibrating Roller*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Diesel Diesel Diesel Diesel Diesel Diesel Diesel
Plant Oa Plant Oa Heavy Plant	Ford Fiesta Van* 4 D 76878 Ford Transit Mini Bus* 03 D 4835 Isuzu 4X4* 6 D 77339 VW Twin Cab Pick Up* 04 D 64948 John Deere 4X4 Tractor* 07 D 7332 Same Tractor* 01 D 78637 Renault 7.5t Truck * 2 D 5577 Renault 4 axle skip lifter* Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 1 1 1 1 1 1 1 1 1 3 1	Diesel Diesel Diesel Diesel Diesel
Plant Oa Plant Oa Heavy Plant	Ford Fiesta Van* 4 D 76878 Ford Transit Mini Bus* 03 D 4835 Isuzu 4X4* 6 D 77339 VW Twin Cab Pick Up* 04 D 64948 John Deere 4X4 Tractor* 07 D 7332 Same Tractor* 01 D 78637 Renault 7.5t Truck * 2 D 5577 Renault 4 axle skip lifter* Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 1 1 1 1 1 1 1 1 1 3 1	Diesel Diesel Diesel Diesel Diesel
Plant O2 Heavy Plant	03 D 4835 Isuzu 4X4* 6 D 77339 VW Twin Cab Pick Up* 04 D 64948 John Deere 4X4 Tractor* 07 D 7332 Same Tractor* 01 D 78637 Renault 7.5t Truck * 2 D 5577 Renault 4 axle skip lifter* Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 1 1 1 1 1 1 1 1 3 1	Diesel Diesel Diesel Diesel Diesel
Plant 02 Heavy Plant	6 D 77339 VW Twin Cab Pick Up* 04 D 64948 John Deere 4X4 Tractor* 07 D 7332 Same Tractor* 01 D 78637 Renault 7.5t Truck * 2 D 5577 Renault 4 axle skip lifter* Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 1 1 1 1 1 1 1 3 1	Diesel Diesel Diesel Diesel Diesel
Plant 02 Heavy Plant	04 D 64948 John Deere 4X4 Tractor* 07 D 7332 Same Tractor* 01 D 78637 Renault 7.5t Truck * 2 D 5577 Renault 4 axle skip lifter* Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 1 1 1 1 1 1 3 1	Diesel Diesel Diesel Diesel Diesel
Heavy Plant	Tractor* 07 D 7332 Same Tractor* 01 D 78637 Renault 7.5t Truck * 2 D 5577 Renault 4 axle skip lifter* Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 1 1 1 1 1 3 1	Diesel Diesel Diesel Diesel Diesel
Heavy Plant	07 D 7332 Same Tractor* 01 D 78637 Renault 7.5t Truck * 2 D 5577 Renault 4 axle skip lifter* Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 1 1 1 1 3 1 1	Diesel Diesel Diesel Diesel Diesel
Heavy Plant	01 D 78637 Renault 7.5t Truck * 2 D 5577 Renault 4 axle skip lifter* Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 1 1 1 1 3 1 1	Diesel Diesel Diesel Diesel Diesel
Heavy Plant	2 D 5577 Renault 4 axle skip lifter* Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 1 1 1 3 1	Diesel Diesel Diesel Diesel Diesel
Heavy Plant	Duratec 3010 Tub Grinder (now sold) * Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 1 1 3 1 1	Diesel Diesel Diesel Diesel Diesel
Auxiliary Plant	Cat 302.5 mini Excavator* Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 3 1	Diesel Diesel Diesel Diesel
Auxiliary Plant	Diesel H/P power washer and Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1 3 1	Diesel Diesel Diesel Diesel
Auxiliary Plant	Bowser* Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 3 1	Diesel Diesel Diesel
Auxiliary Plant	Bomag 671 compactor* Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	3 1 1	Diesel Diesel
Auxiliary Plant	Kamatsu 65px dozer* Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	3 1 1	Diesel Diesel
Auxiliary Plant	Cat excavator 330* Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1 1	Diesel
Auxiliary Plant	Kobelco 355 Excavator* 15 Ton Vibrating Roller*	1	
Auxiliary Plant	15 Ton Vibrating Roller*		
Auxiliary Plant			Diesel
Auxiliary Plant		1	Diesel
Auxiliary Plant	10 KVA 3 Phase Generator*	2	Petrol
Auxiliary Plant	Case 80 5 ton excavator*	1	Diesel
Auxiliary Plant	H.P. Diesel Bowser & Bowser*	1	Diesel
reamary Flant	Scarab Major Road Sweeper*	1	Diesel
	2 Ton Forklift*	1	Diesel
	Wacker Plate*	1	Bicoci
	CONSAW*	1	Petrol
	6 inch pump*	1	Diesel
	4 inch pump*	1	Diesel
	2 inch Pump*	1	Petrol
	6.5 KVA diesel generator*	1	Petrol
Equipment	Extrusion welder*	1	1 01101
	ngersoll-Rand mobile lighting set*	1	
- 11	Wedger Seam Welder*	1	
	Lyster heater / welder*	1	
Survey	Sokkisna level and tripod*	1	
Curvey	Sokkisna theodolite & Tripod*	1	
	NIKON auto level*	1	+
	Garmen GPS*	1	
	GMI gas monitor*	1	
	Multi 340I meter*	1	
	GMI FI 2000*	1	
	30 Metre steel Tape*	1	
	Solinist 30m dip meter*	1	
		1	+
	Psion organiser*	1 1	1

GCL - Geosynthetic Clay Liner

3.8.1 Resource Use and Energy Efficiency Audit

On 28th October, 2005 the Environmental Protection Agency issued a technical amendment (B) inserting a new Condition 2.5. This condition requires Fingal County Council to carry out an energy efficiency audit. The audit must:

- i) identify all opportunities for energy use reduction and efficiency;
- ii) be carried out in accordance with the guidance published by the Agency –
 "Guidance Note on Energy Efficiency Auditing", and
- iii) be repeated at intervals required by the Agency.

The recommendations from this audit should be incorporated in the Schedule of Environmental Objectives and Targets under Condition 2.3. Opportunities for reducing water consumption and identifying recycling and reuse initiatives will be investigated and an assessment of the efficiency of use of raw materials in all processes will be carried out.

Energy Efficiency Audit

The best practice Specific Energy Consumption (SEC) sometimes called the Energy Performance Indicator (EPI), of the sector and of any significant processes is determined where possible. The site SEC's are then compared to the best and the average practice. Any discrepancies were investigated during the 2006 energy audit.

The energy audit identified the site SEC. This may be used as a benchmark to identify the success or otherwise of the implementation of the recommendations.

Implication of Audit Findings.

No SEC data could be found for comparable industry sectors and thus no comparison of the site's SEC with others could be made.

The energy audit identified a number of recommendations that could be implemented. Implementation of these will result in a reduction of energy cost and green house gas emissions. However in comparison to other industrial sites the energy consumed at Balleally Landfill is very low, especially when it is considered that Fingal County Council do not directly control the diesel used by the hired heavy plant vehicles. As the energy consumption at Balleally is so low, it is proposed that it may not be necessary for Fingal County Council to have further energy audits conducted at the site.

3.9 Landfill Gas Utilisation

Landfill gas is actively extracted by means of a series of wells and a collection pipe network in the waste body. The gas is pumped through two main lines to the site utilisation plant. The utilisation plant comprises of five generators grouped into two operating units AER1 and AER3 as shown in the schematic diagram of the plant in Appendix I. To achieve maximum design power output from the station the inlet gas must contain 50% methane and the minimum available gas volume must be 3,340 m³/hr. At present the 50% methane gas concentration is achieved, but the gas volume is not measured at the landfill.

Page 37 January 2009

The power station/utilisation plant operators, Bioverda Power Systems Limited, regulate the inflow of gas to the station in order to achieve the 50% Methane target. The total power output from the station for the period is shown in Tables 3.16 & 3.17.

Utilisation was reduced during the period 2004-2006 due to the re-location of the plant and repairs needed to the main gas collection pipe. Field reconfigurations were also required due to the advancing capping programme. During 2007, 24 new gas wells were installed in cells 1 & 2. An increase in the gas extraction network occurred in 2008 with the emplacement of an additional 10 new gas wells in cells 1-3. Three "rising landfill gas extraction wells" were placed in the active tipping area (Cell 5) during 2008. The success of these measures has resulted in a consistent increase in electricity production from gas extraction from 2006 through to 2008 (Table 3.16 & 3.17).

Currently sufficient gas is being extracted to run 4 engines.

Table 3.16 Electricity output (MWhr) from the on site power station at Balleally Landfill per year 2003-2008.

Danisani, Danisani per year 2000 2000					
YEAR	ELECTRICITY OUTPUT (MWhr)				
2003	30,194				
2004	21,636				
2005	21,234*				
2006	20,529*				
2007	23,762				
2008	27,117				

^{*} Corrected data for 2005-2006 reported by Bioverda Power Systems.

Page 38 January 2009

Table 3.17 Electricity output (MW) from the on site power station at Balleally Landfill

Month	Combined AER1 & AER3 (MW)
January	2612
February	2394
March	2545
April	2455
May	2594
June	2042
July	2007
August	1856
September	1708
October	2243
November	2276
December	2385
Total	27,117

3.10 Review of Nuisance Controls

Condition 7 of Waste Licence 9-2 requires that vermin, birds, flies, mud, dust, litter and odours do not give rise to nuisance at the facility or in the immediate area of the facility. To this end a review of the nuisance controls was initiated.

The Nuisance which gives rise to greatest number of complaints is odour. FCC received fourteen complaints from local residents regarding **odour** emanating from the landfill site on 23rd January, 11th & 12th February, 16th & 22nd April, 16th June, 24th & 30th July, 24th-26th September, 8th October & 28th October & 2nd November. All complaints were responded to as soon as possible after the time they were reported. Odour monitoring Ireland visited the site twice during the year and made many recommendations for odour / surface emission control (EPA Refs. W0009-02/gen43mh & W0009-02 / ak60em). Many of these recommendations have been implemented to date and the remainder are to be completed during 2009 in an effort to further improve odour control.

Where these complaints or weekly nuisance inspections reveal odours associated with landfill activities landfill management take corrective action. Expert advice was sought previously on the installation of effective odour control. The company chosen goes by the name of *Mist-Air* and they are based in the United Kingdom.

Mist Air odour neutraliser is an alternative gas cleaning technology that achieves the transfer from odorous gases to a non-odorous liquid. This is achieved by mixing the contaminated air efficiently with the absorbent mist at the optimum ratio of volume to surface area causing a rapid transfer of the odorous gases into the liquid phase, thereby preventing a smell. The neutraliser is totally biodegradable, together with the many odorous causing pollutants and is safe for animals, humans and plants life. It absorbs Ammonia, Alcohol's, Hydrogen Sulphides, Sulphur Dioxide, Ethyl Mercaptans, Amines and many more gases.

Page 39 January 2009

The misting system is a base unit housed in a free-standing lockable steel cabinet that provides all the power for the system. A reinforced circulation hose is then fed from the base unit to the various circuits required from around the site.

The static manifolds are fitted with stainless steel atomising jets. These are mounted around the site at 7 meter centres. The system is currently installed around the active Cell 5. The static manifolds were attached to their own independent poles during late 2005. This is a change in practice based on the idea that if they have their own fixed position then they do not have to be continually moved with the litter netting as the active cell changes levels as filling progresses. This should mean less maintenance and air blocks, which will improve the effectiveness of the system's performance.

Since the construction of the speed ramps along Balleally Lane, there has been an increase in the amount of **mud** deposited on the road. FCC reviewed the road-sweeping programme and had a few trial runs with a footpath-cleansing vehicle and various roadsweepers. It was decided to purchase a larger road sweeper (Scaribb Minor) that had the ability to clean the mud deposited at the ramps and on the road more effectively.

3.11 Review of Bird Control January to December 2008.

Bird Control Ireland visited Balleally Landfill site for the purpose of Bird Control between January 2008 and December 2008.

During this time the site was visited once per month and a jointly operated programme was run. The programme objective was to reduce the numbers of scavenging birds during operational hours to a minimum. During each visit the company undertook efforts to reinforce the daily bird control activities. Bird Control Ireland Ltd recorded their activities in the site manual.

Site staff were responsible for deployment of equipment each day and for keeping daily records. Site equipment was deployed daily during the year though foul weather prevented their usage on a number of days. Damaged equipment was replaced during the year.

Gulls and crows were the most common pest bird on site throughout 2008. Gulls made several attempts throughout the year to raid the site but were moved on with distress calls and visual deterrents. No gulls were harmed during any visit by Bird Control Ireland Ltd.

Bird numbers were much reduced during the Spring and Summer when kites were flown daily and distress calls played regularly. Over all bird activity during the year was excellent.

Activities undertaken during the year included -

- Flying falcons and hawks.
- Use of species specific distress calls.
- Flying various types of kites.
- o Use of shot gun.
- o Bird scaring (pyrotechnic) cartridges.

Page 40 January 2009

Management Duties included -

- Liaison with Site Management.
- o Maintenance of Site Log.
- o Variation of activities to achieve best results.
- o Monthly bird survey and report.
- Equipment maintenance.
- Year end report.

The Balleally project has achieved a measure of success for a low level programme.

Birds can be moved when required using site equipment. During time of severe weather conditions, raiding birds prove more difficult to manage however.

Both BCI and the Council are conscious that the Rogerstown Estuary is an important sanctuary and the programme activities have been tailored to take this into consideration. Throughout the year birds were noted on the Estuary flats before and after control activities.

Bird distress calls were noted to be effective however the fixed system on site did not seem to have the same effect as calls played manually from other locations on site. It seems that a degree of habituation may be affecting the fixed distress call unit.

The speakers for the system are also damaged. The machine would benefit by being moved regularly so as to present a "new" call in respect of the birds.

BCI will provide for some extra visits to site during times of high bird pressure during 2009.

3.12 Recommendations

- 1. Deploy deterrent equipment as often as weather permits
- 2. Effect repairs to distress call system and set up in a more mobile fashion
- 3. Review visit regime with BCI Ltd

Page 41 January 2009

4. SITE DEVELOPMENT WORKS

4.1 Work carried out in the reporting period 2008

Table 4.1 Work carried out during 2008.

Objective/ Target	Description	Timescale
Objective 1	To minimise environmental impact on the immediate environment	
Target 1	To remediate banks around existing and new boreholes and up update TOC readings. Some Tics resurveyed and all relabelled in situ.	Ongoing.
Target 2	To review and extend gas abstraction network in newly capped areas. Significant new areas harnessed 10 new wells in Cells 1-3. 6 new pin wells along haul roads and three new rising wells in tipping area (Cell 5).	Ongoing
Target 3	To start the installation of concrete paving around LTP. Partial Completion 2008.	Ongoing.
Target 4	Complete Commissioning of Leachate Treatment Plant & Centrifuge. All parameters in compliance except for COD. Centrifuge to be fully commissioned –	Ongoing,
Target 5	Complete capping of phases 3 and 11. Phase 3 complete. Cells 1-4 capped within Phase 11.	Ongoing.
Target 6	Determine manual procedure for checking leachate levels in the cells. Placed second level detector (pressure transducer) in cells.	Ongoing
Target 7	Install leachate borehole(s) near SVB at western end of site & Repair Leachate Monitoring Boreholes at NE section of Site.	Complete

Page 42 January 2009

	Installed leachate borehole(s) near SVB at western end of site & Repair Leachate Monitoring Boreholes at NE section of Site.	
Objective 2	Restoration of the facility.	
Target 1	Installation of final capping layer. Phases 2 & 3 Complete. Cells 1-4 capped within Phase 11.	Ongoing
Target 2	Prepare capped areas for landscaping Phases 2 & 3 Complete. Cells 1-4 capped within Phase 11.	Ongoing
Target 3	Prepare Landscaping Plan for implementation in 2008 to include planting of northern boundary adjacent to gas plant area, Balleally Lane / Landfill northern boundary (after final capping installed) and capped southern and eastern boundaries up to 27m contour line. Grass seeding of capped areas ongoing. No other planting this year. Liaison with Parks Department ongoing. Plans will be submitted to The Agency following observation in 2008 Annual Audit Report.	Ongoing
Target 4	Examine the completion of a shallow vertical barrier at the northern boundary for implementation during restoration of site. No Progress to report.	Ongoing
Target 5	Demobilisation of Civic Amenity Area. Civic Amenity Demobilised.	Complete
Target 5	Agree proposal with <i>The Agency</i> to temporarily erect a sculpture on the facility. Proposal sent to and Agreed by The Agency – structure erected.	Complete.

Page 43 January 2009

4.2 Works for next reporting period (2009)

Table 4.2 Works to be carried out during 2009.

Objective 1	To minimise environmental impact on the immediate environment	
Target 1	Update TOC readings and in situ labelling around existing and new boreholes.	Feb-Dec 2009.
Target 2	To review and extend gas abstraction network during 2009 in recently capped areas of new cells (3-4). Place extraction wells along SW lobe of old landfill and adjacent to first lift anchor trench along cells 3 & 4.Emplacement of wells in Active Cell #6. Review replacement of some existing wells.	Feb-Dec 2009.
Target 3	Seal leachate risers in pump chambers and apply negative pressure.	June 2009.
Target 4	To provide for Leachate Recirculation in Cells 5 & 6.	Feb-Dec 2009.
Target 5	To progress the installation of concrete paving around Leachate Treatment Plant (LTP).	Feb-Sept 2009.
Target 6	To Complete Commissioning of Leachate Treatment Plant & Centrifuge. Apply for Licence Review.	March 2009.
Target 7	To Commence Capping of northern flanks of cells 5& 6 and tie into base anchor trench. To commence capping of former Civic Amenity Area.	March-Dec 2009.
Target 8	To Prepare grade and place liner for second lift Piggybacking above the haul road Cells 4-6.	March-December 2009.
Target 9	To complete mitigation measures to deal with surface water contamination at SW20a.	March-Dec 2009.
Target 10	To investigate mitigation measures for the prevention of leachate breakout along the southern boundary of the landfill.	March – Dec 2009.

Page 44 January 2009

Objective 3	Restoration of the facility.	
Target 1	Commence Capping of northern flanks of cells 5& 6 and tie into base anchor trench. To Commence Capping of old civic amenity area.	March-Dec 2009.
Target 2	Prepare capped areas for landscaping.	Jan-Apr 2008.
Target 3	Prepare Landscaping Plan for implementation in 2009 to include planting of northern boundary adjacent to gas plant area, Balleally Lane / Landfill northern boundary (after final capping installed) and capped southern and eastern boundaries up to 27m contour line.	Grass seeding of capped areas ongoing. No other planting this year. Liaison with Parks Department ongoing. Any New Landscaping Plans will be submitted to The Agency following observation in 2008 Annual Audit Report.
Target 4	Examine the completion of a shallow vertical barrier at the northern boundary for implementation during restoration of site.	Apr-Dec 2009.
Target 5	To Prepare Plan for the demobilisation of existing facility offices to a new location.	Jan-Dec 2009.

4.3 Progress on Site Restoration

The Restoration and Aftercare Plan for the landfill was submitted in July 2003 as per condition 4.1. This plan sets out a framework to successfully restore Balleally Landfill to a condition suitable for use as an amenity for the general public. The plan has been prepared in accordance with the EPA Landfill manual 'Landfill Restoration and Aftercare' (1999), the Council Directive (1999/31/EC) on the Landfill of Waste and Waste Licence W0009-02. Restoration is being undertaken at Balleally Landfill using a phased approach due to the size of the site and seasonal constraints. On completion of restoration in each phase, the aftercare plan to establish and maintain the after use of the site shall be implemented.

Capping of the site is as per Condition 4.3. The geotextile alternative was investigated and agreed in early 2004 with the EPA. This decreased the number of vehicle movements required for importing soil for the final cap.

Figure 3, Appendix 1, indicates the agreed phases for the capping and restoration of Balleally Landfill. The phasing provides for the restoration of the original landfill initially, and then the landfill extension area. The total area for capping is 46.84 Hectares (115.74 Acres).

Between 2004 and December 2007, 26.24 Hectares (64.85 Acres) were capped. During 2008, an additional 7.34 Hectares (18.14 Acres) were capped. Which means

Page 45 January 2009

that, along with the "Old Landfill", Cells 1, 2, 3 and 4 of the new landfill, are now capped, see Figure 4 Appendix 1. A total of 33.59 Hectares (82.99 Acres) is now capped, this equates to 71.7% of the entire landfill.

A proposal was sent to The Agency (Ref: FCC-W0009-02-020) on 22/9/2008 to provide for a second lift "piggybacking" between "new cells" and Top Lobe of the old landfill. This proposal would give a void space of 176,000 tonnes. This proposal was agreed to, subject to conditions, by *The Agency*, (Ref: W0009-02 / ak61em).

Inert waste to be used for cover/restoration material at the facility

An estimate of soils required for the final capping of the landfill is as follows:

Expected subsoil tonnages for restoration = 1,180,000 tonnes Expected topsoil tonnages for restoration = 580,000 tonnes

This estimate does not take into account any soil requirements for levelling off the contours prior to the placement of the final capping. However, it is expected that material on the landfill site (berms etc.) will be used which will limit the importation of soil/clay.

Onion skin method of filling takes place at the tipface at Balleally Landfill as described in the EPA Landfill Operational Practices manual. As a result of this method at the end of each day the tipface is completely covered with clay and other such inert material. This reduces the possibility of windblown litter and provides reasonable surface quality for vehicle access the next day for tipping. This mixed cover material provides drainage, shape and surface stability to the landfill, which is essential, when the final restoration measures above are initiated.

A filling plan has been prepared for the extension area in 2006 to ensure the integration of waste filling activities with the phased restoration of the site under condition 5.2 of the Waste Licence 9-2.

