OH Doc No: 43 Rec'd From: Mr. Pakrick Boyle. Date Rec'd: 12/3/08 10.259. Mr.

Submission to the EPA Oral Hearing on a Proposed Landfill at Nevitt by Patrick Boyle, BE.

Hydrogeology

Introduction

This brief submission highlights the obstacle to the proposed landfill at Nevitt posed by the presence of horticultural wells operated by Thomas Kerrigan, Tim Bergin, John Thorn and Thomas Moore - all significant horticultural processors in the vicinity of the landfill, and the risk posed by surface water discharge to the Courtlough River local irrigation system.

Source Protection Zones

The GSI Groundwater Protection Schemes specifies that the distance from a source of pollution to a Groundwater Source is measured from the point at which the contaminant comes in contact with the groundwater. In the case of a landfill with low vulnerability subsoil the Response Matrix gives R4 for the SI (Inner Source Protection Zone, TOT < 100days) and R3 for the SO (Outer Source Protection Zone, i.e. within the Zone of Contribution which normally extends to the up-gradient water divide). The point of contact with the groundwater in this case therefore lies directly below the landfill at a depth of some 10m or more.

Groundwater flow patterns in gravel and rock faults.

The Groundwater flow patterns in the gravels and rock faults below and in the vicinity of the landfill are unknown. Dr Paul Ashley has indicated that due to the complexity of the site a computer model analysis would be required, and that the normal UK programme, LandSim, cannot be of use because the liner is below the water table. We cannot therefore hope to come to any immediate conclusions based on the EIS regarding the potential contribution of these features in the determination of either Inner or Outer Source Protection Zones, except to say that the geophysical and borehole data to date, and the evidence of Dr Ashley, Mr. Kevin Cullen and Mr Tim Begin clearly indicates that they <u>are</u> significant.

Bog of Ring public water supply

The GSI have indicated that there is insufficient borehole data in a critical area north of the Five Roads to allow for an accurate determination of the position of a water divide. The applicant's assertion that they have done so cannot therefore be relied upon.

The calculation is further complicated by the fact that the valley is of very low relief and the bedrock is overlain by a continuous layer of gravel constituting a distinct separate layer saturated with groundwater and stretching from below the landfill all t5he way to the Bog of Ring wellfield. This gravel layer has been comprehensively illustrated by Mr. Kevin Cullen at the Oral Hearing. This aquifer is confined and would in places deliver water to the surface without pumping, as at borehole BGB1. There is hardly any doubt then that all indications at present then are that it would b capable of delivering water through the gravels to the Bog of Ring.

The EIS and the applicant's replies to the EPA have failed to address the issue of the possible contribution of these gravels below the landfill to the Bog of Ring Zone of Contribution, and in particular whether or not the landfill would lie within the SQuare the public water supply with a corresponding R3 response.

John Thorn's horticultural well

This well has an estimated yield of 750,000 l/day and supplies water principally to a vegetable washing plant at Thorn's farm which is situated some 400 m to the immediate North east of the landfill footprint. Mr Kevin Cullen's interpretation of the gravel depth at that location indicates a figure of between 0m and 5m ad a continuous connection with the gravels below the footprint.

The EIS fails to attempt an analysis of the possible contribution of the gravels beneath the proposed landfill to either the SI or So of this adjacent well, but given the conditions as outlined, the response may well be R4 or R3.

Thomas Kerrigan's horticultural well

_This well has an estimated yield of 1,900,0001/day and a working pump capable of delivering circa 600,000 1/day. It supplies water to a medium sized vegetable processing plant supplying supermarket chains and institutions.

Again no attempt has been made within the EIS to ascertain whether the extensive and deep grave deposits beneath the southern landfill footprint area could form part of the Zone of Contribution of this well.

The well is located some 900m directly to the south of the footprint and within the Annsbrook landfill site section study area. Selected borehole and Geophysical data from this study is attached, along with relevant data from the EIS for the Nevitt site.

During this Oral Hearing I questioned the applicant regarding the evidence contained in the EIS geophysics to the probable presence of a Fault Line running North South below the landfill footprint – a feature also mentioned by Mr Cullen. If it is a faulther and given that it points directly towards Kerrigan's well, it may well be responsible for the very high yield. The probable connectivity between the landfill and Kerrigan's and consequential imput to the Zong of Contribution of this well has not been established in the EIS but again the resultant outcome of such a study might well yield an R4 or R3 response.

Similarly the geophysics or the southern end of the landfill site and the northern end of he Annsbrook site would indicate a possible contribution by the gravels below the footprint to the Zone of Contribution of Kerigan's well.

Thomas Moore's and Tim Bergin's wells - Important water sources

These wells fulfil extremely prominent roles in the local horticultural industry- Moore's because of its long established reputation and Bergin's because of its pivotal role in the local irrigation system as outlined below.

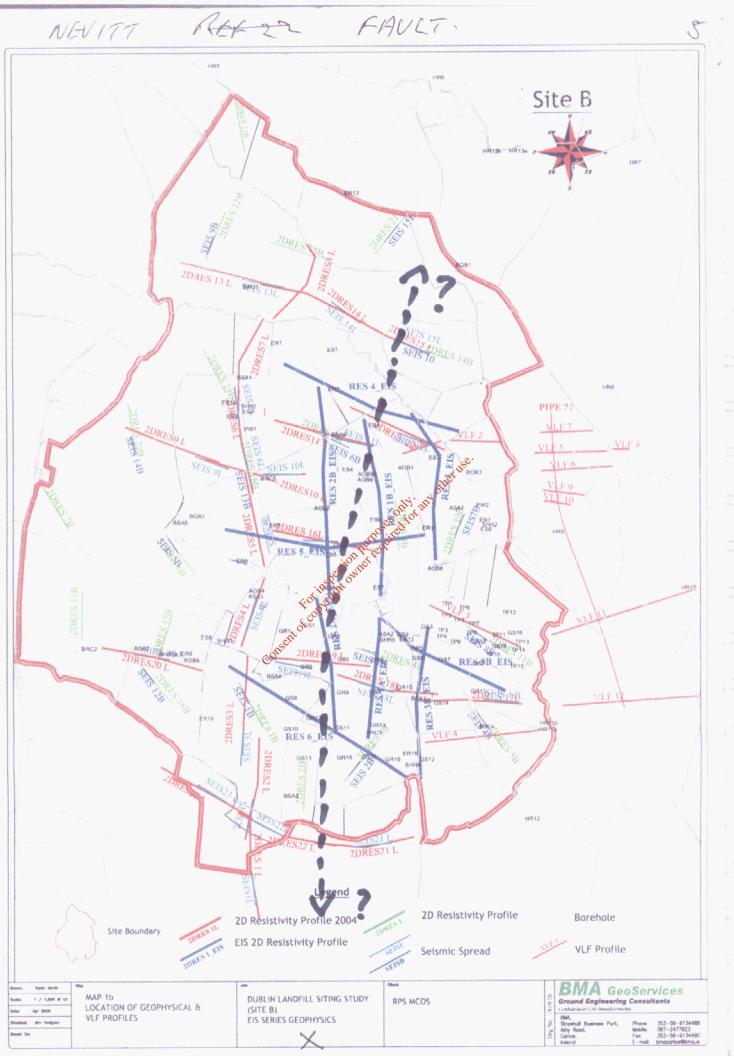
The EIS fails to recognize their value in its risk assessments as with all other horticultural wells mentioned above.

Landfill surface water runoff and the Courtlough River horticultural irrigation system

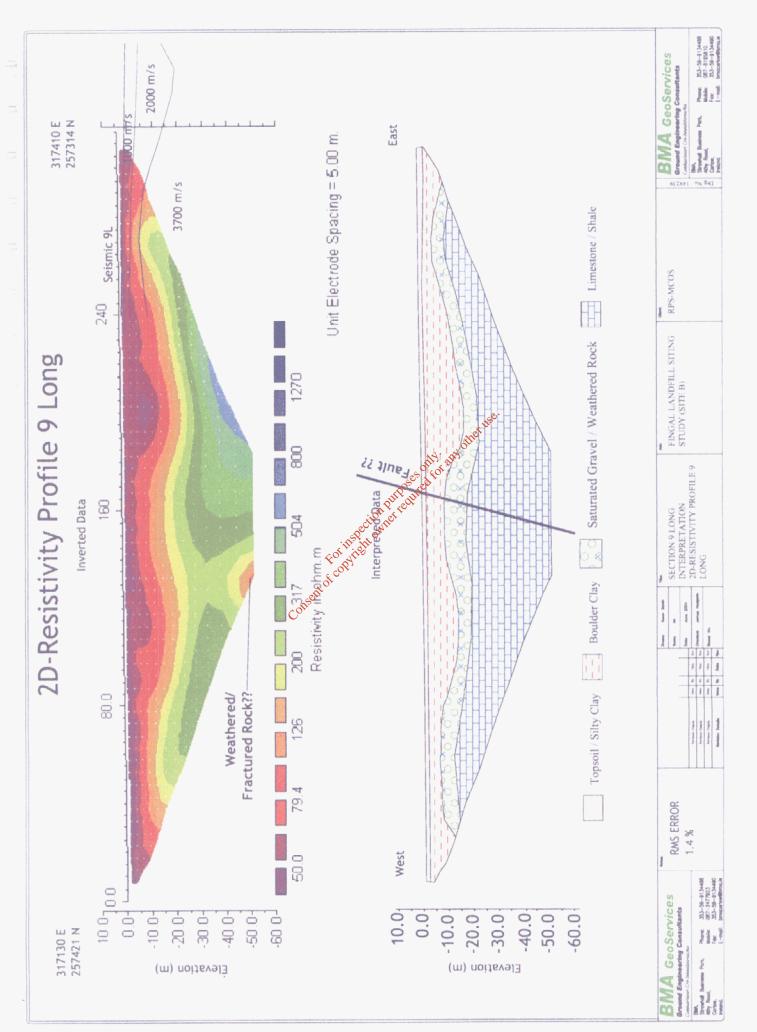
An important, locally devised, crop irrigation system has been in use on the lower reaches of the Courtlough River for some time - the details of which were outlined to the hearing by Mr Tim Bergin. Crops irrigated include "the largest lettuce production facility in Ireland" a "high risk" crop requiring only the purest of potable water. Unless this level of purity of surface runoff can be guaranteed, taking into account the cumulative effect of operations at the proposed Nevitt landfill, including the clean-up of an illegal landfill, together with runoff from Murphy's Environmental existing landfill, produce from this entire area will be at risk and/or the entire horticultural enterprise may have to cease.

