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Chapter 6 Results - Old Head Model

Chapter 5 presented the results of the RP model. This model was used to
determine the relative contributions of all of the outfails, with the exception of
Carrigaline/Crosshaven, to the contamination of the model oyster farm in the
North Channel. This outfall was omitted from the RP model as it was positioned
too close to the open boundary of the model at Roches Point. Viruses, which
pass through the open boundary, are taken out of the model. For
Carrigaline/Crosshaven this would iead to an unacceptable level of error in the
Norovirus model. The Carrigaiine/Crosshaven outfall has therefore been
modelled using the Oid Head (OH) model. The open boundaries of this model

are approximately 12km from Roches Point.

6.1 The OH model NN

The OH model has four nested gr:d@\%a?:h with a different resolution (Fig. 6.1).
The outer grid, from the Old He@gﬁ(msaie to Roches Point is resolved with a
162m grid. The three grids n@?@w:thm this area are identical o the three grids,
which form the RP model, 5<fhe OH model is therefore the RP model nested

QOQ@

within an outer grid.
The parameters® of the RP model were used for the three inner grids of the OH
modei®®. The hydrodynamic parameters of the 162m grid are listed on the next
page. The advection dispersion parameters of the 162m grid were the same as

for the other grids.

8 Grid resolution, timestep, bed resistance, eddy viscosity, dispersion coefficient etc.

% The alterations to the open boundary of the RP model at Roches Point were not applied at the
same location in the OH model. Adjustmenis were however made to the open boundaries of this

mode! as can be seen from Fig. 6.1
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Fig. 6.1 Old ggg’@'? (OH) model.

Q
e Eddy Viscosity — A fluxély%@d eddy viscosity value of 20m?/s over the

entire 162m grid was gé\@ This value was reduced near Roches Point to
agree with the value Q&? m?/s used in the 54m grid.

\.
o Bed Resistancgs~ A Manning’s M value of 60m"%sec over the entire 162

m grid was used.

6.2 Hydrodynamic Calibration

The boundary conditions of the OH model were provided by a numerical model,
which covers part of the North West Atlantic Shelf. In other words the OH model
is also embedded in a larger model. The Applications Group at the Proudman
Oceanographic Laboratory (POL), UK, supplies hindcasts of (a) tide-plus-surge,
and (b) tide-only levels on a grid covering part of the North Atlantic Shelf at
frequencies of 1 hour for (a) and 20 minutes for (b) respectively. The centre uses
its POL CS3 model to provide the annual hindcast at the end of each calendar

year. Datasets are available from 1992 onwards.
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Two years of hindcast data (1992 & 2004) were purchased from POL for this
project. Data from the three points closest to the mouth of Cork Harbour, which
form a right-angle, were selected from the CS3 grid and used to drive the
hydrodynamics of the OH hydrodynamic model.

The tide-plus-surge data were interpolated beiween the data points and
extrapolated between the data points and the land to form a profile series?. The
two profile series describe the variation in water level and fluxes along the open

boundaries of the model.

A period in June 2004 was selected from the two years of data to drive the
hydrodynamic model®™. This was the period in which the best calibration to the
measured datasets was achieved. These datasets were provided by the Port of
Cork and are the measurements of water level from the gauges at Cobh and

Tivoli (Fig. 6.2). &
®®

The calibration plots for this period are hlghggbg%d in following figures®.

The calibration for a 60 hour period @@f n in Fig. 6.3. We can see from the
figure that the model is underestm@ﬁag the water level by as much as 40cm. If
we look at the entire period (Fl@@) we can see that the maximum error varies

between 28cm and 40cm. \ooQ
(§)
N

AN
The calibration plots forégéegauge at Tivoli are shown in Fig. 6.5 (60 day period)
and Fig. 6.6 (whole period). We can see from these plots that the error is slightly

higher for Tivoli.

® A profile series contains data, which describes the variation in time of a variable along a line in
space.

* The period in 1992 was not used for the OH model. The CS3 hindcast for 1992 was run with a
meteorological model with a resolution of 50km. The oufput was not within an accepiable levet of
error. The 2004 hindcast used a meteorological model with a 12km resoiution which significantly
improved the accuracy of the CS3 model.

