

Dublin Waste to Energy Project Baseline Monitoring

Volume 3 Technical Appendices

January 2005

EPA Export 25-07-2013:21:28:59

DOCUMENT CONTROL SHEET

Client	Dublin City	Council				
Project Title	Dublin Was	te to Energy I	Project	ather us	~·	
Document Title	Baseline Mo	onitoring — Te	chnical Appe	ndiges	e 3	
Document No.	MDE0133R	P0001A02	Purp	quired.		
This Document	DCS	тос	etextnert	List of Tables	List of Figures	No. of Appendices
Comprises	1	1 🜾	N II IIII	-	-	6
		osent of				
		105				

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
A02	Issue for Client Approval	RPS MCOS COWI Dublin City Council Dublin Transportation Office			Carnegie House Dun Laoghaire	Jan 2005

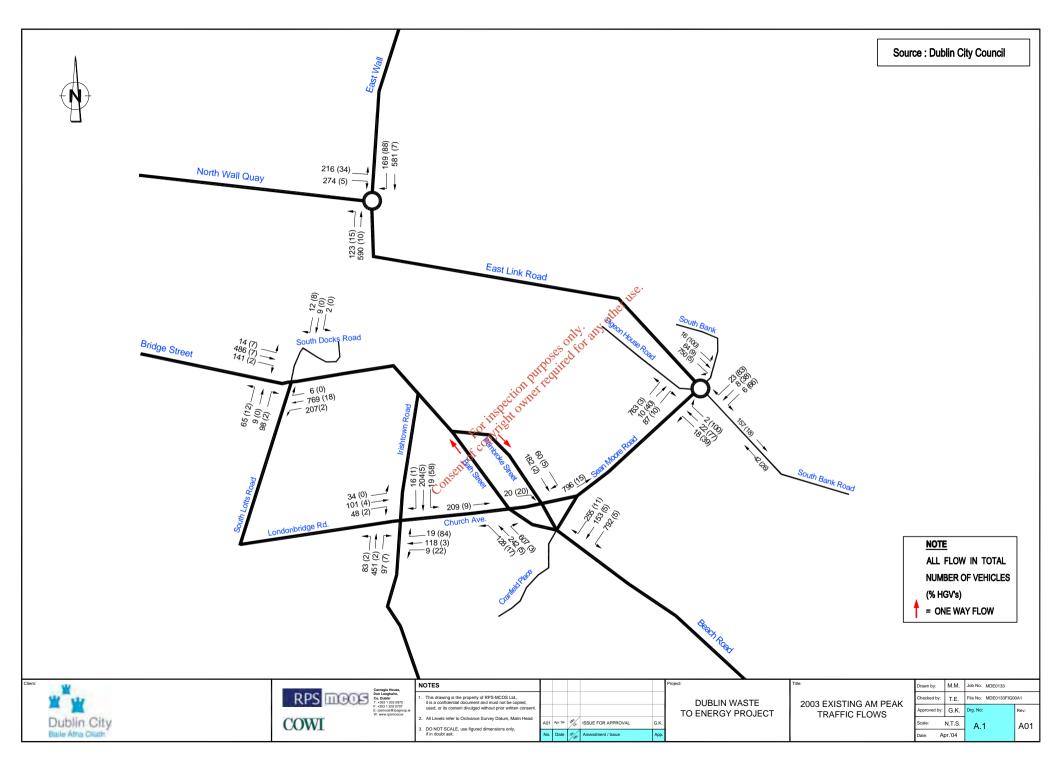
Dublin Waste to Energy Baseline Environmental Study Site Investigation & Topographical Surveys PREAMBLE

This baseline report is for information purposes only and was prepared solely based on site surveys, measurements, investigations and other data collected over the period of the survey. The data supplied are warranted to be accurate for the dates and locations shown in the report. The report does not purport to interpolate between recorded data or to be necessarily representative of environmental conditions in locations or circumstances different to those encountered on the recorded dates and locations. Any opinions stated in the reports are not warranted.

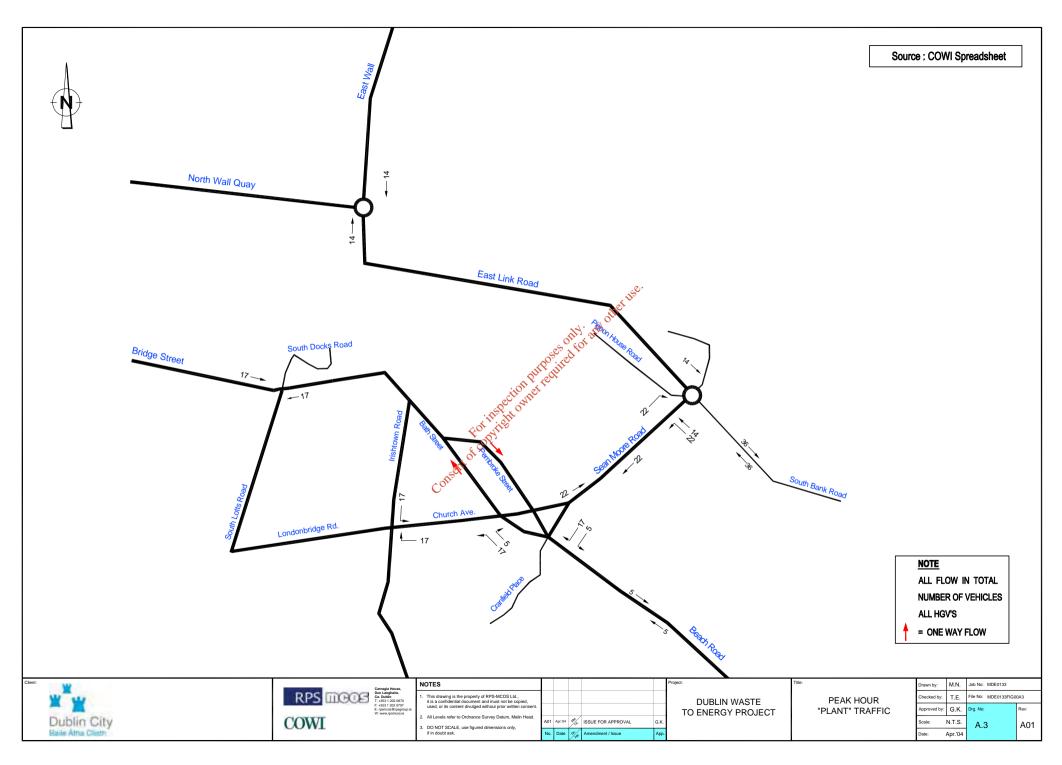
Recipients of this document must conduct their own investigations, appraisals and due diligence procedures to satisfy themselves as to the soil, water, air or other environmental conditions required for the safe and timely completion of this project.

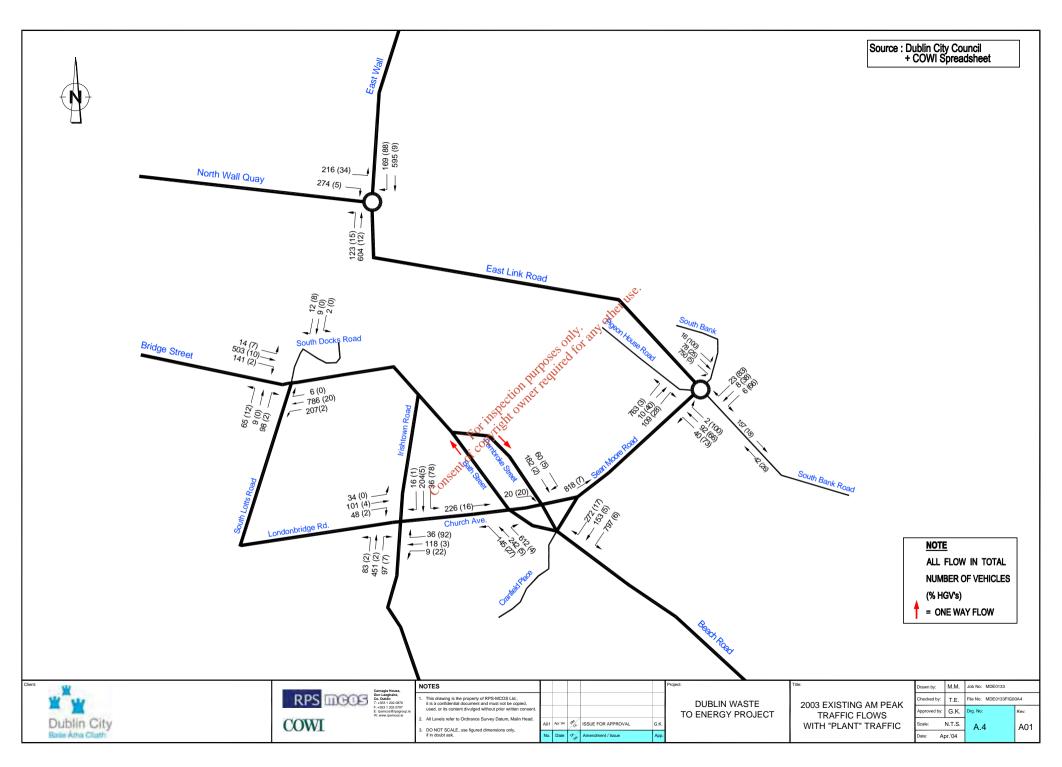
Approved Acudan 15.7.05

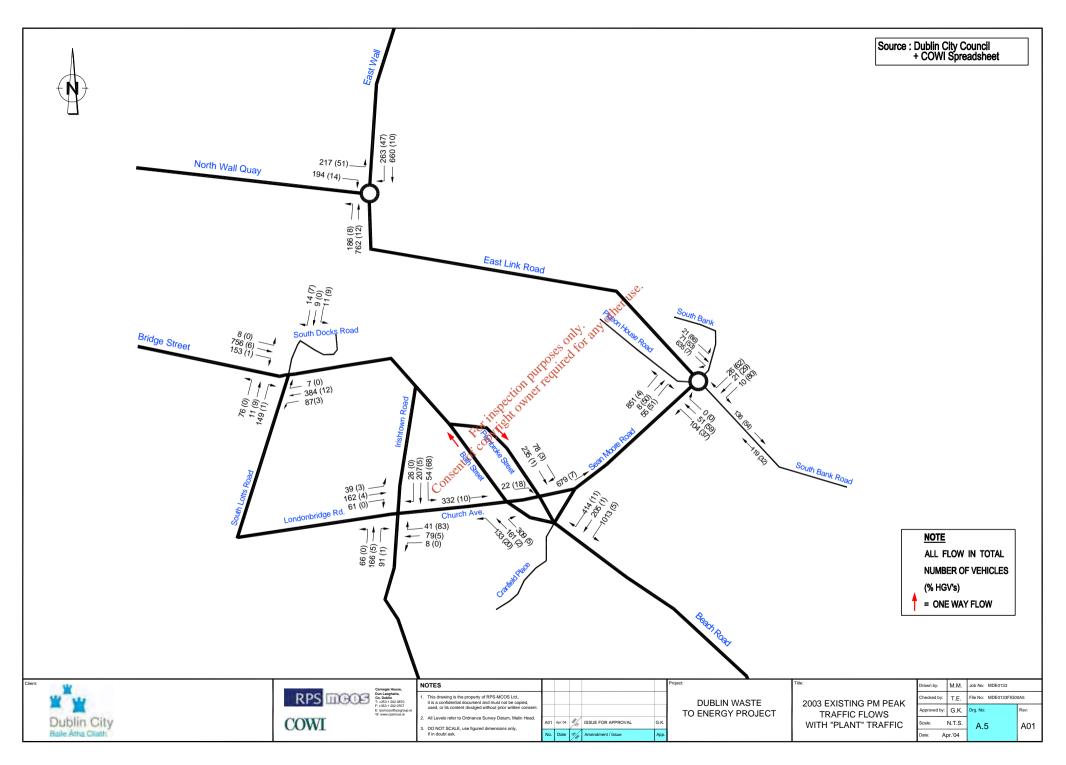
Volume 3 - Technical Appendices

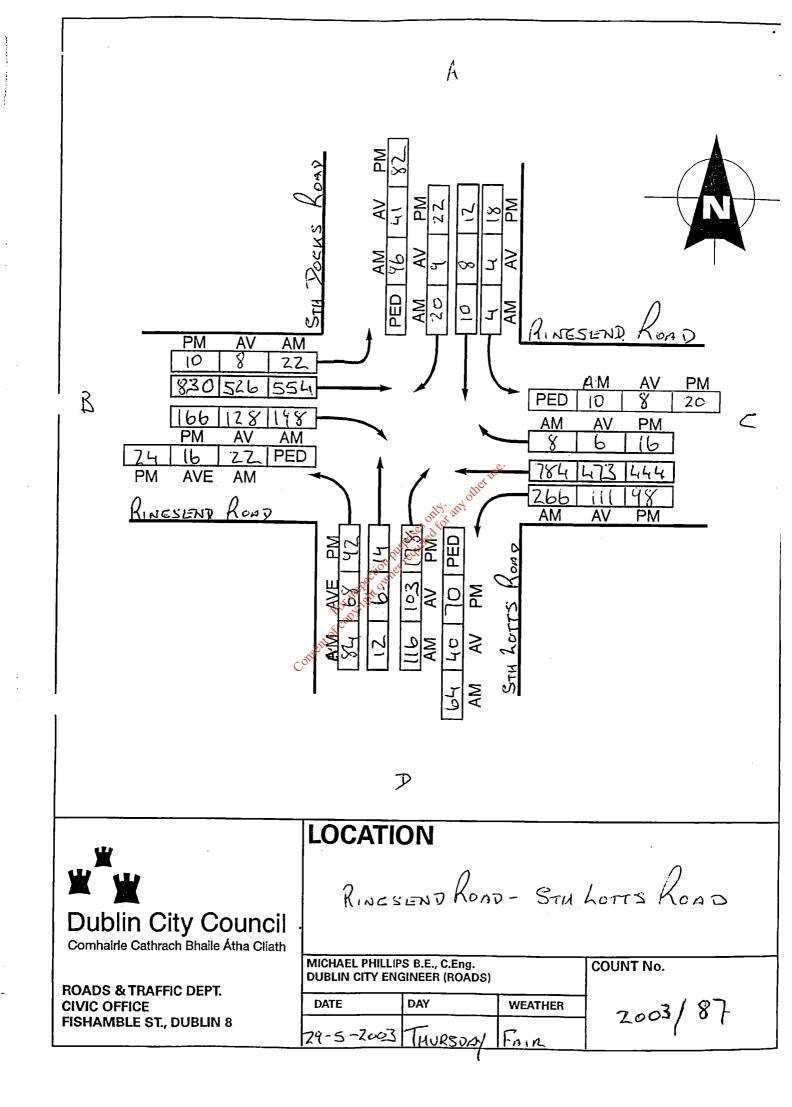

TABLE OF CONTENTS

- Appendix A Figures
- Full Details Of Traffic Counts Appendix B
- Appendix C Proposed Traffic Scenarios
- Appendix D **Junction Analysis**
- Appendix E Reports
- Appendix F


OS Maps of Relevant Junctions


APPENDIX A


- APPENDIX A Figures of the and other use. Figures of the and other use. 2003 Existing AM Peak Traffic Flows 2003 Existing PM Peak Traffic Flows A.1
- 2003 Existing PM Peak Traffic Flows A.2
- Peak Hour "Plant" Traffic A.3
- A.4 2003 Existing AM Peak Traffic Flows With "Plant" Traffic
- 2003 Existing PM Peak Traffic Flows With "Plant" Traffic A.5


APPENDIX B

MY any other use. Full Details Of Traffic Counts citon pur

- Owner requi 1. Dublin City 2003 Traffic Counts
- 2. Abacus Transportation Surveys 2004 Counts
- 3. Dublin Transportation Office Model Outputs
 - 2008 & 2023 Actual Flows (HGV & LGV) AM Peak, PM Peak, Off-Peak
 - 2008 Demand Flows (HGV & LGV) AM Peak, PM Peak, Off-Peak

DUBLIN CITY 2003 TRAFFIC COUNTS

Consent for inspection purposes only any other use.

•	1												
•		A •	R.	NG	SLAND RO	мЭ	- 5	тиро	TTS	Aom	D		
		N C	DATE29	<u> </u>	<u>2003</u> D	AYI	MURSI)	⊴y'we	ATHER	Fro , r	<u>ι</u>		
			Carriage		Α		B		(2		D	
		D '	Widths				10	ч					
					TRAFFIC O	N В	TR	AFFIC	ON C	а Т 		: ON	D
	4 HR.TO	T			NGSEND K	TOT	TAL	STR. F		LEF	STR	RGT.	TOTAL
	9.00	$\frac{1}{2} \frac{2}{3}$	2 5 3 6 4	12	42 59 153 40 124 26 126 32		5 42		1 21 1 24 1 22 2 24	0 12 6 18 6 13		15 25 25 77	2522
		$\frac{1}{2}$	10 12 14 15	23	124 46		1 53	174	z 22 z 20 - 20		Z ~	$\frac{21}{4}$	500-005
	_10.00	- 3772	1 4 2 6 3 10	223	87 32 54 32 84 20		(22 820 20		$\frac{1}{2}$ $\frac{12^{4}}{12^{4}}$		•	15	12/2/2
		$\frac{7}{1}$	$\begin{array}{c c} & \vdots \\ \hline \\ & \vdots \\ \\ & \vdots \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	22-2	18 16 14 23 74 24 182 25	4	620 322 614 024	94	- C - C - C	10 212 215	3 Z	14 20	JUN July
	_12.00	$\frac{1}{2}$	2 4	23252	128 25	14	6Z>	112 - 113 - 104	- 12	616 516 520	۲ (222	1994
	_13.00	- 4 2 2 2 3 7 7	1	1332	124 36 133 39 125 40 158 28 168 36	20 17 20 18 20	931		1 162 - 124 - 133		3 .	26 32 20 20	2 5 M J L
	_ 14.00		1 5 2 4 1 51 1 1 2 4 1 51	4 5 1	122 36 127 26 120 34 120 34	2015	4 31 7-27 4 28	106 1	13	14	1	20	1225
	15.00		141076 14176 1076 1076 1076	4213	144 19 127 37 130 25 119 29	16	7-30 628 633	116 6 108 3 108 2	152	12 16 19	4	25.	1000
	_1600	2 1 2 1	76	<u>→</u> - - - -	11 (21 (03 26 83 23 43 27 124 24	13	0281 622 124	103	135	21		8	5
	1 7 .00	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			172 29 181 29 184 29 189 41 189 36	20	2121	10/1 18/- 47/- 40/2	124	13		28 38 - 1	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	_18.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 14	(3 2	210 42 205 36 180 46	25	<u>z zo 1</u> 4 zz	101 3	· 125 · 123		23	48 36 31 - 32 -	59
	18.30	1,1,1,1,1	- 2	2	168 37			451		23		-6-	50
:	TOTAL	50 83	97 230	88	55261350	646	4/1173	14686	(6210	1716	63 1	089	868
	AVERAGE		9. 22	8	526 128	66		473 E		68	6 l	03	178

	A				COJ	_ DAY	STI TUJRS RIAN	ion v	VEATH	er <u>Fn</u>		
												
	r		0							11	DSSING	<u></u>
1/1/10 70	CHILD.	ADULT.		CHILD.	ADULT.	TOTAL	KINGS CHILD.	ADULT.	TOTAL	11		
<u>1/4 HR. то</u>					2	3	Child.	ADULT.	TOTAL	CHILD.	ADULT.	TOTAL
9.00	Ŀ	14 20 22 14	14 20 28 19	2	17 17 17 17 17	5		ス ス ス ー	2 M N N N		9 17 14 12	17 17 15 15
10.00	 	10 8 9 10 10				2		4 V ⁵ Z			9. 13 6	10 15 8 6
11.00		- 27-20-	a e Ma		<u>い</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 2 00 10 10 10 10 10 10 10 10 10 10 10 10 1	dly: any for -	2-20MM			ریا را	5
12.00		10-2-2	29 e.M		Z ectro Politico COS		1	() 2			4 - 8 . 10. 4	4
13.00	2	2 2 2 7	11 8 13 4	Concent Z	7	1800	Z.		2 2	S	7	12 12 12 4 11
14.00		9 8 8 11	- 2- 2- - 2- - 2- - 2- - 2- - 2- - 2- -		4 11 2	8 11 7			γ - - - - - - - - - - - - -	-	10 4 7 4	<u>10</u> <u>4</u> , <u>7</u> <u>-</u>
15.00	-	a-1() 	9-19-19-19	~				1 - 1 - 1 - 1 - 1 -	2-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	1		7
16.00	2	32-1/1 0-	S - 11/20	2	- 2 3	2		<u>x</u> - <u>x</u> -	3	2		
		10	4		5 3 7	5 3 3		2 5 3	1 2 6		10 8 12 14	10 8 12 14
18.00	2 3	13 22	15 25		4	- - 		3	3		10	10
18.30		16	16	_(6	3	2_	2	2		16	16
TOTAL. AVERAGE	27 2	405 38	432	<u>18</u> 1	155	123	12	75 7	87 8.	25 3		120

۰,

	TRAFF	Corpora IC From:	TION, TRAF	FIC DEPI	Ronp	TF	AFFIC (CENSUS A	т JCT. OF. 2 (<i>Ring</i> date 24	5 5 - 200) סרדים – ל WEA	- 5- THER	ты, 4. Г	TTS K	1 Ce432	
QUARTER HOUR ENDING		S CAR		BUSES	P.C.U.	6	YCLES	CARS	LORRIES			C1	CLES	CARS	LORRIES	r	P.C.U.
8.15	recal M	(Ped	al Moto	2			2	Pedal	Motor				
8.30					<u> </u>	+		3			.3			2			2
8.45						-		 			2		<u> </u>	L.			
9.00		1			# i	1.		2		-	- <u>-</u>	+		 	, 2		<u>- 4</u> 6
9.15		1				Ť	+	Z						<u>ב</u>	<u> </u>		3
9.30				·	-		1	2			2	1		Ζ.			
9.45		-				$+\tau$		<u>-</u>			<u> </u>	1		<u>2</u> , 2	2		2
10.00		-				+			1 2		3			<u> </u>			(
10.15		1			i –	1	1	3			3			 Z			<u> </u>
10.30		5			5			Z			 Z	1		<u> </u>	1 2		
10.45		. Z			2	1									<u> -\</u>		
11.00	· ·	1				1		ι			i	1	┞──┤	-			
11.15				-		1		$\frac{1}{1}$				<u> </u>					
: 20		1-				1		2			2			1	1 Z		2
11.45		11				1			<u>ر</u> ، ۲		3	l -		1			
12.00			1 1		1	1		- ζ	└` ──		2			z			<u> </u>
12.15		1			(<u></u> †−−							-		<u> </u>	
12.30						1	╀──			other				3.			3
12.45		1~	!		·			2	1	NOW -	- <u> </u> 4	:		~			دم. i
13.00		2	1		2	<u> </u>		2	es ator	<u></u>	2						_ \
13.15		2	1					3,119	it of the second		.7		<u> </u>		2		<u> </u>
13.30		- 1	1	<u> </u>			╎╶┤	- OF PILL	<u><u>y</u>u</u>		2		1	3	<u> </u>		<u>2</u>
13.45					1			the net			2			2			2
14.00					~	i — —	11130	2			2	2					
14.15		2			2	Ŷ	023					4		2			Z
14.30		11				্ঠ		$-\dot{\tau}$						<u> </u>	<u> </u>		3
14.45	1	1			1	Serv		-						2	$\frac{1}{1}$		4
15.00					-0	ř		3			<u> </u>		<u> </u>	2	1 24		<u> </u>
15.15					1			1	1 2					Z	<u> </u>		2
11					1				1 2		<u>بر</u> بر			5			Ž
15:45	-	Z			2			1	- ` -		1		-		<u>\.</u>		
16.00		2			2			2			· Z			Z			- <u> </u> Z
16.15		1			1						_				1 2		3
16.30	1	Z			2			1			i			3	<u> </u>		,3
16.45		-			2			3			3				1 2		<u>,s</u> 4
17.00		2			2						~ _}			Z 3.	<u> </u>		3
17.15					-		\rightarrow	2			2			- <u>N</u> . Z			2
17.30		-7			3			4			<u> </u>			<u> </u>			4
17.45		5			5	1		z			2			1 S	1 2		<u>,</u>
8.00		2	1 2		ч	<u>``</u>	<u> </u>				$\frac{1}{1}$			<u>z</u>	<u> </u>		2
8.15		ζ	· - -		2				1 2		2		- .	$\frac{1}{1}$			
8.30					1		-+-	$\frac{1}{1}$			<u></u>						
tais for Hours	7	57	2		50	5 1			6'2		<u>+</u> 1 05 T	<u> </u>		<u> </u>	24	<u>µ</u>	97
Hours erages r Hour		<u> </u>				3	2'	69	-	<u></u>	83	3		71	12		4
					4	-	-	6			<u> </u>	╧╧╧		6			
	IG LEFT T	0: (R & H)	IOWN.			STR	AIGHT A	HEAD TO:	STULO	rrs R	0 M7	TUR	NING R	IGHT TO:	Pinas	15 ST	<u> </u>

.

•

CORPORATION, TRAFFIC DEPT.	TRAFFIC CENSUS AT JCT. OF RINGS END ROAD STH	LOTTS LON
TRAFFIC FROM	DATREE DAY THURSDAY DATE29-5-2003 WEATHER	Frank

۰. •

:

QUARTI HOUR ENDIN		YCLES	CARS	LORRIES	BUSES	P.C.U.	Ped	YCLES	CARS	LORAI		5 P.C.U,		CLES	CARS	LORRIES	BUSES	P.C.U.
8.15			1			i	3	12	80	3	⁶ Z	r, ⁴ 2	Peda	Z	54	Z ⁴		59
8.30			2			2	3	5	2 124	10	د ک	153	1	17	38	1 .	1	40
8.45			2				5	Ľ	108	Ŀ	² \	2 124			26			26
9.00			٢			4	4	13	110	S	2	126		1	30	1 2		32
9.15			Z			2	2	15	4 108	8		2 121			44	(2		46
9.30	_		17			_ ۲	13	12	104	6	2	122			51	2 "		i.,5,
9.45	_		1			<u> </u>	2	3	lor	5 '		1 121	1	1	z¥	1		30
10.00			2			2	1	<u>[]</u>	12	6	<u> </u>	1 87	L		30	1 2		32,
10.15			2			<u> </u>	2	4	68	1 1		84			_28	<u> </u>		32
10.30				_!		ב	1	<u>ζ</u>	70	11		84			20			20
10.45			. Z			<u>- 2</u>	2		64	5	2	1_18_	 		14			16
11.00	-	-	<u>Z</u>			<u> </u>	-	4.	58	 	, <u> </u>	14			23	Ζ, τ		27
11.15		+-		i 2		1	$\frac{1}{3}$	2	1-63-	5	_	14			1 Ú 			_2(
11.45			2	_ \			F	12	16	11	1 1	102		2	20	1		25
12.00				, ~		<u>י</u> ג	4	13	88 96	12 1	2	118			24	\ \ \ \ \		26
12.15							2			14	1.7	128			21	2 6		25
12.30			2			3	12	5	122	1 24					ZY	2		34
12.45						<u> </u>	2	167	134	1 <u>2</u> ,		104		<u> </u>	52	۲, ۲		36
13.00			2			3	3	4 2		1 2 V	Z	$\frac{12^{3}}{125}$	<u> </u>	z `	<u>ئ</u> تدر ۲	2 1		34
13.15			2			3	~ ເລ	17-2	134	12	ι <u>ζ</u> ,	158		1	36	<u>'</u> ''		20 76
13.30	1		2					17-3	130	² 4 ; 7	<u>6</u> Z	150			28	<u>, </u>		28
13.45	<u> </u>		1			<u> </u>	S	67	CT ARE	10 20		172			34	2		36
14.00			4			5	1	3TRA	106	9 11	1	127		1	<u>2</u> 4	<u> </u>	1 2	26
14.15			3	1 2		5	5	6832	97	ř "	2	120	1	$\frac{1}{1}$	30	Ζ'		34
14.30			1			1	20	121	106) "	-	121	`	<u>`</u>	25	-	1 7	2]
14.45		2'	3			4	120	3	113	14 27	1 2	144		21	18			14
15.00			2			2	հ	3	१०५	6 2	Z	121	1 I		24	4		37
15.15			1				Z	3	119	S		130		-	25			25
Ľ_				<u> </u>		3	1	2	lob	4	Z	119			27	(24
15.45						1	1	5_2	9(3	ζ	103			Z6			26
16.00						-	1	3 '	78	ς ΄	~	83			23			23
16.15						_\	<u>, r</u>	4 2	84	<u> </u>	l	43			27			27
16.30						-	1,	""		<u> </u>	ζ	124			ZŻ	1		24
16.45						_\	6	8		8 16	1 2	172		21	24	2, 7		Z ⁱ (
17.00						<u> </u>	<u>ן</u>	6		10 20	2	181			27	1 2		zΫ
17.15						4	5	8	<u> </u>	8 15		189]		3]	2 1		4(
17.30]	6		2	2	189			36			36
17.45						<u>`</u>	6	۲ <u>′</u>	184	$\frac{1}{1}$	3	210			4.2			42
18.00			3		 -	<u>.</u> .	<u>s</u> '	5]		<u>ں</u> کا	2 4	205	_		36			36
18.15 18.30		-+	2			7	<u>s</u> '	7 4	100 1	<u>ه ک</u>	<u>ک</u> ۲	180	2		<u>د</u> ,4	۲ ۲		46
		<u> </u>	2			2 1	5 ' चन्म	<u> 67</u>		5 " sí ¢	<u> </u>	168		<u>\</u>	EE	<u>ک ک</u>		37-
Totals for 10 Hours		2	75	6 12		88	134	185	4672	215	64125	55Z6	23	20	239	474	<u>ک</u> ۲	1350
Averages per Hour	-	-	2	-		8	12	17	445	28	6	526	- 1	2	118	4	~	128
TUR	NING LI	EFT TO	STU Y	ens 4	IONP		STR	RAIGHT	AHEAD TO):leish	Tour		-			STUSET	15:50	

CORPORATION, TRAFFIC DEPT. TRAFFIC FROM IRISHTOWN

LORRIES

7

BUSES

P.C.U.

CARS

•

QUARTER HOUR ENDING

Averages per Hour

5

4

· CYCLES

Pedal | Motor

TRAFFIC CENSUS AT JCT. OF KINGSEND ROAD. STULCTTS ROAD DAY THURSOMY DATE24. 5. 2003 WEATHER FAIR

P.C.U.

6.5

CYCLES

Pedal Motor

CARS

LORRIES

BUSES

1		18	ι '	<u>د</u>	Ze	2	ζ ¹	160	12	Z	187	
2	1	39			42	5	1	178	10 2	ן ב. י	203	Γ
-		37	12	6	45	14	41	152	10 2	12	180	Γ
4	2	75	1	2	80	11 1	13 1	146	6 2	11	104	Γ
þ	1	SZ			53	10 3	3	153	7 "	2	174	Γ
2		24			32	10 ²	4 2	155	3 1	-	171	
Z	ſ	24	2	٩	25	5	15	148	Υ ^{il}		178	
Ľ	l	21			22	Ŀ '	11	88	4 ^r	4	102	
3	t	14			Zo	3	2	84	5 "	[\ ~		
		18	1	-	ZC	21	5 2	30	٦ "	2	1 '01	
		Zo			20	1	4	18	Ŀ	1.1 *	(7	
		22			22	1	12	81	5 "		1 14	
1		19			14	(4 4	62	<u></u> ຂູ້			
		20	2		24	s '	6	41	11 22	14	12.	
		19	2		23	<u>s</u> '	s ²	57	9 11	٦ ر	114	
1		21	(23	5		- 44	7 5	ζ	113	
4	2	17	2	6	26	62	\sim	86	Ϋ́ (II		e:09	
		14	l l	4	21	5'	4 2	42	8 11		113	
3	<u> </u>	27	_(35	31	ί٩	41	1917	8 T	128	
1		24			·Z4	۲ ۲	63	76 .	St for	N	100	
L		31		·	31 28	2 '	73	- Willo	3 ⁶ 15	Σ, [°]	101	
L		28			28	Z	z١	80.4°	8 "	ζ, Έ	101	

CYCLES

Pedal Motor

CARS

LORRIES

70

BUSES

8.15	2	1	18	l l	2	Ze	2	Z	1 160	12 2	2	1 181			1			1
8.30	8	22	139			42	\$	1	178	10 2	"Z.	1 ZO3			1			i
8.45	d	2	37	3	6	45	15	41	152	10 2	، ک	180	1		1			
9.00	3	۱ د	275	l	2	80	11 '	3	146	6	2	4 64			Z			Z
9.15	2	Þ	1 SZ			53	10 7	3	153	7 "	2	174		·	2			2
9.30	6	22	24			32	6	4	2 155	3	13	171			-	1 2	1	2
9.45	3	1/2	1 24	2	4	20	1 2	٢.	2 148	11	· ·	118	i				1	-
10.00	Z	Ľ	' Z1			22	Ŀ	ΪL	88	4	2	102			1			
10.15	ł	3	1 14		T	Zo	3	2	\$4	5 "		18			_	1 Z	÷	Z
10.30	1		18	1	2	ZC	2	5	2 50	۳ آ	2	101						<u> </u>
10.45	1		. Zo			20	L	L, 7	78	Ŀ.		(7)						~
11.00			22			22	1	2	81	5 "		94						-
11.15		1	19			19	l	4	83	s "	1							-
.0	1		20	2	1	24	s '	6	91	11 22	2	12			1			1
11.45	2		19	2		23	ភ	s'	- 84	9 1		112						-
12.00	2	1	21	(1	23	۲'	l	44	$\frac{1}{2}$	4	113						-
12.15	3	4	17	3	4	26	62	12	86	ί II		S 11 1 1		1				i
12.30	L		14		4	21	5	4'	42	8 11	1 Mile	113			÷		-	-
12.45		3	27			3	1 2	44	99	1994	NZ -	128			۲,			ų
13.00		1	24			'ZŸ	5	63	16.	of for	2 4	100			ĺ			`
13.15	2	L	31			31	- 7	23	74500	J 19	Ζ, "	101			1.			
13.30	 	μ	28			28	Z	Z	80.4°	8 "	5	101			Ż			Z
13.45		2	30		<u> </u>	31	5	3,00	8	<u>]</u>	<u>ح</u>	[0]			ſ			-
14.00		1	27		 	27	3,	3.0	84	<u>י</u> יי	<u> </u>							
14.15	<u> </u>		28		 	<u>Z8</u>	1	\$ ²	86	(22	<u> </u>	116			Ś			57
14.30		2	125			<u>Zb</u>	ZOT	12 '	82	9 11	<u>['</u>	103			2			
14.45	 	1	_30		<u> </u>	30	^۲ ۱	<u>s</u> '	90	10 20	14	116			4ر	1		6
15.00			28			28	ζ	4'	87	8 16	5	108			3			3
15.15	1.	2	32			33	1	4	43	<u>b</u> '2		108			Ζ			Ζ
_: <u>o</u>	ļ	μ	2]			Z7	2	63	86	<u>}</u> '`	4	107			5			5
15.45	ļ		26		1	<u> </u>	2	5,	96	8 16	<u>د</u>	120			2			3
16.00		1	22_				<u> </u>	4 7	1-	7 "	L'				3			3
16.15			24			24	4,	31	47	6"	4	115			Ζ			Z
16.30	2	2 '	23	Z	ļ		31	וב	93	<u> </u>	4 8	0			_ \			
16.45	1		_19		 		2	4 4	76	<u>4</u> '					_			-
17.00			22		 !		<u>'</u>	7	83	<u>5</u> "	1 2							
17.15		 	14	• تر		25	ζ	3'		6 "	ζ	99			2			ζ
17.30	Z	2	23		<u> </u>	24	<u>' 2</u>	نم ^x		5 "	1 2	101			3			3
17.45		<u> </u>	20			20	3 \	5	84	<u>]</u> ¹⁵	2 أ	105						
18.00			22				31	31	8]	<u>ч</u>		99			ζ			ζ
18.15	.\	١	18				5	3	95	<u>ч</u> '	_ \				4	1 2	-	6
18.30			(6			16.	<u> </u>	<u>S</u>	82	3 "	2	45						
Totals for 10 Hours	55	74 48	1085	23	-	1123	6	158	4114	- 332 291	70 140	4968	2	T	61	<u>ح گا</u>		64
Averages					"	I	<u> </u>				, <u> </u>		<u> </u>		<u> </u>	<u></u>	U	<u> </u>

TURNING LEFT TO: STU LOTTS LOND

.

2

103

STRAIGHT AHEAD TO: PETR SE. STREZA

27

6

15, 15, 341

11

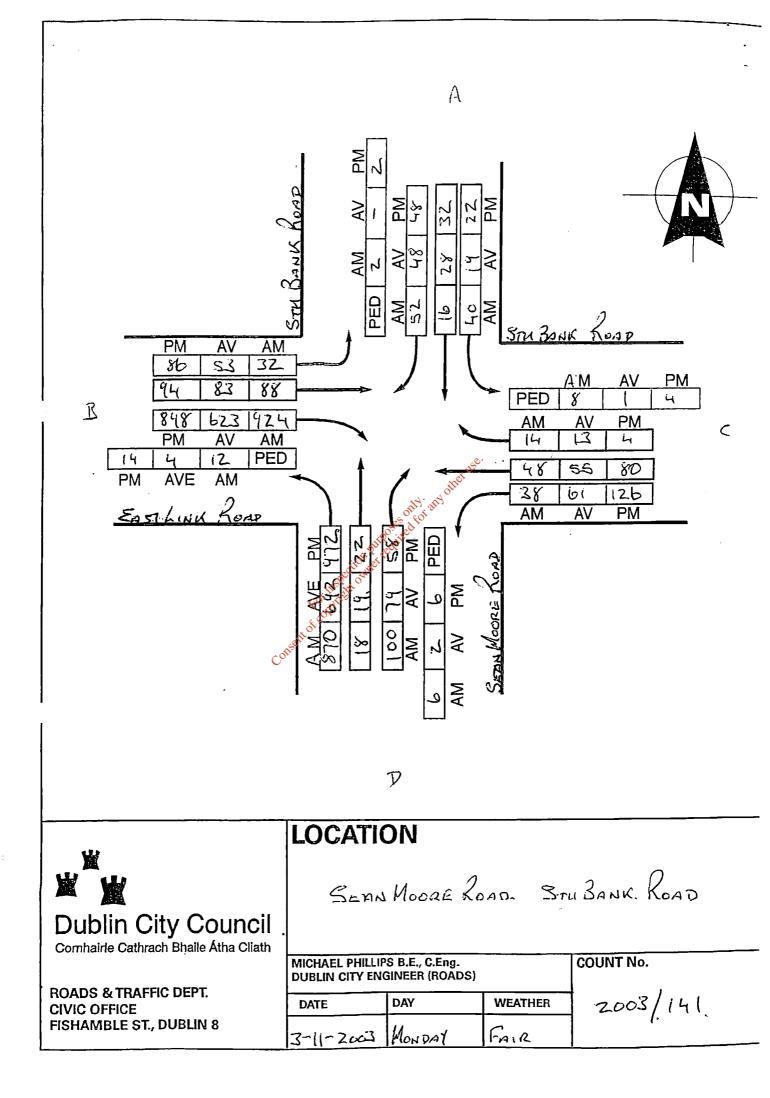
-

TURNING RIGHT TO: STH . HOURS LOND

5

-

473


P.C.U.

, *.* •

.

CORPORATION, TRAFFIC DEPT. TRAFFIC CENSUS AT JCT. OFRINTSEND ROAD. STH LOTTS HOWN TRAFFIC FROM: STULATTS HOW DAY THURSDAY DATE 28-5-2003 WEATHER. FOUR

QUART HOUR ENDIN	<u>، ا</u> ،	CYCLES		LORRIE	BUSES	P.C.U.	C Peda	YCLES	CARS	LORRIES	BUSES	P.C.U.		CLES Motor	CARS	LORRIES	BUSES	P.C.U.
8.15		2	1 11			12	1	1 1 1000	Z			2	- <u>r</u> ædau - Z	Motor	15	<u> </u>		IS
8.30		1	14	2	1	15	1	1-					5		Zo	ι ζ		23
8.45			il	1		1.3			1		<u> </u>	<u> </u>		. ح	Z4			25
9.00			15	Z		19			2	1		z	7 2	l	ZS			21
9.15		1	11	2	1	23			Ż			z	31	3	27	1 2		31
9.30		li	10			12,						-			19			19
9.45			14			16						1	1	z	20			21
10.00		1	12	2		16			-				Z		16	1 Z		18
10.15		\parallel	13	2		17			-			-	Z	1	15			15
10.30	1		1.11			13						1	1	Z '	Zo	2, 1		25
10.45			. 8	1 2		10			1	2		3	Z	3	17			14
_11.00			12			12			- -			~	1	1	18	<u>ک</u>		20
11.15	1		13			<u>is</u>			- .	1 2		Ζ	i	z '	14	1 2		22
11.30	1		12	2		16			~			•		(18			18
		-	14			16			.1					3	20	l z		23
12.00		_	16	2		20			_2_	2		Ś		2	22	1 2		25
12.15		1	13	3		14						~		L	23			23
12.30			<u>ڪا</u>	<u> Z '</u>		<u> </u>			~			6 ^{0.} -		2.1	25			26
12.45	. <u> </u>		12	ļ		12			1	11	other	2			٥٤	1.2		32
13.00	ļ		11			11		L	ζ	<u></u>	and	ζ			20			Zrc
13.15			14	127		20			Ч	305 dtor		4		1	18	1 2		20
, 13.30		+	1 15	2 7		14.			- QUIL	WILL		1		<u>z'</u>	16	L Z		_1 %
13.45			12		, 2	14	-		tion Petro			1	2	1	18	<u> </u>		20
14.00		+	15				<u> </u>	N IT O	ow office			1		<u>z ¦</u>	22	2		27
14.15	+	μ.				18		or ju	<u>Z</u>			_ 2		3	14	1		22
14.50	┨───	+	- 14	┟╍┙		10	- 8	0						<u>z </u>	23	<u>z</u> 1		28
	<u> </u>	<u> </u>	12	V		12	sento	+		1 2		_ !		<u>z'</u>	ZZ	1 2		25
15.00	+		<u> </u>	3 4		1400	`		2	14		<u> </u>	(3	18	19		21
15.15			15	2 "		[1								<u>z '</u>	28			29
5			14	- 2		21		╎╶┥	-'-+			17		<u> </u>	24	1 2		3(
16.00		\vdash		<u>\</u>		<u> </u>]		2		<u>z </u>	25	1		28
16.15			1						<u> </u>	2		<u> </u>		z_¦	\square			18
16.30	{	1	14			11	2		2			<u>-</u> <u>-</u> <u>-</u>		3 ¦	20	1		23
16.45			18			18				-17		2		<u>z '</u>	27			28
17.00	1		19			- 10 19		┝──╂				·	31	<u>\</u> ,	25	<u> </u>		ZS
17.15	- `		19			14		├}	3	1 2-		<u>-</u>	211	- 71-	35			38
17.30	t		i3			13		┝╸┨				5		ι, ^τ	38			41
17.45		<u>├</u> ──	21			21		╞╼╌╉	2			ζ		3	<u>17</u>			48
18.00		1	23			23			2			2	<u>z</u> z		33	1 1		36
18.15	<u>ا</u>	µJ	73			23			<u>3</u> 2			7	22		30			31
18.30	1	2 (20	1 2		23						4	2 =		30			32
Totals for 10 Hours	<u>х</u> ў ³			42 54	2					20	<u> </u>	<u>+</u>		<u>\</u>	76		<u> </u>	Z6
10 Hours Averages per Hour		{6°	615		<u> </u>	716	3	<u>^</u>		1020	<u> </u>	7 7			180	25		1084
	~	.!	58	4		.98		1	5			6	6	7	93	2		103
TUR		EFT T	O: PERE	25E	SILCE	1	STR	AIGHT	AHEAD TO	STU 7	POCHS 1	how	TUR		RIGHT TO:	(RISHT	OLN	

EPA Export 25-07-2013:21:29:00

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		FROM	Simn W	loure 9	10/3D	DAY 1.	ondat		DATE	3-11-2	z <i>6</i> ∑	WEATHE	R		IR	••		
ts 2 .2 1 1 .2 2 1 .1 .2 2 1 1 .2 2 1 1 .2 2 1 1 .2 2 1 1 .2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 1 2 1 <th< th=""><th>HOUR</th><th></th><th>1</th><th>CARS</th><th>LORRIES</th><th>BUSES</th><th>P.C.U.</th><th></th><th>T</th><th>CARS</th><th>LORRIES</th><th>BUSES</th><th>P.C.U.</th><th></th><th>r</th><th>CARS</th><th>LORRIES</th><th>BUSES</th></th<>	HOUR		1	CARS	LORRIES	BUSES	P.C.U.		T	CARS	LORRIES	BUSES	P.C.U.		r	CARS	LORRIES	BUSES
80 3 1 1 1 1 1 1 1 1 1 2 3 4 86 6 14 2 6 7 7 22.5 1 2 5 2 1 2 3 4 80 5 7 160 1 1 2 2 3 4 4 150 1 2 2 1 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1	8.15	2	12	194	3 6	-	200			1	1				21	1.7	z ⁴	
isis b i <td>8.30</td> <td></td> <td>il ×</td> <td>-</td> <td>12 29</td> <td>Ĩ Z</td> <td>2:21</td> <td></td> <td>1</td> <td>f</td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td>· · ·</td> <td></td>	8.30		il ×	-	12 29	Ĩ Z	2:21		1	f					l		· · ·	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.45	+	14	202						<u> </u>	2 4				<u> </u>		+	
ist 1 q 4 1 2 1 Q 1 Q 1 Q 1 Q 1 Q 1 Q Q 1 Q Q 1 Q Q 1 Q Q 1 Q Q 1 Q <thq< th=""> <thq< th=""> <thq< th=""></thq<></thq<></thq<>	9.00	2		-		- 1				z			 		<u> </u>	<u> </u>	+	
5.30 2 1 2 60 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>											7 5		H				2	
a_{1}					1 .2	, 2					2				15		1, 5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u> </u>		1	<u>`</u>		————		+			t i		· · · ·			. 2
uns 2 b 15 c . b 1 1 2 0 1 <td></td> <td>· · · · -</td> <td><u> </u></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 7 7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td>		· · · · -	<u> </u>	+							1 7 7							<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					5 12		$\frac{1}{4}$						1			<u> </u>	<u> </u>	
1045 - - 1,34 3 1 2 5 (3 1 1 1100 - 1 102, 12, 2 - 12, 5 14, 7 14, 5 12, 5 14, 7 14, 7 14, 5 14, 7 14,		1		 			1								<u> </u>		6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					· · · · · · · · · · · · · · · · · · ·					· · ·						· · · · · · · · · · · · · · · · · · ·		
11.15 1 2 1 12 1 133 2 1 2 1 16 4 10 2 3 1 12 132 3 3 1 12 6 12 11.45 1 2 1 12 132 3 3 1 12 6 12 12 6 12 12 12 12 12 12 12 12 12 12					1 70	-	1				1					·	6	
11.5 1 2 1 2 1 4 1 <td></td> <td>-</td> <td></td> <td>+ · · · · · · · · · · · · · · · · · · ·</td> <td></td>		-		+ · · · · · · · · · · · · · · · · · · ·														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<u> </u>	<u> </u>	10 22	-											<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3		<u> </u>	11	•									1	12	6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<u> </u>	<u> </u>		14								╞╌┝═┥		2		9	
12.15 1 100 0 112 3 2 7 11 11 5 1 12.35 1 2 104 7 11 11 4 1 2 6 12 6 12 6 12 6 12 6 12 6 12 6 14 7 15 16 16 17 16 16 17 6 17 16 17 6 17 6 17 16 17 16 17 16 17 17 17 17 16 17 16 17 17 17 17 16 17				<u> </u>	0		-						4		<u> </u>		6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<u> </u>	<u> </u>	0	-							<u>]</u>			11	~	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>	·	+		-					<u> </u>	çi	<u> </u>				6	
11.00 1 2 100 1 2 100 1 2 100 1 2 100 1 2 100 1 1				+	٩	-				A			•			4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	1	0	-					<u>└──</u> ·						<u> </u>	
13.45. (2 (1) (1) 22 (1) (1) 22 (1) (1) (1) 22 (1)<	-				ן ייין	-				X AV							6	
13.45 1 2 1 <td></td> <td></td> <td></td> <td></td> <td>- 37</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td>4</td> <td></td>					- 37					<u> </u>			8				4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				<u> </u>	11 22	- 2		111	2 ON ON				(5	
14.30 i 132 8 ⁻¹⁶ 148 2 12 4 14 4 4 1445 - 52 165 18 ⁻³⁶ 2 12 4 6 18 14 5 16 16 17 2 7 15.00 41 2 13 188 1 12 3 14 5 7 15.00 41 2 13 188 1 12 3 14 5 7 15.15 5 2 12 16 - - - - i.3 4 8 15.45 2 1								fort	9 8	<u> </u>					1			
14.45 - 5.2 (65) 18 ³⁶ (1) (205) (1)				+ <u> </u>				of dox			4							
15.00 u_1^2 u_2^2 u_2^2 u_3^2 u_4^2 u_5^2 u_1^2 u_4^2 u_5^2 u_5^2 u_4^2 u_5^2			1					<u> </u>						`			7	
15.15 \leq 2 12 142 $ i \leq 4$ 30 i		-	2	C						L(2						10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1						__							5	
35 ((((((((3 ((3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 3 (1 2 1855 2 2 1 1 1 1 2 1855 2 2 1 <th1< th=""> <th1< th=""> 1 1<!--</td--><td></td><td></td><td>-5</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>-</td><td></td><td>]</td><td></td><td></td><td></td><td></td><td>7</td><td></td></th1<></th1<>			-5			_				-]					7	
15.45 2 16.3 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< td="" th<=""><td></td><td>·</td><td></td><td></td><td>11</td><td>, <u>'</u>2</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<></th1<></th1<></th1<>		·			11	, <u>'</u> 2				_								
16.00 1 1 1 1 1 1 5 1 16.15 Z 1 <t< td=""><td></td><td></td><td>7</td><td></td><td></td><td>1</td><td></td><td></td><td> </td><td>2</td><td></td><td> H</td><td></td><td></td><td></td><td>1</td><td>4</td><td></td></t<>			7			1				2		H				1	4	
16.15 2 165 1 100 2 2 6 1 9 16.30 1 3 186 6 111 2 1 4 6 1 16.45 3 1 172 4 111 2 1 4 6 1 16.45 3 1 172 4 112 - 3 6 4 1 16.45 3 1 172 4 112 - 3 6 4 1 16.45 3 1 172 4 112 - 3 16 4 1 17.00 2 223 102 246 1 2 5 8 7 17.15 2 6 12 242 1 3 7 16 2 17.30 3 4 2 21 24 1 3 8 2 17.45 1 2 24 1 23 1 1 1			<u> </u>		11												14	
16.30 (1 3 (36 6 (111 2 7 6 16.45 3 (3 172 (18 112 -3 6 7 17.00 2 223 10 ²¹ 2 246 (12) -3 6 7 17.00 2 223 10 ²¹ 246 (12) -3 6 7 17.00 2 223 10 ²¹ 246 (12) -3 6 7 17.05 2 6 ³ 186 7 7 203 -1 2 2 2 2 2 2 2 2 2 2 3 6 2 7 6 2 7 17.30 3 4 2 2 2 1 3 8 2 7 17.45 4 4 193 9 1 2 2 2 2 2 2 7 4 1 18.00 3 4 2 2 2 3											Ζ,							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>			0					2								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12				, Z										<u> </u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			L J								2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6		7												<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			, 2				\rightarrow	<u> </u>		-!-				<u> </u>	
18.15 3 6 222 6 1 240 3 3 4 1 8 3 1830 2 6 3 21 8 216 1 1 6 24													1					
1830 Z b 3 227 8 ¹⁶ Zub 1 6 Zu						, 24												
					6	1 -				2	3 1		<u> </u>		1			
$\begin{bmatrix} 10 \text{ totals for} \\ 10 \text{ Hours} \\ \leq 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$!			22		28 11	240				<u> </u>					6		
	Totals for 10 Hours	58 58	174	6420	363	10	7272		i.	.74	62		لتوع	z b	17 8	535	242	2

•

	TRAFFIC CENSUS AT JCT. OF SIMA MOORE.	2	0 2 2
CORPORATION, TRAFFIC DEPT	TRAFFIC CENSUS AT JCT. OF SLAN PLOOPE	tonp.	STU DANK FORS

TRAFFIC FROM STH BANK ROAD. ENTS. D. DAY HONDAT DATE 3-11-2003 WEATHER MATHER

QUARTER	CYC	LES	' CARS	LORRIES	BUSES	P.C.U.	CYC	LES	CARS	LORRIES	BUSES	P.C.U.	CY		CARS	LORRIES	BUSES	P.C.I
HOUR ENDING	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS		BUSES	P.C.U.	Pedal	Motor		LURRIES	BU3E3	P.C.I
8.15			2	2 5		lo lo			-	1 2		2						-
8.30			3	^ی ک		13			2	4		10			-	12		2
8.45			5	1 2		ר			2	6'2		14			-			-
9.00		1	-			-			l	4		4			i			1
9.15		<u> </u>	3	12		5			-	36		6			-	1 4		Z
9.30	1		1	2		5	İ		1		-	1			2			5
9.45	<u>`</u>		3	~		3						i				2		5
			3	Ζ ⁵					Z			4						3
10.00			2	3		8			1			$\frac{1}{1}$						-
10.15				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>			2	7 4		6			~			<u> </u>
10.30			3	2 4					L,	2 6		16			1	1. 7		4
10.45						13			·	. 17		عا ليذا				4		1 8
11.00			5	4 '				<u> </u>	3	6		I			2	31		0
			3	<u>د</u>		11			2	6		14				3]		ĻŢ
11.30			2_	1 -		4		1	کہ ا	4	17	12				}		2
11.45		1	2	7		4	[4	7		10				<u> </u>		6
12.00			2	2		4	 		2	4 8	e.	11				2		4
12.15			4	4 1		12			2	6 12	et V	.14			1	2		5
12.30		·	6	۲ ۲		14			3	1200°		7				<u>z 1</u>	[న
12.45			ר	2 "		13			<u> </u>	WILL 7	1	ġ			1	<u> </u>		7
13.00	l		4	۶ م ا		18			apo teo	^ی تر		4						<u>,</u>
13.15	1		8	27		12		ion P	1°	3	17	- LS			-			-
13.30			7	30		13		ecto with	.0	3		12				1 2		z
13.45			6	45		14	COLINS	of the	٦.	4 8		12			1	2 1		کہ ا
14.00			7	34		51	, coby	l	Ч	4 ^r		11			1	Z L		٦
14.15		1	8	4 *		16	OF.		. 4	S		14		_				
14.30		<u>`</u>	13	102		3350			7	13 24		33			1			١
14.45			8	6 "		20		١	6	8 16		72			3	2 1		7
15.00	1	1	5	4 8		تدر		1	6	8 i6		22			Z	4 8		II
	2		5	2 4		11		<u> </u>	S	7 1		14			2	24	i	X
15.30			8	4 8		16		-	5	6 12		17	-		1	1 2		3
15.45			12	<u>ר</u> וק		26			3	b 12		15			-	3		6
16.00		2.1		ן (31	1		13	1) ²²		35				2		
		2.	16 18	4 ¹⁸		36			5	12		40			~	3		S N
16.15			17	50				2		7"		24				$\frac{2}{1}$		2
16.30			14	ר ש		- <u>27</u> 20	<u>\</u>		10			16				<u> </u>	<u> </u>	1
16.45		 	· · · · ·			-			~	612		19					—	_
17.00		<u> </u>	2,0			32			· · · · ·									_
17.15		<u> </u>	16	-1		24	l		5	<u> </u>		11						
17.30			23	ہ ہے		29	Ĺ		5	0								
17.45			17	٦		25			ر ک	7		12						
18.00			10	5		Zo			7	7		1 <u>S</u>			<u> </u>	+		
18.15			13	3 5		19	<u> </u>		5	2		_1						
1830			7	LS		15			7	3		4						
otais for 0 Hours	2 8	7	335	204 152	-	644	4	9	182	384	36	ราๅ			29	108		13
verages ber Hour	-		32	14	-	61	-		17-	18		SS			2	5		13
				DORE RO.	I	<u>~~(</u>	STR	AIGHT A		Enst L						TH BANK	 	

•

CORPORATION, TRAFFIC DEPT . TRAFFIC CENSUS AT JCT. OF SEAN HORE FORD STH BANK ROAD

B

. ..

TRAFFIC FROM EAST LINK DAY HOND Af DATES-11-2003 WEATHER FAIR

QUARTER		LES					CY/	CLES	1	T	T	n —	<u> </u>		<u> </u>	T		π
HOUR	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.		CLES	CARS	LORRIES	BUSES	P.C.U
8.15	, con	-	-	<u> </u>			, reval	MOLDI					Pedal	Motor		4 (*	┢───	
8.30				6 12		2	<u>┤─</u> ∖	<u> </u>	15			17			154	1		175
8.45		1	-	2 7		- <u>L</u>	31		16			fl	,3 1	5		10	<u> </u>	171
9.00	[.0		 -		2				26		<u> (</u>	$\underline{1}$	12		111
				<u>حم</u> ن		<u>(</u> 0	2		14		<u> </u>	16	<u>z</u>	<u> </u>	114	6		201
9.15				7		نا ب	<u> </u>	2		2		(b	<u> </u>	4 4	174	8 16		112
9.30			1	4		<u> </u>			4	4		17	-	5	152		-	168
9.45			2	10		22_	<u> </u>		8	4		16	` ۲	4	137	12 .29	<u>i</u> '	like
10.00				7 "		<u>i4</u>			5	2		Ч	۲	י ב '	149	9 ''	-	163
10.15				12		2.5				3 '		13	ィー	<u>ج</u> ۲	131	11 22	~	156
10.30			3	<u>ז"</u>		<u> </u> 1		<u> (</u>	8	4 '		16	1	1	143	14 28	^	ik,
10.45				6"		i3			న	2"		Ŷ	^	` ت	138	<u>ا</u> ک 2۳	-	163
11.00			2	``ط		15				3		13	2	1	133	10 20	-	153
·** 15			2	° ج		12			8	9 1		26	1	3.	124	12 25	<u> </u>	154
0ئ			1	3		7		1	10	7. "		24	(.3	(15	16 32	2	150
11.45			1	4 s		Ϋ́			1	N N		7	(ς !	121	14 27	, 	150
12.00		1	7	12"		31			1	4 8		9	1	1	ξŚ	11 22	-	117
12.15			2	6 12		્રંદ્વ		1	L	7 1	et USe.	18	-	3	107	11 22	j 2	132
12.30			1	4.1		÷(_`	ู้เก	15.3	<u>, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10</u>	35	1	21	118	10 24		:24
12.45		1	1	* چ		11			5.0	6 1 01 12		27		ר ב ג	125	16 32		158
13.00			L,	3 4		10	1		می وک می کنی ا	14 27		31	_	<u>ب</u> بر ۲	117	10 (0 ²⁴		1-39
13.15			Ż	4	·	10	<u> </u>	4	210 Blin	11 22		24	1	Zi	126	13 24	_	153
13.30		1	3	12221		27		ection who	11	1227		35	<u>`</u>		49	4 17	1 2	<u> .</u>
13.45		- \	1	יי ר		15	in	Reverse	8	8 14		24		Z I	111		_	122
14.00			L,	5		14	<u> </u>	55. 	2	1, 22		25		' '		13 24		143
14.15			 2	 î			of of	(4	8 16		25		<u>у</u> ,	116	<u>حر</u> °د کا		163
14.30			- 1	م ا کر		linger			10	8 16		Z,4		4	(Z3 130	1425		111
14.45			- (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Coll			8			30		نې ^و بې ^{او}	130	1326		142
			1	17 24		25				8 16		28	_(רדי רא			~	112
15.00		1		12					12			20		י ב	121	6 '` 4 Tr		137
; 				<u>بر</u> بر		10			(8 16		27	2		115) 17 ¹ 1		157
15.30			2			16		$\frac{1}{-1}$	(1 ら	0		· · · ·	-	2	124	اک ^{ین} ۲ ۲	_	120
15.45			3	5" 9"		10		2'	8	61		25		<u> </u>	اەلم	<u> </u>	~	
16.00			-	8 "		21				٦		lk	-1		125	<u>س</u>		137
16.15						<u><u> </u></u>			(0	Ø		22	-	<u> </u>	133	- (151
16.30				8 1		17			6	ð		<u>7</u> 2		<u> </u>	118	5		$\left(\underline{SL}\right)$
16.45			1	124		24			5			25		,	128	13 22		154
17.00			3	9		11		1	8	b 12		20	2	- 21	144	<u> </u>		الم الح
17.15				्र		12			<u> </u>	ø		23	31	63	116			
17.30						4		<u> </u>	_[b		20		2 1	143	3 26		
17.45				>		رد ارد			<u> </u>	5		25		6 1	162	4 1r 1 24		185
18.00			2	<u>א</u> ג		8		1_	6	1		14	<u> </u>	8]	172	()		ЩЦ
18.15			^	<u>ل</u> م الم		8		2'	Ŀ,			15	<u> </u>	4 ×	143	8 16		162
1830	_[(2		4			3.	ا کتر		G.	3	<u>_</u> 5 [?]	(Z8)	<u>6 ''</u>		14-3
Totals for 10 Hours	3	د ر	Sb	500 250		560	لتر ہ	^{ر2} 24	317	540 270	_	872	43	138	5515	376 438	s. S	6374
Averages per Hour	-	-	ъ	2]		53		2_	20	25		83	4	13	530	41	-	62]
TUR	NING LE	FT TO:C	сти За	NK KODS	D NIU		STR	AIGHT A	HEAD TO	ISTU BA	NK EDS		TUR	NING RIG	HT TO:S	57N Mac	RE RO.	AT

CORPORATION, TRAFFIC DEPT . TRAFFIC CENSUS AT JCT. OF STON HOORE TO AD STA BANK WOOD

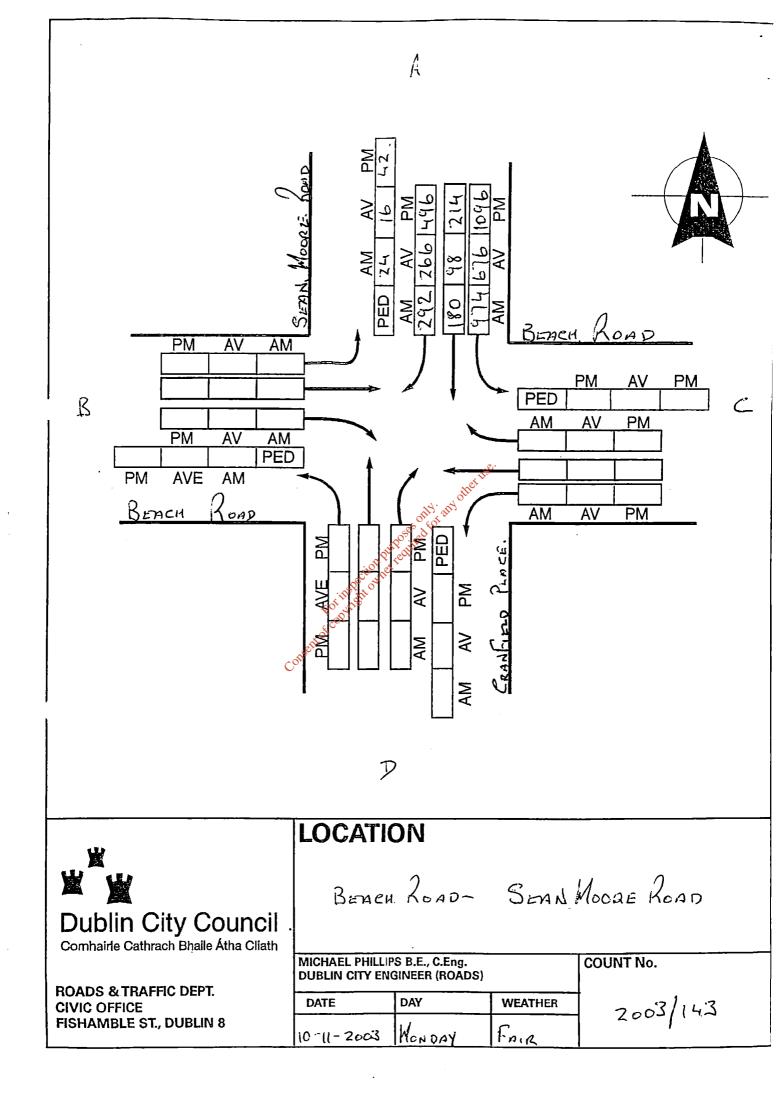
TRAFFIC FROM STK BANK READ NTI SIDE DAY HONDAY DATES -11-2000 WEATHER MAIN

QUARTER	CYC	LES	1				CYC	CLES					CYC	CLES				
HOUR ENDING	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Notor	CARS	LORRIES	BUSES	P.C.U.
8.15			-				1		l.	2 4		5			Z	6?	1	1 10
8.30			-	2 '		4	1		_	1 2		2			2	3		
8.45			-		-			1	1			1		-	i	8 10		17
9.00			Z	Z, ⁴		6			3	1 2		5				3		
9.15			-			-			1	1 2		3			-	[،] ک		10
9.30			_	1 2		2			ì	1 2		3			<u> </u>	6 2		12
9.45			. 1	6 2		:3			3			5			1	4 8		Ϋ́
10.00				36		6	· · · · ·			<u> </u>		1			1	5 10		11
			1	_ كر "					1	Z		<u></u>						8
10.15			-	<u> </u>		2			2	27		6			1	ر ار		11
10.30			-	۱ ۲		6			5	36		10			1	רי איר		11
10.45			2			5			、 ス			u			2	6 12		<u> </u>
11.00				2 5		7			2 3	<u> </u>								12
- '5			2	3 2		 L	<u> </u>	(<u>د</u> م					2	ς Γ		14
11.30			<u> </u>	1		<u> </u>			2			4				Cr il		14
11.45				1		2				2_						8 ¹⁶		10
12.00			2	() - 4		4			2		, 1 ⁵ 0.	2				- <u>-</u>		13
12.15			2	2 7		6	•		l		et .				(6		4
12.30				. 2		2				30		6				4		12
12.45	ļ		-			<u></u>			<u>رەتت</u>	in the second		5			<u>Z</u>	ح _		<u> </u>
13.00	ļ		<u> </u>	3		6			STORE STOR			5			Ζ.	d at	<u></u>	<u>i''</u>
13.15			`	<u> </u>		4			tell.	2		Ĵ.			<u> </u>	> ,		11
13.30		· ·		27		<u> </u>		Rection NI	<u>Z</u>	2		6			1	Ь Х		3
13.45			~	2 1		4	$\Delta 0^{\prime} \Delta$	elit ox	3	<u>-</u> 3 "		١			2	7		10
14.00			-	1 2		2			ط	2, "		(O			Z.,	<u> </u>		12
14.15			3	3			of or		S			lΫ			Ζ.	5		5
14.30			2	7		8 onser			2	4		11			3	<u> </u>		15
14.45			1	<u>ل</u> ،		. y			2	6		14			1	<u>له</u>		51
15.00		1	2	3 *		8			5			11			3	10 - 12		22
,	$\lfloor l \rfloor$		3	2 1		1		1	3	6"		1:5			2	11		ZL
15.30				1 '		2			4	2		X			3	8		11
15.45				6		되			3	<u>``</u>		13			2	کہ		12
16.00			-	3		b			6	3 "		12			L	b 12		18
16.15			1	2 1		چ			צ	1 2		5			3	•• كر		13
16.30			-	ゝ		L			5	۲. v		7			2	3 4		9
16.45				2 5		Ū.		i	5	2		Š			3	ז ל		11
17.00			l	-	_				5	1 2		7			Z	36		3
17.15				7		6			\$	2 7		4			Z	4		19
17.30	1		l	۳ ۲		્ર			Ŋ	12		5			Z	3		8
17.45			-	1 2		2			4	1 2		Ь	-		3	<u>ب</u> کړ		13
18.00	1		1	Z `		,s.			3	2)			3	5		11
18.15			1	2 1		5			Z_			4			Z	3		ÿ
1830	1			(^{_1}		2			I	1 2		3			Z	3 "		8
Totals for 10 Hours	1	1	33	165		201	1		113	42		299	(3	ገч	4.32 ZIG		50]
Averages per Hour		<u> </u>	3	8		14			10	8		28		~	7			48
	<u> </u>			(ROAS 2	I		STR	AIGHT A			HOCRE R	·	TURN		<u> </u>		NKR	

	/	¥	Sin	IN MOS	RE. NO	- 600	STH.	BAN	к К	9 0 10 p	<u> </u>		
	́ ́	▶ L i C						MUNIONY			ER	FAIR	
		,				PED	FST	RIAN		MINI.	TS		
								<u>1 (17 (1</u>					
ж.		CROS	SING	ON 'A'	CRO	SSING (on 'B'	CRO	SSING	ON 'C'	CRO	DSSING	יס' אס
. A ·		STH. В.				LINK K		STH BA				Moon	
	<u>1/4 HR. то</u>	CHILD.	ADULT.	TOTAL	CHILD.	ADULT.	TOTAL	CHILD.	ADULT.	TOTAL	CHILD.	ADULT.	TOTAL
			~	-		<u>.</u> 2	2		<u> </u>				
			-	-		3	3		- 3	3		$\frac{1}{1}$	
	9,00		•	<u> </u>		3	3		(
			- 1			1	$\left \begin{array}{c} - \\ 1 \end{array} \right $		-	-		2	2
				-			ì		~	~			
	10.00					1	1		~	<u>``</u>		2	2
			, ,			<u>ک</u> ۲	2 ス	150.	$\hat{}$	-			
				(othe						-
	11.00		1			2,00	or Z			<u> </u>			
			·			120 itel	- 2		-	-		$\overline{}$	
	•		1	-		PU ted	~		-	-			
	12.00				inspirit	Not Z	2			-			
			$\overline{1}$		of the phase		1		-	-		(
			~		10 9 3				~	-		<u> </u>	~
	13.00		^	sento		2	2					_	_ ~
			-	Colla-						<u> </u>			
-			<u> </u>				- i	-		~		-	
	14.00					-	~			~			
			<u> </u>			-			, Ú	<u>^</u>		2	~ Z
			-				~		-	~		$\overline{1}$	
	15.00		~	<u> </u>		2	2		~	-		~	<u>^</u>
		 	j	<u>-</u>			$\overline{}$			1		 	2
			ſ	~						-		7	
	16.00		·~ .			3	3						<u> </u>
				-			-						<u> </u>
			_ <u>_</u>	-						-			<u> </u>
	17.00		_		<u>``</u>	3	3			_			
						- - 			-	^ 2			2
			, ,	-		-7-	-		2	-		<u> </u>	5
	18.00		~	-		2	2						
	18.30		~	-		2 	· 2 -						
		L				· · · · · ·		l					
	TOTAL.		S	ے ا		49	49		12	(7		20	20
	AVERAGE					<u> </u>	4		1			2	2

···

. .

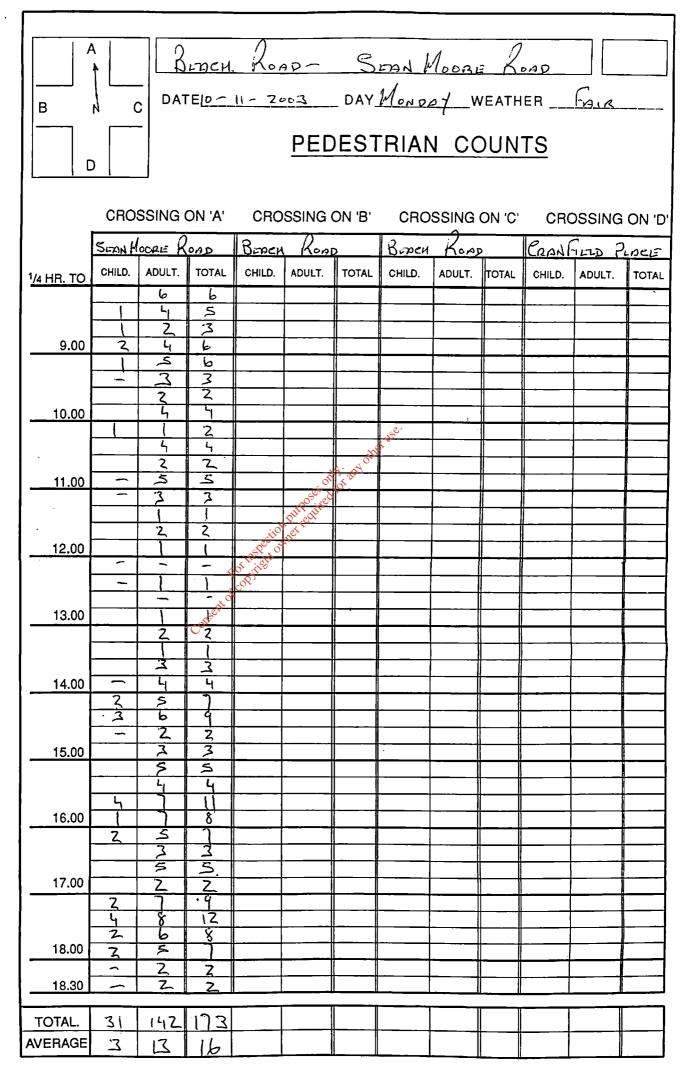

. . .

1																
	A	,	5-7.	N Mo	ORE	R	×A <u>P</u> -	-	Sτι	1 20	ANK	ROA	<u>ה</u>			
 B	Ţ L			<u>E3- II-</u>									Fa.	e	<u> </u>	·
	м [-		riagew			 A			3		C				· — —
	ן ם	1		idths						_						
	ŤR	AFFI		DN A	 T											
			<u> </u>		11				<u></u>	RAFF		0	TF			
4 HR.TC	LEFT		Ka RGT.		41		<u>k Ko</u> RGT.	11	111	TSTR	- F	11	LEFT	N /1/	PORE RGT	TOTAL
<u><u><u></u> <u></u> /u></u>		5	16 4	21	-	ļī,	175	192	6	2	2	8	206		23	230
000		1 5	17	18	4	26	114	229		14		15	Z12 Z23	5	27	240
900	-	<u>-</u> <u>-</u> <u>-</u> <u>-</u>	10		6	16	207	214	5	6	2	() 13	182	2	25	209
10.00	13	<u> </u>	4	21	22	16	168	204	3	+	<u>کہ</u>	4	167	3	25	203
10.00_	5	36	8	18	14	13	168	191	8	4	j [2]	4	169	6	29 32	212
	6	10	11 15	2	13	16	161			6	- 	13 36	171	ש ב	24	201
11.00_	2	11	14	30 30	14	13	153	1800	11	15	87	36	126	<u>7</u> 4	22	151
	4	ц 5	14 16	22 23	4	24	150	181	4	15	2.	21	132	<u>3</u>]	24	159
	6	2	13	13	31	AN 10	132	151	12	11	4	24	123	4 7	21	148
	2	·	4 12	11		35	134 158		14	14	्र २	26	114	6 10		149
_13.00	4	4 7	14	24,0	10	31 24	134	180	18	4	-	27 27	127	G-VJ	21 25	157
		6 4	130	23	27 15	35 24	114	171	13	17	2	21 31	147	<u>8</u> ר	22 22	177
14.00		10	i2 6	24 34	14	25 25	143 163	18Z 20Z	13	11	7	31	151	10	24 17	185
	4	11 14	77	32 36	11 8	26	166	<u>203</u>	33 20	33	1	67 44	148 205	5	22 22	114
15.00	+ - <u>-</u> +	_	22 24	49	25 10	28 21	137 139	190	13	22 19	11	46		3	24 21	Z15 16-3
			19 12	30 38	16	21 25	152	195	16	11	3	36	166	-	20	186
_1600		121	18		21 17	16	137	174	<u>3</u> 1 36	35 40	5	71	176	7 6	10	193
	6 5	7	9	22	17	22	132	171	27	24 16	2	53 36	144	4 6		209 707
1 7 .00			8	16	14	20 23	173	212	32	19		51	246	5	86	254
	<u>ສ</u> ;	s	8	18	9	20	170	228	24	15 12	-	37	242	7	12	261
18.0.0	5	7	11	23	8	14	144.	221	20	15	-	35	2.34	2 4	is	251 263
18.30			8.	13	4		143	151		4		28 24,	240			25 F
TOTAL	201 2	49 =	567	1007	560	872	<u>bs4</u>			<u>577</u>	137	358	7272	203	<u>;</u> 831	8314
AVERAGE	19 2	28 1	481	95	53	83	623	754.	61	<u>55</u>	13	124	642	14.	74	741

` .

2

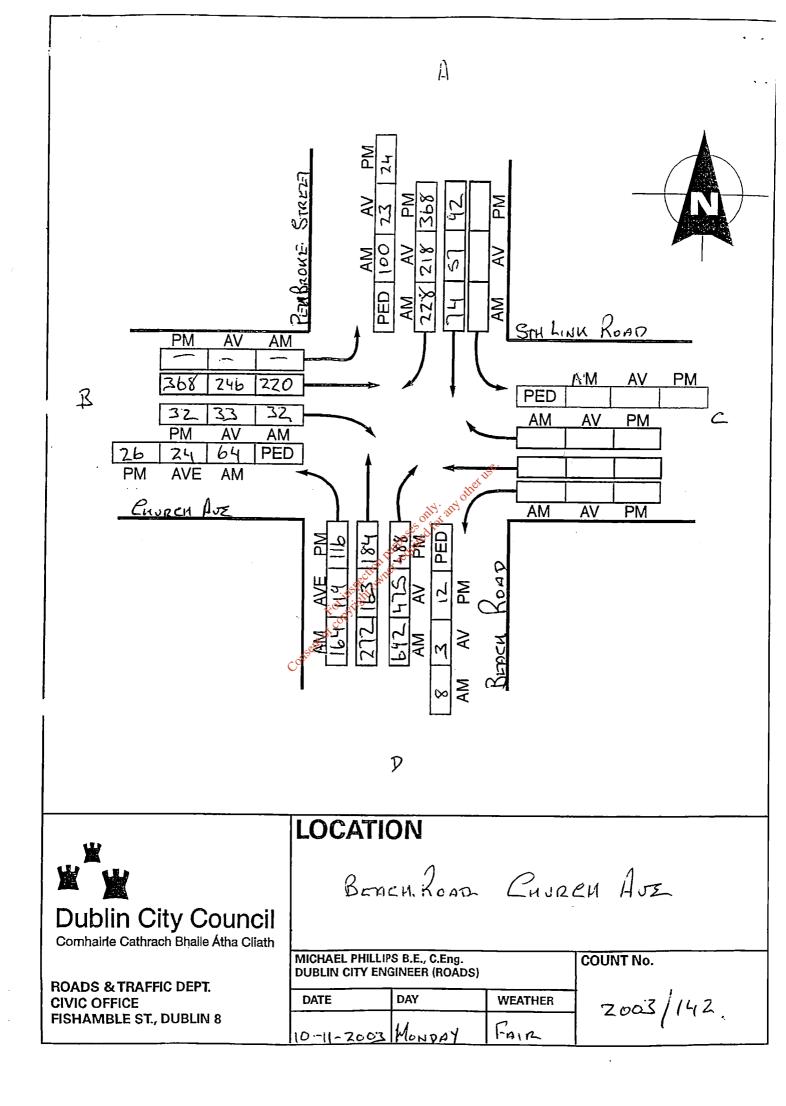
.


·								
	Binen.	Ropp-	Q	h have	loon	\sim		
	DATELO -							
	Carriagew			B		C		
	Widths	'ay	<u> </u>	0				0
L								
TRAF	FIC ON A	TRAFF	IC ON B	TR.	AFFIC	ON C	TRAFFI	C ON D
SEMIM	DORERCAD	Вітен	Ronp	35	лен К	010	RANFIL	20 PLACE
4 HR.TO LEFT ST	R. RGT. TOTAL	LEFT ST F	≀. RGT. TC	TAL	STR. R	GT. TOTAL	LEFTSTR	RGT. TOTAL
238 41 249 44			┼──╢─					
203 42 900 (95 34						_		
188 34	1 77 299							<u>├──</u> <u></u>
179 38		 	╀╢					
10.00 180 44	1 65 289			╺╼╢╶╶┥				
135 23	3 54 212			<u>ی</u> .				
11.00 132 8		┝── ┦━━─		pet -	· · ·			
141 12	- 60 213		OTIN					
125 8	48 181	Durpo	Stred F					
12.00 123 6	48 177	-Rection of the	$\left - \right $					
1207	56 83	in en		╼╢╼╌┧				
13.00 izo 11	48 174	× ·						
125 14	52 941							
1167	39 162							
14.00 117 10	53 80							
116 18 106 16	15 197							
15.00 124 28	82 239							
14718	51 216							
18415	51 256							
154 11	65 235				-			
162 14	61 237							
17.00 218 36	78 232					-		
275 56	48 429							
1800 271 50	119 443							
18.30 2.43 41								
	5 2745 10,424			_				
VERAGE 676 98	266 1040	1 1						

٠

.

. **


è

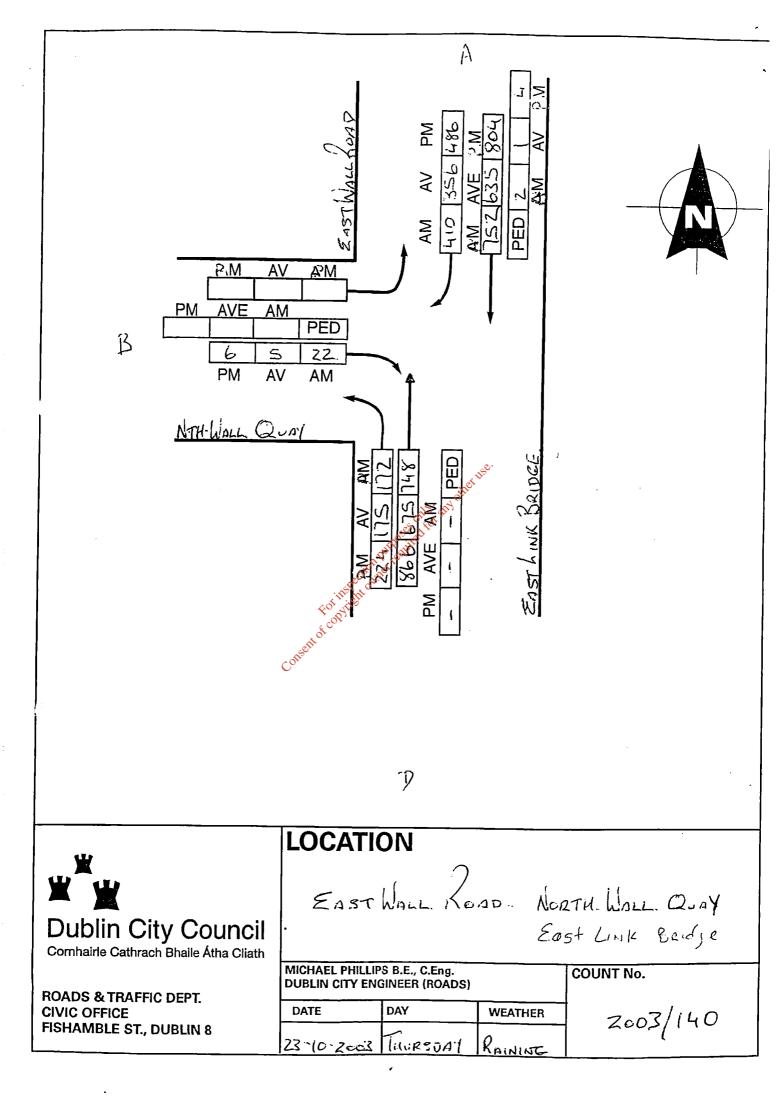
.

CORPORATION, TRAFFIC DEPT TRAFFIC CENSUS AT JCT. OF BEACH ROAD SEAN HOORE ROAD TRAFFIC FROM SIMA HOORE ROAD DAY HONDAY DATE 10- 11-2003 WEATHER FAIR

	T		· · · ·			<u></u>				······································			181					
QUARTER HOUR ENDING	Pedal	Motor	CARS	LORRIE	S BUSES	P.C.U.		CYCLES	CARS	LORRIE	S BUSES	5 P.C.U.		YCLES	CARS	LORRIES	S BUSE	S P.C.L
8.15		7	216		16	4 77 4	Peda	I Moto					Pedal	Motor	-			
8.30	5	s	2ZZ	8	1 ¹ Z ·	238	 	+	35	2	¥	- 'n !		5	- 44 		<u>14</u>	2 6
8.45	1	2	1 184	_		203	┨━┶	2	40			<u> </u>		<u> </u>	1 46	<u> </u>	¹⁶ [2 6
9.00	<u> </u>	3	1178		16 -	195		+	38	2		- L.Z.		4	1 58	<u>ן י</u>	11	472
_	2	<u>ر</u>	4172		5 -		+		36	<u> </u>	2	136			60	4	<u>' </u>	6
9.15	2	<u> </u>	2 160		L	188	<u> </u>	+	32		2	34		2	64	5 '	11	24.7
9.30	5	4		+	2		 	<u>(</u>	36		2	238	(<u> </u>	45	5"		5
9.45	Z,	3	1.56	10		10	1^{-1}	· ·	38	\perp]	40	2	1	47	4		15
10.00	4_	5	16	6		180	 	\perp	40	2		44		2	' SZ	6 "		65
10.15	2	4	1157			123	<u> </u>		36			136		Z	48	s T		1,54
10.30	<u> </u>	 	126			135	<u> </u>		21	1	2	23			44	s "		1,54
10.45	-	ζ	122	10	-	143		1	<u> </u>			<u> </u>		تر	IS	6 "		43
11.00	-	\$	110	10	-	132			ð.			8		Z	36	7 "	-	51
11.15	2	6	114	12 2		(4)			10	1 3	2	12		4	40	8 14	1	160
	1	1	100	11 2	1	124			হ			S			32	5 "	1	LIZ
11.45	2	3	106	9 **		125	1		8			8			36	6 12		48
12.00	ļ	2	102	10 20		23			6		e.	6	•		34	7 "		148
12.15	2	י ג	107	8		124	(10	1	perti	12		Z 1	38	6 2		51
12.30	1	<u>ц</u> ч	98	10	-	120		1	17	4.04	54	<u> </u>	1	3	41	7 "		56
12.45	ζ	<u> </u>	105	q ¹¹		125	1		11.0	£01 31-		11		Z	36	6 2	1 2	5
13.00	١	ц ^с	102	8 il	`	120			phile	1		il	(1	38	5 10		48
13.15		<u>` تر</u>	110	7 "		125	2	10	P. PZ		1 2	14		21	43	4		52
13.30	~	<u> </u>	114	<u>s</u> "		125		ection	ser y			Ϋ́Υ.	(1	39	1 2	,	41
13.45		ц <u> </u>	106	4		116	in the second se	ofti .	<u> </u>			7		1	35	۲ ۲		39
14.00		3 '	88	12	Z	$\left \left(\left(1 \right) \right) \right $	FOR	<u> </u>	10			10	1	31	<u>78</u>	ך יי		53
14.15	2	<u>ч</u>	76	15		((0	of the second se		13			12	(3 1	41	ý ľ	12	62
14.30		ζ'	81	16 32		11/200			16			18	2	42	43	11 22	•	67
14.45	-		96	<u>" جر</u>		106			16			16	1	Ζ'	46	14 25		75
15.00	1	ζ ՝	114	<u>ן י</u> י	-	124			24	Ζ, ^ч		28	2	(48	16 34	12	82
15 **		ζ ՝	120	13 20	~	147		1	16) ⁷		18	1		37	7 5		51
15.30	2	<u>لر</u> `	126	ت ۲	-	158		1	18	Z		22	1	3 '	40	8 16	- <u> </u>	59
15.45	3	3 '	152	² 7 ال	2	184			13	1 3		15	1	21	40	7 "	1 2	5
16.00		<u>۲</u>	146	רי ה	1 2	164			10	12		12		z	44	6 12	1 2	59
16.15	1	2	138	10 20	1	154			11			11	_`	12	48	8 16		65
16.30	~	3 1	143	۹ ''	-	162		1	14			14	1		47	7 17		61
16.45	Z	6 7	156	11 22	-	171			14			19	21	4 2	53	5 "	1 2	68
17.00	2	٦ 8	188	12.29	1 Z	218			34	1 1		,36	4	3	66	5	·	78
17.15	5	[] ⁵	230	11 22	1 2	250		1	50	_`_		50	2	3 1	78	4 8		86
17.30	21	8 7	Z38	16 14	-	275	<u> </u>		Slo			56	2	<u>-</u> 		6 2	1 2	
17.45	2	7 7	244	12 29	1 7	273			51			51	- +	4 4 ²	101	8 16	- <u>`</u>	119
	2	5 7	241	13 24	1 1	271			46	2, 1		50		3	110	7 14		125
18.15	75	4 7	221	13 20	- 1	250	1		42			42	2	<u> ר</u>		8 16		123
1830		31	218	11 22	1 1	243	\rightarrow		34	1 4		41		<u>-</u> z '		3 13 -		114.
tais for Hours	22	53		316	34		4	17 8					12	-411	101	550	26	
erages	/				<u>- _ </u>	7099	12	<u>1] </u>	961	30	<u></u>			T	2160	275	12	2795
Hour	6	<u>-t-</u>		38	<u> </u>	676	1		91	تہ			3	9		26		266
		10:B'	mcy. R	CAD			STRA	IGHT A	HEAD TO	RANF	ELD PLA	=E	TURNI	NG RIGH	IT ТО:В"	TH 871	1557	

DUBLIN CORPORATION, TRAFFIC DEPT. : PEDESTRIAN COUNT

STREET : BATH STREZET LOCATION BLACK KOAD


PEDESTRIANS CROSSING ON: BATH. STREET

WIDTH OF ROADY/AY :.....