Conclusion

The risk to the horticultural industry presented by landfill surface water runoff into the Courtlough River has potsbeen adequately assessed in the EIS. The risk to the horticultural of the contamination of

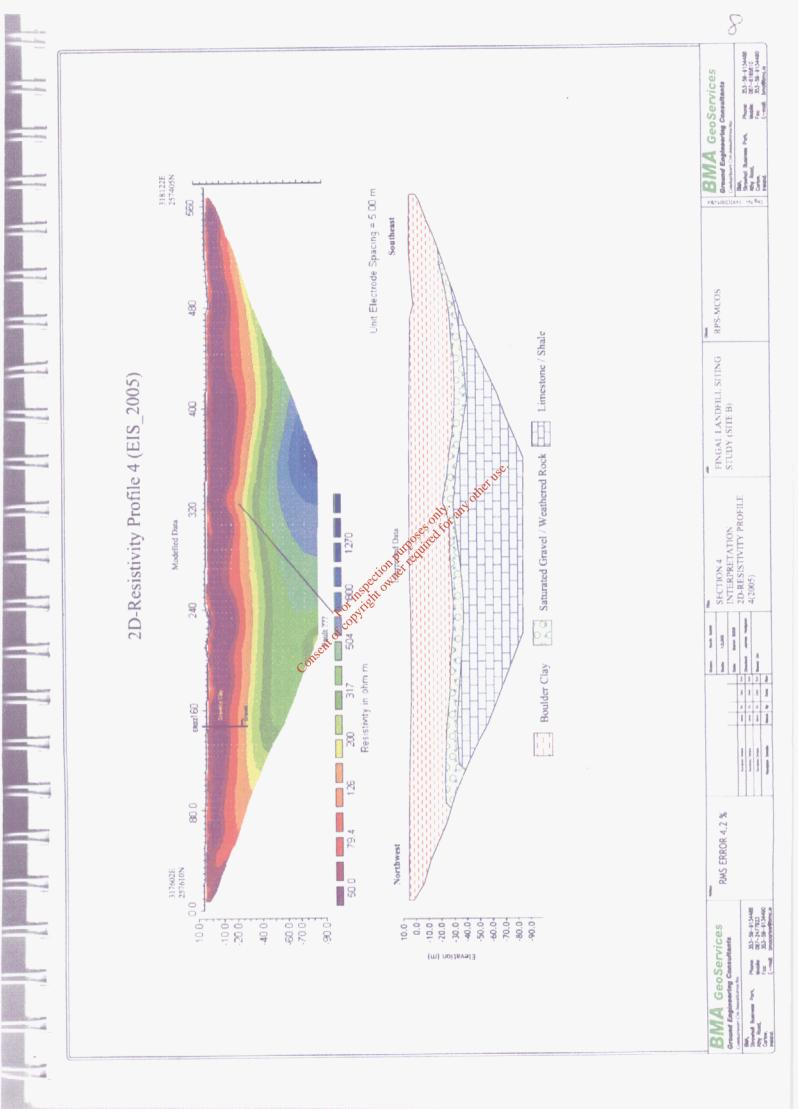

The risk to the horticultural metastry through the contamination of local wells has not been adequately assessed in the EIS.

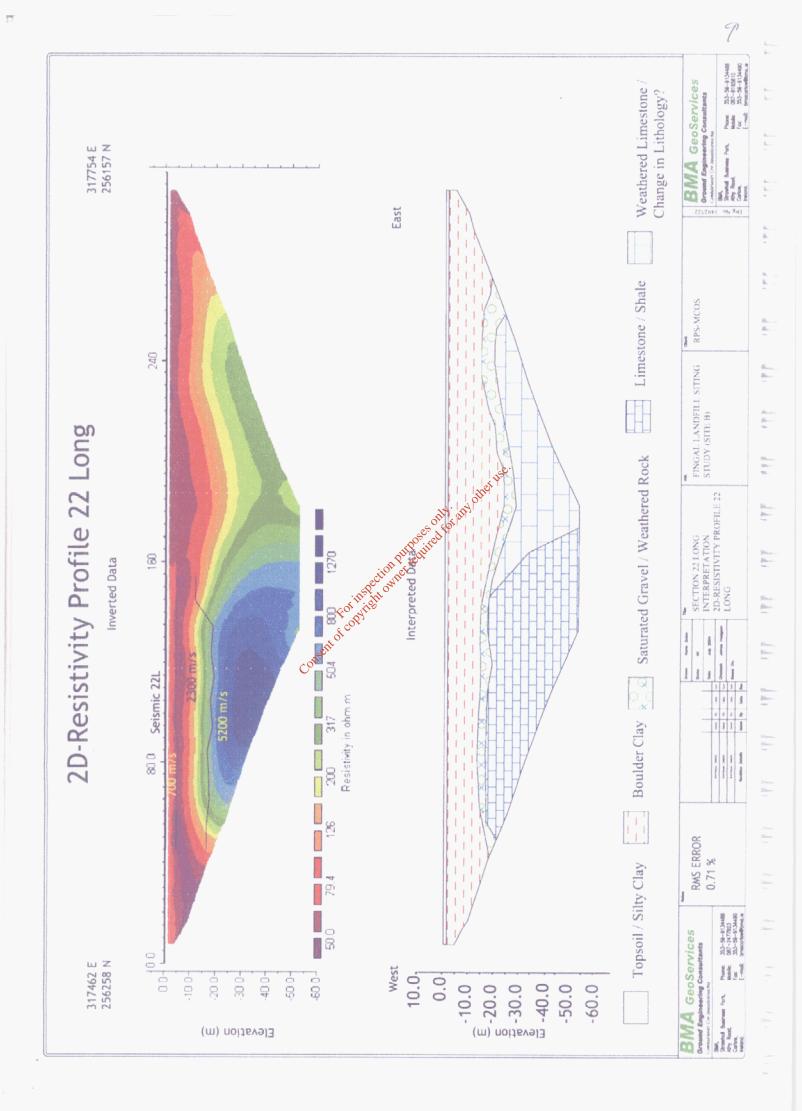
The contribution of gravels and rock faults to the Zones of Contribution of water sources in the vicinity of the proposed landfill has not been assessed in the EIS. Such an assessment, as stated by Dr Ashley, would require computer modelling of some complexity. The outcome of such a study might well be an R4or R3 categorization for this site, and the project could therefore not proceed.


In the absence of this vital computer modelling and the level of risk present, and having regard to the Precautionary Principle, I cannot see how the EPA can allow this project to proceed.

References

Marked maps, and selected borehole and geophysical data from the Fingal County Council Landfill Site Selection Study, July 2004 and the EIS in relation to Kerrigan's well are attached.

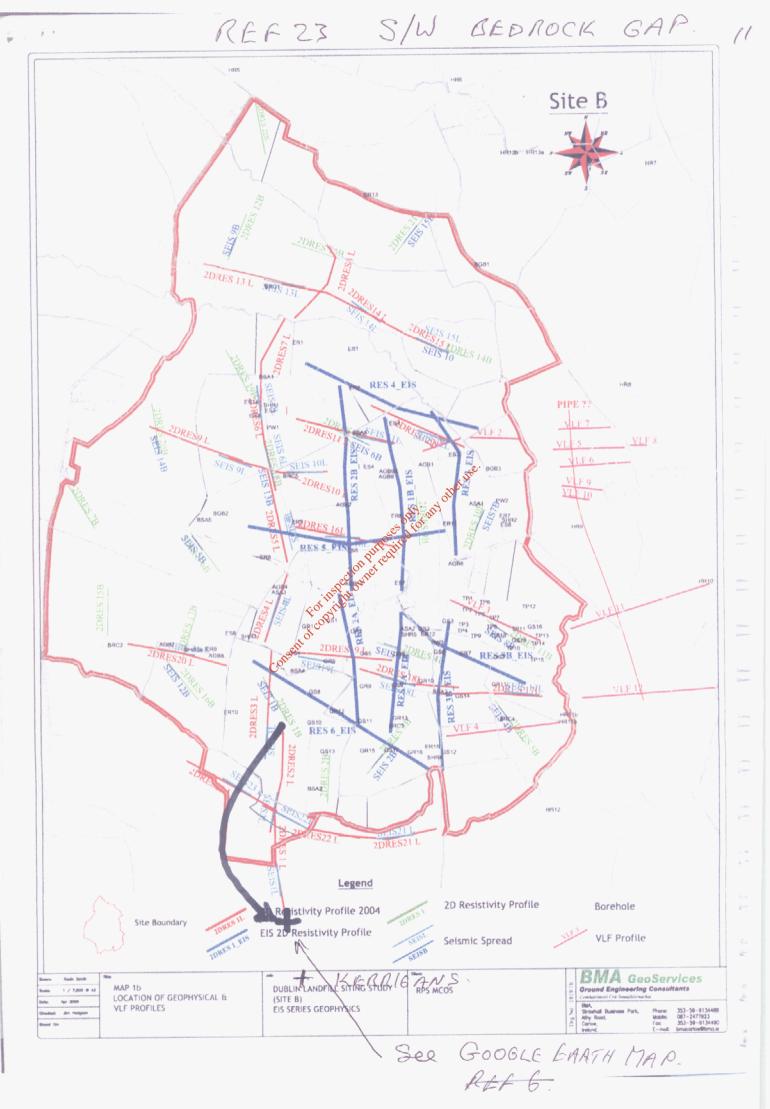

KERRIGANS WELL

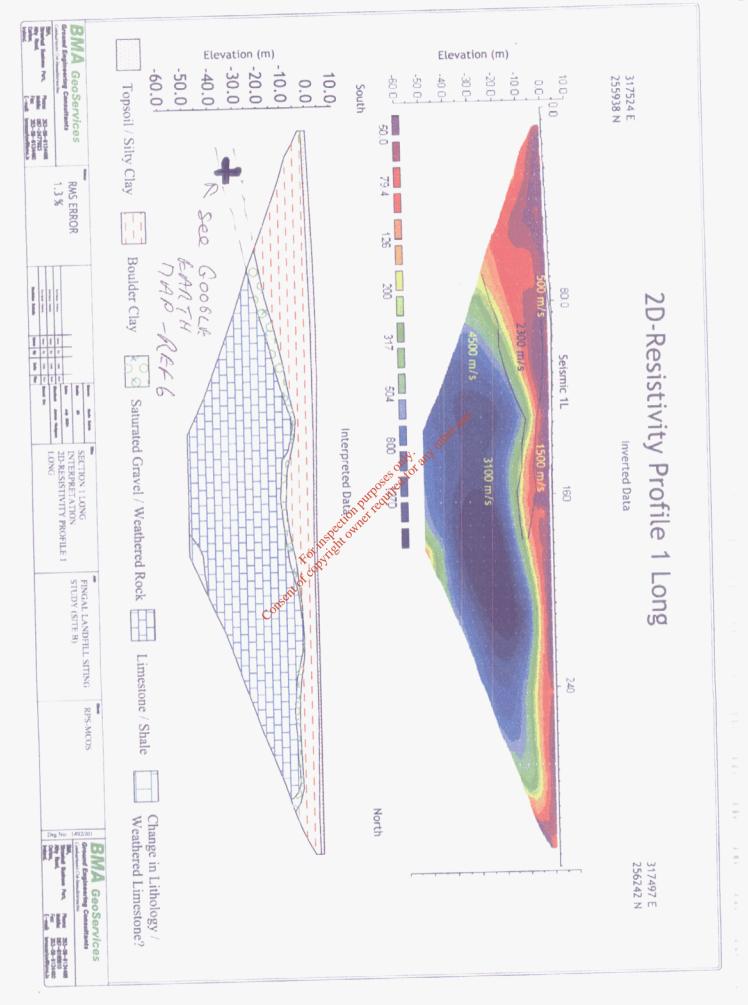


EPA Export 26-07-2013:01:20:31

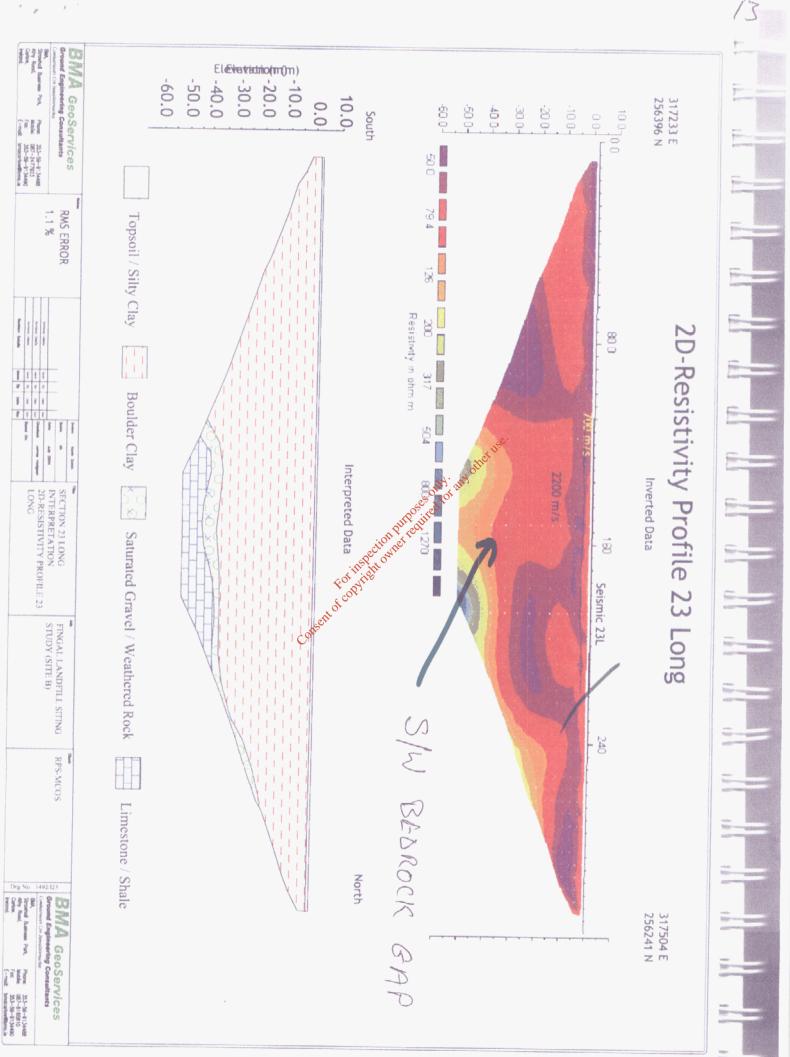
)