® Only water levels were calibrated. No current speed and direction measurements were

availabte for this pericd.
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Fig. 6.3 Cobh Calibration for a 60 day period. The difference between the
modelled and the measured is plotted using the black line on the second y-axis.
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Fig. 6.4 Cobh Calibration for the entire pe oﬁjg@\l/l/e can see that the gauge failed
st?June.

on the ¥
&
& é\\
Tivoli - Recorded Suiface Elevation [ ——— § N\ Differences_Tivoli [m] =———
Tivoli - Modelled Surface Hevation [in] ——— §
457 0.50
Al e ISR E 0.0
1 - 0.30
 H ] R | | Pee Aot (P
: - ; ; - 0.20
3‘0: ,,,,,,,,,,,,, o :. ..................... : ,,,,,,,, | e : ......
] 1 0.10
2,5_ ..................... 5 ................. r
] : - 0.00
T ) [DUERERTRSRSNG | (8 8 SR ST | R pescach r
H : F-0.10
1.5_ .........................................................................................
i ' : : [-0.20
/ L 0.30
L A Y : P
0.0 e e e —+ .50
00:00 12:00 00:00 12:00 00:00 12:00
20040603 0604 0605

Fig. 6.5 Tivoli Calibration for a 60 day period. The difference between the
modelled and the measured is plotted using the black line on the second y-axis.
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The error assomated with t@@bh and Tivoli gauges are not within an
acceptable range . An err@@Q4Ocm will lead to an unacceptable error in the
tidal prism of the harboqﬁ} Wthh in turn will lead to errors when modelling

particles advected anddispersed by the tide.

Unlike the RP model, the boundary conditions of the OH model are not recorded
measurements. They are outputs from a numerical model. Using one model to

drive another has inherent limitations:

1. There is a potential for a cumulative build-up of errors. Any errors
associated with the CS3 model will be propagated into the OH model. The
open boundary of the CS3 model is the open sea along the North Atlantic
shelf. The accurate description of this in the CS3 model could be a source

of potential errors.

8 Numerous other values of viscosity and bed resistance values were tried without success.

180

EPA Export 25-07-2013:23:48:05



Modelling the Norovirus in Cork Harbour Chapter 6

2. The resolution of the CS3 model is 12km. Therefore any data derived
from it is representative of a 12km square water column in the Celtic Sea.

3. There was no downscaling from the 12km grid of the CS3 to the 162 m
outer grid of the OH model i.e. no intermediate grid. Overcoming this
particular problem would have required purchasing additional data for

points further out in the Celtic sea.

When these limitations are considered we can see that the calibration of the OH
model is reasonably good. It is not good enough however to replace the RP

model.

The main objective in using the OH model is to determine the relative
contribution of Carrigaline and Crosshaven to the cogj[ammatlon of the oyster
farm. We can do this by comparing the Contrlbuthq@?of Carrigaline/Crosshaven
with the contribution of the other outfalls s@ﬁlﬁed using the OH model. We
cannot make direct comparisons with re@gﬂ% obtained from the RP model®®.

A comparison between Camgahn%‘é@@ Crosshaven with Cobh, Midleton and
Cloyne for summer and wmte&&g@ltlons is presented in the following two
sections. These outfalls haveoxt?een chosen as they are the ones which lie closest
to the oyster farm. The erﬁ“r associated with them is therefore less than for ones

further away.

6.3 Summer Conditions

The summer conditions presented in this section used the recorded wind and
river flows from June 2004. This corresponded to a period of exceptionally low

flows in the River Lee and Owenacurra®®.

* As well as the error in the OH model, the boundary conditions are for a different period than
that used for the RP mode! (i.e. there is a different tidal signal in the harbour and so a like-for-like

comparison is not possible).

% The flows in rivers were so low that they were selected for the sensitivity analysis in Chapter 8.
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The timeseries of concentration for Carrig and Cobh_R are plotted in Fig. 6.7.
The moving averages are plotted in Fig. 6.8. We can see from both figures that
Carrigaline_C is contributing less than Cobh_R for the 20 days shown. We can
see that the peaks in concentration from Cobh are up to 4 times larger than the

peaks from Carrigaline_C. We can also see that there is a factor of two to three

difference in the averages.
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Fig. 6.7 Timeseries of Carr'?@%@(}??e/ Crosshaven and Cobh_R at Centre of Oyster
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Fig. 6.8 Moving Averages for Cobh and Carrigaline_C
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Carrigaline_C is plotted against Cloyne and the untreated waste from Midleton in
Fig. 6.9 and Fig. 6.10. We can see that Cloyne is contributing more initially but
by the end of the simulation they are contributing an equal amount. The
untreated waste from Rathcoursey is contributing much more than

Carrigaline_C.
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Fig. 6.10 Timeseries of Carrigaline/ Crosshaven and RC_S&C at Centre of
Oyster Farm — Summer Conditions
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6.4 Winter conditions

The winter conditions were simulated using the wind and river flows from the

1992 dataset used for the RP model runs to simulate more realistic winter

conditions.

