ATTACHMENT B.3

.

Environmental Impact Statement for Pending Planning Application

Written Notification to Planning Authority

Drainage Calculation Report

Kerry Central Recycling Facility Ltd

Drainage Calculations

EPA Export 26-07-2013:03:10:44

Kerry Central Recycling Facility

Drainage Calculations

DOCUMENT CONTROL SHEET

Client	Kerry Centr	Kerry Central Recycling Facility Ltd.							
Project Title	Kerry Centr	Kerry Central Recycling Facility							
Document Title	Drainage C	Drainage Calculations							
Document No.	MGE0109R	P0009							
This Document Comprises	DCS	тос	Text	List of Tables	List of Figures	No. of Appendices			
	1	1	6	1	-	6			

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
F01	Final Issue	J.O'Callaghan	PJOT	W Maden	Galway	Oct 6 th 2008
			1 40			

Consulting Engineers

TABLE OF CONTENTS

1	FOUL	_ SEWER DESIGN PROCEDURE1	
	1.1	DESIGN PARAMETERS 1	
	1.2	PIPE & MANHOLE NUMBERING 2	
	1.3	Foul Loadings	
	1.4	WASTEWATER TREATMENT PLANT	
2	STOF	RM SEWER DESIGN PROCEDURE	
	2.1	SITE INVESTIGATION	
	2.2	STORM SEWER DESIGN	
	2.3	DESIGN PARAMETERS	
	2.4	PIPE AND MANHOLE NUMBERING	
	2.5	HYDROCARBON INTERCEPTOR 4	
		2.5.1 Hydrocarbon Interceptor No. 1	
		2.5.2 Hydrocarbon Interceptor No. 2	
3	ATTE	2.5.2 Hydrocarbon Interceptor No. 2	į

APPENDICES

APPENDIX A	SITE CHARACTERISATION FORM
APPENDIX B	FOUL SEWER CALCULATIONS
APPENDIX C	UNSERVICE BISON PRELIMINARY PROPOSAL FOR WASTEWATER TREATMENT PLANT
APPENDIX D	STORM SEWER CALCULATIONS
APPENDIX E	BYPASS SEPARATOR SPECIFICATION SHEET
APPENDIX F	ATTENUATION REQUIREMENTS

TABLES

TABLE 1

FOUL LOADINGS

i

1 FOUL SEWER DESIGN PROCEDURE

It is proposed to treat the foul flow from the development in a wastewater treatment system and to discharge the flow to groundwater through a raised bed soil polishing filter as shown on Drawing No. DR0001/01. Details of on-site test results showing the suitability of the site for the discharge of foul flows to groundwater are shown on the Site Characterisation Form in Appendix A.

The proposed foul sewer system shown on Drawing No. DR0001/01 was designed using the Foul Module of MicroDrainage WinDes and complies with the specifications set out in the "Recommendations for Site Development Works for Housing Areas" as issued by the Department of the Environment, Heritage and Local Government.

The outputs from the program are located in Appendix B and include the following:

- Network Design Table
- Network Results Table
- **Pipeline Schedules**

Longitudinal Sections are shown on **Drawing No. DR000205**. Noter 158. Privation Particolitical pection purposes

1.1 **DESIGN PARAMETERS**

The following parameters were used for the basis of design in the WinDes Foul Module.

80

Parameters	Consert Values	Reference
Flow Rates	Non-residential buildings	As per EPA Wastewater Treatment Manual
Peak Flow	6 x Dry Weather Flow (DWF)	Site Development Works 1998
Min Velocity	0.76m/s	Site Development Works 1998
Pipe Roughness	1.50	(Colebrook/White)
Pipe Cover	 1.2 minimum roads and other trafficked areas 0.9m minimum in open spaces and footpaths not adjacent to roadways 	Site Development Works 1998

1.2 **PIPE & MANHOLE NUMBERING**

The pipe numbers define the structure of the network. The first pipe at the head of a system on the main line is numbered 1.000, the second 1.001, the third 1.002 as so on. Likewise the first pipe in a branch line is numbered 2.000 and the second 2.001. Other branches follow suit, 3.000, 4.000 etc. The manhole numbers are shown as F1, F2, F3, etc. - see Drawing No. DR0001/01.

1.3 FOUL LOADINGS

The foul loadings that were used in modelling of the foul network are shown in Table 1.

Table 1: Foul Loadings

Foul System Users	Number of Persons	Flow (L/p/d)	Flow (L/d)	BOD (g/p/d)	BOD (g/d)
Office & Yard Staff	50	60*	3000	30	1500
Drivers	15	30**	450	15	225
Totals			4060		1725

Table 3 - EPA Wastewater Treatment Manuals, Office and/or factory with cancer

** Foul Loading due to drivers assumed to be 50% of that from office and/or factory with canteen uposes ungo

PUTPOSES 1.4 WASTEWATER TREATMENT PLANT

An on-site wastewater treatment plant is proposed to treat the foul effluent. The treatment plant will be located as shown on Drawing No. DR0001/01. The proposed treatment plant will be provided with chemical dosing facilities to reduce the phosphorus levels in the treated effluent to <0.5mg/l (Orthophosphate). This will have a minimal effect on the phosphorus levels in the stream of approximately 0.0007mg/l. Refer to Chapter 5 and Chapter 6, surface water and ecological assessment in the EIS, for further assessment on the potential impacts on water quality. Details of the proposed wastewater treatment plant are shown in Appendix C.

2 STORM SEWER DESIGN PROCEDURE

2.1 SITE INVESTIGATION

Trial holes were dug on 5th May 2008 in order to determine the existing soil infiltration rate and the soil suitability for a soakaway pit. The location of the trial holes, (ST-01 and ST-02) is shown on Drawing No. DR0001/01.

At the time both holes contained groundwater, therefore a BRE Soakaway Test could not be carried out and the site was deemed unsuitable for the location of a soakaway pit. It is therefore proposed to discharge surface water run-off from the site via an attenuation pond to an existing drainage ditch / stream located at the south west end of the site.

2.2 STORM SEWER DESIGN

The storm sewer system was designed using the MicroDrainage WinDes Storm Module. This system uses the Modified Rational Method of storm flow modelling. This design procedure complies with the specifications set out in the "Recommendations for Site Development Works for Housing Areas" as issued by the Department of the Environment, Heritage and Local Government.

The proposed storm sewer system is shown on Drawing No. DR0001/01. The system incorporates both filter and carrier pipe. The filter pipe will be used as part of the road drainage system, with the carrier pipe used to drain other hard surface areas, calculations for the storm sewers are shown in tion pur Appendix D.

Appendix D. The <u>outputs</u> from the MicroDrainage WinDes Storm Module program include the following: of copying

- Network Design Table
- Network Results Table
- Manhole Schedules
- **Pipeline Schedules**

Longitudinal Sections are shown on Drawing No. DR0002/01, 02, 03 and 04.

2.3 **DESIGN PARAMETERS**

The following parameters were used for the basis of design in the WinDes Storm Module.

Parameters	Values	Reference
Return Period	1 Year	Wallingford Procedure
M5-60	15.3	Wallingford Procedure

Ration 'R'	0.24	Wallingford Procedure
Max Rainfall	50mm/hr	Wallingford Procedure
Global Time Entry	4 minutes	Wallingford Procedure
Minimum Velocity	0.76m/s	Site Development Works 1998
Run-Off Co-efficient	Roof = 0.95 Road and Other Hard Surface Areas = 0.8	BS 8005 (Colebrook/White)
Pipe Roughness	0.6 – Carrier Pipe 1.5 – Filter Pipe	Colebrook/White
Pipe Cover	 1.2 minimum without concrete encasement 0.75 minimum with concrete encasement 	Site Development Works 1998

2.4 PIPE AND MANHOLE NUMBERING main line is numbered 1.000, the second 1.001, the third 1.002 as so on. Likewise the first pipe in a branch line is numbered 2.000, the second 2.001 and so on. Other branches follow suit, 3.000, 4.000 etc. The Manhole Numbers are shown as St S2, S3. etc. – see Drawing No. DR0001/01. of copy

HYDROCARBON INTERCEPTOR 2.5

In accordance with the requirements of BS EN 858, 4.1 (b) '(run-off) from impervious areas, e.g. car parks, roads, factory yards areas;' the size of the separator will depend on the design, rainfall intensity and the catchment area draining to the separator.

The maximum rainwater flow rate Q_r in I/s shall be calculated using the equation below in accordance with EN 752-4:

$$Q_r = \Psi.i.A$$

where

- I is the rainfall intensity, in I/s.ha •
- A is the area receiving rainfall, measured horizontally, in ha; •
- Ψ is a dimensionless coefficient (usually taken as one) •

Pollution prevention guidelines (PPG 3) uses a rainfall intensity equal to 65mm/hr which corresponds to the following formula for a bypass separator:

where

- NSB: Nominal Size of Bypass separator
- A: Catchment Area in m²

2.5.1 Hydrocarbon Interceptor No. 1

In this case, the area draining to the bypass separator is approximately 38,600m² which includes all road/paved areas within the site, resulting in the following:

NSB = $0.0018 \times 38,600 \text{m}^2 = 69.5 \text{ l/s}$

As per the Specification sheet for "Klargester" Bypass Separator included in Appendix E, the appropriate unit is the NSBD72, as highlighted. This unit is capable of handling a peak flow rate of 720 l/s as shown. Surface water calculations provided in the Appendix D show a maximum flow rate of 262 l/s which is significantly lower than the capacity of the unit.

2.5.2 Hydrocarbon Interceptor No. 2

In this case, the area draining to the bypass separator is approximately $2,600m^2$, resulting in the following:

NSB = 0.0018 x 2,600
$$m^{2}$$
 = 4.7 l/s

As per the Specification sheet for "Klargester" Bypass Separator included in Appendix E, the appropriate unit is the NSBD6, as highlighted. This unit is capable of handling a peak flow rate of 60 l/s as shown. This is significantly higher than the actual flow rate the unit will be required to handle.

ATTENUATION SYSTEM DESIGN 3

Attenuation of storm water on-site will be provided by means of an Attenuation Pond. This Attenuation Pond was designed using the following parameters:

- Return Period of 30 Years (i)
- Storm duration of 1 minute to 48 hours (ii)
- (iii) M5-60 = 15.8
- (iv) Ratio "R" = 0.3
- (v) Coefficient of Runoff from Roofs = 0.95
- Coefficient of Runoff from Road and Other Trafficked Areas = 0.8 (vi)

The location of the Attenuation Pond is shown on Drawing No. DR0001/01. Details and schematic arrangement for the Attenuation Pond are shown on Drawing No. DR0004/01.

150

An attenuation pond with a capacity of 600m³ is required. , aresti For inspection purper require

APPENDIX A another the second second

SITE CHARACTERISATION FORM

1.0 GENERAL DETAILS (From planning application)

NAME & ADDRESS OF APPLICANT:		Kerry Cen Scart/Cah Killarney, Co. Kerry.	erdear	cycling Fac	ility Ltd.		
SITE LOCATIC TOWNLAND:	ON AND	Scart/Cah Killarney, Co. Kerry.		I,			
TELEPHONE NO:	064 32458	FAX NO:	064 3	8661	E-MAIL:	bria kwd.	n.bruton@ .ie
MAXIMUM NO. OF RESIDENTS:	65 staff @ 60L/p/d 32 visitors @ 5L/p/d	NO. OF DOUBLE BEDROOM	15:	-	NO. OF SINGLE BEDROO	MS:	-
PROPOSED W. (tick as appropr	ATER SUPPLY: iate)	mains $$	privat	e well/boreho	ole grou	ıp well	/borehole

2.0 DESK STUDY

SK STU	DY		red for a				
Till derived chiefly from Namurin Rocks	Other (specify)	AQUEERCORY CATEGORY	Regiona Importa	lly Local nt Impo		Poor	
BILITY	Extremesent	High	Moderate	Low	High t Low √	to	Unknown
(Namurian Undiffer- entiated					Non	e
SI ter Scheme?	Y	Groundwater Protection Response:	R1	Source Protection	n Area	SI None	SO None
	Till derived chiefly from Namurin Rocks BILITY and site	BILITY Extremeson and site Namurian Undiffer- entiated	from Namurin Rocks BILITY Extremes ^{ent} Mamurian Undiffer- entiated Sl Scheme? Y High High Scheme? Y	from Namurin Rocks Fot Tright Contribution BILITY Extremesent COSE High Moderate and site Namurian Undiffer- entiated Name of Public/Group Sch Supply within 1 km SSI ter Scheme? Y Groundwater Protection R1	Till derived chiefly from Namurin Rocks Other (specify) AQUIFER (specify) Regionally Important Local Impo BILITY and site Extreme on top of the production of the production	from Namurin Rocks Fotinitient Construction BILITY Extremesent Construction High Moderate Low High Low BILITY Extremesent Construction High Moderate Low High Low Manurian Undiffer- entiated Name of Public/Group Scheme Water Supply within 1 km Scheme Water SSI ter Scheme? Y Groundwater Protection R1	from Namurin Rocks Fortune Construction BILITY and site Extremesent Construction High High High Moderate Low High to Low Namurian Undiffer- entiated Name of Public/Group Scheme Water Supply within 1 km Non SSI ter Scheme? Y Groundwater Protection R1 Source Protection Area S1 None

Past experience in the area:

Comments:

(Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, and/or any potential site restrictions).

