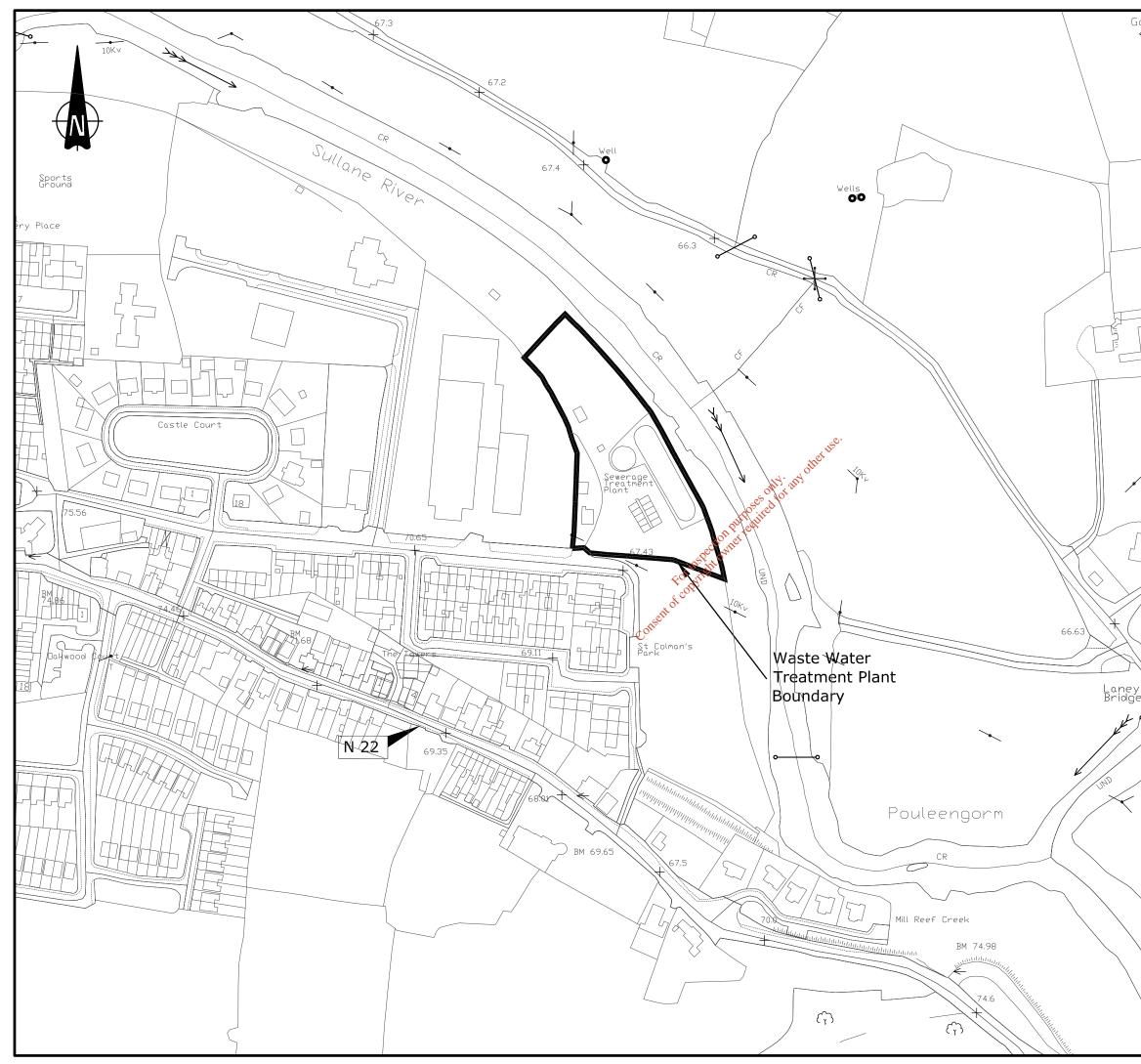
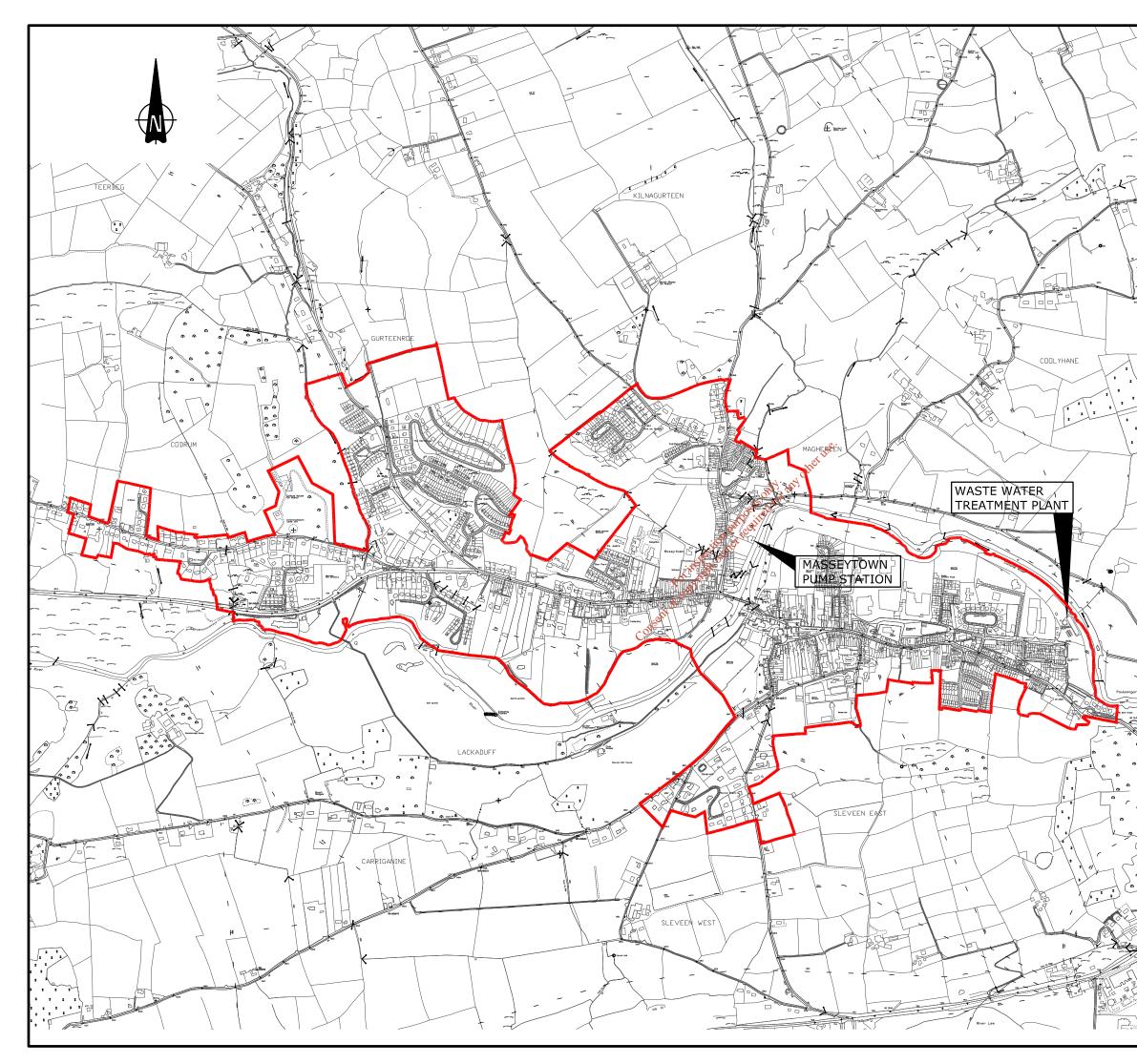

|           | Attachments Table of Contents                                                                                                                                                                                                   | Text  | Tables   | Maps | Drawings |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|------|----------|
| A.1       | Non-Technical Summary: Supporting Information                                                                                                                                                                                   |       |          | 1    | 1        |
| B.1       | Agglomeration Boundary Served by the WWTP                                                                                                                                                                                       |       |          | 1    |          |
| B.2       | Location and Site Plan of Waste Water Treatment Plant                                                                                                                                                                           |       |          | 1    |          |
| в.з       | Location of Primary Discharge Point                                                                                                                                                                                             |       |          | 1    |          |
| B.4       | Location of Secondary Discharge Point                                                                                                                                                                                           |       |          | 1    |          |
| B.5       | Location of Storm Water Overflow Point                                                                                                                                                                                          |       |          | 1    |          |
| B.6       | Planning Authority: Recent Planning Permission and EIS                                                                                                                                                                          | n/a   | n/a      | n/a  | n/a      |
| B.7 (i)   | Discharges located within SFADCO                                                                                                                                                                                                | n/a   | n/a      | n/a  | n/a      |
| B.7 (iii) | Notice issued to the relevant Local Authority                                                                                                                                                                                   | n/a   | n/a      | n/a  | n/a      |
| B.8       | Copy of Site Notice & drawing showing its location                                                                                                                                                                              | 1     |          | 1    |          |
| B.9       | Fees                                                                                                                                                                                                                            | 1     |          |      |          |
| B.10      | Development Programme (WSIP Funding)                                                                                                                                                                                            | 1     |          |      |          |
| B.11      | Significant Correspondence issued in Relation to a Section 63 Notice                                                                                                                                                            | . n/a | n/a      | n/a  | n/a      |
| B.12      | Foreshore Act Licence Details     Operational Information Requirements     Optimization                                                                                                                                         | n/a   | n/a      | n/a  | n/a      |
| C.1       | Operational Information Requirements                                                                                                                                                                                            | ,     | , -      | , .  | 2        |
| C.2       | Outfall Design and Construction                                                                                                                                                                                                 |       |          |      | 1        |
| D.1       | Operational Information Requirements     Output       Outfall Design and Construction     Discharges to Surface Waters                                                                                                          |       | 8        |      | -        |
| D.2       | Operational Information Requirements     only and       Outfall Design and Construction     oses of formation       Discharges to Surface Waters     owner formation       Tabular Data on Discharge Points     owner formation |       | 1        |      | -        |
| E.1       | Waste Water Discharge Frequency and Quantities – Existing & Proposed                                                                                                                                                            |       | 2        |      | -        |
| E.2.      | Monitoring and Sampling Points                                                                                                                                                                                                  |       | 2        | 1    | -        |
| E.2.      | External Laboratory Scope and Accreditation (Euro Labs)                                                                                                                                                                         | 5     |          | -    | -        |
|           | Inniscarra Accreditation                                                                                                                                                                                                        |       |          |      | -        |
| E.2.      |                                                                                                                                                                                                                                 | 7     | <u> </u> |      | -        |
| E.3.      | Tabular data on Monitoring and Sampling Points                                                                                                                                                                                  |       | 1        |      | -        |
| E.4       | Sampling Data                                                                                                                                                                                                                   |       | 5        |      | -        |
| F.1.      | Tables F.1 Surface Water Monitoring                                                                                                                                                                                             |       | 6        |      | -        |
| F.1.      | Ecological Scoping and Constraints Report                                                                                                                                                                                       | 30    |          |      | -        |
| F.1.      | Hydrometric Data from Station 19031                                                                                                                                                                                             |       | 1        |      | -        |
| F.2       | Tabular Data on Drinking Water Abstraction Point                                                                                                                                                                                |       | 1        |      |          |
| F.2       | Inniscarra Cryptosporidium Risk Assessment<br>Compliance with Council Directives: Most recent programme of                                                                                                                      |       | 16       |      |          |
| G.1       | improvements                                                                                                                                                                                                                    | 1     | -        |      |          |
| G.2       | Compliance with Water Quality Standards for Phosphorus Regulations                                                                                                                                                              |       | 2        |      |          |
| G.3       | Impact Mitigation                                                                                                                                                                                                               | 1     |          |      |          |
| G.4       | Storm Water Overflow                                                                                                                                                                                                            | 1     |          |      |          |

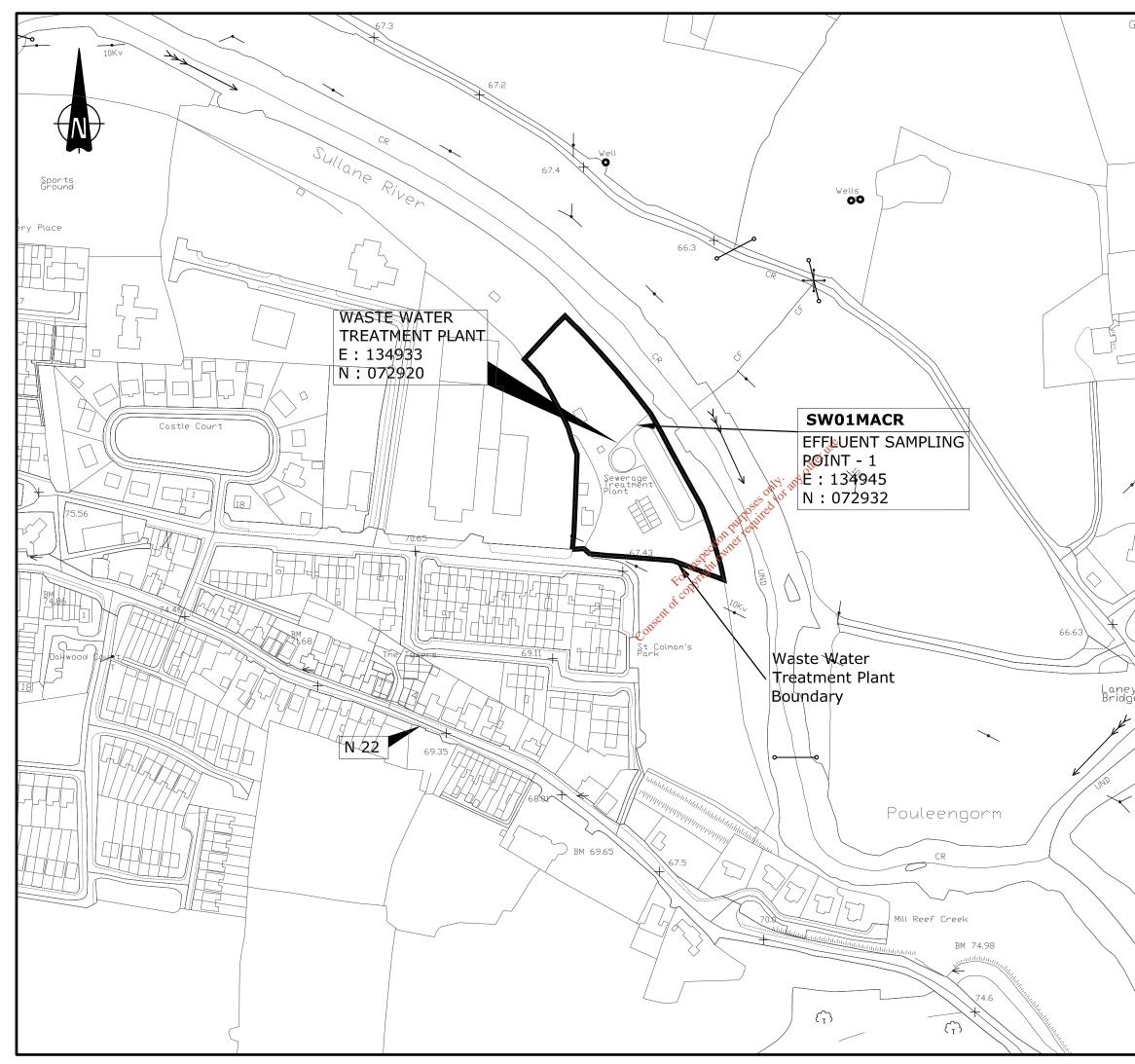



| NOTES: |
|--------|
|--------|

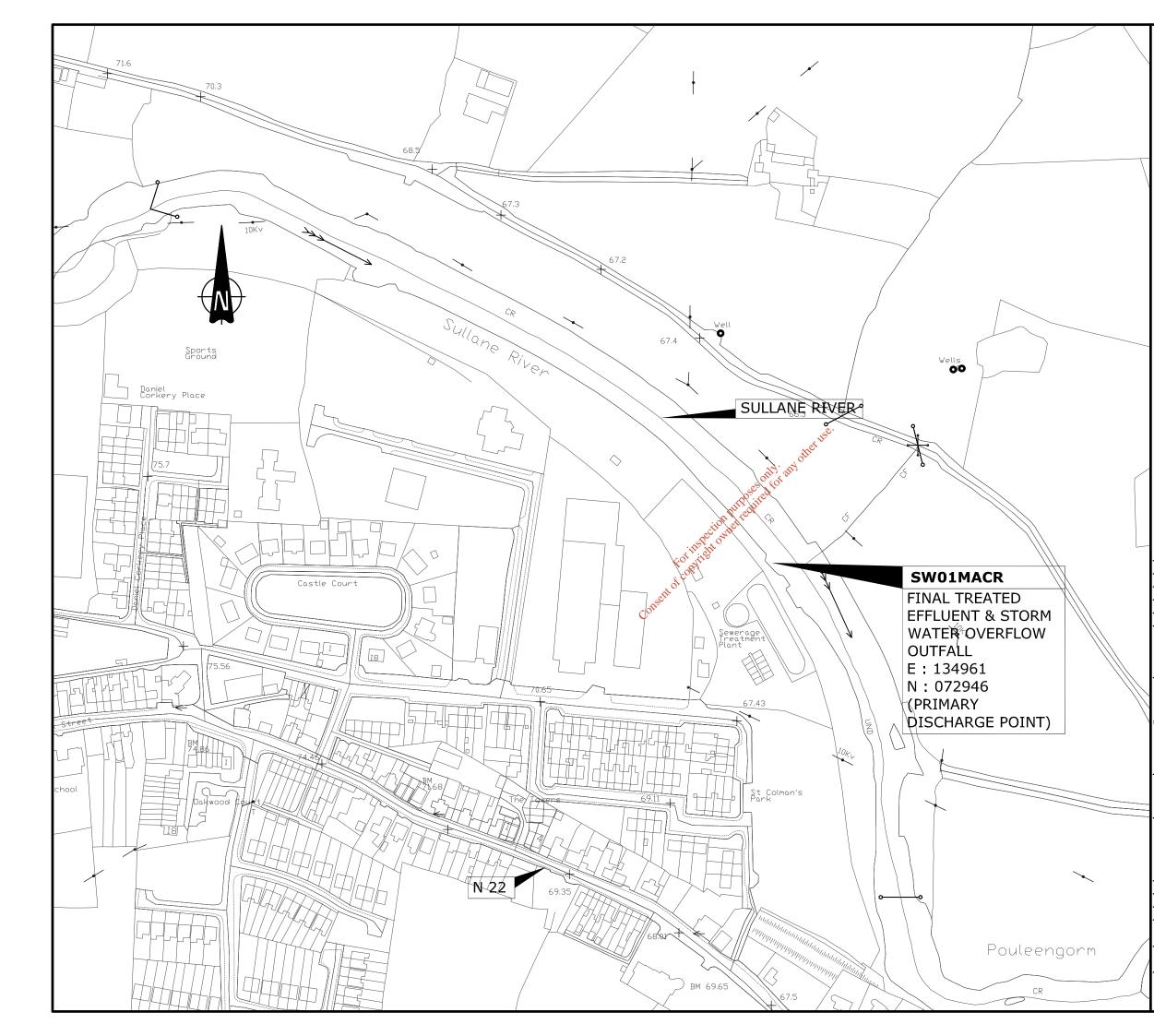
Figured dimensions only to be taken from this drawing. All dimensions to be checked on site.


| -     | -           | -     | -    | -    |
|-------|-------------|-------|------|------|
| Rev.  | Description | Drawn | Chkd | Date |
| Clien | t:          |       |      |      |

#### CORK COUNTY COUNCIL


| Client Representative: |            |            |                                  |                                                                                                                                                                                                        |  |  |  |
|------------------------|------------|------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                        | PART       | RY         | 3A<br>Litt<br>Irel<br>Pho<br>Fax | <ul> <li>Barry &amp; Partners Limited<br/>East Gate Road, Eastgate<br/>le Island, Co. Cork,<br/>and.</li> <li>me: +353-21-4524418</li> <li>: +353-21-4524419</li> <li>nail: cork@jbbarry.ie</li> </ul> |  |  |  |
| Project:               |            |            |                                  |                                                                                                                                                                                                        |  |  |  |
| MACR                   | OOM WW     | TP WASTE   | WA                               | TER                                                                                                                                                                                                    |  |  |  |
| DISCHA                 | ARGE LIC   | ENCE APPL  | _IC/                             | ATION                                                                                                                                                                                                  |  |  |  |
|                        |            |            |                                  |                                                                                                                                                                                                        |  |  |  |
| Drawing Title:         | APPLICA    | TION FOR   | М                                |                                                                                                                                                                                                        |  |  |  |
|                        | ATTACH     | 4ENT A1 -  | 01                               |                                                                                                                                                                                                        |  |  |  |
| Loca                   | ation Plan | of Waste   | Wat                              | ter                                                                                                                                                                                                    |  |  |  |
|                        |            | nent Plant |                                  |                                                                                                                                                                                                        |  |  |  |
| Drawn by:              | М.Н.       | Date:      | 1                                | 25.06.08                                                                                                                                                                                               |  |  |  |
| Checked by:            | B.A.       | Date:      | 2                                | 25.06.08                                                                                                                                                                                               |  |  |  |
| Approved by:           | R.K.       | Date:      | 2                                | 25.06.08                                                                                                                                                                                               |  |  |  |
| Scales:                | 1:2,5      | 00 @ A3    |                                  |                                                                                                                                                                                                        |  |  |  |
| Stage:                 | PREL       | IMINARY    |                                  |                                                                                                                                                                                                        |  |  |  |
| Drawing No.:           |            |            |                                  | Revision:                                                                                                                                                                                              |  |  |  |
|                        | A1 - 01    |            |                                  | _                                                                                                                                                                                                      |  |  |  |
|                        |            |            |                                  |                                                                                                                                                                                                        |  |  |  |




| allán                      |          |                  |           |                         |       |                    |                                    |
|----------------------------|----------|------------------|-----------|-------------------------|-------|--------------------|------------------------------------|
| ••                         | NC       | TES:             |           |                         |       |                    |                                    |
| 4                          | Fie      | urad             | dimonoio  | no only t               |       | . + al             | (a. 1)                             |
|                            | fro      | m thi            | s drawir  | ons only t              | .0 De |                    | ken                                |
| /                          |          | dimer            | nsions t  | o be che                | cked  | on                 | site.                              |
| /                          |          | u                |           |                         |       | •                  |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
| -14                        |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
| <u> </u>                   |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
| L                          |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
| 7 1-7                      |          |                  |           |                         |       |                    |                                    |
| $\lceil \mid \rceil$       |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
| Ц                          |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
| IE                         |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
| $\langle \rangle$          |          |                  |           |                         |       |                    |                                    |
| $\setminus$                |          |                  |           |                         |       |                    |                                    |
| \                          |          |                  |           |                         |       |                    |                                    |
| /                          |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
| $\neg$                     |          |                  |           |                         |       |                    |                                    |
| 4                          |          |                  |           |                         |       |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
| $\square$                  |          |                  |           |                         |       |                    |                                    |
| $\sim < <$                 |          |                  |           |                         |       |                    |                                    |
| $\langle \rangle$          |          | _                |           |                         | _     | +                  |                                    |
| $\mathbf{\mathbf{\nabla}}$ | <br>Rev. | -<br>Description | 1         |                         | Draw  | n Chkd             | <br>Date                           |
| Y                          | Clien    |                  |           |                         |       |                    |                                    |
| ///                        |          |                  |           | UNTY COU                | ΙΝΟΤΙ |                    |                                    |
| $\langle     \rangle$      |          |                  |           |                         | TUCIL |                    |                                    |
|                            |          |                  |           |                         |       |                    |                                    |
| R B                        | Clien    | t Repres         | entative: |                         |       |                    |                                    |
| X                          |          | ) T              | Ο Λ Τ     | DV                      | - J.E |                    | Partners Limited<br>Road, Eastgate |
| $\langle \rangle$          |          | l 🛓              | JAI       | RRY                     |       | le Island, C       |                                    |
|                            |          | 8                | z PAR     | TNERS                   |       | and.<br>ne: +353-2 | 21-4524418                         |
| /                          | c 0      | nsult            | ing •     | ngineers                | Fax   | : +353-2           | 21-4524419                         |
|                            |          |                  |           |                         | E-n   | nail: cork@        | jobarry.ie                         |
|                            | Proje    | ect:             |           |                         |       |                    |                                    |
|                            |          |                  |           | WTP WAST<br>CENCE API   |       |                    | . I                                |
|                            |          | 1001             |           |                         |       |                    | V                                  |
|                            | Draw     | ing Title:       |           |                         |       |                    |                                    |
|                            |          |                  |           | CATION FO               |       | -                  |                                    |
|                            |          | 1                |           | IENT A 1 -<br>on of WWT |       | T                  |                                    |
| $\backslash$               |          |                  | Locat     |                         | Г —   |                    |                                    |
| $\sim$                     |          | n by:            | М.Н.      | Date:                   |       | 25.06.0            |                                    |
|                            |          | ked by:          | B.A.      | Date:                   |       | 25.06.0            |                                    |
| R                          | -        | oved by:         | R.K.      | Date:                   | 2     | 25.06.0            | JØ                                 |
| $\backslash$               | Scale    | 95:              | 1:2       | ,500 @ A3               |       |                    |                                    |
| $\langle \rangle$          | Gł       |                  |           |                         |       |                    |                                    |
| $\langle \rangle$          | Stag     | <b>5.</b>        | PRE       | LIMINARY                |       |                    |                                    |
| $\setminus$                | Draw     | ing No.:         |           |                         |       | Revis              | ion:                               |
| $\setminus$                |          |                  | A1 - Ma   | p 1                     |       |                    | -                                  |
| $\backslash$               |          |                  |           |                         |       |                    |                                    |



|                       | NOTES:                                                                |               |        |                                                 |
|-----------------------|-----------------------------------------------------------------------|---------------|--------|-------------------------------------------------|
| $\langle$             | Figured dimensions only to from this drawing.                         |               |        |                                                 |
| $\checkmark$          | All dimensions to be chec                                             | ked           | on     | site.                                           |
|                       | LEGEND:                                                               |               |        |                                                 |
| 2 2                   | AGGLOMERATION<br>BOUNDARY                                             |               |        | -                                               |
|                       |                                                                       |               |        |                                                 |
|                       |                                                                       |               |        |                                                 |
|                       |                                                                       |               |        |                                                 |
|                       |                                                                       |               |        |                                                 |
|                       |                                                                       |               |        |                                                 |
| 7<br>7<br>7<br>7<br>7 |                                                                       |               |        |                                                 |
|                       |                                                                       |               |        |                                                 |
| $\langle$             |                                                                       |               |        |                                                 |
| 7                     |                                                                       |               |        |                                                 |
|                       |                                                                       | -             |        |                                                 |
|                       |                                                                       |               |        |                                                 |
| Ť                     |                                                                       |               |        |                                                 |
| \ l                   |                                                                       | -             | -      | -                                               |
| TC.                   | Rev. Description                                                      | Drawn         | Chkd   | Date                                            |
| E C                   | Client:<br>CORK COUNTY COUN                                           | ICIL          |        |                                                 |
| $\mathbb{N}$          | Client Representative:                                                |               |        |                                                 |
|                       | <b>BARRY</b>                                                          | 3A E          |        | Partners Limited<br>Road, Eastgate<br>Co. Cork, |
|                       | * <b>J</b> & PARTNERS                                                 | Irela<br>Phon |        | 21-4524418                                      |
| e                     | consulting engineers                                                  | Fax:          | +353-2 | 21-4524419<br>jbbarry.ie                        |
| e (e                  | Project:<br>MACROOM WWTP WASTE<br>DISCHARGE LICENCE APP               |               |        | N                                               |
| )<br>e<br>e           | Drawing Title:<br>APPLICATION FOR                                     |               |        |                                                 |
| ~ ~ ~ ~ ~ ~           | ATTACHMENT B.1:M<br>Agglomoration Boundary Serv<br>Water Treatment Wo | /ed t         | by W   | /aste                                           |
| 7                     | Drawn by: M.H. Date:                                                  |               | 5.06.0 | 088                                             |
|                       | Checked by: B.A. Date:                                                |               | 5.06.0 |                                                 |
| 128                   | Approved by: R.K. Date:                                               | 2             | 5.06.0 | 08                                              |
|                       | Scales: 1:12,500 @ A3                                                 |               |        |                                                 |
|                       | Stage: PRELIMINARY                                                    |               |        |                                                 |
|                       | Map No.:<br>B1:Map2                                                   |               | Revis  | ion:<br>—                                       |
|                       |                                                                       |               |        |                                                 |



| allán                  |           |              | _            |         |       |           |            |                        |                                    |
|------------------------|-----------|--------------|--------------|---------|-------|-----------|------------|------------------------|------------------------------------|
| ÷                      | <u>NC</u> | DTE          | <u>S:</u>    |         |       |           |            |                        |                                    |
|                        | Fig       | ure          | d d          | imer    | nsion | s only    | to b       | e tal                  | ken                                |
|                        | fro       | m            | this         | dra     | wing  | •         |            |                        |                                    |
| /                      | All       | dir          | nen          | sions   | s to  | be che    | ecked      | on                     | site.                              |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
| <u> </u>               |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
| L                      |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
| Γης                    |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
| YF                     |           |              |              |         |       |           |            |                        |                                    |
| IF                     |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
| $\setminus$            |           |              |              |         |       |           |            |                        |                                    |
| ,                      |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
| _                      |           |              |              |         |       |           |            |                        |                                    |
| $\neg$                 |           |              |              |         |       |           |            |                        |                                    |
| 4                      |           |              |              |         |       |           |            |                        |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
| $\square$              |           |              |              |         |       |           |            |                        |                                    |
| $\sim \langle \langle$ |           |              |              |         |       |           |            | _                      |                                    |
|                        | _         | -            |              |         |       |           |            | -                      | -                                  |
| $\mathbf{X}$           | Rev.      | Descr        | ription      |         |       |           | Drav       | n Chkd                 | Date                               |
| X                      | Clien     | it:          |              |         |       |           | •          |                        |                                    |
|                        |           |              | С            | ORK     | COU   | NTY COU   | JNCII      | _                      |                                    |
|                        |           |              |              |         |       |           |            |                        |                                    |
|                        | Clien     | nt Rei       | prese        | ntative | :     |           |            |                        |                                    |
| R P                    |           |              |              |         |       |           | -          | D Down P               | Portners Lines                     |
| $\left  \right\rangle$ |           |              | F            | S A     | ΛR    | RY        | y J.<br>3⊉ | East Gate              | Partners Limited<br>Road, Eastgate |
| िष्ठे                  |           |              |              |         |       |           | τ          | tle Island, C<br>land. | Co. Cork,                          |
|                        |           |              |              |         |       | NERS      | PD         |                        | 21-4524418<br>21-4524419           |
| ·                      | e 0       | . 51         |              |         | • 1 ( | , in eer  |            | x: +353<br>nail: cork@ |                                    |
|                        | Proje     | ect:         |              |         |       |           |            |                        |                                    |
|                        |           | Μ            |              |         |       | TP WAS    |            |                        |                                    |
|                        |           | DI           | SCH          | ARG     | ELIC  | ENCE AF   | PLIC       | ATIO                   | N                                  |
|                        | Draw      | ing 1        | itle:        |         |       | TION FC   |            |                        |                                    |
|                        |           |              | Δ            |         |       | NT B.2    |            | 3                      |                                    |
|                        |           |              |              |         |       | of Wast   |            |                        |                                    |
| $\backslash$           |           |              | 2            |         |       | nent Plar |            |                        |                                    |
|                        |           | n by         |              | M.ł     |       | Date:     |            | 25.06.0                |                                    |
|                        |           | ked .        | -            | B.A     |       | Date:     |            | 25.06.0                |                                    |
| R                      |           | oved         | by:          | R.M     |       | Date:     |            | 25.06.0                | 79                                 |
| $\backslash$           | Scal      | 8 <b>5</b> : |              | -       | 1:2,5 | 00 @ A3   | 3          |                        |                                    |
| $\langle \rangle$      | Stag      | e:           |              |         |       | (MINARY   | ,          |                        |                                    |
| $\langle \rangle$      |           |              |              |         | rkel. | UTINAKI   |            |                        |                                    |
|                        | Draw      | ing 1        | <b>١</b> ٥.: |         |       |           |            | Revis                  | ion:                               |
| $\setminus$            |           |              |              | B2-I    | Мар3  |           |            |                        | -                                  |
| \                      |           |              |              |         |       |           |            |                        |                                    |



| <u>NOTES:</u> |
|---------------|
|---------------|

Figured dimensions only to be taken from this drawing. All dimensions to be checked on site.

| -     | -           | -     | -    | -    |
|-------|-------------|-------|------|------|
| Rev.  | Description | Drawn | Chkd | Date |
| Clien | t:          |       |      |      |

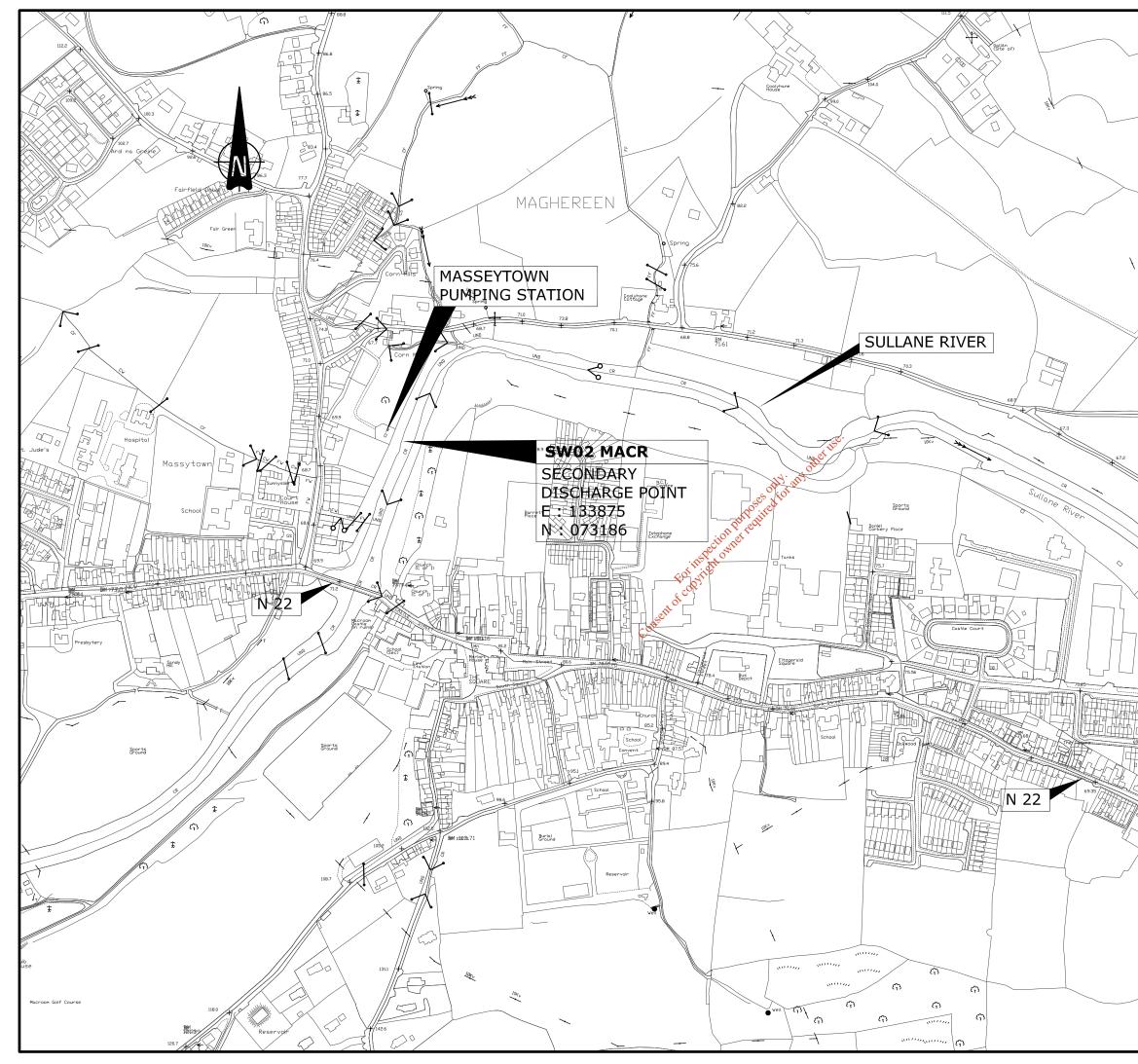
#### CORK COUNTY COUNCIL

Client Representative:

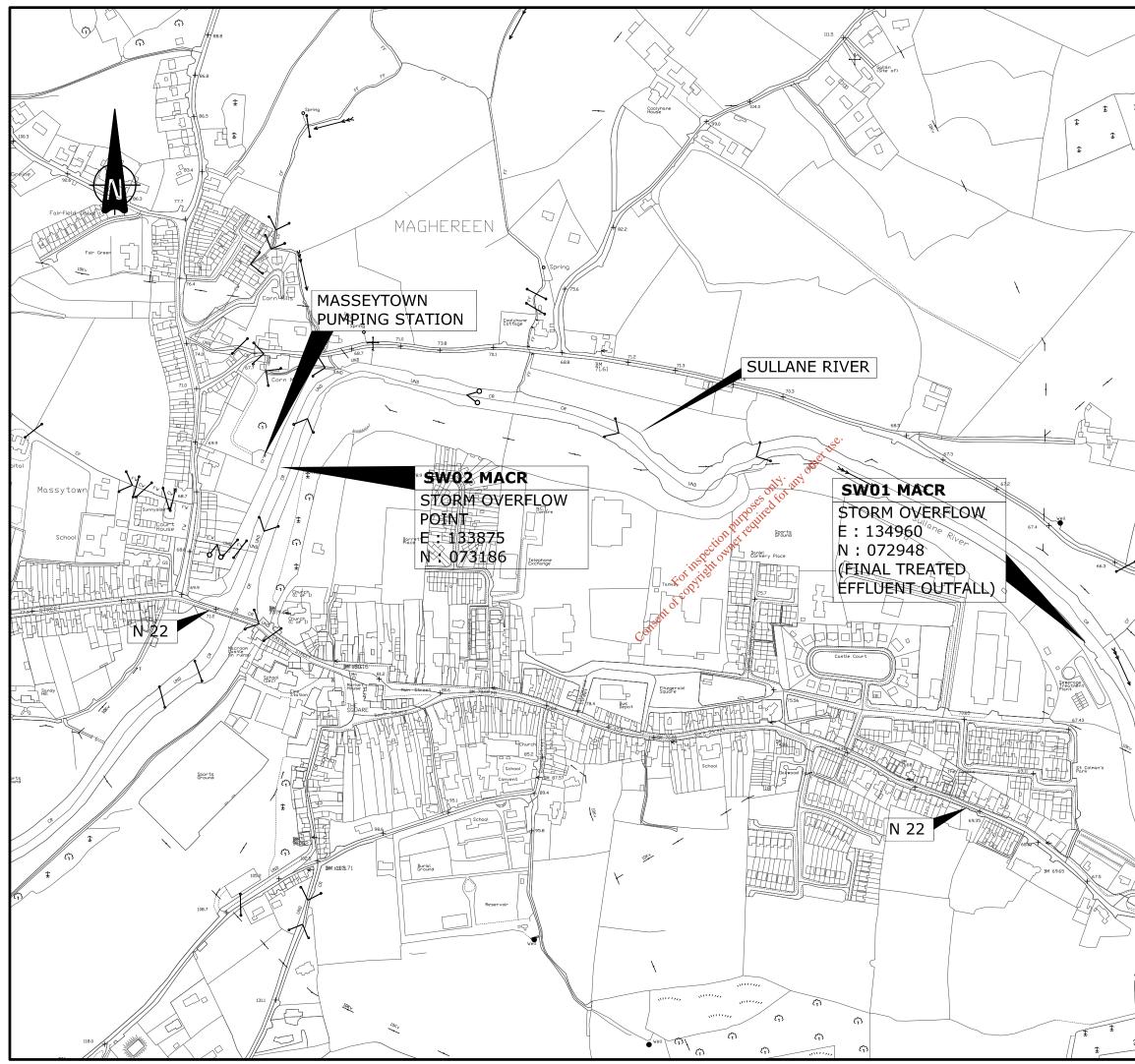


J. B. Barry & Partners Limi 3A East Gate Road, Eastgate Little Island, Co. Cork, Ireland.

E-mail: cork@jbbarry.ie


# Project: MACROOM WWTP WASTE WATER DISCHARGE LICENCE APPLICATION

Drawing Title: APPLICATION FORM ATTACHMENT B.3 - Map4


### Location of Primary Discharge Point

| Drawn by:    | м.н.  | Date:    | 25.06.08  |
|--------------|-------|----------|-----------|
| Checked by:  | B.A.  | Date:    | 25.06.08  |
| Approved by: | R.K.  | Date:    | 25.06.08  |
| Scales:      | 1:2,5 | 500 @ A3 |           |
| Stage:       | PREL  | IMINARY  |           |
| Drawing No.: |       |          | Revision: |