The time series of concentration for Carrigaline_C and Cobh_R are plotted in
Fig. 6.11 for winter conditions. We can see from the figure that the relative
contribution for the outfalls has changed slightly. Relative to Cobh_R,
Carrigaline_C is contributing less than half that of Cobh. With the slower decay
in winter months the greater distance of Carrigaline_C to the oyster farm
becomes less relevant. This is also evident for Fig. 6.13 where we can see
Carrigaline_C plotted with the untreated waste from Midleton. While Midleton is
contributing more than Carrigaline_C the difference between the two is less,
relatively speaking, than for the summer conditi%@g‘
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Fig. 6.11 Timeseries of Carrigaline/ Crosshaven and COBH_R at Centre of
Oyster Farm — Winter Conditions

184

EPA Export 25-07-2013:23:48:05



Modelling the Norovirus in Cork Harbour Chapter 6

Moving Averages of Concentration - OH Model
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Fig. 6.13 Timeseries of Carrigaline/ Crosshaven and RC_S&C at Centre of
Oyster Farm — Winter Conditions
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6.5 Conclusions

The release of viral particles from the combined outfall for the towns of
Carrigaline and Crosshaven has been simulated using the Old Head model. A

direct comparison with the RP model is not possible.

The results presented in the chapter indicate that for summer conditions the
contribution of Carrigaline and Crosshaven is approximately a third of the
contribution of Cobh and Ringaskiddy. In winter it is approximately half.
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Chapter 7 Sensitivity Analysis

7.1 Introduction

A sensitivity analysis has been undertaken as part of the study. The purpose of a
sensitivity analysis is to identify which uncertainties in the model may or may not

alter significantly the results of the model.

A number of the parameters used in the models have been adjusted and are

presented in this Chapter. The sensitivities presented are:

1. Assume 20 million viral particles per cubic metre in raw sewage. Assume

an 85% removal efficiency from a secondary waste water treatment plant
2. Apply a different numerical scheme ULTW&A’%E) to the Norovirus model.

3. Specify the dispersion coefficient q@(&*}*propomonal to the current, and
(b) a function of the grid sp@jﬁ@b and timestep (independent of the

current S
) @0@
4. Run the model wnthoug{gh;@ﬁwnd forcing.

5. Run the summer co@:tions with extremely low river flows but with the

&
same wind forcingas in Chapter 5.

6. Divide the unireated waste from Cork City (before Carrigrennan was
constructed) between the City, Tramore and Little Island outfalls.

7. Include Salinity in the hydrodynamic model.

8. Examine different release patterns from Rathcoursey and make a direct
comparison between releasing Norovirus at Rathcoursey and Bailick road

in Midleton.

9. Consider adsorption of Norovirus on Suspended Sediment.

7.2 Sensitivity One

In the resuits presented in Chapter 5 we have assumed 50 million Norovirus are
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present in every cubic metre of raw sewage. We have also assumed that 95% of
the Norovirus are removed in a secondary waste water treatment plant
(discussed in Appendix D). A similar study to ours undertaken by a team of
microbiologists at IFREMER®, France, assumed that (a) there are 20 million
Norovirus present in every cubic metre of raw sewage and (b) the removal
efficiency of secondary treatment is 85%. We have scaled our timeseries of
concentration at the centre of the oyster farm as presented in Chapter 5 to match

these assumptions.

If we rescale the results by just considering the first assumption on its own we
find that the relative contributions are unchanged for each of the six cases. This
is to be expected as the reduced number of Norovirus per cubic metre is applied
to each and every outfall and so the concentration at the centre of the model

oyster farm is reduced by 60% for the entire SImu@lon period.

When we rescale the results conmdermg @ assumptions we find that the
relative contributions for some of th Q@,es change. For the first two cases
(Period 1, summer and winter) the @ﬁgilve contributions do not change as there
are no treatment plants in op%é@e‘h during this period and the reduction in the

(\
number of Norovirus is app@éqﬁ each outfall.
0

For the cases 3 and 4@&@erlod 2, summer and winter) there is a very minor
change to the relative@ontrlbutlons This is due to an increase in the contribution
of the treated waste from Rathcoursey as it is now assumed to be removing 85%
of the Norovirus. This difference however is approximately 1% reflecting the

minor contribution of RC_S&C.

When the results for Case five and Case six are rescaled we find a significant
difference in the relative contributions. The removal efficiency of Carrigrennan

and Rathcoursey is now reduced from 95% to 85% and so both are contributing

% Pommepuy, M. et al. “Fecal contamination in coastal waters: An engineering approach” Book
chapter (p331-359) in Oceans and Health: Pathogens in the Marine Environment. Springer 2008.
http://www.springerlink.com, http:/www.ifremer.fr/docelec
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a greater number of viral particles to the oyster farm. The storm water overflows,

the houses and Cobh etc are all contributing less.

The relative contributions for the rescaled Case 5 are presented in Fig. 7.1. To
aid the reader in making a comparison the relative contributions for Case 5, as

presented in Chapter 5, is repeated underneath in Fig. 7.2.

Average Values

BCGT90=7d

BCLOY T90=7d
W 26%

W31%
DCHT90=7d

BRC_TT90=7d

BPGM T90 = 7d

14%
ECOBH_RT0 = 7d

| 14%
mio% O0%

W 5% Lo
N~ BMHOUSES T80 = 7d

BCGT90=7d

BCLOYT90=7d

OCHTe0=7d

W19% | BRC_TT90=7d

B PGM T90 = 7d

00%
M 5% BCOBH R T90 = 7d

W7%
m19% BHOUSES T20 = 7d

Fig. 7.2 CASE 5 — as presented in Chapter 5

We can see from the figures that Carrigrennan is now contributing more than the
Houses around the North Channel. Cobh and Cloyne are contributing less than

before.