N/A

From the above we can infer that percolation in the area would be acceptable. However, caution would have to be taken due to the under lying aquifer quality and usage and extreme vulnerability of the area.

NOTE: Only existing information available at the desk study stage should be used in this section

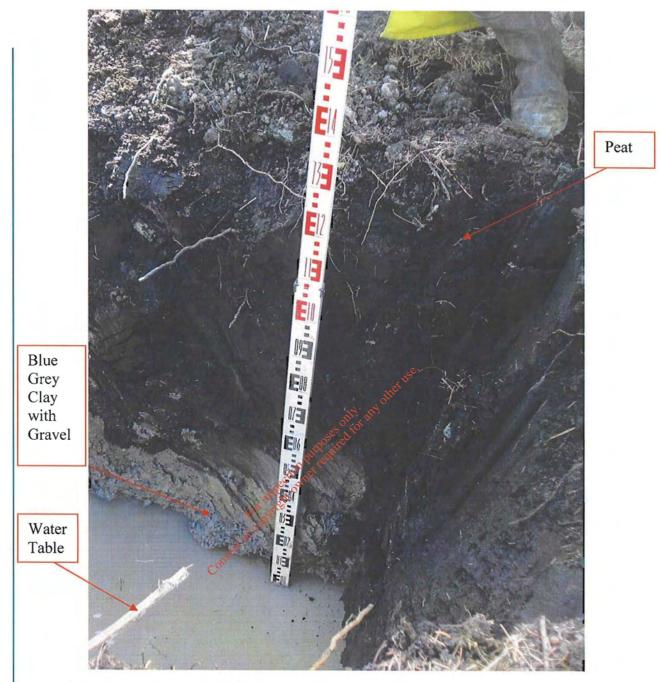
3.0 ON-SITE ASSESSMENT

LANDSCAPE POSITION:	N22 runs adjacent the eastern boundary of the site.	SLOPE:	STEEP (>1:5)	SHALLOW (1:5-1:20)	RELATIVELY FLAT (<1:20)			
				1				
SU	URFACE FEATUR	ES (Distance to	features should b	e noted in metro	es)			
HOUSES:		None on propose	d site					
SITE BOUNDAR	RIES:	North – Factory & South – Agricult	& Agricultural Land Iral Land	East –N22 a West – Drai	nd Drainage Ditch nage Ditch			
ROADS:		N22 to East of sit	e					
EXISTING LAN	D USE:	Greenfield site with conifer plantation						
OUTCROPS (RC SUBSOIL):	OCK AND/OR	None on site None						
SURFACE WAT	ER PONDING:	None on site						
LAKES:		None on site						
BEACHES/SHE		None on side of the	JUIT .					
KARST FEATU	RES:	None on site						
WATERCOURS		None on site						
DRAINAGE DIT	CHES*: Conse	Running along the western and eastern boundary of the site. Internal drainage ditches will be captured in the internal drainage system.						
WELLS*:		None on site						
SPRINGS*:		None on site						
VEGETATION	INDICATORS:	Grass and rushes in area of proposed percolation area						
GROUND CONI	DITION:	Soft and boggy						

3.1 Visual Assessment

COMMENTS:

(Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, the suitability of the site to treat the wastewater and the location of the proposed system within the site).


Water table possibly high on site. Foul water treatment on-site could cause risk to groundwater and surface water.

* note water level

hole (m):	le (m): 1.8m time excava		e (m): 1.8m tir exca		te and me of avation:	05/05	/08		and time of ination:	06/05/08
	ground surface to	bedrock (n	n)	NI-4						
(if present) Depth from	: I ground surface to	water tabl	e (m)	Note	ncounter	ed				
(if present)	•	water tabl	c (m)	1.4m			-			
	Soil/Subsoil Te Classificatio			oil cture	Den Compa		Colour ***	Preferent flowpath		
0.1 m										
0.2 m	Peat		Blo	ocky	Com	pact	Dark	Grass Root		
0.3 m	i out			, only	Con	ipaot	Brown	01435 1000		
0.4 m										
0.5 m										
0.6 m										
0.7 m										
0.8 m						.0.*				
0.9 m					A any other	150				
1.0 m				~	y ny othe					
1.1 m	Blue Grey Clay w	th Gravel	Struct	ureless ssive.o	of a So	oft	Blue	None		
1.2 m			Ma	ssove.						
1.3 m			tion P	reu	4					
1.4 m			Ne Per OMIT					Water Ta		
1.5 m		th Gravel	A BU		•	•••••		·····/////////////////////////////////		
1.6 m		S. C.	×.							
1.7 m		nsent e								
1.8 m		Cor						End_off		
1.9 m										
2.0 m	See next page for cros trial hole	s section of								
2.1 m										
2.2 m										
2.3 m										
2.4 m										
2.5 m										
	Kalou (co tanina a second		Other info	rmatio	n					
Depth of 1 water ingress:	.4 Rock type (if present):	N/A	Plasti and dilata resul	city 3 samples to be tested for each horizon and results should be entered above for			esults	Likely T >2 value:		

3.2 Trial Hole No.1

** See Appendix E for BS 5930 classification
*** All signs of mottling should be recorded
Note: Depth of percolation test holes should be indicated on diagram above.

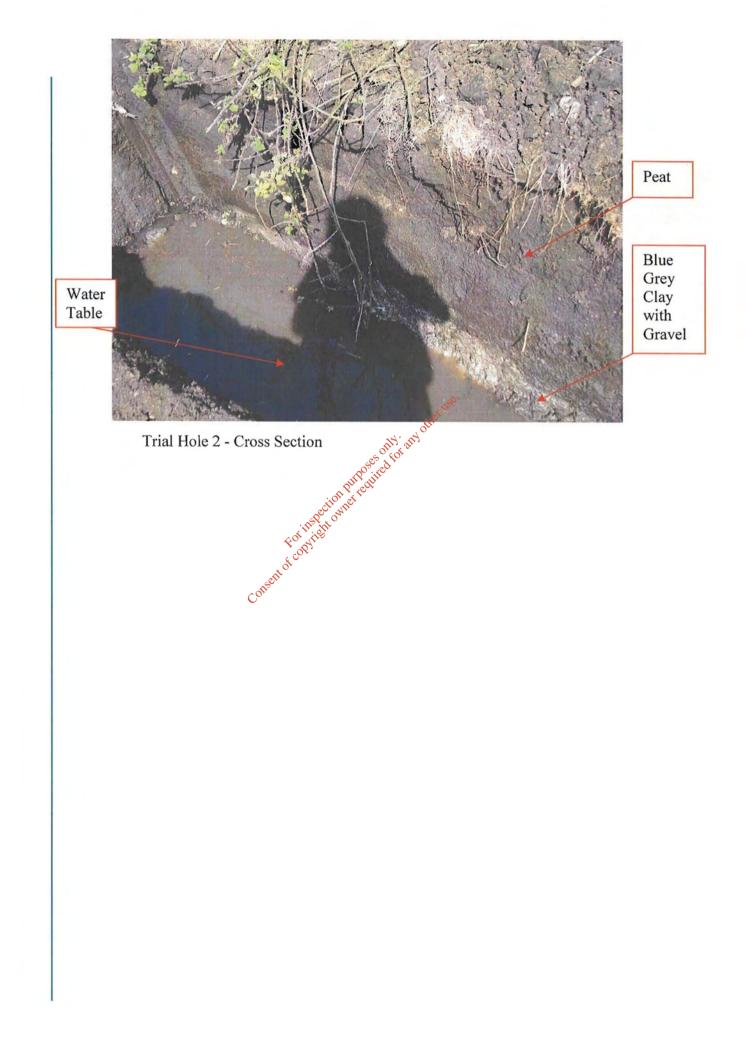
Trial Hole No.1 - Cross Section

3.3 (b) Percolation ("P") Test @ Ground Level, Trial Hole No. 1

	Percolation T	est Hole		1	2	2
Depth of hole	from ground s	urface (mm)		400 400		
Dimensions o	of hole [length x	breadth (mm)]		300x300	300>	<300
Each hole mu 5.00 pm to ne		ed twice before	the test is carri	ed out (from 10	.00 am to 5.00 j	pm and fro
Date of test				06/05/08	06/0	5/08
Date pre-soa	king started			05/05/08	05/0	5/08
Time filled to	400 mm			10:27	10:32	
Time water level at 300 mm				11:01 11:10		:10
Percolation Test Hole No.		1		other use.	2	
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	Δp (min) only		Finish Time (at 200 mm)	Δp (min)
1	11:01	11:39	PIL COLINO	11:10	11:55	45
2	11:43	12:36	ection net53	11:57	12:50	53
3	12:38	14:42 111	ecitor put ecitic prime 53 en 124	12:50	14:58	128
3 12:38 14:42 τ ¹¹ δ ¹¹ 124 Average Δp 72 Conserved of Conserved of Conserve				72 Avera		75
A	verage∆p/4 = [H	Conse Hole No.1] <u>18</u>	(p ₁)	Average ∆j	0/4 = [Hole No.2	2 <u>19</u> (p ₂)

P value* = $(p_1 + p_2)/2 = 18.5$ (min/25 mm)

Result of Test: P = 18.5

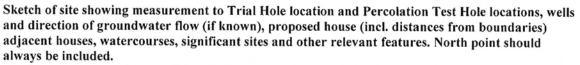

COMMENTS: The P value is 18.5, giving an infiltration rate of 20 $L/m^2/day$ as the P value is between 5 and 20. This was lower than expected.

• If two very different P test results are obtained and where one of these values fails then a third test should be carried out to determine the representivity of each of the results

hole (m):	2m	time of excavation:	05/05/0		of nination:	06/05/08
Depth from (if present):	ground surface to be	drock (m)	Not en	countered		
	ground surface to wa	ater table (m)	Not ch	countered		
(if present):			1.1m			
	Soil/Subsoil Text Classification		Soil acture	Density/ Compactness	Colour ***	Preferential flowpaths
0.1 m						
0.2 m	Peat	BI	ocky	Compact	Dark	Grass Rootlets
0.3 m	r out		oony	oompuor	Brown	·
0.4 m						
0.5 m						
0.6 m						
0.7 m						
0.8 m				.9)*		
0.9 m				met USE		
1.0 m	Blue Grey Clay	y Struc	tureless	any other use.	Blue	None
1.1 m	See next page for cross so trial hole	M	assive ni	e de la		
1.2 m			170°11100	••••••		····Water Tabl
1.3 m		ion	teor			
1.4 m		epect on the	, ,			
1.5 m		tot wieght				End of Di
1.6 m	See next page for cross se	ection of 02'	0.0			
1.7 m	trial hole	ento				
1.8 m	C	OR				
1.9 m						
2.0 m						
2.1 m						
2.2 m						
2.3 m						
2.4 m						
2.5 m						
Depth	Rock type		formation ticity			Likely
of water N/	(if present):	I/A dilat	nd ancy ults:			T >20 value:

3.2 Trial Hole No. 2

** See Appendix E for BS 5930 classification
*** All signs of mottling should be recorded
Note: Depth of percolation test holes should be indicated on diagram above.


3.3 (b) Percolation ("P") Test @ Ground Level , Trial Hole No. 2

	Percolation T	'est Hole	11/13	· 1	2		
Depth of hole	e from ground s	urface (mm)		400	40	00	
Dimensions o	of hole [length x	breadth (mm)]		300x300	300	x300	
Each hole mu 5.00 pm to ne		ed twice before	the test is carrie	ed out (from 10	.00 am to 5.00	pm and fro	
Date of test				06/05/08	06/0	5/08	
Date pre-soa	king started			05/05/08	05/0	5/08	
Time filled to	o 400 mm			10:01	10:03		
Time water level at 300 mm				10:43	10	10:46	
Percolation Test Hole No.		1		A other use.	2		
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	Δp (min) only.	Start Time (at 300 mm)	Finish Time (at 200 mm)	Δp (min)	
1	10:43	11:51	Put68 inco	11:26	12:14	48	
2	11:51	13:06	ection pure direct	12:15	13:41	86	
3	13:08			13:44	16:04	140	
				88 Aver		91	
A	verage∆p/4 = H	Cons Hole No.1 22	(p ₁)	Average ∆j	p/4 = [Hole No.?	2 <u>23</u> (p ₂)	

Result of Test : P = 22.5

COMMENTS: The P value is 22.5, giving an infiltration rate of 10 $L/m^2/day$ as the P value is between 20 and 40. This was lower than expected but is more conservative than the P value obtained at TH-01 and will be used in the sizing of the percolation area.

• If two very different P test results are obtained and where one of these values fails then a third test should be carried out to determine the representivity of each of the results

[A copy of the site layout drawing should be used if available]

Please see Drawing No. DR0001/01.

Consent of congright owner required for any other use.

4.0 CONCLUSION of SITE CHARACTERISATION:

(Integrate the information from the desk study and on-site assessment (i.e. visual assessment, trial hole and percolation tests) above and conclude the type of system(s) that is (are) appropriate. This information is also used to choose the optimum final disposal route of the treated wastewater).