DATE 10 11-2003 DAY . MONDAY WEATHER .. FAIR

QUARTER		j		QUARTER			
HOUR ENDING	CHILDZEN	ADULTS	TOTAL	HOUR INDING	CHILDREN	VDUL12	IOTAL
8.15	~			13.30		5	6
8.30	(0	14	. 25	13 45			1
8.45	13	14	27	14.00		Ĺį	4
9.00	8	10	18	\$4,15	Z	S	2
9.15	ſ	Ь	b	i#.30	M	3	b
9.30	. 1	٦	8	14.45	, ۲	Z	4
7 45	{	6	٦.	is de		い	3
10 CO		<u>د</u>	4	011 15.15	10	3	. 13
10.15	1	6	- Conputor	15.00	Ś	Z	11:
10.30	-	í,	instront of	15 45	2	4	b
10.45	3	7	FOODIL B	15 00		4.	5
11.00	ſ	4_00158		:6.15	6	l	7
11,15	l	5	6	15.30	Z	3	<u>ج:</u>
11,30		7	8	16 45	2	4	b
11 45	-	3	2	17.09	1	1	4
12,00	1	l	Ż	17.15	J	۲	Z
12.15	. (3	Σ	17.30			
12.30	l	. 5	6	17.45		2	3
:2.45	(ζ	ζ	18.00	2	4	6
13.00	7	3	b	18.15	<u> </u>	2	- 2
13.15	-	2	Ζ.	13.30	L	3	4
-	RENI	4885		TOTAL	93	173	266
				AYERAGES PEK HOUR	8.	16	25

EPA Export 25-07-2013:21:29:01

					<u> </u>					,					
	<u></u>		·												·
		A	Ens	T []	a. I.	Lo	477-	AD	оти	Wa		QUA	1		
		4	<u> </u>		1	101		100		1	<u> </u>		77		
	В	N C	DATE	<u>z3- 1</u> 1	<u>) ^Ze</u>	<u>s</u>	DA	YTHJ	2500	_7_we	ATH	ER_ 1	Rnini	NG-	
														·	
			Carri	agew	ay	Δ	\		B			С			D
	1 1	ן 'כ	Wid	dths											
	•		•										<u> </u>		
		TRAFF		A I	TR	AFFIC	; ON	в	TR,	AFFIC	: ON	С	TRA	FIC	ON D
		t			1 :				1				-		2
		ZAST-W	1 1 1		•	1	- 1								BRIDEE
	4 HR.TO	LEFT STR	. RGT.	TOTAL	LEFT	STR.	1		LEFT	STR.	RGT.	TOTAL.			RGT. TOTAL
		(40	99	239	73			155					25 ((143
		178	106	284	74		80 75	154					482		254
	9.00			<u>276</u> 207	61 79		68	136						<u>54</u> 67	202
		134		200	76		70	146	<u> </u>					15	
		193	83	276	66			142					271	58	185
	10.00	184		250	11		83	154						44	- 175
-	_10.00_	Zeb 204		<u>269</u> 259	81		41	168						15 42	167
		145		242	(01		61	1680	<u>z</u> .				·	54	200
		134		209	96		49	105					44 1	58	202
	11.00	144	75	224	96		58	<u>γ</u> μ μ						10	220
-		151	18	<u>229</u> 222	45			149						25	223
		167	81	248	86,5			139					_	55	Z04
	12.00	110	78	88	<u> কি</u>	()	39	140						51	197
		137	41	228			49	134						11	134
		151	121	<u> </u>	571 88			125					38 1.	<u>دی</u> کات	206
	_13.00	141	113	254	47		58	155						55	146
		148	ioU	Z4 8	ðι		62	143					37 11	تخا	200
		150			(व्य १४		59	162						52	188
	14.00	137	1	237	10		59 55	157		{				= (55	143
		136		222	102		61	163						3	211
		140	94	234	108		63	171					53 1	5	228
	. =	122		228	124		59	183						14 52	224
	15.00	135 136		225	41 40		58	136						»0	190
		153	85	248	104		49	153						56	224
-		154	98	252	101	1	56	(57)					651	77	2.42
	1600	167	75	242	76		46	122						74	246
		178	82 ' 43	260	84 81		50	134						10	2.58
		182	104	270 286	76			135			·		451	13	218
	17.00	191	116	307	75		61	136					472	01	248
		198			42			156						10	Z61
•		20 4 166	+++-	312	73		50 52	129	<u> </u>	<u> </u>				23	281
	_18.00	100		230	88			144						54	256
		(63	94	257	70		53	1Z3					60 Z	12	Z72
l r	18.30	166	[,97]]	263	78	,	48	126	,,, ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~		40 10	ŢĻ,	23
	TOTAL				71000	<i>1111</i>	<u>///</u>	<u>L</u> uell	1/17	<u> 114</u>		<u>/////</u>	1/1/	97	50000
· •			37461					6198					184570		8138
· · · ·	AVERAGE	635	356	77L	350		237	590						15	851
												EI	A Export	25-07-2	2013:21:29:01

EPA Export 25-07-2013:21:29:01

CORPORATION, TRAFFIC DEPT TRAFFIC CENSUS AT JCT. OF EASTWALL ROAD NORTH WALL Q.DY TRAFFIC FROME FOR LINK BRIDEZ DAY THURSDAY DATE 23- 10-24-3 WEATHER TAINING

QUARTER	CYC	LES					СУС	LES		Γ. –			CY	CLES			<u> </u>	ſ <u> </u>
HOUR ENDING	Pedal	Motor	CARS	LORRIES	8USES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.
8.15			17	i, s		25	3 1	1	125	Z1 ^{5,2}		103						
8.30	L		32	8 16		48	<u>'</u> 2 '	2'	168	1Y 30		200						
8.45	ב '	2 '	28	<u>ч</u>		38	7 2	نہ ک	124	13 **								
9.00	י ד	5 2	2,6	3 6		25	· 4 '	14 ⁷	121	18	\ ²	161						
9.15	2	Z `	14	3 '		Zb	8 ²	۴ ۲	(1)	11 12		:45						
9.30	5	(22	2 '		2]	b ²	is ²	126	²³		158						
9.45	2	l	23	ių 'r		21	<u>ן</u> י	5	116	12		147						
10.00			18	Z."		22	31	<u>'</u> ۲	123	10 20	·	5						
10.15	2	l	21	Ζ "		25	۲ ۲	<u>ر</u> ۲	111	" ذا	<u> </u>	142						
10.30			32	٦ "		46	١	3	i21	16 14		1.54						
10.45		1	34	5 "		44	2	۲, ^۲	128	14 2		15.8						
11.00		1	36	7 "		, S O	l	42	116	25 50	(170						
1* *5		1	40	_5 ^{;**}		50	2	2 '	122	24	1	173						
1:		i	38	6 12		50	t	2 '	130	21 2		173						
11.45			35	7 "		49	2	יה	118	18 "		155					j	
12.00			34	6 2		46	(4 ²	104	20 *	- UBC.	151	:					
12.15		1	24	2 "		28	·	21	92	4 (7	her	II						
12.30			30	4,		38		3 !	156	14:3034		133					·	
12.45		1	28	b		40	~	71	1220	22 "		168				- 1		
13.00		1	33	ч ^у		41	2.	2	19 510	18 26		155						
13.15		21	28	4 3		37	3	300	121	20 5		163						
13.30		1	32	Z. 1		36		QCZ OW	115	18 36		152	~					
13.45		$\overline{1}$	24	4 "		32	tor in	197 2	127	16 32		ibi						
14.00			22	1 2		24	ZOR	3 '	112	21 42		155		_				
14.15		<u>ц</u> 2	38	4		48	×Ζ	2 3	126	17 35	-	163						
14.30		31	42	-5 ¹⁰		5305	31	5	130	20 40	(4	175						
14.45	Z	z I	37	6 12		50	3'	4 2	12]	ZZ "	~	174						
15.00		1	32	3'		38	Ϊ.	2	115	17 26		15Z						
		1	24	12		53	Z	<u>ل</u> ر ۲	1	20 40	~	160						
15.30		21	31	13 11		58	1	<u>ب</u>		21 42								
15.45	1	1 1	34	15 11		65	3'	<u>۲</u>	1	24 47		177						
16.00		3. 1	38	14 2r		67	2	6	IZ	21 72								
16.15	1	3	41	13 20		68	3	7 3		23 46		140						
16.30	2	Z	31	2, 7		44	1 T	3	(14	22.	~	155						
16.45		1	35	۰۰ <u>د</u>		45	3	4 ²	134	18 36		173						
17.00		<u> </u>	33	7 "		47	<u>~</u> ,	<u><u> </u></u>	154	77 44		201						
17.15	2	1	43	4		51	6	3	164	14 30		210						
17.30	1	$\frac{1}{1}$	52	3.		58	87	17	178	20	1 2							
17.45	31		40	2 7		45	5	5 1	159	16 32	-	194	-					
18.00	2	$\frac{1}{1}$	3	5		41	4	<u> </u>	168	14.31		ZOH						
18.15	3	$\overline{1}$	53	3 6		60	. 2	3 1	174	11,37		212						
1830		<u> '</u>	38	1 2	<u> </u>	40	<u>ь</u> ч	3 1	<u>حری</u>	18- 36		141	'					
	_ ;2	1 27	<u> </u>	438	L	<u>n v ~</u>	42	I.———		•	20		L		<u> </u>			
Totals for 10 Hours	36	55	1368	219		1845	127	168	5421	1517	10	7043						
Averages per Hour	3	5	130	20		175	12	16.	รเวิ	72	(675						
		EFT TO:,		ily Q		<u>"</u>					WALL K		TUR	NING RIG	HT TO:			
L		·	MAL WE		<u></u>		L						L					

EPA Export 25-07-2013:21:29:01

 \sum

CORPORATION, TRAFFIC DEPT TRAFFIC CENSUS AT JCT. OF EAST WALL READ - NORTH WALL Q. AT TRAFFIC FROM NTU WALL Q. AT DAY THURSDAY DATE 23-10-203 WEATHER RADINING

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	QUARTER						T					<u> </u>	11				T	<u> </u>	<u></u>
ess 2 2 1 γ 1 γ	HOUR		1	CARS	LORRIES	BUSES	P.C.U.		r	CARS	LORRIES	BUSES	P.C.U.		1	CARS	LORRIES	BUSES	P.C.U
asso i		<u> </u>		34	18 36	\ ^z	73								2	77	L 7		\$2
set 1 - 1 - bit - - S G(t) 2 7 set 1 31 20" 1 31 20" 1 34 1 20" 1 34 1 20" 1 34 1 20" 2 1 34 1 20" 2 1 24" 1 24" 1 24" 1 24" 1 24" 1 24" 1 24" 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 24" 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> 1 1 1<</th1<>	8.30				76	-	<u> </u>							1	· · · ·		5 10	<u>├</u>	╫────
900 1 1 31 20 1 34 1 34 1 34 1 34 1 34 1 34 1 34 1 34 1 34 1 34 1 35 1 35 1 35 1 35 1 35 1 35 1 35 1 2 35 1 35 1 2 35 1 2 36 87 36 36 1 35 1 2 36 9 93 1 33 33 33 33 33 33 33 35 1 </td <td>8.45</td> <td>1</td> <td>-</td> <td>35</td> <td>57</td> <td>-</td> <td>61</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>52</td> <td></td> <td></td> <td><u>├</u></td> <td></td>	8.45	1	-	35	57	-	61								52			<u>├</u>	
ass i 3y it it <t< td=""><td>· · · ·</td><td>1</td><td>1</td><td></td><td></td><td>12</td><td>79</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td>+-`-</td><td>Y</td><td>7</td><td></td></t<>	· · · ·	1	1			12	79							2		+-`-	Y	7	
200 - 1 32 11 - 166 - 32 163 1 7 166 8 7 16 17 18 18 12 12 25 1 1 17 18 18 12 12 25 1 1 1 1 2 18 18 18 12 12 25 1 1 1 2 18 18 18 18 18 18 18 18 18 18 18 18 18 19 10 1 2 18 18 18 18 19 10 11 18 19 11 19 10 <		-			71	-	1	<u> </u>						1 1	- <u>`</u>		+ <u> </u>	<u> </u>	11
245 1 2 1/20 $2e^{-6}$ 1 1 2.3 $4bb$ 8^{-1} 835 400 - 1 2.1 255^{-6} 11 - - 2.65 835 415 1 2.7 255^{-6} 815^{-1} 10 - 2.65 91^{-7} $82.$ 416 1 2.3 32^{-1} $1^{-6}b$ 1 1 2.12 $1^{-6}b^{-1}$ $1^{-7}b^{-1}$ $1^{-7}b^{-1$						-								<u> </u>	7	· · · · · · · · · · · · · · · · · · ·	1 2		// · · · ·
ess $_{-}$ 1 $_{-}$ 2 6s 12^{+1} 11 2 $6s$ 12^{+1} 11^{+1} 2 $6s$ 12^{+1} 11^{+1} 2 $6s$ 12^{+1} 11^{+1} 2 $6s$ 12^{+1} 11^{+1} 11^{-1} 2^{+1} 2^{+1} 11^{+1} 11^{+1} 2^{-1} 32^{+1} 11^{+1} 11^{+1} 2^{-1} 32^{+1} 11^{+1} 11^{+1} 31^{+1} 11^{+1} 11^{+1} 31^{+1} 11^{+1} 11^{+1} 31^{+1} 11^{+1} 11^{+1} 31^{+1} 11^{+1} 11^{+1} 31^{+1} 11^{+1} 11^{+1} 31^{+1} 11^{+1}		1		· · ·	· · · ·	-	71								·				
ass (29 26 37 <t< td=""><td></td><td></td><td>1</td><td></td><td>50</td><td>-</td><td>77</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td><u> </u></td><td>1</td><td></td><td></td><td></td></t<>			1		50	-	77			-					<u> </u>	1			
1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>		<u> </u>	$\left \begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array} \right $	<u> </u>	54		X												
ues 2 3 $2e^{-4}$ 4^{-4} $7e^{-4}$ $1e^{-4}$ <td></td> <td></td> <td></td> <td></td> <td></td> <td>-<u>-</u>2</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>╏─└──</td> <td></td> <td></td> <td>1 70</td> <td></td> <td>1 1</td>						- <u>-</u> 2								╏─└──			1 70		1 1
1100 32 31 42 46 33 37 57 47 1115 1 32, 2, 4 4 4 4 54 53 12 24 24, 4 81 1 1 25 1 53 1200 1 21 31, 7 5 7 53 1200 1 21 31, 7 5 7 53 1200 1 21 33, 7 5 7 53 1200 1 21 33, 7 5 7 53 1201 1 21 34, 7 7 53 7 53 1201 1 22 1 1 1 23 8 4 44 121 34, 7 1 1 1 23 8 54 1 1 35 1 25 37 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<u>,</u>		1.6	1 2	to i								~		1 12		<u>u '</u>
1 3 2 4 4 4 5 1 24 24 ³ 37 1 1 2 34 ⁴ 7 5 1 24 24 ³ 37 1 1 1 21 24 ³ 7 5 1 1 24 24 ³ 37 96 2 38 7 53 1 1 21 37 96 2 2 38 7 53 1 1 21 37 96 33 2 38 7 4 54 1 1 21 31 22 ⁵ 1 1 25 1 33 1 22 ⁵ 1 34 1 34 1 34 1 34 1 1 1 22 1 1 1 1 23 1 1 25 31 1 22 31 1 1 32 35 ¹⁰ 102 36 ¹⁰ 1 1 1 32 35 ¹⁰ 102 <					1	2	4.7									+			
1 24 24^{31} 31 1 1 1 21 37 54 1 2 38 7^{16} 53 1200 1 21 31^{16} 01 7 1 25 7^{16} 53 1201 1 21 31^{16} 01 7 1 25 7^{16} 534 1231 1 22" 1 11 22^{16} 355 21^{16} 21^{16} 21^{16} 54^{16} 55^{16} 1231 1 22^{16} 85 556^{16} 21^{16} 32^{16} 8^{16} 2^{11} 55^{17} 1300 1 12^{16} 21^{16} 8^{16} 556^{16} 11^{16} 12^{16} 61^{16} 557^{16} 11^{16} 12^{16} 61^{16} 557^{16} 557^{16} 557^{16} 557^{16} 557^{16} 11^{16} 12^{16} 61^{16} 557^{16} 557^{16} 557^{16} 557^{16} 557^{16} 557^{16} 11^{16} 557^{16} 557^{16}					1									;			•		
11.65 32. $2\sqrt{1}^{5}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{2}$ 38 7^{-1} $\sqrt{53}$ 1200 1 21 31 $\sqrt{1}$ $\sqrt{5}$ $\sqrt{5}$ $\sqrt{1}$ $\sqrt{33}$ 8^{-1} $\sqrt{1}$ $\sqrt{2}$ $\sqrt{1}$ $\sqrt{2}$ $\sqrt{1}$ $\sqrt{2}$ $\sqrt{1}$ $\sqrt{2}$ $\sqrt{1}$														<u> </u>	<u> </u>	<u> </u>	1 12		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					5 L										5-1				
1 1 24 28 85 2 1 1 33 8 4 44 1230 1 31 22 1 31 22 1 31 22 35. 4 7 54 1 4 1245 1 1 20 34.47 1 91 2 35.67 7 57 1300 1 1 21 34.47 1 91 2 35.67 7 57 1315 1 22.5 34.47 8 6 57 57 57 1316 2 21 34.47 8 6 57 57 1318 1 32.344 8 6 57 57 57 57 1318 1 32.347 102 103 2 14.87 57 57 1318 1 32.357 102 102 2 14.87 54 1.41 1.42 57 1433 2 31.347 102 1.31					76										5				
1 31 22" 1 31 22" 1 31 22" 35 4 7 57 1266 1 1 20 24" 88 85 85 77 76 57 77 76 57 77 76 57 76 57 76 57 76 57 <t< td=""><td></td><td></td><td></td><td></td><td>-> (</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td></td><td>1,</td><td> <u> </u></td><td></td><td>8 16</td><td></td><td>i</td></t<>					-> (0.0		1,	<u> </u>		8 16		i
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			l		55			_				erts							
1300 1 1 21 34,47 1 91 2 34,6 91 55 1315 1 25 33,46 81 37,46 1 1 42. 100 2 102		l	- ·								A	<u> </u>			<u> </u>				· ·
1 25 33 tb 81 81 81 81 81 81 <			<u>`</u>		LY	2					$\frac{c_0}{D}$ $\frac{3U}{2}$			-					
13.0 21 36 2 10.3 10.3 10.3 10.4 1			\ \	· · · ·		<u> </u>				م کئے ۔	<u>></u>	· · ·			<u> </u>	<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															1				
HAD Z1 Z2 Z2 Z2 Z3 (1)			<u> </u>		(X)	۲.				>	<u> </u>				<u> </u>				
H15 I I 32 35 ¹⁰ IOZ 000 H130 Z 31 38 ¹⁰ IOZ 000 Z 446 I 12 61 H130 Z 3 38 ¹⁰ IOZ 000 Z 46 I 1 I 48 61 H146 I 42 41 ¹⁰ I 12 43 8 ¹⁰ 59 1500 Z 36 21 ¹⁰ 91 91 1 1 1 42 8 ¹⁰ 59 1530 Z 33 28 ¹⁰ 90 1 31 7 ¹⁰ 41 1530 Z 31 28 ¹⁰ 100 2 31 39 14 42 1530 Z 31 29 ¹⁰ 100 21 31 21 ¹⁰ 35 50 1630 I 21 29 ¹¹ 76 21 21 21 ¹⁰ 50 1630 I 21 24 ¹⁰ 76 1 22 21 31 1			2					- TP							<u> </u>				
14.30 2 3 38 10^{12} 10^{12} 10^{12} 1^{12}		,	· ·		2570			- 6 0, 4	<u></u>								8 16		
HAM Z J H J H J H J H J H J			- 1		7.1		<u>``</u>											1 2	
15.00 2 36 27 47 47 15.00 2 32 28 400 1 31 7 45 15.30 2 37 33 400 104 2 34 7 44 15.30 2 37 33 400 104 2 34 7 44 15.45 1 4 30 104 2 34 7 44 15.45 1 4 30 104 2 39 81 50 16.00 1 2 1 2 2 35 51 40 16.15 2 3 24 37 84 21 35 51 40 16.15 2 3 24 27 84 21 37 50 16.30 1 21 24 37 84 21 30 21 35 50 16.45 24 24 31 24 27 45 46 47			<u></u>		<u> </u>			<u> </u>						1	<u> </u>		8 16	<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0L									<u> </u>	<u>`</u>				· · · · · · · · · · · · · · · · · · ·
15.30 2 37 - 33 °° 104 2 34 7 ° 14 15.45 1 1 41 30 °° 101 2 39 8 °° 55 16.00 1 2 21 24 °° 101 2 39 8 °° 55 14b 16.00 1 2 21 24 °° 94 22 °3 35 5° 4b 16.15 2 3 24 21 84 24 36 54 16.45 24 24 24 97 84 21 38 °° 54 1645 24 24 24 76 1 1 41 7° 66 17.06 2 1 25 25° 7-5 1 1 44 4° 64 17.07 1 2 24 31° 42 50 50 50 17.05 1 2 24 31° 74 73 1 2 41 50 17.05 <t< td=""><td>15.00</td><td></td><td></td><td>סיך כר</td><td>4</td><td></td><td>40</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>21</td><td></td><td>g ''</td><td></td><td></td></t<>	15.00			סיך כר	4		40	•							21		g ''		
1545 1 1 30 101 2 39 8 ⁻¹¹ 56 1600 1 2 21 24 ⁻¹⁷ 76 23 35 5 ⁻¹⁹ 4b 16.15 2 3 74 21 24 ⁻¹⁷ 76 23 35 5 ⁻¹⁹ 4b 16.15 2 3 74 21 24 ⁻³³ 1 87 50 16.16 2 3 24 ⁻³³ 1 87 97 14 ⁻¹⁰ 50 16.30 1 1 21 24 ⁻³³ 1 87 50 2 37 6 ⁻¹² 50 16.45 24 ⁻ 2.5 ⁻⁵ 7.5 ⁻⁵ 1 1 1 41 54 54 17.00 2 1 2.5 ⁻⁵ 7.5 ⁻⁵ 1 1 1 41 9.1 ⁻¹⁷ b1 17.30 1 2.4 ⁻¹⁷ 7.4 ⁻¹⁷ 9.1 ⁻¹⁷ 7.3 ⁻³ 1 1 41 ⁻¹⁷ b1/-1 17.30 1 2.3 ⁻¹⁷ 7.4 ⁻¹ 9.8 ⁻¹⁷		<u>.</u>	,		20														
16.00 1 2 2 2 1/1 1 6 3 3 5 10 4 16.15 2 3 24 2 3 1 2 3 1 2 50 16.30 1 1 21 24 27 84 2 3 1 50 16.30 1 1 21 24 37 3 5 70 2 39 7 50 16.45 24 24 25 75 10 1 14 87 10 16.45 24 25 25 7 5 11 14 97 16 54 17.00 2 1 25 25 7 5 11 14 97 164 17 164 17 164 17 164 17 164 17 164 17 164 17 164 17 164 17 164 17 164 17 164 17 164 17			<u> </u>				· · ·												
16.15 Z 3 24 27 84 Z 376 50 16.30 (1 2) 24^{53} 1^{2} 87 2^{2} 376 54 50 16.45 24 24^{53} 1^{2} 87 2^{2} 376 7^{4} 54 16.45 24 24^{57} 75 1 1 41 7^{4} 61 17.00 2 1 25 75 1 1 41 7^{4} 61 17.30 1 3^{12} 27^{17} 74 2 1 38^{16} 1^{2} 50 17.30 1 23 24^{17} 74 2 73 1 1 45^{12} 50 17.30 1 23 24^{17} 7^{2} 7^{2} 7^{2} 52 1 1 42^{17} 50^{17} 52 18.00 2 24^{17} 70^{17} 70^{17} 78^{17} 71^{17}					- <u>5</u> 0 - 47														
16.30 (1 21 24 37 2 34 7 24 24 16.45 24 24 24 76 1 42 8 10 54 16.45 24 24 24 76 1 42 8 10 54 16.45 24 24 24 76 1 42 8 10 54 17.00 2 1 25 25 75 1 1 41 7 10 61 17.15 1 2 29 31 91 92 91 94 94 94 94 17.30 1 3 24 27 73 11 14 94 17 94 17.30 1 23 24 21 17 17 104 94 104 17.35 1 1 23 24 10 23 10 24 104 104 104 105 10 10 10 10 <					<u>۲۶</u> ۲۶												<u> </u>		
16.45 24 24 16 1 43 8^{-10} 59 17.00 2 1 25 25^{50} $7-5$ 1 1 41 7^{-14} 61 17.00 2 1 25 25^{50} $7-5$ 1 1 41 7^{-14} 61 17.15 1 2 29 31^{-2} 97^{-5} 79^{-1} 1 14^{10} 9^{-17} 61 17.30 1 3 24 27^{-51} 79^{-1} 2 1 38^{10} 52^{-1} 50^{-1} 17.30 1 23 24^{-17} $7-3^{-17}$ 1 12^{-17} 552^{-17} 52		<u> </u>	<u> </u>		4 70 ⁵³	_ 2	87-												34
17.00 2 1 2.5 7.5 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1			<u>`</u>		21 5										_ <u></u>		8 16		
17.15 1 2 24 31^{12} 42 12 146 417 164 17.30 1 31^{12} 24 27^{54} 74 21 38 6^{12} 50 17.45 1 23 24^{17} 1^{2} 7.3 1^{1} 23 1^{1} 52 18.00 2 2 24^{17} 88 11 142 7^{14} 552 18.00 2 2^{1} 24^{17} 88 11 142 7^{14} 550 18.15 1 1 24^{17} 88^{17} 7^{14} 550 18.15 1 1 24^{17} 78 7^{14} 53 18.00 1 30^{14} 78^{14} 78^{14} 7^{14} 53^{14} 10 Hours 28^{14} 12^{24} 12^{24} 12^{24} 368^{10} 1^{1} 350^{14} 1^{1} 360^{18} 300^{18} 28^{16} 23^{16} 10 Hours 28^{14} <td></td> <td></td> <td>-,</td> <td></td> <td>645 -7 c⁵⁴</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>$\left \right\rangle$</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>			-,		645 -7 c ⁵⁴									$\left \right\rangle$	1				
17.30 1 3 24 27^{54} 79 2 1 38 6 12 50 17.30 1 3 24 27^{54} 79 2 1 38 6 12 50 17.45 1 1 23 24 1 2 7.3 1 12 50 17.45 1 1 23 24 1 2 7.3 1 12 50 17.45 1 1 23 24 1 2 7.4 52 52 18.00 2 2 24 24 58 1 1 42 7.4 55 18.00 1 26 21 90 98 1 1 42 7.4 55 18.15 1 1 26 78 70 - - 1 36 6 12 48 104 30 24 78 78 78 - 1 36 6 12 48		2		-	17												4 17		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					< 1														
18.00 Z Z 24 24 57 88 1 1 42 7 56 18.15 I I 24 27 70 -2 38 7 55 18.15 I I 24 27 70 -2 38 7 16 53 18.15 I I 24 27 70 -2 38 7 16 53 18.00 I I 30 24 78 -1 36 6 11 48 10 abs for 28 49 128 1172 12 3680 11 80 1870 300 27 2517 Nerrages 2 41 122 111 1350 11 128 28 -239 Nerrages 2 41 122 111 1350 11 128 28 -239 Nerrages 2 122 1						2								 i	<u> </u>				
18.15 1 ZL Z_1^{+1} O $ Z$ 38 7 453 18.15 1 30 Z_1^{+1} 70 $ 2$ 38 7 10 53 18.00 1 30 Z_1^{+10} 78 $ 1$ 36 6^{-12} 48 10 Hours 28 49 128 1172 1122 112 3680 1172 128 28 $ 234$ Averages per Hour Z 41 122 111 1 350 1 1 7 128 28 $ 234$					24 74 51				 						<u> </u>				
Totals for 10 Hours 28^{4} 49^{4} 1281 1172 11^{2} 3680 14^{4} 80^{-1} 870 500 2^{-1} 2513 Averages 22 4 122 111 1 350 1 350 1 7 178 28^{4} 7234		1	4	-	-41 										<u> </u>				53
Totals for 10 Hours 28^{4} 49^{4} 1281 1172 11^{2} 3680 14^{4} 80^{-1} 870 500 2^{-1} 2513 Averages 22 4 122 111 1 350 1 350 1 7 178 28^{4} 7234		<u> </u>	1		51 48										<u>-</u>		6		48
Averages Z 4 122 III 1 350 1 7 178 28 7 239			24					 	<u>_</u>	l	I	U		<u> </u>	<u> </u>		600		
	Totals for 10 Hours	28	49	1281	1112	. 11	3680]							80		300	2	2518
TURNING LEFT TO: ZAST WALL YOAR	Averages per Hour	Z	4	122	m		350							(7	178	28	-	239
	TUR	NING LE	FT TO:2	- คราฟลเ	L. YOR	2		STR	AIGHT AI	HEAD TO	;			TUR	NING RIG	HT TOZ	557 LINK	BRIDE	Z

5	CORPO	ORATION	I. TRAFFI	C DEPT	. TR	AFFIC CEN	SUS AT	JCT. OF	Ensil	1	- Ner	TH WIJL	LQ.	nt				
RAFFIC	FROM .	Zasi	WALL	Ronn	DAY	URSOMY		DATE	22 - 10	- 2043	WEATHE	R	Zau	NING	•			
QUARTER	CY	CLES					CY	CLES					СҮ	CLES			Γ	
HOUR	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.(
8.15							S	i 4	104	15 28		140			7	45 "		(· 1
8.30							5	10 2	146			178	1		6	50 100		: :
8.45		<u> </u>					12	8	172	4		168			10	34 68		7
9.00		ļ		ļ		<u> </u>	14	4	114	4		1.0	1	l l	2	32 "		Ŀ
9.15				·			<u>u</u> 7	10	110	8 16		134			2	32.64		6
9.30							5	6	151	17		173	2_	(7_	38 16		3
9.45							۲	15	156	12		184			6	30 60		6
10.00		<u> </u>		ļ			4	6	162	15 20		20Ь		1	7	28 -14		6
10.15							4	5 4	165	18 36		204		ι	-5	25 50		5
10.30							1	5 7	117	13 26		45	<u> (</u>		1.3	40 50	z	4
10.45								3	102	18 36		1:54	l		14,	2] -'	ر ۲	1 1
11.00									125	12		144	(15	370 60		17
								3 '	122	14 28		151	1		12	32.64	<u> </u>	7
11.30							1	3 '	127	12		152	<u> l </u>		10	300		[7
11.45							~	<u>م</u> ۲	21	25 54		167	•		IS	33 66		. ?
12.00								a '	ור	19 31	a USC.	110			ZZ	28 -		7
12.15	-							3	Ÿ6		ther	137		3	16	31 75		9
12.30							-	4 2	in	ary any		151			27	33 16		G
12.45							-	6.,9	الجع	37		140	l		45	37 74	1	12
13.00							· -	ב '.	UT LIGHT	15 30		14:	Ū		34	3672	1	:1.
13.15							2	4/102	5118	14 28		148			32	3468	-	10
13.30							Ζ.	St of	104	20 0		150	7	1	ZS	3876		11
13.45				Î			4or	KZ T	100	18 36		137			ZX	3672		; C
14.00							A CON	2	108	21 72		151		۱	Z(3467		8
14.15				Γ		Ś	ii	7	lab	1229		:36		١	24	31 64		X
14.30						Con	~	1		14 35	\ ²	140			24	^{٥٢} ک٦		Ü
14.45							Z	l	86	18 36		122			24	41 52		10
15.00		ĺ					1	2'	102	.16 '32		135			22	34 68		9
 15.15							1	2 '	10	14 28		136		1	23	31 62		8 8
15.30							31	63	111	14 38		153			19	73 66		Ŷ
15.45							4	7		16 32	1 2	154	1	1	ZZ	3774	1 2	4
16.00				1			$\overline{1}$			27 54	-	167	<u> </u>	1	14	275	1 2	1
16.15		†		1			- <u>`</u>	<u>ر</u> ۲		13	(2				30	Z6 52		8
16.30				1			51	5'	146	14 ''	`			1	<u> </u>	33 66		9.
16.45				<u> </u>			- - - -	د ۲		12 24	z	182		2	31	72 36 ⁷²		
17.00							1	63	156	15 3"	2	191		2	37	39 73		11
	<u> </u>	<u> </u>		┼───			62	_	150	16 22		148		4	39	44 38		12
17.15			<u> </u>				ا خ	7 3		17 34		Z04	<u> </u>	1		34168		10
17.30	—		┨					$\frac{1}{16^{-3}}$	125			166			40	54		$\frac{1}{2}$
17.45				┣			6	<u>η</u> 3		$\frac{1}{10}^{2^{\circ}}$		156		_ Z [\]	<u>31</u> 24	21 75 ⁵⁰		\exists
18.00		-					4	ι 4 ^{- λ}	127	10		151				25		4
18.15	1	1	1	1		1	5'	1 7	11.14	11.5				1	32	ו אנו	-	

62 31

70

35

2824 1412

134

-

10 20

١

13746

356

TURNING LEFT TO:

18.15

1830

Totals for 10 Hours

Averages per Hour

•

STRAIGHT AHEAD TOZAST LINK BRIDE E

47 5217 651

13

15

62

•

30

ĺ

ġ

12

163

1166

6671

635

١

~

21

2

1C

.---

_

l

32

2]

887

84

TURNING RIGHT TO: NTH WALL Q-AT

5

43

12

131

15

194

2

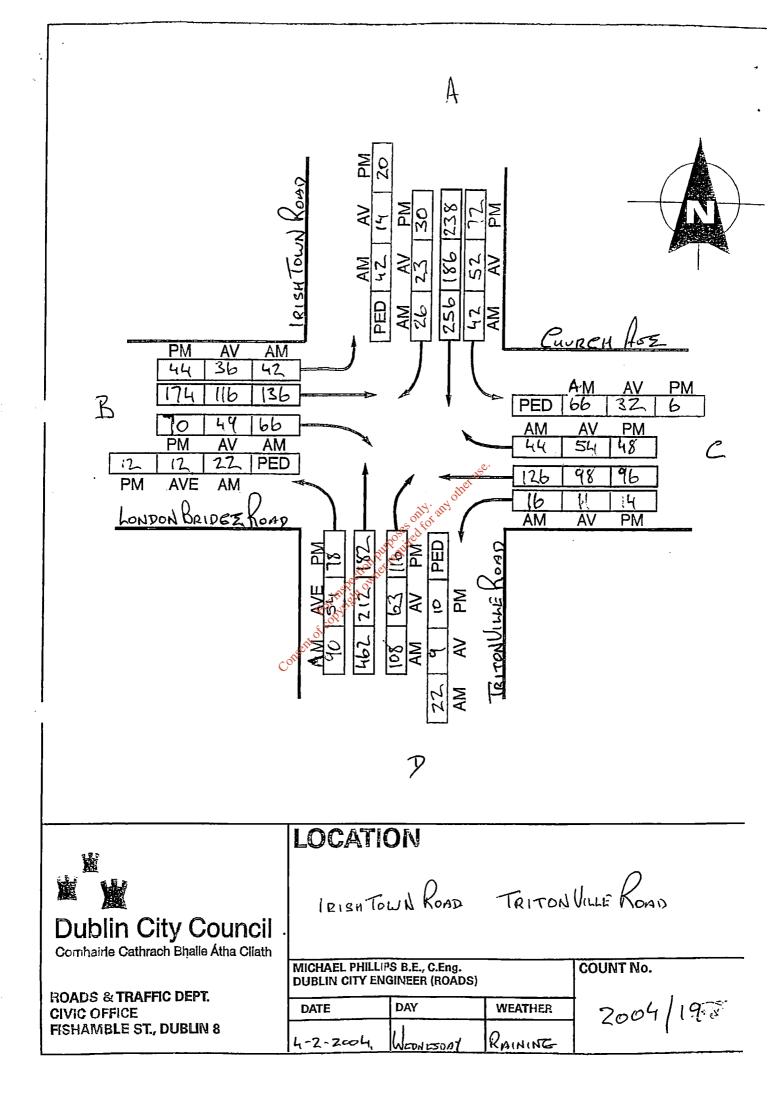
18 496

134

131

1

CORPORATION, TRAFFIC DEPT	. TRAFFIC CENSL	IS AT JCT. OF EAST UNLYTER	P- NERTH W.S	LL QUDI
FROM ZOST WALL PORD		DATE 22 - (0 - 2043		Zawin


A					4D.							
B			E <u>22 - 11</u>	2003	PED			<u>a/_</u> v N CC			M.R.	
	I	SSING	ON 'A'	CRO	SSING (on 'B'	CRO	SSING	ON 'C'	CRO	DSSING	ON 'D'
	EAST	John R	CAD	NTH-W	un Rom	P				Easth	INK BR	DEE
¹ /4 HR. TO		ADULT.	1				CHILD.	ADULT.	TOTAL	CHILD.	ADULT.	TOTAL
<u>74 nn. 10</u>		1			4	L,					-	- 1
					2	2					~	
0.00		· ·	-		<u>h</u>	4						· .
9.00					N 6	ي لانا					-	<u>+</u>
			-		2	2						
			-	•	3	3		[-	
10.00			-			~	nse.	/			-	-
						-	USt.					· · ·
		•	· · ·			· 13	· · · ·					
11.00		2	2		2 5	of Z						
		~			100 irea		·	L			-	
				tion	Let .	<u> </u>			┨────│			
12.00		1	1 1 1	insports								-
12.00				51 ,120	— .	-					1	
		•	· • •	087	3	2						
] [•	anto		1							
13.00			COLER									
		2	<u>Z</u>			-			 			
		~	<u> </u>		Z	2						
14.00			1		1	Ī						
			<u>`</u>]
	•	-	-		2	2						
15.00		2	$\frac{1}{2}$		<u> </u>	2			┠───╢			
		-			2	ζ			<u> </u>			
		-	~			1 I						
		· ·	ļ		(-			╟───┤			
16.00		, \)					<u> </u>				
		<u> </u>	- 1		<u> </u>				∦ ∦			
		~				ζ						
17.00		-										
			-									
			-		 Z	Z		<u> </u>	∦			
18.00		-	-			$\overline{1}$						
[1				l]
18.30		<u></u>			-	-						
		10			≁ 0	~ ~					<u> </u>	
TOTAL.		15	15		58	58						
AVERAGE		1			S	న						_

•

.

-

•

		•						••••									
		A		181	SHTOL	~N.	ROA	p			TRU	TON	VILLE	<u>e</u> R) 0/49		
	· B			DATE	<u>SHTOU</u> 54-2	- 20	<u>20L1</u>	DA	yher	NUZA	27_WE	EATH	ER_T	(Din)	ING		
			-		iagew		· /			B			С			D	
					dths												
		TR	AFFI	c o	N A	TF	RAFFI	C ON	в	ŤF				TR	AFFIC	: ON	D
		10151	y Town	N Ro	AD	LOND	on Br	1D62	Rono	Cu	uren	Au	F.	Ton	ronVil	ızk	AD
	4 HR.TO		1.	RGT.	TOTAL 40	LEFT	STR.		TOTAL	LEF		RGT.		LEFT			TOTAL
		5	22 136 190	2 2 2	40	4	2220	9	4054	3	32	11		23 22 20	110	26	158
	900	11	63	า ร	81	6	21	13	40	र	30	8	40	22	111	25	158
		1	36 28	87	51	9	12	17 4	38	11 3	33	14	51 44	15	77	17	11D 9D
	_10.00	10	27-30	4 5	4148	8	11	5	26 22		27 29	10	39 42	[5 [0	56 51	5	84
		3 0	31 32	8	52 48	5	00	4 12,	19	5 4	30 23	<u>ו</u> - אל	42 29	8 13	50 40	00	66 62
	11.00	14	42	10	69 56	5	12	189. 28.65	28	2	26	12	40	12	378	ة تا م	533
	10.00	15	30 34 34	4 2 2	47 56	6	240	4 4	364036	2 2 2 2	21	20 20 18	44 40 31	8	44 43 47	1,	61
	12.00	17	42	502	65	Nº AL	27-28	11	45	I	22.	16 Z1	39	ाठ १५	39	<u>q</u> 11	58
	13.00	13	35	2 5	50		<u>35</u> 26	<u>[4</u> 11	61	1	20	22	43		35 42	<u>4</u>	57
-		15	55	10 C9 7	89 78	9	30	12' 13	58	6 b	20 26	18 17	44	11 12	39 38	11 12	61
	14.00	18	47 50	9 6	74	10	31 39	. 8	52	3	20 24	2Z 14	45	15	35	10	10
		14	53	36	67	12	3020	14	52	2	24	20	42	11 11 9	43		25
÷.	_15.00_	17	53 59	5	75	10 14 00	38	10 16	58	4 3 2	29 26	<u> </u> <u>4</u> <u>L</u>	50 43 50	4 14	62 44 37	10 8 16	8
		12 16 20	59 47 53	4 5 8	75 68 81	8 10 13	30 238	18 15 18	54		34 29 22	19	49	11	41		62
	_1600	14	46 55	6	66	14	29	17 (5	60 62	2	25		38	8	38 43	12 20	58
		1 <u>9</u> 1 <u>9</u> 15	42	7 8	63	9 9	43	3 20	65		Z5 23	$\frac{1}{7}$	39	12. 21	38 40	<u>32</u> 26	82
	17.00	9	53	26.	64 70	12	44	15 15	71	3	19	8 8	3032	18	45 46	24 32	87 95
		15 [b	51 59	7 8	79 83	11 8	40	16 16	64	2	21 23	13	36	15	41	18 Z3	74
	<u>18.00</u>	15	56	2	78 86	12	41	14-12	6	23	18	9	29	15	40	14 24	74
	18.30	16	59	6	8	8	35	13	56		20	10	31	10	36	18	64
٤	TOTAL	552	1961	246	2759	384	12.24	523	2131	118	1034	575	1732	575	2233	670	3478
,	AVERAGE		186	23		36		49	202	11-1-1-1	98	.54	164		212		331
	F	<u> </u>	•		<u></u>	<u></u>							E	PA Exp	ort 25-07	7-2013:2	21:29:02

. ه

B N	<u>`</u>	-		VN RE 2. 2	2 <u>AQ</u>		NEDNE			\cap		
		-			PEC		RIAN	·				-
		SSING			SSING		.	SSING		CRO	DSSING	ì
		<u>bun Ko</u>	AD	LONDON	BRIDG	<u>zkoad</u>	<u> </u>	mey /	55	TRITE	DNUILL	2
<u>1/4 HR. то</u>	CHILD.	ADULT.	TOTAL	CHILD.	ADULT.	TOTAL	CHILD.	ADULT.	TOTAL	CHILD.	ADULT.	
	4	5	9		3	3	ļ	5	S	2	2	-
	<u>५</u> ऽ	3	12	2	4	م ج	<u>ا</u> چر	5	6	2 . Z	4	-
9.00	~	6	6	<u> </u>	7	2	<u></u>	0 (b	21		Z 3	-
	(4	5		li	1	<u> </u>	10	12	<u> </u>	2	-
		2	2.	-	1	1		7	7		1	-
		2	2		M	3		3	3		~	_
10.00		3	ן ה			2		2	12		\	
	1	2	2		2	2	JSE	2 8	2		$\overline{-}$	_
		3	17	· · ·			CT UP	ہ چ	8		3	-
11.00	-	-	~	^	2	4.2.3	3	14	17		1	-
		3	3			504	Z	6	8		2	1
		2	2		dos ire			4	4		Γ,	1
		-	· ·		2 Dry Colla	2		4	5		1	_
12.00		3		- Social	TEZ_	2		8	2		7	
	· ·	2	3 2	COT STORY	д 7	4	 _	ス	3,		2 (
		2		c copyrate	າ ກ	1		4	55			ł
13.00		1	$\overline{\tau}$	0 0	ĩ	2		4	4		3	
		2	30150	1	5	ط	3	10	13		2	İ
			<u>۲</u>		イ	2		2	2		3	Î
		2	3	1	2 4	3		<u> </u>	<u> </u>	2	6	
14.00		2	23	2		8	-	6	ь 8		4	l
	2		2	 	<u>ש</u>	$\left \frac{1}{2} \right $	1	<u>າ</u>	8		2	ł
	3	2	4		7	3	5	8	is I		<u> </u>	ł
15.00			1		4	<u></u>	57 2	N N	$\overline{\mathbf{y}}$	2	2	j
	2		3		1	1	μ	þ	9.	4	-3	ļ
		2	6. 4		2	2	2	6	9			
16.00	5	42	4	· 3 2	<u>२</u> २	 	2	5	8 4		2	ļ
10.00		2	6	<u> </u>			3	<u>_</u>	┝╶┥╶─╢			H
		<u></u>	4		R	2		12	12		2	ł
		ĺ			2	3		10	10		Ĺ	ļ
17.00		5	4	~	2	2	5		17	_	2	Į
		2	2		4	4	(17			3	ļ
		<u>م</u> لم	4 4		2	2	2	<u> </u> -4	14			
18.00		2	7 5		MM	7			12		<u></u>	
		<u> </u>	<u>~</u> 1		2	2		8	8			l
18.30		7	3.	-	2	Z		¥ –	9.	~	2:	Í
											<u>.</u>	I
TOTAL.	41	112	153	14	115	129	55	291	346	_19	84	
AVERAGE						12		27	32	•	8	

•

•

• •

.

•

•

EPA Export 25-07-2013:21:29:02

CORPORATION, TRAFFIC DEPT . TRAFFIC CENSUS AT JCT. OF LESSITEWARD TRAFFIC PROMINING TRAFFIC FROM IRISHTEWARD DAY WEATHER DAY DATE 4-2-2004, WEATHER ROINING

QUARTER	CYC	LES					CY	CLES					CY	CLES		1		<u> </u>
HOUR	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.
8.15			2	1 2		4		2	28	ι÷	12	33			3			تح ا
8.30			1	2		5,	ι		34		1 2	36			2			13
8.45			2	1 2		<u> </u>	2	1	55	4	1 2	65			2			Z
9.00		1	1	4	<u>د</u>		l	31	60		<u>ار</u> 2	63			5			7
9.15		<u>`</u>	4	3 "		(0	31	1	44	2,"	 Z	53			5	<u> </u>		5
9.30			7	2 "			1	i	32		2	36			8			8
9.45			4	4 3		12	$\frac{1}{1}$	t	26		1 1	28			5	1 2		7
10.00			<u>ц</u>	• د		io	<u> </u>	1 I	23	1 2	1 2	27			4			4
10.15			2	5		13	1	2	25	1 2	1 2	30			s			S
10.30			2	5 *		12	<u>`</u>	2	22	3 "		31			8			8
10.45			۔ بر	3 *		10		$\overline{1}$	26	2	1 2	:32			6			6
11.00			Ś	6		17		E	33	2	2	42			8			10
11.15		1	6	4 8		14			29	2 5	<u>د</u> ب ^ب ر	35				`		-7-
		1	2	ין		i i i	-		26		2	7-7		_\	<u> </u>			4
11.45			א א	1 5		15			28	1	2	34			 			2
				ר ר	1 2	20		1	20	<u> </u>		34			2			ž
12.00			۲ چ	6 '2		17	<u> </u>	2	<u>מה</u> ן ב	1 2	20. V 2	42			<u> </u>			Ь
12.15			- <u>~</u> 4	la c		14		1	31	ر ۲		37			<u>٦</u> 			3
12.30			3	31	·	13			24 5	13-200-4 CO200-4	, 2	35						2 Z
12.45			۲ ^ل	S ⁱ			1		2 CO	رویت لے ۲	1 2				۲ ۶			ŝ
13.00			7	5		ໍ່4 15		- 4	SS SS	- - - , - , , ,	۲۹ - ۲۹	ч b 4				, 2		10
13.15				<u>،</u> ط			2	3 m	-46 -46	1 Z	~ ~	55			2	1 2		7
13.30			<u>لہ</u> بر	5 7		16		and and and a state of the second state of the	۱ ۵ درج	<u> </u>	1 2	5			S S	ر ۲		ÿ
13.45			7	 2		15	E P		44	<u>ر</u> ۲	<u> </u>	50			6.	<u> </u>		6
14.00			4	ه ب		1~3	of of	, ,	43	<u>_</u> ۲	1 2	50			3			3
14.15			۹ 6	1 1		12,758	· · · ·	2	41	2 7	1 4	57			6			6
14.30			4	4		Colli		` د	· · ·	12	<u>,</u> 2	55			ہ بې			5
14.45	<u> </u>					11	<u>ر</u>	<u>د</u>	40	6		551			ý V	کر ہ		12
15.00			5	5		1~ 12		21	47	<u> </u>	2	54			2	1 2		4
┝╴╺┥			8	<u>ר</u> קי		16	- (- <u>-</u>	52. 39	\ 	2 7	47			ן נו:	-		5
15.30			8	6 "		20		<u> </u>	43	2	2	53			7.	2		8
15.45								1 2	40	<u>د</u>	د <i>م</i> ۲ ر	46			6			b
16.00			2 5	6		14	2	۲ ۲	46	1	ι Ζ.	55			2			<u> </u>
16.15							1			~	<u> </u>				7			
16.30			2	6 "		14 5		<u>પ</u> ૈ	38		2 4	4 <u>2</u> 28			- 8.			8
16.45				2 1		1 4		2	34		2 7				2			<u> </u>
17.00			5	2	, Z		2	4	45	2	_\2	53		<u> </u>				
17.15			7				4 1	2 1	<u>५२</u>	1	2	53			5 6			5
17.30			5	S		(5	5	7	51	1	-1	57			2			-
17.45			4	٩		ib	7	2	49	2 2	2	59			1			8
18.00		_!	5	5		15.	7	7	50	<u> </u>	1 2	56			8			
18.15			4		Z	20	4'	2	56		- 4	60						$\frac{1}{1}$
1830			۲	<u>ר</u>		16	2	<u> </u>	53	1	2,]	<u>,59</u>			6.			6
Totals for 10 Hours	2	2 ج	172	370	4	552	52	53 6]	1663	130 65	.59	1961		6	219	24 (ک		246
Averages per Hour	-	-	16	17	-	52,	5 L	Ь	158	6.	5	136	-	~	20	[23
TUR	NING LE	FT T O: (o iture	n As	TE.		STR	AIGHT A	HEAD TO	TRITON	unit K	040	TURN	ING RIG	нт то/	NDONBA	vez k	2

CORPORATION, TRAFFIC DEPT . TRAFFIC CENSUS AT JCT. OF LA. SU TOWN ROAD TROTON VILLE ROAD

TRAFFIC FROM CHURCH ASE DAY WEATHER DAY WEATHER ROINING

QUARTER	CY	CLES					СУ	CLES	Т	1		11		CLES	T		T	<u></u>
HOUR	Pedal	Motor	ÇARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.
8.15			2			2	2	1	24	1		31			-	3		
8.30						2		1	32			32	[1	1	s "	<u> </u>	11
8.45	1		3	(2		S		1	24			ZΫ			-	Гщ ⁷		i) Y
9.00			2			2		l	26	2		30			1-	4		ý
9.15			1				t		28	1	ž — —	30		<u> </u>	2	3 "		¥.
9.30			4			4	l		29	2	1	22			2	6."		14
9.45	t		1	1		3	1		24			29			-	6 12		.,2
10.00	l		1			((27			27			-	S "		10
10.15			l			(l		24			29				6 12		12
10.30			ณ			5			30			20				3 "		7
10.45			4			4			22			2.2			i	-	1 2	3
11.00			2			2	l		24	1 2	·	2,6			Z	10 "		12
11.15			2			2		l	22.			22			1 <u>.</u>	۰ ۱ [°] ک		11
	_(Ч			3		1	19	1		2(-	10 19		20
11.45			L	l		5			15	1 2		17			Z	9 17		20
12.00			ζ.			2		1	17	<u> </u>		17			_	4 is		18
12.15			L			l		l	22		15°.	22			-	8 16		16
12.30		-	ζ			2	Į		14	1 3	the	21			l	10 20		21
12.45			1			1	1	1	20	mly any	F	<u>Zo</u>			2	10 20		22
13.00			2	1		4			L KSES			20				10 20		22
13.15		5	ų	1		6		(OUPSIII	<u> </u>		20			2	8 16		18
13.30			ų	1		Ь		dion	20	7 5		26			3	7 1		17
13.45		1	(5		3	1.	50,00	18	1 2		20			2	10 20		22
14.00			ζ			ζ.	For	γŽ i	23			24				6 12		14
14.15			પ	_		4	1 con	(24			24	1			8 16	1 2	20
14.30			2			<u>ہ</u> د	Still (1	24			24	1		2	8 16	र य	ZO
14.45			4			4 Con			27	(2		24	-`-+		1	7 1	1 2	17
15.00			(1		3			2:6	-		Z6				6 1		14
15 15			2			ζ			30	2 4		-71			P_	6 12		14
1.			1			1			27	1 2		24		÷	1	8 "	(2	19
15.45			2			2			20	1 2		22		ι	2_	<u>s</u> "	<u> </u>	12
16.00			2			2			23	\ Z		25		(2	7 8		$\overline{\mathbf{i}}$
16.15			4			Ч			21			21		ì	τ	4 8	1 2	i
16.30			3			3		1	23	ر ²		2,5				.5 "	- `	il
16.45			4	i		5			23			27				3)
17.00		L	3			Ľ		2 1	(4	2		14				4 8		8
17.15		1	1					2 1	18	2.		23			2	3.		8
17.30			ζ			2	1	ιÌ	21		— I	21				<u></u>		13
17.45			3			J	j	<u> </u>	14	2 1	—	23				4 8	1 1	11
18.00			2			2		2	in			18				4 7	- 	Ÿ
18.15			3			3.		1	19			21		-		3		9
1830			1				\mathbf{v}		20			20		-		5.0		10
Totals for 10 Hours	4	۲ ۲	97	q. 18		-118	78	25	963	29 53		1039-	-2	3		504	7 4	
Averages per Hour	-	-	9	-		u	1	2	Ϋι.	2		98	-	-	5,	24		54
TURN	ING LEF	T TO:	TONU	ILLE S	Zomp		STRA		IEAD TO;	LONDON	BRIDGE	_	TURNI	NG RIGH		SH TOLA		

 \mathcal{C}

CORPORATION, TRAFFIC DEPT . TRAFFIC CENSUS AT JCT. OF 12. SHTOLAL ROAD - TRITONVILLE LOAD Δ

WARTER	CYC	les	C 100	1000050			CYC	CLES					CY	CLES				
HOUR ENDING	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.
8.15		(6			.0		1	25	1 ×		27			7			17
8.30		1	4			Ý		2'	29	(2		32		1	17	1 ^Z		Ý
8.45	_		7	_		1		1	34	12		36			u			
9.00			þ			6	i		19	1		21			(3			
9.15			12			12			15	1 2		17	2		16			
9.30		1_	.4			<u> </u>	l	ι	12			12			15		1 2	1
9.45		(7			1^{-7}			11			11		1	4			4
10.00			8			8			9	12		1	1		7			5
10.15			J			7			8	12		10			S			5
10.30			۶			'n			٩	2, 1		10			4			4
10.45			8			8			14	ر ۲		iь	l		12			12
11.00			Ь			6			10	1		iZ		ι	10			12
11.15	t		ສ			ທ		l	[5	Z_ 1		17			10	1 2		12
			Ь			6			21			21			9			9
1.45		_	7			7			23	2 ا		25			8			Ÿ
12.00			Ь			6		1	21			21			9			Ÿ
12.15			٦			7			23	2	. 150.	27			ii	1		il

2,25

2,8

Z٩

ΣI

کد

l

tion

ι

ι

ج،

ļ

7. 20%

\$2

t

Σ

z

Z

2,

:34

٦Ĵ

t

l

t

2_

2.

t

ł

Ę

ι

(0

2 إ

LS

(.5

1,5

(4

13.

l

ł

Ţ

t

TURNING LEFT TO: LEISH TOWN.

•

۰.

12.45

13.00

13.15

13.30

13.45

14.00

14.15

14.30

14.45

15.00

1 -

15.30

15.45

16.00

16.15

16.30

16.45

17.00

17.15

17.30

17.45

18.00

18.15

Totals for

10 Hours

Averages

per Hour

-

I

l

-

Ц

q

(4

ų

l

l

l

Ŷ

Q)

I

Ч

Ÿ

l

l

l

t

⁰ن ،

t

l

Z

l

l

t

z_'

STRAIGHT AHEAD TO CUURCH ASE

TURNING RIGHT TO: TRITONULUERON

i4

E

il

۱S

iS

ß

ы

ζ

-

z

Ŀ

CORPORATION, TRAFFIC DEPT . TRAFFIC CENSUS AT JCT. OF RISH TOWN ROAD TRITON VILLE ROAD

QUARTER	CY	LES	T	r		1		CLES	r	1	<u> </u>	11		CLES	T	Τ		n -
HOUR	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.
8.15			23			2,3	2		45	3 6		103			13	1 2		15
8.30	2		20		l		1		(06	2, "	1	110			20	3 6		26
8.45	1		20			Ze			118	1 7	-	120			24	Z, "		28
9.00	ì		22			22	7		102	1 2	3	111	1		21	Z 7		25
9.15			19	1 2		21	2	2	116	$\overline{1}$	1	114	_`		2.5	<u> </u>		<u> </u>
9.30			15			15	1	1	1	2	1 2	177		`	18			18
9.45	1		11	1		14	1	i	SI	1 2	2	5			12		1 2.	
10.00			15			18	2	, ,	48	2	<u>z</u>	56			13			14
10.15			10			10	2	•	37	4 7	7	N.			13		1 2	17
10.30			8			8			44	2,7	1 *	50			8		<u>۱</u>	حما ا
10.45			12			iζ			34		2	40			10			<u> </u>
11.00			10			12			39	1 7		43			8.			10
11.00			7	1 2		<u> </u>		· · · · ·	28	2	3	38			<u>ь.</u> Б			6
	1		8			8			38	4	2	<u>20</u> 44			4	ب ۲		19
11.45	t		<u>ר</u>			- v		<u>,</u>	36	1 2	2	43				5		
			і 4			4		<u>z`</u>	39	27	2 5				8	<u>z</u>		11
12.00			8	- <u>-</u>		10	1	1	35	<u> </u>	27 13502	47	· ·			\ . 2		6
12.15				2		14	<u> </u>		33	7		-21			(G	1 2		
12.30			12.			8		2 1	3	17/20172	2 7	73			8	1. 		
12.45		1	0 6			16	2	-3 '	- 0	197 6	1 2				ک ۲			14
13.00			(10		1	340	د. ۲۰ ک		42			9	1 2		
13.15			12			12		Zion	533 573	2, 1	~	38			1	۱ ۲		12
13.30		<u> </u>	15			15	7	2001	37	3 "	`	45				۲ - ۲		10
13.45						12	201 V	NA T	30		- , 2	70			6 9	ر <u>ک</u> بر		13
14.00	-		12				- All	2		۱ ٦ ^٦		43			9	Z. 7		· · -
14.15						11	<u> </u>		38	2		53			<u> </u>) • 4		11
14.30			9			- 11 - 50 - 40000	2		•	\ , ²	2	53 62		1	5	Z. '		10
14.45	(<u> </u>	1 2		- G		<u> </u>	58	\ <u></u>		44			6			8
15.00	-					<u> </u>	<u>``</u>	<u> </u>	42	1	1 2					1 2		
	2		4 9			14	-		35	2	-	3]			14		<u></u>	16
15.30	<u> </u>			1			l		39	1	- 4	41			10			
15.45			5			5			43		1 2	45				. 2		
16.00		}				<u>)</u>			36		1	38	- 1	· <u>-</u>	10)		12
16.15			b			6			41			43			16	2		20
16.30			12			12	<u> </u>)	38			38			32			72
16.45			2!			21	2	1	26			40			2,6			ZE
17.00			18.			18	2	<u> </u>	39.	1	2	45			24.	, 2		24
17.15	<u> </u>	1	17			17	6	1	42	<u>.</u>	ι ^z	46			30	1 4		32
17.30			15			15	۲ '		36	1		41			18			18
17.45		1	19			19	2		46		2	50			23			27
18.00		l	15			15	(34	1	2]	40		1	: 1			19
18.15	2		14	. 2		14		2	38			41			24			24
1830			17			0	2	١	30	2 7	11	36			18			18
Totals for 10 Hours	۱۹	<u>ج</u> اا	542	9 18	۲ ۲	ราร	55	18 36	1987	110 5,5	100 50	2233	Z	4	559	31	z 4	670
Averages per Hour	l	l	51	-	-	54	5	Г	189	5	4	212	-	-	56	3	_	63
TUR	NING LE	FT ТО:∕	риору	BRIDES	Rom		STR	AIGHT A	HEAD TO	Inish	TOLN.		TUR	NING RIG	нт то:	usper .	hz	

* _* ·*														· · · <u>·</u>		
 		A }) JENCH	 1}) KOAD	La	Ć,	>	1 [5E					
2.] B	N C		E <u>lo - I</u>									FAIR	<u>ک_</u>		<u> </u>
				riagew			Δ		В			С			D	
				idths												
		TRAFE		N A	T	RAFEI			τρ							
					u						0		n		<u></u>	
		LEFT STR	R. RGT.	TOTAL	LEF	I STR.	1 /4 <i>3</i> 2	TOTAL	STH I	STR.	Ko⊿ RGT.	D TOTAL	し LEF1	sen 1	RGT.	
	<u>4 HR.10</u>	ڈ	28	33		36	8	44					20	43	154	211
		10	39	49		48	4	55			-		31	53	171	255
÷	900	20	63 36	52		44	6	50					34 38	62	174	270
-		18	44	62 45		49	10 5	59					39	43	120	2.02
	10.00	4	41	45		48	8	36					31	44 30	105	182
		<u>لا</u> ۲	32	52 34		48	8	65	ð.	-	1		30 33	28	<u>94</u> 116	152
	_ 11.00	8	37 36	45		35	11	64					23 24	35	150 128	208
		14	32	46		42	e glo	51					20	34	125	179
		6	38	44	ثمني	्रिभ	6	60					31		103	169
	12.00	5	45	50	spect of	57	[0 8	71 65					35	28 27	100	63
		10	54	64	<u></u>	56	۱۰ آ	66 65					28 24	27	42 102	147
	_13.00	15	45	60 63		58 57 54	4 14	-66 68					35	32 42 52	105 16	158
		15	64	79		54	10	64					31	43	112	186
7	_ 14.00	9	59 56	68 70		5500	1	66 68					34 28	44 41	48 111	176
£		15	58	26		53	ر <u>ج</u> 14	68 77					24 25	38	147 116	209
	15.00	22 27	67	87		63 65 56	15	10					<u>25</u> 24	34 42	123	82
		14	67	81		64	2	74					30	30	129	189
		14 20	68 73	82 43		75 81	8 5	83 86					23 72	30 43		110
	_1600	23 22	75 72	98 94		82	9	91					Z4 24	36	153	
		z 0 26	45	115		49	5	99					<u>34</u> 24	44	147	225
	17.00_	19	74	93		80 68	10	40 72			-		30	37	86 84	153
		26	67	84		78	7 8 9	86					31 Z"(36	108	180
:	_18.00	20 16	61 56	81		81 84	5	89						42 45	47 43	尚
:	18.30		39	48 56		79 78	3	80 87					29 26	41 38	87	157
	TOTAL		72		<u>[]]</u>	72	ΖĹ			22	\mathbb{Z}_{q}^{k}		<u>II</u>	Z		
	AVERAGE			2899		2592 246		2945 280				11	114			7966 758
			1. .		L				ł	L-			<u> </u>			21:29:02

.

÷ .

CORPORATION, TRAFFIC DEPT . TRAFFIC CENSUS AT JCT. OF BLACK ROAD - CHURCH ASE

TRAFFIC FROM PEUBRERE STREET DAY MONRAY DATE 10- 11- 2003 WEATHER FAIR

QUARTER	CVC	LES				· · · ·	CV/	CLES	r	<u> </u>	<u> </u>	11	_			<u> </u>	r –	
HOUR	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	CLES Motor	CARS	LORRIES	BUSES	P.C.U.
8.15								1	5						28			28
8.30									8	1 4		10	<u> </u>	<u> </u>	31		<u> </u>	131
8.45									լել	1 2		16	2	2	48	, 2		51
9.00									20			20	6		5]			<u>کر ا</u>
9.15									15	1 2		17	2		36	<u> </u>		36
9.30								<u> </u>	18	<u> </u>		18	5		42	1 2		44
9.45									6	2		[4:	\		31	Z		35
10.00									4	5		і Ц	יב	<u> </u>	38			41
10.15									8			Š			-30	2		44
10.30									5	, 2		Γ,	<u> </u>		32	5		32
10.45									ð	·		Y Y	1		33	2		31
11.00									-q	Z		13	<u> </u>		34			36
									8	3		14			30	2		32
11.30									10	7 "		16			-30- 48	5 "		58
11.45									b			b	1		32	7 4		38
12.00									ŗ	1 2	2 USC.	5		1	43	įz		45
12.15									7		her	7	1	<u>`</u>	30	2 7		34
12.30									8	17 2172		10			44	5 "		54
12.45								-	నల్	10	-	5		1	51	4		-54
13.00									uP3111	12		ıs		Z	44	- -		45
13.15								dion	50			i0		1	49	۲ ۲		53
13.30								Se on	Е	۲ ۲		LS		_`	62	1 2		64
13.45							FOL	181	ÿ			9	1		55	2 1	_	54
14.00							5 cor		14		_	14			54	1, 2		56
14.15						_ئ ي	K ⁰		13	!: ²		15			60	نا م		66
14.30						Colle			18			18		1	54	2 4		58
14.45								1	22	-		22			54	3 6		65
15.00									25	1 2		27	2	z '	68			67
								1	10	Ζ 1		14			63	Ζ]		67
15.30								Ľ	ાધ			(4			bb	\ ^z		68
15.45									18	<u> </u>		20			64	Ζ]		73
16.00									23			2,3		<u> </u>	70	2 [^]		75
16.15									18	ື		22			72			72
16.30									Zo			20		Z '	90	2 1		45
16.45									Z4	1		26	2	١	87	1		54
17.00								_\	(1	- F		14	1	<u> 4 </u>	72			74
17.15									22	2		Zb	Z	<u>z</u> '	66	. 2		67
17.30									18			18		<u> </u>	54	1 "		66
17.45									20			ZC		Z `	60	. 2		61
18.00						·			<u> b</u>			16 V	3 '	1	53	2		56 39
18.15									9			L I	3 '		36	1 -		
1830									11				Ş	١	44			45
Totals for 10 Hours				•				6	546	કા 2૪		605	14 42	35	2141	,22 61		2244
Averages per Hour								-	52	2		57	ધ	7	204	5	-	218
TUR	NING LE	FT TO:					STR	AIGHT A	HEAD TO	SLAN	HOORER) CAY	TUR	NING RIG	нт то:В	FACH	ROAD	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 3 6 3 8 1 3 2 5 7 2 4 4 4 - - -
10 3 13 9 6 15 1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
17.00 2 4 6 - - - 17.00 2 4 6 1 3 4 2 2
18.30 2 2 2 5 7
TOTAL. 89 157 246 63 192 255 13 23 36
AVERAGE 8, 14 23 6 18 24 2 3

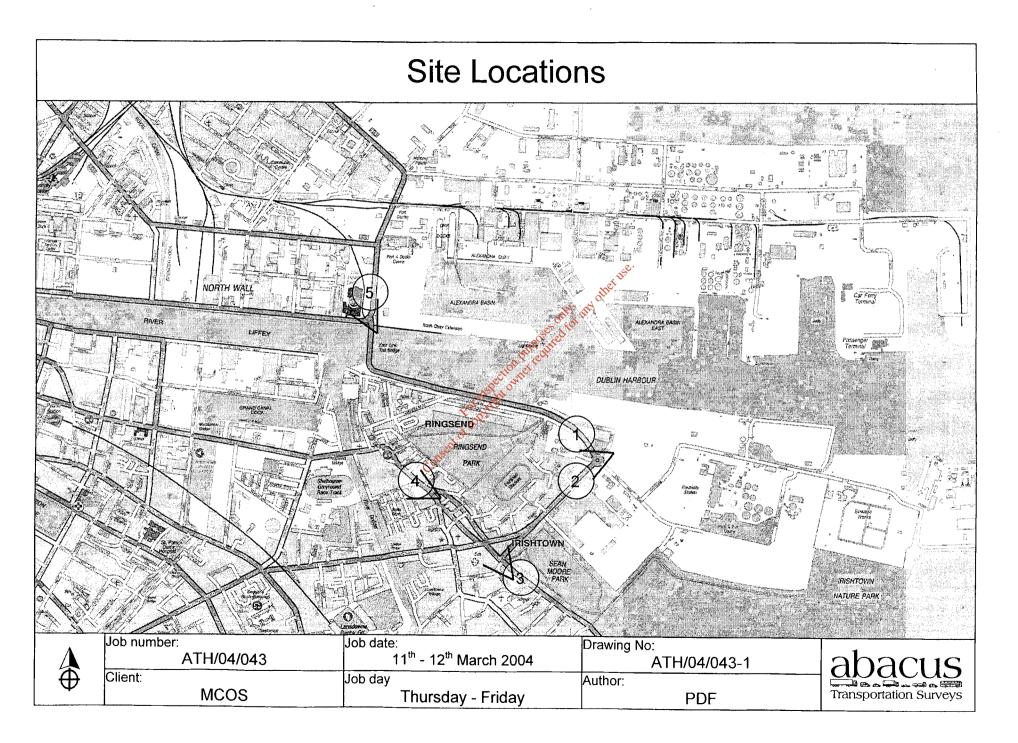
CORPORATION, TRAFFIC DEPT . TRAFFIC CENSUS AT JCT. OF BEDEN ROAD CHURCH HOZ

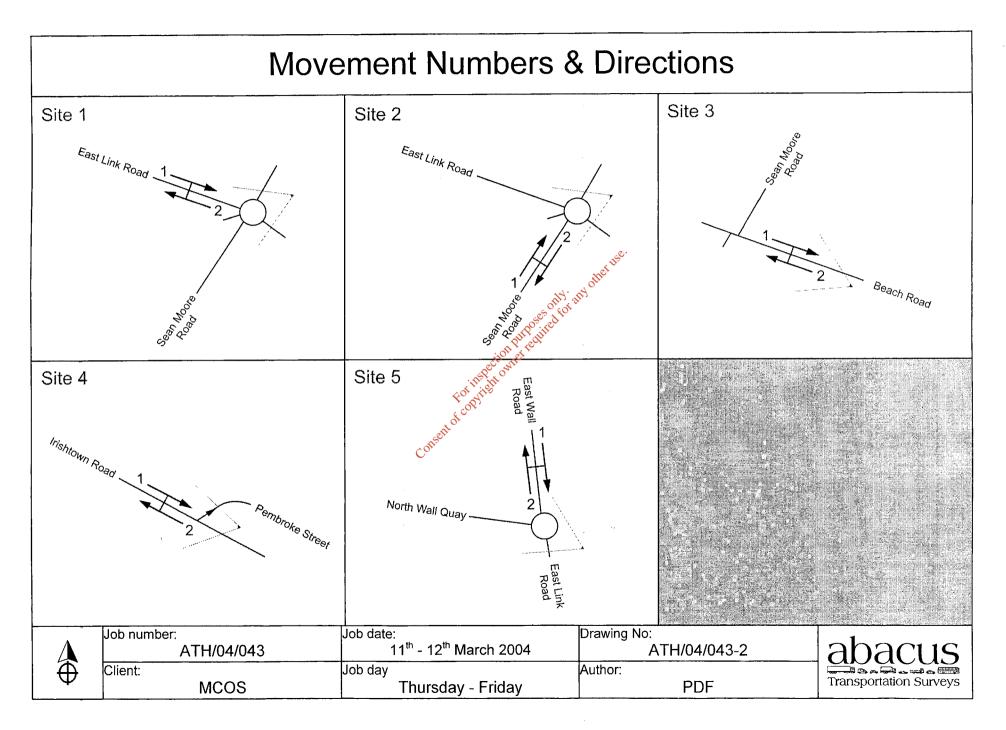
TRAFFIC FROM CHURCH AND DAY MONDOY DATE (C-11. 2003 WEATHER FAIR

QUARTER	CYC	LES					0	CLES			1 -		C c	YCLES			<u> </u>	TI
HOUR	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Motor	CARS	LORRIES	BUSES	P.C.U.	Pedal	Mator	CARS	LORRIES	BUSES	P.C.U.
8.15								1	30	3		3L		-	6	1 2	·	8
8.30									40	4	s	48	I.		5	1 2		<u>† 1</u>
8.45								2	54	2	1 2	2 6.	1		2	1 2	+	
9.00								3	42	3	e	1.4	1	1	5	1 2		<u> -</u>
9.15								2	38	5	· · · ·	49			L,	1 2	· · · · · · · · · · · · · · · · · · ·	16
9.30								1	35	7 *	1	i., 4			6	2, "		10
9.45					_				40	4 5		48			S		<u> </u>	5
10.00							l	1	38	~5 ¹⁰		48			b	1 2		8
10.15								1	36	6 12		48			5	1 <u>1</u>		t i
10.30						_			31	4 5		139		1	L,	<u>z</u> '		8
10.45							l		29	3 6	'	35			7	2		1 u
11.00								1	32	11 22		54	1		8		1 2	10
11.15									30	6 12		42		1	5	2		<u> </u>
							(39	5 "		49			5	1 2		<u>∦``</u>
11.45									42	b		54		<u> </u>	4			6
12.00									45	8 10		61	J		6	2		10
12.15							2		37	9 0	1250.2	57		1	6	1 2		8
12.30		•						1	40	7 .14	ATE Z	56			L.	3 "		10
12.45									38	alto and		,58		(3			- <u>-</u> -
13.00									4 65	J 8		হা		<u>`</u>	5	1 2	12	4
13.15	·						Ì	2	UIA DIT	6 12		54	l		10	2	_`_	14
13.30								nori 1	5 ⁶ 10	7 "		54			8	1 2		10
13.45								S . 02	<u>4</u> 3	8 16		59		l	٦			$\overline{\gamma}$
14.00							FOL	tight	48	4 5		56			6	34	į	12
14.15							Roj 2	,	41	6 12		53		1	11	Z. 7		15
14.30							at 2		- Կ	7 "		63			8	3 4		14
14.45						Colls			47	4 ¹⁸		65		٦.	Ľ	2 1	T	15
15.00									44	6'2		St			8			8
- '5								1	53	8 14		64			ก			
15.30									61	7 17		75			5	2 5		8
15.45							2	2 !	64	<u>]</u>	\ ²	8.			5			5
16.00									68	7 "		82			7	(2		Ч
16.15								2'	71	6"		84	\mathbf{I}		5	7		11
16.30								l	80	6"	\ ²	94		i	5			5
16.45		[ЗЬ	27		90			ч			Ч
17.00									72	4		80]		8	1 2		14
17.15		$ \rightarrow $							60	3 6	\ ²	68		1	4			4
17.30							2	<u>z</u>	64	4 1		78			6	1 2		8
17.45							1	4 2	13	3		81			ڪ	~ ۲		9
18.00		[3 "	2	78	2 4		84			3	2		5
18.15						•	Z	z	72	3 6		79			ົ			7
1830							<u>ع ا</u>	1	R	Ζĺ		78.		l	ح			Ś
Totals for 10 Hours							23 23	17 34	2090	233	6	2592	γ²	12	251	92 46	ζ '	353
Averages per Hour							2	7	199	22		246	-	1	Z4	L	~	33
TURN	ING LEF	T TO:]	STR	AIGHT AF	IEAD TO	SLAND	loore R	ca p	TURN	IING RIGI	нт то: В	IACH RO	AD	

CORPORATION, TRAFFIC DEPT . TRAFFIC CENSUS AT JCT. OF DEDGEN HOND = CHURCH HISE

ι.


TRAFFIC FROM BETTER KONDAY DAY MONDAY DATE 10-11-305 WEATHER FAIR


 \mathcal{D}

	QUARTER		CYCLES			T	T -	<u> </u>			YCLES												
	HOUR	Pe	dal J	Aator	CARS	LORRIE	S BUSE	S P.C.		Pedal	Moto	CAF	RS	LORRIES	BUSES	P.C.U		CYCLES		CARS	LORRIES	BUSES	P.C.U.
:	8.15	1	(10	5	(5	20		5	11	36		3 6		43	Peda		lotor 1		+		
ŀ	8.30				23	<u>نر</u>	Y	31		8	2 1	45		ר י		153		<u>ק</u> ק	4	146	3	2	154
	8.45				36	5	<u>ٰ</u>	2 48	1	1	1	6	5	3 6		175	13	1-	- 3	156			$\frac{11}{12}$
	9.00	<u> </u>		3 1	27	3		1.34		s i	Z	1 30		2		62		<u></u>	- 6	158	5		172
Ļ	9.15		_ 1		20	1	2	1 38	17	>	1	65		3		1-1	<u>-</u>	13		153	+!		
	9.30				23	3	b	30			†`	41	+	1 2		43	<u></u>	+	-2	120	14		127
·	9.45				26	3	*	32				42		, ,		44	+	<u> 4</u>		<u>102</u>	10		120
	10.00				21	s "		31		2	Z	1 27	_	<u> </u>		30	+-	$\frac{1}{2}$		82	<u> (<</u>		106
Ļ	10.15				22	4		:30		<u> </u>	$\overline{1}$	 Z6	_	1 2		28	1-	3	-+-	36	4 "		105
L	10.30		(25	4		33		2		34	+	1 1		36			-+-	<u>7(</u>			44
	10.45		1		19	2		23	+	<u> </u>		33		$\frac{1}{1}$		35	<u> _</u>	+-		(00)	1 26	()	116
L	11.00				18	ר ד		24			2	28		<u>}</u>		31		1		22	15	12	130
	11.15		1		16	2		20		-		30	+_			34	<u> </u>	2		15	6 4	-	123
	1				17	4		25	+			39				45		2		16	4		125
	11.45				19	6 2		31	┤┤			26					<u> </u>	2		<u>44</u>	2		44
	12.00				13	1 22		35	+			26	$+\frac{\epsilon}{2}$	- 2		<u>30</u> 28		2		88			103
	12.15		1		21	8 16		31	Z	-+		23	+		et USe.		<u> </u>	1		8	(0 2-		i D C j
Γ	12.30				16	5 10	1 2	28		-+		25	+		Set _	23			_	's	8 16		U
	12.45				14	4	<u> </u>	24		-+	<u> </u>	32	100	r and		$\frac{2}{2}$	2	<u> </u>			13 20	2	92
	13.00				21	7 6		35		-+		- 3C	8	2		32	<u> </u>	Ζ	_		13 "		IOZ
	13.15		11		11	7 "		15		-+		CULLE			- -	LIZ		<u> </u>	_	6	9 "		105
	13.30				19	6'2		31			botton	N 705	17			2		Ζ,	8		<u>ר יי</u>		46
	13.45		1	_	20	7 "		34	- `		201 - A	<u>۲~۲</u> 42				43		<u> </u>		<u> </u>	10 20		112
	4.00	l			20	4 3		28		- Y	il ^{ghu}	<u>יר</u> 3ן				44			8		7 "		48
	4.15		1		6	4 7		<u> </u>		- ÂĽ	<u>, </u>	36	<u> </u>			41 38		<u></u>	19	6		<u> </u>	$\left(\right) $
1	4.30		T	_		3 6		2.5	SPL1	┈┼┝╴	3	<u></u>	\vdash	-1-	<u> </u>		<u>-</u>		12		11 22	<u>~ </u>	47
1	4.45		li			3 4		25		-1-		<u> </u>	<u>├-</u> ¦				4	<u>Z</u>	<u>'</u> '		1 22 C 18	<u> </u>	16
1	5.00		Ιī	+	6	4 1		<u> </u>	1-			37	<u> -</u> '		<u>_</u>	34		<u></u>	10	2	9	2	23
1	5.15	_	1	_		2		30	+	╧	3	28	2			12	-+	<u> </u>	10		<u> </u>	1 211	22
1:		1	1			2 1		23	12		<u>}_</u>	28	$\begin{bmatrix} 1 \\ \vdots \end{bmatrix}$	-2-		30	-	<u> </u>	2 (2		1 22	1 21	24
15	5.45	<u>`</u>				z 1		 ZZ	2	-+-'						30	_	,	12	-	in 16		3]
16	.00		1.	Ż	-	4		<u> </u>	1-6-	- -	$\frac{1}{1}$	39	Z			3		5	12	- -	1		48
16	.15			2	5 7	2 1		24	1,-	+-	$\frac{1}{1}$	32 30	2			\$6		1	15		1	<u> </u>	53
16	.30		1	Z			1 4	34	┟┶╌	╉			<u>)</u>		3		_	2	<u>'</u> \Z				<u>SZ</u>
16	.45	1	<u> </u>	Tī(41	<u>`</u> -∦	Z4	<u> </u>	+		42					2	3	12		r 16		41
17.	.00	$\overline{1}$		2			-	30	2			44	<u> </u>	2		8	<u> </u>	` ۲	88	_		<u> </u>	[7]
17.	15	Ì		2	-			31	2	2		34				3]	4		18	_	3	- [{	36
	30			2	· · ·	2. 4		29		+		36				36		2	80			<u> </u>	59
17.4	45			Z	_			33				41	<u>)</u>			3		<u>' ב</u>	2=	-	; ^{; c}	2/1	25
18.0	00 1		_ \	21	<u> </u>			32	2			31	<u> </u>			2		<u>z</u> '	88	_			
18.1	15		1	29			<u> </u> ∦	29.	<u>Z</u>	+			<u>Z</u>	1-		5			85	_			3
183	0	\neg	<u> </u>	Z7			∦ -	26				38 36	<u>}</u>	4	- 4		\mathbf{L}		81			8	
Totala		2	<u></u> π	<u> </u>				20				<u> «<</u>	1		3	8			76	2	Z. 1	8	0
Totals 10 Ho	urs 8		22	89(.38 .9	6 12	253	<u>7</u> (4	4 19	553	60			18 3		دی 00	429	63	011	24	441
Averag per Ho	our –		2	४।	<u> </u>	6		119	þ	L	Jurran Law	<u> </u>	حر		16	3-1	3 (7.	404	Z	4 1	ມ	5
T	URNING	SLEF	T TO:	หมูล	Сч	AVE			STR	AIG	HT AHE	AD TO:į	300	1. St	מבובו		TURNIN	GRIG	_			Rong	
																· L				.2:21	NOCRE	rony	I (

ABACUS TRANSPORTATION SURVEYS 2004 COUNTS

Consent of copyright owner required for any other types

,

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

MARCH 2004

ATH/04/043

SITE:

LOCATION:

East Link Road

01

		мс	VEMEN	NT 1				MC	VEME	NT 2		
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
7:00	109	19	4	10	0	142	105	4	3	8	0	120
7:15	205	24	5	15	0	249	144	17	8	15	0	184
7:30	191	20	5	16	0	232	133	9	6	23	0	171
7:45	226	28	8	19	0	281	140	22	6	13	0	181
н/тот	731	91	22	60	0	904	522	52 ⁵⁶	23	59	0	656
8:00	243	27	7	16	0	293	177	ine a	2	13	0	200
8:15	207	23	4	15	0	249 0	ily 38ny	8	8	12	0	166
8:30	222	32	4	15	0	273,0	174	14	6	8	2	204
8:45	212	20	4	13	_1_1_	250	179	15	2	6	0	202
н/тот	884	102	19	59	oectile wir	1065	668	45	18	39	2	772
9:00	188	23	5	15 In	1970	231	153	13	3	13	0	182
9:15	188	20	4	_د 16 ⁹	3	231	180	20	4	12	0	216
9:30	158	18	کي 9	× 17	1	203	131	11	6	17	0	165
9:45	147	35	9 CS ^{IISO}	16	0	203	136	14	6	15	0	171
н/тот	681	96	23	64	4	868	600	58	19	57	0	734
10:00	139	26	8	18	1	192	145	16	7	14	0	182
10:15	117	27	6	17	1	168	164	19	13	9	0	205
10:30	140	23	9	21	0	193	189	25	15	21	0	250
10:45	101	18	8	22	0	149	146	25	12	16	0	199
H/TOT	497	94	31	78	2	702	644	85	47	60	0	836
11:00	66	23	7	19	1	116	156	23	11	16	2	208
11:15	95	17	8	17	1	138	126	17	12	10	0	165
11:30	125	13	7	26	1	172	112	20	13	15	D	160
11:45	127	19	4	<u>1</u> 3	0	163	102	18	6	21	0	147
н/тот	413	72	26	75	3	589	496	78	42	62	2	680
12:00	103	20	8	18	1	150	110	22	8	15	0	155
12:15	1 02	18	7	19	1	147	109	20	14	15	1	159
12:30	121	15	5	20	0	161	107	21	9	10	0	147
12:45	146	20	6	23	0	195	109	25	6	9	1	150
н/тот	472	73	26	80	2	653	435	88	37	49	2	611

Abacus Transportation Surveys Ltd MCOS

11th/12th March 2004

Thursday/Friday

DATE:

DAY:

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

East Link Road

MOVEMENT 1

SITE:

LOCATION:

DAY:

MOVEMENT 2

DATE:

Thursday/Friday

11th/12th March 2004

EPA Export 25-07-2013:21:29:02

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

MARCH 2004 ATH/04/043

SITE:

LOCATION:

.

East Link Road

01

DAY:

DATE:

• .

Thursday/Friday

11th/12th March 2004

		мс	VEMEN	IT 1				MC	VEMEN	NT 2		
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV		OGV2	BUS	тот
19:00	165	5	0	2	1	173	222	11	3	2	0	238
19:15	159	4	0	3	1	167	125	5	1	1	0	132
20:15	120	4	0	5	0	129	113	10	2	2	1	128
21:15	113	5	0	0	0	118	122	7	. 2	1	0	132
н/тот	557	18	0	10	2	587	582	3315	8	6	1	630
20:00	90	6	0	1	0	97	nly92 any	^{off} 6	2	1	0	1 01
20:15	97	4	0	0	2	1035	<85	6	1	1	0	93
20:30	90	3	0	1	0	NIT 04 III	74	5	1	2	0	82
20:45	82	2	1	1	Ron	of 86	59	4	0	5	0	68
н/тот	359	15	1	3 FPTP TOZOPY 1 1	Per 20m	380	310	21	4	9	0	344
21:00	56	5	0	FOL	1001	63	46	4	0	0	0	50
21:15	56	2	0	6201	0	60	52	3	0	0	0	55
21:30	60	3	0 set	^{RL} 1	0	64	60	1	0	0	0	61
21:45	60	3	<u> </u>	1	0	64	55	3	0	0	0	58
н/тот	232	13	0	5	1	251	213	11	0	0	0	224
22:00	47	1	0	1	0	49	68	3	0	1	0	72
22:15	47	2	0	0	1	50	33	0	0	2	1	36
22:30	40	1	0	0	0	41	51	2	2	0	0	55
22:45	30	0	0	1	0	31	33	2	0	0	0	35
н/тот	164	4	0	2	1	171	185	7	2	3	1	198
23:00	18	0	0	3	0	21	26	1	2	0	0	29
23:15	23	1	0	0	0	24	26	1	0	1	0	28
23:30	20	1	0	1	0	22	22	1	0	0	0	23
23:45	16	0	0	0	0	16	18	0	1	0	0	19
н/тот	77	2	0	4	0	83	92	3	3	11	. 0	99
0:00	20	0	0	0	0	20	16	1	0	0	0	17
0:15	12	0	0	0	0	12	19	2	0	0	0	21
0:30	10	1	0	0	0	11	15	0	0	0	0	15
0:45	8	1	0	0	0	9	11	1	0	0	0	12
н/тот	50	2	0	0	0	52	61		0	0	0	65

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

East Link Road

н/тот

4:00

4:15

4:30

4:45

H/TOT

5:00

5:15

5:30

5:45

н/тот

6:00

6:15

6:30

6:45

H/TOT

P/TOT

COV

		мс	VEMEN	it 1				МС		IT 2	
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	_
1:00	5	0	0	0	0	5	5	0	1	0	
1:15	2	0	0	0	0	2	6	2	0	0	
1:30	1	0	0	0	0	1	3	0	1	1	
1:45	3	1	0	0	0	4	3	0	0	2	
н/тот	11	1	0	0	0	12	17	2	2	3	
2:00	2	0	0	1	0	12 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	4	Stalse.	0	0	
2:15	2	1	0	0	0	3	3.3.0	ine o	0	0	
2:30	0	0	0	1	0	1 00	KO10	0	0	0	
2:45	1	0	0	0	0	apostico	3	0	0	0	
н/тот	5	1	0	2	ign P	CT ^C 8	10	0	0	0	
3:00	1	0	0	0 🔬	2°C ONTI	1	2	0	0	0	
3:15	2	0	0	FOTAT	Spr 0	3	6	0	0	0	
3:30	0	0	1	S OP'	0	1	3	1	0	0	
3:45	2	0	0 0 0 1 0_01	<u> </u>	0	2	3	0	0	0	
			104								

SITE:

LOCATION:

MARCH 2004 ATH/04/043

DATE: 11th/12th March 2004

DAY: Thursday/Friday

TOT

Abacus Transportation Surveys Ltd

BUS

MCOS

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

MARCH 2004 ATH/04/043

Thursday/Friday

SITE:

DATE: 11th/12th March 2004

DAY:

LOCATION: Sean Moore Road

02

		MC	VEMEN	NT 1				мс	VEMEN	NT 2		
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
7:00	120	10	5	8	0	143	107	21	9	7	0	144
7:15	130	19	9	6	0	164	182	27	12	11	0	232
7:30	177	11	7	5	1	201	199	22	13	7	0	241
7:45	175	25	5	2	0	207	219	34	9	10	1	273
н/тот	602	65	26	21	1	715	707	104	43	35	1	890
8:00	198	17	7	4	0	226	237	28	13	13	0	291
8:15	164	10	10	2	0	186	209	27	7	9	o	252
8:30	217	22	3	2	1	1124510	244	40	6	12	0	302
8:45	181	11	5	6	Con	203	196	27	10	2	0	235
н/тот	760	60	25	14 Fotori 11 6	Sectown	860	886	122	36	36	0	1080
9:00	156	15	3	Farty	100	179	177	23	9	2	0	211
9:15	216	15	4	. of 60x	0	241	173	16	4	7	1	201
9:30	111	9	6 50	11	0	137	156	19	7	8	0	190
9:45	146	19	68	6	0	179	151	27	5	10	0	193
н/тот	629	58	21	28	0	736	657	85	25	27	1	795
10:00	138	21	9	9	0	177	159	16	5	9	2	191
10:15	182	21	12	9	0	224	122	21	5	11	1	160
10:30	196	25	18	9	0	248	142	14	9	9	0	174
10:45	152	23	17	10	0	202	117	20	6	2	0	145
Н/ТОТ	668	90	56	37	0	851	540	71	25	31	3	670
11:00	186	38	17	11	2	254	71	19	4	9	0	103
11:15	114	20	11	5	0	150	128	19	7	11	0	165
11:30	119	14	13	2	0	148	86	13	4	7	1	111
11:45	109	27	8	15	0	159	143	17	5	10	0	175
н/тот	528	99	49	33	2	711	428	68	20	37	_ 1	554
12:00	99	18	5	6	0	128	117	21	8	10	1	157
12:15	137	28	17	7	1	190	138	17	6	13	0	174
12:30	1 16	26	9	6	0	157	114	17	3	5	0	139
12:45	124	24	7	13	2	170	144	18	6	15	1	184
н/тот	476	96	38	32	3	645	513	73	23	43	2	654

EAST LINK TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION COUNT

MARCH 2004 ATH/04/043

SITE:

LOCATION:

Sean Moore Road

.

02

DATE:

DAY:

Thursday/Friday

11th/12th March 2004

		МС	VEMEN	IT 1				МС	VEMEN	IT 2		
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
13:00	156	25	14	6	0	201	119	11	4	10	0	144
13:15	157	30	12	9	0	208	131	11	4	7	0	153
13:30	132	16	16	9	0	173	150	22	2	18	0	192
13:45	135	31	12	3	0	181	101	11	5	7	0	124
н/тот	580	102	54	27	0	763	501	1053°	15	42	0	613
14:00	151	23	18	8	0	200	124	11	8	9	0	152
14:15	162	25	11	4	0	2020	0126	17	9	12	0	164
14:30	140	34	7	4	0	1985°	77	12	5	12	0	106
14:45	155	28	20	2	BUB	205	130	21	3	3	1	158
н/тот	608	110	56	18	C ONT	792	457	61	25	36	1	580
15:00	152	22	14	برغ مربع درغ مربع در دو در رو رو رو رو رو رو رو رو رو رو رو رو رو	30 ¹ 1	198	147	22	6	4	0	179
15:15	142	20	11	5602	1	180	112	12	3	10	0	137
15:30	147	30	9 ent	7	1	194	120	16	4	3	0	143
15:45	170	27	C014	2	0	213	194	8	5	5	0	212
н/тот	611	99	48	24	3	785	573	58	18	22	0	671
16:00	177	37	6	5	0	225	153	7	1	10	0	171
16:15	90	16	8	2	0	116	162	8	4	6	0	180
16:30	208	27	6	7	0	248	200	20	3	3	0	226
16:45	212	24	5	4	1	246	203	13	6	3	0	225
н/тот	687	104	25	18	1	835	718	48	14	22	0	802
17:00	209	22	5	6	0	242	228	16	5	5	0	254
17:15	197	19	3	3	1	223	241	12	0	3	2	258
17:30	134	10	3	0	0	147	214	11	0	4	1	230
17:45	77	9	3	2	0	91	235	6	2	2	0	245
н/тот	617	60	14	11	1	703	918	45	7	14	3	987
18:00	147	13	2	1	0	163	256	10	2	2	0	270
18:15	57	5	1	3	0	66	187	5	1	3	о	196
18:30	239	14	2	3	0	258	232	2	1	1	0	236
18:45	210	10	2	2	0	224	161	3	1	3	0	168
н/тот	653	42	7	9	0	711	836	20	5	9	0	870

EAST LINK TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION COUNT

MARCH 2004 ATH/04/043

SITE:

DATE: 11th/12th March 2004

LOCATION: Sean Moore Road

02

DAY: Thursday/Friday

		мс	VEMEN					мс	VEMEN	NT 2		
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
19:00	206	13	3	2	0	224	187	4	0	0	1	192
19:15	127	6	1	0	0	134	162	3	0	2	1	168
20:15	118	11	1	3	1	134	112	2	0	3	0	117
21:15	125	6	2	0	0	133	116	5	0	0	0	121
н/тот	576	36	7	5	1	625	577	1415	,. 0	5	2	598
20:00	83	8	2	1	0	94	90	dille_	0	1	0	96
20:15	99	8	1	1	0	109	1109 1109	2	0	0	1	112
20:30	81	4	1	2	0	11188.111	97	3	1	1	0	102
20:45	68	3	0	5	000	76	91	4	2	1	0	98
н/тот	331	23	4	9	De OCAN	367	387	14	3	3	1	408
21:00	57	5	0		itelle	62	60	4	1	0	0	65
21:15	53	2	0	faor.	0	55	60	4	0	1	0	65
21:30	64	0	0	M ^C O	0	64	76	1	0	2	0	79
21:45	62	4	Cor	0	0	66	58	2	0	1	0	61
H/TOT	236	11	0	0	0	247	254	11	1	4	0	270
22:00	66	3	0	1	0	70	53	1	0	0	0	54
22:15	27	4	0	2	0	33	55	3	0	2	1	61
22:30	52	3	1	0	0	56	41	1	0	0	0	42
22:45	35	2	0	0	0	37	30	0	0	1	0	31
н/тот	180	12	1	3	0	196	179	5	0	3	1	188
23:00	28	1	2	1	0	32	21	1	0	3	0	25
23:15	33	1	0	1	0	35	25	0	0	0	0	25
23:30	24	1	0	0	0	25	25	0	0	0	0	25
23:45	21	0	1	0	0	22	19	0	0	0	0	19
H/TOT	106	3	3	2	0	114	90	1	0	3	. 0	94
0:00	18	1	0	0	0	19	20	1	0	0	0	21
0:15	20	1	0	0	0	21	10	2	0	1	0	13
0:30	22	0	0	0	0	22	12	0	0	0	0	12
0:45	10	2	0	0	0	12	8	2	0	0	0	10
Н/ТОТ	70	4	0	0	0	74	50	5	0	1	0	56

EAST LINK TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION COUNT

MARCH 2004 ATH/04/043

SITE:

02

DATE: 11th/12th March 2004

LOCATION:

Sean Moore Road

DAY:

Thursday/Friday

;

		MO	VEMEN	JT 1				MC	VEMEN	NT 2		i i
TIME	CAR	LGV		OGV2	BUS	тот	CAR	LGV		OGV2	BUS	тот
1:00	5	0	1	0	0	6	4	0	0	0	0	4
1:15	7	2	0	0	0	9	5	0	0	0	0	5
1:30	2	0	1	1	0	4	3	0	0	0	0	3
1:45	5	0	0	2	0	7	5	0	0	0	0	5
н/тот	19	2	2	3	0	26	17	0	0	0	0	17
2:00	4	0	0	0	0	4	17 2 1 59. 2019 50.1 1	OLSC.	0	0	0	2
2:15	3	0	0	0	0	3	1,0	the 1	0	0	0	2
2:30	0	0	0	0.	0	०_०	N. and	1	0	0	0	2
2:45	3	0	0	0	0	0 0 0 03 100	1	0	0	0	0	1
н/тот	10	0	0	0	.809	×10	5	2	0	0	0	7
3:00	2	0	0	0 FC ⁰ The FC	ECT ONIT	2	1	0	0	0	0	1
3:15	6	0	0	ECO IN	Shi o	6	2	0	0	0	0	2
3:30	3	1	0	Log,	0	4	1	0	0	0	0	1
3:45	3	0	0_01	0	0	3	1	0	0	0	0	1
н/тот	14	1	Con	0	0	15	_ 5	0	0	0	0	5
4:00	6	0	1	0	0	7	0	0	0	0	0	0
4:15	5	0	0	3	0	8	0	0	0	0	0	0
4:30	5	0	0	1	0	6	4	0	0	1	0	5
4:45	10	0	0	3	0	13	2	0	0	0	0	2
н/тот	26	0	1	7	0	34	6	0	0	1	0	7
5:00	23	2	0	1	0	26	2	1	1	4	0	8
5:15	34	5	2	0	0	41	4	2	0	0	0	6
5:30	24	2	1	0	0	27	5	3	0	3	0	11
5:45	13	1	5	4	0	23	8	11	0	6	0	15
н/тот	94	10	8	5	0	117	19	7	1	13	0	40
6:00	30	3	3	4	0	40	14	3	2	11	0	30
6:15	41	2	1	0	0	44	17	4	0	8	0	29
6:30	67	7	3	8	0	85	34	8	1	5	0	48
6:45	101	20	3	11	0	135	69	10	2	2	0	83
н/тот	239	32	10	23	0	304	134	25	5	26	0	190
P/TOT	9320	1119	455	329	13	11236	9457	894	266	413	16	11046

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

MARCH 2004 ATH/04/043

SITE:

LOCATION:

Beach Road

03

DAY:

DATE:

Thursday/Friday

11th/12th March 2004

		мо	VEMEN	IT 1				мс	VEMEN			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
7:00	123	19	9	5	0	156	164	13	6	3	0	186
7:15	1 7 6	28	7	9	0	220	210	16	4	1	0	231
7:30	208	24	11	5	0	248	184	10	4	4	0	202
7:45	214	31	5	7	0	257	191	17	3	0	0	211
н/тот	721	102	32	26	0	881	749	56 ¹¹⁵	17	8	0	830
8:00	220	27	10	7	0	264	206	o ¹¹ 9	1	1	0	217
8:15	198	17	5	5	0	225	1074	10	3	1	0	188
8:30	209	25	6	6	0	124611	177	16	2	0	1	196
8:45	195	21	7	1	<u>80</u> 0	<u>,</u> 224	195	10	2	1	0	208
н/тот	822	90	28	19	2° 0024	959	752	45	8	3	1	809
9:00	143	21	8	F2 10	1990	174	197	9	3	1	0	210
9:15	149	17	4	6204	0	172	208	12	2	1	0	223
9:30	141	14	1000	× 6	1	172	126	8	з	6	0	143
9:45	131	15	Conse	1	0	155	157	13	3	2	0	175
н/тот	564	67	30	11	1	673	688	42	11	10	0	751
1 0 :00	131	28	13	3	1	176	148	8	5	5	0	166
10:15	133	35	7	2	2	179	179	15	16	4	0	214
10:30	109	12	10	3	0	134	16 1	16	11	8	0	196
10:45	105	16	4	3	0	128	189	20	9	11	0	229
н/тот	478	91	34	11	3	617	677	59	41	28	0	805
11:00	104	23	13	2	0	142	151	22	9	9	2	193
11:15	96	26	8	3	1	134	135	17	12	4	0	168
11:30	141	13	8	10	1	173	133	18	4	6	0	16 1
11:45	148	23	9	8	0	188	113	14	7	11	0	145
н/тот	489	85	38	23	2	637	532	71	32	30	. 2	667
12:00	103	22	5	7	1	138	100	13	5	2	o	120
12:15	132	21	7	7	0	167	127	25	12	1	1	166
12:30	143	18	7	4	0	172	128	20	6	4	1	159
12:45	157	16	9	7	0	189	122	15	7	5	0	149
H/TOT	535	77	28	25	1	666	477	73	30	12	2	594

٩

EAST LINK TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION COUNT

03

.