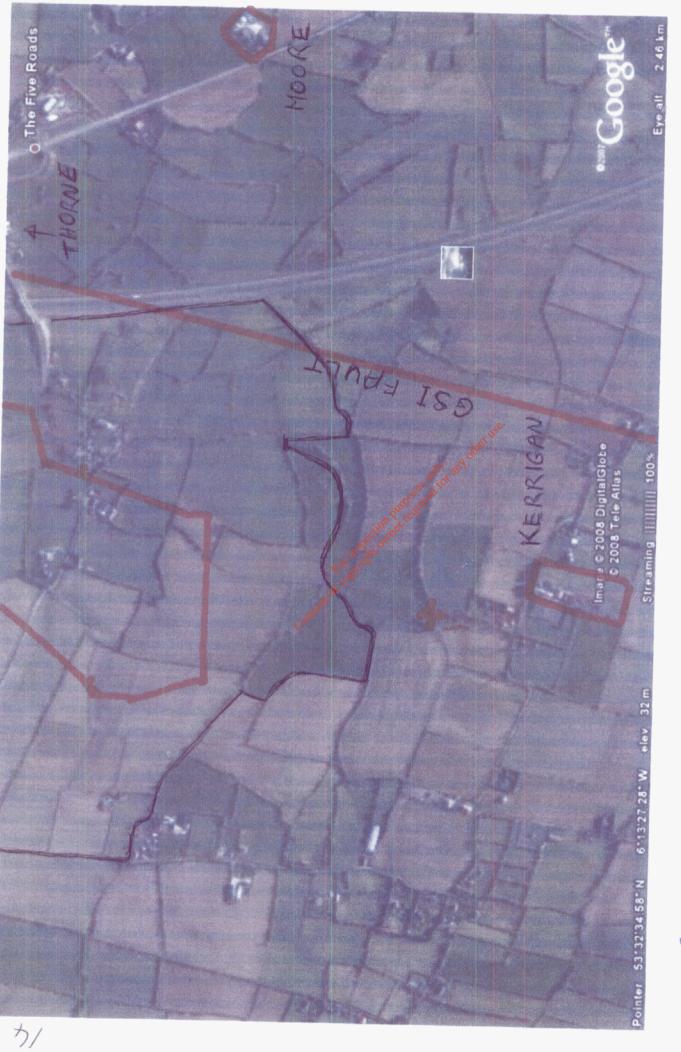
EPA Export 26-07-2013:01:20:32

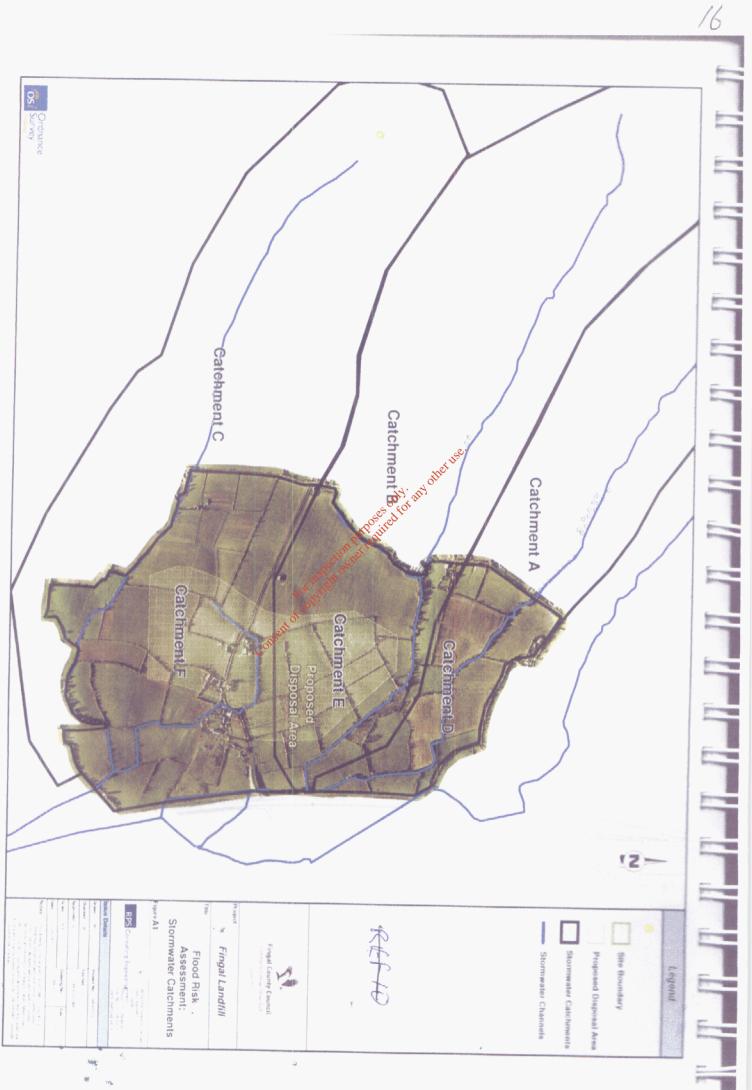

NEVITT.


REF2+

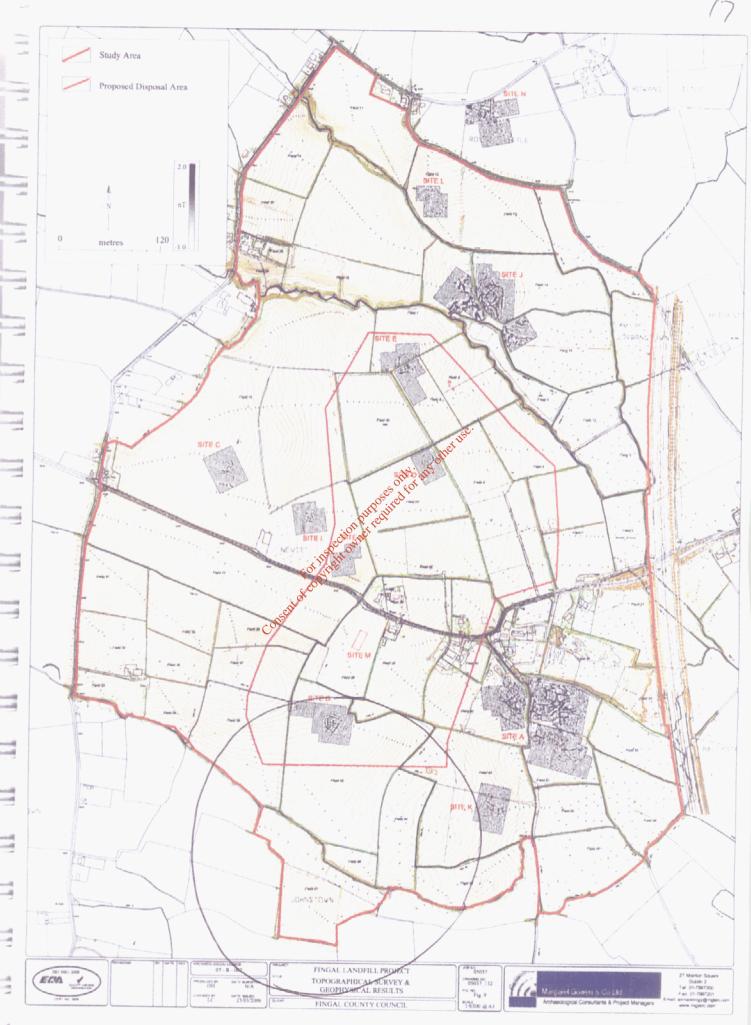
SW BEOROCK GAP.