Suitable for (delete as appropriate)****:

(a) septic tank and soil percolation system

(b) septic tank and intermittent filter system and polishing unit; or septic tank and constructed wetlands and polishing unit

(c) mechanical aeration system and polishing unit

**** note: more than one option may be suitable for a site and this should be recorded

and

SUITABLE / UNSUITABLE (delete as appropriate) for discharge to surface water¹ SUITABLE / UNSUITABLE (delete as appropriate) for discharge to groundwater

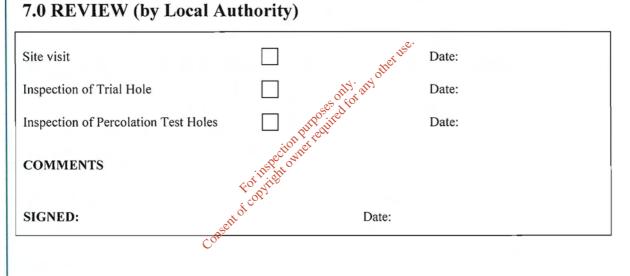
5.0 RECOMMENDATION:

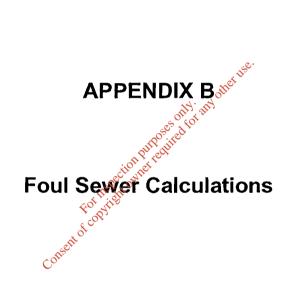
Propose to install: EPS Bison Wastewater Treatment Plant followed by a raised bed soil <u>filter</u> and discharge to surface water/groundwater (delete as appropriate)

Conditions (if any) e.g. special works, invert level of trench, site improvement works testing etc.....

Signed: PJ Griffin, RPS Consulting Engineers

Address: Lyrr Building, IDA Business and Technology Park, Mervue, GalwayQualifications/Experience: Chartered EngineerDate of Report: 12th Sept.2008Phone: 091 534100 Fax: 091 534199e-mail pj.griffin@rpsgroup.com


¹ A discharge of sewage effluent to "waters" (definition includes any or any part of any river, stream, lake, canal, reservoir, aquifer, pond, watercourse or other inland waters, whether natural or artificial) will require a licence under the Water Pollution Acts 1977-90


6.0 TREATMENT SYSTEM DESIGN DETAILS

System Type?	BAF	Proposed Discharge route? Surf		face water	Groundwater
Size of Proposed Treatment System?	Primary/Septic Tank (m ³) 6.8	Secondary Treatment System Capacity (m ³) 6.8		Area/Po (State un	rcolation olishing filter its - m or m ²)* soil polishing filter
What Quality Assurance is proposed during the following?	Installation & Co	U		1-going Ma bing mainte	iintenance nance by EPS

* the calculated percolation area or polishing filter area should be shown on site plan

7.0 REVIEW (by Local Authority)

•

RPS - MCOS Ltd						Pa	je 1	
nishmore			Kerry Centi	al			A CONTRACTOR OF A CONTRACT OF	
Ballincollig			Recycling F				HODAL	- internet -
o Cork			Foul Netwo				I G G O	
ate 29/08/2008			Designed E			B	Inatha	\sim
ile MGE0109WD0009			Checked B				TC	CE
icro Drainage			System1 W					
icio Dialitage			System w	.10.4				
					CION			
			FUULSE	WERAGE DE	SIGN			
			Glo	bal Variables				
Pipe Size	e File	C:\WinDes\	STANDARD.PI	P Manhole	Size Fil	e C:\WinDes	\STANDARD.MHS	
		(1/s/ha)	0.00			fit to G.L.		
		Flow Facto		Min Vel.	(m/s ~ Au	to Design On	ly) 0.76	
	per Hous	(l/per/day	y) 180.00 1.00	MIN SI	ope (I:A	- Optimisati fall Invert	on) 1000 (m) 0.000	
	z (l/s/ha		0.00			at Outfall		
Domestic	Peak Fl	.ow Factor		910		ll Manhole N		
		*Foul only		Outfall		Dia/Length (
Infiltra		. Louis only	, 0 0	011	tfall Man	nole Width (nm) 0	
		Height (54				
				ith Ioral ·	[nvort-			
			Designed w	TCU PeAel .				
			<u>Netwo</u>	<u>rk Design Tab</u>	e			
	PN		all Slope	Area (ha) ^{Hs}	e DWF (1/s)	k HYD (mm) SECT	DIA (mm)	
	1.000		.637 100.9		.9 0.0	0.600 c		
	1.001		.470 171.7		0 0.0	0.600 c		
	1.002	11.40 0	.066 171.7	0.000	0 0,50	0.600 0	150	
					net			
			Netwo	rk Results Tab	lery other the			
	US/IL	E.Area	E.DWF (1/s) E.Hs	se Infil.	P.Dep P	.Vel Vel	CAP Flow	
PN	(m)	(ha)	(1/s) E.Hs	e (1(s)	(mm) (1	n/s) (m/s)	(1/s) $(1/s)$	
1 000	100 100			a Puredu	10	0 35 1 00		
	106.155		0			0.35 1.00 0.29 0.76	18 0 13 0	
1.001	105.518					0.29 0.76	13 0 13 0	
1.002			Thomas	. v				
			FOLVILE					
			, cov.					
			onsent of corr					
			COL					
		~(JII2					
		C	~					
•• •••								
 -								
								
								
								

RPS - MCOS Ltd		Page 2
Innishmore	Kerry Central	
Ballincollig	Recycling Facility	L'ÉCEO
Co Cork	Foul Network	
Date 29/08/2008	Designed By JO'C	DETRECT
File MGE0109WD0009D03.fws	Checked By	
Micro Drainage	System1 W.10.4	

PIPELINE SCHEDULES

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH No.	C.Level (m)	I.Level (m)	Depth (m)	MH DIAM., L*W (mm)
1.000	o	150	F1	109.830	106.155	3.525	1200
1.001	0	150	F2	107.830	105.518	2.162	1200
1.002	0	150	F3	107.480	105.047	2.283	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH No.		I.Level (m)		MH DIAM., L*W (mm)
1.001	64.31 80.76 11.40	171.7	F3	107.480	105.518 105.047 104.981	2.283	1200 1200 0

Consent of copyright owner required for any other use.

RPS - MCOS Ltd								Page 3	
Innishmore			Kerry	Central				CONTRACTOR OF	
Ballincollig			Recyc	cling Facil	ity		1	n. Ka	20
Co Cork			Foul	Vetwork			i i	LK-V3	
Date 29/08/2008			Desig	ned By JO	D'C			DRA	Takara
File MGE0109WD	0009D03.fws	6	Checi	ked By					<u>-168)</u>
Micro Drainage			Syste	m1 W.10.	4				
M/Hole Number	Cover Level (m)	M/Hole Depth (m)	<u>M</u> /Hole Diam.,L*₩ (mm)	PN	SCHEDULES Pipes Out IL.(m)	D (mm)	PN	Pipes In IL.(m)	D (mm)
F1	109.830	3.675	1200	1.000	106.155	150			
F2	107.830	2.312	1200	1.001	105.518	150	1.000	105.518	150

1200 1.002 105.047

Consent of copyright owner required for any other use.

OUTFALL

0

150 1.001

1.002

105.047

104.981

150

150

F3 107.480 2.433

2.499

107.480

WWTP

(c)1982-2006 Micro Drainage

APPENDIX C

Bison Preliminary Design Proposal for Wastewater Treatment Plant consent of copyright own

PRELIMINARY DESIGN PROPOSAL

FOR

WASTEWATER TREATMENT PLANT

CLIENT REPRESENTATIVE	RPS
DATE	23 rd July 2008
REFERENCE	QB10160-08
Pumping & Treatment Systems	ISO 14001 Registered CEE

EPA Export 26-07-2013:03:10:46

TABLE OF CONTENTS

1. Introduction

2. Design Parameters

EPA Recommended Loading Rates EPA Recommended Set Back Distances Design Basis Design Criteria **Design Calculations**

3. Scope of Supply

- 4. Quotation
- 5. Exclusions

6. Description of Treatment Process

6.1 Primary Treatment

- 6.2 Secondary Treatment
 - 6.2.1 SAF
 - 6.2.2 SBR
 - 6.2.3 CAS
 - 6.2.4 MBR
- 6.3 Tertiary Treatment
- Purposes only any other use. 6.3.1 Self-Cleaning Mechanical Filter
 - 6.3.2 In-Situ Sand Filter
 - 6.3.3 Reed Bed System
 - 6.3.4 Disinfection System
- 6.4 Nutrient Removal
 - 6.4.1 Nitrification
 - 6.4.2 Denitrification
 - 6.4.3 Phosphate Reduction
- 6.5 Additional Items
 - 6.5.1 Screening
 - 6.5.2 Grease Removal
 - 6.5.3 Flow Splitting Chamber
 - 6.5.4 Recirculation Chamber
 - 6.5.5 Inlet Pumping Station
 - 6.5.6 Outlet Pumping Station
- 6.6 Instrumentation
- 6.7 Operation and Maintenance
- 6.8 Design of Disposal System

7. Installation Guidelines

- 8. O&M Manuals
- 9. Additional Process Description and Design
- **10. Drawings**

1. INTRODUCTION

The following report has been compiled using loading details and Population Equivalency (P.E.) supplied by Earth Science Partnership The design criteria and parameters have been calculated based on the recommended EPA loading rates as outlined in Table 2.1 below. Treatment plant selection has been based on the max loading rates based on 100% occupancy as per Table's 2.3, 2.4 and 2.5 below.

Prior to approval a site investigation and assessment will be required.

2. DESIGN PARAMETERS

Situation	Source	Flow litres/day ₂₀ per	BOD5 grams/day per person
		person	
Industrial	Office and/or factory without canteen	30	20
	Office and/or factory with canteen	60	30
	Open industrial site e.g. quarry	40	25
	(excluding canteen)		
Schools	Non-residential with cooking on-site	60	30
	Non-residential with no canteen	40	20
	Boarding school		
	(1). Residents &	180	60
	(2). Day Staff (includes mid-day meal)	60	30
Hotels	Guests Cor	250	75
	Guests (no meal)	180	45
	Resident staff	180	60
	Day Staff	60	30
	Conference	40	20
	Restaurant full meals:		
	(1). Luxury Catering	25	25
	(2). Prepared Catering	15	15
	(3). Snack Bars	10	10
	(4). Function Rooms incl. Buffets	10	10
	(5). Fast Food	10	10
Pubs and	Residents	200	60
Clubs	Day Staff	60	30
	Bar Drinkers	10	10
	Bar Meals	10	10

 Table 2.1. EPA Recommended Loading Rates

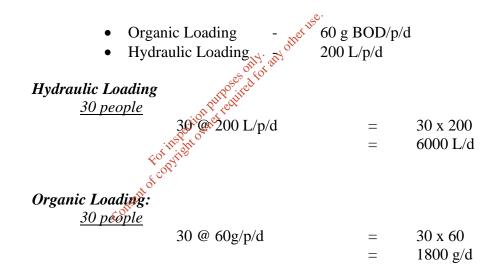
Table 2.1 Continued.

Situation	Source	Flow litres/day per person	BOD5 grams/day per person
Amenity Sites	Restaurants	15	15
	Function Rooms	10	10
	Toilet Blocks (per use)	5	10
	Toilet Blocks (long stay car parks)	10	15
	Golf Clubs	20	10
	Squash, with club house	25	15
	Swimming	10	10
	Football Club	30	20
	Caravan Sites		
	(1). Touring	50	35
	(2). Static not serviced	75	35
	(3). Static fully serviced	150	55
	(4). Tent sites	50	35
Hospitals	Residential elderly people	250	60
	Residential elderly people plus	<u>300</u>	65
	nursing	0 **	
	Nursing Homes	350	75

Table 2.2 EPA Recommended Minimum Distances from Treatment Systems

System Size P.E.	Approximate Number of Houses Served	Distance From Existing Development (m)
10-40	δ ⁶ 2−10	28
41 - 60	11 - 15	31
61 - 80	16 – 20	34
81 - 100	21 - 25	37
101 - 120	26 - 30	40
121 - 140	31 – 35	43
141 - 160	36 - 40	46
> 161	> 41	50

Table 2.3 Design Basis


Detail	Number	Unit
P.E.	30	P.E.
Hydraulic Loading	180	L/p/d
Organic Loading	60	gBOD/p/d
Gravity Inlet	Assuming Yes	Yes
Gravity Outlet	Assuming Yes	Yes
T-Value	T.B.C.	Min/25mm
Invert Level	T.B.C.	М
Power Supply	T.B.C.	Volts
Water Table	T.B.C.	M (BgL)

Tuble 2.4. Design Chieria			
Parameter	Influent	Effluent	Unit
Design Flow	6	6	M^{3}/d
Peak Flow	0.75	0.75	M ³ /hr 3DWF
BOD Load	1.8	0.072	Kg/d
T.N.	-		Mg/L
T.P	-	<1	Mg/L
Orthophosphates		<0.5	
S. Solids		30	Mg/L
BOD		20	Mg/L
Domestic/Commercial		Domestic	

Table 2.4. Design Criteria

2.5 DESIGN CALCULATIONS

E.P.S. Design Brief / Basis:

Total P.E (As per the Hydraulic Load)	=	30 P.E.
Total P.E (As per the Organic Load)	=	30 P.E.

