
APPENDIX G

ANNUAL GAS FLARE REPORTS

Consent of copyright owner required for any other use.

Derrinumera Landfill Site

Mayo Co. Co Castlebar, Co. Mayo.

EURO environmental services

Southbank House, Southbank Ind Est, Drogheda, Co Louth

Report No 1530/M01

1.0Overview

Mark Mc Garry and Sean Mallon of Euro environmental services carried out monitoring and analysis of the landfill gas flare at the Derrinumera Landfill site, Castlebar, Co Mayo on 20th November 2002.

The landfill flare was operating under normal conditions and Eileen Kavanagh provided assistance during the monitoring.

EURO environmental services were requested to carry out air emissions monitoring for flue gas analysis, flow and particulate concentrations.

2.0 Equipment Used on Site

The following equipment was used to carry out the monitoring

- IMR 2000 Flue Gas Analyser, with flue gas / temperature probe.
- TCR Tecora isokinetic sampler, with pitot tube, temperature probe and sampling nozzles.
- Impinger filled with ice and water
- SKC sampling pumps, impinger and sorbent tubes.

3.0 Methods

- of copyright or Flow was measured sokinetically at 4 points in the stack as per ISO 9096. Velocities, Otemperatures and differential pressures were measured at each point and recorded
- Flue gas analysis was carried out using an IMR 2000 flue gas analyser
- Results for particulates and flow rates are reported in normal cubic metres, calculated to standard temperature and pressure as per ISO9096
- Hydrocarbons, TA Luft I, II, and III organics were sampled as per EN 13649 - Stationary source emissions - Determination of the mass concentration of individual gaseous organic components - Activated carbon and solvent desorption method
- Hydrogen Chloride and Hydrogen Fluoride were sampled as per NIOSH 7903. A known volume of air was sampled through an impinger filled with washed silica gel and analysis by IC

4.0 Emissions to Atmosphere

Customer Address Derrinumera Landfill Castlebar Co. Mayo

Source Identification: Organics Landfill Flare Fuel Type: Biogas Date of sampling – 20th November 2002. Time of sampling – 16:35 – 17:55 Consend conversion of the service of the se

2

1

5.0 Results

and the

Method Consentration Flue Gas Analyser N/D Adsorbtion/GC-MS <0.1 Adsorbtion/IC <0.1 Adsorbtion/IC 52.05 Adsorbtion/IC 52.05 Adsorbtion/IC <0.63 Adsorbtion/IC <0.1 ISO9096 <5				
DNN CNN CNN CONTRACTOR CONTRACTON	rarameter	Method	Consentration, mg/Nm ³	Mass Emission Rate
Conserver of the produced of the server of t				JH/6N
Consent construction properties in the rate of the rat		Flue Gas Analyser		
Conserved construction of the rate of the served construction of the served of the ser	SO_2			N/A
Contraction properties of the same of the second contraction properties of the second	NO2		Con	0.008
 25.05 32.05 3.0100 - 00000 - 0000 - 0000 - 0000	NO as NO _X		February Participation of the second	N/A
 Contraction Contract	TA Luft Organics Class I		V ections	0.074
 	TA Luft Organics Class II		n purpose	N/A
 <0.1 52.05 <0.63 <0.1 <	TA Luft Organics Class III		South Construction	N/A
 c0.2c c0.63 c0.5 <	Hydrogen Chloride		40.1 20.1	NIA
<0.1 <5	Hydrogen Fluoride		GU.2C	0.160
<5	Hydrocarbons		50.02 F UV	N/A
	Particulates	ISO9096		N/A
	WD indicates the parameter of	interest was not detecte		<0.015

3

6.0 Sampling conditions

The sampling ports were positioned in a length of straight duct, with approximately 7 duct diameters downstream and 3 upstream, in compliance with EPA guidance note to industry on sampling facilities provided for effective monitoring of emissions to atmosphere, 1996.