A revised filling plan was submitted to and approved by the EPA before entering Cell 5; the revised plan took into consideration the EPA Circular Letter to all landfills, dated 20th June 2007.

The total area of the site is 124 Acres. The Licence area is 124 Acres.

See below statistics of capping programme:

Start Date of Capping Programme: May 2004

Progress as of 18th December 2007: Approx. 82.99 Acres (33.59ha)

The final capping profile is made up of:

- 1. Topsoil layer of 300 mm thickness.
- 2. Subsoil layer of 700 mm thickness.
- 3. Geocomposite Drainage Layer (GDL).
- 4. Geosynthetic Clay Liner (GCL) / LLDPE membrane liner on New Cells.
- 5. Geocomposite Gas Collection (GGCL).

See Appendix I, Figure 4 indicating the areas capped in 2008 and the proposed areas for 2009.

Page 46 January 2009

4.4 Annual Topographical Survey

In accordance with Condition 8.5.1 of WL W0009-02 a Topographical Survey was undertaken in Balleally Landfill in September 2008 and submitted to The Agency 10/10/2008 (Ref: FCC-W0009-02-2008-023).

4.5 Slope Stability

As required under Licence Condition 8.8.1. a slope stability survey was undertaken in Balleally Landfill during October 2008.

Amongst the conclusions in the survey report is the statement that, "The accessible slopes at Balleally Landfill are considered by BMA to be, in general, in good condition and stable."

The following recommendations were made;

"

Temporary slopes should be monitored and inspected for signs of slope instability or distress at regular intervals and especially after exceptional rainfall events.

Vegetation of any un-vegetated, permanent slopes should be carried out as soon as possible......

The minor slope stability issues identified in this report should be addressed as soon as possible".

These recommendations have been communicated to site management and will be implemented.

"Consideration should be given to the establishment of specific monitoring points along the southern slope for measurement during the annual topographic survey."

This recommendation will be discussed with Topographic Survey Company with a view to incorporating it into annual topographic survey.

Page 47 January 2009

5. WASTE RECEIVED & CONSIGNED FROM THE FACILITY

5.1 Waste Acceptance & Handling

5.1.1 Waste Reception

During operational hours, a qualified person in charge of the landfill is always present on site. A new weighbridge system was installed at Balleally Landfill by Precia Molen Irl. Limited. It consists of two Precia Molen VS300CS surface Mounted Weighbridges linked to a GeneSYS PC-based Weighbridge Management System. The GeneSYS Windows – based software, which forms the basis of the PC based system stores all relevant data in database form from which cross-referenced reports can be generated as required by landfill management and the accounts department.

The system has been in operation since the 25th of May 2005 and consists of two weighbridges, one "in" and one "out". These are linked to a computerised system. An automatic barrier system is proposed to be linked to the computerised system. This will consist of one barrier to prevent the lorry being driven off the weighbridge prematurely and another to prevent the ensuing lorry from getting too close to the weighbridge. The capacity of both weighbridges is 50,000/60,000Kg and the deck size is 18m x 3.6m.

Extensive protection against lightening is included as standard, this includes earthing bonds for each loadcell and a central earth for the entire weighbridge.

Written records of loads arriving on site are maintained. These include the date, weight (tonnes), origin (producer/collector), description of waste (EWC code), the carriers name, vehicle registration and special handling/pre-approval permit number (where applicable) is recorded. The initial point of inspection is the weighbridge and the name of the operator is recorded electronically by the GeneSYS system as the person checking the load in the first instance. Written operational procedures for waste acceptance are available and used for training staff on-site.

The weighbridge is located a few hundreds yards north of the administration building where a service hatch permits communication with the driver and inspection of documentation accompanying the waste consignment (Waste Acceptance Form A, B or C, Permit (if applicable). The site reception area is laid out in a one-way system, which assists the through flow of vehicles. No vehicles deemed unfit to use the site roads are allowed access. Rejected loads are recorded as per Condition 10.2 (i) of the Waste Licence 9-2 detailing the date and type of waste rejected and the facility to which they were directed.

All vehicles arriving on site must be appropriately covered to ensure the transport of the waste does not adversely affect the environment. Warnings will be given to the driver where necessary and if the instruction is ignored the company involved will be contacted and the load rejected.

Acceptance of waste is as per Schedule A of the Waste Licence Reg. No. 9-2 Waste Acceptance policy agreed by EPA as per condition 5.2.3 and Condition 1.6 of the licence.

Page 48 January 2009

Wastes not acceptable are liquid wastes, animal wastes, construction and demolition wastes, whole used tyres and hazardous wastes. Difficult wastes that require special handling can only be accepted if the Environmental Services Department of the Council has given prior authorisation at County Hall, Swords. Authorisation is by means of a valid permit (which expires one month after the date of stamping by the Environmental Services Department) and details the waste type, quantity and any special instructions required by site personnel.

Following acceptance of the load the weighbridge operator directs traffic to the relevant working area for the waste type where a banksman in charge of traffic will give further instructions to drivers.

5.1.2 Waste Inspection

If the weighbridge operator is unhappy with the documentation, nature and/or source of a load presented for disposal or if the carrier's permit is invalid, he will contact the Site Manager and may instruct the vehicle to park (in a holding area) while the legal status of the permit, or the origin, description and nature of the load is confirmed.

A visual inspection can be performed at the weighbridge, if possible. Alternatively, the load can be tipped adjacent to the relevant tipping face and inspected by the designated waste inspector. Where a breach of the law is suspected, the EPA and the Gardaí will be informed.

Where a breach of the waste acceptance policy is suspected the load can be diverted to the Waste Inspection Area/Quarantine Area for further inspection.

In addition to these inspections, checking and confirmation of suspect loads, random checks are also carried out on regular site traffic.

Non-municipal type waste is not accepted on site unless the Environmental Services Department has given prior approval at County Hall, Swords by means of a preapproval permit.

Fingal County Council personnel responsible for checking the documentation accompanying vehicles must be capable of:

- understanding the waste acceptance criteria for the site in terms of licence requirements, and site management policies,
- understanding the basic underlying reasons for the acceptance criteria for the site
- understanding the information which should be provided on the documentation accompanying loads,
- identifying non-conformity.
- Following specific procedures in the event that either the documentation is incorrect or the load does not comply with the relevant acceptance criteria.

Where inspection of a load is not possible at the site reception area (e.g. sealed containers), then the waste is deposited on the ground close to the working face. This permits inspection of the load prior to blading and burial. If a non-conformity is discovered or suspected, the waste is isolated and placed back in the transporting container or suitable alternative and removed to the Quarantine area pending management investigation. If the non-compliance is confirmed and deposit on the

Page 49 January 2009

site not possible, then the load is returned to the carrier, and the producer and authorities informed. Written records of the incident are recorded at the Weighbridge in the Rejects Book. Loads held on-site overnight are recorded in the Quarantine Register.

5.1.3 Inspection/Quarantine Area

An inspection area is provided as per condition 3.7 of the Waste Licence Reg. No. W0009-02. Any waste not conforming with schedule A and/or agreed Waste Acceptance Policy as per condition 5.2.3 will be rejected and removed off-site or placed in the quarantine area. Random loads and suspect loads will be diverted to the Inspection area for spot checks.

Summary of Waste Received & Consigned

Table 5.1 Quantity and type of waste deposited in Balleally Landfill in 2003-2008 and waste licence limit for Waste Licence W0009-02

Waste Type	Licence Limit (tonnes)	Deposited in 2003 (tonnes)	Deposited in 2004 (tonnes)	Deposited in 2005 (tonnes)	Deposited in 2006 (tonnes)	Deposited in 2007 (tonnes)	Deposited in 2008 (tonnes)
Household	152,500	61,201.52	65,814.99 (+ 6,099.56 C.A) 71,914.55	66,203 (+ 5,801 C.A) 72,004	62056 (+4,891 C.A.) 66,947	63,708 (+4,867 C.A.) +62 F.T. 68,637	50,489 (+ 3,959 C.A.) +10 F.T. 54,458
Commercial	200,000	150,454.96	119,890.35	49,195.57	63,819	61,773	46,248
Sewage Sludge	30,000	4,494	5,104.58	3,402.24	4,623	7,466	5,091
Industrial Non- Hazardous Sludge	6,000	5,749	5,992.8	6,635	6,825	7,061	6,660
Total	388,500	221,899.48	202,902.28	131,236.81	142,214	144,937	112,457

C.A - Civic Amenity

Note: As can be seen from the above figures during 2005-2008, the industrial non-hazardous sludge from Leixlip waste water treatment plant exceeded the licence limit of 6,000 tonnes. This is attributable to the expansion of the plant due to an increase in demand for potable water and subsequently an increase in production. Sewage sludge is from Barnageera Sewage Treatment Works which accounted for increases in this waste stream during 2007, no longer comes to Balleally Landfill.

Page 50 January 2009

Waste received at Balleally to be disposed of at the landfill is weighed at the weighbridge on entry. A waste acceptance policy has been prepared as per Condition 5.2. This enables the recording of waste into and out of the facility as per Condition 10.2 and 10.5.

5.2 Quarantine Register

Vehicles are taken into quarantine at Balleally Landfill for inspection under the Operation Bruscar Scheme.

Operation Bruscar Introduction:

On Saturday, 16th November 2002 a joint operation between guards and authorised persons under the Waste Management Act, 1996 commenced. This operation was codenamed "Operation Bruscar".

The authorised persons involved identified vehicles that were transporting waste and requested the guard to stop the identified vehicle. The waste on the vehicle was examined and the driver was questioned with regards to the origin and eventual destination of the waste. If, in the opinion of the authorised person, it was necessary to prevent environmental pollution, the vehicle containing the waste was impounded.

All impounded vehicles were taken to the quarantine area at Balleally landfill, where they were detained. This made it possible to further inspect and in detail examine the waste on the impounded vehicles.

Examination of waste is necessary to gather evidence for possible prosecution and to classify and identify the waste to safely dispose of it at a facility that is licensed to accept it.

Three operations were done during November and December 2002 and 41 were executed in 2003. 39 of these vehicles have been impounded to date, 25 of them in 2003.

There were only 7 vehicles impounded in 2004 and 3 vehicles impounded during the reporting period of 2005. This was owing to the temporary closure of the quarantine area in order to facilitate the excavation of the new cell number 6 in July 2004. A replacement quarantine area was built in 2005 but utilisation of this area has not been possible due to outstanding construction issues. All vehicles impounded are recorded in the Balleally Landfill Quarantine Register. Fingal County Council has also agreed to accept vehicles from similar operations from Meath County Council waste officials when required.

2006:

There were seven vehicles impounded in the quarantine area during 2006. All vehicles impounded are recorded in the Balleally Landfill Quarantine Register. Fingal County Council has also agreed to accept vehicles from similar operations from Meath County Council waste officials when required.

Page 51 January 2009

2007:

There were six vehicles impounded in the quarantine area during 2007. All vehicles impounded are recorded in the Balleally Landfill Quarantine Register. Fingal County Council has also agreed to accept vehicles from similar operations from Meath County Council waste officials when required.

2008:

No vehicles were impounded in the quarantine area during 2008.

5.3 Discussion of Fingal County Council's Waste Consigned to Balleally Landfill

- **Domestic Waste:** Domestic waste is household refuse that was collected by Fingal County Council's refuse freighters from the doorstep of private households. The waste is presented to the Council in a wheelie bin.
- Road Sweepers: Road sweepers are lorry type machines that are employed by the Council to sweep channels and kerbing and to remove grit and litter from the road surface.
- Roads: The Roads Department carry out repairs to footpaths and roads in the county. The waste material arising from these activities is used in the landfill for berk and internal road construction.
- Parks: The Parks Department not only tend to trees, shrubs and plants but
 also conduct repairs to buildings and structures of a historical nature and
 clear litter and rubbish from open spaces. Residual materials from these
 activities were deposited to the landfill. Waste from road cleansing and
 landscaping also arise from this department. It should be noted that no green
 waste was disposed of to the facility by this department.
- **Drainage:** Sewage sludge consigned to the facility for the period was classified as drainage as it originated in the Drainage Department. This was the only sewage sludge consigned to the facility.
- **Environment:** Material from the Environment Department originates from activities such as beach cleaning, cemetery management and clean-ups.
- Cleansing: The Litter Management Section collects material such as litter bin contents and fly-tipped waste which is consigned to the landfill.
- Leixlip Waterworks: Leixlip Waterworks is a potable water treatment plant.
 A by-product of the treatment process is a non-hazardous sludge cake as well as some screenings.
- Waterworks: Waste generated by the operation of the Water and Drainage Division that would include cleanings and inert material arising from the laying of pipes.
- **HQ:** A small quantity of waste produced in the headquarters of Fingal County Council was disposed of at the facility.

Page 52 January 2009

6. ENVIRONMENTAL INCIDENTS & COMPLAINTS

6.1 Reported Incidents

Table 6.1 below gives a summary of reported incidents during 2008. More details are available at the facility offices.

Table 6.1 Reported Incidents during the Reporting Period 2008

Date of Incident	Nature of Incident	Corrective Action
20/2/2008	Vehicular damage to overground pipework at LTP causing raw leachate to spill (approx 2M3). Spill duration 2 minutes.	EPA notified 20/2/2008. Spillage stopped after 2 minutes and valve (undamaged) closed off at Tank (T1a). Bowser used to draw up spilled leachate which ponded on the ground and was delivered to the leachate sump (P1). Absorbent granules were also applied to the spillage. Response Engineering instructed to repair damage.
11/4/2008	Vehicular damage to overground pipework at LTP causing raw leachate to spill (approx 4M3). Spill duration 5 minutes.	EPA notified 11/4/2008. Spillage stopped after 5 minutes when valve at raw leachate tank (undamaged) was closed. Spilled leachate which ponded was drawn to Swords Waste Water Treatment Plant. Damage was repaired. Following these two incidents, headwalls were built to protect the overground pipework at Raw Leachate and Treated Leachate tanks.
6/7/2008	Fire at Leachate Pump Control Panel Chamber for Cell 2.	Extinguished by fire brigade at Approx. 22:20hrs on Sunday 6/7/2008. EPA notified 7/7/2008. Investigation and corrective actions taken (See Report Ref FCC-W0009-02-2008-016)
18/9/2008	High level of CH4 was detected (>1% v/v) in borehole GA13 by EPA sampling staff.	EPA enforcement section notified 18/9/2008. Daily sampling was undertaken until levels subsided. Samples were taken for trace element analysis and a report was submitted on the incident (See Report Ref: FCC-W0009-02-2008-029)
18/11/2008	Leachate noted to be discharging to inner estuary.	Upon investigation source of leachate found to be Cell 2. Due to plumbing error in October leachate line had been connected to surface water line. Pumping ceased immediately. EPA & ERFB notified 19/11/2008. Repairs were affected and new Standard Operating Procedure adopted. Report submitted to The Agency (FCC-W0009-

(02-2008-032).

6.2 Complaints Summary

A summary of complaints for the reporting period is shown in Table 6.1. There were a total of 14 complaints received at the facility for the reporting period. They all relate to odour. All complaints were responded to as soon as possible after the time they were reported. Odour monitoring Ireland visited the site twice during the year and made many recommendations for odour / surface emission control (EPA Refs. W0009-02/gen43mh & W0009-02 / ak60em). Many of these recommendations have been implemented to date and the remainder are to be completed during 2009 in an effort to further improve odour control.

Table 6.2 Complaints received for the reporting period 2008

Date of Complaint	Nature of Complaint	Complaint	Corrective Action
23/1/2008	Odour	Odour at Dwelling	Investigate Gas Well Field
11/2/2008	Odour	Odour at Dwelling	Met With Residents
12/2/2008	Odour	Odour at Dwelling	Met With Residents
16/4/2008	Odour	Odour at Dwelling	Investigation
22/4/2008	Odour	Sewer Sludge Odour at Dwelling	Investigation
16/6/2008	Odour	Odour at Dwelling	Investigation
24/7/2008	Odour	Odour at Dwelling	Investigate Gas Well Field & Query DCC re water treatment screenings
30/7/2008	Odour	Odour at Dwelling	Investigate Gas Well Field
24/9/2008	Odour	Odour at Dwelling	Instruction issued to close / tape & seal all possible gas escape points.

25/9/2008	Odour	Odour at Dwelling	Contact made with BPS to seal leachate risers & check valves.
26/9/2008	Odour	Odour at Dwelling	Contact made with BPS regarding reconnection of wells.
8/10/2008	Odour	Odour at Dwelling	Contact made with BPS, Engines down temporarily around time of complaint.
28/10/2008	Odour	Odour at Dwelling	FCC personnel visited site of complaint. No odour detected. Complainant invited for site visit 29/1/2008.
2/11/2008	Odour	Odour at Dwelling	Contacted BPS regarding status of engines.

More Details available on Landfill Managers Complaint Register

7. ENVIRONMENTAL MANAGEMENT PROGRAMME

7.1 Environmental Objectives and Targets for 2008.

See section 4.2 for environmental objectives and targets.

7.2 Summary of written procedures

There were no new written procedures during the reporting period.

7.3 Communications Programme for Public Information

The Communications Programme for Fingal County Council contains information on Balleally Landfill. The information can roughly be divided into two areas. Background information prior to granting of waste licence, and information concerning the waste licence (W009-02). There is also a register of correspondence to and from the Agency, along with the various correspondences relevant to the Licence. This information is updated on a continuous basis.

Environmental Information can be viewed at the following locations:

- At the Council's Headquarters between 9.30 a.m. and 12.45 p.m. and 2.00 p.m. and 4.00 p.m. Monday to Friday (excluding public holidays), unless otherwise arranged by prior appointment.
- Permanent facilities for viewing information including a computer to be provided at Balleally Landfill.
- At Balleally Landfill by prior appointment with the Landfill Manager.
- A register of information will be made available on www.fingalcoco.ie. A Link to the EPA's website will also be added to the site.

Site Visits

- Site visits to Balleally Landfill can be arranged by writing to the Senior Landfill Manager requesting the date and time of the proposed visit and indicating the number of visitors and the purpose of such a visit and whether any presentation is required. The use of cameras and video equipment during the visit must be agreed in advance with Fingal County Council.
- Such requests will be accommodated where possible.

Balleally Landfill Liaison Committee

- All information relating to the restoration and aftercare of Balleally Landfill is presented to the Liaison Committee for comment and adoption.
- The members of the committee are:

Mr. Brian Arnold and Mr. Seamus O' Leary - REACT

Mr. John Barrett, and Ms. Rena Condrot - Balleally Residents and Farmers Association

Mr. Des Martin, and Mr. Ben Colgan - RAGE

Cllr. May McKeon, Cllr. Anne Devitt (Chairperson), Cllr. Tom Kelleher, Cllr. Joe Corr - Public Representatives

Mr. John Daly, Mr Martin Kiely and Mr. Mortimer Loftus. - Fingal County Council.

The Committee met six times during 2008. Agenda were set and minutes kept. An annual report was prepared to put before the Swords / Balbriggan Area Committee in February 2009.

Table 7.1 Reports and information available for public inspection 1993-2008.