EPS Ltd. propose 1 No. 30 P.E. Concrete Treatment Plant

SCOPE OF SUPPLY

-

The table below outlines all the main treatment options supplied by EPS. The items applicable to this development have been marked with a 'Y'.

Treatment System	Y/N	Description
Primary Treatment		
Primary Settlement Tank		See Product Selection
Secondary Treatment		
SAF Plants		
- <i>CT</i>		
- Concrete	Y	
SBR		گ
CAS	not.	S ²
MBR	and of	
Tertiary Treatment	ore offer and	
Self Cleaning Sand Filter	ostred	
In-situ Sand Filter	e ⁰⁰	
Reed Bed		
Disinfection		
- UV For the		
Reed Bed c.rownet Disinfection Formet - UV Formet - EFFG System - CONVIDED - LBX System CONTEND		
Nutrient Removal		
Nitrification (Ammonia)		
Denitrification (Anoxic Zone)		
Phosphate Reduction	Y	Optional
Additional Plant Items		
Screening		
Grease Removal		
Disposal Options Design		
Flow Splitting Chamber		
Recirculation Chamber		
Inlet Pumping Station		
Outlet Pumping Station		
Flow Metering	Y	Optional
Remote Monitoring	Y	Optional
Sampling	Y	Optional
Operation and Maintenance		
Service Contract		
Operation and Maintenance Contract	Y	

Treatment System	Y/N	Description
SAF PLANTS (grp) Standard Range		
CT 25		
CT 35		
CT 50		
CT 75		
CT 100		
CT 125		
CT 150		
SAF PLANTS (grp) Nitrifying Range		
CT 35-N		
CT 50-N		
CT 75-N		
CT 100-N		<u>ي</u> ي.
M 200	oses out to tot	5*
M 250	17. my or	
M 300	es atoric	
M 400	o st ifed control	
M 500	eor	
M 600		
AQUAMAX RANGE		
30 PE Concrete	Y	
50 PE Concrete		
75 PE Concrete		
100 PE Concrete		
150 PE Concrete		
200 PE Concrete		
250 PE Concrete		
300 PE Concrete		

Treatment System	Y/N	Description
SBR (Sequencing Batch Reactor)		
200		
300		
400		
500		
600		
700		
800		
900		
1000		
CAS		
150		
200		
300		
400		
Duplex Systems 400 PE upwards		چ ^{و.}
MBR	50 NY SNY OHEL	
125	aly any	
250	Ses of for	
375	O ^{SC} IIC SQUICE	
500 kont		
750 received and the second se		
1000 rotingite		
1500		
2000 otto		
2500 CONSOL		

5. EXCLUSIONS AND CLIENT RESPONSIBILITIES

It shall be the responsibility of the client to provide the following:

- Provision of power to EPS Control Panel
- Any excavation or backfilling
- Any additional civil works or pumping as may be required for sites with water table issues.
- Site clearance and reinstatement
- Provision of ducting
- Provision of concrete hard standing areas as required
- Connection of inlet and outlet sewer lines
- Provision of seed sludge where applicable for plant start-up
- Provision and installation of and maintenance of a suitable grease trap if not otherwise included in EPS supply.
- Provision of chemicals as required for commissioning and setup
- Access to treatment plant site for a 40ft articulated truck to allow for placement of tanks. Any necessary crane hire is the clients responsibility unless otherwise agreed by EPS.
- Provision of and construction of disposal systems.
- Provision of pipework from pump stations to disposal systems.
- All site security and fencing in the formation of the f

6. TREATMENT OPTIONS

6.1 PRIMARY TREATMENT

Our range of primary settlement tanks (PST) are available in both concrete and glass reinforced plastic (grp). We offer single stage, two stage and three stage settlement options.

All primary settlement tanks are designed to reduce the gross and suspended solids loading prior to secondary treatment. Sludge storage requirements are also included in PST design. Storage periods will vary depending on the option provided but as a general rule all primary settlement tanks should be desludged every 3 months at a minimum.

A primary settlement tank requires little maintenance, as there are no moving parts or electrical parts associated. Desludging and silt removal where applicable is the main requirement for primary settlement tanks.

6.2 SECONDARY TREATMENT

6.2.1 SAF PLANTS

A submerged aerated filter normally consists of a primary settlement tank, an aerated submerged biofilm reactor and a secondary settlement tank. This type of system is a well-developed technology and is regularly used for small communities.

6.2.2 CT RANGE

Incoming sewage is separated and stored in the first section of the primary settlement tank, allowing only settled liquor to pass forward for biological treatment.

The biological treatment stage comprises of two separate zones in series, both using submerged aerated filter technology and a well known jet aeration system – the VENTFLO Inductor.

The first biological stage treats the majority of the carbonaceous stage, resulting in a low loading rate for the second stage and a subsequent high overall removal rate.

Biomass (humus stage) sloughed from the submerged media is separated in the final humus settlement stage and returned intermittently by pump to the primary stage for co-settlement.

6.2.3 CONCRETE RANGE

Incoming sewage is separated and stored in the two stage primary settlement tank(s), allowing only settled liquor to pass forward for biological treatment.

The biological treatment tank comprises of select filter media to sustain biological growth and an aeration system comprising of a duty air blower and a diffused aeration system.

The treated effluent then passes to a final settlement tank prior to discharge where any humus sludge or suspended solid material settles out. A timer operated sludge return pump returns sludge intermittently to the primary settlement tank for storage.

6.2.4 SBR – Sequencing Batch Reactor

The Sequencing Batch Reactor process is a form of activated sludge treatment in which aeration, settlement and decanting occur in a single tank.

SBR's can operate as a uni-tank or multiple tank set-up.

The process employs a five stage cycle which may be repeated a number of times per 24 hour period. The five stages include fill, aerate, settle, decant, rest.

The wastewater is pumped into the SBR during the fill stage. The contents are then aerated and mixed prior to a quite settlement phase where all of the biomass and solids settle out. The clear supernatant is then decanted from the system. Following a rest phase the cycle is repeated. Periodically excess sludge is removed from the system during the rest phase and stored prior to removal off-site for treatment and disposal.

The SBR process provides good operational flexibility and allows for the option of incorporating nitrification, denitrification and phosphorous removal. It is a simple and reliable system, ideal for the treatment of varying flow and load conditions. This type of system is of particular benefit when treating wastewater from hotels, pubs and otheruse restaurants, etc.

6.2.5 CAS PLANT

2013 The EPS CAS plant is based on conventional activated sludge technology. Each unit is factory built complete with all necessary equipment necessary for efficient ilon OWNERT operation.

A CAS plant is of steel construction, divided into two major sections – an aeration section and a clarifier. Each unit comprises of an inlet box, aeration header with drop pipes and diffusers, roots type blower including motor, controls, drives and fittings, sludge return and storage.

Following aeration the mixed liquor of activated sludge and treated effluent passes forward to the clarifier where conditions are favourable for the separation of settled sludge and the final effluent prior to discharge. All settled solids are returned continuously to the aeration section for further treatment.

Periodically excess sludge is wasted from the system to a sludge storage tank prior to removal off-site for treatment and disposal.

Nitrification, denitrification and phosphorous removal can also be accommodated with this system.

6.2.6 MBR – Packaged Membrane Bioreactors

MBR technology is a leading edge technology for the treatment of wastewater to a very high standard. Typically a final effluent standard of 5:5:5, BOD : SS : NH₄ is achieved consistently.

Background

The development of our submerged membrane bioreactor technology was the result of a Japanese Government initiative to produce compact, high quality effluent, treatment plants.

Since producing the first pilot plant using MBR technology in 1989 and the first commercial plant in 1991, over 950 plants have been installed worldwide. These treat a wide range of wastewaters, the principal application being sewage and sludge liquors, but also including industrial and food processing wastewater, and grey water recycling for a wide range of re-use purposes.

Process Description

The process employs simple flat sheet membrane panels housed in stainless steel cases and aerated by a coarse bubble diffuser system. A series of these membranes are submerged within an activated sludge treatment tank. An advantage of this design is that the membrane panels are securely retained and cannot fouch or abrade each other, while the cases also act as a flume to ensure effective tank mixing and even distribution of the biomass.

The membrane panels are manufactured with an average pore size of 0.4 microns, which in operation becomes covered by a dynamic layer of protein and cellular material. This further enhances the performance effectiveness of the filtration process by providing an effective pore size of less than 0.01 microns, which is in the ultra-filtration range.

Our membrane bioreactor treatment produces a high quality disinfected effluent. The raw sewage generally only requires screening (to 3mm) and de-gritting prior to entering the membrane bioreactor tank. The process requires no primary or secondary settlement stages and no additional tertiary treatment or UV stages to achieve quality typically better than 5 : 5 : 5 mg/l BOD : Suspended Solids : Ammonia.

The MBR system has a number of inherent advantages. It does not remove the solids by settlement, therefore the biomass can operate at very high levels of mixed liquor suspended solids (MLSS), generally in the order of 12,000-18,000 mg/l, and up to 22,000 mg/l. This high concentration enables a low tank volume and a long sludge age to be utilised, which reduces sludge production and allows a small footprint. The associated viscosity with the suspended solids will affect the cross flow over the membrane surface. It is recommended that in normal operation the MLSS does not routinely go below 10,000 mg/l and that a minimum level of 8,000 mg/l at average flow is recommended.

The maximum hydraulic flow determines the required number of membrane units. Each membrane unit may contain up to 400 flat plate membrane panels housed within a rectangular case, together with an integral aeration system in the bottom section of the unit. Treated effluent is removed from the membrane units using gravity head (typically 1-1.2m).

The membrane air diffuser typically allows 3-6% uptake of available oxygen at 3.3m-3.5m water depth, dependent on temperature and initial dissolved oxygen levels. Higher uptake rates will be found at lower temperatures and where the influent is initially anoxic.

Aeration is continuous at all times when permeate is flowing through the membrane units. During periods of low influent flow when the permeate flow stops, the aeration blowers can be cut out and will re-start automatically upon permeate flow resuming.

Operational Experience

Operating experience of pilot and main treatment plants has consistently resulted in an effluent of high quality that has little dependence on variations in feed strength and is fully disinfected with bacteria and viruses reduced to below the limits for bathing water or recreational water standards.

By minimising the effect of fouling through controlled cross flow velocities over the membrane surface, cleaning is required typically only twice per year using a backwash of dilute sodium hypochlorite solution into each membrane unit.

The process is designed to run without supervision and by using high quality materials, including stainless steel, the membrane panels and cases have long life

U.S TERTIARY TREATMENT 6.3.1 Self-Cleaning Mechanical Sand Filter EPS offer a self-cleaning up-ward flow matter 2.5m³/hr up to 45m³/hr. The st assembled and to EPS offer a self-cleaning up-ward flow mechanical sand filter for flows varying from 2.5m³/hr up to 45m³/hr. The stainless steel filters are skid mounted, manufactured, assembled and tested at our workshop in Mallow prior to delivery.

The filter design operates a well known and utilised technology of moving sand with the effluent passing upwards through a downward moving sand bed. The dirty sand is in turn re-circulated through a cleaning mechanism prior to re-entry to the top of the sand bed for further filtration.

Wash water is returned to the treatment plant for solid settlement and treatment at a maximum rate of 5% of the filters overall hydraulic design.

6.3.2 In-Situ Sand Filter

An In-Situ sand filter consists of varying stratified layers of sand and gravel. The treated effluent is distributed evenly over the entire filter area by a gravity distribution system or a pumped distribution system. It then passes down through the various layers of sand and gravel where it is further polished and filtered prior to entering the ground water or surface water.

6.3.3 Reed Bed System

A typically designed reed bed system for tertiary treatment can further improve the quality of an effluent prior to discharge or disposal. A reed bed system will lead to enhanced removal of BOD, COD and suspended solids, as well as ammonia, nitrates and phosphorous, if specifically designed for same.

A reed bed system can operate as a horizontal flow or vertical flow system.

The system comprises of an inlet and outlet and layer of gravel. The surface is planted with reeds known as *Phragmites Australis*, which ensures oxygen transfer down into the gravel bed through the rhizomes.

6.3.4 Disinfection: Ultra Violet (UV)

UV disinfection of a treated effluent prior to disposal is a necessary requirement for many sites. UV light is effective for disinfection as it ruptures the genetic structure of harmful bacteria leading to instantaneous destruction.

EPS offer two ranges of disinfection systems for varying flows and applications. EPS offer the EEFG range for flows of $1m^3/hr$ to $40m^3/hr$ and the LBX range for flows Je St purposes only: any other use a required for any other use from 3 to 1000m³/hr. Both systems incorporate a reliable self-cleaning mechanism to prevent fouling of lamps during use.

6.4 NUTRIENT REMOVAL

6.4.1 Nitrification

Nitrification is the conversion of ammonium in wastewater to nitrate under aerobic conditions. Within the aeration tank the ammonium is converted firstly to nitrite and then nitrate through the action of autotrophic nitrifying bacteria. These nitrifying bacteria are recycled through the process to maintain high levels of nitrification. Because nitrifying bacteria are sower to reproduce than other heterotrophic bacteria long aeration periods are required to achieve sufficient growth.