High temperatures may have interfered with the performance of the electrochemical cells for CO and NO₂. Intermittent flow rates were experienced during the analysis.

Results were expressed in normal metres cubed and mass emissions in kg of pollutant emitted per hour. Temperature correction can be very significant when hot gases are being sampled. For this reason and to allow direct comparison of different samples, results are expressed relative to standard conditions i.e. 273^oC and 1 atmosphere.

Hydrogen Chloride was the only parameter that was present in excess of licence limits. All other parameters were within the licence requirements set out in the waste licence.

No adjustment has been made for moisture content.

The Flare was labelled as Organics Landfill Flare.

of copyright Geoff Fitzpatrick Director

U Ger

Ś

Mark Mc Garry Environmental Scientist

19 December 2002

Derrinumera Landfill Site

Mayo Co. Co, Castlebar, Co. Mayo

Landfill Flare Flue Gas Analysis

EURO environmental services

Unit 35A, Boyne Business Park, Drogheda, Co. Louth

Report No 1530/M03

1.0 Overview

Eileen Cavanagh of Mayo County Council requested EURO environmental services to carry out bi annual flue gas analysis from the licensed landfill gas flare at Derrinumera Landfill, Castlebar, Co Mayo. Emissions monitoring was carried out on 21st November 2003 between 12:00 and 13:30 in accordance with the requirements of the waste licence 20-1. Monitoring was carried out by Mark Mc Garry, BSc and Hinglin Yau, MSc of EURO environmental services

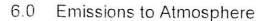
2.0 Methodology Employed During The Survey

The following methods were employed to carry out the monitoring:

- Total Organic Compounds were determined as per EN 13649 Stationary source emissions - Determination of the mass concentration of individual gaseous organic components - Activated carbon and solvent desorption method.
- Flue Gas concentrations were determined using an IMR 2000 flue gas analyser, referenced to 3% O2.
- Particulates, velocity and flow rates, emission volumes were measured as per BS:ISO 13284-1:2002. Velocities, temperatures and differential pressures were measured at each point and recorded using a TCR Tecora isokinetic sampling pump with S-type pitot tube and K-type thermocouple.
- Hydrogen Chloride and Hydrogen Fluoride were sampled as per NIOSH 7903. A known volume of air was sampled through an impinger filled with washed silica gel and of analysed IC. by

3.0 **Equipment Used**

- required Total Organic Compound samples were sampled using SKC sampling pumps UI. and activated charcoal tubes in the sampling trains. Tubes were desorbed and analysed by Gas Chromatography-coupled-Mass Spectrophotometer (GCMS). SKC sampling pumps (Reference No. EM 015) were calibrated prior to the site visit. Inorganic acids were adsorbed on washed silica gel and analysed by IC.
- Flue Gas Analysis was carried out using an IMR 2000 flue gas analyser (Reference No. EM001, EM002)
- Particulates, velocities, temperatures and differential pressures were measured at each point and recorded using a TCR Tecora isokinetic sampling pump with S-type pitot tube and K-type thermocouple (Reference Nos. EM 003, EM 006).


4.0 Deviations from the Standard Method

All sampling and analysis was carried out in strict accordance with the aforementioned methods.

Plant Operating Conditions 5.0

The flare was operating as normal during the monitoring period. Sampling for particulates was carried out on a standard 4 inch diameter port, whilst flue gases, organic compounds and inorganic acids were sampled through a 2inch diameter port.