Information Available	Report Date
Balleally Landfill Preliminary Technical Report & Scoping Study	September 1993
Balleally Landfill Study, Improvement of Balleally Landfill Site & Lusk Sewage Outfall, Inception Report	October 1996
Balleally Landfill Study, Improvement of Balleally Landfill Site & Lusk Sewage Outfall, Safety & Environment Assessment Report	January 1997
Balleally Landfill Study, Improvement of Balleally Landfill Site & Lusk Sewage Outfall, Preliminary Report on Recycling of Construction/ Demolition Waste	January 1997
Environmental Impact Statement for Balleally Landfill and Rush/Lusk Wastewater Treatment Plant, Volumes 1 - 8	September 1997
Waste Licence Application, Application Form	October 1997
Waste Licence Application, Monitoring Data	October 1997
Balleally Landfill Report on Interpretation of Baseline Monitoring Programme	November 1998
Waste Licence Request for Additional Information	February 1998
Waste Licence Request for Additional Information Article 6(1)	September 1998
Waste Licence 9 – 1, Issued by the EPA	16 th February 1996
Report on Short Term Options at Balleally Landfill	July 1999
Waste Management Plan for the Dublin Region, Accepted by Fingal County Council	10 th May 1999
Dublin Landfill Site Selection, Phase 1 Report	July 1999
Report on Short Term Options at Balleally Landfill	July 1999
Report on Short Term Options (capacity) at Balleally Landfill	Aug. 2000
Construction & Demolition Waste Recycling Project, Contracts Documents	
Hydrology Study at Balleally Landfill	March 1993
Groundwater Quality at Balleally Landfill	June 2000
Groundwater Quality at Balleally Landfill	December 2000

Construction & Demolition Waste Recycling Project, Contract Documents	April 2001
Ground & Surface Water Quality at Balleally Landfill	April 2001
Proposal for Leachate Management at Balleally Landfill in	July 2001
Response to Condition 4.17 of Waste Licence 9-1	,
Environmental Monitoring at Balleally Landfill	July 2001
Noise Monitoring at Balleally Landfill	August 2001
Environmental Monitoring at Balleally Landfill	October 2001
Environmental Monitoring at Balleally Landfill	Jan 2002
Birdcounts from Rogerstown Estuary	1995 2001
Environmental Monitoring at Balleally Landfill	April 2002
Balleally Landfill Vertical Barrier - Specified Engineering Works/	May 2002
Tenders	May 2002
Environmental Monitoring at Balleally Landfill	July 2002
Annual Environmental Report 2000	
Annual Environmental Report 2001	Nov 2002
Balleally Landfill/ Short Term Extension Program - updated tender	Jan 2003
Jan 2003	3411 2000
Annual Environmental Report 2002 / 9-1	February 2003
Environmental Monitoring at Balleally Landfill Nov - Dec 2002	February 2003
Environmental Monitoring at Balleally Landfill Jan 2003	
Ecological Monitoring of Rogerstown Estuary May & July 2002	February 2003
Study of Scavenging Birds at Balleally Landfill December 2002	February 2003
Ecological Monitoring of Rogerstown Estuary Oct & Nov 2002	February 2003
Dust Monitoring Locations April 2003	July 2003
Environmental Monitoring April 2003	July 2003
Revised Restoration and Aftercare Plan Balleally landfill July 2003	July 2003
Slope Stability Assessment for Balleally Landfill July 2003	July 2003
Environmental Monitoring at Balleally July 2003	July 2003
Environmental Monitoring at Balleally July 2003 C001983/4	July 2003
Rogerstown Estuary Final Report June 2003	June 2003
Environmental Monitoring at Balleally July 2003 C002631/1	October 2003
Construction Quality Assurance Report/Schedule B	September 2003
Environmental Monitoring Report Balleally Dec 2003 (including	December 2003
Appendices)	200000. 2000
Balleally Landfill AER 2003	February 2004
Environmental Monitoring Report January 2004	April 2004
Environmental Monitoring Report March 2004	March 2004
December '03 Environmental Noise Report	July 2004
Quarterly Monitoring Report Q2 June 2004	August 2004
Construction Quality Assurance Report/Schedule B	August 2004
Quarterly Monitoring Report Q3 October 2004	October 2004
Quarterly Monitoring Report Q4 December 2004	January 2005
Annual Environmental Report 2004	February 2005
Quarterly Monitoring Report Q1 January 2005	April 2005
Quarterly Monitoring Report Q2 & Noise monitoring report Q2	July 2005
April 2005	
Quarterly Monitoring Report Q3 July 2005	October 2005
Quarterly Monitoring Report Q4 October 2005	January 2006
Annual Environmental Report 2005	January 2006
Environmental Management Plan 2005	February 2006
Quarterly Monitoring Report and Noise Survey Q1 2006	April 2006
Quarterly Monitoring Report and Noise Survey Q2 2006	July 2006
Quartony Monitoning Report and Noise Ourvey &2 2000	July 2000

Quarterly Monitoring Report and Noise Survey Q3 2006	September 2006
Resource Use and Energy Efficiency Audit	October 2006
Quarterly Monitoring Report Q4 2006	January 2007
Noise Survey Q4 2006	January 2007
2006 Annual Emissions Survey IPS Gas Plant	January 2007
Annual Environmental Report 2006	January 2007
Quarterly Monitoring Report and Noise Survey Q1 2007	April 2007
Quarterly Monitoring Report Q2 2007	July 2007
Noise Survey Q2 2007	July 2007
Quarterly Monitoring Report and Noise Survey Q3 2007	October 2007
Flooding Report	November 2007
Slope Stability Survey Report	December 2007
Quarterly Monitoring Report and Noise Survey Q4 2007	January 2008
Annual Environmental Report 2007	January 2008
Quarterly Monitoring Report Q1 2008	April 2008
Quarterly Monitoring Report Q2 2008	July 2008
Rogerstown Estuary Treated Leachate Discharge Modelling	October 2008
Report.	
Slope Stability Survey	November 2008
Landfill Gas Trace Element Analysis Report	November 2008
Biological Monitoring Report	November 2008
2008 Annual Emissions Survey IPS Gas Plant	January 2009

Map Information Available	Report Date
Re-location C&D at Balleally	March 2003
Wall & Railing along landfill at Balleally	April 2003
C&D Waste Recovery Area, Balleally	June 2003
Topographical Survey for Balleally June 2003	June 2003
Re-location of Gas Compound at Balleally / 4 Drawings	July 2003
Proposed gas extraction pipe to new gas plant	November 2003
Monitoring Map (J1/DG0008) For Balleally	December 2003
Balleally Leachate Treatment Plant Process & Instrumentation Drawing	July 2004
Balleally Leachate Treatment Plant Site Plan Layout	July 2004
Topographical Survey for Balleally Landfill June 2004	August 2004
Revised Monitoring Drawing	October 2004
Installation of new landfill gas management infrastructure.	February 2005
Topographical Survey	October2005
Topographical Survey	August 2006
Provision of Public Car Park and Walkway	February 2007
New IPS Gas Wells	February 2007
Phase 2 Piggybacking	April &July 2007
Joining of existing two vertical barrier walls	June 2007
Installation of New Landfill Gas Management Infrastructure	July 2007
Topographical Survey	December 2007
Updated as built drawings for surface water / leachate infrastructure	October 2008
Topographic Survey	October 2008

7.4 Financial Provisions

Condition 12.2 of the licence requires the establishment of a fund to implement the Restoration and Aftercare Plan (submitted as per Condition 4.1 in July 2003).

FCC received a letter from The Agency during 2008 regarding Environmental Liability Risk Assessment (ELRA), Residuals Management Plans (RMP), Closure Remediation and Aftercare Plans (CRAMP) and Financial Provision (FP).

In order to assist The Agency in their assessment on the uptake of Environmental Liability Risk Assessment (ELRA), Residuals Management Plans (RMP), Closure Remediation and Aftercare Plans (CRAMP) and Financial Provision (FP), the following information was submitted to The Agency in relation to Balleally Landfill.

 Balleally Risk Categorisation as derived using the system set out in The Agency's Guidance Document.

This specific exercise has not been carried out to date. However on looking at the guidance document it appears similar to the "Methodology for Determining Enforcement Category of Licences". This exercise gave Balleally an A1 enforcement category which would probably equate to a Risk Category 3 classification.

- The facility's RMP/CRAMP was submitted to "The Agency" on 4/7/2003. It
 was agreed by "The Agency" during 2003. The RMP / CRAMP have not yet
 been fully costed.
- Fingal County Council's position to date with regard to financial provision currently in place for Balleally has been stated as follows; "In accordance with Condition 12.2 of the Waste Licence, Fingal County Council shall establish and maintain a fund or other form of approved security, that is adequate to assure the financial capability of implementing the Restoration and Aftercare Plan as agreed with "The Agency"." Financial provision is made on an annual basis at Fingal County Council budgeting meetings.

As the CRAMP/RMP predates the Guidance Document (2006), there are some differences in content and methodology. The contents of the CRAMP/RMP broadly reflect the suggested contents in the guidance document. It is also worth stating that *The Agency* approved of the CRAMP/RMP at the time of submission. The financial provision is considered adequate.

Staff from Fingal County Council intend to attend a conference in 2009 which is to be organised by The Agency on implementation of the Environmental Liability Directive.

7.5 Management Structure

The facility is owned and operated by Fingal County Council. The Environmental Services Department of Fingal County Council manage the landfill facility. Some changes in the management structure occurred during 2008. A description of the current management structure is detailed in Appendix V.

GO January 2009

APPENDIX I DRAWINGS

January 2009

i

APPENDIX II GROUNDWATER MONITORING RESULTS

ii January 2009

APPENDIX III SURFACE WATER MONITORING RESULTS

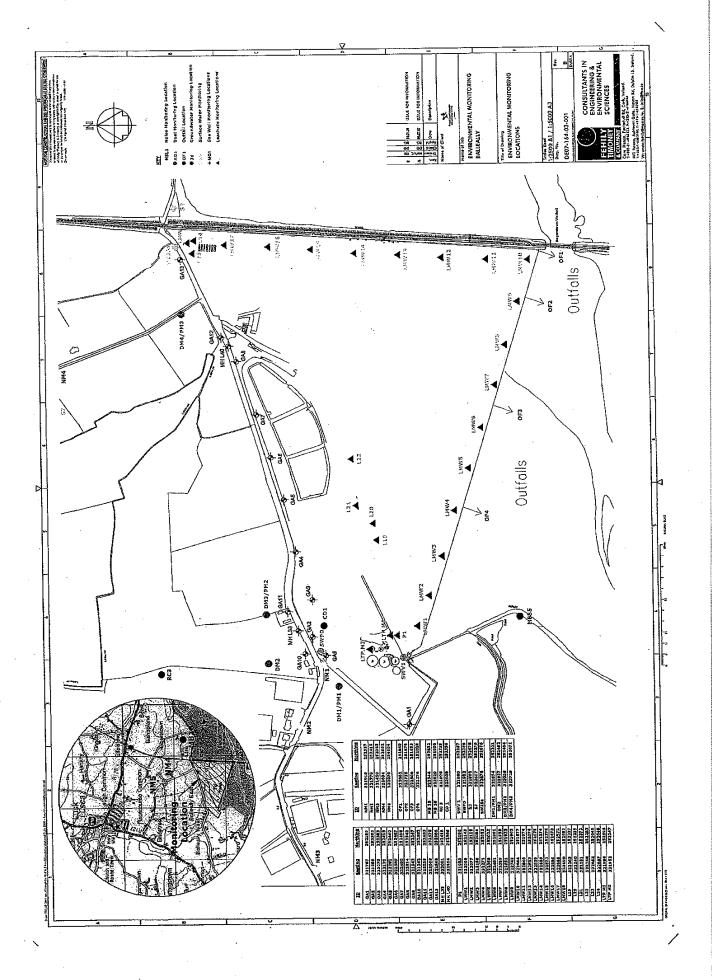
iii January 2009

APPENDIX IV LEACHATE LEVELS MONITORING RESULTS

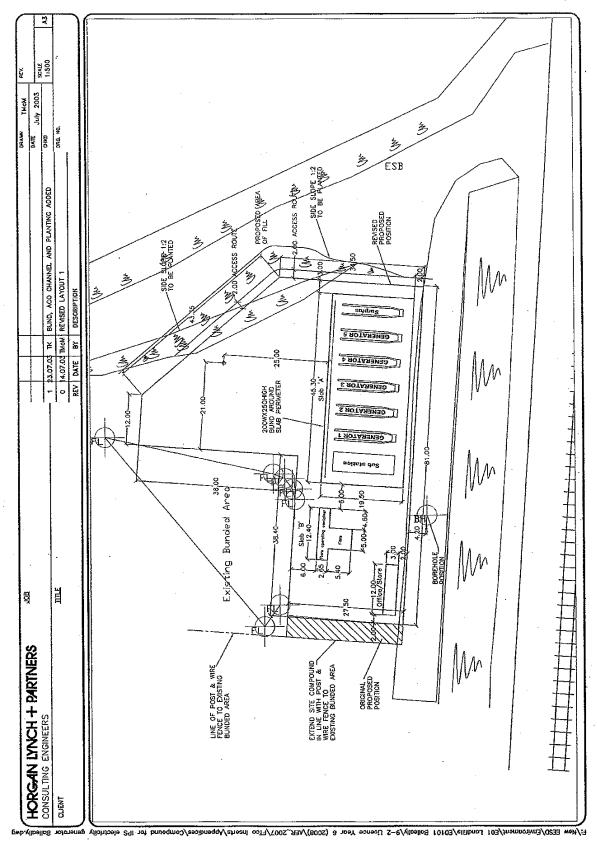
İV January 2009

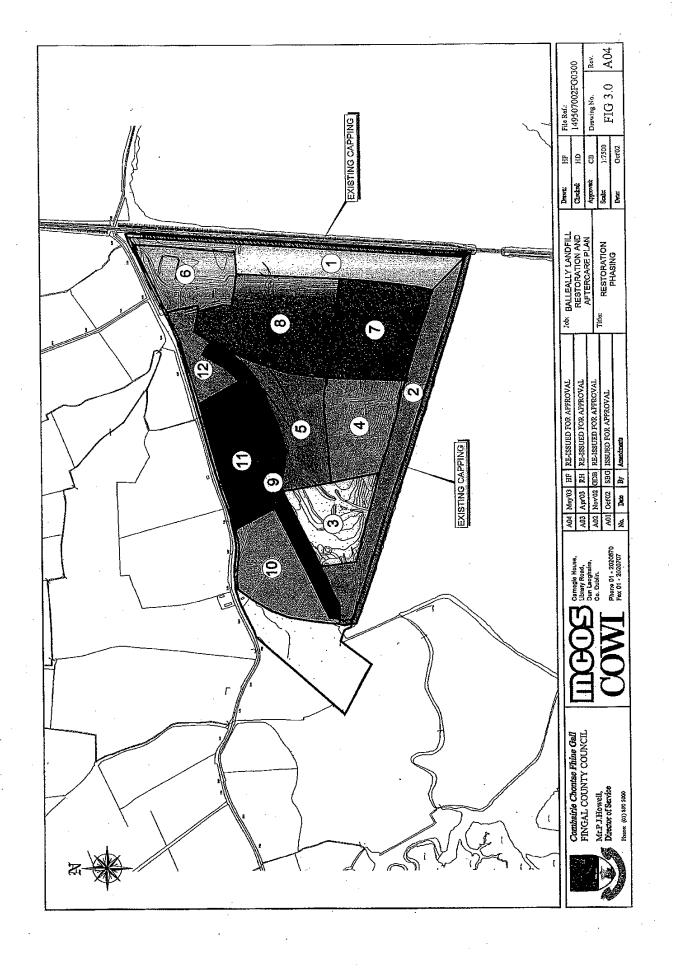
APPENDIX V LEACHATE QUALITY

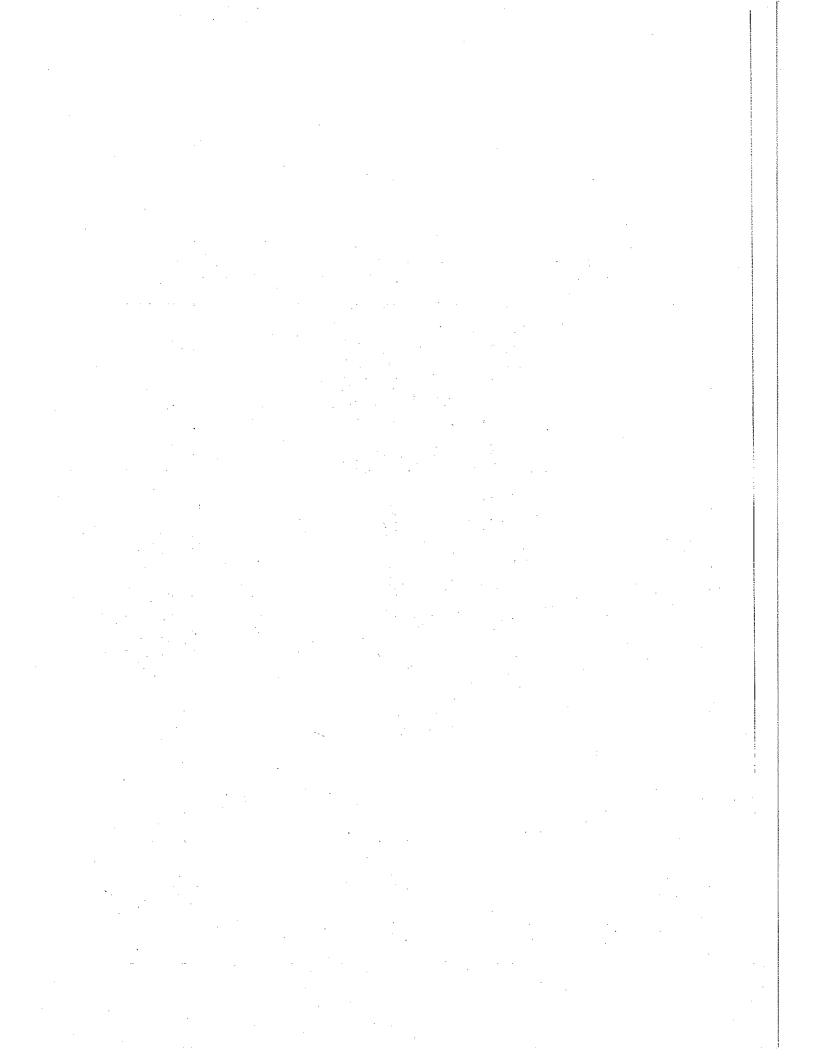
APPENDIX VI LANDFILL GAS MONITORING RESULTS

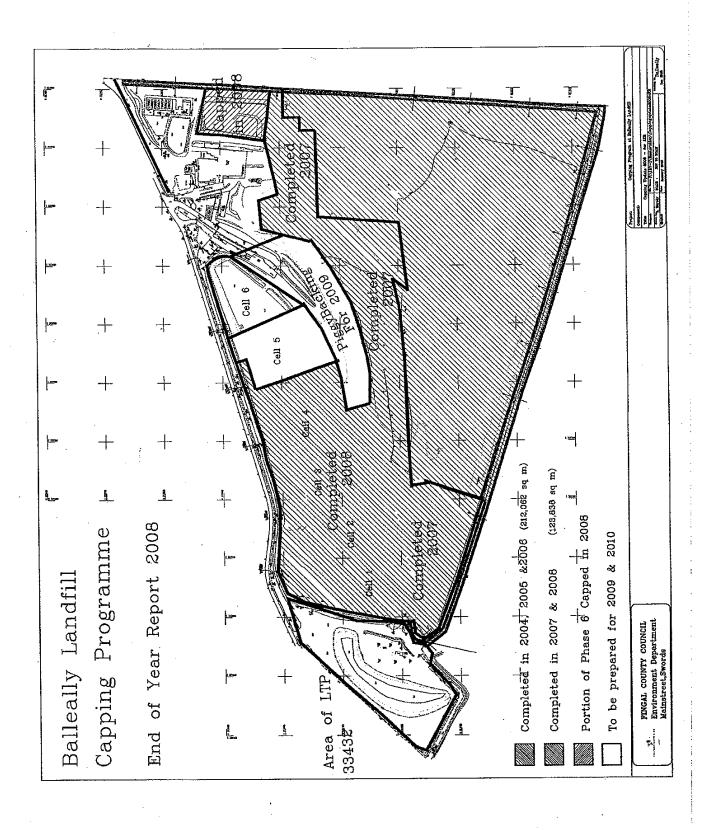

Vİ January 2009

APPENDIX VI STAFF STRUCTURE


VII January 2009




APPENDIX I DRAWINGS



٠..

j

APPENDIX II GROUNDWATER MONITORING RESULTS

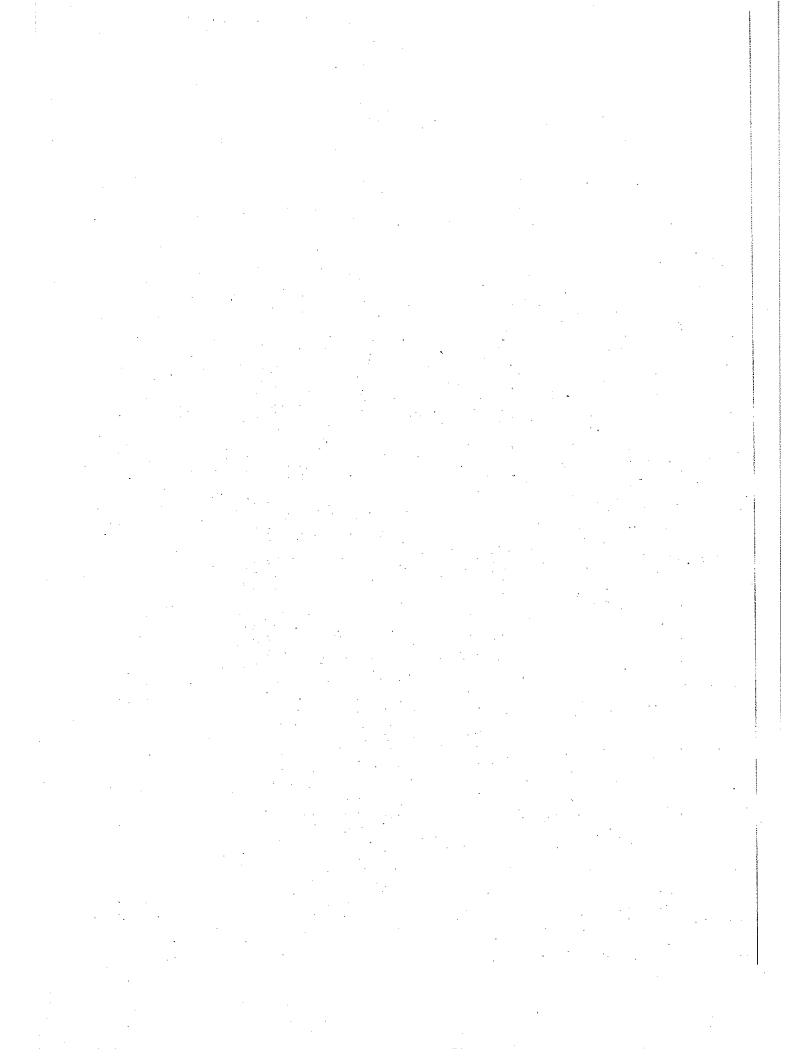
	Standard	Date								
3	Organia	0000	00000000000	0000/60/00	OUTC/ POLYC	07/05/2008	11/06/2008	- ISO00/1/00 ISO00/90	14/08/2008	8006/60/60
Daramater		B002/10/61	00/07/70/00	DONOZIZADO OSIDISTENDO ZAMBARADO OSIZIZADO	24/04/4000	50070000	I DOG EVOU	0002110100	1001	
	10000	70.0		7 45	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SEC. 10.43	5.43	1011	7.95
	0.0 V V V	0.24	经利利证明的		CLING OF THE PROPERTY.	MANUAL PROPERTY AND AND AND AND AND AND AND AND AND AND	Carried Control of the Control			
<u> </u>	25,1			9.1	8.6	12.3	<u>4</u> .3	17.3	15.2	15.9
(ac)		C C		WHITE STATES IN WASHINGTON		需用如料加斯利	0.364		811944544	
[Ammoniana] Nifradan (ma/l)	0.12	0.3		0.00				The state of the s	STEEL STREET, STREET, ST. L.	STATE CONTROL OF SHOWS AND ADDRESS OF SHOWS AND ADD
	2.5	e.		801/47/108	67 8 3 3 3			6.0111116		7
(VBIL)	2	1			SCHOOL STATE	G94000000000000000000000000000000000000		1000年1000年1000年100日	34	18
	40*	<u>ر</u>	0.00					STATE OF THE PROPERTY OF THE PARTY OF THE PA	2	
	502	13	2014	<10	<10 <10	0. V	41	25 <10		<10
(ngu) sonsberigen song (mg/n)	- Space of Change	u u	000		6.0	-	1.2	9.6	5.6	2.84
Dissolved Cxyden (mg/l)	לאם ואין היווחוות אין			A TANADA OF TANADA PARA PARA PARA PARA PARA PARA PARA P	AND THE PROPERTY AND INCOME.	CONTRACTOR SERVICES	SAME PROPERTY STATES OF THE PARTY OF THE PAR	THE PROPERTY OF THE PARTY OF TH		The state of the state of
Cr. (100 / 1	301	27	88	120 To 100 Sept.	66.53		42	10 P		Control
	, , ,	0 000	東都原原於	249年前888	0.48	10201	表のアー	26 July 10 Jul	0.886	0
Conductivity (mg/cm)		0.00.0		発送は大利の大利の大利の	CONTRIBUTION SECTION OF	Printed (APPLICATIONS)	SECURIOR SEC	The state of the s		

Note:-Cells Shaded indicate results higher than MAC or IGV
1=EPA IGV Interim Guideline Values, from EPA, Towards setting Guideline Values for the Protection of Groundwater in Ireland
2=(Quality of Surface Water intended for the abstraction of drinking water) Regs., 1989.