B3 - Map4



|                           | NOTES:<br>Figured dimensions only to<br>from this drawing.<br>All dimensions to be check                    |                                  |                                               |                          |
|---------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------|--------------------------|
| $\langle \rangle \rangle$ |                                                                                                             |                                  |                                               |                          |
| $\searrow$                |                                                                                                             | i                                | -                                             |                          |
| $\langle \rangle$         |                                                                                                             |                                  | -                                             | <u> </u>                 |
| $\backslash$              |                                                                                                             |                                  |                                               |                          |
| 10                        |                                                                                                             | -                                | -                                             | -                        |
|                           | Rev. Description Client:                                                                                    | Draw                             | h Chkd                                        | Date                     |
|                           | CORK COUNTY COUN                                                                                            | CIL                              |                                               |                          |
|                           | Client Representative:<br>BARRY<br>& PARTNERS                                                               | 3A Littl<br>Irela<br>Pho<br>Fax: | East Gate<br>e Island, C<br>md.<br>ne: +353-1 | 21-4524418<br>21-4524419 |
| BN 69.6                   | Project:<br>MACROOM WWTP WASTE<br>DISCHARGE LICENCE APPL                                                    |                                  |                                               | N                        |
| ×                         | Drawing Title: APPLICATION FORM<br>ATTACHMENT B.4 - M<br>Location of Secondary Discha<br>Masseytown Pumpsta | ap5<br>rge<br>tion               | Poir                                          |                          |
|                           | Drawn by: M.H. Date:                                                                                        |                                  | 5.06.0                                        |                          |
|                           | Checked by:         B.A.         Date:           Approved by:         R.K.         Date:                    |                                  | 25.06.0<br>25.06.0                            |                          |
|                           | Scales: 1:5,000 @ A3                                                                                        |                                  |                                               |                          |
|                           | Stage: PRELIMINARY                                                                                          |                                  |                                               |                          |
|                           | Drawing No.:<br>B4-Map5                                                                                     |                                  | Revis                                         | ion:<br>—                |
| /                         |                                                                                                             |                                  |                                               |                          |



| $\square$         | NOTEC                                            |       |                  |                                    |
|-------------------|--------------------------------------------------|-------|------------------|------------------------------------|
| - $+$             | NOTES:                                           |       |                  |                                    |
| $\setminus$       | Figured dimensions only to                       | be    | tal              | ken                                |
| Ŧ                 | from this drawing.<br>All dimensions to be check | ed    | on               | site                               |
|                   |                                                  | .cu   | 011              | 5100.                              |
| F                 |                                                  |       |                  |                                    |
| Ŧ                 |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
| /                 |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
| /                 |                                                  |       |                  |                                    |
| W                 |                                                  |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
| 38                |                                                  |       |                  |                                    |
| \$ • \            |                                                  |       |                  |                                    |
|                   |                                                  | -     | -                |                                    |
|                   | Rev. Description                                 | Drawn | Chkd             | Date                               |
|                   | Client:                                          |       |                  |                                    |
| $\backslash$      | CORK COUNTY COUN                                 | CIL   |                  |                                    |
| $\setminus$       |                                                  |       |                  |                                    |
|                   | Client Representative:                           |       |                  |                                    |
|                   | <b>BARRY</b>                                     |       |                  | Partners Limited<br>Road, Eastgate |
| 11-24             |                                                  |       | Island, C        |                                    |
| $\  ( \downarrow$ | & PARTNERS                                       | Phon  | e: +353-2        | 21-4524418                         |
|                   | consulting engineers                             |       |                  | 21-4524419<br>jbbarry.ie           |
| ( ) )             | Project:                                         |       |                  |                                    |
| \ <b> ++</b> +    | MACROOM WWTP WASTE                               |       |                  |                                    |
| $) \ ($           | DISCHARGE LICENCE APPL                           | -ICA  |                  | N                                  |
| $\leq ( )$        | Drawing Title:<br>APPLICATION FOR                | м     |                  |                                    |
|                   | ATTACHMENT B.5 - M                               |       |                  |                                    |
|                   | Location of Storm Wa                             | ter   |                  |                                    |
|                   | Overflow Points                                  |       | E 00 -           |                                    |
|                   | Drawn by: M.H. Date:<br>Checked by: B.A. Date:   |       | 5.06.0<br>5.06.0 |                                    |
| -<br>G            | Approved by: R.K. Date:                          |       | 5.06.0           |                                    |
|                   | Scales: 1:5,000 @ A3                             |       |                  |                                    |
|                   |                                                  |       |                  |                                    |
| ŝ                 | Stage: PRELIMINARY                               |       |                  |                                    |
| $\setminus$       | Map No.:                                         |       | Revis            | ion:                               |
| el m              | B5 - Map6                                        |       |                  | -                                  |
| `                 |                                                  |       |                  |                                    |



### CORK COUNTY COUNCIL SITE NOTICE

### APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Waste Water Discharge (Authorisation) Regulations 2007, Water Services Southern Division of Cork County Council, Carrigrohane Road, Cork is applying to the Environmental Protection Agency for a Waste Water Discharge Licence for the Agglomeration of Macroom at the following locations:

| Plant Name   | Location      | National Grid Ref. |
|--------------|---------------|--------------------|
| Macroom WWTP | Sleveen East, | E134933 N072920    |
|              | Macroom       | not W              |
|              |               | · ~ Oli            |

|           |           |            | 60.10         |                 |
|-----------|-----------|------------|---------------|-----------------|
| Discharge | Function  | Townland   | Receptor      | Grid Reference  |
| Primary   | Main      | Sleveen    | Sullane River | E134945 N072932 |
|           |           | East not   | eac           |                 |
| Secondary | Emergency | Masseytown | Sullane River | E133875 N073186 |
|           | Overflow  | at install |               |                 |
|           |           | to St.     |               |                 |

A copy of the application for the Waste Water Discharge Licence and such further information relating to the application as may be furnished to the Agency in the course of the Agency's consideration of the Application shall as soon as is practicable after receipt by the Agency be available for inspection or purchase at the

### • Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335599 Telephone: 053-9160600 Fax: 053-9160699 Email:info@epa.ie

and at

# • Cork County Council Offices, Water Services South, County Hall, Carrigrohane, Co. Cork, Telephone: 021-4276891 Fax: 021-4276321

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above.

### Cork County Council Southern Division

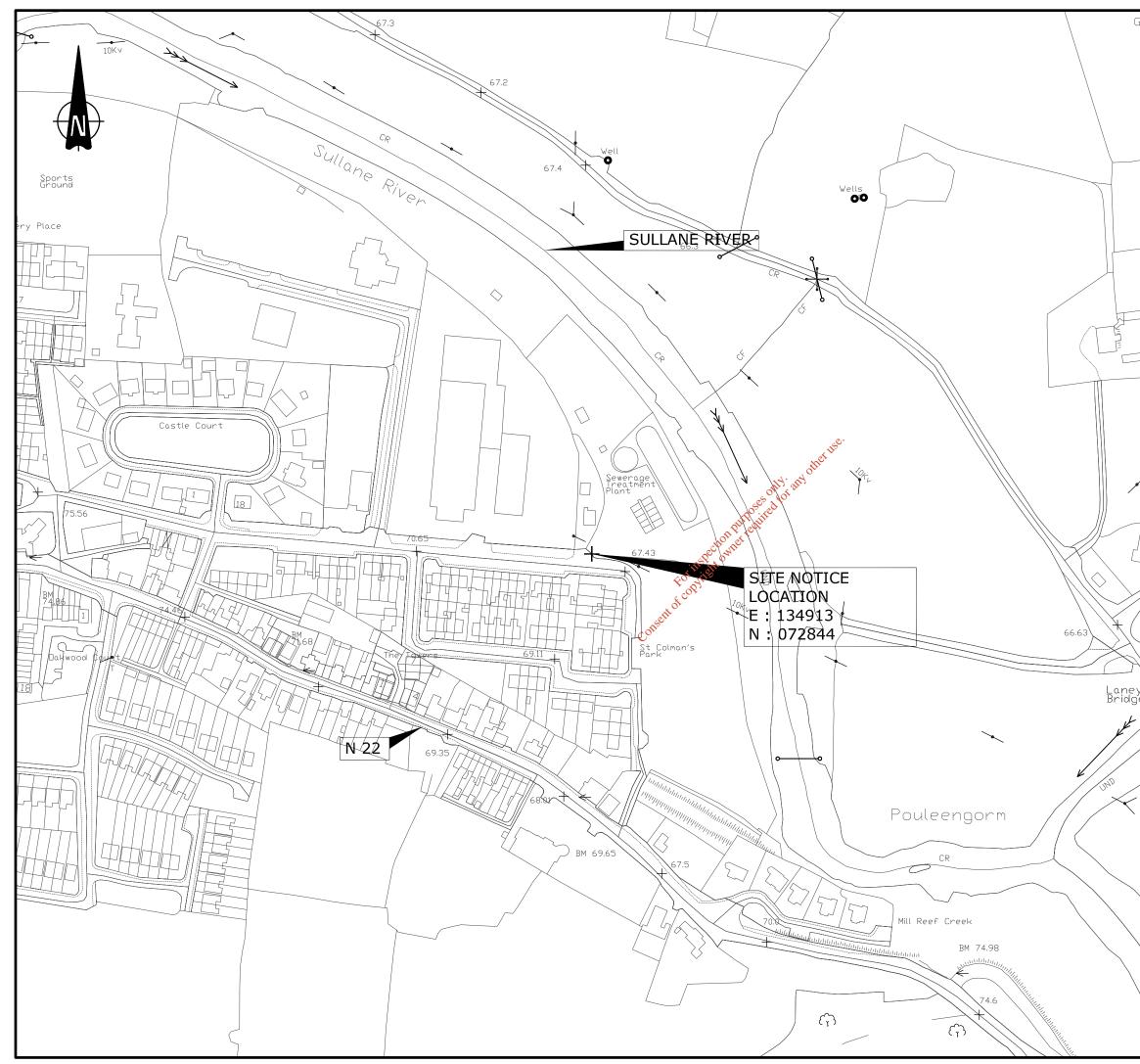
### APPLICATION TO THE ENVIRONMENTAL PROTECTION AGENCY FOR A WASTEWATER DISCHARGE LICENCE

In accordance with the Waste Water Discharge (Authorisation) Regulations 2007, Water Services Southern Division of Cork County Council, Carrigrohane Road, Cork is applying to the Environmental Protection Agency for a Waste Water Discharge Licence for the Agglomeration of Macroom at the following locations:

| Plant Name   | Location                 | National Grid Ref. |
|--------------|--------------------------|--------------------|
| Macroom WWTP | Sleveen East,<br>Macroom | E134933 N072920    |

| Discharge | Function  | Townland   | Receptor       | Grid Reference  |
|-----------|-----------|------------|----------------|-----------------|
| Primary   | Main      | Sleveen    | Sullane River  | E134945 N072932 |
|           |           | East       | ces afor       |                 |
| Secondary | Emergency | Masseytown | Sullane River  | E133875 N073186 |
|           | Overflow  | ionpr      | 0 <sup>5</sup> |                 |

e.


A copy of the application for the Waste Water Discharge Licence and such further information relating to the application as may be furnished to the Agency in the course of the Agency's consideration of the Application shall as soon as is practicable after receipt by the Agency be available for inspection or purchase at the

### • Environmental Protection Agency, PO Box 3000, Johnstown Castle Estate, Co. Wexford, Lo Call 1890 335599 Telephone: 053-9160600 Fax: 053-9160699 Email:info@epa.ie

and at

# • Cork County Council Offices, Water Services South, County Hall, Carrigrohane, Co. Cork, Telephone: 021-4276891 Fax: 021-4276321.

Submissions in relation to the application may be made to the Environmental Protection Agency at its headquarters described above



| iallán                                                                               |                                                 |              |                    |                                    |
|--------------------------------------------------------------------------------------|-------------------------------------------------|--------------|--------------------|------------------------------------|
| •                                                                                    | NOTES:                                          |              |                    |                                    |
| ł                                                                                    |                                                 |              |                    |                                    |
|                                                                                      | Figured dimensions only to                      | be           | e tal              | ken                                |
|                                                                                      | from this drawing.<br>All dimensions to be chec | kod          | on                 | site                               |
|                                                                                      | All differisions to be chec                     | ĸeu          | 011                | SILE.                              |
|                                                                                      |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
| <u> </u>                                                                             |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
| L                                                                                    |                                                 |              |                    |                                    |
| C                                                                                    |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
| JM                                                                                   |                                                 |              |                    |                                    |
| $\lceil    angle$                                                                    |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
| T                                                                                    |                                                 |              |                    |                                    |
| $\overline{}$                                                                        |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
| $\langle \rangle$                                                                    |                                                 |              |                    |                                    |
| $\setminus$                                                                          |                                                 |              |                    |                                    |
| \                                                                                    |                                                 |              |                    |                                    |
| /                                                                                    |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
| ~                                                                                    |                                                 |              |                    |                                    |
| $\Box$                                                                               |                                                 |              |                    |                                    |
| 4                                                                                    |                                                 |              |                    |                                    |
|                                                                                      |                                                 |              |                    |                                    |
| $\square$                                                                            |                                                 |              |                    |                                    |
| $\sim \langle \langle \rangle$                                                       |                                                 | _            |                    |                                    |
|                                                                                      |                                                 | -            | -                  |                                    |
| $\langle \rangle$                                                                    | Rev. Description                                | Draw         | h Chkd             | Date                               |
| X                                                                                    | Client:                                         | •            |                    |                                    |
| ///                                                                                  | CORK COUNTY COUN                                | ICII         |                    |                                    |
| $/ \parallel \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                                 |              |                    |                                    |
|                                                                                      | Client Bennesstation                            |              |                    |                                    |
| K P                                                                                  | Client Representative:                          |              |                    |                                    |
| X                                                                                    | <b>BARRY</b>                                    |              |                    | Partners Limited<br>Road, Eastgate |
| <                                                                                    |                                                 | Litt         | e Island, C        |                                    |
|                                                                                      | & PARTNERS                                      | Irela<br>Pho |                    | 1-4524418                          |
| /                                                                                    | consulting engineers                            | Fax          |                    | 1-4524419                          |
|                                                                                      |                                                 | 2-0          | torn@              |                                    |
|                                                                                      | Project:<br>MACROOM WWTP WASTE                  | : \//        | TEP                |                                    |
|                                                                                      | DISCHARGE LICENCE APP                           |              |                    | N                                  |
|                                                                                      |                                                 |              | -                  |                                    |
|                                                                                      | Drawing Title:                                  | וארי         |                    | 。                                  |
|                                                                                      | APPLICATION FORM ATTACH<br>Map7                 | INE          | лıВ                | .o -                               |
|                                                                                      | Location of Site Not                            | ice          |                    |                                    |
|                                                                                      |                                                 |              | E 00               |                                    |
| $\sim$                                                                               | Drawn by: M.H. Date:<br>Checked by: B.A. Date:  |              | 25.06.0<br>25.06.0 |                                    |
| $\langle \mathcal{R} \rangle$                                                        | Approved by: R.K. Date:                         |              | 5.06.0             |                                    |
| 1.20                                                                                 |                                                 |              |                    | -                                  |
| $\backslash$                                                                         | Scales: 1:2,500 @ A3                            |              |                    |                                    |
| $\setminus$                                                                          | Stage: PRELIMINARY                              |              |                    |                                    |
| $\langle \rangle$                                                                    |                                                 |              | n. •               |                                    |
| $\setminus$                                                                          | Drawing No.:                                    |              | Revis              | ion:                               |
| $\setminus$                                                                          | B8-Map7                                         |              |                    | -                                  |
| 1                                                                                    |                                                 |              |                    |                                    |

### **Cork County contd.**

### Water Services Investment Programme 2007 - 2009

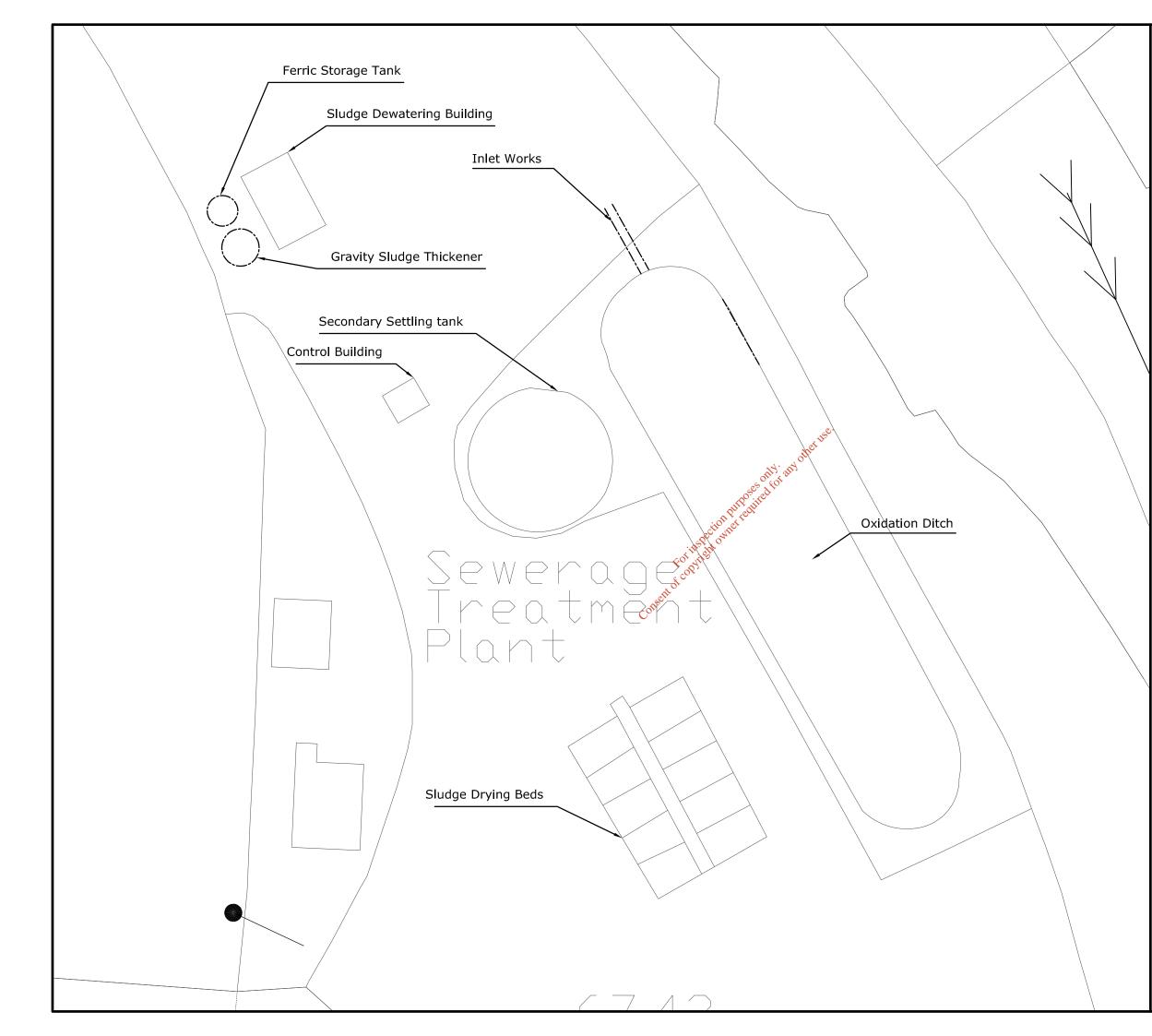
| Serviced Land Initiative contd.                        | W/S              | Est. Cost   | Schemes to Advance through Planning cond.                                                                                                                 | W/S | Est. Cost  |
|--------------------------------------------------------|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| Cork South contd.                                      |                  |             | Cork South                                                                                                                                                |     |            |
| Mogeely, Castlemartyr & Ladysbridge Water Supply Schem | e W              | 2,566,000   | Carrigtwohill Sewerage Scheme (G)                                                                                                                         | S   | 20,000,000 |
| North Cobh Sewerage Scheme (G)                         | S                | 3,193,000   | Cork Sludge Management (G)                                                                                                                                | S   | 14,420,000 |
| Riverstick Water Supply Scheme (incl. Sewerage)        | W/S              | 525,000     | Cork Water Supply Scheme (Storage - Mount Emla,                                                                                                           |     |            |
| Rochestown Water Supply Scheme                         | W                | 2,700,000   | Ballincollig & Chetwind) (G)                                                                                                                              | W   | 8,500,000  |
| Saleen Sewerage Scheme                                 | S                | 1,051,000   | Inniscarra Water Treatment Plant (Sludge Treatment)(                                                                                                      | G)W | 5,356,000  |
| Youghal Water Supply Scheme                            | W                | 2,300,000   | Macroom Sewerage Scheme                                                                                                                                   | S   | 5,150,000  |
|                                                        |                  |             | Minane Bridge Water Supply Scheme                                                                                                                         | W   | 1,421,000  |
| Cork West                                              |                  |             |                                                                                                                                                           |     |            |
| Castletownshend Sewerage Scheme                        | S                | 1,576,000   | Cork West                                                                                                                                                 |     |            |
|                                                        |                  | 50,797,000  | Bantry Regional Water Supply Scheme (Distribution)                                                                                                        | W   | 9,455,000  |
| Rural Towns & Villages Initiative                      |                  |             | Cape Clear Water Supply Scheme                                                                                                                            | W   | 1,679,000  |
|                                                        |                  |             | Castletownbere Regional Water Supply Scheme                                                                                                               | W   | 8,405,000  |
| Cork North                                             |                  |             | Glengarriff Sewerage Scheme                                                                                                                               | S   | 2,500,000  |
| Buttevant Sewerage Scheme (Collection System)          | S                | 2,446,000   | Roscarberry/Owenahincha Sewerage Scheme                                                                                                                   | S   | 1,576,000  |
| Doneraile Sewerage Scheme (Collection System)          | S                | 1,738,000   | Skibbereen Regional Water Supply Scheme Stage 4                                                                                                           | W   | 7,880,000  |
|                                                        |                  |             | ather                                                                                                                                                     |     | 95,646,000 |
| Cork South                                             |                  |             | att' ant                                                                                                                                                  |     |            |
| Innishannon (Ballinadee/ Ballinspittle/ Garrettstown)  |                  |             | Wate Conservation Allocation                                                                                                                              |     | 12,206,000 |
| Water Supply Scheme                                    | W                | 6,726,000   | 120° ileo                                                                                                                                                 |     |            |
|                                                        |                  | an'         | Water Conservation Allocation<br>Water Conservation Allocation<br>Asset Management Study<br>South Western River Basin District (WFD) Project <sup>1</sup> |     | 300,000    |
| Cork West                                              |                  | pectil with |                                                                                                                                                           |     |            |
| Ballylicky Sewerage Scheme                             | S                | 2,753,000   | South Western River Basin District (WFD) Project <sup>1</sup>                                                                                             |     | 9,400,000  |
| Baltimore Sewerage Scheme                              | S                | ¥ 3,102,000 |                                                                                                                                                           |     |            |
| Castletownbere Sewerage Scheme                         | S                | \$,202,000  |                                                                                                                                                           |     |            |
| Schull Sewerage Scheme                                 | S of             | 3,523,000   | Programme Total                                                                                                                                           | 48  | 5,489,000  |
|                                                        | s<br>S<br>Consen | 24,950,000  |                                                                                                                                                           |     |            |
| Schemes to Advance through Planning                    |                  |             |                                                                                                                                                           |     |            |
| Cork North                                             |                  |             |                                                                                                                                                           |     |            |
| Mitchelstown North Galtees Water Supply Scheme         | W                | 3,152,000   |                                                                                                                                                           |     |            |

<sup>1</sup> This project is being led by Cork County Council on behalf of other authorities in the River Basin District

S

S

3,000,000


3,152,000

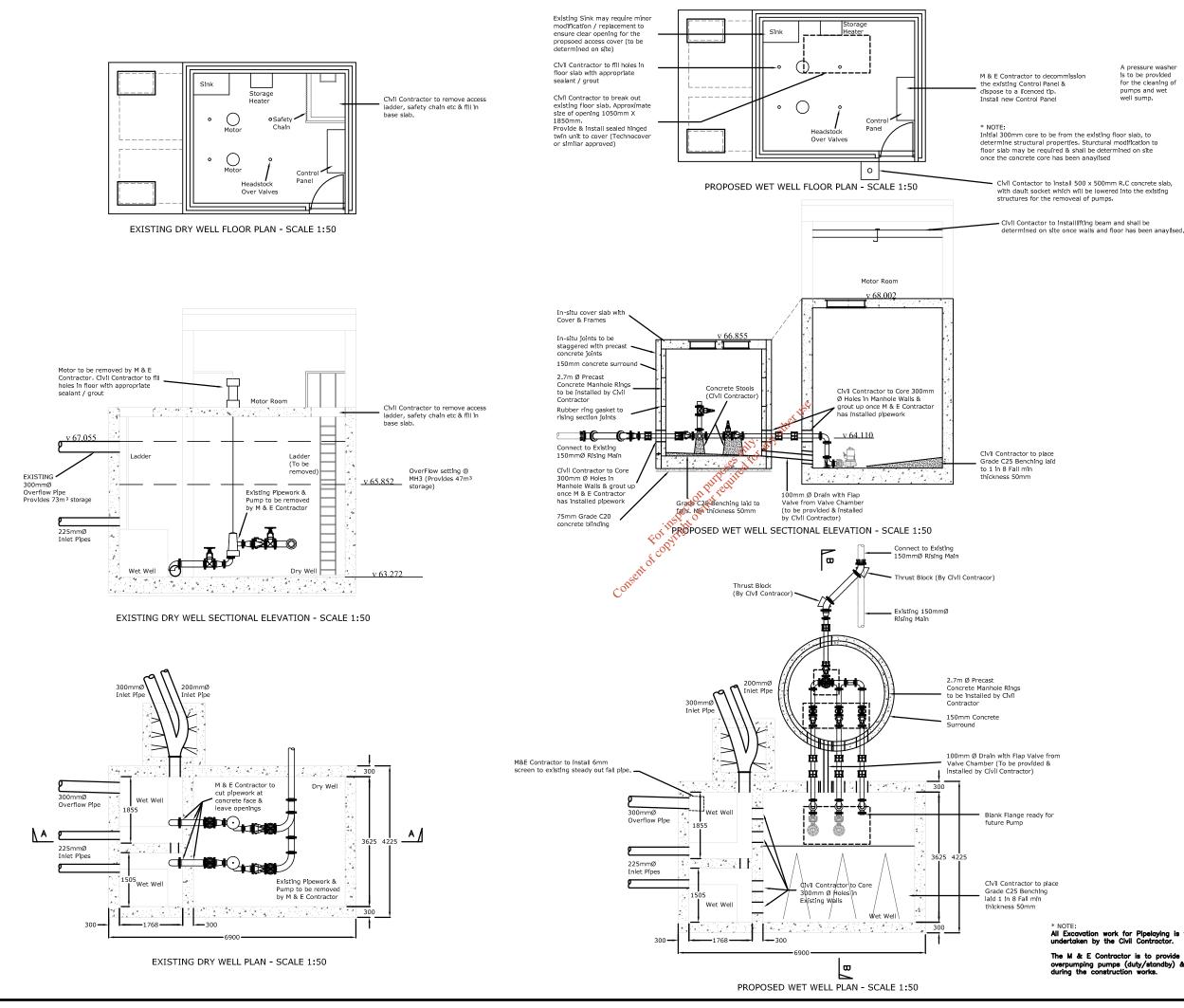
(H) Refers to a Hub as designated in the National Spatial Strategy

Mitchelstown Sewerage Scheme

Newmarket Sewerage Scheme

(G) Refers to a Gateway as designated in the National Spatial Strategy




| NOTES: |
|--------|
|--------|

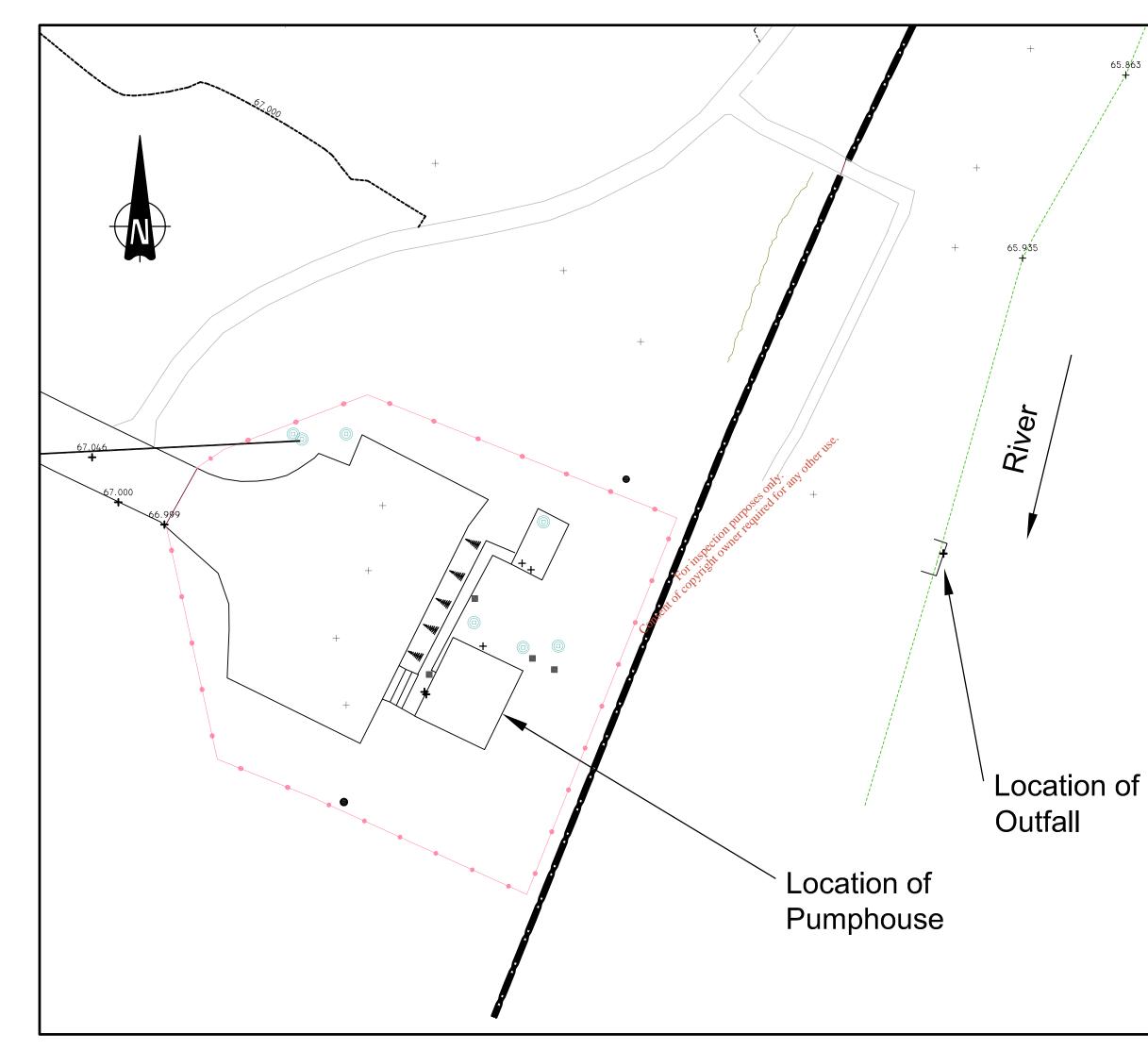
Figured dimensions only to be taken from this drawing. All dimensions to be checked on site.

| -     | -           | -     | -    | -    |
|-------|-------------|-------|------|------|
| Rev.  | Description | Drawn | Chkd | Date |
| Clien | t:          |       |      |      |

#### CORK COUNTY COUNCIL

| Client Representative: |           |             |                                                                                                                                              |                                      |  |  |  |  |
|------------------------|-----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
|                        | PART      | RY          | J. B. Barry & Partm<br>3A East Gate Road.<br>Little Island, Co. Cc<br>Ireland.<br>Phone: +353-21-45<br>Fax: +353-21-45<br>E-mail: cork@jbbar | , Eastgate<br>ork,<br>24418<br>24419 |  |  |  |  |
| Project:               |           |             |                                                                                                                                              |                                      |  |  |  |  |
| MACF                   | ROOM WV   | VTP WASTE   | WATER                                                                                                                                        |                                      |  |  |  |  |
| DISCH                  | ARGE LIC  | ENCE APPL   | ICATION                                                                                                                                      |                                      |  |  |  |  |
| Drawing Title:         |           |             |                                                                                                                                              |                                      |  |  |  |  |
|                        | APPLIC/   | ATION FORM  | 1                                                                                                                                            |                                      |  |  |  |  |
|                        | ATTACH    | IMENT C1-0  | 2                                                                                                                                            |                                      |  |  |  |  |
| Operati                | on Inforr | nation Requ | irements                                                                                                                                     |                                      |  |  |  |  |
| Drawn by:              | м.н.      | Date:       | 25.06.08                                                                                                                                     |                                      |  |  |  |  |
| Checked by:            | B.A.      | Date:       | 25.06.08                                                                                                                                     |                                      |  |  |  |  |
| Approved by:           | R.K.      | Date:       | 25.06.08                                                                                                                                     |                                      |  |  |  |  |
| Scales:                | 1:2,      | 500 @ A3    |                                                                                                                                              |                                      |  |  |  |  |
| Stage:                 | PREL      | IMINARY     |                                                                                                                                              |                                      |  |  |  |  |
| Drawing No.:           |           |             | Revision                                                                                                                                     | :                                    |  |  |  |  |
|                        | C1 - 02   |             | -                                                                                                                                            |                                      |  |  |  |  |




A pressure washer is to be provided for the cleaning of pumps and wet well sump.

NOTES: Figured dimensions only to be taken from this drawing. All dimensions to be checked on site

| -            | <br>Description                                              |                              |                           | -    | -       |        |  |
|--------------|--------------------------------------------------------------|------------------------------|---------------------------|------|---------|--------|--|
| Clien        |                                                              |                              |                           |      |         |        |  |
|              | c                                                            | ORK COU                      | JNTY COUN                 | CIL  |         |        |  |
| Clien        | t Represer                                                   | itative:                     |                           |      |         |        |  |
|              | BARRY<br>& PARTNERS                                          |                              |                           |      |         |        |  |
| 3A<br>Ea:    | 3. Barry & Par<br>Eastgate Roa<br>srgate,<br>tle Island, Co. |                              | Phone:<br>Fax:<br>E-mail  | +353 | -21-452 | 2 4419 |  |
| Proje        | MACR                                                         |                              | /TP WASTE<br>ENCE APPL    |      |         |        |  |
| Draw         | ing Title:                                                   |                              |                           |      |         |        |  |
| AF           | PPLICAT                                                      |                              | M ATTACHN<br>on of Dry We |      | тс.     | 1-03   |  |
|              |                                                              |                              |                           |      |         |        |  |
|              | n by:                                                        | м.н.                         | Date:                     | 0.   | 3.01.0  | )7     |  |
| Chec         | ked by:                                                      | M.H.<br>R.K.                 | Date:                     | 0    | 3.01.0  | )7     |  |
| Chec         | ked by:<br>oved by:                                          | M.H.<br>R.K.<br>T.F          | Date:<br>Date:            | 0    |         | )7     |  |
| Chec<br>Appr | ked by:<br>oved by:<br>e:                                    | M.H.<br>R.K.<br>T.F<br>As sh | Date:                     | 0    | 3.01.0  | )7     |  |

tion work for Pipelaying is to be by the Civil Contractor.