Source Identification: Organics Landfill Flare

Date of sampling:	21 st November 2003.
Time of sampling -	12.00

Measured Emissions

Temperature	975	Degree Celsius
Velocity	6.16	m/sec at STP
Flow Rate	4,384	Nm ³ /hr

Parameter	Method	Concentration	Units	Mass Emission Rate Kg/Hr
CO NO as NO₂ NO2 as NO2	Flue Gas Analyser Flue Gas Analyser Flue Gas Analyser EN 13649 EN 13649	N/D other use.	mg/Nm ³ mg/Nm ³ mg/Nm ³	N/A 0.65 N/A
Total Organics	EN 13649 1010 000	<1.0	mg/Nm ³	N/A
Hydrocarbons	EN 13649	<1.0	mg/Nm³	
Hydrochloric acid	Los Impinger/ IC	<1.0	mg/Nm ³	N/A
Hydrogen Fluoride	Impinger/ IC	<1.0	mg/Nm³	N/A
Particulates	BS:EN 9096 - 2002	<1.0	mg/Nm ³	N/A

1. N/D indicates the parameter of interest was not detected in the gas stream.

2. N/A indicates that the mass emission was not applicable as the parameter was not detected in the emission

 All results have been reported at the standard reference conditions of 273 K, 101.3 kPa, on a dry gas basis and corrected to an oxygen content of 3% by volume.

7.0 Sampling Conditions

The sampling ports were positioned in a length of straight duct, with approximately 7 duct diameters downstream and 3 upstream, in compliance with EPA guidance note to industry on sampling facilities provided for effective monitoring of emissions to atmosphere, 1996.

High temperatures may have interfered with the performance of the electrochemical cells for CO and NO. Intermittent flow rates were experienced during the analysis.

8.0 Conclusion

Results were expressed in normal metres cubed and mass emissions in kg of pollutant emitted per hour. Temperature correction can be very significant when hot gases are being sampled. For this reason and to allow direct comparison of different samples, results are expressed relative to standard conditions i.e. 273°C and 1 atmosphere - standard temperature and pressure.

No adjustment has been made for moisture content.

The Flare was labelled as Organics Landfill Flare.

l'Gnie Mark Mc Garry

Field Services Manager

12th February 2004

Consent of constight owner required for any other

Geoff Fitzpatrick Director

Mayo County Council

Derrinumera Landfill, Ballina, Co. Mayo

Emissions to Atmosphere For inspection purposes on Proving the required for an other the required forean other the require

15th September 2005

3

EURO environmental services

Unit 35A, Boyne Bus. Park, Drogheda, Co. Louth

Report Number: 1530/M07

Report for the Periodic Monitoring of Emissions to Air

Part 1: Executive Summary

Permit Number: 21 1

Operator: Mayo County Council

Installation: Derrinumera Landfill

Monitoring 02/09/2005 dates:

Contract Number:

AAAO2532

Client Organisation:

Address:

Mayo County Council one inserve. Derrinumera Landfillor and one inserve. Ballina Co. Mayo puposi reduced For inservome reduced

Monitoring Organisation:

Address:

EURO Environmental services Unit 35 Boyne Business Park Drogheda Co Louth

Date of Report:

15th September2005

Report Approved By:

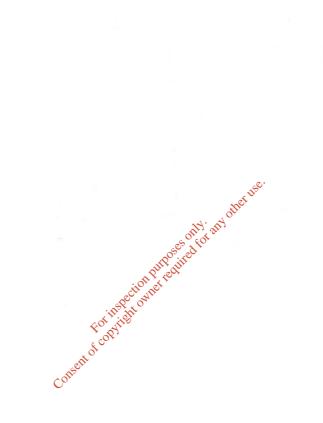
Ken Murphy

MCERTS Registration Number: MM05 590

Function:

Environmental Technician

Kan he Gara


Signed:

Checked:

Permit Nondoc 21-1 Contents

Part 1: Executive Summary

- Monitoring Objectives
- Monitoring Results
- * Operating Information
- * Monitoring Deviations

.