MB35 - Downstream	Standard	Date				Date
		January 08 May 08		July GŽ 🧢 July 08	July 08	January 09
al Nitroden as N (mg/l)	0.12	89 11 11	129 MIN	6.4		901
	301	89.4	088241	34,084	FI 16/100	4,726,058
gen (ma/l)	No abnormal Change	4.5	4.6	4.2	8.3	8.15
oS/cm)	7	10000000000000000000000000000000000000	917	41.55	FI FILESE 5	A 18 39 525
	≥ 6.5 & ≤ 9.5¹	7,55	66.9	7.5	7.79	7.765
	25'	11	10.7	t.	13.2	14.2
nic Carbon (mg/l)	No abnormal Change	3	. 4	8	<2	3.333333
	0.01			<0.05	W W 100.05	
Fluoride (mg/l)	4			0,5	0.3	
cury Low Level (ug/l)	4			<0.05	<0.05	
	2001			4529	# MINITOOTA	
AS CACO3 (mg/l)	No abnormal Change			099	200	
	No abnormal Change	_		<0.05	<0.05	
(mg/l)	0.03			00 80 80 80		
(l/bi	No abnormal Change	1		<0.3	3.1	
	1501			8000	. 22	
0/!)	5,			330	1,4	
(ma/l)	0.03			<0.05	0.009	
Level (ug/l)	10001			4017	80983388	
(I/Br	51			0.8	0.4	
	301			415100	10422100	
	301			∇	4	
	200,			99	III 11 11 11 11 11 11 11 11 11 11 11 11	
	101			G	2	
(l/on) le	50000		,	151600	11 (545000	
	501			2464	2610	
Dissolved Nickel Low Level (ug/l)	201			18	10	
	1001			7	28	
	101			<0.05	0.05	
יישווא איישווא איישווא	Motor. Colle Shaded indicate results higher than MAC of IGV	dicate results h	nigher than	MAC or IGV		

Note:-Cells Shaded Indicate results higher than MAC or IGV
1=EPA IGV Interim Guideline Values, from EPA, Towards setting Guideline Values for the Protection of Groundwater in Ireland 2=(Quality of Surface Water intended for the abstraction of drinking water) Regs., 1989.

	Standard	Cafe				
ACS - Opsileali		January	Mav	July 07	July 08	Oct-08
	0.401			002		Series and the
Ammoniacal Nitrogen as N (mg/l)	7.0			i e		O North Handa
Chloride (mg/l)	30,			8	No. of Persons and	Company of the Compan
Dissolved Oxygen (mg/l)	No abnormal Change	5.3	5.75		3.4	5.2
Electrical Conductivity (mS/cm)	-	0.938	500)High	1.085	0.903	1008
Licotropia Contracting (montracting)	> 6.5 & < 9.5 ¹	7.6	6.92	7.46	7.37	7.6
The factor (A)	251	10.2		14.1	12.1	13.3
Total Oceanic Carbon (mg/l)		42	<2	₹	8	က
Cyanide (md/)	0.011			<0.05	0.05	
Cyclinde (mod))	-			0.2	0.2	
Dissolved Marchiny Low Level (110/1)	- 1-			<0.05	<0.05	
Clabate (modil)	2001			46	42	
Supried (11g/1)	No abnormal Change			178	550	
Total Dhosphorolis (mg/l)	No abnormal Change	1		90:0>	0.24	
(modif)	0.03			<0.03	0.05	
(//)	No abnormal Change	1		69		
Coding (mg//	1501			21.5	1889111881	
Social Fingh,			ļ.	O.	91/98	
Potassium (mgh)	, co			<0.05	<0.001	
Total Ciliothium (1997)	1000			27	. 53	
Dissolved Dolott Cow Level (Legi)				40×	4 '0>	
Dissolved Cautilian Low Ecycl (1977)	301			174500	0001773494	
Dissolved Calciant Fow Level (cgr.)	30,			3	1 >	
Dissolved Copper Low Level (1877)	2001			80	84	
Dissolved from Low Level (ugh)	10,			02	87 W W W W W	
(1/0/1)				10460	11030	
Dissolved Magnesian Education (49.7)	50			4	<1	
Dissolved Marigar less bow bover (1917)	201			8	2	
	1001			45	23	
	10]			90'0>	0.05	
				0		


Note:-Cells Shaded indicate results higher than MAC or IGV

1=EPA IGV Interim Guideline Values, from EPA, Towards setting Guideline Values for the Protection of Groundwater in Ireland

2=(Quality of Surface Water intended for the abstraction of drinking water) Regs., 1989.

CD1 - Under Liner	Standard	Date				
Parameter		ary	May	July 07	July 08	Oct-08
Ammoniacal Nitrogen as N (mg/l)	0.12			1.2	医指数隔隔 侧	811111111111111111111111111111111111111
Chloride (ma/l)	301	21		17		E 149
Dissolved Oxygen (mg/l)	No abnormal Change	8.8	-	4. 10.	9.6	4,83
		0,993		1.005	間間開催期間	0.808
pH (pH units)	≥ 6.5 & ≤ 9.5¹	8.24	8944488	7.54	8.54	8.98
Temp (oC)	251	8.6	12.3	91	17.7	12.5
Total Organic Carbon (mo/l)		5	翻欄欄間配	6	16	10
Cvanide (mo/l)	0.01			<0.05	<0.05	
Flioride (mg/l)	**			0.2	0.1	
Dissolved Mercury Low Level (ud/l)	1			<0.05		
Sulphate (mo/l)	2001			357	922	
Total Alkalinity AS CAGO3 (mg/l)	No abnormal Change			256	50	
Total Phosphorous (mg/l)	No abnormal Change			90:0>	0.05	
Ortho Phosphate as PO4 (mo/l)	0.031			<0.03	<0.03	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change	-		7.0	8.1	
Sodium (matt)	150			20.5	114	
Potassiim (mg/i)	5,			8		
Total Chomism (mg/l)	0.03			\$0.05	0.015	
Dissolved Boron Low Level (ug/l)	10001			100	99	
Dissolved Cadmirm Low Level (ug/l)	51			5 '0>	<0.4	
Dissolved Calcium Low Level (ug/l)	301			197100	H 1850 00 00	
Dissolved Copper Low Level (ug/l)	301					-
	2001			48	80	
_	. 101			V	<1	
(/on/)	500001			14800	6403	
Dissolved Manganese Low Level (ud/) 501	501			7	19	÷
Dissolved Nickel Low Level (ug/l)	201			S	5 開新編80	
Dissolved Zinc Low Level (ug/l)	1001			17	61	
Total Cvanide (mg/l)	101			20:0>	<0.05	
, out of anne of 11.9						

Note:-Cells Shaded indicate results higher than MAC or IGV
1=EPA IGV Interim Guideline Values, from EPA, Towards setting Guideline Values for the Protection of Groundwater in Ireland
2=(Quality of Surface Water intended for the abstraction of drinking water) Regs., 1989.

APPENDIX III SURFACE WATER MONITORING RESULTS

		7	-							
<u>83</u>	Standard	Cale								
Parameter		15/01/2008 06/02/2008		16/03/2008	24/04/2008	07/05/2008	11/05/2008	06/03/2008 24/04/2008 07/05/2008 11/05/2008 09/07/2008	14/08/2008	09/09/2008
I C	≥ 5.5 & ≤ 8.5 ³	8.17	8.3	7.75	8.12	8	68'2	5.44	7.75	8.03
Tomo (AC)	No abnormal change ²	6.6	5.1	6.9	8,5	11.8	13.3	15.9	13.9	14.2
Ammoniacal Nifrocen as N (mo/l)	0.231				07/15/15/19		SEMINITION	1 6 July 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 11 11 11	和解析和可容
	전.	<28	0.000	\$	7	<2	\$	2		<2
(III) (OO)	401,3	24 器	Mary Mark 788	<15	<15	19	. 35	24	24	16
Tetal Suppled Salds (mail)	25.2	<10	16	26	<10	× 10	<10	13	. <10	<10
Dissolved Outgot (mg/)	No abnormal Change 2	5.4	5,7	4.3	12.7	8.01	4.63	5:57	8.45	4.88
Choide (mg/l)	250	174	52	89	76	06	124	91	52	72
Conductivity (mS/cm)		0.717	0.745	0.962	0.908	620000000000000000000000000000000000000	388811 446	F#1.11.06	0.686	0.743
	Note: Calle Shaded indicate results higher than MAC or IGN	ar than MAC or	75							

Note-Cells Shaded indicate results higher than MAC or IGV
1=Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989).
2=This Value used as an indicator only.
3 Limit for A3 waters specified only.

SWV1 - Inner Estuary	Standard	Date			٠.	
Parameter		Jan 08	May 08	July 07	July 08	Oct 08
Ammoniacal Nitrogen as N (mg/l)	0.23	89111198	90/8/15/10	6145		6.684.00
BOD (mg/l)	51	က	8455	<0.05		06111111111
COD (mg/l)	401,3		5		06.000	MW 147 231
Chloride (ma/l)	2501	186	418	97	2414	95 20
Dissolved Oxygen (mg/l)	No abnormal Change 2	4.8	4.9	1.196	7.2	4.79
Conductivity (mS/cm)			2	T. T. T. C. A. 13	1111111111111111111111111111111111111	0.815
Ha	≥ 5,5 & ≤ 8,5 ¹	7.93	6.94	7.61	7.39	7.85
Total Suspended Solids (mg/l)	50 ²	<10	<10	<0.05	38	243
Temp (oC)	No abnormal Change ²	6.8	14.2	17.4	20.7	12.5
Dissolved Mercury Low Level (ug/l)	<0.12			<0.05	<0.05	
Sulphate (mg/l)	200 ²			<0.03	223	
Total Alkalinity AS CACO3 (mg/l)	No abnormal Change ²			300	280	
Total Phosphorous (mg/l)	No abnormal Change 2			143	0.14	
Ortho Phosphate as PO4 (mg/l)	No abnormal Change 2			2.3	0.21	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change 2			4:5	8.4	
Sodium (mg/l)	No abnormal Change 2			14	1321	
Potassium (mg/l)	No abnormal Change 2			26	67.3	
Dissolved Chromium (mg/l)	0.12			EF-10-48	V	
Dissolved Boron Low Level (ug/l)	2000 ²			<0.4		
Dissolved Cadmium Low Level (ug/l)	5²			118 44/00	<0.4	
Dissolved Calcium Low Level (ug/l)				<u>۲</u>	222700	
Dissolved Copper Low Level (ug/l)	502			9	9	
Dissolved Iron Low Level (ug/I)	1000²			⊽	64	
Dissolved Lead Low Level (ug/l)	5-			13.E 1118.940	٧	
(l/gu) le				V	252200	
ےا	300²			4	1690	
Dissolved Nickel Low Level (ug/l)	100²	-		2	11	
Dissolved Zinc Low Level (ug/I)	100²			2	23	

Note:-Cells Shaded indicate results higher than MAC or IGV 1=Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989). 2=EQS = Environmental Quality Standard for Surface Water Estuarine, Coastal and Marine Waters Where Applicable

SW20a - Drain N field	Standard	Date				
Parameter		January 08 May 08	May 08	July 07	July 08	Oct-08
Ammoniacal Nitrogen as N (mg/l)	0.23	98/11/11/18/9	953	198 188 188 188 188 188 188 188 188 188 188 188 188 188 188 188 188 188	開開 184 年	100
(l/gm) (DOB)	51	5		W		5
	401,3		########		921411111111111111	
Chloride (mg/l)	2501	. 53		86	110000	66
Dissolved Oxygen (mg/l)	No abnormal Change 2	4.7	4.8		8.1	2.58
Conductivity (mS/cm)		8000	296 (311)	886.485588	64 CH H 184	1,201
Ha	≥ 5.5 & ≤ 8.5 1	7,38	6.78	7.21	7.54	7.42
Total Suspended Solids (mg/l)	50²	<10	43	01>,		11.58 1220
Temp (oC)	No abnormal Change ²	6.9	14	15,5	9.1	12.1
Dissolved Mercury Low Level (ug/l)	<0.1 ²			<0.05	<0.05	
Sulphate (mg/l)	200²			104	74	-
Total Alkalinity AS CACO3 (mg/l)	No abnormal Change ²		-	433	1490	
Total Phosphorous (mg/l)	No abnormal Change ²			0.27	0.05	
Ortho Phosphate as PO4 (mg/l)	No abnormal Change ²			0.37	<0.03	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change 2			1.5	4.0	-
Sodium (mg/l)	No abnormal Changė ²			09	286	
Potasslum (mg/l)	No abnormal Change 2			38	125.5	
Dissolved Chromium (mg/l)	0.1²			<0.05	7	
Dissolved Boron Low Level (ug/l)	2000²			278	1244	
Dissolved Cadmium Low Level (ug/l)	52			<0.4 <0.4	40.4	
Dissolved Calcium Low Level (ug/I)				97000	145900	
Dissolved Copper Low Level (ug/l)	50 ²			14	4	
Dissolved fron Low Level (ug/l)	1000 ²			30	128	
Dissolved Lead Low Level (ug/I)	52			<1 <	_	
Dissolved Magnesium Low Level (ug/l)		•		17730	102500	
Dissolved Manganese Low Level (ug/l)	300²		-	26	686	
Dissolved Nickel Low Level (ug/l)	100²			12	48	
Dissolved Zinc Low Level (ug/I)	7001			<1	22	

Note:-Cells Shaded indicate results higher than MAC or IGV 1=Maximum.Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989). 2=EQS = Environmental Quality Standard for Surface Water Estuarine, Coastal and Marine Waters Where Applicable

S7 - Unstream	Standard	Date				
Parameter		January 08 May 08	May 08	July 07	July 08	Oct-08
Ammoniacal Nitrogen as N (mg/l)	0.23	<0.2	<0.2		<0.2	10000000000000000000000000000000000000
BOD (ma/l)	5	<2	<2	2	₹5	က
COD (ma/l)	401,3	22	<15	23	17	21
Chloride (mg/l)	2501	54	61	20	70	55
Dissolved Oxygen (mg/l)	No abnormal Change 2	5.7	5.9		9.4	4.25
Conductivity (mS/cm)	1	0.717	0.789	0.802	٥	0.697
Ho	≥ 5.5 & ≤ 8.5 ¹	100	7.3	7.55	7.82	7.93
Total Suspended Solids (mg/l)	50²	<10	<10	<10	. 25	22
Temp (oC)	No abnormal Change 2	7	13:2	15.4	17.2	11.8
Dissolved Mercury Low Level (ua/l)	<0.12			<0.05	<0.05	
	200 ²	-		48	56	
Total Alkalinity AS CACO3 (mg/l)	No abnormal Change 2			363	290	
Total Phosphorous (mg/l)	No abnormal Change 2			0.28	0.14	
Ortho Phosphate as PO4 (mg/l)	No abnormal Change ²			0.54	0.7	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change 2			6.8	3.3	
Sodium (mg/l)	No abnormal Change 2			21	5.7	
Potassium (mo/l)	No abnormal Change 2		,	4.3	6.4	
ium (ma/l)	0.12		,	<0.05	₹	
(l/gn)	2000 ²			91	117	
(I/br	5²			<0.4 <0.4		
Dissolved Calcium Low Level (ug/I)				134700	143700	·
Dissolved Copper Low Level (ug/I)	502			Į,	2	
Dissolved Iron Low Level (ug/l)	1000 ²			14	09	
Dissolved Lead Low Level (ug/l)	52			₹		
Dissolved Magnesium Low Level (ug/l)				9647	13380	
-	300 ²			V	· V	
Dissolved Nickel Low Level (ua/l)	100²			3	3	
Dissolved Zing Low Level (ua/l)	100*			Ϋ́	15	

Note:-Cells Shaded indicate results higher than MAC or IGV 1=Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989). 2=EQS = Environmental Quality Standard for Surface Water Estuarine, Coastal and Marine Waters Where Applicable

S3 - Outer Estuary	Standard	Date				
Parameter		January 08 May 08		Jüly 07	July 08	Oct-08
Ammoniacal Nitrogen as N (mg/l)	0.23	概如 整组 经		110	6	3.5
BOD (mg/l)	51	<2	<2>	ζ,	2	2
	401.3	21	19	16	24	22
(d/)	2501	174	06	62	91	99
Dissolved Oxygen (mg/l)	No abnormal Change 2	5,4	8.01		9.3	9
Conductivity (mS/cm)	-	0.76	620 (2)	0.938	100	0.765
Ha	≥ 5.5 & ≤ 8.5 ¹	8.17	8	7.54	7.3	7.8
Total Suspended Solids (mg/l)	50 ²	<10	<10	<10	13	13
Temp (oC)	No abnormal Change ²	9.9	11.8	4	15,9	11.9
Dissolved Mercury Low Level (ug/l)	<0.12			<0.05	<0.05	
Sulphate (ma/l)	2002			99		
Total Alkalinity AS CACO3 (mg/l)	No abnormal Change 2			375		
Total Phosphorous (mg/l)	No abnormal Charige 2			0.07	Ϋ́	
Ortho Phosphate as PO4 (mg/l)	No abnormal Change ²			0.39	0.1	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change 2			13.1		
Sodium (ma/l)	No abnormal Change 2			27.5	4	
Potassium (mg/l)	No abnormal Change 2			7	23	
Dissolved Chromium (mg/l)	0.1 ²			<0.05		
Dissolved Boron Low Level (ug/l)	20002			118	189	
Dissolved Cadmium Low Level (ug/l)	52			<0.4	<0.4	
Dissolved Calcium Low Level (ug/l)				147400	147100	
Dissolved Copper Low Level (ug/l)	502	٠		√	₹	
Dissolved Iron Low Level (ug/l)	1000²			7	54	
Dissolved Lead Low Level (ug/l)	52			۸ <u>۲</u>	٧	
Dissolved Magnesium Low Level (ug/l)				11760	18840	
ے ا	3002			۸٦	٧	
Dissolved Nickel Low Level (ug/l)	100²			5	-	
Dissolved Zinc Low Level (ug/l)	100²			Ϋ́	23	

Note:-Cells Shaded indicate results higher than MAC or IGV 1=Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989). 2=EQS = Environmental Quality Standard for Surface Water Estuarine, Coastal and Marine Waters Where Applicable

SWFD - Northern French Drain	Standard	Date				
Parameter		January 08. May 08	May 08	July 07	July 08	Oct-08
Ammoniacal Nitrogen as N (mg/l)	0,23	新期 的4	<0.2	第二部	0.7	
BOD (mg/l)	5	<2	3	<0.05	ಭ	8
COD (ma/l)	401,3	<15	<15	7.67.11.113.00	<15	<15
Chloride (ma/l)	2501	55	64	49	59	54
Dissolved Oxygen (mg/l)	No abnormal Change 2	4.9	5.1	1.087		2.17
Conductivity (mS/cm)	- 4	武和加利 在	PL 100 000			17. IF 11.11.11.3
Ha	≥ 5.5 & ≤ 8.5 ¹	7.81	6.83	7.66	7.57	7.7
Total Suspended Solids (mg/l)	50 ²	<10	<10	<0.05	14	24
Temp (oC)	No abnormal Change 2	8.3	14.2	15.2	16.7	12.9
Dissolved Mercury Low Level (ug/l)	<0.12			<0.05		
Sulphate (mg/l)	2002			0.18	111111111111111111111111111111111111111	
Total Alkalinity AS CACO3 (mg/l)	No abnormal Change 2			300		
Total Phosphorous (mg/l)	No abnormal Change 2			130	<0.05	
Ortho Phosphate as PO4 (mg/l)	No abnormal Change 2			13.6	13.6 <0.03	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change 2			4.9	44	
Sodium (mg/l)	No abnormal Change 2			19	32.7	
Potassium (ma/l)	No abnormal Change 2			√ 10	12.6	
Dissolved Chromlum (mg/l)	0.12			<0.05	₹	
Dissolved Boron Low Level (ug/l)	2000 ²			<0.4	117	
Dissolved Cadmium Low Level (ug/l)	52			4.0> 002201	40.4	
Dissolved Calcium Low Level (ug/l)				^	21040	
Dissolved Copper Low Level (ug/l)	50 ²			10		
Dissolved Iron Low Level (ug/l)	1000 ²			₹	39	
Dissolved Lead Low Level (ug/l)	5²			11000	¥	
Dissolved Magnesium Low Level (ug/l)	-			۲×	18570	
Dissolved Manganese Low Level (ug/I)	300°			3	<u>\</u>	
Dissolved Nickel Low Level (ug/I)	100²			2		
Dissolved Zinc Low Level (ug/I)	100²			2	25	

Note:-Cells Shaded indicate results higher than MAC or IGV 1=Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989). 2=EQS = Environmental Quality Standard for Surface Water Estuarine, Coastal and Marine Waters Where Applicable

APPENDIX IV LEACHATE LEVELS MONITORING RESULTS

Monitorina	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
ocation					12//2	EVELOELIOLID IN WELL (mAOD)	IN WEIL	(mAOD)				-
Leachate/Gas				3 02	L	3.49	3.56	3,38	3.53	3,49	3.31	3.38
LMW1				70:0								
LIVIAVZ I MW/3				100 minutes 10	69.9						999	2
LMW4	081918181	699				299		4.60			592	5.56
I MW5	769	0.9	9.12	01.9							200	S (
I MW6	629	9.5		013	02.5	5.63	5.68				2,50	5.48
L MW7	N. Company of the Com	e de la composition della comp			5.08		5.10	5.03	5.17	5.13	4.97	4.94
LMW8	5.27	4.14							ļ		4.89	
WW/9				4,31			3.99		,		4.09	4.09
MW/10	4 32		3.52		3.39		3.13	3 3.08			3.23	3.19
NAVA 4	4.09	3 44		3.47	·	3.20		3.17	3.37		3.27	3.23
MAN/12	201						3.16				2.93	2.84
MW/13	,			3.13			2.79	9 2.76	3.08	3.70	3.41	3.37
MW14	4.80	3.60	3.88				3.40	3.29	3,61			
LMW15												
LMW16	5.35											4 40
LMW17	4.54		2.50		4.38	4.16	4.58		_		4,22	4.10
LMW18	4.39			4.25				7 4.07		4.15	4.02	0.77
L19	14.56		,						11.14			0.00
20	14.93			11.58	10.41							
21										1.		
L22										445	4 23	4 22
23	4.52	4.39	4.42	4.36	4.02	4.08	44	1 .	1.10		7 4 7	4 13
7.												

