Appendix G1: Dioxorb Properties

Consent of conviction purposes only any other use.

Walhalla-Dioxorb[®] 854

Adsorbent for purifying flue gases composed of two clay minerals for the removal of dioxines and furanes.

Chemical analysis:

Loss of ignition Carbon dioxide Water (105 °C)	3.0 - 5.0 % 3.0 - 5.0 %	12.0 - 15.0	%
CaO		9.0 - 11.0	%
MgO		2.5 - 3.5	%
SiO ₂	e 1150.	46.0 - 49.0	%
Fe ₂ O ₃	other	5.0 - 7.0	%
Al ₂ O ₃	MY any	17.0 - 20.0	%
SO3	dfor	2.0 - 3.0	%
MgO SiO2 Fe2O3 Al2O3 SO3 Physical properties: Bulk density according to EN 459-2 contribution Riddle analysis: Conserver contribution Residue on test riddle according to DIN ISO 3310			
Bulk density according to EN 459-2 control		about 0.7	kg/dm ³
Riddle analysis:			
Residue on test riddle according to DIN ISO 3310		0.1 mm 0.063 mm	4 - 7 % 10 - 14 %

Walhalla-Dioxorb[®] reacts absorptive and adsorptive with PCDD/F and heavy metals.

The specified numbers are averages without right to title.

Safety Data Sheet = Walhalla-Dioxorb[®] - dangerousgroup no. 1.

Date: June 19, 2007

Appendix G2: Excerpt from Waste Framework Directive

Consent of copyright owner required for any other use.

D 14 Repackaging prior to submission to any of the operations numbered D 1 to D 13

D 15 Storage pending any of the operations numbered D 1 to D 14 (excluding temporary storage, pending collection, on the site where the waste is produced) **

* This operation is prohibited by EU legislation and international conventions.

** If there is no other D code appropriate, this can include preliminary operations prior to disposal including pre-processing such as, inter alia, sorting, crushing, compacting, pelletising, drying, shredding, conditioning or separating prior to submission to any of the operations numbered D1 to D12.

*** Temporary storage means preliminary storage according to point (10) of Article 3.

ANNEX II

Recovery operations

R 1 Use principally as a fuel or other means to generate energy*

R 2 Solvent reclamation/regeneration

R 3 Recycling/reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes) **

R 4 Recycling/reclamation of metals and metal compounds

R 5 Recycling/reclamation of other inorganic materials **

R 6 Regeneration of acids or bases

R 7 Recovery of components used for pollution abatement

R 8 Recovery of components from catalysts

R 9 Oil re-refining or other reuses of oil

R 10 Land treatment resulting in benefit to agriculture or ecological improvement

R 11 Use of waste obtained from any of the operations numbered R 1 to R 10

R 12 Exchange of waste for submission to any of the operations numbered R 1 to R 11 ****

R 13 Storage of waste pending any of the operations numbered R 1 to R 12 (excluding temporary storage, pending collection, on the site where the waste only is produced) **** Ś 505

150.

* This includes incineration facilities dedicated to the processing of municipal solid waste only where their energy efficiency is equal to or above:

0 60 for installations in operation and permitted in accordance with applicable Community legislation before 1 January 2009, of copyright INSP

0. 65 for installations permitted after 31 December 2008, using the following formula: Energy efficiency = (Ep -(Ef + Ei)) / (0.97 x? (Ew + Ef)) In which:

Ep means annual energy produced as heat or electricity. It is calculated with energy in the form of electricity being multiplied by 2.6 and heat produced for commercial use multiplied by 1.1 (GJ/year)

Ef means annual energy input to the system from fuels contributing to the production of steam (GJ/year)

Ew means annual energy contained in the treated waste calculated using the lower net calorific value of the waste (GJ/year)

Ei means annual energy imported excluding Ew and Ef (GJ/year)

0.97 is a factor accounting for energy losses due to bottom ash and radiation.

This formula shall be applied in accordance with the reference document on Best Available Techniques for waste incineration.

** This includes gasification and pyrolisis using the components as chemicals.

*** This includes soil cleaning resulting in recovery of the soil and recycling of inorganic construction materials.

**** If there is no other R code appropriate, this can include preliminary operations prior to recovery including pre-processing such as, inter alia, dismantling, sorting, crushing, compacting, pelletising, drying, shredding, conditioning, repackaging, separating, blending or mixing prior to submission to any of the operations numbered R1 to R11.

***** Temporary storage means preliminary storage according to point (10) of Article 3.

ANNEX III

Properties of waste which render it hazardous

H 1 "Explosive": substances and preparations which may explode under the effect of flame or which are more sensitive to shocks or friction than dinitrobenzene.

H 2 "Oxidizing": substances and preparations which exhibit highly exothermic reactions when in contact with other substances, particularly flammable substances

H 3-A "Highly flammable"

liquid substances and preparations having a flash point below 21 °C (including extremely flammable liquids), or

Appendix G3: Annex 10.4 of BREF Document on Waste Incineration

Consent of copyright owner required for any other use.

10.4 Energy calculation methodology and example calculation

Data appear in this document that was calculated and compiled by members of the *Energy sub*group of the TWG (ESG). This annexe provides the calculation method that was developed and used by some of the members of this sub-group when compiling the data shown. It should be noted that there exist various methods for the calculation of energy efficiency, however it is anticipated that the provision of the method developed and used by the TWG sub-group may help reader to understand the basis for the figures derived by energy sub-group work.

10.4.1 General explanations of terms and system boundary of the energy calculation

For the purposes of the BREF the calculation was restricted to the waste "incineration site". The diagram below summarises the system inputs and outputs used by the BREF ESG:

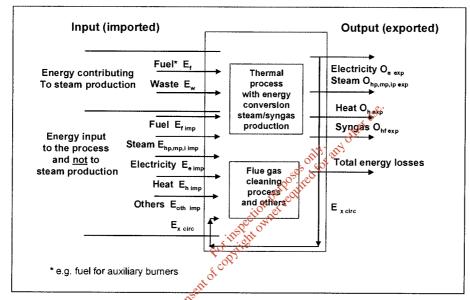


Figure 10.14: Summary of the energy system inputs and outputs used by BREF ESG

The main energy flows in waste incinerators can be summarised as:

a) Energy inputs (imported)

- only the energy input that is imported for the incineration process itself is included (see also d below). This will include, for example, the energy required for operation of a bulky waste shredder
- energy required to operate, for example, a full RDF plant (whether on site or not) is (for the purposes of this calculation) outside the system boundary and should not be included in the calculation (however it should be noted that this may be very significant if a wider life cycle boundary calculation is attempted)
- do not include energy required for waste collection, transportation and external pretreatment that is not necessary for the incineration process
- other energy imported to the site is included as an input e.g. electricity, natural gas for fluegas reheating and/or oil for auxiliary burners, as long as they are partly or totally used to cover the energy needed in the incineration process.

b) Energy conversion

This is the energy from wastes/fuels that is converted in the incinerator to another form (e.g. steam or syngas) for export or circulation.

c) Energy outputs (exported)

- only the actual amount of energy exported is included (i.e. the gross production minus the energy circulated and consumed as losses to run the process itself)
- auxiliary on-site energy usage such as lighting and heating for offices should only be taken into account in the efficiency calculation if these figures are available and if a very precise balance is wanted. Otherwise this influence is considered small and can be neglected
- where energy is used on-site for another process (e.g. drying of sewage sludge or for running a district heating) this is counted as an output (export).

d) Circulated energy as energy losses (for explanation see figure above)

This is the energy that is generated by the process (e.g. steam/heat/electricity) that is then used in the process itself. This energy is not considered to count as a system input because it has not been imported from outside the system boundary. However, it is considered important that such circulation (if it is providing for energy losses) should be identified (as they substitute for imported energy) and should therefore be included in the check-list.