MARCH 2004 ATH/04/043

SITE:

DATE: 11th/12th March 2004

LOCATION: Beach Road

		MO	VEMEN	IT 1			MOVEMENT 2					
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
13:00	144	13	6	5	0	168	127	22	10	3	0	162
13:15	160	15	3	9	0	187	140	24	8	7	0	179
13:30	132	21	3	7	0	163	140	14	10	7	0	171
13:45	149	9	10	4	0	172	146	22_0	• 11	4 '	0	183
н/тот	585	58	22	25	0	690 .	553	xx ⁸²	39	21	0	. 695
14:00	142	16	9	2	0	169	31403	20	13	4	0	177
14:15	149	19	7	6	0	180	156	24	7	3	0	190
14:30	123	22	7	4	0 🗸	112155 100	135	20	9	1	2	167
14:45	179	23	6	3	citon	211	122	19	13	2	0	156
н/тот	593	80	29	1505	2010	717	553	83	42	10	2	690
15:00	162	32	4	40,0%	0	199	127	19	7	3	1	157
15:15	177	23	5	o ⁵ 6	1	212	151	22	8	6	0	187
15:30	147	22	Coasent	1	0	173	161	24	13	4	1	203
15:45	216	_ 24	6	1	0	247	166	31	5	5	0	207
н/тот	702	101	18	9	1	831	605	96	33	18	2	754
16:00	226	24	8	3	0	261	150	34	3	3	0	190
16:15	187	18	3	1	0	209	87	8	1	2	0	98
16:30	195	22	2	1	0	220	131	23	8	6	1	169
16:45	216	19	6	0	0	241	121	8	2	2	0	133
н/тот	824	83	19	5	0	931	489	73	14	13	1	590
17:00	223	17	5	2	0	247	183	17	4	1	0	205
17:15	230	10	0	2	2	244	147	7	1	1	0	156
17:30	207	9	2	6	0	224	100	14	4	1	0	119
17:45	253	10	2	2	0	267	90	6	0	1	0	97
н/тот	913	46	9	12	2	982	520	44	9	4	. 0	577
18:00	228	5	1	1	0	235	88	11	1	1	0	101
18:15	195	7	1	0	0	203	45	4	1	0	0	50
18:30	276	6	1	1	0	284	148	8	1	2	0	159
18:4 5	200	6	1	1	0	208	185	13	2	0	0	200
н/тот	899	24	4	3	0	930	466	36	5	3	0	510

DAY:

Thursday/Friday

.

EAST LINK TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION COUNT

03

MARCH 2004 ATH/04/043

Thursday/Friday

SITE:

DATE: 11th/12th March 2004

DAY:

LOCATION: Beach Road

		мо	VEMEN	IT 1								
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
19:00	219	11	0	0	1	231	184	17	1	2	0	204
19:15	223	4	0	1	1	229	148	10	0	0	2	160
20:15	154	4	0	3	0	161	113	9	0	2	0	124
21:15	172	6	0	0	0	178	130	13	0	0 /	0	_143
нлот	768	25	0	4	2	799	575	4955	^{5•} 1	4	2	631
20:00	139	7	1	0	0	147	82	other	0	1	0	85
20:15	151	6	0	2	1	160	nitipany	6	2	0	0	112
20:30	125	4	0	1	0	130	67	3	0	0	0	70
20:45	129	5	1	1	0	130 2111230 2111230	82	2	0	4	0	88
н/тот	544	22	2	4	occillo w	573	335	13	2	5	0	355
21:00	106	5	0	tor in	0	112	68	2	0	0	0	70
21:15	106	9	0	500	0	117	74	1	0	0	0	75
21:30	94	5	0	at ⁰¹	0	100	60	4	0	0	0	64
21:45	92	6	0 Onse	1	0	99	66	2	0	0	0	68
н/тот	398	25	0	5	0	428	268	9	0	0	0	277_
22:00	93	1	0	0	0	94	78	1	0	1	0	80
22:15	82	2	0	0	1	85	51	0	0	2	0	53
22:30	82	2	1	0	0	85	58	3	0	0	0	61
22:45	61	4	0	1	0	66	35	1	0	0	0	36
н/тот	318	9	1	1	1	330	222	5	0	3	0	230
23:00	38	2	0	3	0	43	32	2	0	2	0	36
23:15	45	2	0	0	0	47	37	1	0	0	0	38
23:30	36	1	0	0	0	37	29	0	1	0	0	30
23:45	38	0	0	0	0	38	25	1	0	0	0	26
н/тот	157	5	0	3	0	165	123	4	1	2	0	130
0:00	31	2	0	0	0	33	19	0	0	0	0	19
0:15	27	1	0	1	0	29	32	0	0	0	0	32
0:30	24	1	0	0	0	25	20	3	0	0	0	23
0:45	15	2	0	0	0	17	9	0	0	0	0	9
н/тот	97	6	0	1	0	104	80	3	0	0	0	83

EAST LINK TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION COUNT

MARCH 2004 ATH/04/043

SITE:

LOCATION: Beach Road

03

DATE: 11th/12th March 2004

DAY:

Thursday/Friday

		мо	VEMEN	T 1				МС	VEMEN	NT 2		
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
1:00	12	0	0	0	0	12	8	1	0	0	0	9
1:15	8	1	0	0	0	9	11	2	0	0	0	13
1:30	3	0	0	0	1	4	3	0	0	1	0	4
1:45	6	1	0	0	0	7	5	1	0	2	0	8
н/тот	29	2	0	0	1	32	27	4 يو	. 0	3	0	34
2:00	6	1	0	0	0	7	4	otheot	0	0.	0	4
2:15	11	0	0	0	0	11	13.403	0	0	0	0	4
2:30	6	1	1	0	0	800	x0'	0	0	0	0	1
2:45	2	0	0	0	0	arpostired	3	0	0	0	ō	3
н/тот	25	2	1	0	~ ~ `	r C	12	0	0	0	0	12
3:00	5	0	0	0 0.115 F9 115	2010 m	5	2	2	0	0	0	4
3:15	4	0	0	£91 %	0	5	9	0	0	0	0	9
3:30	7	0	1	50	0	8	2	0	0	0	0	2
3:45	3	1	Asen	0 0.105 59505 0 0 1	0	4	5	1	0	0	0	6
н/тот	19	1	1	1	0	22	18	3	0	0	0	21
4:00	4	0	0	0	0	4	4	0	1	1	0	6
4:15	3	1	0	0	0	4	5	1	0	3	0	9
4:30	6	1	0	0	0	7	5	0	0	0	0	5
4:45	2	1	0	1	0	4	14	1	0	3	0	18
н/тот	15	3	0	1	0	19	28	2	1	7	0	38
5:00	3	3	1	4	0	11	21	1	0	2	0	24
5:15	4	2	1	0	0	7	38	1	0	2	0	41
5:30	8	2	0	4	0	14	38	3	0	1	0	42
5:45	17	1	0	4	0	22	28	3	0	5	0	36
H/TOT	32	8	2	12	0	54	125	8	0	10	0	143
6:00	26	6	1	8	0	41	35	1	0	2	. 0	38
6:15	20	6	0	7	0	33	53	4	1	1	0	59
6:30	44	8	4	3	0	59	81	5	1	1	0	88
6:45	87	17	1	4	0	109	124	18	1	6	0	149
H/TOT	177	37	6	22	0	242	293	28	3	10	0	334-
P/TOT	10704	1049	304	238	15	12310	9167	888	289	204	12	10560

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

04

MARCH 2004 ATH/04/043

SITE:

DATE: 11th/12th March 2004

LOCATION:

Irishtown Road

DAY:

Thursday/Friday

		мс	VEMEN	IT 1				мс	VEMEN	NT 2		
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
7:00	55	7	0	10	0	72	102	3	2	0	1	108
7:15	75	14	6	5	3	103	131	0	1	6	1	139
7:30	76	12	2	2	1	93	127	3	2	3	1	136
7:45	91	7	2	6	1	107	142	3	2	4 '	2	153
н/тот	297	40	10	23	5	375	502	ergise	7	13	5	536
8:00	79	15	3	5	1	103	133	11 ⁰⁰⁰ 7	0	7	2	149
8:15	99	7	4	2	1	1130	co 72	4	2	7	0	185
8:30	97	8	4	1	2	R9120	135	16	1	5	1	158
8:45	122	12	4	3	i A P	×143	159	12	0	4	2	177
н/тот	397	42	15	11 5	2CT GNIT	471	599	39	3	23	5	669
9:00	88	19	3	FOSTI	1	114	137	13	1	6	0	157
9:15	68	12	5	F03 37 5 6 8	3	94	123	5	5	5	2	140
9:30	72	15	Zent	8	2	104	101	15	2	3	0	121
9:45	58	13	Cont	4	1	82	103	10	0	6	2	121
н/тот	286	59	21	21	7	394	464	43	8	20	4	539
10:00	80	22	3	5	2	112	83	9	1	5	1	99
10:15	69	20	1	7	2	99	93	11	2	5	1	112
10:30	69	8	3	2	3	85	89	9	2	9	1	110
10:45	83	23	8	3	4	121	110	14	2	7	3	136
н/тот	301	73	15	17	11	417	375	43	7	26	6	457
11:00	94	20	3	8	0	125	88	17	5	8	0	118
11:15	96	15	4	6	2	123	79	21	2	9	3	114
11:30	76	14	2	7	2	101	83	22	2	4	2	113
11:45	86	14	5	8	1	114	87	7	0	6	0	100
н/тот	352	63	14	29	5	463	337	67	9	27	. 5	445
12:00	92	13	0	3	2	110	83	19	4	7	1	114
12:15	91	15	2	11	0	119	85	17	3	6	2	113
12:30	122	20	3	7	1	153	106	13	2	3	1	125
12:45	108	18	3	9	2	140	80	14	3	11	1	109
н/тот	413	66	8	30	5	522	354	63	12	27	5	461

Ath~04~043 mcc 04

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

Ath~04~043 mcc 04

18:15

18:30

18:45

н/тот

17†

SITE:

_												
		MO	VEMEN	IT 1				МС	VEMEN	IT 2		
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
13:00	126	15	5	8	2	156	88	7	1	3	2	101
13:15	98	9	2	2	3	114	9 7	12	4	5	1	119
13:30	114	18	5	6	2	145	94	7	2	7	1	111
13:45	108	10	3	1	2	124	113	80.	2	5 ΄	2	130
H/TOT	446	52	15	17	9	539	392	er 34	9	20	6	461
14:00	96	19	3	8	2	128	103	9	0	6	2	120
14:15	115	11	1	4	1	058321 09147	³ 101	11	0	2	0	114
14:30	113	23	5	5	bur	47	99	10	9	4	3	125
14:45	129	21	9	1	10 201	162	92	8	1	3	2	106
н/тот	453	74	18	1800	10 ⁶ 6	569	395	38	10	15	7	465
15:00	119	24	2 🔨	rolatie	1	151	80	6	1	1	1	89
15:15	128	14	2 0	7	2	153	71	10	1	4	1	87
15:30	133	22	onsente	4	2	163	107	9	3	2	0	121
15:45	127	18	0	5	1	15 1	121	13	3	0	3	140
н/тот	507	78	6	21	6	618	379	38	8	7	5	437
16:00	127	19	0	3	2	151	116	9	0	4	2	131
16:15	151	18	1	2	0	172	125	7	1	6	0	139
16:30	126	5	2	2	1	136	121	8	3	1	0	133
16:45	164	13	1	3	2	183	99	7	1	2	1	110
н/тот	568	55	4	10	5	642	461	31	5	13	3	513
17:00	130	10	3	2	2	147	128	5	1	2	1	137
17:15	145	7	2	3	0	157	127	9	1	1	2	140
17:30	145	5	2	3	1	156	116	7	0	2	1	126
17:45	154	10	2	2	1	169	113	5	0	1	2	121
н/тот	574	32	9	10	4	629	484	26	2	6.	6	524
18:00	172	11	2	1	2	188	134	6	0	1	1	142

LOCATION: Irishtown Road

ATH/04/043

MARCH 2004

DAY:

DATE:

Thursday/Friday

11th/12th March 2004

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

MARCH 2004 ATH/04/043

SITE:

04

DATE: 11th/12th March 2004

LOCATION: I

Irishtown Road

DAY:

Thursday/Friday

		мс	VEMEN	NT 1			MOVEMENT 2					
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
19:00	161	14	0	0	0	175	171	4	0	1	1	177
19:15	131	8	0	0	3	142	120	7	0	1	0	128
20:15	146	9	0	1	0	156	107	4	0	0	2	113
21:15	124	10	1	1	1	137	116	2	1	1 ′	2	122
н/тот	562	41	1	2	4	610	514	e1350	1	3	5	540
20:00	114	7	1	0	0	122	.87.0	6	1	0	1	95
20:15	129	10	0	0	1	1400	19. 2019 F094	7	0	0	0	101
20:30	110	9	0	0	2	19340	71	1	0	0	1	73
20:45	95	7	0	1	id P	×104	64	3	1	1	1	70
н/тот	448	33	1	1 5	2 CV AV	487	316	17	2	1	3	339
21:00	88	3	0	FOD VIT	0	91	57	6	0	0	0	63
21:15	92	6	0	8 - 8Y -	1	99	58	0	0	0	1	59
21:30	86	0	0 ent	0	1	87	54	2	0	1	0	57
21:45	79	3	COL	0	0	82	52	7	0	0	1	60
Н/ТОТ	345	12	0	0	2	359	221	15	0	1	2	239
22:00	80	0	0	0	1	81	76	1	0	0	2	79
22:15	87	7	0	0	2	96	48	3	0	0	0	51
22:30	70	5	1	0	1	77	39	2	0	0	2	43
22:45	57	5	0	0	1	63	36	3	0	0	1	40
н/тот	294	17	1	0	5	317	199	9	0	0	5	213
23:00	64	3	0	1	1	69	45	1	0	0	0	46
23:15	42	3	0	0	1	46	43	2	0	0	1	46
23:30	35	1	0	0	1	37	34	1	1	0	1	37
23:45	37	0	0	0	0	37	21	0	0	0	0	21
н/тот	178	7	0	1	3	189	143	4	1	0	. 2	150
0:00	28	0	0	0	0	28	24	2	0	0	0	26
0:15	34	2	0	0	0	36	25	1	0	0	0	26
0:30	25	1	0	0	0	26	23	1	0	0	0	24
0:45	16	4	0	0	0	20	21	1	0	0	0	22
н/тот	103	7	0	0	0	110	93	5	0	0	0	98

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

04

MARCH 2004 ATH/04/043

Thursday/Friday

SITE:

DATE: 11th/12th March 2004

DAY:

LOCATION:

Irishtown Road

		MO	VEMEN	IT 1				MC	VEMEN	NT 2		l ,
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	_LGV	OGV1	OGV2	BUS	тот
1:00	22	1	0	0	0	23	16	1	0	0	0	17
1:15	12	1	0	0	0	13	10	0	0	0	0	10
1:30	7	1	0	0	2	10	17	0	0	0	0	17
1:45	11	1	0	0	0	12	11	2	0	0	0	13
н/тот	52	4	0	0	2	58	54	3 ₀ .	0	0	0	57
2:00	11	0	0	0	0	. 11	7	per 1	0	0	0	8
2:15	11	1	0	0	0	12	6. W	0	0	0	0	10
2:30	7	0	0	0	0	2050 Ted	5	0	0	0	0	5
2:45	7	0	0	0	OUL	Pose red	5	0	0	0	0	5_
н/тот	36	1	0	0 2	infler	37	27	1	0	0	0	28
3:00	10	1	0	ASP C	000	11	8	0	0	0	0	8
3:15	7	0	0 🔨	FOLOTIO	0	7	4	0	0	0	0	4
3:30	6	1	0_6	0	1	8	4	0	0	0	0	4
3:45	5	1	mont		0	6	5	11	0	0	0	6
н/тот	28	3	<u> </u>	0	1	32	_ 21	1	0	0	0	22
4:00	7	1	0	0	0	8	3	0	0	1	0	4
4:15	5	1	0	0	0	6	4	2	0	0	0	6
4:30	3	1	0	1	0	5	3	0	0	1	0	4
4:45	3	1	0	0	0	4	6	1	0	0	0_	7
н/тот	18_	4	0	1	0	23	16	3	. 0	2	0	21
5:00	4	2	0	0	0	6	4	3	0	0	0	7
5:15	5	2	0	0	0	7	9	1	0	0	0	10
5:30	4	0	0	3	0	7	15	1	0	1	0	17
5:45	9	4	0	5	0	18	15	1	1	0	0	17
н/тот	22	8	0	8	0	38	43	6	1	1	0	51
6:00	23	3	0	4	0	30	12	1	2	0.	0	15
6:15	15	4	0	1	0	20	25	2	2	6	0	35
6:30	37	6	3	10	0	56	33	0	1	2	0	36
6:45	58	6	1	8	0	73	55	6	1	0	0	62
HATOT	133	19	4	23	0	179	12 5	9	6	8	0	148
P/TOT	7482	826	148	248	94	8798	7114	548	94	218	81	8055

EAST LINK TRAFFIC COUNTS MANUAL CLASSIFIED JUNCTION COUNTS

05

MARCH 2004 ATH/04/043

Thursday/Friday

SITE:

DATE: 11th/12th March 2004

DAY:

LOCATION: East Wall Road

		MC	VEMEN	IT 1								
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
7:00	68	9	7	59	0	143	127	13	13	44	1	198
7:15	104	12	7	70	1	194	152	7	10	39	2	210
7:30	124	11	4	54	0	193	200	29	15	42	2	288
7:45	138	7	5	58	0	208	137	10	10	18 ·	0	175
н/тот	434	39	23	241	1	738	616	5955	48	143	5	871
8:00	169	15	6	52	Ō	242	173	o ¹¹ 15	3	23	0	214
8:15	159	10	7	54	1	231	n115311Y	9	10	14	0	186
8:30	168	11	9	54	0	202,19	194	21	8	24	2	249
8:45	124	13	6	46	0	189	144	13	7	13	0	177
н/тот	620	49	28	206	octil w	904	664	58	28	74	2	826
9:00	126	22	5	38 11 58007	1930	191	137	17	5	28	0	187
9:15	133	16	6	38003	1	194	154	17	5	28	0	204
9:30	122	22	9 🤞	38	3	194	146	13	7	34	0	200
9:45	116	29	9 Conset	35	0	187	149	21	4	49	1	224
Н/ТОТ	497	89	27	149	4	766	586	6 8	21	139	1	815
10:00	122	20	10	31	0	183	149	17	9	38	0	213
10:15	142	24	16	38	2	222	143	15	10	44	1	213
10:30	109	20	10	37	1	177	160	22	16	44	2	244
10:45	117	15	4	50	3	189	148	28	11	47	1	235
н/тот	490	79	40	156	6	771	600	82	46	173	4	905
11:00	59	26	9	42	0	136	130	26	14	39	1	210
11:15	91	14	6	38	0	149	107	17	16	40	0	180
11:30	102	20	6	42	1	171	101	16	12	51	0	180
11:45	103	22	7	57	0	189	115	23	9	51	0	198
н/тот	355	82	28	179	1	645	453	82	51	181	1	768
12:00	109	25	7	63	3	207	122	19	7	58	0	206
12:15	99	10	3	34	1	147	113	20	22	25	2	182
12:30	105	16	5	54	1	181	114	23	14	41	0	192
12:45	140	24	9	41	1	215	127	26	9	39	1	202
н/тот	453	75	24	192	6	750	476	88	52	163	3	782

Ath~04~043 mcc 05

.....

EAST LINK TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION COUNT

05

Abacus Transportation Surveys Ltd

MARCH 2004 ATH/04/043

Thursday/Friday

SITE:

11th/12th March 2004 DATE:

DAY:

LOCATION: East Wall Road

13:00 1 13:15 1 13:30 1 13:45 1 H/TOT 5 14:00 1	19 : 11 13 82 : 25 : 09		VEMEN <u>OGV1</u> 4 13 12 <u>11</u> 40		BUS 2 0 0	TOT 186 169	CAR 128 123	LGV 26	OGV1 13	OGV2 41	BUS 1	тот 209
13:00 1 13:15 1 13:30 1 13:45 1 H/TOT 5 14:00 1	19 : 11 13 82 : 25 : 09	23 15 15 29 82	4 13 12 11	38 30 32	2 0	186	128	26				
13:15 1 13:30 1 13:45 1 H/TOT 5 14:00 1	11 13 82 25 09	15 15 29 82	13 12 11	30 32	0						•	
13:30 1 13:45 1 H/TOT 5 14:00 1	13	15 29 82	12 11	32	-			25	16	21	2	187
13:45 1 H/TOT 5 14:00 1	82 2 25 8 09 ⁻	29 82	11		° .	172	145	17	14	54	1	231
H/TOT 5	25 09	82			1	275	123	15 _{.0} .		37	0	180
14:00 1	09			152	3	802	519	283	48	153	4	807
			16	28	0	171	A137	22	17	36	0	212
		22	6	37	1	న	\$9122	20	15	31	1	189
		16	8	35	1	ITP LADE		29	8	34	0	177
		26	4	43	cionp	208	126	28	12	38	2	206
		82	34	143	2012 W	680	491	99	52	139	3	784
		10	0	49451	0	172	138	25	15	52	1	231
		18	10 Consent	\$27	0	141	110	25	20	37	1	193
		18	zent	38	0	181	93	15	12	26	1	147
		16	Con.	32	0	200	142	24	14	43	o	223
		71	34	135	0	694	483	89	61	158	3	794
		10	6	18	2	165	98	14	11	37	0	160
		20	9	16	1	201	124	26	3	21	0	174
		25	8	23	0	194	159	26	9	27	0	221
		9	8	36	0	223	142	21	7	24	2	196
		<u> </u>	31	93	3	783	523	87	30	109	2	751
	25	6	7	12	1	151	123	17	7	22	0	169
1	 62	9	4	13	1	189	50	7	4	 16	0	77
ļ †	40	9	6	18	0	173	54	6	5	19	1	85
	69	9	5	14	0	197	39	1	4	14	0	58
		33	22	57	2	710	266	31	20	71	1	389
	57	8	 5	 11	0	181	42	7	2	13	1	65
		5	14	10	0	177	45	5	3	13	0	66
		5	2	14	1	153	145	11	7	24	1	188
		3	5	22	0	175	78	10	3	26	1	118
		21	26	57	1	686	310	33	15	76	3	437

MCOS

1

ABACUS TRANSPORTATION SURVEYS

EAST LINK TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION COUNT

05

MARCH 2004 ATH/04/043

Thursday/Friday

SITE:

DATE: 11th/12th March 2004

DAY:

LOCATION: Eas

East Wall Road

	MOVEMENT 1											
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
19:00	132	8	0	24	3	167	181	8	5	20	0	214
19:15	136	0	3	16	3	158	142	8	8	29	2	189
20:15	126	3	7	17	1	154	119	16	1	34	2	172
21:15	123	9	2	25	1	160	111	7	5	21	0	144
н/тот	517	20	12	82	8	639	553	395	[°] 19	104	4	719
20:00	137	11	7	23	1	179	94	0 ¹⁹ 1	6	25	3	139
20:15	97	8	1	16	1	123	94 01186211	4	2	20	0	112
20:30	101	5	4	8	1	119	82	5	2	9	1	99
20:45	73	3	2	22	0	2100 H	53	3	0	26	0	82
н/тот	408	27	14	69	- PESTON	1 ⁶⁰ 521	315	23	10	80	4	432
21:00	65	2	3	69 60117 1207	TI SOL	76	72	2	0	11	0	85
21:15	52	3	5	1200	0	71	54	2	0	15	0	71
21:30	70	1	0	12	0	83	57	2	2	14	0	75
21:45	53	2	0 00156	15	1	71	48	1	0	15	0	64
н/тот	240	8	8	44	1	301	231	7	2	55	0	295
22:00	59	1	1	7	0	68	74	5	0	6	0	85
22:15	47	2	4	14	1	68	46	0	1	10	0	57
22:30	49	2	1	12	0	64	62	1	2	7	1	73
22:45	40	1	0	8	0	49	34	2	1	6	0	43
н/тот	195	6	6	41	1	249	216	8	4	29	1	258
23:00	27	1	1	3	1	33	30	5	1	5	1	42
23:15	28	1	1	8	0	38	39	2	2	6	1	50
23:30	25	0	0	3	0	28	21	2	0	4	0	27
23:45	30	1	0	3	0	34	18	1	1	3	1	24
н/тот	110	3	2	17	1	133	108	10	4	18	3	143
0:00	19	1	0	5	0	25	27	1	0	5	0	33
0:15	14	0	0	5	0	19	20	1	1	4	0	26
0:30	10	1	2	1	0	14	21	0	0	2	0	23
0:45	14	2	0	3	0	19	18	0	0	1	0	19
н/тот	57	4	2	14	0	77	86	2	1	12	0	101

.

Abacus Transportation Surveys Ltd MCOS

MCOS

.

Abacus Transportation Surveys Ltd

EAST LINK TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION COUNT

MARCH 2004 ATH/04/043

Thursday/Friday

SITE:

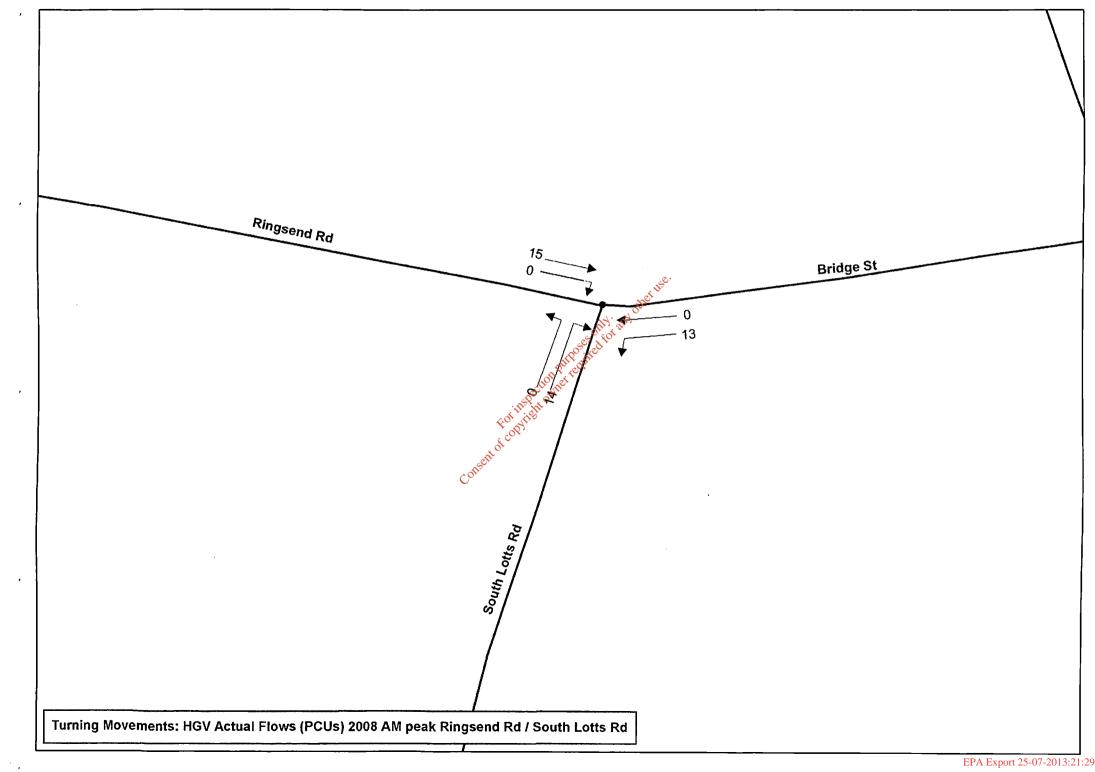
LOCATION: East Wall Road

05

DATE: 11th/12th March 2004

DAY:

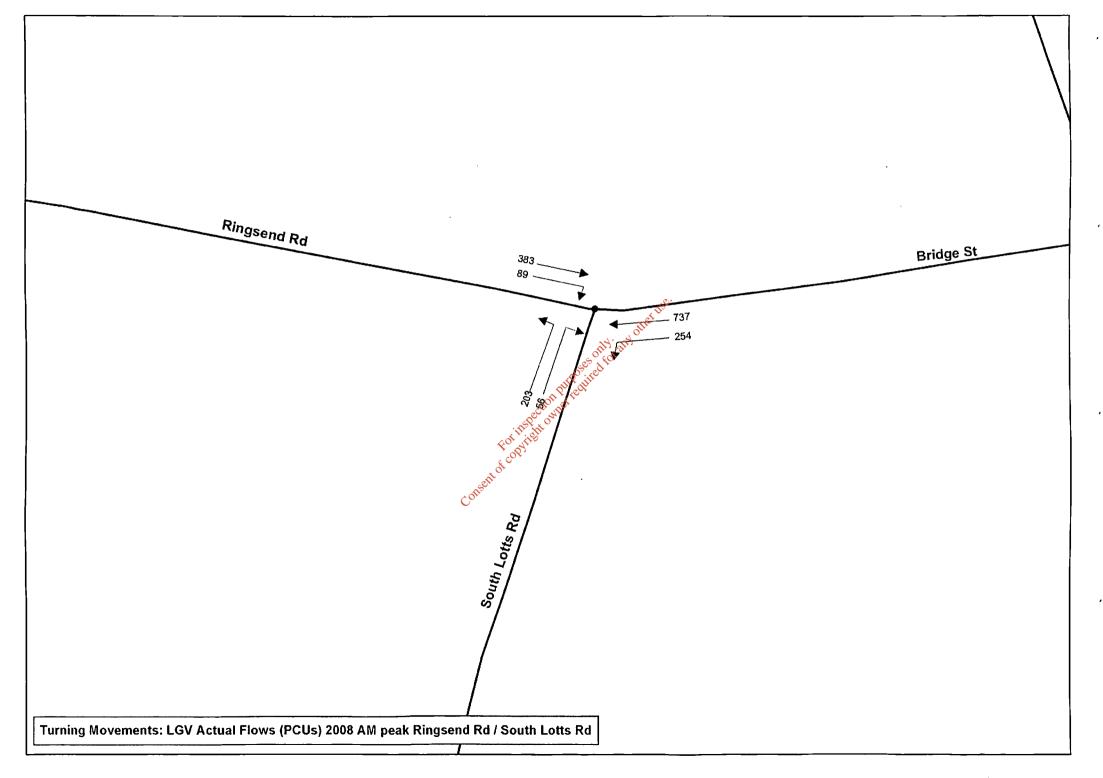
		MC	VEMEN	NT 1		MOVEMENT 2						
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	CAR	LGV	OGV1	OGV2	BUS	тот
1:00	4	1	0	3	0	8	6	0	1	4	0	11
1:15	6	0	0	0	0	6	15	2	0	3	0	20
1:30	6	1	0	3	0	10	7	0	0	4	0	11
1:45	7	1	0	7	0	15	8	2	0	3	0	13
н/тот	23	3	0	13	0	39	36	4	1	14 .	0	55
2:00	4	1	0	3	0	8	6	0,00	0	1	0	7
2:15	6	1	0	2	0	9	7	ther 2	0	1	0	10
2:30	3	0	1	2	0	6 💰	9.202	2	2	4	0	15
2:45	4	0	1	2	0	6500	101 g	1	0	2	0	12
н/тот	17	2	2	9	0 🔇	il 30	29	5	2	8	0	44
3:00	7	1	1	9 1 2105 For Joyn	ection in	10	6	0	0	3	0	9
3:15	2	0	0	2115	ection fr	4	5	0	0	2	0	7
3:30	1	0	1		0	5	6	2	0	0	.0	8
3:45	2	0	0	of 5	0	7	4	0	0	4	0	8
н/тот	12	1	CO25CD	11	0	26	21	2	0	9	0	32
4:00	4	0	2	3	0	9	9	0	0	5	0	14
4:15	0	1	1	2	0	4	7	0	1	3	0	11
4:30	4	2	1	2	0	9	8	0	0	4	0	12
4:45	4	0	1	6	0	11	13	2	2	12	0	29
н/тот	12	3	5	13	0	33	37	2	3	24	0	66
5:00	2	0	4	12	0	18	25	3	1	5	0	34
5:15	3	4	1	7	0	15	53	6	3	8	1	71
5:30	7	2	2	18	0	29	51	2	2	16	0	71
5:45	18	2	7	49	0	76	35	5	3	25	0	68
н/тот	30	8	14	86	0	138	164	16	9	54	1	244
6:00	14	2	4	55	0	75	46	7	10	28	0	91
6:15	20	5	3	46	0	74	53	5	5	23	0	86
6:30	67	17	7	69	0	160	75	6	8	44	0	133
6:45	48	6	8	93	1	156	96	17	10	42	1	166
н/тот	149	30	22	263	1	465	270	35	33	137	1	476
Р/ТОТ	7786	881	446	2422	45	11580	8053	1012	560	2123	46	11794

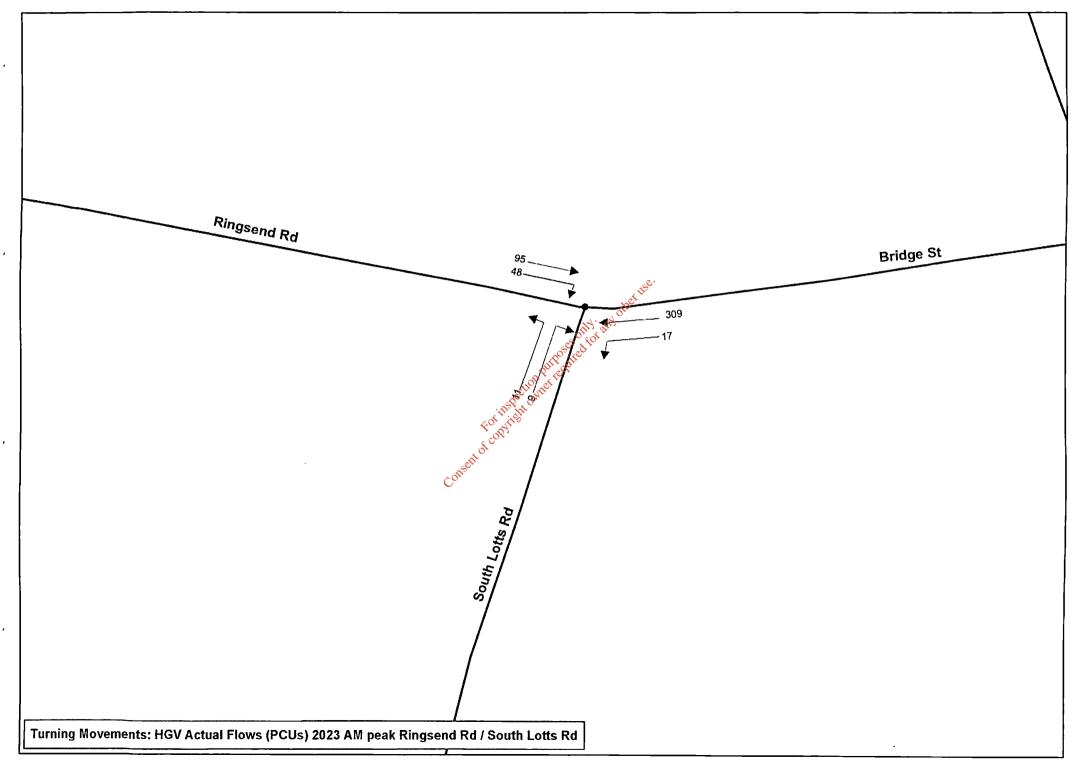

.

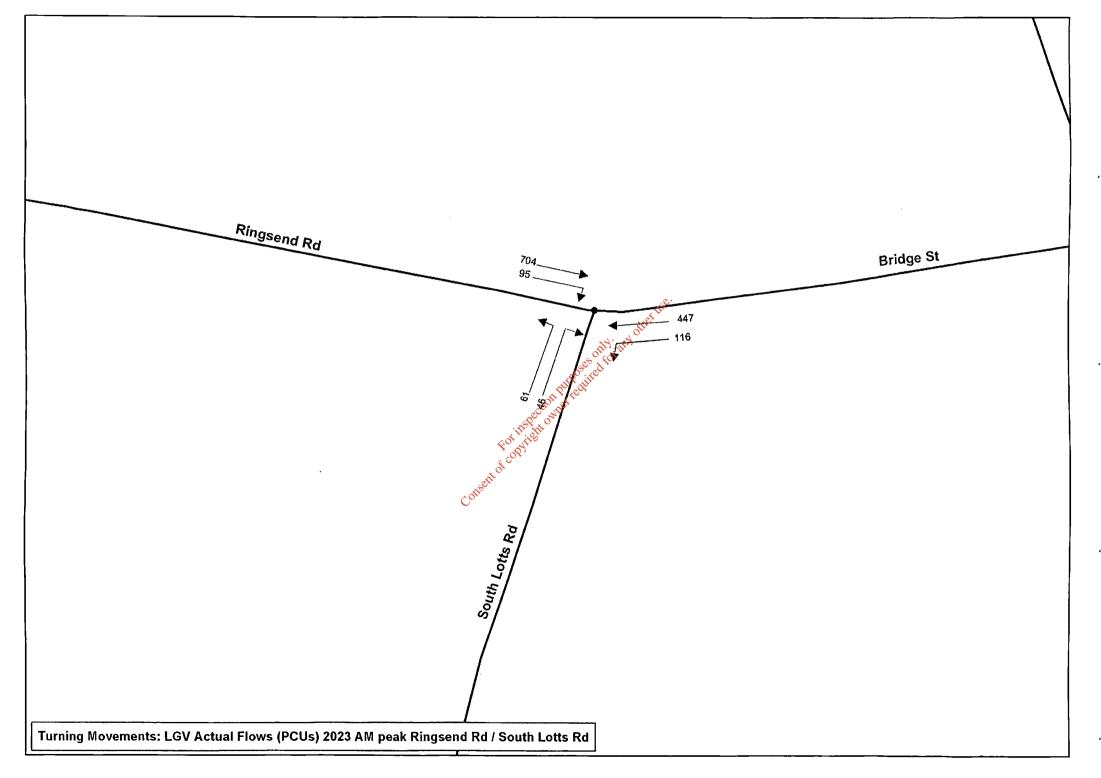
DUBLIN TRANSPORTATION OFFICE MODEL OUTPUTS

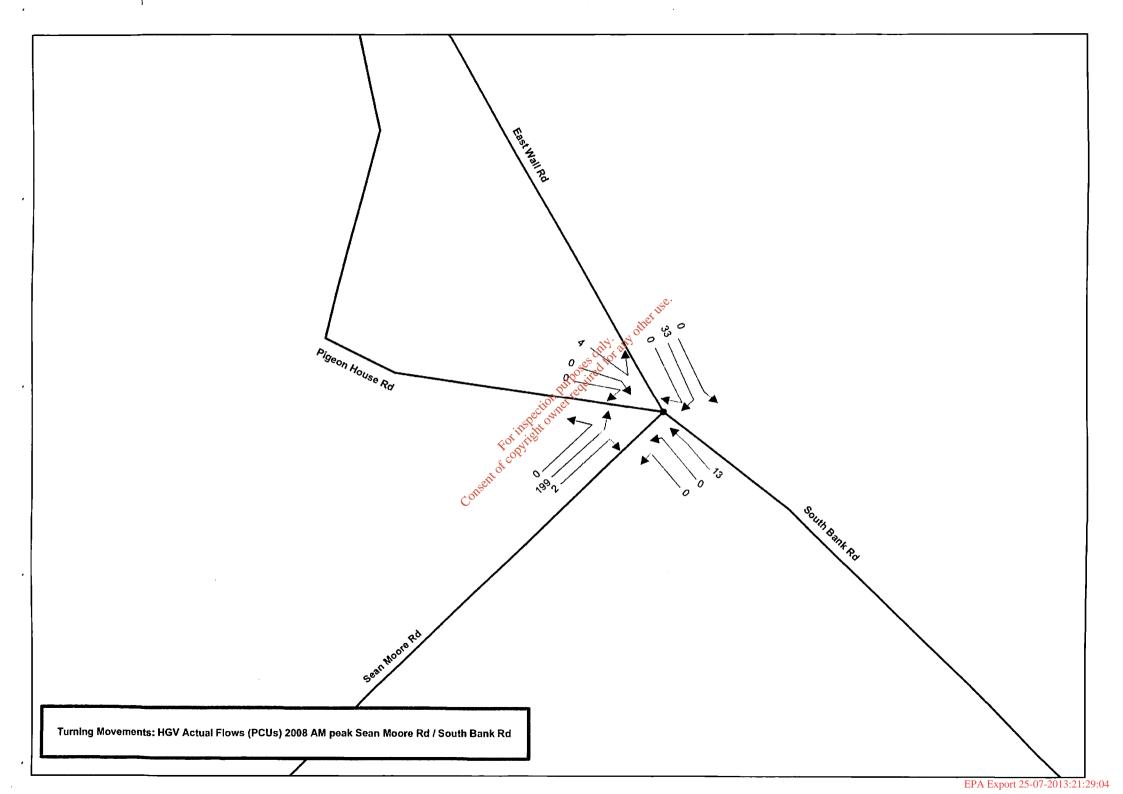
Consent of copyright owner required for any other use.

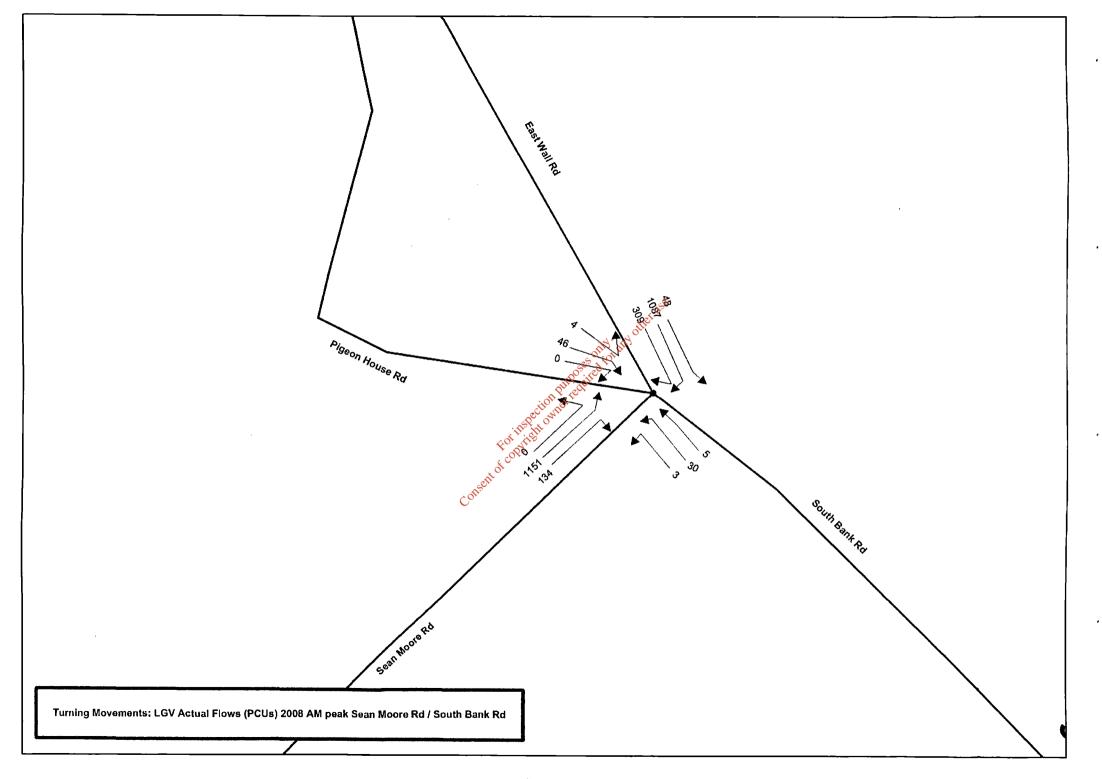
2008 & 2023 ACTUAL FLOWS (HGV & LGV)

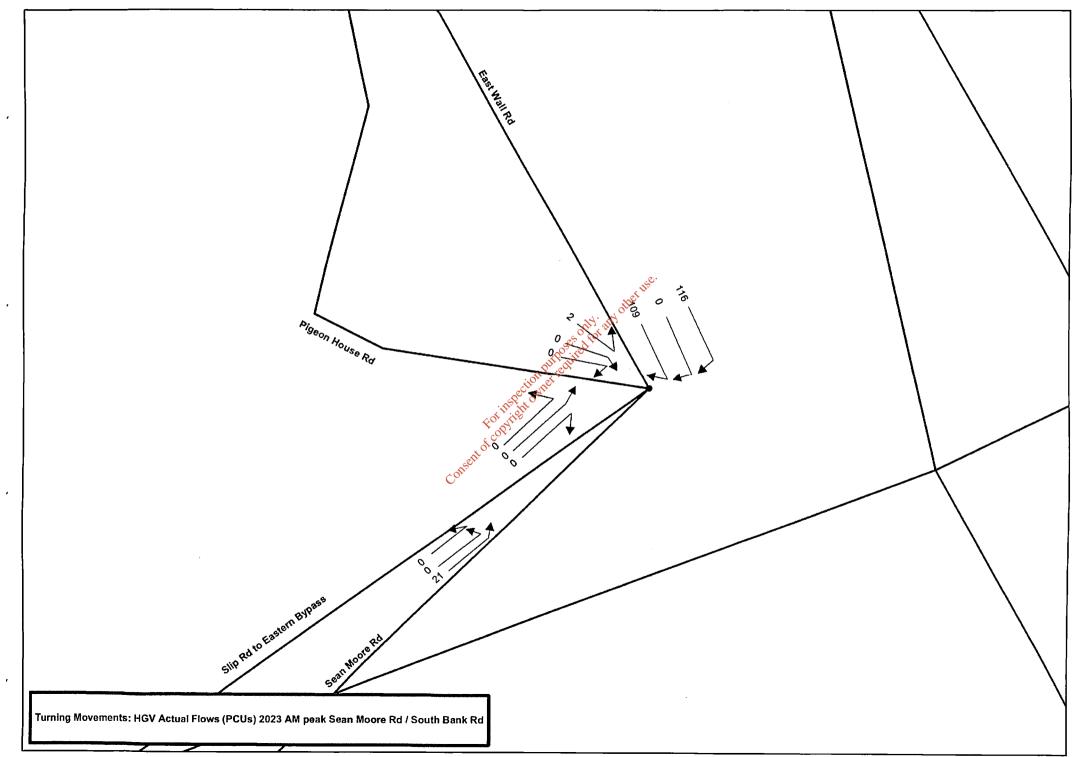

& 2023 ACTUAL FLOWS (HGV & I AM PEAK, PM PEAK, OFF-PEAK

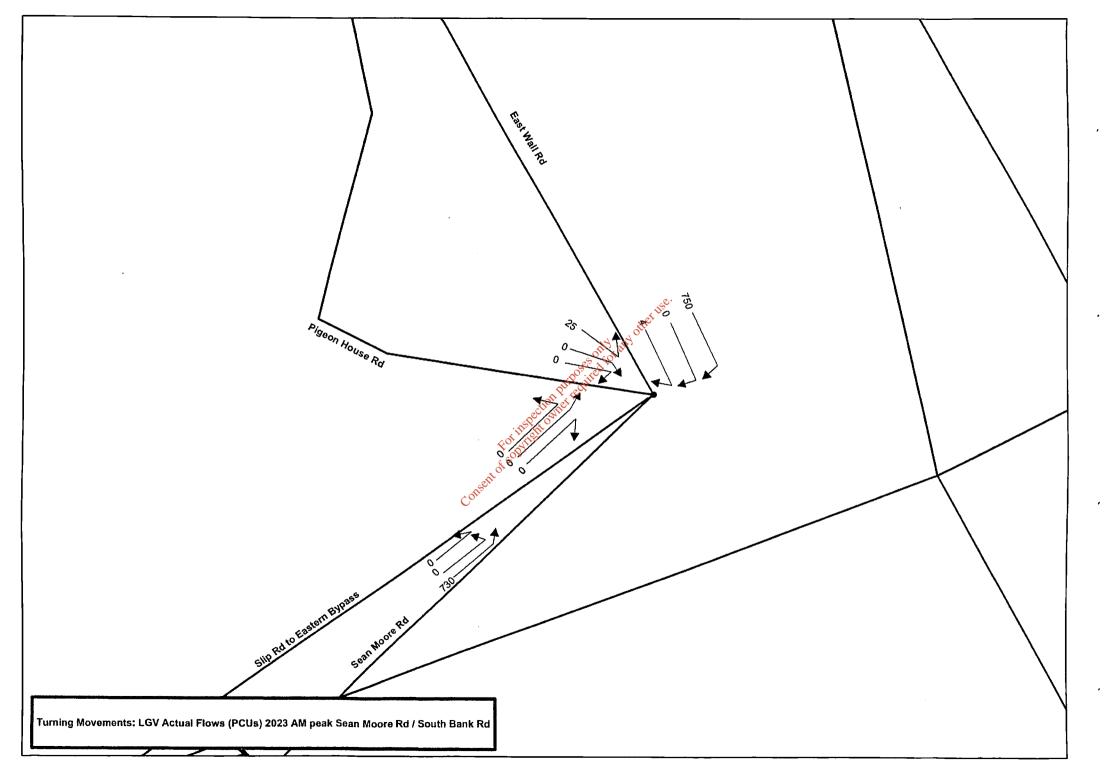


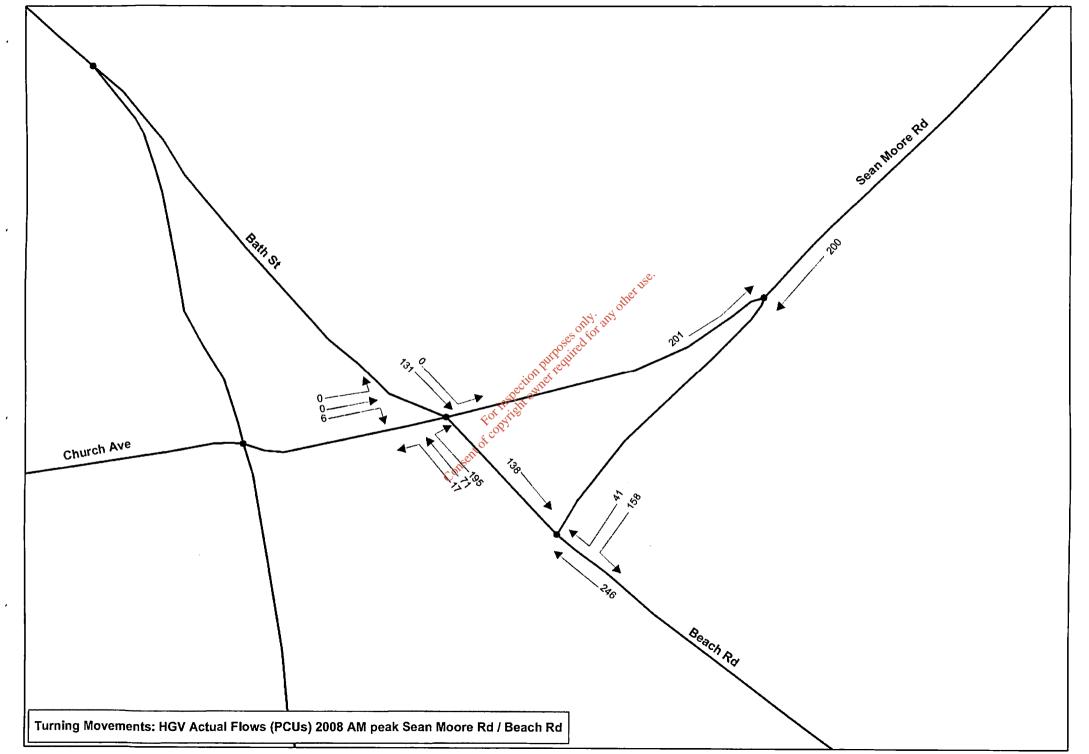

,

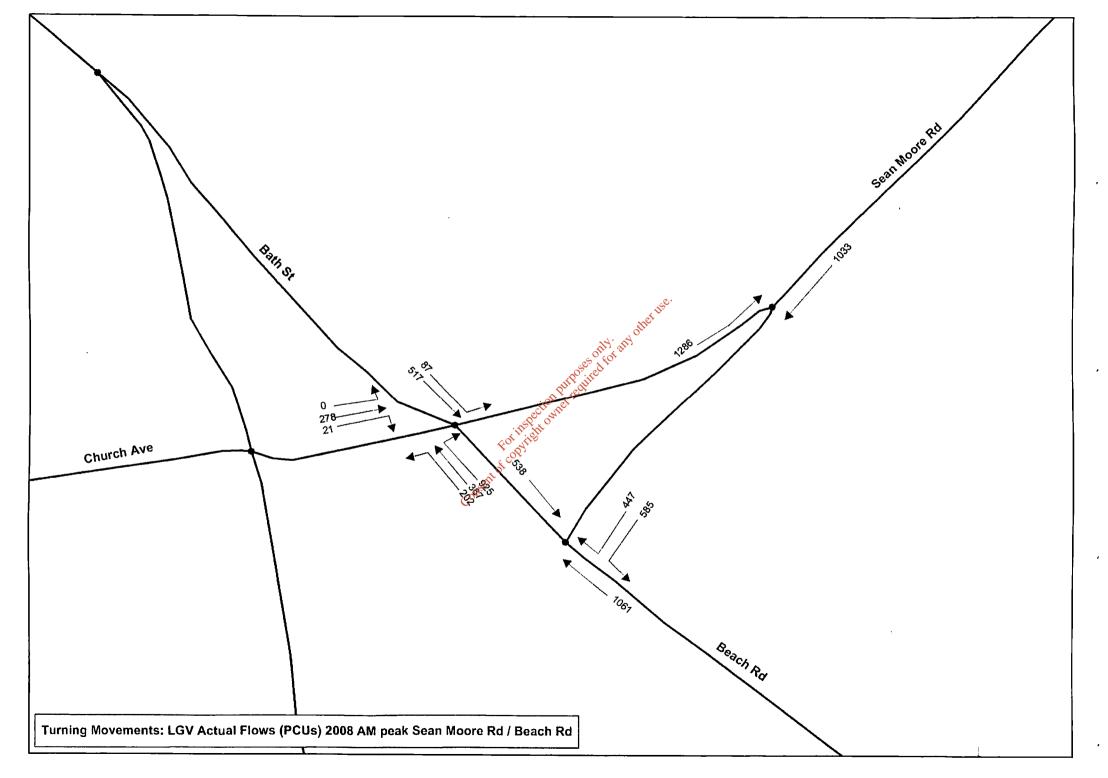

.

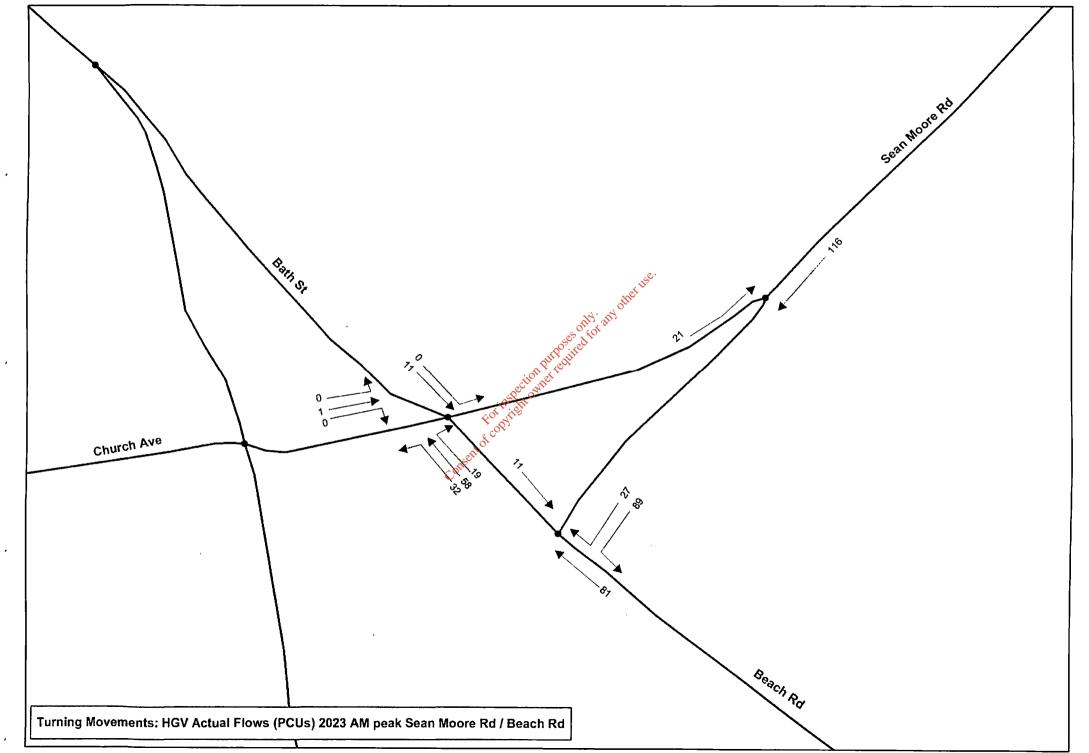

,

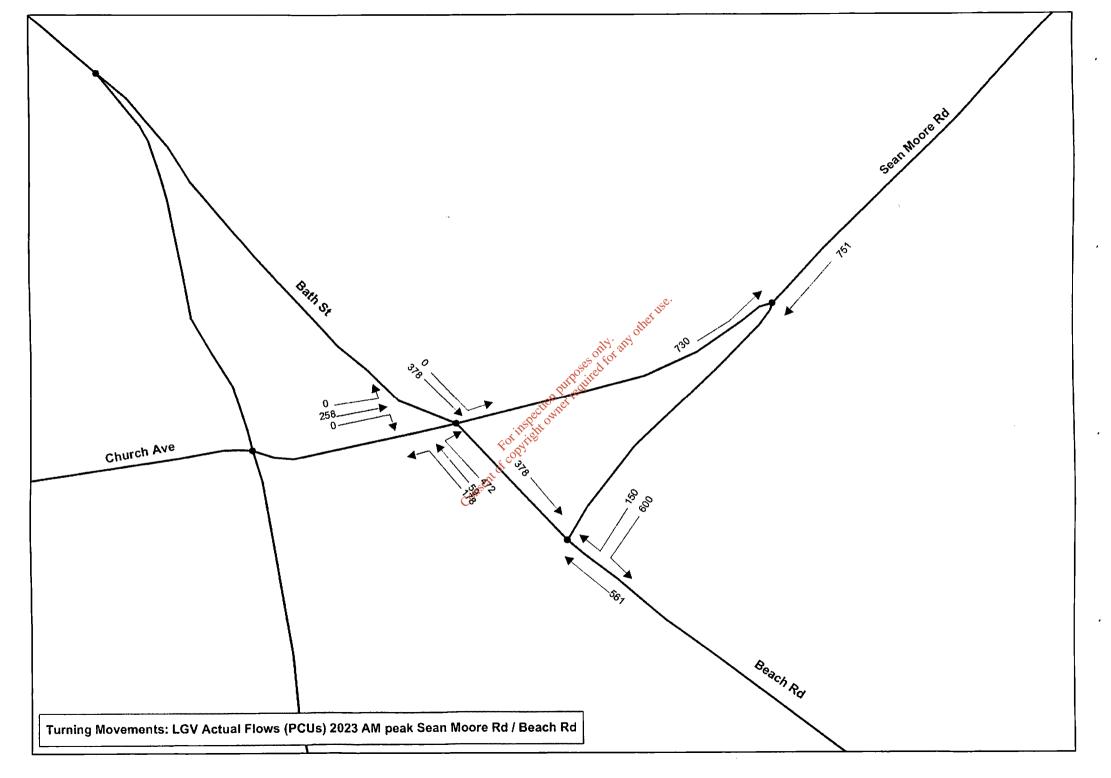


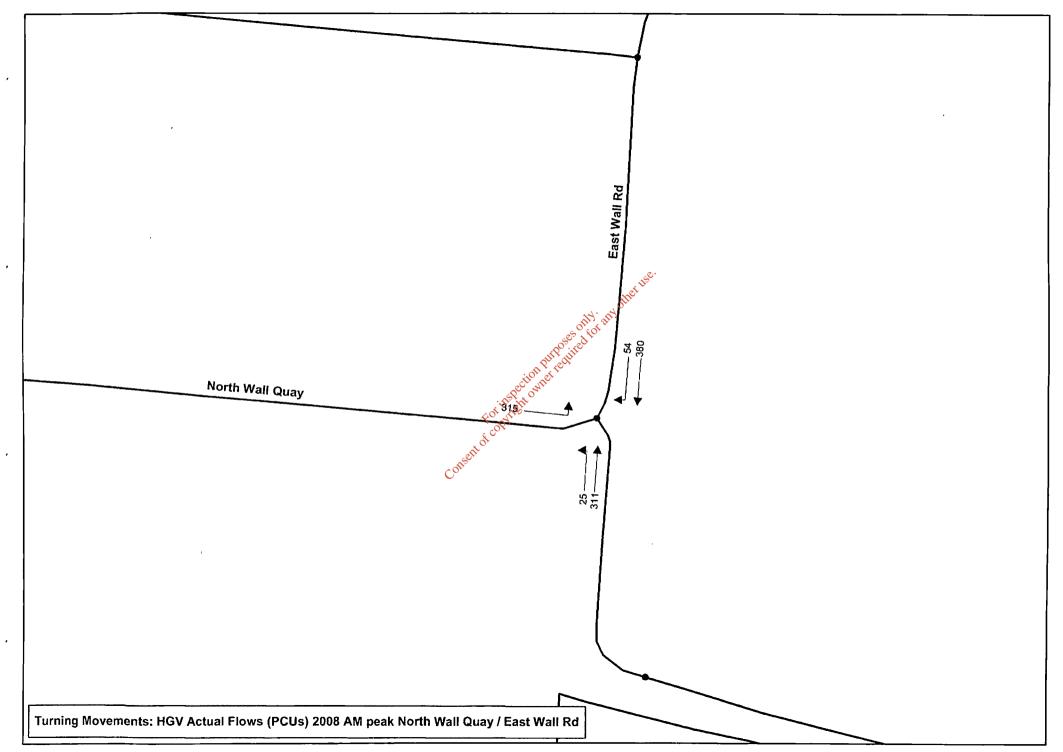


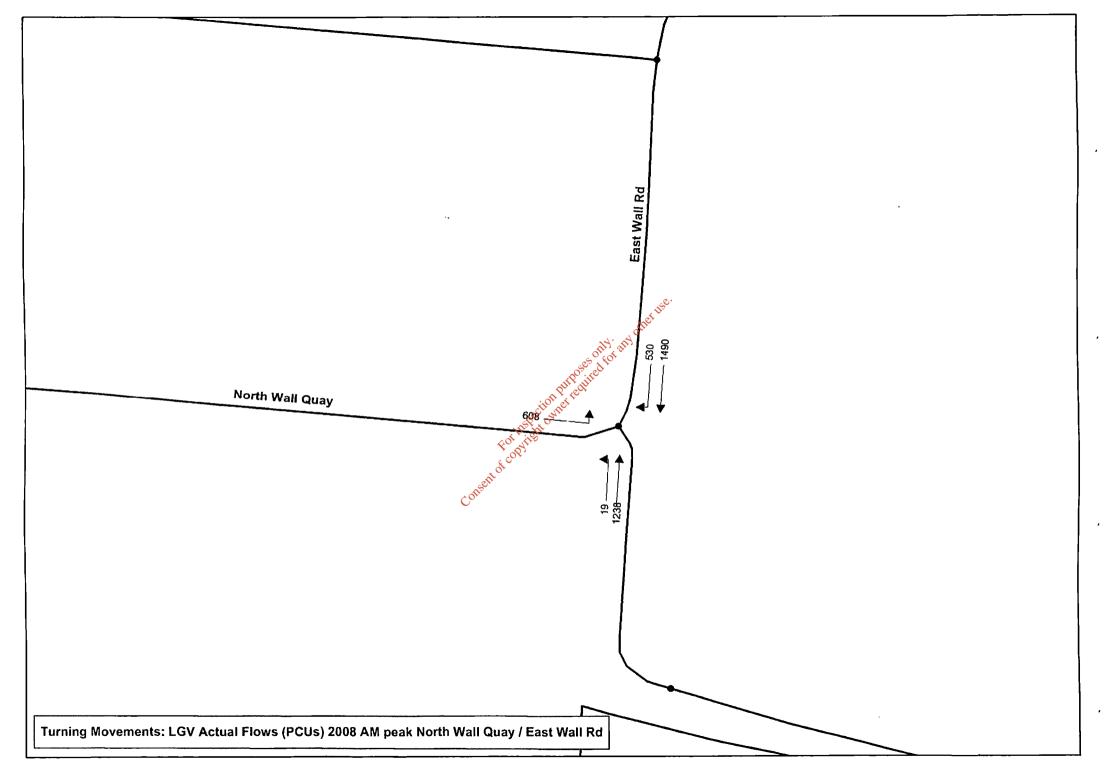


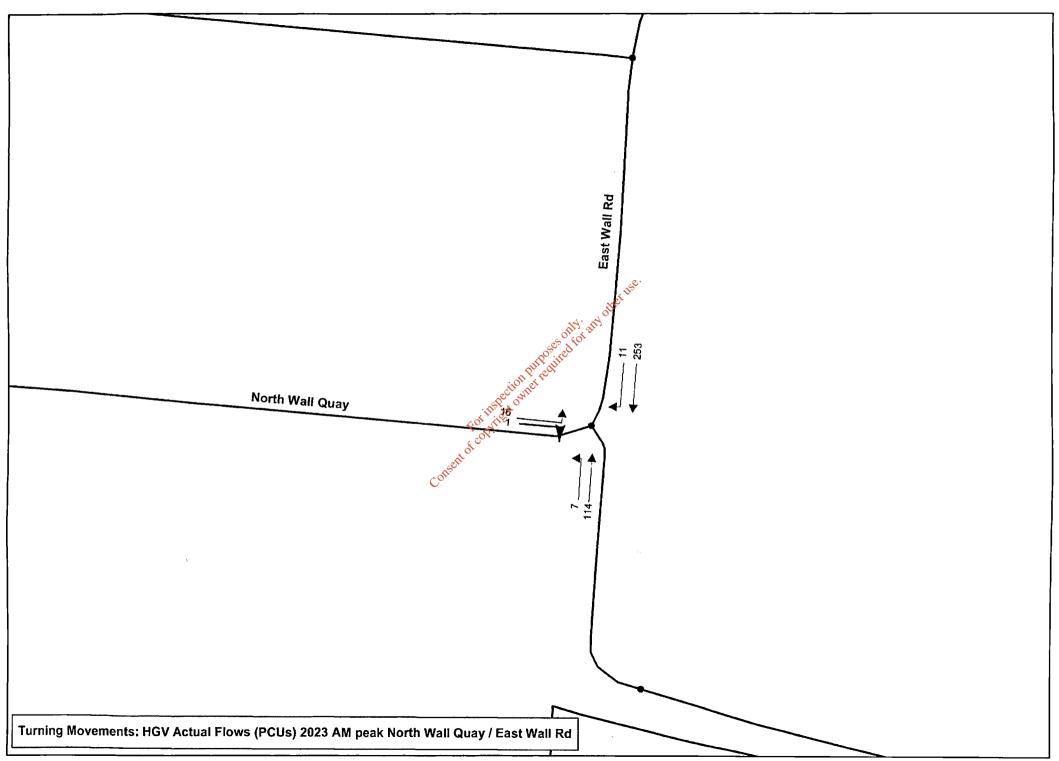


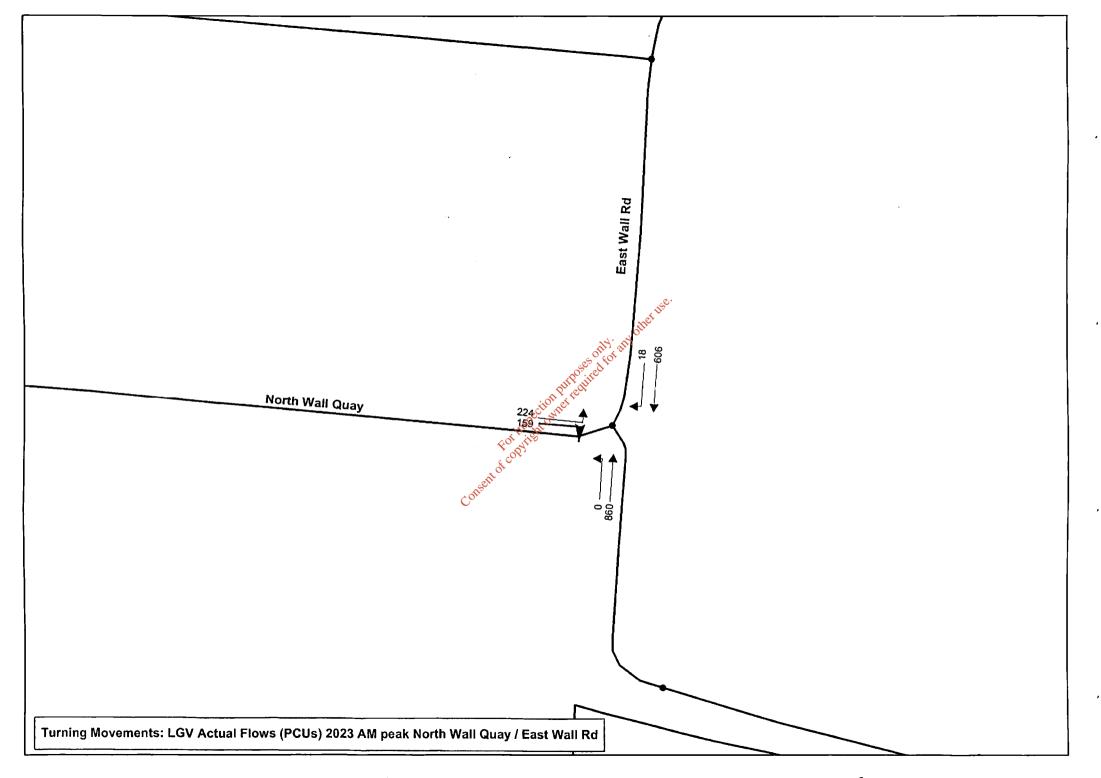


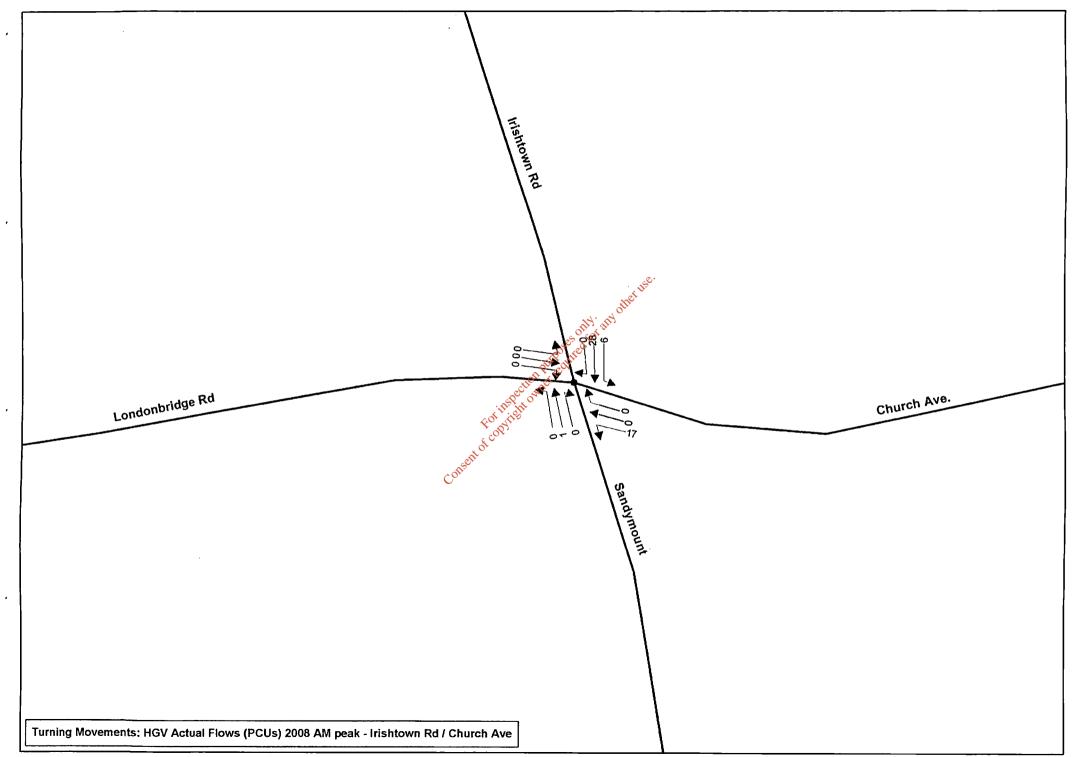

•

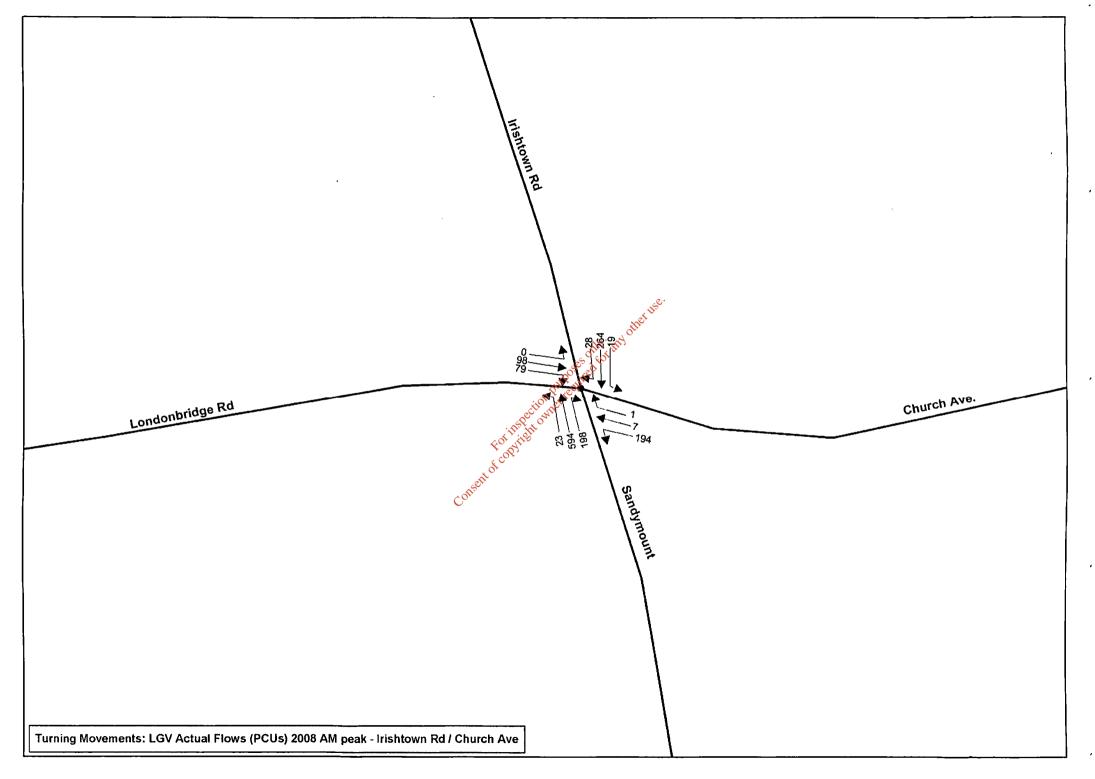


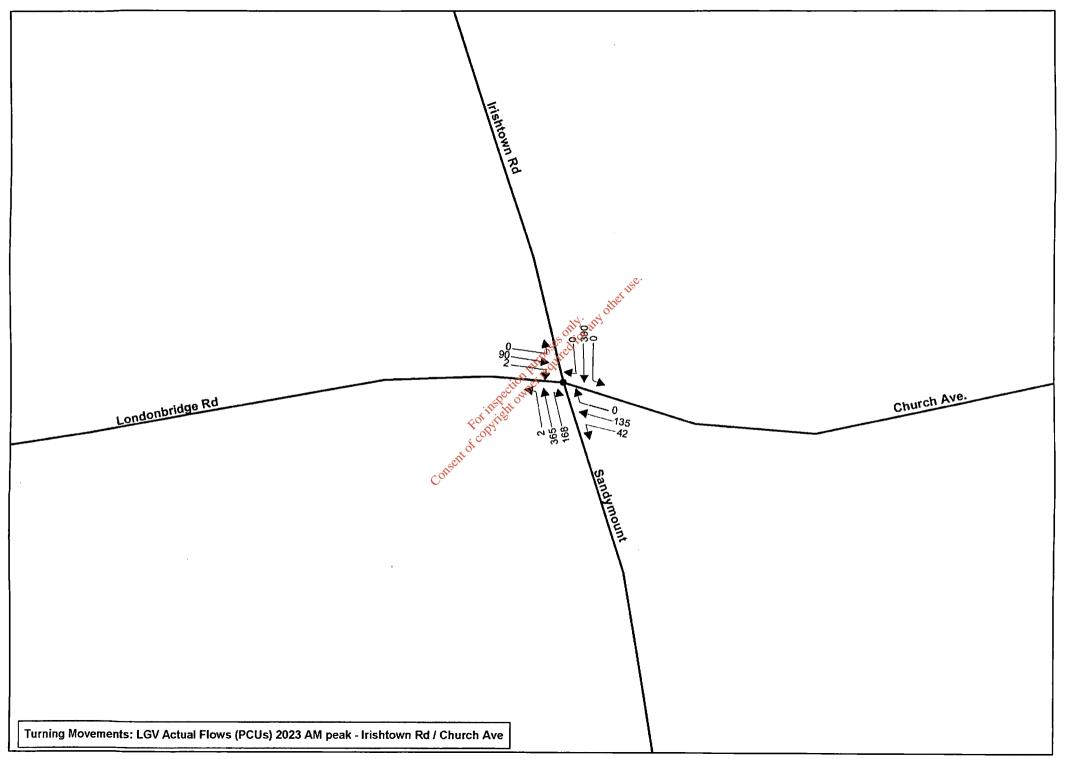




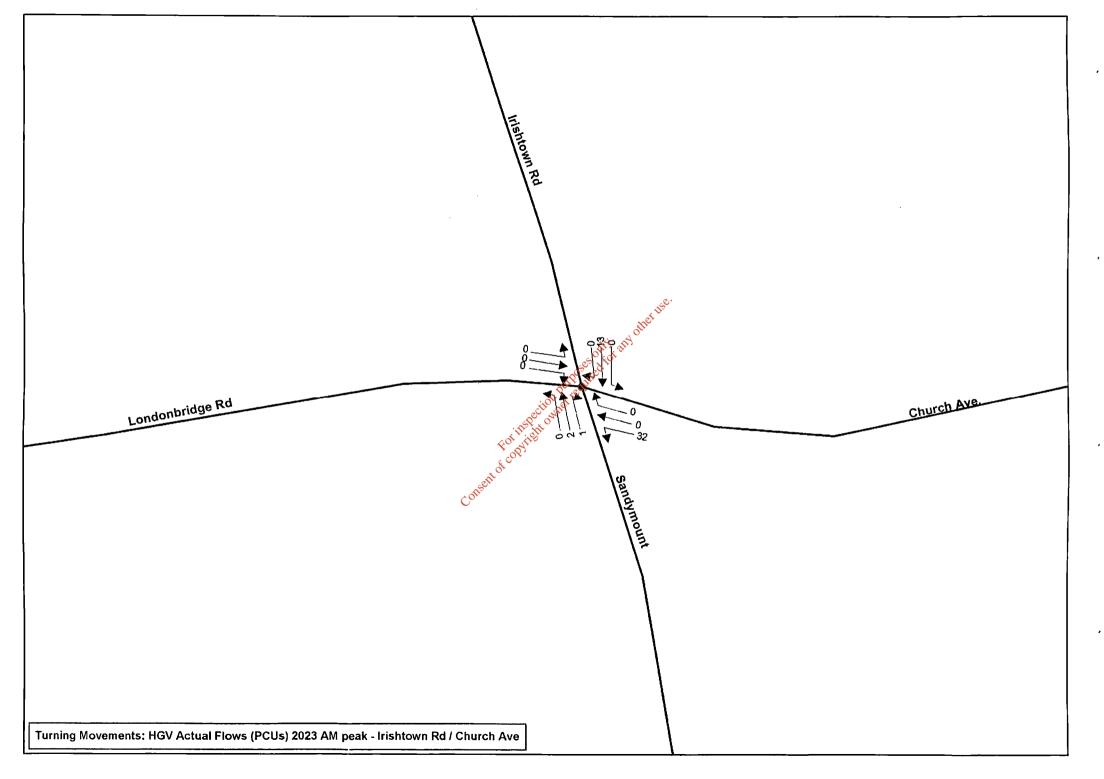


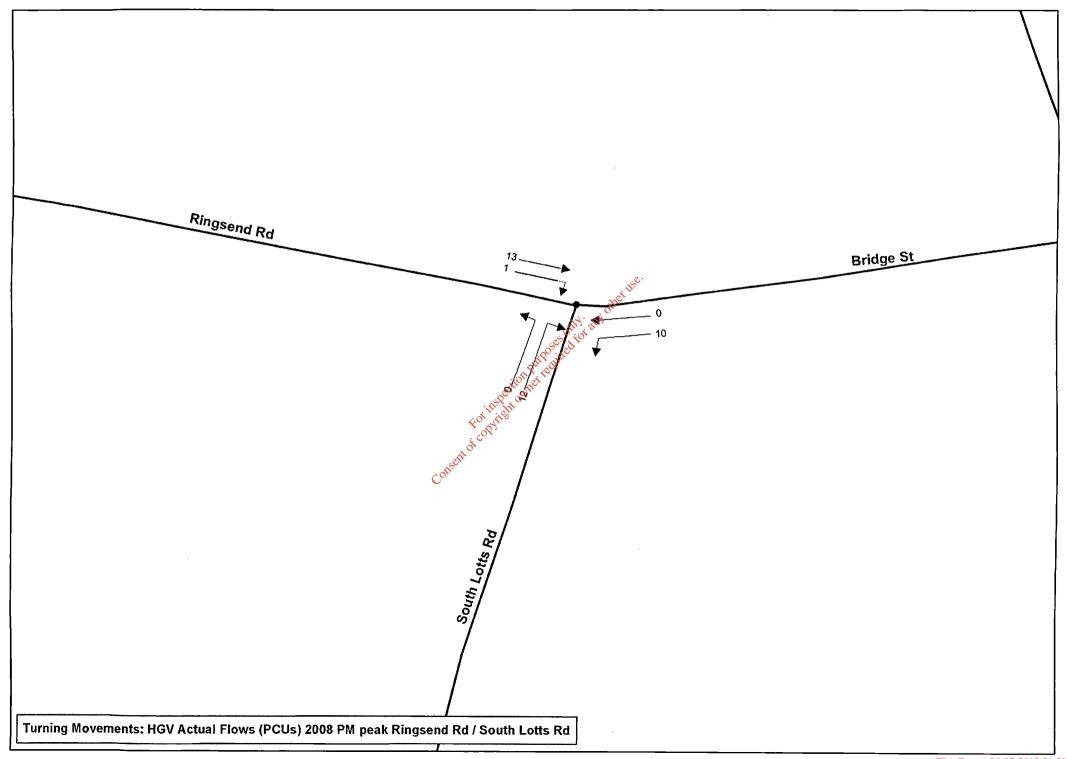

.


,


.

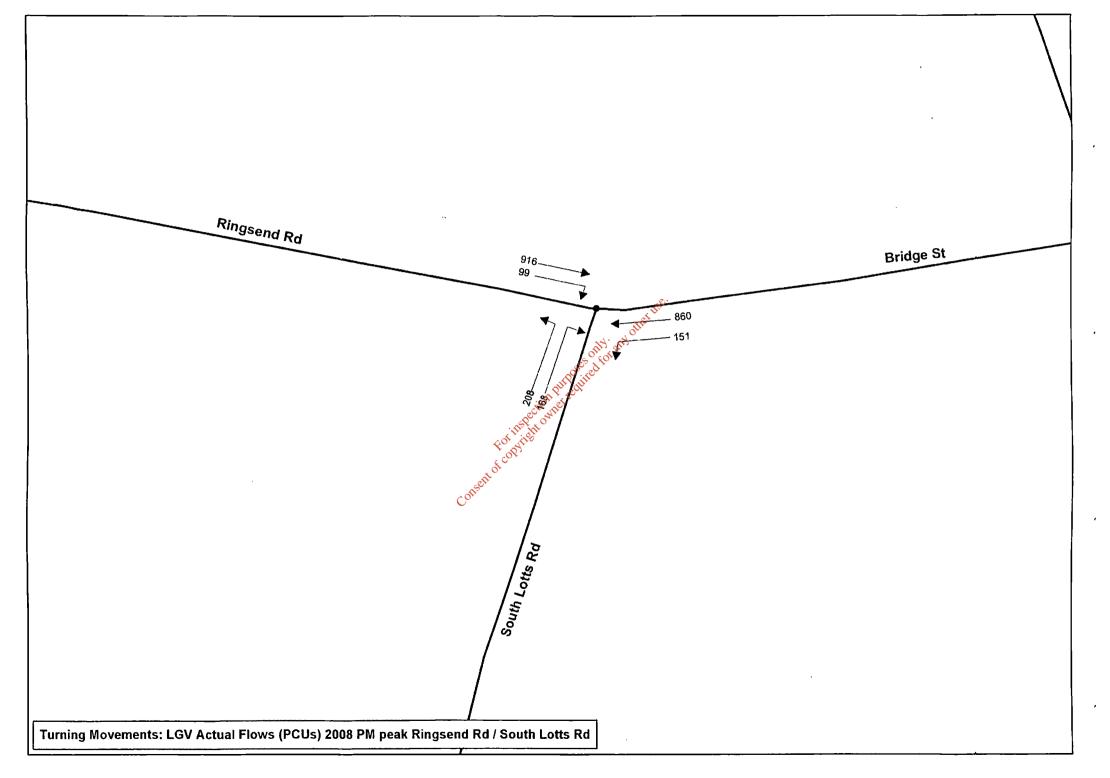
·,

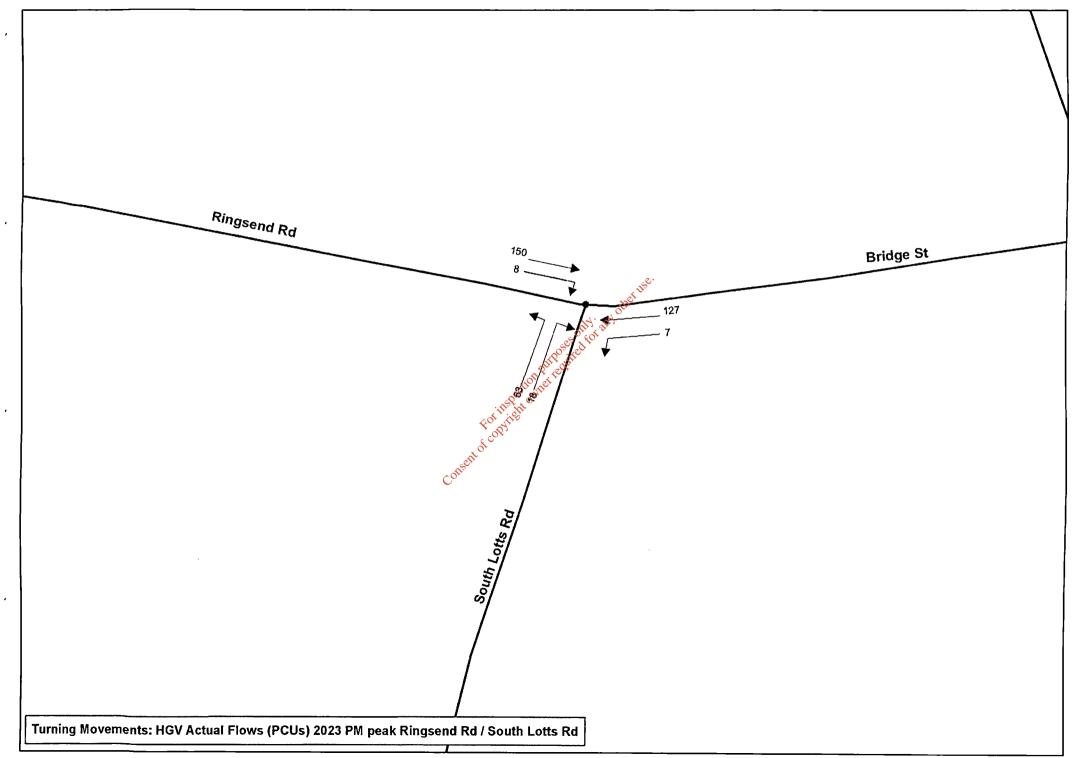


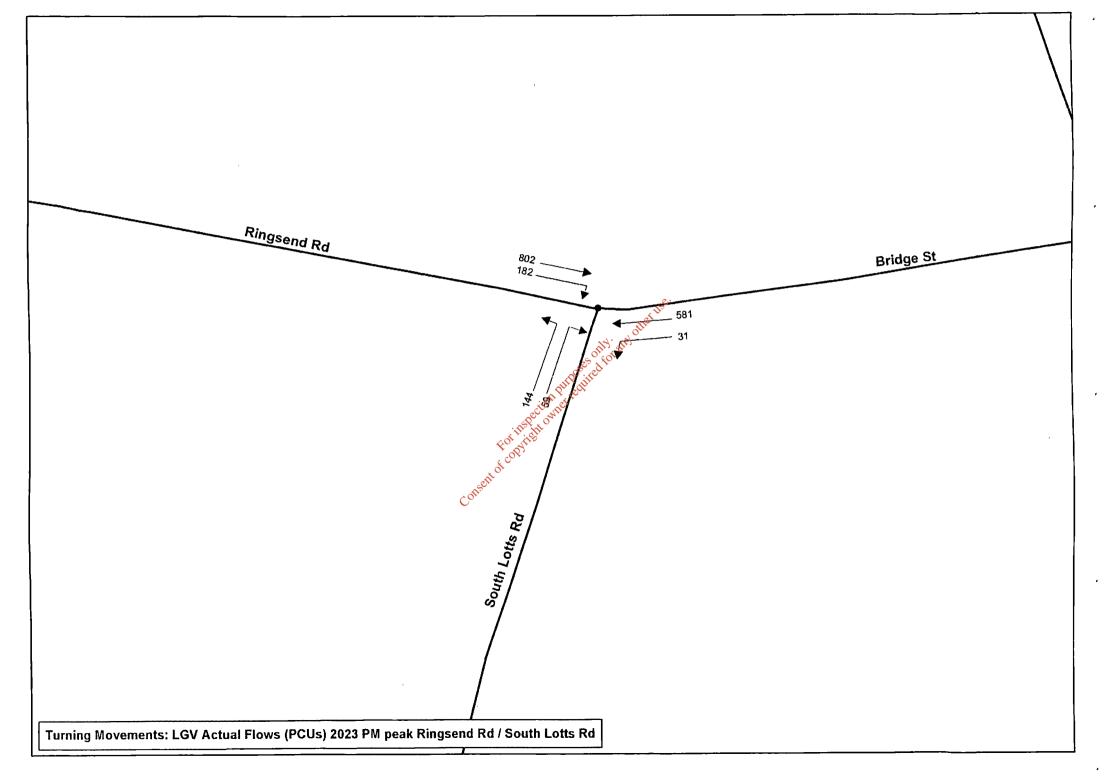

.