APPENDIX V LEACHATE QUALITY

	LMW1	L SWM	LMW7	LMW9 L	LMW10	LMW11	LMW13	LMW14	ראאאיז	LIMATS	רצים	÷5	. <u> </u>	- m	2
Parameter					133	25.00	00 00	244.00	402 50	728 00	17 90 5	225 10	1682 801	946.90	717.00
Ammoniacal Nitrogen as N (mg/l)	590.40	684.50	894.40		485.90	427.70	00.00	211.30	36.30	00,001	200	7 7 7 7	00 700	100,000	00 700
BOD Hofitered (mg/l)	507.00	421.00	96.00	166.00	120.00	414.00	13.00	32.00	8.00	105,00	12.00	00.61	334.00	00.001	30,722
COO CHESTON (See A)	970.00	988 00	1843.00	714.00	763.00	625.00	121.00	294.00	219.00	795.00	97.00	261.00	3350.00	1445,00	1323.00
COD OFFICE CO.	200 300	1268 00	1930 00	00 666	1096.00	851.00	272.00	411.00	228.00	980,00	85.00	247.00	1851.00	1384.00	1414.00
Chloride (mg/l)	44.00	200.00	25.64	40.00	10 00	00.6	2.92	4.38	3.64	10.00	2.27	3,75	19.00	13.00	12.00
Conductivity (ms/cm) (g) 2000	3.	7 40	7 86	7 33	7 40	7 19	7.04	6.85	6.84	7.13	6.73	6.86	7.93	7.51	7.49
Ha	5.0	0.40	20.20	20.05	12.20	14 30	14.50	14.90		12,10	12.70	12,50	33,10	31.50	29.70
Тетр (оС)	10.80	0.20	20.07	25.00	08.0	50,	08.0	0.50	0.50	09.0	0.50	0.50	<0.1	1,10	0,90
Fluoride (mg/l)	0.70	0.80	30.5	200	200	200	2000	ľ	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dissolved Mercury Low Level (ug/i)	\$0.05	0000	\$0.03 \$	20.02	20.02	3 8	00.00	l	5	۶	85.00	135.00	00'9	67.00	35.00
Sulphate (mg/l)	₹	7	7	7	2 00	9000	10.00		ORR	202	1.24	0.64	10.01	3.00	1.16
Total Phosphorous (mg/l)	1.71	1,20	1.43	# :	0.02	0.00			3 50	1 90	4 70	0 03	27.23	1.03	0.37
Ortho Phosphate as PO4 (mg/l)	6.80	7.70	2.40	7.80	0,0	2.40			200		000	6	800	£ >	0.40
Total Oxidised Nifrogen as N (mg/l)	<0.3	<0.3	0.30	×0.3	<0.3	<0.3			5,02	i	25 40	170 20	1142 00	00 858	850 90
Sodium (mo/l)	873.60	829.10	1106.00	742.40	885.50	652.00	192.10		-	040.10	00.00	00.00	76.00	750 70	410 00
Potassium (mo/l)	423.40	415.00	547.30	414.50	395.80	356.60	94.00	104,50	"	2/4.00	00.70	03.70	00.20	200	
Company of the Compan	000	1400	90 0	0.03	0.03	0.02	0.0	0.01	0.01	0.02	0.00	0.01	Š	Z Z	NO.
Lotal Chromatili (mg/l)	00 9000	305	4623.00	4074.D0	4275.00	2788.00	974.00	3058,00	1085,00	2422,00	847.00	943.00	dON	d Q	d N
Dissolved Boron Low Level (UQ/I)	990000	3	20.025	7	707	400		L	<0.4	4.0×	40.4	4.0>	g Q	d Q Q	NDP
Dissolved Cadmium Low Level (ug/i)	4.02	•	+002007	4.00	4705000	475000 00	11130	18850	249000 00	113600.00	13600.00 233400.00	259000.00	dQN	HON	MON
Dissolved Calcium Low Level (ug/l)	161400.00	122400,000	120700.00	42.00	1,2000.00	20000	3 00	3.00	2.00	₹	2,00	۲۷	dQN	NOP	NDP
Dissolved Copper Low Level (ug/l)	15.00	V	10.00	17.00	70000	00 020	185 00	200 000	430.00	1108.00	285.00	303.00	dON	don	dQN
Dissolved Iron Low Level (ug/l)	1286.003	15/6.00	3602.00	7.4.00	1303,00	010.00	20:00	4 00	10	8 00	٧	٧	dON	dON	PD-
Dissolved Lead Low Level (ug/l)	9,1	۷	10,00	2.00	-	0000000	700000	00000	40940000	152700.00	35920 00	78150 00	dON	a Z	NDP
Dissolved Magnesium Low Level (ug/l)	207700.00	141400,00	189800.00	00'009822		240700.00	9900000	2672 00	4487.00	358.00	980 00	1929,00	dQN	d QN	PGN.
Dissolved Manganese Low Level (ug/l)	505.00	979.00	00'/9/	6/6.00	40.00	20.4	22.00	20,012	00.82	111 00	00.8	21.00	dQN	don	NOP
Dissolved Nickel Low Level (ug/l)	106,00	112.00	170.00	85,00	20.00	40.00	00 000	ľ	32.00	55.00	14 00	16.00	dQN	dON	5
Dissolved Zinc Low Level (ug/l)	22,00	51.00	46.00	00.621	00.0	00.70	20.02					<0.05	90'0	0.05	0.05
Total Cyanide (mg/l)	<0.05	<0.05	1/0'D	cn'ny	SU.05	60.03	20.00			1					

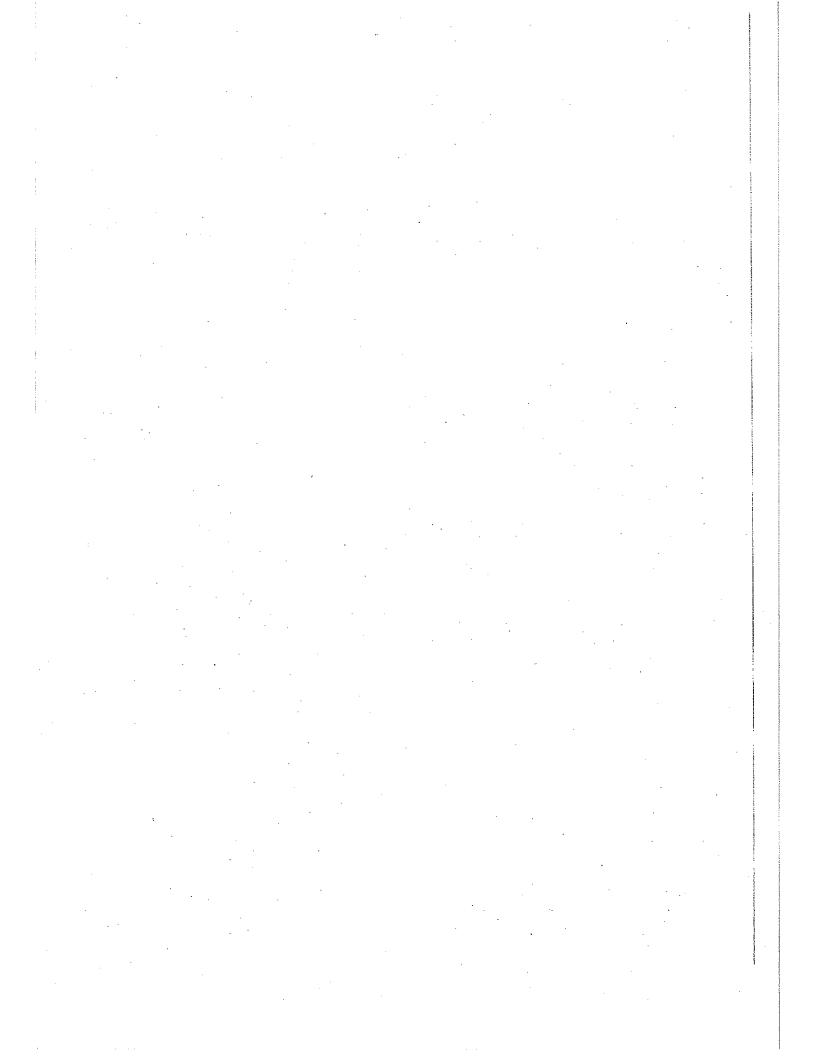
APPENDIX VI LANDFILL GAS MONITORING RESULTS

000	Jan	Feb			May		July	Aug	Sep		Nov	Dec Dec
! }	(\%\%)	?	(%/\%)	(\/\%)	(\/\%)	(%^%)	(////%)	(\/\/\%)	(%^/^)	(%^/^)	(%/\%)	(%/\%)
GA1	0.1	0.0	0.2	0.0	0.0	0.0	0.1	0.2	0.0	0.0	0'0	0.2
GA2	0.6	0	0.2	0.1		0.0	0.0	0.0	0.0	0.0	9.0	0.7
GA3	1.1	O	0.7	0.0		963		0.0			9'0	0.5
GA4		0.7	0.8		0.8	77		2311111111			1.1	0.7
GA5		1976	98			900	0.0	6181111111111		6.84	42	
2 A B	0 0	C	0.0		0.0	0.0	0.4	0'0	0.0	0.0	0.0	1.3
(A7)	13						260	6.0		6.8		加强指数机构
χ γ γ	14		The state of the s	0.3			0.5	0.0	0.2	0.0	0.3	1.5
0 6 6 C	0.0	0.0	0.0	0.0			0.1	0.0	0.0	0.0		0.8
GA10	0.3	0	0.4	0.2		9.0	9.0	6.0			9.0	9.0
GA11	0.2	0	0.2	0.0	0.1	755			1.4			00
Q 410	0.1		0.2	0.3		0.0	1.3	0.0	2'0	0.7	0.7	0.7
GA13	0						688	0.4			0.2	0.2
MHISS	00		0.0	0.0		0.0	0.0	0.0	0.0			0.0
MHI 40	00	0	0.0				0.0	0.1	0.0	0.2	0.0	0.1
I MAYA	7.6	4		3.8			6.8	3.0	4.9		4.5	3.3
1 1/1/1/5	10.01	12	6.6	3.2			8.1	7.1	5.9	4.2	12.0	8.6
1 1/1/10	0.0		1.5	0.1	0.1		0,1	0.1	0.1	0.0	0.1	0.0
1 MW14	0.0	33.0	35.0	26.9	37.0		39.0	38.0	37.0	36.0	35.0	37.0
I MW18	0.1	o	0.3	0.1	9.0	0.5	2.0	0.3	0.3	0.5	0.4	0.7

٠.

Z C	Jan	т С	Z Z	April	May		Jury	SnX V	Sep	<u>.</u>	NON	200	ڊ
	(%/\%)	(%/\%)	(\/\%)	(\/\%)	(%/\%)	(^/^%)	(\%\\%)	(\/\^%)	(%/\%)	(%/\n%)	(%/\%)	%)	(%/\%)
GA1	20.8	20.	21.5	20.9	21.4	20.6	21.2	21.7	1 21.3		20.6	20.5	21.0
SA2	20.6	20.										20.3	20.7
3A3	17.5					6.0	20.2		3 16.5			19.0	19.8
3A4	14.9	18.	,			8.0		16.2	15.7		16.6	17.5	19.3
3A5	0.0	2		ľ		3.0	20.9	1,5			0.9	2.3	0.7
. 9AE	21.1	21.0	2	,	20.7	2	20.6	20.5	5 20.7		20.4 2	20.6	20.0
7A£	18.5	17.		18.1			9.8	19.0			13.9	13.9	17.2
3A8	19,6	19				19.6	20.1	20.5			20.5	20.5	19.4
GA9	20.9	21.		20.9	21.2	20.6	19.7	18.1				20.1	19.9
3A10	20.6	20.	20.5			20.1	19.9	19.0	19.9		20.0	20.3	20.0
3A11	20.2	21.					13.3	17.3	16.2			12.9	14.3
3A12	20.8		20.7	20.8	20.0	20.9	19.0	20.4			19.9	20.5	19.9
3A13	20.5				ļ .		7.2	21.1	20.5		8.7 2	1.1	21.1
AHI 33	20.9	20	20.9	20.9	20.7	20.8		20.5				20.7	20.7
4HI 40	20.9	21.					20.6	20.4	20.8			21.0	20.6
MW4	16.4	18				18.4	16.7	19.3				17.8	19.1
MW5	11.6	12	15.0			17.6		15.0			16.1	11.0	13.5
MW10	20.9					20.8		21.2			20.9	21.0	20.9
MW14	34.0	4.0				0.0	0.0	0.0	0.0			0.0	0.1
MW/48	22.1	21.4	21.3			20.2	20.9	20.5	5 20.4		20.5	20.6	20.8

CH4	lan.	Feb	Mar	April	May	June	July		Sep	Oct	No.	Dec
•	· ```	<u>></u>	(\/\n\%)	(%/\%)	(\/\%)	(^/^%)	· (v/v%)	(//n/k)	(%^/^)	(%//%)	(%/\%)	(%/\%)
GA1	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0		0.0 0.0
GA2	0.0	O	0.0		0.0		0.0	0.0	0.0			0.0 0.0
GA3		0.0			0.3		0.2	0.0	7	76341111		0.2 0.0
GA4	0.0	0.0			0.0	0.0	6.0		0.0			0.0
GA5	0.5	0.3	0.0	0.0		0.0	0.0	0.0	0.0			0.0
GAR	0.0	0	,			0.0		0.0	0.0	0.0		0.0
GA7	0.0	0.0	0.0			0.0			0.0			0.0
GA8	0.0	0		0.0		0.0	0.0	0.0	0.0	0.0		0.0
GA9.	0.0	0.0					0.0	0.0	0.0			
GA10	0.0	0.0				0'0		0.0	0.0			0.0
GA11	0.0	0		0.0	0.0		0.0	-	0.0			0.0
GA12	0.0			0.0	0.1	0.0	0.0	0.0				0.0
GA13	6.0	0							0.0	0		0.0
MHL33	0.0	o	0.0	0.0		0.0						0.0
MHL40	0.0	0.0		0.0	0.2	0.0	0.0	0.0				0.0
L-MW4	10.4	6.5							3 6.7			6,5 4.6
1 MW5	7.8		4.9						2 4.3	4.9		.0 5.7
LMW10	0.0		2.8			0.0	0.0	0.0	0.0	-		0.0
L MW14	63.0	66.0	65.0		63.0	Ψ	61.0	62.0	63.0	65.0	9	9
1 MW18	00		0.2			0.4	0.5		0.2	4.0		0.3 0.4
÷:	1											


APPENDIX VI STAFF STRUCTURE

January 2009

Balleally Landfill – Waste Licence W0009-02: Condition 2.2.1. Management Structure – 01st November 2008

TITLE:	NAME	BASE		QUALIFICATIONS	EXPERIENCE
Senior Engineer, Environment	Mr. J. Daly		RESPONSIBILITIES Responsible for Waste Management Enforcement and Waste Infrastructure.	9.E. (Civil Engineering), 1986. M.Sc. Environmental Engineering, 1993. MIEI.	15 years Water Service and Waste Management experience. 14 years LA experience.
Senior Executive Engineer, Environment	Mr. M. Kiely		Responsible for Waste Infrastructure within the Environment Department.	B.E. (Civil Engineering) 1977, F.A.S. Waste Management Training Course.	Approx.30 years LA experience including 18 years Waste Management experience. Joined the Environmental Services Department of FCC in Jul 2001.
	Mr. Declan Howard,	Balleally Landfill	On-site supervision of landfill operations, Ilcence conditions, engineering works and overall management of site staff. Landfill development and design works.	A. Eng. AMIEI, MIIS (Institute of Irish Surveyors).	34 years in Local Authority Service and 20 years in Environment Section.
Executive Engineer	Mr. Aidan Murphy _.	HQ	Supervision of external contracts. Liaison with consultants and contractors for development works and capping program.	B.E. (Mechanical Engineering), Euring, MIEI, Chartered Engineer, F.A.S. Waste Management Training Course. F.A.S. Managing Safely in Construction Training Course.	10 years Engineer Officer, Defence Forces, 6 Years Project Management Construction Industry. Joined the Environmental Services Department in July 2004.
A/Environmental Scientist	Dr. Mortimer Loftus		Management of Waste Licence Compliance. Supervision of scientific monitoring; reporting and liaison with the Environmental Protection Agency.	Management, Dip Environmental Management, F.A.S. Waste Management Training Course. F.A.S. Managing Safely in Construction Training Course.	1996-2004 Soil Research and Mapping in Teagasc. Joined the Environmental Services Department in July 2004.
Landfill Foreman	Mr. John Lacey	Balleally Landfill	Deputy in the absence of the Landfill Manager, Waste Acceptance Manager, safety inspections and day to day supervision of staff.	Completed courses in Health and Safety (NIFAST), Manual Handling, Evasive Driving & Trenching, Also Fire Warden and Supervisors courses.	Over 30 years Local Authority Service. Assistant Foreman in Dunsink Landfill for 12 years before being appointed Foreman for Balleally Landfill in 1998.
A/Assistant Foreman	Mr. Mick Harford	Balleally Landfill	Assistant to Landfill Foreman, task management of site operatives for general works and capping program.	A/Assistant Foreman.	Working at Balleally Landfill Site since 1986.

APPENDIX I DRAWINGS

APPENDIX II GROUNDWATER MONITORING RESULTS

	Standard	Date								
		15/01/2008 06/02/2008 06/03/2008 24/04/2008 07/05/2008 11/	6/02/2008 06	3/03/2008	24/04/2008	07/05/2008	11/06/2008	/06/2008 09/07/2008 14/08/2008 09/09/2008	14/08/2008	09/09/2008
ratatiate	> 2 5 2 5 0 Kl	B 24		7.45	7 45 (19)	#16% A14.58	SECTION IN	5.43	PACK REPORT	7.95
Ha	25,000	17:0		9.1	8.6	. 12.3	14.3	17.3	15.2	15.9
l emp (oC)	1010	を C C Manual M	PI PINE N	SERMINE	980 41111	95	69281881118	F F 200	8.4.11.11.11.8	FINITE 1.7
Ammoniacai Nitrogen (mg/l)	2 2	0.0	79.	50,500	0.784.00	ZE WINDOWS		9)*********		<2
BOD (mg/l)		7. V. A.	2451		HOTELS IN	66	89	29813888888	34	18
COD (mg/l)		2 · · · · · · · · · · · · · · · · · · ·	2000	<10	<10 < 10	<10	41	25	25 < 10	<10
Total Suspended Solids (mg/li)	No abnormal Change	n.	6.8	4.4	6'0		1,2	9.6	5.6	2.84
Dissolved Oxygen (mg/l)	301	2.12	100 N		081111111111111111111111111111111111111		28.00		Z9111111111111111111111111111111111111	1e
		0.993			Mars 18 119			1617	0,886	9 10 10 10 10 10 10 10 10 10 10 10 10 10
Conductivity (III3/Cill)		San -	THE PROPERTY OF THE PROPERTY O	C. C.	Market Commence of the Commenc					

Note:-Cells Shaded indicate results higher than MAC or IGV 1=EPA iGV Interim Guideline Values for the Protection of Groundwater in Ireland 2=(Quality of Surface Water intended for the abstraction of drinking water) Regs., 1989.