10.4.2 Example of NCV calculation used by energy sub-group

The data required for the calculation are generally available to incineration plant and are either measured or calculated from dimensioning figures such as steam parameters.

Method to calculate NCV of incinerated mono- and mixed waste

 $c = (1.133 \text{ x} (m_{st x}/m)) \overline{x c_{st x} + 0.008 \text{ x} T_b} / 1.085 (GJ/tonne)$ c = lower (net) calorific value (NCV) of the incinerated waste with mst w $/m \ge 1$ (GJ/tonne) $\mathbf{m}_{st w} = \mathbf{m}_{st x} - (\mathbf{m}_f \mathbf{x} (\mathbf{c}_{f} \mathbf{c}_{st x}) \mathbf{x} \mathbf{\eta}_b)$ = amount of the produced steam out of waste in the corresponding time period to $m_{st x}$ e.g. per m_{st w} year (tonne/y) =total amount of the produced steam in a defined time period e.g. per year (tonne/y) m_{st x} =amount of fuel with steam production (see E_f in checklist) in the corresponding time period m_f to $m_{st x}$ e.g. per year (tonne/y) =amount of incinerated waste (see E_w in checklist) in a defined time period to m_{st x} e.g. per m year (tonne/y) = net enthalpy of steam (enthalpy of steam minus enthalpy of boiler water) (GJ/tonne) c_{st x} see e.g. VDI Steam Tables in general constant for every single plant = net calorific value of fuel with steam production see table 1 (GJ/tonne) Cf = temperature of flue-gas after boiler (at $4 - 12 \% O_2$ in flue-gas) (°C) Tb 0.008 = spec. energy content in flue-gas (GJ/tonne x °C) 1.133 and 1.085 = constant figures by regression equation ηb = efficiency of heat exchange (as approach 0.80) Reference: The basic equation for the calculation of NCV is taken from: "Technology of Waste Incineration in Theory and Practice (Verbrennungstechnik von Abfällen in Theorie und Praxis)", 1995 ed. by Reimann, D.O.; Hämmerli, H;, and VDI "Steam Tables", 1968 ed. by Schmidt,E.

Annexes

Example NCV calculation for an average MSW:

Steam	parameters 40 bar, 400 °C,	C _{st hp}	= 3.217 GJ/tonne
boiler	water 3.2 bar, 135 °C	C _{st bw}	= 0.565 GJ/tonne
(consta	ant for this W-t-E plant)	C _{st x}	= 2.652 GJ/tonne
${m_{st \ hp} \over m_f} {C_f \over \eta_b}$	= 404623 (tonne of HP steam) = 95.875 (tonne of fuel) (light oil) = 42.73 GJ/tonne = efficiency of heat exchange (as ap	pproach 0.80)
m _{st w} m T _b C C	= 126692 tonne of mixed municipa = 220 °C (at 6 – 11 % O ₂ in flue-ga = (1.133 x ($m_{st w}/m x c_{st x}$) + 0.008 x	l solid waste s) x T _b)/1.085	80) = 404623 - 1236 = 403387 (tonne) (MSW) 220)/ 1.085 = (9.567 +1.760)/1.085

NCV = C = 10440 GJ/ tonne = 2900 MWh/tonne as average of mixed MSW

10.4.3 Basic operational data for three examples of the energy calculation

Annual basic operational data and figures may be collected using check-list shown below.

The check-list shown includes the data for the example of CHP production and export. Instead of generating an individual list for operational basic data of a plant the use of a standard checklist will deliver higher accuracy and reduce the risk of forgetting data to be taken into account for the energy calculation method.

Name of th	e plant:	Plant V	V-t-E		ing Period production		1999
						and the Transford (1	
Scope of the							
						FOR PLANT-EFFIC	
FOR THE PLAN	NT AS ACCU	ATE AS D	OSSIR	DS SHOULD E	SE FILLED OUT V	WITH THE RELEVA	NIDATA
	IT AS ACCO	VAIL AS P	03310				
Basic data							
Name of plant				nbined heat a	ind power recove	ry in accordance i	to BREF
Name of company	(2. draft) ch	apter 3.5.4.	.3	NO TRAINING			
Address						、历史的思想和目的	
Contact person							
Telephone	121003111				여러 신문한 지하는 것을		
Fax							
E-mail			1.1				
Energy inpu	it from was	te for E	N				
Amount of all kind irrespective of typ			tal amo	unt of waste in	cinerated	126692 [Mg](t)	E.
Of which , was	te for energe	tic recover	y is inc	luded		0 [Mg](t)	STRUE
Imported eror	with etco	n /heaters	duction		amount (a this	and an inclusion of the state of the	
Imported energy	Natural gas	n-meatpro	aucuo	NCV [GJ/10" Nm?]	0,0 [MWh]	colum to be filled out) 0,000 [1000 Nm ³]	IC
contributing to	Digestion gas			NCV [GJ/10 ² Nm ²]	0,0 [MWh]	0,000 [1000 Nm ²]	Contraction of the local division of the loc
steam-/heat	Light fuel oil		42,730	Hu (GJ/Mg)	0,0 [m²]	95,9 [Mg](t)	
production, e.g.	Heavy fuel of			NCV [GJ/Mg]	0,0 [m ²]	0,0 [Mg](t)	the second se
for auxiliary	Other oils	10.001.0002	1010	NCV [GJ/Mg]	0,0 [m ³]	0,0 [Mg](t)	
burners, start-up	Browncoal.			NCV [Goring]	0,0 [m]	0,0 [Mg](t)	Er
and shut-down proportionately ¹	Torf		19935	NCV [GJ/Mg]		0,0 [Mg](t)	E,
etc.	Hard coal,		1000		150	COULSES OF THE RES	a character
	Coke		1.118	NCV (GU/Mg)	et V	0,0 [Mg](t)	E
	Wood		10.12	NCV [GL/Mg]	oth	0,0 [Mg](t)	E
	RDF/SRF		123.2	NCV (GJ/Mg)	8	0,0 [Mg](t)	Er
	Others	64.41.2.4.6	A. 1911-1	NCV [GUM]		0,0 [Mg](t)	Er
	Hot water, dis			e v		0 [MWhh]	E
If this cannot be deterr with and 30% without Imported energ	steam production in	the case of In	creased	se of auxiliary fuel	be assumed in the case of amount (only	minor, use of auxiliary f	ueland <u>/U%)</u>
Imported energy	Natural gas	os	AND -	NCV [GJ/102 Nm?]	0,0 [MWh]	[1000 Nm ²]	Erime
not contributing		Per	0	NCV [GJ/10ª Nm ²]	0,0 [MWh]	[1000 Nm ²]	
to steam-/heat	Methane	A		NCV [GJ/Mg]	0,0 [MWh]	[1000 Nm [*]]	
production, e.g. for flue gas	Light fuel oil	Y St	42,730	Hu (GJ/Mg)	0,0 [m ^a]	95,9 [Mg](t)	
treatment, start-	Heavy fuel oil	· 00 ·	03/98/10	NCV [GJ/Mg]	[*m] 0,0	0,000 [Mg]	and the local division of the local division
up and shut-down		07	10033	NEW POINT-1	Contract and the second state	An entry subscription of the	STATISTICS.
proportionately ¹ ,	other oils			NCV [GJ/Mg]	0,0 [m³]	0,000 [Mg]	C/ imp
etc.	Electricity				5	180,0 [MWhe]	Ee inp
	Hot water, dis	trict heat				0,000 [MWhh]	
		Steamquan	tity		5	0,000 [Mg](t)	Est to.mp.tp Imp
	Steam hp.mp.ip	Steamparan	neters		[bar], [°C]		
		Boilerwater/	condens	late	[°C]		
		Steamquant	tity		12	0,000 [Mg](t)	Est hp, inp. to line
	Steam hp.mp.lp	Steamparan	neters		[bar], ["C]		Shirts (ba)
		Boilerwater/	condens	ate	[2]	均均均均均均均均均均	13133
	alternative: St Others	the second se	n,/a		11	0 [MWhh]	En hp.mp.lp imp