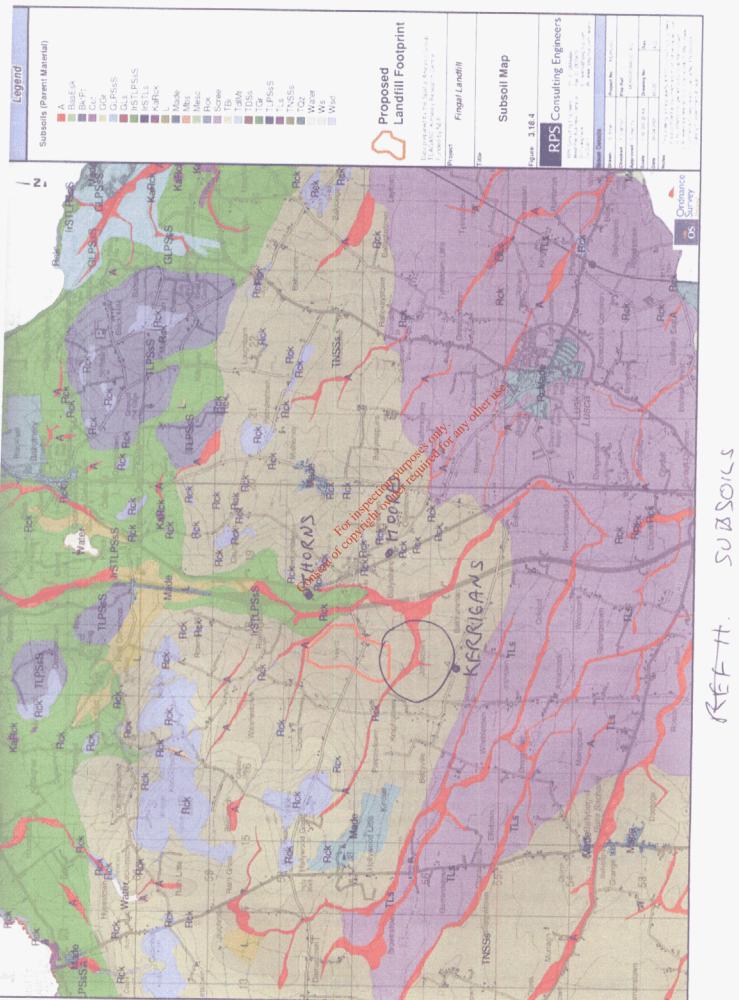




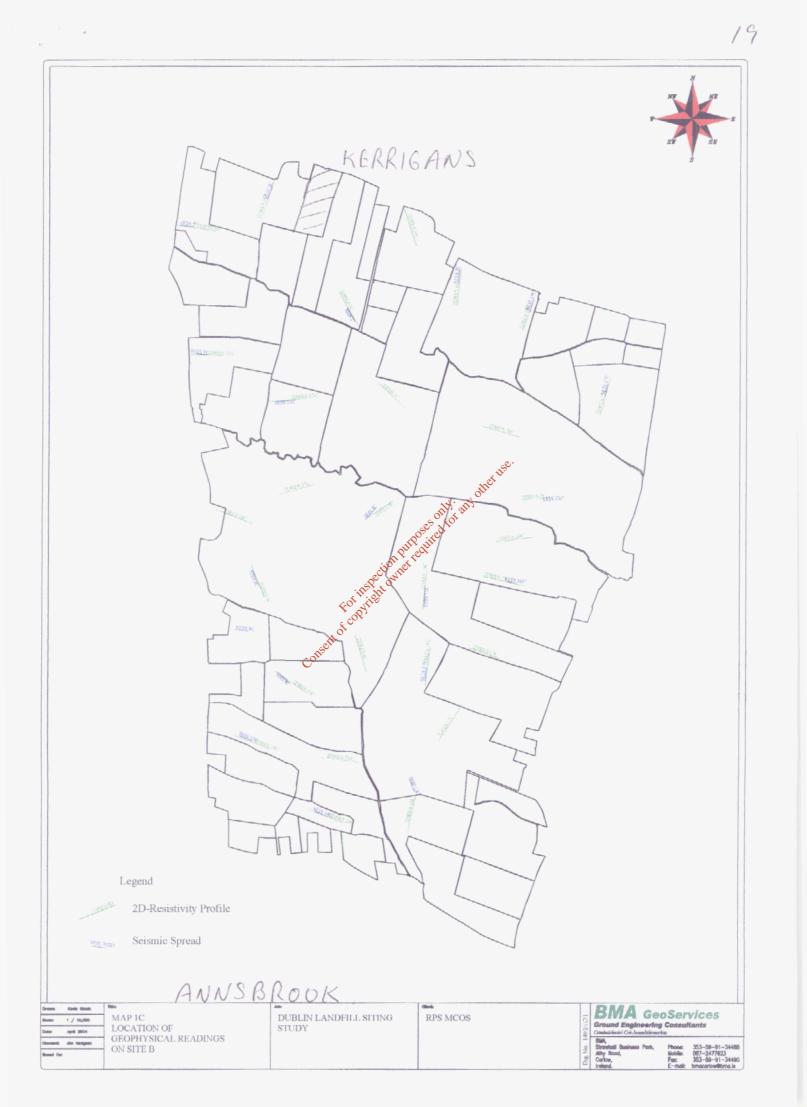
REF 6

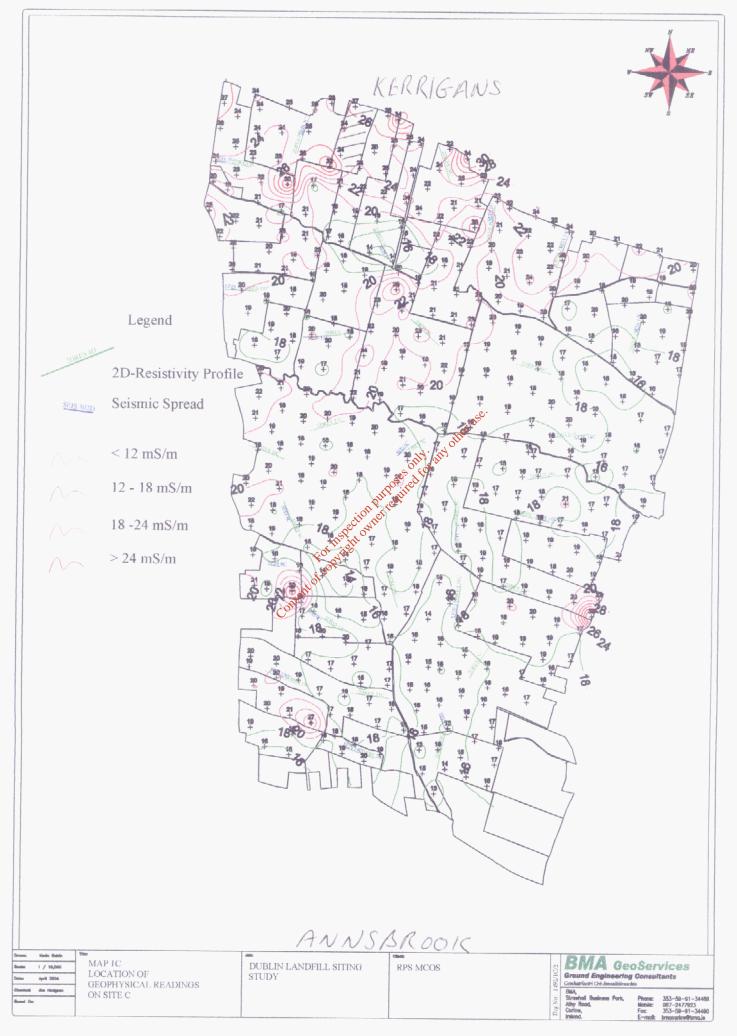


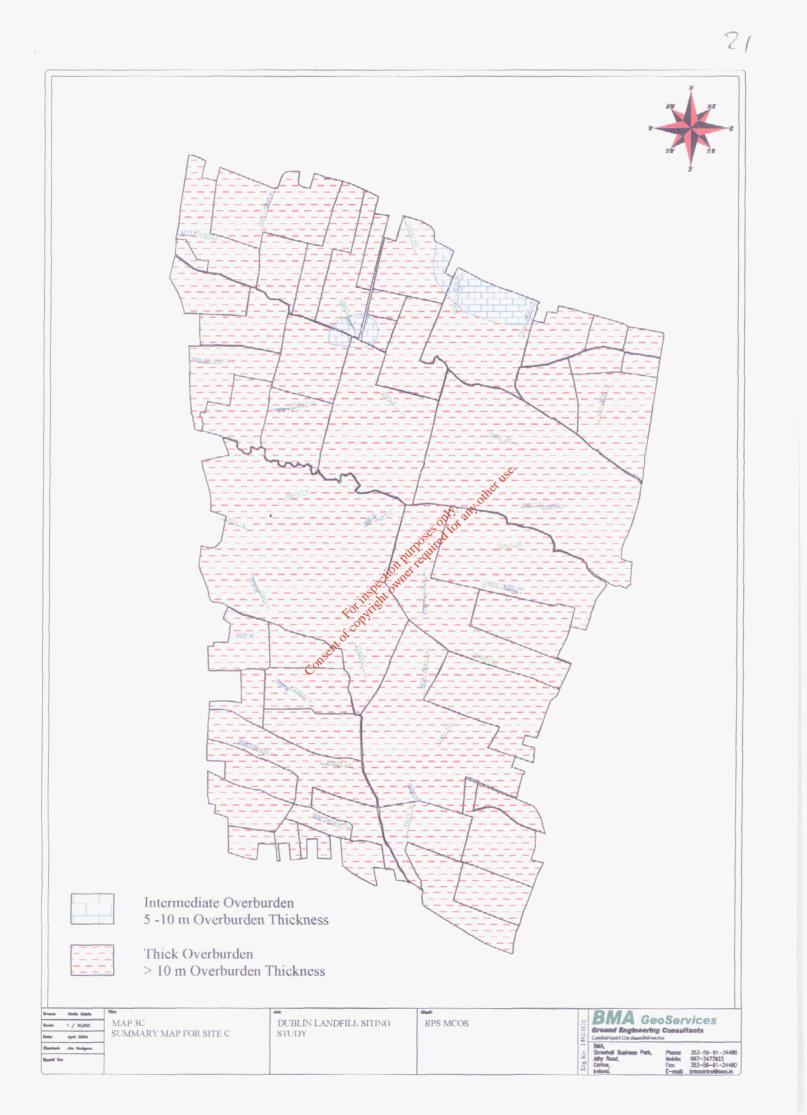
REF9

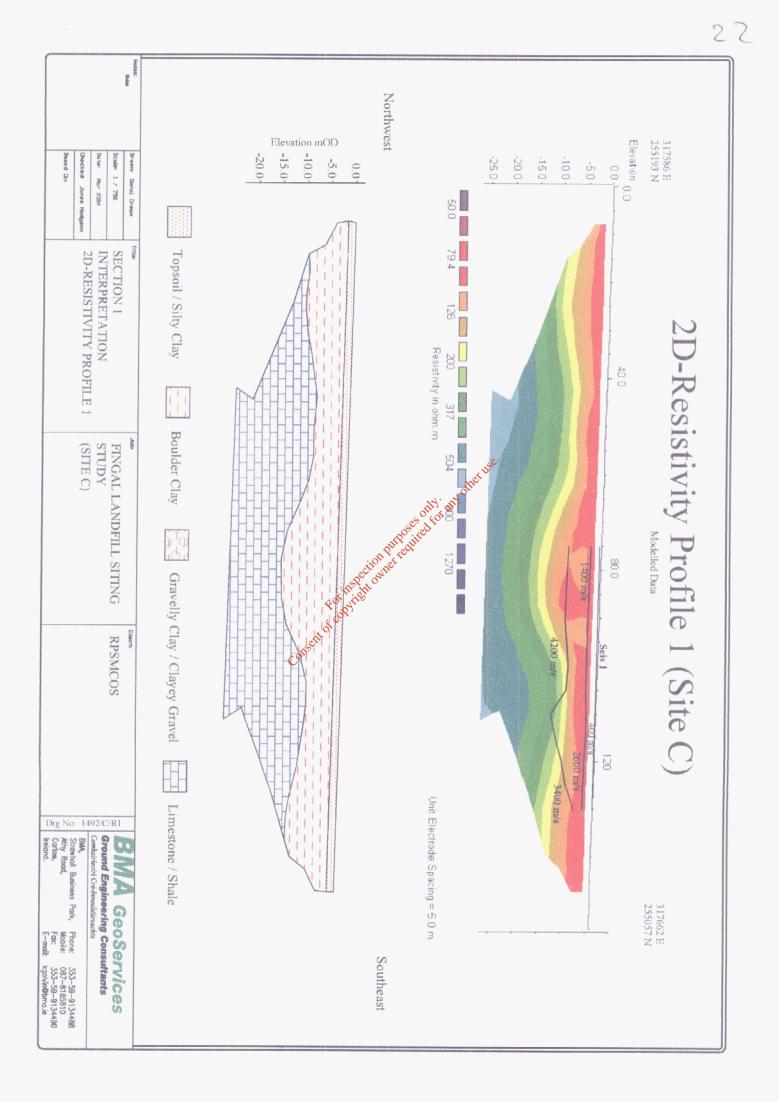


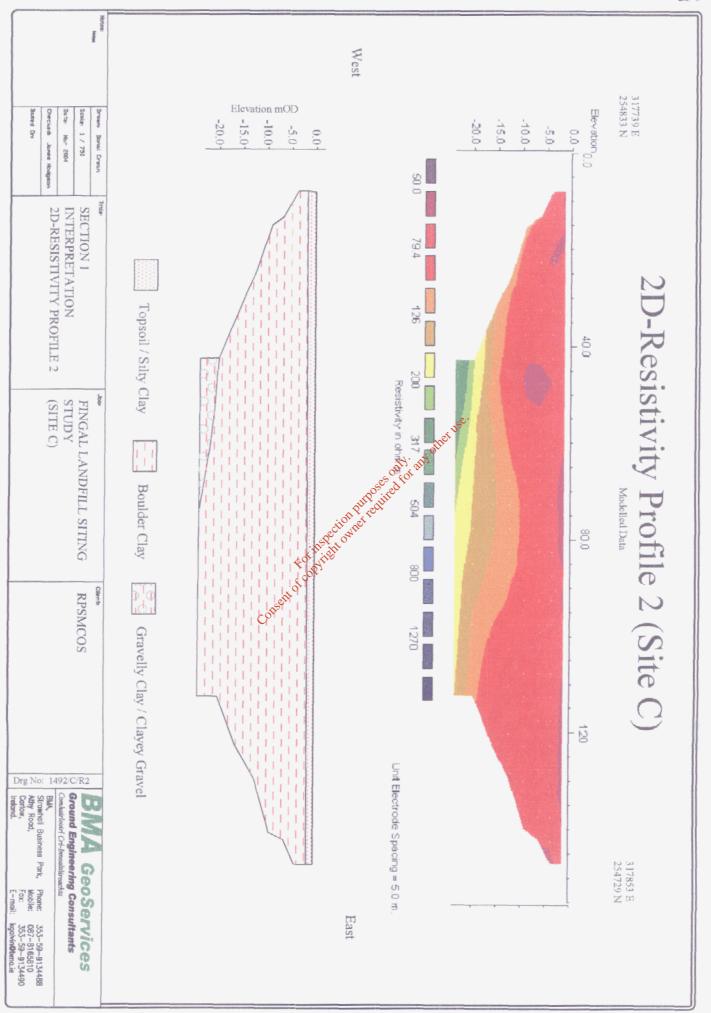
ų,

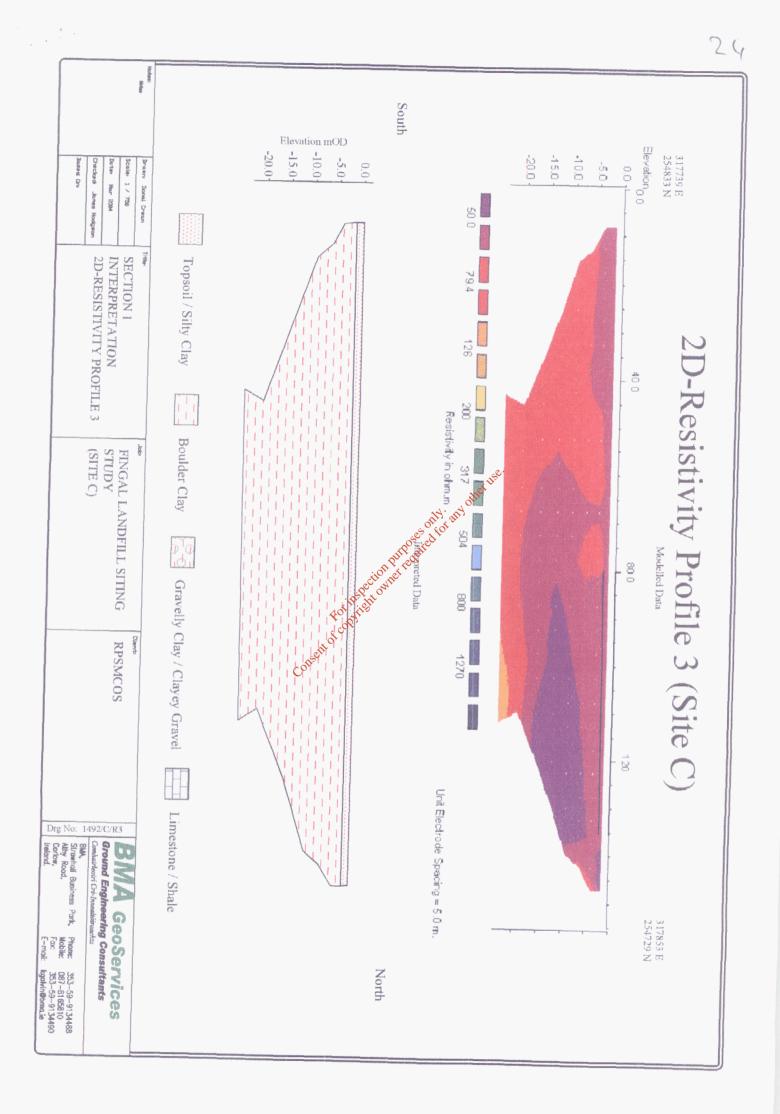

ş

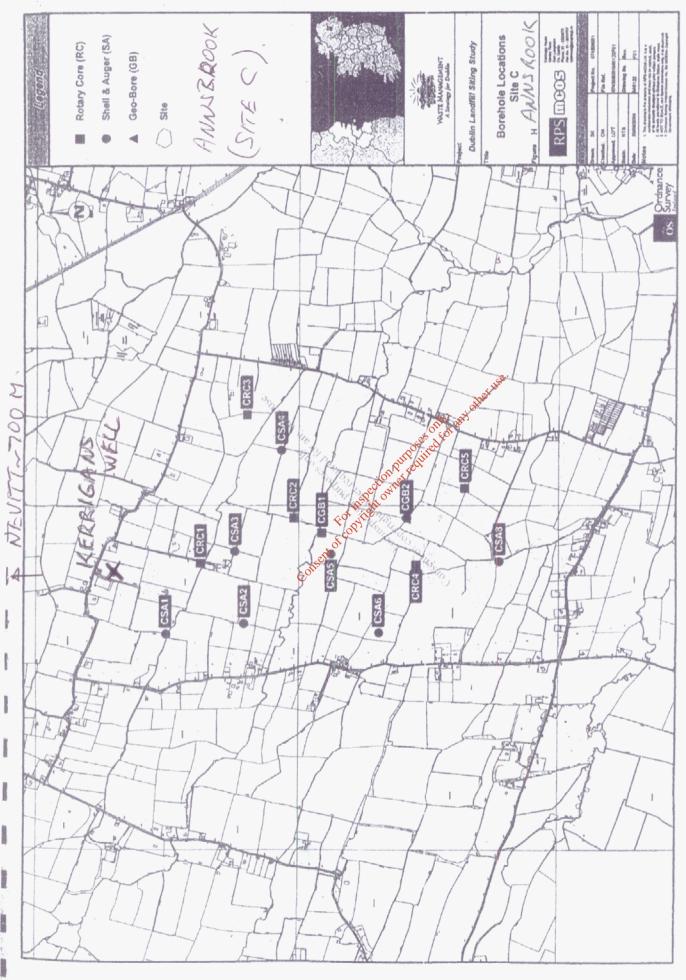



REF 12




SUBSOILS





25 BOREHOLE LOGS + GROUNDUATER MONITERINO ANNSBROOK.

R

I

1

1

i

1

K

R

8

5

ť

2

X

ſ

K

		GROUNDWATE	CMONITORIN	IG DATA			IGSL
Contract:	Dublin Landfill Site	ting Scheme	199 ³⁻⁰⁰ -00-00-00-00-00-00-00-00-00-00-00-00				
lumber:	9716						
Client:	Fingal County Cou	Incil					
ingineer:	RPS-MCOS Ltd.		1	T	T	1	
Borehole/	Standpipe	Water					
Drillhole	Response Zone	Level (m bgl)					
C minorio	response zone	(30.7.04)					
ARC1	11 to 20	4					-
ARC4	12 to 20.85	2.62					
ASA2	3.9 to 7.7m	1.42					
ASA3	2.7 to 3.7m	1.52					
ASA4	3.6 to 5.6m	2.51					
	12 to 13m	3.18		1			
ASA5A	3.6 to 5.6m	1.46					
10 00 00 0	8 to 14m	1.4					
BRC1	27 to 34	4.67					
BRC2	9.7 to 18.7	3.64					
BRC3	11 to 18.4	3.84 4.03					
BRC4	7.6 to 11.3	0.41					
8GB1	22 to 24m	artesian					
BGB2	8.5 to 17.6	7.57					
	2 to 6.5	6.19					
BGB3	14 to 24m						
	2 to 12m	4.03		Spectron purpose ingle owner requi			
8SA1	16.5 to 17.5m	2.18					
BSA2	5.4 to 7.4m	2.85				150.	
BSA3A	16 to 17m	9.29			200	2	
BSA4	2 to 12.3m	2.51			1. NOR		
BSA5	6.4 to 6.9m	4.13			ally str.		
CRC1 CRC2	6.75 to 14.75 13.35 to 23.35	1.05		2	2 for		
CRC3	11.5 to 24.2	2.2		10°.1	ter.		
CRC4	23 to 32.05	11.27		Dared	-		
CRC 5	23.4 to 32.4	14.2		tioner			
CSA1	2 to 6m	2.2		Re one			
CSA2	2 to 7.4m	1.75	15	ight			
CSA4	1.7 to 7.7m	1.73	Ŷ°,	Sec.			
	23 to 32.05	1,75	x cox				
CSA6	10.4 to 15m	3.5	NOT				
CSA8	10.2 to 13.5	9.16	A1501				
CGB2	14.5 to 16.5m 2 to 10	9.16 2.85	C ^O .				
0002	15.2 to 18.2	4.49					1
CGB1	2 to 5.5m	8,4					
	7 to 10.5m	14.12					
DGB1	16.5 to 24m	1	The second second relation of		and any other design dama. It is taken	1.1	
	2 to 10m	0.65					
DRC2	2 to 17.6	Artesian					
DRC3	12.5 to 21.5m	0.51					
DRC4	6.7 to 9.0m	1.79					
0005	4 1 - 40	8.84					
DRCS DRC6	4 to 40m 6.3 to 15.3m	5.6 0.49					
DGB2	2 to 10m	2.03					
	13 to 22m	4.99					
DSA1	10.5 to 14.7m	Artesian					
DSAZ	1 to 2m	1.31					
DSA3	7.7 to 10.9	Artesian					