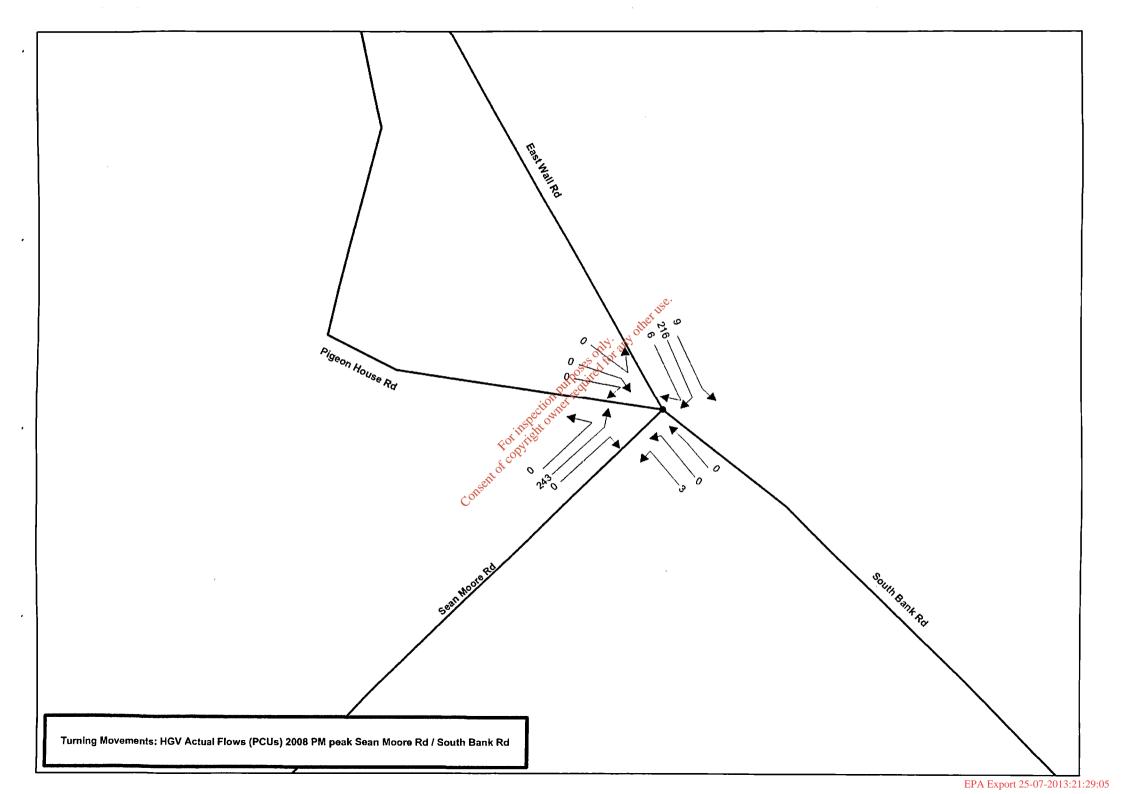
.

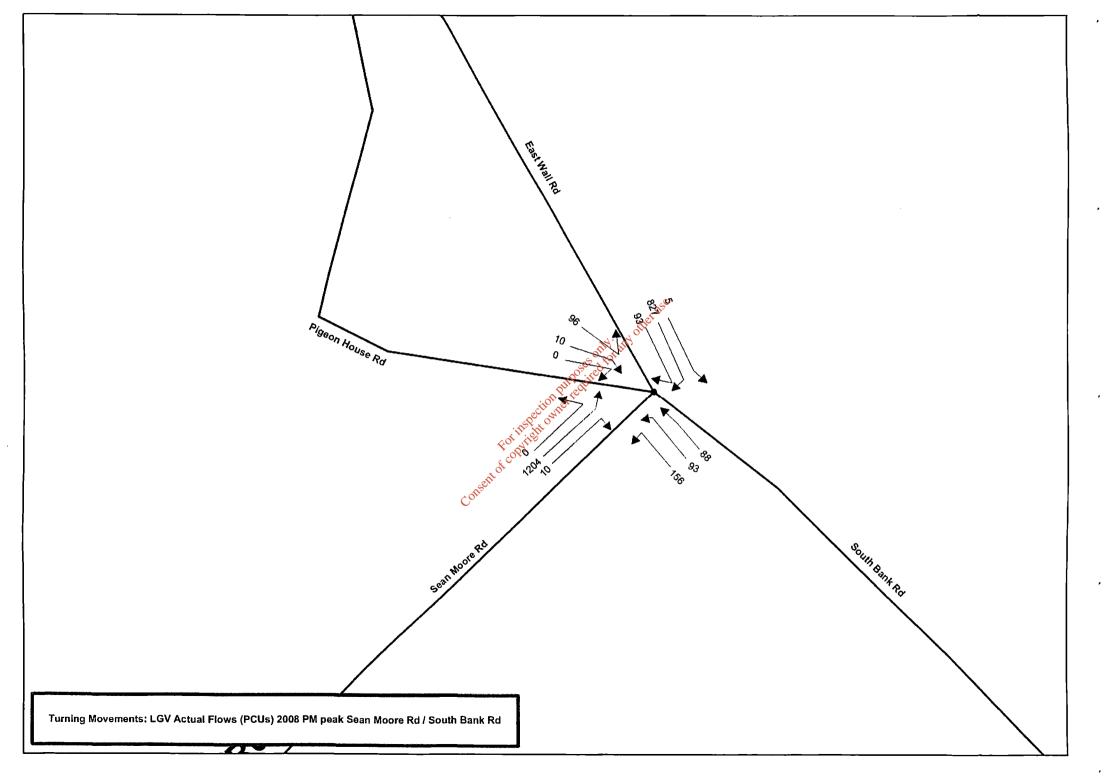
,

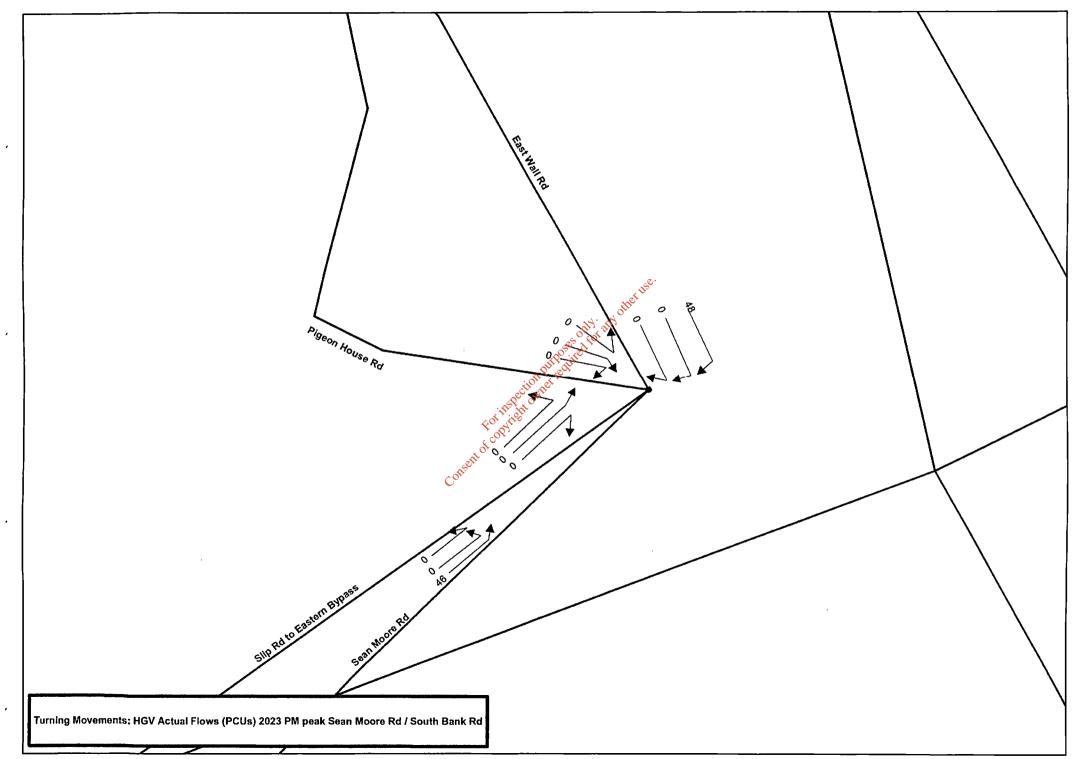

EPA Export 25-07-2013:21:29:05

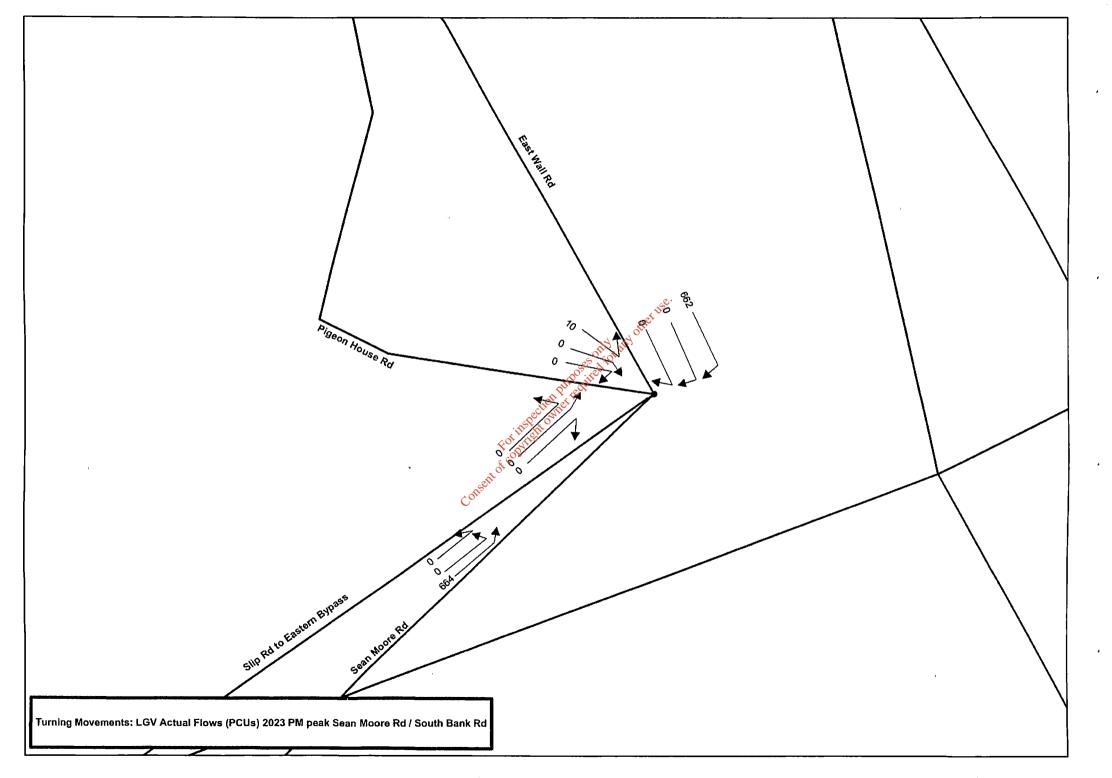


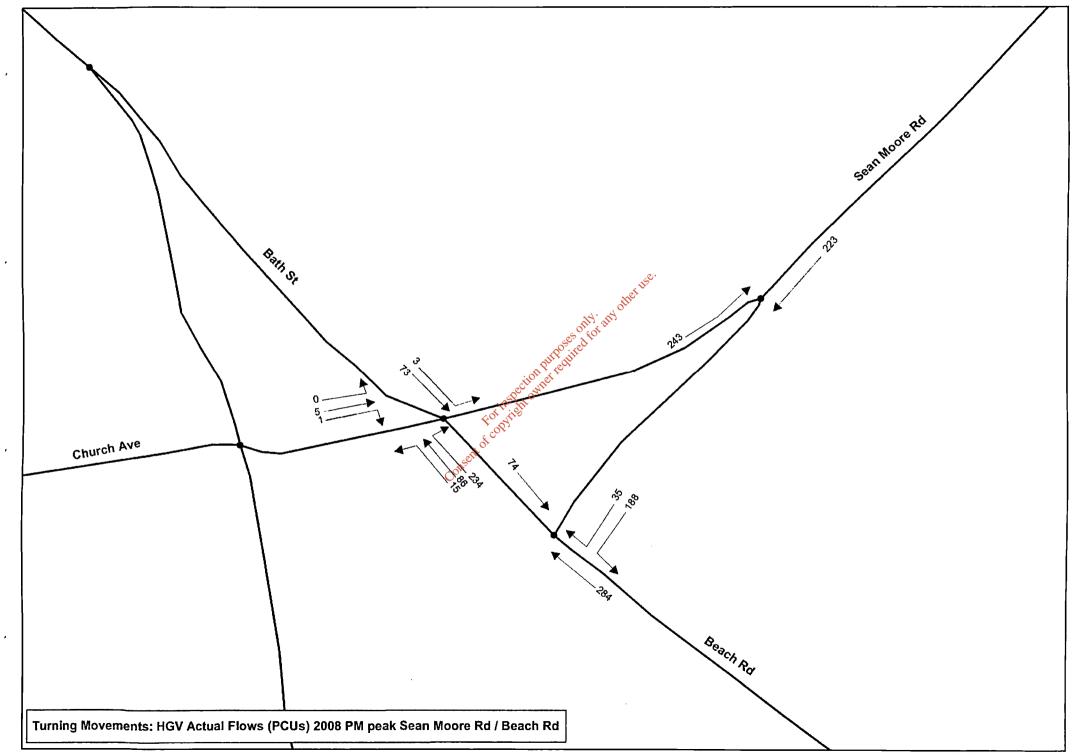

.

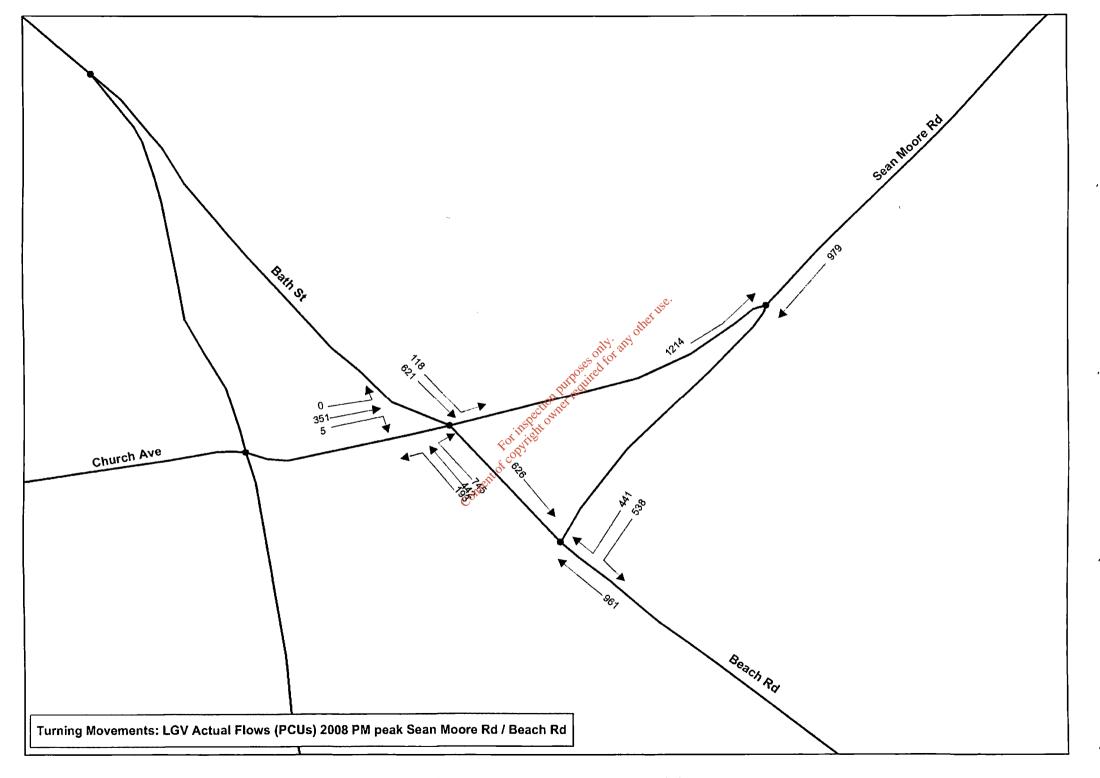

,

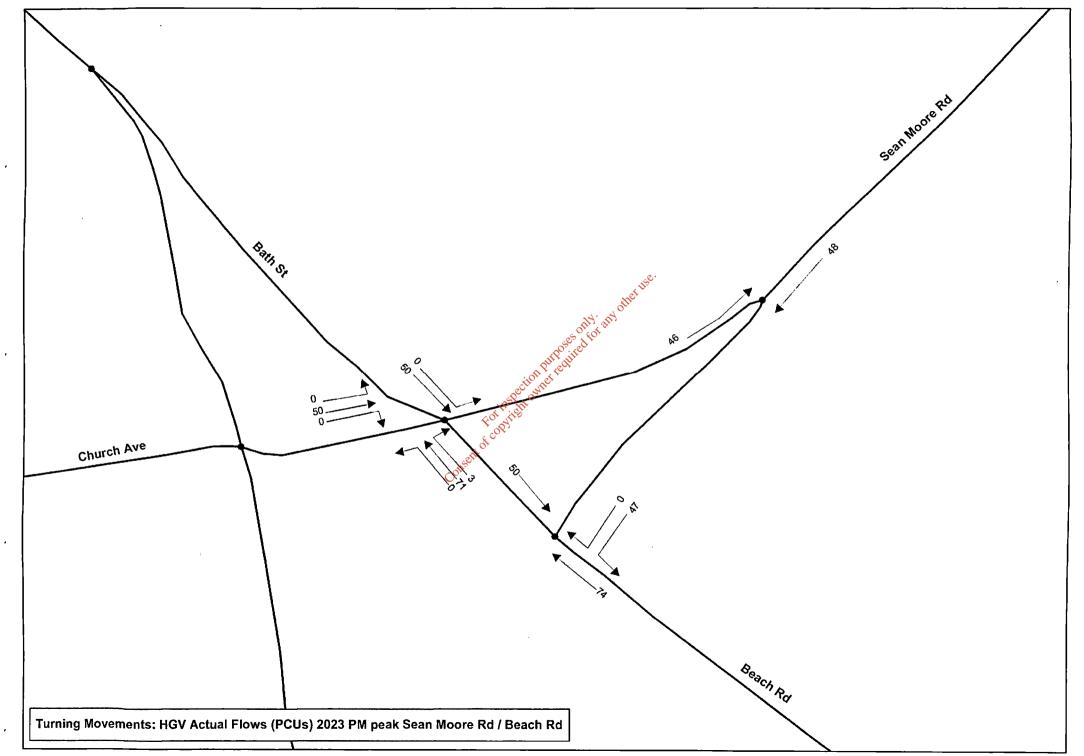


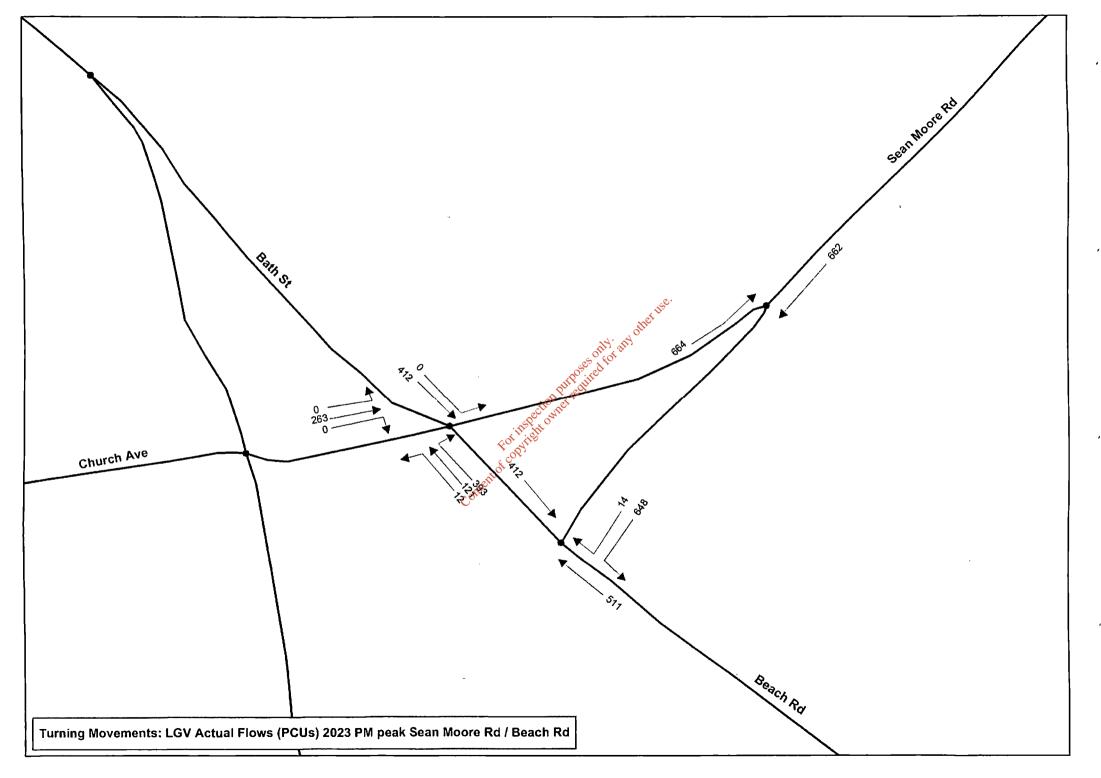


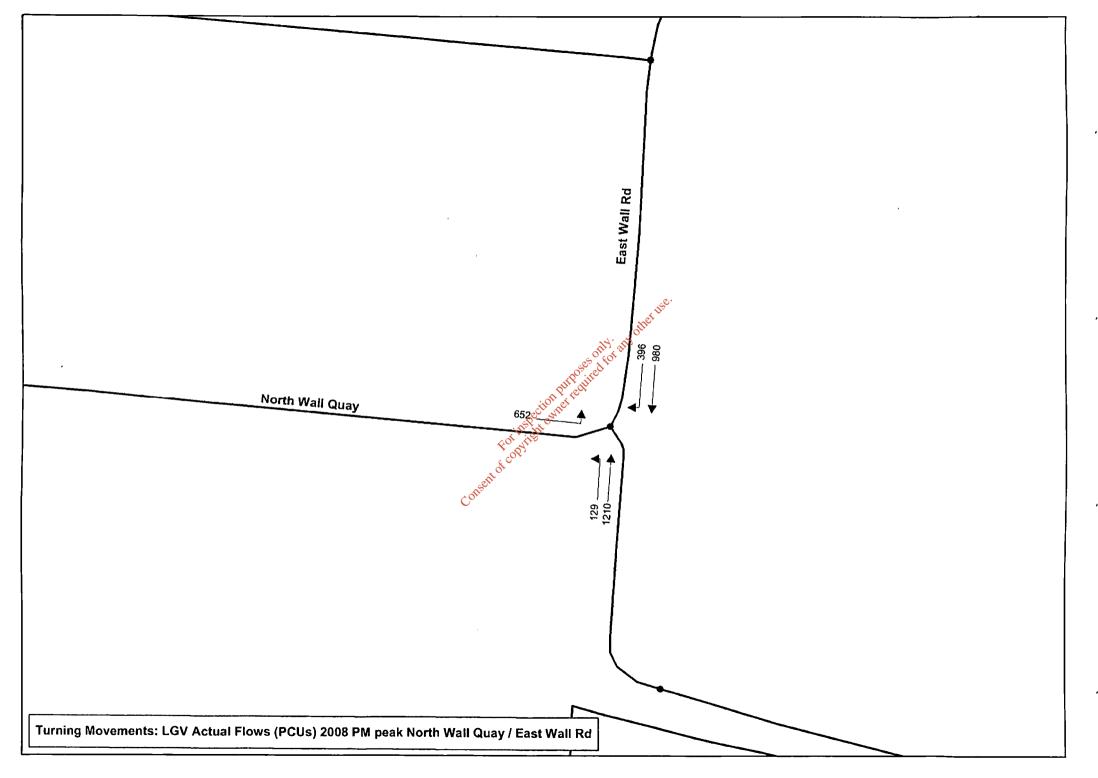

,

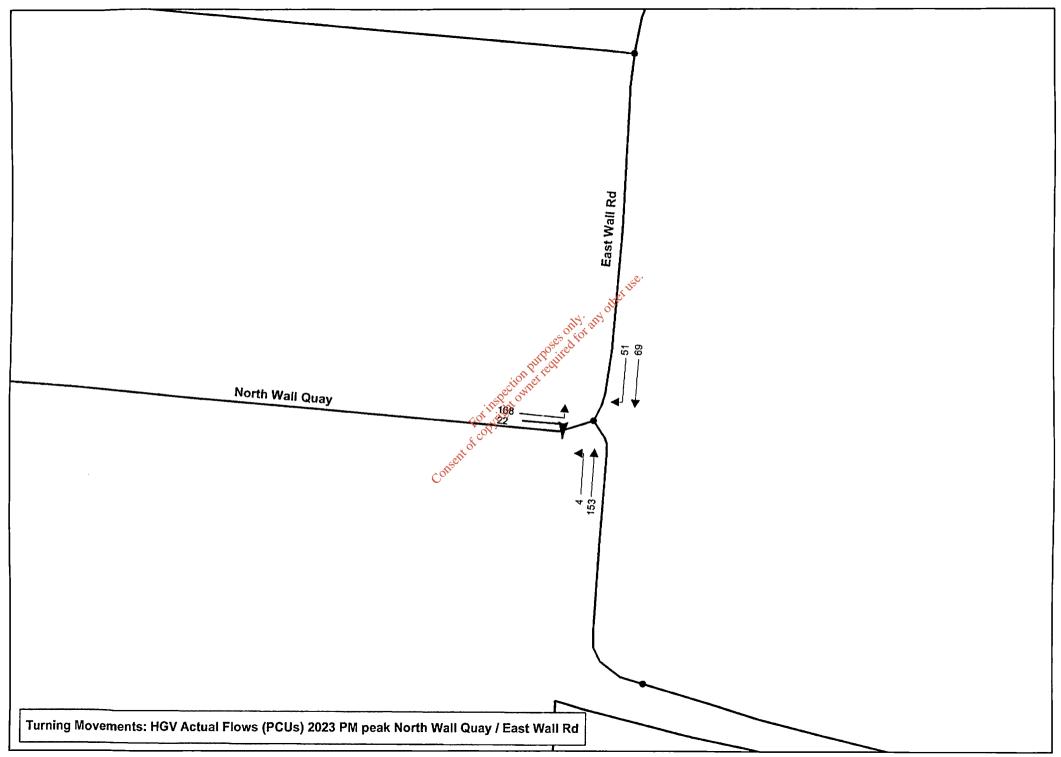






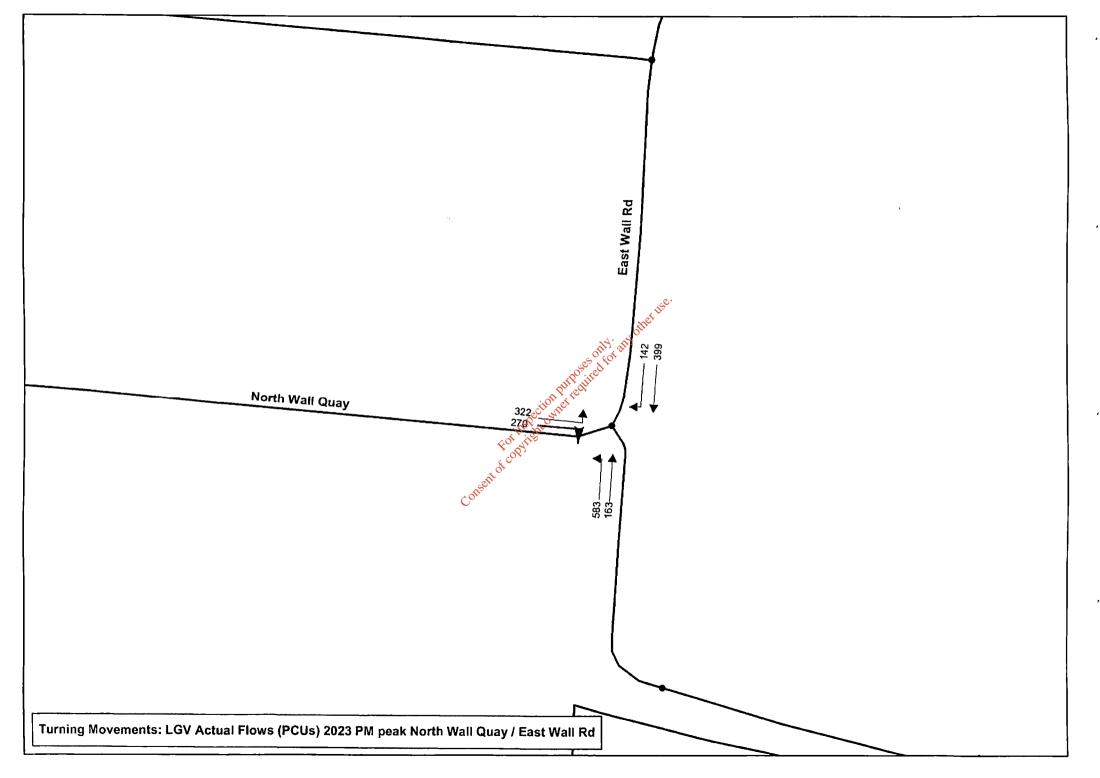


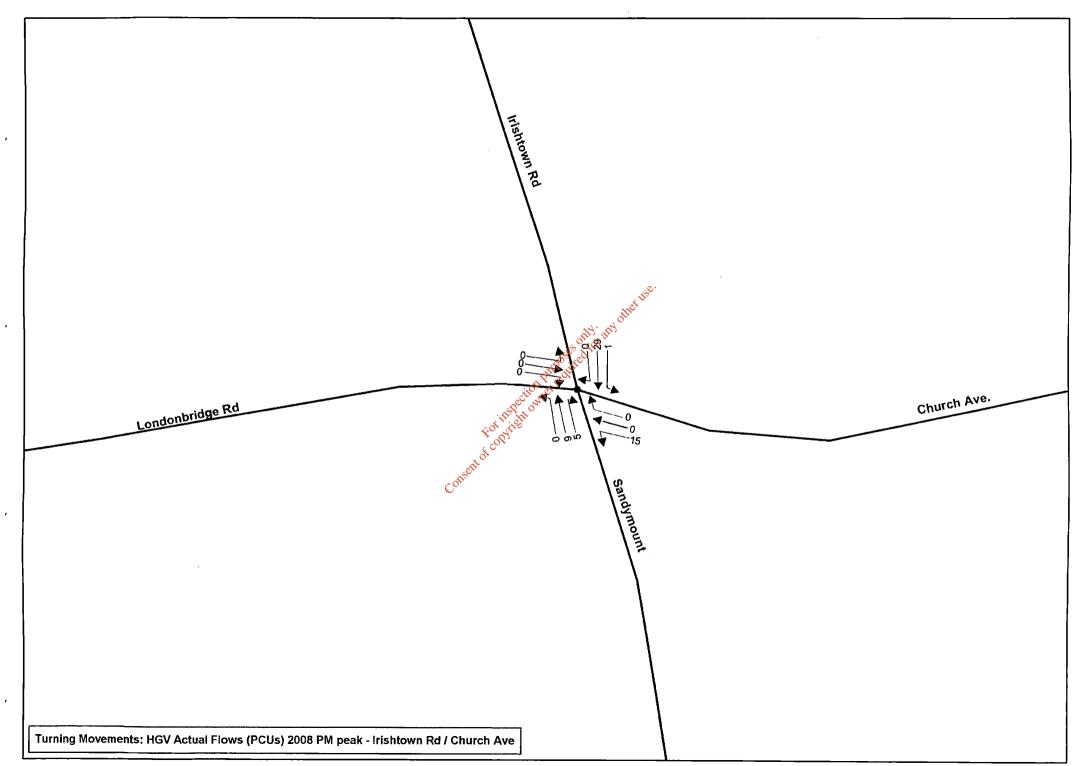


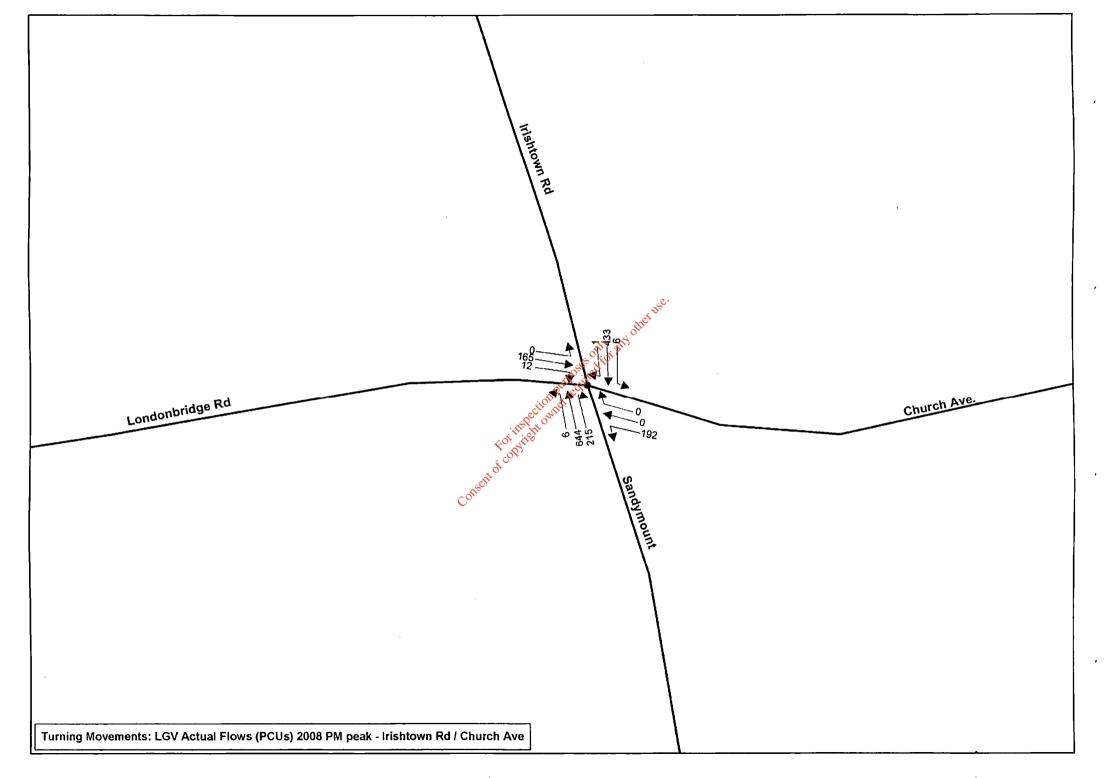


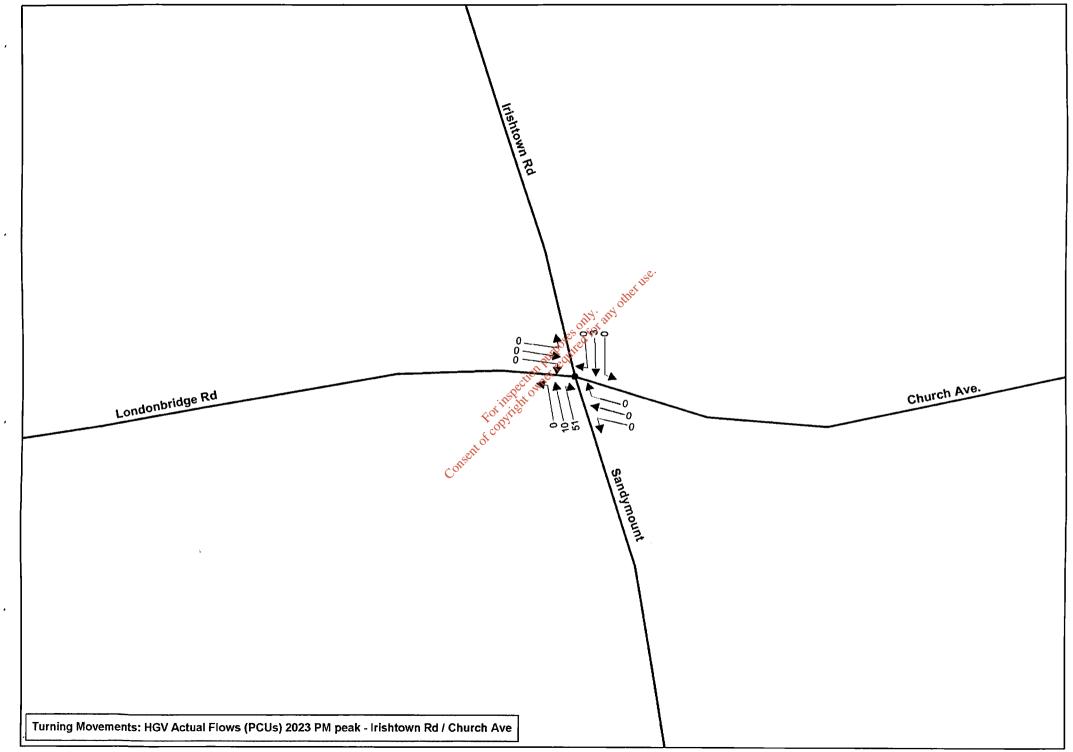
,

.

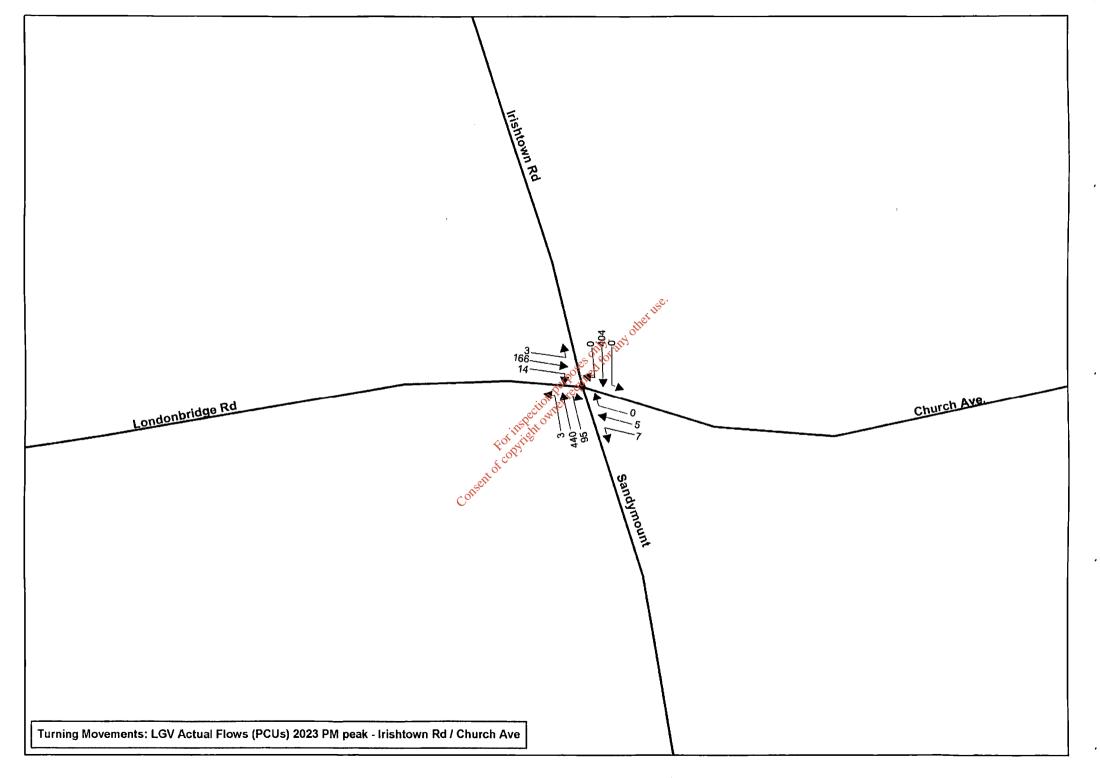


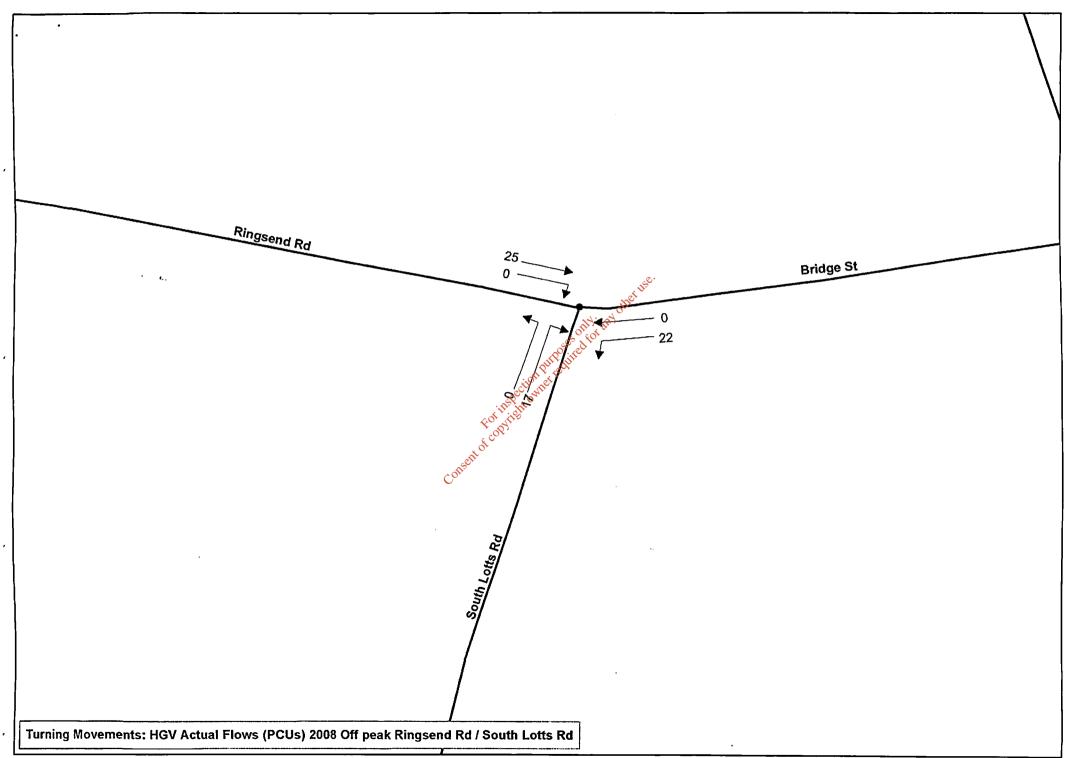


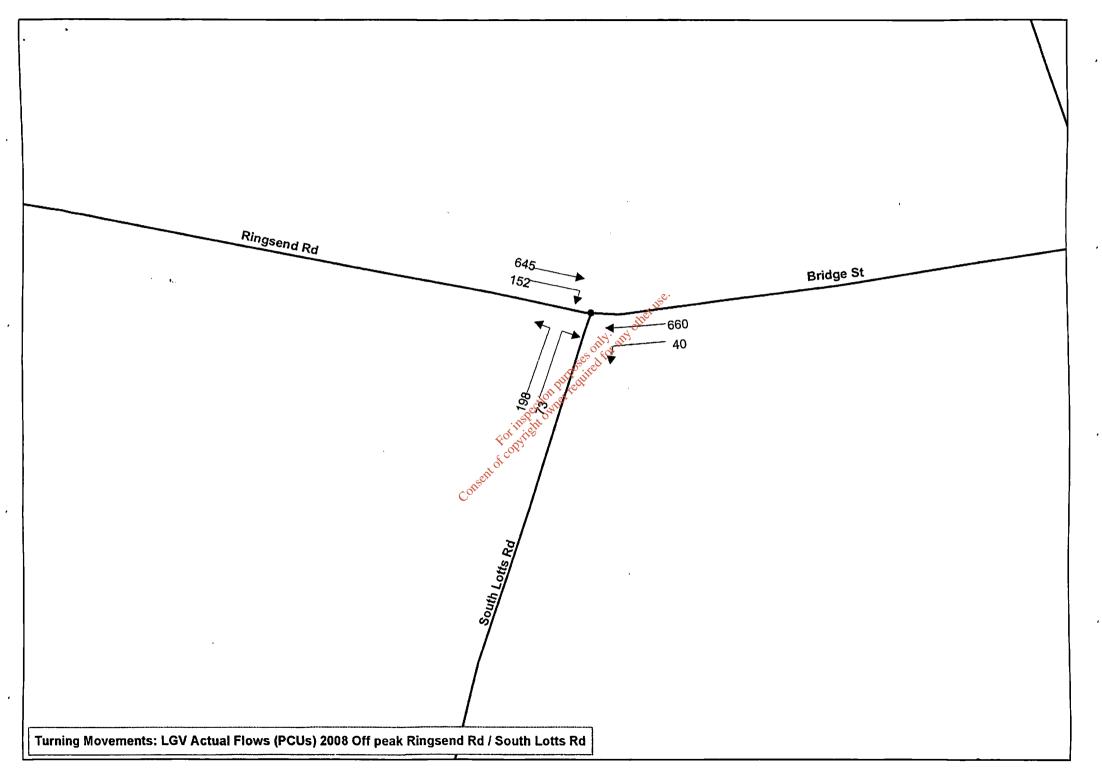

,

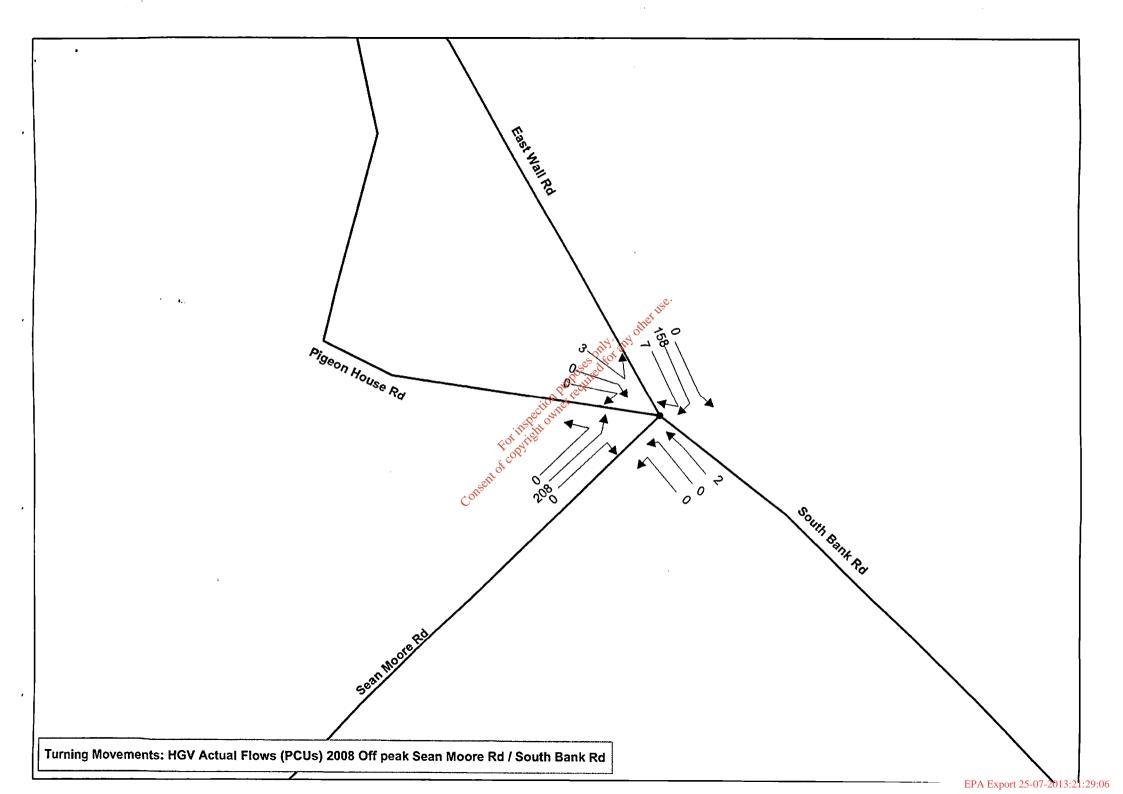

,

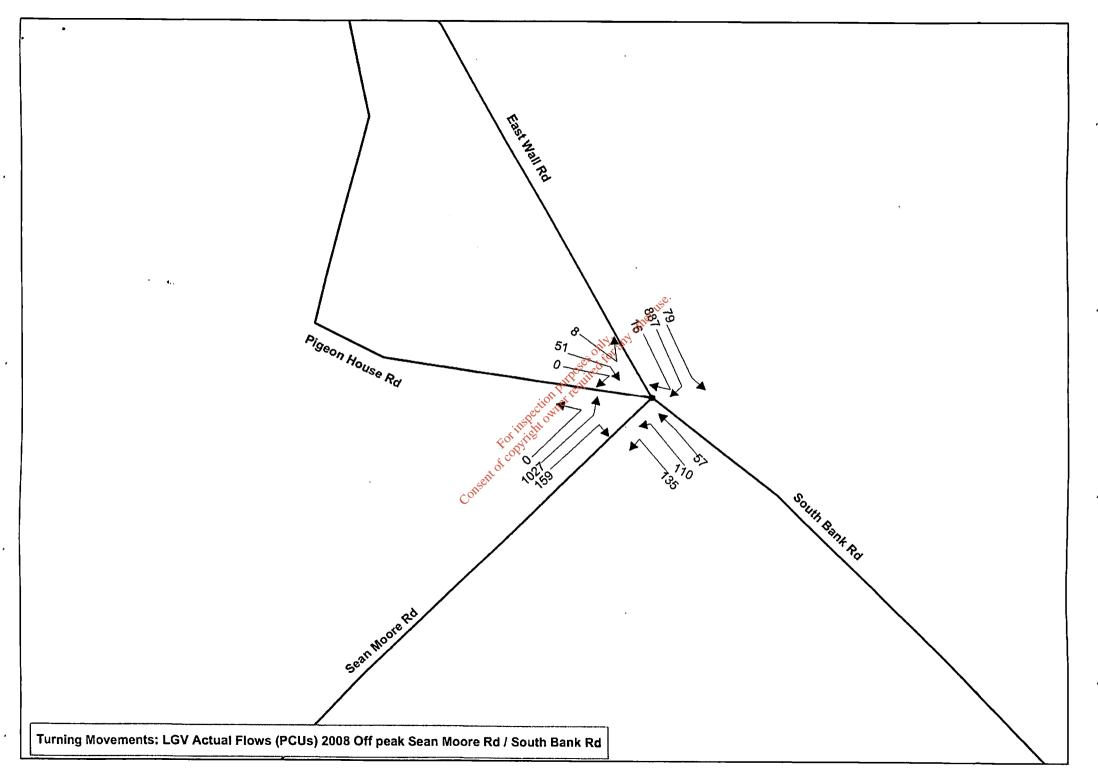
,

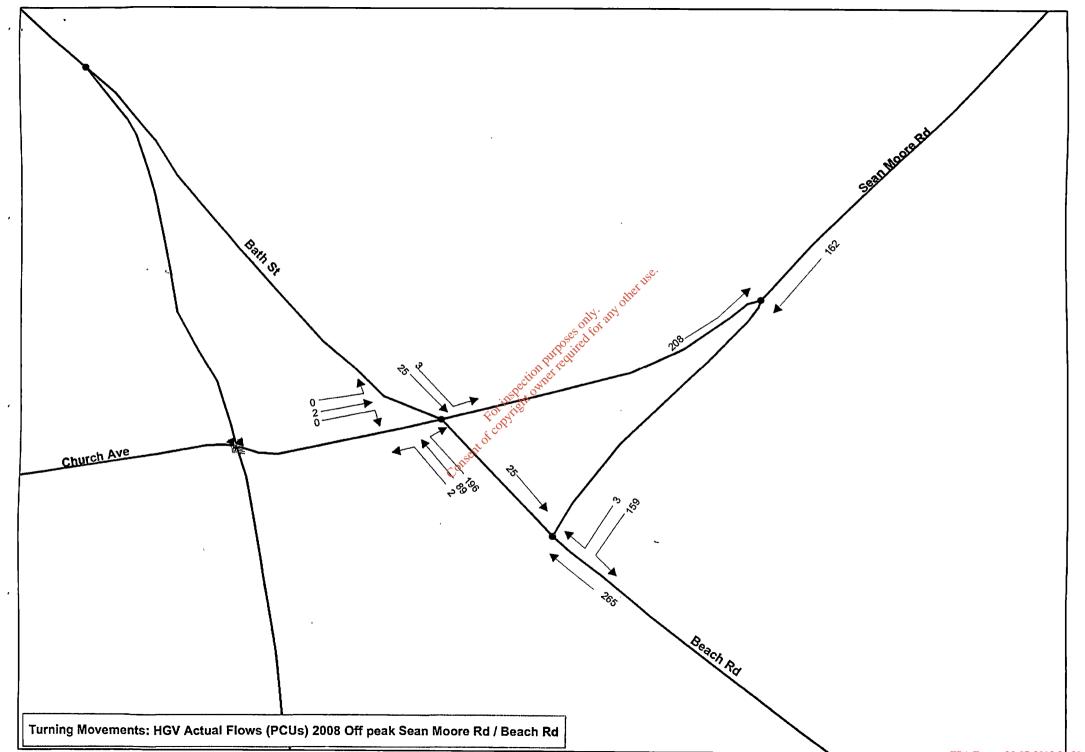


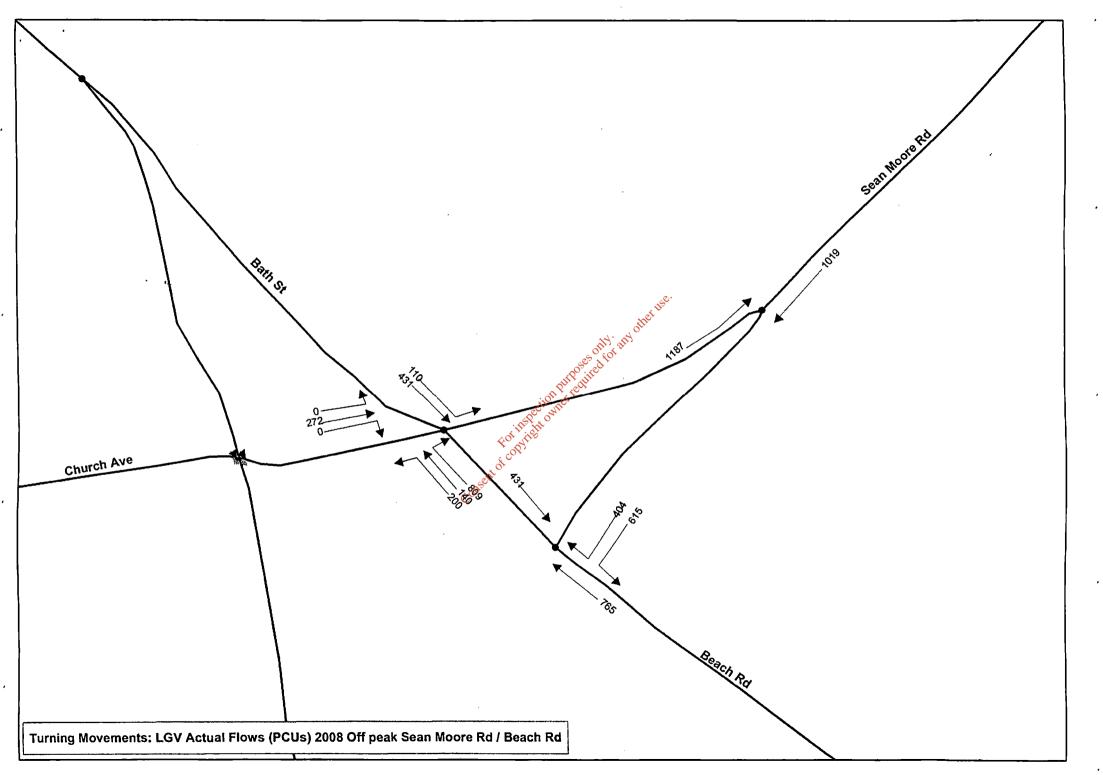


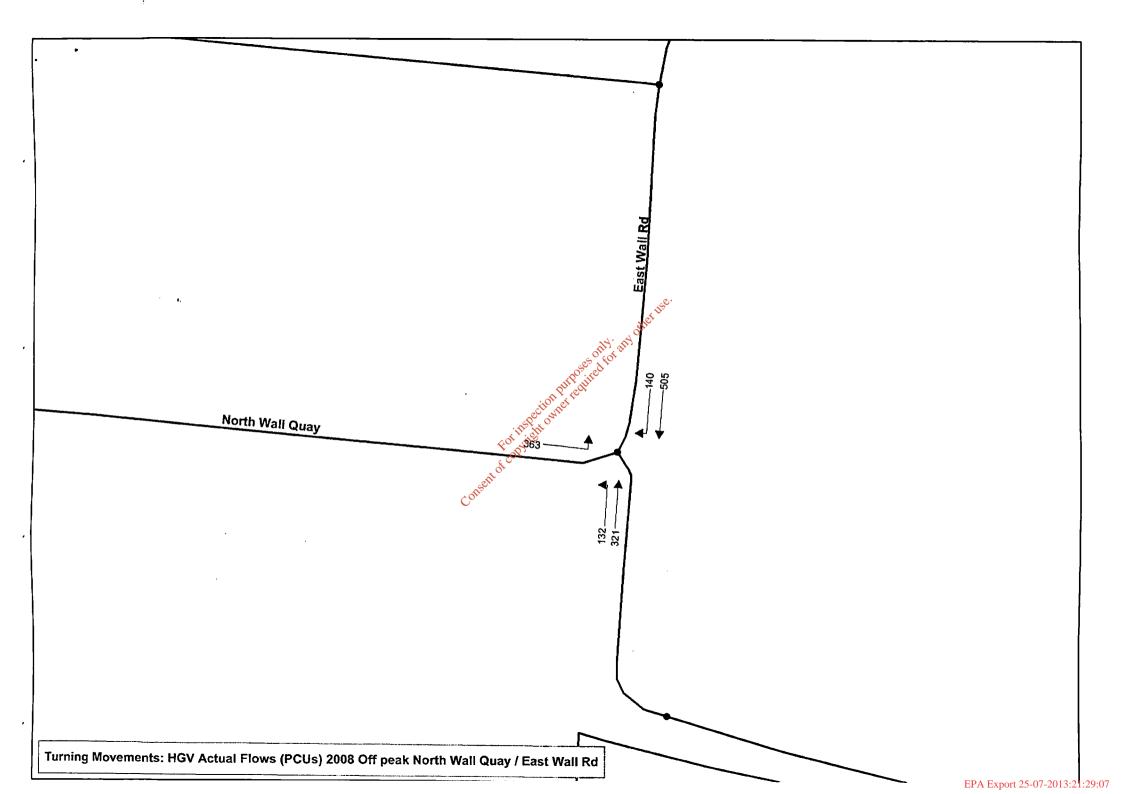


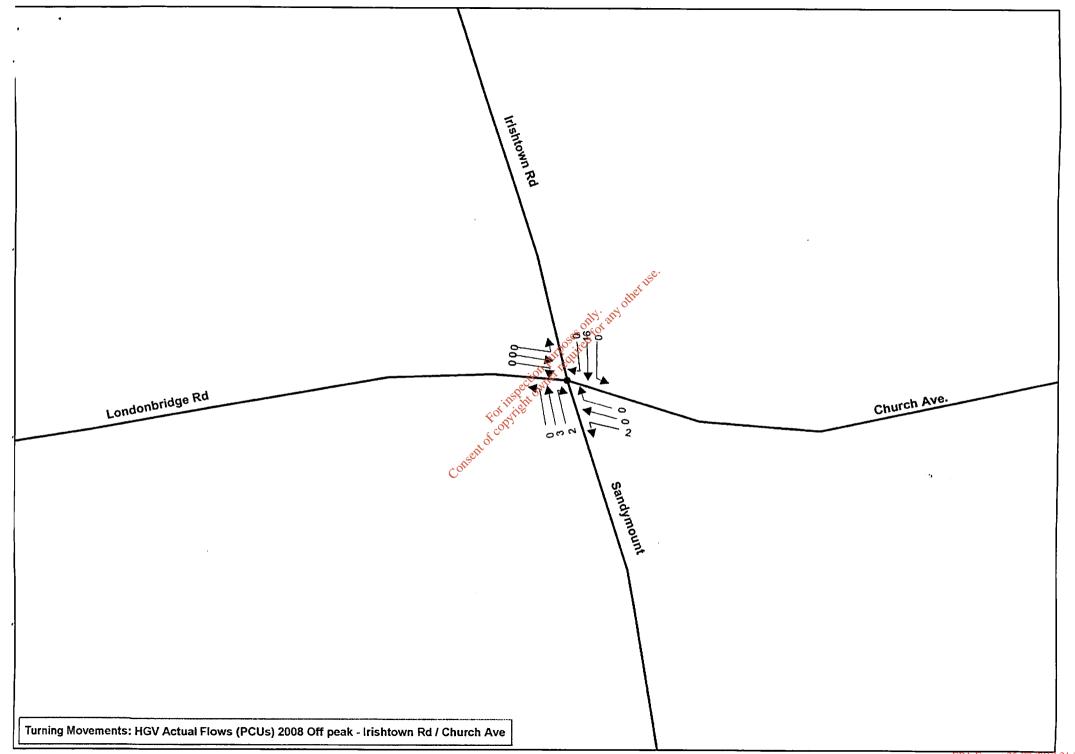

...

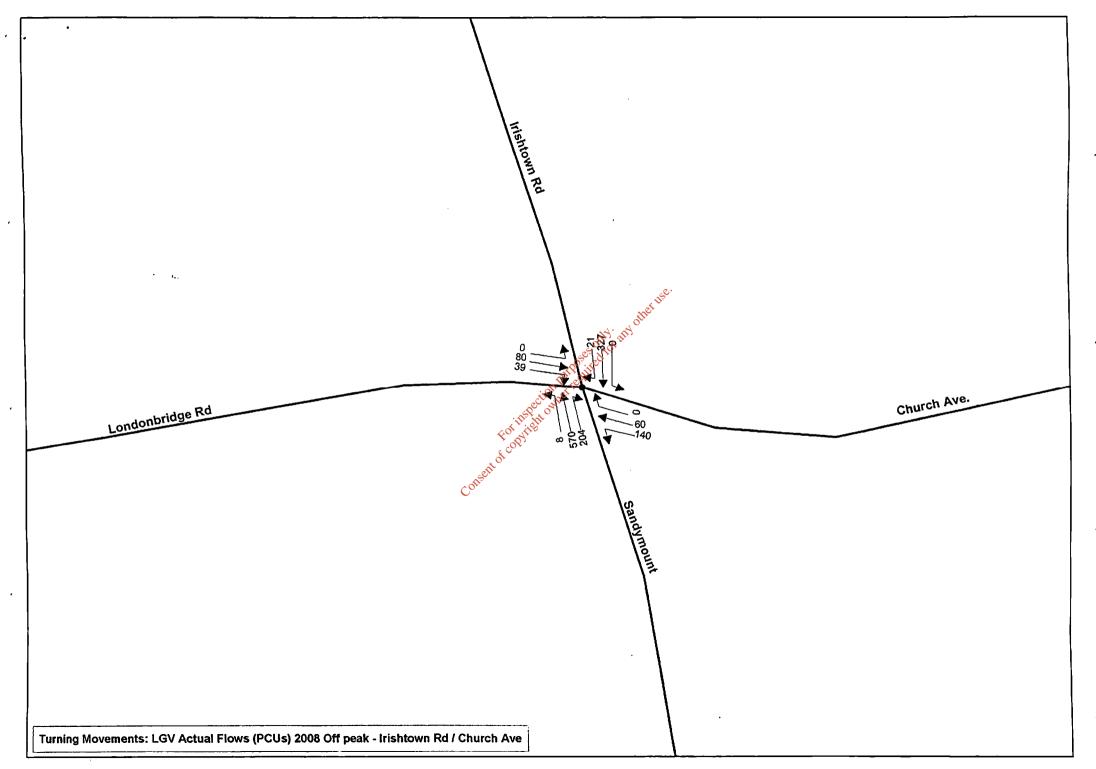





Ì

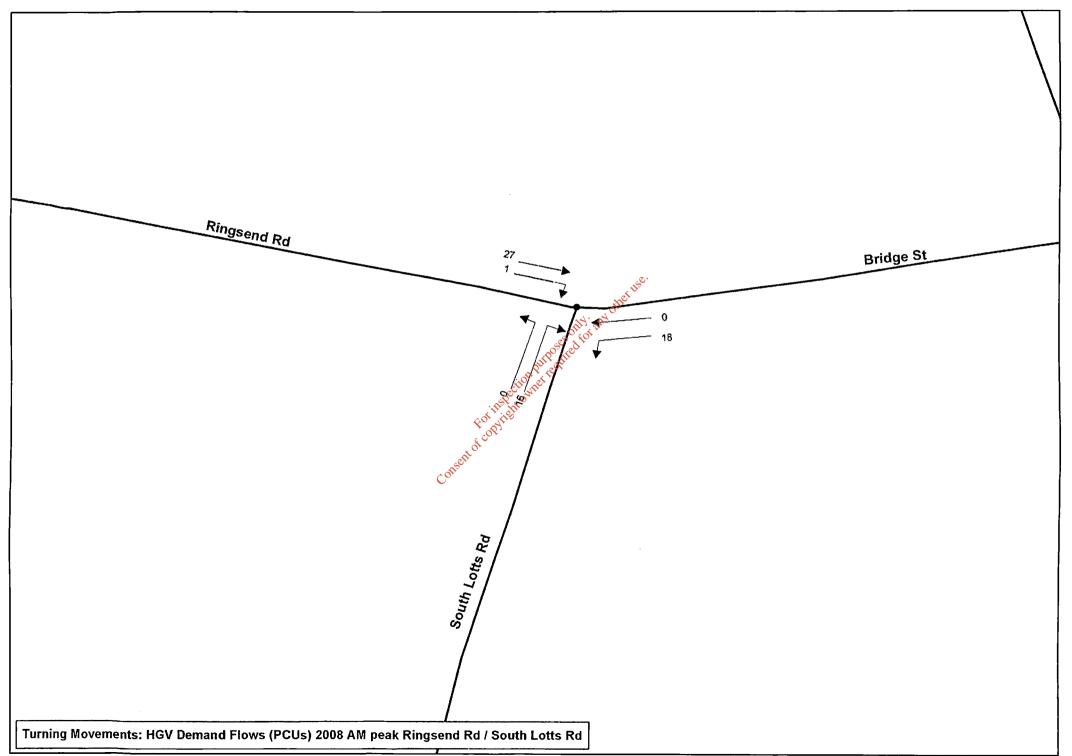






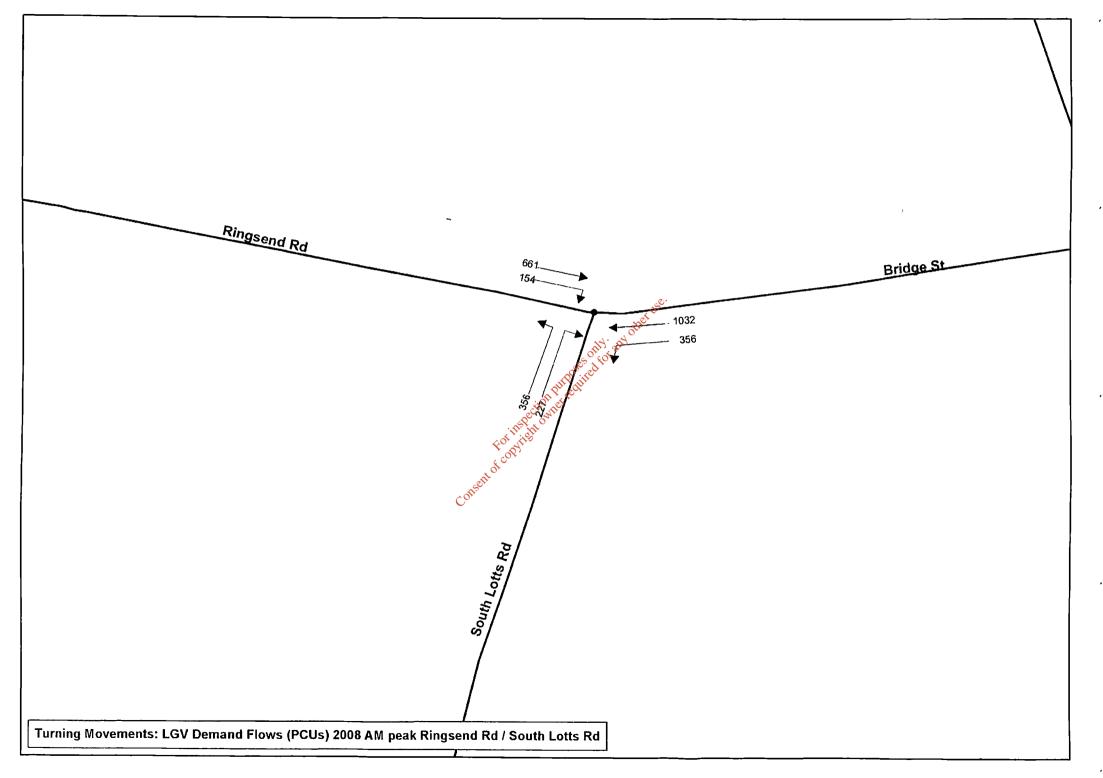
.

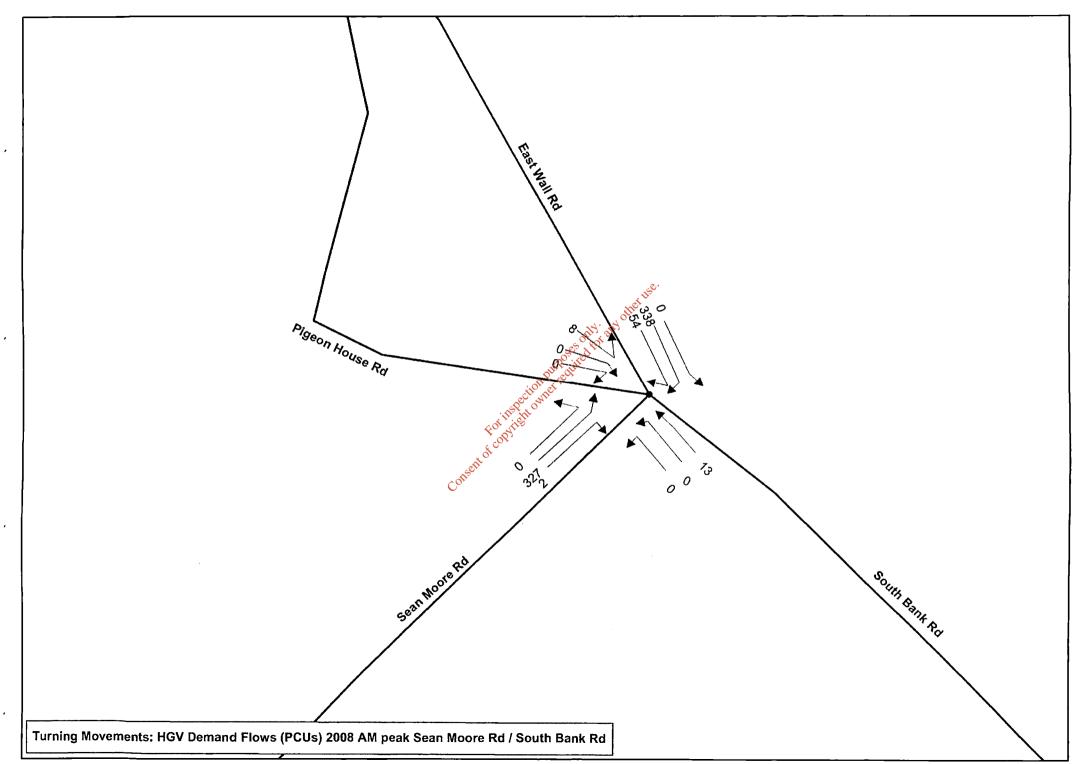
1

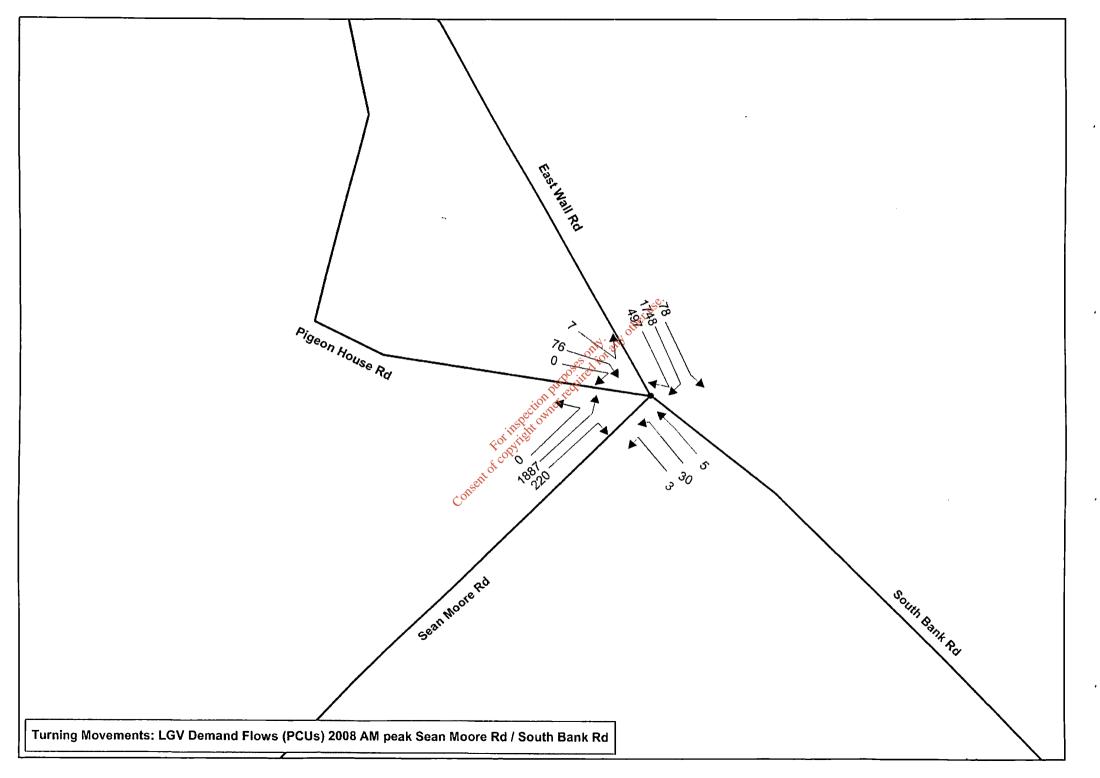

.

,

2008 DEMAND FLOWS (HGV & LGV)

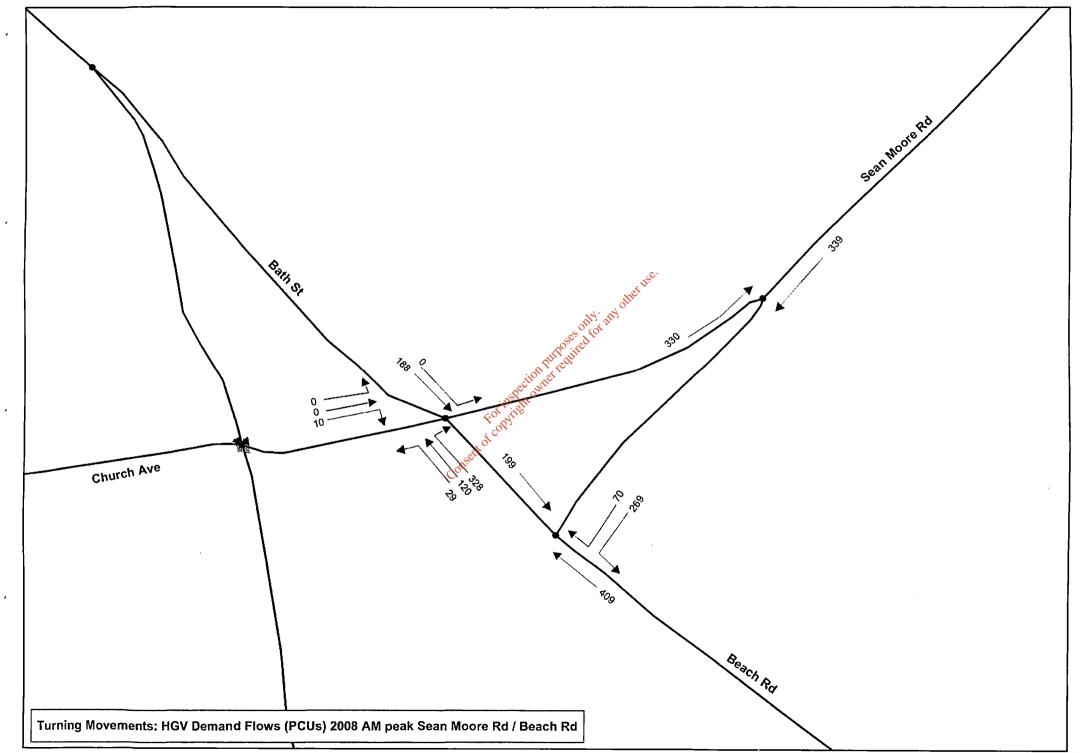

008 DEMAND FLOWS (HGV & LGV AM PEAK, PM PEAK, OFF-PEAK

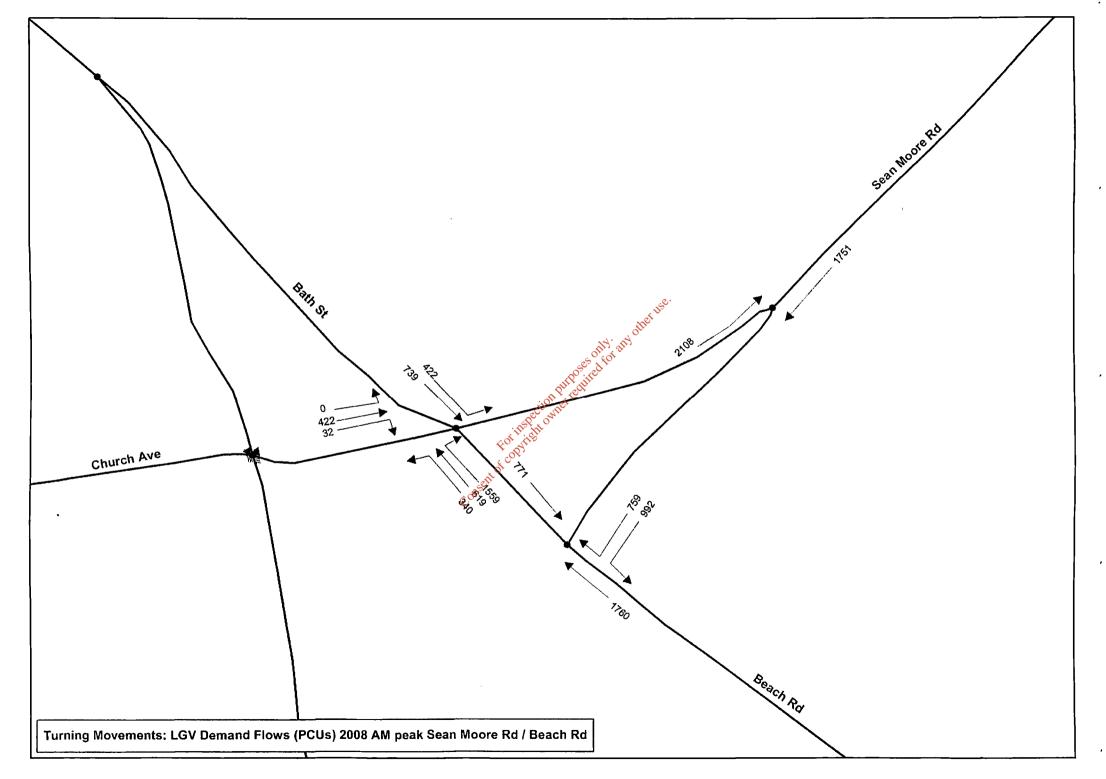


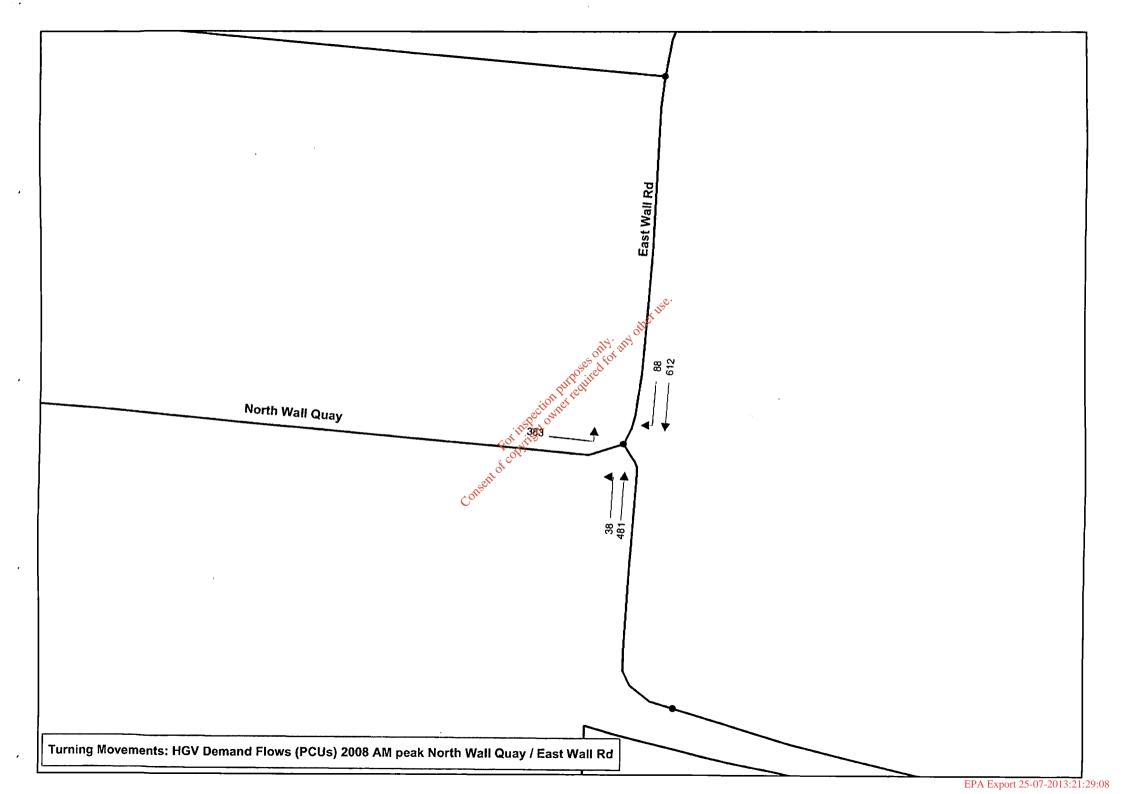

,

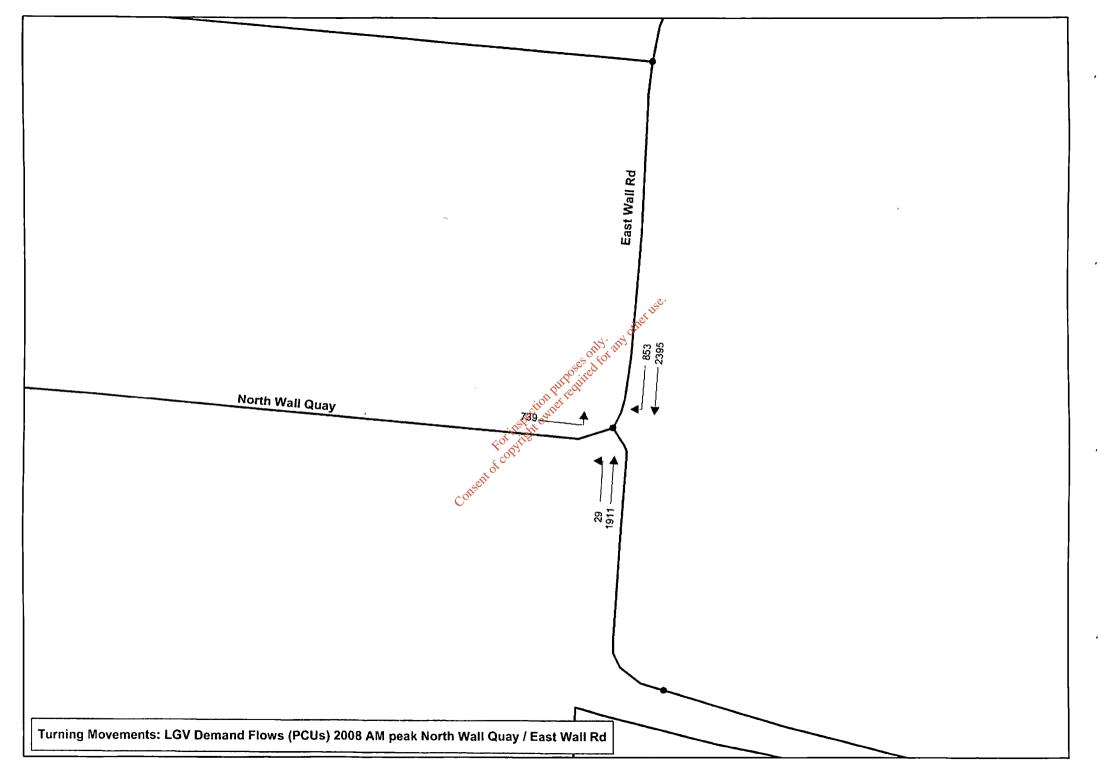
.

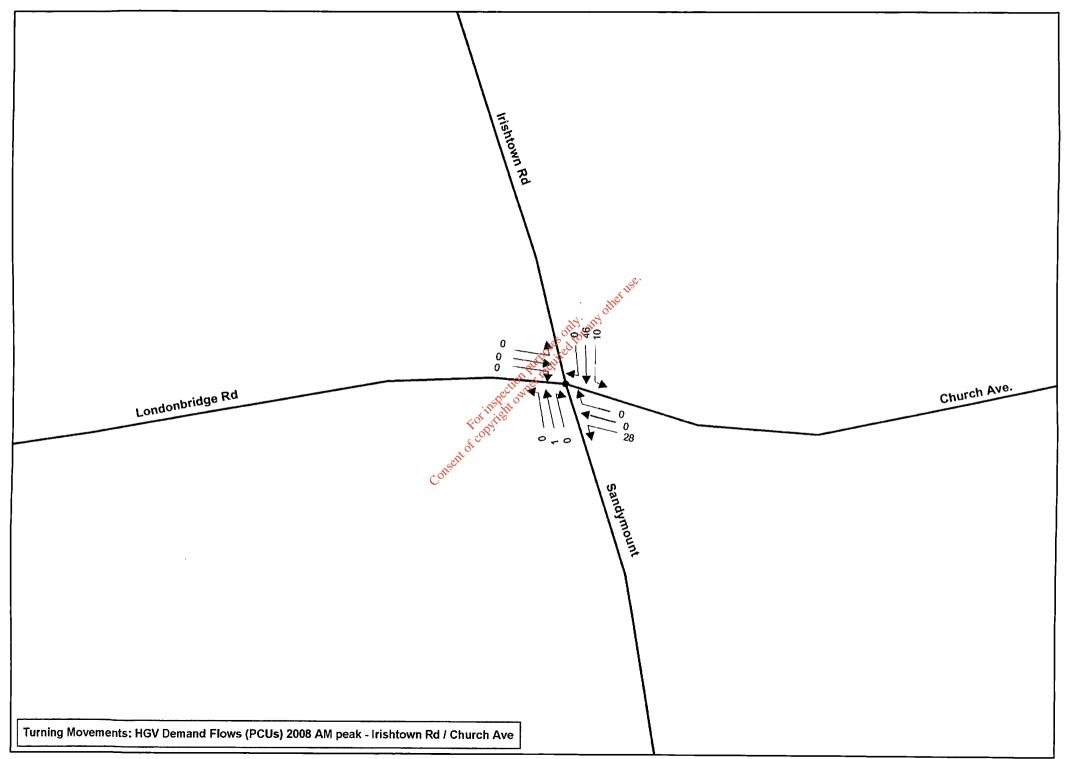
,

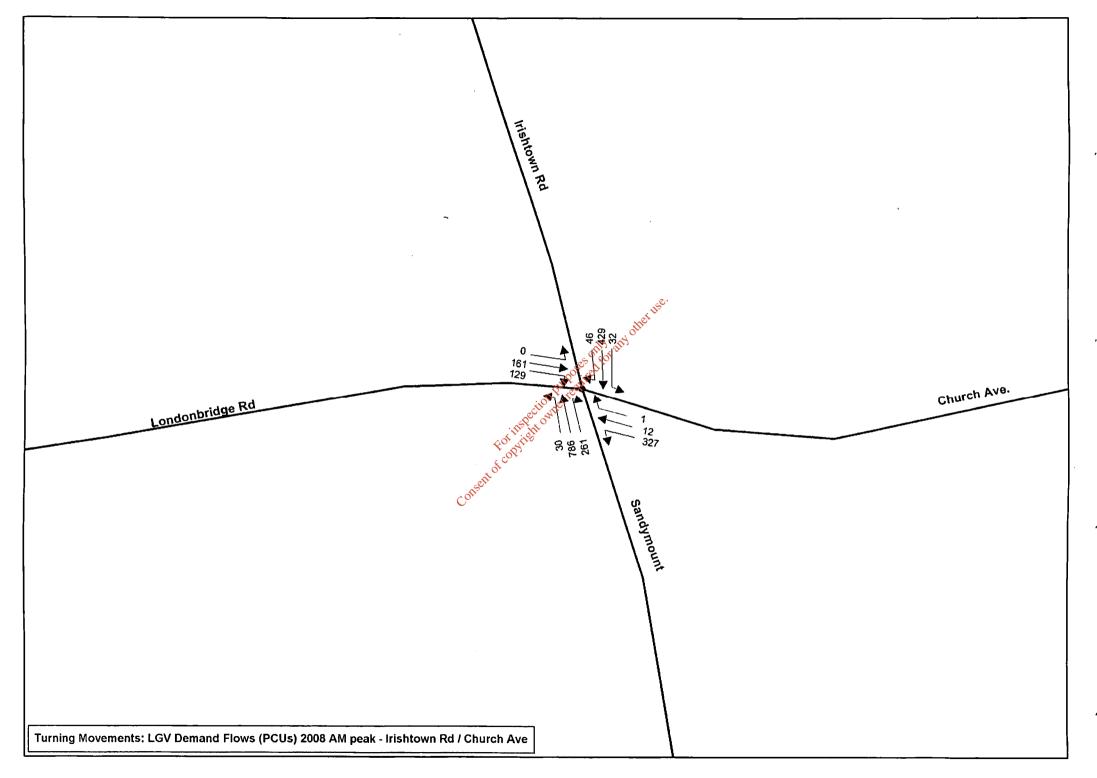


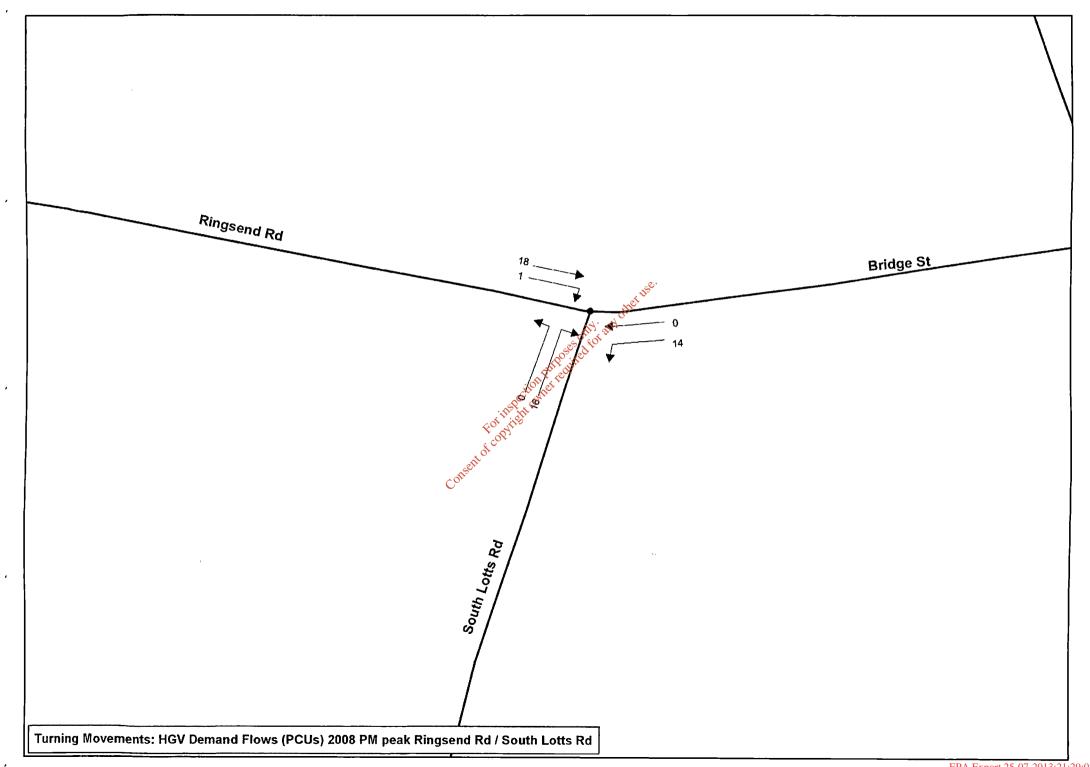


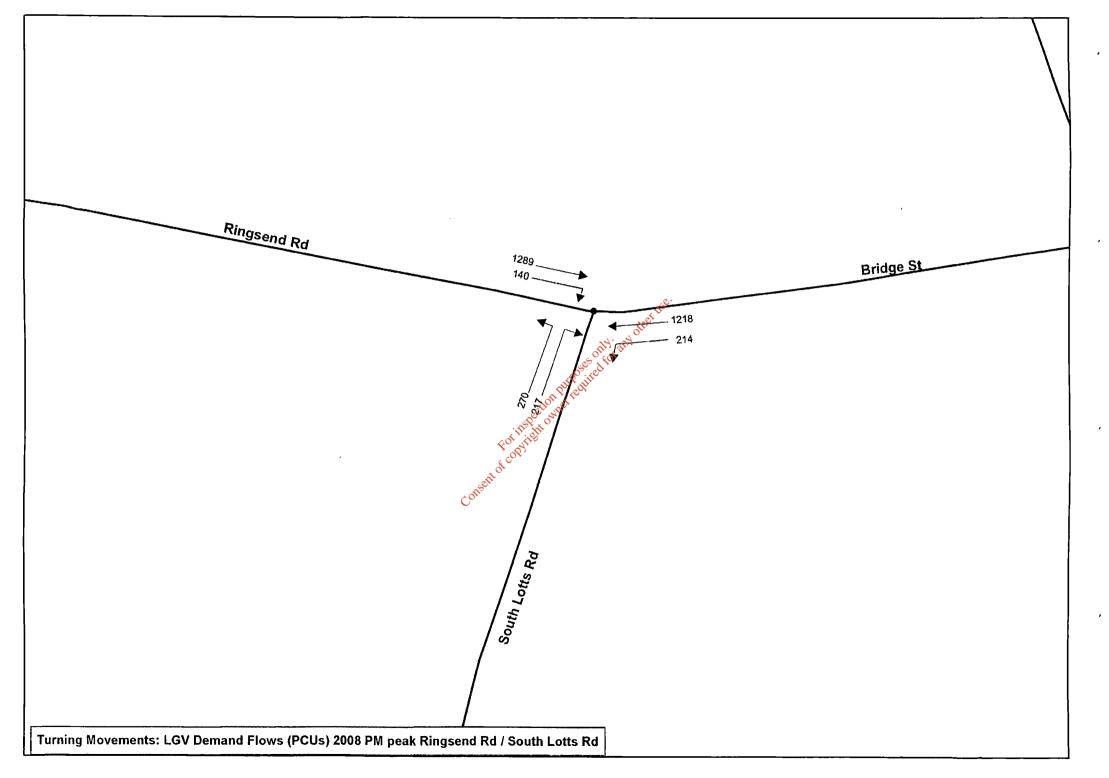


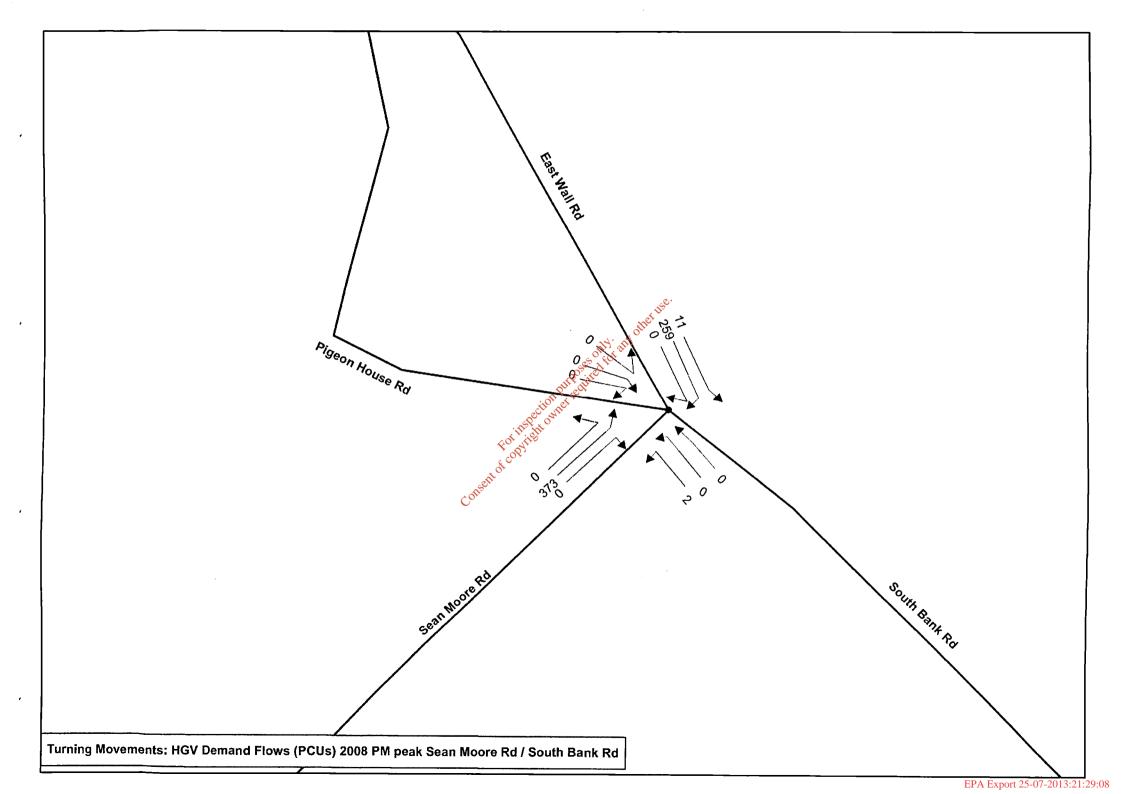

.