The relative contributions for the rescaled Case 6 are presented in Fig. 7.3. The
relative contributions for Case 6, as presented in Chapter 5, are repeated

underneath in Fig. 7.4,
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We can see from the figures that Carrigrennan is contributing as much as the

overflows from Bailick 1.
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Fig. 7.3 CASE 6 - Average Concentrations — The Relative Contributions after
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Fig. 7.4 Case 6 — Average Concentrations — as presented in Chapter 5

From these plots we can see that the relative contribution of Carrigrennan to the
contamination of the model oyster farm is very sensitive to its removal efficiency.

By assuming a reduction in removal efficiency from 95% to 85% the relative

contamination increases from 14% to 31%.

7.3 Sensitivity Two — ULTIMATE scheme, Winter Conditions

There are four numerical schemes in MIKE 21 which may be used to simulate
the advection and dispersion of Norovirus in Cork Harbour. These schemes are:
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e The Quickest Scheme®'

¢ The ULTIMATE scheme®
¢ Simple UPWIND

s 2D UPWIND

The results presented in Chapter 5 used the Quickest scheme. As part of the
sensitivity analysis we have simulated a number of the outfalls using the
ULTIMATE scheme. The UPWIND schemes were not used.

The following three figures present both the Quickest and ULTIMATE timeseries
of concentrations for three of the sources of Norovirus in our study. We can see
from the figures that the differences between the two schemes are very minor.
The Quickest scheme gives slightly higher peaks in concentration for each of the
sources. From this we can conclude that there is »%ry little difference between
the Quickest or ULTIMATE schemes for me@mula’{lon of Norovirus in Cork

O \
Harbour. G
\Q S
O
'\\OQ@\K
&
N
<<(§ \\'\\Q
S\QOQ
<\\'O
&
RS
¢

* Ekebjaerg, L. (1991), “ An explicit scheme for advection-diffusion modelling in iwo
dimensions”, Computer Methods in Applied Mechanics and Engineering, 88, pp. 287-297

* Leonard, B.P. {(1991), * The ULTIMATE conservative difference scheme applied to one-
dimensional advection®, Computer Methods in Applied Mechanics and Engineering, 19, pp. 59-
98
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Fig. 7.6 RC_S&C ULTIMATE and Quickest Schemes
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Fig. 7.7 Comparison of Overflows from Baiﬁ%@\‘? using the Quickest and
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I S . .
7.4 Sensitivity Three - (Dispersion Coefficient, Winter
" S
Conditions E&°
QO\*{\Q
R

Two separate sensitivities a{@oexamined in relation to the dispersion coefficient.
The first specifies the cgﬁfﬁ\cient as proportional to the current while the second
uses a very high value independent to the current option.

7.4.1 Proportional to the current
There are two ways in which to define the dispersion coefficient in MIKE 21:

* Independent of the current

° Proportional to the current J

The results presented in Chapter 5 used the “independent of the current” option. |
A constant value of 1m%s was used over the entire grid in both the x- and y- |
directions. As part of the sensitivity analysis the “proportional to the current” |
option was used. When this option is chosen the dispersion coefficients are, at ‘

every timestep, scaled in accordance with the calculated fluxes. Maximum and
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minimum values are defined to avoid instabilities. A proportionality factor for

each direction is also defined.
The values used in the sensitivity were:

Minimum Value = 0.3m%s; Maximum Value = 2m?s; Proportional Factor in x-
and y- direction =1
The maximum value was set at 2m%s to avoid numerical instabilities in the

Norovirus model.

The differences between the two different options are presented in Fig. 7.8 for
CC_S&C and Fig. 7.9 for RC_S&C. We can see from both figures that the

differences between the different options are negligable.
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Fig. 7.8 Dispersion Coefficient Sensitivity — CC_S&C
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Fig. 7.9 Dispersion Coefficient Seng@ﬁ’ﬂty RC_S&C
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7.4.2 “Independent of the Current” —%eﬂtments as a function of the grid
\
spacing and timestep QSQ@\
'\
x\o ¢

The results presented in Chapig&éoused 1m?%s as the value for the dispersion
coefficient. This value was c%ss\}ant across each of the nested grids and was
defined as being “mdepengﬁnt of the current”. As part of the sensitivity analysis
the dispersion cms'fﬂcleﬁffD was specified as a function of the grid spacing and

timestep through the formula:

Dx = K {Ax%/At}

where
e Dy is the dispersion coefficient
* Kis a dimensionless empirical constant
* Axis the grid spacing

° Atis the timestep
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A value of 1m?s is required for the 6m grid to ensure numerical stability

(implying that K is approximately 0.1). From this formula we find:
e Dyx=0.9 m%s for the 6m grid;
e Dyx=8.1 m%s for the 18m grid;
e Dy=72.4 m%s for the 54m grid;

Using these values as a guide we have defined a grid based dispersion
coefficient map as part of this sensitivity analysis (Fig. 7.10). We can see from
the plot that the 6m grid has a value of 1 m?/s; the 18m grid has a value of

10m%s and the 54m grid has a value of 50m?/sec.