Objectives of Monitoring

The monitoring at this installation was carried out as part of a check monitoring requirement. The substances requested for monitoring at each emission point are listed below

Substances to be monitored	Flare
Particulates	
Moisture	
Flow rate	
lydrochloric acid	
lydrogen chloride	· · · · · · · · · · · · · · · · · · ·
/0C	- alt alt alt
pecial requirements	Annual for this sampling point.
Consent	

1923

Commit Fumber 21-1 Monitoring Results Flare Stack

Émission Point Heference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Units	Flow Rates @ STP corrected for moisture	Date of Sampling	Start and End Times	Monitoring Method Reference	Accreditation for use of Method	Operating Status
Fiare Stack	Particulates	N/A	116.5	mg/Nm3	982	01-Sep-05	12.41 - 14:03	BS EN 13284-1	No	Standard
Flare Stack	NOX	N/A	122.75	mg/Nm3	982	01-Sep-05	12.41 - 14:03	IMR 2000	No	Standard
Flare Stack	HCL	N/A	4.12	mg/Nm3	982	01-Sep-05	12.41 - 14:03	BS EN 1911-213	No	Standard
Fire Stack	co	N/A	50.67	mg/Nm3	982	01-Sep-05	12.41 - 14:03	IMR 2000	No	Standard
Flare Stack	voc	N/A	0	mg/Nm3	982	01-Sep-05	12.41 - 14:03	BS EN 13649	Na	Standard
					hspection purpose of	io.				
				For	A BUILDING					
				Conser						

1011-0111

Mayo Co. Co EURO environmental services

π

Monitoring	SHUT	t mV ym	mgʻNmi3	ung Nang	EtuN/Jun	Curt au	
IS and Periodic hs	Periodic Monitoring	1 16.5	50.05	122.75	21,1	¢	
Comparison of Operator CEMS and Periodic Monitoring Results	CENTS Results	N/A	N/A	N/A	V/N	A/A	
Comparison o		Particulate	co	NON	HCL	VOC	
Load		N/a	N/a	N/a	N/a	E/N	
Abatemtert		No	No	Nn	No	No	MHY. any other 14
Feedstock		V/N	A/M	Y/N		N/A	These time purposes only any other us
Fuel	Binne	Binore	Binose	endoro	se Con	Diogas Sur of	98.°
	Continuous	Continuous	Continueus	Continuous	Continuous		
	Surdas:10	01-Sep-05	struss (0	01-Separts	01-Sep-05		
Posts	1.111.4	P. Late.	1.1.1	1:1-	lar.		

Report for the Periodic Monitoring of Emissions to Air

Part 2: Supporting Information

Permit Number: 22 1

Operator: Mayo County Council

Installation: Derrinumera Landfill

Monitoring 01/09/2005 dates:

Appendix 1

Organisation and Monitoring	g Team Details	A 138.
EURO environmental services Unit 35 Boyne Business Park Drogheda Co Louth	g Team Details	Sotto
041 9845440 Phone 041 9846171 Fax info@euroenv.icemail	For instead or	
Team Leader	Hinglin Yau	Level 2 Training
Technician	Ken Murphy	Level 1 Technician

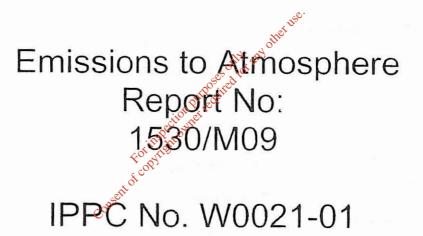
Method Details

Substance	Method	SOP No
Particulates	BS EN 13284-1	EM 101
VOC	BS EN 13649	EM 107

Equipment Checklist References

- 1 TCR Tecora Isostack Basic
- 2 1.5 m Stainless Steel Probe
- 3 S type pitot
- 4 Condensor System
- 5 SKC Pumps
- 6 Quartz Fibre Filter Papers
- 7 110V Converter
- 8 Safety Equipemnt