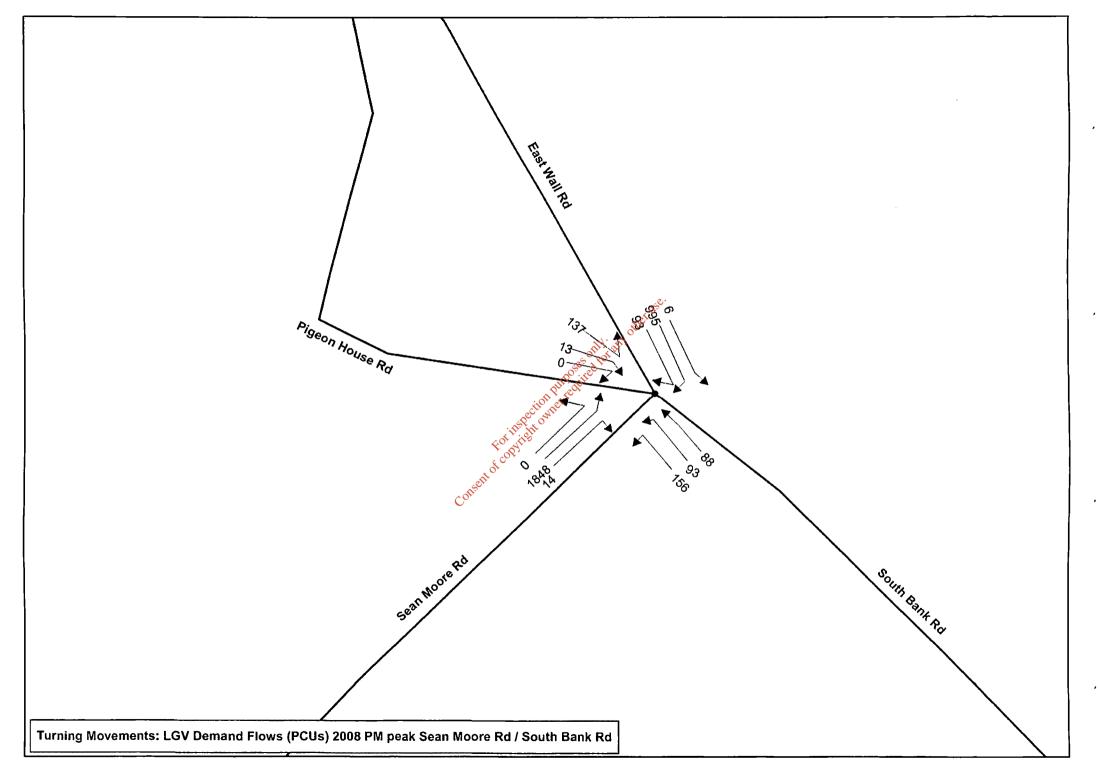

,

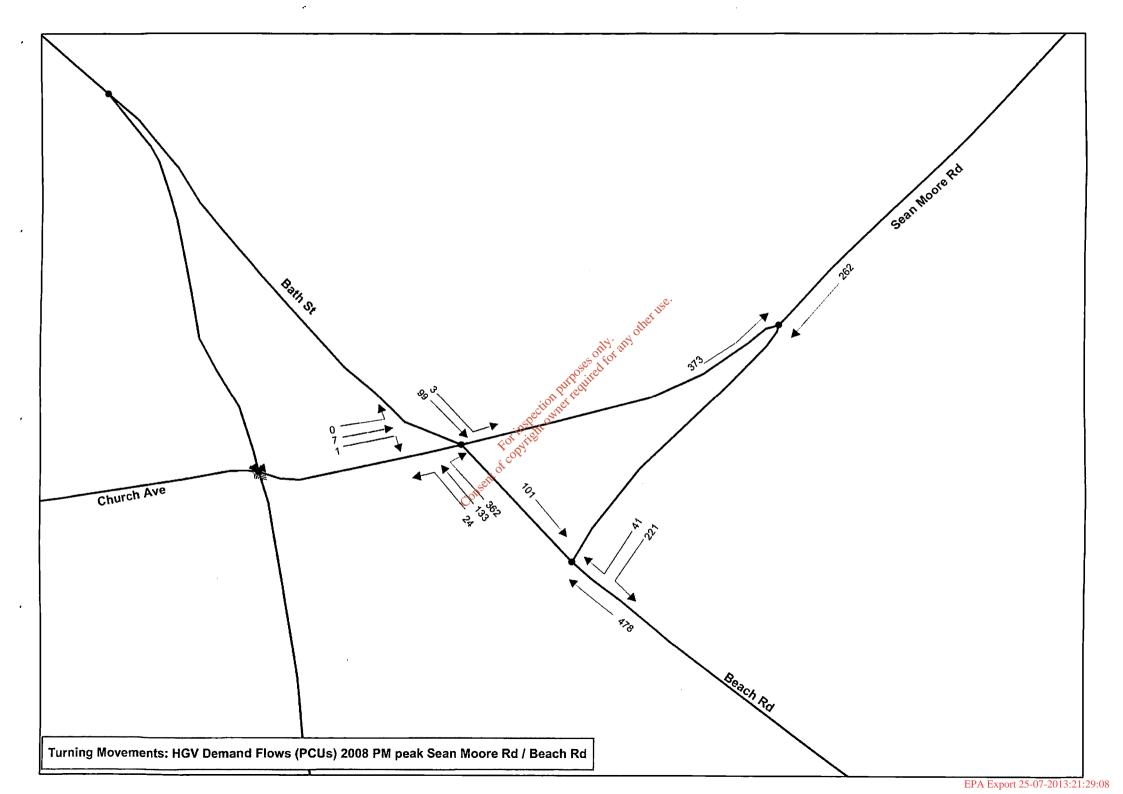

.

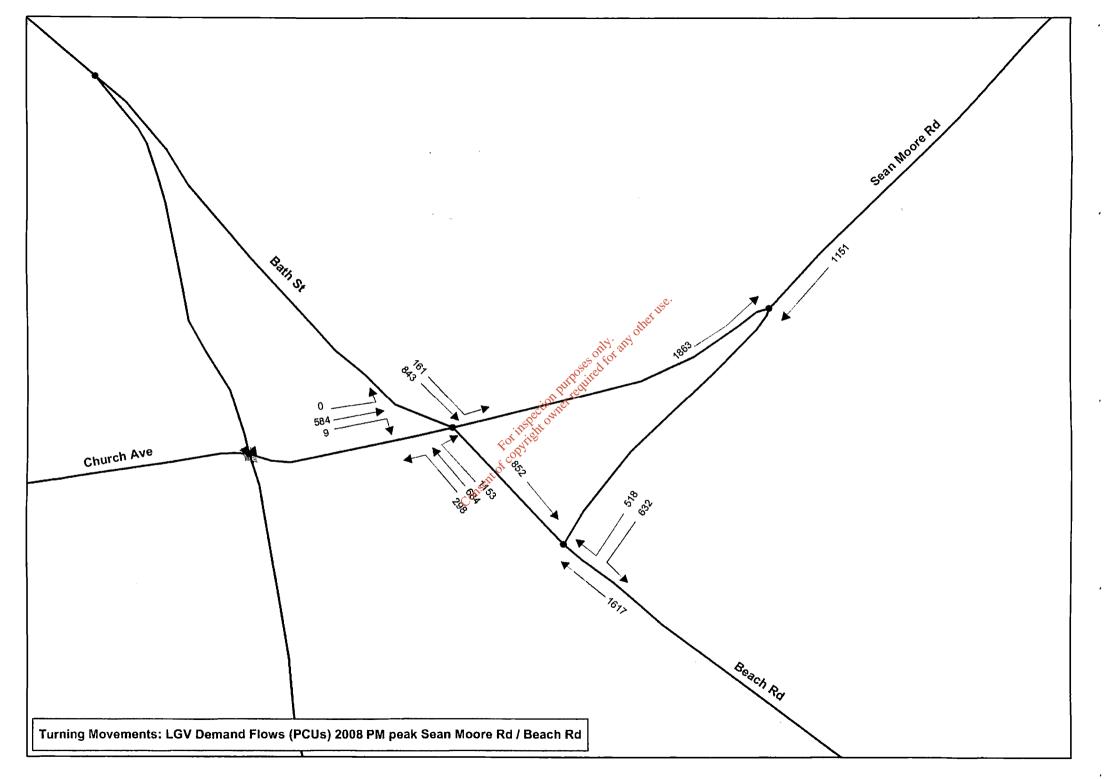

.

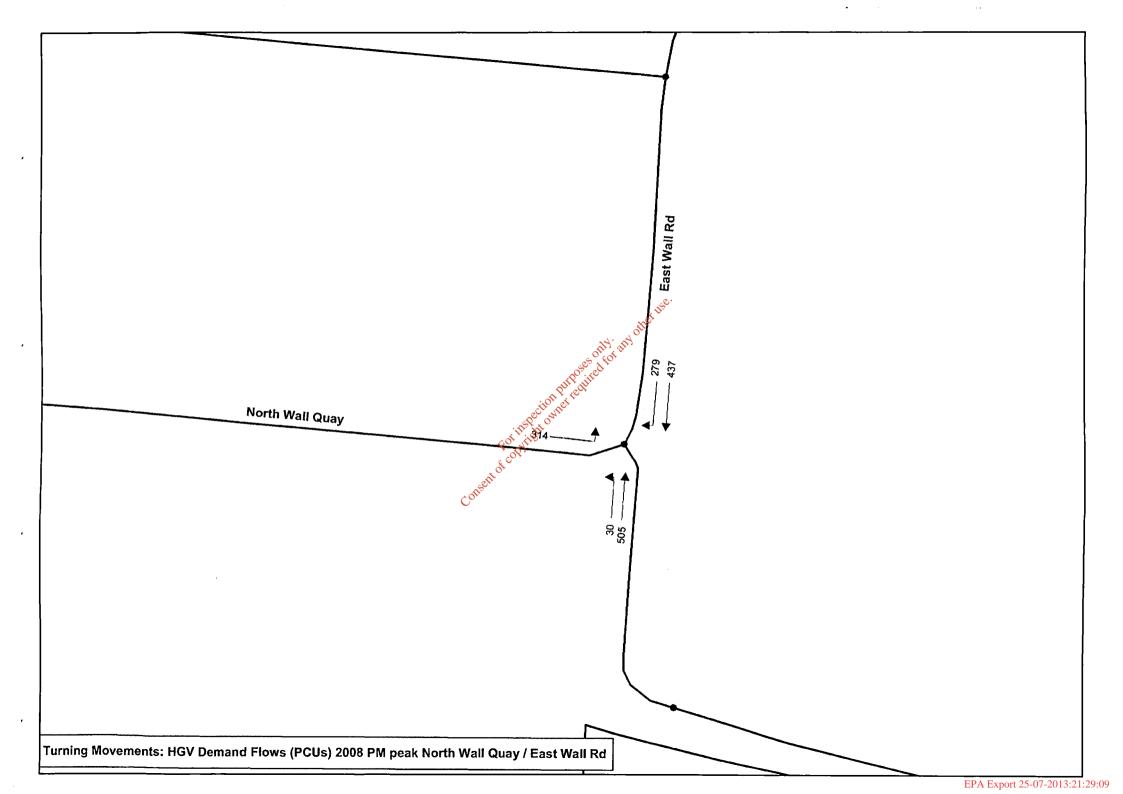

.

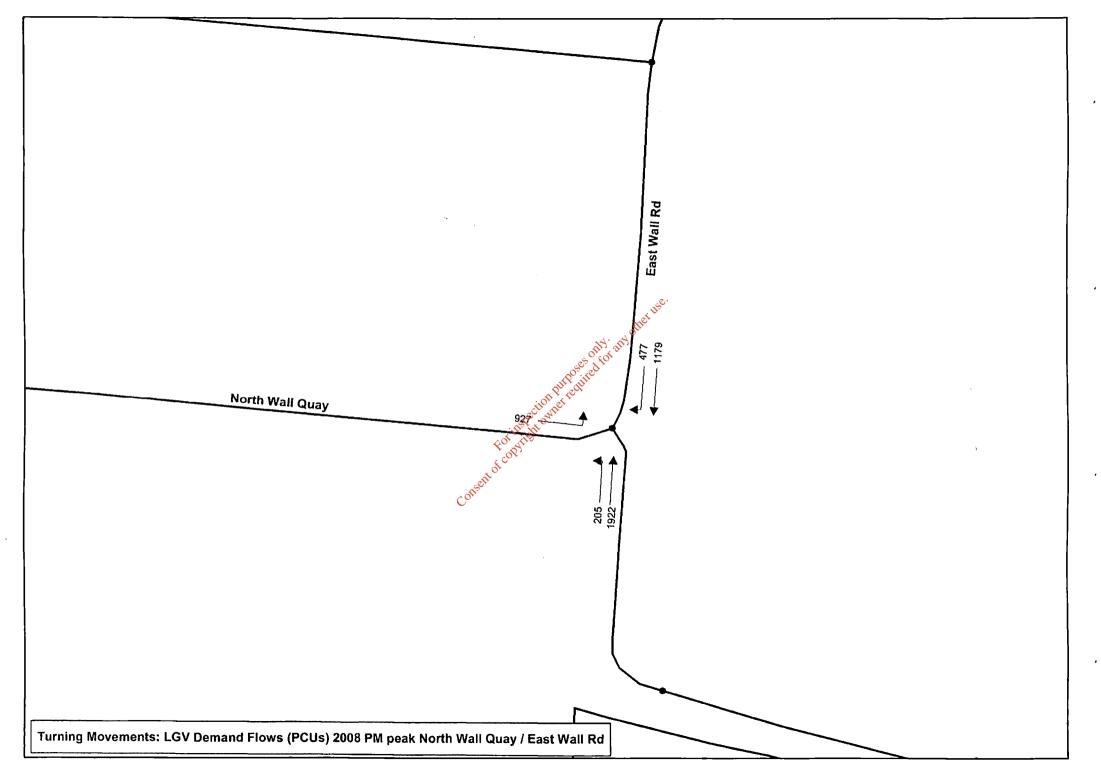

1

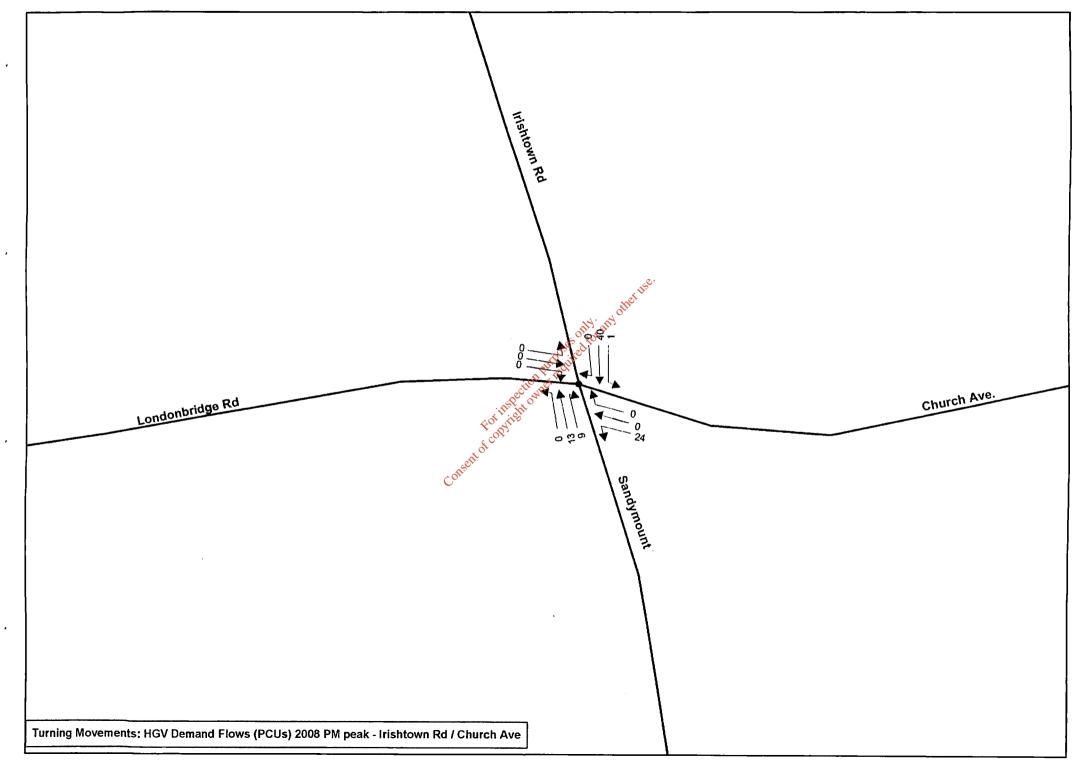

EPA Export 25-07-2013:21:29:08

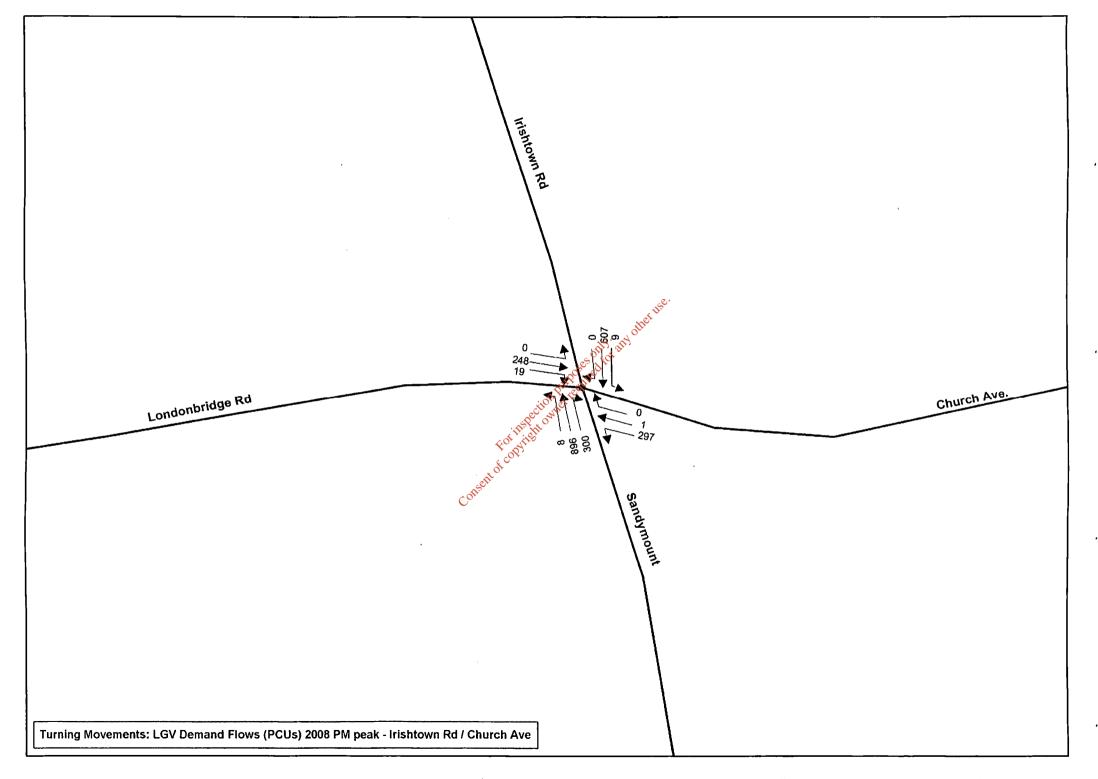


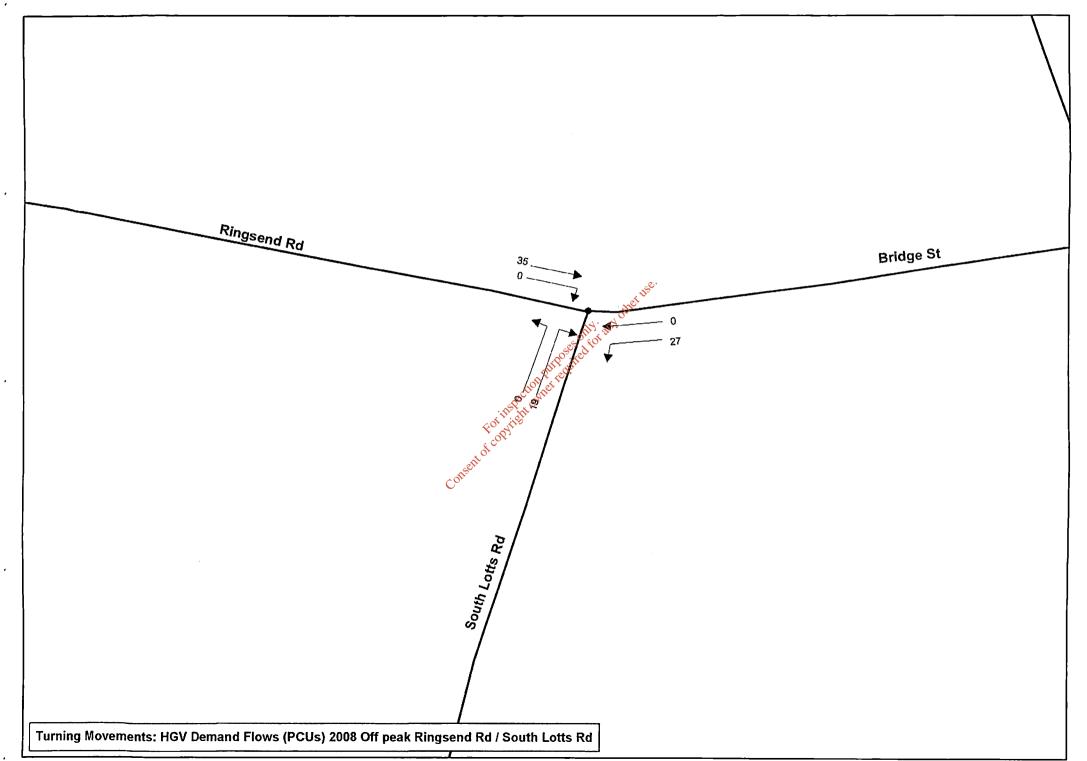


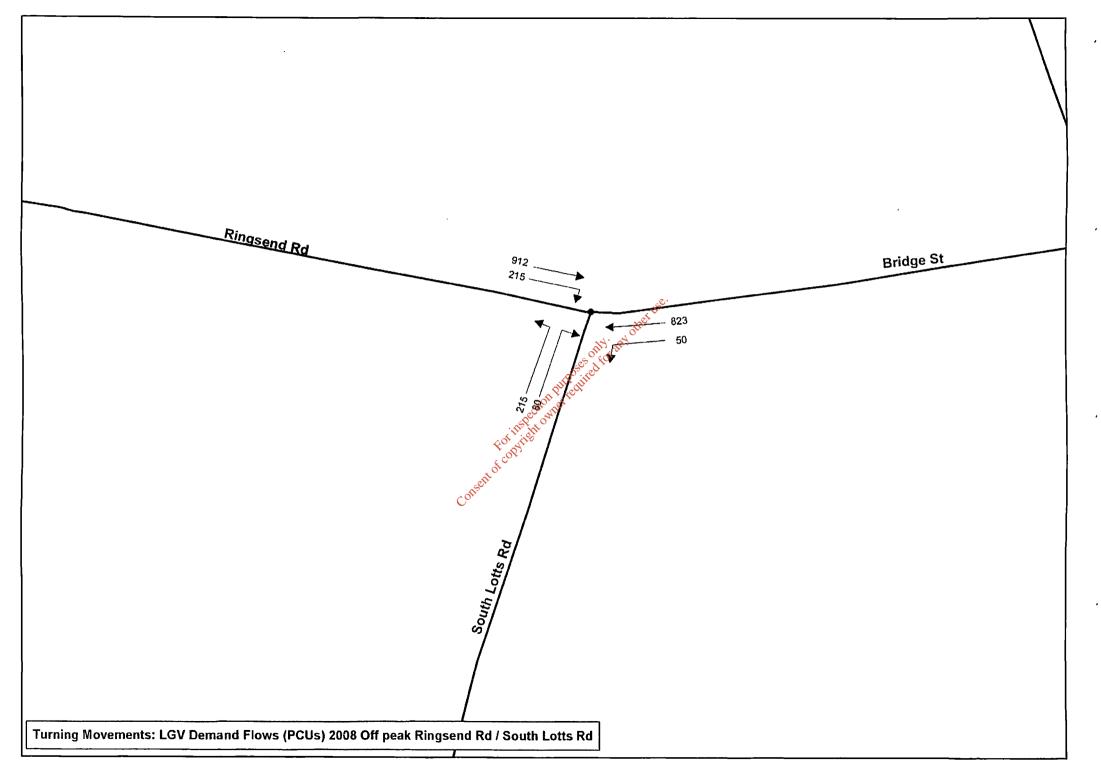


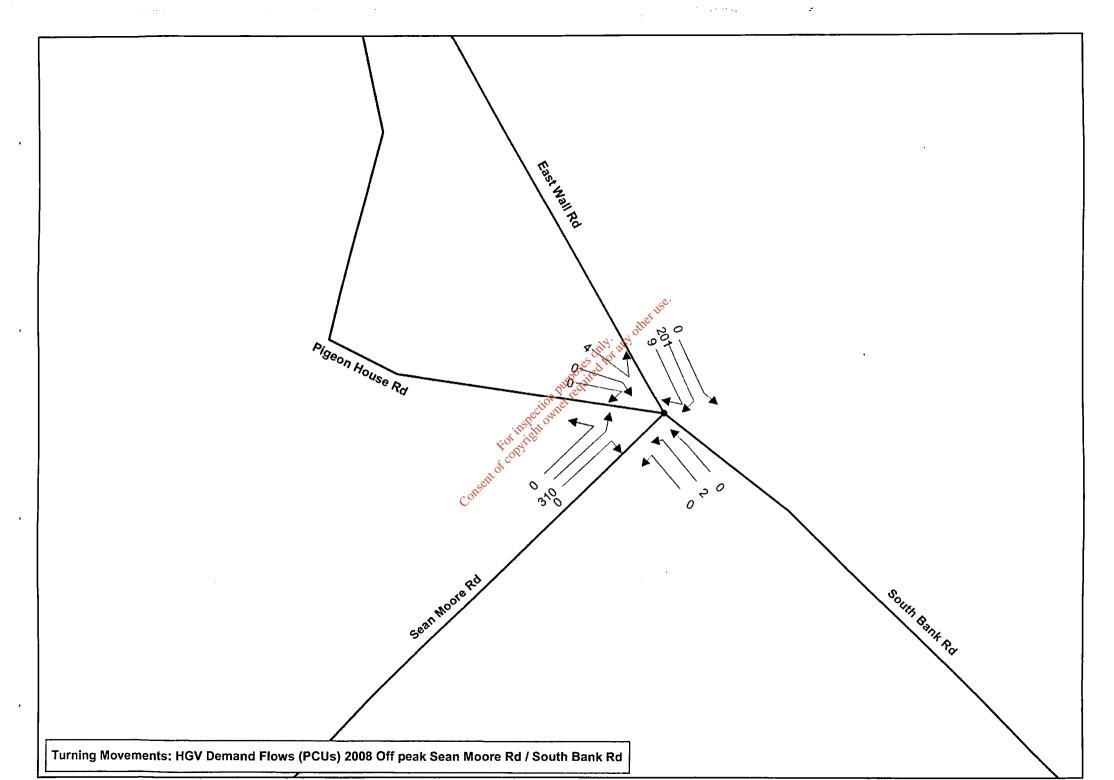


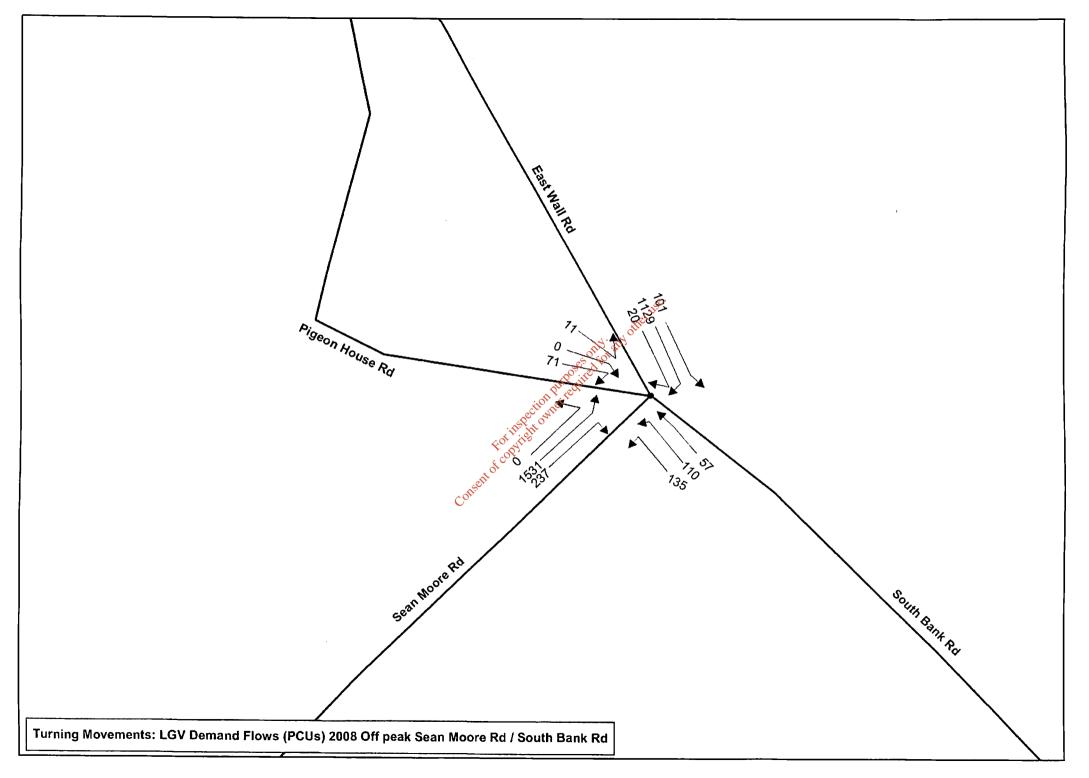


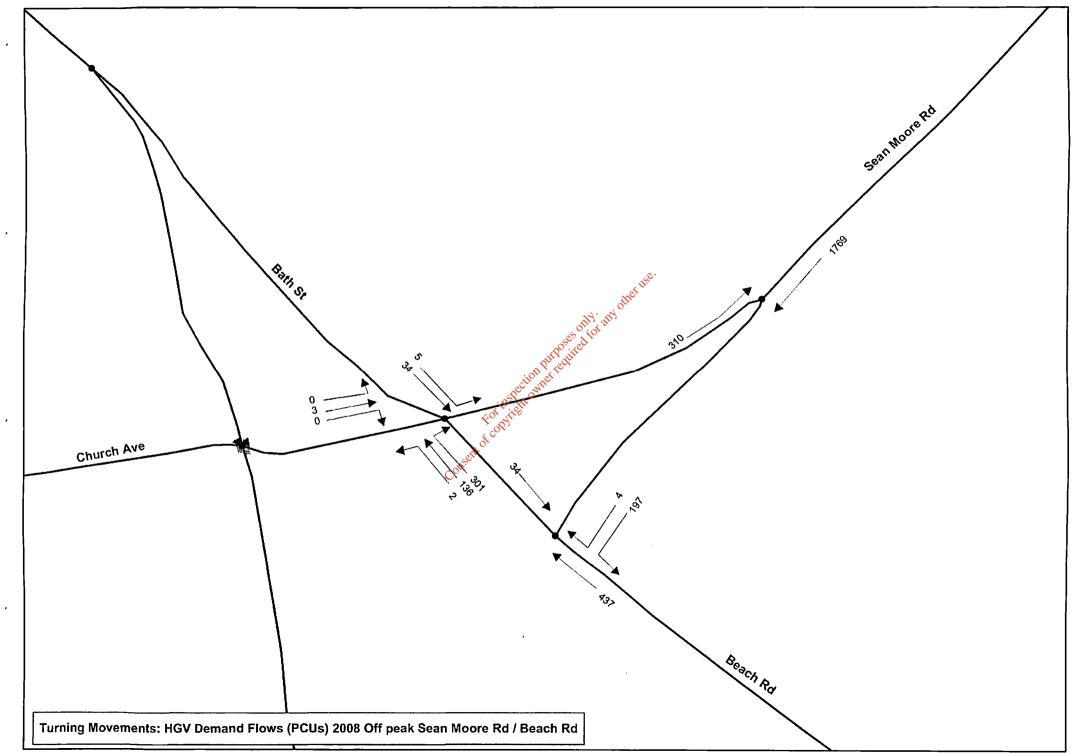


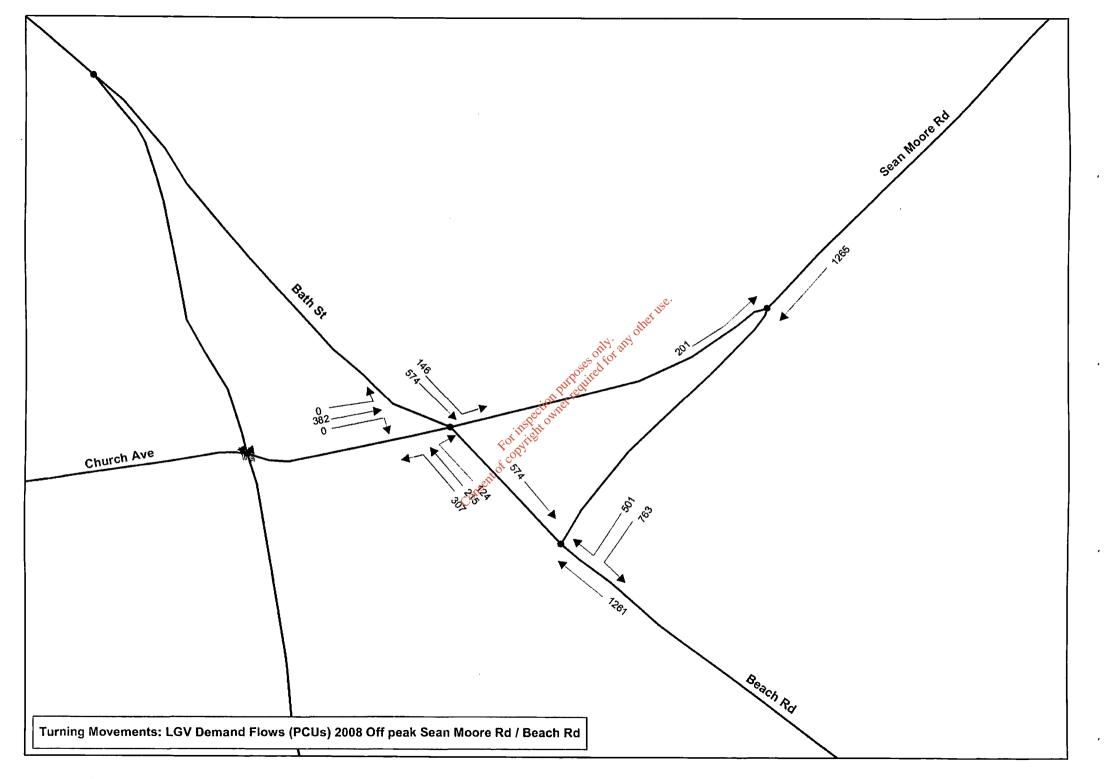


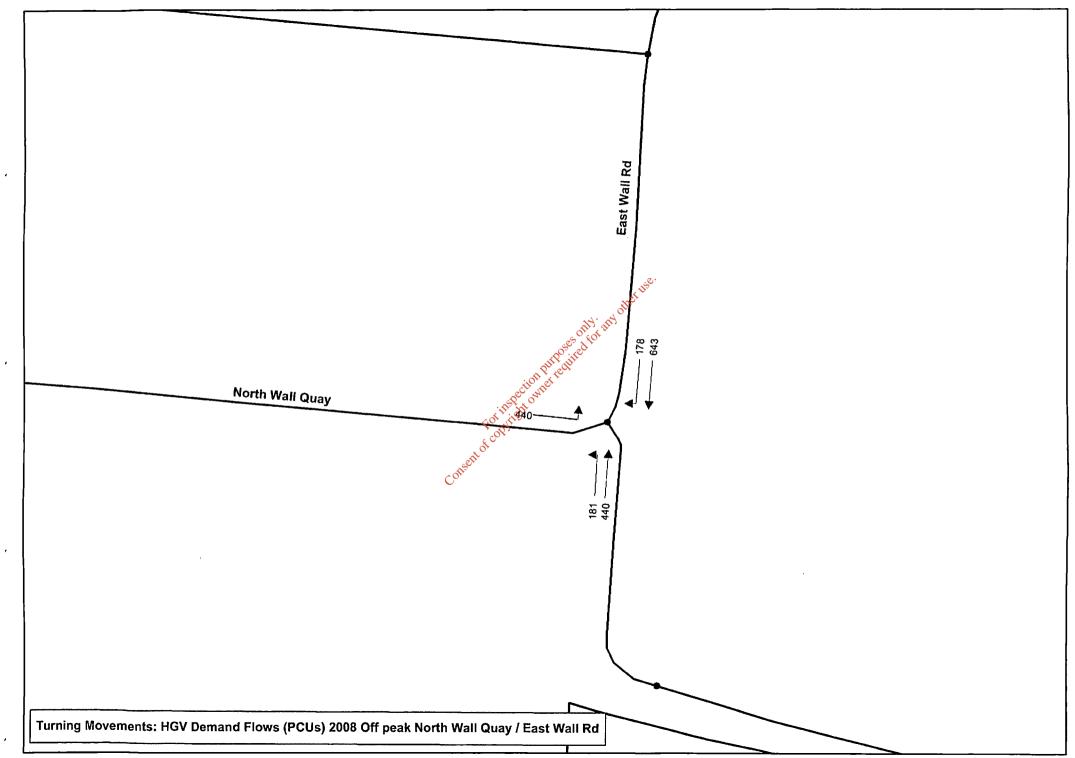

.


EPA Export 25-07-2013:21:29:09

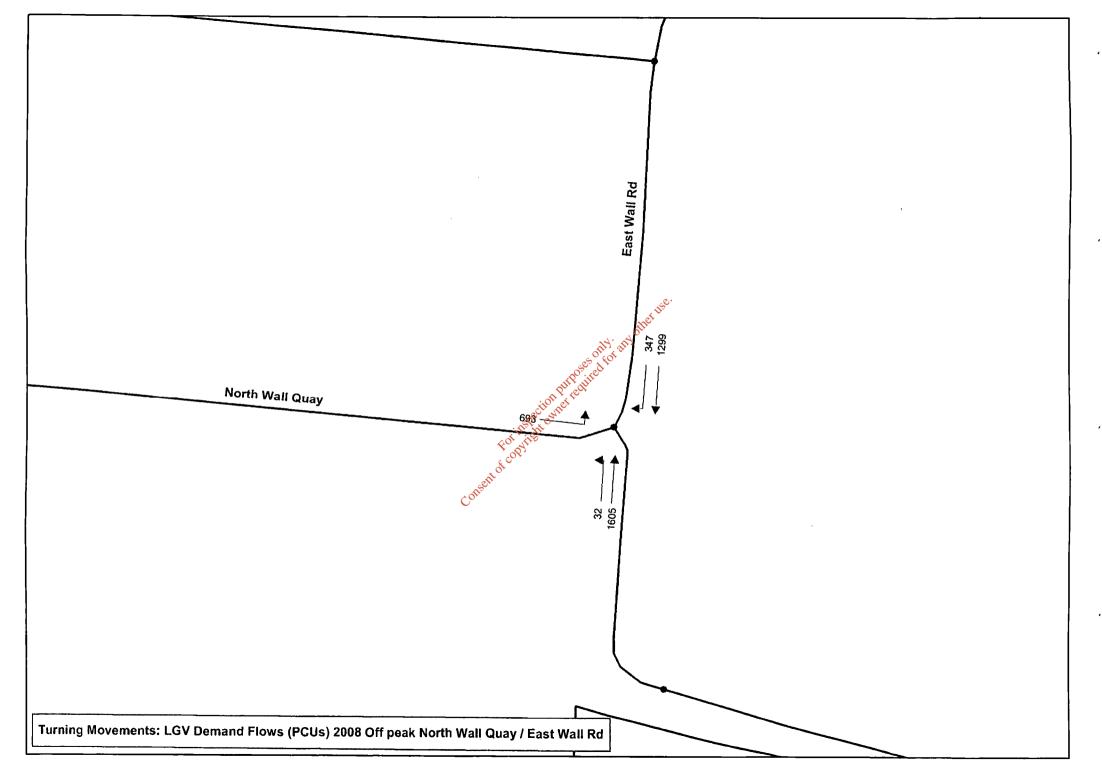


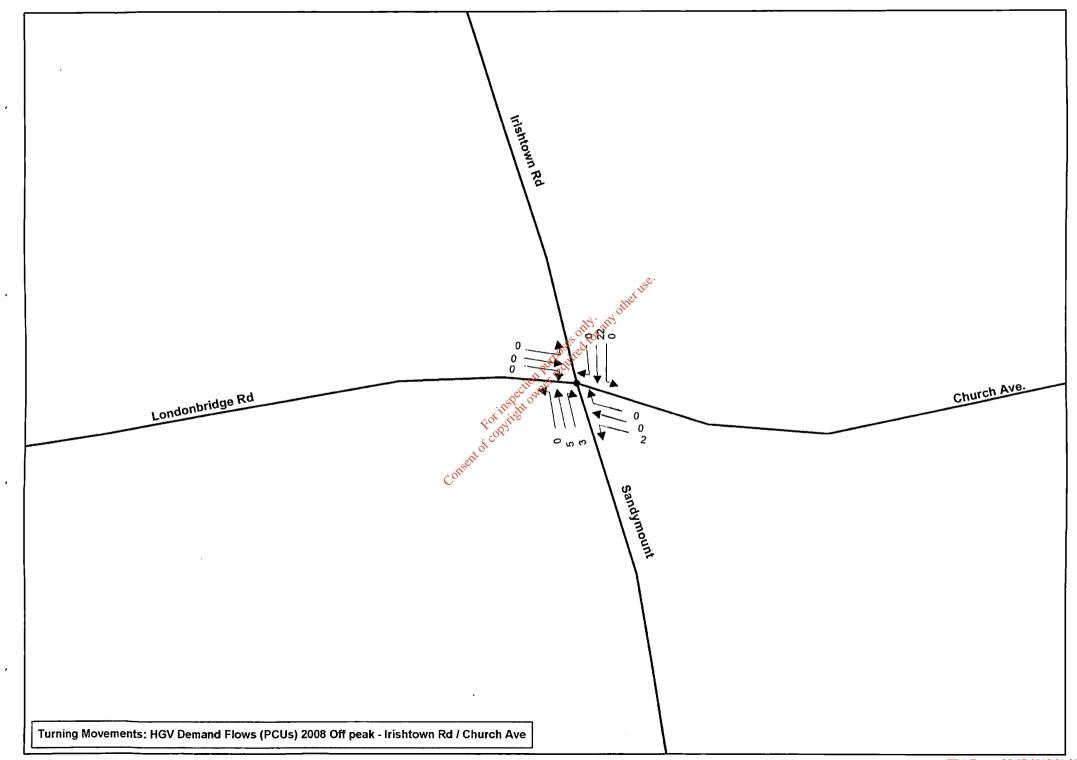

.

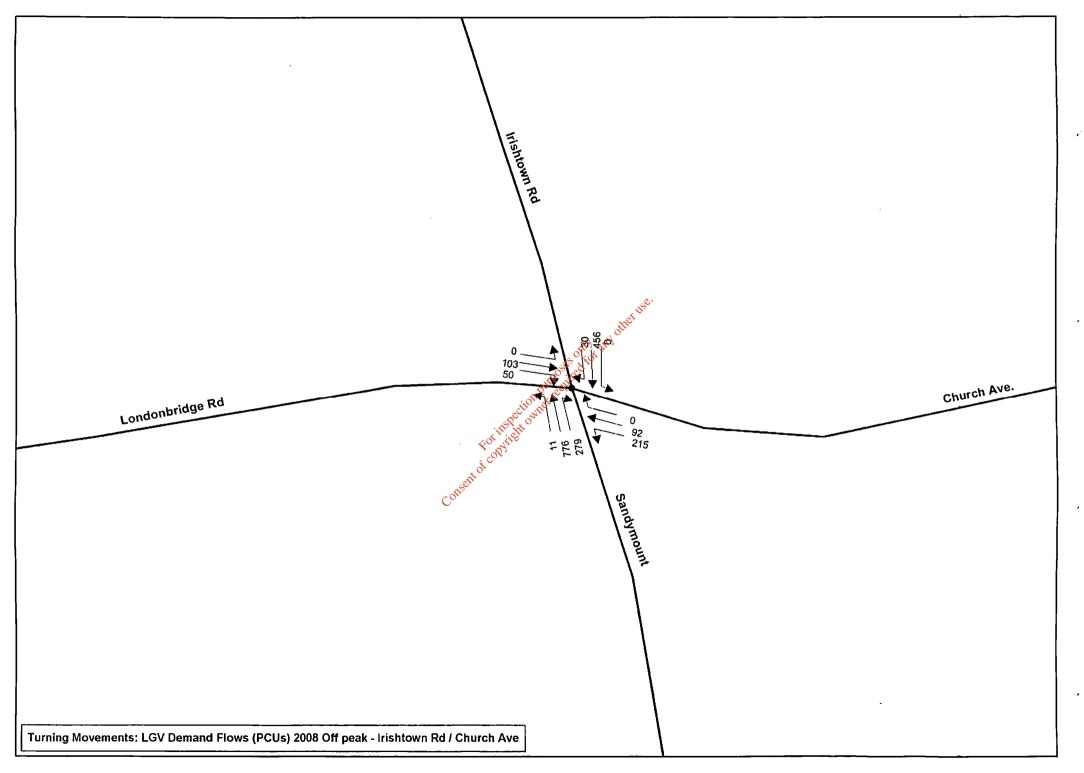


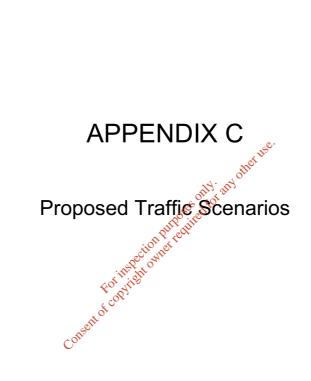


EPA Export 25-07-2013:21:29:09






.



.

EPA Export 25-07-2013:21:29:09

Scenario 1

Scenario 1 describes a situation where all collection vehicles drives directly to the "Plant" by the shortest possible route i.e. the baling stations are not taken into consideration. The main results of the calculations are shown in the table below.

Number of transports and distance

	•	
rea	uire	n
IVY	unc	u

	Waste amount per annum Tonnes	Waste amount per day Tonnes	Vehicles per day to W2E Numbers	Vehicles peak hour Numbers*		Waste to Transfer Station Tonnes	Waste to W2E Tonnes	Transport KM per day	Transport Tonnes KM per day
DCC									
Household	129.000	430	36	7		0	430	576	6.800
Commercial	69.000	230	32	5		0	230	512	3.632
Industrial	32.000	107	19	3		0	107	152	924
Litter	9.200	31	4	1		0	31	64	544
Daily transports	239.200	797	91	16		0	797	1.304	11.900
FCC									
Household	42.000	140	10	2		0	140	260	3.588
Commercial	23.000	77	9	1		0	77	234	1.989
Industrial	10.000	33	4	1		<u>, 15</u> e. 0	33	104	858
Litter	3.000	10	5	1		other up 0	10	130	286
Daily transports	78.000	260	28	5		0	260	728	6.721
SDCC					27				
Household	59.000	197	14	0 ⁵⁰ 0 3		0	197	308	4.202
Commercial	32.000	107	12	ourpequite 2		0	107	264	2.442
Industrial	15.000	50	Z	Puperted to 2 A puperted to 2 A put regult 2 A put regult 2 A put regult 2		0	50	154	1.155
Litter	4.200	14	2 ⁶⁴	with 1		0	14	88	308
Daily transports	110.200	367	in ar	7		0	367	814	8.107
DLRCC			toopy						
Household	50.000	167	12	2		0	167	264	3.828
Commercial	27.000		sent 11	2		0	90	242	2.013
Industrial	12.000	46	6	1		0	40	132	924
Litter	3.600	12	1	0		0	12	22	264
Daily transports	92.600	309	30	5		0	309	660	7.029
Transport Waste	520.000	1.733	186	32		0	1.733	3.506	33.757
Waste Round Trip			372	65					
Transport of Residues	125.000	568	20	3					
Residues Round Trips			40	6					
Total Trip W2E			206	35					
Total Round Trips W2E			412	71					

This scenario will require the highest number of transport to the "Plant", and the shortest total waste transportation. The economic and environmental results are described in section 6.4.8

Scenario 2

Scenario 2 describe a situation where:

- All compacting vehicles from DCC drives directly to the "Plant"
- All skip vehicles drives directly to the "Plant"
- All four-axled vehicles from FCC, SDCC, DLRCC drives directly to the "Plant"
- All other compaction vehicles drives to a baling station for transfer to large vehicles
- Special haulage from baling stations to "Plant"

Number of transports and distance

required

	Waste amount per annum Tonnes	Waste amount per day Tonnes	Vehicles per day to W2E Numbers	Vehicles peak hour Numbers*		Waste to Transfer Station per day Tonnes	Waste to W2E per day Tonnes	Transport KM per day	Transport Tonnes KM per day
DCC									
Household	129.000	430	36	7		0	430	576	6.800
Commercial	69.000	230	32	5		0	230	512	3.632
Industrial	32.000	107	19	3		0	107	152	924
Litter	9.200	31	4	1		0	31	64	544
Daily transports	239.200	797	91	16		0	797	1.304	11.900
FCC						Ø1*			
Household	42.000	140	8	1		at 115 48	92	352	5.316
Commercial	23.000	77	8	1		other 24	53	280	2.853
Industrial	10.000	33	3	220	ar)	24	9	98	1.098
Litter	3.000	10	1	es (9)		11	-1	130	286
Daily transports	78.000	260	20	aposited 3		107	153	860	9.553
SDCC				a Puteda					
Household	59.000	197	J2	whet 2		41	156	272	4.448
Commercial	32.000	107	ins W	2		24	83	250	2.586
Industrial	15.000	50	FOINT 7	1		0	50	154	1.155
Litter	4.200	14	5 cox 1	0		14	0	88	308
Daily transports	110.200	367	all 30	5		79	288	764	8.497
DLRCC		O							
Household	50.000	167	11	2		24	143	274	4.356
Commercial	27.000	90	11	2		0	90	242	2.013
Industrial	12.000	40	5	1		24	16	142	1.452
Litter	3.600	12	1	0		12	0	22	264
Daily transports	92.600	309	28	4		60	249	680	8.085
Transport Waste	520.000	1.733	169	28		246	1.487	3.608	38.035
Waste Round Trip			337	56					
Transport of Residues	125.000	568	20	3					
Residues Round Trips			40	6					
Total Trip W2E			189	31					
Total Round Trips W2E			377	62					

Using the baling stations for a minor part of the waste reduce the number of peak hour transportations by 9 but increase the required transport distance by 102 km per day compared with scenario 1

Scenario 2A

Scenario 2A describe the same situation as scenario 2, but the special transports from the baling stations to the "Plant" follows the ring-road M50

	Waste amount per annum Tonnes	Waste amount per day Tonnes	Vehicles per day to W2E Numbers	Vehicles peak hour Numbers*		Waste to Transfer Station per day Tonnes	Waste to W2E per day Tonnes	Transport KM per day	Transport Tonnes KM per day
DCC									
Household	129.000	430	36	7	ĺ	0	430	576	6.800
Commercial	69.000	230	32	5	İ	0	230	512	3.632
Industrial	32.000	107	19	3	ĺ	0	107	152	924
Litter	9.200	31	4	1	1	0	31	64	224
Daily transports	239.200	797	91	16	1	0	797	1.304	11.580
FCC									
Household	42.000	140	8	1	1	48	92	408	6.660
Commercial	23.000	77	8	1	İ	24	53	308	3.525
Industrial	10.000	33	3	0	ĺ	24	9	126	1.770
Litter	3.000	10	1	0	İ	11	-1	130	286
Daily transports	78.000	260	20	3	ĺ	107	153	972	12.241
SDCC						x 1150.			
Household	59.000	197	12	2		0 ¹¹² 41	156	320	5.596
Commercial	32.000	107	11	22	ar)	24	83	278	3.258
Industrial	15.000	50	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	0	50	154	1.155
Litter	4.200	14	1	100 ited 0	ĺ	14	0	88	308
Daily transports	110.200	367	30	P ^{11PO} ²⁰¹ ¹¹ 0 ¹ P ¹¹ ²⁰ ¹¹ 5	1	79	288	840	10.317
DLRCC			ectif	Whet					
Household	50.000	167	ins w	2	ĺ	24	143	314	5.316
Commercial	27.000	90	40 yr 11	2	1	0	90	242	2.013
Industrial	12.000	40	FOT WIT 11	1	1	24	16	182	2.412
Litter	3.600	12	alt 1	0	1	12	0	22	264
Daily transports	92.600	308	28	4	1	60	249	760	10.005
Transport Waste	520.000	1.733	169	28		246	1.487	3.876	44.143
Waste Round Trip			337	56					
Transport of Residues	125.000	568	20	3					
Residues Round Trips			40	6					
Total Trip W2E			189	31					
Total Round Trips W2E			377	62					

Numbers of transports and distance required

Using the ring-road M50 for transportation of waste from the baling stations the total distance required is increased by 370 km per day compared with scenario 1.

Scenario 3

Scenario 3 describes a situation where:

- All compacting vehicles from DCC drives directly to the "Plant"
- All skip vehicles drives directly to the "Plant"
- All Compacting vehicles from FCC, SDCC, DLRCC drives directly to a baling station
- Special haulage from baling station to "Plant"

Numbers of transports and distance

required

requireu	Waste amount per annum Tonnes	Waste amount per day Tonnes	Vehicles per day to W2E Numbers	Vehicles peak hour Numbers*		Waste to Transfer Station per day Tonnes	Waste to W2E per day Tonnes	Transport KM per day	Transport Tonnes KM per day
DCC									
Household	129.000	430	36	7		0	430	576	6.800
Commercial	69.000	230	32	5		0	230	512	3.632
Industrial	32.000	107	19	3		0	107	152	924
Litter	9.200	31	4	1		0	31	64	544
Daily transports	239.200	797	91	16		0	797	1.304	11.900
FCC									
Household	42.000	140	6	1		138	2	510	8.556
Commercial	23.000	77	7	1		15 ^e . 54	23	333	3.933
Industrial	10.000	33	3	0		ther 124	9	98	1.098
Litter	3.000	10	1	0,		11	-1	130	286
Daily transports	78.000	260	17	02	59	227	33	1.070	13.873
SDCC				oos red					
Household	59.000	197	8	Purcollin 1		191	6	235	5.348
Commercial	32.000	107	10	net 1		84	23	235	2.946
Industrial	15.000	50	For inspector			30	20	147	1.335
Litter	4.200	14	cot intell	0		14	0	88	308
Daily transports	110.200	367	COP 24	3		319	48	704	9.937
DLRCC			NOT						
Household	50.000	167	5 ⁰ 7	1		174	-7	367	7.656
Commercial	27.000	90	10	1		60	30	279	3.333
Industrial	12.000	40	5	1		24	16	142	1.452
Litter	3.600	12	1	0		12	0	22	264
Daily transports	92.600	309	22	3		270	39	810	12.705
Transport Waste	520.000	1.733	154	23		816	917	3.888	48.415
Waste Round Trip			309	47					
Transport of Residues	125.000	568	20	3					
Residues Round Trips			40	6					
Total Trip W2E			174	26					
Total Round Trips W2E			349	53					

Using the baling stations for nearly half of the waste reduce the number of peak hour transportations by 19 but increase the required transport distance by 382 km per day compared with scenario 1

Scenario 3A

Scenario 3A describe the same situation as scenario 3, but the special transports from the baling stations to the "Plant" follows the ring-road M50

required								
	Waste amount per annum Tonnes	Waste amount per day Tonnes	Vehicles per day to W2E Numbers	Vehicles peak hour Numbers*	Waste to Transfer Station per day Tonnes	Waste to W2E per day Tonnes	Transport KM per day	Transport Tonnes KM per day
DCC								
Household	129.000	430	36	7	0	430	576	6.800
Commercial	69.000	230	32	5	0	230	512	3.632
Industrial	32.000	107	19	3	0	107	152	924
Litter	9.200	31	4	1	0	31	64	224
Daily transports	239.200	797	91	16	0	797	1.304	11.580
FCC								
Household	42.000	140	6	1	138	2	671	12.420
Commercial	23.000	77	7	1	54	23	396	5.445
Industrial	10.000	33	3	0	24	9	126	1.770
Litter	3.000	10	1	0	11 Sec. 11	-1	130	1.105
Daily transports	78.000	260	17	2	ther 227	33	1.322	20.740
SDCC				25.	AOT			
Household	59.000	197	8	Putpostied 1	191	6	458	10.696
Commercial	32.000	107	10	00° red 1	84	23	333	5.298
Industrial	15.000	50	6	pur out 1	30	20	182	2.175
Litter	4.200	14	AV.	net 0	14	0	88	308
Daily transports	110.200	367	\$240	3	319	48	1.060	18.477
DLRCC			For tright					
Household	50.000	167	ر روم 7	1	174	-7	657	14.616
Commercial	27.000	90	10	1	60	30	379	5.733
Industrial	12.000	40	5	1	24	16	182	2.412
Litter	3.600	F2	1	0	12	0	22	264
Daily transports	92.600	309	22	3	270	39	1.240	23.025
Transport Waste	520.000	1.733	154	23	816	917	4.926	73.822
Waste Round Trip			309	47				
Transport of Residues	125.000	568	20	3				
Residues Round Trips			40	6				
Total Trip W2E			174	26				
Total Round Trips W2E			349	53				

Numbers of transports and distance required

Using the ring-road M50 for transportation of waste from the baling stations the total distance required is increased by 1,420 km per day compared with scenario 1.

Scenario 4

Scenario 4 describe a situation where:

- All compacting vehicles from DCC west of M1 and the railway to the south drives to a baling station

- All compacting vehicles from DCC east of M1 and the railway to the south drives directly to the "Plant"

- All skip vehicles drives directly to the "Plant"

- All compacting vehicles from FCC, SDCC, DLRCC drives to a baling station

- Special haulage from the baling station to the "Plant"

Numbers of transports and distance required

	Waste amount per annum Tonnes	Waste amount per day Tonnes	Vehicles per day to W2E Numbers	Vehicles peak hour Numbers*		Waste to Transfer Station per day Tonnes	Waste to W2E per day Tonnes	Transport KM per day	Transport Tonnes KM per day
DCC									
Household	129.000	430	27	8		213	218	770	11.900
Commercial	69.000	230	29	5		69	162	574	5.276
Industrial	32.000	107	18	3		24	83	198	1.788
Litter	9.200	31	3	1		17	14	64	544
Daily transports	239.200	797	76	17		15 ⁶ 322	475	1.606	19.508
FCC						other			
Household	42.000	140	6	1412	23	138	2	510	8.556
Commercial	23.000	77	7	6.0		54	23	333	3.933
Industrial	10.000	33	3	pupo est 101 0 pupo est 101 0 pupo est 101 0 pupo est 101		24	9	98	1.098
Litter	3.000	10	1	Pitedte 0		11	-1	130	286
Daily transports	78.000	260	L'AL	vnet 2		227	33	1.070	13.873
SDCC			inspit C						
Household	59.000	197	FOT JIE 8	1		191	6	235	5.348
Commercial	32.000	107	× cov 10	1		84	23	235	2.946
Industrial	15.000	50	ent 6	1		30	20	147	1.335
Litter	4.200	145	⁵⁰ 1	0		14	0	88	308
Daily transports	110.200	367	24	3		319	48	704	9.937
DLRCC									
Household	50.000	167	7	1		174	-7	367	7.656
Commercial	27.000	90	10	1		60	30	279	3.333
Industrial	12.000	40	5	1		24	16	142	1.452
Litter	3.600	12	1	0		12	0	22	264
Daily transports	92.600	309	22	3		270	39	810	12.705
Transport Waste	520.000	1.733	140	20		1.138	595	4.190	56.023
Waste Round Trip			279	39					
Transport of Residues	125.000	568	20	3					
Residues Round Trips			40	6					
Total Trip W2E			160	23					
Total Round Trips W2E			319	45					

Using the baling stations for nearly half of the waste reduce the number of peak hour transportations by 26 but increase the required transport distance by 684 km per day compared with scenario 1

Scenario 4A

Scenario 4A describe the same situation as scenario 4, but the special transports from the baling stations to the "Plant" follows the ring-road M50

Numbers of transports and distance

	• •
rea	ured
IVY	unvu

	Waste amount per annum Tonnes	Waste amount per day Tonnes	Vehicles per day to W2E Numbers	Vehicles peak hour Numbers*		Waste to Transfer Station per day Tonnes	Waste to W2E per day Tonnes	Transport KM per day	Transport Tonnes KM per day
DCC									
Household	129.000	430	27	5		213	218	1.018	17.850
Commercial	69.000	230	29	4		69	162	654	7.194
Industrial	32.000	107	18	2		24	83	226	2.460
Litter	9.200	31	3	0		17	14	64	544
Daily transports	239.200	797	76	12		322	475	1.962	28.048
FCC									
Household	42.000	140	6	1		138	2	671	12.420
Commercial	23.000	77	7	1		54	23	396	5.445
Industrial	10.000	33	3	0		24	9	126	1.770
Litter	3.000	10	1	0		11	-1	130	286
Daily transports	78.000	260	17	2		227	33	1.322	19.921
SDCC						nothe			
Household	59.000	197	8	1	4	191	6	458	10.696
Commercial	32.000	107	10	oses d foi	σ,	84	23	333	5.298
Industrial	15.000	50	6	5° 2101		30	20	182	2.175
Litter	4.200	14	1	OUTPOLITE 0		14	0	88	308
Daily transports	110.200	367	24	a to 3		319	48	1.060	18.477
DLRCC			A Record	WILL					
Household	50.000	167	of the 18	1		174	-7	657	14.616
Commercial	27.000	90	FOOT 10	1		60	30	379	5.733
Industrial	12.000	40	5	1		24	16	182	2.412
Litter	3.600	12	sent 1	0		12	0	22	264
Daily transports	92.600	309	22	3		270	39	1.240	23.025
Transport Waste	520.000	1.733	140	20		1.138	595	5.584	89.471
Waste Round Trip			279	39					
Transport of Residues	125.000	568	20	3					
Residues Round Trips			40	6					
Total Trip W2E			160	23					
Total Round Trips W2E			319	45					

Using the ring-road M50 for transportation of waste from the baling stations the total distance required is increased by 2,078 km per day compared with scenario 1.

A summary from the seven scenarios can be seen in the table below

	Scenario 1	Scenario 2	Scenario 2A	Scenario 3	Scenario 3A	Scenario 4	Scenario 4A
Total Trips to W2E. Nos.	206	189	189	174	174	160	160
Total Round Trips W2E. Nos.	412	377	377	349	349	319	319
Peak Hour Trips. Nos.	35	31	31	26	26	23	23
Peak Hour Round Trips. Nos.	71	62	62	53	53	45	45
Waste Through Baling Stations. Tonnes per day	0	246	246	816	816	1.138	1.138
Waste Direct to W2E. Tonnes per day	1.733	1.487	1.487	917	917	595	595
Compacting Collection Vehicles Km per day	2.400	2.206	2.260	1.852	1.852	1.824	1.824
Haulage Vehicles From Baling Stations Km per day	0	251	510	930	1.968	1.260	2.654
Skip Vehicles Km per day	1.106	1.151	1.106	et 15e. 1.106	1.106	1.106	1.106
TOTAL DRIVEN Km per DAY	3.506	3.608	117 3876	3.888	4.926	4.190	5.584
Driven Tonnes Km.	33.757	38.035	5 ⁶⁵ 101 44.143	48.415	73.822	56.023	89.471
North Wall/East Wall Roundabout Number of vehicles (round trips) peak hour. Nos.	33	38.0355 strangection the re- property of the section of the sect	29	23	32	19	28
Beach Road/Sean Moore Road Junction Number of vehicles (round trips) peak hour. Nos.	Consentas	روم 36	33	30	21	26	17

Summary Daily Waste Transport

The calculations shows, that the traffic to the "Plant" can be reduced from 71 vehicles per hour to 45 vehicles per hour if a maximum use of the baling stations (transfer stations) are implemented.

However such a use of the baling stations will cause a considerable increase of transport km per day caused by the transport from baling stations to the "Plant", but simultaneously the transport km performed by the compacting collection vehicles will be reduced.

Costs and environment

In order to get a better basis for a decision on what scenario to choose, or to reject all scenarios it is necessary to make some calculations on costs and environment for each scenario. However it is not possible to prepare cost estimates comparable with the existing situation.

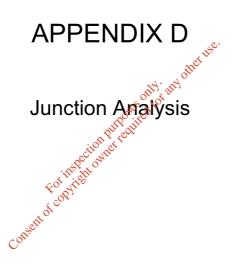
Therefore the calculations only show the mutual difference between the seven scenarios. For the cost calculations some basic assumptions have been made. They are as followed:

- The collection fleet operates 1,800 hours per year (i.e. each vehicle)
- The calculations are based on the assumption that the compacting collection vehicle is filled up when it enter the scenario i.e. it is only transportation through the City, which enter into the calculation
- The average transportation speed through the City is 15 km per hour.
- The average transportation speed to the "Plant" following M50 is 40 km per hour.
- Price for baling (Compaction) is 20 € per tonnes
- The average consumption of diesel is 2 km per litre diesel
- The CO_2 emission from the engines is 2,71 kg per litre diesel
- The cost calculation do not comprise skip transports

An average price for the collection fleet in operation is calculated on the basis of economic and technical data obtained from the organisations operating the collection systems. The average price is based on number of vehicles dedicated to waste collection for the "Plant" and the operation costs per year for each type of vehicle.

inspito

	COL THE		
19	nos. of four axled vehicles (15 tonnes)	210,000 €/Year	120 €/hour
33	nos. of three axled vehicles (12 tonnes)	200,000 €/year	110 €/Hour
5	nos. three axled vehicles (8.5 tonnes)	180,000 €/year	100 €/hour
_2	nos. of two axled vehicles (3.5 tonnes)	140,000 €/year	80 €/hour
-0	T T 1 1 1 1		111.0/1


59 Vehicles average price $111 \notin$ hour the result of the calculations are

The price for haulage vehicles is estimated to $100 \notin$ /hour. The result of the calculations are shown in the table below.

	Scenario 1	Scenario 2	Scenario 2A	Scenario 3	Scenario 3A	Scenario 4	Scenario 4A
Waste Through Baling Stations. Tonnes per day	0	246	246	816	816	1.138	1.138
Waste Direct to W2E. Tonnes per day	1.733	1.487	1.487	917	917	595	595
Compacting Collection Vehicles Km per day	2.400	2.206	2.260	1.852	1.852	1.824	1.824
Haulage Vehicles From Baling Stations Km per day	0	251	510	930	1.968	1.260	2.654
Skip Vehicles Km per day	1.106	1.151	1.106	1.106	1.106	1.106	1.106
TOTAL DRIVEN Km per DAY	3.506	3.608	3.876	3.888	4.926	4.190	5.584
Costs transportation Collection vehicles €	17.760	16.324	16.724	13.705	13.705	13.498	13.498
Costs transportation Haulage vehicles €	0	1.676	1.276	6.199	4.919	8.402	6.635
Total Transportation costs €	17.760	18.001	18.000	19.904	18.624	21.900	20.133
Baling costs €	0	4.920	4.920	16.320	16.320	22.760	22.760
Total Costs €	17.760	22.921	22.920	et 15 ^{6.} 36.224	34.944	44.660	42.893
Emission of CO2 Kg	3.252	3.330	3.754 ⁵	3.769	5.176	4.179	6.068

Economic and Environment Daily Waste Transport

PREFERRED SCENARIO
From an economical and environmental point of view scenario 1 is the most feasible to implement. However the traffic situation in Dublin City can be rather busy and therefore it may be more feasible to chose a scenario which create less transports in the peak hours to the "Plant"

User	M.C.O'Sullivan & Co.Ltd.	Project	bt Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	SCN		Chkd	
Title	2003 Existing AM Peak			Controller	Generic	Appvd	

Phases

	Phase Data				
	Phase Name	Phase Type	Assoc Phase	Street Min	Cont Min
A	Ringsend Road East Ahead Left Right	Traffic		7	7
в	Ringsend Road West Ahead Right Left	Traffic		7	7
С	South Lotts Road Right Left Ahead	Traffic		7	7
D	South Docks Rd Left Right Ahead	Traffic ve		7	7
Е	Pedestrians across Crossing Ringsend Road West	Pedestrian		7	7
F	Ringsend Road West Ahead Right Left IGA	nd. Arrow	В	7	7
	Ringsend Road West Ahead Right Left IGA				

•

.

٠

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	SCN				
Title	2003 Existing AM Peak			Controller	Generic	Appvd		

Phase Intergreens

From Phase			ie Int To P			
Filase	Α	В	С	D	Е	F
Α			5	5	8	
В			5	5	5	
С	5	5			6	5
D	5	5			8	5
E	11	11	1 1	11	~	net 1
F			5	nis.	113	
C D E F	specifi yright	on pur	POSES POSES	Jd 10		

•

.

.

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	DOD1ASH SCN Chkd				
Title	2003 Existing AM Peak			Controller	Generic	Appvd		

Phase Delays

	Phase Delays									
No	From Stage	То	Dhasa	De	lay Ti	me				
	Stage	Stage	Phase	Abs	Rel	Cntr				
1	1	3	С			2				
2	2	3	В			3				

Consent for inspection purposes only any other use.

•

•

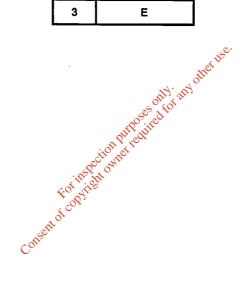
User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	SCN		Chkd		
Title	2003 Existing AM Peak			Controller	Generic	Appvd		

Prohibited Moves

From Stage	Prohibited Moves To Stage				
	1	2	3		
1		_			
2			-		
3					

Consent of copyright owner required for any other use.

.


2003 Existing AM Peak

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	DIASH SCN Chkd				
Title	2003 Existing AM Peak			Controller	Generic	Appvd		

• • • • •

Stages

	Stage Data
Stage	Phases In Stage
1	CD
2	ABF
3	E

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	SCN		Chkd		
Title	2003 Existing AM Peak			Controller	Generic	Appvd		

Links

	l	ink Da	ta	<u></u>			
Ref Num	Link	Туре	Full Phase	Arrw Phase	Opposing Arm/Link	R Turn Storage	Max Turn
1/1	Ringsend Road East Ahead Left Right	U	А				
2/1	Ringsend Road West Ahead Right Left	U	В	F			
3/1	South Lotts Road Right Left Ahead	U	c				
4/1	South Docks Rd Left Right Ahead	U	D	<u>_</u> @•		_	
5/1	Right turn Right	0	В	there	1/1	2	2
	South Docks Rd Left Right Ahead Right turn Right Consent of construction	n Purpose	for tot at				

.

file://R:\MDE0133\Tr\Li\.htm .

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	0001ASH SCN Chkd				
Title	2003 Existing AM Peak			Controller	Generic	Appvd		

Lanes

		Lane	Data					
Ref Num	Lane	Length (pcu)	Gradient (%)	Width (m)	Propn Turn (%)	Radius (m)	User Satn	RR67 Satn
1 /1	Ringsend Road East Ahead Left Right	Inf	0.00	4.20	24	12.00	1800	1976
2/1	Ringsend Road West Ahead Right Left	Inf	0.00	4.75	1	12.00	1800	2087
3/1	South Lotts Road Right Left Ahead	Inf	0.00	3.35%	^{e.} 95	12.00	1800	1743
4/1	South Docks Rd Left Right Ahead	Inf	0.00	325	63	8.00	1800	1735
5/1	Right turn Right	Inf	0.00 tot	3.25	100	13.00	1800	1739
	South Docks Rd Lett Right Ahead Right turn Right	insection f	arequire					

.

•

.

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project			
Location	Ringsend	File	0001ASH	0001ASH SCN Chkd			
Title	2003 Existing AM Peak	-		Controller	Generic	Appvd	

Traffic Flows

			Traffic Flows					
Grp	Time	Time	Tale		Link	Numb	er	
Num	Start	End	Title	1/1	2/1	3/1	4/1	5/1
1	08:15	09:15	Existing AM Peak 2003	946	691	188	24	144
2	17:00	18:00	Existing PM Peak 2003	502	956	244	36	155
3	08:00	09:00	2008 AM Peak without Development	1004	487	273	0	89
4	17:00	18:00	2008 PM Peak without Development	1021	1029	388	0	100
5	08:00	09:00	2008 AM Peak with Development	1043	526	273	0	89
6	17:00	18:00	2008 PM Peak with Development	1060	1068	388	0	100
7	08:00	09:00	2003 AM with Plant	980	725	188	24	144
8	08:00	09:00	2003 PM with Plant ist	536	990	244	36	155
			2003 PM with Planter For Instruction					

•

•

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	0001ASH SCN Chkd				
Title	2003 Existing AM Peak			Controller	Generic	Appvd		

Parameters Selected

s Selected
Existing AM Peak 2003
08:15 to 09:15
Street
120
1.00
RR67 het use

Stage Results

Sat Flows Used	RR67	7				
Sat Flows Used	unoses of	for any	Ote			
FOI IN Stage 1	limings					
Stage Sequence	e 2	1	3			
Stage Duration	77	12	7			
Stage Change Po		88	105			

.

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	DOD1ASH SCN Chkd				
Title	2003 Existing AM Peak			Controller	Generic	Appvd		

Link Results

				Lir	nk Res	ults						
Link Ref	Link Name	Link Type	Full Phs	Arw Phs	Tot Grn	Dem Flow	Satn Flow	Cap pcu	Deg Sat%	Del s/pcu	TDel pcuh	Que' pcu
1/1	Ringsend Road East Ahead Left Right	U	A		77	946	1976	1284	73.7	18.5	4.9	11.3
2/1	Ringsend Road West Ahead Right Left	U	B	۴	77	691	2087	1357 °.	50.9	12.8	2.5	8.3
3/1	South Lotts Road Right Left Ahead	U	С		14	188	1743	218	86.3	96.2	5.0	7.8
4/1	South Docks Rd Left Right Ahead	U	D		12 e	es of for ine24	1735	188	12.8	50.6	0.3	0.7
5/1	Right turn Right	0	В	F.o	A KAC	144	262	170	84.5	65.9	2.6	3.5
	Cycle Time 120 s								Total D	elay 15.	3 PCUh	

Opposed Link Results Color

	Opposed Movement Detail							
Link Ref	Link Name	Arr Grn	Gaps /cyc	lgn /cyc				
5/1	Right turn Right	77	3.7	2.0				

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	0001ASH SCN Chkd				
Title	2003 Existing PM Peak			Controller	Generic	Appvd		

Phases

	Phase Data				
	Phase Name	Phase Type	Assoc Phase	Street Min	Cont MIn
A	Ringsend Road East Ahead Left Right	Traffic		7	7
в	Ringsend Road West Ahead Right Left	Traffic		7	7
С	South Lotts Road Right Left Ahead	Traffic		7	7
D	South Docks Rd Left Right Ahead	Traffic		7	7
Ε	Pedestrians across Crossing Ringsend Road West	Pedestrian		7	7
F	Ringsend Road West Ahead Right Left IGA	Ind. Arrow	В	7	7
	Ringsend Road West Ahead Right Left IGA	5.809			

file://R:\MDE0133\Tr\Li\.htm

•

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	ste to Energy	Project		Page 2	
Location	Ringsend	File	0001ASH	DO1ASH SCN Chkd				
Title	2003 Existing PM Peak			Controller	Generic	Appvd		

Phase Intergreens

From		Phase Intergreens To Phase					
Phase	Α	в	С	D	Е	F	
Α			5	5	8		
в			5	5	5		
С	5	5			6	5	
D	5	5			8	5	
E	11	11	11	11		11	
F			5	5	5	ber u	
F F		In Put	5	5 only.	5 21140	per V	

.

file://R:\MDE0133\Tr\Li\.htm

.

.

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Project Dublin Waste to Energy Project					
Location	Ringsend	File	0001ASH SCN Chkd					
Title	2003 Existing PM Peak		-	Controller	Generic	Appvd		

Phase Delays

		Pha	se Delay	s		
No	From	То	e Phase	De	lay Ti	me
NU	From Stage	n To e Stage		Abs	Rel	Cntr
1	1	3	С			2
2	2	3	В			3

•

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	SCN				
Title	2003 Existing PM Peak			Controller	Generic	Appvd		

Prohibited Moves

From	Pro	Prohibited Moves To Stage					
Stage	1	2	3				
1							
2							
3							

•

.

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	0001ASH SCN Chkd				
Title	2003 Existing PM Peak			Controller	Generic	Appvd		

Stages

	Stage Data
Stage	Phases In Stage
1	CD
2	ABF
3	E

.

٠

•

28/04/2004

--

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Page 6			
Location	Ringsend	File	File 0001ASH SCN Chkd				
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Links

	Link Data									
Ref Num	Link	Туре	Full Phase	Arrw Phase	Opposing Arm/Link	R Turn Storage	Max Turn			
1/1	Ringsend Road East Ahead Left Right	U	А							
2/1	Ringsend Road West Ahead Right Left	U	В	F						
3/1	South Lotts Road Right Left Ahead	U	С							
4/1	South Docks Rd Left Right Ahead	U	D							
5/1	Right turn Right	0	В	F	1/1	2	2			

O B F

•

•

•

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	0001ASH SCN Chkd				
Title	2003 Existing PM Peak			Controller	Generic	Appvd		

Lanes

		Lane	Data						
Ref Num	Lane	Length (pcu)	Gradient (%)	Width (m)	Propn Turn (%)	Radius (m)	User Satn	RR67 Satn	
1/1	Ringsend Road East Ahead Left Right	Inf	0.00	4.20	24	12.00	1800	1976	
2/1	Ringsend Road West Ahead Right Left	Inf	0.00	4.75	1	12.00	1800	2087	
3/1	South Lotts Road Right Left Ahead	Inf	0.00	3.35	95	12.00	1800	1743	
4/1	South Docks Rd Left Right Ahead	Inf	0.00	3.25	<mark>ç∙</mark> 63	8.00	1800	1735	
5/1	Right turn Right	Inf	0.00	3,25	100	13.00	1800	1739	
5/1 Right turn Right Inf 0.00 3/25 100 13.00 1800 1739									

•

•

•

28/04/2004

٠

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project			
Location	Ringsend	File	0001ASH	SCN		Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Traffic Flows

			Traffic Flows					-
Grp	Time	Time	Title		Link	Numb	er	
Num	Start	End		1/1	2/1	3/1	4/1	5/1
1	08:15	09:15	Existing AM Peak 2003	946	691	188	24	144
2	17:00	18:00	Existing PM Peak 2003	502	956	244	36	155
3	08:00	09:00	2008 AM Peak without Development	1004	487	273	0	89
4	17:00	18:00	2008 PM Peak without Development	1021	1029	388	0	100
5	08:00	09:00	2008 AM Peak with Development	1043	526	273	0	89
6	17:00	18:00	2008 PM Peak with Development	1060	1068	388	0	100
7	08:00	09:00	2003 AM with Plant	980	725	188	24	144
8	08:00	09:00	2003 PM with Plant	536	990	244	36	155
			2008 PM Peak with Development 2003 AM with Plant 2003 PM with Plant 2003 PM with Plant 2003 PM with Plant conserved for the provided of the pr					

•

٠

•

User	M.C.O'Sullivan & Co.Ltd.	Project Dublin Waste to Energy Project					Page 9
Location	Ringsend	File	0001ASH	SCN		Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Parameters Selected

Parameter	s Selected
Flow Group	Existing PM Peak 2003
Flow Group Period	17:00 to 18:00
Phase Minimum Type	Street
CycleTime	120
Flow Factor	1.00
Sat Flows Used	RR67

Stage Results

.

•

Sat Flows Used	nno/			
	HOSE Sollings	or any	other us	<u>ي</u> .
Stage J	imings			
Stage Seguence	2	1	3	
Stage Duration	70	19	7	
Stage Change Po	int 0	81	105	
Con	_			•

.

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project			
Location	Ringsend	File	0001ASH	SCN		Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Link Results

				Lir	nk Res	ults						
Link Ref	Link Name	Link Type	Full Phs	Arw Phs	Tot Grn	Dem Flow	Satn Flow	Сар рси	Deg Sat%	Del s/pcu	TDel pcuh	Que' pcu
1/1	Ringsend Road East Ahead Left Right	U	A		70	502	1976	1169	42.9	15.1	2.1	7.0
2/1	Ringsend Road West Ahead Right Left	U	В	F	70	956	2087	1235	77.4	23.9	6.4	13.3
3/1	South Lotts Road Right Left Ahead	U	С		21	244	1743	5 <mark>9320</mark>	76.4	64.6	4.4	7.7
4/1	South Docks Rd Left Right Ahead	υ	D		19	36	1735	289	12.4	44.2	0.4	1.0
5/1	Right turn Right	0	В	F	70	5 155	719	426	36.4	15.6	0.7	2.2
	Cycle Time 120) s			PRO	16.2 %			Total D	elay 14.	0 PCUh	

Opposed Link Results

Opposed Movement Detail								
Link Ref	Link Name	Arr Grn	Gaps /cyc	lgn /cyc				
5/1	Right turn Right	70	12.2	2.0				

.

•

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project			
Location	Ringsend	File	0001ASH	DOTASH SCN Chke			
Title	2003 Existing AM Peak with	"Plant" T	raffic	Controller	Generic	Appvd	

Phases

٠

	Phase Data				1
	Phase Name	Phase Type	Assoc Phase	Street Min	Cont Min
Α	Ringsend Road East Ahead Left Right	Traffic		7	7
в	Ringsend Road West Ahead Right Left	Traffic		7	7
С	South Lotts Road Right Left Ahead	Traffic		7	7
D	South Docks Rd Left Right Ahead	Traffic		7	7
E	Pedestrians across Crossing Ringsend Road West	Pedestrian		7	7
F	Ringsend Road West Ahead Right Left IGA	Ind. Arrow	В	7	7

Consent of constraint owner required for any c

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project			
Location	Ringsend	File	0001ASH	SCN	Chkd		
Title	2003 Existing AM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd	

Phase Intergreens

From				ergr hase					
Phase	A	В	С	D	E	F			
Α			5	5	8				
В			5	5	5				
С	5	5			6	5			
D	5	5			8	5			
E	11	11	11	11		11			
F			5	5	5	not De			
D 5 5 8 5 E 11 11 11 11 F 5 5 5 5 F 5 5 5 5 For inspection purposes only required for any other converting for any other convertence for any other converting for any other converting f									

.

file://R:\MDE0133\Tr\Li\.htm

•

•

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	DO01ASH SCN Chkd				
Title	2003 Existing AM Peak with "Plant" Traffic			Controller	Generic	Appvd		

Phase Delays

		Pha	se Delay	s			
No	No From To Stage Stage	То	Phase	Delay Time			
10	Stage	Stage	Phase	Abs	Rel	Cntr	
1	1	3	С			2	
2	2	3	В			3	

•

.

•

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH SCN Chkd					
Title	2003 Existing AM Peak with "Plant" Traffic			Controller	Generic	Appvd		

Prohibited Moves

From Stage	Prohibited Moves To Stage						
	1	2	3				
1							
2							
3							

.

•

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	0001ASH SCN Chkd				
Title	2003 Existing AM Peak with "Plant" Traffic			Controller	Generic	Appvd		

Stages

	Stage Data
Stage	Phases In Stage
1	CD
2	ABF
3	E

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	SCN		Chkd		
Title	2003 Existing AM Peak with "Plant" Traffic			Controller	Generic	Appvd		

Links

	Link Data										
Ref Num	Link	Туре	Full Phase	Arrw Phase	Opposing Arm/Link	R Turn Storage	Max Turn				
1/1	Ringsend Road East Ahead Left Right	U	Α								
2/1	Ringsend Road West Ahead Right Left	U	В	F							
3/1	South Lotts Road Right Left Ahead	U	С								
4/1	South Docks Rd Left Right Ahead	U	D								
5/1	Right turn Right	0	В	F	1/1	2	2				

U B F

.

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	SCN				
Title	2003 Existing AM Peak with "Plant" Traffic			Controller	Generic	Appvd		

Lanes

		Lane	Data							
Ref Num	Lane	Length (pcu)	Gradient (%)	Width (m)	Propn Turn (%)	Radius (m)	User Satn	RR67 Satn		
1/1	Ringsend Road East Ahead Left Right	Inf	0.00	4.20	24	12.00	1800	1976		
2/1	Ringsend Road West Ahead Right Left	Inf	0.00	4.75	1	12.00	1800	2087		
3/1	South Lotts Road Right Left Ahead	Inf	0.00	3.35	95	12.00	1800	1743		
4/1	South Docks Rd Left Right Ahead	Inf	0.00	3.25 🔨	[©] 63	8.00	1800	1735		
5/1	Right turn Right	Inf	0.00	3.25	100	13.00	1800	1739		
	5/1 Right turn Right Inf 0.00 325 100 13.00 1800 1739									

file://R:\MDE0133\Tr\Li\.htm

.

•

•

.

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	0001ASH SCN Chkd				
Title	2003 Existing AM Peak with "Plant" Traffic			Controller	Generic	Appvd		

Traffic Flows

.

			Traffic Flows						
Grp	Time	Time	Title		Link	Numb	er		
Num	Start	End	Title	1/1	2/1	3/1	4/1	5/1	
1	08:15	09:15	Existing AM Peak 2003	946	691	188	24	144	
2	17:00	18:00	Existing PM Peak 2003	502	956	244	36	155	
3	08:00	09:00	2008 AM Peak without Development	1004	487	273	0	89	
4	17:00	18:00	2008 PM Peak without Development	1021	1029	388	0	100	
5	08:00	09:00	2008 AM Peak with Development	1043	526	273	0	89	
6	17:00	18:00	2008 PM Peak with Development	1060	1068	388	0	100	
7	08:00	09:00	2003 AM with Plant	980	725	188	24	144	
8	08:00	09:00	2003 PM with Plant uponineo	536	990	244	36	155	
	6 17:00 18:00 2008 PM Peak with Development of 1060 1068 388 0 100 7 08:00 09:00 2003 AM with Plant of the transmoster of								

.

.

• ··

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was		Page 9		
Location	Ringsend	File	0001ASH		Chkd		
Title	2003 Existing AM Peak with "Plant" Traffic			Controller	Generic	Appvd	

Parameters Selected

Parameters Selected							
Flow Group	2003 AM with Plant						
Flow Group Period	08:00 to 09:00						
Phase Minimum Type	Street						
CycleTime	120						
Flow Factor	1.00						
Sat Flows Used	RR67						

Stage Results

Sat Flows Used	RR67	•							
Stalle Timings									
Stage Jin	nings								
Stage Seguence	2	1	3						
Stage Duration	78	11	7						
Stage Change Point	1 0	89	105						
Con									

.

.

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Page 10			
Location	Ringsend	File	0001ASH	SCN		Chkd	
Title	2003 Existing AM Peak with "Plant" Traffic			Controller	Generic	Appvd	

Link Results

				Lir	nk Res	ults						
Link Ref	Link Name	Link Type	Full Phs	Arw Phs	Tot Grn	Dem Flow	Satn Flow	Cap pcu	Deg Sat%	Del s/pcu	TDel pcuh	Que' pcu
1/1	Ringsend Road East Ahead Left Right	U	A		78	980	1976	1301	75.3	18.6	5.1	11.4
2/1	Ringsend Road West Ahead Right Left	U	В	F	78	725	2087	1374	52.8	12.6	2.5	8.5
3/1	South Lotts Road Right Left Ahead	U	с		13	188	1743	s ² 03	92.5	124.2	6.5	9.3
4/1	South Docks Rd Left Right Ahead	U	D		11	24.	1735	174	13.8	51.8	0.3	0.7
5/1	Right turn Right	0	В	F	78	87144	239	158	91.3	97.7	3.9	4.7
	Cycle Time 120		PRO	2.7 %			Total D	elay 18.	3 PCUh			

Opposed Link Results

Opposed Movement Detail								
Link Ref	Link Name	Arr Grn	Gaps /cyc	lgn /cyc				
5/1	Right turn Right	78	3.3	2.0				

•

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	SCN		Chkd		
Title	2003 Existing PM Peak with "Plant" Traffic			Controller	Generic	Appvd		

Phases

.

	Phase Data										
	Phase Name	Phase Type	Assoc Phase	Street Min	Cont MIn						
A	Ringsend Road East Ahead Left Right	Traffic		7	7						
в	Ringsend Road West Ahead Right Left	Traffic		7	7						
С	South Lotts Road Right Left Ahead	Traffic		7	7						
D	South Docks Rd Left Right Ahead	Traffic		7	7						
E	Pedestrians across Crossing Ringsend Road West	Pedestrian		7	7						
F	Ringsend Road West Ahead Right Left IGA	Ind. Arrow	В	7	7						

Consent of constrained for any officer of the constrained for any officer officer of the constrained for any officer officer officer of the constrained for any officer of

.

•

.

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project				
Location	Ringsend	File	0001ASH	SCN		Chkd		
Title	2003 Existing PM Peak with "Plant" Traffic			Controller	Generic	Appvd		

Phase Intergreens

From Phase			ie Int To P		eens	
Phase	A	в	С	D	E	F
А			5	5	8	
В			5	5	5	
С	5	5			6	5
D	5	5			8	5
E	11	11	11	11		11
F			5	5	5	let 15
F F	spectru riett	on pur	Poses requir	only.	2013	

•

file://R:\MDE0133\Tr\Li\.htm

•

•

28/04/2004

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Page 3			
Location	Ringsend	File	0001ASH	SCN		Chkd	
Title	2003 Existing PM Peak with "Plant" Traffic			Controller	Generic	Appvd	

Phase Delays

	Phase Delays										
No	No From To Stage Stag	То	Phase	Delay Time							
		Stage	Flidse	Abs	Rel	Cntr					
1	1	3	С			2					
2	2	3	В			3					

•

•

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project			
Location	Ringsend	File	0001ASH	0001ASH SCN Chkd			
Title	2003 Existing PM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd	

Prohibited Moves

From	Prohibited Moves To Stage					
Stage	1	2	3			
1						
2						
3						

•

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	ste to Energy	Project		Page 5
Location	Ringsend	File	0001ASH	SCN		Chkd	
Title	2003 Existing PM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd	

Stages

.