The M & E Contractor is to provide temporary overpumping pumps (duty/standby) & pipework during the construction works.



|   | <u>NO<sup>.</sup></u>                                       | TES:             |              |              |                |              |                      |                                    |
|---|-------------------------------------------------------------|------------------|--------------|--------------|----------------|--------------|----------------------|------------------------------------|
|   | Figured dimensions only to be taken                         |                  |              |              |                |              |                      |                                    |
|   | from this drawing.<br>All dimensions to be checked on site. |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
|   |                                                             |                  |              |              |                |              |                      |                                    |
| _ | _                                                           |                  |              |              |                |              |                      |                                    |
|   |                                                             | –<br>Description |              |              |                | -<br>Draw    | -<br>Chkd            | <br>Date                           |
| C | Client                                                      |                  | CORK CO      | אדאוור       |                | CTI          |                      |                                    |
|   |                                                             |                  |              | 50111        | 00011          | CIL          |                      |                                    |
| C | Client                                                      | Represe          | entative:    |              |                |              |                      |                                    |
| 4 |                                                             | ) F              | BAI          | RR           | Y              | 3A           |                      | Partners Limited<br>Road, Eastgate |
| 5 | 2                                                           |                  | PAR          |              |                | Irel         | md.                  | 21-4524418                         |
| • | con                                                         | sult             | ing •        | ngin         | • • r s        |              | +353-2<br>ail: cork@ | 21-4524419<br>jbbarry.ie           |
| F | Projec                                                      | et:              | ROOM W       |              | WASTE          | <u>\</u> \\Δ | TER                  |                                    |
|   |                                                             |                  | IARGE L      |              |                |              |                      | ١                                  |
| C | Drawin                                                      | ng Title:        |              | <u>слтто</u> |                | м            |                      |                                    |
|   |                                                             |                  | ATTACH       | MENT         |                | ap 8         |                      |                                    |
|   |                                                             |                  | Pump         | Statio       | n Outfa        | ill          |                      |                                    |
| _ | Drawn<br>Check                                              | by:<br>ed by:    | M.H.<br>B.A. |              | Date:<br>Date: |              | 5.06.0<br>5.06.0     |                                    |
| _ |                                                             | ved by:          | B.A.<br>R.K. |              | Date:<br>Date: |              | 5.06.0               |                                    |
| S | Scales                                                      | B:               | 1:           | 200 @        | ) A3           |              |                      |                                    |
| s | Stage                                                       | :                | PR           | ELIMIN       | VARY           |              |                      |                                    |
|   | Drawir                                                      | ng No.:          |              |              |                |              | Revis                | ion:                               |
|   |                                                             |                  |              |              |                |              |                      |                                    |

### TABLE D.1(i)(a):EMISSIONS TO SURFACE/GROUND WATERS<br/>(Primary Discharge Point)

### Discharge Point Code: SW01 MACROOM

| Source of Emission:    |                    | SW01                                     |  |                   |                                                                                                     |  |
|------------------------|--------------------|------------------------------------------|--|-------------------|-----------------------------------------------------------------------------------------------------|--|
| Location:              |                    | Sleveen East                             |  |                   |                                                                                                     |  |
| Grid Ref. (12 digit, 6 | E, 6N):            | E134945 N072932                          |  |                   |                                                                                                     |  |
| Name of receiving wa   | aters:             | Sullane River                            |  |                   |                                                                                                     |  |
| River Basin District:  |                    | South Western River Basin District (Lee) |  |                   |                                                                                                     |  |
| Designation of receiv  | ing waters:        | None                                     |  |                   |                                                                                                     |  |
| Flow rate in receiving | waters:            | Forinspections                           |  | 0.15<br>3.03      | m <sup>3</sup> .sec <sup>-1</sup> Dry Weather Flow<br>m <sup>3</sup> .sec <sup>-1</sup> 95%ile flow |  |
| Emission Details:      |                    | attofcor                                 |  |                   |                                                                                                     |  |
| (i) Volume emitted     |                    | Const                                    |  |                   |                                                                                                     |  |
| Normal/day             | 1114m <sup>3</sup> | Maximum/day                              |  |                   | 2205m <sup>3</sup>                                                                                  |  |
| Maximum rate/hour      | 220m <sup>3</sup>  | Period of emission (avg)                 |  | <u>60 </u> min/hr | <u>24</u> hr/day <u>365</u> day/yr                                                                  |  |
| Dry Weather Flow       | m³/sec             |                                          |  |                   |                                                                                                     |  |

### TABLE D.1(i)(b): EMISSIONS TO SURFACE/GROUND WATERS - Characteristics of the emission<br/>(Primary Discharge Point)

### Discharge Point Code: SW01 MACROOM

| Number | Substance                               | As discharg                | jed            |
|--------|-----------------------------------------|----------------------------|----------------|
|        |                                         | Max. daily average         |                |
| 1      | рН                                      | 6.5-8.5                    |                |
| 2      | Temperature                             | 25°C                       |                |
| 3      | Electrical Conductivity(@20°C)          | 1000 😒.                    |                |
|        |                                         | Max. daily average (mg/l)* | kg/day*        |
| 4      | Suspended Solids                        | 35 3. 35                   | 55.2           |
| 5      | Ammonia (as N)**                        | 25 st                      | 55.125         |
| 6      | Biochemical Oxygen Demand               | N° 25                      | 55.125         |
| 7      | Chemical Oxygen Demand**                | pure 25                    | 275.625        |
| 8      | Total Nitrogen (as N)                   | citornet 25                | 55.125         |
| 9      | Nitrite (as N)                          | Not applicable             | Not applicable |
| 10     | Nitrate (as N)                          | Not applicable             | Not applicable |
| 11     | Total Phosphorus (as P)**               | <u>5.0</u>                 | 11.025         |
| 12     | Orthophosphate (as P) <sup>Note 1</sup> | 4.5                        | 9.923          |
| 13     | Sulphate (SO <sub>4</sub> )**           | Not applicable             | Not applicable |
| 14     | Phenols (sum) Note 2 (ug/l)             | Not applicable             | Not applicable |

Note 1: For waste water samples this monitoring should be undertaken on a sample filtered on 0.45µm filter paper. Note 2: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

#### TABLE D.1(i)(c): DANGEROUS SUBSTANCE EMISSIONS TO SURFACE/GROUND WATERS

Primary Discharge Point - Characteristics of the emission

### Discharge Point Code: SW01 MACROOM

| Number | Substance       |                              | As discharged          |                |
|--------|-----------------|------------------------------|------------------------|----------------|
|        |                 | Max. daily<br>average (μg/l) | kg/day                 | Kg/year        |
| 1      | Atrazine        | Not applicable               | Not applicable         | Not applicable |
| 2      | Dichloromethane | Not applicable               | Not applicable         | Not applicable |
| 3      | Simazine        | Not applicable               | Not applicable         | Not applicable |
| 4      | Toluene         | Not applicable               | Notapplicable          | Not applicable |
| 5      | Tributyltin     | Not applicable               | Not applicable         | Not applicable |
| 6      | Xylenes         | Not applicable               | WR wife Not applicable | Not applicable |
| 7      | Arsenic         | Not applicable               | Not applicable         | Not applicable |
| 8      | Chromium        | Not applicable               | Not applicable         | Not applicable |
| 9      | Copper          | Not applicable to the        | Not applicable         | Not applicable |
| 10     | Cyanide         | Not applicable               | Not applicable         | Not applicable |
| 11     | Fluoride        | Not applicable               | Not applicable         | Not applicable |
| 12     | Lead            | Not applicable               | Not applicable         | Not applicable |
| 13     | Nickel          | Not applicable               | Not applicable         | Not applicable |
| 14     | Zinc            | Not applicable               | Not applicable         | Not applicable |
| 15     | Boron           | Not applicable               | Not applicable         | Not applicable |
| 16     | Cadmium         | Not applicable               | Not applicable         | Not applicable |
| 17     | Mercury         | Not applicable               | Not applicable         | Not applicable |
| 18     | Selenium        | Not applicable               | Not applicable         | Not applicable |
| 19     | Barium          | Not applicable               | Not applicable         | Not applicable |

Note 1: For waste water samples this monitoring should be undertaken on a sample filtered on 0.45µm filter paper. Note 2: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

#### TABLE D.1(ii)(a): EMISSIONS TO SURFACE/GROUND WATERS (Secondary Discharge Point) (1 table per discharge point)

### Discharge Point Code: SW02 Macroom

| Source of Emission:              | SW02                                                    |
|----------------------------------|---------------------------------------------------------|
| Location:                        | Masseytown                                              |
| Grid Ref. (12 digit, 6E, 6N):    | E133875 N073186                                         |
| Name of receiving waters:        | Sullane River                                           |
| River Basin District:            | South Western River Basin District                      |
| Designation of receiving waters: | None outpose of the                                     |
| Flow rate in receiving waters:   | 0.15 m <sup>3</sup> .sec <sup>-1</sup> Dry Weather Flow |
|                                  | 1.03 m <sup>3</sup> .sec <sup>-1</sup> 95%ile flow      |
| Emission Details:                | est of con                                              |

### **Emission Details**

| LIIIISSIUII Details. |                                 | <u></u>                     |                              |
|----------------------|---------------------------------|-----------------------------|------------------------------|
| (i) Volume emitte    | ed                              | Con                         |                              |
| Normal/day           | Not Available<br>m <sup>3</sup> | Maximum/day                 | Not available m <sup>3</sup> |
| Maximum rate/hour    | Not Available<br>m <sup>3</sup> | Period of emission<br>(avg) | min/hrhr/dayday/yr           |
| Dry Weather Flow     | Not available<br>m³/sec         |                             |                              |

### TABLE D.1(ii)(b): EMISSIONS TO SURFACE/GROUND WATERS - Characteristics of the emission<br/>(1 table per discharge point) (Secondary Discharge Point)

### Discharge Point Code: SWO2 Macroom

| Number | Substance                       | As discharg                 | jed           |
|--------|---------------------------------|-----------------------------|---------------|
|        |                                 | Max. daily average          |               |
| 1      | рН                              | Not available               |               |
| 2      | Temperature                     | Not available               |               |
| 3      | Electrical Conductivity (@25°C) | Not available               |               |
|        |                                 | Max. daily average (mg/l)   | kg/day        |
| 4      | Suspended Solids                | Not available of the second | Not available |
| 5      | Ammonia (as N)                  | Not available               | Not available |
| 6      | Biochemical Oxygen Demand       | Not available               | Not available |
| 7      | Chemical Oxygen Demand          | Not available               | Not available |
| 8      | Total Nitrogen (as N)           | . Not available             | Not available |
| 9      | Nitrite (as N)                  | Not available               | Not available |
| 10     | Nitrate (as N)                  | Not available               | Not available |
| 11     | Total Phosphorus (as P) Note 1  | Not available               | Not available |
| 12     | Orthophosphate (as P)           | Not available               | Not available |
| 13     | Sulphate (SO <sub>4</sub> )     | Not available               | Not available |
| 14     | Phenols (sum) Note 2 (ug/l)     | Not available               | Not available |

Note 1: For waste water samples this monitoring should be undertaken on a sample filtered on 0.45µm filter paper. Note 2: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

### TABLE D.1(ii)(c): DANGEROUS SUBSTANCE EMISSIONS TO SURFACE/GROUND WATERS

Secondary Discharge Point - Characteristics of the emission (1 table per discharge point)

Discharge Point Code: SWO2Macroom

| Number | Substance       |                              | As discharged           |               |
|--------|-----------------|------------------------------|-------------------------|---------------|
|        |                 | Max. daily<br>average (µg/l) | kg/day                  | Kg/year       |
| 1      | Atrazine        | Not available                | Not available           | Not available |
| 2      | Dichloromethane | Not available                | Not available           | Not available |
| 3      | Simazine        | Not available                | Notavailable            | Not available |
| 4      | Toluene         | Not available                | Not available           | Not available |
| 5      | Tributyltin     | Not available                | Se Not available        | Not available |
| 6      | Xylenes         | Not available                | Jurgquite Not available | Not available |
| 7      | Arsenic         | Not available 🔬              | Not available           | Not available |
| 8      | Chromium        | Not available 🔬 😽            | Not available           | Not available |
| 9      | Copper          | Not available The            | Not available           | Not available |
| 10     | Cyanide         | Not available?               | Not available           | Not available |
| 11     | Fluoride        | Not available                | Not available           | Not available |
| 12     | Lead            | Not available                | Not available           | Not available |
| 13     | Nickel          | Not <b>S</b> vailable        | Not available           | Not available |
| 14     | Zinc            | Not available                | Not available           | Not available |
| 15     | Boron           | Not available                | Not available           | Not available |
| 16     | Cadmium         | Not available                | Not available           | Not available |
| 17     | Mercury         | Not available                | Not available           | Not available |
| 18     | Selenium        | Not available                | Not available           | Not available |
| 19     | Barium          | Not available                | Not available           | Not available |

### TABLE D.1(iii)(a): EMISSIONS TO SURFACE/GROUND WATERS<br/>(Storm Water Overflow) (1 table per discharge point)

| Discharge Point        | Code:                           | SW01 Macı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | room              |            | _            |                                                                                                     |
|------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|--------------|-----------------------------------------------------------------------------------------------------|
| Source of Emission:    |                                 | Macroom waste Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Treatment Plant   | t          |              |                                                                                                     |
| Location:              |                                 | Outfall at Macroom Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iste Water Treat  | ment plant | t            |                                                                                                     |
| Grid Ref. (12 digit, 6 | E, 6N):                         | E349945 N072932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |            |              |                                                                                                     |
| Name of receiving wa   | aters:                          | River Sullane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Let USe.          |            |              |                                                                                                     |
| River Basin District:  |                                 | South Western River B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | asin District (Le | e)         |              |                                                                                                     |
| Designation of receiv  | ing waters:                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IPOSted for       |            |              |                                                                                                     |
| Flow rate in receiving | ) waters:                       | For inspection of the section of the |                   |            | 0.15<br>3.03 | m <sup>3</sup> .sec <sup>-1</sup> Dry Weather Flow<br>m <sup>3</sup> .sec <sup>-1</sup> 95%ile flow |
| Emission Details:      |                                 | outorot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |            |              |                                                                                                     |
| (i) Volume emitte      | ed                              | Cotte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |            |              |                                                                                                     |
| Normal/day             | Not Available<br>m <sup>3</sup> | Maximum/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |            |              | Not Available m <sup>3</sup>                                                                        |
| Maximum rate/hour      | Not Available<br>m <sup>3</sup> | Period of emission<br>(avg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | _          | min/hr       | hr/dayday/yr                                                                                        |

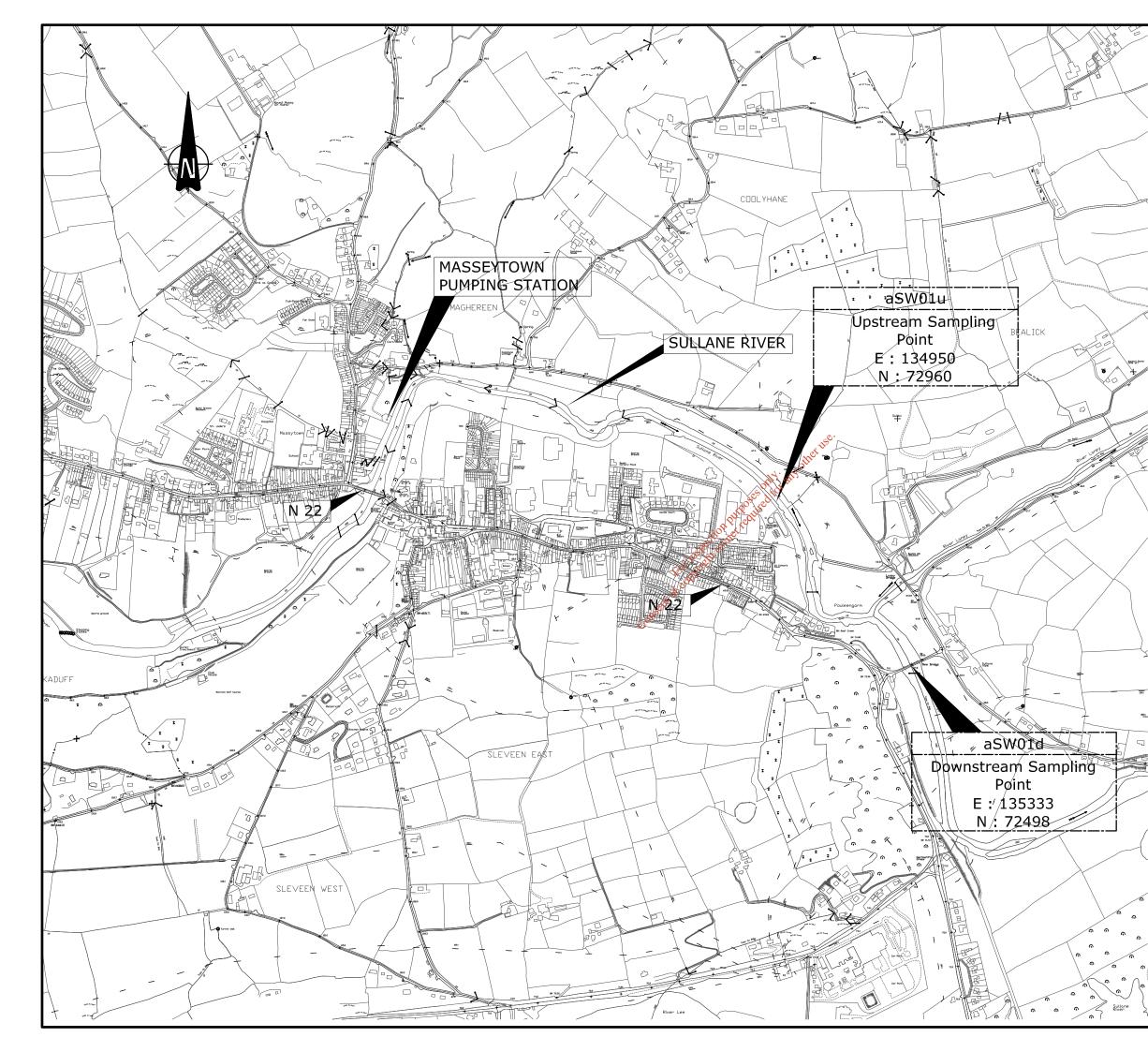
#### TABLE D.1(iii)(a): EMISSIONS TO SURFACE/GROUND WATERS (Storm Water Overflow) (1 table per discharge point)

### Discharge Point Code: <u>SW02 Macroom</u>

| [                      |                                 | F                           |                      |              |                                                                                                     |
|------------------------|---------------------------------|-----------------------------|----------------------|--------------|-----------------------------------------------------------------------------------------------------|
| Source of Emission:    |                                 | Masseytown Pumping          | Station              |              |                                                                                                     |
| Location:              |                                 | Masseytown, Macroom         | I                    |              |                                                                                                     |
| Grid Ref. (12 digit, 6 | E, 6N):                         | E134945 N072932             |                      |              |                                                                                                     |
| Name of receiving wa   | iters:                          | River Sullane               | net use.             |              |                                                                                                     |
| River Basin District:  |                                 | South Western River B       | Basin District (Lee) |              |                                                                                                     |
| Designation of receiv  | ing waters:                     | None                        | 1190 scitcel t       |              |                                                                                                     |
| Flow rate in receiving | waters:                         | For inspection              | <u></u>              | 0.15<br>3.03 | m <sup>3</sup> .sec <sup>-1</sup> Dry Weather Flow<br>m <sup>3</sup> .sec <sup>-1</sup> 95%ile flow |
| Emission Details:      |                                 |                             |                      |              |                                                                                                     |
| (i) Volume emitte      | ed                              | Cons                        |                      |              |                                                                                                     |
| Normal/day             | Not Available<br>m <sup>3</sup> | Maximum/day                 |                      |              | Not available m <sup>3</sup>                                                                        |
| Maximum rate/hour      | Not Available<br>m <sup>3</sup> | Period of emission<br>(avg) |                      | min/hr       | hr/dayday/yr                                                                                        |

#### Table D.2 Tabular Data on Discharge Points

| PT_CD    | PT_TYPE              | LA_NAME             | RWB_TYPE | RWB_NAME      | DESIGNATION | EASTING | NORTHING | VERIFIED |
|----------|----------------------|---------------------|----------|---------------|-------------|---------|----------|----------|
| SW01MACR | Primary Discharge    | Cork County Council | River    | River Sullane | None        | 134945  | 072932   | Ν        |
| SW01MACR | Storm Water Overflow | Cork County Council | River    | River Sullane | None        | 134945  | 072932   | N        |
| SW02MACR | Storm Water Overflow | Cork County Council | River    | River Sullane | None        | 133875  | 073186   | N        |
| SW02MACR | Emergency Overflow   | Cork County Council | River    | River Sullane | None        | 133875  | 073186   | N        |
|          |                      |                     |          |               |             |         |          |          |
|          |                      |                     |          |               |             |         |          |          |
|          |                      |                     |          |               |             |         |          |          |


Consent of constitution of the required for any other use.

### TABLE E.1(i): WASTE WATER FREQUENY AND QUANTITY OF DISCHARGE – Primary and Secondary Discharge Points

| Identification Code for Discharge point | Frequency of discharge (days/annum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quantity of Waste Water Discharged (m <sup>3</sup> /annum) |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| SW01MACR (P)                            | Daily (365 days/annum) (Year 2008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Estimated: 406,610                                         |
| SW01MACR (P)                            | Daily (365 days/annum) (After<br>Upgrade 2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Estimated: 804,825                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ç.                                                         |
|                                         | w. ogotte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |
|                                         | official and a set of the set of |                                                            |
|                                         | Duffortiet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |
|                                         | action street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |
|                                         | COLINS TO COLINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |
|                                         | L. COP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |
|                                         | TRONIC .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |
|                                         | Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |

### TABLE E.1(ii): WASTE WATER FREQUENY AND QUANTITY OF DISCHARGE – Storm Water Overflows

| Identification Code for<br>Discharge point | Frequency of discharge<br>(days/annum) | Quantity of Waste Water Discharged<br>(m <sup>3</sup> /annum) | Complies with Definition of<br>Storm Water Overflow |
|--------------------------------------------|----------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|
| SW02MACR                                   | Not Available                          | Not Available                                                 | Not Available                                       |
| SW03MACR                                   | Not Available                          | Not Available                                                 | Not Available                                       |
|                                            |                                        |                                                               |                                                     |
|                                            |                                        |                                                               |                                                     |
|                                            |                                        |                                                               |                                                     |
|                                            |                                        | other                                                         |                                                     |
|                                            |                                        | only and                                                      |                                                     |
|                                            |                                        | no <sup>se</sup> red                                          |                                                     |
|                                            |                                        | etion perfection                                              |                                                     |
|                                            | . IN                                   |                                                               |                                                     |
|                                            | FOL                                    | Ne.                                                           |                                                     |
|                                            | Concentrat                             |                                                               |                                                     |
|                                            | Cons                                   |                                                               |                                                     |
|                                            |                                        |                                                               |                                                     |
|                                            |                                        |                                                               |                                                     |
|                                            |                                        |                                                               |                                                     |



|--|

Figured dimensions only to be taken from this drawing. All dimensions to be checked on site.

| -       | -           | -     | -    | -    |
|---------|-------------|-------|------|------|
| Rev.    | Description | Drawn | Chkd | Date |
| Client: |             |       |      |      |

#### CORK COUNTY COUNCIL

| Client Represer | ntative:                        |             |                                                                                                                                                                                    |
|-----------------|---------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>*</b>        | PART                            | RY          | J. B. Barry & Partners Limited<br>3A East Gate Road, Eastgate<br>Little Island, Co. Cork,<br>Ireland.<br>Phone: +353-21-4524418<br>Fax: +353-21-4524419<br>E-mail: cork@jbbarry.ie |
| Project:        |                                 |             |                                                                                                                                                                                    |
|                 |                                 | TP WASTE    |                                                                                                                                                                                    |
| DISCH           | AKGE LIU                        | ENCE APPL   | ICATION                                                                                                                                                                            |
| Drawing Title:  | Drawing Title: APPLICATION FORM |             |                                                                                                                                                                                    |
| А               | ATTACHMENT E.2-Map 9            |             |                                                                                                                                                                                    |
|                 |                                 | eam & Dov   |                                                                                                                                                                                    |
|                 | •                               | ring Points |                                                                                                                                                                                    |
| Drawn by:       | м.н.                            | Date:       | 25.06.08                                                                                                                                                                           |
| Checked by:     | B.A.                            | Date:       | 25.06.08                                                                                                                                                                           |
| Approved by:    | R.K.                            | Date:       | 25.06.08                                                                                                                                                                           |
| Scales:         | 1:10,                           | 000 @ A3    |                                                                                                                                                                                    |
| Stage:          | PREL                            | IMINARY     |                                                                                                                                                                                    |
| Drawing No.:    |                                 |             | Revision:                                                                                                                                                                          |
|                 | E2-Map9                         |             | _                                                                                                                                                                                  |
|                 | •                               |             |                                                                                                                                                                                    |

### **Schedule of Accreditation**

issued by

### **United Kingdom Accreditation Service**

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK



### Locations covered by the organisation and their relevant activities

#### Laboratory locations:

| Laboratory locations:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mer 15e.               |               |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|
| Location details                                                             | A State of the sta | Activity               | Location code |
| Address<br>Unit 35<br>Boyne Business Park<br>Drogheda<br>Co Louth<br>Ireland | Local contact<br>Damien O'Reilly<br>Tel: +00 353 41 984 6440<br>Fax: +00 353 41 984 6171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Environmental Analysis | A             |

#### Site activities performed away from the locations listed above:

| Location details          |                                                      | Activity              | Location<br>code |
|---------------------------|------------------------------------------------------|-----------------------|------------------|
| Emission Stacks and Ducts | Local contact<br>Geoff Fitzpatrick                   | Sampling and Analysis | В                |
|                           | Tel: +00 353 41 984 5440<br>Fax: +00 353 41 984 6171 |                       |                  |



Accredited to

ISO/IEC 17025:2005

### Schedule of Accreditation issued by United Kingdom Accreditation Service

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

### **EURO Environmental Services**

Issue No: 006 Issue date: 01 May 2008

Testing performed by the Organisation at the locations specified

### DETAIL OF ACCREDITATION

| Materials/Products tested                                            | Type of test/Properties<br>measured/Range of<br>measurement | Standard specifications/<br>Equipment/Techniques used                                                                                                            | Location<br>Code |
|----------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| POLLUTANTS AND<br>EFFLUENTS: STACK<br>EMISSIONS                      | Physical Testing                                            |                                                                                                                                                                  |                  |
| Filter papers and filter<br>assemblies from stack<br>sampling probes | Particulates                                                | In accordance with BS EN 13284-1 using gravimetric analysis                                                                                                      | A                |
| ATMOSPHERIC<br>POLLUTANTS                                            | Sampling of source emissions<br>to atmosphere               | other use.                                                                                                                                                       |                  |
|                                                                      | Water vapour                                                | US EPA Method 4                                                                                                                                                  | В                |
| ATMOSPHERIC<br>POLLUTANTS                                            | Sampling of source emissions<br>to atmosphere               | National and International Methods<br>to meet the requirements of the<br>Environment Agency MCERTS<br>Performance Standard - Manual<br>Stack Emission Monitoring |                  |
| Gaseous and Particulate<br>Samples from Emission<br>Stacks/Ducts     | Isokinetic sampling for particulate matter                  | BS EN 13284-1:2002<br>BS ISO 9096:2003                                                                                                                           | В                |
|                                                                      | Gaseous Compounds -<br>sampling and analysis                |                                                                                                                                                                  |                  |
|                                                                      | Velocity, temperature and pressure                          | BS EN 13284-1:2002                                                                                                                                               | В                |
|                                                                      | Total Organic Carbon                                        | BS EN 12619:1999                                                                                                                                                 | В                |
|                                                                      | Total Organic Carbon                                        | BS EN 13526:2002                                                                                                                                                 | В                |
|                                                                      | Carbon Monoxide                                             | BS EN 15058:2006                                                                                                                                                 | В                |
|                                                                      | Oxygen                                                      | BS EN 14789:2005                                                                                                                                                 | В                |
|                                                                      | Oxides of nitrogen                                          | BS EN 14792:2005                                                                                                                                                 | В                |
|                                                                      |                                                             |                                                                                                                                                                  |                  |
|                                                                      |                                                             |                                                                                                                                                                  |                  |
|                                                                      |                                                             |                                                                                                                                                                  |                  |
|                                                                      |                                                             |                                                                                                                                                                  |                  |



Accredited to

ISO/IEC 17025:2005

### Schedule of Accreditation issued by United Kingdom Accreditation Service

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

#### **EURO Environmental Services**

Issue No: 006 Issue date: 01 May 2008

Testing performed by the Organisation at the locations specified

| Materials/Products tested | Type of test/Properties<br>measured/Range of<br>measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Standard specifications/<br>Equipment/Techniques used                                                                                             | Location<br>Code |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SOILS                     | Chemical Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                  |
|                           | Elements:<br>Arsenic<br>Barium<br>Beryllium<br>Cadmium<br>Cobalt<br>Chromium<br>Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SOP 202 using Inductively Coupled<br>Plasma Mass Spectrometry<br>(ICP-MS)                                                                         | A                |
|                           | Cobalt<br>Chromium<br>Lead<br>Manganese<br>Nickel<br>Selenium<br>Silver<br>Strontium<br>Vanadium<br>Zinc<br>Consent of constitute of constitute of the formation of the form | 8. and other to                                                                                                                                   |                  |
|                           | Consent of convirger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Documented In-House Methods to<br>meet the requirements of the<br>Environment Agency MCERTS<br>Performance Standard - Chemical<br>Testing of Soil |                  |
| WATERS                    | pH<br><u>Chemical Tests</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOP 300 using meter                                                                                                                               | A                |
| Potable Water             | Elements:<br>Lithium<br>Beryllium<br>Boron<br>Aluminium<br>Vanadium<br>Chromium<br>Iron<br>Manganese<br>Cobalt<br>Nickel<br>Copper<br>Zinc<br>Gallium<br>Arsenic<br>Rubidium<br>Strontium<br>Silver<br>Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOP 177 by ICP-MS                                                                                                                                 | A                |



Accredited to

ISO/IEC 17025:2005

### Schedule of Accreditation issued by United Kingdom Accreditation Service

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

#### **EURO Environmental Services**

Issue No: 006 Issue date: 01 May 2008

Testing performed by the Organisation at the locations specified

| Materials/Products tested                       | Type of test/Properties<br>measured/Range of<br>measurement  | Standard specifications/<br>Equipment/Techniques used | Location<br>Code |
|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|------------------|
| WATERS (cont'd)                                 | Chemical Tests (cont'd)                                      |                                                       |                  |
| Potable Water (cont'd)                          | Elements: (cont'd)                                           |                                                       |                  |
|                                                 | Antimony<br>Caesium<br>Barium<br>Thallium<br>Lead<br>Uranium | NS <sup>E.</sup>                                      |                  |
|                                                 | Ammonia                                                      | SOP 114 by automated discrete                         | A                |
| Industrial Effluent                             | Total oxidised Nitrogen (TON)ed                              | SOP 151 by automated discrete analyser                | A                |
|                                                 | Total oxidised Nitrogen (TON)ed<br>Alkalinity                | SOP 102 by automated discrete analyser                | A                |
| Industrial and sewage<br>effluent               | Orthophosphate                                               | SOP 117 by automated discrete analyser                | A                |
| Potable waters, industrial and sewage effluents | Chloride                                                     | SOP 100 by automated discrete analyser                | A                |
|                                                 | Sulphate                                                     | SOP 119 by automated colorimetry                      |                  |
|                                                 | Total phosphate                                              | SOP 166 by automated discrete analyser                | А                |
|                                                 | Elements:<br>Calcium<br>Magnesium<br>Sodium<br>Potassium     | SOP 184 by ICP-MS                                     | A                |
| Industrial effluent, surface and groundwater    | Chemical Oxygen Demand                                       | SOP 107                                               | A                |
|                                                 |                                                              |                                                       |                  |
|                                                 |                                                              |                                                       |                  |
|                                                 |                                                              |                                                       |                  |



### Schedule of Accreditation issued by United Kingdom Accreditation Service

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

#### **EURO Environmental Services**

Issue No: 006 Issue date: 01 May 2008

Testing performed by the Organisation at the locations specified

| Materials/Products tested                     | Type of test/Properties<br>measured/Range of<br>measurement | Standard specifications/<br>Equipment/Techniques used | Location<br>Code |
|-----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|------------------|
| WATERS (cont'd)                               | Chemical Tests (cont'd)                                     |                                                       |                  |
| Potable waters, industrial                    | рН                                                          | SOP 110                                               | А                |
| and sewage effluents, surface and groundwater | Conductivity                                                | SOP 112                                               | А                |
|                                               | Turbidity                                                   | SOP 109                                               | А                |
|                                               | Biochemical Oxygen Demand                                   | SOP 113                                               | А                |
|                                               | Colour                                                      | SOP 108 by automated discrete analyser                | А                |
|                                               | Total Hardness                                              | SOP 111 by automated discrete analyser                | A                |
|                                               | L CITING CONTRACTOR                                         |                                                       | -                |
|                                               | Consent of copyrise                                         |                                                       |                  |

Accredited to ISO/IEC 17025:2005

# Irish Wational Accreditation Board

## **Accreditation Certificate**

### **Cork County Council**

Wastewater Testing Laboratory, Inniscarra, Co. Cork

### **Testing Laboratory**

### Registration number: 016T

is accredited by the Irish National Accreditation Board (INAB) to undertake testing as detailed in the Schedule bearing the Registration Number detailed above, in compliance with the International Standard ISO/IEC 17025:2005 2<sup>nd</sup> Edition "General Requirements for the Competence of Testing and Calibration Laboratories" (This Certificate must be read in conjunction with the Annexed Schedule of Accreditation)

> Date of award of accreditation: 01:10:2002 Date of last renewal of accreditation: 20:09:2007 Expiry date of this certificate of accreditation: 20:09:2012

This Accreditation shall remain in force until further notice subject to continuing compliance with INAB accreditation criteria, ISO/IEC 17025 and any further requirements specified by the Irish National Accreditation Board.

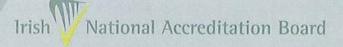
Manager: Jom Demproy

Chairperson:

Mr Tom Dempsey

Dr Máire Walsh

Issued on 20th September 2007


Organisations are subject to annual surveillance and are re-assessed every five years. The renewal date on this Certificate confirms the latest date of renewal of accreditation. To confirm the validity of this Certificate, please contact the Irish National Accreditation Board.

The INAB is a signatory of the European co-operation for Accreditation (EA) Testing Multilateral Agreement (MLA) and the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement.

Wilton Park House, Wilton Place, Dublin 2, Ireland. Tel +353 1 607 3003 Fax +353 1 607 3109 E-mail inab@inab.ie Web www.inab.ie

Edition 19, 31/10/2007

Page 1 of 7



Wilton Park House, Wilton Place, Dublin 2, Ireland Tel +353 1 607 3003 Fax +353 1 607 3109 E-mail inab@inab.ie Web www.inab.ie

# Schedule of Accreditation



(Annex to Accreditation Certificate)

Permanent Laboratory: Category A

### CORK COUNTY COUNCIL

### **Chemistry Testing Laboratory**

Initial Registration Date : Postal Address: (Address of other locations as they apply) Telephone: Fax: E-mail: Contact Name: Facilities: **25-April-1991** Waste Water Laboratory Inniscarra to internet +353 (21) 4532777

Ms M Cherry Normally not available for Public testing

Edition 19, 31/10/2007

Wilton Park House, Wilton Place, Dublin 2, Ireland Tel +353 1 607 3003 Fax +353 1 607 3109 E-mail inab@inab.ie Web www.inab.ie

## Schedule of Accreditation



DETAILED IN SCOPE REG NO.0161

Permanent Laboratory: Category A

THE IRISH NATIONAL ACCREDITATION BOARD (INAB) is the Irish body for the accreditation of organisations including laboratories.

Laboratory accreditation is available to testing and calibration facilities operated by manufacturing organisations, government departments, educational institutions and commercial testing/calibration services. Indeed, any organisation involved in testing, measurement or calibration in any area of technology can seek accreditation for the work it is undertaking.

Each accredited laboratory has been assessed by skilled specialist assessors and found to meet criteria which are in compliance with ISO/IEC 17025 or ISO/IEC 15189 (medical laboratories). Frequent audits. together with periodic inter-laboratory test programmes, ensure that these standards of operation are NTP QUIEd fo maintained.

#### Testing and Calibration Categories.

| resting and cation                              |                                                                                                                                                                                                                                                          |                                                                                                                                                                       |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Category A:                                     | Permanent laboratory calibration and testing where the laboratory is erected on a fixed location for a period expected to be greater than three years.                                                                                                   |                                                                                                                                                                       |  |
|                                                 | tocation                                                                                                                                                                                                                                                 | i tor a period expected to be greater than three years.                                                                                                               |  |
| Category B:                                     | Site calibration and testing that is performed by staff sent out on site by a permanent laboratory that is accredited by the Irish National Accreditation Board.                                                                                         |                                                                                                                                                                       |  |
| Category C:                                     | Site calibration and testing that is performed in a site/mobile laboratory or by staff sent<br>out by such a laboratory, the operation of which is the responsibility of a permanent<br>laboratory accredited by the Irish National Accreditation Board. |                                                                                                                                                                       |  |
| Category D:                                     |                                                                                                                                                                                                                                                          | bration and testing that is performed on site by individuals and organisations that<br>ave a permanent calibration/testing laboratory. Testing may be performed using |  |
|                                                 | (a)                                                                                                                                                                                                                                                      | portable test equipment                                                                                                                                               |  |
|                                                 | (b)                                                                                                                                                                                                                                                      | a site laboratory                                                                                                                                                     |  |
|                                                 | (c)                                                                                                                                                                                                                                                      | a mobile laboratory or                                                                                                                                                |  |
|                                                 | (d)                                                                                                                                                                                                                                                      | equipment from a mobile or site laboratory                                                                                                                            |  |
| Standard Specifica                              | tion or                                                                                                                                                                                                                                                  | Test Procedure Used:                                                                                                                                                  |  |
| The standard specifica recent visit, unless oth |                                                                                                                                                                                                                                                          | est procedure that is accredited is the issue that is current on the date of the most tated.                                                                          |  |

### **Glossary of Terms** Facilities:

| Public calibration/testing service:                     | Commercial operations which actively seek work from others.                                         |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Conditionally available for public calibration/testing: | Established for another primary purpose but, more commonly than not, is available for outside work. |
| Normally not available for public calibration/testing:  | Unavailable for public calibration/testing more often than not.                                     |

Laboratory users wishing to obtain assurance that calibration or test results are reliable and carried out to the Irish National Accreditation Board criteria should insist on receiving an accredited calibration certificate or test report. Users should contact the laboratory directly to ensure that this scope of accreditation is current. INAB will, on request, verify the status and scope.