MB35 - Downstream	Standard	Date				Date
Parameter		January 08 May 08		July 07 July 08	July 08	January 09
al Nitrogen as N (mg/l)	0.12		11000	6.4		9.0
	30		088/2/5	34,084	111010	25,008
Dissolved Oxvaen (ma/l)	No abnormal Change	4.5	4.6	42	8.3	8.15
Electrical Conductivity (mS/cm)	1,			41.55 国		975887
oH (oH units)	≥ 6.5 & ≤ 9.5¹	7.55	66.9	7.5	7.79	7.765
Temp (oC)	251	11	10.7	2	13.2	1.
Total Organic Carbon (mg/i)	No abnormal Change	3	4	O		3.333333
	0.011	·		¥0.05	1 1 0 00	
Fluoride (mg/l)	11.			90	0.3	
cury Low Level (ug/l)	11			<0.05	<0.05	
	2001			4529	# 2074	
Total Alkalinity AS CACO3 (mg/l)	No abnormal Change			099	200	
Total Phosphorous (mg/l)	No abnormal Change	1		<0.05	<0.05	,
(mg/l)	0.03			<0.03	HI SOUT	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change	1		ς Ω>	3.1	
Sodium (mg/i)	1501			0008	22	
Potassium (mg/l)	5			330	1.4	
(mg/l)	0.03			<0.05	0.003	
Dissolved Boron Low Level (ug/l)	10001			4017	8098383	
Dissolved Cadmium Low Level (ug/l)	5,			0.8	0.4	
Dissolved Calcium Low Level (ug/l)	301			415100	1,422,100	
	301			V	4	
	2001			90	098	
Dissolved Lead Low Level (ug/l)	101			O	2	
Dissolved Magnesium Low Level (ug/l)	500001			151600	2411545000	
Dissolved Manganese Low Level (ug/l)	501			2464	3616	
	201	,		φ.	10	
	1001			45	28	
Total Cvanide (mo/l)	101		-	<0.05	0.05	
10tal Oyanisa 111911				1011		

Note:-Cells Shaded indicate results higher than MAC or IGV
1=EPA IGV Interim Guideline Values, from EPA, Towards setting Guideline Values for the Protection of Groundwater in Ireland
2=(Quality of Surface Water intended for the abstraction of drinking water) Regs., 1989.

000	Standard	Date				
Acs - Opsireali		January	May	July 07	July 08	Oct-08
	0.401		OTO SET WAS A	CUY		
itrogen as N (mg/l)	7.17			200		
Chloride (mg/l)	.06	新加州 新加州 新加州 新加州 大 大 大 大 大 大 大 大 大 大 大 大 大		2	No.	
Dissolved Oxygen (mg/l)	No abnormal Change	5.3	5.75			7.0
Flectrical Conductivity (mS/cm)	·	0.938	M. 1005	1.085	0.903	FEET TO 008
,	> 6.5 & \$ 9.5	7.6	6.92	7,46	7.37	7.6
	251	10.2	13	14.1	12.1	13.3
nic Carbon (mo/l)		22	2	Ÿ	8	3
Cyanide (mall)	0.01			<0.05	0.05	
Cyanitac (11877)	12			0.2	0.2	
Dissolved Mercury Low Level (ud/l)				<0.05	<0.05	
Sulphate (mod)	2003			46	42	
Colputation (mg//) Total Alkaliphy AS CACO3 (mg/)	No abnormal Change			82)	550	
Total Dhoenhomis (mg/l)	No abnormal Change	-		<0.05	0.24	
(l)	0.03			<0.03	0.05	
()//	No abnormal Change			63	156	
	1501			21.5	1828	
	ic.			1.9	S14253153116	
Total Chaming (mol)	0.03			<0.05	<0.001	
Fotal Cillonium (11877)	10001			23	53	
Dissolved Botoli Bov Bovel (1977)	- Lo			4.0×	<0.4	
Dissolved Calchim Low (evel (107))	301			174500	1012/2010	
Dissolved Copper Ow evel (10/1)	301			3	<1	
Dissolved Copper Low Level (1971)	2002			8	84	
Dissolved foll Low Level (ugh)	101			22		
()/DIO	500001			10460	11030	
	501			#	\ <u>\</u>	
Dissolved Managamest Low Level (1977)	201			3	2	
Dissolved Vincing Low (487)	1001			(5)	23	
Dissolved Airio Editor (1977)	101	-		>0.05	0.05	
10tal Oyanico (11311)						

Note:-Cells Shaded indicate results higher than MAC or IGV
1=EPA IGV Interim Guideline Values, from EPA, Towards setting Guideline Values for the Protection of Groundwater in Ireland
2=(Quality of Surface Water intended for the abstraction of drinking water) Regs., 1989.

CD1 - Under liner	Standard	Date				
Dorn Bater		January	May	July 07	July 08	80-12O
A married Nitrogen on N (mod))	0.121	2041	BEAUTIMENT B	12		841341148
Attitudinacal Minogen as in (mgh)	301	21		羅4		27 E
Chiande (mg/l)	No abnormal Changa		1	4	9.6	4,83
Dissolved Oxygen (1119/1)	140 601011111111111111111111111111111111	č	新和斯斯斯科	1.005		0
Electrical Correctivity (III.S/CIII)	> 6.5.8 s 9.5.1		29 11 11 11	7.54	8.54	8.98
pri (pri utilis)	25	8.6	12.3	9)	17.7	12.5
Total Organic Carbon (mg/l)		3		9	16	10
Cyanida (mg/l)	0.011			<0.05	<0.05	
Figure (mg/l)				0.2	0.1	
Dissolved Mercury Low Level (11971)	-			< 0.05	<0.05	
Subbate (mc/l)	2001			357	建加州	
Total Alkalinity AS CACO3 (mp/l)	No abnormal Change			256	50	
Total Phosphorous (ma/l)	No abnormal Change	+		<0.05	. 0.05	
Ortho Phosphate as PO4 (mg/l)	0.03			<0.03	<0.03	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change	1		1.6	8.1	
Sodium (mad)	150			20.5		
Potassium (mg/l)				8		
Total Chromite (mg/l)	0.031			<0.05	0.015	
Dissolved Boton (ow I evel (107))	10001			100	99	
Dissolved Cadmirm I ow Level (ug/l)	5-			<0.4	<0.4	
Dissolved Calcium Low Level (ud/l)	301			197100	PR-181270	
Dissolved Copper Ow Level (ud/l)	30,			1>	824 11 11 11	
Dissolved from Low Level (104))	2001			18	80	
Dissolved I ead I ow I evel (IId/I)	101			1>	1>	
Dissolved Magnesium I ow Level (ug/l)	500001			14800	6403	
Dissolved Manages I ow I eyel (III/I) 501	501		:	8	19	
Dissolved Nickel Jow Level (ud/l)	204			39		
Dissolved Zinc Low Level (1977)	1001			21		
Total Cyanide (mg/l)	10]			20°0>	<0.05	
Otal Openior (11197)						

Note: Cells Shaded indicate results higher than MAC or IGV 1=EPA IGV interim Guideline Values, from EPA, Towards setting Guideline Values for the Protection of Groundwater in Ireland 2=(Quality of Surface Water intended for the abstraction of drinking water) Regs., 1989.

APPENDIX III SURFACE WATER MONITORING RESULTS

January 2009

003	Standard	Date								
South State of the		/2008	06/02/2008 (903/2008	24/04/2008	07/05/2008	11/06/2008	06/03/2008 24/04/2008 07/05/2008 11/06/2008 09/07/2008	14/08/2008 09/09/200	09/09/2008
Talantor	V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8,17	8.3	7.75	8.12	8	7.89	5,44	7.75	8.03
10:	No observal change ²	9.8	7.	6.9	8,5	11.8	13.3	15.9	13.9	14.2
		PRINCE IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED AN		産業を変わった。	10.00 Hinter		MM 417.29	6 3 1 1 1 1 1	TENESTOR .	
Ammoniacai Nitrogen as N (mgn)	2.7	ASS C		S	0	0	ç	2		₹
BOD (mg/l)	5	7,	NAME OF TAXABLE PARTY.		1		1	1	3	9,
COD (mad)	4013	212	W. K. H. 17.8	<15	₹	18	GS.	57	**	0
1000 of 1000 o	225	<10	16	26	¥ 10 10	₹	× 10	13	<10	<10
Total Suspended Solids (Tight)	11-5	5 A	5.7	4.3	12.7	8.01	4.63	5.57	8,45	4.88
Dissolved Oxygen (mg/l)	No aprioritat Origingo	5	5		S	00	2	č	C	7.2
Chloride (mo/l)	2501	174	52	99	ē.	28	47	8	20	7)
Conductivity (mS/cm)		. 212'0	0.745	0.962	0.908		1.445	90 (19)	0.686	0.743
Company (more)	Olyon AAA and and and and an analysis of the AAAA and an and and an analysis of the AAAAA and an analysis of the AAAAA and an analysis of the AAAAAA and an analysis of the AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A thon MAAO	2							

Note: Cells Shaded indicate results higher than MAC or IGV

1—Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989).

2=This Value used as an indicator only.

3 Limit for A3 waters specified only

SWV1 - Inner Estuary	Standard	Date	•			
Parameter		Jan 08	May 08	July 07	July 08	Oct 08
Ammoniacal Nitrogen as N (mg/l)	0.231	89118		61/21/24/2019	K. H. C. F. S.	604
BOD (mg/l)	51	က		<0.05		84b) (14 90
	401.3		5	900	092111111111111111111111111111111111111	Marin 1823.1
Chloride (mg/l)	2501	186	10.1	97	FIRE 2412	
Dissolved Oxygen (mg/l)	No abnormal Change 2	4.8	4.9	1.196		4.79
Conductivity (mS/cm)	41			解除配付246	1888	0.815
	≥ 5.5 & ≤ 8.5 ¹	7.93	6.94	7.61	7.39	7.85
Total Suspended Solids (mg/l)	50 ²	<10	<10	<0.05	38	243
Temp (oC)	No abnormal Change 2	6.8	14.2	17.4	20.7	12.5
Mercury Low Level (ug/l)	<0.1 ²			<0.05	<0.05	
	2002			<0.03	809	
Total Alkalinity AS CACO3 (mg/l)	No abnormal Change 2			300	280	
Total Phosphorous (mg/l)	No abnormal Change ²			143	0.14	
Ortho Phosphate as PO4 (mg/l)	No abnormal Change 2			2.3	0.21	
Total Oxidised Nitrogen as N (mg/l)	No abnormaí Change ²			4.5	8.4	
Sodium (mg/l)	No abnormal Change 2			14	1321	
Potassium (mg/l)	No abnormal Change 2		-	26	.9	
Dissolved Chromium (mg/l)	0.12			3F 0 48	₹	
(l/gu)	20002			<0.4		
Dissolved Cadmium Low Level (ug/l)	5-2			411110400	<0.4	
Dissolved Calcium Low Level (ug/I)	-			₹	222700	
Dissolved Copper Low Level (ug/I)	50²			9	9	
	1000²			₹1	64	
Dissolved Lead Low Level (ug/l)	5²			11111118840	٧	
Dissolved Magnesium Low Level (ug/l)	-			₹	252200	
	300 ²			4	08911280	
Dissolved Nickel Low Level (ug/!)	100²			2	11	
	100²			2	23	

Note:-Cells Shaded indicate results higher than MAC or IGV 1=Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989). 2=EQS = Environmental Quality Standard for Surface Water Estuarine, Coastal and Marine Waters Where Applicable

SW20a - Drain N field	Standard	Date				
Parameter		January 08 May 08	May 08	July 07	July 08	Oct-08
Ammoniacal Nitrogen as N (mg/l)	0.23	977	W. W. W. 145	798	H PAR S	11.00
BOD (mg/l)	51	5		12		5
COD (mg/l)	401,3	29		(G1827.42)		
Chloride (mg/l)	2501	. 53	350	86	1882 Maria	66
Dissolved Oxygen (mg/l)	No abnormal Change 2	4.7	4.8		8,1	2.58
Conductivity (mS/cm)	11	122.58	3052		0.000	JR 1201
Hd	≥5.5&≤8.51	7.38	6.78	7.21	7.54	7.42
Total Suspended Solids (mg/l)	50 ²	<10	43	.<10	825	320
Temp (oC)	No abnormal Change 2	6.9	14	15.5	9.1	12.1
Dissolved Mercury Low Level (ug/l)	<0.12			<0.05	<0.05	-
Sulphate (mg/l)	2002			104	74	
Total Alkalinity AS CACO3 (mg/l)	No abnormal Change ²	-		433	1490	
Total Phosphorous (mg/l)	No abnormal Change ²			0.27	0.05	
Ortho Phosphate as PO4 (mg/l)	No abnormal Change 2			0.37	<0.03	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change ²			1.5	0.4	
Sodium (mg/l)	No abnormal Change ²			60	286	
Potassium (mg/l)	No abnormal Change ²			38	125,5	
Dissolved Chromium (mg/l)	0.12			<0.05		
(J/6n)	2000 ²			278	1244	
Dissolved Cadmium Low Level (ug/I)	52			<0.4 <0.4	<u> </u>	
Dissolved Calcium Low Level (ug/l)				97000	145900	
Dissolved Copper Low Level (ug/I)	502			14	4	
Dissolved Iron Low Level (ug/l)	1000²			30	128	
Dissolved Lead Low Level (ug/l)	5 ²			<1 <1		
Dissolved Magnesium Low Level (ug/l)		-		17730	102500	,
Dissolved Manganese Low Level (ug/l)	300²			26	0.00	
Dissolved Nickel Low Level (ug/I)	100²			12	48	
Dissolved Zinc Low Level (ug/l)	100²			₹	. 22	

Note:-Cells Shaded indicate results higher than MAC or IGV
1=Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989).
2=EQS = Environmental Quality Standard for Surface Water Estuarine, Coastal and Marine Waters Where Applicable

S7 - Unstream	Standard	Date				
Parameter		January 08 May 08		July 07	July 08	Oct-08
Ammoniacal Nitrocen as N (mg/l)	0,23	<0.2	<0.2		<0.2	HIT THE OLD
BOD (ma/l)	5	<2	\$	2	<2	က
	401,3	22	<15	23	17	21
(//	2501	54	61	50	70	55
Dissolved Oxygen (mg/l)	No abnormal Change 2	5.7	5.9		9.4	4.25
Conductivity (mS/cm)	11	0.717	0.789	0.802	0.839	0.697
Ha	≥ 5.5 & ≤ 8.5 ⁴	298	7.3	7.55	7.82	7.93
Total Suspended Solids (ma/l)	50 ²	<10	<10	<10	25	22
Temp (oC)	No abnormal Change 2	٠	13.2	15.4	17.2	11.8
Dissolved Mercury Low Level (ug/l)	<0.1 ²			<0.05	<0.05	
Sulphate (mg/l)	200 ²			48	56	
Total Alkalinity AS CACO3 (mg/l)	No abnormal Change 2			363	290	
Total Phosphorous (mg/l)	No abnormal Change ²			0.28		
Ortho Phosphate as PO4 (mg/l)	No abnormal Change 2			0.54	7.0	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change 2			6.8	3.3	
Sodium (ma/l)	No abnormal Change 2			21	5.7	
Potassium (mg/l)	No abnormal Change 2			4.3	6.4	
Dissolved Chromium (mg/l)	0.12			<0.05	<u>^</u>	
(nd/l)	2000 ²			91	117	
Dissolved Cadmium Low Level (ug/l)	5 ²				۸.0 4.	
Dissolved Calcium Low Level (ug/I)				134700	143700	
Dissolved Copper Low Level (ug/l)	50 ²			\<	2	
	1000²			14	90	
Dissolved Lead Low Level (ua/l)	5-2			₹	⊽	
Dissolved Magnesium Low Level (ug/l)				9647	13380	
Dissolved Manganese Low Level (ug/l)	300²			V V		
Dissolved Nickel Low Level (ug/l)	100²			3	3	
Dissolved Zing Low Level (ug/l)	100²			<1	15	

Note:-Cells Shaded indicate results higher than MAC or IGV
1=Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989).
2=EQS = Environmental Quality Standard for Surface Water Estuarine, Coastal and Marine Waters Where Applicable

S3 - Outer Estuary	Standard	Date				
Parameter	-	January 08 May 08	May 08	July 07 July 08	July 08	Oct-08
Ammoniacal Nitrogen as N (mg/l)	0.23				6.4.1	4 E B B B B B
BOD (ma/l)	5,	<2	<2	<2	2	2
COD (ma/l)	401,3	21	19	16	24	22
Chloride (mg/l)	2501	174	90	62	91	59
Dissalved Oxvaen (ma/l)	No abnormal Change ²	5.4	8.01		9.3	9
Conductivity (mS/cm)	1	0.76	WINNESS (10)	0.938	10 mm 10 mm	0.765
-	≥ 5.5 & ≤ 8.5 1	8,17	8	7.54	7.3	7.8
al Suspended Solids (mg/l)	50 ²	<10	<10	<10	13	13
Temp (oC)	No abnormal Change 2	9.9	11.8	14	15.9	11.9
Dissolved Mercury Low Level (ug/l)	<0,1²			<0.05	<0.05	
	200 ²		-	66	70	
AS CACO3 (mg/l)	No abnormal Change 2			375	300	
Total Phosphorous (mg/l)	No abnormal Change 2			0.07	<0.05	
Ortho Phosphate as PO4 (mg/l)	No abnormal Change 2			0.39	0.1	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change.2			13.1	20.2	
Sodium (ma/l)	No abnormal Change 2			27.5	47.8	
Potassium (mg/l)	No abnormal Change 2			7	23	
ium (mg/l)	0,12			<0.05	٧	
(l/gn)	2000 ²			118	189	
(l/br	5²			<0.4		
Dissolved Calcium Low Level (ug/l)				147400	1471	
Dissolved Copper Low Level (ug/I)	50²	•		ν.		
	1000²			7	54	
Dissolved Lead Low Level (ug/l)	5 ²			V		
Dissolved Magnesium Low Level (ug/l)				11760	18840	
ےا	300²			۸1	₹	
Dissolved Nickel Low Level (ug/l)	100²			5		
	100 ²			.v	23	

Note:-Cells Shaded indicate results higher than MAC or IGV 1=Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989). 2=EQS = Environmental Quality Standard for Surface Water Estuarine, Coastal and Marine Waters Where Applicable

SWFD - Northern French Drain	Standard	Date				
Parameter		January 08 May 08		July 07	July 08	Oct-08
Ammoniacal Nitrogen as N (mg/l)	0.23		<0.2	() × () ()	70.	104
BOD (ma/l)	51	<2	3	<0.05	5	8
COD (ma/l)	401,3	<15	<15	1000	<15	<15
Chloride (ma/l)	250'	55	64	49	59	54
Dissolved Oxygen (mg/l)	No abnormal Change 2	4.9	5.1	1.087	9.5	2,17
Conductivity (mS/cm)	41		60001	1012		100
Ho	≥5.5 & ≤ 8.5 1	7.81	6.83	7.66	7.57	7.7
Total Suspended Solids (mg/l)	50²	<10	<10	<0.05	14	24
Temp (oC)	No abnormal Change 2	8.3	14.2	15.2	16.7	12.9
Dissolved Mercury Low Level (ug/l)	<0.1²			<0.05	<0.05	
Suiphate (mg/l)	2002			0.18		
Total Alkalinity AS CACO3 (mg/l)	No abnormal Change 2			300	310	
Total Phosphorous (mg/l)	No abnormal Change 2			130	<0.05	
Ortho Phosphate as PO4 (mg/l)	No abnormal Change 2			13.6	<0.03	
Total Oxidised Nitrogen as N (mg/l)	No abnormal Change 2	·		4.9	14	
Sodium (mg/l)	No abnormal Change 2			19	32.7	
Potasslum (ma/l)	No abnormal Change 2			<10	12.6	
Dissolved Chromium (mg/l)	0.12		-	<0.05	v	
Dissolved Boron Low Level (ug/l)	2000²			<0.4	117	
Dissolved Cadmium Low Level (ug/l)	5²			福間92200 <0.4	<0.4	
Dissolved Calclum Low Level (ug/l)				V	210400	
Dissolved Copper Low Level (ug/l)	502			10	2	
Dissolved Iron Low Level (ug/I)	10002			Ϋ́	39	
Dissolved Lead Low Level (ug/I)	52			1411116080	₹	
Dissolved Magnesium Low Level (ug/l)				Ÿ	18570	
_	300².			3	√	
Dissolved Nickel Low Level (ug/I)	100²			2	2	
Dissolved Zinc Low Level (ug/l)	1002			2	25	

Note:-Ceils Shaded indicate results higher than MAC or IGV 1=Maximum Admissible Concentration for A1 waters, as classified by the Surface Water Regulations (1989). 2=EQS = Environmental Quality Standard for Surface Water Estuarine, Coastal and Marine Waters Where Applicable