Appendix 3 Flare Stack Summarised Flow Criteria Measurements


Number of Ports Sampled	Number of Points Sampled	Average Velocity v'a (m/s)	Average Differential Pressure Pa (kPa)	Average Temperature ta (Deg C)
1	6	1.52	100.56	875
Determinant		Result	Units of	erne
Stack Diameter Actual Moist Flow Rate Temperature T Reference P Reference P Measured Moisture Content		1 4295.52 1148 273 101.3 For 100.56 CO 3.17 Consent of CO	Units of the second of the secon	
Flow Rate Adjusted				
1014	At STP	Corrected for Temp and	d Pressure	
982	At Dry STP	Corrected for Moisture		

-

Mayo County Council

Derrinumera Landfill, Ballina, Co. Mayo

Report Date 6th September 2006

EURO environmental services Unit 35, Boyne Business Park, Drogheda, Co. Louth

Min The Goy

EURO environmental services

Part 1:	Executive Summary
IPC Licence No:	W0021-01
Operator:	Mayo County Council
Installation:	Derinumera Landfill Co. Mayo
Contact Name:	Killian Farrell
Contact No.	098 41632
Contract Technician:	Claire Deasy/Eoin Buttle
Monitoring Dates:	23 rd August 2006
Monitoring Organisation:	EURO environmental services
Address:	35A Boyne Business Park
	Drogheda pupose outred t
	Co Louti onnet
Date of Report:	06 ⁴⁰ September 2006
Report Approved By:	en Murphy
MCERTS Reg. No.	MM05 590
Function:	Environmental Scientist
Signed:	the company
Reviewed By:	ardi

Report for the Periodic Monitoring of Emissions to Air

Report No: 1530/M09

Contents

- 1. Part 1 Executive Summary
- 1.1 Monitoring Objectives
- 1.2 Special Monitoring Requirements
- 1.3 Summary of Methods
- 1.4 Results
- 1.5 Operating Information
- 1.6 Monitoring Deviations
- 2. Part 2 Supporting Information
- Appendix 1: General Information
- Consent of copyright owner required for any other use. Appendix 2: Monitoring information

1 Part 1: Executive Summary

1.1 Monitoring Objectives

The monitoring was carried out at this installation as part of compliance monitoring of a Waste Licence requirement. All monitoring procedures were carried out to the MCERTS requirements. The substances monitored at the emission points are listed below.

Substances to be monitored	Flare
Particulates	31.8 mg/Nm ³
HCL	7.11 mg/Nm*
NO,	67.8 mg/Nm
со	55.3 mg/Nm
SO,	180 mg/Nm
Voc	3.98 mg//vgt. ¹¹⁵⁰
	1005 of to any of
SO, VOC 1.2 Special Monitoring Requirement	, redu
For price	
1.2 Special Monitoring Requirement	s

There were no special requirements for this monitoring campaign.

Substance	Standard Method	EURO SOP
Particulates	BS EN 13284-1	EM101
VOC (speciated)	BS EN 13649	EM107
Hydrogen Chloride	BS EN 1911 parts 1-3	EM 146
Flue Gas analysis	-	EM100

1.3 Summary of Methods

1.4 Monitoring Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Mayo County Council Derinumera Landfill. The results were measured from the sample positions downstream of the flare.

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Uncertainty	Units Reference Conditions 273 K, 101.3 kPa	Date of Sampling	Start/End Times	Method Reference	Operating Status	Accreditati on Status
Flare	particulates	n/a	31.8	n/a	mg/Nm [*]	23/08/06	15:55-16:25	BS EN 13284-1	As Normal	pending
Flare	HCL	n/a	7.11	n/a	mg/Nm mg/Nm	011123/08/06	15:55-16:55	BS EN 1911	As Normal	pending
Flare	NO.	n/a	67.8	n/a	mg/Ngg offy. a	23/08/06	17:10-17:25	EM100	As Normal	pending
Flare	CO	n/a	55.3	n/a	maninge	23/08/06	17:10-17:25	EM100	As Normal	pending
Flare	SO.	n/a	180	n/a	nig Ann	23/08/06	17:10-17:25	EM100	As Normal	pending
Flare	VOC	n/a	3.98	n/a	mg/Nga ^{OL} fo ¹ mgNiggel mgNiggel nggNiggel ngglionmg/Nm ³	23/08/06	16:00-16:30	BS EN 13649	As Normal	pending

Additional Information

The reported uncertainty is based on a standar@mcertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%.