## Scope of Accreditation



Permanent Laboratory:

Category A

### **Cork County Council**

### **Chemical Testing Laboratory**

**INAB Classification number** Type of test/properties measured Standard specifications (P9) Range of measurement Equipment/techniques used Materials/products tested 766 Waters Chemical analysis: Documented in-house methods based on Standard Methods for the Examination of Water .01 Waters for & Wastewater 21 st Edition APHA (See Note 1) Consent of copyright owner required for any CRNo. 1 Membrane electrode domestic purposes Biochemical Oxygen Demand Surface and ground 2 - 145,000 mg/l waters Chloride CP No. 7 Argentometric method 5 - 1,000 mg/l ph CP No. 5 Electrometry 2 - 12 CP No. 3 Gravimetric Suspended Solids 0.5 - 17,500 mg/l Chemical Oxygen Demand CP No. 6 Reflux - colourmetric method 21 - 135 mg/l 120 - 670,000 mg/l Total phosphorus US-EPA Approved method/HACH 0.2 - 5,300 mg/l Method CP No.20 Documented in-house method CP22 by Konelab Ammonia 0.1 - 1,000 mg/l NH3 - N based on Method for the Examination of Waters and Associated Material HMSO: 1981

# Scope of Accreditation



## **Cork County Council**

Permanent Laboratory: Category A

## **Chemical Testing Laboratory**

| (P9) | lassification number<br>als/products tested | Type of test/properties measured<br>Range of measurement                                                                                                               | Standard specifications<br>Equipment/techniques used |
|------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 766  | Waters                                      |                                                                                                                                                                        |                                                      |
| .01  | Waters for                                  | Orthophosphate as P (Konelab)                                                                                                                                          | CP No. 23 Ascorbic Acid Method                       |
|      | domestic purposes                           | Range: 0.005-1.00 mg O-PO4 P/L                                                                                                                                         | ~~·                                                  |
|      | Surface and ground                          | High Range: 1000 mg O-PO4 P/L                                                                                                                                          | other use.                                           |
|      | waters                                      | Method Detection Limit: 0.02 mg 0-PO4R/L                                                                                                                               | 0                                                    |
|      |                                             | Method Detection Limit: 0.02 mg O-PO4.P/LA<br>Chloride (Konelab)<br>Range: 25-250 mg/L Cl-<br>High Range Conc.: 86,000 mg/L Cl-<br>Method Detection Limit: 25 mg/L Cl- | CP No. 24 Ferricyanide Method                        |
|      |                                             | Sulphate (Kanelab)                                                                                                                                                     | CP No. 25 Documented in-house method by              |
|      |                                             | Range: 30-250 mg/L SO4/L                                                                                                                                               | Konelab based on method for the examination          |
|      |                                             | High Range Conc.: 35,000 mg/L SO4/L                                                                                                                                    | of waters and waste waters and associated            |
|      |                                             | Method Detection Limit: 30 mg SO4/L                                                                                                                                    | material HMSO: 1981                                  |
|      |                                             |                                                                                                                                                                        |                                                      |

016T

# Scope of Accreditation



## **Cork County Council**

## **Chemical Testing Laboratory**

Permanent Laboratory:

Category A

| (P9) | assification number<br>als/products tested | Type of test/properties<br>measured<br>Range of measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Standard specifications<br>Equipment/techniques used                                 |
|------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 766  | Waters                                     | Chemical analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Documented in-house methods based on Standard                                        |
|      |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methods for the Examination of Water&                                                |
| .05  | Trade Wastes                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wastewater 21 st Edition APHA (See Note 1)                                           |
|      | Industrial effluents                       | Biochemical Oxygen Demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRNo. 1 Membrane electrode                                                           |
|      | Urban Wastewater<br>Municipal Wastewater   | 2 - 145,000 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>5</b> 3                                                                           |
|      |                                            | Chloride puttedut<br>5 - 1,000 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CP No. 7 Argentometric method                                                        |
|      |                                            | Biochemical Oxygen Demand<br>2 - 145,000 mg/l<br>Chloride<br>5 - 1,000 mg/l<br>pH<br>2 - 12<br>Consett of Constant Particulation<br>Consett of Constant Particulation<br>Constant Particulation<br>Constant Particulation<br>Constant Particulatio<br>Constant Particulation<br>Constant Part | CP No. 5 Electrometry                                                                |
|      |                                            | Suspended Solids<br>0.5 - 17,500 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CP No. 3 Gravimetric                                                                 |
|      |                                            | Chemical Oxygen Demand<br>21 - 135 mg/l<br>120 - 670,000 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CP No. 6 Reflux - colourmetric method                                                |
|      |                                            | Total phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US-EPA Approved method/HACH                                                          |
|      |                                            | 0.2 - 5,300 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method CP No.20                                                                      |
|      |                                            | Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Documented in-house method CP22 by Konelab                                           |
|      |                                            | 0.1 - 1,000 mg/l NH3-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | based on Method for the Examination of Waters<br>and Associated Material HMSO: 1981. |

1. APHA American Public Health Association, USA, 21<sup>st</sup> Edition

# Scope of Accreditation



## **Cork County Council**

## **Chemical Testing Laboratory**

Permanent Laboratory: Category A

| (P9)              | lassification number<br>als/products tested                                                | Type of test/properties<br>measured<br>Range of measurement                                                                      | Standard specifications<br>Equipment/techniques used                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>766</b><br>.05 | Waters<br>Trade Wastes<br>Industrial effluents<br>Urban Wastewater<br>Municipal Wastewater | Chemical analysis<br>Orthophosphate as P (Konelab), output<br>Range: 0.005 - 1.00 mg 0-P04 P/L<br>High Range: 1000 mg 0-P04 P/L  | Documented in-house methods based on Standard<br>Methods for the Examination of Water&<br>Wastewater 21 st Edition APHA (See Note 1)<br>CPNO. 1 Membrane electrode |
|                   |                                                                                            | Range: 0.005 - 1.00 mg 0 P04 P/L<br>High Range: 1000 mg 0 P04 P/L<br>Method Detection Limit: 0.02 mg 0-<br>P04 P/L<br>Consent    | CP No. 24 Ferricyanide Method                                                                                                                                      |
|                   |                                                                                            | Range: 25-250 mg/L Cl-<br>High Range Conc.: 86,600 mg /L Cl-<br>Method Detection Limit: 25mg / L Cl-                             |                                                                                                                                                                    |
| otes              |                                                                                            | Sulphate (Konelab))<br>Range: 30-250 mg/L SO4 /L<br>High Range Conc.: 35,000 mg/L SO4 /L<br>Method Detection Limit: 30 mg SO4 /L | CP No. 25 Documented in-house method by<br>Konelab based on method for the examination of<br>waters and waste waters and associated material<br>HMSO: 1981         |

1. APHA American Public Health Association, USA, 21st Edition

| PT_CD  | PT_TYPE | MON_TYPE | EASTING         | NORTHING | VERIFIED |
|--------|---------|----------|-----------------|----------|----------|
| SW01   | Primary | sampling | 134945          | 72929    | no       |
| aSW01u | u/s     | sampling | 134950          |          |          |
| aSW01d | d/s     | sampling | 135333          | 72498    | no       |
|        |         |          |                 |          |          |
|        |         |          |                 |          |          |
|        |         |          |                 |          |          |
|        |         |          |                 |          |          |
|        |         |          |                 |          |          |
|        |         |          |                 |          |          |
|        |         |          |                 |          |          |
|        |         |          | US <sup>6</sup> |          |          |
|        |         |          | etho,           |          |          |
|        |         |          | Eng. Ela        |          |          |
|        |         |          | noutedite       |          |          |
|        |         |          | and the second  |          |          |
|        |         |          | Duredur         |          |          |
|        |         |          | in or of        |          |          |
|        |         |          | · no out        |          |          |

Consent of copyright

|                          | Atta       | achme     | nt E4      | Macroo     | m Inle     | t-Table    | Е        |            |            |         |
|--------------------------|------------|-----------|------------|------------|------------|------------|----------|------------|------------|---------|
| Sample Date              | 07/02/2008 | 6/3//2008 | 03/04/2008 | 19/06/2008 | 10/07/2008 | 17/07/2008 |          | 20/06/2007 | 04/10/2007 |         |
| Sample                   | Influent   | Influent  | Influent   | Influent   | Influent   | Influent   |          | influent   | influent   |         |
| Flow M <sup>3</sup> /Day | *          | *         | *          | *          | *          | *          |          | *          | *          |         |
| рН                       | *          | *         | *          | *          | *          | 7.4        |          | *          | *          |         |
| Temperature °C           | *          | *         | *          | *          | *          | *          |          | *          | *          |         |
| Cond 20°C                | *          | *         | 898        | *          | 685        | 821        |          | *          | *          |         |
| SS mg/L                  | *          | 267       | *          | 5257       | *          | 644        |          | *          | *          |         |
| NH <sub>3</sub> mg/L     | 23.9       | *         | *          | 16.4       | *          | 58.5       |          | *          | 104.2      |         |
| BOD mg/L                 | *          | *         | *          | *          | *          | 566        |          | *          | *          |         |
| COD mg/L                 | 493        | 977       | 1029       | 3105       | *          | 1150       |          | 299        | 1242       |         |
| TN mg/L                  | 41         | *         | *          | *          | *          | *          |          | 9.64       | *          |         |
| Nitrite mg/L             | *          | *         | *          | *          | *          | *          |          | *          | *          |         |
| Nitrate mg/L             | *          | *         | *          | *          | *          | *          |          | *          | *          |         |
| TP mg/L                  | 5.08       | 5.2       | 15.15      | *          | *          | 2.2        |          | *          | 20.15      |         |
| O-PO4-P mg/L             | 41.2       | 5.99      | 7.23       | 0.17       | *          | 9.22       |          | *          | 13.85      |         |
| SO4 mg/L                 | 2.62       | *         | *          | *          | *          | 44         |          | *          | 40.2       |         |
| Phenols µg/L             | *          | *         | *          | *          | *          | <0.1       |          | *          | *          |         |
| Atrazine µg/L            | *          | *         | *          | *          | *          | <0.01      |          | *          | *          |         |
| Dichloromethane µg/L     | *          | *         | *          | *          | *          | <1.0       |          | *          | *          | ひ*<br>' |
| Simazine µg/L            | *          | *         | *          | *          | *          | <0.01      |          | *          | * there    |         |
| Toluene μg/L             | *          | *         | *          | *          | *          | <1.0       |          | *          | the the    |         |
| Tributyltin μg/L         | *          | *         | *          | *          | *          | *          |          | *          | offor *    |         |
| Xylenes µg/L             | *          | *         | *          | *          | *          | <1.0       |          | * 1205     | red *      |         |
| Arsenic μg/L             | *          | *         | *          | *          | *          | 1          |          | * Pured    | *          |         |
| Chromium mg/L            | <0.02      |           |            |            |            |            |          | ection net | <0.02      |         |
| Copper mg/L              | 0.039      |           |            |            |            |            | ~        | Inspir on  | 0.156      |         |
| Cyanide µg/L             | *          | *         |            |            |            | 4          | Ŷ°       |            | *          |         |
| Fluoride                 | *          | *         |            |            |            |            | - Stor   | *          | *          |         |
| Lead mg/L                | <0.02      |           |            |            |            |            | -sent or |            | 0.056      |         |
| Nickel mg/L              | <0.02      |           |            |            |            |            | Conse    |            | <0.02      |         |
| Zinc mg/L                | 0.074      |           |            |            |            |            |          |            | 0.262      |         |
| Boron mg/L               | 0.065      |           |            |            |            |            |          |            | <0.02      |         |
| Cadmium mg/L             | <0.02      |           |            |            |            |            |          |            | <0.02      |         |
| Mercury µg/L             | *          | *         |            |            |            | <0.2       |          | *          | *          |         |
| Selenium µg/L            | *          | *         |            |            |            | 1          |          | *          | *          |         |
| Barium mg/L              | 0.037      |           |            |            |            |            |          |            | 0.073      |         |

|                          |            | Attac      | hment      | E4         | Ma         | croom (    | <b>Outlet-</b> | Table E        |                         |            |            |            |            |            |            |            |            |            |            |            |         |
|--------------------------|------------|------------|------------|------------|------------|------------|----------------|----------------|-------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------|
| Sample Date              | 07/02/2008 | 06/03/2008 | 03/04/2008 | 19/06/2008 | 10/07/2008 | 17/07/2008 |                |                |                         | 17/01/2007 | 07/03/2007 | 08/03/2007 | 20/06/2007 | 03/10/2007 | 04/10/2007 | 14/11/2007 | 15/11/2007 | 23/11/2007 | 05/12/2007 | 12/12/2007 | 13/12/2 |
| Sample                   | effluent   | Effluent   | Effluent   | Effluent   | Effluent   | Effluent   | Average        | Kg/Day         | Kg/Year                 | Effluent   | Efflue  |
| Flow M <sup>3</sup> /Day | 2597       | 917        | 1119       | 569        | 870        | 788        | 1143.333       | *              | *                       | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| рН                       | 7.1        | 7.2        | *          | 7.1        | *          | 6.8        | 7.05           | *              | *                       | 7.4        | 7.5        | 7.3        | 6.9        | 7.3        | 8          | 7.5        | 7.4        | *          | 7.5        | 7.4        | 7.5     |
| Temperature °C           | *          | *          | *          | *          | *          | *          | *              | *              | *                       | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Cond 20℃                 | *          | 560        | 459        | 272        | 378        | 490        | 431.8          | *              | *                       | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| SS mg/L                  | 7          | 20         | 9          | 226.2      | 9          | 21         | 48.7           | 55.6803333     | 20323.32167             | 22         | 73         | 165        | 33         | 23         | 46         | 11         | 3          | 18         | 9          | 12         | <2.5    |
| NH₃ mg/L                 | 0.2        | 0.05       | 0.05       | 0.05       | 0.2        | 0.05       | 0.1            | 0.1143333      | 41.73166667             | *          | *          | *          | *          | 24.3       | 21.1       | 0.2        | 0.2        | 0.1        | <0.1       | *          | *       |
| BOD mg/L                 | 4.26       | 3          | 3.82       | 37.8       | 2.55       | 7.64       | 9.845          | 11.2561167     | 4108.482583             | *          | 57         | 85         | 7.3        | 16         | 22         | 3.78       | 4.58       | 5.1        | 3.54       | 3.99       | <1      |
| COD mg/L                 | 10.5       | 34         | 10.5       | 243        | 34         | 42         | 62.33333       | 71.2677778     | 26012.73889             | 42         | 128        | 284        | 48         | 51         | 87         | 36         | <21        | 36         | <21        | 25         | 24      |
| TN mg/L                  | 8.4        | 28.45      | 22.6       | 0.6        | 17.6       | 24.9       | 17.09167       | 19.5414722     | 7132.637361             | 15         | 14         | *          | 10.7       | 20.7       | 23.2       | 15.4       | 13.8       | *          | 9.6        | 14.3       | 11.3    |
| Nitrite mg/L             | *          | *          | *          | *          | *          | 0.226      | 0.226          | 0.2583933      | 94.31356667             | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Nitrate mg/L             | *          | *          | *          | *          | *          | 20.41      | 20.41          | 23.3354333     | 8517.433167             | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| TP mg/L                  | 0.3        | 0.3        | 1.59       | 0.1        | 0.93       | 4.38       | 1.266667       | 1.4482222      | 528.6011111             | 0.47       | 2.43       | 3.45       | 1.64       | 2.41       | 1.38       | 0.33       | 0.28       | 0.33       | <0.2       | 0.23       | <0.2    |
| O-PO4-P mg/L             | 0.14       | 0.16       | *          | 1.77       | 2.52       | 4.27       | 1.772          | 2.0259867      | 739.4851333             | *          | *          | *          | *          | 1.29       | 0.62       | 0.15       | 0.17       | 0.05       | <0.05      | *          | *       |
| SO4 mg/L                 | 15         | *          | *          | *          | *          | 36         | 25.5           | 29.1550000     | 10641.575               | *          | *          | *          | *          | 38         | 38.3       | 38.7       | 38.2       | 41.3       | <30        | *          | <30     |
| Phenols µg/L             | *          | *          | *          | *          | *          | <0.1       | <0.1           | < 0.0001143333 | 33 < 0.0417316666666667 | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Atrazine µg/L            | *          | *          | *          | *          | *          | <0.01      | <0.01          | < 0.0000114333 | 33<0.00417316666666667  | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Dichloromethane          | *          | *          | *          | *          | *          | <1.0       | <1.0           | < 0.0011433333 | 33 <0.417316666666667   | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Simazine µg/L            | *          | *          | *          | *          | *          | <0.01      | <0.01          | < 0.0000114333 | 33 <0.00417316666666667 | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Toluene µg/L             | *          | *          | *          | *          | *          | <1.0       | <1.0           | < 0.0011433333 | 33 < 0.417316666666667  | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Tributyltin µg/L         | *          | *          | *          | *          | *          | *          | *              | *              | *                       | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Xylenes µg/L             | *          | *          | *          | *          | *          | <1.0       | <1.0           | < 0.0011433333 | 33 <0.417316666666667   | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Arsenic µg/L             | *          | *          | *          | *          | *          | <0.96      | <0.96          | <0.0010976     | <0.400624               | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Chromium mg/L            | 0.01       | *          | *          | 0.01       | 0.01       | *          | 0.01           | 0.0114333      | 4.173166667             |            |            | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |            | <0.02   |
| Copper mg/L              | 0.01       | *          | *          | 0.01       | 0.01       | *          | 0.01           | 0.0114333      | 4.173166667             |            |            | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |            | <0.02   |
| Cyanide µg/L             | *          | *          | *          | *          | *          | 2          | 2              | 0.0022867      | 0.834633333             | * *        | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Fluoride                 | *          | *          | *          | *          | *          | 130        | 130            | 0.1486333      | 54.25116667             | * *        | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Lead mg/L                | 0.01       | *          | *          | 0.01       | 0.01       | *          | 0.01           | 0.0114333      | 4.173166667             |            | . 150      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |            | <0.02   |
| Nickel mg/L              | 0.01       | *          | *          | 0.01       | 0.01       | *          | 0.01           | 0.0114333      | 4.173166667             |            | net        | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |            | <0.02   |
| Zinc mg/L                | 0.027      | *          | *          | 0.01       | 0.021      | *          |                | 0.0221044      | 8.068122222             |            | J OF       | 0.022      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | 0.026      | 0.026      |            | *       |
| Boron mg/L               | 0.049      | *          | *          | 0.01       | 0.091      | *          |                | 0.0571667      | 20.86583333             | ally.      | 20,        | *          | *          | *          | *          | 0.133      | 0.21       | 0.125      | *          |            | *       |
| Cadmium mg/L             | 0.01       | *          | *          | 0.01       | 0.01       | *          | 0.01           | 0.0114333      | 4.173166667             | 25 (O      |            | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |            | <0.02   |
| Mercury µg/L             | *          | *          | *          | *          | *          | 0.5        | 0.5            | 0.0005717      | 0.208658333             | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Selenium µg/L            | *          | *          | *          | *          | *          | 1          | 1              | 0.0011433      | 0.417316667             | * JITY JUS | *          | *          | *          | *          | *          | *          | *          | *          | *          | *          | *       |
| Barium mg/L              | 0.01       | *          | *          | 0.034      | 0.01       | *          | 0.018          | 0.0205800      | Consent of convite      | 1 × ×      |            | < 0.02     | < 0.02     | < 0.02     | < 0.02     | < 0.02     | < 0.02     | < 0.02     | <0.02      |            | < 0.02  |

|                          |            |            | Attach     | ment E     | 4 Mac      | room D     | ownst       | tream-     | Table I    | =                 |            |            |            |      |
|--------------------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|-------------------|------------|------------|------------|------|
| Sample Date              | 07/02/2008 | 06/03/2008 | 03/04/2008 | 19/06/2008 | 10/07/2008 | 17/07/2008 |             | 17/01/2007 | 08/03/2007 | 20/06/2007        | 04/10/2007 | 14/11/2007 | 15/11/2007 | 23/1 |
| Sample                   | river      | River      | River      | River      | River      | River      |             | river      | river      | river             | river      | river      | river      | ri   |
| Flow M <sup>3</sup> /Day | *          | *          | *          | *          | *          | *          |             | *          | *          | *                 | *          | *          | *          |      |
| рН                       | 7.2        | 7.5        | *          | 7.7        | *          | 7.7        |             | 7.3        | 7.1        | *                 | 7.4        | 7.6        | 7.5        |      |
| Temperature °C           | *          | *          | *          | *          | *          | *          |             | *          | *          | *                 | *          | *          | *          |      |
| Cond 20°C                | *          | 144        | 145        | *          | 112.3      | 138        |             | *          | *          | *                 | *          | *          | *          |      |
| SS mg/L                  | <2.5       | <2.5       | 3          | <2.5       | <2.5       | <2.5       |             | *          | *          | *                 | *          | <2.5       | <2.5       |      |
| NH <sub>3</sub> mg/L     | <0.1       | <0.1       | *          | <0.1       | *          | <0.1       |             | <0.1       | 0.6        | <0.1              | <0.1       | <0.1       | <0.1       | <    |
| BOD mg/L                 | <1         | <1         | <1.0       | *          | *          | <1.0       |             | 1.1        | 4.5        | 1.7               | 1.44       | 1.37       | 1.2        | •    |
| COD mg/L                 | <21        | *          | *          | *          | *          | <21        |             | *          | <21        | *                 | 21         | *          | <21        |      |
| TN mg/L                  | <0.5       | 2.83       | 1.9        | 0.7        | 2.1        | 1.8        |             | 3.6        | 5.4        | <2                | 2.7        | 3.1        | 1.1        | •    |
| Nitrite mg/L             | *          | *          | *          | *          | *          | *          |             | *          | *          | *                 | *          | *          | *          |      |
| Nitrate mg/L             | *          | *          | *          | *          | *          | *          |             | *          | *          | *                 | *          | *          | *          |      |
| TP mg/L                  | <0.2       | <0.2       | 0.35       | <0.2       | <0.2       | <0.2       |             | 0.64       | <0.2       | <0.2              | 0.6        | <0.2       | <0.2       | <    |
| O-PO4-P mg/L             | <0.05      | < 0.05     | <0.05      | < 0.05     | < 0.05     | < 0.05     |             | *          | *          | *                 | < 0.05     | <0.05      | < 0.05     |      |
| SO4 mg/L                 | <30        | *          | *          | *          | *          | <30        |             | *          | *          | *                 | <30        | <30        | <30        | •    |
| Phenols µg/L             | *          | *          | *          | *          | *          | 21.288     |             | *          | *          | *                 | *          | *          | *          |      |
| Atrazine µg/L            | *          | *          | *          | *          | *          | <0.01      |             | *          | *          | *                 | *          | *          | *          |      |
| Dichloromethane          | *          | *          | *          | *          | *          | <1.0       |             | *          | *          | *                 | *          | *          | *          |      |
| Simazine µg/L            | *          | *          | *          | *          | *          | <0.01      |             | *          | *          | US <sup>O</sup> * | *          | *          | *          |      |
| Toluene µg/L             | *          | *          | *          | *          | *          | <1         |             | *          | * offe     | *                 | *          | *          | *          |      |
| Tributyltin µg/L         | *          | *          | *          | *          | *          | *          |             | *          | ally any   | *                 | *          | *          | *          |      |
| Xylenes µg/L             | *          | *          | *          | *          | *          | <1         |             | *          | 50° 2 10*  | *                 | *          | *          | *          |      |
| Arsenic µg/L             | *          | *          | *          | *          | *          | <0.96      |             | * 110      | willo *    | *                 | *          | *          | *          |      |
| Chromium mg/L            | <0.02      |            | 0.036      | <0.02      | <0.02      | <0.02      |             | ion Prr    | Zot        | <0.02             | <0.02      | <0.02      | <0.02      | <(   |
| Copper mg/L              | <0.02      |            | <0.02      | <0.02      | <0.02      | <0.02      |             | Dectowne   |            | <0.02             | <0.02      | <0.02      | <0.02      | <(   |
| Cyanide µg/L             | *          | *          | *          | *          | *          | 7          |             | Thent      |            | *                 | *          | *          | *          |      |
| Fluoride                 | *          | *          | *          | *          | *          | *          | 4           | OP/I       |            | *                 | *          | *          | *          |      |
| Lead mg/L                | <0.02      |            | <0.02      | <0.02      | <0.02      | <0.02      | <u>ر</u> کې | 6          |            | <0.02             | <0.02      | <0.02      | <0.02      | <    |
| Nickel mg/L              | <0.02      |            | <0.02      | <0.02      | <0.02      | <0.02      | asent       |            |            | <0.02             | <0.02      | <0.02      | <0.02      | <    |
| Zinc mg/L                | <0.02      |            | <0.02      | <0.02      | <0.02      | <0.02      | Con         |            |            | <0.02             | <0.02      | <0.02      | <0.02      | <    |
| Boron mg/L               | <0.02      |            | <0.02      | <0.02      | *          | *          |             |            |            | *                 | *          | *          | *          |      |
| Cadmium mg/L             | <0.02      |            | <0.02      | <0.02      | <0.02      | <0.02      |             |            |            | <0.02             | <0.02      | <0.02      | <0.02      | <    |
| Mercury μg/L             | *          | *          | *          | *          | *          | 0.5        |             |            |            | *                 | *          | *          | *          |      |
| Selenium µg/L            | *          | *          | *          | *          | *          | 1          |             |            |            | *                 | *          | *          | *          |      |
| Barium mg/L              | < 0.02     |            | <0.02      | 0.034      | 0.042      | 0.03       |             |            |            | <0.02             | <0.02      | <0.02      | <0.02      | <(   |

| 0/11/0007 | 05/10/0007 |
|-----------|------------|
|           | 05/12/2007 |
| river     | river      |
| *         | *          |
| *         | 7.2        |
| *         | *          |
| *         | *          |
| *         | 21         |
| <0.1      | <0.1       |
| 1.2       | 2.4        |
| *         | *          |
| 1.4       | 11         |
| *         | *          |
| *         | *          |
| <0.2      | 0.28       |
| *         | <0.05      |
| <30       | <30        |
| *         | *          |
| *         | *          |
| *         | *          |
| *         | *          |
| *         | *          |
| *         | *          |
| *         | *          |
| *         | *          |
| <0.02     | <0.02      |
| <0.02     | <0.02      |
| *         | *          |
| *         | *          |
| <0.02     | 0.035      |
| <0.02     | <0.02      |
| <0.02     | <0.02      |
| *         | *          |
| <0.02     | <0.02      |
| *         | *          |
| *         | *          |
| <0.02     | <0.02      |
|           |            |

|                          |            |            | Attac      | chment     | <b>E4 Macr</b> | oom up     | ostrea   | m-labie      | E          |            |            |            |            |            |            |
|--------------------------|------------|------------|------------|------------|----------------|------------|----------|--------------|------------|------------|------------|------------|------------|------------|------------|
| Sample Date              | 07/02/2008 | 06/03/2008 | 03/04/2008 | 19/06/2008 | 10/07/2008     | 17/07/2008 |          | 17/01/2007   | 08/03/2007 | 20/06/2007 | 04/10/2007 | 14/11/2007 | 15/11/2007 | 23/11/2007 | 05/12/2007 |
| Sample                   | river      | River      | River      | river      | River          | River      |          | river        | river      | river      | river      | river      | river      | river      | river      |
| Flow M <sup>3</sup> /Day | *          | *          | *          | *          | *              | *          |          | *            | *          | *          | *          | *          | *          | *          | *          |
| рН                       | 7.2        | 7.6        | *          | 7.6        | *              | 7.6        |          | 7.5          | 7.2        | *          | 7.4        | 7.5        | 7.4        | *          | *          |
| Temperature °C           | *          | *          | *          | *          | *              | *          |          | *            | *          | *          | *          | *          | *          | *          | *          |
| Cond 20℃                 | *          | 129        | 144        | *          | 109.2          | 138        |          | *            | *          | *          | *          | *          | *          | *          | *          |
| SS mg/L                  | <2.5       | <2.5       | <25        | <2.5       | <2.5           | <2.5       |          | 17           | <2.5       | 5          | 3          | <2.5       | <2.5       | <2.5       | 22         |
| NH <sub>3</sub> mg/L     | <0.1       | <0.1       | <0.1       | <0.1       | *              | <0.1       |          | <0.1         | <0.1       | <01        | 1.6        | <0.1       | <0.1       | <0.1       | <0.1       |
| BOD mg/L                 | 1.16       | <1         | 1.06       | *          | *              | <1.0       |          | <1           | <1         | 2.2        | 7.28       | 1.1        | 1.2        | 1.55       | 1.71       |
| COD mg/L                 | <21        | *          | *          | *          | *              | <21        |          | *            | 53         | *          | 26         | <21        | <21        | *          | 1.71       |
| TN mg/L                  | 1.7        | 2.48       | 1.1        | *          | 0.8            | 2.1        |          | 1.7          | 3.7        | 2.28       | 7.2        | 0.5        | 2          | 1.4        | 8.1        |
| Nitrite mg/L             | *          | *          | *          | *          | *              | *          |          | *            | *          | *          | *          | *          | *          | *          | *          |
| Nitrate mg/L             | *          | *          | *          | *          | *              | *          |          | *            | *          | *          | *          | *          | *          | *          | *          |
| TP mg/L                  | <0.2       | <0.2       | <0.20      | <0.2       | <0.2           | <0.2       |          | <0.2         | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| O-PO4-P mg/L             | <0.05      | <0.05      | <0.05      | <0.05      | <0.05          | <0.05      |          | *            | *          | *          | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| SO4 mg/L                 | <30        | *          | *          | *          | *              | <30        |          | *            | *          | *          | <30        | <30        | <30        | <30        | <30        |
| Phenols µg/L             | *          | *          | *          | *          | *              | <0.1       |          | *            | *          | *          | *          | *          | *          | *          | *          |
| Atrazine µg/L            | *          | *          | *          | *          | *              | <0.01      |          | *            | *          | *          | *          | *          | *          | *          | *          |
| Dichloromethane          | *          | *          | *          | *          | *              | <1.0       |          | *            | *          | *          | *          | *          | *          | *          | *          |
| Simazine µg/L            | *          | *          | *          | *          | *              | <0.01      |          | *            | x 1150*    | *          | *          | *          | *          | *          | *          |
| Toluene μg/L             | *          | *          | *          | *          | *              | <1         |          | *            | other *    | *          | *          | *          | *          | *          | *          |
| Tributyltin µg/L         | *          | *          | *          | *          | *              | *          |          | * 117. 28    | *          | *          | *          | *          | *          | *          | *          |
| Xylenes µg/L             | *          | *          | *          | *          | *              | <1         |          | tot a for    | *          | *          | *          | *          | *          | *          | *          |
| Arsenic µg/L             | *          | *          | *          | *          | *              | <0.96      |          | all Politice | *          | *          | *          | *          | *          | *          | *          |
| Chromium mg/L            | <0.02      |            | <0.02      | <0.02      | <0.02          | <0.02      |          | OTPTECT      |            | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Copper mg/L              | <0.02      |            | <0.02      | <0.02      | <0.02          | <0.02      | Dec)     | e whe        |            | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Cyanide µg/L             | *          | *          | *          | *          | *              | 7          | (Install | *            | *          | *          | *          | *          | *          | *          | *          |
| Fluoride                 | *          | *          | *          | *          | *              | *          | FORT     | *            | *          | *          | *          | *          | *          | *          | *          |
| Lead mg/L                | <0.02      |            | <0.02      | <0.02      | <0.02          | <0.02      | of car   |              |            | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Nickel mg/L              | <0.02      |            | <0.02      | <0.02      | <0.02          | <0.02      | Sent     |              |            | <0.02      | <0.02      | <0.02      | <0.02      | < 0.02     | <0.02      |
| Zinc mg/L                | <0.02      |            | <0.02      | <0.02      | <0.02          | <0.02 🕐    | r        |              |            | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Boron mg/L               | *          |            | *          | *          | *              | *          |          |              |            | *          | *          | *          | <0.02      | < 0.02     | *          |
| Cadmium mg/L             | <0.02      |            | <0.02      | <0.02      | <0.02          | <0.02      |          |              |            | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Mercury µg/L             | *          | *          | *          |            | *              | 0.4        |          | *            | *          | *          | *          | *          | *          |            | *          |
| Selenium µg/L            | *          | *          | *          | *          | *              | 1          |          | *            | *          | *          | *          | *          | *          | *          | *          |
| Barium mg/L              | <0.02      |            | <0.02      | 0.037      | 0.044          | 0.039      |          |              |            | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |

## Attachment E4 Macroom Upstream-Table E





Laboratory Test Report Cork County Council Waste Water Laboratory Inniscarra, Co. Cork

| Industry<br>Address | Name                    | Mac<br>Mac<br>Co.   | ro |                      | /ag | ge Wor               | ks         |                                                                                                                                                                                                                                                                                                                                  |                    | ÷                           |      | R           | dustry Code No.<br>eport Ref No.<br>sued to <u>f wit</u><br>Wallek | 25-<br>Uis | 311<br>-08-08-183<br>- SEE.<br>20165 |
|---------------------|-------------------------|---------------------|----|----------------------|-----|----------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|------|-------------|--------------------------------------------------------------------|------------|--------------------------------------|
| Licence             | No.                     |                     |    | Ту                   | be  | S                    |            |                                                                                                                                                                                                                                                                                                                                  |                    |                             |      | _           |                                                                    |            |                                      |
| Licence<br>Limit    | Volume<br>m3<br>999999  | pH<br>12.99<br>3.99 |    | B.O.D.<br>mg/l<br>25 |     | C.O.D<br>mg/l<br>125 | •          | Sus Solids<br>mg/l<br>35                                                                                                                                                                                                                                                                                                         | TP-P<br>mg/l<br>99 |                             |      |             | Code                                                               | Co         |                                      |
| Date 17/01/07       |                         | 7.4                 |    | 4.1                  |     | 42                   |            | 22                                                                                                                                                                                                                                                                                                                               | 0.47               |                             |      |             | GR009                                                              | G          |                                      |
| 07/03/07            |                         | 7.5                 | *  | 57                   | *   |                      | *          | 73                                                                                                                                                                                                                                                                                                                               | 2.43               |                             |      |             | GR203                                                              | G          | TN-N\$=14mg/L                        |
| 08/03/07            |                         | 7.3                 |    | 85                   | *   | 284                  | *          | 165                                                                                                                                                                                                                                                                                                                              | 3 4 5              |                             |      |             | GR220                                                              | G          | •                                    |
| 20/06/07            |                         | 6.9                 |    | 7.3                  |     | 48                   |            | 33                                                                                                                                                                                                                                                                                                                               | 1.64               |                             |      |             | GR528                                                              | G          | TN-N\$=10.7mg/L THM\$=<1             |
| 03/10/07            |                         | 7.3                 |    | 16                   |     | 51                   |            | 23                                                                                                                                                                                                                                                                                                                               | 2.41               |                             |      |             | GR929                                                              | G          | OPO4=1.29mg/l NH3=24.3m              |
| 04/10/07            |                         | 8.0                 |    | 22                   |     | 87                   | *          | 46                                                                                                                                                                                                                                                                                                                               | 1.38               |                             | 150. |             | GR948                                                              | С          | TN-N\$=23.2mg/l OPO4=0.62            |
| 14/11/07            |                         | 7.5                 |    | 3.78                 |     | 36                   |            | 11                                                                                                                                                                                                                                                                                                                               | 0.33               | atte                        | 5    |             | GR1106                                                             | С          | O-PO4-P=0.15mg/l                     |
| 15/11/07            |                         | 7.4                 |    | 4.58                 |     | <21                  |            | 3                                                                                                                                                                                                                                                                                                                                | 0.28               | 9.00                        |      |             | GR1109                                                             | С          | O-PO4-P=0.17mg/l                     |
| 23/11/07            |                         |                     |    | 5.10                 |     | 36                   |            | 18                                                                                                                                                                                                                                                                                                                               | 0.330              | ior ic                      |      |             | GR1152                                                             | G          | SO4=41.3mg/l                         |
| 05/12/07            |                         | 7.5                 |    | 3.54                 |     | <21                  |            | 9                                                                                                                                                                                                                                                                                                                                | \$0,20             |                             |      |             | GR1166                                                             | G          | O-PO4-P= <0.05mg/l                   |
| 12/12/07            |                         | 7.4                 |    | 3.99                 |     | 25                   |            | 12 20                                                                                                                                                                                                                                                                                                                            | 0.23               |                             |      |             | GR1191                                                             | С          | TN-N\$=14.3mg/L                      |
| 13/12/07            |                         | 7.5                 |    | <1.0                 |     | 24                   |            | <200 NIPE                                                                                                                                                                                                                                                                                                                        | <0.20              |                             |      |             | GR1199                                                             | С          | TN-N\$=11.3mg/L                      |
| % Compl.<br>Average | ***<br>**** <u>*</u> ** | 100<br>7.43         | ij | 83<br>17.70          | 0   | 83<br>63.42          | cor<br>cor | 33<br>33<br>23<br>46<br>11<br>3<br>18<br>9<br>12<br>23<br>9<br>12<br>23<br>9<br>12<br>23<br>9<br>12<br>23<br>9<br>12<br>23<br>9<br>12<br>23<br>9<br>12<br>23<br>23<br>46<br>11<br>3<br>18<br>9<br>12<br>23<br>23<br>46<br>11<br>3<br>18<br>9<br>12<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23 | 100<br>1.08        | ***<br>**** <sub>.</sub> ** | *    | ***<br>*_** |                                                                    |            |                                      |
|                     |                         |                     |    |                      |     |                      |            |                                                                                                                                                                                                                                                                                                                                  |                    |                             |      |             |                                                                    |            |                                      |

The samples are received at the Laboratory on the day of sampling. The above test methods are based

on Standard Methods for the examination of Water and Waste Water, 21st Edition 2005, APHA, AWWA, WEF.

C = Composite Sample, G = Grab Sample.

The compliance value may be varied on items marked with an \* by the application of uncertainty of measurement values on reverse Page Chemical Procedure Numbers(CP No.) for INAB accredited tests are as follows:

CP NO. 1 = B.O.D.

CP NO. 5 = pH

CP NO. 3 = S.S.CP NO.20 = TP-PCP NO. 7 = ClCP NO. 6 = C.O.D.

CP NO.22=Ammonia(KONELAB)

CP NO.25=Sulphate(KONELAB)

CP NO.24 = Chloride (KONELAB) CP NO.23 = OPO4-P(KONELAB) This report relates only to the samples listed above. This report shall not be reproduced except in full and only with with the approval of the testing laboratory. Cork County Council is not accredited by INAB for tests marked with \$. Kg loadings based on flows as supplied by the company. ~ indicates results that have been edited.

Reported by: Date: Ms. V. Hannon Technical Manager P Deputy Technical Manager

**CTR 001** 

Issue No 5

November 2007

## Wastewater Laboratory Cork County Council- Test Report Addendum

- a. Sample date reported in column 1 on this report is the date of collection of the sample from the industry name and address as outlined at the top of the report.
- b. Cork County Council wastewater laboratory are not accredited for sample collection.
- c. Data reported in (d) below is defined in section 5.10.3 (c) in wastewater laboratory quality manual.

| Chemical Procedure No. | range                | Test Name                       | Estimated<br>Uncertainty | Units    |
|------------------------|----------------------|---------------------------------|--------------------------|----------|
| CP No. 1               | 1 - 8 mg/l           | Biochemical Oxygen Demand (BOD) | ± 0.30                   | mg/l     |
| CP No. 1               | 9 –70 mg/l           | Biochemical Oxygen Demand (BOD) | ± 3.2                    | mg/l     |
| CP No. 1               | 71 - 700 mg/l        | Biochemical Oxygen Demand (BOD) | ± 40                     | mg/l     |
| CP No. 3               | 35 mg/l              | Suspended Solids (SS)           | ± 6.4                    | mg/l     |
| CP No. 3               | 200 - 400mg/l        | Suspended Solids (SS)           | ± 41.6                   | mg/l     |
| CP No. 3               | 700 – 1000mg/l       | Suspended Solids (SS)           | ± 80.0                   | mg/l     |
| CP No. 5               | 2 - 12               | pH                              | ± 0.12                   | pH Units |
| CP No. 6               | < 6 mg/l             | Chemical Oxygen Demand (COD LR) | ± 5.6                    | mg/l     |
| CP No. 6               | 15 – 75 mg/l         | Chemical Oxygen Demand (COD LR) | ± 10.6                   | mg/l     |
| CP No. 6               | 100 –135 mg/l        | Chemical Oxygen Demand (COD LR) | ± 17.4                   | mg/l     |
| CP No. 6               | 120 – 1500mg/l       | Chemical Oxygen Demand (COD)    | ± 26.8                   | mg/l     |
| CP No. 7               | 5.0 - 125 mg/l       | Chloride (Cl.)                  | ± 0.85                   | mg/l     |
| CP No. 20              | 0.2 – 2.5 mg/l       | Total Phosphorus (TP-P)         | ± 0.22                   | mg/l     |
| CP No. 22              | 0.1 – 0.9 mg/l       | Ammonia (Konelab)               | ± 0.04                   | mg/l     |
| CP No. 22              | 1.0 – 2.0 mg/l       | . Ammonia (Konelab)             | ± 0.10                   | mg/l     |
| CP No. 22              | 2 – 10 mg/l          | Ammonia (Konelab)               | ± 0.32                   | mg/l     |
| CP No. 22              | 11-19 mg/1           | Ammonia (Konelab)               | ± 0.72                   | mg/l     |
| CP No. 22              | 20-25 mg/l Cont      | Ammonia (Konelab)               | ± 1.56                   | mg/l     |
| CP No. 23              | 0.05 – 1.00 mg/l     | Orthophosphate as P (Konelab)   | ± 0.04                   | mg/l     |
| CP No. 24              | 25.00 - 99.00 mg/l   | Chloride (Konelab)              | ± 3.04                   | mg/l     |
| CP No. 24              | 100.00 - 200.00 mg/l | Chloride (Konelab)              | ±11.16                   | mg/l     |
| CP No. 25              | 30.00 - 199.00 mg/l  | Sulphate (Konelab)              | ± 3.42                   | mg/l     |
| CP No. 25              | 200.00 - 250.00 mg/l | Sulphate (Konelab)              | ± 8.70                   | mg/l     |

d. Table of Uncertainty Of Measurement - Estimate Of Values For Accredited Tests

November 2007

The raw data used to evaluate the above estimations is stored in the Wastewater Laboratory, Cork County Council.