These values are extremely high and represent the upper limit of realistic values
of the dispersion coefficient. If they were applied to the eddy viscosity in the
hydrodynamic model the current speed and difection calibration for Lough
Mahon and the Spit Bank as presented in Cég@ter 3 would not be as good. The
eddies which form in the outer har F\O\Nould also be significantly reduced
contrary to the observation of harbo@’?ﬁﬁots and sailors.

(kilometer)

Dispersion Coefl

50
10
1

—r T T L o | T T —— T
i 6 8 10 12 14 15 18 20 22 2] 2%
{kilometer)

Fig. 7.10 Dispersion Coefficient Map

The timeseries of Norovirus concentration for sensitivity analysis are now
presented. We can see from Fig. 7.11 that with the higher dispersion coefficients
the contribution from CC_S&C is marginally higher. The peak values in

concentration are consistently higher by 20 — 30%.
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We can see from Fig. 7.12 that the contributions from Cobh_R for both cases are

very similar with the exception of the period after the strong wind from the west

on the 23" of February. For this period the peak values in contamination are

reduced due to the enhanced dispersion in the outer harbour.
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Fig. 7.11 CC_S&C d@@g@on coefficient sensitivity
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From Fig. 7.13 we can see that the contribution from RC_S&C is

Fig. 7.12 Cobh_R dispersion coefficient sensitivity

the higher dispersion coefficients.
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Fig. 7.13 RC_S&C dispersion coefficient sensitivity
0&

7.5 Sensitivity Four — No wind, Wmét\ Condltlons
oo\

The influence which the wind exerts @descnbed in Chapter 5. As part of the
sensitivity analysis we have run Qo%im‘zalanon in which the wind was omitted. For
this simulation the same rlveoré%i& as before were used.

Fig. 7.14 presents the tmeé@r?es of concentration for the untreated sewage from
Cork at the centre of tg@\model oyster farm for winter conditions. We can see
that the contribution is much less when the wind is omitted. With no wind blowing
the number of viral particles passing through the Belvelly Channel is greatly
reduced. This has a considerable influence on the relative contribution of
CC_S&C (and CG) on the contamination of the model oyster farm. The moving
averages of concentration are presented in Fig. 7.15. We can see from the figure
that including the wind approximately doubles the contribution of CC_S&C. If we
plot the tidal signal from Fort Camden with the extracted timeseries for a short
period (Fig. 7.16) an interesting pattern emerges. We can see from the figure
that when the wind is included the concentrations rise to a maximum on the ebb
tide. When the wind is excluded the concentrations rise on the flood tide. This
clearly illustrates that wind plays a significant role in contaminating the model

oyster farm. The peak in concentration on the ebb tide indicates that the viruses
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are passing through the Belvelly Channel on the preceding flood tide and are

carried through the model oyster farm on the ebb tide. When the wind is

excluded the main route by which the viruses are carried to the model oyster

farm is around Cobh Island. In this case the peak in concentration occurs on the

flood tide as the water from the outer harbour, carrying all the viruses, flows up

the East Passage and into the North Channel.
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Fig. 7.15 Moving Averages of Concentration for the CC_S&C — Wind Sensitivity
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Fig. 7.16 No Wind Sensitivity with Tidal Signal &?ose up view. The tidal signal is
plotted using the dashed b!acka#n@on the secondary y-axis.

From Fig. 7.17 we can see thgﬁv@‘é opposite is the case for RC_S&C. With no
wind blowing the contribu@m@ increased. This result is to be expected. The
winds from the West a\nﬁp South West which increase the contribution of
CC_S&C decrease t@}é‘d‘é\c\ontrlbutlon of RC_S&C such that when the wind is
removed the contribution increases. The moving averages are plotted in (Fig.
7.18). We can see from the figure that the averaged concentrations only start to
diverge when the strong wind from the west blows on the 22™ of February. They
diverge further when the wind blows from this direction again in a later period at

the start of March.
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Fig. 7.17 No Wind Forcing Sensfﬁv@‘y@‘— RC_S&C
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Fig. 7.18 Moving averages of concentration for RC_S&C

From Fig. 7.19 we can see that the influence which wind exerts on the
contribution of COBH_R to the model oyster farm also varies. For the first 20
days the concentrations are consistently higher by a relatively small amount.
After strong winds from the South around the 5™ of March the contribution drops

with the real wind simulation.
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Fig. 7.19 No Wind Forcing Sensitivity — COBH_R
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Fig. 7.20 Cobh_R Moving Averages of Concentration for the wind sensitivity