Table 10.97: Energy efficiency calculation data checklist 1

Self produced	Electricity		Total energy Excirc* amo 17520,0 [MWhe]		IE
energy used in	Electricity	Steam quantity?	32458 [Mg](t)	17520,0 [MWhe] 32458 [Mg](t)	of the local division of the local divisiono
the process as	Steam he me in	Steam parameters		40 bar, 400 °C	and the second se
circulated energy. For BREF/EUGH	1	Boiler water/conde		135 °C	the statement of the st
energy efficiency		Steam quantity ^a	68000 [Mg](t)	6800 [Mg](t)	1
numbers and self				40 bar, 400 °C	
demand only the		Boiler water/conde		0*0	
energy losses (demand) are		Steamquantity	0 [Mg](t)		Est hp,mp.ip ci
laken into	Steam hp.mp.lp	Steam parameters			
account.	D-CONTROLIZATION CO	Steam backflow	[2]		1-1-1-1-1-1-1
	alternative: St	eam in MWh,/a	0 [MWhh]	0 [MWhh]	E _{st hp.mp.ip cit}
	Hot water, dis	trict heat ⁶	3760 [MWhh]	3760 [MWhh]	
	Others	1.22123.021.0212	NCV [GJ/Mg]	0,000 [Mg](t)	Eather chr.
The total circulate	ed energy should	be filled in this colum:	n (E _{rene} total)		
² Consumption for h	heating up flue ga	uses before SCR = 32			Salanda
² Consumption for t ³ HP-steam for soc 4	heating up flue ga otblowing 10 % of	ises before SCR ≭ 32 68000 Mg/a ≈ 6800 M	458 Mg/a	<u>ر</u> و.	
² Consumption for t	heating up flue ga otblowing 10 % of	ises before SCR ≭ 32 68000 Mg/a ≈ 6800 M	458 Mg/a	the.	
² Consumption for t ³ HP-steam for soc ⁴ ⁴ Heating of plant t	heating up flue ga otblowing 10 % of buildings = 3760 h	ises before SCR = 32 68000 Mg/a = 6800 M /Whh	458 Mg/a Ag/a	too.the	
² Consumption for f ³ HP-steam for soc 4 5 Heating of plant t 6 multiple use of the co	heating up flue ga otblowing 10 % of puildings = 3760 N onsumed circulated	<u>ises before SCR ≖ 32</u> 68000 Mg/a = 6800 M MWhh energy is happening e.g	458 Mg/a /g/a . In more than one stage please indicate this	2	
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 f buildings = 3760 f onsumed circulated rergy O _{x exp}	<u>ises before SCR ≖ 32</u> 68000 Mg/a = 6800 M MWhh energy is happening e.g	458 Mg/a Ag/a	amount	
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 f buildings = 3760 f onsumed circulated rergy O _{x exp}	ses before SCR = 32 68000 Mg/a = 6800 M /Whh energy is happening e.g	458 Mg/a Ag/a . In more than one stage please indicate this	amount 31730,0 [MWhe]	O _{e exp}
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 h buildings = 3	ses before SCR = 32 68000 Mg/a = 6800 M /Whh energy is happening e.g Steam quantity	458 Mg/a Ag/a . In more than one stage please indicate this 	amount	O _{e exp}
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 h buildings = 3	ses before SCR = 32 68000 Mg/a = 6800 M /Whh energy is happening e.g Steam quantity Steam parameters	458 Mg/a Ag/a . In more than one stage please indicate this 	amount 31730,0 [MWhe]	O _{e exp}
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 h buildings = 3	ses before SCR = 32 68000 Mg/a = 6800 M /Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder	458 Mg/a Ag/a . In more than one stage please indicate this 	amount 31730,0 [MWhe] 0,000 [Mg](t)	O _{e exp} O _{at hp,mp,ip ex}
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 h buildings = 3	ses before SCR = 32 68000 Mg/a = 6800 M /Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity	458 Mg/a Ag/a	amount 31730,0 [MWhe]	O _{e exp} O _{at hp.mp.ip ex}
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 h buildings = 3	ses before SCR = 32 68000 Mg/a = 6800 M /Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters	458 Mg/a Ag/a	amount 31730,0 [MWhe] 0,000 [Mg](t)	O _{e exp} O _{at hp,mp,ip ex}
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 h buildings = 3	ses before SCR = 32 68000 Mg/a = 6800 M /Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder	458 Mg/a Ag/a . In more than one stage please indicate this . In the stage please indicate the stage please please please indicate the stage please ple	amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t)	Oe exp Ost hp.mp.to ex Ost hp.mp.to ex
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 f buildings = 3	ses before SCR = 32 68000 Mg/a = 6800 M //Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity	458 Mg/a Ag/a . In more than one stage please indicate this . In the stage please indicate this . In the stage please indicate the stage please plea	amount 31730,0 [MWhe] 0,000 [Mg](t)	Oe sup Ost hp.mp.ip ex Ost hp.mp.ip ex
² Consumption for t ³ HP-steam for soc ⁴ ⁴ ⁴ Heating of plant t ⁶ ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 f buildings = 3	ses before SCR = 32 68000 Mg/a = 6800 M ///////////////////////////////////	458 Mg/a Ag/a . In more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate the more the more than one stage please indicate the more the	amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t)	Oe exp Ost hp.mp.to ex Ost hp.mp.to ex
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 f buildings = 3	ses before SCR = 32 68000 Mg/a = 6800 M /Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity Steam quantity Steam quantity Steam quantity Steam quantity Steam quantity	458 Mg/a Ag/a . In more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate this . In the more than one stage please indicate the more the more than one stage please indicate the more the	Amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t)	O _e exp Oat hp.mp.ip ex Oat hp.mp.ip ex
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 h buildings = 3760 h onsumed circulated ergy <u>Ox exp</u> Electricity Steam hp.mp.lp Steam hp.mp.lp	ses before SCR = 32 68000 Mg/a = 6800 M //Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity	458 Mg/a Ag/a . In more than one stage please indicate this . In the indicate the indicate this . In the indicate the indicate this . In the indicate t	amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t)	O _e exp Oat hp.mp.ip ex Oat hp.mp.ip ex
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 h buildings = 3760 h onsumed circulated ergy <u>Ox exp</u> Electricity Steam hp.mp.lp Steam hp.mp.lp	ses before SCR = 32 68000 Mg/a = 6800 M ///////////////////////////////////	458 Mg/a Ag/a . In more than one stage please indicate this . In more than one stage please indicate this 	Amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t)	O _e exp Oat hp.mp.ip ex Oat hp.mp.ip ex