1.5 Monitoring Deviations

Emission Point Reference		Substance Deviations		Monitoring Deviations		Other Relevant Information
#Lwo	None		None		None	

Comments on monitoring procedures

- All monitoring procedures performed correctly.
- All monitoring procedures performed correctly. The particulate monitoring was outside the required 95 to 115 % josk detic rate as stated in BS EN 13284-1: 2001, this situation is unlikely to adversely effect the emission test results and derived data. The velocity and temperature profile of the context of the situation is unlikely to adversely effect the emission test results and derived data. .
- The velocity and temperature profile at the sampling location of motion of the requirements of BS EN 13284-1: 2001 as the average flow . Forinst E copyright rate in the flare was below 3 m/s

Commentat

Did the sampling location meet the standard

Were all the sampling points obtainable

Were all parameters sampled?

If No, WHY? Flare flow rates were below required minimum of 3m/s as specified in BS EN 13284-1 Yes

Yes

EURO environmental services

Report for the Periodic Monitoring of Emissions to Air

Part 2: Supporting Information

IPPC Number: W0021-01

Operator: Mayo County Council

Installation: Derrinumera Landfill

Monitoring Dates: 23/08/06

Organisation and Monitoring Team Details

EURO environmental services Unit 35 Boyne Business Park Drogheda Co. Louth

041 9845440 Phone 041 9846171 Fax <u>air@euroenv.ie</u> email

Date of Report:

Report Approved By:

MCERTS Reg. No.

Function:

Signed:

06th September 2006 Kenstingen MM05 590 Conservicentist

Report No. 1530 Mary Faue 7 of 9

Version ()

EURO environmental services

Appendix 1

Sampling Personnel

Team Leader	Claire Deasy	MCERTS	Level 2	MM 05 609
Technician	Eoin Buttle	MCERTS	Level 1 training	MM 06 705

Substances Monitored

Substance	Standard Method	EURO SOP
Particulates	BS EN 13284-1	EM101
VOC (speciated)	BS EN 13649	EM107
Hydrogen Chloride	BS EN 1911 parts 1-3	EM 146
Flue Gas analysis	-	EM100

Equipment Checklist References

ent Checklist References	het the.	
Equipment Isokinetic Sampler Impinger System Pitot tube Flue Gas Analyser Glass Fiber Filters	Reference Number	
Isokinetic Sampler	EM003	
Impinger System	EM007	
Pitot tube peditorinet	EM005	
Flue Gas Analyser	EM001	
Glass Fiber Filters		
atot		
Conser		
÷		

Appendix 2

. 1

Monitoring Information - Particulates

Number of Ports Sampled	Number of Points Sampled	Average Velocity v'a (m/s)	Average Pressure (kPa)	Average Temperature ta (Deg C)
2	8	2.83	100.26	267

Determinant	Result	Units
Stack Diameter	0.85	m
Actual Moist Flow Rate	5778.25	m ³ /Hr
Flow Rate at STP	2891.95 🖋	m ³ /Hr
T Reference	273 1001	Deg K
P Reference	101.34	kPa
Consent of con	5778.25 2891.95 273 101.30 offer 101.30 offer 101.30 offer 101.30 offer 101.30 offer 101.30 offer 101.30 offer 101.30 offer 101.30 offer	