From these plots we can see that the wind plays a major role in the

contamination of the model oyster farm.
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7.6 Sensitivity Five — Extremely Low River Flows in Summer

The results presented in Chapter 5 used the recorded river flows from February
and March 1992. These flows were used for both the winter and summer
conditions®. As part of the sensitivity analysis we have run the summer
conditions for a number of the outfalls with extremely low river flows. Fig. 7.21
presents the results for CC_S&C. In this figure the timeseries of concentrations
for both cases are plotted on the left hand axis while both of the river flow
timeseries are plotted on the secondary y-axis. The black dashed line is the
River Lee flow timeseries for the results presented in Chapter 5 while the pink
line is the River Lee flow timeseries for this sensitivity. We can see from the

figure that there is a significant reduction in the contribution of CC_S&C for this

case.
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Fig. 7.21 Low Flows in Summer Sensitivity — CC_S&C. The river flows are
plotted on the secondary right axis

These reduced river flows need to be considered in the context of a year’s data.

Fig. 7.22 presents the recorded river flow from the gauge downstream of

* The gauge at Leemount failed for the first few months of 1992. The daily averaged flow from
Inishcarra Dam, scaled to the correct catchment size at the Waterworks weir was therefore used. ‘

2
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Leemount Bridge. The low flows at the start of June were the flows selected for
the sensitivity analysis in this section. We can see from the figure that much
higher flows occur in summer and in the rest of the year. A three week period
from this timeseries is plotted in Fig. 7.23. We can see quite clearly from this plot
the influence which the dam at Inishcarra exerts on the flow in the River Lee.
The rapid increase in flow is due to the sudden release of water from the dam
which happens quite frequently. We can see from the plots that the flow at

Leemount regularly exceeds 80m?sec in both summer and winter.
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Fig. 7.22 Re@Brded Flow at Leemount Bridge — 2004
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Fig. 7.23 Recorded Flow at Leemount Bridge — Detailed Period
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The low flows sensitivity for RC_S&C, CG and COBH_ R are presented in the

next three graphs. We can see from the figures that the contribution of these

outfalls is not very sensitive to the low flows in summer.
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@
7.7 Sensitivity Six — Division of @@7@5&0

S &
Before the construction of Carngre\iﬁeﬁ the untreated waste from Cork City was

discharged from a number ogqé“ctﬁ?falls into Cork Harbour. The main outfalls
serving the City were Ioca@%@‘\at Horgans Quay and Kennedy Quay near City
Hall. A number of otheré\amor outfalls were located around the central island of
the City, Blackrock wh%ge Horgans Quay and Water Street. As well as these,
separate outfalls served the Tramore Valley catchment and the Little

Island/Glounthane catchment.

The results presented in Chapter 5 for the untreated waste from Cork considered
each of these individual source discharge points to be discharged from a single

outfall downstream of Horgans and Kennedy quay.

As part of the sensitivity analysis we have divided the sewage discharge into the
three separate catchments: Cork City, Tramore Valley and Little
Island/Glounthane. The Kennedy Quay outfall serving Cork City was moved a
small distance upstream to the nose of the Central Island of Cork City. In the
previous chapters this outfall had been placed just downstream of Kennedy
Quay. The 1992 Main Drainage Report from EG Pettit Ltd allocates the sewer
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catchments of Cork City to the main outfalls at Kennedy Quay, Albert Quay,

Tramore Valley and Lough Mahon.

The difference between these two approaches is presented for the winter and

summer cases in the following two diagrams. We can see from the figures that in

both cases the differences are very minor. There are marginally higher peaks for

the case when all the waste is discharged through a single outfall just

downstream of Kennedy Quay.
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7.8 Sensitivity Seven - Including Salinity, Winter Conditions

Salinity may be included in the model through the use of the ‘HD feedback’
option in the Advection dispersion model. When this option is included the
horizontal density gradients become an additional forcing function in the
momentum balance of the hydrodynamic model. Salinity has been included in

the model as part of the sensitivity analysis.

Initial conditions, which describe the variation in salinity over Cork Harbour at a
particular moment, may be estimated through the use of a regression equation®
based on salinity measurements taken at high and low water at roughly seven

two-monthly intervals during one year (Fig. 7.29).
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Fig. 7.29 Regression equation in excel

Using this regression equation, initial conditions, which describe the variation in
salinity over Cork Harbour, were obtained. A two-week warm up period was then

simulated with these initial conditions to allow for salinity and recorded river flows

® See Chapter 4 in O'Kane, JPJ “Estuarine Water Quality Management with moving element

models and optimisation technigues” Pitman, London. 1980.
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to interact. A constant value of 35psu was used as the boundary condition for the
salinity.

The end of this two-week warm up period was chosen to coincide with the start

of the 20 day viral pulse, 9:00am on the 15" of February.