6.4.2 Denitrification

Denitrification is the conversion of nitrate to nitrogen gas using suitable heterotrophic bacteria under anoxic conditions. In the absence of a readily available oxygen source the bacteria can use the oxygen available in the NO₃ for cell synthesis thus reducing the NO₃ to N₂. To help with the denitrification process sludge is returned from the end of the aeration system and also from the final settlement tank. This sludge, which is both high in nitrate and biomass, is essential for achieving good denitrification levels.

6.4.3 Phosphate Reduction

To reduce the soluble orthophosphate levels in the treated effluent, ferric sulphate is dosed into the primary settlement tank or the aeration tank. The ferric precipitates out the soluble phosphate and thus reduces the phosphorous levels. Typical P values achieved with dosing would be <2mg/L Total P.

6.5 ADDITIONAL OPTIONS

6.5.1 Screening

EPS offer a range of stainless steel screens for 3mm or 5mm requirements. All screens offered come with washing and compaction if required.

6.5.2 Grease Removal

The entrance of fats, oils and greases (Fogs) into any treatment plant is prohibited. It is imperative that any Fogs are removed by a suitable grease trap prior to entering the waste stream to any plant. Depending on the application and the potential loads of Fogs a number of grease traps are available for selection.

The use of enzyme type grease emulsifiers is not acceptable for the removal of Fogs from waste streams entering a treatment plant.

EPS encourage the use of undersink type systems and three chamber type interceptors that are sufficiently sized, suitably located and regularly maintained and emptied. The entrance of grease to a treatment plant will lead to inefficient operation and mal odours and it is for this reason that effective grease systems are installed.

6.5.3 Flow Splitting Chamber

For applications where duplex systems are proposed, EPS also offer factory assembled flow splitting chambers.

6.5.4 Recirculation Chamber

In applications where denitrification is required, recirculation chambers are available for splitting the final effluent stream and the diversion of a portion of same back to the front end of the treatment plant to an *mox*ic tank. This ensures that the nitrate is converted to nitrogen gas and water prior to subsequent discharge. ACOP

6.5.5 Inlet Pumping Station

Depending on varying site conditions and process selection an inlet pumping station may be required. EPS offer a range of pumping solutions to cater for same and offer a variety of pump type and make as well as sumps in steel or pre-cast concrete.

6.5.6 Outlet Pumping Station

Many applications require that the final treated effluent is pumped to a higher discharge point or onto a pressurised dispersion system (sand filter, etc). EPS offer a number of solutions for this requirement, with each site requiring a specific and individual design.

6.6 INSTRUMENTATION

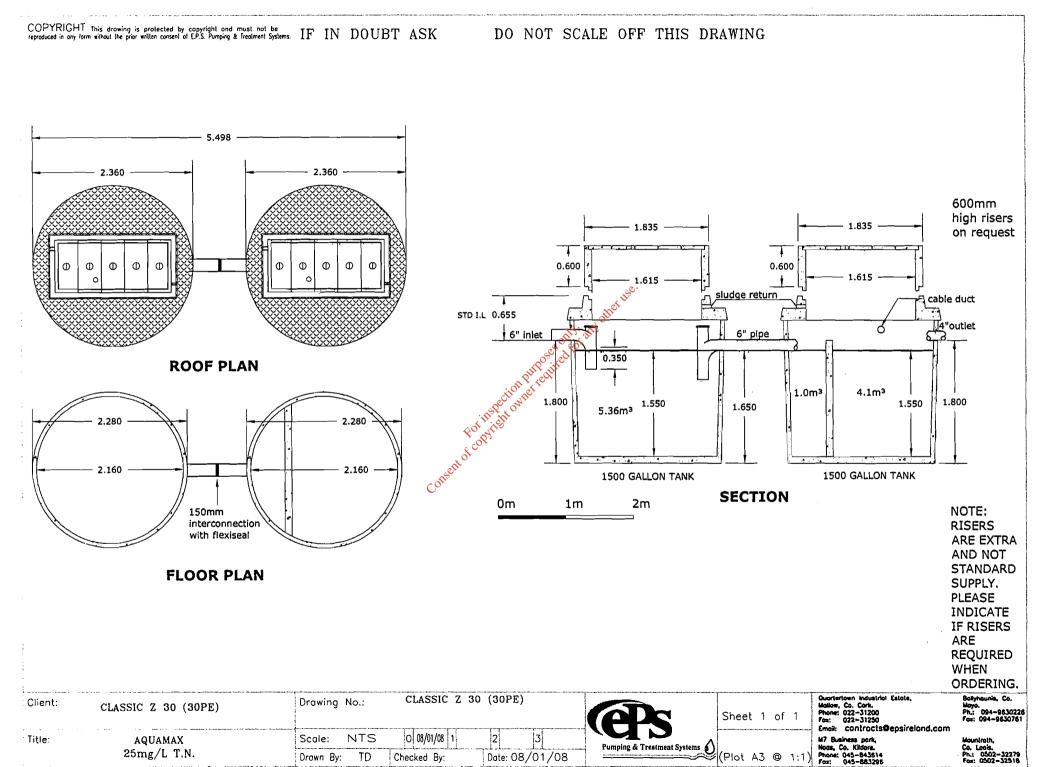
For additional control and monitoring of treatment plants once installed, EPS offer a range of items that aid in meeting the operational and monitoring requirements of all discharge licences.

- Flow Metering (Inlet and Outlet)
- Remote Monitoring (gsm Dial Out Unit)
- Automatic Sampling
- Datalogging and trending of flows

6.7 OPERATION AND MAINTENANCE

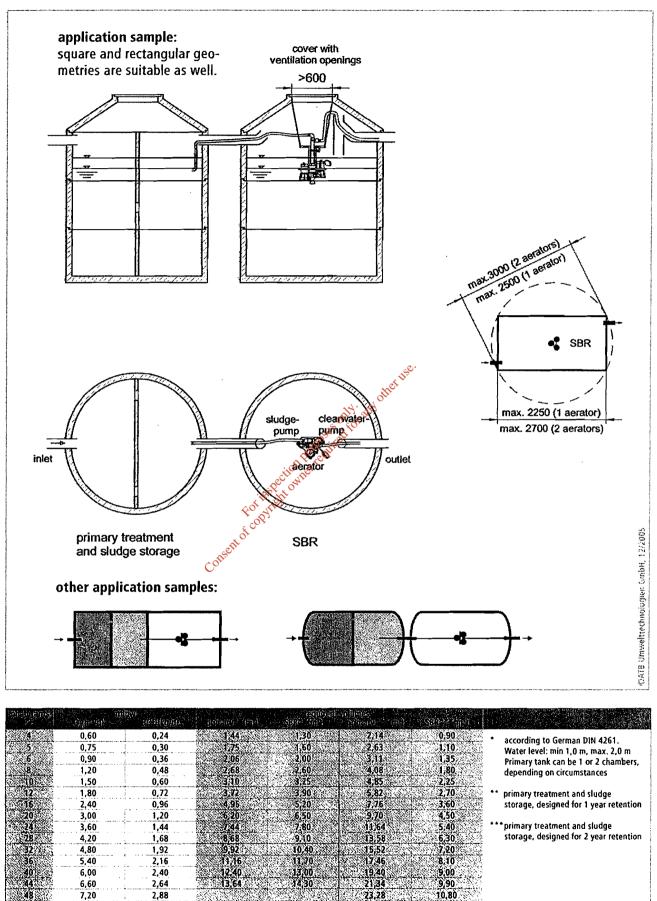
EPS offer both Service Contracts and Full Operation and Maintenance Contracts for plants installed by us or by other companies.

Our operation and maintenance staff offer a service, which includes the following:


- Mechanical and Electrical Maintenance
- Process Operation
- Chemical Supply and Set-Up
- Desludging
- Preventative Maintenance
- Production of Operational Reports for Discharge Licence Requirements
- Trouble-shooting for Existing Plants
- Holiday Cover / Weekend Cover, etc.

6.8 DESIGN OF DISPOSAL SYSTEMS

EPS offer design recommendations for disposal systems for all sites as required. EPS require that a detailed site assessment be carried out. A subsequent site assessment report will then be utilised to design a suitable percolation area, soil polishing filter or sand polishing filter as required.


All recommendations will be in accordance with EPA guidelines and Risk Assessment in accordance with GSI/DOE guidelines.

EPS do not install disposal systems and cannot accept any liability for disposal systems once installed. Disposal systems should at all times be installed in accordance with EPA guidelines or BS6297 which ever is deemed appropriate.

EPA Export 26-07-2013:03:10:46

ATB Umwelttechnologien GmbH • Südstraße 2 • D-32457 Porta Westfalica • fon: +49.(0)5731.30230-0 • fax: +49.(0)5731.30230-30 • info@aquamax.net • www.aquamax.net

25,71

11,93

12

3,18

155

7,95

SBR Small Wastewater Treatment Plant and Retrofitting System in accordance with DIN 4261, Part 2 [Available in English]

The wastewater treatment plant functions according to the activated sludge principle using the impoundage (storage) process (single tank or SBR plant). With this, the pollutants are taken up from the wastewater by suspended microorganisms (activated sludge) and converted into biomass.

The wastewater first reaches the coarse screen. Every two hours the stored wastewater is fed – according to the principle of a connecting tube – into the activated sludge stage. Aeration takes place intermittently via a submersible motor aerator. At the end of six hours the aeration phase ends and the settling phase begins.

After two hours settling time the clarified water is pumped out using the clarified water pump. The switch-off point is determined by a float switch. If, in the case of a pump failure, this minimum water level cannot be achieved, an alarm is activated. After ca. eight hours, with the end of the removal of the clarified water, the cycle also ends and a new one begins.

Control is by means of the a control unit and can be adjusted to the respective requirement case. Operating times of the units are shown in a display and recorded in the storage of the control unit. On commissioning, the plant is set to the maximum connected number of inhabitants. A modification of the setting with short-term over- or underloading is not necessary.

The plant achieves its full treatment performance following a start-up period of ca. one month. With severe underloading or temperatures below 12° C it can also take several months until the biology is fully developed. In this case it is recommended that SBR plants are seeded in order to accelerate this process.

With the AQUAmax® BASIC charging, removal of excess sludge and drawing off of clarified water take place using only one single pump. The water flows are fed into the individual areas by means of a patented hydraulic system.

Holiday operation If no wastewater flows into the plant over a period of more than four hours then the system switches automatically into holiday operation. The aeration time is so far reduced that the microorganisms have sufficient oxygen available. With normal loading the plant switches back into the operating mode set.

Sampling

As the pumping out process is of only short duration the treated water is collected in a suitable vessel in the settling tank (accessories: 1.5 I sampling bottle). The bottle is mounted in the vicinity of the cover and is easily accessible from above. Alternatively a bottle can also be placed in a separate sampling shaft.

Installation and dimensioning Dimensioning and installation are described in more detail in the General National Technical Approval Z-55.3-53 and the installation instructions.

Operation and maintenance In accordance with DIN 4261, Parts 1 to 4, small wastewater treatment plants must be monitored by the operator at certain intervals as well as being maintained three times a year by a specialist. Both are important for the correct operation of the plant.

If small wastewater treatment plants are equipped with a voltage failure detection system (UVS), a twice a year maintenance suffices.

AQUAmax® BASIC and AQUAmax® CLASSIC have a UVS as standard. Sludge removal from the primary settling stage takes place, dependent on load, once a year or as required. Further details for this are regulated in the operating and maintenance instructions.

Possibilities for application The AQUAmax[®] CLASSIC / BASIC is conceived for the treatment of domestic wastewater. Other ATB wastewater treatment plants can be employed for the treatment of other wastewater (agriculture, commerce or similar).

Technical data

The AQUAmax[®] consists of the following electrical units: 2 x submersible motor pumps (BASIC: 1 x submersible motor pump), 1 x submersible motor aerator, 1 x float switch as well as a control unit. The units are designed for 230 V, 50 Hz.

In addition, the AQUA*max*[®] consists of a carrier frame, pipelines and hoses.

The electrical plant components are subject to a system-related wear. The service life of the units, from experience, lies between 5 and 10 years.

Treatment performance

The AQUAmax® CLASSIC / BASIC meets the following limiting values: BOD5: 20 mg/l, COD: 90 mg/l, NH4N (►12°C): 10 mg/l (qualified random sample).

AQUAmax® PLUS Package

The AQUA*max*[®] PLUS Package is an optional extension for the improvement of the treatment performance. The plant is equipped with an improved program module. Using an additional anoxic clarification phase the total nitrogen (Ntot) can be reduced to a value of ⊲ 25 mg/l (+12°C).

AQUAmax[®] phosphate elimination

For the removal of phosphates from the wastewater a dosing pump for the addition of a precipitant can be triggered. The package on offer includes open air column or box incl. precipitant and container as well as dosing pump. The content of orthophosphate in the circulation can thus be ensured at less than 2 mg/l.

Guarantee

In addition to the statutory guarantee period we give, through our marketing and installation partners, a guarantee of 36 months from date of installation, on all electrical parts. You have a 10 year guarantee on the frame from the date of installation. The guarantee conditions can be found on the guarantee card.