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue gas buildings = 3760 h buildings = 3760 h ergy <u>O_x exp</u> Electricity Steam hp.mp.lp Steam hp.mp.lp Steam hp.mp.lp	ses before SCR = 32 68000 Mg/a = 6800 M MWhh Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steamquantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity	458 Mg/a Ag/a . In more than one stage please indicate this . In more than one stage please indicate this 	Amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t)	Oe exp Oet hp,mp,ip ex Oet hp,mp,ip ex Oet hp,mp,ip ex
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 h buildings = 3760 h buildings = 3760 h crusted circulated ergy O _{x.exp} Electricity Steam hp.mp.lp Steam hp.mp.lp Steam hp.mp.lp Heat	ses before SCR = 32 68000 Mg/a = 6800 M //Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Hot water quantity	458 Mg/a Ag/a Ag/a . In more than one stage please indicate this . In more than one stage please indicate this 	AMU Amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t)	Oe exp Oet hp,mp,ip ex Oet hp,mp,ip ex Oet hp,mp,ip ex
² Consumption for t ³ HP-steam for soc 4 ⁴ Heating of plant t ⁶ multiple use of the cc Exported en	heating up flue gas buildings = 3760 h buildings = 3760 h ergy <u>O_x exp</u> Electricity Steam hp.mp.lp Steam hp.mp.lp Steam hp.mp.lp	ses before SCR = 32 68000 Mg/a = 6800 M //Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Hot water quantity Hot water quantity	458 Mg/a Ag/a . In more than one stage please indicate this . In more than one stage please indicate this 	Amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t)	Oe exp Oet hp,mp,ip ex Oet hp,mp,ip ex Oet hp,mp,ip ex
² Consumption for t ³ HP-steam for soc ⁴ ⁴ Heating of plant t	heating up flue ga atbiowing 10 % of buildings = 3760 k buildings = 3760 k buildings = 3760 k ergy O _{X exp} Electricity Steam hp.mp.lp Steam hp.mp.lp Steam hp.mp.lp Heat Alternative: Hot water, district heat in WWh,	ses before SCR = 32 68000 Mg/a = 6800 M //Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Hot water quantity Hot water quantity Hot water effluent	458 Mg/a Ag/a . In more than one stage please indicate this . In more than one stage please indicate this 	M amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t)	Oe exp Oet hp,mp,ip ex Oet hp,mp,ip ex Oet hp,mp,ip ex
² Consumption for t ³ HP-steam for soc ⁴ ⁴ ⁴ Heating of plant t ⁶ ⁶ multiple use of the cc Exported en	heating up flue ga buildings = 3760 k buildings = 3760 k buildings = 3760 k buildings = 3760 k buildings = 3760 k ergy O _{x.exp} Electricity Steam hp.mp.lp Steam hp.mp.lp Steam hp.mp.lp Heat Alvenative: Hot water, district heat in MWh, alternative: St	ses before SCR = 32 68000 Mg/a = 6800 M //Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Hot water quantity Hot water quantity Hot water effluent Hot water factor	458 Mg/a Ag/a . In more than one stage please indicate this . In more than one stage please indicate this 	M amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t)	Oe exp Oet hp,mp,ip ex Oet hp,mp,ip ex Oet hp,mp,ip ex
² Consumption for t ³ HP-steam for soc ⁴ ⁴ ⁴ Heating of plant t ⁶ ⁶ multiple use of the cc Exported en	heating up flue ga atbiowing 10 % of buildings = 3760 k buildings = 3760 k buildings = 3760 k ergy O _{X exp} Electricity Steam hp.mp.lp Steam hp.mp.lp Steam hp.mp.lp Heat Alternative: Hot water, district heat in WWh,	ses before SCR = 32 68000 Mg/a = 6800 M //Whh energy is happening e.g Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Steam quantity Steam parameters Boiler water/conder Hot water quantity Hot water quantity Hot water effluent Hot water factor	458 Mg/a Ag/a . In more than one stage please indicate this . In more than one stage please indicate this 	M amount 31730,0 [MWhe] 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t) 0,000 [Mg](t)	Oe exp Oet hp.mp.ip ex Oet hp.mp.ip ex Oet hp.mp.ip ex Oet hp.mp.ip ex Oet hp.mp.ip ex

 Table 10.98: Energy efficiency calculation data checklist 2

Total thermal outp	ut of the entire	e plant		54,0 [MV
Average net calori	fic value (NC)) of the waste, estimated by operator		no In
Average net calori	fic value (NC)	/) of the waste, calculated by operator		10,440 [GJ/M
Average net calori	fic value (NC\	/) of the waste acc. to formula by BREF/BAT		10,439 [GJ/M
Boiler efficiency				83,0 [?
O ₂ -content of the r	aw gas (after	boiler) as dry		8,0 [%
O2 content after st	ack of the clea	an gas as dry	-	8,5 [?
Steam/ hot v				
Produced steam/ho water out of boiler	Steam	steam quantity		404623 [Mg]
or wherever	hp,mp,ip after boiler		bar], [°C]	40 bar/400 *
useable steam/	condensate backflow	[2]	135°	
heat is produced during the total	Steam	steam quantity		0,000 [Mg]
incineration process	hp,mp,ip elsewhere		oar], [°C]	
e.g. by heat pumps SCR with heat		condensate backflow	[°C]	
recovery, additional	Steam	alternative: Steam produced in MWh _h /a		0 [MWhl
Eco's in the thermai	Hot water	hot water quantity		0,000 [Mg](
waste treatment.	after boiler	hot water effluent	[0]	
		hot water backflow	[0]	
	Hot water	hot water quantity		0,000 [Mg](
	eisewhere	hot water effluent	[[0]]	
	11-1-1-1	hot water backflow	[[0]	
	Hot water, d			0,000 [MWhi
and the design of the second sec	ure after boile	corresponding to the point of previous datarc	ys ^e * or steam	220 ლ
Volume flow of cle (under standard co	an gas onditions, dry)	only and	3 línes	96603 [Nm³/ł
Volume flow of cle (under standard co	an gas as ann onditions, dry)	ual total for the entire plages in the entire plages in the entire plages in the entire plages in the entire plage in the enti	3 lines	655000000 [Nm³/a
		all' du		120 ["0

Table 10.99: Energy efficiency calculation data checklist 3

10.4.4 Energy calculation formulas with basic operational data for three examples of the energy calculation

The annual basic operational figures and data are the basis for the calculation of specific energy results and percentage efficiencies.