Report No: 1530/M09 Page 9 of 9

Mayo County Council

Derrinumera Landfill, Ballina, Co. Mayo

Emissions to Atmosphere Report No: 1530/M14 IPPC No. W0021-01

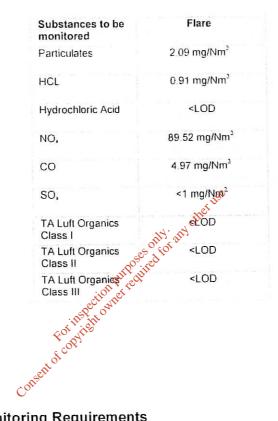
Report Date 29th June 2007

EURO environmental services Unit 35, Boyne Business Park, Drogheda, Co. Louth

Part 1:	Executive Summary
IPC Licence No:	W0021-01
Operator:	Mayo County Council
Installation:	Derinumera Landfill Co. Mayo
Contact Name:	Killian Farrell
Contact No.	098 41632
Contract Technician:	Stephen Crampton/Ewa Piatek
Monitoring Dates:	14 th June 2007
Monitoring Organisation:	EURO environmental services
Address:	35A Boyne Business Park Drogheda
Date of Report:	29 ⁽¹⁾ June 2007
Report Approved By:	Stephen Crampton
MCERTS Reg. No. Conser	MM06 754
Function:	Team Leader
Signed:	This Confection
Reviewed By:	INV (cp)

Report for the Periodic Monitoring of Emissions to Air

Report No: 1530/M14


Contents

- 1. Part 1 Executive Summary
- **1.1 Monitoring Objectives**
- 1.2 Special Monitoring Requirements
- 1.3 Summary of Methods
- 1.4 Results
- 1.5 Operating Information
- **1.6 Monitoring Deviations**
- 2. Part 2 Supporting Information
- **Appendix 1: General Information**
- Consent of copyright owner required for any other toe. Appendix 2: Monitoring information

1 Part 1: Executive Summary

1.1 Monitoring Objectives

The monitoring was carried out at this installation as part of compliance monitoring of a Waste Licence requirement. The substances monitored at the emission points are listed below.

1.2 Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

1.3 Summary	of Method	ls
-------------	-----------	----

Substance	Standard Method	EURO SOP
Particulates	BS EN 13284-1	EM101
VOC (speciated)	BS EN 13649	EM107
Hydrogen Chloride	BS EN 1911 parts 1-3	EM 146
Flue Gas analysis	-	EM100

1.4 Monitoring Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Mayo County Council Derrinumera Landfill. The results were measured from the sample positions downstream of the flare.

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Uncertainty	Units Reference Conditi ons 273 K, 101.3 kPa	Date of Sampling	Start/En d Times	Method Reference	Operating Status
Flare	Particulates		2.09	+/-1.12	101.3 kPa 15 ⁶ mg/Ng ^a	14/06/2007	12:00- 12:30	BS EN 13284-1	As Normal
Flare	HCL	•	0.91	n/a	25 of forng/Nm ³	14/06/2007	10:30- 11:30	BS EN 1911	As Normal
Flare	Hydrochloric Acid	•	<lod< td=""><td>n/a purper</td><td>iffe mg/Nm³</td><td>14/06/2007</td><td>10:30- 11:30</td><td>BS EN 1911</td><td>As Normal</td></lod<>	n/a purper	iffe mg/Nm ³	14/06/2007	10:30- 11:30	BS EN 1911	As Normal
Flare	NO,		89.52	inspit of the	mg/Nm ³	14/06/2007	12:00- 12:30	EM100	As Normal
Flare	CO		4.97 💊	of iten/a	mg/Nm ³	14/06/2007	12:00- 12:30	EM100	As Normal
Flare	SO.		<1 of	n/a	mg/Nm ³	14/06/2007	12:00- 12:30	EM100	As Normal
Flare	TA Luft Organics Class I		<1.0015	n/a	mg/Nm ³ sonthing ined formg/Nm ³ mg/Nm ³ mg/Nm ³ mg/Nm ³	14/06/2007	12:30- 13:00	BS EN 13649	As Normal
Flare	TA Luft Organics Class II	•	<lod< td=""><td>n/a</td><td>mg/Nm³</td><td>14/06/2007</td><td>12:30- 13:00</td><td>BS EN 13649</td><td>As Normal</td></lod<>	n/a	mg/Nm³	14/06/2007	12:30- 13:00	BS EN 13649	As Normal
Flare	TA Luft Organics Class III	•	<lod< td=""><td>n/a</td><td>mg/Nm³</td><td>14/06/2007</td><td>12:30- 13:00</td><td>BS EN 13649</td><td>As Normal</td></lod<>	n/a	mg/Nm ³	14/06/2007	12:30- 13:00	BS EN 13649	As Normal