The method followed is located in the Uncertainty of Measurement file and in the Eurachem Guidelines for Quantifying Uncertainty in Analytical Measurement.

|         |                        |                            | Parameter            | Molybdate | Ammonium | Nitrate | Nitrite | Appearanc   | Temperatu I | Dissolved ( | Dissolved ( | pН       | BOD    | Suspende | Colour | Chloride | Conductivit | Hardness | Alkalinity | Copper (Di | Total Zinc | Odor        | Mg   | Zn   | Dissolved | Rainfall | Ca   |
|---------|------------------------|----------------------------|----------------------|-----------|----------|---------|---------|-------------|-------------|-------------|-------------|----------|--------|----------|--------|----------|-------------|----------|------------|------------|------------|-------------|------|------|-----------|----------|------|
|         |                        |                            |                      | Р         | NH4      | NO3     | NO2     |             |             | 02          |             |          | O2     |          | Hz     | CI       |             | CaCO3    | CaCO3      | Diss. Cu.  |            |             | Mg   | Zn   |           |          | Ca   |
|         |                        |                            | Max.                 | Varies    | Varies   | Varies  | 0.05    |             |             | 15          | 150         | Varies   | Varies |          | Varies |          |             |          |            |            |            |             |      | 500  |           |          |      |
|         |                        |                            | Target               |           |          |         |         |             |             |             |             |          |        |          |        |          |             |          |            |            |            |             |      |      |           |          |      |
|         |                        |                            | Min.                 |           |          |         |         |             |             | 5           | 50          | Varies   |        |          |        |          |             |          |            |            |            |             |      |      |           |          |      |
|         | Location               | Sample Sample              |                      |           |          |         |         |             |             |             |             |          |        |          |        |          |             |          |            |            |            |             |      |      |           | / /      |      |
| Project | Location Reference     | Template Reference         | Sample Date Comments | mg/l      | mg/l     | mg/l    | mg/l    | Descriptive | Degrees C   | mg/l        | % O2        | pH units | mg/l   | mg/l     | Hazen  | mg/l     | μS/cm       | mg/l     | mg/l       | mg/l       | mg/l       | Descriptive | mg/l | μg/l | μg/l      | mBar     | mg/l |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2008/0054 | 09-Jan-07            | 0.015     | 0.045    | 7.9     | 0.013   |             | 5.9         | 12.1        | 98          | 7.2      | 0.3    |          | 34     | 21.6     | 138         | 40       | 22         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/0092 | 17-Jan-07            | 0.014     | 0.03     | 5.7     | 0.014   |             | 6.8         | 11.5        | 96          | 7.3      | < 1    |          | 38     | 16       | 109         |          | 30         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/0224 | 08-Feb-07            | 0.024     | 0.082    |         | 0.016   |             | 5.2         | 11.6        | 94          | 7.3      | 1.6    | 2.7      | 107    |          | 92          |          | 16         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/0476 | 15-Mar-07            | 0.01      | 0.027    | 6.7     | < 0.013 | clear       | 8.7         | 11.4        | 98          | 7.5      | 0.2    |          | 24     | 14.5     | 117         | 41       | 30         |            |            |             | 1.97 |      |           |          | 13.1 |
| Sullane | first Br.d/s 19S020170 | WFD Operational 2007/0478  | 15-Mar-07            | 0.009     | 0.039    | 3.6     | < 0.013 | clear       | 9.7         | 11.5        | 101         | 7.6      | 0.3    |          | 28     | 14.6     | 103         | 31       |            |            |            |             | 1.54 |      |           |          | 10   |
| Sullane | Ford u/s La 19S020480  | WFD Operational 2007/0477  | 15-Mar-07            | 0.016     | 0.045    | 8.5     | 0.016   | clear       | 8.8         | 11.5        | 99          | 7.9      | 0.3    |          | 35     | 14.8     | 128         | 46       |            |            |            |             | 2.19 |      |           |          | 15   |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/0730 | 18-Apr-07            | < 0.006   | < 0.026  | 5.1     | 0.014   | clear       | 13          | 9           | 87          | 7.8      | 0.8    |          | 16     | 15.1     | 136         | 58       | 42         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/0882 | 09-May-07            | < 0.006   | < 0.026  | 5.1     | 0.025   | clear       | 13.4        | 9.9         | 97          | 7.5      | 0.9    |          | 26     | 15.7     | 102         | 57       | 40         |            |            |             |      |      |           |          |      |
| Sullane | Ford u/s La 19S020480  | WFD Operational 2007/1092  | 13-Jun-07            | 0.047     | 0.036    | 7.2     | 0.032   | clear       | 17.9        | 9.6         | 102         | 7.4      | 0.7    |          | 21     | 15.4     | 139         | 62       | 38         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/1091 | 13-Jun-07            | 0.01      | < 0.026  | 4.9     | 0.02    | clear       | 17.3        | 9.2         | 97          | 7.5      | 0.8    |          | 19     | 14.6     | 124         | 53       | 38         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/1334 | 11-Jul-07            | 0.012     | < 0.026  | 3.9     | < 0.013 |             | 15.4        | 10.5        | 105         | 7.5      | 0.5    |          | 34     | 13.1     | 115         | 51       | 32         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/1543 | 07-Aug-07            | < 0.006   | 0.046    | 4.5     | < 0.013 |             | 15          | 12.3        | 120         | 7.6      | < 1    |          | 49     |          | 115         | 61       | 32         |            |            |             |      |      |           |          |      |
| Sullane | first Br.d/s 19S020170 | WFD Operational 2007/1912  | 20-Sep-07            | < 0.006   | 0.029    |         | < 0.013 |             | 13.3        | 7.9         | 77          | 7.5      | 1.5    |          | 111    | 13.4     | 83          | 52       | 18         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/1910 | 20-Sep-07            | < 0.006   | 0.058    |         | 0.015   |             | 13.4        | 8.5         | 83          | 7.5      | 1.4    |          | 26     | 15.2     | 140         | 66       | 40         |            |            |             |      |      |           |          |      |
| Sullane | Ford u/s La 19S020480  | WFD Operational 2007/1911  | 20-Sep-07            | < 0.006   | < 0.026  |         | < 0.013 |             | 13.5        | 8.1         | 78          | 7.6      | 1      |          | 31     | 14.8     | 129         | 58       | 36         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/2097 | 10-Oct-07            | 0.009     | < 0.026  |         | < 0.013 |             | 13.6        | 7.5         | 72          | 7.4      | < 0.1  |          | 37     | 12.8     | 104         | 48       | 40         |            |            |             |      |      |           |          |      |
| Sullane | first Br.d/s 19S020170 | WFD Operational 2007/2425  | 15-Nov-07            | 0.008     | < 0.026  | < 1.8   | < 0.013 |             | 10.3        | 9.1         | 81          | 7.7      | 0.1    |          | 20     | 13.2     | 96          | 5        | 26         |            |            |             |      |      |           |          |      |
| Sullane | Ford u/s La 19S020480  | WFD Operational 2007/2424  | 15-Nov-07            | 0.008     | < 0.026  | 5.3     | < 0.013 |             | 10.4        | 9.7         | 86          | 7.7      | 0.3    |          | 20     | 14.7     | 134         | 6        | 34         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/2423 | 15-Nov-07            | 0.007     | < 0.026  | 4.1     | < 0.013 |             | 10.5        | 8.6         | 76          | 8        | 0.3    |          | 21     | 14       | 125         | 6        | 32         |            |            |             |      |      |           |          |      |
| Sullane | Linnamilla   19S020400 | WFD Surveillance 2007/2644 | 12-Dec-07            | 0.012     | 0.052    | 5.2     | 0.014   | clear       | 9.3         | 11.3        | 98          | 7.5      | 0.3    |          | 53     | 19.8     | 117         | 36       | 22         |            |            |             |      |      |           |          |      |
| Sullane | first Br.d/s 19S020170 | WFD Operational 2008/0416  | 12-Mar-08            | 0.008     | 0.038    | 3.1     | < 0.013 |             |             |             |             | 7.3      | < 0.1  |          | 29     | 22.8     | 107         | 26       |            |            |            |             |      |      |           |          |      |
| Sullane | Ford u/s La 19S020480  | WFD Operational 2008/0417  | 12-Mar-08            | 0.011     | 0.059    | 6.3     | < 0.013 |             |             |             |             | 7.5      | < 0.1  |          | 41     | 22.2     | 131         | 40       | 28         |            |            |             |      |      |           |          |      |
| Sullane | Macroom Br.            | Phosphate Regs 2008/1182   | 11-Jun-08            | 0.012     |          |         | 0.023   | clear       | 20          | 8.6         | 94          |          |        |          |        |          |             |          |            |            |            |             |      |      |           |          |      |
| Sullane | first Br.d/s 19S020170 | WFD Operational 2008/1180  | 11-Jun-08            | 0.006     | 0.045    | < 1.8   | < 0.013 | clear       | 19.1        | 9.2         | 98          | 7.7      | 0.1    |          |        | 14.3     | 105         | 37       | 58         |            |            |             |      |      |           |          |      |
| Sullane | Ford u/s La 19S020480  | WFD Operational 2008/1181  | 11-Jun-08            | 0.013     | < 0.026  | 6.4     | 0.02    | clear       | 21.4        | 9.5         | 107         | 7.5      | < 0.1  |          |        | 16.2     | 149         | 53       | 52         |            |            |             |      |      |           |          |      |

<0.1

#### TABLE F.1(i)(a):SURFACE/GROUND WATER MONITORING

(Primary Discharge Point – one table per upstream and downstream location)

Discharge Point Code:\_\_\_\_\_

SW01

### MONITORING POINT CODE: <u>aSW01u MACROOM</u>

| Parameter                        |               | Res<br>(mg/     | ults<br>I <sup>Note 1</sup> ) | Sampling<br>method<br>(grab,<br>drift etc.) | Limit of<br>Quantitation | Analysis<br>method /<br>technique |                 |
|----------------------------------|---------------|-----------------|-------------------------------|---------------------------------------------|--------------------------|-----------------------------------|-----------------|
|                                  | 03/04/08      | 19/06/08        | 10/07/08                      | 17/07/08                                    |                          |                                   |                 |
| pH                               | Not available | 7.6             | Not available                 | 7.6                                         | Grab                     | 2                                 | Electrochemical |
| Temperature                      | Not available | Not available   | Not available                 | Not available                               | Grab                     | N/A                               | N/A             |
|                                  |               |                 |                               | other                                       | Grab                     | 0.5 µmhos/cm                      | Electrochemical |
| Electrical Conductivity (@20°C)  | 144           | Not available   | 109.2                         | 17 my 138                                   |                          |                                   |                 |
| Suspended Solids                 | <25           | <2.5            | <2.5 🔊                        | 40 <sup>4</sup> <2.5                        | Grab                     | 0.5 mg/L                          | Gravimetric     |
| Ammonia (as N)                   | <0.1          | <0.1            | Not available                 | <0.1                                        | Grab                     | 0.02 mg/L                         | Colorimetric    |
| Biochemical Oxygen Demand        | 1.06          | Not available   | Not available                 | <1.0                                        | Grab                     | 0.06 mg/L                         | Electrochemical |
|                                  |               |                 | ection net                    |                                             | Grab                     | 8 mg/L                            | Digestion +     |
| Chemical Oxygen Demand           | Not available | Not available   | Not available                 | <21                                         |                          |                                   | Calorimetric    |
| Dissolved Oxygen                 | Not available | Not available 🤸 | Not available                 | Not available                               | Grab                     | N/A                               | N/A             |
| Hardness (as CaCo <sub>3</sub> ) | Not available | Not available   | Not available                 | Not available                               | Grab                     | N/A                               | N/A             |
|                                  |               | ent             |                               |                                             | Grab                     | 0.5 mg/L                          | Digestion +     |
| Total Nitrogen (as N)            | 1.1           | Not available   | 0.8                           | 2.1                                         |                          |                                   | Calorimetric    |
| Nitrite (as N)                   | Not available | Not available   | Not available                 | 0.0125                                      | Grab                     | 0.004mg/L                         | Colorimetric    |
| Nitrate (as N)                   | Not available | Not available   | Not available                 | 1.5                                         | Grab                     | 0.4 mg/L                          | Colorimetric    |
|                                  |               |                 |                               |                                             | Grab                     | 0.2 mg/L                          | Digestion +     |
| Total Phosphorus (as P)          | <0.20         | <0.2            | <0.2                          | <0.2                                        |                          |                                   | Calorimetric    |
| Orthophosphate (as P) -          |               |                 |                               |                                             | Grab                     | 0.02 mg/L                         | Colorimetric    |
| unfiltered                       | <0.05         | <0.05           | <0.05                         | < 0.05                                      |                          |                                   |                 |
| Sulphate (SO <sub>4</sub> )      | Not available | Not available   | Not available                 | <30                                         | Grab                     | 30 mg/L                           | Turbidimetric   |
| Phenols (sum) Note 2 (ug/l)      | Not available | Not available   | Not available                 | <0.1                                        | Grab                     | 0.1 μg/L                          | GC-MS 2         |

Note 1: Or other unit as appropriate – please specify.

Note 2: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

## TABLE F.1(i)(b): SURFACE/GROUND WATER MONITORING (Dangerous Substances) (Primary Discharge Point - one table per upstream and downstream location)

Discharge Point Code: SW01

### MONITORING POINT CODE: <u>aSW01u MACROOM</u>

| Parameter       |               |               | sults<br>g/l)      |                         | Sampling<br>method<br>(grab, drift etc.) | Limit of<br>Quantitation | Analysis<br>method /<br>technique |
|-----------------|---------------|---------------|--------------------|-------------------------|------------------------------------------|--------------------------|-----------------------------------|
|                 | 03/04/2008    | 19/06/2008    | 10/07/2008         | 17/07/2008              |                                          |                          | -                                 |
| Atrazine        | Not available | Not available | Not available      | < 0.01                  | Grab                                     | 0.96 μg/L                | HPLC                              |
| Dichloromethane | Not available | Not available | Not available      | <1.0                    | Grab                                     | 1 μg/L                   | GC-MS 1                           |
| Simazine        | Not available | Not available | Not available      | < 0.01                  | Grab                                     | 0.01 μg/L                | HPLC                              |
| Toluene         | Not available | Not available | Not available      | <1 mer                  | Grab                                     | 0.02 μg/L                | GC-MS 1                           |
| Tributyltin     | Not available | Not available | Not available      | Not available           | Grab                                     | 1 μg/L as Sn             | GC-MS 1                           |
| Xylenes         | Not available | Not available | Not available      | S OF OF                 | Grab                                     | 0.96 μg/L                | GC-MS 1                           |
| Arsenic         | Not available | Not available | Not available      | 0.96                    | Grab                                     | 0.02 mg/L                | ICP-MS                            |
| Chromium        | <20           | <20           | <20                | 11 out <20              | Grab                                     | 0.02 mg/L                | ICP-OES                           |
| Copper          | <20           | <20           | <20 ction          | <mark>هٔ &lt;</mark> 20 | Grab                                     | 5 mg/L                   | ICP-OES                           |
| Cyanide         | Not available | Not available | Not available      | 7                       | Grab                                     | 0.01 μg/L                | Colorimetric                      |
| Fluoride        | Not available | Not available | Not available      | 60                      | Grab                                     | 100 μg/L                 | ISE                               |
| Lead            | <20           | <20           | ୂଁସେହ              | <20                     | Grab                                     | 0.02 mg/L                | ICP-OES                           |
| Nickel          | <20           | <20           | × <sup>0</sup> <20 | <20                     | Grab                                     | 0.02 mg/L                | ICP-OES                           |
| Zinc            | <20           | <20           | ATSC <20           | <20                     | Grab                                     | 0.02 mg/L                | ICP-OES                           |
| Boron           | Not available | Not available | Not available      | Not available           | Grab                                     | 0.02 mg/L                | ICP-OES                           |
| Cadmium         | <20           | <20           | <20                | <20                     | Grab                                     | 0.02 mg/L                | ICP-OES                           |
| Mercury         | Not available | Not available | Not available      | 0.4                     | Grab                                     | 0.02 μg/L                | ICP-MS                            |
| Selenium        | Not available | Not available | Not available      | 1                       | Grab                                     | 0.74 μg/L                | ICP-MS                            |
| Barium          | <20           | 37            | 44                 | 39                      | Grab                                     | 0.02 mg/L                | ICP-OES                           |

#### TABLE F.1(i)(a):SURFACE/GROUND WATER MONITORING

(Primary Discharge Point – one table per upstream and downstream location)

Discharge Point Code: SW01

#### MONITORING POINT CODE: <u>aSW01d MACROOM</u>

| Parameter                        | Results<br>(mg/l <sup>Note 1</sup> ) |               |               |               | Sampling<br>method<br>(grab, drift etc.) | Limit of<br>Quantitation | Analysis<br>method /<br>technique |
|----------------------------------|--------------------------------------|---------------|---------------|---------------|------------------------------------------|--------------------------|-----------------------------------|
|                                  | Date                                 | Date          | Date          | Date          |                                          |                          | _                                 |
| pН                               | Not available                        | 7.7           | Not available | 7.7           | Grab                                     | 2                        | Electrochemical                   |
| Temperature                      | Not available                        | Not available | Not available | Not available | Grab                                     | N/A                      | N/A                               |
| Electrical Conductivity          |                                      |               |               | A             | Grab                                     | 0.5 µmhos/cm             | Electrochemical                   |
| (@20°C)                          | 145                                  | Not available | 112.3         | 138 the       |                                          |                          |                                   |
| Suspended Solids                 | 3                                    | <2.5          | <2.5          | x#2,5         | Grab                                     | 0.5 mg/L                 | Gravimetric                       |
| Ammonia (as N)                   | Not available                        | <0.1          | Not available | ×0.1          | Grab                                     | 0.02 mg/L                | Colorimetric                      |
| Biochemical Oxygen Demand        | <1.0                                 | Not available | Not available | 205 JEC < 1.0 | Grab                                     | 0.06 mg/L                | Electrochemical                   |
|                                  |                                      |               | an pu         | teat          | Grab                                     | 8 mg/L                   | Digestion +                       |
| Chemical Oxygen Demand           | Not available                        | Not available | Not available | <21           |                                          |                          | Calorimetric                      |
| Dissolved Oxygen                 | Not available                        | Not available | Not available | Not available | Grab                                     | N/A                      | N/A                               |
| Hardness (as CaCo <sub>3</sub> ) | Not available                        | Not available | Not available | Not available | Grab                                     | N/A                      | N/A                               |
|                                  |                                      |               | & CON.        |               | Grab                                     | 0.5 mg/L                 | Digestion +                       |
| Total Nitrogen (as N)            | 1.9                                  | 0.7           | 2.1           | 1.8           |                                          |                          | Calorimetric                      |
| Nitrite (as N)                   | Not available                        | Not available | Not available | 0.0053        | Grab                                     | 0.004mg/L                | Colorimetric                      |
| Nitrate (as N)                   | Not available                        | Not available | Not available | 1.77          | Grab                                     | 0.4 mg/L                 | Colorimetric                      |
|                                  |                                      |               |               |               | Grab                                     | 0.2 mg/L                 | Digestion +                       |
| Total Phosphorus (as P)          | 0.35                                 | <0.2          | <0.2          | <0.2          |                                          |                          | Calorimetric                      |
| Orthophosphate (as P) -          |                                      |               |               |               | Grab                                     | 0.02 mg/L                | Colorimetric                      |
| unfiltered                       | <0.05                                | <0.05         | <0.05         | <0.05         |                                          |                          |                                   |
| Sulphate (SO <sub>4</sub> )      | Not available                        | Not available | Not available | <30           | Grab                                     | 30 mg/L                  | Turbidimetric                     |
| Phenols (sum) Note 2 (ug/l)      | Not available                        | Not available | Not available | 21.288        | Grab                                     | 0.1 μg/L                 | GC-MS 2                           |

Note 1: Or other unit as appropriate – please specify.

Note 2: USEPA Method 604, AWWA Standard Method 6240, or equivalent.

# TABLE F.1(i)(b): SURFACE/GROUND WATER MONITORING (Dangerous Substances) (Primary Discharge Point - one table per upstream and downstream location)

Discharge Point Code: SW01

### MONITORING POINT CODE: <u>aSW01d MACROOM</u>

| Parameter       |               | Resu<br>(µg/  |               |                  | Sampling method<br>(grab, drift etc.) |              |              |  |
|-----------------|---------------|---------------|---------------|------------------|---------------------------------------|--------------|--------------|--|
|                 | Date          | Date          | Date          | Date             |                                       |              |              |  |
| Atrazine        | Not available | Not available | Not available | < 0.01           | Grab                                  | 0.96 μg/L    | HPLC         |  |
| Dichloromethane | Not available | Not available | Not available | <1.0             | Grab                                  | 1 μg/L       | GC-MS 1      |  |
| Simazine        | Not available | Not available | Not available | < 0.01           | Grab                                  | 0.01 μg/L    | HPLC         |  |
| Toluene         | Not available | Not available | Not available | <1               | Gra                                   | 0.02 μg/L    | GC-MS 1      |  |
| Tributyltin     | Not available | Not available | Not available | Not<br>available | Grab                                  | 1 μg/L as Sn | GC-MS 1      |  |
| Xylenes         | Not available | Not available | Not available | < 3713, 20       | Grab                                  | 0.96 μg/L    | GC-MS 1      |  |
| Arsenic         | Not available | Not available | Not available | ≲0.96            | Grab                                  | 0.02 mg/L    | ICP-MS       |  |
| Chromium        | 36            | <20           | <20           | NITP SI20        | Grab                                  | 0.02 mg/L    | ICP-OES      |  |
| Copper          | <20           | <20           | <20           | 1 × × × < 20     | Grab                                  | 5 mg/L       | ICP-OES      |  |
| Cyanide         | Not available | Not available | Not available | WITT 7           | Grab                                  | 0.01 μg/L    | Colorimetric |  |
| Fluoride        | Not available | Not available | Not available | 40               | Grab                                  | 100 μg/L     | ISE          |  |
| Lead            | <20           | <20           | <20,05        | <20              | Grab                                  | 0.02 mg/L    | ICP-OES      |  |
| Nickel          | <20           | <20           | <20           | <20              | Grab                                  | 0.02 mg/L    | ICP-OES      |  |
| Zinc            | <20           | <20           | 20            | <20              | Grab                                  | 0.02 mg/L    | ICP-OES      |  |
| Boron           | <20           | <20           | Not available | Not<br>available | Grab                                  | 0.02 mg/L    | ICP-OES      |  |
| Cadmium         | <20           | <20           | <20           | <20              | Grab                                  | 0.02 mg/L    | ICP-OES      |  |
| Mercury         | Not available | Not available | Not available | 0.5              | Grab                                  | 0.02 μg/L    | ICP-MS       |  |
| Selenium        | Not available | Not available | Not available | 1                | Grab                                  | 0.74 μg/L    | ICP-MS       |  |
| Barium          | <20           | 34            | 42            | 30               | Grab                                  | 0.02 mg/L    | ICP-OES      |  |



## LIMOSA ENVIRONMENTAL ECOLOGICAL AND ENVIRONMENTAL CONSULTANCY

# **Macroom Sewerage Scheme:**

Ecological Scoping & Constraints Report

Report for

Consent of copyris

J. B. Barry & Partners Ltd on behalf of Cork County Council

March 2008

| Report Reference:<br>Draft: | RP08-GW033-03-0<br>Final Report |
|-----------------------------|---------------------------------|
| Prepared By:                | Lesley J. Lewis                 |
| Checked By:                 | L. J. Lewis                     |
| Date:                       | 31 <sup>st</sup> March 2008     |
| Signature:                  | Aler.                           |

Consent for inspection purposes only: any other use.

### TABLE OF CONTENTS

| 1.0           | INTRO                                                                                                                  | DDUCTION1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 1.1<br>1.2                                                                                                             | General Introduction1<br>Study Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.0           | ECOL                                                                                                                   | OGICAL SCOPING - METHODOLOGY2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.0           | ECOL                                                                                                                   | OGICAL OVERVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | 3.2.2<br>develo<br>3.2.3<br>area<br>3.2.4<br>3.3<br>3.4<br>3.4.1<br>3.4.2<br>3.4.3<br>3.5<br>3.5.1<br>enviror<br>3.5.2 | Location of the proposed development       3         Designated sites of conservation importance       3         Designated sites for nature conservation within and/or adjacent to the proposed       3         pment area       3         Sites of international conservation importance within 5 km of the proposed       4         Sites of national conservation importance within 5 km of the proposed development       4         Other sites of ecological importance       4         Potential for protected plant species within the proposed development area       6         Mammals       6         Birds       6         Fish and aquatic fauna       7         Habitats recorded within the proposed development area       7         Kassytown Pumping Station and Rising Main       8 |
| 4.0<br>REL 4  | PRED                                                                                                                   | ICTED IMPACT ZONES AND SENSITIVE ECOLOGICAL RESOURCES IN<br>TO THE PROPOSED MACROOM SEWERAGE SCHEME UPGRADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.0           |                                                                                                                        | MMENDATIONS AND FURTHER STUDIES REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.0           | REFE                                                                                                                   | RENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | APPEI<br>APPEI<br>APPEI<br>APPEI<br>APPEI                                                                              | NDIX 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <u>List o</u> | f Figure                                                                                                               | <u>95</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Figure 1  | Macroom Sewerage scheme – location of development boundary.                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------|
| Figure 2  | Designated areas of nature conservation interest within 5 km of the proposed development.                              |
| Figure 3a | Habitats recorded during preliminary assessment, and areas of ecological<br>interest – Waste Water Treatment Plant.    |
| Figure 3b | Habitats recorded during preliminary assessment, and areas of ecological<br>interest – Pumping Station and Rising Main |

#### 1.0 INTRODUCTION

#### 1.1 General Introduction

Limosa Environmental was commissioned by J. B. Barry & Partners Ltd, on behalf of Cork County Council, to undertake preliminary ecological assessment for the proposed upgrade of Macroom Sewerage Scheme, Co Cork.

The proposed development is likely to comprise an upgrade of the existing Waste Water Treatment Plant (WWTP) and Pumping Station with the potential for the laying of new sewers. The boundary of the proposed works is shown in Figure 1.

Limosa Environmental was requested to undertake preliminary assessment of lands within the proposed development boundary (Figure 1) in order to highlight the ecological characteristics of the area and to identify any potential ecological constraints.

This report therefore outlines the results of the ecological scoping procedure and identifies the potential ecological constraints upon the proposed development. Where necessary, additional ecological investigations are recommended as part of ecological impact assessment (EcIA).

#### 1.2 Study Area

The study area for ecological investigations comprises two aspects of the Macroom Sewerage Scheme:

- (1) The existing Waste Water Treatment Plant (WWTP) and immediate surrounding environment located at grid reference W 351 729. This area includes the adjacent Sullane River which is the receiving waters for the WWTP effluent outfall.
- (2) An area of *c* 9.0 Ha, which incorporates Massytown Pumping Station and the Sullane River, flood plain and surrounding green land, centred on grid reference W 339 733 and situated north of Macroom Town Centre.

#### 2.0 ECOLOGICAL SCOPING - METHODOLOGY

Scoping is defined as 'the process of determining the content and extent of matters that should be covered in the environmental information to be submitted to the competent authority or other decision making body' (ERM, 2001).

The main aims of scoping are to define the ecological resources that are likely to be impacted within the defined area of the proposed development ('zone of influence') and where necessary to recommend further studies as part of ecological impact assessment process (EcIA). 'Scoping should be seen as a flexible, adaptive and iterative process, usually based on preliminary consultations, literature searches, site visits and preliminary ecological surveys (IEEM, 2006).

The stages of ecological scoping are outlined in Appendix 1, based on recommendations of the Institute of Ecology and Environmental Management (IEEM, 2006). Aspects covered as part of preliminary investigations for the proposed Macroom Sewerage scheme are outlined below. The work was carried out with reference to the following standard texts: EPA (2002, 2003), IEA (1995) and IEEM (2006).

- (1) A desk-top study was undertaken to obtain any existing information on ecological resources within the proposed development boundary. This included a review of available published literature pertaining to the ecology of Macroom Town and a review of the Macroom Electoral Area Local Area Plan (Cork County Council, 2005). Particular attention was paid to information on the Sullane River which flows through the study area and is the receiving waters for the WWTP
- (2) Designated sites of conservation importance were identified within a 5km radius of the proposed development boundary.
- (3) A site visit was undertaken by Dr L J Lewis (Limosa Environmental) on March 7<sup>th</sup> 2008. Preliminary habitat assessment of the study area was carried out according to the Irish Habitat Classification as described within the Heritage Council's 'A Guide to Habitats within Ireland' (Fossitt, 2000).
- (4) Consultation was carried out with the National Parks & Wildlife Service (NPWS) and the South Western Regional Fisheries Board (SWRFB). Additional consultations included Cork County Council and the local recorder for the Botanical Society of Britain & Ireland (BSBI). The consultation record is given in Appendix 6.
- (5) The ecological resources that are likely to be affected by the proposed development were identified with consideration of potential impacts. Ecological resources that require further studies were identified (i.e. baseline studies, ecological assessment, evaluation, impact prediction) and gaps in existing information noted. <u>Note</u> that the current assessment must be viewed as preliminary because limited details of the proposed development were available at the time and habitat assessment was undertaken outside of the main habitat survey period (May August).
- (6) Production of an Ecological Scoping and Constraints Report. The report presents a general ecological overview of the study area (proposed development area) in Section 3. Section 4 gives examples of potential impacts that may occur upon the ecological resources of the area and describes the ecological constraints. Section 5 recommends further ecological studies designed to collect baseline data to inform the process of ecological impact assessment (EcIA).

#### 3.0 ECOLOGICAL OVERVIEW

#### 3.1 Location of the proposed development

Macroom Town is located 40 km west of Cork City in the valley of the Sullane River. Situated approximately half way between Cork City and Killarney, Macroom is connected to both via the N22 National Primary Route.

Historically, Macroom Town developed around Macroom Castle, built in the early part of the 13<sup>th</sup> century, and is also aligned east to west along the Sullane River. Remains of the castle tower and gate remain today, as does the surrounding riverside woodland and parkland (Castle Demesne) which is managed as a public amenity and wildlife resource. The River Sullane is the source of the town's water supply.

In the Local Area Plan (LAP), Macroom is identified as the main settlement within the electoral area and a strategic aim is the promotion of the town as an important growth/development location, particularly as a strategic link between the northwest and southwest of the county (Cork County Council, 2005). The LAP refers to the plan to upgrade the existing WWTP and states the need to extend the existing sewer network to cater for new development.

The ecological study area comprises two areas:

- (3) The existing Waste Water Treatment Plant (WWTP) and immediate surrounding environment located at grid reference W 351 729. This area includes the adjacent Sullane River which is the receiving waters for the WWTP effluent outfall.
- (4) An area of *c* 9.0 Ha, which incorporates Massytown Pumping Station and the Sullane River, flood plain and surrounding green land, centred on grid reference W 339 733 and situated north of Macroom Town Centre.

#### 3.2 Designated sites of conservation importance

Designated sites for conservation are areas designated under national and/or European laws in order to conserve habitats and species of national or international importance. These include the following examples:

- **Natural Heritage Areas (NHA)**: a national designation given legal status by the Wildlife (Amendment) Act, 2000.
- **Special Areas of Conservation** (SAC): areas considered of international and national importance whose legal basis is the EU Habitats Directive (92/43/EEC), transposed into Irish law through the European Union (Natural Habitats) Regulations, 1997.
- **Special Protection Areas** (SPA): sites of international conservation importance for birds whose legal basis is the EU Birds Directive (79/409/EEC).

# 3.2.1 Designated sites for nature conservation within and/or adjacent to the proposed development area

There are no designated sites of international or national nature conservation importance within or adjacent to the study areas.

# 3.2.2 Sites of international conservation importance within 5 km of the proposed development area

• The Gearagh Special Area of Conservation (Site Code 108)

The Gearagh SAC is located along the River Lee, west of Lee Bridge, some 1.5 km south of Macroom Town. The site includes an unusual area where the River Lee has broken into a complex network of channels which weave through a series of wooded islands. This area is regarded as one of the best examples of alluvial forest (oak-alder swamp) that remains in Western Europe and qualifies as a priority habitat under Annex I of the European Habitats Directive. Originally, the area of alluvial woodland extended as far as the Lee Bridge but was reduced in size in the 1950's when the eastern part of the Gearagh was subject to tree-felling and flooding as part of the Lee Valley hydro-electric scheme.

The NPWS site synopsis is shown in Appendix 2.

This unique site is also recognised internationally as a Biogenetic Reserve.

The Gearagh Special Protection Area (Site Code 4109)

The Gearagh attracts important populations of wintering waterbirds including Whooper Swan (*Cygnus cygnus*) and Golden Plover (*Pluvialis apricara*), species listed on Annex I of the EU Birds Directive. The NPWS site synopsis is shown in Appendix 2.

The site extends along the River Lee from Toon Bridge in the west to Annahala Bridge in the east (Figure 2), currently a smaller area than the SAC. Note that there have been previous proposals to extend the boundaries of the SPA to include a longer stretch of the River Lee and associated wet habitats including the Sullane Delta (W 360 710) and Dunisky Culvert (W 383 685) (L. J. Lewis *pers. obs.)* however no changes are due in the immediate future (NPWS, *pers. comm.*).

The Gearagh is also recognised internationally for birds by its designation as a Ramsar site (7IE018).

# 3.2.3 Sites of national conservation importance within 5 km of the proposed development area

• The Gearagh

The Gearagh is recognised as a Natural Heritage Area (NHA Site Code 108) although in practice this designation is superseded by its international SAC designation. The Gearagh is also a Wildfowl Sanctuary and was designated as a Statutory Nature Reserve in 1987.

There are no other proposed Natural Heritage Areas within 5km of the proposed development boundary.

#### 3.2.4 Other sites of ecological importance

The NGO supplementary list 'Shadow list of Special Areas of Conservation' (Dwyer, 2000) lists Dunisky Souterrain (approx 4.5 km south of Macroom), as being worthy of SAC designation based on the presence of Lesser Horseshoe Bats (Rhinolophus hipposideros), a species listed on Annex II of the EU Habitats Directive.

The River Sullane is within the catchment drained by the River Lee (Hydrometric Area 19 - Lee, Cork Harbour & Youghal Bay) and confluences with the River Lee at an area known as the Sullane Delta.

The River Lee, from its source to the Cork City Waterworks, is a designated Salmonid under the EU Freshwater Fish Directive (78/659/EEC) under which Ireland is obliged to protect the species via the maintenance of good water quality (S.I. No. 293/1988 EU (Quality of Salmonid Waters) Regulations, 1988).

#### 3.3 Potential for protected plant species within the proposed development areas

The New Atlas of the British and Irish Flora (Preston et al., 2002) was reviewed in order to identify rare or protected plant species previously recorded within 10-km grid square W37 (within which the proposed development is located) that are listed on the Flora (Protection) Order, 1999 or Red Data Book (Curtis & McGough, 1988).

Results of this review are shown below:

| Book (Curtis & McGough, 1988).        | offer 15e.                                         |
|---------------------------------------|----------------------------------------------------|
| Its of this review are shown below:   | only, and other                                    |
| Flora Protection Order                | Red Data Book                                      |
|                                       | Grid Square W37                                    |
| Mudwort ( <i>Limosella aquatica</i> ) | Round-leaved Crane's-bill (Geranium rotundifolium) |
|                                       | <i>S</i> ,                                         |

Mudwort (Limosella aquatica) is an annual plant found in a variety of habitats including muddy river banks, ditches and roadsides. It is extremely unlikely that this species would occur in the study area (BSBI Recorder, Tony O'Mahony pers. comm.).

Round-leaved Crane's-bill (Geranium rotundifolium) is a species of calcareous rock and wall habitats and is therefore unlikely to occur within the study area (BSBI Recorder, Tony O'Mahony pers. comm.).

Other scarce or rare plants that occur within the study area but are not formally protected include:

- Water Avens (Geum rivale) is known to grow by the stream adjacent to Masseytown Corn Mill (J. S. Lynch pers. comm.). It is also known to grow in areas both upstream and downstream of the town bridge (BSBI Recorder, Tony O'Mahony pers. comm.). This plant has undergone declines in Britain and Ireland, most likely associated with loss of its damp habitat. It is relatively scarce in Southern Ireland (Webb et al., 1996; Preston et al., 2002).
- Hybrid Avens (Geum x intermedium) has been recorded previously within the study area • (in the hedgerow/bank between the River Sullane and the scattered trees and parkland that occur south of the Pumping Station). This plant is very rare in the Republic of Ireland (Preston et al., 2002).
- Veronica crista galli, Carex divulsa and Carex muricata have been recorded previously within the study area (in the hedgerow/bank between the River Sullane and the scattered

trees and parkland that occur south of the Pumping Station). All are relatively scare/rare species in Ireland.

#### 3.4 Potential for protected fauna within the proposed development area

#### 3.4.1 Mammals

A review of published literature reveals that 14 protected mammal species occur within the 20km grid square that covers Macroom Town and environs. These species are listed within Appendix 3 along with their protection status and references consulted.

Seven of the total 14 mammal species are bats. Information supplied by Conor Kelleher (Bat Conservation Ireland, Irish Wildlife Trust & Cork County Bat Group) confirms that the following species are known to commute and forage within the study areas: Common (Pipistrellus pipistrellus) and Soprano Pipistrelle (P. pygmaeus), Leisler's (Nyctalus leisleri), Daubenton's (Myotis daubentonii), Whiskered (M. mystacinus), Brown long-eared (Plecotus auritu) and Lesser horseshoe (Rhinolophus hipposideros) bat. Roosts of Soprano Pipistrelle, Leisler's and Lesser horseshoe bat are known in Masseytown and Mill Lane as well as in nearby properties outside the study area.

In addition to bat species, and based on the habitats present within the study area, a further seven mammal species may utilise the study area including Otter (Lutra lutra) (associated with the River Sullane), Badger (Meles meles), Hedgehog<sup>o</sup> (Erinaceus europaeus), Pygmy Shrew (Sorex minutus), Stoat (Mustela erminea hibernica) and Red Squirrel (Sciurus vulgaris). inspection P

**3.4.2 Birds** Legislation and conservation measures pertaining to birds are given in Appendix 4. In brief, all birds are protected under the Wildlife Act, 1976 and Wildlife Amendment Act (2000), the principal national legislation providing for the protection of wildlife including wild birds and their nests and eggs.' In terms of international degislation, birds and their habitats are afforded protection under the EU Bird's Directive (79/409/EEC), particularly vulnerable bird species being listed on Annex I of this directive. In addition, species of high and medium conservation concern may be listed on Birds of Conservation Concern in Ireland (Newton et al., 1999), a list that supersedes the Red Data list for birds.

Annex I species Peregrine Falcon (Falco peregrinus), Kingfisher (Alcedo atthis) and Barn Owl (Tyto alba) occur within the 10km square that covers Macroom Town and environs.

Peregrine Falcons have been observed previously within the study area, mostly likely utilising this area and the Castle Demesne to the south, as foraging habitat.

Kingfishers are aquatic birds, nesting in burrows excavated within vertical muddy river banks and with a diet consisting principally of fish. Kingfishers are known to occur along the River Sullane and are likely to utilise the stretches of river within the study areas for foraging.

Barn Owls have historically been associated with the Massytown Corn Mill and a high density occur within this area (J S Lynch pers. comm.).

#### 3.4.3 Fish and aquatic fauna

The River Sullane is within the catchment drained by the River Lee (Hydrometric Area 19 - Lee, Cork Harbour & Youghal Bay).

The Sullane confluences with the River Laney just downstream of Macroom Town WWTP. Further downstream (grid ref W356 721), the Sullane confluences with the River Lee at an area known as the Sullane Delta.

EPA biological water quality data for Station No 400 (Linnamilla Bridge) on the Sullane River (approximately 2km upstream of Macroom Town) shows a consistent record of Q5 (unpolluted waters) since sampling started in 1971 (Appendix 5). Station No 480 (ford just upstream of the River Laney confluence) has recorded Q-Index 4 (unpolluted) for the past five sampling years (see Appendix 5).

The River Sullane is known to support Salmonid fish. The South Western Regional Fisheries Board (Michael McPartland SWRFB. pers. comm.) confirmed the presence of Salmon (Salmo salar), Brown Trout (Salmo trutta) and potentially Eels (Anguilla anguilla) and referred to the Sullane as a 'significant brown trout river' with a good spawning nursery. There is also a small Brook Lamprey (Lampetra planeri) spawning site just upstream of the Massytown study area (J S Lynch pers. comm.).

Salmon and lamprey are listed under Annex II of the EU Habitats Directive (92/43/EEC) unposes of the people of the p transcribed into the Irish Statute Book as the European Communities (Natural Habitats) Regulations, 1997 (S.I. No. 94/1997).

#### Habitats recorded within the proposed development area 3.5

Habitats were recorded during the preliminary site visit to the study area. Note that habitats are based on a preliminary assessment rather than a full habitat survey during the flowering season and should therefore be considered as indicative only.

Within the following text, habitat classification follows Fossitt (2000). Vascular plant nomenclature follows Stace (1997) and Latin names are given at first mention.

#### Existing Waste Water Treatment Plant (WWTP) and immediate 3.5.1 surrounding environment

Study Area 1 is the site of the existing WWTP. The site covers an area of 3.0 Ha and lies adjacent to River Sullane, the receiving waters for the WWTP effluent outfall.