APPENDIX Determe APPENDIX Determe on purpose of the and the second Storm Second convert Calculations

PS - MCOS Ltd nishmore allincollig				Kerry Cer Recycling	Facility	,		<u> </u>		 		
o Cork			<u>.</u>	Storm Se	wer P1							
ate 29/08/2008 le MGE0109WD00	10D04 sw	<i>د</i>		Designed Checked		C			P	LEI	1961	<u>°</u>
icro Drainage	10001.30	<u> </u>		System1								
		STC	RM SEM	ER DES	IGN by t	he <u>Modifi</u>	ed Ration	al Method	<u>1</u>			
				G	ilobal Va	ariables						
Pipe Si	ze File	C:\Win	Des\ST	ANDARD.	PIP M	anhole	Size Fi	ile C:	\WinDes\	STANDAR	D.MHS	
			Loc	ation -	Scot	land &	Ireland	l				
M5-60 Ratio H	(mm) 2	(years)	r)	1 15.300 0.240 50	Min	Vel. (1 Ain Sloj	m/s - A pe (1:X	uto Des - Opti	G.L. (1 ign Only misation nvert (1	7) 1)	200 0.76 1000 000	
Foul Se	wage (1	/s/ha)		0.00)		nd Leve	l at Ou	tfall (r	n) 106	.830	
		f (*Foul off Coef		0 0.75		utfall I			hole Nam ngth (mm		Pond 0	
Infilt	ation %			0.000	1				idth (mr		0	
			De	signed	with 3	Level I	nverts					
				Netv	vork De	sign Table	2					
	PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)				n) SEC			
	1.000	18.86	0.187	100.9	0.01	64.	00 💉	.0 0.e	500	o 225		
	1.001 1.002		0.052 0.114			90. 40	N.V.).0 0.6		o 225 o 225		
	1.002		0.069					0.0 0.6	500	o 225		
	1.004 1.005		0.231 0.147		0.08		00 00 C).0 0.6).0 0.6		o 225 o 225		
	1.005	59.61	0.147	121.7	0.02	Prined 0.	00 0			o 225		
	2.000 2.001	62.49 42.45	0.150 0.102	418.0 418.0	0145 1019	1 00. 4 010. 0 05 1 0. 9 1 1 0 9 1 0 9 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	00 C).0 0.6).0 0.6		o 300 o 300		
	3.000	23.84	0.028	84809	6		00 133	0.6	500	o 525		
	4.000	7.62	0.393	1.9.4	0.40	04.	00 C	0.0 0.6	500	o 450		
	3.001	32.81	0.490	67.0	0.05	10.	00 0	0.0 0.6	500	o 525		
	5.000	48.44	0 3000	161.5	0.23	24.	00 0	0.0 0.6	500	o 225		
	2.002	14.80	0.083	177.6	0.00	00.	00 0	0.0 0.6	500	o 525		
	1.007	10.23	0.100	102.3	0.00	00.	00 0	0.0 0.6	500	o 525		
				<u>Netw</u>	or <u>k Res</u>	ult <u>s Table</u>	<u>e</u>					
PN	Rain (mm/hr	T.C.) (mins)			Area ha)	E.DWF (1/s)	Foul (1/s)	Infi1. (1/s)	Vel (m/s)	CAP (1/s)	Flow (1/s)	
1.000 1.001	37. 36.				0.016	0 0	0 0	() 1.30) 0.76	52 30	2 2	
1.002	34.	4 5.	3 106.	.516 (0.039	0	0	C	0.76	30	4	
1.003 1.004	33. 30.).070).153	0 0	0	(30 30	6 13	
1.005	30.	1 7.	5 106.	.102 (0.174	0	0	C	1.06	42	14	
1.006	28.				0.207	0	0	0		47	16	
2.000 2.001	34. 32.				0.457).577	0 0	0 0	(54 54	42 50	
3.000	36.	3 4.	5 105.	651 (0.096	133	0	C	0.76	165	142	
4.000	37.	64.	0 105.	905 (0.400	0	0	C	4.64	737	41	
3.001	35.	74.	7 105.	512 0	0.547	133	0	C	2.74	593	186	
5.000	35.	64.			0.232	0	0	C	1.03	41	22	
2.002	31.				L.356	133	0	C		363	250	
1.007	28.	7 8.	4 104.	.939 3	L.563	133	0	C	2.21	479	254	

nnishmore Jallincollig Co Cork Date 29/08/2008 ile MGE0109WD001 Vicro Drainage	0D04.sws			Kerry Cen Recycling Storm Sev Designed Checked I System1 \	Facility wer P1 By JO'C By				B	for Aug	e nec	Ć
				<u>Netw</u>	ork Desig	n Table						
	PN 1	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (1/s)	k (mm)	HYD SECT	DIA (mm)		
	6.000 6.001 6.002 6.003 6.004 6.005 6.006	18.78 18.38 41.51 12.62 62.49 24.75 72.69	0.186 0.064 0.144 0.044 0.216 0.146 0.590	100.9 288.8 288.8 288.8 288.8 169.1 123.2	0.014 0.007 0.030 0.006 0.023 0.012 0.022	4.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 0.600 0.600 0.600	0 0 0 0 0	225 225 225 225 225 225 225 225		
	1.008	7.23	0.125	57.8	0.000	0.00	0.0	0.600	o	525		
				Netw	ork Resul	ts Table						
	Rain	T.C.	បន/				oul In	fil.	Vel	CAP	Flow	
PN	(mm/hr)	(mins)							(m/g)	(1/s)	(1/s)	
6.000 6.001 6.002 6.003 6.004 6.005 6.006	37.0 35.9 33.8 33.2 30.6 30.0 28.4	4.6	5 106.	569 0	0.014 0.021 0.051 0.057 0.079 0.091 0.113		o o o o o c e e e	0 0 0 0 0 0	1.30 0.76 0.76 0.76 1.00 1.18	52 30 30 30 30 40 47	1 2 5 7 7 9	
1.008	28.4	8.7	7 104.	839 1	676	3033 any	0	0	2.95	639	262	
			Conset	Foringe	J. OWL	o o o o o o o o o o o o o o o o o o o						

RPS - MCOS Ltd		Page 3
Innishmore Ballincollig Co Cork	Kerry Central Recycling Facility Storm Sewer P1	N PC FO
Date 29/08/2008 File MGE0109WD0010D04.sws	Designed By JO'C Checked By	Draffice
Micro Drainage	System1 W.10.4	

PIPELINE SCHEDULES

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH No.	C.Level (m)	I.Level (m)	Depth (m)	MH DIAM., L*W (mm)
1.000	0	225	S 25	108.180	106.755	1.200	1050
1.001	0	225	S26	108.130	106.568	1.337	1050
1.002	0	225	S27	108.080	106.516	1.339	1050
1.003	0	225	S28	107.930	106.402	1.303	1050
1.004	0	225	S29	107.830	106.333	1.272	1050
1.005	0	225	S30	107.530	106.102	1.203	1050
1.006	0	225	S31	107.380	105.955	1.200	1050
2.000	0	300	S21	108.130	106.630	1.200	1050
2.001	0	300	S22	108.130	106.480	1.350	1050
3.000	o	525	S18	108.130	105.651	1.954	1500
4.000	ο	450	S.Tank	108.130	105.905	1.775	1350
3.001	ο	525	520	108.130	105.512	2.093	1500
5.000	ο	225	S 23	108.130	106.705	1.200	1050
2.002	0	525	S24	108.130	105.022	2.583	1500
1.007	0	525	S 32	107.190	105.022 104.939 106.755 106.569	J. 726	1500
6.000	0	225	S33	108.180	106.75	1.200	1050
6.001	ō	225	S34	108.130	106.569	1.336	1050
6.002	Ó	225	S35	108.080	206.505	1.350	1050
6.003	0	225	S36	107.830	106.361	1.244	1050
6.004	0	225	S37	107.830	S 106.318	1.287	1050
6.005	0	225	538	107 3300	106.101	1.204	1050
6.006	0	225	S 39	103.380	105.955	1.200	1050
1.008	0	525	S40	50103 ^{4/10} 090	104.839	1.726	1500

Contraction Manhole

PN	Length (m)	Slope (1:X)	NH No. S26 S27	C.Level (m)	I.Level (m)	Depth (m)	MH DIAM., L*W (mm)
1.000	18.86	100.6	526	108.130	106.568	1.337	1050
1.001	15.00	288.8	S27	108.080	106.516	1.339	1050
1.002	32.94	288.8	S28	107.930	106.402	1.303	1050
1.003	19.97	288.8	S29	107.830	106.333	1.272	1050
1.004	66.59	288.8	S30	107.530	106.102	1.203	1050
1.005	22.36	151.8	S31	107.380	105.955	1.200	1050
1.006	59.61	121.7	S32	107.190	105.465	1.500	1500
2.000	62.49	418.0	S22	108.130	106.480	1.350	1050
2.001	42.45	418.0	S24	108.130	106.379	1.451	1500
3.000	23.84	848.9	S20	108.130	105.623	1.982	1500
4.000	7.62	19.4	S20	108.130	105.512	2.168	1500
3.001	32.81	67.0	S24	108.130	105.022	2.583	1500
5.000	48.44	161.5	\$24	108.130	106.405	1.500	1500
2.002	14.80	177.6	S32	1 07.190	104.939	1.726	1500
1.007	10.23	102.3	S40	107.090	104.839	1.726	1500
6.000	18.78	100.9	S34	108.130	106.569	1.336	1050
6.001	18.38	288.8	S35	108.080	106.505	1.350	1050
6.002	41.51	288.8	S 36	107.830	106.361	1.244	1050
6.003	12.62	288.8	S37	107.830	106.318	1.287	1050
6.004	62.49	288.8	S38	107.530	106.101	1.204	1050
6.005	24.75	169.1	S39	107.380	105.955	1.200	1050
6.006	72.69	123.2	S40	107.090	105.365	1.500	1500
1.008	7.23	57.8	Att.Pond	106.830	104.714	1.591	0

(c)1982-2006 Micro Drainage

			Kerry Ce				Page 4	
			ineny de	ntral			Sector States	
			Recycling Storm Se	g Facility				GRO L
			Storm Se	ewer P1				
010D04	SWC		Checked	d By JO'C				11666
010004			System1	W.10.4				
			<u>PIPE</u>	LINE SCHEE	ULES			
			Fir	ostroom Mont	ole			
				Jou can man				
DN	, Hyd	Diam	MH NO	C.Level I	.Level	Depth M	H DIAM., L*V	Ŧ
	Sect	(mm)	m no.	(m)	(m)	(m)	(mm)	
			_					
			Dov	vnstream Mai	hole			
DM	Length	Slope	MH No	C.Level	I.Leve]	Depth	MH DIAM.,	L*W
PN	(m)	(1:X)	MA NO.	(m)	(m)	(m)	(mm)	
						nse.		
					net and			
					, oth			
					119. 2003			
				60	for			
				005.00	\$`			
				OULFOUR				
				ion & re				
			-	ecti whe				
			inst					
			COLIT	95°				
			1.063					
			5					
			ent					
		¢Ć	U ₂ c					
		C	,					
	PN	I Sect	PN Length Slope (m) (1:X)	لل PN Hyd Diam MH No. Sect (mm) MH No. Dow PN Length Slope MH No.	Upstream Mant PN Hyd Diam MH No. C.Level I Downstream Mar PN Length Slope MH No. C.Level (m) (1:X) MH No. (m)	FN Sect (mm) HA NO. (m) (m) <u>Downstream Manhole</u> PN Length Slope MH No. C.Level I.Level (m) (1:X) MH No. (m) (m)	Upstream Manhole PN Hyd Diam MH No. C.Level I.Level Depth M Sect (mm) MH No. (m) (m) (m) Downstream Manhole Downstream Manhole Downstream Manhole	Upstream Manhole PN Hyd Diam MH No. C.Level I.Level Depth MH DIAM., L*W <u>Downstream Manhole</u> PN Length Slope MH No. C.Level I.Level Depth MH DIAM., 1 (m) (1:X) MH No. (m) (m) (m) (m)

RPS - MCOS Ltd		Page 5
Innishmore	Kerry Central	
Ballincollig	Recycling Facility	
Co Cork	Storm Sewer P1	
Date 29/08/2008	Designed By JO'C	DELLE
File MGE0109WD0010D04.sws	Checked By	
Micro Drainage	System1 W.10.4	