	Stage Data						
Stage	Phases In Stage						
1	CD						
2	ABF						
3	E						

•

•

•

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	ste to Energy	Project		Page 6
Location	Ringsend	File	0001ASH SCN Chkd				
Title	2003 Existing PM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd	

Links

·

	Link Data						
Ref Num	Link	Туре	Full Phase	Arrw Phase	Opposing Arm/Link	R Turn Storage	Max Turn
1/1	Ringsend Road East Ahead Left Right	U	А				
2/1	Ringsend Road West Ahead Right Left	U	в	F			
3/1	South Lotts Road Right Left Ahead	U	С				
4/1	South Docks Rd Left Right Ahead	U	D				
5/1	Right turn Right	0	В	F	1/1	2	2

Consent of copyright owner required for any other us

•

•

•

28/04/2004

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	ste to Energy	Project		Page 7
Location	Ringsend	File	0001ASH	SCN		Chkd	
Title	2003 Existing PM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd	

Lanes

		Lane	Data					
Ref Num	Lane	Length (pcu)	Gradient (%)	Width (m)	Propn Turn (%)	Radius (m)	User Satn	RR67 Satn
1/1	Ringsend Road East Ahead Left Right	Inf	0.00	4.20	24	12.00	1800	1976
2/1	Ringsend Road West Ahead Right Left	Inf	0.00	4.75	1	12.00	1800	2087
3/1	South Lotts Road Right Left Ahead	Inf	0.00	3.35	95	12.00	1800	1743
4/1	South Docks Rd Left Right Ahead	Inf	0.00	3.25	^{e.} 63	8.00	1800	1735
5/1	Right turn Right	Inf	0.00	325	100	13.00	1800	1739
5/1 Right turn Right Inf 0.00 325 100 13.00 1800 1739								

•

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Wa	Dublin Waste to Energy Project			
Location	Ringsend	File	0001ASH	01ASH SCN Chkd			
Title	2003 Existing PM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd	

Traffic Flows

			Traffic Flows					
Grp	Time	Time	Title		Link	Numb	er	
Num	Start	End	The	1/1	2/1	3/1	4/1	5/1
1	08:15	09:15	Existing AM Peak 2003	946	691	188	24	144
2	17:00	18:00	Existing PM Peak 2003	502	956	244	36	155
3	08:00	09:00	2008 AM Peak without Development	1004	487	273	0	89
4	17:00	18:00	2008 PM Peak without Development	1021	1029	388	0	100
5	08:00	09:00	2008 AM Peak with Development	1043	526	273	0	89
6	17:00	18:00	2008 PM Peak with Development	9 1060	1068	388	0	100
7	08:00	09:00	2003 AM with Plant	980	725	188	24	144
8	08:00	09:00	2003 PM with Plant	536	990	244	36	155
6 17:00 18:00 2008 PM Peak with Development of 1060 1068 388 0 100 7 08:00 09:00 2003 AM with Plant of the new of 1060 980 725 188 24 144 8 08:00 09:00 2003 PM with Plant of the new of the new of 1060 536 990 244 36 155 For inspection the new of t								

•

.

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Waste to Energy Project				Page 9
Location	Ringsend	File	0001ASH	SCN		Chkd	
Title	2003 Existing PM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd	

Parameters Selected

Parameters Selected					
Flow Group	2003 PM with Plant				
Flow Group Period	08:00 to 09:00				
Phase Minimum Type	Street				
CycleTime	120				
Flow Factor	1.00				
Sat Flows Used	RR67				

Stage Results

÷

Sat Flows Used	RK6/		_						
Stage Timings									
Stage Tin	nings								
Stage Sequence	2	1	3						
Stage Duration	71	18	7						
Stage Change Point	t 0	82	105						
Con				•					

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	ste to Energy	Project		Page 10
Location	Ringsend	File	0001ASH	SCN		Chkd	
Title	2003 Existing PM Peak with	"Plant" T	raffic	Controller	Generic	Appvd	

Link Results

	Link Results											
Link Ref	Link Name	Link Type	Full Phs	Arw Phs	Tot Grn	Dem Flow	Satn Flow	Cap pcu	Deg Sat%	Del s/pcu	TDel pcuh	Que' pcu
1/1	Ringsend Road East Ahead Left Right	U	A		71	536	1976	1186	45.2	14.9	2.2	7.3
2/1	Ringsend Road West Ahead Right Left	U	В	F	71	990	2087	1252	79.1	24.1	6.6	13.5
3/1	South Lotts Road Right Left Ahead	U	с		20	244	1743	305	80.0	70.3	4.8	8.2
4/1	South Docks Rd Left Right Ahead	U	D		18	36	1735	275	13.1	45.2	0.5	1.0
5/1	Right turn Right	0	В	F	71	ి 155	678	407	38.1	15.6	0.7	2.1
	Cycle Time 120)s		50	N 1 N	2.5 %			Total D	elay 14.	B PCUh	

Opposed Link Results For inspection

COL	Opposed Move	ment	Detail	
Link Ref	Link Name	Arr Grn	Gaps /cyc	lgn /cyc
5/1	Right turn Right	71	11.6	2.0

•

•

TRL TRL VIEWE	R 2.0 AB	R:\MDE0133	NTr\Ar\Sou	uth B	ank Road	\0001A	SH.vao -	Page	e 1		
Т	RANSPORT RES	EARCH LAB	DRATORY								
(C) COPYRIGHT	1990,1996	5,2000								
CAPACITIE	S, QUEUES AN	D DELAYS A	AT ROUNDABO	OUTS							
A	RCADY 5.0 A RELEASE 1.										
	COM ARCADY/3 IISSION OF TH										
FOR SAL PROGRAM TEL: CROW	THORNE (0134 IL: Software	IBUTION IN MAINTENANC ARE BUREAU 4) 770758, Bureau@trl	FORMATION, CE CONTACT: J FAX: 7708 L.co.uk								
THE USER OF THIS COMPUTER IN NO WAY RELIEVED OF HI											
Run with file:- "r:\MDE01	.33\Tr\Ar\Sou	th Bank Ro	ad\0001ASH	I.vai	• at 15:4	44:59	on Wednes	day,	28 Apr	il 200	4
ROUNDABOUT CAPACITY AND D											
RUN TITLE ********* Sean Moore Road / South	Bank Road -	Existing #	M Peak 200)3		ther use.					
INPUT DATA				.e	outs and						
ARM A - EastLink Road ARM B - South Bank Road (ARM C - South Bank Road ARM D - Sean Moore Road ARM E - Pigeon House Road	-	d)	To inspection for program of the section of the sec	purpose	hed						
GEOMETRIC DATA		onsent	of								
IARM I V (M) I		L (M) 1	R (M)	I	D (M)	I	PHI (DEG)	I			ERCEPT (PCU/MIN)
I ARM A I 5.60 I I ARM B I 7.20 I I ARM C I 7.20 I I ARM C I 7.40 I I ARM E I 3.00 I	8.60 I 8.90 I 9.20 I 9.20 I 4.20 I	5.00 1 3.60 1 10.00 1 15.00 1 0.00 1	13.00 30.00 30.00 18.00 10.00	I I I I I I	55.00 55.00 55.00 55.00 55.00 55.00	I I I I I	22.0 29.0 25.0 63.0 79.0	I I I I I	0.641 0.723 0.764 0.664 0.396	I I I I I I	33.516 40.565 43.949 38.668 16.566
V = approach half-width E = entry width											
TRAFFIC DEMAND DATA											
TIME PERIOD BEGINS 08.00	AND ENDS 09.	30									

•

LENGTH OF TIME PERIOD - 90 MINUTES. LENGTH OF TIME SEGMENT - 15 MINUTES.

•

.

•

•

TRL	TRL VIEWER	2.0 AB R:\MDE0133\Tr\Ar\South Bank Road\0001ASH.vao - Page 2

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

I I ARM I	I I I I	FLOW STARTS	I	INUTES FROM S TOP OF PEAK IS REACHED	I FL	OW STOPS	I		Ι	AT TOP	I	AFTER	
I ARM A I ARM B I ARM C I ARM D I ARM D I ARM E	I I I	15.00 15.00 15.00 15.00 15.00	I I I I I	45.00 45.00	I I I I I I	75.00 75.00 75.00 75.00 75.00 75.00	I I	0.46 0.52 10.75		15.56 0.69 0.79 16.13 0.00	I I	0.46 0.52 10.75	I I I

I I I I		I I I		T	URNING PRO URNING COU ERCENTAGE	UNTS (VEH	/HR)		I I I
Ī	TIME	I	FROM/TO	I	ARM A I	ARM B I	ARM C I	ARM D I	ARM E I
	08.00 - 09.30		ARM A ARM B ARM C ARM D		0.0 I (10.0)I I 0.622 I 23.0 I (10.0)I I 22.0 I (10.0)I I 0.887 I 763.0 I (10.0)I I I	16.0 I (10.0)I 0.000 I 0.0 I (10.0)I (10.0)I (10.0)I (10.0)I (10.0)I I 0.012 I	64.0 I (10.0)I I 0.162 I 6.0 I (10.0)I I 0.000 I (10.0)I I 0.101 I 87.0 I (10.0)I	750.0 I (10.0)I I 0.216 I (10.0)I (10.0)I I 0.429 I 18.0 I (10.0)I (10.0)I I 0.000 F	0.0 I (10.0)I I 0.000 I 0.0 I (10.0)I I
1 I I		I I I I	ARM E	-	??????? I	??????? I	?????????	???????? I?	0.000 I ?????? I (10.0)I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA DEFAULT PROPORTIONS OF HEAVY VEHICLES ARE USED QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

•

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	08.00-08	8.15							I
I	ARM A	10.38	29.68	0.350		0.0	0.5	7.8	I
I	ARM B	0.46	28.76	0.016		0.0	0.0	0.2	I
I	ARM C	0.52	32.52	0.016		0.0	0.0	0.2	I
I	ARM D	10.75	34.76	0.309		0.0	0.4	6.6	Ĭ
I	ARM E	0.00	11.64	0.000		0.0	0.0	0.0	I
I									I
-									
-									
- т	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
- I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEES)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
- I I I I	TIME 08.15-0	(VEH/MIN)		CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
- I I I I I		(VEH/MIN)		CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
-	08.15-0	(VEH/MIN) 8.30	(VEH/MIN)	CAPACITY (RFC)	FLOW	QUEUE (VEHS)	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT)	(VEH.MIN/ I
I	08.15-0 ARM A	(VEH/MIN) 8.30 12.39	(VEH/MIN) 29.52	CAPACITY (RFC) 0.420	FLOW	QUEUE (VEHS) 0.5	QUEUE (VEHS) 0.7	(VEH.MIN/ TIME SEGMENT) 10.6	(VEH.MIN/ I
I	08.15-0 ARM A ARM B	(VEH/MIN) 8.30 12.39 0.55	(VEH/MIN) 29.52 27.16	CAPACITY (RFC) 0.420 0.020	FLOW	QUEUE (VEHS) 0.5 0.0	QUEUE (VEHS) 0.7 0.0	(VEH.MIN/ TIME SEGMENT) 10.6 0.3	(VEH.MIN/ I
I I I	08.15-0 ARM A ARM B ARM C	(VEH/MIN) 8.30 12.39 0.55 0.63	(VEH/MIN) 29.52 27.16 31.06	CAPACITY (RFC) 0.420 0.020 0.020	FLOW	QUEUE (VEHS) 0.5 0.0 0.0	QUEUE (VEHS) 0.7 0.0 0.0	(VEH.MIN/ TIME SEGMENT) 10.6 0.3 0.3	(VEH.MIN/ I
I I I	08.15-0 ARM A ARM B ARM C ARM D	(VEH/MIN) 8.30 12.39 0.55 0.63 12.84	(VEH/MIN) 29.52 27.16 31.06 34.69	CAPACITY (RFC) 0.420 0.020 0.020 0.370	FLOW	QUEUE (VEHS) 0.5 0.0 0.0 0.4	QUEUE (VEHS) 0.7 0.0 0.0 0.0 0.6	(VEH.MIN/ TIME SEGMENT) 10.6 0.3 0.3 8.6	(VEH.MIN/ I

.

•

RL	• • • •	TRL	VIEWER	2.0 AB R:	\MDE0133\Tr\#	\r\Souti	n Bank F	load\0001ASH.va	o - Page 3
 [[TIME		CAPACITY (VEH/MIN)	CAPACITY	FLOW	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)
	08.30-					,,	(• =••= ,		. Ind begneniy
Ι	ARM A	15.17	29.31	0.518		0.7	1.1	15.5	
	ARM B	0.68 0.77 15.72	24.98	0.027		0.0	0.0	0.4	
-	ARM C	0.77	29.06	0.026		0.0	0.0	0.4	
	ARM D	15.72	34.58	0.455		0.6	0.8	12.2	
[[ARM E	0.00	9.36	0.000		0.0	0.0 0.0 0.8 0.0	0.0	
L C	TIME		CAPACITY		PEDESTRIAN	START	END	DELAY	GEOMETRIC DELA
L E		(VEH/MIN)	(VEH/MIN)	CAPACITY		QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/
-	N0 15	09.00		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
			29 31	0 519		1 1	1 1	16.0	
	ARM B	15.17 0.68	29.51	0.027		1.1	0.0	16.0 0.4	
-	ARM C	0.00	29.05	0.026			0.0		
	ADM D	15.72	34.58	0.455			0.8		
	ARME	0.00	29.05 34.58 9.35	0.000		0.0	0.0	0.0	
-	TIME		CAPACITY		PEDESTRIAN	START	END	DELAY	GEOMETRIC DELA
[[(VEH/MIN)	(VEH/MIN)	CAPACITY (RFC)		QUEUE (VEHS)	QUEUE	(VEH.MIN/	(VEH.MIN/ TIME SEGMENT)
	09.00-	09.15			(====;====;	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(*0)	TIND ODDILLAT	TIME SEGMENT)
	ARM A	12.39	29.52	0.420		1.1	0.7	11.2	
:	ARM B	0.55	27.13	0.020		0.0	0.0	0.3	
	ARM C	0.63	31.03	0.020		0.0	0.0	0.3	
	ARM D	0.55 0.63 12.84	34.69	0.370		0.8	0.6	9,0	
:	ARM E	0.00	10.67	0.000		0.0	0.0	\$.0	
								ather	
							-only.	any	
	TIME			DEMAND/		START	CENTLY .	DET NV	GEOMETRIC DELA
Ι		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/
:				(RFC)	(PEDS/MIN)	(VEHS)	(CEHS)	TIME SEGMENT)	TIME SEGMENT)
	09.15-	09.30				ion of	¥ ⁷	TIME SEGMENT) 8.2	
	ARM A	10.38	29.68	0.350		ecio NTC	0.5	8.2 0.2	
-	ARM B	0.46	29.68 28.72 32.49	0.016	يم	x 0.0	0.0	0.2	
	ARM C	0.52	32.49	0.016	A IL	\$°0.0	0.0	0.2	
	ARM D	10.75 0.00	34.76	0.309	FUN	0.6	0.4	6.8	
	ARM E	0.00	11.63	0.000	ofcor	0.0	0.5 0.0 0.0 0.4 0.0	0.0	
					Consent of				
					AV .				

TIME SEGMENT NO. OF ENDING VEHICLES IN QUEUE

08.15 08.30 08.45 09.00 09.15	0.5 0.7 1.1 1.1 0.7	* * * * * .
09.30	0.5	*

QUEUE AT ARM B -----

.

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0

.

•

QUEUE AT ARM C ____

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0

0.0

QUEUE AT ARM D

09.15 09.30

|--|--|

TIME SEGMENT	NO. OF	
ENDING	VEHICLES	
	IN QUEUE	
08.15	0.4	
08.30	0.6	*
08.45	0.8	*
09.00	0.8	*
09.15	0.6	*
09.30	0.4	

QUEUE AT ARM E

TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0

	VEHICLES IN QUEUE							other us	
08.15	0.0						OI	of all	
08.30	0.0					3	5° 2,	ço.	
08.45 09.00	0.0					all Post	in		
09.00	0.0					n Priveo	5		
09.30	0.0					tioner			
ARM I I	TOTAL DEMAND	 I * I	QUEUE * DELA	ING *	 I * I	INCLUSI	VE (DEL)	QUEUEING * AY * (MIN/VEH) 0.06 0.04	 I I
I- I	(VEH) (VEH/H) I (MIN	1) (MIN/VEH)	I	(MIN)		(MIN/VEH)	1 1
A I	1138.1 I 758.	7 I 69		0.06	 I	69.4	 I	0.06	 I
	50.7 I 33.								
B I			0 T	0.03	т	1 0	Ŧ	0.03	
C I				0.05				0.05	I
	TOTAL DEMAND	 I *	QUEUE	- CONSEL ING * Y *	I *	INCLUSI	VE (QUEUEING *	-

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD.

.

* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD. * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

.

END OF JOB

****** ARCADY 5 run completed. •

[Printed at 15:45:49 on 28/04/2004]

rrl	TRL VIEWER		R:\MDE013	3\Tr\Ar\S	outh Bank	k Road	1\0002	ASH.	vao -	Page	≥ 1	
									-			
	TRA	NSPORT RESI	EARCH LAB	ORATORY								
	(C)	COPYRIGHT	1990,199	6,2000								
	CAPACITIES,	QUEUES ANI	D DELAYS	AT ROUNDAI	OUTS							
		ADY 5.0 AN RELEASE 1.(
		SION OF THE	E CONTROL	LER OF HMS	80							
	PROGRAM A TEL: CROWTH EMAIL	AND DISTRI DVICE AND M TRL SOFTWA	IBUTION I MAINTENAN ARE BUREA 4) 770758 Bureau@tr	NFORMATION CE CONTACT J , FAX: 770 L.co.uk	I, ':							
IN NO WAY	DF THIS COMPUTER P RELIEVED OF HIS 1 Tile:- "r:\MDE0133"	RESPONSIBII	LITY FOR	THE CORRE	CTNESS	OF TH	E SOL	UTION	N	lay,	28 Ap:	ril 200
IN NO WAY Run with f ROUNDABOUT	RELIEVED OF HIS I	RESPONSIBII \Tr\Ar\Sout AY	LITY FOR	THE CORRE	CTNESS	OF TH	E SOL	UTION	N	lay,	28 Ap:	-il 200
IN NO WAY Run with f ROUNDABOUT	RELIEVED OF HIS I ile:- "r:\MDE0133" CAPACITY AND DEL	RESPONSIBII \Tr\Ar\Sout AY	LITY FOR	THE CORRE	CTNESS H.vai¶ a	OF TH	E SOL	OTION	N	lay,	28 Ap:	-il 200
IN NO WAY Run with f ROUNDABOUT	RELIEVED OF HIS I ile:- "r:\MDE0133" CAPACITY AND DEL	RESPONSIBII \Tr\Ar\Sout AY **	LITY FOR	THE CORRE	CTNESS H.vai¶ a	OF TH	E SOL	OTION	N	lay,	28 Ap:	ril 200
IN NO WAY Run with f ROUNDABOUT	RELIEVED OF HIS 1 Tile:- "r:\MDE0133" CAPACITY AND DEL	RESPONSIBII \Tr\Ar\Sout AY **	LITY FOR	THE CORRE	CTNESS H.vai¶ a	OF TH	E SOL	OTION	N	lay,	28 Ap:	-il 200
IN NO WAY Run with f ROUNDABOUT ********* RUN TITLE Sean Moor INPUT DATA	RELIEVED OF HIS ile:- *r:\MDE0133 CAPACITY AND DELA ************************************	RESPONSIBII \Tr\Ar\Sout AY **	LITY FOR	THE CORRE	CTNESS H.vai¶ a	OF TH	E SOL	OTION	N	day,	28 Ap:	-il 200
IN NO WAY Run with f ROUNDABOUT ********* Sean Moor INPUT DATA ********* ARM A - Ea ARM B - So ARM C - So ARM D - Se	RELIEVED OF HIS ile:- *r:\MDE0133 CAPACITY AND DELA ************************************	RESPONSIBII \Tr\Ar\Sout AY **	LITY FOR	THE CORRE	CTNESS H.vai¶ a	OF TH	E SOL	OTION	N	day,	28 Ap:	-il 200
IN NO WAY Run with f ROUNDABOUT ********* Sean Moor INPUT DATA ********* ARM A - Ea ARM B - So ARM C - So ARM D - Se	RELIEVED OF HIS Tile:- "r:\MDE0133" CAPACITY AND DELA ************************************	RESPONSIBII \Tr\Ar\Sout AY **	LITY FOR	THE CORRE	CTNESS H.vai¶ a	OF TH	E SOL	OTION	N	day,	28 Ap:	-il 200

IARM I	V (M)	I	E (M)	I	L (M)	I	R (M)	I	D (M)	I	PHI (DEG)	I	SLOPE	I INTERCEPT (PCU/MIN)
I ARM A I I ARM B I I ARM C I I ARM D I I ARM E I	5.60 7.20 7.20 7.40 3.00	I I I I I	8.60 8.90 9.20 9.20 4.20	I I I I	5.00 3.60 10.00 15.00 0.00	I I I I	13.00 30.00 30.00 18.00 10.00	I I I I	55.00 55.00 55.00 55.00 55.00 55.00	I I I I	22.0 29.0 25.0 63.0 79.0	I I I	0.641 0.723 0.764 0.664 0.396	I 40.565 I 43.949 I 38.668

•

V = approach half-widthL = effective flare lengthE = entry widthR = entry radius

D = inscribed circle diameter PHI = entry angle

•

TRAFFIC DEMAND DATA -----

TIME PERIOD BEGINS 16.45 AND ENDS 18.15

LENGTH OF TIME PERIOD - 90 MINUTES. LENGTH OF TIME SEGMENT - 15 MINUTES.

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

. . . .

I I ARM I	I I I	NUMBER OF FLOW STARTS TO RISE	I	NUTES FROM S TOP OF PEAK IS REACHED	STAN I N	RT WHEN FLOW STOPS	I I	RATE BEFORE	OF I	FLOW (Ι	AFTER	
I ARM A I ARM B I ARM C I ARM D I ARM D I ARM E	I I I	15.00 15.00 15.00	I I I I	$\begin{array}{r} 45.00\\ 45.00\\ 45.00\\ 45.00\\ 45.00\\ 45.00\end{array}$	I I I I I	75.00 75.00 75.00 75.00 75.00 75.00	I I	0.71 1.49 11.15	I I I I	1.07	-	0.71 1.49 11.15	I I I

							 .		
I		I		ΤU	JRNING PRO	PORTIONS			I
T		I		TU	JRNING COL	NTS (VEH)	(HR)		I
T		I		(PI	ERCENTAGE	OF H.V.S	1		I
Ť									
ī	TIME	I	FROM/TO	I	ARM A I	ARM B I	ARM C I	ARM D I	ARM E I
 T	16.45 - 18.15	 T		 т	 Т	т	т	I	I
Ť	10.45 10.15	T	ARM A	Ŧ	0.000 I	0.029 I	0.08D I	0.891 I	0.000 I
- 7		Ť		Ŧ	0.0 I	21.0 I	57.0 I		0.0 I
Ŧ		Ť		Ť	• • • -	(10.0)I			
- -		Ť		Ŧ	(1010,1 T	(1000,1 T	τ 1000 <i>/</i> 1	(1000,1 T	т
1 T		Ť	ARM B	ī	0.456 I	0.000 1	0.175 I	0.368 Î	0.000 Ī
Ť		Ť	indi D	Ť	26.0 I	0.0 I	10.0 I		0.0 I
Ť		Ť		Ť	(10.0)I	(10.0)I	(10.0)I		+
Ť		Ť		Ť	(10.0,1 T	(2010, 1 T	(<u></u> ,,	т	T I
Ť		Ť	ARM C	ī	0.311 I	0.000 I	0.000 1	0.689 I	0.000 I
Ť		Ť		Ŧ	37.0 I	0.0 I		82.0 I	0:0 I
Ť		Ŧ		Ŧ				(10.0)I	(10.0)I
Ť		Ť		Ť	(1010/1 T	,,т	,,_	I I	I I
Ť		Ť	ARM D	ī	0.954 I	0.009 I	0.037 I	0.000 1	0.000 I
Ŧ		T		ī	851.0 I	8.0 I	33.0 I		
Ť		ī		ī	(10.0)I	(10.0)I	(10.0)I	4 10.0) I	
Ŧ		Ī		Ī	I	Ĩ	I	Se of I	I
т		I	ARM E	Ι	0.000 I	0.000 I	0.000	0.000 I	0.000 I
Ī		I		I	??????? I	555555 I.	???????????????????????????????????????	???????? I?	?????? I
I		I		I	(10.0)I	(10.0)I	(30, 0) I	(10.0)I	(10.0)I
I		I		I	I	I	C WILL I	(10.0)I I	I
							×		

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA DEFAULT PROPORTIONS OF HEAVY VEHICLES ARE USED

.

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

_									
I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	16.45-1	7.00							I
I	ARM A	8.91	30.14	0.296		0.0	0.4	6.1	I
I	ARM B	0.71	30.34	0.023		0.0	0.0	0.4	I
I	ARM C	1.49	33.46	0.044		0.0	0.0	0.7	I
I	ARM D	11.15	34.63	0.322		0.0	0.5	7.0	I
I	ARM E	0.00	11.38	0.000		0.0	0.0	0.0	I
I									I
-						• • • • • • • •	·		
-									
- I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
- I I	TIMÉ	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
- I I I		(VEH/MIN)							(VEH.MIN/ I TIME SEGMENT) I
- I I I	17.00-1	(VEH/MIN) 7.15	(VEH/MIN)	CAPACITY (RFC)	FLOW	QUEUE (VEHS)	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT)	(VEH.MIN/ I
- I I I I I		(VEH/MIN) 7.15 10.64	(VEH/MIN) 30.08	CAPACITY (RFC) 0.354	FLOW	QUEUE (VEHS) 0.4	QUEUE (VEHS) 0.5	(VEH.MIN/ TIME SEGMENT) 8.0	(VEH.MIN/ I TIME SEGMENT) I
	17.00-1	(VEH/MIN) 7.15	(VEH/MIN)	CAPACITY (RFC)	FLOW	QUEUE (VEHS) 0.4 0.0	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT) 8.0 0.4	(VEH.MIN/ I TIME SEGMENT) I
I I	17.00-1 ARM A ARM B ARM C	(VEH/MIN) 7.15 10.64	(VEH/MIN) 30.08	CAPACITY (RFC) 0.354 0.029 0.055	FLOW	QUEUE (VEHS) 0.4 0.0 0.0	QUEUE (VEHS) 0.5 0.0 0.1	(VEH.MIN/ TIME SEGMENT) 8.0 0.4 0.9	(VEH.MIN/ I TIME SEGMENT) I
I I	17.00-1 ARM A ARM B	(VEH/MIN) 7.15 10.64 0.85	(VEH/MIN) 30.08 29.06	CAPACITY (RFC) 0.354 0.029	FLOW	QUEUE (VEHS) 0.4 0.0 0.0 0.5	QUEUE (VEHS) 0.5 0.0	(VEH.MIN/ TIME SEGMENT) 8.0 0.4	(VEH.MIN/ I TIME SEGMENT) I
I I I	17.00-1 ARM A ARM B ARM C	(VEH/MIN) 7.15 10.64 0.85 1.78	(VEH/MIN) 30.08 29.06 32.18	CAPACITY (RFC) 0.354 0.029 0.055	FLOW	QUEUE (VEHS) 0.4 0.0 0.0	QUEUE (VEHS) 0.5 0.0 0.1	(VEH.MIN/ TIME SEGMENT) 8.0 0.4 0.9	(VEH.MIN/ I TIME SEGMENT) I
I I I	17.00-1 ARM A ARM B ARM C ARM D	(VEH/MIN) 7.15 10.64 0.85 1.78 13.31	(VEH/MIN) 30.08 29.06 32.18 34.53	CAPACITY (RFC) 0.354 0.029 0.055 0.386	FLOW	QUEUE (VEHS) 0.4 0.0 0.0 0.5	QUEUE (VEHS) 0.5 0.0 0.1 0.6	(VEH.MIN/ TIME SEGMENT) 8.0 0.4 0.9 9.2	(VEH.MIN/ I TIME SEGMENT) I

EPA Export 25-07-2013:21:29:13

-	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	CAPACITY	PEDESTRIAN FLOW (PEDS/MIN)	OUEUE	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME_SEGMENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
	17.15-1	7.30		• • •	·····	((,		
	ARM A	13.03	29,99	0.435		0.5	0.8	11.2	
	ARM B	1.04	27.30	0.038			0.0	0.6	
	ARM C	2.18	30.44	0.071					
	ARM D	1.04 2.18 16.31 0.00	34.39	0.474		0 6	0.9	1.1 13.2	
	ARM E	0 00	8 97	0.000		0.0			
-									
-	TIME								
	TIME		CAPACITY		PEDESTRIAN	START	END		GEOMETRIC DELA
		(VEH/MIN)	(VEH/MIN)	CAPACITY				(VEH.MIN/	(VEH.MIN/
	17 30 1	7 45		(RPC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
	17.30-1 ARM A	./.45	20.00	0 435		0.0	~ ~		
	ARM A	13.03	29.99	0.435			0.8	11.5	
	ARM B	13.03 1.04 2.18	27.29	0.038			0.0		
	ARM C	2.18	30.43	0.071			0.1		
	ARM D	16.31	34.39 8.97	0.474			0.9	13.5	
_	ARM E	0.00	8.97	0.000		0.0	0.0	0.0	
_	TIME		CAPACITY (VEH/MIN)	CAPACITY	PEDESTRIAN FLOW	QUEUE	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
	17.45-1	8 00		(10.0)			(VEn3)	TIME SEGMENT/	TIME SEGMENT)
	ABM A	10 64	30.08	0.354		0.8	0.6	8.4	
	ADM B	0.85	29.04	0.029			0.0	0.5	
	ARM C	1 78	32 17	0.055		0.0	0.1	0.9	
	APM D	12 21	34 53	0.386		0.9	0.1		
	ADME	10.64 0.85 1.78 13.31 0.00	10 35	0.000		0.0		N 0	
_	AND E	0.00	10.33	0.000		0.0		offer 10.0	·
_							OF END	103	
	TIME			DEMAND/	PEDESTRIAN	START	C END	DELAY (VEH.MIN/	GEOMETRIC DELA
		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/
				(RFC)	(PEDS/MIN)	(VEHS) <	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
	18.00-1	.8.15				$\cdot O' \wedge$			
	ARM A	8.91	30.14	0.296	4	section per	0.4	6.4	
	ARM B	0.71	30.14 30.32	0.024	.05	×0.0	0.0	0.4	
	ARM C	1.49	33.44	0.044	at the	8 0.1	0.0	0.7	
	ARM D	11.15		0.322	Forins	0.6	0.0 0.0 0.5	7.3	
	ARM E	0.00	34.63 11.37	0.000	For inst	0.0	0.0	0.0	
			/		ð				

Conser

•

•

EPA Export 25-07-2013:21:29:13

QUEUE AT ARM A

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE	
17.00	0.4	
17.15	0.5	*
17.30	0.8	*
17.45	0.8	*
18.00	0.6	*
18.15	0.4	

QUEUE AT ARM B

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
17.00	0.0
17.15	0.0
17.30	0.0
17.45	0.0
18.00	0.0
18.15	0.0

-----TRL TRL VIEWER 2.0 AB R:\MDE0133\Tr\Ar\South Bank Road\0002ASH.vao - Page 4 --------

QUEUE AT ARM C ----------

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
17.00	0.0
17.15	0.1
17.30	0.1
17.45	0.1
18.00	0.1
18.15	0.1

QUEUE AT ARM D -----

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE	
17.00	0.5	
17.15	0.6	*
17.30	0.9	*
17.45	0.9	*
18.00	0.6	*
18.15	0.5	

QUEUE AT ARM E -----

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE	any any other use.
17.00 17.15 17.30 17.45 18.00 18.15	0.0 0.0 0.0 0.0 0.0 0.0	The sector purpose only and

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD -----

I I T	ARM	I I T	TOTAI	L	DEMAND	I I	-	JEING * LAY *	I I			QUEUEING * LAY *	I I
I		I	(VEH)		(VEH/H)	I	(MIN)	(MIN/VEH)	I	(MIN)		(MIN/VEH)	I
 I	 A	I	977.7	I	651.8	I	51.7 I	0.05	I		I	0.05	I
I	в	I	78.2	I	52.1	Ι	2.8 I	0.04	Ι	2.8	I	0.04	I
I	с	I	163.2	I	108.8	I	5.4 I	0.03	Ι	5.4	I	0.03	I
Ι	D	I	1223.1	I	815.4	Ι	59.7 I	0.05	I	59.7	I	0.05	I
I	Е	I	0.0	I	0.0	I	0.0 I	0.00	I	0.0	I	0.00	I
I	ALL	I	2442.1	I	1628.1	I	119.7 I	0.05	I	119.7	I	0.05	I

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD.
 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.
 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

•

END OF JOB

****** ARCADY 5 run completed.

•

[Printed at 15:47:03 on 28/04/2004]

•

TRANSPORT RESEARCH LABORATORY

(C) COPYRIGHT 1990,1996,2000

CAPACITIES, QUEUES AND DELAYS AT ROUNDABOUTS

ARCADY 5.0 ANALYSIS PROGRAM RELEASE 1.0 (APR 2000)

ADAPTED FROM ARCADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

FOR SALES AND DISTRIBUTION INFORMATION, PROGRAM ADVICE AND MAINTENANCE CONTACT: TRL SOFTWARE BUREAU TEL: CROWTHORNE (01344) 770758, FAX: 770864 EMAIL: SoftwareBureau@trl.co.uk -----

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- *r:\MDE0133\Tr\Ar\South Bank Road\0007ASH.vai* at 15:47:40 on Wednesday, 28 April 2004

ROUNDABOUT CAPACITY AND DELAY *****

•Plant •Plant For inspection purposes only any office For inspection purposes of for any office For inspection purposes of the any office M RUN TITLE **** Sean Moore Road / South Bank Road - Existing AM Peak 2003 with *Plant Traffic

INPUT DATA ARM A - EastLink Road ARM B - South Bank Road (Pigeon Hse Rd) ARM C - South Bank Road ARM D - Sean Moore Road ARM E - Pigeon House Road

GEOMETRIC DATA

I ARM	I	V (M)	I	E (M)	I	L (M)	I	R (M)	I	D (M)	I	PHI (DEG)	I	SLOPE	I INTERCEPT (PCU/MIN)
I ARM	AI	5.60	I	8.60	I	5.00	I	13.00	I	55.00	I	22.0	I	0.641	I 33.516
I ARM	ΒI	7.20	I	8.90	I	3.60	I	30.00	I	55.00	I	29.0	I	0.723	I 40.565
I ARM	СI	7.20	I	9.20	I	10.00	I	30.00	I	55.00	I	25.0	I	0.764	I 43.949
I ARM	DI	7.40	I	9.20	I	15.00	I	18.00	I	55.00	Ι	63.0	I	0.664	I 38.668
I ARM	ΕI	3.00	I	4.20	I	0.00	I	10.00	I	55.00	ĩ	79.0	I	0.396	I 16.566

V = approach half-width L = effective flare length R = entry radius E = entry width

D = inscribed circle diameter PHI = entry angle

TRAFFIC DEMAND DATA ------

TIME PERIOD BEGINS 08.00 AND ENDS 09.30

LENGTH OF TIME PERIOD - 90 MINUTES. LENGTH OF TIME SEGMENT - 15 MINUTES.

TRL	TRL VIEWER	2.0 AB R:\MDE0133\Tr\Ar\South Bank Road\0007ASH.vao - Page	2

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

I		Ţ		MBER OF STARTS						-								_
Ť	ARM	1 - T	· ·		_		OF PLAF REACHEI							_	PEAK	_		
Ŧ		Ŧ	10	RISE	T	15	KEACHEL	11	APPTL	IG I	•	PEAK	Ŧ	0r	PLAK	I PI	EAK I	
I	ARM A	Ĩ		15.00	I		45.00	I	75	.00	I	10.5	55	I	15.83	I	10.55	 I
ī	ARM B	I		15.00	Ι		45.00	I	75	.00	Ι	0.4	16	I	0.69	I	0.46	Ī
I	ARM C	ī		15.00	Ι		45.00	I	75	.00	I	0.9	98	Ι	1.46	I	0.98	I
I	ARM D	I	•	15.00	Ι		45.00	I	75	.00	I	11.0)2	I	16.54	I	11.02	I
Ĩ	ARM E	I		15.00	I		45.00	I	75	.00	I	0.0	00	I	0.00	I	0.00	I

I I I I		I I I		T	URNING PRO URNING COU ERCENTAGE	JNTS (VEH			I I I
I	TIME	I	FROM/TC	I	ARM A I	ARM B I	ARM C I	ARM D I	ARM E I
	08.00 - 09.30		ARM A ARM B ARM C ARM D ARM E		0.0 I (10.0)I I 0.622 I 23.0 I (10.0)I 0.462 I 36.0 I (10.0)I I 0.865 I 763.0 I (10.0)I I 0.000 I ??????? I	16.0 I (10.0)I I 0.000 I 0.0 I (10.0)I (10.0)I (10.0)I I 0.011 I 10.0 I (10.0)I I 0.000 I 2?????? I	78.0 I (10.0)I I 0.162 I 6.0 I (10.0)I I 0.000 I (10.0)I (10.0)I (10.0)I (10.0)I (10.0)I (10.0)I (10.0)I (10.0)I (10.0)I	750.0 I (10.0)I I 0.216 I (10.0)I (10.0)I (10.0)I (10.0)I (10.0)I I 0.000 I (10.0)I I 0.000 I (10.0)I I 0.000 I I (10.0)I I 0.000 I I (10.0)I I 0.000 I I 0.000 I I 0.000 I I 0.0000 I 0.0000 br>I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0.0000 I 0 00000 I 0 00000 I 00000 I 0 00000 I 0000	(10.0) I I 0.000 I 0.0 I (10.0) I 0.000 I 0.000 I 0.000 I 0.000 I 1 0.000 I 1 0.000 I 277777 I
1 I 		I		I I	(10.0)1 I	I(0.01) I		(10.0)I I	(10.0)1 I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA DEFAULT PROPORTIONS OF HEAVY VEHICLES ARE USED

.

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

•

-									
I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	08.00-0	08.15							I
I	ARM A	10.55	29.50	0.358		0.0	0.6	8.1	I
Ĩ	ARM B	0.46	28.44	0.016		0.0	0.0	0.2	I
I	ARM C	0.98	32.52	0.030		0.0	0.0	0.5	I
I	ARM D	11.02	34.65	0.318		0.0	0.5	6.8	I
I	ARM E	0.00	11.45	0.000		0.0	0.0	0.0	I
I									I
-									
-									
- I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
- I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
- I I I		(VEH/MIN)							
- I I I I	08.15-0	(VEH/MIN) 08.30	(VEH/MIN)	CAPACITY (RFC)	FLOW	QUEUE (VEHS)	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT)	(VEH.MIN/ I
-	08.15-0 ARM A	(VEH/MIN) 08.30 12.60	(VEH/MIN) 29.31	CAPACITY (RFC) 0.430	FLOW	QUEUE (VEHS) 0.6	QUEUE (VEHS) 0.7	(VEH.MIN/ TIME SEGMENT) 11.0	(VEH.MIN/ I
Ī	08.15-0 ARM A ARM B	(VEH/MIN) 08.30 12.60 0.55	(VEH/MIN) 29.31 26.77	CAPACITY (RFC) 0.430 0.021	FLOW	QUEUE (VEHS) 0.6 0.0	QUEUE (VEHS) 0.7 0.0	(VEH.MIN/ TIME SEGMENT) 11.0 0.3	(VEH.MIN/ I
I I I	08.15-0 ARM A ARM B ARM C	(VEH/MIN) 08.30 12.60	(VEH/MIN) 29.31	CAPACITY (RFC) 0.430 0.021 0.037	FLOW	QUEUE (VEHS) 0.6	QUEUE (VEHS) 0.7	(VEH.MIN/ TIME SEGMENT) 11.0	(VEH.MIN/ I
I I I	08.15-0 ARM A ARM B ARM C ARM D	(VEH/MIN) 08.30 12.60 0.55	(VEH/MIN) 29.31 26.77	CAPACITY (RFC) 0.430 0.021	FLOW	QUEUE (VEHS) 0.6 0.0	QUEUE (VEHS) 0.7 0.0	(VEH.MIN/ TIME SEGMENT) 11.0 0.3	(VEH.MIN/ I
I I I	08.15-0 ARM A ARM B ARM C	(VEH/MIN) 08.30 12.60 0.55 1.16	(VEH/MIN) 29.31 26.77 31.06	CAPACITY (RFC) 0.430 0.021 0.037	FLOW	QUEUE (VEHS) 0.6 0.0 0.0	QUEUE (VEHS) 0.7 0.0 0.0	(VEH.MIN/ TIME SEGMENT) 11.0 0.3 0.6	(VEH.MIN/ I
I I I	08.15-0 ARM A ARM B ARM C ARM D	(VEH/MIN) 08.30 12.60 0.55 1.16 13.16	(VEH/MIN) 29.31 26.77 31.06 34.55	CAPACITY (RFC) 0.430 0.021 0.037 0.381	FLOW	QUEUE (VEHS) 0.6 0.0 0.0 0.5	QUEUE (VEHS) 0.7 0.0 0.0 0.6	(VEH.MIN/ TIME SEGMENT) 11.0 0.3 0.6 9.1	(VEH.MIN/ I

•

L		TRL	VIEWER	2.0 AB R:	\MDE0133\Tr\#	r\South	Bank R	oad\0007ASH.va	o - Page 3
-	TIME		CAPACITY (VEH/MIN)	CAPACITY	PEDESTRIAN FLOW	QUEUE	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELA (VEH.MIN/
	08.30-	00 AE		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
	ARM A		29 05	0.531		0.7		10 4	
	ARM B	15.43 0.68	29.03	0.028		0.0	0.0	16.4 0.4	
			29.06	0.049			0.0		
	ARM D	1.43 16.12 0.00	29.06 34.41 9.07	0.469		0.6	0.1	12.9	
	ARM E	0.00	9.07	0.000		0.0			
_									
-									
	TIME		CAPACITY		PEDESTRIAN	START	END	DELAY	GEOMETRIC DELA
		(VEH/MIN)	(VEH/MIN)		FLOW		QUEUE	(VEH.MIN/	(VEH.MIN/
	08.45-	00.00		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
			20.05	0.531		1.1	1.1	16.0	
	ARM A	15.43 0.68 1.43	29.05	0.028					
		1 43	24.49	0.028		0.0	0.0	0.4	
	ARM D	16.12	29.03	0.469			0.1		
	ARM E	0.00	34.41 9.06	0.000			0.9	13.2 0.0	
	mui b	0.00	2.00	0.000		0.0	0.0	0.0	
-									
	TIME		CAPACITY		PEDESTRIAN		END	DELAY	GEOMETRIC DELA
		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW		QUEUE	(VEH.MIN/	(VEH.MIN/
	~~ ~~	~~		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
	09.00-	09.15	20.24	a (20					
	ARM A	12.60 0.55 1.16	29.31	0.430		1.1	0.8 0.0	11.6	
	ARM B	0.00	20.74	0.021 0.038		0.0	0.0	0.3	
	ARM D	12 16	31.03	0.381		0.1 0.9	0.0 0.6	0.6	
	ARM E	1.16 13.16 0.00	31.03 34.55 10.43	0.000		0.9	0.0	92.4	
	AIGT D	0.00						92.4 otter 10.0	
_							only only	8	
	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY (VEH.MIN/	GEOMETRIC DELA
		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/
					(DDDDC (MTNT)	11	- Armen a s		TIME SEGMENT)
	09.15-					tion of		-,	
	ARM A	10.55	29.50	0.358		e 038	0.6	8.5	
	ARM B	0.46	28.40	0.016	:15	× 8.0	0.0	0.3	
	ARM C	0.98	32.49	0.030	othic	9.0%	0.0	0.5	
	ARM D		34.65	0.318	(PEDS/MIN)	(VEHS) vio set 0.8 0.0 0.0 0.6	0.5	7.1	
					-05				
	ARM E	0.00	11.43	0.000	د ^ر ک	0.0	0.0	0.0	

Conser

•

•

QUEUE AT ARM A

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
08.15	0.6 *
08.30	0.7 *
08.45	1.1 *
09.00	1.1 *
09.15	0.8 *
09.30	0.6 *

QUEUE AT ARM B

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
08.15 08.30	0.0
08.45 09.00	0.0 0.0
09.15	0.0

09.30 0.0

•

•

TRL	TRL VIEWER	2.0 AB R:\MDE0133\Tr\Ar\Scuth Bank Road\0007ASH.vao - Page 4

QUEUE AT ARM C

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
08.15 08.30 08.45 09.00 09.15 09.30	0.0 0.1 0.1 0.0 0.0

QUEUE AT ARM D -----

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE	
08.15 08.30	0.5	*
08.45	0.9	*
09.00	0.9	*
09.15	0.6	*
09.30	0.5	

QUEUE AT ARM E _____

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0

.

DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD.
 INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.
 THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

.

****** ARCADY 5 run completed.

[Printed at 15:48:07 on 28/04/2004]

TRL	TRI	L VIEW	ER 2.	0 AB	r:\MDE0	 133\ 	Tr\Ar\Sou	ch B	ank Road	\000	BASH.vao - 1	2ag	₽ 1		
		5	FRANSPOF	T RE	SEARCH L	ABOR	ATORY								
			(C) COPY	'RIGH	т 1990,1	996,	2000								
	CAI	PACITI	ES, QUEL	IES A	ND DELAY	S AT	ROUNDABO	JTS							
		1			ANALYSIS .0 (APR										
							OWN COPYR R OF HMSO	IGHT							
	1	PROGRAN	M ADVICE TRL WTHORNE	SOFT (013	MAINTEN WARE BUR 44) 7707	ANCE EAU 58,	ORMATION, CONTACT: FAX: 7708	54							
		EM	AIL: Sof	twar	eBureau@	trl.	co.uk								
IN NO WAY RE	:- •r:	:\MDE0	133\Tr\#									lay,	28 Apr	i l 2(004
ROUNDABOUT CA															
RUN TITLE		a		_ 1	-					150					
Sean Moore R	.oad /	South	Bank Ro	ad -	Existin	g PM	Peak 200	3 wi	th "Plani	TI P	affic				
INPUT DATA								C.	only any						
ARM A - EastL	ink Ro	oad					1	1905ez	edie						
ARM B - South ARM C - South ARM D - Sean ARM E - Pigeo	Bank Moore	Road Road	-	Hse			Peak 200:	Tell							
GEOMETRIC DAT	בי					÷.	opyric								
	-				Cont	entot									
I ARM I V					L (M)	I	R (M)				PHI (DEG)	I	SLOPE	II	TERCEPT (PCU/MIN
I ARM A I I ARM B I	5.60	I T	8.60	I	5.00	I	13.00	I	55.00	I	22.0	I	0.641	I	33.516
I ARM C I	7.20	I	9.20	I	10.00	Ī	30.00	I	55.00	Î	25.0	I	0.764	I	40.565
I ARM A I I ARM B I I ARM C I I ARM D I I ARM E I	3.00	I	9.20	I	0.00	I	10.00	I	55.00 55.00	I I	63.0 79.0	I	0.664 0.396	I	38.668 16.566
V = approach E = entry wid									ם	= ir	scribed cir entry angle	cle			
TRAFFIC DEMAN															
TIME PERIOD B	EGINS	16.45	AND END)S 18	.15										

•

LENGTH OF TIME PERIOD - 90 MINUTES. LENGTH OF TIME SEGMENT - 15 MINUTES.

•

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

I I ARM I	_	NUMBER OF FLOW STARTS TO RISE	I		II	FLOW STOPS	Ι	BEFORE	I		I	AFTER	
I ARM A I ARM B I ARM C I ARM D I ARM D I ARM E	I I I	15.00 15.00 15.00 15.00 15.00	I I I I I	45.00 45.00 45.00 45.00 45.00	I I I I	75.00 75.00 75.00 75.00 75.00 75.00	I I	11.43	-	1.07 2.91	I I I	1.94 11.43	I I I

I I I T		I I I		ΤU	JRNING PRO JRNING COU ERCENTAGE	JNTS (VEH			I I I
ī	TIME	I	FROM/TO	I	ARM A I	ARM B I	ARM C I	ARM D I	ARM E I
I	16.45 - 18.15	 I		I	I	I	I	I	I
т		I	ARM A	I	0.000 I	0.029 I	0.098 I	0.873 I	0.000 I
Ŧ		Ī		Ι	0.0 I	21.0 I	71.0 I	635.0 I	0.0 I
T		I		I	(10.0)I	(10.0)I	(10.0)I	(10.0)I	(10.0)I
ī		I		Ι	I	I	I	I	I
Ĩ		I	ARM B	Ι	0.456 I	0.000 I	0.175 I	0.368 I	0.000 I
T		I		I	26.0 I	0.0 I	10.0 I	21.0 I	0.0 I
ī		Ī		I	(10.0)I	(10.0)I	(10.0)I	(10.0)I	(10.0)I
T		I		Ι	I	I	I	I	I
T		I	ARM C	I	0.329 I	0.000 I	0.000 I	0.671 I	0.000 I
T		ī		I	51.0 I	0.0 I	0.0 I	104.0 I	.0 I
Ť		Ţ		I	(10.0)I	(10.0)I	(10.0)I	(10.0)I	(10.0)I
T		T		ī	I	I	I	Ţ	Net I
Ī		Ī	ARM D	I	0.931 I	0.009 I	0.060 I	0.000 P	0.000 I
T		Т		Τ	851.0 I	8.0 I	55.0 I	N. 0 1	0.0 I
Ŧ		ī		I	(10.0)I	(10.0)I		4 10.0)I	
ī		ī		I	I	I	T. T.	I Q	I
T		I	ARM E	Τ	0.000 I	0.000 I	0.000	<u> 80.000 г</u>	0.000 I
T		T		I	27????? I	???????? I	???????????????????????????????????????	???????? I	2?????? I
Ī		Ī		Ī				(10.0)I	
ī		Ī		I	I	I	CLANT I	I	I
	· • • • • • • • • • • • • • • • • • • •								

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA DEFAULT PROPORTIONS OF HEAVY VEHICLES ARE USED

-

•

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

.

_									
I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	16.45-1	7.00							I
I	ARM A	9.09	29.97	0.303		0.0	0.4	б.4	I
Ι	ARM B	0.71	30.02	0.024		0.0	0.0	0.4	I
Ī	ARM C	1.94	33.46	0.058		0.0	0.1	0.9	I
I	ARM D	11.43	34.51	0.331		0.0	0.5	7.3	I
	ARM E	0.00	11.19	0.000		0.0	0.0	0.0	I
Ī									I
_									
-									
Ī	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
I I I		(VEH/MIN)							
-	17.00-1	(VEH/MIN) 7.15	(VEH/MIN)	CAPACITY (RFC)	FLOW	QUEUE (VEHS)	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT)	(VEH.MIN/ I
ī	17.00-1 ARM A	(VEH/MIN) 7.15 10.85	(VEH/MIN) 29.87	CAPACITY (RFC) 0.363	FLOW	QUEUE (VEHS) 0.4	QUEUE (VEHS) 0.6	(VEH.MIN/ TIME SEGMENT) 8.4	(VEH.MIN/ I
Ĭ I	17.00-1 ARM A ARM B	(VEH/MIN) 7.15 10.85 0.85	(VEH/MIN) 29.87 28.67	CAPACITY (RFC) 0.363 0.030	FLOW	QUEUE (VEHS) 0.4 0.0	QUEUE (VEHS) 0.6 0.0	(VEH.MIN/ TIME SEGMENT) 8.4 0.5	(VEH.MIN/ I
I I I	17.00-1 ARM A ARM B ARM C	(VEH/MIN) 7.15 10.85 0.85 2.31	(VEH/MIN) 29.87 28.67 32.18	CAPACITY (RFC) 0.363 0.030 0.072	FLOW	QUEUE (VEHS) 0.4 0.0 0.1	QUEUE (VEHS) 0.6 0.0 0.1	(VEH.MIN/ TIME SEGMENT) 8.4 0.5 1.1	(VEH.MIN/ I
I I I I	17.00-1 ARM A ARM B ARM C ARM D	(VEH/MIN) 7.15 10.85 0.85 2.31 13.64	(VEH/MIN) 29.87 28.67 32.18 34.39	CAPACITY (RFC) 0.363 0.030 0.072 0.397	FLOW	QUEUE (VEHS) 0.4 0.0 0.1 0.5	QUEUE (VEHS) 0.6 0.0 0.1 0.7	(VEH.MIN/ TIME SEGMENT) 8.4 0.5 1.1 9.7	(VEH.MIN/ I
I I I I	17.00-1 ARM A ARM B ARM C	(VEH/MIN) 7.15 10.85 0.85 2.31	(VEH/MIN) 29.87 28.67 32.18	CAPACITY (RFC) 0.363 0.030 0.072	FLOW	QUEUE (VEHS) 0.4 0.0 0.1	QUEUE (VEHS) 0.6 0.0 0.1	(VEH.MIN/ TIME SEGMENT) 8.4 0.5 1.1	(VEH.MIN/ I TIME SEGMENT) I I I I I I I I I I I I I
I I I I	17.00-1 ARM A ARM B ARM C ARM D	(VEH/MIN) 7.15 10.85 0.85 2.31 13.64	(VEH/MIN) 29.87 28.67 32.18 34.39	CAPACITY (RFC) 0.363 0.030 0.072 0.397	FLOW	QUEUE (VEHS) 0.4 0.0 0.1 0.5	QUEUE (VEHS) 0.6 0.0 0.1 0.7	(VEH.MIN/ TIME SEGMENT) 8.4 0.5 1.1 9.7	(VEH.MIN/ I

rri		TRL	VIEWER	2.0 AB r:	\MDE0133\Tr\/	Ar\Souti	h Bank F	load\0008ASH.va	o - Page 3
I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	CAPACITY		QUEUE	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)
7	17.15-	-17.30		(111-0)	(TEOD/MIN)	(VEDS)	(VEHS)	TIME SEGMENT)	
Ŧ	ARM A	13.29	29.73	0.447		0.6	0.8	11.8	-
T	ARM B	13.29 1.04 2.83 16.71	26.83	0.039			0.0	0.6	1
Ŧ	ARM C	2.83	30 44	0.093			0.1	1.5]
Ť	ARM	16.71	34 22	0.488			0.9]
I	ARM E	0.00	8.69	0.000		0.0	0.0	0.0	נ נ נ
I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)			FLOW			(VEH.MIN/	(VEH.MIN/ I
I						(VEHS)	(VEHS)	TTME SECMENT	TIME SEGMENT) I
I	17.30-	17.45				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1257	TIME BEGREAT,	IIME SEGMENT) I
Ι	ARM A	13.29 1.04 2.83 16.71 0.00	29.73	0.447		0.8	0.8	12.1	r I
I	ARM B	1.04	26.82	0.039			0.0		1
Ι	ARM C	2.83 16.71 0.00	30.43	0.093			0.1		I
I	ARM D	16.71	34.22	0.488		0.9	1.0	14.2	1
	ARM E	0.00	8.68	0.000			0.0		
ī			0.00	0.000		0.0	0.0	0.0	I I
I I	TIME		CAPACITY		PEDESTRIAN FLOW	START	END	DELAY (VEH.MIN/	GEOMETRIC DELAYI
ī				(RFC)	(PEDS/MTN)	(VFHS)	(VEHC)	THE SECURATION	(VEH.MIN/ I TIME SEGMENT) I
I	17.45-	18.00		(1	(1220,11211)	(*1110)	(*6115)	TIME SEGMENT)	
	ARM A	10.85	29.87	0.363		0.8	0.6	8.8	I
	ARM B	0.85	28.65	0.030			0.0		I
	ARM C	2.31	32 17	0 072			0.1	1.2	I
	ARM D	13.64	34.39	0.397			0.7	10,1	I
	ARM E		10.12	0.000		0.0	0.0	×0.0	I I
I 								- other to . o	Ĩ
-	TIME			DEMAND/	PEDESTRIAN	START	END	DELAY (VEH.MIN/	GEOMETRIC DELAYI
		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH MIN/ T
Ι				(RFC)	(PEDS/MIN)	(VEHS)	(WEHS)	TIME SEGMENT)	TIME SEGMENT) I
		18.15				ion of	7		I I
I	ARM A	9.09	29.96	0.303		ection et	0.4	6.7	I
Ι	ARM B	9.09 0.71	29.99	0.024	<u> </u>	0.0	0.0	0.4	I
Ι	ARM C	1.94	33.44	0.058	x III.	¥0.1	0.1	0.9	Ĩ
I	ARM D	11.43	34.51	0.331	for AD	0.7	0.5	7.6	I
I	ARM E	1.94 11.43 0.00	11.17	0.000	CON.	0.0	0.0	0.0	I
Ι					5			6.7 0.4 0.9 7.6 0.0	I
					Consent of				
					MSC				
					C ^O				
QU	JEUE AT	ARM A							

QUEUE AT ARM A -----

*

TIME SEGMENT NO. OF ENDING VEHICLES IN QUEUE

17.00 17.15 17.30	0.4 0.6 0.8	* *
17.45 18.00 18.15	0.8 0.6 0.4	* *

QUEUE AT ARM B -----

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
17.00	0.0
17.15	0.0
17.30	0.0
17.45	0.0
18.00	0.0
18.15	0.0

•

•

.

[Printed at 15:49:00 on 28/04/2004]

****** ARCADY 5 run completed. _____ end of file _______

•

END OF JOB

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD. * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD. * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

I I T	ARM	I I T	TOTAI	L .	DEMAND	I I	* ï	DEI	JEING * LAY *	I I	*	DEL	QUEUEING * AY *	I I T-
I		I	(VEH)		(VEH/H)	I	(MIN)		(MIN/VEH)		(MIN)			Ī
I	 A	I	996.9	I	664.6	I	54.0	I	0.05	I	54.0	I	0.05	I
I	В	I	78.2	I	52.1	Ι	2.9	Ι	0.04	I	2.9	I	0.04	Ι
I	С	Ι	212.5	I	141.7	I	7.2	Ι	0.03	Ι	7.2	Ι	0.03	Ι
Ι	D	I	1253.3	I	835.5	Ι	62.7	Ι	0.05	I	62.7	r	0.05	Ľ
I	Ε	I	0.0	I	0.0	I	0.0	ĩ	0.00	I	0.0	I	0.00	I
I	ALL	I 	2540.9	I	1693.9	I	126.8	I 	0.05		126.8		0.05	I

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD CONSOLUTION CONSOLUTION

 \mathbf{C}

-	-	_	-	_									
-	-	-	-	-	-	-	-	-	-	-	-	-	

		<i>0</i> .•
TIME SEGME ENDING	NT NO. OF VEHICLES IN QUEUE	FOINSPECTON OVER WHOLE DEPTOD
17.00	0.0	25 Offort
17.15	0.0	-0 ⁵⁰ -c ⁰
17.30	0.0	all all a start and a start and a start a start a start a start a start a start a start a start a start a start
17.45	0.0	2 root
18.00	0.0	itor of t
18.15	0.0	-Rec. onthe
		Forther
		TATA THEORMATION OVER WHOLE DEPIOD

OUEUE AT ARM E

17.30	0.1
17.45	0.1
18.00	0.1
18.15	0.1
QUEUE AT ARM D	

TIME SEGMENT NO. OF ENDING VEHICLES

17.00

17.15

17.30

17.45

18.00

18.15

17.00 0.1 17.15 0.1

IN QUEUE

IN OUEUE 0.5

0.7 0.9 *

0.7

0.5

1.0 *

*

*

TIME SEGMENT NO. OF ENDING VEHICLES

QUEUE AT ARM C

TRL TRL VIEWER 2.0 AB r:\MDE0133\Tr\Ar\South Bank Road\0008ASH.vao - Page 4

FileName : R:\MDE0133\Tr\TED\2003 AM Peak.DAT
Title : Sean Moore Road / Beach Road Junction - 2003 AM Peak
Date : Wed,28/04/04 15:53:47

•

Node	Num Do	ouble								
	Stages C		1	2 3	3 4	5	6	7		
			-		, <u> </u>	5	Ŭ	,		
1	2	N	16	72						
2	3	N	31	93 ()					
_	-		01		•					
Link	Share	Control	Total	Demand	Actual	Ave	Sat C	apacity D	earee	Moan
Num.	Туре	Туре	Green	Flow	Flow		Flow	apacity D	Satn M	
	-1	-16+					1 101		bach h	ar y
11	STANDARD	SIGNAL	48	722	722	2	2387	975	74	20
12	STANDARD	SIGNAL	56	408	408		1832	868	47	9
13	STANDARD	SIGNAL	48	262	262		3825	1541	17	8
14	STANDARD	SIG+PRI	112	792	792		1130	880	90	23
	STANDARD		0	213	214		1709	1646	13	0
	STANDARD		0	994	994		1709	1713	58	7
	STANDARD		21	209	209		1915	348	60	, 7
	STANDARD		54	607	606		3600	1637	37	2
23	STANDARD	SIGNAL	81	370	371		2019	1374	27	3
24	STANDARD	SIGNAL	19	242	242		3800	636	38	7
27	STANDARD	BNECK	0						47	15
28	STANDARD	BNECK	0	128	128	3	1709 1709 1709	1600	8	0
29	STANDARD	BNECK	0	242	243	3	1709	1735	14	Õ
							17.02			Ū
						201	FOL			
						محقيدة	5×			
					OUT	, V UIII				
					ion y	Ser.				
					oecti whe					
					institu					
				ÊÓ	VIE					
				ی ج	8 .					
				101						
				NSel1						
				Cor	795 128 243					

•

FileName : R:\MDE0133\Tr\TED\2003 PM Peak.DAT Title : Sean Moore Road / Beach Road Junction - 2003 PM Peak Date : Wed, 28/04/04 15:51:31 Node Num Double Num Stages Cycled Ν Ν Share Control Total Demand Actual Ave. Sat Capacity Degree Mean Link Type Green Flow Flow Flow Satn Max O Num. Туре 11 STANDARD SIGNAL 12 STANDARD SIGNAL 13 STANDARD SIGNAL 14 STANDARD SIG+PRI 112 18 STANDARD BNECK 19 STANDARD BNECK 21 STANDARD SIGNAL 22 STANDARD SIGNAL **1**74 23 STANDARD SIGNAL 24 STANDARD SIGNAL 0 27 STANDARD BNECK 1709 USE. Conson of copyright owner required for any 28 STANDARD BNECK 29 STANDARD BNECK 17.09

.

.

FileName : R:\MDE0133\Tr\TED\2003 AM Peak with Plant Traffic.DAT Title : Sean Moore Road / Beach Road Junction - 2003 AM Peak with Plant Traffic Date : Wed,28/04/04 15:52:00

Node	Num Do Stages Cy		1	2	3	4	5	6	7			
Num	stages C	cied	Ŧ	2	د	4	С	6	1			
1	2	N	10	65								
2	3	N	25		113							
	-											
Link	Share	Control	Total	Demai	nd 7	Actual	Ave	. Sat (Capac	ity I	earee	Mean
Num.	Туре		Green			Flow		Flow	-		Satn	
												··· •
11	STANDARD	SIGNAL	47	7:	27	727	7	2400		956	76	5 20
12	STANDARD	SIGNAL	57	4:	25	425	5	1832		885	48	
13	STANDARD	SIGNAL	47		62	262	2	3825		1541	17	
14	STANDARD	SIG+PRI	112		97	797	7	1130		885	90	24
	STANDARD		0		13	213	3	1709		1775	12	
19	STANDARD	BNECK	0		99	999	}	1709		1722	58	; 7
	STANDARD		22		26	226	5	1915		364	62	8
	STANDARD		54		12	612		3600		1654	37	2
23	STANDARD	SIGNAL	80		87	387		2022		1382	28	3
24	STANDARD	SIGNAL	18		42	242		3800		605	40	7
27	STANDARD	BNECK	0	8:	13	813	3	1709	150.	1693	48	16
	STANDARD		0	14	45	145	5	1709 1709 1709	્ર	1812	8	0
29	STANDARD	BNECK	0	24	42	242	2	17,09		1728	14	. 0
							đ	all and				
							م موجع	1 ⁰				
						1	20,110	r -				
						n Pr.	ieot					
						oction net						
						15Prt Or						
					cor	118						
					, ol	5						
				x	ð,							
				Sell								
				Cor		813 145 242						

-

.

.

•

FileName : R:\MDE0133\Tr\TED\2003 PM Peak with Plant Traffic.DAT Title : Sean Moore Road / Beach Road Junction - 2003 PM Peak with Plant Traffic Date : Wed,28/04/04 15:53:29

..

Node Num	Num Do Stages Cy		1	2	3	4	5	6	7			
1 2	2 3	N N	111 35	11 79	112							
Link Num.	Share Type		Total Green		and low	Actual Flow	Ave	. Sat (Flow	Capacity I	Degree Satn		
12 13 14 18 19 21 22 23 24 27 28	STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD	SIGNAL SIGNAL SIG+PRI BNECK BNECK SIGNAL SIGNAL SIGNAL BNECK BNECK	12 92 12 112 0 0 33 36 69 25 0 0 0	1	249 619 335 013 283 270 332 369 294 313 679 133 161	24 61 33 101 28 122 33 36 29 31 67 13 16	9 5 3 2 2 9 3 3 9 3 3 9	3600 1832 3825 1130 1709 1709 1915 3600 2057 3800 1709 1709 1709	1406 413 964 1664 1721 544 1118 1220 823 1697 1662	44 83 109 17 63 33 24 34 40	4 5 7 1 3 4 8	9 7 13 67 0 13 10 12 4 9 11 0 0
				U								

•

•

	T.	RL VIE	WER 2	.0 AI	B R:\MDE	0133\Tr	\Ar\Eas	st Wa	11\00037	ASH.va	ao - Page	1				
					ESEARCH I											
			(C) COP	YRIGH	IT 1990,	1996,200	00									
	C	APACIT	IES, QUE	UES 7	AND DELAY	YS AT R	OUNDABO	OUTS								
			ARCADY	5.0 AGE 1	ANALYSI: L.O (APR	S PROGRA	AM									
	AD	APTED I	FROM ARC	ADY/3	WHICH I	IS CROWN	N COPYF	RIGHT								
		FOR S	ALES AND	DISI	RIBUTION MAINTEN	N INFORM	MATION,	,								
	Ť	EL: CRO			WARE BUE 844) 7701		X: 7708	364								
					eBureau											
THE USER (IN NO WAY	OF THIS (RELIEVI	COMPUTE ED OF E	ER PROGR HIS RESP	AM FC ONSIE	OR THE SO BILITY P	OLUTION FOR THE	OF AN CORREC	ENGI	NEERING S OF TH	PROBL IE SOL	EM IS JUTION					
Run with f	file:- "	r:\MDE()133\Tr\	Ar\Ea	st Wall	\0003ASF	i.vai"	at 1	5:58:41	on We	dnesdav. 2	28 Ar	ril 200)4		
											_ ,			-		
ROUNDABOUT																
RUN TITLE																
East Wall	l Road /	North	Wall Qu	ay -	Existing	g AM Pea	ak 2003			, 15°	•					
									ć	thet						
								c	outstant							
********* ARM A - Ea	* ast Wall							11005e	soup and							
********** ARM A - Ea ARM B - Ea	* ast Wall ast Link	Bridge	9				ion	purposes	red for any							
ARM A - Ea ARM B - Ea ARM C - No	* ast Wall ast Link orth Wall	Bridge	9			·	spection f	purposes er requi	only an,							
ARM A - Ea ARM B - Ea ARM C - No	* ast Wall ast Link orth Wall	Bridge	9			FOID	ispection f	pirpose er requi	out and							
ARM A - Ea ARM B - Ea ARM C - No	* ast Wall ast Link orth Wall	Bridge	3			Fort	ispection f	urpose et coui	offorder,							
ARM A - Ea ARM B - Ea ARM C - No GEOMETRIC	* ast Wall ast Link DATA DATA V (M)	Bridge Quay I	—————————————————————————————————————		L (M)	Forti Rent Con	R (M)	urpose errequi	D (M)	I	PHI (DEG)	I	SLOPE	 I I	NTERCEF	T (PCU/MIN
ARM A - Ea ARM B - Ea ARM C - No GEOMETRIC	* ast Wall ast Link DATA DATA V (M)	Bridge Quay I	—————————————————————————————————————		L (M) 20.00 0.00		R (M) 73.00	Jutpose etroqui	D (M) 35.00	 I I T	PHI (DEG)	 I T	SLOPE 0.894 0.548	 I I I	NTERCEF	T (PCU/MIN
ARM A - Ez ARM B - Ez ARM C - NO GEOMETRIC I ARM I I ARM I I ARM A I I ARM B I I ARM B I I ARM C I	* ast Wall ast Link DATA DATA V (M)	Bridge L Quay I I I I I I	E (M) 8.30 5.40 9.50	I I I	0.00	I I	15.00 28.00		35.00 35.00 35.00	I I	66.0 44.0	I I I I	0.894 0.548 0.860	I I I I		.727 .419 .315
ARM A - Ez ARM B - Ez ARM C - NO GEOMETRIC I ARM I I ARM I I ARM A I I ARM B I I ARM C I	* ast Wall ast Link DATA DATA V (M) 6.20 3.50 8.50	Bridge L Quay I I I I I I	E (M) 8.30 5.40 9.50	I I I	0.00	I I I	15.00 28.00	1 I I	35.00 35.00 35.00	I I 	0.0 66.0 44.0	I I I	0.894 0.548 0.860	I I I		T (PCU/MIN .727 .419 .315
ARM A - Ez ARM B - Ez ARM C - No GEOMETRIC I ARM I I ARM I I ARM A I I ARM B I I ARM C I	* ast Wall ast Link DATA DATA V (M) 6.20 3.50 8.50	Bridge L Quay I I I I I I	E (M) 8.30 5.40 9.50	I I I	0.00	I I I	15.00 28.00	1 I I	35.00 35.00 35.00	I I = in	66.0 44.0	I I I rcle	0.894 0.548 0.860	I I I	 44 23 46	.727 .419 .315
ARM A - Ea ARM B - Ea ARM C - No GEOMETRIC I ARM I I ARM I I ARM B I I ARM B I I ARM C I V = approa E = entry	* ast Wall ast Link DATA DATA V (M) 6.20 3.50 8.50 ach half- width	Bridge Quay I I I J vidth	E (M) 8.30 5.40 9.50	I I I	0.00	I I I	15.00 28.00	1 I I	35.00 35.00 35.00	I I = in	0.0 66.0 44.0 scribed ci	I I I rcle	0.894 0.548 0.860	I I I	 44 23 46	.727 .419 .315
ARM A - Ea ARM B - Ea ARM C - No GEOMETRIC I ARM I I ARM I I ARM A I I ARM B I I ARM C I V = approa E = entry TRAFFIC DE	* ast Wall ast Link DATA DATA V (M) 6.20 3.50 8.50 ach half- width	Bridge Quay I I I 	E (M) 8.30 5.40 9.50	I I I	0.00	I I I	15.00 28.00	1 I I	35.00 35.00 35.00	I I = in	0.0 66.0 44.0 scribed ci	I I I rcle	0.894 0.548 0.860	I I I	 44 23 46	.727 .419 .315
ARM A - Ea ARM B - Ea ARM C - No GEOMETRIC I ARM I I ARM I I ARM A I I ARM B I I ARM C I V = approa E = entry TRAFFIC DE	* ast Wall ast Link orth Wall DATA V (M) 6.20 3.50 8.50 ach half- width EMAND DA1	Bridge Quay I I I 	E (M) 8.30 5.40 9.50	I I I	0.00	I I I	15.00 28.00	I I 	35.00 35.00 35.00	I I = in	0.0 66.0 44.0 scribed ci	I I I rcle	0.894 0.548 0.860	I I I	 44 23 46	.727 .419 .315
ARM A - Ea ARM B - Ea ARM C - No GEOMETRIC I ARM C I I ARM A I I ARM B I I ARM C I V = approa E = entry TRAFFIC DE	* ast Wall ast Link DATA DATA V (M) 6.20 3.50 8.50 ach half- width	Bridge Quay I I I I V Width	E (M) 8.30 5.40 9.50 L R	I I I = ef = en	0.00 0.00 fective	I I I	15.00 28.00	I I 	35.00 35.00 35.00	I I = in	0.0 66.0 44.0 scribed ci	I I I rcle	0.894 0.548 0.860	I I I	 44 23 46	.727 .419 .315
ARM A - Ea ARM B - Ea ARM C - NO GEOMETRIC I ARM I I ARM I I ARM A I I ARM B I I ARM C I V = approa E = entry FRAFFIC DE FIME PERIC LENGTH OF	* ast Wall ast Link DATA DATA V (M) 6.20 3.50 8.50 ach half- width EMAND DAT DD BEGINS TIME PEF	Bridge Quay	E (M) 8.30 5.40 9.50 L R 9.50	I I = ef = en	.30 .00 fective try radi	I I I	15.00 28.00	I I 	35.00 35.00 35.00	I I = in	0.0 66.0 44.0 scribed ci	I I I rcle	0.894 0.548 0.860	I I I	 44 23 46	.727 .419 .315
I ARM A I I ARM B I I ARM C I V = approa E = entry TRAFFIC DE	* ast Wall ast Link DATA DATA V (M) 6.20 3.50 8.50 ach half- width EMAND DAT	Bridge Quay I U I I I S O 8.00 RIOD - SMENT -	E (M) 8.30 5.40 9.50 L R 9.50	I I = ef = en DS 09 MINUT	.30 ES.	I I flare 1 ius	15.00 28.00 	I I	35.00 35.00 35.00	I I = in	0.0 66.0 44.0 scribed ci	I I I rcle	0.894 0.548 0.860	I I I	 44 23 46	.727 .419 .315

•

i arm I	I I I	NUMBER OF FLOW STARTS TO RISE	I'	NUTES FROM S TOP OF PEAK IS REACHED	I FL	OW STOPS	ΙB	EFORE	I	AT TOP	ĩ	AFTER	T
I ARM A I ARM B I ARM C	Ī	15.00	I I I		I I I	75.00	I	8.91	I	14.06 13.37 9.19	I	8.91	I

•

TRL		TRL VIEWER	2.0 AB R:\MDE0133\Tr\Ar\East Wall\0003ASH.vao - Page 2
I		I	TURNING PROPORTIONS I
I		I	TURNING COUNTS (VEH/HR) I
I		I	(PERCENTAGE OF H.V.S) I
I			
I	TIME	I FROM/T	DI ARMAIARMBIARMCI
I	08.00 - 09.3		I I I I
I		I ARM A	I 0.000 I 0.775 I 0.225 I
I		I	I 0.0 I 581.0 I 169.0 I
I		I	I { 10.0)I (10.0)I (10.0)I
Ι		I	IIIĪ
I		I ARM B	I 0.827 I 0.000 I 0.173 I
I		I	I 590.0 I 0.0 I 123.0 I
I		I	I (10.0)I (10.0)I (10.0)I
I		I	IIII
I		I ARM C	I 0.441 I 0.559 I 0.000 I
I		I	I 216.0 I 274.0 I 0.0 I
I		I	I (10.0)I (10.0)I (10.0)I
I		I	IIIII

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA DEFAULT PROPORTIONS OF HEAVY VEHICLES ARE USED

•

.

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

I I I	TIME		CAPACITY (VEH/MIN)	CAPACITY	PEDESTRIAN FLOW (PEDS/MIN)			DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	08.00-	08.15							I
I	ARM A	9.38	37.61	0.249		0.0	0.3	9 ـ 🕰	I
I	ARM B	8.91 6.13	20.13	0.443		0.0	0.8	×11.4	I
I	ARM C	6.13	35.80	0.171		0.0	0.2	3.0	I
Ī							A. 5	40	I
							0112 32	other 11.4 3.0	
							es a fot as		
I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	N END	DELAY (VEH.MIN/	GEOMETRIC DELAYI
ī		(VEH/MIN)			FLOW	OURUR	OUEUE	(VEH.MIN/	(VEH.MIN/ I
I		•			(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	08.15-	08.30			æ	or where			I
I	ARM A	11.19	37.01	0.302	inst	×°0.3	0.4 1.1 0.3	6.4	I
_	ARM B	10.64	19.91		at the	0.8	1.1	16.4	I
I	ARM C	7.31	34.55	0.212	to St	0.2	0.3	4.0	I
I					× COV				I
					FLOW (PEDS/MIN) Fortisfe				
I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
Ī			(VEH/MIN)				OUEUE	(VEH.MIN/	(VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	08.30-	08.45							ľ
Ι	ARM A		36.19	0.379		0.4	0.6	9.0	I
_	ARM B	13.03	19.60 32.87	0.665			1.9	27.4	I
	ARM C	8.96	32.87	0.273		0.3	0.4	5.5	I
I									I
I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)		FLOW		QUEUE	(VEH.MIN/	(VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
_	08.45-								I
-	ARM A			0.379		0.6	0.6	9.1	I
	ARM B	13.03		0.665		1.9	2.0	29.2	I
1	ARM C	8.96	32.83	0.273		0.4	0.4	5.6	I I
±									⊥
Ţ	TIME		CAPACITY		PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)		FLOW		QUEUE	(VEH.MIN/	(VEH.MIN/ I
I	.09.00-	09 15		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
	ARM A	11.19	37.00	0.303		0.6	0.4	6.6	I
_	ARM B	10.64		0.535		2.0	1.2	18.2	I
	ARM C	7.31	34.50	0.212		0.4	0.3	4.1	I
ī			21.20			0.4	0.5	3.7	I

.

[Printed at 15:59:17 on 28/04/2004]

****** ARCADY 5 run completed.

~ -	700	

ENTEN.	OF.	TOD	

C'NTD.	$\cap \mathbf{F}$	TOD	

IND OF	JOB	
--------	-----	--

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD. * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD. * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

I I T	ARM	I I T				I I	* DEI	JEING * LAY *	I I	*	DEL	QUEUEING * AY *	I I T
Ī		I	(VEH)				(MIN)			 (MIN)		(MIN/VEH)	I
I I I	A B C	İ	977.7	I	685.6 651.8 447.9	I	41.1 I 115.0 I 25.4 I	0.04 0.12 0.04	I I I	 41.1 115.0 25.4	-	0.04 0.12 0.04	I I I
I	ALL	I	2678.0	I	1785.3	I	181.4 I	0.07	I	 181.5	I	0.07	I

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

NT NO. OF VEHICLES IN QUEUE			<u>ر</u> و.
0.8 1.1 1.9 2.0 1.2 0.8	* * ** *	onsent of convigition of the sent of convigition of the sent of convigition of the sent of	Sonty. any other us
M C		at inspect own	
NT NO. OF VEHICLES IN QUEUE		FO OPILI	
0.2 0.3 0.4 0.4	с	OUST	

QUEUE AT ARM B ---------------

08.30

08.45

09.00

09.15

09.30

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE	
08.15	0.8	×
08.30	1.1	*
08.45	1.9	* *
09.00	2.0	**
09.15	1.2	*
09.30	0.8	*

QUEUE AT ARM ------

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
08.15 08.30 08.45	0.2 0.3 0.4
09.00 09.15	0.4
09.30	0.3

I OG.IS-OG. I ARM A I ARM B I ARM C I	9.38 8.91 6.13	37.60 20.13 35.75	0.249 0.443 0.171
QUEUE AT AR	M A 		
TIME SEGMEN ENDING	NT NO.C VEHICLE IN QUEU	S	
08.15	0.3	3	

0.4

0.6 ×

0.4

0.3

0.6 *

TRL

I TIM I I	E DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)		PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I 09.1 I ARM I ARM I ARM I	B 8.91	37.60 20.13 35.75	0.249 0.443 0.171		0.4 1.2 0.3	0.3 0.8 0.2	5.1 12.4 3.1	I I I I I

TRL VIEWER 2.0 AB R:\MDE0133\Tr\Ar\East Wall\0003ASH.vao - Page 3

TRANSPORT RESEARCH LABORATORY

(C) COPYRIGHT 1990,1996,2000

CAPACITIES, QUEUES AND DELAYS AT ROUNDABOUTS

ARCADY 5.0 ANALYSIS PROGRAM RELEASE 1.0 (APR 2000)

ADAPTED FROM ARCADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

----------_____ FOR SALES AND DISTRIBUTION INFORMATION, PROGRAM ADVICE AND MAINTENANCE CONTACT: TRL SOFTWARE BUREAU TEL: CROWTHORNE (01344) 770758, FAX: 770864 EMAIL: SoftwareBureau@trl.co.uk -----

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "r:\MDE0133\Tr\Ar\East Wall\0004ASH.vai" at 15:59:39 on Wednesday, 28 April 2004

ROUNDABOUT CAPACITY AND DELAY

RUN TITLE ********* East Wall Road / North Wall Quay - Existing PM Peak 2003																
RUN TITLE East Wall Road / North Wall Quay - Existing PM Peak 2003																
GEOMETRIC D	АТА 					for of cor	ay inght									
I ARM I	V (M)	I	E (M)	I	r Holl	I	R (M)	I	D (M)	I	PHI (DEG)	I	SLOPE	I INTERC	EPT (PCU	/MIN)
I ARM A I I ARM B I I ARM C I	6.20 3.50 8.50	I I I	8.30 5.40 9.50	I I I	20.00 0.00 0.00	I I I	73.00 15.00 28.00	I I I	35.00 35.00 35.00	I I I	0.0 66.0 44.0	I I I	0.894 0.548 0.860	I	14.727 23.419 16.315	

V = approach half-widthL = effective flare lengthE = entry widthR = entry radius

D = inscribed circle diameter PHI = entry angle

TRAFFIC DEMAND DATA -----

TIME PERIOD BEGINS 16.45 AND ENDS 18.15

LENGTH OF TIME PERIOD - 90 MINUTES. LENGTH OF TIME SEGMENT - 15 MINUTES.

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

I		Ι	NUMBER OF	MIN	UTES FROM S	START	WHEN	Ι	RATE	OF	FLOW	(VEH)	/MIN)	I
Ţ	ARM	Ι	FLOW STARTS	ΙT	OP OF PEAK	I FLO	W STOPS	I	BEFORE	I	AT TOP	IŻ	AFTER	I
I		I	TO RISE	I	IS REACHED	IFAL	LING I	1	PEAK I	OF	PEAK	I PEZ	AK I	
												/		
I	ARM A	I	15.00	I	45.00	I	75.00	Ι	11.39	I	17.08	I	11.39	I
1	ARM B	Ι	15.00	I	45.00	I	75.00	I	11.68	I	17.51	I	11.68	I
I	ARM C	Ι	15.00	I	45.00	I	75.00	Ι	5.14	I	7.71	I	5.14	I

TRL TRL VIEWER 2.0 AB r:\MDE0133\Tr\Ar\East Wall\0004ASH.vao - Page 2

I I I I I I	TIME	I I I I	FROM/	י (1	ΓU PE	JRNING CO CRCENTAGE	OPORTIONS UNTS (VEH) OF H.V.S) ARM B I	I
	16.45 - 18.15		ARM A	B		0.0 I (10.0)I I 0.801 I 748.0 I	(10.0)I I 0.000 I 0.0 I (10.0)I I	263.0 I (10.0)I I 0.199 I 186.0 I (10.0)I I 0.000 I 0.0 I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA DEFAULT PROPORTIONS OF HEAVY VEHICLES ARE USED

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

DEMAND CAPACITY DEMAND/ PEDESTRIAN START END DELAY GEOMETRIC DELAYI (VEH/MIN) (VEH/MIN) CAPACITY FLOW QUEUE QUEUE (VEH.MIN/ (VEH.MIN/ I I TIME (VEH/MIN) (VEH/MIN) CAPACITY Ι (RFC) (PEDS/MIN) (VEHS) (VEHS) TIME SEGMENT) TIME SEGMENT) I I I 16.45-17.00 Ι 11.3938.5011.6819.495.1434.13 I ARM A 11.39 0.296 0.0 0.4 Ι I ARM B 0.599 0.0 1,5 Ι 0.2 I ARM C 0.151 0.0 Ι only I I ortor DEMAND CAPACITY DEMAND/ PEDESTRIAN STAR (VEH/MIN) (VEH/MIN) CAPACITY FLOW QUEVE START END DELAY GEOMETRIC DELAYI QUEUE (VEH.MIN/ (VEH.MIN/ I Ι TIME Ι (RFC) (PEDS/MIN) (WEHS) (VEHS) TIME SEGMENT) TIME SEGMENT) I For provide 1.5 I Forinspe I 17.00-17.15 т I ARM A 13.60 I ARM B 13.94 38.070.35719.140.72832.560.188 13.94 6.13 0.6 8.2 I 2.6 35.9 I I ARM C 0.2 3.4 Ι Τ Т -----Ś -----------GEOMETRIC DELAYI DEMAND CAPACITY DEMAND/ PEDESTRIAN START END DELAY GEOMETRIC DELAYI VEH/MIN) (VEH/MIN) CAPACITY FLOW QUEUE QUEUE (VEH.MIN/ (VEH.MIN/ I (RFC) (PEDS/MIN) (VEHS) (VEHS) TIME SEGMENT) TIME SEGMENT) I I TIME (VEH/MIN) (VEH/MIN) CAPACITY Ι Ι I 17.15-17.30 Ι I ARM A 16.65 37.490.44418.660.91530.600.246 0.6 0.8 11.7 I I ARM B 17.07 2.6 7.9 95.6 Т I ARM C 7.51 0.2 0.3 4.8 Ι Ι Ι -------------DEMAND CAPACITY DEMAND/ PEDESTRIAN START END DELAY GEOMETRIC DELAYI (VEH/MIN) (VEH/MIN) CAPACITY FLOW QUEUE QUEUE (VEH.MIN/ (VEH.MIN/ I TIME I Ι (RFC) (PEDS/MIN) (VEHS) (VEHS) TIME SEGMENT) TIME SEGMENT) I Ι I 17.30-17.45 Т I ARM A 16.65 I ARM B 17.07 37.490.44418.650.91530.400.247 0.8 0.8 11.9 I 7.9 9.0 128.0 I I ARM C 7.51 0.3 0.3 4.9 Т Т Ι ----DEMAND CAPACITY DEMAND/ PEDESTRIAN START END DELAY GEOMETRIC DELAYI VEH/MIN) (VEH/MIN) CAPACITY FLOW QUEUE QUEUE (VEH.MIN/ (VEH.MIN/ I (RFC) (PEDS/MIN) (VEHS) (VEHS) TIME SEGMENT) TIME SEGMENT) I I TIME (VEH/MIN) (VEH/MIN) CAPACITY Ξ Ι I 17.45-18.00 Ι I ARM A 13.60 38.07 0.357 I ARM B 13.94 19.13 0.729 I ARM C 6.13 32.22 0.190 0.8 0.6 8.5 Ι 9.0 2.8 50.3 т 0.3 0.2 3.6 T I T

TRL	·	TRL	VIEWER	2.0 AB r:	\MDE0133\Tr\#	\r\East	Wall\00	04ASH.vao - Pa	ge 3
I	TIME	DEMAND	CAPACITY		PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)		FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	18.00-1	8.15							I
I	ARM A	11.39	38.49	0.296		0.6	0.4	6.4	I
Τ	ARM B	11.68	19.49	0.599		2.8	1.5	24.1	I
T	ARM C	5.14	34.01	0.151		0.2	0.2	2.7	Т
ī		0.11				•••			ī

QUEUE AT ARM A

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
17.00	0.4
17.15	0.6 *
17.30	0.8 *
17.45	0.8 *
18.00	0.6 *
18.15	0.4

QUEUE AT ARM B __________

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE	
17.00 17.15 17.30 17.45 18.00 18.15	1.5 2.6 7.9 9.0 2.8 1.5	* * * * * * * * * * * * * * * * * * * *

QUEUE AT ARM C -----

18.15

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
17.00	0.2
17.15	0.2
17.30	0.3
17.45	0.3
18.00	0.2

0.2

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I I I T	ARM	I I T	TOTAL	DEMAND	I	* DE	UEING * LAY *	I	*	DEI	QUEUEING * LAY *	I I I
Ī		ī	(VEH)	(VEH/H)	I	(MIN)	(MIN/VEH)		(MIN)		(MIN/VEH)	Ī
I I I	A B C	Ī	1249.2 1280.7 563.6	I 853.8	I	52.9 I 354.6 I 22.0 I		I I I	52.9 354.6 22.0		0.04 0.28 0.04	I I I
I 	ALL	I	3093.5	I 2062.3	I	429.5 I	0.14	 I	429.6	I	0.14	I

DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD.
 INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.
 THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

Consent of copyright owner required for any other use.

END OF JOB

****** ARCADY 5 run completed.

•

	0 AB R:\MDE0133\Tr\Ar\E			
TRANSPORT	T RESEARCH LABORATORY			
(C) COPYI	RIGHT 1990,1996,2000			
CAPACITIES, QUEUN	ES AND DELAYS AT ROUNDA	BOUTS		
	.0 ANALYSIS PROGRAM SE 1.0 (APR 2000)			
	DY/3 WHICH IS CROWN COP OF THE CONTROLLER OF HM			
FOR SALES AND I PROGRAM ADVICE TRL S TEL: CROWTHORNE	DISTRIBUTION INFORMATIO AND MAINTENANCE CONTAC SOFTWARE BUREAU (01344) 770758, FAX: 77 twareBureau@trl.co.uk	N, T:		
THE USER OF THIS COMPUTER PROGRAM IN NO WAY RELIEVED OF HIS RESPON				
Run with file:- "r:\MDE0133\Tr\A	r\East Wall\0009WPR.vai	• at 16:00:18 on W	ednesday, 28 April 2004	ł
ROUNDABOUT CAPACITY AND DELAY				
RUN TITLE ********* East Wall Road / North Wall Quay	y - Existing AM Peak 20	03 with Plant 105 1. pupper only any other 105 1. pupper control for any other 105	ې. ۲	
INPUT DATA ********** ARM A - East Wall Road ARM B - East Link Bridge ARM C - North Wall Quay	and the second second	1. pupper of for		
GEOMETRIC DATA	Fortheright			
	I L (M), STI R (M			
I ARM A I 6.20 I 8.30		0 I 35.00 I	0.0 I 0.894	I 44.727 I 23.419
I ARM C I 8.50 I 9.50	I 0.00 I 28.0	0 I 35.00 I	44.0 I 0.860	I 46.315
V = approach half-width L = E = entry width R =	= effective flare lengt = entry radius	h D = i PHI =	nscribed circle diamete entry angle	er
TRAFFIC DEMAND DATA				
TIME PERIOD BEGINS 08.00 AND END:	S 09.30			
LENGTH OF TIME PERIOD - 90 M LENGTH OF TIME SEGMENT - 15 M				
DEMAND FLOW PROFILES ARE SYNTHES	ISED FROM TURNING COUNT	DATA		

I I I	ARM		NUMBER OF FLOW STARTS TO RISE	Ι	TOP OF PE	AK I I	FLOW STOPS	I	BEFORE	I	AT TOP	I	AFTER	
I	ARM A ARM B ARM C	Ī	15.00	I I I	45.00 45.00 45.00	I	75.00	I	9.55 9.09 6.13	I	13.63	Ι	9.09	ī

•

÷,

· · · · · · · · · · · · · · · · · · ·				ent of			4.0 DELAY (VEH.MIN/	
				Forth	0.2			
ARM C	7.31	34.37	0.213	×	· *			
ARM A ARM B	$11.40 \\ 10.85$	37.01 19.91	0.308 0.545	(PEDS/MIN)	0.8	0.4 1.2	6.6 17.1 4.0	
08.15-08	.30			(PEDS/MIN)	(VERS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT
TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY	PEDESTRIAN FLOW	START	COUEUE	DELAY (VEH.MIN/ TIME_SEGMENT)	GEOMETRIC DEL (VEH.MIN/
						only a	<u>1</u>	
ARM C	6.13	35.65	0.172		0.0 0.0		ther W3.1	
ARM A ARM B	9.55 9.09	37.61 20.13	0.254 0.451		0.0	0.3 0.8	5.0 19.8	
08.00-08	.15		(RFC)				DELAY (VEH.MIN/ TIME SEGMENT)	TIME SEGMENT
	(VEH/MIN)	(VEH/MIN)	DEMAND/ CAPACITY	PEDESTRIAN FLOW	START QUEUE	END QUEUF	DELAY (VEH.MIN/	GEOMETRIC DEL

.

•

.

TRL TRL VIEWER 2.0 AB R:\MDE0133\Tr\Ar\East Wall\0009WPR.vao - Page 3 I TIME DEMAND CAPACITY DEMAND/ PEDESTRIAN START END DELAY GEOMETRIC DELAYI I (VEH/MIN) (VEH/MIN) CAPACITY FLOW QUEUE QUEUE (VEH.MIN/ (VEH.MIN/ I I (RFC) (PEDS/MIN) (VEHS) TIME SEGMENT) TIME SEGMENT) I T 09 15-09.30

	1 09.12-09.30							Т
1	I ARM A	9.55	37.60	0.254	0.4	0.3	5.2	ī
1	IARM B	9.09	20.13	0.451	1.2	0.8	12.9	Ι
]	I ARM C	6.13	35.60	0.172	0.3	0.2	3.2	Ι
]	Ľ							I
-				•				

QUEUE AT ARM A

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE	
08.15 08.30 08.45 09.00 09.15 09.30	0.3 0.4 0.6 0.6 0.4 0.3	*

QUEUE AT ARM B

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE	
08.15	0.8	*
08.30	1.2	*
08.45	2.0	* *
09.00	2.1	**
09.15	1.2	*
09.30	0.8	*

QUEUE AT ARM C

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
08.15 08.30 08.45	0.2 0.3 0.4
09.00	0.4
09.30	0.3

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I I I	ARM	I I I-	TOTAI	DEMAND	I	* DE	UEING * LAY *	I	*	DEL	QUEUEING * AY *	I I I
ī		ī	(VEH)	(VEH/H)	I		(MIN/VEH)		(MIN)		(MIN/VEH)	I
I I I	A B C		1047.6 996.9 671.9	I 664.6	ī	42.2 I 120.6 I 25.6 I	0.12	I I I	 42.2 120.6 25.6	I I I	0.04 0.12 0.04	I I I
I 	ALL	I	2716.4	I 1810.9	I	188.4 I	0.07	I	 188.4	I	0.07	I

•

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD.

* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD. * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

Consent of copyright owner required for any other use.

END OF JOB

.