The results from this sensitivity are presented in the following figures. We can
see from Fig. 7.30 that the contribution of CC_S&C at the centre of the model
oyster farm has doubled. If we look at the moving averages (Fig. 7.31) we can
see that this factor of two is consistent for the entire simulation period with the
exception of the last day. We can see from Fig. 7.32 that the inclusion of salinity
also doubles the contribution of Carrigrennan to the contamination of the model
oyster farm.
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Fig. 7.30 Salinity Sensitivity — CC_S&C
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Untreated Waste, Cork City - Moving Averages of Concentration
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Fig. 7.31 Moving Averages — S{@ifﬁfy Sensitivity
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Fig. 7.32 Salinity Sensitivity — CG

If we look at COBH_R (Fig. 7.33 and Fig. 7.34) we can see that there is also an

increase. It varies between 10 — 30%.
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Fig. 7.33 Salinity Sensitivity — %@BH_R
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Fig. 7.34 COBH_R — Moving Averages of Concentration

I we look at RC_S&C however (Fig. 7.35 and Fig. 7.36) we can see that there is

a minor change in the contribution of 5 - 10%.
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Fig. 7.35 Salinity Sensitivity — RC_S&C
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Untreated Waste, Midleton - Moving Avera%@ of Concentration
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Fig. 7.36 RC_S&C Moving Averages — Salinity Sensitivity

The results of the salinity sensitivity need to be treated with caution. No high-
frequency measurements of salinity were recorded in the harbour and therefore
no comparison of modelled salinity with recorded salinity can be made. As well

as this we have assumed a constant value of 35psu® as the boundary condition

% hitp://www.ria.ie/cgi-bin/ria/papers/100647.pdf
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of the salinity model. High-frequency measurements of salinity from Roches
Point should be used to specify the boundary condition of a salinity model of
Cork Harbour.

7.9 Examining different release patterns from Rathcoursey & a
comparison between releasing Midieton’s viral loading at
Rathcoursey and at Bailick road in Midleton

As part of the sensitivity analysis we have examined different release patterns
from the outfall at Rathcoursey. We have also made a comparison between the
Rathcoursey and Midleton {Bailick road) discharge points by applying the loading
from Midleton at each location under the same environmental conditions {no
wind & no salinity) and comparing the resulting contamination at the model

&
oyster farm. &\‘)

7.9.1 Different releases from Rathcoursey ag?i\o*?@
The results in Chapter 5 modelled the re&&%s@from Rathcoursey as a 3 hour
pulse on the ebb tide which commengéﬁcﬁo minutes after high water. In this
sensitivity we have modelled the relééi’(@ from Rathcoursey in four different ways
as listed below. In each case we h@\?e modelled winter conditions (T90 = 30d) for
Period 1 (i.e. before the WWTP at Midleton was constructed) for 20 days. In
each case we have excluded the influence of wind and salinity.

* SA 1 — RC Puised on the ebb tide for 3 hours (same release as

presented in Chapter 5)

e SA_2 - Continuous release. There is a constant discharge of Norovirus

from the Rathcoursey outfall on the ebb and flood tide.
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e SA 3 - The waste is pulsed from the outfall 1.5 hours before high tide for

3 hours. This release pattern corresponds to the way in which

comminuted sewage was released from 1988 to 1992%.

e SA_4 — Worse case scenario pulsing. In this case the untreated waste is
released 1 hour after low tide for 3 hours such that all of waste is carried
into the North Channel on the flood tide. This is a hypothetical pulsed

release.

In order to make a valid comparison between the different release patterns we

have used the same loading for each case.

The concentrations from the centre of the model oyster farm are presented in

Fig. 7.37 below. The moving averages are presented in Fig. 7.38.
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Fig. 7.37 Comparison of different release patterns from Rathcoursey

% Up to the middle of the 1980’s there was no sewerage scheme in Midleton. Sewage was
discharged to the estuary at various points within the town. Between 1986 and 1988, a new

collection system was laid; comminuted sewage was now pumped to Rathcoursey and released
on a tidal clock. Form 1988 to 1992 the comminuted sewage was released 1.5 hours before high
water for 3 hours. From 1992 onwards this was altered such that the comminuted sewage was

released 30 minutes after high water for 3 hours.
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We can see from Fig. 7.38 that when compared with the continuous release, the
pulsing of the comminuted sewage reduced the contamination at the model
oyster farm by as much as 50%. We can also see that the worse case pulsing
scenario contributes more than twice the contamination of the post-1992 pulsing.
We can also see from the figure that the pulsed release pattern from 1988 to
1992 is marginally better that the post-1992 puising.

The tidal clock at Rathcoursey is set manually on Monday every week for each
day during the following period of two weeks. The resetting is required because
the tidal cycle of 12 hours and 25 minutes is not synchronised with the day/night

cycle of 24 hours.