Habitats can be placed into two broad categories based on their ecological interest; natural or semi-natural habitats being of greater ecological value than man-made or modified habitats that are generally of low ecological value:

| Natural or semi-natural habitats | Man-made or modified habitats |
|----------------------------------|-------------------------------|
|----------------------------------|-------------------------------|

| Lowland depositing river (FW2) | Amenity grassland (GA2)                 |
|--------------------------------|-----------------------------------------|
| Treeline A (WL2)               | Treeline B (WL2)                        |
| Immature woodland (WS2)        | Buildings and artificial surfaces (BL3) |
|                                | Spoil & bare ground (ED2)               |

Areas of ecological interest are shown in Figure 3a, the legend relating to reference numbers used in the text (e.g. 1, 2, 3 etc.).

(1) Treeline A (WL2) extends along the northern and western boundary of the WWTP and includes mature trees such as Oak (*Quercus* sp.), Sycamore (*Acer pseudoplantus*), Willow (*Salix* sp.) and Alder (*Alnus glutinosa*).

Treeline A extends into Treeline B, the latter considered of lower ecological value because of the domination of non-native species such as *Leylandii* Spruce(Figure 3a).

(2) In the south-eastern corner of the WWTP is a small area of immature woodland (WS2) which includes Oak, Silver Birch (*Betula pendula*) and Beech (*Fagus sylvatica*). Mature broadleaved trees occur along the site boundary.

(3) The River Sullane flows adjacent to the WWTP before meandering to the east to confluence with the River Laney at Pouleengorm. The river is wide and reasonably fast-flowing in this section with relatively open banks on the western side in contrast to a tree-lined eastern side. The ecological interests of the river described in Section 3.4.3 all apply here of



#### 3.5.2 Massytown Pumping Station and Rising Main

Study Area 2 comprised an area of c 9.0 Ha, incorporating Massytown Pumping Station and the Sullane River, flood plain and surrounding green land, centred on grid reference W 339 733 and situated due north of Macroom Town Centre.

Habitats recorded include the following:

| Natural or semi-natural habitats                                                                                              | Man-made or modified habitats                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lowland depositing river (FW2)<br>Lowland stream (FW2)<br>Treeline (WL2)<br>Scattered trees and parkland (WD5)<br>Scrub (GS2) | Amenity grassland (GA2)<br>Improved agricultural grassland (GA1)<br>Spoil & bare ground (ED2)<br>Buildings and artificial surfaces (BL3)<br>Semi-natural grassland (GS) (rough<br>grazing) |
| Mixed broadleaved woodland (WD1)                                                                                              |                                                                                                                                                                                            |





Areas of ecological interest are shown in Figure 3b, the legend relating to reference numbers used in the text (e.g. 4, 5, 6 etc.).

(4) The Massytown Pump Station is set within an area of scattered trees and parkland (WD5) with predominantly Spruce (*Picea* sp.) and Pine (*Pinus* sp.) trees. A rookery (breeding place of rooks) was observed in the north-eastern corner of this area.

(5) To the north is Massytown Corn Mill, an old building that has the potential to provide suitable habitat for roosting/breeding birds and bats.



(6) River Sullane flows north through the study area. The river is wide and reasonably fast-flowing in this section with relatively open banks that are lined intermittently with mature trees (e.g. Popular *Poplus* sp.). The ecological interests of the river described in Section 3.4.3 all apply here.

(7) A small stream flows through Massytown Corn Mill and enters River Sullane in the north of the study area. The stream is heavily silted and overgrown and its ecological value could be improved with management. The stream may provide habitat for Common Frogs although no frog spawn was observed at the time of site visit. A small patch of Water Avens (*Geum rivale*) is known to grow close to where the stream joins the river (9). S. Lynch *pers. comm.*). This plant has undergone declines in Britain and Ireland, most likely associated with loss of its damp habitat. It is relatively scarce in Southern Ireland (Webb et al., 1996; Preston *et al.*, 2002).

(8) Mixed broadleaved woodland occurs on a sloping bank to the east of the River Sullane and extends north around the grounds of a private dwelling. An area of grassland/amenity walk occurs between the river bank and this woodland. Tree species include Sycamore, Oak, Beech, Holly (*llex aquifolium*), Alder and Silver Birch. There is a welldeveloped ground flora. This woodland adds a significant component to the biodiversity of the area and may provide habitat for several protected species including bats (e.g. foraging and summer/winter roosts) and other mammals such as Badgers and Stoat.





An area of broadleaved woodland also occurs just beyond the southern boundary of the Pumping Station in association with a private garden. (9) Treelines occur in various places within the study area (see Figure 3b) and comprise mature broadleaved trees of ecological value. Treelines may support a diversity of breeding birds and other fauna including bats and other mammals, as well as providing linear corridors along which animals move. The treeline in association with the mixed broadleaved woodland on the eastern side of the river is particularly important as a wildlife corridor (defined as strips of habitat allowing movement of plants and animals between isolated areas (Good, 1998) as it links the woodland habitat to surrounding areas. A riparian treeline occurs along both sides of the River Sullane (not mapped).



(10) Scrub habitat occurs in the north east of the study area at the edge of broadleaved woodland. Scrub habitat is of ecological value in providing oraging and breeding habitat for a variety of fauna including bird and mammals.

(11) Grassland that occurs on either side of the twee banks (not mapped) is in part modified by the presence of an amenity walk and does not fite asily into the semi-natural grassland habitat categories of Fossitt (2000). In the north-east of the study area on the inner bend of the River Sullane, the wider grassland area is classified as wet grassland (GS4). These grassy areas constitute the floodplain of the river and are known to flood regularly during times of high river flow.

On the western side of River Sullane, between the river and the scattered trees and parkland is a grassy bank that supports a variety of plant species (see Section 3.3) and a rabbit warren.

These latter areas are not mapped in Figure 3b.

Of note, are plans by the Environmental Sub-Committee of Macroom Town Council, in association with the Tidy Towns Group, to further develop amenity walks in these areas as nature trails with the addition of interpretative panels etc (Macroom Town Council, *pers. comm.*).

#### 4.0 PREDICTED IMPACT ZONES AND SENSITIVE ECOLOGICAL RESOURCES IN RELATION TO THE PROPOSED MACROOM SEWERAGE SCHEME UPGRADE

This section deals with determining the 'zone of influence' of the proposed development (area that may be affected by the proposed development) and identifying the ecological resources that are likely to be affected by this proposed development.

As detailed design plans are unavailable at this preliminary stage, we assume here that the predicted zone of influence for the proposed development could include all habitats of ecological interest outlined in Section 3.5.1 & 3.5.2 (coded Nos 1-11 on Figures 3a & b), and in some cases areas outside (e.g. the existing WWTP outfall on the River Sullane). These are therefore the areas of ecological constraint.

As a preliminary assessment, areas of ecological interest within the zones of influence have been placed into three categories: minor-sensitivity, moderate sensitivity and highly sensitive. Note: a more detailed ecological evaluation of the habitats can take place only after appropriate ecological surveys and Ecological Impact Assessment (ECIA) (see Appendix 6).

| (NB Letters in brackets refers to numbers on Figure 3a). |                                                                                      |                               |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|--|--|--|
| ECOLOGICAL RESOURCE                                      | EXAMPLES OF POTENTIAL                                                                | POTENTIAL IMPACT SIGNIFICANCE |  |  |  |
| POTENTIALLY IMPACTED                                     | IMPACTS ON HABITATS AND                                                              |                               |  |  |  |
|                                                          | FAUNA OT AL                                                                          |                               |  |  |  |
| MINOR SENSITIVITY                                        | Set of                                                                               |                               |  |  |  |
| Treeline A (1)                                           | Potential for habitat loss, damage to trees & disturbance to fauna. NBT rectine B is | Minor negative impact         |  |  |  |
|                                                          | considered of lower ecological value and the                                         |                               |  |  |  |
|                                                          | potential impact of appendime traversing through a treeline would be consequently    |                               |  |  |  |
|                                                          | reduced in the case of Treeline B.                                                   |                               |  |  |  |
| Immature woodland (2)                                    | Habitat loss due to site development,                                                | Minor negative impact         |  |  |  |
|                                                          | disturbance to fauna (e.g. birds)                                                    |                               |  |  |  |
| MODERATE - HIGH SENSITIVITY                              | efft                                                                                 |                               |  |  |  |
|                                                          | Failure to meet current standards for effluent                                       | Minor – Major Negative Impact |  |  |  |
| River Sullane (3)                                        | outfall; impacts upon water quality as a result                                      |                               |  |  |  |
|                                                          | of outfall construction (e.g. siltation,                                             |                               |  |  |  |
|                                                          | pollution). Impacts upon water quality will                                          |                               |  |  |  |
|                                                          | have knock-on effects on aquatic fauna and                                           |                               |  |  |  |
|                                                          | flora. Worst-case scenario impact (major                                             |                               |  |  |  |
|                                                          | negative) would be a pollution event that                                            |                               |  |  |  |
|                                                          | killed salmonid fish.                                                                |                               |  |  |  |

Area 1 Existing Waste Water Treatment Plant (WWTP) and environs.

Area 2 Massytown Pumping Station and the Sullane River.

| (NB Letters in brackets refers to numbers on Figure 3b). |                                                                                                                                          |                                                                                                                                                 |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ECOLOGICAL RESOURCE                                      | EXAMPLES OF POTENTIAL                                                                                                                    | POTENTIAL IMPACT SIGNIFICANCE                                                                                                                   |  |
| POTENTIALLY IMPACTED                                     | IMPACTS ON HABITATS AND                                                                                                                  |                                                                                                                                                 |  |
|                                                          | FAUNA                                                                                                                                    |                                                                                                                                                 |  |
| MINOR SENSITIVITY                                        |                                                                                                                                          |                                                                                                                                                 |  |
| Scattered trees and parkland (4)                         | Potential for some habitat loss/disturbance to fauna. Potential for trees to be avoided during sewer works therefore minimising impacts. | Minor Negative Impact If trees and Root<br>Protection Area (RPA) are avoided then<br>impacts could be negligible.                               |  |
| Corn Mill (5)                                            | Unlikely to be directly impacted by proposed<br>works although disturbance to fauna (e.g.<br>bats) is a potential.                       | No change – Imperceptible – Minor Negative                                                                                                      |  |
| MODERATE SENSITIVITY                                     |                                                                                                                                          |                                                                                                                                                 |  |
| Stream (7)                                               | Channel cleaning and sewer works could<br>impact upon existing flora and fauna e.g. the<br>scarce plant that grows nearby.               | Minor – Moderate Negative Impact. However,<br>ecologically-sensitive channel rehabilitation<br>works could result in a positive impact upon the |  |

|                                |                                                                                                                                                                                                                                                                                                                                                              | local ecology.                   |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Mixed broadleaved woodland (8) | Habitat loss and degradation. Habitat loss<br>and disturbance to fauna. NB Potential for<br>bat roosts. Impacts can be avoided by<br>designing sewer routes that avoid woodland<br>areas.                                                                                                                                                                    | Minor – Moderate Negative Impact |
| Treelines (9)                  | Habitat Loss & disturbance. Impacts would be minimised by avoidance                                                                                                                                                                                                                                                                                          | Minor Negative Impact            |
| Scrub (10)                     | Potential for habitat loss/disturbance during<br>sewer works. Impacts would be minimised<br>by avoidance or timing of year (e.g. avoid<br>bird breeding season).                                                                                                                                                                                             | Minor Negative Impact.           |
| River banks/grassland (11)     | Sewer pipeline works could potentially cause some short-term disturbance/habitat loss.                                                                                                                                                                                                                                                                       | Minor Negative Impact.           |
| MODERATE - HIGH SENSITIVITY    |                                                                                                                                                                                                                                                                                                                                                              |                                  |
| River Sullane (6)              | Failure to meet current standards for effluent<br>outfall; impacts upon water quality as a result<br>of outfall construction (e.g. siltation,<br>pollution). Impacts upon water quality will<br>have knock-on effects on aquatic fauna and<br>flora. Worst-case scenario impact (major<br>negative) would be a pollution event that<br>killed salmonid fish. | Minor – Major Negative Impact    |

Consent of copyright owner required for any other use

#### 5.0 RECOMMENDATIONS AND FURTHER STUDIES REQUIRED

The best practice recommendation is to undertake baseline studies, ecological evaluation and impact assessment in areas where the proposed works will impact upon ecological resources (areas of ecological interest) outlined in Sections 3.5.1 and 3.5.2 (and Section 4.0).

• General

In order to undertake ecological impact assessment, a Phase I habitat and botanical survey, a breeding bird survey and a mammal survey (including bats) are recommended in areas where the proposed development may impact upon their habitats (river, stream, treelines, woodland, scrub). In general, the survey area should incorporate the footprint of the proposed development (including e.g. pipeline routes) plus a set distance either side of the proposed works.

The terrestrial surveys should focus on areas where the proposed works will cut through, remove or cause disturbance to hedgerows, treelines or other vegetation of interest. The survey should incorporate an area at minimum up to 20m way from the works; up to 50m away if heavy machinery will be used.

Given the known importance of the study area for bat species it is important that the mammal survey includes an assessment of the development area for bat activity (roosting/foraging). This type of survey is particularly important if the proposed works plan to cut through broadleaved woodland or treelines that may be important foraging/commuting routes, now considered equally as important as roost sites (Garland & Markham, 2008).

The mammal survey should also include an assessment of aquatic habitats for the presence of otters. As for the terrestrial surveys, this survey should focus on areas where the proposed works will encroach on or enter River Sullane.

Note that in general, vegetation clearance during the course of works should not be undertaken during the bird breeding season (at minimum not during the months April – August).

Woodland/Trees

Wherever possible the proposed works should avoid direct and indirect impacts on trees. If works are located close to mature trees (and may potentially impact the Root Protection Area (RPA) then consultation with a qualified arborist is recommended in order to adequately protect the trees during development.

River Sullane

We recommend aquatic surveys to establish baseline conditions both upstream and downstream of the proposed works. This survey should include macroinvertebrates at minimum. A fisheries assessment, although desirable, is not considered necessary by South Western Regional Fisheries Board (see consultation response Appendix 6).

Information on the macroinvertebrate population within the river is important to assess the potential impacts of the proposed development on the river as well as the potential impacts of the treated effluent discharge from the WWTP. Biological assessment via the EPA (Q-value) system should be carried out for sites that are located both upstream and downstream of the proposed works and WWTP. The survey should ideally be carried out in the summer - early autumn period.

13

In terms of the resulting water quality following WWTP upgrade, consideration should be given to the discharge location, the ability of the River Sullane to assimilate both current and future loadings and the potential for phosphorus removal.

Future discharges should aim to comply with the Freshwater Fish Directive (78/559/EEC), Urban Waste Water Treatment Directive (91/271/EEC) and the Phosphorus Regulations.

Consent of copyright owner required for any other use.

#### 6.0 **REFERENCES**

Bailey, M. and Rochford J. (2006) Otter Survey of Ireland 2004/2005. Irish Wildlife Manuals, No. 23. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland.

BCT (Bat Conservation Trust) (2000) *Distribution Atlas of Bats in Britain and Ireland 1980 – 1999* Compiled by Phil Richardson, 2000.

Cork County Council (2005) Macroom Electoral Area Local Area Plan.

Curtis, T. G. F. & McGough, H. N. (1988) *The Red Data Book: Vascular Plants.* Stationary Office, Dublin.

DMNR (1998) Fishery Guidelines for Local Authority Works. http://www.nrfb.ie/environment/las.htm

Dwyer, R. B. (2000) *Protecting Nature In Ireland*. The NGO Special Areas of Conservation Shadow List for An Taisce, BirdWatch Ireland, Coastwatch Ireland, Irish Peatland Conservation Council and the Irish Wildlife Trusts.

ERFB (2007) Requirements for the Protection of Fisheries Habitat during Construction and development works at River Sites. http://www.fishingireland.net/environment/fullconstructionanddevelopment.htm

EPA (2002) *Guidelines on the information to be contained in environmental impact assessments.* Environmental Protection Agency, Ireland.

EPA (2003) Advice Notes on Current Practice (in the preparation of Environmental Impact Statements). Environmental Protection Agency, Ireland.

Fossitt, J.A. (2000) A Guide to the Habitats of Ireland. The Heritage Council, Ireland.

Garland, L. & Markham, S. (2008) Is important bat foraging and commuting habitat legally protected? *Mammal News*, 150, 15-16.

Gibbons, D. W., Reid, J. B. & Chapman, R. A. (1993) *The New Atlas of Breeding Birds in Britain and Ireland.* 1988-1991. T & A D Poyser, UK.

Good, J. A. (1998) *The potential role of ecological corridors for habitat conservation in Ireland: a review.* Irish Wildlife Manuals, No. 2. National Parks and Wildlife Service.

Hayden, T. & Harrington, R. (2000) Exploring Irish Mammals. Duchas, The Heritage Service.

IEA (1995) *Guidelines for Baseline Ecological Assessment.* Institute of Environmental Assessment. E & FN Spon, UK.

IEEM (Institute of Ecology and Environmental Management) (2006) *Guidelines for Ecological Impact Assessment in the UK*. (Version 7 July 2006). <u>http://www.ieem.org.uk/ecia/index/html</u>

Preston, C. D., Pearman, D. A & Dines, T. D. (2002) *New Atlas of the British and Irish Flora*. Oxford University Press, Oxford.

Reid, N., Dingerkus, K., Montgomery, W.I., Marnell, F., Jeffrey, R., Lynn, D., Kingston, N. & McDonald, R.A. (2007) *Status of hares in Ireland*. Irish Wildlife Manuals, No. 30. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland.

Stace, C. A. (1997) New Flora of the British Isles. 2<sup>nd</sup> Edition. Cambridge University Press, UK.

Toner, P., Bowman, J., Clabby, K., Lucey, J., McGarrigle, M., Concannon, C., Clenaghan, C., Cunningham, P., Delaney, J., O'Boyle, S., MacCárthaigh, M., Craig, M. and Quinn, R. (2005) *Water Quality in Ireland: 2000-2003.* Environmental Protection Agency. Johnstown Castle, Co. Wexford.

Webb, D. A., Parnell, J. & Doogue, D. (1996) An Irish Flora. Dundalgan Press Ltd, Dundalk, Ireland.

While, A. (1993) Threatened mammals, birds, amphibians and fish in Ireland. HMSO, Belfast.

Consent of constitution purposes only, and other use.

#### **APPENDIX 1**

Stages of Ecological Scoping (after IEEM, 2006)

- Obtain information about the project from the developer, their engineers/designers.
- Identify project activities likely to cause ecological damage, stress or disturbance. Obtain information about their spatial extent, timing, frequency and duration.
- Identify opportunities for enhancing biodiversity and delivery of biodiversity objectives.
- Identify stakeholders, statutory and non-statutory consultees and all ecologists that should be involved and establish a consultation strategy.
- General literature review/data collation to cover aspects of the ecology of the proposed development site and surrounding environment.
- Review relevant legislation, regulations and policies and their requirements e.g. the requirement for a licence before some activities can go-ahead.
- Review the status of designated sites within the area. Define the criteria for site selection for site designation (e.g. Annex I Habitats, Annex II species, Red Data Species etc).
- Identify the important and/or sensitive ecological resources within the area following information search, preliminary site visits and any baseline studies already available.
- Determine the 'zone of influence' (area that may be affected by the proposed development).
- Identify ecological resources that that are likely to be affected by the proposed development and therefore require further studies (baseline studies, ecological assessment, evaluation, impact prediction) as part of the EIA process. Determine gaps in existing information.
- Consider potential impacts of cumulative developments in the area.

consent of copyri

- Production of Scoping Document.
- Undertake on-going scoping throughout EcA process and refine scope as required.

or

#### **APPENDIX 2**

#### NATIONAL PARKS & WILDLIFE SITE SYNOPSES

## SITE NAME: THE GEARAGH SAC SITE CODE: 000108

This site is located on the River Lee in County Cork, extending westwards and southwards from the Lee Bridge, which is about 1.5km south of Macroom. It extends for about 7km of river, to Dromcarra Bridge. The Gearagh occupies a wide, flat valley of the River Lee, on a bed of limestone overlain with sand and gravel. The adjacent valley walls are of Old Red Sandstone.

This unusual area has formed where the River Lee breaks into a complex network of channels (2 to 6m wide) weaving through a series of wooded islands. The alluvial woodland which remains today at the Gearagh is of unique scientific interest, and qualifies as a priority habitat under Annex I of the European Habitats Directive. The area has probably been wooded throughout the Post-glacial era (i.e. since the end of the last Ice Age, which ended around 10,000 years ago) and frequent flooding has served to enhance its character. Originally, this area of alluvial woodland extended as far as the Lee Bridge. Unfortunately, in 1954/55, in the eastern part of the Gearagh, extensive tree-felling and flooding were carried out to facilitate the operation of a hydro-electric scheme. Around sixty per-cent of the former woodland was lost. Today, the reservoir covers the area from Lee Bridge to Annahala Bridge and westwards of Illaunmore Island.

The islands in the Gearagh consist of rather dry alluvium, and support an almost closed canopy of Pedunculate Oak (Quercus robur), Ash (Fraxinus excelsior) and Birch (Betula spp.). The understorey is of Hazel (Corylus avellana), Holly (Ilex aquifolium) and Hawthom (Crataegus monogyna). Willows (Salix spp.) and Alder (Alnus glutinosa) are largely confined to changel margins and waterlogged areas. The ground flora reflects the damp nature of the woodland. In spring, Ramsons (Allium ursinum) and Wood Anemone (Anemone nemorosa) are abundant. Later in the year, other species appear, including Bugle (Ajuga reptans), Pignut (Conopodium majus), Irish Spurge (Euphorbia hyberna), Tufted Hairgrass (Deschampsia cespitosa), Enchanter's Nightshade (Circaea Gitetana) and Meadowsweet (Filipendula ulmaria). Plants species of particular interest within the woodland are Wood Club-rush (Scirpus sylvaticus), Bird Cherry (Prunus padus) and Buckthorn (Rhanmus Catharticus). These species are scarce in Ireland. The epiphytic bryophyte flora is well developed, as are some lichen communities. Variations in this vegetation occur locally, where drainage is impeded and where tree clearance has occurred. The whole area has a remarkably wild character, with many allen trees blocking the channels, so that access both by foot and boat is difficult. Within the reservor, the former extent of the woodland can still be seen at times of low water: the cut stumps of larger trees remain prominently preserved in place. At least five species of Pondweed (Potamogeton spp.) occur in the reservoir, including two species which are uncommon in Ireland (Potamogeton praelongus and P. gramineus). At low water levels, a diverse ephemeral flora develops on the exposed mud. Species here include Water Purslane (Lythrum portula), Knotgrasses (Polygonum spp.), Trifid Bur-marigold (Bidens tripartita), Marsh Yellow-cress (Rorippa palustris) and Six-stamened Waterwort (Elatine hexandra).

An oakwood occurs just north of Toon Bridge. Although wooded from ancient times, today the area supports relatively young oaks (*Quercus* sp.) on a southerly slope. Apart from oaks, Silver Birch (*Betula pendula*), Holly (*Ilex aquifolium*), Hazel (*Corylus avellana*), Ash (*Fraxinus excelsior*) and Rowan (*Sorbus aucuparia*) are also present. The ground flora is typical of that found in an oakwood, but is relatively species-rich, partly as a result of water seepage downslope. Species present include: Bilberry (*Vaccinium myrtillus*), Great Wood-rush (*Luzula sylvatica*), Hard Fern (*Blechnum spicant*), Buckler Fern (*Dryopteris aemula*), Woodruff (*Galium odoratum*), Wood Melic (*Melica uniflora*), Hairy Wood-rush (*Luzula pilosa*) and Early Purple Orchid (*Orchis mascula*).

Along the Gearagh, the river channels grade into marginal alluvial grassland in places. These grasslands, as well as some semi-improved grasslands within the site, are grazed by wildfowl. An area of cutaway bog and some Gorse (*Ulex* sp.) scrub also occur in the site. Extensive swards of Mudwort (*Limosella aquatica*), a Rare plant listed in the Red Data Book, occur on the mudflats along the reservoir. Otter, an Annex II species on the European Habitats Directive, is frequent throughout the site.

The Gearagh supports part of an important wintering bird population: the area most utilised by birds extends also east of the site, towards Cork city (Carrigadroighid). At the Gearagh, Whooper Swans are regular (40-110, 1990's), as are Wigeon (640, average max.1992-1994), Teal (707, average max. 1992-94), Mallard (250 in January 1993) and Tufted Duck (154, average max. 1992-94). Golden Plover utilise the site on occasions (e.g. 2,000 in January 1994), while there is a regular flock of Dunlin (100-200, 1990s) a species unusual at inland sites. A late summering flock of Mute Swan is regular with numbers between 120 and 250 from 1992 to 1994. Great Crested Grebe and Tufted Duck breed in small numbers, while there is a feral flock of about 50 Greylag Geese.

The wooded part of the Gearagh is largely undisturbed due to the inaccessible nature of the terrain. Cattle graze in some areas, but the impacts of this are very localised. In the past, coppicing was practiced over most of the area. Little felling has occurred since the early 1950's, and the installation of the hydro-electric scheme. The least disturbed part of woodland occurs in the upper reaches of the Gearagh. Tree regeneration is occurring around the reservoir, which may restore some of the lost portion of woodland.

Despite the fact that about half the original area has been destroyed the Gearagh still represents the only extensive alluvial woodland in Ireland or Britain, or indeed Western Europe west of the Rhine. For this reason it is a unique site and has been designated as a Statutory Nature Reserve. The international importance of the site is recognised by its designation both as a Ramsar site and as a Biogenetic Reserve. The reservoir is also a Wildfowl Sanctuary. 9.1.1997

#### SITE NAME: THE GEARAGH SPA SITE CODE: 004109

outs' any other use. The Gearagh, located c. 2 km south-west of Macroom was dammed in the 1950s as part of a hydroelectric spheme. The river valley formerly held an extensive area of alluvial forest but only part of the forest new survives. The SPA extends from Annahala Bridge westwards to Toon Bridge. The principal habitat is a shallow lake or reservoir which is fringed by wet woodland, scrub and grassland that is prone to mooding. Alluvial forest occurs on islands. At times of low water, a diverse pioneering plant community develops on the mud.

The alluvial forest is mostly confined to alluvium islands. It consists of an almost closed canopy of Pedunculate Oak (Quercus robur), As (Fraxinus excelsior) and Birch (Betula spp.). The understorey is of Hazel (Corylus avellana), Holly (Ile aquifolium) and Hawthorn (Crataegus monogyna). Willows (Salix spp.) and Alder (Alnus glutinosa) are largely confined to channel margins and waterlogged areas. The ground flora reflects the damp nature of the woodland and includes such species as Ramsons (Allium ursinum), Wood Anemone (Anemone nemorosa), Bugle (Ajuga reptans), Pignut (Conopodium majus), Irish Spurge (Euphorbia hyberna) and Meadowsweet (Filipendula ulmaria). Scarce plant species recorded from within the woodland include Wood Club-rush (Scirpus sylvaticus), Bird Cherry (Prunus padus), Buckthorn (Rhamnus catharticus) and Rough Horsetail (Equisetum hyemale). The epiphytic bryophyte flora and lichen communities are well-developed. The reservoir has a varied aquatic plant flora that included at least five species of Pondweed (Potamogeton spp.). At low water levels, an ephemeral flora develops on the exposed mud and such species as Water Purslane (Lythrum portula), Knotgrasses (Polygonum spp.) including the scarce Small Water-pepper (P. mite), Marsh Yellowcress (Rorippa palustris) and Six-stamened Waterwort (Elatine hexandra) are found here. Extensive swards of Mudwort (Limosella aquatica), a plant listed in the Red Data Book, occur on the mudflats. The river channels grade into marginal alluvial grassland in places. These grasslands, as well as some semi-improved grasslands within the site, are grazed by wildfowl.

The Gearagh supports part of an important wintering bird population - the area most utilised by the birds also extends east of the site, towards Cork City (Carrigadrohid). Swans, dabbling duck, diving duck and some waders are present and the site provides both feeding and roost sites for the birds. Six of the species have populations of national importance (all figures are average peaks for the 5 winters 1995/96-1999/00): Mute Swan (192), Wigeon (1,080), Teal (1,194), Shoveler (36), Coot (308) and Golden Plover (1,918). Other species which occur regularly in substantial numbers include Whooper Swan (77), Gadwall (10), Mallard (584), Pochard (126), Tufted Duck (271), Lapwing (1,880) and Curlew (400). Other species which use the site include Goldeneye (23), Cormorant (26) and Grey Heron (12). A feral Greylag Goose flock is present in the area. A few pairs each of Great Crested Grebe and Tufted Duck breed.

The Gearagh is a Nature Reserve, a Ramsar Convention site and a Council of Europe Biogenetic Reserve. There are no imminent threats to the wintering bird populations, though some disturbance is caused to the birds by illegal shooting. The Gearagh SPA is a unique site due to the presence of remnants of one of the largest stands of alluvial woodland in Ireland or Britain. This habitat is listed, with priority status, on Annex I of the E.U. Habitats Directive. The reservoir created by the past damming activities now attracts important populations of wintering waterfowl, with six of the species having populations of national importance. Also of note is that two of the species which occur regularly, Whooper Swan and Golden Plover, are listed on Annex I of the E.U. Birds Directive.

13.8.2004

Consent of convidence of the for any other use.

Protected mammal species recorded within the 20km square that covers Macroom Town & Environs following a review of Hayden & Harrington (2000) plus other published sources.

| Mammal Species                                         | National Protection                                                                                                                                                                                                                                                                              | International Protection                                                                                                                           | Reference                                                                              |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Hedgehog<br>Erinaceus europaeus                        | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> <li>Vertebrate Red Data Species<br/>(internationally important)</li> </ul>                                                                                                                                              | Appendix III Bern     Convention                                                                                                                   | <ul> <li>Hayden &amp;<br/>Harrington, 2000</li> </ul>                                  |
| Pygmy Shrew<br>Sorex minutus                           | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> </ul>                                                                                                                                                                                                                   | Appendix III Bern     Convention                                                                                                                   | <ul> <li>Hayden &amp;<br/>Harrington, 2000</li> </ul>                                  |
| Lesser Horseshoe Bat                                   | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> <li>Vertebrate Red Data Species<br/>(internationally important)</li> </ul>                                                                                                                                              | <ul> <li>Annex II &amp; IV EU<br/>Habitats Directive</li> <li>Appendix III Bern<br/>Convention</li> <li>Bonn Convention,<br/>Appendix 2</li> </ul> | <ul> <li>Hayden &amp;<br/>Harrington, 2000</li> <li>BCT, 2000</li> </ul>               |
| Whiskered bat <i>Myotis</i> mystacinus                 | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> <li>Vertebrate Red Data Species<br/>(threatened species)</li> </ul>                                                                                                                                                     | <ul> <li>Annex IV EU<br/>Habitats Directive</li> <li>Appendix II Bern<br/>Convention</li> <li>Bonn Convention,<br/>Appendix 2</li> </ul>           | • BCT, 2000                                                                            |
| Common Pipistrelle<br>Bat<br>Pipistrellus pipistrellus | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> <li>Vertebrate Red Data Species<br/>(internationally important)</li> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000, 51</li> <li>Vertebrate Red Data Species<br/>(internationally important)</li> </ul> | Appendix IV EU<br>Appendix II Bern<br>Convention<br>Portice<br>• Bonn Convention,<br>Appendix 2                                                    | <ul> <li>Hayden &amp;<br/>Harrington, 2000</li> <li>BCT, 2000</li> </ul>               |
| Soprano Pipistrelle Bat<br>Pipistrellus pygmaeus       | <ul> <li>Wildlife Act 1976 &amp; Wildlife (Amendment) Act, 2000, 4</li> <li>Vertebrate Red Data Species (internationally important)</li> </ul>                                                                                                                                                   | <ul> <li>Annex IV EU<br/>Habitats Directive</li> <li>Appendix II Bern<br/>Convention</li> <li>Bonn Convention,<br/>Appendix 2</li> </ul>           | <ul> <li>Hayden &amp;<br/>Harrington, 2000</li> <li>BCT, 2000</li> </ul>               |
| Daubentons bat <i>Myotis</i> daubentoni                | <ul> <li>Wildlife Act 976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> <li>Vertebrate Red Data Species<br/>(internationally important)</li> </ul>                                                                                                                                               | <ul> <li>Annex IV EU<br/>Habitats Directive</li> <li>Appendix II Bern<br/>Convention</li> <li>Bonn Convention,<br/>Appendix 2</li> </ul>           | • BCT, 2000                                                                            |
| Leisler's Bat<br>Nyctalus leisleri                     | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> <li>Vertebrate Red data Species<br/>(internationally important)</li> </ul>                                                                                                                                              | <ul> <li>Annex IV EU<br/>Habitats Directive</li> <li>Appendix II Bern<br/>Convention</li> <li>Bonn Convention,<br/>Appendix 2</li> </ul>           | • BCT, 2000                                                                            |
| Brown Long-eared Bat<br>Plecotus auritus               | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> <li>Vertebrate Red data Species<br/>(internationally important)</li> </ul>                                                                                                                                              | <ul> <li>Annex IV EU<br/>Habitats Directive</li> <li>Appendix II Bern<br/>Convention</li> <li>Bonn Convention,<br/>Appendix 2</li> </ul>           | <ul> <li>Hayden &amp;<br/>Harrington, 2000</li> <li>BCT, 2000</li> </ul>               |
| Irish Hare<br>Lepus timidus                            | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> <li>Vertebrate Red data Species<br/>(internationally important)</li> </ul>                                                                                                                                              | <ul> <li>Annex V EU<br/>Habitats Directive</li> <li>Appendix III Bern<br/>Convention</li> </ul>                                                    | <ul> <li>Hayden &amp;<br/>Harrington, 2000</li> <li>Reid <i>et al.</i> 2007</li> </ul> |
| Red Squirrel<br>Sciurus vulgaris                       | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> </ul>                                                                                                                                                                                                                   |                                                                                                                                                    | <ul> <li>Hayden &amp;<br/>Harrington, 2000</li> </ul>                                  |

| Irish Stoat<br><i>Mustela erminea</i> | Wildlife Act 1976 & Wildlife     (Amendment) Act, 2000                                                                                              | Appendix III Bern     Convention                                                                         | <ul> <li>Hayden &amp;<br/>Harrington, 2000</li> </ul>                                           |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Badger<br>Meles meles                 | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> <li>Vertebrate Red data Species<br/>(internationally important)</li> </ul> | Appendix III Bern     Convention                                                                         | Hayden &     Harrington, 2000                                                                   |
| Otter<br><i>Lutra lutra</i>           | <ul> <li>Wildlife Act 1976 &amp; Wildlife<br/>(Amendment) Act, 2000</li> <li>Vertebrate Red data Species<br/>(internationally important)</li> </ul> | <ul> <li>Annex II &amp; IV EU<br/>Habitats Directive</li> <li>Appendix II Bern<br/>Convention</li> </ul> | <ul> <li>Hayden &amp;<br/>Harrington, 2000</li> <li>Bailey &amp;<br/>Rochford, 2006.</li> </ul> |

Consent for inspection purpose only: any other use.

#### Conservation measures and protective legislation in relation to birds

#### Birds of Conservation Concern in Ireland (Newton et al., 1999).

This document set out by BirdWatch Ireland and RSPB Northern Ireland, presents a priority list of bird species within Ireland. The list is divided into Red List Species of high conservation concern e.g. species that have undergone significant population declines (>50%) since 1900. Amber List Species are defined as having medium conservation concern e.g. species whose breeding population has declined by 25% - 50% in the past 25 years. Green List Species are species whose conservation status is presently considered as favourable.

#### <u>Council Directive of 2 April 1979 on the Conservation of Wild Birds (79/409/EEC) ('Birds</u> <u>Directive')</u>

This directive relates to the conservation of all species of naturally occurring birds in the wild. The directive lays down protection, management and control of these species and lays down rules for their exploitation. The directive applies to the birds, their eggs, nests and habitats.

This legislation is behind the designation of Special Protection Areas (SPA).

Assessment of a species local population size is based on National and International importance thresholds. A site of national importance regularly holds 1% of the estimated national population of a species. A site of international importance is defined as regularly holding 20,000 waterbirds and/or regularly holds 1% of the individuals in a population of a species or subspecies. The same criteria are used to define Ramsar Sites (Ramsar Convention Bureau, 1984). Current national and international population estimates are shown within Delaney & Scott (2002) and Crowe et al (mprep).

• All birds are protected under the Wildlife Act (1976) and Wildlife Amendment Act (2000).

| Environmental       | Protection      | Agency  | Water | Quality | Monitoring | Programme |
|---------------------|-----------------|---------|-------|---------|------------|-----------|
| (http://www.epa.ie/ | rivermap/data/W | 7.html) |       |         |            |           |

EPA Q-values recorded for the Sullane River

| Station | Station 0400                       | Station 0480                                  |
|---------|------------------------------------|-----------------------------------------------|
|         | Linamilla Bridge,<br>Sullane River | Ford upstream of<br>River Laney<br>confluence |
| Year    |                                    |                                               |
| 2005    | 5                                  | 4                                             |
| 2002    | 5                                  | 4                                             |
| 1999    | 5                                  | 4                                             |
| 1997    | 5                                  | 4                                             |
| 1994    | 5                                  | 4                                             |
| 1990    | 5                                  | -                                             |
| 1986    | 5                                  | -                                             |
| 1981    | 5                                  | 1150 -                                        |
| 1976    | 5                                  | office -                                      |
| 1971    | 5 11                               | IN OTHER USE                                  |

The Q-value system is a method of assessing the organic pollution load of a river based upon the macroinvertebrate community structure. The species composition and relative abundance is used to calculate a Q-value, which runs on a scale of Q4 - Q5; Q1 indicating seriously polluted water, and Q5 indicating unpolluted, pristine water (Toner *et al.* 2005):

| C | Q-value scale       | FOLUTIO                         |               |
|---|---------------------|---------------------------------|---------------|
|   | <b>Biotic index</b> | د O <sup>C</sup> Quality status | Quality class |
|   | Q5, Q4-5, Q4        | Unpolluted                      | Class A       |
|   | Q3-4 CONS           | Slightly polluted               | Class B       |
|   | Q3, Q2-3            | Moderately polluted             | Class C       |
|   | Q2, Q1-2, Q1        | Seriously polluted              | Class D       |

#### **Consultation Record**

| Organisation/Individual                                                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Macroom Town Council                                                                        | Telephone Call 12/03/08 | Confirmed investigations by the Environmental Sub-<br>Committee and Tidy Towns Group to develop a<br>nature/amenity walk down the western side of the River<br>Sullane (towards the Corn Mill)                                                                                                                                                                                                                                                |
| Cork County Council Heritage Officer, Sharon<br>Casey                                       | Email reply 18/03/08.   | Not familiar with the study area and therefore has no<br>comment.                                                                                                                                                                                                                                                                                                                                                                             |
| South Western Regional Fisheries Board,<br>Michael McPartland                               | Telephone Call 12/03/08 | River Sullane is a significant brown Trout river (spawning<br>nursery). ESB stock Salmon fry further upstream than<br>Macroom therefore Salmon passing up and down. Does not<br>feel that a pre-development fisheries assessment is<br>necessary as we already know that these sensitive species<br>occur in the river- rather the important point to assess is the<br>assimilative capacity of the river and consider phosphorus<br>removal. |
| National Parks & Wildlife Service (NPWS),<br>Regional DCO                                   | Telephone Call 11/03/08 | Has no knowledge of planned changes to the boundary of the Gearagh SPA.                                                                                                                                                                                                                                                                                                                                                                       |
| John Lynch (Environmental Consultant,<br>Macroom Tidy Towns Group & County Nature<br>Trust) | Telephone Call 11/03/08 | Provided information with regards the ecology of the area.<br>Information related within the report as individual<br>statements.                                                                                                                                                                                                                                                                                                              |
| Conor Kelleher, Cork County Bat Group, Irish<br>Wildlife Trust & Bat Conservation Ireland   | Email 11/02/08          | Please see attached letter.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tony O'Mahony Local BSBI Recorder<br>(Botanical Society of Britain & Ireland)               | Email 11/02/08 purperie | Provided information with regards rare/scarce plants<br>species recorded within the study area and general locality.<br>Information related within the report as individual<br>statements.                                                                                                                                                                                                                                                    |
| Macroom District Environmental Group                                                        | Email 28/03/08          | General information with regards presence of otters,<br>kingfisher. The group have 'detected a healthy presence of<br>Daubenton's Bats feeding over the River Sullane' as part of<br>a national survey'.                                                                                                                                                                                                                                      |
| (                                                                                           | CONset.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |



Spring Lane, Carrigagulla, Ballinagree, Macroom, Co. Cork.