APPENDIX IV LEACHATE LEVELS MONITORING RESULTS

January 2009

	202	200	Mar	ADL	May	Juni	JUII	And	Sep	CCI	NOV	Cer
Location					į		7 112781111	0				
Leachate/Gas						LEVEL OF LIQUID IN WELL (MADD	IN WELL	TAUD)			3	. 0
LMW1				3.92	3.50	3.49	3.56	3.38	3.53	3.49	3.31	3.38
LMW2		,			i				1	200000000000000000000000000000000000000	See The See Grand Control of the Control	SERVICE SERVIC
LMW3				7000	MENT 1509.	grane 62		9955			18.15.56	
MW4	08/9/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	9(5) 1	9/19/19/19	1439 EE 15		29.5 217 114	691979111111					
1 MM/5	76.8	1 612		0,119			79	66.9	11.9	6.13		5.90
I MW6	16.59	2.6				563	268		51.2	5.76	5.50	5.48
MW7				5.08	5.08	5.19	5.10	5.03	5.17	5.13	4.97	4.94
MW/8	527	4.14									4,89	
NAMA/Q				4.31	4.29	4.20	3.99	4.14	4.23	4.36	4.09	4.09
1 1/1/1/10	4.32	3.58	3.52	3.46			3.13	3.08	3.35	3.33	3.23	3.19
1 1/1/11	4 09			3,47		3.20	3.12	3.17	3.37	3.39	3.27	
1 MW12				3.51	3,44	3.23	3.16	3.22	3,44	3.07	2.93	
MW13				3.13	3.04		2.79	2.76	3.08	3.70	3.41	3.37
MW14	4,80		3.88	3,79	3.71	3,45	3.40	3.29	3.61			
_MW15												
LMW16	5.35	2.4									,	
LMW17	4.54	4.46	2.50	4.45	4.38		4.58	4.10			4.22	4.18
LMW18	4.39		4.35	4.25	3.19	3.99	3.97	4.07		4.15	4.02	3.77
L19	14.56	13.81			,				11.14			5.65
20	14.93	15.61		11.58	10.41					4,4,		
L21												
122										ŀ	,	7
L23	4.52	4.39	4.42	4.36		*	4.14	4.43			4.23	
124	4.42	4.36	4.41	4.36	4.28	4.09	4,05	4.24	4.36	4.31	4.15	4.13

APPENDIX V LEACHATE QUALITY

	LMW1	LMW6	LMW7	- FMM3	OLAMUT.	LMWT	LMWT3	LIMW714	LMWY: /	CMW18	77	*	<u> </u>	1 a a a a) - 2
Parameter					00000	024 2407	2000	000	03 000	730 007	77 00	225 40	1885 60	848 003	717.00
Ammonlacal Nitrogen as N (mg/l)	590.40	684.50	894.40	574.00	485.90	427.70	08.80	11.90	787.00	720.30	40.00	48.00	904.00	00.000	00.700
BOD Unfiltered (mg/l)	207.00	421.00	96,00	166.00	120.00	414.00	13.00	32.00	9.00	105.00	12.00	00.01	20,40	00.001	2000
COD Unfiltered (ma/l)	970.00	988.00	1843.00	714.00	763,00	625.00	121.00	294.00	218.00	795.00	97.00	261.00	3320,00	1446.00	1323.00
Chloride (moll)	1425.00	1258.00	1930.00	999.00	1086,00	851.00	272.00	411.00	228.00	980.00	85.00	247.00	1851.00	1384.00	1414.00
Conductive (me)(cm) @ 2000	1100		13.50	10.00	10.00	9.00	2.92	4.38	3.64	10.00	2.27		19.00	13.00	12.00
CONTROLLING THE CONTROLLING THE	7.34		7.55	7.33	7.40	7,19	7.04	6.85	6.84		6.73		7.93	7.51	7.49
Trans (a)	10 90		25.90	30.60	12.20	14.30	ľ	14.90	11.30	•	12.70	12.50	33,10	31.50	29.70
(Allip (OC)	07.0		1.00	0.70	0.60	1,00		0.50	0.50	0,60	0.50		<0.1	1.10	0,90
Picophod Morning Lour Level (1971)	90.05	ľ	<0.05	<0.05	<0.05	<0.05	ľ	<0.05	<0.05		<0.05		<0.05	<0.05	<0.05
Chichoto (moll)	٧		V		8	83.00		11.00	<3	<3	85.00	ť	6.00	67.00	35.00
Total Bhasabassis (moli)	171	1.20	1.43	ļ	0.62	0.56		0.55	0.68	2.07	1.24	0.64	10,01	3.00	1.16
Ortho Phosopiate as PO4 (moli)	6.80	02.7	2.40		5.70	2.40	0.03	3.30	3.50	1.90	4.70	·	27.23	1.03	0.37
Total Oxidised Nitrogen os N (mod)	\$ 05	\$03	0.30	<0.3	<0.3	<0.3	2.30	<0.3	<0.3	<0.3	<0,3		<0.3	۲ ۲	0.40
Sodier (mail)	873.60	829.10	1106.00	742,40	885.50	652.00	192.10	320.30	1774.40	646,10	75,40	179.70	1142.00	833.00	850.90
Codestim (moll)	423.40	415.00	547,30	414.50	395.80	356.80	94.00	104.50	95.30	274,60	36.70	83,70	752.80	452.70	419.00
Total Chomical (mod)	0.03	0.04	90'0	0.03	0.03	0.02	0.01	0.01	0.01	0.02	0.00	0.01	MON	dQN	2
Dischard Roma ow evel (1011)	3306.00	3259.00	4623.00	4074,00	4275.00	2788.00	974.00	3058.00	1085,00	2422.00	847.00	943.00	MDP	dON.	MDP
Dissolved Loron con Loron (1977)	707	400	40.4	40.4	4.0>	40.0	40,4	<0,4	<0.4	<0.4	<0.4	4°0.4	ADN	dON	d
Discoved Colonia Colonia Colonia	161400.00	122400 00	126700.00	148200.00	172500.00	175000,00	141300.00	188500.00	249000.00	113600.00	233400.00	259000.00	MDP	dON	MP
Dissolved Contain Low Level (1971)	12 00	٧	10.00	17.00	٧	٧	3.00		2.00		2.00	۷,	GON	O.C.	P P
Dissolved Cuppel Low Level (1977)	40BB 00	1578 00	3602.00	774.00	1389.00	870.00	165.00	292,00	430,00	1108.00	285.00	303,00	PON	ADA	QQN
Dissolved from Level (ug/1)	4 70	1000	10.00	2.00	۷	٧	٧	1,00	41	8.00	٧	11>	NDP	NOP	dQN
Dissolved Lead Low Level (ug/l)	00.002206	141400 00	189800.00	229500.00	+	240700.00	69060.00	109000.00	1	108400.00 152700.00	35320.00	79160.00	NDP	go	ğ
Dissolved Mappages Dw evel (ug/l)	505.00	979.00	767.00	676.00	407.00	714.00	1461.00	2673.00	-		980.00	1929.00	NON P	PON	S.
Discovered Michael Dw Level (Inc.)	106.00	112.00	170.00	85.00	55.00	40.00	22.00	53.00	38.00		9.00	21.00	DON DON	do	do
Dissolved Zing Love (up/1)	67.00	51.00	46.00	125.00		37.00	229.00	107.00	32.00	١	14.00	16.00	dQN	JON .	d i
Total Cyanide (mg/l)	<0.05	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	\$0.05	<0.05	40.05	<0.05	₹0.05	0.05	0.05	0.00
										-					
	٠														

APPENDIX VI LANDFILL GAS MONITORING RESULTS

	/v)	0.2	0.7	0.5	0.7	200	1.3	影响16 万	1.5	0.8	9.0	2	0.7	0.2	0.0	0.1	3.3	8.6	0.0	37.0	<u>۱</u>
ည် ဝ	۸%)	0.0	0.6	9.0	1.1	7.2	0.0	3.0	0.3	0:0	9.0	0	0.7	0.2	0.0	0.0	4.5	0.	0.1	0.	Ž
۸ کو	(^/^%	0	0	0	-		٥	S 11 11 3	٥	0		20	0	0	0	0	4	12.0	0	35.0	•
	(%/\%)	0.0	0.0	6111111111			0.0	1600	0.0	0.0	0.6	11.28	0.7	0.091111111	0.0	0.2	3.8	4.2	0.0	36.0	<u>u</u>
	(%^/\%)	0.0	0.0				0.0		0.2	0.0	2.0	1.4	0.7	0.3	0.0	0.0	4.9	5.9	0.1	37.0	
	(%/\%)	. 0'5	0.0	徽 0'0		10 (2 H) H H	0.0	圖 6.0	0.0	0.0	6.0	1.0	0.0	0.4	0.0	0.1	3.0	7.1	0.1	38.0	000
) (///%)	0.1	0.0	0.4	45	器 0.0	0.4	7.6	0.5	0.1	9.0	984448	1,3	688111	0.0	0.0	8.9	8.1	0.1	39.0	2.0
	(\/\%)	0.0	0.0	960			0.0		9.0	0.0	9.0	222	0.0		0.0	0.1	4.2	3.9	0.0	36.0	,
	(///%)	0.0	0.0	1.3	0.8	824	0.0	6.0	9.0	0.0	0.3	0.1	0.5		0.0	0.0	4.1	4.4	0.1	37.0	9
	(%/\%)	0.0	0.1	0.0	6.0	0.1		811111111111111111111111111111111111111	0.3	0.0	0.2	0.0	0.3		0.0	0.0	3.8	3.2	0,1	26.9	,
	(\/\%)	0.2	0.2	0.7	0.8	91811111111111	0.0	600	1.1	0.0	0.4	0.2	0.2		0.0	0.0		9.9	1,5	35.0	,
Feb	<u>S</u>	0.0	0.8	0.0	0.7		0.0		1.1	0.0	0.4	0.0	c	0.5	00	00	44	12.0		33.0	
Jan	?	0.1	9.0	1			0.0	13	1.4	0.0	0.3	0.2	5	1		000	7.6	0.01	00	0.0	
C02	i)	GA1	GA2	GA3	GA4	GAS	GA6	GA7	GAB	GA9	GA10	GA11	GA12	100	WH 33	MHI 40	IN INVIOL	ייייייייייייייייייייייייייייייייייייייי	I MW410	- MW14	

2	כמכ	200	Į.	=	NG.	ממומ		200) D	3	200	2
	(\/\%)	(\/\%)	(\n/\n%)	(\/\%)	(\/\%)	(\/\%)	(\/\^\/\)	(%v/v)	(%n/n)	(\/\%)	(\/\%)	(%/\%)
GA1	20.8		21.5	20.9	21.4	20.6	21.2	21.1	21.3	20.6	5 20.5	.5 21.
GA2	20.6							20.8			5 20.3	.3 20.7
GA3	17.5		ŀ	20.8	17.9	0.0	20.2	20.8	16.5		5 19.0	.0 19.8
GA4	14.9		١.			8.0	10.2	16.2			3 17.5	.5 19.3
GA5	0.0			,		3.0	6'02	1.5	2.0			2.3
GA6	21.1		2	20.8			20.6	20.5	, a	20.4	,	.6 20.0
GA7	18.5							19.0			13.9	.9 17
GA8	19.6					19.6	20.1	20.5				.5 19.4
GA9	20.9						-	18.1	21.0		3 20.1	.1 19.9
GA10	20.6	20.6		20.9	20.1			19.0		20.0		
GA11	20.2				20.2	17.4	13.3	17.3				
GA12	20.8	21				20.9	19.0	20.4				
GA13	20.5	20.			-		7.2	21.1	20.5			1 21.
MHL33	20.9	20.	20.9	20.9		20.8	20.5	20.5		20.6	5 20.7	
MHL40	20.9	21.			20.1		20.6	20.4	20.8			.0 20.6
L MW4	16.4			18.9				19.3				
LMW5	11.6	12.	15.0			17.6		15.0	15.3			.0 13.5
LMW10	20.9					20.8	21.2	21.2	21.0		3 21.0	
LMW14	34.0	0.4	0.0					0.0	0.0	0.0		
LMW18	22.1	21.	21.3	20.9	20.6	20.2	20.9	20.5	20.4	20.5	5 20.6	.6 20.8

.

(v) (%v/v) (%v/v) <th>CH4</th> <th>Jan</th> <th>Feb</th> <th>Mar</th> <th>Ř</th> <th>jii</th> <th>May.</th> <th>June</th> <th></th> <th>July</th> <th>Aug</th> <th>Sep</th> <th>ö Ö</th> <th></th> <th>~</th> <th>Dec</th>	CH4	Jan	Feb	Mar	Ř	jii	May.	June		July	Aug	Sep	ö Ö		~	Dec
0.0 0.0 <th></th> <th>(\/\%)</th> <th>(%/%)</th> <th>(\/\n%)</th> <th><u></u></th> <th>(٨/٨٥)</th> <th>(%///%)</th> <th>√∧%)</th> <th>_</th> <th>(////%)</th> <th>(\/\\%)</th> <th>(%/\%)</th> <th>\/\%)</th> <th></th> <th>(//\</th> <th>(%^\/)</th>		(\/\%)	(%/%)	(\/\n%)	<u></u>	(٨/٨٥)	(%///%)	√ ∧%)	_	(////%)	(\/\\%)	(%/\%)	\ /\%)		(//\	(%^\/)
0.0 0.0 <th>GA1</th> <th>Ö</th> <th></th> <th></th> <th>0:0</th> <th>0</th> <th></th> <th>0</th> <th>0.0</th> <th>0.0</th> <th></th> <th></th> <th>ō</th> <th>0.0</th> <th>0.0</th> <th></th>	GA1	Ö			0:0	0		0	0.0	0.0			ō	0.0	0.0	
Column C	GA2	ö	0	0.0	0.0).O		0	0.0	0.0			0	0.0	0.0	
0.0 0.0 <th>GA3</th> <th></th> <th></th> <th>0.0</th> <th>0.3</th> <th>) O</th> <th></th> <th>3 開調量</th> <th></th> <th>0.2</th> <th></th> <th></th> <th></th> <th>7.5</th> <th>0.2</th> <th>0.0</th>	GA3			0.0	0.3) O		3 開調量		0.2				7.5	0.2	0.0
0.5 0.3 0.0 <th>GA4</th> <th>0.0</th> <th></th> <th>0.0</th> <th>0.0</th> <th>Ö</th> <th></th> <th>0</th> <th>0.0</th> <th>0.9</th> <th></th> <th></th> <th>0</th> <th>0.0</th> <th>0.0</th> <th>) 0</th>	GA4	0.0		0.0	0.0	Ö		0	0.0	0.9			0	0.0	0.0) 0
0.0 0.0 <th>GA5</th> <th>0</th> <th></th> <th>5.3</th> <th>0.0</th> <th>Ö</th> <th></th> <th>0</th> <th>0:0</th> <th>0.0</th> <th></th> <th></th> <th>0</th> <th>0.0</th> <th>0'0</th> <th>)'0</th>	GA5	0		5.3	0.0	Ö		0	0:0	0.0			0	0.0	0'0)'0
0.0 0.0 <th>GA6</th> <td>0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td>5</td> <td>0.0</td> <td>0.2</td> <td></td> <td></td> <td>0</td> <td>0.0</td> <td>0.0</td> <td></td>	GA6	0		0.0	0.0	0.0		5	0.0	0.2			0	0.0	0.0	
0.0 0.0 <th>GA7</th> <td>O</td> <td></td> <td>0.0</td> <td>0.0</td> <td>Ö</td> <td></td> <td>S</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td>0</td> <td>0.0</td> <td>0'0</td> <td>)'0</td>	GA7	O		0.0	0.0	Ö		S	0.0	0.0			0	0.0	0'0)'0
0.0 0.0 <th>GAB</th> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td>).O</td> <td></td> <td>10</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td>0</td> <td>0.0</td> <td>0.0</td> <td>)'0</td>	GAB	0.0			0.0).O		10	0.0	0.0			0	0.0	0.0)'0
0.0 0.0 <th>GAB</th> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0,0</td> <td></td> <td>0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td>0</td> <td>0.0</td> <td>0.0</td> <td>)'0</td>	GAB	0.0		0.0	0.0	0,0		0	0.0	0.0			0	0.0	0.0)'0
0.0 0.0 <th>GA10</th> <td>Ö</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td>0</td> <td>0.0</td> <td>0.0</td> <td>-</td> <td></td> <td>0</td> <td>0.0</td> <td>0.0</td> <td>0'0</td>	GA10	Ö		0.0	0.0	0.0		0	0.0	0.0	-		0	0.0	0.0	0'0
0.0 0.0 <th>GA11</th> <td>0</td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td></td> <td>0</td> <td>0.0</td> <td>0.0</td> <td>٠</td> <td></td> <td>0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	GA11	0			0.0	0.0		0	0.0	0.0	٠		0	0.0	0.0	0.0
0.9 0.9 0.9 0.0 <th>GA12</th> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td>1-</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td>0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	GA12	0.0		0.0	0.0	0.0		1-	0.0	0.0			0	0.0	0.0	0.0
0.0 0.0 <th>GA13</th> <td>0.0</td> <td></td> <td>9.0</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>THE REST</td> <td></td> <td></td> <td></td> <td>93.6</td> <td>0.0</td> <td>0.0</td>	GA13	0.0		9.0	-					THE REST				93.6	0.0	0.0
0.0 0.0 <th>MHL33</th> <td>0</td> <td></td> <td>0.</td> <td>0.0</td> <td>0.0</td> <td></td> <td>0</td> <td>0'0</td> <td>0.0</td> <td></td> <td></td> <td>. 0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	MHL33	0		0.	0.0	0.0		0	0'0	0.0			. 0	0.0	0.0	0.0
10.4 6.5 4.4 6.1 5.5 9.1 4.3 6.7 5.2 6.5 7.8 9.7 4.9 1.7 2.8 2.7 6.1 5.2 4.3 4.9 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63.0 66.0 65.0 65.0 61.0 62.0 63.0 64.0 6 0.0 0.2 0.2 0.3 0.4 0.5 0.2 0.4 0.3	MHL40	0.0	0		0.0	0.0		2	0.0	0.0			0	0.0	0.0	0.0
7.8 9.7 4.9 1.7 2.8 2.7 6.1 5.2 4.3 4.9 10.0 0.0	LMW4	10,		3.5		4.4		L	5.5	9.1			7	5.2	6.5	4.6
0.0 0.0 <th>MWS</th> <td>3.7</td> <td></td> <td>3.7</td> <td>4.9</td> <td>1.7</td> <td></td> <td>8</td> <td>2.7</td> <td>6.1</td> <td></td> <td></td> <td>က</td> <td>4.9</td> <td>10.0</td> <td>5.7</td>	MWS	3.7		3.7	4.9	1.7		8	2.7	6.1			က	4.9	10.0	5.7
63.0 66.0 65.0 65.0 65.0 63.0 65.0 63.0 65.0 64.0 0.0 0.2 0.3 0.4 0.5 0.2 0.4 0.3	1 MW10	0		-	2.8	0.0		C	0.0	0.0		٠	. 0	0.0	0.0	0.0
0.0 0.2 0.2 0.0 0.3 0.4 0.5 0.2 0.2 0.4 0.3	LMW14	63.0			35.0	39.5		C	65.0	61.0			0	65.0	64.0	62.0
	LMW18	0			0.2	0.0		3	9.0	0.5			2	0.4	0.3	0.4

APPENDIX VI STAFF STRUCTURE

Balleally Landfill – Waste Licence W0009-02: Condition 2.2.1. Management Structure – 01st November 2008

se adite	NAME	BASES	DUTIES AND	QUALIFICATIONS	EXPERIENCE
			RESPONSIBILITIES		
Senior Engineer, Environment	Mr. J. Daly	HQ	Infrastructure.	B.E. (Civil Engineering), 1986. M.Sc. Environmental Engineering, 1993. MIEI.	15 years Water Service and Waste Management experience. 14 years LA experience.
Senior Executive Engineer, Environment		НО		B.E. (Civil Engineering) 1977, F.Á.S. Waste Management Training Course.	Approx.30 years LA experience including 18 years Waste Management experience. Joined the Environmental Services Department of FCC in Jul 2001.
		Balleally Landfill		Diploma in Civil Engineering (NCEA) A. Eng. AMIEI, MIIS (Institute of Irish Surveyors). F.A.S. Waste Management Training Course. F.A.S. Managing Safety in Construction Training Course. Construction Training	34 years in Local Authority Service and 20 years in Environment Section.
Executive Engineer	Mr. Aldan Murphy	HQ	Supervision of external contracts. Liaison with consultants and contractors for development works and capping program.	B.E. (Mechanical Engineering), Eurlng, MiEi, Chartered Engineer. F.A.S. Waste Management Training Course, F.A.S. Managing Safely in Construction Training Course.	10 years Engineer Officer, Defence Forces, 6 Years Project Management Construction Industry. Joined the Environmental Services Department in July 2004.
A/Environmental Scientist	Dr. Mortimer Loffus	HQ:	Management of Waste Licence Compilance. Supervision of scientific monitoring; reporting and liaison with the Environmental Protection Agency.	Management, Dip Environmental Management, F.A.S. Waste Management Training Course. F.A.S. Managing Safely in Construction Training Course.	1996-2004 Soil Research and Mapping in Teagasc. Joined the Environmental Services Department in July 2004.
Landfill Foreman	Mr. John Lacey	Balleally Landfill	Deputy in the absence of the Landfill Manager, Waste Acceptance Manager, safety inspections and day to day supervision of staff.	Completed courses in Health and Safety (NIFAST), Manual Handling, Evasive Driving & Trenching. Also Fire Warden and Supervisors courses.	Over 30 years Local Authority Service. Assistant Foreman in Dunsink Landfill for 12 years before being appointed Foreman for Balleally Landfill in 1998.
A/Assistant Foreman	Mr. Mick Harford	Balleally Landfill	Assistant to Landfill Foreman, task management of site operatives for general works and capping program.	A/Assistant Foreman.	Working at Balleally Landfill Site since 1985.