DSA4	5 to 9.95m	4.25					
DSA5A	1.5 to 5.8m	1.87					
DSAG	4 to 10m	Artesian					
DSA7	3 to 11.5m	10					1

4

EPA Export 26-07-2013:01:20:33

		DFILL SITTING SCH		24/8/04	
BH NO.	EASTING	NORTHING	RL		
ARC1	259636.177	320839.326	78.662		
ARC4	258466.580	322120.622	70.008		
ASA2	259507.278	321152.801	76.786		
ASA3	258792.845	321268.993	82.280		
ASA4	258036.207	321750.532	74.563		
ASA6	321751.589 258591.153	258031.700	73.523		
ASA5	258364.467	322181.447	67.734		
SA7	258358.654	322060.692 322061.344	73.487 73.367		
ISA7A IGB1	257899.744	318109.860	43.919		
GB2	257277.005	318138.248	40.053		
GB2	257144.704	317314.900	62.184		
RC1	257838.276	317476.680	59.340		
RC2	256749.851	316994.349	56.151		
RC3	256495.916	317838.752	38.224		
RC4	256513.260	318174.240	30.056		
RC5	257260.770	317526.491	56.889		
ISA1	257564.181	317457.546	59,186		
ISA2	256666.825	317542.890	48.760		
SA3	256309.515	317589.259	41.704		
SA4	256616.663	317972.022	34.171		
SA5	257143.291	317309.718	62.251		
SA6	257391.254	317736.974	49.926	(*	
GB1	254358.537	317841.967	30.222	e Dee.	
GB2	254358.547	317841.833	30.208	other	
RC1	255056.667	317663.026	34.021	all'all	
RC2	254525.782	317933.560	31.852	et Afor	
RC3	254784.153	318527.493	27.870	o ⁵ . rec	
RC4	253823.821	317592.859	27.6.68	oses only any other use.	
RC5	253553.997	318092.919	2866110		
SA1	255251.755		01378074		
SA2	254725.700	317302.946	\$7.610		
SA2A	254731.246	317249.481 317302.946 317304.944 317726.595 317731.600 318333.526	\$ 37.499		
SA3	254853.839	317726.595	33.705		
SA3A	254854.900	317731.60001	33.800		
SA4	254598.486	318333.526	28.093		
SA5	254301.113	317662.862	32.165		
SASA	254294.073	317663.839	32.079		
SA6	254110.491	317226.118	34.513		
SA7	253904.790	317913.804	28.742		
SA7A	253910.872	317917.265	28.784		
SA8	253344.783	317666.766	23,537		
GB1	258091.782	313479.683	98.715		
GB2	256022.598	312817.939	77.290		
RC2	257009.653	313547.747	77.982		
RC3	257997.726	313027.103	99.885		
RC4	256241.373	313687.302	75.040		
RC5	256228.790	312776.950	81.081		
RC6	256604.649	312492.390	81.328		
SA1	258825.773	313060.321	109.372		
SA2	258931.268	313709.188	99.029		
SA3	255925.300	312155.402	78.461		
SA4	255925.268	312155.384	78.468		
SA5	256914.292	312794.852	84.650		
SA6 SA7	256402.978	313219.620	75.946		
2 11 1	256298.635	314141.319	68.225		