11<sup>th</sup> March 2008

Dr. Lesley J Lewis BSc, PhD, MIEEM Limosa Environmental, Counkilla. Drimoleague, Co Cork.

#### Re: Ecological scoping for the upgrade of the Macroom Sewerage Scheme (Cork County Council)

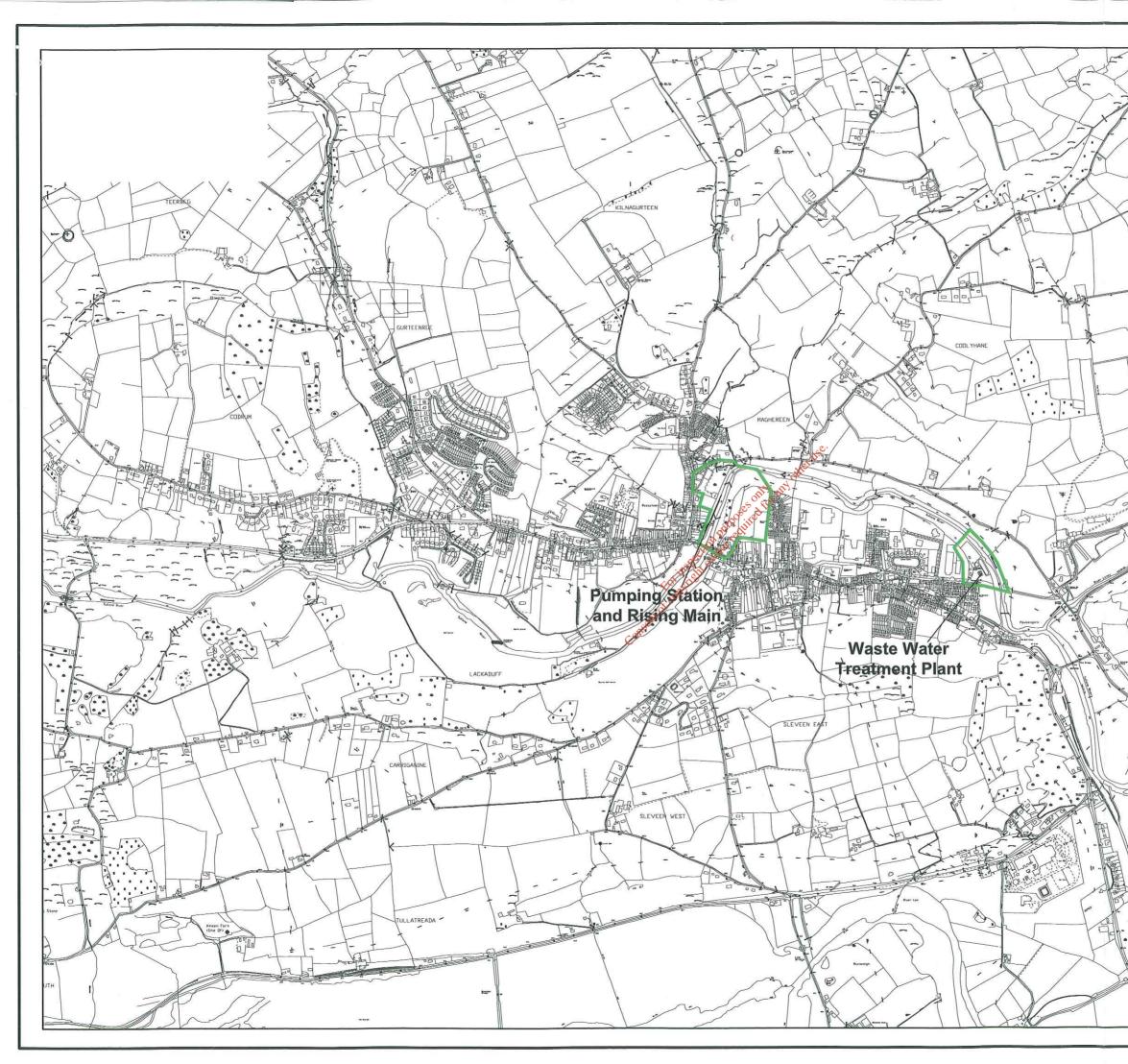
other

Dear Lesley,

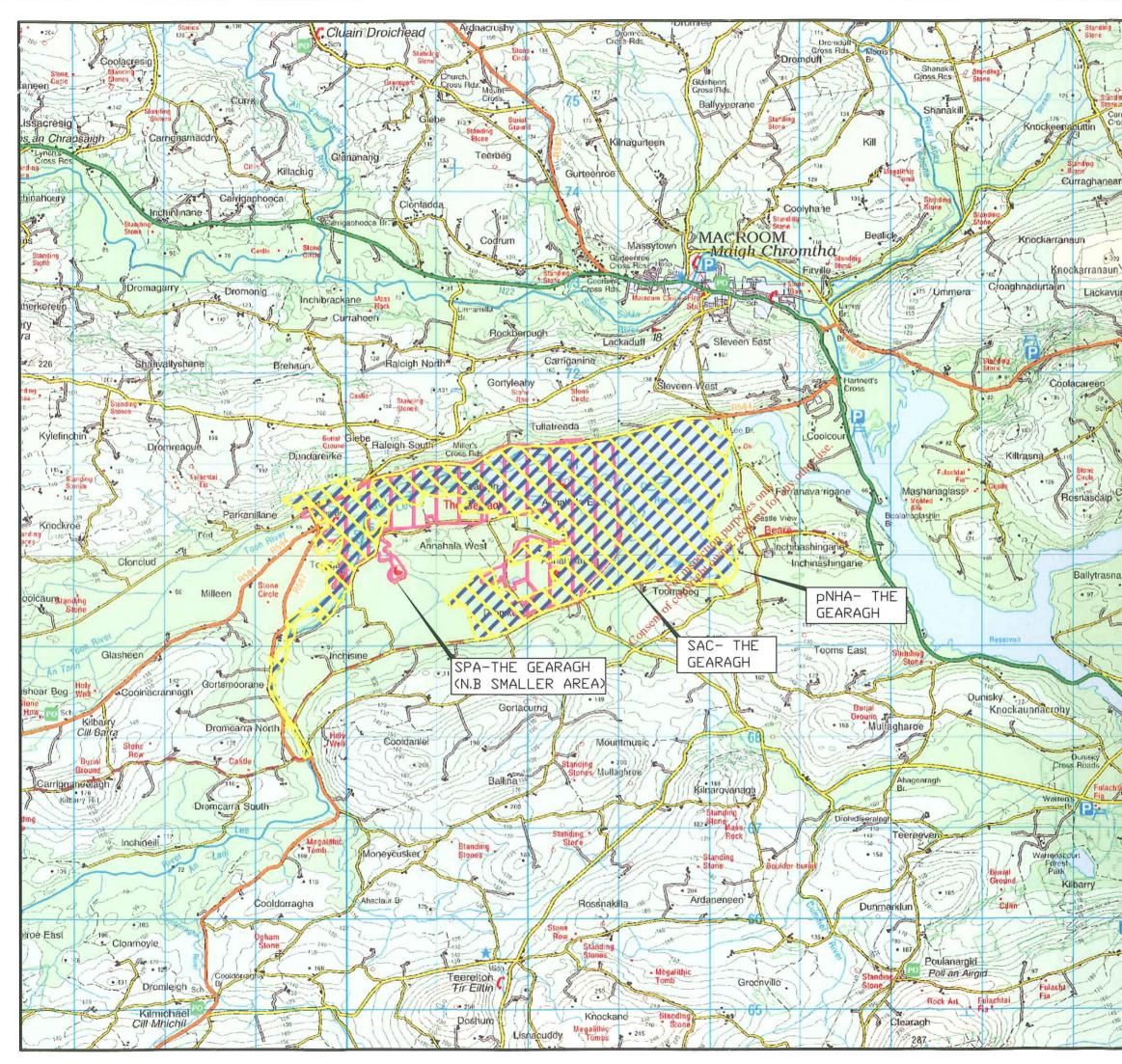
mily any I am responding to your request for ecological information in relation to proposals for the upgrade of the Macroom Sewerage Scheme (Cork County Council), Macroom, Co. Cork. I understand that designs are at a very preliminary stage but that plans are being drafted to upgrade the existing WWTO and outfall into the Sullane River (Grid Reference W351 729) and that there is potential for sewer excavations within an area adjacent to the main town bridge over the river and north through Masseytown to Mill Lane

Several bat species are known to commute and forage within the immediate area of the planned works. These include common Pipistrellus pipistrellus and sopratio pipistrelle P. pygmaeus, Leisler's Nyctalus leisleri, Daubenton's Myotis daubentonii, whiskered M. mystacinus, brown long-eared Plecotus auritus and lesser horseshoe Rhinolophus hipposideros bat. Roosts of soprano pipistrelle Leisler's and lesser horseshoe bat are known in Masseytown and Mill Lane as well as in nearby properties outside the planned work footprint.

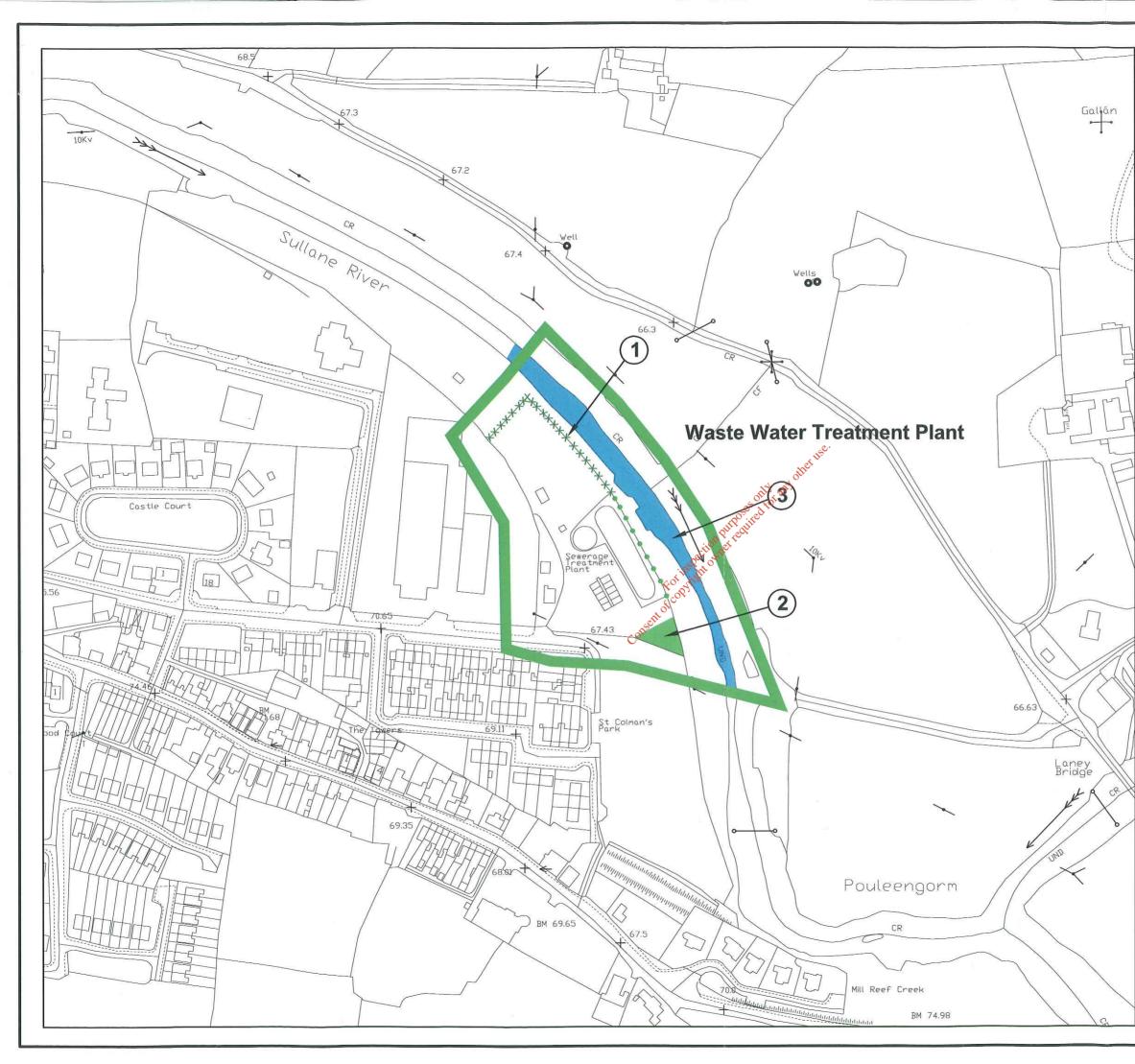
All Irish bat species are protected under the Wildlife Act (1976) and Wildlife Amendment Act (2000). Also, the EC Directive on The Conservation of Natural habitats and of Wild Fauna and Flora (Habitats Directive 1992), seeks to protect rare species, including bats, and their habitats and requires that appropriate monitoring of populations be undertaken. Across Europe, they are further protected under the Convention on the Conservation of European Wildlife and Natural Habitats (Bern Convention 1982), which, in relation to bats, exists to conserve all species and their habitats. The Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention 1979, enacted 1983) was instigated to protect migrant species across all European boundaries. The Irish government has ratified both these conventions. All bats are listed in Annex IV of the Habitats Directive and the lesser horseshoe bat is further listed under Annex II.


To assess impacts of any planned works on these protected species, a bat detector survey of the planned work area should be undertaken by a qualified bat specialist or Ecologist during the main season of bat activity between the months of May and September and a review of the finalised proposals should be carried out in relation to impacts on bat commuting, foraging and/or roosting. Subject to survey and review findings, mitigation measures may be required to safeguard any bat populations during construction works and post-construction operation of the scheme.

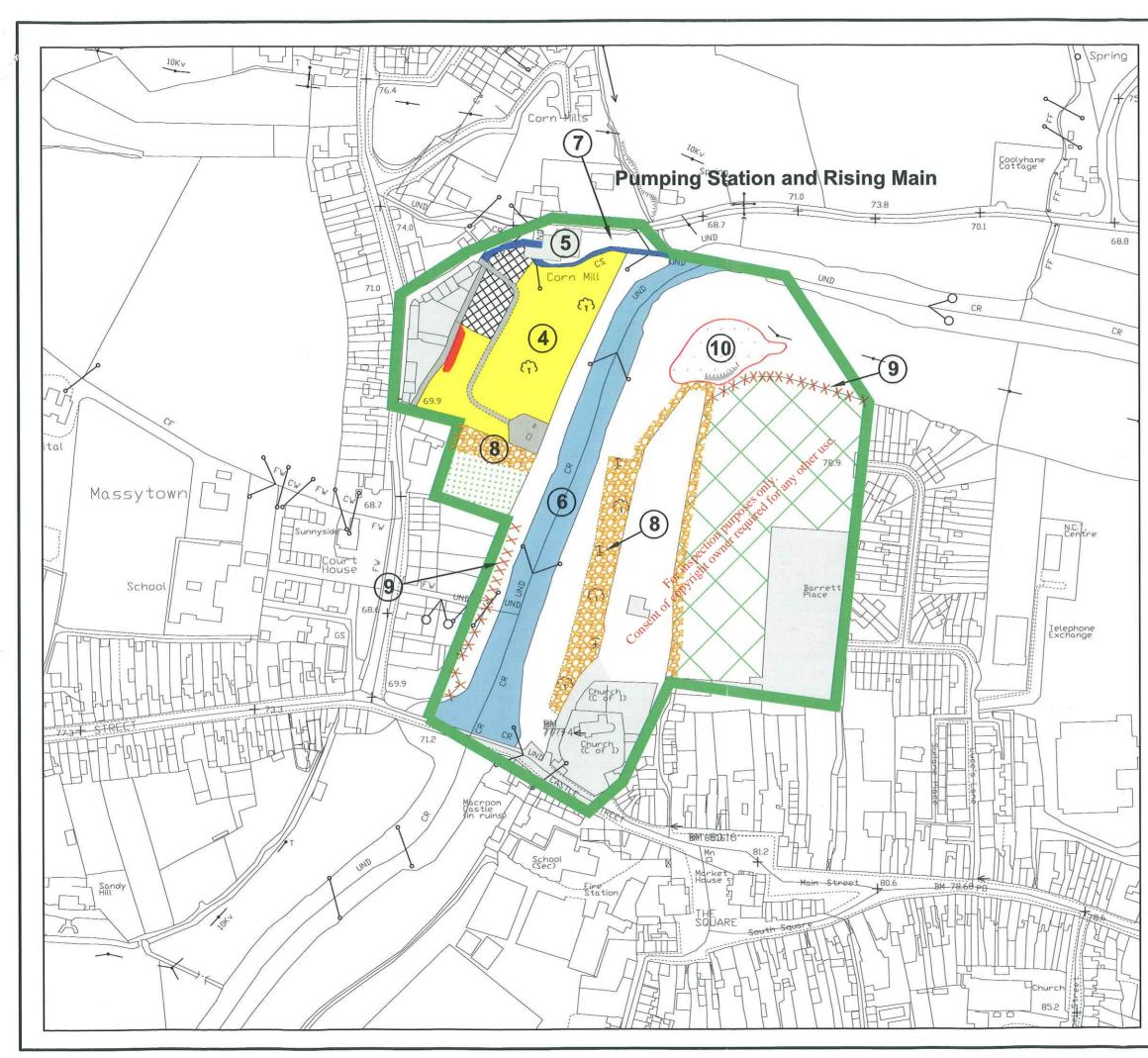
On behalf of the Irish Wildlife Trust, Bat Conservation Ireland and the Cork County Bat Group, I would ask that these animals be given consideration as part of the Environmental Impact Assessment of the development proposal.


Yours sincerely,

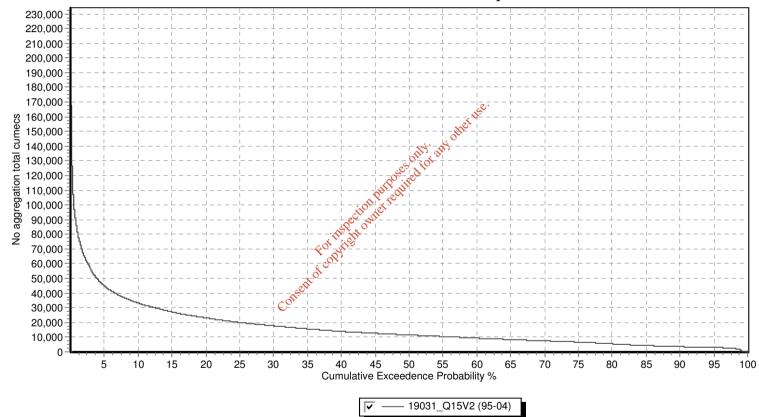
as thelleher


Conor Kelleher Chairman, Cork County Bat Group, Bat Conservation Ireland, Irish Wildlife Trust.




| <u>NOTES:</u><br>Figured di<br>from this<br>All dimens<br>Ordnance<br>EN 00030<br>Survey Ire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | drawing<br>sions to<br>Survey<br>08. Co | j.<br>be check<br>Ireland Lic<br>pyright Or | ed<br>cen | on<br>ce l<br>ance | site.<br>No. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|-----------|--------------------|--------------|
| Key:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dev                                     | velopment                                   | Bo        | ound               | ary          |
| a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                             |           |                    |              |
| j.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                             |           |                    |              |
| <br>Rev. Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                             |           | -<br>Child         | <br><br>Date |
| Rev.         Description         Dress         Child         Dete           Client:         CORK COUNTY COUNCIL         Client Representative:         Client Representative:< |                                         |                                             |           |                    |              |
| J.B. Barry & Partners Linited,<br>An Eastgate Road, Eastgate,<br>Little Island, Co. Cork.       Phone: +353-21-452 4418<br>Fac:       Phone: +353-21-452 4418<br>Fac:         Project:       Project:         MACROOM SEWERAGE SCHEME & WASTE WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                             |           |                    |              |
| TREATMENT PLANT UPGRADE  Drawing Title:  FIGURE 1 - Location of Development Boundary  Drawn by: P.R. Date: 25.03.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                             |           |                    |              |
| Drawn by:<br>Checked by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P.R.<br>P.R.                            | Date:                                       | _         | 25.03.0            |              |
| Approved by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R.K.                                    | Date:                                       | -         | 25.03.0            |              |
| Scales:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                             |           |                    |              |
| 500188.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1:150                                   | 000 @ A3                                    |           | _                  |              |
| Drawing No.:<br>Y73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333 / PR /                              | 020                                         |           | Revis              | ion:<br>—    |




| · 133                | NO        | TES:              |              |       |                |                |                         |                                                |
|----------------------|-----------|-------------------|--------------|-------|----------------|----------------|-------------------------|------------------------------------------------|
| 155                  |           |                   | mensio       | ons   | only to        | be             | tal                     | ken                                            |
| Coolkish             | fro       | m this            | drawi        | ng.   | -              |                |                         |                                                |
|                      | All       | dimens            | sions t      | to I  | be check       | ked            | on                      | site.                                          |
| rigaclodig<br>ss Rds |           |                   |              |       |                |                |                         |                                                |
| 120                  | 1         | 111               |              | = 1   | NHA            |                |                         |                                                |
| V.                   |           |                   |              |       |                |                |                         |                                                |
| la                   |           | ΠΠΠΤ              | Π.           | _ (   | SPA            |                |                         |                                                |
| 1                    |           |                   | LLI .        |       | 5FA            |                |                         |                                                |
| AA                   |           |                   |              | _     | SAC            |                |                         |                                                |
| Ale.                 |           |                   |              |       | SAC            |                |                         |                                                |
| 12000                |           |                   |              |       |                |                |                         |                                                |
| aknick               |           |                   |              |       |                |                |                         |                                                |
| 50 J.T               |           |                   |              |       |                |                |                         |                                                |
| S120                 |           |                   |              |       |                |                |                         |                                                |
| -14                  |           |                   |              |       |                |                |                         |                                                |
| 95                   |           |                   |              |       |                |                |                         |                                                |
| A ST                 |           |                   |              |       |                |                |                         |                                                |
| 62                   |           |                   |              |       |                |                |                         |                                                |
| 2                    |           |                   |              |       |                |                |                         |                                                |
| BI (                 |           |                   |              |       |                |                |                         |                                                |
| 14                   |           |                   |              |       |                |                |                         |                                                |
| oblaceos             |           |                   |              |       |                |                |                         |                                                |
|                      |           |                   |              |       |                |                |                         |                                                |
| 62                   |           |                   |              |       |                |                |                         |                                                |
| Kathan               | ~         | e                 |              |       |                |                |                         |                                                |
| K/                   |           |                   |              |       |                |                |                         |                                                |
|                      |           |                   |              |       |                |                |                         |                                                |
| 107 •                | A<br>Rev. | Minor amende      | ments for is | eue o | f Report       | P.R.<br>Drawn  | R.K.<br>Cinkd           | 20.03.08                                       |
| Inoc                 | Clien     | Description<br>t: |              |       |                | Drawn          | Crista                  | Date                                           |
| 90-08-               |           | C                 | ORK CO       | JUN   | ITY COUN       | CIL            |                         |                                                |
| 24                   |           |                   |              |       |                |                |                         |                                                |
|                      | Clien     | t Represen        | tative:      | ,     |                |                |                         |                                                |
| 2                    |           | R                 | A            | R     | RY             | 3A E<br>Little | ast Gate F<br>Island, C | Partners Limited<br>toad, Eastgate<br>o. Cork, |
| P.S.                 | V)        |                   |              |       | VERS           |                | nd.                     |                                                |
| 5-1                  | 0.0       | nsulti            |              | n 6   | ineers         | Fax:           | +353-2                  | 11-4524418<br>11-4524419<br>jbbarry.ie         |
| Carrigdan            | Projec    | t:                |              |       | 3              |                | 1                       |                                                |
|                      |           | ACROOM            |              |       | GE SCHE        |                |                         |                                                |
| -                    |           |                   | IKEAT        | ME    | NT PLANT       | UP(            | sKAl                    | JE                                             |
| Fulachti<br>Fia      | F         |                   |              |       | ated area      |                |                         |                                                |
| 1                    |           | onserva           | tion int     | tere  | st within      | 5km            |                         |                                                |
| the second           |           |                   |              | eu d  | evelopme       |                |                         |                                                |
| PAL                  | -         | n by:<br>ked by:  | J.H<br>P.R   |       | Date:<br>Date: |                | 8.02.0                  |                                                |
| FCI                  |           | oved by:          | R.K.         |       | Date:          |                | 8.02.0                  |                                                |
| Ciros                | Scale     | 98:               | 1:4          | 000   | 00 @ A3        |                |                         |                                                |
| Coolduff             | Stag      | 0:                | PRI          | ELIN  | MINARY         |                |                         |                                                |
| 5                    | Draw      | ing No.:          |              |       |                | 1              | Revis                   | ion:                                           |
| Ant                  |           |                   | 33 / PF      | R / I | 016            |                |                         | A                                              |
| - Myr                |           |                   |              |       |                |                |                         |                                                |



|   | Fig<br>fro<br>All<br>Orc<br>EN<br>Sur<br>Ke                                                                                                                                                   | Low         | drawin<br>sions t<br>Survey<br>08. ()<br>land/()<br>A<br>land d<br>nature | ng.<br>to be d<br>y Irelan<br>Copyrig<br>Governn<br>reas o<br>lepositii<br>woodla | check<br>d Lid<br>ht Or<br>nent<br>f Into | eres       | on<br>ce l<br>ance<br>Irela<br>st | site.<br>No.<br>and. |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------|-----------------------------------|----------------------|
|   |                                                                                                                                                                                               |             |                                                                           |                                                                                   |                                           |            |                                   |                      |
|   | • •                                                                                                                                                                                           | • • Tree    | eline B                                                                   | (WL2)                                                                             |                                           |            |                                   |                      |
|   | ×<br>a                                                                                                                                                                                        | 1           |                                                                           |                                                                                   |                                           |            |                                   |                      |
|   |                                                                                                                                                                                               | 4           |                                                                           |                                                                                   |                                           |            |                                   |                      |
|   |                                                                                                                                                                                               |             |                                                                           |                                                                                   |                                           |            |                                   |                      |
|   |                                                                                                                                                                                               |             |                                                                           |                                                                                   |                                           |            |                                   |                      |
|   | -<br>Rev.                                                                                                                                                                                     | -           |                                                                           |                                                                                   |                                           | -<br>Drown | - Chikd                           | -<br>Dale            |
| ŀ | Rev.                                                                                                                                                                                          | Description |                                                                           |                                                                                   |                                           | DIGHT      |                                   | 000                  |
|   | CIIGU                                                                                                                                                                                         | 1.000       | ORK CO                                                                    | ΟΨΝΤΥ (                                                                           | COUN                                      | CIL        | ii                                |                      |
|   | Clien                                                                                                                                                                                         | t Represen  | tative:                                                                   |                                                                                   |                                           |            |                                   |                      |
|   | BARRRY<br>& PARTNERS<br>J. B. Barry & Partners Linited,<br>J. Barry & Partners Linited,<br>J. Barry & Partners Linited,<br>J. Barry & Partners Linited,<br>Little Island, Co. Cork,<br>Ireand |             |                                                                           |                                                                                   |                                           |            |                                   |                      |
| ľ | Proje                                                                                                                                                                                         | ect:        |                                                                           |                                                                                   |                                           |            |                                   |                      |
|   | MACROOM SEWERAGE SCHEME & WASTE WATER<br>TREATMENT PLANT UPGRADE                                                                                                                              |             |                                                                           |                                                                                   |                                           |            |                                   |                      |
|   | Draw                                                                                                                                                                                          | ing Title:  |                                                                           |                                                                                   |                                           |            |                                   |                      |
|   | pre                                                                                                                                                                                           | liminary a  | assessn                                                                   | labitats r<br>nent and<br>Water 1                                                 | areas                                     | s of       | ecolo                             | ogical               |
|   | Draw                                                                                                                                                                                          | n by:       | J.H.                                                                      | Da                                                                                | te:                                       | 1          | 8.02.0                            | )8                   |
|   | _                                                                                                                                                                                             | ked by:     | P.R.                                                                      | Da                                                                                |                                           |            | 8.02.0                            |                      |
|   | Аррп                                                                                                                                                                                          | oved by:    | R.K.                                                                      | Da                                                                                | te:                                       | 1          | 8.02.0                            | 08                   |
|   | Scale                                                                                                                                                                                         | 98:         | 1:2                                                                       | 2500 @ /                                                                          | 43                                        |            |                                   |                      |
| ŀ | Draw                                                                                                                                                                                          | ing No.:    |                                                                           |                                                                                   |                                           | 1          | Revis                             | ion:                 |
|   | JIUW                                                                                                                                                                                          |             | 333 / PF                                                                  | R/015                                                                             |                                           |            |                                   | -                    |



| NOTES:                                                                                 |                    |                                                                                              |               |              |                                                      |  |  |  |
|----------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------|---------------|--------------|------------------------------------------------------|--|--|--|
| Figured dimensions only to be taken                                                    |                    |                                                                                              |               |              |                                                      |  |  |  |
| from this                                                                              | s drawing.         |                                                                                              |               |              |                                                      |  |  |  |
| All dimer                                                                              | nsions to          | be check                                                                                     | ed            | on           | site.                                                |  |  |  |
| Ordnance                                                                               | Survey I           | reland Lic                                                                                   | en            | ce I         | No.                                                  |  |  |  |
| EN 0003                                                                                | 008. Co            | pyright Or                                                                                   | dn            | ance         | )                                                    |  |  |  |
| Survey Ir                                                                              | eland/Gov          | /ernment                                                                                     | of            | Irela        | and.                                                 |  |  |  |
| Key:                                                                                   |                    |                                                                                              |               |              |                                                      |  |  |  |
| ~                                                                                      | -                  |                                                                                              |               |              |                                                      |  |  |  |
|                                                                                        | Are                | as of Inte                                                                                   | eres          | st           |                                                      |  |  |  |
|                                                                                        |                    |                                                                                              |               |              | 8                                                    |  |  |  |
|                                                                                        |                    |                                                                                              |               |              |                                                      |  |  |  |
| Lo                                                                                     | wland dep          | ositing riv                                                                                  | ver           | (FW          | /2)                                                  |  |  |  |
| Lo                                                                                     | wland Stre         | eam (FW2                                                                                     | )             |              |                                                      |  |  |  |
| Sc                                                                                     | attered tr         | ees and                                                                                      | Dai           | klan         | d                                                    |  |  |  |
|                                                                                        | D5)                |                                                                                              | P             |              |                                                      |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                  | rub (WS2)          | )                                                                                            |               |              |                                                      |  |  |  |
|                                                                                        |                    |                                                                                              |               |              |                                                      |  |  |  |
|                                                                                        | eeline (WL         |                                                                                              |               |              | 1270                                                 |  |  |  |
| Mix Mix                                                                                | ked broad          | leaved wo                                                                                    | ood           | land         | (WD1                                                 |  |  |  |
|                                                                                        | mi-natura          |                                                                                              | nd,           | /rou         | gh                                                   |  |  |  |
|                                                                                        | azing (GS          |                                                                                              |               |              |                                                      |  |  |  |
|                                                                                        | ienity Gra<br>GA2) | ssland/ro                                                                                    | ugł           | n gr         | azing?                                               |  |  |  |
| Im                                                                                     | proved ag<br>GA1)  | pricultural                                                                                  | gr            | asslo        | and                                                  |  |  |  |
|                                                                                        | Idings &           | artificial                                                                                   | sur           | face         | \$                                                   |  |  |  |
| (BL                                                                                    |                    |                                                                                              | Jui           | 1400         | 0                                                    |  |  |  |
| C-                                                                                     | oil & bar          | a around                                                                                     | 15            | יני <u>ח</u> |                                                      |  |  |  |
| Sp                                                                                     |                    | e ground                                                                                     | (E            | 02)          |                                                      |  |  |  |
|                                                                                        |                    |                                                                                              |               |              |                                                      |  |  |  |
|                                                                                        |                    |                                                                                              | _             | -            |                                                      |  |  |  |
|                                                                                        |                    |                                                                                              |               |              |                                                      |  |  |  |
| A Further Dotal<br>Rov. Description                                                    | is edded to key    |                                                                                              | P.R.          | R.K.         | 28.03.08<br>Date                                     |  |  |  |
| Client:                                                                                |                    |                                                                                              | Digit         | - Lound      | Vella                                                |  |  |  |
|                                                                                        | CORK COU           | NTY COUN                                                                                     | CIL           |              |                                                      |  |  |  |
|                                                                                        |                    |                                                                                              |               |              |                                                      |  |  |  |
| Client Repres                                                                          | entative:          |                                                                                              | •             |              |                                                      |  |  |  |
| R BA                                                                                   | ARRY               |                                                                                              | -1-1          | Diam         | 353-21-452 4418                                      |  |  |  |
| 2 & P/                                                                                 | ARTNERS            | J. B. Barry & Partners Li<br>3A Eastgate Road, Eastg<br>Little Island, Co. Cork,<br>Ireland. | aned,<br>ate, | Fax: +       | 353-21-452 4418<br>353-21-452 4419<br>ork@jbbarry.ie |  |  |  |
| consulting                                                                             | engineers          |                                                                                              |               |              |                                                      |  |  |  |
| Project:                                                                               |                    |                                                                                              |               |              |                                                      |  |  |  |
| MACROOM SEWERAGE SCHEME & WASTE WATER<br>TREATMENT PLANT UPGRADE                       |                    |                                                                                              |               |              |                                                      |  |  |  |
|                                                                                        |                    |                                                                                              |               |              |                                                      |  |  |  |
| Drawing Title:                                                                         |                    | itate record                                                                                 | od -          | during       |                                                      |  |  |  |
| FIGURE 3b - Habitats recorded during<br>preliminary assessment and areas of ecological |                    |                                                                                              |               |              |                                                      |  |  |  |
| a contrato a process a contrato                                                        | st- Pump Sta       |                                                                                              |               |              | •                                                    |  |  |  |
| Drawn by:                                                                              | J.H.               | Date:                                                                                        | _             | 8.02.0       |                                                      |  |  |  |
| Checked by:<br>Approved by:                                                            | P.R.<br>R.K.       | Date:<br>Date:                                                                               |               | 8.02.0       |                                                      |  |  |  |
| Scales:                                                                                |                    | 00 @ A3                                                                                      | -15           |              | -                                                    |  |  |  |
|                                                                                        | 1.200              |                                                                                              |               | Revis        | ion:                                                 |  |  |  |
| Drawing No.:                                                                           | 7333 / PR /        | 014                                                                                          |               | Kevis        | A                                                    |  |  |  |
| I I                                                                                    | 1000/PR/           |                                                                                              |               |              | ~                                                    |  |  |  |



### Flow: Exceedence-Probability

| ABS_CD | AGG_SERVED                                  | ABS_VOL   | PT_CD          | DIS_DS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EASTING | NORTHING | VERIFIED |
|--------|---------------------------------------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|
|        | Southern Cork City and                      |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
| n/a    | Southern Cork City and<br>Cork Harbour Area | 64,600 m3 | SW01           | >20,000m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 154480  | 72150    | No       |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
| ·      |                                             | 1         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSC.    |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K W     |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | offe    |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       |          |          |
|        |                                             |           |                | Oly all.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |          |          |
|        |                                             |           |                | onth' and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |          |          |
|        |                                             |           |                | at Postied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |          |
|        |                                             |           |                | and a start of the |         |          |          |
|        |                                             |           |                | N Y YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           | £01 5          | Q.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |          |
|        |                                             |           |                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |          |
|        |                                             |           | <u> </u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           | Conserved      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           | Č <sup>0</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |
|        |                                             |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |

#### **SURFACE WATER - Introduction**

Scores should be inserted (where appropriate) into the blue boxes in Sections 1 to 10. The scores for each section will be automatically totalled (in the yellow box) and a summary of the scores for each section will appear on this sheet. The section scores will be totalled automatically on this summary sheet. The population of supply should be entered into the blue box below on this page and the overall Cryptosporidium Risk Assessment Score will be automatically calculated for the supply.