ğ

Ψ
_
S
こ
ō
×
≤
S
$\overline{}$
Ξ
3
⇆
Ġ
Ň
ш.
~
Ш
⋖
5
eu
. P
) <u> </u>
' ∴≗

	Version 1.1.03
REFERENCE YEAR 2008	
1. FACILITY IDENTIFICATION	
Parent Company Name Fingal County Council	
Facility Name Balasily Landfill	
PRTR Identification Number W0009	
Licence Number W0009-02	

3.10 Release of waste into a water body (including a seabed insention).
3.12 Repectaging print to submission to any activity referred to in a preceding paragraph of this Schedule.
3.13 Repectaging print to submission to any activity referred to in a preceding paragraph of this Schedule.
3.13 Repectaging or reclamation of a sativity referred to in a preceding paragraph of this Schedule.
3.13 Repectaging or reclamation of metals and metal compounds.
4.2 Recycling or reclamation of metals and metal compounds.
4.3 Recycling or reclamation of metals and metal compounds.
4.1 Les of waste principally as a fuel or other means to generate energy.
4.1 The reatment of any waste on hard with a consequential benefit for a agricultural activity or ecological system.
4.1 Exchanged waste for submission to any activity referred to in a preceding paragraph of this Schedule.
4.1 Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule.
4.1 Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule.
4.1 Exchanged waste intended for submission to any activity referred to in a preceding paragraph of this Schedule.
4.2 Exchanged waste intended for submission to any activity referred to in a preceding paragraph of this Schedule.
4.3 Exchanged waste intended for submission to any activity referred to in a preceding paragraph of this Schedule.
4.3 Exchanged waste intended for submission to any activity referred to in a preceding paragraph of this Schedule.
4.3 Exchanged waste intended for submission to any activity referred to in a preceding paragraph of this Schedule.
4.3 Exchanged waste intended for submission to any activity referred to in a preceding paragraph of this Schedule.
4.3 Exchanged waste intended in submission to any activity referred to in a preceding paragraph of this Schedule.
4.3 Exchanged waste intended in submission to any activity referred to in a preceding paragraph of this Schedule.
4.4 Recycling or reclamatio

2. PRTR CLASS ACTIVITIES Activity Number

5d	Landfills
5c	Installations for the disposal of non-hazardous waste

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

Have you been granted an exemption ?	If applicable which activity class applies (as per	Schedule 2 of the regulations) ?	Is the reduction scheme compliance route being	besn (see a see a	

SECTION	A : SECTOR SPECIFIC PRTR POLL	LUTANTS											4	iO
		RELEASES TO AIR												4
		POLLUTANT		N	IETHOD							QUANTITY		1
					Method Used	Flare	BY01	BY02	BY03	BY04				1
												A (Accidental)	F (Fugitive)	
	No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	Emission Point 2	Emission Point 3	Emission Point 4	Emission Point 5	T (Total) KG/Year	KG/Year	KG/Year	41
					Testo 350/454 MXL Flue									
02		Carbon monoxide (CO)	M	alt	Gas Analyser	0.419	12200.0	19400.0	12500.0	14000.0	58100.419	0.	0 0.	.0
					Testo 350/454 MXL Flue									
08		Nitrogen oxides (NOx/NO2)	M	alt	Gas Analyser	6.44	10900.0	11000.0	8840.0	8660.0	39406.44	0.	0 0.	.0
					Portable Signal 3030PM FID									
					calibrated with Propane in									
					accordance with									
					EN1526:2002 non-methane									
07		Non-methane volatile organic compounds (NMVOC)	M	SCC	hydrocarbon cutter	0.575	207.0	290.0	175.0	217.0	889.575	0.	0 0.	.0
					Testo 350/454 MXL Flue									
11		Sulphur oxides (SOx/SO2)	M	alt	Gas Analyser	15.7	72.0	85.0	180.0	62.0	414.7	0.	0 0.	.0
					Particulate Matter									
					Measured in accordance									
86		Particulate matter (PM10)	M	SCC	with EN13284-1	0.0	722.0			861.0				
01		Methane (CH4)	С	SCC	GASSIM	14.8	15100.0	16100.0	11500.0	31400.0	120014.8	0.	0 45900.	.0
03		Carbon dioxide (CO2)	С	SCC	GASSIM	23700.0	6168000.0	5280000.0	3970000.0	4730000.0	35471700.0	0.	0 15300000.	.0

SECTION B :	REMAINING F	PRTR POLL	UTANTS

SECTION B : REMAINING PRTR POLLUTANT													
	RELEASES TO AIR												
	POLLUTANT			THOD							QUANTITY		
				Method Used	Flare	BY01	BY02	BY03	BY05				/ !
					Emission Point 1						A (Accidental)	F (Fugit	
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	Emission Point 2	Emission Point 3	Emission Point 4	Emission Point 5	T (Total) KG/Year	KG/Year	KG/Yea	al l
80	Chlorine and inorganic compounds (as HCl)	м	scc	Impinger train containing 0.1 molar sodium hydroxide and deionised water solution in accordance with EN1911 and EPA 26A	1.15	125.0	120.0	69.0	88.0	403.15	5 0.	1.0	0.0
84	Fluorine and inorganic compounds (as HF)	м	SCC	Impinger train containing 0.1 molar sodium hydroxide and delonised water solution in accordance with EN1911 and EPA 26A	0.0212	6.78	s 7.2	2 4.0	5.16	23.1612	2 0.	1.0	0.0

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES TO AIR											
	POLLUTANT		METH	IOD							QUANTITY	
			Method Used		Flare	BY01	BY02	BY03	BY05			
											A (Accidental)	F (Fugitive)
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	Emission Point 2	Emission Point 3	Emission Point 4	Emission Point 5	T (Total) KG/Year	KG/Year	KG/Year
351 Total Organic Carbon (se C) * Saled a rare by debte clicking on the Publish Name (Column B) from click the debte button		м		Portable Signal 3030PM FID calibrated with Propane in accordance with EN1526:2002 non-methane hydrocarbon cutter	0.512	9060.0	10800.0	6930.0	18900.0	45690.512	ž 0.:	0 0.0

Additional Data Requested from Land	ffill operators					
or utilised on their facilities to accompany the figures for	se Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared t total methane generated. Operators should only report their Net methane (CH4) emission to the specific PRTR pollutants above. Please complete the table below:					
Landfill:	Balleally Landfill				-	
Please enter summary data on the quantities						
of methane flared and / or utilised			Met	hod Used		
				Designation or	Facility Total Capacity m3	
	T (Total) kg/Year	M/C/E	Method Code	Description	per hour	
Total estimated methane generation (as per site						
model	7420000.0	С	SCC	GASSIM	N/A	
Methane flared	20300.0	С	SCC	GASSIM	3000.0	(Total Flaring Capacity)
Methane utilised in engine/s	6720000.0	M	OTH	FROM BPS POWER GENER	5000.0	(Total Utilising Capacity)
Net methane emission (as reported in Section A						

SECTION A	A : SECTOR SPECIFIC PRTR POLI		Data on an	mbient monitoring of	storm/surface water or groundwate	er, conducted as part of your licence	requirements, should	d NOT be submitted und	er AER / PRTR Reporting as	this onl	ly concerns F	Releases from y	our facility
		RELEASES TO WATERS POLLUTANT										QUANTITY	
		POLLUTANI		1	Method Used	swv1 and s3		error				QUANTITY	
					Method Used	SWV1 and S3	error	error	error			Α Γ	F
	No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	Emission Point 2	Emission Point 3	Emission Point 4		T (Total) KG/Year	(Accidenta (I I) KG/Year	
		20.00			sls tm 097d epa methods								
79		Chlorides (as CI)	М	alt	325.1 and 325.2 cen/tc 230/wg 1/tg 7 n33 sls	106000.0	0.0	U	0.0	0.0	106000.0	0.0	0.0
21		Mercury and compounds (as Hg)	М	alt	tm 127d	0.00977	0.0	0	0.0	0.0	0.00977	0.0	0.
10		Total nitrogen		alt	tm-0001 US-EPA Approved Method/HACH	3490.0	0.0	0	0.0	0.0	3490.0	0.0	0.
12		i dai milogeri	IVI	ait	bs 6068 icp-oes (sls	3490.0	0.1	U	0.0	0.0	3490.0	0.0	0.0
40		Outside and community (or O.D.		-14	tm129d) & icp-ms (sls tm	0.0953					0.0050	0.0	
18		Cadmium and compounds (as Cd)	M	alt	152d) bs 6068 icp-oes (sls	0.0953	0.0	U	0.0	0.0	0.0953	0.0	0.0
					tm129d) & icp-ms (sls tm								
20		Copper and compounds (as Cu)	М	alt	152d) bs 6068 icp-oes (sls	1.47	0.0	0	0.0	0.0	1.47	0.0	0.0
					tm129d) & icp-ms (sls tm								
23		Lead and compounds (as Pb)	M	alt	152d)	0.242	0.0	0	0.0	0.0	0.242	0.0	0.0
					bs 6068 icp-oes (sls tm129d) & icp-ms (sls tm								
22		Nickel and compounds (as Ni)	M	alt	152d)	2.2	0.0	0	0.0	0.0	2.2	0.0	0.0
					bs 6068 icp-oes (sls tm129d) & icp-ms (sls tm								
24		Zinc and compounds (as Zn)	М	alt	152d)	5.62	0.0	0	0.0	0.0	5.62	0.0	0.0
40		Total desired		-14	tm-0001 US-EPA Approved Method/HACH	23.1					00.4	0.0	0.0
13		Total phosphorus	IVI	alt	Method/HACH	23.1	0.0	U	0.0	0.0	23.1	0.0	0.0

SECTION	В:	REMAINING	PRTR	POLLU	TANTS

	RELEASES TO WATERS								
POLLUTANT			QUANTITY						
				Method Used	SWV1 and S3				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1		T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
						0.0	0.0	0.0	0.0
						0.0	0.0	0.0	0.0
						0.0	0.0	0.0	0.0
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button								

SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

SECTION C : REMAINING POLLUTANT EMI	RELEASES TO WATERS								
	POLLUTANT				QUANTITY				
				Method Used	SWV1 and S3				
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
				standard methods 20th					
238	Ammonia (as N)	M	alt	edition-4500-F, 4-108	1980.0	1980.0	0.0		
303	BOD	M	alt	sls tm 083D	5050.0	5050.0	0.0	0.0	
				tm-0003 us-epa approved					
306	COD	M	alt	method / Hach	15400.0	15400.0	0.0	0.0	
				bs 2690:Part 120:1981					
				AWWA standard methods					
				for theexamination of water					
240	Suspended Solids	M	alt	and wastewater	18800.0				
343	Sulphate	M	alt	sls tm 098D	74300.0		0.0		
332	Ortho-phosphate (as PO4)	M	alt	sls tm 100	37.9	37.9	0.0		
341	Sodium	M	alt	sls tm 083D	167000.0				
338	Potassium	M	alt	sls tm 083D	3420.0				
305	Calcium	M	alt	sls tm 152 by icpms	45200.0	45200.0	0.0	0.0	
				bs 6068 icp-oes (sls					
				tm129d) & icp-ms (sls tm					
357	Iron	M	alt	152d)	14.4	14.4	0.0		
320	Magnesium	M	alt	sls tm 152 by icpms	33100.0				
321	Manganese (as Mn)	M	alt	sls tm 152 by icpms	194.4	0.0	0.0	0.0	
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button								

4.3 RELEASES TO WASTEWATER OR SEWER | PRTR# : W0009 | Facility Name : Balleally Landfil | Filename : W0009_2008.xls | Return Yt 31/03/2009 15:43

Ε	C	TIC	ON	Α	:	PRI	rR	PO	LLU	ITA	NTS

SECTION A: PRIR POLLUTANTS										
	FFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREAT	MENT OR	SEWER							
	POLLUTANT		METHO	DD	QUANTITY					
					Swords WWTP and 9C					
			Me	thod Used	Sewer					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
				Standard methods 20th						
06	Ammonia (NH3)	M	alt	edition-4500-F, 4-108	44800.0	45276.0	476.0	0.0		
				sls tm 097d epa methods						
79	Chlorides (as CI)	M	alt	325.1 & 325.2	94000.0	94682.0	682.0	0.0		
83	Fluorides (as total F)	M	alt	sls tm 104d	60.9	61.34	0.44	0.0		
				cen/tc 230/wg 1/tg 7 n33 sls	5					
21	Mercury and compounds (as Hg)	M	alt	tm 127d	0.00165	0.0016676	0.0000176	0.0		
				tm-0001 us-epa approved						
13	Total phosphorus	M	alt	method / hach	214.0	216.0	2.0	0.0		
00	Consider (on total CNI)	1.4	ndi.	ala im 424	2.04	2.002	0.000	0.0		

Cyanides (as total CN)
* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

	OFFSITE TRANSFER OF POLLUTANTS DESTINED FO	JR WASTE-WATER TREATMENT OF							_
	POLLUTANT		ME	THOD				QUANTITY	/ /
					Swords WWTP and 9C				
				Method Used	Sewer	error			
									F
								A (Accidental)	(Fugitive
Pollutant No.	Name	M/C/E	Method Code	Designation or Description		Emission Point 2		KG/Year	KG/Yea
103	BOD	M	alt	sls tm 083d	10300.0	0.0	10407.0	107.	.0 (
				tm 003 us-epa approved					
106	COD	M	alt	method /hach	96800.0			897.	
143	Sulphate	M	alt	sls tm 098d	2190.0	0.0	2205.8	15.	.8 (
32	Ortho-phosphate (as PO4)	M	alt	sls tm 100	581.0	0.0	585.2	4.3	2 (
				tm-0009 us-epa method /					
27	Nitrate (as N)	M	alt	hach	3710.0	0.0	3718.54	8.5	
41	Sodium	M	alt	sls tm 083d	57300.0	0.0	57714.0	414.	.0 (
38	Potassium	M	alt	sls tm 083d	33000.0	0.0	33238.0	238.	.0 (
				bs 2690:Part 120:1981					
				AWWA standard methods					
				for the examination of water					
40	Suspended Solids	M	alt	and wastewater	1340.0	0.0	1349.68	9.6	8 (

SECTION A : PRTR POLLUTANTS

	RELEASES TO LAND										
	POLLUTANT			THOD	QUANTITY						
			Method Used								
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Yea				
						0.0	0.0				

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

		TO THE INTERIOR OF CELETIFIC TO THE COUNTY OF THE COUNTY O									
RELEASES TO LAND											
PO	LLUTANT		METHO	D	QUANTITY						
			Met	hod Used							
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year				
					0.0		0.0 0.0				

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Within the Country 20 01 35

					waste				Name and Licence / Permit	A	Recovery / Disposal Site	Recovery / Disposal Site
	European Waste		Quantity		Treatment			Location of	No. of Recoverer / Disposer /	Address of Recoverer /	(HAZARDOUS WASTE	(HAZARDOUS WASTE
Transfer Destination	Code	Hazardous	T/Year	Description of Waste	Operation	M/C/E	Method Used	Treatment	Broker	Disposer / Broker	ONLY)	ONLY)
Transfer Destination	Obde	i ideaidodo			Орспаноп	INFO/E	INICUIOG OSCG	Housiness	Dionei	Disposer / Drutter	ONLI	OI4E1)
Green Waste Accepted from public and												
Within the Country	20 02 01	No	905.0 (landscape gardeners	R13	M	Weighed	Offsite in Ireland	Bord Na Mona, W0198-01	Athy Co Kildare		
									Greenclean Waste	Blakes Cross, Lusk Co		
Marine in a Comment	15 01 01	No	40.5	Cardboard	R13	Е	Volume Calculation	Official to be to be				
Within the Country	15 01 01	INO	10.5	Cardboard	K13		Volume Calculation	Offsite in Ireland	Management Ltd, VVU222-U1)	Dublin		
									Greenclean Waste	Blakes Cross, Lusk Co		
Within the Country	20.01.01	No	931	Paper	R13	E	Volume Calculation	Offeite in Ireland	Management Ltd. W0222-013	Dublin		
William and Country	200101	140	5.5	i upci	1010	-	VOIGHTE CUICUIGNOT	Oliulia III II ciulia		Dubiiii		
									Irish Packaging Recycling,			
Within the Country	20 01 01	No	7.1 1	Newspaper and magazines	R13	M	Weighed	Offsite in Ireland		Walkinstown, Dublin 12		
									Rehab Recycle, Waste	Ballymount Avenue,		
Within the Country	15 01 07	No	28 41 1	Glass Bottles and Jars	R13	C	Volume Calculation	Offsite in Ireland	Permit WPR 004	Ballymount Dublin 12		
						-			Recoverable Resources.			
						_						
Within the Country	15 01 04	No	0.4725 1	Drink Cans and Food tins	R13	C	Volume Calculation	Offsite in Ireland	Waste Permit WPR015	Tallaght, Dublin 24		
										Unit 4 Osberstown Business		
									Glassco Recycling Ltd.	Park, Carragh Road, Naas		
Within the Country	15.01.04	No	0.4621	Drink Cans and Food tins	R13	С	Volume Calculation	Official in Iroland	Waste Permit 247/2006	Co Kildare		
**************************************	10 01 04	140	0.403	Onia Ouro dila roda ilis	1110	-	+ Garcuidtion	Chaire in neight				
									Barnmore Demolition, Waste			
Within the Country	20 01 40	No	97.0	Metal	R13	E	Volume Calculation	Offsite in Ireland	Permit WPT129	Baldoyle, Dublin 13		
									Recyclenet, Waste Permit			
Within the Country	15.01.02	No	12 12 1	Plastic packaging	R13	м	Weighed	Offsite in Ireland		Rathangan Co Kildare		
Will lift tile Couriny	15 01 02	NO	13.12	riasiic packaging	KIS	IVI	weighed	Olisite III ileialiu		Katilangan Co Kiluare		
									Textile Recycling Ltd, Waste			
Within the Country	20 01 11	No	9.17	Clothes	R13	С	Volume Calculation	Offsite in Ireland	Permit WPR014	Tallaght, Dublin 24		
									Barnmore Demolition, Waste	Baldovie Industrial Estate		
Within the Country	20.01.29	No	258.5 1	Wood	R13	E	Volume Calculation	Offsite in Ireland		Baldoyle, Dublin 13		
Within the Country	20 01 36	INO	208.0	VV000	R13		Volume Calculation	Olisite in Ireland	Pellilli WF 1129	Baldoyle, Dubill 13		
											Accurec Recycling GmbH,	
									Returnbatt, Waste Permit		Wiehagen 12-14, 45472	
Within the Country	20.01.33	Yes	0.62	Small Batteries	R13	M	Weighed	Abroad	97/2002a	Kill Co Kildare	Mulheim	ZUUM-054-0499-45-41-1103
											G&P Batteries Ltd. Crescent	
									The Recycling Village Ltd,	Monasterboice, Drogheda,	Works, Willenhall Road,	
Within the Country	20 01 33	Yes	0.076	Small Batteries	R13	M	Weighed	Abroad	Waste Permit WP 2007/20	Co Louth	Darlaston, Walsall	SL 2035
											HJ Enthoven & Sons, Darley	
											Dale Smelter, South Darley,	
									Returnbatt, Waste Permit		Matlock, Derbyshire, DE4	
Within the Country	16 06 01	Yes	4.066 1	Lead Acid Batteries	R13	M	Weighed	Abroad	97/2002a	Kill Co Kildare	2LP, United Kingdom	BL55981R
											HJ Enthoven & Sons, Darley	
											Dale Smelter, South Darley,	
									The Recycling Village Ltd,	Unit 4, Tinure Business Park,		
Within the Country	16 06 01	Yes	3.968 1	Lead Acid Batteries	R13	M	Weighed	Abroad	Waste Permit WP 2007/20	Tinure, Dunleer Co Louth	2LP, United Kingdom	BL55981R
										Character of the Associate France	ENVA. Clonminam Industrial	
Within the Country	13 02 08	Yes		All Engine Oils - i.e. all 13 02 xx codes	R13	M	Volume Calculation	Offsite in Ireland	ENVA, W0184-01	Portlaoise, Co Laois	Estate, Portlaoise, Co Laois	WU184-01
				Refuse and bulky waste brought to civic						Balleally Lane Lusk Co		
Within the Country	20.03.01	No	3967.0		D1	F	Volume Calculation	Onsite in Ireland	Balleally Landfill, W0009-2	Dublin		
The state of the s			0307.0	,		-	. 2.3mc Garcadion	a. and in neight	v.0005-2			
									Greenclean Waste	Blakes Cross, Lusk Co		
Within the Country	15 01 05	No	0.75	Tetra-Pak	R13	E	Volume Calculation	Offsite in Ireland	Management Ltd, W0222-01)	Dublin		
											Viridor, Parr Industrial Estate.	
									MARK MARKET - 1810440 00			
									KMK Metals, W0113-02 on		Cornwall Street, St Helens,	
Within the Country	20 01 23	Yes	32.0	Fridges / Freezers	R13	M	Weighed	Abroad	behalf of ERP	Tullamore Co Offaly	Merseyside, Wa9 1QW UK	EAWM 50133/M02
									Immark, W0185-01 on behalf	Greenogue Business Park,		
Within the Country	20.01.36	No	73.475 1	White goods other than fridges	R13	M	Weighed	Offsite in Ireland		Rathcoole Co Dublin		
******* uie Coultry	20 01 30	140	73.475	Trime goods office trial fridges	1110	141	grieu	Chane in realid	OI LINE			
										Greenogue Business Park,		
										Rathcoole Co Dublin		
									Immark, W0185-01	and		
									and	Unit 5 1. Parkwest Industrial		
				WEEE other than CRT / White Goods /					Immark, W0233-01 on	Estate, Nangor Road, Dublin		
Within the Country	20 01 36	No	42.442	Fluroescent tubes	R13	M	Weighed	Offsite in Ireland	behalf of ERP	12		
											The Recycling Village Ltd,	
											The Necycling Village Ltd.	

The Reyching Village Ltd.
Instanck, W0185-01 on behalf Greenogue Business Plask, Ust, Turner Business Plask,
Ves 32.813 TVs & Monitors R13 M Weighed Offstein Ineland of ERP Rathocole Co Dublin Tirure, Durlieer Co Louin Waste Permit WP 2007/20

Within the Country 2 0 0 1 35 Yes 3.242 TVs & Monitors R13 M Weighed Offsite in Item Country 2 0 0 1 21 Yes 0.18 Fluorescent babes R13 M Weighed Abroad of WEEE Ireland Portlands Portland