ſ

	REPORT NO: 9716 G	EOTECH	NIC	AL BO	ORIN	IG RI	ECO	RD	REHOLD	IGSL Lt	d.
	CONTRACT : Dublin Landfill Siting Study							She	et 1 of 1	NO: CSA1	
	CLIENT : Fingal County Council	GROUND LE				37.07			TE STAR	TED: 01/0 PLETED: 02/0	6/2004
	ENGINEER : RPS-MCOS	BOREHOLE				6.10					012004
	CO-ORDINATES : E 255251:76 N 317249.48	CASING DEP	n) HTq	1)	4	1.50			RED BY:	G Roberts	
Ŵ				Z	Ê		AMPLES		S EST	' ERY	E (
DEPTH (M	DESCRIPTION		CEGEND	ELEVATION (mOD)	DEPTH (m)	REF. NUMBER	SAMPLE TYPE	DEPTH (m)	FIELD TEST RESULTS	BLOWS / RECOVERY	STAND PIPE DETAILS
00			1	j Li E	ö	8 Z	36	B E	II II	BL BL	
				36.87	0.20	L1462 L1463	В	0.20			
	Brown slightly sandy gravelly CLAY					21400					
- 1						L1464 L1465	В	1.00		-	
						L1403					
- 2	Stiff grey sandy gravelly CLAY			35.07	2.00	L1466	В	2.00	C=19		
			E E F	}							
				24.07	3.00	L1467	в	3.00			
- 3	Very stiff grey slightly sandy gravelly CLAY			34.07	3.00	L1407	D	3.00			
	with some cobbles					L1468	в	3.50			
						21100		0.00	5		
- 4			드 드 수 는 중 가			L1469	в	4.00			
						L1469 L3470					
					H. 207	0-			C=51/		
				orposes of	tor				255mm		
- 5				htporine		L1471	в	5.00			E
			in the	of tool							
			er og								
		FOLNI	8						C=25/		
- 6		f cor		30.97	6.10				35mm		H
	End of Borehole at 6.10 m	Consent of convin									
		Con									
7											
	ANIAGA DA IN										
	ANNSBROOK							·.			
- 8											
- 9											
- 10						14	ater St	trika D	otaila		
		ments	ſ	Water	Casi	ng Seale	ed Ris	se 1	Time	Comments	
	2.60 3.00 1.50 . 3.50 3.90 1.00		-	Strike	Dept	h At		0			
	4.60 5.00 1.50 . 5.00 5.40 1.25 . 5.00 6.10 1.75										
	5.90 6.10 1.75 .		Ĺ						servations	3	
	Standpipe Installation Details			Date	Hol Dep		oth W	pth to ater		Comments	
	Date Tip Depth RZ Top RZ Base 02/06/2004 6.10 2.00 6.10	Type SP		1/06/200	4 0.00	-		-	Damp at (end of day	
		The supervise manufacture									
	Remarks:										

1	REPORT NO: 9716 G	EOTECHI	NICA	LBO	ORIN		ECO	RD		IGSL Lt	d.
	CONTRACT : Dublin Landfill Siting Study							BOF	REHOLE et 1 of 1	NO: CSA2	
	CLIENT : Fingal County Council ENGINEER : RPS-MCOS	GROUND LEV BOREHOLE [7.61 200			E STAR	TED: 26/0 LETED: 26/0	5/2004 5/2004
	CO-ORDINATES : E 254725.70 N 317302.95	BOREHOLE D				.00 .50		BOF	RED BY:	G Roberts	
T	14 5 17 502.55	7.				S	AMPLES		EST	/ ERY	PIPE
OEPTH (M)	DESCRIPTION		LEGEND	ELEVATION (mOD)	DEPTH (m)	REF. NUMBER	SAMPLE TYPE	DEPTH (m)	FIELD TEST RESULTS	BLOWS / RECOVERY	STAND PIPE DETAILS
0	TOPSOIL										
-	Brown/grey sandy gravelly CLAY			37.11	0.50	L1447	в	0.50			
- 1				36.61	1.00	L1448	в	1.00			
	Stiff grey slightly sandy slightly gravely CLAY with occasional cobbles and boulders					L1450 L1451					
			2019 2019 2019			L1449	υ	1.55		100%	
- 2			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			L1452 L1453	B U	2.00	C=19	NR	
						L1451					
3						L1454 L1455	В	3.00	C=26		
			0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				ي و				
- 4			500 10 10 10 10			L1456	ner W	4.00	C=26		
			0-10-10 0-10-1		s or	14-13107 FOI					
				OUT	2050 red						
- 5				ction ter		L1456 3,1357 101 L1458 L1459	в	5.00	C=25		
	-		O N	32.11	5.50						
	OBSTRUCTION - possible boulder	Consento							0-22		
- 6 -	End of Borehole at 6.00 m	Consent	-0-2	31.61	6.00				C=22		
								-			
-7											
							-				
- 8											
- 9											
- 10)										
		nments	ſ	Water	Casi	ngi Seal	Vater S ed Ri	se	etails Time	Comments	
	5.50 6.00 1.00		-	Strike	Dep	th At	T	0			
						Gro	undwa	ter Ob	servation	S	~
	Standpipe Installation Details			Date	Ho Dep	le Cas oth De	ing De pth V	epth to	(Comments	
	Date Tip Depth RZ Top RZ Base	Туре	2	6/05/200	4 6.0	0 4.5	50	-	Dry at en	d of day	
				Constitution of the second							

ì

-

)

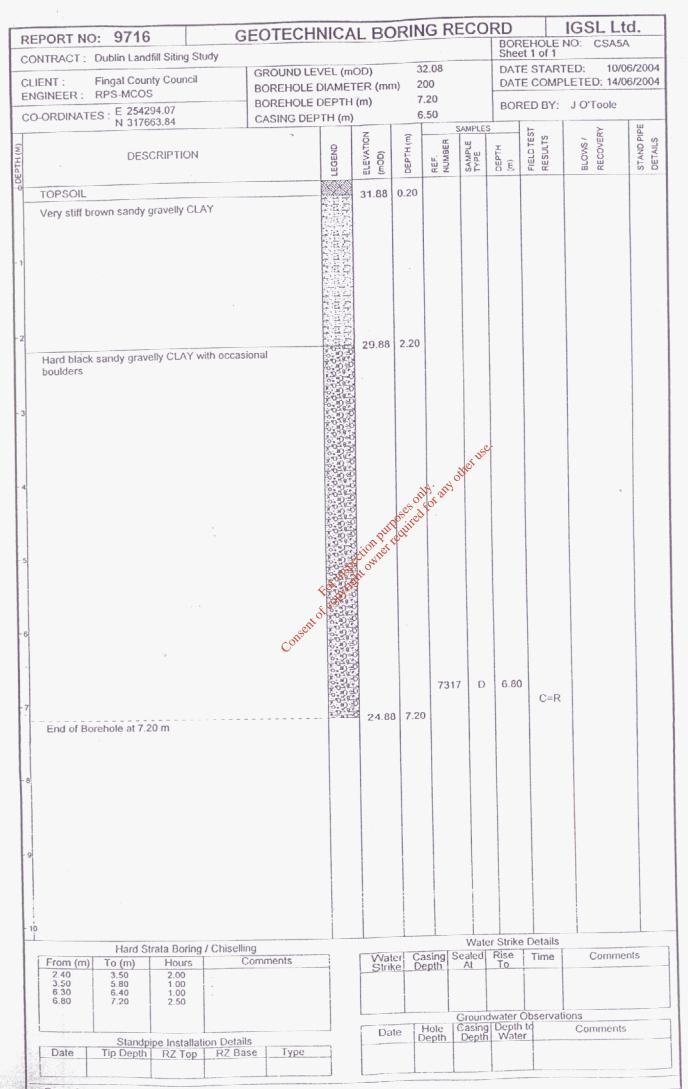
1

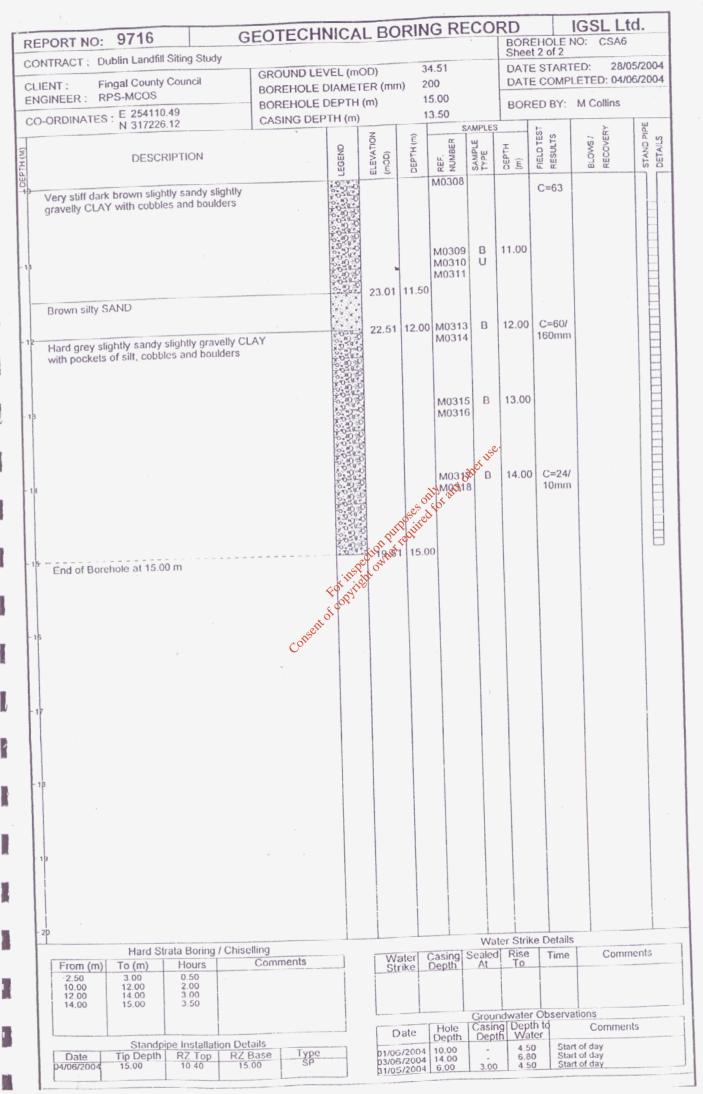
l

E	CONTRACT : Dublin Landfill Siting Study CLIENT : Fingal County Council ENGINEER : RPS-MCOS	GROUND LE	DIAME	TER (n	nm)	33.80 200		DA	TE STAF	TED: 21/	/06/2004
C	CO-ORDINATES : E 254854.90 N 317731.60	BOREHOLE D	DEPTH	l (m)		4.30 4.30				PLETED: 21/ P Thomas	
OEPTH (M)	DESCRIPTION		LEGEND	ELEVATION (mOD)	DEPTH (m)	REF. NUMBER	SAMPLE:	DEPTH (m)	FIELD TEST RESULTS	BLOWS / RECOVERY	STAND PIPE DETAILS
1	TOPSOIL Stiff brown slightly sandy gravelly CLAY with cobbles			33.60	1	-	U	1.00	ι. Έ	60/100%	DE SI
2	Dense brown grey fine to coarse GRAVEL			32.30	1.50	K7834	D	2.00			
	Stiff brown sandy gravelly CLAY		「東京」など、東京	31.30		K7835	υa	3.00		68/100%	
	End of Borehole at 4.30 m		2	9.50		K7836 K7837		.00	1 1		
		Consent of const	pection (purposes pricoses	only. or ed for	23					
		Consent of Copyr								•	
		Consent of Copyr								•	
		Consent of Copyr									
Fror 2.1 4.2	Hard Strata Boring / Chiselling (m) To (m) Hours Comment 0 220 033		Wat				Strike	Details	1	omments	