For the purpose of aggregation of data relating to the consumption/production/export of different sources of energy, reference has been made to GJ. However, more commonly electrical energy is reported as MWh_e , and steam, heat and hot water as $MWh_{h/st}$, therefore the examples are calculated with this unit.

To enable the comparison between different incineration plants in an easy and reliable way, simple formulas are adopted, all based on annual balances. Where used, international equivalency factors have been considered for energy conversions to obtain energy balances.

Method 1: Net annual specific (i.e. per tonne of waste treated) energy needed for and recovered by the installation, expressed as absolute and equivalent energy figures (N), in correlation to the quantity of incinerated waste (investigation period one year)

The specific value for the amount of energy produced, exported or needed per tonne of waste input is obtained simply by dividing the annual data by the waste throughput. The result delivers specific information for the considered plant because the NCV of waste itself is not taken into account.

Annexes

This technique uses annual totals to calculate separate figures for:

- total specific energy demand of the entire plant per tonne of waste input Nop sp
- total specific electrical energy production/export per tonne of waste input Ne sp prod/exp
- total specific heat and steam production/export per tonne of waste input Nh/st sp prod/exp
- total specific electrical energy and heat/steam production/export of the entire plant
- per tonne of waste input Ne+h/st sp prod/exp

Method 2: Percentage yield (η)

This method calculates the overall percentage of energy needed for and recovered by the installation in relation to the steam producing energy inputs from the waste, as well as other energy inputs (e.g. support fuels) i.e. in relation to the total energy input into the plant.

Because the energy content of the waste input is included, an advantage of this method is that comparison is possible between incineration plants, independent of the waste type. This calculation method is widespread and the results are generally well understood. If the NCV of the waste is not known, it can be obtained from knowledge of the produced steam.

In this method, separate efficiency values are calculated for electricity and heat production/consumption using absolute figures as well as energy equivalents. These figures may be added together to give a total efficiency figure.

This technique uses annual totals for the entire plant to calculate separate figures for:

- percentage of energy demand of the entire plant in relation to the total energy input nov sp
- percentage of electrical energy production/export in relation to the total energy input $\eta_{e sp prod/exp}$
- percentage of heat and steam production/export in relation to the total energy input nb/st sp prod/exp
- percentage of electrical energy and heat/steam production/export of in relation to the total energy input ne+h/st sp prod/exp ofcopyr

The basic equations are:

a) in absolute figures

In this case all data even for electricity and heat must be counted not as equivalents but as measured figures e.g. MWhe and MWHh or in GJe and GJh all others with their energy content

b) in equivalent figures

Here all data for electricity and heat must be counted as equivalents e.g. MWhe equ and MWH_{h equ} all others with their energy content

Specific energy demand of the entire plant in correlation to the quantity of waste incine	erated:
$N_{op sp} = (E_f + E_{x imp} + E_{x circ})/m$	
b) as MWh _{op equ} /t (of waste) or GJ _{op equ} /t (of waste)	

Examples for specific energy demand in relation to the basis data of table 1 in section 3 and Chapter 3.5.5 of the BREF

a) plant with only electricity production (in absolute) $N_{opsp} = (1138+1318+51269)/126692$ b) plant with only electricity production (in equivalent) $N_{opsp} = (1138+1612+80226)/126692$	= 0.424M =0.655M	
a) plant with only heat/steam production (in absolute) $N_{opsp} = (1138+18838+33749)/126692$	= 0.424	MWh abs/t
b) plant with only heat/steam production (in equivalent) $N_{opsp} = (1138+47717+34121)/126692$	= 0.655	MWh equ/t

Annexes

a) plant with CHP (in absolute) Nop sp	= (1138+1318 + 51269)/ 126692	= 0.424	MWh abs/t
b) plant with CHP (in equivalent) $N_{op s}$, = (1138+1612 + 80226)/ 126692	= 0.655	MWh equ/t

Percentage of total specific energy demand of the entire plant in correlation to the total energy input

$\eta_{op abs} = ((E_f + E_{x imp} + E_{x circ})/(E_f + E_{x imp} + E_w)) x 100 \{\%\}$

Examples for percentages of energy demand in connection with the basis data of table 1 in section 3.

a) plant with only electricity production (in absolute) $\eta_{op \ abs} = ((1138 + 1318 + 51269)/(1138 + 1318 + 367406))^{\bullet}100$	= 14.5 (%)
b) plant with only electricity production (in equivalent) $\eta_{op \ equ} = (1138 + 1612 + 80226)/(1138 + 1612 + 367406))^{\bullet}100$	= 22.4 (%)
a) plant with only heat/steam production (in absolute) $\eta_{op\ abs} = (1138+18838+33749)/(1138+1318+367406))^{100}$	= 13.9 (%)
b) plant with only heat/steam production (in equivalent) $\eta_{op\ equ} = (1138+47717+34121)/(1138+1612+367406))^{100}$	= 19.9(%)
a) plant with CHP (in absolute) $\eta_{op\ abs} = (1138+1318+51269)/(1138+1318+367406))*100$	= 14.5 (%)
b) plant with CHP (in equivalent) $\eta_{op\ equ} = (1138+1612+80226)/(1138+1612+367406))*100$	= 22.4 (%)

$\underline{\mathbf{N}}_{e \text{ sp prod}} = (\mathbf{O}_{e \text{ exp}} + \underline{\mathbf{E}}_{e \text{ circ}}) / \underline{\mathbf{m}}$
Total specific electricity exported in correlation to the quantity of waste incinerated:
$\underline{N_{e \ sp \ exp}} = (O_{e \ exp}) / \underline{m}_{e^{-1}}$ a) as MWh _{op abs} /t (of waste) or $GJ_{op \ abs}/t$ (of waste) b) as MWh _{op equ} /t (of waste) of GJ _{op equ} /t (of waste)
a) as MWh _{op abs} /t (of waste) or GJ _{op abs} /t (of waste)
b) as $MWh_{op equ}/t$ (of waste) of $GJ_{op equ}/t$ (of waste)
amples for specific electricity produced and exported:

Exa

کې:	Dr of r	
a) plant with only electricity production (in absolute)	$V_{sp prod} = (17520 + 50800) / 126692 =$	0.539 MWh _e abs/t
SY X	$N_{e \exp} = (50800)/126692 =$	0.401 MWhe abs/t
b) plant with only electricity production (in equivalent	$N_{e \text{ sp prod}} = ((17520 + 50800) \times 2.6316) / 12669$	2 =1.419 MWhe equ/t
FORTH	$N_{e \exp} = (50800 * 2.6316) / 126692 =$	1.055 MWhe equ /t
a) plant with only heat/steam production (m absolute)	$N_{e \text{ sp prod}} = (0)/126692$	=0.0 MWh _e abs/t
OIL	$N_{e \exp} = (0)/126692$	=0.0 MWh _e abs/t
b) plant with only heat/steam production (in equivalen	t) $N_{e sp prod} = (0)/126692$	=0.0 MWh _e equ /t
C ³	$N_{eexp} = (0)/126692$	=0.0 MWh _e equ /t
a) plant with CHP (in absolute)	$N_{esp prod} = (17520 + 31730)/126692$	=0.389 MWhe abs/t
	$N_{e exp} = (31730)/126692$	=0.250 MWh, abs/t
b) plant with CHP (in equivalent)	$N_{e sp prod} = ((17520 + 31730) * 2.6316) / 12$	
	$N_{e exp} = (31730 \times 2.6316) / 126692$	=0.659 MWh _e equ /t

Percentage of total electricity produced and exported in correlation to the total energy input:

$\eta_{e abs} = ((O_e + E_{e circ})/(E_f + E_{x imp} + E_w)) \times 100 \{\%\}$

Examples for percentages of electricity produced and exported:

a) plant with only electricity production (i	n absolute) $\eta_{e abs prod} = (17520+50800)/(1138+1318+367406))*100$	=18.5 (%)
	$\eta_{e abs exp} = (50800) / (1138 + 1318 + 367406) * 100$	=13.7 (%)
b) plant with only electricity production (i	in equivalent) $\eta_{e equ prod} = ((17520 + 50800)^{*}2.6316)/(1138 + 1612 + 367406))^{*}100$	=48.6 (%)
	$\eta_{e \ equ \ exp} = (50800 * 2.6316) / (1138 + 1612 + 367406)) * 100$	=36.1 (%)
a) plant with only heat/steam production (in absolute) $\eta_{e abs prod} = (0)/(1138+1318+367406))*100$	=0 (%)
	$\eta_{e abs exp} = (0)/(1138 + 1318 + 367406))*100$	= (%)
b) plant with only heat/steam production (in equivalent) $\eta_{e equ prod} = (0)/(1138 + 1612 + 367406))*100$	=0 (%)
	$\eta_{e \ equ \ exp} = (0)/(1138 + 1612 + 367406))*100$	=0 (%)
a) plant with CHP (in absolute)	$\eta_{e \text{ abs prod}} = (17520 + 31730)/(1138 + 1318 + 367406))*100$	=13.3 (%)
	$\eta_{e abs exp} = (31730)/(1138+1318+367406))*100$	=8.8 (%)
b) plant with CHP (in equivalent)	$\eta_{e equ prod} = ((17520 + 31730) \cdot 2.6316) / (1138 + 1612 + 367406)) \cdot 100$	= 35.0 (%)
	$\eta_{e equ exp} = (31730 * 2.6316) / (1138 + 1612 + 367406)) * 100$	= 22.6 (%)

Waste Incineration

597

Annexes					
Total specific heat/stea	Total specific heat/steam produced in correlation to the quantity of waste incinerated:				
	$N_{h/st sp prod} = (O_{h/st exp} + E_{h/st circ})/m$				
Total specific heat/stea	m exported in correlation to the quantity of wa	ste incinerated:			
	$N_{h/st sp exp} = (O_{h/st exp})/m$				
	${\rm SMWh_{op\ abs}/t}$ (of waste) or ${\rm GJ_{op\ abs}/t}$ (of waste) MWh _{op\ equ} /t (of waste) or ${\rm GJ_{op\ equ}/t}$ (of waste))				
Examples for specific heat/s	steam produced and exported:				
a) plant with only electricity production (inb) plant with only electricity production (in	Nh/st exp = (0)/ 126692 == equivalent) Nh/st sp prod = (34121+0)/ 126692 ==	0.266 MWhh/st abs/t 0.0 MWhh/st abs/t 0.269 MWhh/st equ/t 0.0 MWhh/st equ /t			
	a) plant with only heat/steam production (in absolute) Nh/st sp prod = (33749+242443)/ 126692 =2.180 MWh/st abs/t Nh/st exp = (242443)/ 126692 =1.914 MWh/st abs/t b) plant with only heat/steam production(in equivalent) Nh/st sp prod = (34121+242443)/ 126692 =2.183 MWh/st equ /t Nh/st exp = (242443)/ 126692 =1.914 MWhh/st equ /t				
a) plant with CHP (in absolute) b) plant with CHP (in equivalent)	Nh/st exp = (137375)/ 126692 = Nh/st sp prod = (34121+150961)/ 126692 =	1.351 MWhh/st abs/t 1.084 MWhh/st abs/t 1.461 MWhh/st equ /t 1.192 MWhh/st equ /t			
$\frac{\text{Percentage of total heat/steam produced and exported in correlation to the total energy}}{\text{input:}}$ $\eta_{h/st\ abs} = ((O_{h/st} + E_{h/st\ circ})/(E_f + E_{x\ imp} + E_{w})) \times 100 \{\%\}$					
Examples for percentages of heat/steam produced and exported:					
	absolute) η /st abs prod = (3374870)(1138+1318+367406))*100 η /st abs exp= (0)/ (1138+1318+367406)*100 equivalent) η /st equ prod (34)21+0)/ (1138+1612+367406))*100 η /st equ exp = (0)/ (138+1612+367406))*100	=18.5 (%) =13.7 (%) = 48.6 (%) = 36.1 (%)			
•	absolute) $\eta h/st$ abs pod = (33749+242443)/ (1138+ 1318+367406))*100 $\eta h/st$ abs exp = (242443)/ (1138+ 1318+367406))*100 equivalent) $\eta h/st$ equ prod = (34121+242443)/ (1138+ 1612+367406))*100 $\eta h/st$ equ exp = (242443)/ (1138+ 1612+367406))*100	=71.3 (%) =62.6 (%) =66.4(%) =58.2 (%)			

=9.1 (%) =0.0 (%) =9.2 (%) =0.0 (%)
0.0 (70)
-

Total specific electricity and heat/steam produced in correlation to the quantity of waste incinerated:

 $N_{e+h/st sp prod} = N_{e sp prod} + N_{h/st sp prod}$

Total specific electricity and heat/steam exported in correlation to the quantity of waste incinerated:

 $\mathbf{N}_{e+h/st sp exp} = \mathbf{N}_{e sp exp} + \mathbf{N}_{h/st sp exp}$

a) as $MWh_{op abs}/t$ (of waste) or $GJ_{op abs}/t$ (of waste) b) as $MWh_{op equ}/t$ (of waste) or $GJ_{op equ}/t$ (of waste)