Reference oxygen is 3%.

	Other Relevant Information	g			
	Oth	VHY? vas to low arour			Version: 0
mera Landfill Visit No. 01. Year: 2007	Monitoring Deviations was to low around 1.25m/sec. sampling was done ambient as r sampling was unable (DI was equired -5 to 15% rate)	No, Flow in flare was to low around 1.25 m/sec.	N N N N Lee.		
Mayo County Council – Derrinumera Landfill Visit No. 01. Year: 2007	Monitoring Deviations Flow in flare was to low around 1.25m/sec. Particulates sampling was done ambient as isokinetically sampling was unable (DI was outside of required -5 to 15% rate)		ordance only only only only only only only only		Page 6 of 9
Mayo County		I procedures Comment Job of A	Were all the sampling points obtainable? Here Yes Was monitoring carried out in full accordance to the Yes the specified standard and SOP? Were all parameters sampled?		Page
	ns Substance Deviations	214.1	Were all the sampling points obtai Was monitoring carried out in fi the specified standard and SOP? Were all parameters sampled?		
EURO environmental services	1.5 Monitoring Deviations mission Point Su Reference None	Comments on monitoring procedures	We Wa We		530/M014
EURO environi	1.5 Monito Emission Point Reference Flare	Comments o			Report No: 1530/M014

EPA Export 26-07-2013:01:04:58

Report No: 1530/M014

Report for the Periodic Monitoring of Emissions to Air

Part 2: Supporting Information

IPPC Number: W0067-01

Operator: Mayo County Council

Installation: Derrinumera Landfill

Monitoring Dates: 14th June 2007

Organisation and Monitoring Team Details

EURO environmental services Unit 35 Boyne Business Park Drogheda Co. Louth

041 9845440 Phone 041 9846171 Fax <u>air@euroenv.ie</u> email

Date of Report:

Report Approved By:

MCERTS Reg. No.

Function:

Signed:

29th June 200^{5,es only} and other use. Stephen & rampton MM06 754

Appendix 1

Sampling Personnel

Technician	Stephen Crampton	MCERTS	Level 1	MM06 754
Technician	Ewa Piatek	MCERTS	Trainee	MM07 799

Substances Monitored

Substance	Standard Method	EURO SOP
Particulates	BS EN 13284-1	EM101
VOC (speciated)	BS EN 13649	EM107
Hydrogen Chloride	BS EN 1911 parts 1-3	EM 146
Flue Gas analysis	-	EM100

Equipment Checklist References

Equipment Checklist References	e vee.
Equipment	Reference Number
Isokinetic Sampler	EM003
Impinger System	EM154
Pitot tube	EM005
Testo-Flue Gas Analyser specific the	EM094
Glass Fiber Filters of Treat	ne (konstruction of the second states in the second
SKC Air Pump	EM042, EM043
Consent	

Appendix 2

Monitoring Information ~ Particulates (Ambient sampling)

Number of Ports Sampled	Number of Points Sampled	Average Velocity v'a (m/s)	Average Pressure (kPa)	Average Temperature ta (Deg C)
1	1	1.35	99.45	845

Result	Units
0.8	m
_	m³/Hr
-	m³/Hr
273 se ^e .	Deg K
101.3 20	kPa
nspection purchase	

Report No: 1530/M014