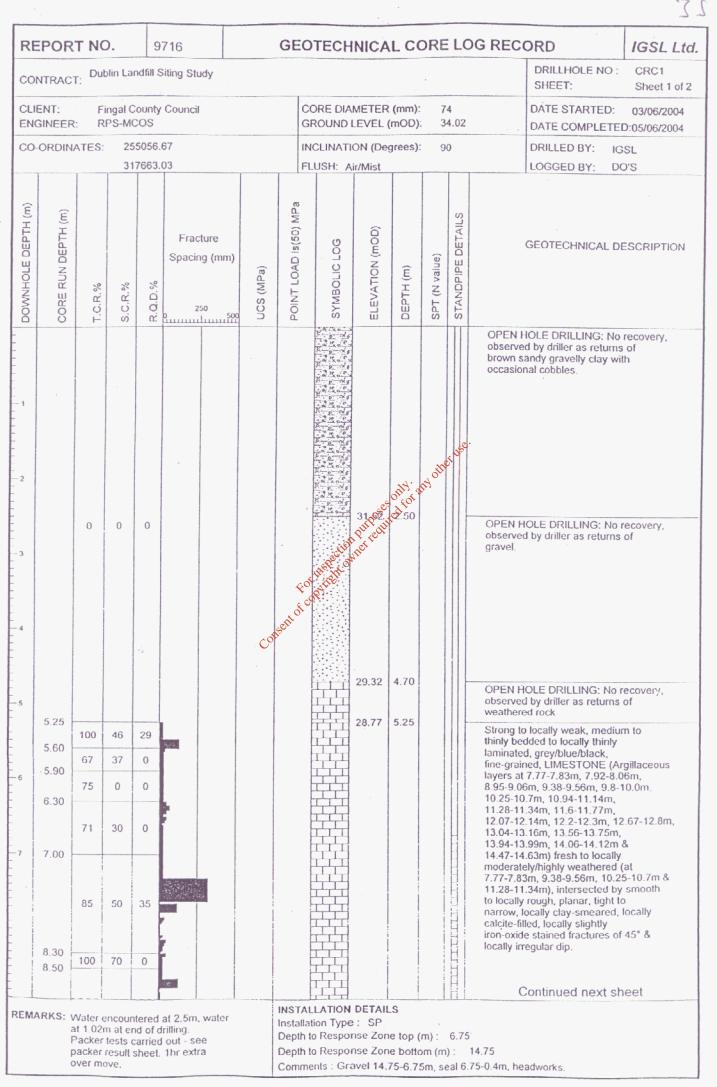
ł

ł


ł

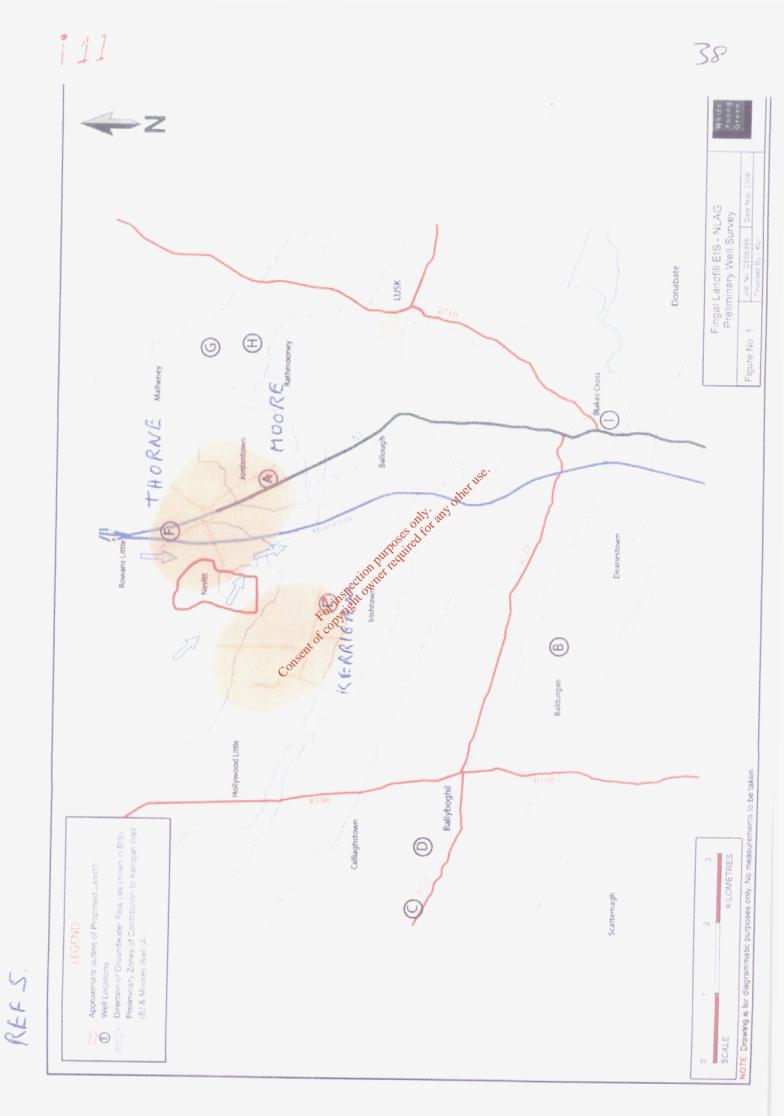

R	EPORT NO: 9716	GEOTECH	NICA	LBC	DRIN	IG RE	-CO	RD		IGSL L	
	ONTRACT : Dublin Landfill Siting Study							Shee	t 1 of 1		
1	LIENT : Fingal County Council NGINEER : RPS-MCOS	GROUND LE BOREHOLE	DIAMET	ER (m	n) 2	8.09 00			E START E COMPL	ED: 09/ ETED: 11/	06/2004 06/2004
;(O-ORDINATES : E 254598.49 N 318333.53	BOREHOLE CASING DEF).30).30		BORED BY: M Collins			
	DESCRIPTION	9	LEGEND	ELEVATION (mOD)	ОЕРТН (m)	REF. NUMBER	SAMPLES SAMPLE	DEPTH (m)	FIELD TEST RESULTS	BLOWS / RECOVERY	STAND PIPE
	TOPSOIL			07.00	0.40						
	Brown sandy CLAY			27.69	0.40						
	Stiff brown sandy gravelly CLAY with occa cobbles	sional		21.23	0.00	324 325	В	1.00			
						326 327	в	2.00	C=28		
	Hard black sandy gravelly CLAY with occa cobbles	isional	raneo y an earlean an a	25.69	2.40	329 330 331	B U	3.00		80%	
		ţ			05e	331 0119' 20 20 ¹⁰¹ 334 335	yother	6. ⁶⁰ .	C=60/ 195mm		
				Pection relition	ourpequi	334 335	В	5.00	C=58/ 85mm		
	ж. К	Conse				337 338 342	B U	6.00		100%	
						339 340	В	7.00	C=29/ 45mm		
						341 342		8.00	Č=43/ 120mm		U
				18.7	9 9.3	0					
	End of Borehole at 9.30 m										
1	10						NA Lot	Cheller	Dotoite		
	Hard Strata Boring / Chisel From (m) To.(m) Hours 4.30 4.70 1.00 8.80 9.00 1.50 9.00 9.30 0.75	ling Comments		Wat Strik	er Ca ce D	asing Seepth	ealed At	10	Details Time	Comme	ents
	Standpipe Installation Deta Date Tip Depth RZ Top RZ B 11/06/2004 7.70 1.70 7.9	ase Type		Dat	te D			Depth Water		Comments	

.

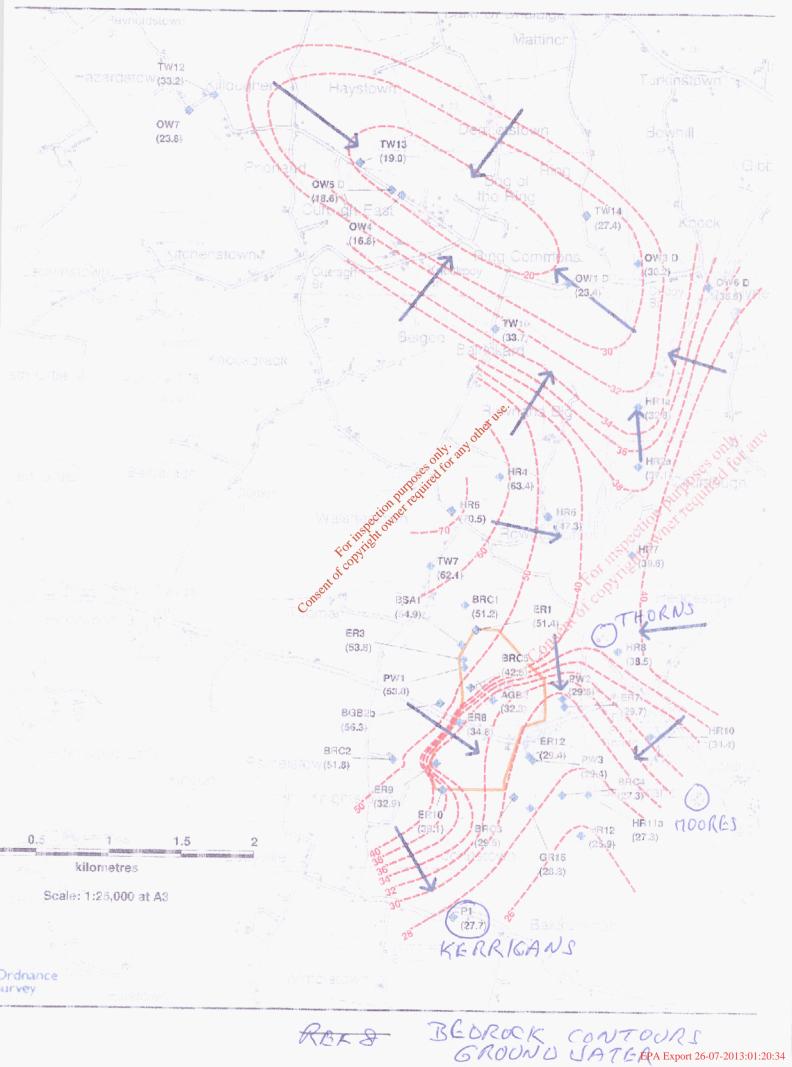

31

EPA Export 26-07-2013:01:20:33

RE	POR	TN	Э.	9	716			GEO	TECH	NICA	LCO	ORE	LC	DG RECORD J4 IGSL Ltd.
CO	NTRAC	T: Du	blin La	ndfill S	Siting Stu	dy								DRILLHOLE NO : CGB1 SHEET: Sheet 2 of 3
	ENT: GINEER		ingal C RPS-M		Council		4		ORE DIAL				02 0.22	DATE STARTED: 17/06/2004 DATE COMPLETED:18/06/2004
CO-	-ORDIN	ATES		54358.				(: 9	0	DRILLED BY: MILLENIUM
			31	7841.	97				USH: P	olymer (Sel			LOGGED BY: DO'S
DOWNHOLE DEPTH (m)	CORE RUN DEPTH (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fract Spacing	g (mm)	UCS (MPa)	POINT LOAD Is(50) MPa	SYMBOLIC LOG	ELEVATION (mOD)	DEPTH (m)	SPT (N value)	STANDPIPE DETAILS	GEOTECHNICAL DESCRIPTION
- 10	10.00	67	0	0						v r				Firm to stiff, brown/black, sandy, locally very gravelly CLAY with occasional cobbles.
	10.50	100	0	0					P p Ng	19.72				
- 11		80 56 22						z.	Strong to very strong (to locally moderately strong), grey/blue to locally dark grey, fine-grained, LIMESTONE (Moderately strong, dark grey, argillaceous layers at					
	11.50	80	80	62						- Th	A. any	the	1	12.75-13.3m, 15.54-15.57m, 18.16-18.24m, 18.47-18.54m & 19.67-19.78m), fresh to locally
12	12.00	100	84	58				Foring		pose off	Or .			slightly weathered intersected by smootht to locally rough, planar, tight to open, locally clay-smeared, slightly iron-oxide stained fractures of sub-horizontal & locally 45° dip.
14	13.50	93	80	37			Consect	lot of the						
15	15.00	100	91	71		1								
	16.50	62	48	38										
REMA	1	0.5m :	l standı Grave).5m &	10.5	stalled a 7.0m, se 5m.	l al		Installat Depth t Depth t	LATION tion Type o Respon o Respon ents : Gra	: SP ise Zone ise Zone	e top (i e botto	m (m)	: :	