****** ARCADY 5 run completed.

	TR				133\Tr\Ar\E				L		
			TRANSPORT								
			(C) COPYRIC	GHT 1990,1	996,2000						
	CA	PACITI	ES, QUEUES	AND DELAY	S AT ROUNDAI	BOUTS					
		1	ARCADY 5.0 RELEASE	ANALYSIS 1.0 (APR							
					S CROWN COPY						
	1	FOR SA PROGRAI	M ADVICE AL TRL SO	STRIBUTION ND MAINTEN FTWARE BUR 1344) 7707	INFORMATION NANCE CONTACT LEAU 158, FAX: 770	Γ:	-				
					OR THE CORRE						
Run with f	ile:- "r	:\MDE0	133\Tr\Ar\	East Wall\	0010WPR.vai	at 16:01:	ll on We	dnesday, 2	28 April	2004	
ROUNDABOUT											
RUN TITLE East Wall		North 1	Wall Quay	- Existing	PM Peak 200 For insection For	03 with Pla	nt 15 ^{e.}				
ARM A - Ea ARM B - Ea ARM C - No	st Wall I st Link I	Bridge			ction r	puposes of for					
GEOMETRIC	DATA				Forinsputor						
IARM I			E (M) I	L (M) 5	I R (M)) I D (4) I	PHI (DEG)			I INTERCEPT (PCU/MIN
I ARM A I I ARM B I I ARM C I	6.20 3.50 8.50	I I I	8.30 I 5.40 I 9.50 I	20.00 0.00 0.00	I 73.00 I 15.00 I 28.00) I 35.) I 35.) I 35.	I 00 I 00 I 00	0.0 66.0 44.0	I 0. I 0. I 0.	894 548 860	I 44.727 I 23.419 I 46.315
			L = 6 R = 6		flare length us	1	D = in	scribed ci entry angl	rcle di		r
	widdii										
V = approa E = entry		A -									
V = approa E = entry		A -									
	MAND DAT	-	AND ENDS 1	18.15							
V = approa E = entry TRAFFIC DE TIME PERIO LENGTH OF	MAND DATA	- 16.45 IOD -	90 MIN	JTES.							
V = approa E = entry TRAFFIC DE TIME PERIO LENGTH OF LENGTH OF	MAND DATA D BEGINS TIME PER: TIME SEGN	- 16.45 IOD - MENT -	90 MINU 15 MINU	JTES. JTES.	RNING COUNT	DATA					
V = approa E = entry TRAFFIC DE TIME PERIO LENGTH OF LENGTH OF	MAND DATA D BEGINS TIME PER: TIME SEGN	- 16.45 IOD - MENT - ES ARE	90 MINT 15 MINT SYNTHESISI	JTES. JTES. ED FROM TU		DATA					
V = approa E = entry TRAFFIC DE TIME PERIO LENGTH OF LENGTH OF DEMAND FLO I I I I ARM I	MAND DATA D BEGINS TIME PER TIME SEGN W PROFILM NUMBER FLOW STAM	- 16.45 IOD - MENT - ES ARE OF MII RTS I 1	90 MING 15 MING SYNTHESISI MUTES FROM TOP OF PEAK	JTES. JTES. ED FROM TU START WHE (I FLOW S	RNING COUNT N I RAT TOPS I BEFOR I PEAK	TE OF FLOW	I AFTE	RI			

•

•

TRL TRL VIEWER 2.0 AB R:\MDE0133\Tr\Ar\East Wall\0010WPR.vao ~ Page 2

I I I I I	I I I	TURNING PROPO TURNING COUNT (PERCENTAGE OF	S (VEH/HR) I
I TIME	I FROM/TO	IARMAIA	RM B I ARM C I
I 16.45 - 18.15 I I I I I I I I I I I I I	I ARM A I I I I ARM B I I I I ARM C I I I I	I I I I 0.804 I 0 I 762.0 I I (10.0)I (I I 0.528 I 0 I 217.0 I 1	60.0 I 263.0 I 10.0)I (10.0)I I I I 0.00 I 0.196 I 0.0 I 186.0 I 10.0)I (10.0)I I I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA DEFAULT PROPORTIONS OF HEAVY VEHICLES ARE USED

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

-----DEMAND CAPACITY DEMAND/ PEDESTRIAN START END DELAY GEOMETRIC DELAYI VEH/MIN) (VEH/MIN) CAPACITY FLOW QUEUE QUEUE (VEH.MIN/ (VEH.MIN/ I TIME (VEH/MIN) (VEH/MIN) CAPACITY Ι (PEDS/MIN) (VEHS) (VEHS) TIME SEGMENT) TIME SEGMENT) I Ι (RFC) I 16.45-17.00 т 1-21-3 010021.4 I ARM A 11.54 I ARM B 11.85 30. 19.49 33.99 0.300 38.50 0.0 0.4 Τ 0.608 0.0 1.5 Ŧ I ARM C 5.14 0.151 0.2 0.0 T only. Ι I es of for a TIME DEMAND CAPACITY DEMAND/ PEDESTRIAN STARY (VEH/MIN) (VEH/MIN) CAPACITY FLOW QUEUE. START VEND DELAY GEOMETRIC DELAYI QUEUE (VEH.MIN/ (VEH.MIN/ I I Ι (RFC) (PEDS/MIN) (VEHS) (VEHS) TIME SEGMENT) TIME SEGMENT) I Ι Formspe FOT INST 1.5 COPYTEE 1.5 I 17.00-17.15 I 38.070.36219.140.73932.380.189 I ARM A 13.78 8.4 0.6 т 14.15 I ARM B 2.7 37.7 Ι I ARM C 6.13 0.2 3.5 Ι Т I ----------DELAY GEOMETRIC DELAYI (VEH.MIN/ (VEU.MIN/ DEMAND CAPACITY DEMAND/ PEDESTRIAN START END DELAY GEOMETRIC DELAYI FLOW QUEUE QUEUE (VEH.MIN/ (VEH.MIN/ I (PEDS/MIN) (VEHS) (VEHS) TIME SEGMENT) TIME SEGMENT) I I TIME (VEH/MIN) (VEH/MIN) CAPACITY Т Ι (RFC) I 17.15-17.30 Ι I ARM A 16.87 I ARM B 17.33 37.49 0.450 0.6 0.8 12.0 I 18.66 0.929 2.7 8.9 104.6 Ι I ARM C 7.51 30.42 0.247 0.2 0.3 4.8 I Ι I DELAY GEOMETRIC DELAYI (VEH.MIN/ (VEV. DEMAND CAPACITY DEMAND/ PEDESTRIAN START END (VEH/MIN) (VEH/MIN) CAPACITY FLOW QUEUE QUEUE I TIME Т (PEDS/MIN) (VEHS) (VEHS) TIME SEGMENT) TIME SEGMENT) (RFC) Т I I 17.30-17.45 Т I ARM A 16.87 I ARM B 17.33 37.49 0.450 18.65 0.929 0.8 0.8 12.2 Ι 8.9 10.3 144.9 Ι 30.20 0.249 I ARM C 7.51 0.3 0.3 4.9 Ξ т Ι ----DEMAND CAPACITY DEMAND/ PEDESTRIAN START END DELAY GEOMETRIC DELAYI (VEH/MIN) (VEH/MIN) CAPACITY FLOW QUEUE QUEUE (VEH.MIN/, (VEH.MIN/ I Ι TIME I (PEDS/MIN) (VEHS) (VEHS) TIME SEGMENT) TIME SEGMENT) I I (RFC) I 17.45-18.00 Ι I ARM A 13.78 I ARM B 14.15 I ARM C 6.13 38.070.36219.130.74031.990.192 0.8 0.6 8.7 I 10.3 55.4 3.0 Ι 0.3 0.2 3.6 Т Ι I

[Printed at 16:03:23 on 28/04/2004]

•

****** ARCADY 5 run completed.

END OF JOB

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD. * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD. * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

Consent of copyright on perpensived for any other use.

I I I	ARM	I I T	TOTAL	ום ב	EMAND	I	* [ΕI	JEING * LAY *	I	*	DEL	QUEUEING * AY *	I I I
I		I	(VEH)	7}	VEH/H)	I	(MIN)		(MIN/VEH)		(MIN)		(MIN/VEH)	I
I I I	A B C	Ι	1265.6 1299.9 563.6	I	866.6	I	54.1 389.1 22.2	Ι	0.04 0.30 0.04	I I I	389.2	I I I	0.04 0.30 0.04	I I I
I	ALL	I	3129.1	I	2086.1	I	465.4	I	0.15	I	465.4		0.15	I

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

QUEUE AT ARM (-
TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE
17.00	0.2
17.15	0.2
17.30	0.3
17.45	0.3
18.00	0.2
18.15	0.2

17.00	1.5	**
17.15	2.7	***
17.30	8.9	*******
17.45	10.3	* * * * * * * * * *
18.00	3.0	***
18.15	1.6	**

IN QUEUE

QUEUE AT ARM B

TIME SEGMENT ENDING	NO. OF VEHICLES IN QUEUE	
17.00 17.15 17.30 17.45 18.00 18.15	0.4 0.6 0.8 0.8 0.6 0.6	* * * *

TIME SEGMENT NO. OF ENDING VEHICLES

QUEU	JE	AT	ARM	Α

TRL

I TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY	PEDESTRIAN FLOW	START OUEUE	END OUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAY: (VEH.MIN/
<u>I</u>	(• ===; ====;	(*2,	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
18.00-3	18.15							
IARMA	11.54	38.49	0.300		0.6	0.4	6.5	
I ARM B	11.85	19.49	0.608		3.0	1.6	25.1	:
ARM C	5.14	33.85	0.152		0.2	0.2	2.7	:
ſ								

TRL VIEWER 2.0 AB R:\MDE0133\Tr\Ar\East Wall\0010WPR.vao - Page 3

User	M.C.O'Sullivan & Co.Ltd.	Project	ject Dublin Waste To Energy Project				Page 1
Location	Ringsend	File	0003WPR	SCN		Chkd	
Title	2003 Existing AM Peak			Controller	Generic	Appvd	

Phases

.

••

	Phase Data									
	Phase Name	Phase Type	Assoc Phase	Street Min	Cont Min					
A	Church Ave	Traffic		7	7					
в	Londonbridge Rd Ahead Right	Traffic		7	7					
С	Irishtown Rd N Right Ahead	Traffic		7	7					
D	Irishtown Rd S	Traffic		7	7					
E	Irishtown Rd N Left	Traffic		7	7					
F	Londonbridge Rd Left	Traffic		7	7					
G	Pedestrians across	Pedestrian	nse.	7	5					
н	Pedestrians across	Pedestrian	other use.	6	6					
	Pedestrians across	Pedestrian	8	7	7					
J	Irishtown Rd S Filter	Filfered	D	7	0					
к	Pedestrians across	Pedestrian		6	6					
L	Pedestrians across	Pedestrian		6	0					
	Pedestrians across									

•

	User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Waste To Energy Project				Page 2
Lo	ocation	Ringsend	File	0003WPR SCN Chkd		Chkd		
	Title	2003 Existing AM Peak		Controller	Generic	Appvd		

Phase Intergreens

From				I		e Ini To P			\$			
Phase	Α	в	С	D	Е	F	G	Н	Ι	J	к	L
Α		5	5	5			7		8	5		6
В	7		5	5	5		5			5		8
С	6	5					8		5	5		8
D	5	5					7		7		5	
E		5							5	5		
F								5				
G	6	6	6	6					herv	ė.		
н						5		and of	n.			
I	8		8	8	8	00	onty.	.0.				
J	5	5	5		3		e S				5	
к				60	where					6		
L	6	6	611	$\mathbb{N}_{\mathcal{N}}$								
	Consent of convert											

•

User	M.C.O'Sullivan & Co.Ltd.	Project	pject Dublin Waste To Energy Project				Page 3
Location	Ringsend	File	0003WPR	SCN		Chkd	
Title	2003 Existing AM Peak		Controller	Generic	Appvd		

Phase Delays

		Pha	se Delay	's		
No	From	rom To Pha		De	lay Ti	me
	Stage Stage	Fliase	Abs	Rel	Cntr	
1	2	3	G			2
2	2	3	L			7
3	3	1	D			1

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Page 4			
Location	Ringsend	File	0003WPR SCN Chkd				
Title	2003 Existing AM Peak		Controller	Generic	Appvd		

Prohibited Moves

From Stage	Prohibited Moves To Stage							
	1	2	3	4				
1								
2								
3								
4								

•

-

User	M.C.O'Sullivan & Co.Ltd.	Project	Project Dublin Waste To Energy Project				
Location	Ringsend	File	ie 0003WPR SCN Chkd				
Title	2003 Existing AM Peak		Controller	Generic	Appvd		

Stages

	Stage Data
Stage	Phases In Stage
1	AF
2	GHJL
3	CDEF
4	BFK

Consent of copyright owner required for any other use.

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Project Dublin Waste To Energy Project					
Location	Ringsend	File	0003WPR	0003WPR SCN Chkd				
Title	2003 Existing AM Peak			Controller	Generic	Appvd		

Links

		Link	Data			Link Data												
Ref Num	Link	Туре	Full Phase	Arrw Phase	Opposing Arm/Link	R Turn Storage	Max Turn											
1/1	Church Ave Ahead Right Left	υ	А															
2/1	Londonbridge Rd Ahead Right	U	В															
2/2	Londonbridge Rd Left	U	F															
3/1	Irishtown Rd N Right Ahead	U	С															
3/2	Irishtown Rd N Left	U	E															
4/1	Irishtown Rd S Right Left Ahead	0	D	J	3/1	2	2											

Consent of copyright owner required for any other use

.

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project				
Location	Ringsend	File	0003WPR	0003WPR SCN Chkd				
Title	2003 Existing AM Peak		Controller	Generic	Appvd			

Lanes

		La	ane Data							
Ref Num	Lane	Length (pcu)	Gradient (%)	Width (m)	Propn Turn(%)	Radius (m)	User Satn	RR67 Satn		
1/1	Church Ave Ahead Right Left	Inf	0.00	3.25	70	13.00	1800	1795		
2/1	Londonbridge Rd Left	Inf	0.00	3.00	100	32.00	1800	1829		
2/2	Londonbridge Rd Ahead Right	Inf	0.00	4.25	33	20.00	1800	2127		
3/1	Irishtown Rd N Left	inf	0.00	3.25	0	Inf	1800	2080		
3/2	Irishtown Rd N Right Ahead	Inf	0.00	3.25	0	Inf	1800	2080		
4/1	Irishtown Rd S Left Ahead	Inf	0.00	3.25	0	Inf	1800	2080		
4/2	Irishtown Rd S Right	5	0.00	3.25	15 ^{0.} 0	Inf	1800	2080		
4/2 Irishtown Rd S Right 5 0.00 3.25 LS ⁰ Inf 1800 2080										

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project			
Location	Ringsend	File	0003WPR	03WPR SCN Chkd			
Title	2003 Existing AM Peak			Controller	Generic	Appvd	

Traffic Flows

	Traffic Flows										
Grp	Time	Time	Titio		L	ink N	lumbe	er			
Num	Start	End	Title	1/1	2/1	2/2	3/1	3/2	4/1		
1	08:15	09:15	2003 AM Peak	167	155	34	234	30	649		
2	17:00	18:00	2003 PM Peak	134	225	40	251	57	335		
3	08:00	09:00	2008 Am Peak with Plant	201	212	34	259	75	667		
4	17:00	18:00	2008 PM Peak with Plant	168	235	41	254	145	341		

Consent of copyright owner required for any other use.

.

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project			
Locatio	n Ringsend	File	0003WPR	0003WPR SCN Chkd			
Title	2003 Existing AM Peak			Controller	Generic	Appvd	

Parameters Selected

• • • • •

Parameters Selected						
Flow Group	2003 AM Peak					
Flow Group Period	08:15 to 09:15					
Phase Minimum Type	Street					
CycleTime	90					
Flow Factor	1.00					
Sat Flows Used	RR67					

Stage Results

Stage Tin Stage Sequence	4	IN. a	in othe	ruse.
Stage Tir	ang	for		
Stage Sequence	<u>6</u>	2	3	4
Stage Duration	14	18	16	10
Stage Change Point	0	21	46	75
Consent of Consent of				

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project				
Location	Ringsend	File	0003WPR	0003WPR SCN Chkc				
Title	2003 Existing AM Peak			Controller	Generic	Appvd		

Link Results

	Link Results											
Link Ref	Link Name	Link Type	Full Phs	Arw Phs	Tot Grn	Dem Flow	Satn Flow	Cap pcu	Deg Sat%	Del s/pcu	TDel pcuh	Que' pcu
1/1	Church Ave Ahead Right Left	U	A		14	167	1795	299	55. 8	42.7	2.0	3.7
2/1	Londonbridge Rd Ahead Right	U	В		10	155	2127	260	59.6	48.2	2.1	3.8
2/2	Londonbridge Rd Left	U	F		60	34	1829	1240	2.7	5.1	0.0	0.3
3/1	Irishtown Rd N Right Ahead	U	С		16	234	2080	393	59.6	40.7	2.6	5.1
3/2	Irishtown Rd N Left	U	Е		16	30	2080	⁹ 393	7.6	31.2	0.3	0.6
4/1	Irishtown Rd S Right Left Ahead	0	D	J	49	649. 01101	nt968	1093	59.4	16.2	2.9	7.4
	Cycle Time 90 s PRC 50.9 % Total Delay 9.9 PCUh											
	Nº 10th											

Opposed Link	Res	ALOF COR								
		Conser Opposed Movement De	etail							
	Link Link Name Arr Gaps Ign Ref Crn /cyc /cyc									
	4/1	Irishtown Rd S Right Left Ahead	28	2.4	2.0					

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Publin Waste To Energy Project				
Location	Ringsend	 File	0003WPR	003WPR SCN Chkd				
Title	2003 Existing AM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd		

.

Phases

	Phase Data								
	Phase Name	Phase Type	Assoc Phase	Street Min	Cont Min				
Α	Church Ave	Traffic		7	7				
в	Londonbridge Rd Ahead Right	Traffic		7	7				
С	Irishtown Rd N Right Ahead	Traffic		7	7				
D	Irishtown Rd S	Traffic		7	7				
Ε	Irishtown Rd N Left	Traffic		7	7				
F	Londonbridge Rd Left	Traffic		7	7				
G	Pedestrians across	Pedestrian	WSC.	7	5				
н	Pedestrians across	Pedestrian	othernu	6	6				
Ι	Pedestrians across	Pedestrian	Ċ,	7	7				
J	Irishtown Rd S Filter	Filtered	D	7	0				
κ	Pedestrians across	Pedestrian		6	6				
L	Pedestrians across	Pedestrian		6	0				
	Pedestrians across Pedestrians across Football of the sector Consent of copyright on the sector								

•

٠

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project					
Location	Ringsend	File	0003WPR	SCN					
Title	2003 Existing AM Peak with	Controller	Generic	Appvd					

Phase Intergreens

.

From Phase				I			tergr hase	eens e	3			
Phase	A	В	С	D	£	F	G	Н	-	J	к	L
Α		5	5	5			7		8	5		6
В	7		5	5	5		5		_	5		8
С	6	5					8		5	5		8
D	5	5					7		7		5	
E		5							5	5		
F								5				
G	6	6	6	6					.0	ė,		
Н						5		d	herv			
1	8		8	8	8		only of or	3113				
J	5	5	5		5	2050 111	00				5	
к				6.	n P	, er				6		
L	6	6	6	Polit	ho							
	Con	Sento	6 n copy	Sec.								_

•

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Page 3	
Location	Ringsend	File	0003WPR		
Title	2003 Existing AM Peak with	Controlier	Generic	Appvd	

Phase Delays

		Pha	se Delay	s				
No	From	То	Phase	Delay Time				
NO	Stage	Stage	Filase	Abs	Rel	Cntr		
1	2	3	G			2		
2	2	3	L			7		
3	3	1	D			1		

.

.

	User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project					
Γ	Location	Ringsend	File	0003WPR						
Γ	Title	2003 Existing AM Peak with	Controller	Generic	Appvd					

Prohibited Moves

From	Prohibited Moves To Stage							
Stage	1	2	3	4				
1								
2								
3								
4								

.

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project					
Location	Ringsend	File	0003WPR SCN Chkd						
Title	2003 Existing AM Peak with	Controller	Generic	Appvd					

Stages

	Stage Data				
Stage	Phases In Stage				
1 AF					
2	GHJL				
3	CDEF				
4	BFK				

Consent of copyright owner required for any other use.

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project					
Location	Ringsend	File	0003WPR						
Title	2003 Existing AM Peak with	Controller	Generic	Appvd					

Links

		Link	Data				
Ref Num	Link	Туре	Full Phase	Arrw Phase	Opposing Arm/Link	R Turn Storage	Max Turn
1/1	Church Ave Ahead Right Left	υ	А				
2/1	Londonbridge Rd Ahead Right	U	В				
2/2	Londonbridge Rd Left	U	F				
3/1	Irishtown Rd N Right Ahead	U	С				
3/2	Irishtown Rd N Left	U	E				
4/1	Irishtown Rd S Right Left Ahead	0	D	J	3/1	2	2

Consent for inspection purposes only any other use

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project					
Location	Ringsend	File	0003WPR	Chkd					
Title	2003 Existing AM Peak with	Existing AM Peak with "Plant" Traffic			Generic	Appvd			

Lanes

•

		La	ane Data					
Ref Num	Lane	Length (pcu)	Gradient (%)	Width (m)	Propn Turn(%)	Radius (m)	User Satn	RR67 Satn
1/1	Church Ave Ahead Right Left	Inf	0.00	3.25	70	13.00	1800	1795
2/1	Londonbridge Rd Left	Inf	0.00	3.00	100	32.00	1800	1829
2/2	Londonbridge Rd Ahead Right	Inf	0.00	4.25	33	20.00	1800	2127
3/1	Irishtown Rd N Left	Inf	0.00	3.25	0	Inf	1800	2080
3/2	Irishtown Rd N Right Ahead	Inf	0.00	3.25	0	Inf	1800	2080
4/1	Irishtown Rd S Left Ahead	Inf	0.00	3.25	0	Inf	1800	2080
4/2	Irishtown Rd S Right	5	0.00	3.25	15 ^{0.0}	Inf	1800	2080

Consent of convint of the providence of the prov

•

٠

User	M.C.O'Sullivan & Co.Ltd.	Project	Project Dublin Waste To Energy Project					
Location	Ringsend	File	File 0003WPR SCN Chkd					
Title	2003 Existing AM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd		

Traffic Flows

	Traffic Flows											
Grp	Time	Time	Title	Link Number								
Num	Start	End		1/1	2/1	2/2	3/1	3/2	4/1			
1	08:15	09:15	2003 AM Peak	167	155	34	234	30	649			
2	17:00	18:00	2003 PM Peak	134	225	40	251	57	335			
3	08:00	09:00	2008 AM Peak with Plant	201	212	34	259	75	667			
4	17:00	18:00	2008 PM Peak with Plant	168	235	41	254	145	341			

Consent of copyright owner required for any other use.

.

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Project Dublin Waste To Energy Project						
Location	Ringsend	File	0003WPR	SCN		Chkd			
Title	2003 Existing AM Peak with	"Plant" T	raffic	Controller	Generic	Appvd			

Parameters Selected

Paramete	rs Selected					
Flow Group	2008 AM Peak with Plant					
Flow Group Period	08:00 to 09:00					
Phase Minimum Type	Street					
CycleTime	90					
Flow Factor	1.00					
Sat Flows Used	RR67					

Stage Results

Stage Tir Stage Sequence		27. 2	ny othe	31 USC.
Stage Tir	ningi	for		
Stage Sequence	JUN .	2	3	4
Stage Duration	14	15	16	13
Stage Change Point	0	21	43	72
Consent of CON				

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Project Dublin Waste To Energy Project					
Location	Ringsend	File	File 0003WPR SCN Chkd					
Title	2003 Existing AM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd		

Link Results

				Lir	nk Res	sults						
Link Ref	Link Name	Link Type	Full Phs	Arw Phs	Tot Grn	Dem Flow	Satn Flow	Cap pcu	Deg Sat%	Del s/pcu	TDel pcuh	Que' pcu
1/1	Church Ave Ahead Right Left	U	А		14	201	1795	299	67.2	47.9	2.7	4.8
2/1	Londonbridge Rd Ahead Right	U	в		13	212	2127	331	64.1	45.9	2.7	5.0
2/2	Londonbridge Rd Left	1301	2.6	4.2	0.0	0.3						
3/1	lrishtown Rd N Right Ahead	υ	С		16	259	2080	393	65.9	43.2	3.1	5.8
3/2	Irishtown Rd N Left	υ	E		16	75	2080	<mark>چ</mark> 393	19.1	32.6	0.7	1.5
4/1	Irishtown Rd S Right Left Ahead	0	D	J	46	667	1930	1008	66.2	19.7	3.7	8.2
	Cycle Time 90	s			PRC	34.0%			Total D	elay 12.	9 PCUh	
Cycle Time 90 s PRC 34 0% Total Delay 12.9 PCUh Opposed Link Results												

Opposed Link Results

Mean Opposed Movement Detail										
Link Ref	Link Name	Arr Grn	Gaps /cyc	lgn /cyc						
4/1	Irishtown Rd S Right Left Ahead	25	2.0	2.0						

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	te To Energy	Project		Page 1	
Location	Ringsend	File	File 0003WPR SCN Chkd					
Title	2003 Existing PM Peak with	1 "Plant" T	raffic	affic Controller Generic Appvd				

Phases

	Phas	e Data			
	Phase Name	Phase Type	Assoc Phase	Street Min	Cont Min
Α	Church Ave	Traffic		7	7
В	Londonbridge Rd Ahead Right	Traffic		7	7
С	Irishtown Rd N Right Ahead	Traffic		7	7
D	Irishtown Rd S	Traffic		7	7
E	Irishtown Rd N Left	Traffic		7	7
F	Londonbridge Rd Left	Traffic		7	7
G	Pedestrians across	Pedestrian	other USC.	7	5
н	Pedestrians across	Pedestrian	other	6	6
Ι	Pedestrians across	Pedestrian		7	7
J	Irishtown Rd S Filter	Filter	D	7	0
к	Pedestrians across	Pedestrian		6	6
L	Pedestrians across	Pedestrian		6	0
	Irishtown Rd S Filter Pedestrians across Pedestrians across tisten Consent of conviction				

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Project Dublin Waste To Energy Project					
Location	Ringsend	File	0003WPR					
Title	2003 Existing PM Peak with	n "Plant" T	raffic	Appvd				

Phase Intergreens

From						ie Ini To P			S			
Phase	Α	в	С	D	E	F	G	Н	I	J	к	L
Α		5	5	5			7		8	5		6
B	7		5	5	5		5			5		8
С	6	5					8		5	5		8
D	5	5					7		7		5	
E		5							5	5		
F								5				
G	6	6	6	6					10	ė,		
н						5	4.	and of	n.			
I	8		8	8	8	Jen Sta	offst.	8				
J	5	5	5		555	COLIN	0				5	
к				Bis	whet					6		
L	6	6	611	$\gamma_{\chi\chi}$	0							
	Con	Sento	COP									

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project					
Location	Ringsend	File	0003WPR						
Title	2003 Existing PM Peak with	n "Plant" T	raffic	Controller	Generic	Appvd			

Phase Delays

		Pha	se Delay	s		
No	From	То	Phase	De	lay Ti	me
	Stage	Stage	Filase	Abs	Rel	Cntr
1	2	3	G			2
2	2	3	L			7
3	3	1	D			1

•

.

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project				
Location	Ringsend	File	0003WPR	0003WPR SCN Chkd				
Title	2003 Existing PM Peak with	Controller	Generic	Appvd				

Prohibited Moves

From Stage	Prohibited Moves To Stage						
Stage	1	2	3	4			
1							
2							
3							
4							

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project					
Location	Ringsend	File	0003WPR						
Title	2003 Existing PM Peak with	"Plant" T	raffic	Controller	Generic	Appvd			

Stages

	Stage Data
Stage	Phases In Stage
1	AF
2	GHJL
3	CDEF
4	BFK

Consent of copyright owner required for any other use.

•

•

•

• • • •

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project					
Location	Ringsend	File	0003WPR	0003WPR SCN Chkd					
Title	2003 Existing PM Peak with	Controller	Generic	Appvd					

Links

		Link	Data				
Ref Num	Link	Туре	Full Phase	Arrw Phase	Opposing Arm/Link	R Turn Storage	Max Turn
1/1	Church Ave Ahead Right Left	U	А				
2/1	Londonbridge Rd Ahead Right	U	В				
2/2	Londonbridge Rd Left	U	F				
3/1	Irishtown Rd N Right Ahead	U	С				
3/2	Irishtown Rd N Left	U	E				
4/1	Irishtown Rd S Right Left Ahead	0	D	J	3/1	2	2

Consent of copyright owner required for any other use

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project				
Location	Ringsend	File	0003WPR	0003WPR SCN Chkd				
Title	2003 Existing PM Peak with	Controller	Generic	Appvd				

Lanes

	-	La	ane Data					
Ref Num	Lane	Length (pcu)	Gradient (%)	Width (m)	Propn Turn(%)	Radius (m)	User Satn	RR67 Satn
1/1	Church Ave Ahead Right Left	Inf	0.00	3.25	70	13.00	1800	1795
2/1	Londonbridge Rd Left	Inf	0.00	3.00	100	32.00	1800	1829
2/2	Londonbridge Rd Ahead Right	Inf	0.00	4.25	33	20.00	1800	2127
3/1	Irishtown Rd N Left	Inf	0.00	3.25	0	Inf	1800	2080
3/2	Irishtown Rd N Right Ahead	Inf	0.00	3.25	0	Inf	1800	2080
4/1	Irishtown Rd S Left Ahead	Inf	0.00	3.25	0	Inf	1800	2080
4/2	Irishtown Rd S Right	5	0.00	3.25	.e. 0	Inf	1800	2080

Consent of copyright owner required for any other

-

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project				
Location	Ringsend	File	0003WPR	SCN		Chkd		
Title	2003 Existing PM Peak with	Controller	Generic	Appvd				

Traffic Flows

			Traffic Flows							
Grp	Time	Time	Title	Link Number						
Num	Start	End		1/1	2/1	2/2	3/1	3/2	4/1	
1	08:15	09:15	2003 AM Peak	167	155	34	234	30	649	
2	17:00	18:00	2003 PM Peak	134	225	40	251	57	335	
3	08:00	09:00	2008 AM Peak with Plant	201	212	34	259	75	667	
4	17:00	18:00	2008 PM Peak with Plant	168	235	41	254	145	341	

Consent of copyright owner required for any other use.

•

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	te To Energy	Project		Page 9
Location	Ringsend	File	0003WPR	SCN		Chkd	
Title	2003 Existing PM Peak with	"Plant" T	raffic	Controller	Generic	Appvd	

Parameters Selected

Paramete	ers Selected
Flow Group	2008 PM Peak with Plant
Flow Group Period	17:00 to 18:00
Phase Minimum Type	Street
CycleTime	90
Flow Factor	1.00
Sat Flows Used	RR67

Stage Results

Stage Tir Stage Sequence		27. 4	ny othe	y USC.
Stage Tir	ningi	\$105		
Stage Sequence	<u>O</u>	2	3	4
Stage Duration	15	5	20	18
Stage Change Point	0	22	34	67
Consent of Consent of				

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	te To Energy	Project		Page 10	
Location	Ringsend	File	0003WPR	0003WPR SCN Chkd				
Title	2003 Existing PM Peak with	n "Plant" T	raffic	fic Controller Generic Appvd				

Link Results

				Lir	nk Res	ults						
Link Ref	Link Name	Link Type	Full Phs	Arw Phs	Tot Grn	Dem Flow	Satn Flow	Cap pcu	Deg Sat%	Del s/pcu	TDel pcuh	Que' pcu
1/1	Church Ave Ahead Right Left	U	A		15	168	1795	319	52.6	40.5	1.9	3.6
2/1	Londonbridge Rd Ahead Right	U	В		18	235	2127	449	52.3	36.5	2.4	4.7
2/2 Londonbridge Rd Left U F					73	41	1829	1504	2.7	1.7	0.0	0.2
3/1	Irishtown Rd N Right Ahead	υ	с		20	254	2080	485	52.3	34.9	2.5	4.9
3/2	Irishtown Rd N Left	U	E		20	145	2080	⁹⁴⁸⁵	29.9	30.7	1.2	2.8
4/1	Irishtown Rd S Right Left Ahead	0	D	J	40	341.	11 ³ 836	836	40.8	18.4	1.7	4.7
	Cycle Time 90	s			PRG	71.0 %			Total D	elay 9.7	' PCUh	
Орр	Cycle Time 90 s PRC710% Total Delay 9.7 PCUh Opposed Link Results											

Opposed Link Results

	Consect Opposed Movement De	Opposed Movement Detail						
Link Ref	Link Name	Arr Grn	Gaps /cyc	lgn /cyc				
4/1	Irishtown Rd S Right Left Ahead	15	3.5	2.0				

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	te To Energy	Project		Page 1
Location	Ringsend	File	0003WPR	SCN		Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Phases

	Phas	e Data			
	Phase Name	Phase Type	Assoc Phase	Street Min	Cont MIn
A	Church Ave	Traffic		7	7
в	Londonbridge Rd Ahead Right	Traffic		7	7
С	Irishtown Rd N Right Ahead	Traffic		7	7
D	Irishtown Rd S	Traffic		7	7
E	Irishtown Rd N Left	Traffic		7	7
F	Londonbridge Rd Left	Traffic		7	7
G	Pedestrians across	Pedestrian	ي.	7	5
Н	Pedestrians across	Pedestrian	other	6	6
J	Pedestrians across	Pedestran	8	7	7
J	Irishtown Rd S Filter	Filter	D	7	0
κ	Pedestrians across	Redestrian		6	6
L	Pedestrians across	Pedestrian		6	0
	Pedestrians across				

•

•

.

	User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	te To Energy	Project		Page 2
L	ocation	Ringsend	File	0003WPR	SCN		Chkd	
	Title	2003 Existing PM Peak		_	Controller	Generic	Appvd	

Phase Intergreens

From Phase				l	Phas	ie Ini To P	tergr hase	eens	5			
Fliase	Α	В	С	D	E	F	G	н	1	J	к	L
Α		5	5	5			7		8	5		6
В	7		5	5	5		5			5		8
С	6	5					8		5	5		8
D	5	5					7		7		5	
E		5							5	5		
F								5				
G	6	6	6	6					hor U	છું		
Н						5		40	ne			
i	8		8	8	8	e.S	only	212				
J	5	5	5		\sim	20 ³ .11	0				5	
к				6:1	aner where	6				6		
L	6	6	61	2								
_	6 Con	K	COBY									

.

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	te To Energy	Project		Page 3
Location	Ringsend	File	0003WPR	SCN		Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Phase Delays

Phase Delays								
No	From	То	Phase	Delay Time				
110	Stage	Stage	Flidse	Abs	Rel	Cntr		
1	2	3	G			2		
2	2	3	L			7		
3	3	1	D			1		

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Waste To Energy Project				Page 4
Location	Ringsend	File 0003WP				Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Prohibited Moves

From	Pro		ed Mo tage	ves
Stage	1	2	3	4
1				
2				
3				
4				

•

•

,

User	M.C.O'Sullivan & Co.Ltd.	Project	t Dublin Waste To Energy Project				Page 5
Location	Ringsend	File	0003WPR	SCN		Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Stages

	Stage Data
Stage	Phases In Stage
1	AF
2	GHJL
3	CDEF
4	BFK

Consent of copyright owner required for any other use.

.

•

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project			
Location	Ringsend	File	0003WPR	SCN		Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Links

	Link Data							
Ref Num	Link	Туре	Full Phase	Arrw Phase	Opposing Arm/Link	R Turn Storage	Max Turn	
1/1	Church Ave Ahead Right Left	υ	Α					
2/1	Londonbridge Rd Ahead Right	υ	В					
2/2	Londonbridge Rd Left	υ	F					
3/1	Irishtown Rd N Right Ahead	U	С					
3/2	Irishtown Rd N Left	U	E					
4/1	Irishtown Rd S Right Left Ahead	0	D	J	3/1	2	2	

Consent of copyright owner required for any other use

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Waste To Energy Project				Page 7
Location	Ringsend	File	0003WPR	SCN		Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Lanes

	Lane Data							
Ref Num	Lane	Length (pcu)	Gradient (%)	Width (m)	Propn Turn(%)	Radius (m)	User Satn	RR67 Satn
1/1	Church Ave Ahead Right Left	Inf	0.00	3.25	70	13.00	1800	1795
2/1	Londonbridge Rd Left	Inf	0.00	3.00	100	32.00	1800	1829
2/2	Londonbridge Rd Ahead Right	Inf	0.00	4.25	33	20.00	1800	2127
3/1	Irishtown Rd N Left	Inf	0.00	3.25	0	Inf	1800	2080
3/2	Irishtown Rd N Right Ahead	Inf	0.00	3.25	0	Inf	1800	2080
4/1	Irishtown Rd S Left Ahead	Inf	0.00	3.25	0	Inf	1800	2080
4/2	Irishtown Rd S Right	5	0.00	3.25	15 ^{0.} 0	Inf	1800	2080

Consent of copyright owner required for any other

•

file://R:\MDE0133\Tr\Li\.htm

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project			
Location	Ringsend	File	0003WPR	SCN		Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Traffic Flows

	Traffic Flows								
Grp	Time	Time	Title	Link Number					
Num	Start	End	TRE	1/1	2/1	2/2	3/1	3/2	4/1
1	08:15	09:15	2003 AM Peak	167	155	34	234	30	649
2	17:00	18:00	2003 PM Peak	134	225	40	251	57	335
3	08:00	09:00	2008 Am Peak with Plant	201	212	34	259	75	667
4	17:00	18:00	2008 PM Peak with Plant	168	235	41	254	145	341

Consent of copyright owner required for any other use.

•

User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Was	Dublin Waste To Energy Project			
Location	Ringsend	File	0003WPR	SCN		Chkd	
Title	2003 Existing PM Peak			Controller	Generic	Appvd	

Parameters Selected

Parameters Se	elected
Flow Group	2003 PM Peak
Flow Group Period	17:00 to 18:00
Phase Minimum Type	Street
CycleTime	90
Flow Factor	1.00
Sat Flows Used	RR67

Stage Results

Stage Tir Stage Sequence	, v	19° 2	Nothe	ruse.
Stage Tir	ning	for		
Stage Sequence	Ollin	2	3	4
Stage Duration	13	5	21	19
Stage Change Point	0	20	32	66
Consett of conset				

.

•

Γ	User	M.C.O'Sullivan & Co.Ltd.	Project	Dublin Waste To Energy Project			Page 10	
L	ocation	Ringsend	File	0003WPR	SCN		Chkd	
Γ	Title	2003 Existing PM Peak			Controller	Generic	Appvd	

• • ---•

Link Results

Link Results												
Link Ref	Link Name	Link Type	Full Phs	Arw Phs	Tot Grn	Dem Flow	Satn Flow	Cap pcu	Deg Sat%	Del s/pcu	TDel pcuh	Que' pcu
1/1	Church Ave Ahead Right Left	U	A		13	134	1795	279	48.0	41.3	1.5	3.0
2/1	Londonbridge Rd Ahead Right	υ	в		19	225	2127	473	47.6	34.6	2.2	4.4
2/2	Londonbridge Rd Left	U	F		73	40	1829	1504	2.7	1.7	0.0	0.2
3/1	Irishtown Rd N Right Ahead	U	С		21	251	2080	508	49.4	33.3	2.3	4.8
3/2	Irishtown Rd N Left	U	Е		21	57	2 A A	<mark>%5</mark> 08	11.2	27.6	0.4	1.1
4/1	Irishtown Rd S Right Left Ahead	0	D	J	41	335.	n1826	852	39.3	17.6	1.6	4.6
Cycle Time 90 s					PRC 823 % Total Delay					elay 8.1	PCUh	
Cycle Time 90 s PRC 823% Total Delay 8.1 PCUh Opposed Link Results												

Opposed Link Results

	Consert Opposed Movement De	etail		
Link Ref	Link Name	Arr Grn	Gaps /cyc	lgn /cyc
4/1	Irishtown Rd S Right Left Ahead	15	3.9	2.0

.

APPENDIX E

Reports

- Development of a Heavy Goods Wehicle (HGV) Management Strategy for Dublin City to coincide with the opening of the Dublin Port Tunnel – Interim Report
- 2. East Wall Road Traffic Management Study
- 3. Information Session 4: Traffic
- **4.** Blackrock Quality Bus Corridor Public Exhibition, Pearse Street and Ringsend Road Environmental Improvement and Bus Priority Scheme
- 5. Ringaskiddy Waste Management Facility Oral Hearing
- 6. An Bord Pleanála Inspector's Report (Carranstown Waste Management Facility)
- 7. An Bord Pleanála Inspector's Report (Herhof Waste Facility, Balbriggan)
- 8. Typical EIS chapter of 'Carranstown Waste Management Facility'

DEVELOPMENT OF A HEAVY GOODS VEHICLE (HGV) MANAGEMENT STRATEGY FOR DUBLIN CITY TO COINCIDE WITH THE OPENING OF THE DUBLIN PORT TUNNEL

Development of a Heavy Goods Vehicle (HGV) Management Strategy for Dublin City to Coincide with the Opening of the Dublin Port Tunnel

Interim Report

Roads & Traffic Department Dublin City Council Civic Offices Fishamble Street

13 February 2004

Submitted by Delcan International Limited

TABLE OF CONTENTS

Page

1	IN	NTRODUCTION	1
2	R	EVIEW OF DATA	3
	2.1		
		.1.1 Port Related Trips	
		.1.2 Non-Port Related HGV Trips	
		.1.4 Preliminary Conclusions	21
	2.2	REVIEW OF PREVIOUS HGV MANAGEMENT INITIATIVES	. 21
3	R	EVIEW OF ISSUES	. 25
	3.1	HGV CLASSIFICATION	. 25
	3.2	COMPETING INTERESTS	. 28
	3.3	LENGTH OF DETOUR	. 29
	3.4	TOLLING	. 29
	3.5	HGV ROUTING AND SIGNING	. 29
	3.6	OVERHEIGHT VEHICLES	. 30
	3.7	ENFORCEMENT	. 30
	3.8	Port Operations	. 31
	3.9	JURISDICTIONAL ISSUES	. 31
	3.10	HGV ROUTING AND SIGNING OVERHEIGHT VEHICLES ENFORCEMENT PORT OPERATIONS JURISDICTIONAL ISSUES	. 31
4	IN	NTERNATIONAL EXPERIENCE OF HGV MANAGEMI	ENT
S	TRA	TEGIES/OPTIONS	. 33
S	4.1	TEGIES/OPTIONS	. 33 . 33
S	4.1	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA	. 33 . 33 . 33
S	4.1	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND	. 33 . 33 . 33 . 33
S	4.1 4.2	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE	. 33 . 33 . 33 . 33 . 33
S	4.1 4.2 4.3	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND	. 33 . 33 . 33 . 33 . 33
S	4.1 4.2 4.3 4.4	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN	. 33 . 33 . 33 . 33 . 33 . 34 . 34
S	4.1 4.2 4.3 4.4 4.5	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS	. 33 . 33 . 33 . 33 . 33 . 34 . 34
S 5	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN	. 33 . 33 . 33 . 33 . 33 . 34 . 34 . 34
	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN SUMMARY	. 33 . 33 . 33 . 33 . 33 . 34 . 34 . 34
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 S	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN SUMMARY ETTING OBJECTIVES FOR THE HGV MANAGEMENT STRATEGY	. 33 . 33 . 33 . 33 . 33 . 34 . 34 . 34
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 5 .1 5.2	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN SUMMARY ETTING OBJECTIVES FOR THE HGV MANAGEMENT STRATEGY PORT RELATED HGV MANAGEMENT OBJECTIVES	. 33 . 33 . 33 . 33 . 34 . 34 . 34 . 34
5	4.1 4.2 4.3 4.4 4.5 4.6 4.7 5 .1 5.2	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN SUMMARY ETTING OBJECTIVES FOR THE HGV MANAGEMENT STRATEGY PORT RELATED HGV MANAGEMENT OBJECTIVES NON-PORT RELATED HGV MANAGEMENT OBJECTIVES	.33 .33 .33 .33 .34 .34 .34 .34 .35 .35 .35 .35
5	4.1 4.2 4.3 4.4 4.5 4.6 4.7 SI 5.1 5.2 R 6.1	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN SUMMARY ETTING OBJECTIVES FOR THE HGV MANAGEMENT STRATEGY PORT RELATED HGV MANAGEMENT OBJECTIVES NON-PORT RELATED HGV MANAGEMENT OBJECTIVES EVIEW OF POSSIBLE HGV MANAGEMENT MEASURES	.33 .33 .33 .33 .34 .34 .34 .34 .35 .35 .35 .35 .36
5	4.1 4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 S 5.1 5.2 R 6.1 6.2 6.2	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN SUMMARY ETTING OBJECTIVES FOR THE HGV MANAGEMENT STRATEGY PORT RELATED HGV MANAGEMENT OBJECTIVES NON-PORT RELATED HGV MANAGEMENT OBJECTIVES NON-PORT RELATED HGV MANAGEMENT OBJECTIVES HGV ENFORCEMENT HGV ENFORCEMENT HGV MANAGEMENT MEASURES	.33 .33 .33 .33 .34 .34 .34 .34 .35 .35 .35 .35 .36 .36 .37 .37
5	4.1 4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 R 6.1 6.2 6.1 6.2	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN SUMMARY ETTING OBJECTIVES FOR THE HGV MANAGEMENT STRATEGY PORT RELATED HGV MANAGEMENT OBJECTIVES NON-PORT RELATED HGV MANAGEMENT OBJECTIVES NON-PORT RELATED HGV MANAGEMENT OBJECTIVES EVIEW OF POSSIBLE HGV MANAGEMENT MEASURES HGV ENFORCEMENT HGV MANAGEMENT MEASURES	.33 .33 .33 .33 .34 .34 .34 .34 .35 .35 .35 .35 .36 .36 .37 .37 .37
5	4.1 4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 R 6.1 6.2 6.1 6.2 6.1	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN SUMMARY ETTING OBJECTIVES FOR THE HGV MANAGEMENT STRATEGY PORT RELATED HGV MANAGEMENT OBJECTIVES NON-PORT RELATED HGV MANAGEMENT OBJECTIVES NON-PORT RELATED HGV MANAGEMENT OBJECTIVES HGV ENFORCEMENT HGV ENFORCEMENT HGV ENFORCEMENT MEASURES 2.1 Prohibit HGVs 2.2 Restrict HGV Size 2.3 Restrict HGV Operation by Time/Day 2.4 Restrict HGVs by Size and Time/Day	.33 .33 .33 .33 .34 .34 .34 .34 .34 .35 .35 .35 .35 .36 .37 .37 .38 .38
5	4.1 4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 R 6.1 6.2 6.1 6.2 6.1 6.1 6.1 6.1 6.1	CITY OF VANCOUVER, CANADA NEW YORK CITY, USA KENT COUNTY COUNCIL, ENGLAND FRANCE THE NETHERLANDS JAPAN SUMMARY ETTING OBJECTIVES FOR THE HGV MANAGEMENT STRATEGY PORT RELATED HGV MANAGEMENT OBJECTIVES NON-PORT RELATED HGV MANAGEMENT OBJECTIVES NON-PORT RELATED HGV MANAGEMENT OBJECTIVES HGV ENFORCEMENT HGV ENFORCEMENT HGV MANAGEMENT MEASURES 2.1 Prohibit HGVs 2.2 Restrict HGV Size 2.3 Restrict HGV Operation by Time/Day	.33 .33 .33 .33 .34 .34 .34 .34 .34 .35 .35 .35 .35 .35 .35 .36 .37 .37 .38 .38 .38 .38

i

February 2004

 6.2.12 Urban Delivery Centres (UDC's) 6.2.13 Promote Modal Shift	
6.3.3 Institutional Arrangements	
6.3.4 Regulatory Framework	
6.3.5 Education and Publicity 6.3.6 Signage	
7 DEVELOPMENT OF HGV MANAGEMENT STRATEGY/ OPTIONS	
7.1 PORT RELATED HGV MANAGEMENT	
7.2 NON-PORT RELATED HGV MANAGEMENT	
7.3 MEASURE APPLICABILITY	44
 7.3 MEASURE APPLICABILITY	48
8.1 OPTION ASSESSMENT	49
8.1.1 Option 1 – Restrict HGVs within the Canal Cordon by Time of Day	50
8.1.2 Option 2 – Restrict HGV Access to Caral Cordon to Permit Holders Only	52
8.1.3 Option 3 – HGV Tolling at the Canal Cordon	53
8.4 PREFERRED OPTION	55
8.5 ADDITIONAL COMMENTS	56
 8.4 PREFERRED OPTION	58
9.1 BENEFITS OF THE DPT	58
9.2 IMPACTS ON BUSINESSES	
9.3 IMPACTS ON HGV OPERATORS	
9.4 NRA	

1 INTRODUCTION

The Dublin Port Tunnel (DPT), sponsored by the National Roads Authority, is being implemented by Dublin City Council to provide a motorway link between the existing M1 motorway and Dublin Port. The primary purpose of the DPT is to remove, as far as possible, port-related Heavy Goods Vehicle (HGV) through traffic from the city centre by providing high quality access between the M50 and Dublin Port. The DPT will also help to relieve traffic congestion in other areas of the city through utilization of the tunnel's remaining capacity for non-HGV traffic. A tolling regime will be implemented with the intent to discourage commuters from using the DPT as a direct access route to the city centre in peak periods. At all times, HGVs will not be tolled to use the DPT.

By providing the tunnel, it was anticipated that a significant proportion of port related HGV traffic would use it, to such an extent that the current public perception is that all HGVs will be removed from the city's street network. However HGVs will only use the DPT if it provides a quicker, safer, and more direct route between the port and M50. For the DPT to be successful, a HGV Management Strategy needs to be developed which will make the new route attractive, or alternatively restrictive measures need to be implemented to encourage use of the tunnel by HGVs. Notwithstanding this, the situation will still arise where certain HGV trips will not use the tunnel (e.g. local deliveries) or cannot use the tunnel (overheight vehicles). With regard to overheight vehicles, the tunnel is being constructed with a clear height of 4.65m, however, a proportion of HGVs (less than 2%) accessing the port exceed this height. These overheight vehicles will need to travel on the city's streets although they may be subjected to certain restrictions.

In addition to port related HGVss recent research has shown that there are a significant number of HGV trips that have an origin and/or destination within the city. Some trips have an origin or a destination at the Port with the other end of the trip being within the City boundaries, while other trips have both their origins and destinations within the city but not at the port. Out of necessity, many of these trips will need to take place on the city's street network, as the DPT would not provide a convenient or efficient route.

This report provides a discussion on the scope of the problem, followed by the development of the HGV Management Strategy and recommendations. It is noted that the management strategy is to be implemented in conjunction with the scheduled opening of the DPT in 2005, and as such, management measures that necessitate significant infrastructure and investment may not be possible to implement in time. The HGV Management Strategy that is developed in this report is considered high level, and should form the basis for the development of implementable HGV management plans. The development of these detailed management plans is not within the scope of the current assignment and will require further investigation.

In Section 2 of the report, a discussion on the available data and previous reports is presented with a review of the key HGV issues in Dublin forming Section 3. Section 4 is a summary of experiences from other cities around the world with regard to HGV management. Section 5 documents the objectives of the HGV Management Strategy. Possible HGV management measures that could be incorporated in the strategy are

1

then identified in Section 6, and these are then refined for the Dublin context in Section 7. The basis for selecting the preferred management option is included in Section 8, with Section 9 being a summary of the issues that are to be raised/clarified during the consultation process prior to finalization of HGV Management Plans.

This report is an interim report and the findings and recommendations are based on data that was available as at January 2004. As additional data becomes available, certain sections of the report will/may require revision to reflect new findings.

Consent of copyright owner required for any other use.

REVIEW OF DATA 2

A detailed review of available reports and data was performed in order to understand the existing and forecast movement of HGVs in the Dublin Area and also to review initiatives that had been previously undertaken. The findings are documented in the sub-sections that follow. The sources of information that were used have been referenced within the report as appropriate.

2.1 HGV Volume Data

There are two aspects with regard to HGV movements in the Dublin area and these can be generally categorized as "port related" and "non-port related" movements. Port related movements are characterized by having either a trip origin or destination at the port. Inter-port trips between the north and south port are included as port related trips. Non-port related trips have origins and destinations within the city (but not at the port) and include trips:

- With an origin and destination within the city; .
- An origin in the city and a destination outside the city; and •
- An origin outside the city and a destination in the city;

Generally the non-port related HGV trips are delivery type trips.

Available data pertaining to the two types of trips is discussed in the following FOIDSPECTOR PURSTER sections.

2.1.1 Port Related Trips

In 1995 and 1998 24-hour surveys were undertaken at the port gates and the results from the surveys are summarized in *Table 2.1*. Notable facts from this table are:

- A 29.2 % increase in total HGV traffic to/from the port between 1995 and 1998. This equates to an 8.9% increase per annum;
- The inbound/outbound split is approximately 50/50; and
- The north port is responsible for approximately 93% of the total port related HGV trips.

Interim Report

		Septe	mber 19	95 HGV S	urvey			Nove	ember 19	98 HGV S	urvey			
Gate	# u	Out #	Total	% of North Port Total	% of South Port Total	% of Port Total	# ul	Out #	Total	% of North Port Total	% of South Port Total	% of Port Total	Change 1995- 1998	% Change
Tolka Quay	1561	2268	3829	70.8%		65.2%	2714	2927	5641	78.5%		74.3%	1812	47.3%
Alexandra Road	623		623	11.5%		10.6%	580	57	637	8.9%		8.4%	14	2.2%
Pandora Gate	469	486	955	17.7%		16.3%	453	451 ¹⁵⁰	904	12.6%		11.9%	-51	-5.3%
North Port Total	2653	2754	5407	100%		92.0%	3747	3435	7182	100%		94.6%	1775	32.8%
							Contor	gre						
South Bank	214	255	469		100%	8.0%	197 ¹	210	407		100%	5.4%	-62	-13.2%
						notion P	s teda							
Total In/Out Split %	2867	3009	5876		Consento	100%	3944	3645	7589			100%	1713	29.2%
	48.8%	51.2 %				a il soll	52.0%	48.0%						

In October 2001, Atkins McCarthy undertook a comprehensive origin and destination study for the Dublin Port (*Origin – Destination Surveys Dublin Port*). This study concentrated on Tolka Quay as it has historically had the greatest share (about 70% as determined in *Table 2.1*) of the total port trips. The 24-hour two-way volume on Tolka Quay was approximately 4500 HGVs which is significantly lower than the previous counts undertaken in 1998. The quoted reasons for this reduction were increased congestion on Tolka Quay and the diversion of many trips to Alexandra Road. Previously vehicles were not permitted to exit Alexandra Road westbound.

Exhibit 2.2 illustrates the hourly HGV flows on Tolka Quay on July 26, 2001.

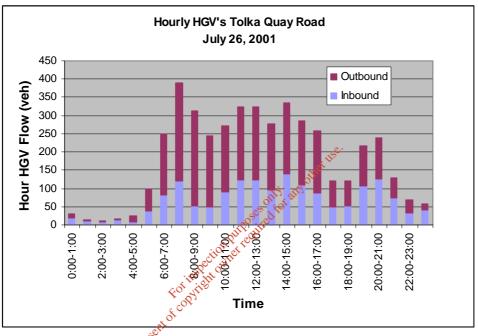


Exhibit 2.2 – 200 Hourly HGV Volumes on Tolka Quay Road

From this exhibit, the following are noted:

- Outbound flows are greater than inbound flows (due to inbound vehicles also being able to enter the port via Alexandra Road);
- The peak total HGV flow occurs during the morning commuter peak 07:00 to 08:00;
- There are high flows during the mid day period;
- There is another peak between 14:00 and 15:00; and
- Between 22:00 and 05:00 HGV flows are low (<50 per direction).

Using data extracted from the 2003 National Institute for Transport and Logistics (NITL) report titled "*Dublin Port Vehicle Height Survey*" **Exhibit 2.3** has been prepared. This shows the hourly volumes of all cabs/oil tankers/car carriers accessing all the port access roads. Note that this data is not HGV data, but only select vehicle types.

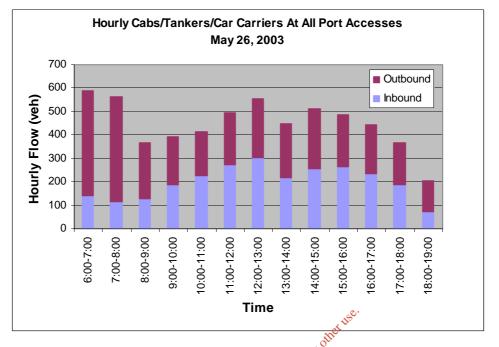


Exhibit 2.3 – Select Flows at All Port Accesses

This exhibit shows a shift in peak travel times compared to the 2001 Tolka Quay data, noticeably:

- Peak two-way flow occurs before 07:00;
- There is another peak at midday; and
- Another peak between 14:00 and 15:00.

This suggests that there has been a shift in the way the port/ferries conduct their business since 2001 with less dependence on HGV travel during peak commuter times.

In the Atkins McCarthy report it is assumed that, with no HGV Management Strategy being in place once the DPT is opened:

- All HGV traffic to/from the Dublin Region and the rest of the country with the exception of the N11 (Bray Road) corridor would use the DPT (zones 31-35 and 37-44)
- 60% of HGV traffic to/from the North City and South City zones (near the M50) would use the DPT (zones 27-30).
- No HGV traffic from the city centre area (zones 1-26) would use the DPT.

It is noted that no discussion on how these assumptions were arrived at is included in the report. The balance of the HGVs trips is therefore assumed to be on the city's surface streets.

Based on the above assumptions, the north port trips to/from each zone that will/will not use the DPT is indicated In *Table 2.2*.

			Inbound Trips]		Ou	tbound Trips		
Zone	# from zone	% age use DPT	# use DPT	% not use DPT	# not use DPT		# to zone	% age use DPT	# use DPT	% not use DPT	# not use DPT
23	38	0%	0	100%	38		74	0%	0	100%	74
24	15	0%	0	100%	15		89	0%	0	100%	89
25	118	0%	0	100%	118		211	0%	0	100%	211
26	21	0%	0	100%	21		132	0%	0	100%	132
27	161	60%	96.6	40%	64.4		209	60%	125	40%	84
28	84	60%	50.4	40%	33.6		188	60%	113	40%	75
29	83	60%	49.8	40%	33.2		156	60%	94	40%	62
30	52	60%	31.2	40%	20.8		170	60%	102	40%	68
31	153	100%	153	0%	0		215	100%	215	0%	0
32	27	100%	27	0%	0		56	100%	56	0%	0
33	44	100%	44	0%	0		99	100%	99	0%	0
34	58	100%	58	0%	0		59	100%	59	0%	0
35	74	100%	74	0%	0		127	100%	127	0%	0
36	28	0%	0	100%	28		63	0%	0	100%	63
37	129	100%	129	0%	0		204	100%	204	0%	0
38	31	100%	31	0%	0		87	100%	87	0%	0
39	100	100%	100	0%	0		138	100%	138	0%	0
40	56	100%	56	0%	0		87	100%	87	0%	0
41	85	100%	85	0%	0		101	100%	101	0%	0
42	97	100%	97	0%	0		111	100%	111	0%	0
43	97	100%	97	0%	0		138	100%	138	0%	0
44	59	100%	59	0%	0		71		71	0%	0
45	49	0%	0	100%	49		50		0	100%	50
Totals	1659		1238		421		2835		1927		908

Table 2.2 – 2001 Trips to/from North Port and DPT Utilization

From this table the following can be derived

- 4494 total daily HGV trips to/from the nort;
- 3165 daily HGV trips would utilize the DPT (70% of total trips)
- 1329 daily HGV trips would not utilize the DPT (30% of total trips).

In 2003, Dublin City Council undertook manual classified counts at four sites in the vicinity of the port as listed below from 21:00 on Tuesday 25th November until 21:00 on Thursday 27th November 2003. The surveys were conducted over a continuous 48 hour period with two-way flow counts being recorded at all sites.

7

The surveys were carried out at the following sites (see map overleaf):

- Site 1 Tolka Road Access
- Site 2 Alexandra Road Access
- Site 3 South Bank Road Access
- Site 4 P & O Access on East Wall Road

Development of a HGV Management Strategy for Dublin City Council to Coincide with the **Opening of the Dublin Port Tunnel**

Site 1 Site 2 Site 4 Site 4 ALEXANDRA BASIN New Gauge Banson	DUBLIN HARBOUR
BINGSEND RINGSEND PARK DARK	Site 3

A 16-fold vehicle classification was used mamely:

- •
- •
- •
- vans (VAN) Buses and Coaches (BUS) Fuel Tankers (TANKES) Car Transport .
- 2-Axle Rigid Heavy Goods Vehicles (2R)
- 2-Axle Tractors (2T)
- 3-Axle Rigid Heavy Goods Vehicles (3R)
- 3-Axle Tractors (3T) .
- 3-Axle Articulated Heavy Goods Vehicles (3A)
- 4-Axle Rigid Heavy Goods Vehicles (4R)
- 4-Axle Articulated Heavy Goods Vehicles (4A)
- 2-Axle Rigid Heavy Goods Vehicles with 2-Axle Trailer (2R2T) •
- 5-Axle Articulated Heavy Goods Vehicles (5A) .
- 2-Axle Rigid Heavy Goods Vehicles with 3-Axle Trailer (2R3T)
- 3-Axle Rigid Heavy Goods Vehicles with 2-Axle Trailer (3R2T)

For the purposes of this assignment, the data pertaining to November 26, 2003 was analysed in detail, as this was the only day for which full 24-hour data was available. In Table 2.3 and Table 2.4 the inbound and outbound volumes for all locations respectively are summarized.

8

Location		Daily Inbound Traffic Volume																
Location	CAR	VAN	BUS	TANKER	TRANSP	2R	2T	3R	3T	ЗA	4R	4A	2R2T	5A	2R3T	3R2T	TOT	% of Total
Site 1	2079	445	28	425	9	97	223	48	39	2	11	148	1	989	1	10	4555	48%
Site 2	1113	201	25	196	29	109	88	13	21	0	4	216	0	624	0	1	2640	28%
Site 3	766	143	5	21	5	90	11	47	4	8	61	86	0	263	0	1	1511	16%
Site 4	137	41	0	41	18	9	126	13	5	0	4	86	0	288	2	1	771	8%
Total	4095	830	58	683	61	305	448	121	69	10	80	536	1	2164	3	13	9477	100%
% of Total	43%	9%	1%	7%	1%	3%	5%	1%	1%	0%	1%	6%	0%	23%	0%	0%	100%	

Table 2.3 – Classes of Vehicles Entering Port (Nov. 26, 2003)

From this table the following are noted:

- 48% of the total inbound traffic used Site 1 (Tolka Quay);
- 47% of all inbound traffic consisted of goods vehicles (i.e. excluding cars, vans, buses);
- The predominant types of goods vehicle were:
 - 5-Axle Articulated Heavy Goods Vehicles (5A) (23%);
 - o Tankers (7%); and
 - o 4-Axle Articulated Heavy Goods Vehicles (4A) (6%).

Location		Daily Outbound Traffic Volume																
Location	CAR	VAN	BUS	TANKER	TRANSP	2R	2T	3R	3T	ЗA	4R	4A	2R2T	5A	2R3T	3R2T	TOT	% of Total
Site 1	2097	383	71	590	48	256	284	7	42	2	23	99	5	1917	1	4	5829	62%
Site 2	911	190	1	0	0	15	0	2	0	0	.@.	0	0	3	0	2	1124	12%
Site 3	823	189	6	12	1	103	10	37	3	1	N 79	54	0	311	0	0	1629	17%
Site 4	140	35	4	42	4	40	115	2	38	0	1	2	2	402	2	2	831	9%
Total	3971	797	82	644	53	414	409	48	83	DI	103	155	7	2633	3	8	9413	100%
% of Total	42%	8%	1%	7%	1%	4%	4%	1%	1%	×0%	1%	2%	0%	28%	0%	0%	100%	

 Table 2.4 – Classes of Vehicles Exiting Port (Nov. 26, 2003)

From this table, the following can be noted

- 62% of the total outbound traffic volume used Tolka Quay;
- 48% of all outbound traffic consisted of goods vehicles;
- The predominant types of goods vehicle were:
 - 5-Axle Articulated Heavy Goods Vehicles (5A) (28%); and
 - o Tankers (7%)

Concentrating on goods vehicles (i.e. excluding cars, vans and buses) total daily flows have been summarized in *Table 2.5* and *Table 2.6*. Note that goods vehicles have been split between < 3 axle and 3 + axles vehicles.

Location	Daily Inbound Traffic Volume								
LUCATION	< 3 Axle	3 + Axle	Total	% of Total					
Site 1	320	1249	1569	42%					
Site 2	197	879	1076	29%					
Site 3	101	470	571	15%					
Site 4	135	399	534	14%					
Total	753	2997	3750	100%					
% of Total	20%	80%	100%						

Table 2.5 – Goods Vehicles Entering Port (Nov. 26, 2003)

The following are noted:

- 42% of the entering goods vehicle traffic passed through Site 1;
- 20% of the entering goods vehicle traffic consisted of < 3 axle vehicles; and
- 80% of the entering goods vehicle traffic consisted of 3+ axle vehicles.

Location	Daily Outbound Traffic Volume								
Location	< 3 Axle	3 + Axle	Total	% of Total					
Site 1	540	2100	2640	68%					
Site 2	15	7	22	1%					
Site 3	113	485	598	15%					
Site 4	155	451	606	16%					
Total	823	3043	3866	100%					
% of Total	21%	79%	100%						

Table 2.6 – Goods Vehicles Exiting Port (Nov. 26, 2003)

The following are noted:

- 68% of the exiting goods vehicle traffic used Site 1; •
- 21% of the goods vehicle traffic consisted of < 3 axle vehicles; •
- 79% of the goods vehicle traffic consisted of 3+ axle vehicles.

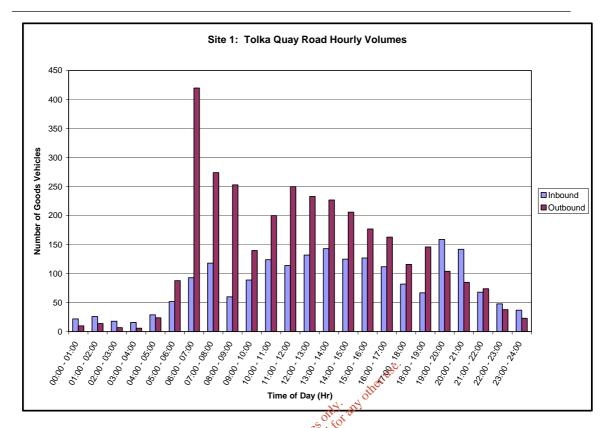
The four graphs overleaf (Exhibit 2.4) outline the inbound and outbound goods vehicle volumes for the four sites over the 24-hour period on November 26, 2003. From these charts, the following are noted:

Tolka Quay:

- Predominately outbound goods vehicle traffic flow from 5:00 to 19:00; and •
- Peak two-way goods vehicle traffic flow from 6:00 to 8:00. only any

Alexandra Road:

- quired for Very little outbound movement throughout the day; and •
- Peak inbound flow between 11:00 between 17:00. Form


MTI:

- ofcor Relatively balanced infound/outbound split except for between 06:00 and 07:00 when there is "relatively high inflow; and
- Peaks two-way flows between 11:00 and 14:00.

P&O:

- Predominately outbound traffic movement between 00:00 to 15:00;
- Predominately inbound traffic movement from 15:00 to 00:00; and
- Peak two-way flow and outbound flow between 6:00 to 8:00;

Development of a HGV Management Strategy for Dublin City Council to Coincide with the Opening of the Dublin Port Tunnel

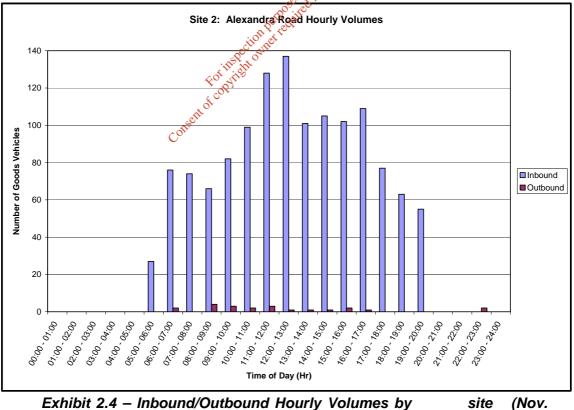
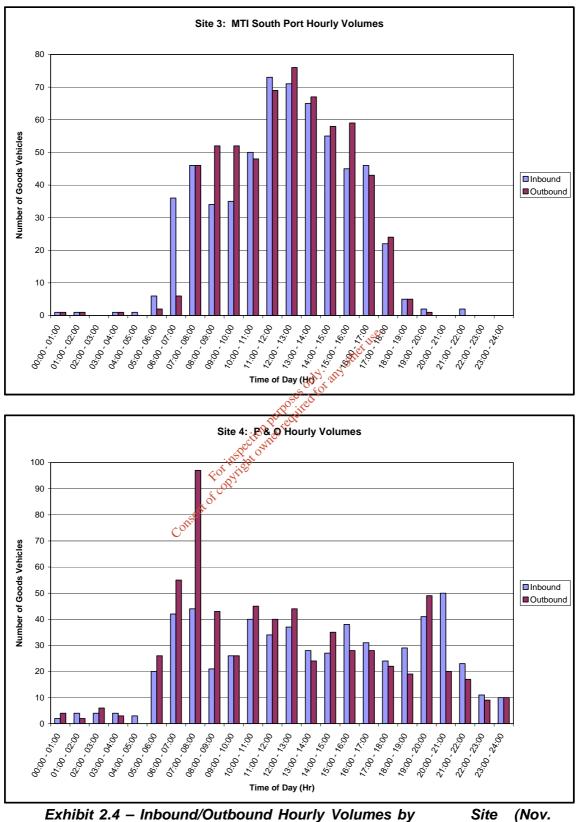



Exhibit 2.4 – Inbound/Outbound Hourly Volumes by site (N 26, 2003)

January 2004

26, 2003)

DELCAN

12

January 2004

In *Exhibit 2.5*, the total hourly goods vehicle volumes into/out of the port on the selected survey day for all sites combined are presented.

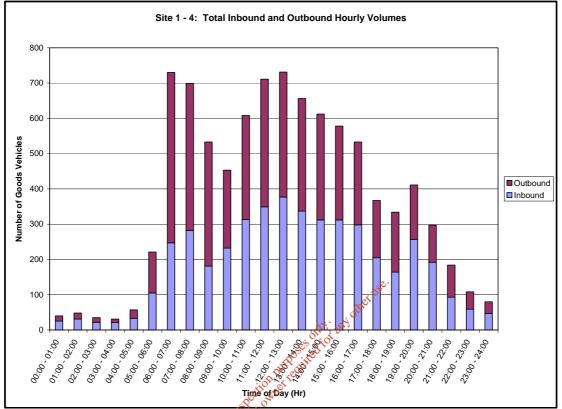


Exhibit 2.5 – Combined Hourly Flows (Nov. 26, 2003)

When the combined inbound/outbound flows from all port accesses are considered, the following are noted:

- Predominately outbound flows between 5:00 to 8:00;
- Predominately inbound flows from 8:00 to 24:00; and
- The peak two-way flows occur between 06:00 and 08:00 followed by a "dip" and then another peak between 11:00 and 14:00.

By comparing the November 2003 data with the 2001 data (Atkins McCarthy) the following are noted with regard to Tolka Quay:

- In 2001 there were 4500 HGVs (2 or more axles) in/out in 24 hours
- In 2003 there were 4209 goods vehicles (2 or more axles) in/out in 24 hours.

This suggests a slight decrease in goods vehicle volumes between 2001 and 2003, however the difference may be due to routing changes within the port as well as daily or seasonal variations.

Furthermore, by comparing the hourly volumes (*Exhibits 2.2* and *2.4*) for Tolka Quay the following are observed:

- In 2001, the peak hourly two-way flow occurred between 7:00 and 8:00 (389 HGVs);
- In 2003, the peak hourly two-way flow occurred between 06:00 and 07:00 (513 commercial vehicles); and
- In 2003, 392 goods vehicles used Tolka Quay between 07:00 and 08:00.

This clearly shows a shift in the peak travel times (earlier in 2003), but interestingly, the number of vehicles in the 07:00 to 08:00 period remains constant at about 390 vehicles.

By comparing 1998 data (*Exhibit 2.1*) with the 2003 data, the following are observed with regard to daily volumes:

- In 2003 there were 7616 goods vehicles in/out the port (all four accesses). This is almost equal to the 7589 vehicles recorded in 1998.
- In 1998, the daily two-way total for the south port was 407 goods vehicles. In 2003 the two-way flow was 1169 goods vehicles (598 out/571 in). There has thus been a significant increase in south port activity.
- In 1998 there were 5641 goods vehicles in/out of Tolka Quay. In 2003 there were 4209 (1569 in/2640 out). This is a significant decrease.

The above suggests that although overall truck volumes in/out the port have remained relatively constant since 1998, there appears to be a marked shift in activity from the north port to the south port. This is considered important with regard to the DPT, as a shift in truck movements to the south port is likely to result in the DPT being less attractive than if trucks were originating/destined for the north port.

Another issue that relates to goods vehicles and the DPT is the number of overheight (>4.65m) vehicles accessing the port. Surveys undertaken by the National Institute for Transport and Logistics (NITE) for the report "*Dublin Port Vehicle Height Survey*" showed that in May 2003, an average of 157 overheight HGVs per day accessed all the port entrances. It is noted that in the NITL report it is estimated that there are only 20 overheight HGVs exiting Tolka Quay per day based on information provided by the port. The 157 overheight vehicles represent 2% of the approximately 7600 trips per day from all port accesses. Out of necessity these overheight vehicles will need to travel on the city's surface streets as they cannot be accommodated in the DPT.

The findings/discussions above do not include HGV trips within the city that are nonport related. These HGV trips, when added to the port related trips that will not use the DPT, are likely to result in a continued presence of HGVs on the city streets unless an appropriate management strategy is in place. These non-port related trips are discussed in the next section.

2.1.2 Non-Port Related HGV Trips

In November 2002, a survey of inbound traffic was undertaken at the bridges over the canal cordon in the morning peak period (07:00 and 10:00). The results of this survey are summarized in *Table 2.7* and illustrated graphically in *Exhibit 2.6*.

Vehicle Type	Vehicles Entering (3 hrs)	Average Vehicles Entering/hr
Buses	1576	525
Cars	63070	21023
Commercial Vehicles	2828	943
Taxis	2560	853
Total Vehicles	70034	23345

Table 2.7 – November 2002 Cordon Counts 07:00 – 10:00

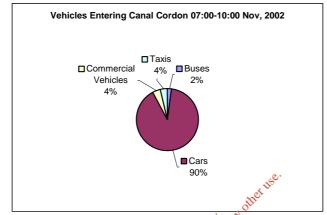


Exhibit 2.6 – Vehicle Classification Entering Canal Cordon

This survey indicated that 2828 commercial vehicles were recorded entering the canal cordon during the period 07:00 to 10:00. These constituted only 4% of the total vehicles entering the cordon. Unfortunately the number of commercial vehicles by class (LGV, HGV, etc.) was not counted so it is not possible to determine how many of the entering vehicles are HGVs. Furthermore, the cordon count only considered vehicles entering the cordon and there is no information available that documents exiting vehicles.

The principal entry points for commercial vehicles are illustrated in *Exhibits 2.7* and *Exhibit 2.8* overleaf. From these exhibits the following are noted/derived:

- From the south, the major commercial vehicle entry points (volume > 100) are:
 - Ringsend Road
 - Dolphins Barn Bridge (N7 extension)
 - St John's Road West (N4 extension)
- From the north, the major commercial vehicle entry points (volume > 100) are:
 - Conyngham Road (N4 extension)
 - Phibsborough Road (Ballum Road extension)
 - Drumconda Road (M1 extension)
 - Sheriff Street (from port)
 - North Wall Quay (from port)
- 1654 (58%) commercial vehicles enter from north of the Liffey River, with 1174 (42%) from the south during the 07:00 to 10:00 period.

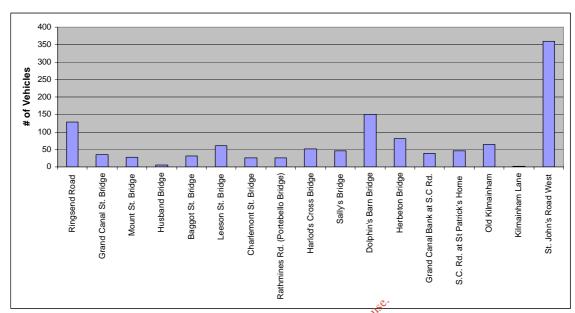


Exhibit 2.7 – Commercial Vehicles Entering Canal Cordon from South of Liffey River

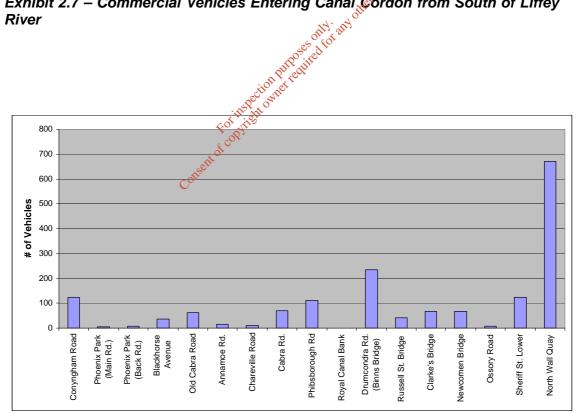


Exhibit 2.8 – Commercial Vehicles Entering Canal Cordon from North of Liffey River

DELCAN

In 2003, Carl Bro Intelligent Solutions and Goodbody Economic Consultants submitted a report to the Dublin Transportation Office titled "*Regional Freight Study*" which looked at both port related trips and non-port related trips. The study area was the Greater Dublin Area and included the administrative areas of Dublin City Council and the County Councils of Fingal, Dun Laoghaire Rathdown and South Dublin as well as the counties of Kildare, Meath and Wicklow.

Estimates of 2000 road freight trips in the Greater Dublin Area are summarized in *Table 2.8*.

Type of Journey	Trips per annum (Millions)	Proportion of Total
Origin and Destination Within Greater Dublin	14.76	76.7%
Journeys to/from Dublin and rest of Ireland	3.99	20.7%
International Journeys	0.49	2.6%
Total	19.24	100%
Of which Port related traffic	1.14	5.9%

Table 2.8 – 2000 Road Freight Trips in Greater Dublin

Of relevance in this table is the fact that nearly 77% of freight trips in the Dublin area have both their origins and destinations within Greater Dublin (i.e. local deliveries). Furthermore, port related traffic only constitutes 5.9% of the total trips in the Dublin area. It is to be noted that total commercial vehicle trips are indicated in the table and not HGV trips. The only indication of tight vehicle/heavy vehicle trips provided in the report is with regard to the trips within Dublin. Of the estimated 14.76 million trips, 10.55 million (72%) are undertaken by vehicles less than 2 tonnes unladen weight (ULW). The remainder (4.21 million trips) is undertaken with vehicles greater than 2 tonnes ULW.

The Carl Bro report also highlighted a number of findings relating to all HGV (port and non-port) trips. These are summarized below:

- Inbound HGV traffic begins to build up in the early morning and remains constant until about 16:00 when it begins to taper off;
- Outbound HGV traffic shows a similar trend except that the peak occurs later in the morning; and
- The HGV content of the total traffic flow is at its highest during non-peak periods.

Between December 1 and December 8, 2003, the Dublin City Council undertook surveys at a number of the road links crossing the canal cordon. These surveys specifically targeted goods vehicles and data pertaining to the following classes of vehicles were recorded:

DELCAN

- Class 2 2 axle rigid truck •
- Class 3 3 axle rigid truck
- Class 4 4 axle rigid truck
- Class 2/1 2 axle rigid truck/1 axle trailer
- Class 2/2 2 axle rigid truck/2 axle trailer
- Class 3/1 3 axle rigid truck/1 axle trailer
- Class 3/2 3 axle rigid truck/2 axle trailer
- Class 2+2 2 axle tractor/2 axle trailer
- Class 2+3 2 axle tractor/3 axle trailer
- Class 3+2-3 axle tractor/2 axle trailer
- Class 3+3 3 axle tractor/3 axle trailer

2114 City centre bound (inbound) goods vehicles were surveyed in the morning between 08:00 and 10:00 and outbound goods vehicies in the afternoon between 16:00 and Consent of copyright owner 18:30. The locations of the surveys were as follows:

otheruse

- Conynagham Rd •
- Blackhorse Ave
- Old Cabra Rd
- New Cabra Rd
- **Binns Bridge**
- Newcomen Bridge
- Navan Rd (Garda Station)
- St Johns Rd West
- Palmerston The Oval (QBC)
- N-11-Fosters Ave
- Harolds Cross Bridge
- Leeson St Bridge

- Portebello Bridge (Rathmines) •
- Ballyfermot Rd (Opp.Gala)
- Mount St Bridge
- **Dolphins Barn Bridge**
- Old Kilmainham

It is to be noted that this 2003 cordon count was carried out at 17 locations whereas the 2002 survey discussed earlier covered 34 locations. The findings from the 2003 cordon count surveys are highlighted in the following sections.

Morning Peak Period

In Table 2.9, the goods vehicles entering the canal cordon on all surveyed routes are summarized by vehicle class and time of day.

Time	Class 2	Class 3	Class 4	Class 2/1	Class 2/2	Class 3/1	Class 3/2	Class 2+2	Class 2+3	Class 3+2	Class 3+3	Total
8:00-8:30	134	13	32	1	7	0	×¥20	1	28	1	17	254
8:30-9:00	114	10	17	0	11	01.0	18	1	19	1	15	206
9:00-9:30	125	9	22	0	24	0820	26	2	34	0	11	253
9:30-10:00	174	20	37	5	27	es xto	20	2	33	2	21	342
Total	547	52	108	6	69 🔊	ise 1	84	6	114	4	64	1055
% of Total	52%	5%	10%	1%	7%	0%	8%	1%	11%	0%	6%	100%
Avg Hr Volume	274	26	54	3	. 35 5	1	42	3	57	2	32	528

0..

Table 2.9 – Classes of Goods Vehicle Entering Canal Cordon (Dec. 2003) Forth

This table highlights that:

- ofcop • 52% of all trucks entering the canal cordon in the morning are 2 axle vehicles;
- The next most common truck type is Class 2+3 (i.e. articulated tractor and 3 axle trailer) constituting 11% of the total trucks; and
- Before 9:30, the number of trucks entering the cordon in each 30-minute period is relatively consistent, but there appears to be an increase after 09:30.

Afternoon Peak Period

In Table 2.10, the total commercial vehicles exiting the canal cordon on all surveyed routes are summarized by vehicle class.

Time	Class 2	Class 3	Class 4	Class 2/1	Class 2/2	Class 3/1	Class 3/2	Class 2+2	Class 2+3	Class 3+2	Class 3+3	Total
16:00-16:30	160	10	28	0	16	2	7	0	31	1	28	283
16:30-17:00	153	4	16	1	20	0	15	2	23	0	23	257
17:00-17:30	132	6	10	0	13	0	12	1	22	1	19	216
17:30-18:00	126	10	21	0	14	1	9	0	27	0	22	230
18:00-18:30	105	10	18	0	13	0	4	0	26	0	21	197
Total	676	40	93	1	76	3	47	3	129	2	113	1183
% of Total	57%	3%	8%	0%	6%	0%	4%	0%	11%	0%	10%	100%
Avg Hr Volume	270	16	37	0	30	1	19	1	52	1	45	473

Table 2.10 – Classes of Goods Vehicle Exiting Canal Cordon (Dec. 2003)

From this table it is observed that:

- 57% of all trucks exiting the canal cordon in the afternoon are 2 axle vehicles;
- The next most common truck type is Class 2+3 (i.e. articulated tractor and 3 axle trailer) constituting 11% of the total trucks; and
- From 16:00 there is a general decrease in the number of trucks exiting the cordon.

Morning/Afternoon Comparisons

By comparing the 2003 morning/afternoon data, it is noted that there are no significant differences in proportional splits between the two peak periods. The average hourly volumes are also mostly equitable.

Whilst this survey provided information on the various classes of commercial vehicles entering/exiting the cordon by peak period, it failed to provide any indication of whether the vehicles are originating/destined within the canal cordon. Furthermore, having only data for the morning and afternoon peak periods and in one direction only has not enabled a picture of HGV movements throughout the day to be compiled.

2.1.3 Data Deficiencies/Problems

From the review of the available data there are a number of deficiencies/problems that were noted:

- Origins and destinations of non-port related HGV trips throughout the city are unknown.
- Origins and destinations for port related HGV trips that use access roads other than Tolka Quay are unknown
- HGV time of travel trends for the canal cordon are not available.
- A common HGV vehicle classification has not been used in the previous surveys, which makes the determination of a HGV Management Strategy difficult to achieve. For example, the City counts "commercial vehicles", the Atkins McCarthy report refers to HGV1 (2 or 3 axles) and HGV2 (4 or more axles) classes, and the Carl Bro report refers to vehicles greater than and less than 2 tonne unladen weight. The 2003 data collected by Dublin City Council that classifies vehicle by axle configurations is the most comprehensive set of data available.
- A citywide HGV forecasting model is not available.

These deficiencies make the evaluation of any HGV management strategy difficult to undertake on a quantitative basis. Before any firm decisions can be made on a HGV Management Strategy, more detailed and accurate data pertaining to both port and non-port related HGV movements may be required. At the outset, a common definition is required of what a HGV is. This is discussed in later sections of the report.

DELCAN

2.1.4 Preliminary Conclusions

Notwithstanding the data deficiencies/problems, it is possible to make a number of conclusions based on the available data. These are listed below:

- Between 1998 and 2003 the total number of goods vehicles in/out the port has remained constant at about 7600 veh/day;
- There has been a shift in truck movements from the north port to the south port since 1998;
- Based on the estimate that 30% of port related trucks would not use the DPT, this equates to 2280 port related trucks per day on the city streets upon opening of the DPT and no HGV Management Strategy in place;
- 20% of all port related trucks have less than 3 axles;
- 80% of all port related trucks have 3 or more axles;
- 52-57% of trucks crossing the canal cordon have less than 3 axles;
- 43-48% of trucks crossing the canal cordon have 3 or more axles; and
- approximately 157 overheight HGVs access the port per day.

2.2 Review of Previous HGV Management Initiatives

A review of the reports provided by the City and those filed at the Dublin Port Tunnel offices has revealed a number of previous HGV/commercial vehicle management initiatives. Points from these reports that are relevant to the development of a HGV Management Strategy are presented and discussed briefly in the sections below.

"Commercial Vehicle Management Strategy for the Inner City - 1998", MVA

This study was concerned with HCV movements within the city centre, and not through (i.e. port) traffic. A number of recommendations were made regarding management of deliveries and loading, and prohibiting HGVs greater than 17.5 tonne in the city centre during business hours. Most of the recommendations were incorporated into the report summarized below.

<u>"Control of Road Space and Commercial Vehicle Management Strategy for Dublin</u> <u>City", Office of the Director of Traffic, Dublin Corporation, April 2000</u>

This initiative was aimed at controlling all commercial vehicles in the city, with limited focus on the DPT. Some key findings included in the report relating to goods deliveries include the following:

- Whilst commercial vehicles contribute to city centre congestion, other vehicles also cause problems that can impact on goods vehicles. For example cars parked in loading bays cause goods vehicles to double park.
- Effective enforcement is critical to the success of any HGV management strategy and there was concern at the level of enforcement of short duration offences.
- The delivery process is inefficient in that deliverers are often required to off load goods and sometimes place them on store shelves. All the while the vehicles occupies valuable road space.
- The size of vehicles being used to deliver goods is increasing.

Within the context of a HGV Management Strategy, the following recommendations are considered worthy of note:

- The allocation of road space between different users is to be reassessed in an attempt to provide additional loading facilities.
- Loading facilities are to be clearly identifiable.
- Innovation in the management of commercial vehicle activity will be promoted.
- Enforcement is to be improved through changes in the penalties payable.
- Implement 12-hour clearways (i.e. no stopping/parking/loading permitted) between 07:00 to 19:00) on strategic routes.
- Introduce metered loading bays with 30-minute limits.
- Imposing restrictions on the hours of access of all vehicles to certain streets within the city centre.
- Introducing a time of day and size limitation on commercial vehicles using city streets within the canal ring. The times of restriction are 07:00 to 19:00 Monday to Saturday, but there is allowance for special cases.
- In the case of new developments, provision of service areas within the curtilage of the site will be required wherever possible.

The precise basis for restriction (unladen weight, GVW, sumber of axles, etc) is not provided in this document.

<u>"Dublin City Centre Commercial Vehicle Delivery" Strategy", Dublin City Council,</u> September 2003.

According to an information pamphlet distributed by the City, a pilot clearways scheme is being introduced on a number of strategic city centre roads in March 2004. In accordance with this scheme no on-street deliveries will be permitted on the routes between 7:00 and 10:00 and between 12:30 and 19:00 except where there are indented loading bays. Deliveries will be permitted between 19:00 and 7:00 and between 10:00 and 12:30.

The scheme, which has been jointly agreed by various trade associations, is to be monitored with a formal review to be undertaken in May 2004.

<u>"Regional Freight Study – Draft Final Report", Carl Bro Intelligent Solutions and</u> Goodbody Economic Consultants, August 2003.

In this report to the Dublin Transportation Office, various recommendations relating to HGV management in the Dublin regional area are made. These include:

- An alternative routing strategy for the HGVs that cannot enter the tunnel and are forced to travel through the city centre;
- Implement an inner city cordon to restrict HGVs entering the city centre and travelling to the port on alternative routes other than the M50;
- Explore the potential for urban consolidation centres.

<u>"Freight and Fleet Management Common Task – Traffic Information Needs of the Freight Industry", Arup/IBI Group, December 2002.</u>

This report to the National Road Authority discussed the STREETWISE project (Seamless TRavel EnvironmEnT for the Western ISles of Europe) and considered the ITS needs related to the freight industry. Some useful background information obtained from this report is summarized below:

- 55% of Irish freight hauliers are one-vehicle companies.
- Only 4% of Irish freight haulier companies have more than 10 vehicles.
- The European Commission Working Time Directive imposes a limit on the number of hours a driver may drive. This obviously affects scheduling, but there is another issue in that lay bys for driver resting (especially in Ireland) are generally not provided. The NRA is however taking steps to address this.
- The importance of on-time delivery associated with narrow arrival windows is creating pressure on drivers with the resultant potential safety implications.
- Road freight accounted for 93% of all freight movements in Ireland in 1998.

"HGV Management Study Stage 2 Report", Geoconsult Arup, October 1997

This study was commissioned to consider complementary measures to the DPT to minimize the penetration of goods vehicles, particularly those with port related journeys in the city centre. The study examined four scenarios and their impact on HGV traffic within the city with the use of an EMME/2 model. The scenarios that were tested were the banning of through HGVs in the city centre, within the canal cordon, and across two screenlines in the city centre. The modelling and evaluation process only considered the impacts on HGVs and other traffic was ignored. Clear recommendations on a preferred option were not provided, however there were a number of other recommendations, namely

- Restrictions should be applied to vehicles over 17 tonne GVW (3 or more axles).
- HGV management measures should apply 24 hours a day. (Note: This recommendation was based on the need to reduce noise at night, and not on traffic operations grounds)
- Any scheme will require statutory authority for the appropriate road signing and enforcement.
- Extensive consultation will be required prior to selection of a HGV management plan.

"HGV Policy Paper", Dublin City Centre Business Association LTD

In this paper, the DCCBA made the following suggestions considered relevant to this study:

- Restrict HGV deliveries to the city centre between 07:00 10:00 and 16:30 19:00.
- All HGV through traffic must not use the city centre streets between the canals once DPT is operational.
- All HGV deliveries to the city centre above 3.5 tonne unladen weight are to be by permit.
- Refrigerated goods deliveries to be treated by way of special policy.
- Shopper's cars are to be facilitated between 10:00 and 16:30.
- Restrict builders HGVs between 07:00 –10:00 and 16:30 to 19:00.
- Carry out persistent enforcement of all traffic, loading, unloading and parking.

From the above documentation it can be seen that there is lack of consensus with regard to the vehicle classifications, and the time and extent of restrictions.

Important issues were however raised regarding the lack of an effective legislative framework with which the authorities can impose and enforce HGV restrictions. The need for public and interagency consultation, and acceptance of a management plan also became apparent.

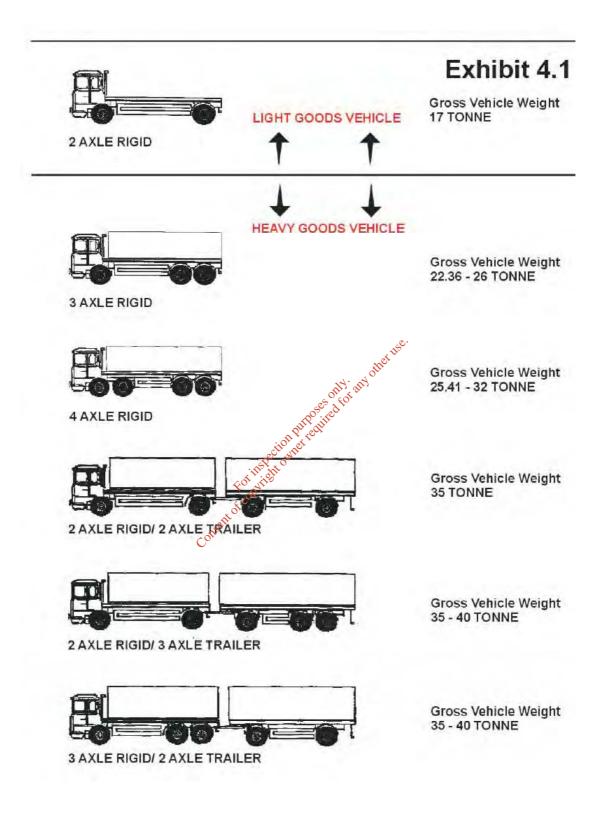
Consent of copyright owner received for any other use.

3 REVIEW OF ISSUES

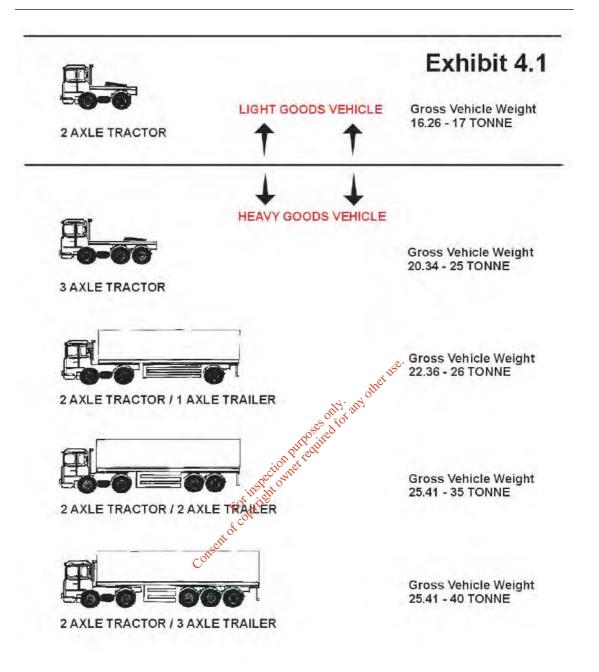
In this section a number of key issues that will need to be considered during the development of the HGV Management Strategy have been presented. These issues were identified during the data review, the stakeholder consultation, and in some cases have been based on our previous experience.

3.1 HGV Classification

The various agencies and consultants have differing views on what a HGV actually is. The Dublin City Council currently uses a 3 tonne unladen weight restriction in a number of residential areas to limit HGV use of local streets. In the reports prepared by Geoconsult Arup, reference is made to 17 tonne (3 or more axles), and the National Roads Authority in the "Dublin Port Tunnel Toll Scheme Explanatory Statement" the cut off for tolling purposes is 3500 kilograms (3.5 tonne) GVW or 1524 kilograms (1.524 tonne) unladen weight. In the "Origin-Destinations Surveys Final Report" undertaken for the Dublin Port Company, a HGV is a Heavy Goods Vehicle with two or more axles. The MVA report uses 7.5 tonne unladen weight as the division between a light goods vehicle and a HGV.