M/Hole Number	Cover Level (m)	M/Hole Depth (m)	M/Hole Diam.,L*W (mm)	PN	Pipes Out IL.(m)	D (mm)	PN	Pipes In IL.(m)	D (mm)
	108.180	1.425	1050	1.000	106.755	225			
S26	108.130	1.562	1050	1.001	106.568	225	1.000	106.568	225
S27	108.080	1.564	1050	1.002	106.516	225	1.001	106.516	225
S28	107.930	1.528	1050	1.003	106.402	225	1.002	106.402	225
S29	107.830	1.497	1050	1.004	106.333	225	1.003	106.333	225
S30	107.530	1.428	1050	1.005	106.102	225	1.004	106.102	225
S31	107.380	1.425	1050	1.006	105.955	225	1.005	105.955	225
S21	108.130	1.500	1050	2.000	106.630	300			
S22	108.130	1.650	1050	2.001	106.480	300	2.000	106.480	300
S18	108.130	2.479	1500	3.000	105.651	525			
S.Tank	108.130	2.225	1350	4.000	105.905	1 ^{50.} 450			
S20	108.130	2.618	1500	3.001	105.51 and	525	3.000 4.000	105.623 105.512	525 450
S23	108.130	1.425	1050	5.000	010 At 01 05	225			
⁻ S24	108.130	3.108	1500	5.000 2.0021 Pection Petro Pert.007	equil 105.022	525	2.001 3.001 5.000	106.379 105.022 106.405	300 525 225
S32	107.190	2.251	15000 FOI	1 .007	104.939	525	1.006 2.002	105.465 104.939	225 525
S33	108.180	1.425	1050	6.000	106.755	225			
S34	108.130	1.561	Consent1050 1050	6.001	106.569	225	6.000	106.569	225
535	108.080	1.575	1050	6.002	106.505	225	6.001	106,505	225
S 36	107.830	1.469	1050	6.003	106.361	225	6.002	106.361	225
S37	107.830	1.512	1050	6.004	106.318	225	6.003	106.318	225
S38	107.530	1.429	1050	6.005	106.101	225	6.004	106.101	225
S39	107.380	1.425	1050	6.006	105.955	225	6.005	105.955	225
S40	107.090	2.251	1500	1.008	104.839	525	1.007 6.006	104.839 105.365	525 225
Att.Pond	106.830	2.116	0		OUTFALL		1.008	104.714	525

MANHOLE SCHEDULES

(c)1982-2006 Micro Drainage

ç

RPS - MCOS Ltd				(arr: C-	tral				Page	1	
nishmore allincollig				Kerry Cen Recycling						72/2	
co Cork				Storm Sev					PM	<u> </u>	\mathcal{O}
ate 29/08/2008			· C	Designed	By JO'C				7 D D)	751	17:10
ile MGE0109WD00 licro Drainage	11D03.sws			Checked E System1 V							
noro Dramage				ystenn v	1.10.4						
		<u>STO</u>	RM SEW	ER DESI	<u>GN by the</u>	e Modified	Rational	Method			
				GI	<u>obal Vari</u>	ables					
Pipe Si	ze File	C:\Win	Des\STA	NDARD.P	IP Mai	nhole Si	ize Fil	e C:\Wi	inDes\S	TANDARI	D.MHS
			Loca	ation -	Scotla	and & Ir	reland				
Return M5-60	Period	(years)		1 15.300				fit to (to Desig			.200 0.76
Ratio	R			0.240		in Slope	e (1:X	- Optimi	sation) :	1000
	m Rainfa ewage (l		r)	50 0.00				fall Inv at Outi			.000
O'flow	Setting	(*Foul		0.00			Outfa	11 Manho	ole Nam	e	S18
	tric Run ration %		f.	0.75				Dia/Leng hole Wid			0
	n Backdr		t (m)	0.200		JULIC	nan		(v
			Des	signed v	with Le	vel Inv	rerts				
				Nahu	ork Desid						
	_	Length	Fall	Slope	Area	T.E.	DWF	k	HYD	DIA	
	PN	(m)	(m)	(1:X)	(ha)	(mins)	(1/s)	(mm)	SECT	(mm)	
	1.000 1.001	50.01 23.43	0.172 0.081	290.8 289.2	0.060 0.238	4.00 0.00	0.				
	2.000	54.46	2.153	25.3	0.307	501114 202	0.	0 0.600	0	225	
	3.000	18.30	0.453	40.4	0.051	12014.00	0.	0 0.600	0	225	
	1.002	23.32		555.4	0,00,23	0.00) 0.				
	4.000	53.41	0.595	89.80 5559.40	00051	4.00	, 0.				
	1.003 1.004	31.51 34.90		190,4	0.077 0.066	0.00					
	5.000	22.56	0.660	\$ 34.2	0.487	4.00	0.	0 0.600	0	225	
	6.000	16.95	0.735	23.1	0.050	4.00) 0.	0 0.600	0	225	
	1.005	29.99	0.043	692.6	0.039	0.00				450	
	7.000	17.59	0.778	22.6	0.046	4.00) 0.	0 0.600	0	225	
				Netwo	ork Resul	ts Table					
PN	Rain (mm/hr)	T.C. (mins)	US/1 (m)					[nfil. (1/s)	Vel (m/s)	CAP (1/s)	Flow (l/s)
1.000 1.001	34.8 33.6				.060 .298	0 0	0 0	0 0	0.76 0.76	30 30	6 27
2.000	36.7	4.3	3 108.4	405 0	.307	0	0	0	2.61	104	31
3.000	37.3	4.3	L 106.	705 0	.051	0	0	0	2.06	82	5
1.002	32.6	6.3			.677	0	0	0	0.76	84	60
4.000	35.9				.051	0	0	0	1.38	55	5
1.003 1.004	31.3 30.5				.805 .871	0 0	0 0	0 0	0.76 1.31	84 145	68 72
5.000	37.2	. 4.2	2 106.0	630 0	.487	0	0	0	2.25	89	49
6.000	37.4	4.:	L 106.	705 0	.050	0	0	0	2.74	109	5
						•	-	•		100	110
1.005	29.5	5 7.9	9 105.9	970 1	.447	0	0	0	0.76	122	116

RPS - MCOS Ltd		Page 2
Innishmore	Kerry Central	
Ballincollig	Recycling Facility	
Co Cork	Storm Sewer P2	M-M-M
Date 29/08/2008	Designed By JO'C	DETERMENT
File MGE0109WD0011D03.sws	Checked By	
Micro Drainage	System1 W.10.4	

Network Design Table

PN	Length	Fall	Slope	Area	T.E.	DWF	k	HYD	DIA
	(m)	(m)	(1:X)	(ha)	(mins)	(1/s)	(mm)	SECT	(mm)
1.006	27.07	0.032	848.9	0.223	0.00	0.0	0.600	0	525
8.000	25.32	0.810	31.3	0.050	4.00	0.0	0.600	0	225
1.007	90.00	0.106	849.1	0.114	0.00	0.0	0.600	0	525
1.008	90.00	0.106	849.1	0.141	0.00	0.0	0.600	0	525
1.009	26.60	0.032	831.2	0.024	0.00	0.0	0.600	0	525

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	E.Area (ha)	E.DWF (1/s)	Foul (1/s)	Infil. (1/s)	Vel (m/s)	CAP (1/s)	Flow (1/s)
1.006	28.6	8.5	105.927	1.715	0	0	0	0.76	165	133
8.000	37.2	4.2	106.705	0.050	0	0	0	2.35	93	5
1.007 1.008 1.009	26.2 24.2 23.7	10.5 12.4 13.0	105.895 105.789 105.683	1.879 2.020 2.044	0 0 0	0 0 0	0 0 0	0.76 0.76 0.77	165 165 166	133 133 133
			105.683	aspection put	people only.	IN other lise				

(c)1982-2006 Micro Drainage

RPS - MCOS Ltd		Page 3
Innishmore	Kerry Central	
Ballincollig	Recycling Facility	
Co Cork	Storm Sewer P2	
Date 29/08/2008	Designed By JO'C	DETREVEN
File MGE0109WD0011D03.sws	Checked By	
Micro Drainage	System1 W.10.4	

PIPELINE SCHEDULES

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH No.	C.Level (m)	I.Level (m)	Depth (m)	MH DIAM., L*W (mm)
1.000 1.001	0 0	225 225	S1 S2	107.930 108.130	106.505 106.333	1.200 1.572	1050 1200
2.000	0	225	S 3	109.830	108,405	1.200	1050
3.000	0	225	S4	108.130	106.705	1.200	1050
1.002	0	375	\$ 5	108.830	106.252	2.203	1350
4.000	о	225	S6	108.230	106.805	1.200	1050
1.003	0	375 375	S7 S8	108.330 108.130	106.210 106.153	1.745 1.602	1350 1350
5.000	o	225	S 9	108.130	106.630	1.275	1050
6.000	0	225	S10	108.130	106.705	1.200	1050
1.005	o	450	S 11	108.130	105.970	1.710	1350
7.000	0	225	S12	108.130	106.705	1,5200	1050
1.006	о	525	S13	108.130	105.927	¢ 1.678	1500
8.000	о	225	S14	108.130	106.005	1.200	1050
1.007	o	525	S15	108.130	105.895	1.710	1500
1.008	ō	525	S16	108.130	105.789	1.816	1500
1.009	0	525	S17	108 130	105.683	1.922	1500

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH NO.	C.Level (m)	I.Level (m)	Depth (m)	MH DIAM., L*W (mm)
1.000 1.001	50.01 23.43	(1:x) 290.8 289 (2)	COL SZ	108.130 108.830	106.333 106.252	1.572 2.353	1200 1350
2.000	54.46	25.3	S5	108.830	106.252	2.353	1350
3.000	18.30	40.4	S5	108.830	106.252	2.353	1350
1.002	23.32	555.4	S7	108.330	106.210	1.745	1350
4.000	53.41	89.8	S7	108.330	106.210	1.895	1350
1.003 1.004	31.51 34.90	555.4 190.4	58 S11	108.130 108.130	106.153 105.970	1.602 1.785	1350 1350
5.000	22.56	34.2	S11	108.130	105.970	1.935	1350
6.000	16.95	23.1	S11	108.130	105,970	1.935	1350
1.005	29.99	692.6	S13	108.130	105.927	1.753	1500
7.000	17.59	22.6	S13	108.130	105.927	1.978	1500
1.006	27.07	848.9	S 15	108.130	105.895	1.710	1500
8.000	25.32	31.3	S15	108.130	105.895	2.010	1500
1.007 1.008 1.009	90.00 90.00 26.60	849.1 849.1 831.2	S16 S17 S18	108.130 108.130 108.030	105.789 105.683 105.651	1.816 1.922 1.854	1500 1500 0

RPS - MCOS Ltd		Page 4
Innishmore	Kerry Central	
Ballincollig	Recycling Facility	
Co Cork	Storm Sewer P2	
Date 29/08/2008	Designed By JO'C	DENDERE
File MGE0109WD0011D03.sws	Checked By	
Micro Drainage	System1 W.10.4	

M/Hole Number	Cover Level (m)	M/Hole Depth (m)	M/Hole Diam.,L*W (mm)	PN	Pipes Out IL.(m)	D (mm)	PN	Pipes In IL.(m)	D (mm)
S1	107.930	1.425	1050	1.000	106.505	225	-		
S2	108.130	1.797	1200	1.001	106.333	225	1.000	106.333	225
S3	109.830	1.425	1050	2.000	108.405	225			
S4	108.130	1.425	1050	3.000	106.705	225			
S5	108.830	2.578	1350	1.002	106.252	375	1.001 2.000 3.000	106.252 106.252 106.252	225 225 225
S6	108.230	1.425	1050	4.000	106.805	225			
. 57	108.330	2.120	1350	1.003	106.210	375	1.002 4.000	106.210 106.210	375 225
S8	108.130	1.977	1350	1.004	106.153	375	1.003	106.153	375
S9	108.130	1.500	1050	5.000	106.630	ner 1158-225 225			
S10	108.130	1.425	1050	6.000	106.705	ner 225			
<i>S</i> 11	108.130	2.160	1350	1.005	105,970 105,970 106,705 105,927	450	1.004 5.000 6.000	105.970 105.970 105.970	375 225 225
S12	108.130	1.425	1050	7.000	Red 106.705	225			
S13	108.130	2.203	1500	1 000 000	105.927	525	1.005 7.000	105.927 105.927	450 225
S14	108.130	1.425	1050	8.000	106.705	225			
S 15	108.130	2.235	1500	1.007	105.895	525	1.006 8.000	105.895 105.895	525 225
S1 6	108.130	2.341	CONS01500	1.008	105.789	525	1.007	105.789	525
S17	108.130	2.447	1500	1.009	105.683	525	1.008	105.683	525
S18	108.030	2.379	0		OUTFALL		1.009	105.651	525

MANHOLE SCHEDULES

(c)1982-2006 Micro Drainage

RPS - MCOS Ltd Innishmore Ballincollig	Kerry Central Recycling Facility	
Co Cork Date 29/08/2008 File MGE0109WD0012D02.sws	Storm Sewer P3 Designed By JO'C Checked By	Draffiace
Micro Drainage	System1 W.10.4	
<u>STORM S</u>	EWER DESIGN by the Modified Rationa	ai <u>Method</u>
	<u>Global Variables</u>	
	STANDARD.PIP Manhole Size Fi	
Return Period (years) M5-60 (mm) Ratio R Maximum Rainfall (mm/hr) Foul Sewage (l/s/ha) O'flow Setting (*Foul only Volumetric Runoff Coeff. Infiltration % Minimum Backdrop Height (m	1 Depth from So 15.300 Min Vel. (m/s - A 0.240 Min Slope (1:X 50 Minimum Ou 0.00 Ground Leve) 0 Outf 0.75 Outfall Manhole 0 Outfall Mar	ffit to G.L. (m) 1.200
	Designed with Level Inverts	
	Network Design Table	
PN Length Fall (m) (m)	$(1,\bar{x})$ (ha) (ming) (1/a)	a) (mm) SECT (mm)
	19 693.6 1.199 4.00	.0 0.600 o 450
	Network Results Tables N	
PN Rain T.C. U	S/IL E.Area E.DWF Foul	Infil. Vel CAP Flow
(mm/hr) (mins) 1.000 36.9 4.3 10	(m) (ha) $(2/s)$ (1/s)	(1/s) (m/s) (1/s) (1/s) 0 0.76 122 120
Cc	Network Results Table of Other (m) (ha) product (k) (1/s) 06.480 101990 0 0 For instruction to instruction	
	(c)1982-2006 Micro Drainage	