Examples for specific heat/steam produced and exported:

a) plant with only electricity production (ir	n absolute) Ne+h/st sp prod = 0.539 + 0.266	=0.805MWhe+h/st abs/t
	Ne+h /st exp = $0.401 + 0$	=0.401MWhe+h /st abs/t
 b) plant with only electricity production (in 	n equivalent) Ne+h /st sp prod $= 1.419 + 0.269$	=1.688 MWhe+h /st equ/t
	Ne+h /st exp = $1.055 + 0$	=1.055 MWhe+h /st equ /t
a) plant with only heat/steam production (i	in absolute) Ne+h /st sp prod = $0 + 2.180$	=2,180 MWhe+h /st abs/t
	Ne+h /st exp = $0 + 1.914$	=1.914 MWhe+h /st abs/t
b) plant with only heat/steam production (i	in equivalent) Ne+h /st sp prod = 0 + 2.183	=2.183 MWhe+h /st equ /t
	Ne+h /st exp = $0 + 1.914$	=1.914 MWhe+h /st equ /t
a) plant with CHP (in absolute)	Ne+h /st sp prod = $0.389 + 1.351$	=1.740 MWhe+h /st abs/t
	Ne+h /st exp $= 0.250 + 1.084$	=1.334 MWhe+h /st abs/t
b) plant with CHP(in equivalent	Ne+h /st sp prod = $1.023 + 1.461$	=2.484 MWhe+h /st equ /t
	Ne+h /st e exp = $0.659 + 1.192$	=1.851 MWhe+h /st equ /t

Percentage of total electricity and heat/steam produced and exported in correlation to the total energy input:

```
\eta_{e+h/st abs} = \eta_{e abs} + \eta_{h/st abs} \{\%\}\eta_{e+h/st equ} = \eta_{e equ} + \eta_{h/st equ} \{\%\}
```

Examples for percentages of heat/steam produced and exported:

a) plant with only electricity production (in absolute)	ηe+h/st abs prod = 18.5 + 9.1	= 27.6 (%)
	$\eta e + h/st abs exp = 13.7 + 0$	=13.7 (%)
b) plant with only electricity production (in equivalent)	$\eta e + h/st equ prod = 48.6 + 9.2$	= 57.8 (%)
	$\eta e + h/st equ = 36.1 + 0$	= 36.1 (%)
a) plant with only heat/steam production (in absolute)	$\eta e + h/st abs prod = 0 + 31.3$	= 71.3 (%)
	$\eta e + h/st abs exp = 0 + 82.6$	= 62.6 (%)
 plant with only heat/steam production (in equivalent) 	ηe+h/st equorod 30+ 66.4	= 66.4(%)
	$\eta e + h/st eque exp = 0 + 58.2$	= 58.2 (%)
i) plant with CHP (in absolute)	$\eta = 13.3 + 46.3$	= 59.6 (%)
	n + h/s abs exp = 8.6 + 37.1	= 5.7 (%)
b) plant with CHP (in equivalent)	$\sqrt{\eta}e + \hbar st equ prod = 35.0 + 50.0$	= 85.0 (%)
فير	$1200 \text{ m}^{2} \text{ h/st equ exp} = 22.6 + 40.8$	= 63.3 (%)
	$r_{1} = 100 + 10$	

Boiler efficiency by heat/steam production in absolute figures in correlation to the total heat/steam producing energy input: no efficiency by heat/steam producing energy input: no efficiency by losses of energy in the bottom ash, boiler dewatering and radiation estimated only 97 % released heat out of the furnace into the boiler

 $\eta_{b (97\%)} = (E_{h/st boiler}/0.97 x (E_f + E_w)) x 100 \{\%\}$

Examples for boiler efficiency by heat/steam production in absolute figures in correlation to the total heat/steam producing energy input:

$\eta_b = (E_{h/st \text{ boiler}}/(Ef + Ew))x \ 100$	=(289207/(1138 + 367407))*100	= 80.9 (%)
$\eta b (97 \%) = (Eh/st boiler/0.97x(Ef + Ew))x 100$	=(289207/(0.97*(1138+367407)))*100	= 83.4 (%)

10.4.5 Equations to calculate the plant efficiency (PI ef)

Annual basic operational figures and data are the basis for the calculation of the plant efficiency figures for the 3 examples given here. Both calculations provide a figure for the total efficiency of a plant (Pl ef) but with different correlation.

The exported (sold) energy minus the net part of imported energy is divided by the total energy demand for the waste incineration process, including flue-gas cleaning, generation of heat and electricity etc.

Because the calculation does nearly not take into account the energy content in the waste, it only allows efficiency comparison of incinerators processing similar wastes.

$$Pl_{ef} = (O_{exp} - (E_f + E_{imp}))/(E_f + E_{imp} + E_{circ})$$

all figures as equivalents in accordance to BREF, Chapter 3.5.6

Ef = annual energy input to the system by fuels with steam production (GJ/y)

E imp = annual imported energy (Note: energy from the treated waste (E_w) is <u>not</u> included)

O_{exp} = annual exported energy (combined total of heat plus electricity as equivalents)

For the calculation of Pl ef the figures of section 3, enclosure 2 and 3 are used:

	livalent)	
$Pl_{ef} = (133685 - (1138 + 1612))/(1138 + 1612 + 80226)$		1.58
plant with only heat/steam (steam 62.6 % abs) export		uivalent)
$Pl_{ef} = (242443 - (1138 + 47717))/(1138 + 47717 + 34121)$		2.33
plant with CHP (H= 37.1 % abs and P= 8.6 % abs) export	(in equ	uivalent)
$Pl_{ef} = (234462 - (1138+1612))/(1138+1612+80226)$		2.79
$11_{ef} = (234402 - (1138+1012))/(1138+1012+80220)$		4.19

If the resulting figure is 0 or <0:

any other use. This means that no energy is exported (BREF) or produced (ECJ) but some imported energy is needed. This could be because no energy is recovered of because the energy that is recovered is consumed by the waste incineration process itself and not available for export and further more some imported energy is necessary.

If the result is higher than 1:

copyright This shows that the plant minus imported energy with steam production is exporting (BREF) or producing (ECJ) more energy than that which is required to operate the total waste incineration process.

FOTIN

This calculation does not require knowledge of the energy content of the waste. However, the result will be influenced by the waste energy content, and it can be expected that wastes with a higher energy content can result in greater energy exports, and hence higher values of Pl ef-

⁼ annual energy circulated E circ

Appendix G4: Spreadsheet of Calculations

Consent of conviction purposes only any other use.