#### Cork Harbour and City Water Supply Scheme at Inniscarra Waterworks

21/04/2008

| Surface Water Catchment Risk Scores                                                                                                                                                | Section Score    | Total Score |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| Section 1 - Animals within the Catchment                                                                                                                                           | (10+5+0+2+4)     | 21          |
| Section 2 - Agricultural Practices within the Catchment                                                                                                                            | (6+3+3+6+8)      | 26          |
| Section 3 - Discharges to the Catchment/Water Source                                                                                                                               | (6+6+2)          | 14          |
| Section 4 - Water Source Type                                                                                                                                                      | 4                | 4           |
| Section 5 - Catchment Inspections                                                                                                                                                  | (-3-3)           | -6          |
| Section 6 - Raw Water Intake Management for Abstractions                                                                                                                           | (-2-4)           | -6          |
| Total Surface Water Catchment Risk Score                                                                                                                                           |                  | 53          |
| Surface Water - Treatment and Supply Risk Score                                                                                                                                    |                  |             |
| Section 7 - Water Treatment Processes                                                                                                                                              | -10              | -10         |
| Section 8a - Treatment Works Monitoring of Coagulation and Filtration                                                                                                              | -5               | -5          |
| Section 8b - Treatment Works Monitoring of Coagulation and Filtration                                                                                                              | -1               | -1          |
| Section 8c - Treatment Works Monitoring of Coagulation and Filtration                                                                                                              | (-5-2+5-2)       | -4          |
| Section 8d - Treatment Works Monitoring of Coagulation and Filtration                                                                                                              | .0.*             |             |
| Section 8e - Treatment Works Monitoring of Coagulation and Filtration                                                                                                              | at USC           |             |
| Section 8f - Treatment Works Monitoring of Coagulation and Filtration                                                                                                              | the              |             |
| Section 9 - Rapid Gravity and Pressure Filter Works Performance                                                                                                                    | (0-2-2-2)        | -6          |
|                                                                                                                                                                                    | (-2+1-4+4-2+2+4) | 3           |
| Surface Water - Treatment and Supply Risk Score           Surface Water Risk Assessment Score           Population           Population Weighting Factor (0.4 x log10(population)) |                  | -23         |
| outly quit                                                                                                                                                                         |                  |             |
| Surface Water Risk Assessment Score                                                                                                                                                |                  | 30          |
| Population                                                                                                                                                                         |                  | 111,000     |
| Population Weighting Factor (0.4 x log10(population))                                                                                                                              |                  | 2.018129192 |
| Final Weighted Risk Assessment Score                                                                                                                                               |                  | 60.54387575 |
| Water Supply Risk Classification                                                                                                                                                   |                  | Moderate    |
| x <sup>0</sup>                                                                                                                                                                     |                  |             |
| N <sup>SO1</sup>                                                                                                                                                                   |                  |             |
| Population Weighting Factor (0.4 x log10(population))<br>Final Weighted Risk Assessment Score For price<br>Water Supply Risk Classification Conservation                           |                  |             |

| Section<br>No. | Pressure Risk Factor                                                                     | RA<br>Score | Actual<br>Score |
|----------------|------------------------------------------------------------------------------------------|-------------|-----------------|
| 1.1            | Cattle/calves at less than or equal to one livestock unit per hectare of forage area *   | 5           |                 |
|                | Cattle/calves at more than one one livestock unit per hectare of forage area*            | 10          | 10              |
|                | No cattle/calves in the catchment                                                        | 0           |                 |
| 1.2            | Sheep/lambs at less than or equal to one one livestock unit per hectare of forage area * | 5           | 5               |
|                | Sheep/lambs at more than one one livestock unit per hectare of forage area *             | 10          |                 |
|                | No sheep/lambs in the catchment                                                          | 0           | <u> </u>        |
| 1.3            | Wild or farmed deer in the catchment                                                     | 2           |                 |
|                | No wild or farmed deer in the catchment                                                  | 0           | 0               |
|                |                                                                                          |             |                 |
| 1.4            | Pig farms in the catchment                                                               | 2           | 2               |
|                | No pig farms in the catchment                                                            | 0           |                 |
|                |                                                                                          |             |                 |
| 1.5            | Animals have direct access to water sources including feeder streams                     | 4           | 4               |
|                | Fencing prevents access to water sources including feeder streams                        | -4          |                 |
|                | A A A A A A A A A A A A A A A A A A A                                                    |             | _               |
| 1.6            | High numbers of birds                                                                    | 2           |                 |
| 1 7            | Any other farmed animals or birds                                                        | 1           |                 |
| 1.7            | Total for S                                                                              | l           | 21              |
|                |                                                                                          | ection 1    | 21              |

### Section 1 - Animals Within the Catchment

|         |                                      | one   |        |
|---------|--------------------------------------|-------|--------|
|         |                                      |       |        |
| Section | Risk Factor                          | RA    | Actual |
| No.     |                                      | Score | Score  |
| 2.1     | Slurry spraying within the catchment | 6     | 6      |
|         |                                      |       |        |
| 2.2     | Dung spreading within the catchment  | 3     | 3      |
|         |                                      |       |        |
| 2.3     | Slurry <b>or</b> dung stores         | 3     | 3      |
|         |                                      |       |        |
| 2.4     | Sheep pens <b>or</b> cattle sheds    | 6     | 6      |
|         |                                      |       |        |
| 2.5     | Lambing or calving on the catchment  | 8     | 8      |
|         |                                      |       |        |

2.6 Full compliance with the Good Agricultural Practice Regulations

verified by catchment inspection

### Section 2 - Agricultural Practices Within the Catchment

To Consent of copyright owner required for any other use. -6

26

**Total for Section 2** 

| Section 3 - Discharges to th | ne Catchment/Water Source |
|------------------------------|---------------------------|
|------------------------------|---------------------------|

| Section<br>No. | Risk Factor                                                                                                                                                  | RA<br>Score | Actual<br>Score |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
| 3.1            | Population equivalent served by individual on-site wastewater treatment systems < 100 PE                                                                     | 4           | 6               |
|                | Population equivalent served by individual on-site wastewater treatment<br>systems > 100 PE                                                                  | 6           | 0               |
| 2.0            | Description equivalent control by all masternation marks (500                                                                                                | 4           | _               |
| 5.2            | Population equivalent served by all wastewater works <500<br>Population equivalent served by all wastewater works 500 to 5,000                               | 4<br>5      |                 |
|                | Population equivalent served by all wastewater works 5,001 to 20,000                                                                                         | 6           | 6               |
|                | Population equivalent served by all wastewater works 20,001 to 50,000                                                                                        | 7           |                 |
|                | Population equivalent served by all wastewater works > 50,000                                                                                                | 8           |                 |
|                |                                                                                                                                                              | _           |                 |
| 3.3            | Storm water overflows                                                                                                                                        | 2           |                 |
| 3.4            | Section 4 or Integrated Pollution Prevention Control (IPPC) Licence<br>discharge from intensive agricultural activity or agriculturally related<br>discharge | 2           | 2               |
|                | and any                                                                                                                                                      |             |                 |
| 3.5            | All wastewater treatment plants complying with the UWWT Regulations quality standards                                                                        | -1          |                 |
|                | tionet                                                                                                                                                       |             |                 |
| 3.6            | All wastewater treatment plants complying with the UWWT Regulations quality standards                                                                        | -1          |                 |
|                | UV inactivation at outlet of wwastewater treatment plants                                                                                                    | -2          |                 |
|                | Total for Se                                                                                                                                                 | ation 3     | 14              |

# Section 4 - Water Source Type

| Section<br>No. |                                                                  | RA<br>Score | Actual<br>Score |
|----------------|------------------------------------------------------------------|-------------|-----------------|
| 4.1            | Upland reservoir/lake                                            | 2           | 4               |
|                | Lowland long term storage reservoir/lake                         | 4           |                 |
|                | Upland river or stream - bankside storage                        | 5           |                 |
|                | Upland river or stream – direct abstraction                      | 6           |                 |
|                | Lowland river or stream – direct abstraction or bankside storage | 8           |                 |
|                | Total for Se                                                     | ction 4     | 4               |

Consent for inspection purposes only, any other use.

# Section 5 - Catchment Inspections

| Section<br>No.      |                                                                  | RA<br>Score | Actual<br>Score |
|---------------------|------------------------------------------------------------------|-------------|-----------------|
| 5.1                 | Catchment inspections carried out at least monthly               | -3          | -3              |
|                     | Catchment inspections carried out less frequently                | 6           |                 |
|                     |                                                                  |             |                 |
| 5.2                 | Procedures in place to deal with irregularities on the catchment | -3          | -3              |
| Total for Section 5 |                                                                  |             | -6              |

Consent for inspection purposes only: any other use.

| Section<br>No.      | Risk Factor                                                                            | RA<br>Score | Actual<br>Score |
|---------------------|----------------------------------------------------------------------------------------|-------------|-----------------|
| 6.1                 | No appropriate water quality monitor on intake                                         | 3           |                 |
|                     | Appropriate water quality monitor on intake that is alarmed and connected to telemetry | -2          | -2              |
|                     | Automatic intake shut down when poor water quality                                     | -4          | -4              |
|                     | Manual intake shut down when poor water quality                                        | -1          |                 |
|                     | No intake shut down when poor water quality                                            | 3           |                 |
| Total for Section 6 |                                                                                        |             | -6              |

### Section 6 - Raw Water Intake Management for Abstractions

Consent for inspection purposes only: any other use.

| Section<br>No. | Risk Factor                                                                                                           | RA<br>Score | Actual<br>Score |
|----------------|-----------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
| 7.1            | Simple sand filtration (not slow sand filtration)                                                                     | 8           | -10             |
|                | Simple sand filtration (not slow sand filtration) with UV treatment                                                   | 6           |                 |
|                | Coagulation followed by DAF/sedimentation and filtration                                                              | -10         |                 |
|                | Coagulation followed by DAF/sedimentation and filtration followed by UV treatment                                     | -16         |                 |
|                | Coagulation followed by rapid gravity or pressure filtration (no flotation or sedimentation)                          | -7          |                 |
|                | Coagulation followed by rapid gravity or pressure filtration (no flotation or sedimentation) followed by UV treatment | -13         |                 |
|                | Slow sand filtration                                                                                                  | -9          |                 |
|                | Slow sand filtration followed by UV treatment                                                                         | -15         |                 |
|                | Membrane Filtration (DWI approved)                                                                                    | -16         |                 |
|                | Membrane filtration (Not DWI approved)                                                                                | -2          |                 |
|                | Total for Se                                                                                                          | ction 7     | -10             |
|                | Membrane filtration (Not DwT approved)<br>Total for Se                                                                |             |                 |

### Section 7 - Water Treatment Processes

Application Form Attachment F.2 Cryptosporidium Risk Assessment Inniscarra

| Coagulation       |                                                       |               |                 |  |
|-------------------|-------------------------------------------------------|---------------|-----------------|--|
| Section<br>No. 8a | Risk Management Factor                                | RA Score      | Actual<br>Score |  |
| 8.1               | Manual coagulant dose control – not flow proportional | 5             |                 |  |
|                   | Manual coagulant pH control                           | 5             |                 |  |
|                   | Coagulant pH monitored and alarmed                    | -5            | -5              |  |
|                   | Total f                                               | or Section 8a | -5              |  |

Consent for inspection purposes only: any other use.

| <b>Section 8 - Treatment</b> | Works Monitorin | g of Coagulation | and Filtration |
|------------------------------|-----------------|------------------|----------------|
|                              |                 | g ••• ••••       |                |

| Clarification     |                                                     |            |                 |
|-------------------|-----------------------------------------------------|------------|-----------------|
| Section<br>No. 8b | Risk Management Factor                              | RA Score   | Actual<br>Score |
| 8.2               | Clarified water turbidity monitor/particle counters | -1         |                 |
|                   | Clarified water turbidity alarm/particle counters   | -1         | -1              |
|                   | Total for                                           | Section 8b | -1              |

Consent for inspection purposes only: any other use.

| Rapid gravity and pressure filters |                                                                                               |             |                 |  |
|------------------------------------|-----------------------------------------------------------------------------------------------|-------------|-----------------|--|
| Section<br>No. 8c                  | Risk Management Factor                                                                        | RA<br>Score | Actual<br>Score |  |
| 8.3                                | Turbidity meter/particle counter on each filter with alarm on telemetry                       | -5          | -5              |  |
|                                    | Turbidity meter/particle counter on each filter but no alarm on telemetry                     | 0           |                 |  |
|                                    | One turbidity meter/particle counter shared by more than one filter with alarm on telemetry   | -2          |                 |  |
|                                    | One turbidity meter/particle counter shared by more than one filter but no alarm on telemetry | 2           |                 |  |
|                                    | No turbidity meters/particle counters monitoring filter performance                           | 10          |                 |  |
|                                    |                                                                                               |             |                 |  |
| 8.4                                | Final water turbidity meter/particle counter with alarm on telemetry                          | -2          | -2              |  |
|                                    | Final water turbidity meter/particle counter but no alarm on telemetry                        | 2           |                 |  |
|                                    | No final water turbidity meter/particle counter                                               | 5           |                 |  |
|                                    |                                                                                               |             |                 |  |
| 8.5                                | Continuous residual coagulant monitor on combined filtrate or works outlet with alarm         | -5          |                 |  |
|                                    | Continuous residual coagulant monitor on combined filtrate or works<br>outlet but no alarm    | -1          |                 |  |
|                                    | No continuous residual coagulant monitor on combined filtrate or works outlet                 | 5           | 5               |  |
|                                    | iton et ta                                                                                    |             |                 |  |
| 8.6                                | Routine discrete monitoring of treated water for turbidity/residual coagulant                 | -2          | -2              |  |
|                                    | No routine discrete monitoring of treated water for turbidity/residual coagulant              | 2           |                 |  |
|                                    | COLE.                                                                                         |             |                 |  |
| 8.7                                | Turbidity of backwash supernatant monitored when recycled                                     | -2          |                 |  |
|                                    | Turbidity of backwash supernatant not monitored when recycled                                 | 2           |                 |  |
|                                    | Total for S                                                                                   | Section 8c  | -4              |  |

| Section       Risk Management Factor         No.       8d         8d       Turbidity meter/particle counter on each filter with alarm on telem         Turbidity meter/particle counter on each filter but no alarm on telem         Turbidity meter/particle counter on each filter but no alarm on telem         One turbidity meter/particle counter shared by more than one filter         alarm on telemetry         One turbidity meter/particle counter shared by more than one filter         no alarm on telemetry         No turbidity meters/particle counters monitoring filter performance         8.9       Final water turbidity meter/particle counter but no alarm on telemetry         Image: State of the information of the info                                                                                                                                                                                                                                                                                                                                                                  | emetry 0<br>r with -2<br>r but 2 | Actual<br>Score |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|
| Turbidity meter/particle counter on each filter but no alarm on tele         One turbidity meter/particle counter shared by more than one filte         alarm on telemetry         One turbidity meter/particle counter shared by more than one filte         no alarm on telemetry         No turbidity meters/particle counters monitoring filter performance         8.9         Final water turbidity meter/particle counter with alarm on telemetr         Final water turbidity meter/particle counter but no alarm on telemetr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | emetry 0<br>r with -2<br>r but 2 |                 |
| One turbidity meter/particle counter shared by more than one filte<br>alarm on telemetry<br>One turbidity meter/particle counter shared by more than one filte<br>no alarm on telemetry<br>No turbidity meters/particle counters monitoring filter performance<br>8.9 Final water turbidity meter/particle counter with alarm on telemet<br>Final water turbidity meter/particle counter but no alarm on telemet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r with -2<br>r but 2             |                 |
| <ul> <li>alarm on telemetry</li> <li>One turbidity meter/particle counter shared by more than one filter no alarm on telemetry</li> <li>No turbidity meters/particle counters monitoring filter performance</li> <li>8.9 Final water turbidity meter/particle counter with alarm on telemetr</li> <li>Final water turbidity meter/particle counter but no alarm on telemetre</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r but 2                          |                 |
| no alarm on telemetry<br>No turbidity meters/particle counters monitoring filter performance<br>8.9 Final water turbidity meter/particle counter with alarm on telemet<br>Final water turbidity meter/particle counter but no alarm on telemet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | L               |
| 8.9 Final water turbidity meter/particle counter with alarm on telemet<br>Final water turbidity meter/particle counter but no alarm on telem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e 10                             | 1               |
| Final water turbidity meter/particle counter but no alarm on telem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                 |
| Final water turbidity meter/particle counter but no alarm on telem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ту -2                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | etry 2                           |                 |
| No final water turbidity meter/particle counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                | -               |
| 8.1 Filters matured and filtrate analysed for turbidity, coliforms and <i>Cryptosporidium</i> during maturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4                               |                 |
| Filters matured but no analysis carried out on filtrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                |                 |
| Filters not matured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                               |                 |
| For inspection returns to the convict of the convic | l for Section 8d                 | 1 O             |

| Membrane Filtration  |                                                                  |             |                 |  |  |  |  |
|----------------------|------------------------------------------------------------------|-------------|-----------------|--|--|--|--|
| Section<br>No.<br>8e | Risk Management Factor                                           | RA<br>Score | Actual<br>Score |  |  |  |  |
| 8.11                 | Plant monitored and alarmed for integrity                        | -10         |                 |  |  |  |  |
|                      | Plant monitored for integrity but not alarmed 0                  |             |                 |  |  |  |  |
|                      | Plant not monitored for integrity                                | 10          |                 |  |  |  |  |
|                      |                                                                  |             |                 |  |  |  |  |
| 8.12                 | Particle counter used continuously to monitor filter performance | -5          |                 |  |  |  |  |
| Total for Section 8e |                                                                  |             |                 |  |  |  |  |

Consent for inspection purposes only, any other use.

| UV Inactivation   |                                                                 |             |                 |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------|-------------|-----------------|--|--|--|--|--|
| Section<br>No. 8f | Risk Management Factor                                          | RA<br>Score | Actual<br>Score |  |  |  |  |  |
| 8.13              | Plant monitored for integrity and correct UV dosage             | 0           |                 |  |  |  |  |  |
|                   | Plant monitored and alarmed for integrity and correct UV dosage | -10         |                 |  |  |  |  |  |
|                   | Plant neither monitored nor alarmed                             | 10          |                 |  |  |  |  |  |
|                   |                                                                 |             |                 |  |  |  |  |  |
| 8.14              | Influent turbidity consistently < 0.2 NTU                       | -6          |                 |  |  |  |  |  |
|                   | Influent turbidity consistently < 1.0 NTU                       | -3          |                 |  |  |  |  |  |
|                   | Influent turbidity consistently > 1.0 NTU                       | -1          |                 |  |  |  |  |  |
|                   | Total for                                                       | Section 8f  | 0               |  |  |  |  |  |

Consent for inspection purposes only: any other use.

### Section 9 - Rapid Gravity and Pressure Filter Works Performance

| Item No. | Risk Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RA<br>Score | Actual<br>Score |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
| 9.1      | Final water turbidity increases by more than 50%, excluding normal backwash period or turbidity in the final water >1.0 NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4           |                 |
|          | Treated water turbidity increases by less than 50%, excluding normal backwash period and turbidity in the final water <1.0 NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0           | 0               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                 |
| 9.2      | Media loss from any filter has brought media depth below design level<br>Media depth above minimum design level with audit trail maintained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6<br>-2     | -2              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2           | -2              |
| 9.3      | Signs of media cracking on any filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4           |                 |
| 9.4      | All filters have been drained, inspected and any necessary remedial action taken within last year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2          | -2              |
| 9.5      | Air scour and backwash maintained and operating efficiently as per maintenance manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2          | -2              |
|          | Consent of copyright owner required for any other any ot | ection 9    | -6              |

Application Form Attachment F.2 Cryptosporidium Risk Assessment Inniscarra

| Item No. Risk Factor                                                              | RA         | Actual   |
|-----------------------------------------------------------------------------------|------------|----------|
|                                                                                   | Score      | Score    |
| 10.1 Plant with documented management systems that includes                       | -2         | -2       |
| procedures and process control manuals                                            |            |          |
| Process control manuals specific to works available                               | -1         |          |
| Process control manuals specific to works not available                           | 1          |          |
|                                                                                   |            |          |
| 10.2 Auditable action plans available for dealing with deviations in              | -1         |          |
| quality and evidence of implementation of the plan                                |            | 1        |
| Auditable action plans not available for dealing with deviations in               | 1          | -        |
| quality                                                                           |            |          |
|                                                                                   |            |          |
| 10.3 Slow start facility on filters operational                                   | -4         | -4       |
| No slow start facility on filters, or slow start facility not                     | 4          |          |
| operational                                                                       |            |          |
|                                                                                   |            |          |
| 10.4 Filters run to waste for appropriate period after backwash 🔗                 | -6         |          |
| Filters run to head of works for a period following backwash                      | -4         |          |
| Filters not run to waste or head of works for a period following                  | 4          |          |
| backwash                                                                          |            | 4        |
| ALL CLIPPED                                                                       |            |          |
| 10.5 Backwash water and/or sludge supernatant has to be recycled                  | 2          |          |
| Other disposal route available for backwash water and sludge                      | -2         |          |
| supernatant (or its at                                                            |            |          |
|                                                                                   |            |          |
| 10.6 Water flow through works when operating has not increased by                 | -2         | -2       |
| >10% in <30 minutes in last 12 months                                             |            | -        |
| Water flow through works when operating has increased by >10%                     | 2          |          |
| in <30 minutes in last 12 months                                                  | -          |          |
|                                                                                   |            |          |
| 10.7 Flow through works above design flow for $>10\%$ of time in last             | 4          | 4        |
| 10.71 low through works above design now for >10.70 of three in last<br>12 months | т          | +        |
| Flow through works above design flow for $\leq 10\%$ of time in last              | 0          |          |
| 12 months                                                                         | 0          |          |
| Flow through works >130% above design flow for >50% of time                       | 6          |          |
| in last 12 months                                                                 | 0          |          |
|                                                                                   |            |          |
| 10.8 Filters bypassed during the year                                             | 6          | _        |
|                                                                                   |            | 3        |
| Total for S                                                                       | section 10 | <u> </u> |

# Section 10 - Treatment Works Operation

# **Cork County contd.**

# Water Services Investment Programme 2007 - 2009

| Serviced Land Initiative contd.                        | W/S               | Est. Cost   | Schemes to Advance through Planning cond.                                                                                               | W/S | Est. Cost  |
|--------------------------------------------------------|-------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| Cork South contd.                                      |                   |             | Cork South                                                                                                                              |     |            |
| Mogeely, Castlemartyr & Ladysbridge Water Supply Schem | e W               | 2,566,000   | Carrigtwohill Sewerage Scheme (G)                                                                                                       | S   | 20,000,000 |
| North Cobh Sewerage Scheme (G)                         | S                 | 3,193,000   | Cork Sludge Management (G)                                                                                                              | S   | 14,420,000 |
| Riverstick Water Supply Scheme (incl. Sewerage)        | W/S               | 525,000     | Cork Water Supply Scheme (Storage - Mount Emla,                                                                                         |     |            |
| Rochestown Water Supply Scheme                         | W                 | 2,700,000   | Ballincollig & Chetwind) (G)                                                                                                            | W   | 8,500,000  |
| Saleen Sewerage Scheme                                 | S                 | 1,051,000   | Inniscarra Water Treatment Plant (Sludge Treatment)(                                                                                    | G)W | 5,356,000  |
| Youghal Water Supply Scheme                            | W                 | 2,300,000   | Macroom Sewerage Scheme                                                                                                                 | S   | 5,150,000  |
|                                                        |                   |             | Minane Bridge Water Supply Scheme                                                                                                       | W   | 1,421,000  |
| Cork West                                              |                   |             |                                                                                                                                         |     |            |
| Castletownshend Sewerage Scheme                        | S                 | 1,576,000   | Cork West                                                                                                                               |     |            |
|                                                        |                   | 50,797,000  | Bantry Regional Water Supply Scheme (Distribution)                                                                                      | W   | 9,455,000  |
| Rural Towns & Villages Initiative                      |                   |             | Cape Clear Water Supply Scheme                                                                                                          | W   | 1,679,000  |
|                                                        |                   |             | Castletownbere Regional Water Supply Scheme                                                                                             | W   | 8,405,000  |
| Cork North                                             |                   |             | Glengarriff Sewerage Scheme                                                                                                             | S   | 2,500,000  |
| Buttevant Sewerage Scheme (Collection System)          | S                 | 2,446,000   | Roscarberry/Owenahincha Sewerage Scheme                                                                                                 | S   | 1,576,000  |
| Doneraile Sewerage Scheme (Collection System)          | S                 | 1,738,000   | Skibbereen Regional Water Supply Scheme Stage 4                                                                                         | W   | 7,880,000  |
|                                                        |                   |             | ather                                                                                                                                   |     | 95,646,000 |
| Cork South                                             |                   |             | att' att                                                                                                                                |     |            |
| Innishannon (Ballinadee/ Ballinspittle/ Garrettstown)  |                   |             | Wate Conservation Allocation                                                                                                            |     | 12,206,000 |
| Water Supply Scheme                                    | W                 | 6,726,000   | 120 sile                                                                                                                                |     |            |
|                                                        |                   | an'         | Wate P Conservation Allocation<br>UNOSCILICA<br>Asset Management Study<br>South Western River Basin District (WFD) Project <sup>1</sup> |     | 300,000    |
| Cork West                                              |                   | ections     | ç <sup>a</sup>                                                                                                                          |     |            |
| Ballylicky Sewerage Scheme                             | S                 | 2,753,000   | South Western River Basin District (WFD) Project <sup>1</sup>                                                                           |     | 9,400,000  |
| Baltimore Sewerage Scheme                              | S                 | ¥ 3,102,000 |                                                                                                                                         |     |            |
| Castletownbere Sewerage Scheme                         | S                 | \$,202,000  |                                                                                                                                         |     |            |
| Schull Sewerage Scheme                                 | S of              | 3,523,000   | Programme Total                                                                                                                         | 48  | 5,489,000  |
|                                                        | s<br>S<br>Consent | 24,950,000  |                                                                                                                                         |     |            |
| Schemes to Advance through Planning                    |                   |             |                                                                                                                                         |     |            |
| Cork North                                             |                   |             |                                                                                                                                         |     |            |
| Mitchelstown North Galtees Water Supply Scheme         | W                 | 3,152,000   |                                                                                                                                         |     |            |

<sup>1</sup> This project is being led by Cork County Council on behalf of other authorities in the River Basin District

S

S

3,000,000

3,152,000

(H) Refers to a Hub as designated in the National Spatial Strategy

Mitchelstown Sewerage Scheme

Newmarket Sewerage Scheme

(G) Refers to a Gateway as designated in the National Spatial Strategy

|                        | Cork<br>County<br>Council | Implementa                          | ation Report                   | Report<br>2008 |                       |           |     |       |              |                                               |                                                    |        |                                                |                |                                                                                  |                                                                         |
|------------------------|---------------------------|-------------------------------------|--------------------------------|----------------|-----------------------|-----------|-----|-------|--------------|-----------------------------------------------|----------------------------------------------------|--------|------------------------------------------------|----------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| River Name             | River Code                | Biological<br>Monitoring<br>Station | Station Location<br>Name       | Grid Refer     | Base-line Q-<br>value | MRP Value |     | Value | Value ug/I P | Standard to be<br>Achieved by<br>2007 Q Value | Standard to<br>be Achieved<br>by 2007 MRP<br>Value |        | Does an<br>Article 3(9)<br>Extension<br>Apply? | is the revised | Where Quality is<br>Unsatisfact. What is<br>the Principal<br>Source of Pollution | If there is an<br>identifiable source,<br>please enter details          |
| Sullane (8) (Lee Trib) | 19S02                     | 0100                                | Br near Coolea                 | W 161759       | 4-5                   | N/A       | Yes | 4     |              | Q4-5 to be<br>maintained                      | 20ug P/I                                           | No     |                                                |                | Forestry                                                                         | Site draining<br>Agricultural area.<br>Site draining afforeste<br>area. |
|                        |                           | 0170                                | 1st Br d/s<br>Ballyvourney Br. | W 202769       | 4                     | N/A       | Yes | 4     |              | Q4 to be<br>maintained                        | 30ug P/L                                           | Yes    |                                                |                | •                                                                                | Coolea ST (PE 80)<br>4.5km u/s. Site drainir<br>agricultural area.      |
|                        |                           | 0200                                | Br d/s Douglas R<br>conf.      | W 227756       | 4-5                   | N/A       | Yes | 4-5   |              | Q4-5 to be<br>maintained                      | 20ug P/I                                           | Yes    |                                                |                |                                                                                  |                                                                         |
|                        |                           | 0300                                | Sullane Br.                    | W 260741       | 4-5                   | N/A       | Yes | 4-5   |              | Q4-5 to be<br>maintained                      |                                                    | Yes    | j.                                             |                |                                                                                  |                                                                         |
|                        |                           | 0400                                | Linnamilla Br                  | W 311728       | 5                     | N/A       | Yes | 5     |              | Q5 to be<br>maintained                        | 15ug P/I                                           | Yes 15 |                                                |                |                                                                                  |                                                                         |
|                        |                           | 0480                                | Ford u/s Laney R<br>conf.      | W 350728       | 4                     | N/A       | Yes | 4     |              | Q4 to be<br>maintained                        | 30ug P/L                                           | Yest   |                                                |                |                                                                                  |                                                                         |

4 Na Q4 to L. maintained

Page 1 of 2

| ocal Authority Name.                    | Council                                                                               | Reporting<br>Year | 2008                          |                                                                                                                                                    |                                                                                                                                          |                |                                   |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   |                                      |
|-----------------------------------------|---------------------------------------------------------------------------------------|-------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| River                                   | Reach of River                                                                        | Standard          | Measures                      | Targets                                                                                                                                            | Actions                                                                                                                                  | Time-<br>frame | Responsible for<br>Implementation | Progress to Date                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                   | If No, State<br>Revised<br>Timeframe |
| R. Sullane – 19S02<br>(Lee Trib) (cont) | To maintain quality<br>rating of Q 4-5 of<br>Station 0200 - Br d/s<br>Douglas R conf. | Year 2005<br>Q4-5 | Sanitary Services<br>Measures | Determine impact of<br>Coolea septic tank<br>(PE 80, 4.5km u/s<br>Ref 0170).<br>Kilnamartyra Septic<br>tank<br>(PE 100, 0.1 km u/s<br>of Ref 0300) | Kilnamartyra<br>Provide WWTP                                                                                                             | not detm       | SS South Rural                    | Programme to provide<br>MWWTP. Priority No. 47.<br>Kilnamartyra<br>Provision under 2007-<br>2012 Needs Assessment<br>Programme to provide<br>MWWTP, rehabilitate<br>network and provide new<br>oursail. Priority No. 46                                                                                           | Review 2008<br>Meeting with SS South Rural &<br>Wastewater Section.<br>Kilnamartyra Land & planning                                                                                                                                                                               | 31/07/2012                           |
|                                         | To maintain quality<br>rating of Q 4-5 of<br>Station 0300 -<br>Sullane Br             | Year 2005<br>Q4-5 |                               | Ballymakeera<br>septic tank                                                                                                                        | Ballymakeera S.T.<br>Improve and extend<br>collection system.<br>Provide WWTP and<br>outfall. Planning<br>Application being<br>prepared. | not detm       | SS South Rural                    | Ballmakeera S.T.<br>Upgrade of septic tank<br>and collectin system in<br>progress.                                                                                                                                                                                                                                | Review 2008<br>Meeting with SS Cork Rural &<br>Wastewater Section.<br>Construction commenced,<br>substantially completed.                                                                                                                                                         | 31/07/2010                           |
|                                         | To maintain quality<br>rating of Q 5 of<br>Station 0400 -<br>Linnamilla Br            | Year 2005<br>Q5   |                               | Řef 0480)                                                                                                                                          | performance of Control Macroom MWWTRY<br>Initiate TP monitoring<br>establish P loadings                                                  |                |                                   | Macroom<br>Design 4,000PE but<br>current intake 5,000PE .<br>Upgrade/new WWTP<br>plant & overflow facilities<br>in 2007-2012 Needs<br>Assessment Programme<br>(priority No 4) & new<br>sewers & storm water<br>separation, Priority<br>No.30.<br>2006/2007 UWWTP<br>Monitoring<br>UWWD Monitoring<br>carried out. | Review 2008<br>Meeting with SS South Rural &<br>Wastewater Section. Brief for<br>Consulting Engineers being<br>prepared. Consultants appoined<br>and preliminary Report in<br>preparation.<br>Licensing<br>Macroom MWWTP to be<br>submitted to EPA for licensing<br>by Sept 2008. | 31/07/2012                           |
|                                         | To maintain quality<br>rating of Q 4 of<br>Station 0480 - Ford<br>u/s Laney R conf    | Year 2005<br>Q4   | Environment<br>Measures       | Determine impact of<br>Macroom Mart (?<br>U/s Ref 0480)                                                                                            | Proposal to connect<br>Mart to Macroom<br>MWWTP.                                                                                         | not detm       | Env. Waste Water<br>Section       | Macroon Mart<br>connected to Macroom<br>MWWTP. Outlet & flow<br>measurement system<br>also installed.                                                                                                                                                                                                             | Review 2008<br>Lagoon decommissioned.<br>Separation system installed to<br>remove straw and solids for<br>landspreading. Liquid pumped to                                                                                                                                         |                                      |
|                                         |                                                                                       |                   |                               | Determine impact of<br>IPC Adhmaid<br>Timber Processing<br>Plant u/s Ref 0300.                                                                     | Liaise with EPA<br>examine licenced<br>discharge details                                                                                 |                | Environment<br>Section            | IPC Adhmaid                                                                                                                                                                                                                                                                                                       | Review 2008<br>Not prioritised at present.                                                                                                                                                                                                                                        | 31/07/2010                           |

#### \_ \_ \_ . . . . . . . ...... -\_ .... -

# **Cork County contd.**

# Water Services Investment Programme 2007 - 2009

| Serviced Land Initiative contd.                        | W/S               | Est. Cost   | Schemes to Advance through Planning cond.                                                                                                                   | W/S | Est. Cost  |
|--------------------------------------------------------|-------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| Cork South contd.                                      |                   |             | Cork South                                                                                                                                                  |     |            |
| Mogeely, Castlemartyr & Ladysbridge Water Supply Schem | e W               | 2,566,000   | Carrigtwohill Sewerage Scheme (G)                                                                                                                           | S   | 20,000,000 |
| North Cobh Sewerage Scheme (G)                         | S                 | 3,193,000   | Cork Sludge Management (G)                                                                                                                                  | S   | 14,420,000 |
| Riverstick Water Supply Scheme (incl. Sewerage)        | W/S               | 525,000     | Cork Water Supply Scheme (Storage - Mount Emla,                                                                                                             |     |            |
| Rochestown Water Supply Scheme                         | W                 | 2,700,000   | Ballincollig & Chetwind) (G)                                                                                                                                | W   | 8,500,000  |
| Saleen Sewerage Scheme                                 | S                 | 1,051,000   | Inniscarra Water Treatment Plant (Sludge Treatment)(                                                                                                        | G)W | 5,356,000  |
| Youghal Water Supply Scheme                            | W                 | 2,300,000   | Macroom Sewerage Scheme                                                                                                                                     | S   | 5,150,000  |
|                                                        |                   |             | Minane Bridge Water Supply Scheme                                                                                                                           | W   | 1,421,000  |
| Cork West                                              |                   |             |                                                                                                                                                             |     |            |
| Castletownshend Sewerage Scheme                        | S                 | 1,576,000   | Cork West                                                                                                                                                   |     |            |
|                                                        |                   | 50,797,000  | Bantry Regional Water Supply Scheme (Distribution)                                                                                                          | W   | 9,455,000  |
| Rural Towns & Villages Initiative                      |                   |             | Cape Clear Water Supply Scheme                                                                                                                              | W   | 1,679,000  |
|                                                        |                   |             | Castletownbere Regional Water Supply Scheme                                                                                                                 | W   | 8,405,000  |
| Cork North                                             |                   |             | Glengarriff Sewerage Scheme                                                                                                                                 | S   | 2,500,000  |
| Buttevant Sewerage Scheme (Collection System)          | S                 | 2,446,000   | Roscarberry/Owenahincha Sewerage Scheme                                                                                                                     | S   | 1,576,000  |
| Doneraile Sewerage Scheme (Collection System)          | S                 | 1,738,000   | Skibbereen Regional Water Supply Scheme Stage 4                                                                                                             | W   | 7,880,000  |
|                                                        |                   |             | ather                                                                                                                                                       |     | 95,646,000 |
| Cork South                                             |                   |             | att' att                                                                                                                                                    |     |            |
| Innishannon (Ballinadee/ Ballinspittle/ Garrettstown)  |                   |             | Wate Conservation Allocation                                                                                                                                |     | 12,206,000 |
| Water Supply Scheme                                    | W                 | 6,726,000   | 120 sile                                                                                                                                                    |     |            |
|                                                        |                   | an'         | Wate P Conservation Allocation<br>Wate P Conservation Allocation<br>Asset Management Study<br>South Western River Basin District (WFD) Project <sup>1</sup> |     | 300,000    |
| Cork West                                              |                   | ections     | ç <sup>a</sup>                                                                                                                                              |     |            |
| Ballylicky Sewerage Scheme                             | S                 | 2,753,000   | South Western River Basin District (WFD) Project <sup>1</sup>                                                                                               |     | 9,400,000  |
| Baltimore Sewerage Scheme                              | S                 | ¥ 3,102,000 |                                                                                                                                                             |     |            |
| Castletownbere Sewerage Scheme                         | S                 | \$,202,000  |                                                                                                                                                             |     |            |
| Schull Sewerage Scheme                                 | S of              | 3,523,000   | Programme Total                                                                                                                                             | 48  | 5,489,000  |
|                                                        | s<br>S<br>Consent | 24,950,000  |                                                                                                                                                             |     |            |
| Schemes to Advance through Planning                    |                   |             |                                                                                                                                                             |     |            |
| Cork North                                             |                   |             |                                                                                                                                                             |     |            |
| Mitchelstown North Galtees Water Supply Scheme         | W                 | 3,152,000   |                                                                                                                                                             |     |            |

<sup>1</sup> This project is being led by Cork County Council on behalf of other authorities in the River Basin District

S

S

3,000,000

3,152,000

(H) Refers to a Hub as designated in the National Spatial Strategy

Mitchelstown Sewerage Scheme

Newmarket Sewerage Scheme

(G) Refers to a Gateway as designated in the National Spatial Strategy

# **Cork County contd.**

# Water Services Investment Programme 2007 - 2009

| Serviced Land Initiative contd.                        | W/S               | Est. Cost   | Schemes to Advance through Planning cond.                                                                                                                   | W/S | Est. Cost  |
|--------------------------------------------------------|-------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| Cork South contd.                                      |                   |             | Cork South                                                                                                                                                  |     |            |
| Mogeely, Castlemartyr & Ladysbridge Water Supply Schem | e W               | 2,566,000   | Carrigtwohill Sewerage Scheme (G)                                                                                                                           | S   | 20,000,000 |
| North Cobh Sewerage Scheme (G)                         | S                 | 3,193,000   | Cork Sludge Management (G)                                                                                                                                  | S   | 14,420,000 |
| Riverstick Water Supply Scheme (incl. Sewerage)        | W/S               | 525,000     | Cork Water Supply Scheme (Storage - Mount Emla,                                                                                                             |     |            |
| Rochestown Water Supply Scheme                         | W                 | 2,700,000   | Ballincollig & Chetwind) (G)                                                                                                                                | W   | 8,500,000  |
| Saleen Sewerage Scheme                                 | S                 | 1,051,000   | Inniscarra Water Treatment Plant (Sludge Treatment)(                                                                                                        | G)W | 5,356,000  |
| Youghal Water Supply Scheme                            | W                 | 2,300,000   | Macroom Sewerage Scheme                                                                                                                                     | S   | 5,150,000  |
|                                                        |                   |             | Minane Bridge Water Supply Scheme                                                                                                                           | W   | 1,421,000  |
| Cork West                                              |                   |             |                                                                                                                                                             |     |            |
| Castletownshend Sewerage Scheme                        | S                 | 1,576,000   | Cork West                                                                                                                                                   |     |            |
|                                                        |                   | 50,797,000  | Bantry Regional Water Supply Scheme (Distribution)                                                                                                          | W   | 9,455,000  |
| Rural Towns & Villages Initiative                      |                   |             | Cape Clear Water Supply Scheme                                                                                                                              | W   | 1,679,000  |
|                                                        |                   |             | Castletownbere Regional Water Supply Scheme                                                                                                                 | W   | 8,405,000  |
| Cork North                                             |                   |             | Glengarriff Sewerage Scheme                                                                                                                                 | S   | 2,500,000  |
| Buttevant Sewerage Scheme (Collection System)          | S                 | 2,446,000   | Roscarberry/Owenahincha Sewerage Scheme                                                                                                                     | S   | 1,576,000  |
| Doneraile Sewerage Scheme (Collection System)          | S                 | 1,738,000   | Skibbereen Regional Water Supply Scheme Stage 4                                                                                                             | W   | 7,880,000  |
|                                                        |                   |             | ather                                                                                                                                                       |     | 95,646,000 |
| Cork South                                             |                   |             | att' att                                                                                                                                                    |     |            |
| Innishannon (Ballinadee/ Ballinspittle/ Garrettstown)  |                   |             | Wate Conservation Allocation                                                                                                                                |     | 12,206,000 |
| Water Supply Scheme                                    | W                 | 6,726,000   | 120 sile                                                                                                                                                    |     |            |
|                                                        |                   | an'         | Wate P Conservation Allocation<br>Wate P Conservation Allocation<br>Asset Management Study<br>South Western River Basin District (WFD) Project <sup>1</sup> |     | 300,000    |
| Cork West                                              |                   | ections     | ç <sup>a</sup>                                                                                                                                              |     |            |
| Ballylicky Sewerage Scheme                             | S                 | 2,753,000   | South Western River Basin District (WFD) Project <sup>1</sup>                                                                                               |     | 9,400,000  |
| Baltimore Sewerage Scheme                              | S                 | ¥ 3,102,000 |                                                                                                                                                             |     |            |
| Castletownbere Sewerage Scheme                         | S                 | \$,202,000  |                                                                                                                                                             |     |            |
| Schull Sewerage Scheme                                 | S of              | 3,523,000   | Programme Total                                                                                                                                             | 48  | 5,489,000  |
|                                                        | s<br>S<br>Consent | 24,950,000  |                                                                                                                                                             |     |            |
| Schemes to Advance through Planning                    |                   |             |                                                                                                                                                             |     |            |
| Cork North                                             |                   |             |                                                                                                                                                             |     |            |
| Mitchelstown North Galtees Water Supply Scheme         | W                 | 3,152,000   |                                                                                                                                                             |     |            |

<sup>1</sup> This project is being led by Cork County Council on behalf of other authorities in the River Basin District

S

S

3,000,000

3,152,000

(H) Refers to a Hub as designated in the National Spatial Strategy

Mitchelstown Sewerage Scheme

Newmarket Sewerage Scheme

(G) Refers to a Gateway as designated in the National Spatial Strategy