Innishmore				Kerry Ce	entral			Pag		
Ballincollig				Recyclin	g Facility				A GROM	
Co Cork Date 29/08/2008				Storm S	ewer P3 d By JO'C					ų,
File MGE0109WD0	012D02.s	ws		Checked	By				<u>Lence</u>	L
Micro Drainage				System1	W.10.4					~
				PIPE	LINE SCHE	<u>DULES</u>				
				<u>U</u>	pstream Mar	<u>nhole</u>				
	PN	Hyd	Diam	MH No.		I.Level	Depth	MH DIAM.,	L*W	
	14	Sect	(mm)	mi no.	(m)	(m)	(m)	(mm)		
	1.000	0	450	S19	108.130	106.480	1.200		1350	
				Do	wnstream Ma	anhole				
		Length	Slope		C.Level	T.Level	Depth	MH DIAM.	. 1. *W	
	PN	(m)	(1:X)	MH No.	(m)	(m)	(m)	(mm)	
	1.000	12.85	693.6	S.Tank	108.330	106.461	1.419)	0	
		•								
							150.			
						the	ут Г			
						19:00 or				
					ection purposes	offorat				
					.00 ⁵⁰⁷	edt				
					Dill collin					
					ction ner '					
				.05	NOT OT					
				FOLIN	Ś.					
				, ⁵ 05,						
				NOT						
			- 1	Sent Or						
			C ^O							
							•			

RPS - MCOS Ltd	· · · · · · · · · · · · · · · · · · ·	Page 3
Innishmore Ballincollig	Kerry Central Recycling Facility	
Co Cork	Storm Sewer P3	
Date 29/08/2008	Designed By JO'C	DETREPORT
File MGE0109WD0012D02.sws	Checked By	
Micro Drainage	System1 W.10.4	

MANHOLE	SCHEDULES
-	

M/Hole Number	Cover Level (m)	M/Hole Depth (m)	M/Hole Diam.,L*W (mm)	PN	Pipes Out IL.(m)	D (mm)	PN	Pipes In IL.(m)	D (mm)
	108.130	1.650	1350	1.000	106.480	450			
S.Tank	108.330	1.869	0		OUTFALL		1.000	106.461	450

Consent of copyright owner required for any other use.

APPENDIX Esternee APPENDIX Esternee Bypass Separation Specification Sheet

Bypass Separator

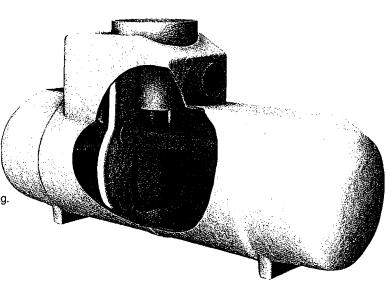
NSBD Range

Application

Bypass separatörs are used when it is considered an acceptable risk not to provide full treatment, for very high flows, and are used, for example, where the risk of a large spillage and heavy rainfall occurring at the same time is small, e.g.

- Surface car parks
- Roadways
- Lightly contaminated commercial areas

Performance


Klargester are the first UK manufacturer to have separators tested to EN 858-1. Klargester have now added the NSBD bypass range to their portfolio of certified and tested models. The NSBD number denotes the maximum flow at which the separator treats liquids. The British Standards Institute (BSI) tested the required range of Klargester full retention separators and certified their performance in relation to their flow and process performance assessing the effluent qualities to the requirements of BS EN 858-1. Klargester bypass separator designs follow the parameters determined during the testing of the required range of bypass separators.

Each bypass separator design includes the necessary volume requirements for:

- Oil separation capacity
- Oil storage volume
- Silt storage capacity
- Coalescer

The unit is designed to treat 10% of peak flow. The calculated according drainage areas served by each separator are indicated according to the formula given by PPG3 NSBD = 0.0018A(m²). Flows generated by higher rainfall rates will pass through part of the separator and bypass the main separation chamber.

Class I separators are designed to achieve a soncentration of 5mg/litre of oil under standard test conditions.

Class II separators are designed to achieve a concentration of 100mg/litre of oil under standard test conditions.

Features

- Light and easy to install
- Class I and Class II designs
- Inclusive of silt storage volume
- Fitted inlet/outlet connectors
- Vent points within necks
- Oil alarmsystem available (required by BS EN 858-1 and PPG3)
- Extension access shafts for deep inverts
- Maintenance from ground level

No specify a nominal size Bypass Separator, the following information is needed:-

- The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the flow is not pumped
- The required discharge standard. This will decide whether a Class I or Class II unit is required
- The drain invert inlet depth
- Pipework type, size and orientation

	Nominal Size	Flow (Vs)	Peak Flów Rate (l/s)	Drainage Area (m²) PPG3 (0.0018)	Silt Storage Capacity Litres	Storage	Length	Dia.	Access Shaft Diameter	Base to Inlet	Base to Outlet Invert	Standard Fall Across Unit	Min. Inlet Invert	Standard Pipework Diameter
	NSBD3	3	30	1670	300	45	1765	1225	750	1450	1350	100	500	160
	NSBD4	4.5	45	2500	450	68	1765	1225	750	1450	1350	100	500	200
ſ	NSBD6	6 [~]	60	3335 <i>j</i> /	600	90	1765	1225	750	1450	1350	100	500	200
	NSBD8	8	80	4445	800	120	3065	1225	750	1450	1350	100	500	250
	NSBD10	10	100	5560	1000	150	3065	1225	750	1450	1350	100	500	315
	NSBD12	12	120	6670	1200	180	3915	1225	750	1450	1350	100	500	315
-	- NSBD15	15	150	8335	1500	225	3915	1225	750	1450	1350	100	500	315
	NSBD18	18	180	10000	1800	270	3200	2012	600	2110	2010	100	1000	375
	NSBD24	24	240	13340	2400	360	3200	2012	600	2110	2010	、100	1000	375
	NSBD30	30	300	16670	3000	450	3915	2012	600	2110	2010	100	1000	450
	NSBD36	36	360	20000	3600	540	3915	2012	600	2110	2010	100	1000	525
- -	NSBD55 .	55	550	30560	5500	825	5085	2820	600	2310	2060	250	1000	600
[NSBD72	72	720	40000	7200	1080	5820	2820	600	2310	2060	250	1000	675
+	NSBD84	84	840	46670	8400	1260	6200	2820	600	2310	2010	300	1000	750
	NSBD96	96	960	53340	9600	1440	7375	2820	600	2310	2010	300	1000	825
	NSBD110	110	1100	61110	11000	1650	7925	2820	600	2360	2010	350	1000	825
	NSBD130	130	1300	72225	13000	1950	8725	2820	600	2360	2010	350	1000	825

Sizes & Specifications:

.

Extreme Rainfall Return Periods

Tralee Location: Average Annual Rainfall: 1224

Maximum rainfall (mm) of indicated duration expected in the indicated return period.

	Return Period (years)													
Duration	1/2	1	2	5	10	20	50	100	30					
1 min				1.6	1.8	2.1	2.5	othe2.9	2.3					
2 min				2.7	3.1	3.6	4.4	any 5.0	3.9					
5 min				4.8	5.5	6.5	S.8.00	9.1	7.1					
10 min				6.9	8.0	9.4	NITU Life 8	13.5	10.4					
15 min	4.5	5.6	6.2	8.3	10.1	12.00	2 15.1	18	13.3					
30 min	6.3	7.7	8.6	11.4	13.7	16.20	20	23	17.9					
60 min	8.6	10.4	11.6	15.3	18.2	FOT 122	27	31	24					
2 hour	11.5	14.0	15.4	19.8	23	ر ^{کړې} 27	33	38	29					
4 hour	16.7	19.9	21.6	27	32	× ^{or} 36	43	49	39					
6 hour	20.5	24.2	26	33	32 38	43	51	58	46					
12 hour	27.5	32	35	44	50	57	66	75	61					
24 hour	34	40	44	54	61	69	80	90	74					
48 hour	43	51	55	67	75	85	98	110	90					

Notes:	Larger margins of error for	1, 2 ,5 and 1	10 minute values and for 100 year return periods
	M560: 15.3	M52d: 63	M560/m52d: 0.24

M52d: 63 M560/m52d: 0.24

Project Name: Development at Scart Cross, Farranfore Project No.: MGE0109 - Attenuation Pond

INPUT PARAMETERS:

Total Impermeable Area :	3.86 ha	
Total Area :	4.86 ha	
Greenfield Runoff:	23.51 l/s/ha	
Greenfield runoff rate:	90.66 l/s	
Additional runoff (base flow):	0.00 l/s	
Volume Out (Greenfield+baseflow):	90.66 l/s =	0.0907 cu.m/s

STORAGE VOLUME CALCULATION

Storm Duration		10 Year RP			20 Year RP			30 Year RP					
Min.	Second	Rainfall	V _{iN} (m ³)	V _{Out}	Storage	Rainfall	V _{iN} (m ³)	V _{Out}	Storage	Rainfall	V _{iN} (m ³)	V _{out}	Storage
		(mm)		(m ³)	(m ³)	(mm)		(m ³).	(m ³)	(mm)		(m ³)	(m ³)
1 min	60	1.8	69.05	5.44	63.61	2.1	80.43	5.44	74.99	2.3	87.78	5.44	82.34
2 min	120	3.1	118.38	10.88	107.50	3.6	138.38	0.88	127.50	3.9	151.34	10.88	140.46
5 min	300	5.5	213.01	27.20	185.81	6.5	250.26	27.20	223.06	7.1	274.48	27.20	247.28
10 min	600	8.0	306.96	54.40	252.57	9.4	363.77	54.40	309.37	10.4	400.95	54.40	346.55
15 min	900	10.1	388.09	81.59	306.50	12.0	463.23	81.59	381.64	13.3	512.69	81.59	431.10
30 min	1800	13.7	526.86	163.19	363.68	16.2	629.85	163.19	462.66	17.9	688.81	163.19	525.63
60 min	3600	18.2	701.39	326.37	375.02	21.5	829.77	326.37	503.40	23.6	910.06	326.37	583.68
2 hour	7200	23.3	896.69	652.75	243.94	27.0	040.84	652.75	388.09	29.4	1,133.21	652.75	480.47
4 hour	14400	31.6	1,218.58	1,305.49	-86.92	36.05	1,386.83	1,305.49	81.34	38.9	1,500.76	1,305.49	195.27
6 hour	21600	37.8	1,459.24	1,958.24	-499.00	43.1	1,662.48	1,958.24	-295.76	46.4	1,789.85	1,958.24	-168.40
12 hour	43200	49.6	1,913.92	3,916.48	-2002.56	\$56.5	2,180.67	3,916.48	-1735.81	60.6	2,336.26	3,916.48	-1580.22
24 hour	86400	60.8	2,346.47	7,832.96	-5486.49	68.8	2,654.26	7,832.96	-5178.71	73.6	2,837.37	7,832.96	-4995.59
48 hour	172800	75.4	2,908.40	15,665.92	-12757.52	84.7	3,265.83	15,665.92	-12400.09	90.3	3,483.20	15,665.92	-12182.72

RPS Consulting Engineers, Lyrr Building, IDA Business & Technology Park, Mervue, Galway, Ireland T +353 (0)91 534 100 F +353 (0)91 534 199 E ireland@rpsgroup.com W www.rpsgroup.com/ireland

Kerry County Council, Planning Department, County Buildings, Rathass, Tralee, Co. Kerry

6th November 2008

Our Ref: MGE0109LT0014GAL File Ref: 311

Re: Notice to Planning Authority Kerry Central Recycling Facility Ltd - Waste Licence Application

Dear Sir/Madam,

In accordance with Article 9 of the Waste Management (Licensing) Regulations 2004, Killarney Central Recycling Facility Ltd wish to notify the Planning Authority, Kerry County Council that a Waste Licence Application will be submitted to the Environmental Protection Agency (EPA) within two weeks from the date of advertisement in the Irish Times dated 6th November 2008.

Permission is being sought for the development of a Materials Recovery Facility building at this site to process 95,000 tormes per annum of non-hazardous waste. It is also proposed to construct an office building, a Public Recycling Centre, an internal access road and associated site works.

Please find attached the required notice in accordance with Article 9 of the Waste Management (Licensing) Regulations 2004 and a copy of the newspaper advertisement

The planning reference number for the facility is 08/2415.

Yours sincerely,

n Glynn

Siobhan Glynn Senior Scientist For RPS Consulting Engineers

sa/wm