EPA Export 26-07-2013:01:20:34


REPOR	INC).	9	716			GEO	TECH	NICA		JRE	LC	DG RECORD S G IGSL Ltd.
CONTRAC	T: Dut	blin Lar	ndfill S	iting Stu	dy								DRILLHOLE NO : CRC2 SHEET: Sheet 2 of 3
LIENT:		ingal C PS-MC		Council				ORE DIAN				4 1.85	DATE STARTED: 14/06/2004 DATE COMPLETED: 16/06/2004
O-ORDIN	ATES:		4525.3					CLINATIO		grees):	9	D	DRILLED BY: IGSL
		31	7933.	56			FL	USH: Ai	r/Mist	LOGGED BY: DO'S			
DOWNHOLE DEPTH (m) CORE RUN DEPTH (m)	T.C.R.%	S.C.R.%	R.Q.D.%	25	g (mm)	UCS (MPa)	POINT LOAD Is(50) MPa	SYMBOLIC LOG	ELEVATION (mOD)	DEPTH (m)	SPT (N value)	STANDPIPE DETAILS	GEOTECHNICAL DESCRIPTION
10 11 12 13 12.75 4 14.25 5 6 15.75 17.25	97 100 97	89 71 63	43			Consent	FOO MASS		of only	10.65	leiuse		 OPEN HOLE DRILLING: No recovery, observed by driller as returns of sandy gravelly clay with occasional cobbles. OPEN HOLE DRILLING: No recovery, observed by driller as returns of gravel. OPEN HOLE DRILLING: No recovery, observed by driller as returns of sandy gravelly clay with occasional cobbles. OPEN HOLE DRILLING: No recovery, observed by driller as returns of gravel. OPEN HOLE DRILLING: No recovery, observed by driller as returns of gravel. OPEN HOLE DRILLING: No recovery, observed by driller as returns of gravel. OPEN HOLE DRILLING: No recovery, observed by driller as returns of weathered rock Strong to very strong (to locally moderately strong), medium to thinly bedded to locally thinly laminated, grey/blue to locally black, fine-grained, LIMESTONE, (Argillaceous layers at 15.13-15.5m, 16.3-6.4m, 16.55-16.7m, 17.73-17.86m, 18.39-18.46m, 18.92-18.99m, 20.39-20.53m, 20.75-21.0m & 22.21-22.35m)fresh to locally silightly/moderately weathered (see argillaceous layers above) intersected by smooth to locally rough, planar, tight to narrow, locally calcite-filled fractures of 45° & very locally sub-vertical dip.
	Ŧ												· Continued next sheet
	at 5.45 Packer	im at ei r tests (r result	nd of o		e		Installa Depth Depth	LLATION ation Type to Respo to Respo ents : Gr	e : SP nse Zor nse Zor	ne top ne bott	om (n	n) :	

:20:34

REPORT			97	16		GEO	TECHN		co	RE	LO	G RECORD	IGSL Ltd.				
CONTRACT	Dubli		1	ing Study								DRILLHOLE NO : SHEET:	CRC3 Sheet 2 of 3				
CLIENT: ENGINEER:	Fin		unty (Council			DRE DIAM			74 27	.87		08/06/2004				
CO-ORDINA		254	784.1 527.4			IN	CLINATIC USH: Air	N (Deg		90	DRILLED BY: IGS LOGGED BY: DO						
DOWNHOLE DEPTH (m) CORE RUN DEPTH (m)	T.C.R.%	S.C.R.%	D.D.%	Fracture Spacing (mr	CS (MPa)	POINT LOAD Is(50) MPa	SYMBOLIC LOG	ELEVATION (mOD)	DEPTH (m)	SPT (N value)	STANDPIPE DETAILS	GEOTECHNICAL DE					
-10 -11 11.20								18.07 17.37 16.67			5 ³ 038	OPEN HOLE DRILLING: No r observed by driller as returns brown sandy gravelly clay with occasional cobbles. OPEN HOLE DRILLING: No r observed by driller as returns gravel. OPEN HOLE DRILLING: No r observed by driller as returns weathered rock	of h recovery, of ely weak, led,				
- 12 12.60	36	0	0			Conse		16.67	courte			grey/black, fine-grained, LIME (predominantly argillaceous), moderately to locally highly w intersected by closely spaced irregular, clay-smeared fractu irregular dip.	eathered				
14.20																	
	47	0	0														
15.70	50	0	0														
REMARKS	at 15.	r enco 4m at over n	end o	ed in rock, wa f drilling. 0.5h	iter nr	Inst Dep Dep	TALLATIC allation Ty oth to Respondent to Respondent to Respondent	/pe : S ponse Z ponse Z	P lone to lone bo	ottom	(m) :	Continued next sheet 11.50 : 24.20 11.5-9.0m, headworks.					

EPA Export 26-07-2013:01:20:34

REF 20

Site C

ANNSBROOK

Site Description & Geological Setting (Site C)

Site C centred on the townland of Annsbrook encompasses an area of approximately 4,15,000 m^2 (415 ha) and is located approximately 10 km southwest of Skerries and 4 km west of Lusk. There is little change in elevation across the site, with a slight rise from southeast to northwest from about 20 mOD to a high of 40 mOD. The new M1 motorway is located close to the eastern margin of the site approaching within approximately 100 m. The ground is typically grass and agricultural fields. A number of small streams run northwest - southeast through the site.

The geological map for the area 'Geology of Meath, 2001' indicates that the area is underlain predominantly by 'Calp' limestone of the Lucan Formation. Calcarenites and calcisiltites of the Naul Formation are also present towards the northeastern corner of the site.

The following section integrates the geophysical results with the available geological data. The interpretation is based on the available factual information, piper geophysical responses of known materials and the experience of the author. The interpreted 2D-Resistivity and seismic only any sections are shown at the end of this report.

Locations for the geophysical readings are shown on Maps 1C-3C. Maps were provided by RPSMCOS.

EM31 Ground Conductivity Data (Site Contraction of the contraction of An EM31 ground conductivity survey was carried out across the site with readings taken at approximately 100 m centres. An average conductivity contour map is shown on Map 2C. Across most of the site little variation is seen with values typically ranging between 15 and 20 mS/m, indicating relatively thick clay rich overburden across the site. No significant areas of low or very high conductivity values are recorded across the site indicating relatively uniform overburden thickness in the top 6 m of the subsurface.

2D Resistivity Data (Site C)

A total of 29 2D resistivity profiles have been carried out across the survey area and show little variation with low resistivities (< 200 ohm-m) across the whole site indicating thick clay overburden, some zones of intermediate resistivity (200 - 300 ohm-m) have been interpreted as gravely clay / clayey gravel or in some cases shaley bedrock. These layers may also represent an increase in the boulder/cobble content of the boulder clay. Bedrock is interpreted by high resistivities (> 300 ohm-m) along some of the profiles. Towards the east of the site bedrock is interpreted to lie at between 10 and 15 m depth b.g.l. To small areas to the north have been interpreted as indicating bedrock at 5 to 10 m depth. Across the rest of the site particularly in

the west, central and southern sections overburden is interpreted to be extremely thick at about > 20 m.

Seismic Data (Site C)

A total of 19 seismic spreads were undertaken across site C and are shown to agree well with the resistivity data. Two or three layers have been modelled for the seismic data with typically a low velocity (400 - 800 m/s) layer of topsoil / silty clay overlying an intermediate velocity layer (1400 - 2200 m/s) of stiff glacial till (boulder clay) overlying high velocity (> 3000 m/s) competent bedrock. Across most of the site high velocity bedrock is interpreted at > 10 m depth b.g.l, or is not detected by the seismic data indicating that bedrock is at a depth greater than approximately 15 m. Along seismic spreads 3 and 18 bedrock is interpreted to lie at about 5 to 10 m depth b.g.l. This area represents the area of shallowest bedrock within the site. High recorded velocities (> 4000 m/s) for the bedrock across mush of the site indicate the relatively competent nature of the bedrock.

The higher the velocity measured for overburden / rock the greater the stiffness / competency of the material. Integrated Geophysical Data (Site C) EM31 ground conductivity readings measure the built conductivity from the upper 6 m of the

subsurface, therefore in an area of generally thick overburden little variation in ground conductivity values is seen. Within site & the clay rich overburden is interpreted within the ofcop top 6 m across the site.

Generally the seismic and resistivity data correlate well indicating generally thick boulder clay overburden overlying limestone \mathscr{V} shale bedrock across most of the site. There is no area interpreted where bedrock shallows to less than 5 m depth b.g.l. Within the western, central and southern areas bedrock is interpreted at about 20+ m b.g.l. Within the western portion of the site bedrock shallows slightly and is interpreted at about 10 - 5 m b.g.l. Two small zones in the north of the site have been interpreted as indicating bedrock, which lies between 5 and 10 m b.g.l.

Typically bedrock has been interpreted by high resistivities (> 300 ohm-m) and high seismic velocities (>3000 m/s), however, in a few instances high seismic velocities (> 3000 m/s) correlate with intermediate resistivity values (150 - 300 ohm-m), which may indicate more shalely or weathered bedrock.

The combined geophysical properties can be summarised as follows:

Interpretation	Thickness (m)	Velocity (m/s)	Resistivity (ohm-m)	Estimated Stiffness/ Rock Quality*	Rippability
SUBSOIL / Silty CLAY	0 - 2	300 - 600	< 100	Soft - Firm	Diggable
Gravelly CLAY / Clayey GRAVEL	0 - 4	1200 -2600	150 - 300	Firm - Stiff	Diggable
Boulder CLAY	5 - 20+	1200 -2600	< 200	Stiff - V. Stiff	Break/Blast
SHALE / LIMESTONE Bedrock	-	>3000	> 300	Strong	Break/Blast

Table 1c: Combined Geophysical Data for Site C

*Estimates of soil stiffness and rock quality are based on the measured geophysical properties.

Conclusions & Recommendations (Site C)

Subject to direct investigation and further geotechnical testing the presence of thick boulder clay deposits across most of the site would indicate that this site would be generally suitable, in respect to ground conditions, for the siting of a landtik. The stiffness of the overburden and the presence of a clay matrix indicate that the perpendiculations are likely to be low. Areas to the west, centre and south would be most suitable due to the very thick clay deposits.

The presence of two streams running through the centre of the site, however, would decrease the suitability of the site unless adequately engineered for.

Trial pitting and drilling is recommended across the site to confirm the findings of this report, to determine the thickness of the boulder clay deposits and undertake geotechnical and permeability testing of the overburden and rock. As well as noting the presence of any gravel concentrations or boulder beds within the overburden.

Following the further selection of a preferred/suitable area within the site detailed drilling should be undertaken. The method used should allow detailed logging and undisturbed sampling of the soil materials to allow strength and permeability testing and identification of any potential leakage paths. It should also allow for follow on rotary core drilling to prove bedrock and bedrock conditions.

Maps and Interpreted Sections (Site C)