If the clock were to continue to run without resetting the clock time of high water
would diverge from actual time of occurrence by 50 minutes every 24 hours.
After 6 days without resetting, the clock would say g\% high water, when in fact it
is low water and vice versa. In these cwcun@%aces the pulsed discharge would
take place after low water directing the %gﬂ’@ént inwards towards the oyster farm
and not away from it. Consequently, Qt‘%@‘eekfy setting and daily operation of the
tidal clock shouid be subject thﬁuﬁ‘omatlc audit. At present no records are

maintained of its operation. QOQA*\Q
S\
From the results presentg@‘ in this sensitivity analysis we can see that the

intended or design pu!s;ﬁg of the discharges from Rathcoursey has a beneficial

effect on contamination of the mode! oyster farm.

In the sensitivity analyses SA1 to SA4, we have considered the untreated load
from Midleton i.e. period 1. All releases from Rathcoursey in Period 3 and at
present are treated with 95% removal of Norovirus.
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Comparsion of different releases from Rathcoursey
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Fig. 7.38 Comparison of different release pattq@s from Rathcoursey — Moving

Averagos®
S S
7.9.2 Comparison between a A{\@?@?}ms (T90 = 30days) release at Bailick

road in Midleton and Fggrhé\oursey
0)
\\
In order to make a compar@@w between a release of Norovirus at Rathcoursey

and at Bailick Road in Wleton we have applied the untreated Midleton load at
(a) Rathcoursey andc’ Bailick Road in Midleton®”. We have modelled the
release from Bailick road as a (1) continuous discharge and (2) pulsed
discharge. The pulse is equivalent to the post 1992 discharge i.e. released for 3
hours 30 minutes after high water. Salinity and wind have been omitted from this

sensitivity analysis. The two different sensitivity analysis runs are given as:
e SA 5 - Pulsed discharge at Bailick, untreated Midleton load

e SA_6 - Continuous release at Bailick, untreated Midleton load

¥ The source discharge point in the model used to discharge the untreated waste at Bailick road
is representative of the discharge of waste from Midleton pre-1988. The point also coincides with

the discharge point for Bailick 1 as presented in Chapter 5.
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Both cases are plotted in Fig. 7.39. We can see from the plot that the
contamination at the centre of the oyster farm is equivalent for both the

continuous and pulsed releases.

The contamination at the model oyster farm from the Midleton load released at
Bailick Road and at Rathcoursey is plotted in Fig. 7.40. We can see from the plot
that the contribution from Bailick road is significantly greater than that from
Rathcoursey. The moving averages are shown in Fig. 7.41. From this we can
see that the contribution from the loading released at Bailick Road is
approximately double that of it being released from Rathcoursey. For the first
three days however the opposite is true. We can see from the plot that the
loading released from Rathcoursey is greater than the loading from Bailick road

up until the 18" of February.

We can conclude that when pulsed on the ebb tigeézﬂathcoursey offers a much
better location in which to release waste cogwpgied to the releasing it at Bailick
road (i.e. the pre-1988 release Iocgﬁ:@ﬁ‘) Initially however Rathcoursey
contributes more than the equwalent I@‘égﬁihg from Midleton.
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Fig. 7.39 Pulsed and Continuous release at Bailick Road
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There are two main reasons why an identical viral load released at Bailick road

and Rathcoursey differ in their contamination of the model oyster farm:

1. Although the outfall at Rathcoursey is closer than Bailick Road to the
oyster farm, it is in effect further away because of the pulsing. The pulsed
release of Norovirus ensures the plume is advected into the outer harbour
on the ebb tide. On the ensuing flood tide the plume travels back up the
East Passage and into the North Channel where it contaminates the
model oyster farm. This combined distance is greater than the route from
Bailick Road to the oyster farm (Fig. 7.42).

2. The Norovirus plume from Rathcoursey undergoes enhanced dilution and

mixing in the greater volume of water in the outer harbour.
&¢
N
From this we may conclude that a pulseéi\d‘release from Rathcoursey
contaminates the model oyster farm to a,(?lééﬁser amount than an equivalent

loading at released at Bailick Road in Midllston.
Q

) { C-"lh-ﬂr} Cf?@}ﬁ.‘ﬁg;h'{:}ﬁ_

Fig. 7.42 Approximate path of Norovirus plume from Rathcoursey (Red Line —
approximately 15km) and Midleton (Blue Line — approximately 6km).

The maximum and averaged concentrations for all the model runs considered in
this section of the sensitivity analysis are presented in the following two figures.
From both plots we can see that the contribution from the loading released at

Bailick road is comparable to the contribution of the worse case scenario pulsing
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from Rathcoursey. Consequently the weekly setting and operation of the tidal

clock should be carried out in a fail-safe and verifiable manner.
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7.10 Adsorption on suspended sediment

When Norovirus is adsorbed on suspended sediment, discharges further away
from the oyster farm may become less important because of possible
sequestration of viruses in stationary bottom sediment; these processes are
controlied by rates of sedimentation, resuspension, adsorption and desorption;
insufficient data are available to make a secure model [qualitative statement].
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