Dr.	Ing. Dieter O. Reimann, scientific & technical advisor to CEWEP, Abt-Wolfram-Rin ++49(0)951/9682791, mobil ++49(0)173/1722248, www.reim					
Determination of the R1-Factor in accordance to the Draft of the Waste Framework Directive (WFD) (status Dec. 2005)						
WtE plant Meath-Ireland Part A						
#	calculation period 1 hour, estimated ann	ual operation identification in	ו hours 800 data	00- 820 unit	0 h/a remarks and basis of	
#	description	R1 formula	uala	um	calculation	
1	calculation period		1	hour		
	total input of waste		26.67	ton	planning data	
3	heat value of waste (NCV)		9.35	GJ/ton	planning data	
4	energy input by waste	Ew	249.3645	GJ	2*3	
5		Ew	69.3	MWh	2*3/3,6	
6	energy demand of primary fuels (imported) steam/WW producing e.g. for start up and shut down		1.17740741	GJ	planning data	
7			0.327	MWh	6/3,6	
8	energy demand of primary fuels (imported) <u>not steam/WW producing</u> e.g. for start up and shut down, heating up of flue gases (fabric filter, SCR) and boiler for heating up purposes		0.41427298	GJ	Planungsdaten	
9			0.115	MWh	8/3,6	
10	energy demand of imported electricity		0.288	GJ	planning data	
11			0.0800	MWh	10/3,6	
12	exported electricity		14.720	MWh	planning data	
	selfdemand of produced electricity		2.480	MWh	planning data	
14	exported heat/steam/WW		0.000	MWh	planning data	
15	selfdemand of produced steam/heat/WW e.g. for heating of plant buildings, sootblowing, SNCR injection, heating up of combustion air and/or flue gases, evaporation of scrubber wastewater	ather	15 ^{e.} 2.667	MWh	planning data	

Dr.-Ing. Dieter O. Reimann, scientific & technical advisor to CEWEP, Abt-Wolfram-Ring 14 D-96049 Bamberg, telefon++49(0)951/602352, ++49(0)951/9682791, mobil ++49(0)173/1722248, www.reimagn-abfallenergie.de, info@dr-reimann-bamberg.de

Determination of the R1-Factor in accordance to the Draft of the Waste Framework Directive (WFD) (status Dec. 2005)

	WtE∖plant Mea	th-Ireland			Part B	
calculation period 1 hour, estimated annual operation hours 8000- 8200 h/a						
16	equivalence factor for electricity		2.6		given for R1-calculation by WFD	
17	equivalence factor for heat/steam/WW		1.1	[-]	given for R1-calculation by WFD	
18	0,97 factor for taking into account losses of energy e.g. by bottom ash, blow down water, radiation of heat, organic content in residues and so on		0.97		given for R1-calculation by WFD	
19	energy demand of primary fuels (imported) <u>steam/WW</u> producing as equivalent	Ef	0.360	Mwhequ	17*7	
20	energy demand of primary fuels (imported) not steam/WW producing as equivalent	Ei	0.127	Mwhequ	17*9	
	imported electricity demand as equivalent (not steam/WW producing)	Ei	0.208	Mwhequ	16*11	
	sum of imported energy not steam/WW producing as equivalent	Σ Εί	0.335	Mwhequ	20+21	
23	exported electricity as equivalent	Ep		Mwhequ	16*12	
24	selfdemand of produced electricity as equivalent	Ep		Mwhequ	16*13	
25	exported heat/steam/WW as equivalent	Ep			17*14	
26	selfdemand of produced steam/heat/WW as equivalent	Ep			17*15	
27	sum of utilized energy as equivalent	ΣEp	47.65	Mwhequ	SUM (23:26)	
28	sum of utilized energy minus total imported energy as equivalen (as numerator of the R1 equation)	Σ Ep-(Ef+Σ Ei)			27-19-22	
29	0,97 out of the sum of delivered energy by waste (equivalent=1) minus steam/WW producing energy as equivalent (as denominator of the R1 equation)	0,97*(Ew+Ef)	67.539	Mwhequ	18*(5+19)	
30	R1-Factor in accordance to the Draft of the Waste Framework Directive (WFD) (status Dec. 2005)	(Σ Ep-(Ef+Σ Ei))/ (0,97*(Ew+Ef))	0.695	[-]	28 : 29	

fax

Appendix G5: Example of Awareness Campaign Posters

Consent of copyright owner required for any other use.

Energy Efficiency

LIGHTING TIPS

Did you know lighting accounts for about 45% of the electricity usage in a commercial building:

Lighting an empty office overnight wastes enough energy to heat water for 1,000 cups of coffee.

What can you do? of the off Switch cited Participation of the off Swit

1 The Off Switch digon weiter

Turn lights off when leaving a room or area. When leaving for lunch or meetings switch off desk lamps and office lights.

2 Good Høusekeeping

Dirty reflectors and louvers reduce light output by 20%. To ensure optimum efficiency, clean reflectors, windows and roof-lights.

3 Hours of Use

Make sure that full lighting is not being used unnecessarily outside of normal business hours

4 Office Set Up

Is the office layout making the most of natural light?

5 Task Lighting

Where possible use individual task lighting in preference to increasing illumination over a large area.

6 Light Bulbs

Make sure that the light bulbs in your office are the most energy efficient with longer lifespans and lower maintenance costs.

Save the trees—only print this message if absolutely necessary

Contact us if you have any new ideas

- Talk to your manager
- Take your idea to the next Sphere Meeting
- Use the QESH suggestion box
- E-mail info@indaver.ie

Energy Efficiency

HEATING TIPS

Did you know heating and air conditioning accounts for about 25% of the electricity usage in a commercial building:

> Reducing the temperature in a room by just $1^{\circ}C$ can cut the heating bill by as much as 10%. AL.

What can you do?

1 Optimum settings

Air conditioning and hearing controls should not be set so that they conflict with each other. Otherwise, heating and cooling will take place at the same time and waste energy. Ideally, set heating at 19°C and air conditioning at 24%C. Make sure that the two systems cannot work at the same times

2 Thermostats and Timers (Wall mounted heaters)

Set wall-mounted heaters on timer. Check that timers are set to the minimum period and ensure room thermostats and radiator controls are on minimum settings.

3 The off switch (Office Equipment)

It costs nothing to switch office equipment off. Office equipment generates heat. If possible locate heat-generating equipment such as photocopiers, away from air-conditioned spaces. Where this is not possible, locate them in areas where they are well ventilated and cannot build up heat. Office equipment can add significantly to your electricity bill, not only in running costs, but also in air conditioning.

4 Occupied areas

Ensure that only occupied areas are heated and that heating is reduced during non-working hours, such as bank holidays or weekends.

Save the trees—only print this message if absolutely necessary

Contact us if you have any new ideas

- Talk to your manager
- Take your idea to the next Sphere Meeting
- Use the QESH suggestion box
- E-mail info@indaver.ie

Energy Efficiency

OFFICE EQUIPMENT TIPS

Did you know that a photocopier left on overnight wastes enough energy to photocopy 5,300 A4 sheets?

A PC monitor left switched on overnight wastes enough energy to laser print 800 A4 copies.

et require

What can you do?

1 Switch off

Make sure all office equipment is switched off overnight. Switch off your screen at lunchtime - the screen on a personal computer uses as much energy as all of its other components.

2 Standby mode

Standby is not switched off!! Even on standby a photocopier consumes as much as 200 watts per day. If you see a light on a machine switch if off.

3 Only switch on when needed

Don't switch on appliances unless you are ready to start using them. Photocopiers and printers don't need to be switched on immediately in the morning. Get into the habit of switching on only when needed.

Contact us if you have any new ideas

- Talk to your manager
- Take your idea to the next Sphere Meeting
- Use the QESH suggestion box
- E-mail info@indaver.ie

Save the trees—only print this message if absolutely necessary