In preparing a HGV Management Strategy, there is a requirement at the outset to define what an "HGV" is. In order to define a HGV for the purposes of this assignment a review of the HGV volume data was carried out to try and ascertain the proportions of two axle, three axle, articulated vehicles, etc. accessing the port and canal cordon. As identified earlier the following proportions of good vehicles are known:

- 20% of all port related trucks have less than 3 axles;
- 80% of all port related trucks have 3 or more axles;
- 52-57% of trucks crossing the canal cordon have less than 3 axles; and
- 43-48% of trucks crossing the canal cordon have 3 or more axles;


According to the Road Traffic Regulations the maximum laden weight of a two axle rigid truck is 17 tonne. Any truck that exceeds 17 tonne GVW is thus required to have three or more axles. The definition of a HGV as any truck that exceeds 17 tonne GVW or has 3 or more axles, will enable the HGV Management Strategy to address 80% of port related HGV trips and about 45% of canal cordon trips.

In the absence of truck volumes by classification, it is recommended that 17 tonne GVW or 3 axles be set as the lower limit for a HGV for the purposes of this assignment. As part of the additional investigation that needs to be completed outside of the current assignment, an analysis of the classes of HGVs that are being used for delivery purposes within the city should be undertaken. The proposed 3 axle/17 tonne GVW limit should then be reviewed.

In **Exhibit 4.1** the typical HGV vehicle classes as included in the Road Traffic Regulations have been presented. This provides an indication of the type of HGVs that would be affected by the HGV Management Strategy.

January 2004

3.2 Competing Interests

For a HGV Management Strategy to be successful it must consider the needs of all parties affected by it. The needs/wishes of the parties are however different and often compete. In the **Table 3.1**, some of the generic needs of the different agencies/parties have been presented as an illustration.

Agency/Sector	Needs/Wishes
	Optimise overall traffic operations for all users without penalizing one sector unfairly.
Dublin City Council	• Provide infrastructure that ensures safe and efficient movement of people and goods.
	• Reduce the conflict between HGVs and non-motorized road users (pedestrians and cyclists).
	Create/maintain a viable city that is accessible.
	Be able to enforce HGV restrictions effectively and efficiently.
	Restrictions to be unambiguous and clearly understandable by operators.
Dublin Port	 Operate a port that is accessible to goods movement.
	• To reduce costs, limit the hours of operation as far as possible.
Transport Operators	Deliver goods within the shortest possible time and at least expense (i.e. shortest route with no tolls and no restrictions).
Garda Siochana	Be able to enterce HGV restrictions effectively and efficiently.
	Restrictions to be unambiguous and clearly understandable by operators.
City Residents	• Remove HGVs from streets that pass through residential areas.
	• Remove HGVs from streets during peak periods to reduce commute times.
Commercial Business Sector	• Be able to have goods delivered, whilst at the same time have customer parking in close proximity.
	• Deliveries to take place when staff are available to receive/dispatch – usually during morning.
	• Deliveries to be regular so as to reduce the amount of floor space allocated to storage (i.e. maximize retail floor space)
Building Material Suppliers	Access to construction sites to facilitate placement of materials without having to double handle
Food and Drink Sector	• Deliveries required throughout the day – perishables in early morning, non-perishables could be later.
	• Beer deliveries during the day due to noise associated with keg loading/unloading.
	• Beer deliveries to pubs to be completed in the morning after staff arrives and before the lunch rush.
Car Transportation	• Dealer deliveries to take place during normal working hours when staff available to receive vehicles.
Service vehicles	Access to all potential sites at all times
Table 3.1 – Illustration of	f Typical Needs

Table 3.1 – Illustration of Typical Needs

DELCAN

January 2004

From the above table it can be seen that satisfying all needs/wishes will be a challenging task and ultimately compromises will need to be made to appease all parties.

3.3 Length of Detour

At present, HGVs that enter/leave the Dublin metropolitan area have the choice of using any of a number of primary routes that intersect with the M50 or cross the city boundary to the south. With the construction of the DPT it is anticipated that most of the port related HGVs (excluding overheight vehicles) would use the tunnel, the M1 and the M50. It is however felt that without restrictive measures, this may be an unreasonable expectation especially for HGVs that have origins/destinations to the south or southwest. Notwithstanding the construction of the tunnel, it may still be quicker for HGVs to use alternative routes such as the N7, N81 or N11 for port access. In addition, many non-port related trips start/end in other parts of the city and these HGVs are unlikely to use the tunnel, especially for those trips to/from the south and western sectors.

3.4 Tolling

There are currently two tolled facilities in the Dublin area, namely at the East Link and West Link crossings of the River Liffey. National Toll Roads, a private company, administer these facilities. Provision has been made for electronic tagging, and in 2002 electronic tolling of HGVs has grown to approximately 40% of all HGVs passing through the West Link toll. At the East Link 30% of HGVs are using electronic tolling. Tagging is however optional at the discretion of the HGV operator and no legislation exists to make tagging compulsory.

After completion of the DPT, the tolling of HGVs on the M50 may need to be reviewed as it may encourage diversion off the M50 and M1/DPT corridor especially for those HGVs to/from the south and west. The tolling of HGVs at the East Link could also be a significant factor as the current tolls are unlikely to deter HGVs to/from the south from using this route. From discussions with City officials, the HGV Management Strategy should not rely on any amendments to HGV tolling at the two links.

The National Roads Authority has advised that as part of the tolling schemes that are being developed nationally, a universal tag is being considered. At this stage however, the concept of a universal tag is in its infancy and it will take some time for clear direction on this issue. The NRA did however wish to ensure that any systems that are implemented can be integrated and use a common architecture. Further consultation with the NRA will be required to ensure that if additional tolling is to be part of the HGV Management Strategy, it is compatible with national strategies.

3.5 HGV Routing and Signing

At present the City does not have a defined HGV route system in place. HGVs are thus able to use any roads within the city, with the exception of those where signs have been posted restricting access to vehicles in excess of 3 tonne unladen weight.

Although the HGV operators have on their own accord apparently identified preferred routes, the City has not designated the routes per se.

From a traffic engineering perspective, it may be preferable to define HGV routes such that all trucks use these routes, with the exception of those trucks that need to deviate to make local deliveries. It is however acknowledged that the designation of routes is likely to be highly controversial as residents may object to this action, even though trucks are currently using the routes.

There is provision in the Traffic Signs Manual for weight restriction signs (unladen), vehicle weight (laden) restriction signs, axle weight restriction signs and height restriction signs. Provision has also been made for "Route subject to restriction" signs, which illustrate the routes that are the subject of the restrictions. For the purpose of defining truck routes, it is our opinion that it is better to provide positive guidance signage (identifying where trucks can go), as opposed to restrictive signage (identifying where trucks can go). This type of positive signage is however not provided in the Traffic Signs Manual should it be required as part of the strategy.

3.6 Overheight Vehicles

Once the DPT is completed, any vehicles in excess of the maximum permitted height through the tunnel will be required to follow alternative routes.

Discussions with the City staff responsible for approving abnormal load routes have advised that there is a process whereby HGV operators request a permit to use a vehicle, or transport a load that exceeds the limits stipulated in the Road Traffic (Construction, Equipment and Use of Vehicles) Regulations. On the permit, restrictions are imposed in terms of route, time of travel, and Garda Siochana escort requirements. Applications for the permit are submitted to the Commissioner of the Garda Siochana four days in advance. Once approved by the Garda, the application is submitted to the City for approval and preparation of the permit. The Garda can charge the applicant for escort services if they deem them necessary. The City currently charges a 31Euro flat rate for the permit.

Generally abnormal vehicles are only permitted on the city streets between 23:00 and 07:00. At present there are no restrictions on the height of vehicle included in the Regulations. There was a 4.25 meter height restriction, but this has been repealed. The city does not therefore process applications for overheight HGVs, but will become involved in cases where the vehicle or load is excessively high.

As an interim measure, the existing permitting process could be adapted to cater for, and deter those vehicles that exceed the tunnel height limits.

3.7 Enforcement

The Traffic Signs Manual currently makes provision for restrictions based on unladen weight, vehicle weight (applicable to bridges), axle weight and height. A sign regulating vehicles by number of axles or GVW is not provided. At present, the predominant means of restricting HGV use of a road is with the 3 tonne unladen weight signs as provided in the Traffic Signs Manual and regulations. This restriction

(which equates to a gross vehicle weight of approximately 7.5 tonne) would still enable light goods vehicles to use a road. This limit is however significantly lower than the 17 tonne GVW limit set earlier as the HGV classification for the purpose of the HGV Management Strategy.

Enforcement of a weight-based restriction is however considered problematic for the Garda as by looking at a vehicle they cannot determine the unladen weight or GVW. While "weigh-in-motion" equipment is available, it only measures individual axle loads (not vehicle weight). To facilitate enforcement, HGV restrictions should generally be based on vehicle size and visual aspects such as length or number of axles (3 for the purposes of the HGV Management Strategy).

Any HGV Management Strategy restrictions that are based on GVW, vehicle length or number of axles will require an amendment to the Traffic Signs Manual and the Regulations.

3.8 Port Operations

From the Atkins McCarthy report it is noted that 75% of the total daily HGVs using Tolka Quay Road pass through between 07:00 and 19:00. 86% pass through between 06:00 and 20:00. Notwithstanding the recent NITL data which indicates a shift in travel times, a significant proportion of HGVs travelling to/from the port are using the city's streets when general purpose traffic volumes are at their highest. It is understood that the need for peak travel time is associated with the ferry schedules and the roll on/roll off HGVs that use the ferries. Amendments to the ferry schedules may be possible, but consideration will need to be given to the impacts at the other end of the ferry route

In liaison with Dublin Port Company, the ferry operators and the major trip generators within the port area, an amendment of the operating hours could help in reducing the number of HGV vehicles using the city streets during peak periods.

3.9 Jurisdictional Issues

The HGV Management Strategy that is to be developed is intended to manage HGVs on the streets within Dublin City. Any management strategy that is implemented will, however, have an impact on surrounding counties and on the national roads in the Greater Dublin Area. The HGV Management Strategy should therefore be developed on a regional basis, and not on a city only basis. As will become evident in later sections of the report, the requirement to develop the strategy for the city only restricts the number of options that can be considered for implementation.

3.10 Recent Trends in Business Operations

Internationally in the past, commercial businesses tended to hold an adequate stock holding on site. Over the years, there has been a shift with the businesses relying more and more on "just in time" deliveries thus reducing the stock holding requirement, and freeing up floor space for retail display. The trend has therefore been towards more frequent and smaller deliveries as opposed to large infrequent deliveries. The growth in Internet shopping is also likely to have an impact on the movement of goods within the city. Customers no longer need to visit a shop to select/buy/take delivery of all their required goods. Orders that are placed over the Internet can either be distributed from the retail store or from warehouses/depots that can be situated outside of urban areas. The net result is that the need for supplier/retailer deliveries (e.g. to the city centre) reduces.

Both of these trends are likely, in the long term, to result in a reducing need for HGV deliveries to/from the city centre with a shift to smaller delivery vehicles.

Consent of copyright owner required for any other use.

4 INTERNATIONAL EXPERIENCE OF HGV MANAGEMENT STRATEGIES/OPTIONS

In this section of the report, experiences or proposed management measures in other cities around the world have been summarized.

4.1 City of Vancouver, Canada

Vancouver has implemented a truck route system whereby all trucks with 3 or more axles and G.V.W greater than 4.5 tonne must use the designated routes. The routes generally skirt the city centre but extend through industrial/commercial and residential areas. Trucks must use the designated routes on a 24-hour basis and may only deviate to make local deliveries.

In the city centre, no vehicle with a length greater than 15.25m may enter the area between 7AM and 6PM seven days a week. As such city centre deliveries take place at night or through the use of smaller vehicles (<15.25m length).

4.2 New York City, USA

New York has implemented a system of "through truck routes" and "local truck routes" in various Boroughs. A truck is defined as a goods vehicle that has either two axles and six tires, or three or more axles. The "through truck routes" are intended to carry trucks that have neither an origin nor destination in an area. The "local truck routes" are intended to carry trucks that have an origin or destination (for the purpose of delivery) in an area. Operators may divert off local truck routes to make deliveries using the shortest and most direct route.

Certain areas within the City of New York are designated as "Limited Truck Zones" whereby no truck can enter except for the purpose of deliveries. Restrictions are in place 24/7 or only for certain hours depending on area.

4.3 Kent County Council, England

Kent has adopted a set of policies that relate to the management of HGVs and these include:

- Where practical, identify and signpost HGV routes;
- Considering converting bus lanes to bus/HGV lanes;
- Route signing to direct trucks to commercial areas by the most appropriate routes.

4.4 France

France has a history of developing freight distribution centres. Private developers develop these and in 1993 there were about 150 freight centres nationally. In some cities time (hours of operation) and weight restrictions for deliveries have been

imposed. In Paris, trucks above 24m in length are prohibited from the city centre between 07:30 and 19:00.

4.5 The Netherlands

Urban Distribution Centres (UDC's) are identified in the national transport policy to solve the accessibility and environmental problems associated with freight transport in cities. A number of UDC's have been set up but have not proved successful. The UDC's are set up by the cities that issue freight distribution licenses to applicant carriers. Strict operating regulations are imposed on the licensees in exchange for extended usage of street space and delivery hours. This arrangement has resulted in monopolies of distribution where a limited number of registered carriers dominate the market.

In some cities time (hours of operation), weight and size restrictions for deliveries have been imposed. Experiments with permits have also been undertaken.

4.6 Japan

In 1997 the Japanese government authorized a set of policies on freight transport titled "Comprehensive Program of Logistic Policies. The following measures (relevant to the Dublin HGV Management Strategy) were included in the policies:

- Improve joint collection and delivery points in urban areas where the sorting of goods for final consumers is carried out.
- Voluntary co-operation by role players in areas such as:
 - Joint collection and delivery points in urban areas;
 - Stopping facilities for on-road collection and delivery;
- A shift from own-transport by private companies towards transport by professional carriers.

Weight restrictions are also used, as are permits to limit truck access to enter shopping malls.

4.7 Summary

From the above it is evident that there is not a common approach to the management of goods vehicles around the world. Measures that have been implemented or considered include:

- Urban Distribution Centres
- Designating HGV routes
- Area wide or local street restrictions on HGV movements.

5 SETTING OBJECTIVES FOR THE HGV MANAGEMENT STRATEGY

Transportation organizations like the City of Dublin are increasingly faced with the dilemma of (1) needing to accommodate commercial vehicles to foster economic development, while (2) dealing with a public that is increasingly vocal in it's demands that truck traffic and noise be minimized or eliminated wherever possible. As such, the general objective of a HGV Management Strategy is to facilitate the efficient movement of HGVs in recognition of their vital role in the economy of the region, while at the same time limiting their impact on general traffic and the communities through which trucks need to travel.

Within the context of a citywide HGV Management Strategy for Dublin, there are two separate but overlapping aspects that need to be considered. These are the management of port related trips associated with the DPT, and local delivery trips. As identified in previous sections of the report, the local delivery trips are far in excess of the port related trips with the later only contributing approximately 6% to the total trips in the Dublin region. The objectives of managing the port related and non-port related trips are presented below:

5.1 Port Related HGV Management Objectives

- Maximize use of the DPT by HGVs to/from the port;
- Minimize use of the city streets by port related HGVs;
- Manage overheight HGVs that cannot use the DPT on the city's surface streets; and
- Manage diverted HGVs under partial or full tunnel closure conditions.

5.2 Non-Port Related HGV Management Objectives

- Minimize the number of HGVs on the city surface streets especially during peak commuter periods;
- Minimize the conflicts between delivery and service requirements of businesses and all other road users;
- Effectively manage the available road space for parking/loading; and
- Manage HGVs in such a way as not to add significant additional delivery costs.

6 REVIEW OF POSSIBLE HGV MANAGEMENT MEASURES

In this section, a number of commonly used HGV management measures that could be considered as part of the overall strategy have been presented and briefly discussed. The measures identified could be used to manage either or both types of HGV traffic (i.e. port related and non-port related). Their suitability/applicability in the Dublin context is discussed further in Section 7. However, before presenting the measures, it is considered appropriate to discuss the issue of enforcement as it is pivotal to the success of the HGV Management Strategy and will have a bearing on the strategy components.

6.1 HGV Enforcement

As mentioned in Section 3, it has been assumed in the absence of supporting data, that, for now, and for the purpose of the HGV Management Strategy that a HGV is a goods vehicle exceeding 17 tonne GVW or having more than 3 axles. This may require review once more data becomes available.

In addition to the need for a new regulatory framework relating to signage that was discussed in Section 3, there are a number of operational issues relating to enforcement that require discussion. Enforcement of the HGV Management Strategy can be carried out in a number of ways:

- Manually, based on visual observation (e.g. counting axles) in which case the offending operator is issued a fine by the enforcement officer observing the transgression;
- Using "weigh-in-motion" technology to measure axle loading. It may be used at specific locations where there is a need to manage HGVs in areas where a weight restriction is required for other purposes (e.g. bridge loading). However, within the context of the HGV Management Strategy where area wide restrictions are proposed based on GVW, weigh in motion technology would not be suitable for enforcement purposes.
- Automated using electronic license plate readers to identify transgressing vehicles. An up to date database of all vehicles that may travel in Ireland (both Irish and international vehicles) would have to be maintained. By linking the license plate reader equipment to a central computer, the issuing of fines to the offending operator could be automated. There are issues related to license plate readers, namely, the accuracy of identification (e.g. dirty or defaced plates, multiple lanes and concealed vehicles, etc.), and the need for a reader to be located on each lane to be monitored. Significant infrastructure would be required on site and this may be problematic in an urban environment where space is limited.
- Automated using electronic vehicle identification technology. This could include technology such as electronic tag/bar code or Easypass. HGVs that violate a restriction can thus be automatically detected. New laws will have to be enacted requiring all HGVs that wish to travel in Ireland (both Irish and international vehicles) to be fitted with approved vehicle identification technology. The use of an approved identification technology and the maintaining of an up to date database linking the technology to specific vehicles and vehicle types, and

hence HGV operators, then becomes a major issue especially considering the high number of foreign vehicles on Ireland's roads. Significant infrastructure will also be required on site.

• **By permit** whereby permits are issued to vehicles exempt from restrictions by the road authority. For example all vehicles may be prohibited from a certain area except for those vehicles that carry/display the approved permit. The permit may be a sticker, bar code, or simple paper document. Enforcement can be carried out manually based on visual observation, or in conjunction with vehicle identification technology. The principal is that non-permit holders that enter a restricted area are fined.

From the above it can be seen that there are a number of ways of enforcing HGV movements ranging from the traditional on-street fine to various "hi-tech" methods. The suitability of these methods needs to be evaluated in the Dublin and Ireland context where:

- There is currently no national legislation or standards with regard to tags;
- There are significant numbers of foreign HGVs on the road and maintaining a database with tags/license plate information will be challenging;
- For enforcement purposes, there is no incentive on operators to ensure that tags are operational at all times;
- In the case of the DPT and HGV Management Strategy that are both to be operational in 2005, there is limited time (and funding) to plan, legislate and implement enforcement infrastructure.

It is therefore, our opinion, that enforcement of the HGV Management Strategy will, in the immediate term, have to rely or traditional "spot fines" based on visual observations (e.g. counting axles), and permit violations. Other methods that rely on automatic vehicle identification should, however, not be precluded from future implementation and the City should still pursue these for future implementation in liaison with the national regulatory agencies.

6.2 HGV Management Measures

In this section, some of the more common HGV management measures have been discussed.

6.2.1 Prohibit HGVs

By imposing a prohibition on HGVs within an area or on specific streets, all HGVs can be prohibited from entering the area/streets at all times. This prohibition can be achieved by the posting of appropriate signs, and in cases, physical restrictions bearing in mind the need for service and emergency vehicle access. The restriction can be incorporated into bylaws if required.

6.2.2 Restrict HGV Size

Instead of prohibiting all HGVs in an area or on specified streets, a selective restriction based on vehicle size, weight, or number of axles could be imposed. This type of restriction would typically allow the smaller HGVs into an area, but restrict the

heavier or larger ones on a full time basis. Signage and physical restrictions can be used supported by bylaws if required.

6.2.3 Restrict HGV Operation by Time/Day

With this type of restriction, the presence of HGVs in a particular area or street/s can be restricted by means of signage displaying the time/s of day, and day/s of week that the restriction is in operation. Outside of the displayed time restriction, HGVs can access the area. The restriction can be incorporated into bylaws if required.

6.2.4 Restrict HGVs by Size and Time/Day

This restriction is a combination of the previous two restrictions, and is achieved through signage. It provides flexibility to the road authority in that different classes of vehicle can be permitted into an area or on specific streets at different times of day or week. The restriction can be incorporated into bylaws if required.

6.2.5 Restrict HGV Access to Permit Holders Only

By providing a special permit based on the vehicle registration number, a controlling authority can allow certain vehicles to access an area. The permit can be an open permit (full access) or have restrictions such as time of day, routing, parking/loading, etc. imposed. The permit can be issued free of charge or have a price attached to it. The permit system has to be supplemented with signs on street to advise non-permit holders that the area is restricted.

The actual permit can be in a number of different forms ranging from an electronically readable tag, a bar code/disc attached to the windscreen, or a simple paper document. This type of restriction should be incorporated into bylaws as the permit application and approval process will need to be documented.

6.2.6 Designate HGV Routes

With signage, an authority can clearly designate HGV routes that have to be used by all or some HGVs. Only trucks that need to deviate for local deliveries are permitted outside of the truck route and this scenario is usually enforceable by special legislation (bylaws) stipulating a "shortest and most direct route" approach. Generally the implementation of HGV routes is done in conjunction with other area-based restrictions, and the restrictions are applicable on a full time basis.

6.2.7 Dedicated Roads For HGVs

Strategic roads can be dedicated for use by HGVs only, through the implementation of signage. This type of measure is particular suited where there are clear desire lines where HGVs wish to travel. In the Dublin context, this measure is not considered appropriate due to the numerous desire lines and the general shortage of spare roadway capacity. The dedication of a road for HGV use only, will result in the diversion of general-purpose traffic to other routes, resulting in higher volumes and associated congestion. As such this measure has not been taken forward as an

option for the purpose of the HGV Management Strategy. There may, however, be local roads within Dublin where this measure may be possible for consideration.

6.2.8 Lane Restrictions for HGVs

Specific lane/s on key routes can be dedicated for use by HGVs. HGVs are then required to use the dedicated lanes with the result that other lanes are freed up for general-purpose traffic use. It is noted that in some cities, HGVs and buses share dedicated priority lanes. The success of this arrangement would obviously be dependent on the respective number of buses/HGVs and the treatment of bus stops (on-street or in lay by).

In order for this type of restriction to be effective, there needs to be a continually high percentage of HGVs in the traffic stream throughout the day, and the remaining general purpose lanes have the capability to accommodate the general traffic. With the generally limited number of lanes provided on Dublin Roads, this measure is unlikely to be effective, and has not been taken forward as an option. There may, however, be local roads within Dublin where this measure may be possible.

6.2.9 HGV Tolling

The imposition of a toll fee on HGVs that wish to, or have to use routes on which their presence is not desired can be used as a means of making other routes more desirable. An alternative is to toll all vehicles with the exception of HGVs as is planned for the DPT. This can make a route more attractive to HGV operators.

Tolling could be performed using traditional methods (tollbooths) or electronically through the use of vehicle identification or license plate recognition technology. Either way, a significant amount of on street infrastructure will be required.

6.2.10 HGV Identification and Tracking

This is an expansion of the tolling measure described above in that the HGV is identified at two or more points either using license plate identification or vehicle identification technology.

This method could be used to manage HGVs that should use the DPT but elect not to, as well as manage HGVs that enter the city centre. The principle is that a HGV is identified as it passes detectorized zones. The detector stations would be linked back to a central computer system that will determine when each HGV enters/leaves the zones. There are a number of scenarios where this measure could be used as described below.

If a HGV enters and leaves a zone (e.g. canal cordon) within a determined time period, it could be assumed that the HGV has travelled through the zone without stopping (i.e. making a delivery). If this is the case, the HGV could then be fined or tolled for using the route. The difficulty arises in how to determine the permissible time period. If a HGV makes a short duration delivery it would still appear to be a through trip. If a HGV gets delayed in traffic, it will appear as a delivery trip, when it is actually a through trip.

If a HGV is detected as it enters a specific zone (e.g. canal cordon), and if it is then detected at the port within a certain time period, it is tolled/fined for not using the DPT. The same argument about the time period presented above applies.

Detectors are placed at the DPT toll and at the port access. If a HGV is detected at both sites it is not tolled. However, if a HGV is detected at the port only, it means that that HGV has not used the DPT and could be tolled. The problem with this approach is that HGVs that need to make local deliveries and do not use the DPT cannot be identified, and will be tolled.

Enforcement of the above scenarios will be difficult to achieve effectively, as the methodology is not considered robust enough to stand up in court. This option has not therefore been carried forward as an option.

6.2.11 HGV Demand Management

In consultation with the Dublin Port Company, ferry operators, trucking companies and the businesses at the origins and destinations, it is possible to manage the demand for HGVs in an area. Dublin is a prime example where demand management may offer significant benefits in that most port related HGV movements are concentrated in the 6AM - 7PM period. The amendment of port operating hours either by shifting the window or having extended hours, and/or changing ferry schedules, could result in significant reductions in HGV movements during the commuter peak periods. Judging from the 2003 data, there already seems to be shift in travel times since 2001, but there are still a significant number of port related HGVs on the road between 6AM and 7PM.

Furthermore, in the city centre most deliveries take place during the day and in consultation with businesses it may be possible to amend delivery times to at night or at least out of peak commute times.

These measures are likely to result in increased costs as port/business staff would need to be able to process deliveries during the extended hours and overtime pay may be required.

6.2.12 Urban Delivery Centres (UDC's)

In association with any restriction on HGV access to the city centre for delivery purposes, HGV hauliers could make deliveries to UDC's outside the urban areas. HGV loads would then be "broken up" and then consolidated at the UDC's so that a single vehicle will then deliver a variety of goods to a particular receiver, instead of multiple vehicles to a single receiver. Fleets of courier size vans could then be utilized to make the urban deliveries. A problem with this approach is that it could result in more (but smaller) delivery vehicles on the city centre (2 or 3 LGVs for each HGV). The provision and management of the transfer stations either by the public or private sector or by public/private partnership arrangements can however be challenging as is evident from the success of UDC's in other parts of Europe.

For the purposes of the HGV Management Strategy, the provision of UDC's may assist in the management of local city centre deliveries but will not have a significant impact on port related traffic.

6.2.13 Promote Modal Shift

The port is currently reliant on a significant volume of goods being transported by HGV. Other possibilities may exist which could be used in lieu of HGVs, for example rail. In terms of street operations, this may, however, create additional traffic problems as the rail crossings in the port area are generally at grade. Any upgrade of the rail system will require significant and expensive infrastructure and is considered a potential long-term measure.

Another option is to improve the transportation of fluids/gases via pipelines between the port and outlying depots thus reducing the reliance on road tanker traffic at the port. It is noted that planning permission has been granted for an aviation fuel pipeline between the port and Dublin Airport.

6.2.14 Road Pricing/Preferential Tolls

Instead of having standard toll fees on a 24/7 basis, by introducing variable toll fees on a time of day/day of week basis, it is possible to modify HGV (as well as general purpose traffic) travel patterns. Simplistically, tol, fees for HGVs are made higher in peak periods than in off peak periods, resulting in more HGV movements during off peak periods and a corresponding decrease in peak travel.

6.2.15 Manage Loading in the City Centre

Dublin City has already prepared a strategy for managing loading in the city centre. This includes some of the elements outlined above, but there are others such as metered loading and planning that are mentioned.

6.3 Complementary Elements

In addition to the HGV Management measures discussed above, there will be a number of complementary elements that will need to be formulated in support of the HGV strategy. These have been outlined below.

6.3.1 Compliance and Enforcement

Any HGV strategy will require compliance by HGV operators, or alternatively, rigorous enforcement. Since the HGV management plan will pose some restrictions on HGV movements, there will always be a tendency for some operators to find "holes" in the system. An enforcement strategy will thus need to be developed in liaison with the Garda. It is, however, suggested that due to resource commitments, a separate HGV enforcement unit may be required in either the local authority or within the Garda Siochana.

6.3.2 Stakeholder Consultation

The development and implementation of the approved HGV Management Plan will require extensive consultation with a number of stakeholders, including:

- Dublin City Council; •
- Other Local Authorities in the GDA
- Dublin Transportation Office; •
- National Roads Authority; •
- Dublin Port Company; •
- An Garda Siochana; •
- Revenue Commission; •
- East Link/West Link Toll operators; •
- larnrod Eireann; •
- Shipping/Ferry agencies; •
- Bus companies; •
- HGV operators; •
- Business organizations; and •
- Civic organizations.

6.3.3 Institutional Arrangements

other Use. There are a number of city, county and governmental agencies that are involved in transportation issues in the Greater Dublin Area. The development, implementation, and management of the HGV Management Strategy will require a clear definition of the responsibilities of the respective agencies. Notwithstanding the fact that the DPT is funded by the NRA, Dublin City council should lead the implementation of the HGV Management Strategy, as the major impacts will be on the city's streets.

6.3.4 Regulatory Framework §

As has been pointed out earlier the existing legislation does not facilitate the implementation of a HGV Management Strategy. Amendments to the traffic legislation and Traffic Signs Manual may/will be required to support the strategy.

6.3.5 Education and Publicity

For the HGV Management Strategy to be successful, the general public and HGV operators will require education on the requirements and restrictions of the approved plan. A comprehensive publicity campaign will thus be required.

6.3.6 Signage

There are three aspects with regard to signage namely, regulatory signage which has already been mentioned, information signage and direction signage. With the opening of the DPT and the implementation of the HGV Management Strategy, direction signs will be required to guide HGV operators to/from the port and advance information signs will be required advising of any restrictions.

7 DEVELOPMENT OF HGV MANAGEMENT STRATEGY/ OPTIONS

As mentioned previously, there are two types of HGV traffic present in the Dublin area, namely port related and non-port related. Management of each type however requires a slightly different approach given the different objectives identified previously. In this section of the report, the various options are discussed in more detail.

7.1 Port Related HGV Management

In the absence of a HGV Management Strategy, the tunnel will be open for travel and all port related HGV trips that find the tunnel route attractive should use the tunnel. HGVs that will not use the tunnel will be overheight vehicles (approximately 160 per day), those that make local deliveries, and a proportion of those whose origins and destinations are to the south and southwest of the city. This number of HGVs could however be significantly reduced by the implementation of a HGV Management Strategy and various measures that will force HGVs to use the tunnel (e.g. regulatory restrictions), or make the tunnel route more attractive (e.g. tolling of other routes).

The strategy that is to be developed will be required to consider a number of tunnel operating scenarios with the two extreme cases being full operation in both tunnel bores, and both bores closed. Between these two extremes there are a number of permutations that may have an impact on HEV and general traffic movements in the vicinity of the tunnel portals, but they will not impact on the overall strategy.

As mentioned above under the "do pothing" scenario, there will be an estimated 2280 HGV trips per day (30% of 7600) that will not use the tunnel if a management strategy is not implemented. However in the event that both bores are closed (worst case scenario) the number of HGV trips that will need to be accommodated outside of the tunnel will increase substantially. In this scenario, all HGVs will be required to make alternative arrangements for the duration of the closure. These alternative arrangements could include using the street network, holding in stop areas, etc. Based on the estimated 7600 HGV trips generated by the port per day in 2003, this type of closure could potentially result in approximately 275 HGVs per hour (assuming 12% occur in the peak hour) diverting onto the street network.

One of the challenges in developing the HGV Management Strategy, will thus be to make sure that whatever measures are developed to improve upon the "do nothing" scenario will also be able to cope with the 100% HGV diversion that could result from the worst case scenario.

7.2 Non-Port Related HGV Management

From the work undertaken by Carl Bro that relates to commercial trips (not HGVs) it is evident that the number of non-port related trips far exceeds the number of port related trips. In **Table 2.8** compiled from their report, only 6% of the total commercial trips in the Dublin region are port related which means 94% are non-port related. Of the 94% of the total commercial trips, a significant, but unknown, proportion will be

undertaken using HGVs in the city centre. From the data that is available, it is not possible to estimate the number of non-port related HGV trips that take place in the city.

7.3 Measure Applicability

Within the context of the City Wide HGV Management Strategy that is to be developed, the target HGVs are those with 3 or more axles, or in excess of 17 tonne GVW as discussed earlier. Some of the previously identified management measures make reference to restrictions based on variable HGV size by time of day. This implies that different classes of HGVs can be permitted within an area depending on the time of day. Since the HGV Management Strategy is only targeting HGVs with 3 or more axles or in excess of 17 tonne GVW, management measures that make allowance for different classes of HGV have not been considered further in this report. This type of restriction may however still be applicable on a more localized basis (e.g. residential areas) where the posting of a lower limit may still be required.

Within the Dublin area, each of the remaining HGV management elements identified in Section 7 will have a number of pros and cons. These have been summarized in **Table 7.1** where the focus has been on the traffic engineering aspects, but there are other aspects such as property development potential, community, and environmental aspects that need to be borne in mind.

Each of the previously identified elements of HGV management also has their limitations with regard to where they can be applied. In the Greater Dublin area, there are three zones that are generally used for geographic descriptions, namely the city centre, the canal cordon, and the M50 ring. The city centre is not clearly defined but is generally considered as that area bounded by:

- King Street North and Parnell Street to the north
- Church Street to the west ⁵
- Merrion Street/Westland Street/Lombard Street and Gardiner Street to the east
- St Stephens Green and the extension of Dame Street to the south

As such, the "City Centre" falls completely within the canal cordon and has two of the major HGV routes (the River Liffey Quays) passing through it. The imposition of HGV restrictions only in the city centre would result in HGVs deviating onto other streets within the canal cordon, which is clearly undesirable. City centre restrictions will thus have to be compatible with canal cordon restrictions. For this reason the application of restrictions on a city centre only basis is not considered appropriate. Any restrictions within the canal cordon will thus need to cover the city centre as well.

In *Table 7.1* the applicability of the management measures within the M50 ring and the canal cordon have also been presented. Factors that have been taken into account when deciding if a measure is applicable are:

- the land use and the need for HGV deliveries in an area,
- the need for HGVs to travel through the area if there are no viable alternatives,
- the possibility of reducing HGV demand by using smaller vehicles, and
- the location of the zone in relation to the port (with the port and the East Link toll being outside of the canal cordon).

Interim Report

			Applicability		
Element	Pros	Cons	Within Canals	Within M50 Ring	Comments
Prohibit HGVs (Full time)	 no HGVs permitted in an area can encourage shift to smaller goods vehicles safety and traffic operational benefits inside area 	 can result in more vehicles on the road (e.g. 3 LGVs for 1 HGV) can result in safety and operational disbenefits outside the area 	No	No	Not reasonable to restrict HGVs on a full time basis as delivery and service HGVs will be required to enter at some time.
Restrict HGV Operation by Time/Day	 can encourage shift to smaller goods vehicles keeps all HGVs off the area network at times when there are high parking and mobility demands on the street network safety and traffic operational benefits inside area during restricted periods 	 can result in more vehicles on the road (e.g. 3 LGVs for 1 HGV) during restricted periods encourages HGV detouring eround area and possibly rat running during restricted periods All HGVs may have to hold outside of an area awaiting the "opening" time. All HGV deliveries will be required outside of the restricted periods possibly resulting in noise complaints can result in safety and operational disbenefits outside the area during restricted period 	Yes	No	Excessively onerous to restrict HGV travel and deliveries within the M50 ring in the short term, but may be necessary in the longer term. During restricted hours smaller goods vehicles permitted in area.
Restrict HGV Access to Permit Holders Only	 limits the number of HGVs in the restricted area during restricted periods allows the flexibility to permit those HGVs that have to enter the restricted area for delivery purposes permit fees can be used to defray expenses safety and traffic operational benefits inside area during restricted periods 	 can result in more vehicles on the road (e.g. 3 LGVs for HGV) during restricted periods encourages detours and rat running during restricted periods Some HGVs may have to hold outside of an area awaiting the "opening" time Some HGV deliveries will still be required outside of the restricted periods possibly resulting in noise complaints permit approval process required safety and operational disbenefits outside zone during restricted periods 	Yes	No	Excessively onerous to restrict HGV deliveries within M50 ring to permit holders only during restricted periods in the short term, but may be necessary in the longer term.

Interim Report

		Applicability			
Element	Pros	Cons	Within Canals	Within M50 Ring	Comments
Designate HGV Routes	 concentrates HGVs on specific routes, while removing them from other less desirable routes safety and traffic operational benefits on non-truck routes 	 extensive evaluation required in deciding route enforcement of HGVs off the route difficult no limit on number of HGVs on road detours to access truck routes required safety and operational disbenefits on truck routes likely to be met with strong resistance from residents 	Yes	Yes	Public opposition will be a significant issue.
HGV Tolling	 income generating can form part of an overall commercial vehicle operations strategy by not tolling HGVs on a route, that route can be made attractive compared to other tolled routes 	 infrastructure requirements office high capital and operating cost in any operation of the second seco	Yes	Yes	Tolling to take place at limited access points e.g. at the canal cordon and on the routes that intersect with the M50
HGV Demand Management	 manages HGVs at start and end points less HGVs on the road during peak periods safety and traffic operational benefits 	 labour issues port scheduling and operational issues HGV holding areas may be required 	Yes	Yes	Reliant on other agencies/ organizations
Promote Modal shift	 less HGVs on road safety and traffic operational benefits 	 will require additional alternative mode infrastructure e.g. rail and pipe lines trains crossing at at-grade rail crossings will disrupt traffic as well as create safety issues 	No	Yes	Dependant on alternative modes being available which are limited in the canal cordon
Road Pricing/ Differential Tolls	 less HGVs on road during peak periods 	 variable tolls can result in HGVs stopping off to wait for reduced toll rates to come in 	Yes	Yes	Variable tolls by time of day. High HGV tolls during the day and lower tolls at night Increase HGV tolls at East Link

November, 2003

Interim Report

			Applie	cability]
Element	Pros	Cons	Within Canals	Within M50 Ring	Comments
					and reduce HGV tolls at West Link to encourage HGVs from south to use M50/M1/DPT.
					Reliant on outside agencies
Manage City Centre Loading	reduces parking/loading conflictsmetered loading increase turnover	, v ^{se.}	Yes	No	The existing strategy is only applicable to the city centre
iadie 7.1 – Aj	pplicability of HGV Managemen	t Measures			

8 Basis for Selecting Options

In Section 7, the various measures of a HGV Management Strategy and their applicability in Dublin from a traffic engineering perspective were presented. In discussion with City officials, a number of the elements were, however, ruled out. These, and the reason for the decisions are as follows:

Designating HGV Routes – All existing routes between the port and M50 pass through residential areas, alongside schools, etc. Notwithstanding the fact that HGVs currently use the roads, the designation of these roads as HGV Routes will be met with significant public opposition, and any signage that is erected is likely to be vandalized/removed. Whilst it is possible to restrict HGVs on all roads with the exception of those that the City desires them to use, this is likely to be met with the same opposition.

HGV Tolling at the M50 Ring – To toll all HGVs entering/leaving the M50 ring, tolling would need to take place between the M50 and the nearest intersection on the city side of the M50. In many cases, this would be outside of the Dublin City Council boundary and would create interagency issues.

Promoting Modal Shift – The state of the rail system in Ireland does not lend itself to providing improved goods transportation service. In the port area many of the road/rail crossings are at grade, and any increased numbers of train movements across the road network will exacerbate the current problems at these crossings.

It is to be noted that the unacceptability of the above management elements restricts the number of options that can be considered as part of the strategy development.

In addition, *HGV Demand Management* is an element that should be pursued irrespective of the HGV Management Strategy. It is also likely to be a consequence of other management elements that may be imposed. As such, it has not been included in subsequent discussions as an option. Similarly, the **Management of City Centre Loading** and **Road Pricing/Differential tolls** at East Link, West Link and at Canal Cordon are measures that should be pursued irrespective of other HGV management measures.

With the exclusion of the above, the following options remain for further consideration:

- **Option 1** Restrict HGVs within the Canal Cordon by Time of Day
- **Option 2** Restrict HGV access to Canal Cordon to Permit Holders Only
- **Option 3** HGV Tolling at the Canal Cordon

These options either applied on their own or in combination, thus form the basis of the HGV Management Strategy. They could however be supported by other localized measures to increase their effectiveness.

Whilst the above are intended to deal with HGVs in general, special attention also needs to be given to the management of overheight HGVs.

Management of overheight vehicles after detection and voluntary diversion from the traffic streams on the approaches to the tunnel can be accommodated in the same way as general HGVs that do not use the tunnel. By making these compliant overheight HGVs use less direct and more congested routes instead of the DPT, it is suspected that, with time, the number of overheight HGVs will reduce. There is, however, the risk that HGV operators may deliberately acquire overheight vehicles such that they cannot use the tunnel and thus have to use the surface streets. This will need to be monitored.

The treatment of overheight HGVs that fail to comply with the height restriction and arrive at the tunnel portals is however a more serious issue. Due to the significant delays that these vehicles will cause at the tunnels if they do not divert, a more severe penalty should be considered.

The overheight vehicle detection methodology has been discussed in previous reports. The operational procedures that will be need to be implemented to deal with overheight vehicles at the portals are not currently defined, and are also beyond the scope of this assignment. The discussion that follows is thus related to dealing with overheight HGVs after they have been detected at the portals, and removed to a safe place.

It has been assumed that height restriction signs that are in accordance with the Traffic Signs Manual will be erected on the approaches to the tunnel and on all access routes. In addition to fines that should be levied for failing to obey a regulatory sign, other punitive measures can be imposed on HGVs that arrive at the tunnel portals. These include:

- Impoundment until an off peak period when the vehicle will be directed to an alternative route at great cost to the HGV operator due to down time.
- Impoundment and requirement of a permit issued in terms of the Regulations at great cost to the HGV operator due to down time, plus the added burden of having to apply for a permit.

8.1 Option Assessment

In this section the remaining three options that are considered applicable and viable within the Dublin City Council area are expanded, with some preliminary discussion on their implementation, likely impacts, and enforcement.

In order to quantify the impacts of the options an assignment or micro-simulation model will need to be created. To do this, a realistic HGV origin and destination model and HGV forecasting model will be required for the Greater Dublin Area including the port. These models are currently not available, and since this modelling is outside of the scope of the current assignment, a quantitative evaluation has not been undertaken. The comments on the impacts of each element presented below are thus largely qualitative.

The aspects that have been included in the assessment are:

How implemented – this relates to the infrastructure that needs to be provided and the specific legislation changes that will be required. Legislation that relates to HGV

definition (3 axles or 17 tonne GVW), amendment to the Road Traffic Act and Regulations and Traffic Signs Manual to accommodate new signage, and changes to legislation that currently exempts HGVs that need to make local deliveries restrictions are common to all options.

Traffic Impacts (Tunnel Open) – this relates to the traffic impacts that are likely to result if the tunnel is fully operational.

Traffic Impacts (Tunnel Closed) - this relates to the traffic impacts that are likely to result from the worst-case scenario if the tunnel is fully closed for emergency/maintenance purposes. As such all HGV will be required to operate on the city's surface streets.

Promote DPT use – this relates to how the measure will meet the objective of promoting use of the DPT.

Management of Overheight HGVs – this relates to how HGVs that are too high to use the DPT are accommodated within the option.

Enforcement – this relates to how enforcement can be carried out and potential problems associated therewith.

Other issues – other issues that are not included in the above aspects are raised in this section as they may have a bearing on the final selection of the option.

8.1.1 Option 1 – Restrict HGVs within the Canal Cordon by Time of Day

: A

<u>Intent</u>

The intent is to prohibit all HGVs within the canal cordon during peak periods (e.g. 07:00 to 19:00) but allow them into the cordon area in off peak periods (e.g. 19:00 to 07:00) for delivery and through routing purposes. The determination of the duration of the restrictions will require further investigation based on new data relating to city centre deliveries that is to be obtained.

How Implemented

Placement of appropriate part time HGV restriction signs on all approaches to the canal cordon. HGVs are then only permitted within the cordon outside of the restricted periods (i.e. during off peak periods).

Special attention will need to be given to accommodating HGVs when the tunnel is closed, as these HGVs will have to be diverted onto the city's streets. This would necessitate HGV travel through the canal cordon and as such the restriction would have to be lifted (i.e. Garda do not enforce access to cordon). Variable message signs (VMS's) should therefore be located on the M50, at the port, and on the radial routes advising on the status of the canal cordon restrictions. Typically, these VMS's would display messages "Tunnel Open – City Centre HGV Restriction in Effect" or "Tunnel Closed – City Centre HGV Restriction Lifted". At night, when the canal cordon restrictions.

Traffic Impacts (tunnel open)

During restricted periods:

- There should be no HGVs in the city centre and canal cordon
- There would likely to be an increase in the number of smaller goods vehicles in lieu of HGVs in the canal cordon
- There should be a reduction in the number of HGVs on the radial routes that cross the canal cordon
- There could be an increase in HGVs on non radial routes outside of the canal cordon as HGVs divert off radial routes

During unrestricted periods:

- HGVs will travel into/through canal cordon
- HGVs volumes on radial routes may increase, as deliveries to the canal will have to take place during unrestricted periods.

Traffic Impacts (tunnel closed)

During restricted periods:

- HGVs will have to travel in the canal cordon
- There would be significant HGV volumes on the routes between the canal cordon Significant HGV volumes in the canal cordon^{NV} and other use and M50 ring.

During unrestricted periods:

The required

Promote Use of DPT

During restricted periods:

- Most trips to/from the north and western sectors should divert to DPT.
- Some trips to/from the south will continue to use N11 corridor and East Link as diversion along M50/M1/DPT is unattractive.

During unrestricted periods;

- Most trips to/from the north sector should divert to DPT
- Some trips from the western sector should divert to DPT, with balance using • canal cordon routes
- Some trips to/from south will continue to use N11 corridor and East Link as diversion along M50 to M1 is unattractive.

Management of Overheight HGVs

Overheight HGVs can be treated in the same way as other HGVs that do not use the DPT (i.e. comply with cordon restrictions), or additional restrictions can be imposed.

Enforcement

Any HGV within the canal cordon during restricted periods would be liable for prosecution, unless the cordon has been "lifted" by the Garda due to closed tunnel or other conditions. Enforcement can be manual, or by using vehicle identification technology to identify prohibited HGVs.

Under tunnel closure conditions, enforcement will have to be stopped if the Garda decide to lift the cordon. If enforcement is electronic, it should be linked to a central system so that it can be disabled.

<u>Issues</u>

- The VMS's at the M50 and port will be remote from the cordon. Between the time that a HGV passes the VMS and the time that the HGV arrives at the cordon the cordon restriction may have been lifted or imposed. The introduction of a time delay is not practical, as the travel time between the VMS's and the canal cordon will be variable depending on the route taken and congestion.
- As the restriction is imposed on all HGVs, there is no provision to allow select HGVs into the cordon for delivery purposes during restricted periods.

8.1.2 Option 2 – Restrict HGV Access to Canal Cordon to Permit Holders Only

<u>Intent</u>

The intent is that HGV movements into the canal cordon are restricted to off peak periods (e.g. 19:00 to 07:00), however, allowance is made for those HGVs that have compelling reasons to travel within the cordon during peak times. These exempt HGVs are, upon application, issued permits and all other HGVs are prohibited from the cordon. The granting of permits to exempt HGVs should only be considered when the operator has valid reasons for entry into the cordon during peak periods. An "exception rather than the rule" methodology is to be applied in the issuing of permits. Note that the exception conditions for granting of permits will be determined from the public consultation exercise.

How Implemented

Appropriate combination HGV restriction, time of day and "Except Permit Holders" signs are placed on all approaches to the canal cordon. Legislation amendments will be required, as "prohibited" HGVs are currently exempt from restrictions for delivery purposes.

Permits are to be issued by the City with additional restrictions (e.g. routes, loading, etc.) if required. The permit can be a simple disc or an electronic tag that has to be readable at all times. Due to the restricted right of ways on the roads crossing the canal cordon, and the inability to construct areas where stationary vehicle identification (e.g. license plate readers) can be carried out, electronic identification will have to take place with the HGVs in motion. This may necessitate appropriate new legislation that will require all HGVs to be fitted with electronic tags or, alternatively license plate recognition can be used.

As with Option 1, variable message signs will be required on the M50, at the port, and on the radial routes advising on the status of the canal cordon restrictions that may be lifted by the Garda under closed tunnel conditions.

Traffic Impacts (tunnel open)

- Only permitted HGVs in the city centre and canal cordon during restricted periods
- Reduction in number of HGVs on radial routes that cross the canal cordon
- Possible increase in HGVs on non radial routes outside of the canal cordon as prohibited HGVs divert off radial routes

Traffic Impacts (tunnel closed)

- Only permitted HGVs in the canal cordon, unless directed by Garda •
- Significant HGV volumes on the routes between the canal cordon and M50 ring.

Promote use of DPT

- Most trips to/from the north and western sectors should divert to DPT.
- Some trips to/from the south will continue to use N11 corridor and East Link as • diversion along M50/M1/DPT is unattractive.

Management of Overheight HGVs

Overheight HGVs can be treated in the same way as other HGVs that do not use the DPT, or additional restrictions can be imposed.

Enforcement

Any prohibited HGV within the canal cordon during restricted periods would be liable for prosecution, unless the cordon has been "lifted" by the Garda due to closed tunnel or other conditions. Enforcement can be manual, or by using vehicle identification technology. Under tunnel closure conditions enforcement will have to be stopped if the Garda decide to lift the cordon. If enforcement is electronic, it should be linked to a central system so that it can be disabled when the tunnel is closed.

Issues

5 There is an incentive to HGV operators to use a readable tag as it permits them • into the canal cordon. There is however no incentive to use a tag for tolling purposes (see Option 3 below), as by using the tag the HGVs operator will be subjected to a toll.

2114

- The implementation of a universal tag is not foreseen in the foreseeable future, so in the interim, enforcement would have to involve manual spot checks to identify those vehicles without a permit.
- The VMS's at the M50 and port will be remote from the cordon. Between the time • that a HGV passes the \Im MS and the time that the HGV arrives at the cordon the cordon restriction may have been lifted or imposed dependant on tunnel conditions. The introduction of a time delay or clearance is not practical as the travel time between VMS and the canal cordon will be variable depending on the route taken and congestion.

8.1.3 Option 3 – HGV Tolling at the Canal Cordon

Intent

The intent of HGV tolling at the canal cordon is to make the routes within the cordon unattractive, and in so doing, make the M1/DPT route attractive.

How implemented

Due to the restricted right of ways on the roads crossing the canal cordon, traditional tollbooths will not be possible, and electronic tolling will have to take place with the HGVs in motion. This will necessitate appropriate new legislation that will require all HGVs to be fitted with electronic tags.

To be effective and reduce though routing, the toll fee should be paid at entry and exit to/from the canal cordon. The amount payable should also be high enough to act as a deterrent to through route trips. It could also be possible to structure the tolling system so that HGVs that enter and leave the area on the same route (i.e. delivery trips) will not be tolled.

Signage will be required on the M50, at the port, and on the approach routes to advise on tolls payable.

In the event of tunnel closure due to incident/maintenance and diversion of all HGVs away from the tunnel, it would be considered unreasonable to toll HGVs that could not use the tunnel. Under these conditions, tolling should be discontinued for sufficient time to allow those HGVs affected by the closure to clear the canal cordon. The tolling system should therefore be linked to the DPT control centre. The determination of the clearance period will however be almost impossible to estimate, as there are many factors that will affect it. This is compounded by the fact that in the event of a closure during the weekday, citywide congestion is likely to result, and rerouted HGVs could be delayed in congestion for extended periods.

Traffic Impacts (tunnel open)

- HGVs that are prepared to pay the toll to travel through the cordon, and HGVs required for delivery purposes will be present in the canal cordon
- Reduction in number of HGVs on radial routes that cross the canal cordon
- Possible increase in HGVs on non radial routes outside of the canal cordon as • HGVs divert off radial routes to avoid to tion.

Traffic Impacts (tunnel closed)

OWNER As described previously, tolling will need to be disabled during and after tunnel closure.

- Significant HGV volumes in the canal cordon
- Significant HGV volumes on the routes parallel to the DPT • Ċ

Promote use of DPT

- Most trips to/from the north and western sectors should divert to DPT.
- Some trips to/from the south will continue to use N11 corridor and East Link as • diversion along M50/M1/DPT is unattractive.

Management of Overheight HGVs

Overheight HGVs can be treated in the same way as other HGVs that do not use the DPT, or additional restrictions can be imposed.

Enforcement

Bearing in mind that there are about 20 access points to the canal cordon, manual enforcement will not be effective. Electronic enforcement may however present opportunities. All HGVs will be required to carry a readable tag. Those that do not will be liable for prosecution if the Garda can identify those HGVs. It will however be difficult to determine if the tag is read as the HGV crosses the cordon. The alternative is to have a vehicle identification system, linked to the tolling system, which identifies those HGVs that are not tolled.

<u>Issues</u>

- Electronic tags are an aid to HGV operators under normal tolling operations where the HGV needs to pass a tollbooth. This is reflected in the 30-40% use of electronic tolling at the existing West Link and East Link tolls. In the canal cordon application, having a tag will result in a toll being levied. It is thus in the operators' interests not to have a tag, or to "disable" it at the tolling location.
- The other major deficiency of this option relates to the disabling of the tolling system under closed tunnel conditions. To reduce the number of contested cases against non-payers, tolling would have to be disabled for an extended period after a tunnel closure.

8.4 Preferred Option

In terms of meeting the goals and objectives of the HGV Management Strategy and within the geographic, social and political constraints, the only option that is implementable, enforceable, and will manage a large proportion of HGVs in the City of Dublin is Option 2. This option will promote usage of the DPT, reduce the number of HGV through and delivery trips in the canal cordon, and at the same time be able to accommodate overheight HGVs. Under tunnel closure conditions, HGVs may enter the canal cordon if directed by the Garda. This option will not however remove all HGVs outside of the canal cordon, and even after diversion to the DPT takes place after completion, significant numbers of HGVs will still be present between the canals and the M50.

As mentioned previously, the impacts of this option on port and non-port related HGVs and general traffic couldn't be quantified with the currently available data and models. Confirmation of the impacts will however need to precede implementation. As part of this further evaluation, particular attention should be given to the capability of the road network outside of the canal cordon, including the DPT, to cope with the diverted HGV traffic.

This strategy is considered high level and the extent of the canal cordon restrictions in so far as actual road designation, time of day, technology, etc. has not been defined. This will require further investigation during the development of the actual management plan.

The preliminary implementation concept is as follows:

- Arrange for the necessary amendments to the road traffic legislation, Traffic Signs Manual and City bylaws;
- Arrange the necessary permit process to exempt certain HGV vehicles from the canal cordon restrictions including the issue of clearly identifiable permits;
- Place appropriate regulatory signs on the roads approaching the canal cordon;
- Place VMS's on the M50, at the port, and on the radial routes leading to the city centre advising on the canal cordon restriction status;
- Arrange enforcement based on the following methodology:
 - If the DPT is open and a HGV without the necessary permit is in the canal cordon during restricted hours, then prosecute the operator;

- If either tube of the DPT is closed for maintenance/emergency purposes, no enforcement is to be carried out in the canal cordon until some time (approximately 30 minutes) after the tunnel is re-opened;
- No enforcement is required in the canal cordon outside of the restricted hours.

To complement this strategy, a number of additional localized measures should be considered:

a) Abandoning or Reducing Tolling of HGVs at West Link

In order to make the DPT more attractive for HGV trips to/from the south, the existing tolling of HGVs at West Link should be abolished or, alternatively, the toll fee reduced. It is acknowledged that there are jurisdictional and contractual issues associated with this.

b) Increasing HGV Toll Fee at East Link

Once the canal cordon restrictions are in place, HGVs to/from the south will be diverted to the East Link route. By increasing the toll fee at East Link, the number of HGV trips across the bridge and passing through the southern areas could be reduced, with the diverted trips using the more attractive DPT route. As with the West Link toll, there are similar issues with East Link.

c) Prohibition of HGVs on Certain Roads Outside of Canal Cordon

The implementation of the strategy will result in HGVs having to travel through the area outside of the Canal Cordon. To reduce this impact, HGVs should be prohibited on those routes where their presence is undesirable.

- d) <u>Localized Loading Restrictions</u> As per the "Commercial Vehicte Management Strategy", localized restrictions should be implemented in the city centre.
- e) Extension of the Cordon

The proposed cordon is unlikely to have any affect on HGV trips to/from the south that use the N11 corridor and the East Link. Extension of the cordon into the Irishtown/Sandymount area, but excluding the south port accesses, may be a consideration.

8.5 Additional Comments

The recommended HGV Management Strategy for the City of Dublin is to restrict HGV access to the area of the city within the canal cordon to permit holders only. In the analysis and evaluation that lead to this recommendation, there were a number of options identified with significant potential that could not be considered further due to geographic and political constraints (e.g. the limitation of the study to the Dublin City area only). It is suggested that HGV movements are a regional issue and in order to effectively manage them within the Greater Dublin area, a more regional approach is required. This should involve all of the local authorities and road agencies in an effort to more effectively manage HGV movements within the M50 ring and beyond.

A lack of current data pertaining to all HGV trips in the city has required the evaluation of the various options presented in this report to be performed on a

qualitative basis. The recommended strategy that has been developed is focussed on port related HGV traffic that travels through the canal cordon. From a review of the cordon counts and the port traffic volumes it is apparent that an extremely high proportion of HGV trips into the canal cordon are not port related. It is unknown if these trips end in the canal cordon or are through trips. It is, however, felt that this strategy will reduce the number of HGV through trips in the canal cordon, while still allowing local deliveries by permitted vehicles. The impacts of this strategy on the road network both within and outside the canal cordon however cannot be quantified with existing data.

Whilst a strategy has been recommended, additional investigation is required to better define the strategy and determine its impacts. These additional investigations include:

- Undertaking a stakeholder/public consultation exercise to assess the reaction to the proposed strategy
- Determine the origins and destinations of all HGV trips throughout the city through a comprehensive data collection program;
- Determine the classes of HGVs that are being used for delivery trips in the canal cordon;
- Evaluate and review the appropriateness of the proposed 17 tonne GVW or 3 axle limit based on the HGV class proportions;
- Determine the times of the proposed restrictions based on an analysis of HGV delivery trends in the canal cordon;
- Develop a realistic assignment and forecasting model that includes all HGV and general purpose traffic trips;
- Evaluate the impacts of implementing the strategy both within and outside the canal cordon;
- Refine the cordon boundary as appropriate;
- Develop the legislative framework;
- Develop the permit process;
- Develop the enforcement process in consultation with the Garda; and
- Develop detailed HGV management plans for implementation.

ISSUES FOR CONSULTATION 9

As highlighted in the previous section, extensive consultation needs to be undertaken to assess the public response to the proposed HGV Management Strategy. In addition to general public consultation, the public agencies/organizations that administer transportation and the industries that rely on HGV transportation, including the operators, need to be consulted.

Some of the issues that need to be brought to the attention of the public/stakeholders are listed below:

9.1 Benefits of the DPT

The general public is under the impression that upon opening of the DPT, all HGVs will be removed from the city streets. As has been shown in our research, there are still going to be a significant number of HGV trips per day that are not going to use the DPT without an adequate HGV Management Strategy in place. HGVs will of course still be present outside of the cordon, as all HGVs are not going to simply disappear underground.

9.2 Impacts on Businesses

The lack of data makes the impact of the HGV Management Strategy on businesses difficult to assess. In all likelihood, it will result in increased costs, as staff would have to work during off peak periods to good/unload/receive goods. Businesses need to be informed of the proposed restrictions so that they can evaluate the impacts and start to make alternative arrangements. Feedback from the businesses would also help in finalizing the restricted hours and HGV classes to be incorporated into the final HGV Management Plans.

9.3 Impacts on HGV Operators

Similar to the businesses described above, the impacts of the HGV Management Strategy on the HGV operators are unknown. Rerouting could result in increased costs, and the cordon restriction could result in a shift from HGV to LGV transportation in the city centre. Feedback from the operators with regard to the financial and operational impacts of the strategy will assist in fine-tuning it.

9.4 NRA

The HGV Management Strategy targets a certain vehicle type (3 or more axles or 17 tonne GVW) whereas the NRA DPT tolling strategy exempts goods vehicles with an unladen weight of 1524 kg and a GVW of 3500 kg. With the review of the DPT tolling strategy, care must be taken not to introduce a weight restriction that is incompatible with the HGV Management Strategy.

EAST WALL ROAD TRAFFIC MANAGEMENT STUDY

Consent of copyright owner convict for any other use.

Arup Consulting Engineers

Dublin City Council

East Wall Road Traffic Management Study

Summary Traffic Report

Consent for inspection purposes only any other use.

Arup Consulting Engineers

Dublin City Council

East Wall Road Traffic Management Study

Summary Traffic Report

June 2003

Arup Consulting Engineers 10 Wellington Road, Dublin 4 Ireland Tel +353 01 614 4200 Fax +353 01 668 3169 www.arup.com

Job number D2599/10

j,

CONTENTS

		Page
1.	INTRODUCTION	1
2.	BACKGROUND TO THE STUDY	1
2.1	Transportation Infrastructure	2
2.2	Land Use Developments and Traffic Operations	4
2.3	Motivation for the study	8
3.	SCHEME OPTION EVALUATION	9
3.1	Study Area	9
3.2	Analysed Scheme Alternatives	9
3.3	Transportation Modelling	10
3.4	Evaluation of Scheme Alternatives	13
3.5	Preferred Scheme Alternative	15
4.		15
4.1	Study Area	15
4.2		15
4.3	Traffic Management Design (2)	17
5.	CONCLUSION at and	24
6.	WAY FORWARD	25
TABL	ES spectron pur redu	
Table 1 Table 2 Table 3	Traffic Management Design (1) Traffic Management Design (2) CONCLUSION WAY FORWARD ES : Macken Street Bridge – Banned Turning Movements : Location of Traffic Counts : Accident Statistics	

- Table 4: Future Land Use Developments (Vehicle Trips)
- Table 5: Future Background Traffic (Vehicle Trips)
- Table 6: Additional Road Infrastructure (Vehicle Trips)
- Table 7: Modelled Scenarios
- Table 8: Total Origin Destination Matrix (pcu's)
- Table 9: Heavy Goods Vehicle Origin Destination Matrix)pcu's)
- Table 10: AM peak hour Input Matrix (2006 pcu's)
- Table 11: Degree of Saturation (2006 AM peak hour)
- Table 12: PM peak hour Input Matrix (2006 pcu's)
- Table 13: Degree of Saturation (2006 PM peak hour)
- Table 14: Calibration Results

ы

FIGURES

Figure 1: The Existing Environment Figure 2: The Future Environment Figure 3: Existing Bus Services Figure 4: 2001 AM Traffic Counts Figure 5: 2001 Off Peak Traffic Counts Figure 6: Analysed Interim Scheme Options Figure 7: Zone boundaries - DTO's SATURN Transportation Model, 2006 Road Network Figure 8.1: 2006 AM Do Minimum Figure 8.2a: 2006 AM Two North One South Figure 8.2b: 2006 AM One North Two South Figure 8.3: 2006 AM Dual East Wall Road Figure 9: Lane Allocation Options Figure 10.1: Transyt Link Diagrams and Output - Option 1 Figure 10.2: Transyt Link Diagrams and Output - Option 2

APPENDICES

APPENDIX C TRANSYT ANALYSES - PEDESTRIAN STAGING on the required for any other For intermediate the second statement of the second seco

1. INTRODUCTION

Arup Consulting Engineers was appointed by Dublin City Council to undertake the work required to progress development of the proposed East Wall Road Traffic Management Study from concept stage to planning consent stage. The work involved consists of the following stages:

- 1. Preliminary options assessment
- 2. Traffic and Transportation Studies
- 3. Preliminary Design
- 4. Compulsory Purchase Order (CPO) mapping
- 5. Environmental Report

The first stage was completed in July 2001 and the report "East Wall Road Traffic Management Study – Route Options Study" was submitted by Arup Consulting Engineers to Dublin City Council.

This report addresses the second stage of the project and deals with issues related to the Traffic Management of East Wall Road.

In Section 2 the background to the study is explained in Further detail with reference to the aforementioned report.

The following part of the report is divided into two sections: Section 3 deals with the various scheme options that were considered, the SATURN transportation modelling exercises, evaluation of the scheme options and identification of the preferred scheme option.

In Section 4 the detailed traffic management considerations of the preferred scheme option are discussed in terms of the options available, the methodology used to determine the preferred design and the evaluation of the various approaches.

Finally in Section 5 the way forward is stated, given the outcome of the evaluation of the preferred scheme option and its design.

2. BACKGROUND TO THE STUDY

In the following section the background to the study and the motivation for the study will be summarised. The focus is on the background information that may have a direct impact on this part of the study in terms of the Traffic Management of East Wall Road. For more detail on the history and other background information on the project, please refer to the aforementioned report.

Figure 1 shows the location of the section of East Wall Road that is the subject of this study. The Study Area is also indicated on Figure 1 and discussed in more detail in Section 3.1.

In *Figure 2* the "committed" Future Environment is illustrated. The following section summarises the official plans with respect to transportation infrastructure and land use developments for the future.

2.1 Transportation Infrastructure

2.1.1 Existing Transportation Infrastructure

2.1.1.1 Local Road Network

The section of East Wall Road between Tolka Quay Road and Sheriff Street Upper accommodates two-way traffic with roughly 2 lanes north bound and 1 lane south bound. The northbound lanes are not marked (except for the centre line marking) and the road width varies between approximately 10m to 15m.

The junctions between East Wall Road & Tolka Quay Road; and East Wall Road & Sheriff Street Upper are signalised. The right turn from Alexandra Road onto East Wall Road is banned. The right turn from East Wall Road onto Sheriff Street Upper is banned between 7h00 and 10h00. The junction at East Wall Road & North Wall Quay is a roundabout and the southern arm connects with the East Link Toll Bridge.

2.1.1.2 Sustainable Transport

Bus Services

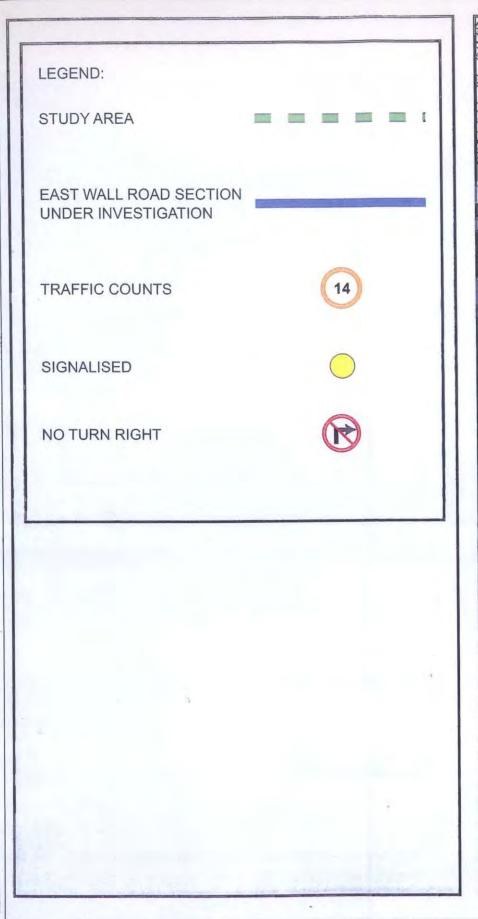
Two bus routes run along East Wall Road, namely the number 53 between Beresford Place and East Wall (Alexandra Gates) and the number 53A between Beresford Place and North Wall (Alexandra Road). Refer to *Figure 3*. Busses are generally scheduled every 20min to 30min during the peak periods. Bus stops are located along both sides of East Wall Road, but there are no indented bus bays.

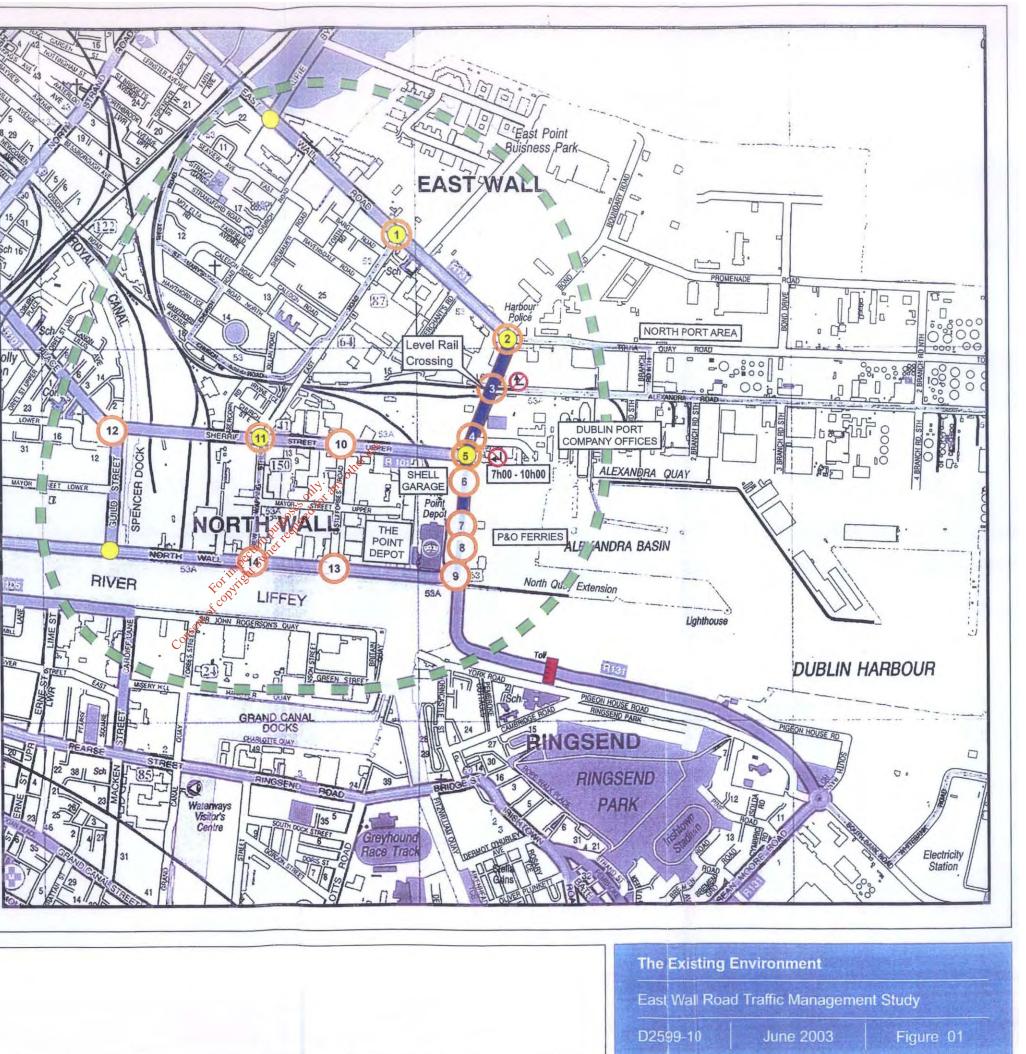
Rail Services

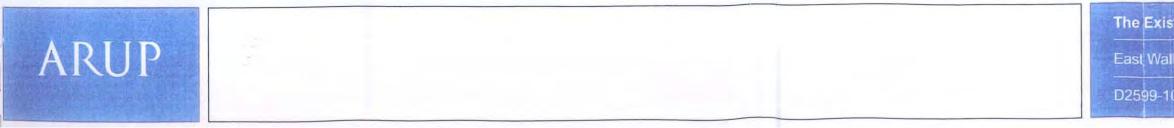
There is a level rail crossing at the junction between East Wall Road and Alexandra Road. The rail line runs east-west and is used to transport freight to and from the Port. The frequency of the service is approximately 18 trains per day. The junction is boom-controlled to allow rail traffic to cross East Wall Road

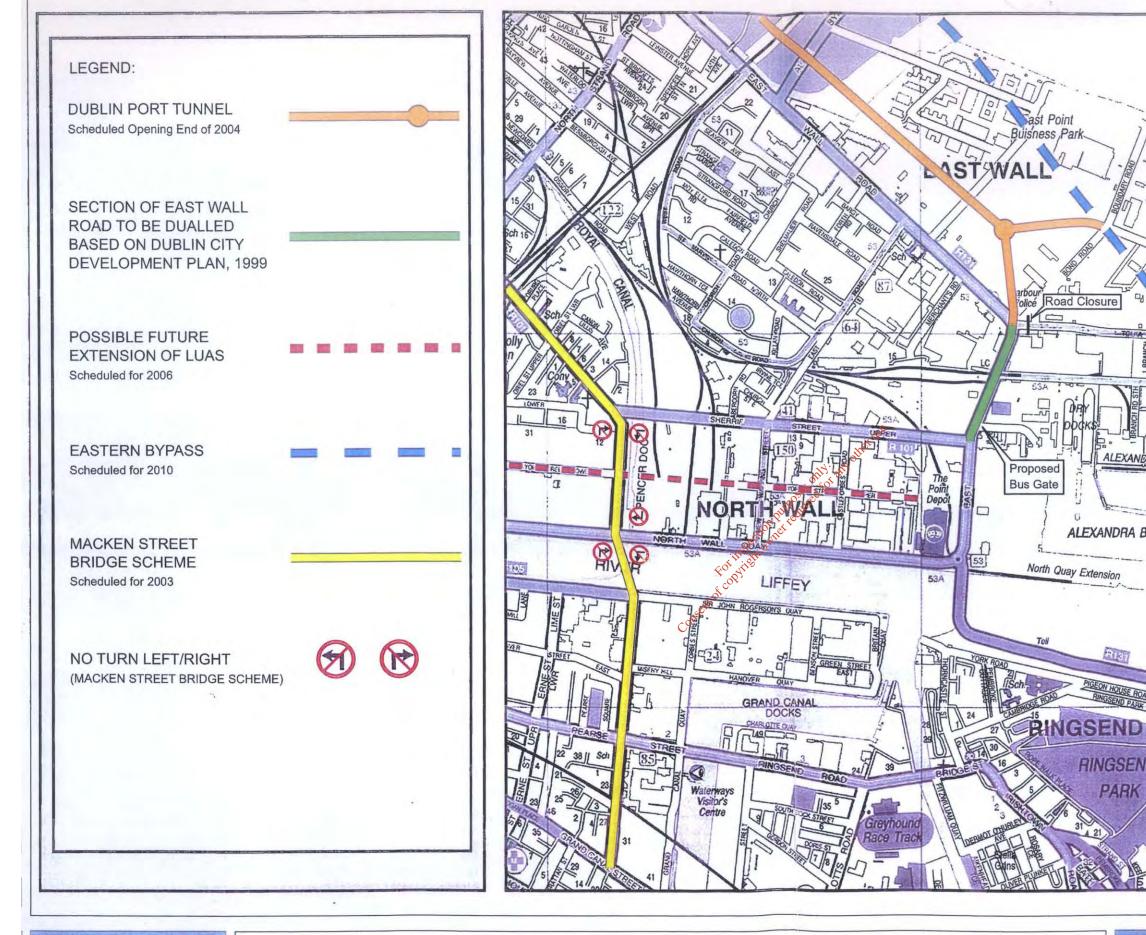
Pedestrian footpaths and Cycle paths

There are footpaths on both sides of East Wall Road. No dedicated cycle paths exist in the study area. Pedestrian stages are incorporated at the signalised junctions between East Wall Road & East Road; and North Wall Quay & Guild Street.

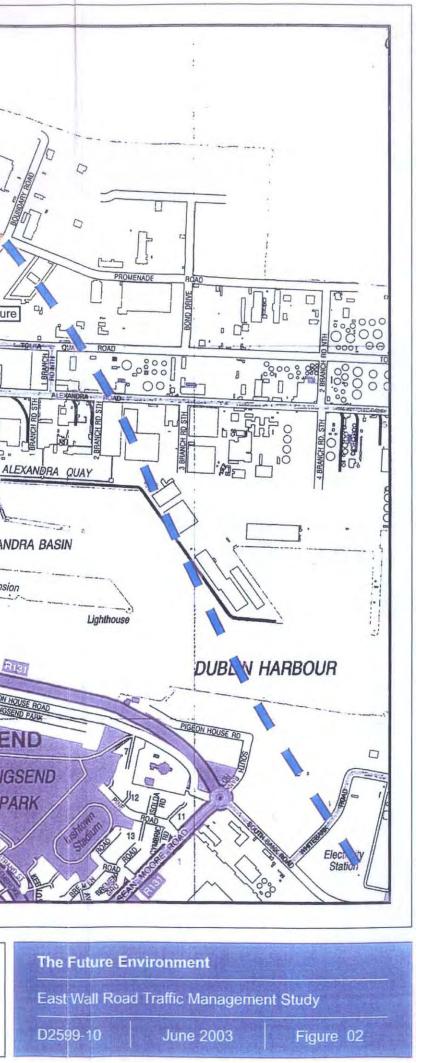

2.1.2 Future Transportation Infrastructure


The Dublin Transportation Office's (DTO) "A Platform for Change" strategy report for 2000 to 2016 outlines a number of transportation infrastructure projects relevant to the study area:

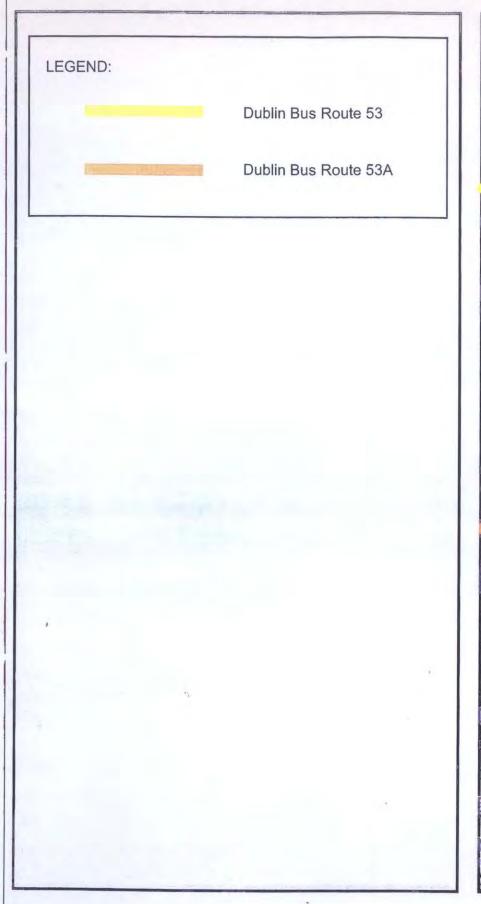

2.1.2.1 Dublin Port Tunnel

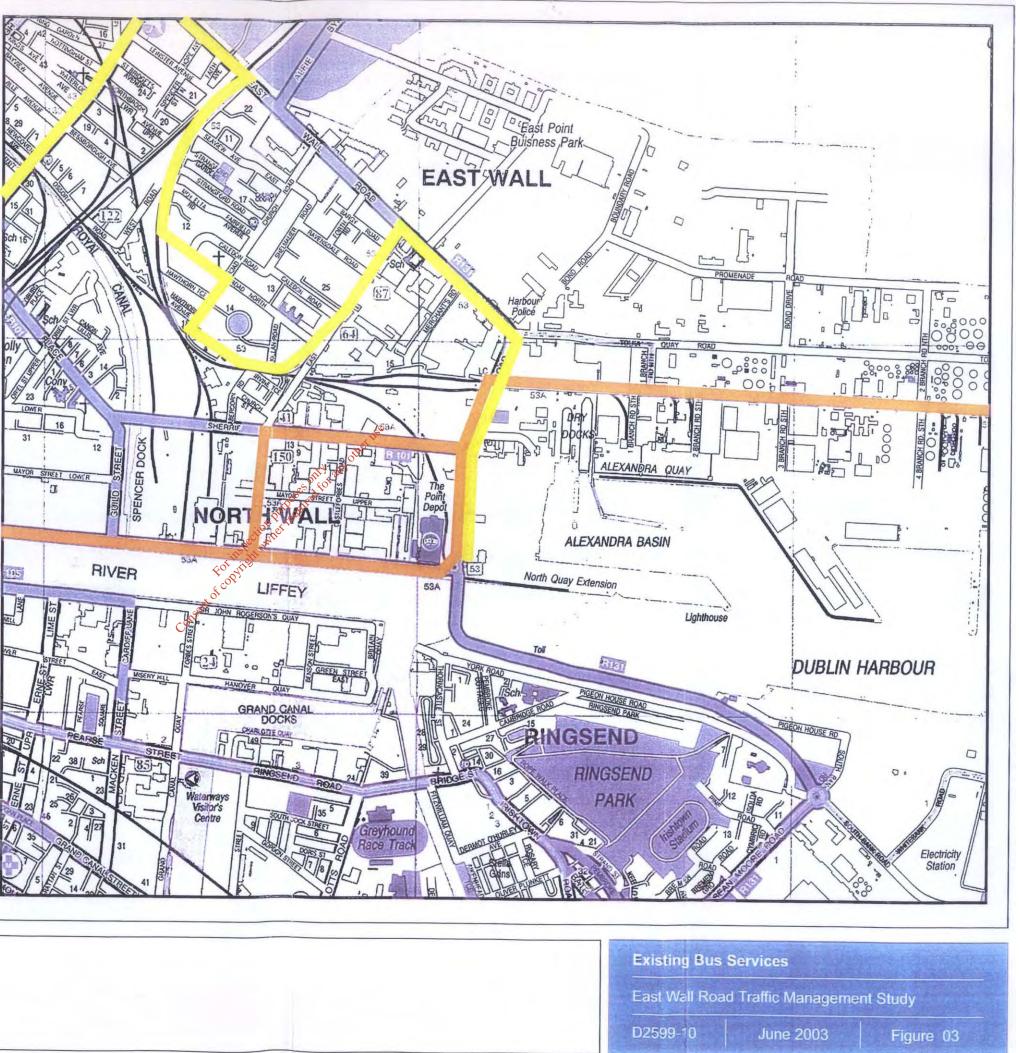

The main influence on the East Wall area in terms of new Transportation Infrastructure will be the opening of the Dublin Port Tunnel. The tunnel will provide a new strategic access between the Port and the Strategic Road Network to the north of the City Centre. One of the aims of the Tunnel scheme is to eliminate the need for Heavy Goods Vehicles to travel through the City Centre and residential areas. Private car users will be tolled when using the tunnel.

The tunnel will have a capacity of approximately 1200 pcus/lane/hour. It is comprised of approximately 5.6km of dual carriageway and includes a 4.4km long road tunnel. Tolka Quay Road will be closed as part of the scheme and port traffic will be redirected to a proposed new roundabout at the junction between Dublin Port Tunnel Access and a new road linking with Promenade Road. The Dublin Port Tunnel is in the process of construction and will be opened by in 2005.



ARUP D2599-10


10


11

ALEXANDRA BASIN

IGEON HOUSE R

RINGSEND PARK

ARUP

2.1.2.2 East Wall Road

In anticipation of the opening of the Dublin Port Tunnel, the Dublin City Development Plan 1999 makes provision for the road improvement of East Wall Road between Tolka Quay and Sheriff Street Upper. The scheme is listed as a "Category 1 Scheme" and should therefore be initiated and/or implemented in the five-year period of the Development Plan, i.e. before 2004.

The aim of this study is to assist with the development of this scheme to implementation stage, before the opening of the Dublin Port Tunnel.

2.1.2.3 Macken Street Bridge

Dublin City Council was granted permission to construct Macken Street Bridge, which would link Guild Street north of the River Liffey with Cardiff Lane south of the River Liffey. The scheme will extend to the north with the upgrading and widening of Guild Street. Two-way traffic will be accommodated with 2 lanes per direction. One lane per direction will be dedicated to public transport to provide a sustainable transport link between the areas north and south of the River Liffey. The following turning movements will be banned as part of this scheme:

Junction	Banned Turning Movement		
North Wall Quay & Guild Street (Macken Street Bridge)	No right-turn from Macken Street Bridge to North Wall Quay No right-turn from Guild Street to North Wall Quay No reft-turn from North Wall Quay to Macken Street Bridge		
Sheriff Street Upper & Guild Street	No right-turn from Guild Street to Sheriff Street Upper No left-turn from Sheriff Street Upper to Guild Street		

These banned turning movements would facilitate the implementation of Environmental Traffic Cells for the area, which are intended to create discrete cells allowing local circulation, but no through-traffic. The intention is that through-traffic would remain on the strategic distributor network. The Macken Street Bridge Scheme was scheduled for opening by 2003. Macken Street Bridge will not provide linkage with East Wall Road.

2.1.2.4 Eastern Bypass:

The Eastern Bypass will be constructed in order to complete the orbital motorway around Dublin. According to "A Platform for Change" it was scheduled to start construction in 2003 and to be completed by 2010, its construction is currently under study. The Eastern Bypass will result in the diversion of through-traffic from local roads in the city centre, including East Wall Road. In this regard the delay of the construction of the Eastern Bypass will result in prolonged traffic congestion along East Wall Road.

2.1.2.5 Sustainable Transport

LUAS (light rail)

Based on "A Platform for Change" the extension of the LUAS (light rail) System to The Point is scheduled for implementation in the period 2003 to 2006. The most feasible route for this line has been identified as Mayor Street.

Bus Services

East Wall Road is indicated to form part of a Quality Bus Corridor / Bus Priority Network in "A Platform for Change". At this stage there are no official plans indicating East Wall Road specifically to accommodate dedicated bus lanes.

Dublin Bus is currently in the process of investigating the possibility of providing Bus Priority measures between the IFSC and Dublin Port including providing a bus gate at the existing access to the Dublin Port Company's Offices approximately 40m north of the junction of East Wall Road & Sheriff Street Upper. A draft report "Dublin Port - City Centre Bus Route Feasibility Study" has been prepared in this regard by consultants (SIAS) acting on their behalf. The scheme would involve creating an additional access into the port area just to the north of the existing junction creating a staggered junction.

Pedestrian and Cycle Network

East Wall Road lies on the route identified for the Sutton to Sandycove Cycle Route which is part of the Dublin City Strategic Cycle Network. Dublin City Council is in the process of reviewing this Network, and it is likely that new proposals will emerge for the cycle network within the study area. In this regard, improved cyclist and pedestrian facilities will be provided along East Wall Road..

2.2 Land Use Developments and Traffic Operations

2.2.1 Existing Land Use Developments and associated Traffic Operations

The main land use developments in the East Wall Study Area are the following:

- The East Wall Commercial Area, which is the area between Spencer Dock in the west and East Wall Road in the east.
- The North Port which is the area east of East Wall Road and north of North Wall Quay.
- The International Financial Services Centre (IFSC) which is the area just west of Guild Street and north of North Wall Quay.
- The South Port which is the area south-east of the River Liffey

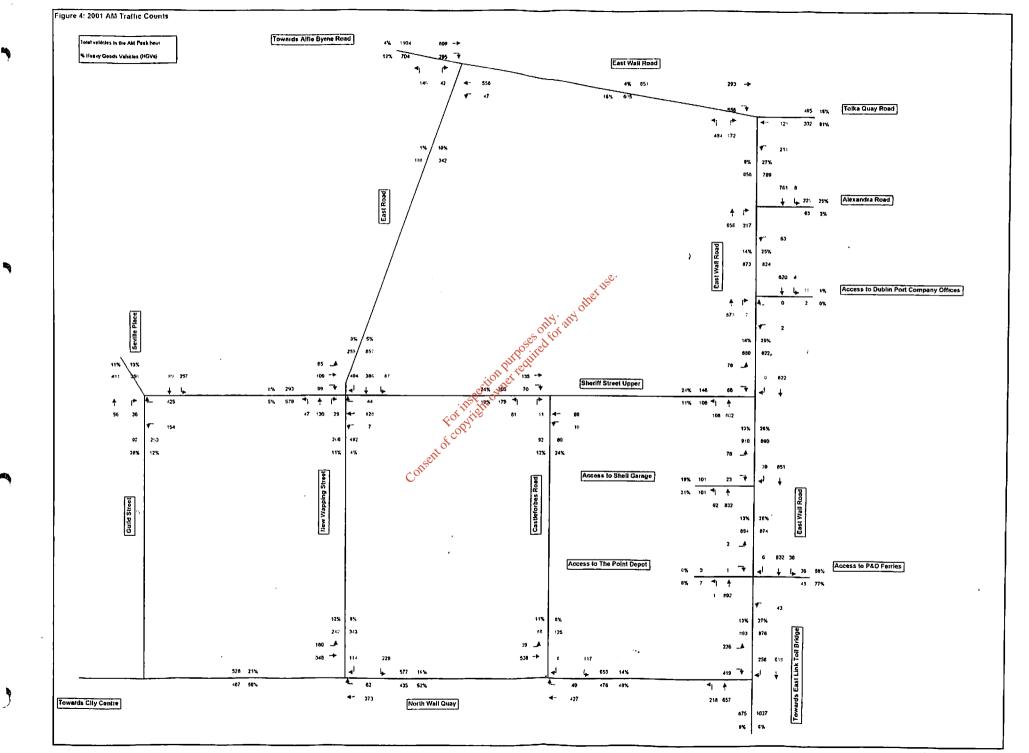
The developments that have direct access from East Wall Road are:

- The North Port through Tolka Quay Road and Alexandra Road (no right turn from Alexandra Road)
- The Dublin Port Company Offices
- The P&O Ferries site (left-in left-out access)
- The Point Depot
- The Shell Garage

2.2.1.1 Traffic Counts

In order to determine traffic operations in the area, traffic counts were conducted by Abacus Transportation Surveys on Tuesday 4 December 2001 and Wednesday 5 December 2001 at the following junctions (refer to *Figure 1*):

ł


,

Number on Figure 1	Junction	Control	Description
1	East Wall Road & East Road	Signalised	Junction with 3 approaches
2	East Wall Road & Tolka Quay Road	Signalised	Junction with 3 approaches
3	East Wall Road & Alexandra Road	Priority	Junction with 3 approaches
			Right-tum banned from Alexandra Road to East Wall Road
			Level rail crossing with boom control
4	East Wall Road & Dublin Port Company Offices	Priority	Access with 3 approaches
5	East Wall Road & Sheriff Street Upper	Signalised	Junction with 3 approaches
			Right-tum banned between 7h00 and 10h00 from East Wall Road to Sherift Street Upper
6	East Wall Road & Access to Shell Garage	Ргіогіту	3 accesses to Shell Garage with 3 approaches each
7	East Wall Road & Access to P&O Ferries site	Priority	Left-in left-out access with 3 approaches
8	East Wall Road & The Point Depot	Priority	Access with 3 approaches
9	East Wall Road & North Wall Quay	Roundabout	Junction with 3 approaches
10	Sheriff Street Upper & Castleforbes Street	Riority	Junction with 3 approaches
11	Sheriff Street Upper & New Wapping Street.	Priority	Junction with 3 approaches
12	Sheriff Street Upper & Guild Street	Priority	Junction with 3 approaches
13	North Wall Quay & Castleforbes Street	Priority	Junction with 3 approaches
14	North Wall Quay & New Wapping Street	Priority	Junction with 3 approaches

Table 2: Location of Traffic Counts

The peak hours for the purpose of the study were defined as 8h00-9h00 for the AM peak hour and 14h00-15h00 for the Off peak hour and this is discussed in more detail in Section 3.5.1.2. In Figure 4 and 5 the turning volumes at the surveyed junctions are schematically shown for the AM and Off peak hours.

Queue lengths were observed on Monday 18 February 2002 and Friday 12 April 2002 during the AM and Off Peak hours.

2.2.1.2 Accident Statistics

Accident statistics were obtained from the Dublin City Council and are indicated in *Table 3*. A complete list of accidents are included in *Appendix A*.

Table 3: Accident Statistics

,	No. of	No. of	No. of
Location	Minor Accidents	Serious Accidents	Fatal Accidents
	(1997-2001)	(1997-2001)	(1997-2001)
East Wall Road / Alfie Byrne Road	6	1	-
East Wall Road / Church Road	3	•	-
East Wall Road / West Road	6	-	-
East Wall Road / Merchants Road	1	-	-
East Wall Road / Alexandra Road (Private Road)	2	•	1
East Wall Road / Annesley Bridge Road (Include Bridge)	3	1	1
East Wall Road / East Link Bridge	1		-
East Wall Road / Forth Road	1	-	-
East Wall Road / North Strand Road	2	•	~
East Wall Road / North Wall Quay	5 USC.	-	-
East Wall Road / Poplar Row	2 other	-	-
East Wall Road / Sheriff Street Upper	14. 00	1	-
East Wall Raod / Stoney Road	Set of the set of the	•	-
East Wall Road / Tolka Road	1	-	-
East Wall Road	15	1	•
East Road / East Wall Road	1		-
TOTAL	54	4	6

From the statistics the location of the accidents are not entirely clear, it is however shown that at least 8 accidents occurred on the road section between Tolka Quay and Sheriff Street Upper of which one, at the junction with Alexandra Road, was fatal. In total 2 fatal accidents and 4 serious accidents have occurred in 5 years time along the total length of East Wall Road. It is also shown that pedestrians were involved in 6 out of the 60 accidents (10%) that took place of which 2 were serious accidents. Approximately 47% of the accidents took place during the AM and PM peak periods (i.e. 7h00 - 10h00 and 16h00 - 19h00).

Based on the review of the accident data it is clear that the congested situations that currently exist in the area in general and along East Wall Road between Tolka Quay and Sheriff Street Upper are not promoting safe conditions for vulnerable road users. It is therefore required to provide safer facilities for vulnerable road users along the proposed scheme as well as at the future proposed junctions.

2.2.1.3 Traffic Operations

Based on the traffic counts, queue length observations, visual observation and accident statistics the following is concluded in respect of the existing traffic operations:

• The road network is currently operating at capacity and long delays and queues are experienced during the peak period periods.

- Long delays are especially experienced along East Wall Road southbound in the AM peak hour. The queue on the southbound approach extends onto Clontarf Road along Alfie Byrne Road.
- Long delays are also experienced throughout the remainder of the road network including North Wall Quay and East Road.
- A large proportion (approximately 75%) of the southbound light vehicle traffic on East Wall Road is commuter through-traffic and does not have a destination in the East Wall Study Area.
- Heavy Goods Vehicles (HGV) are an important component of the total traffic on East Wall Road. More than 25% of vehicle traffic southbound between Tolka Quay Road (North Port) and North Wall Quay is HGVs.

2.2.2 Future Land Use Developments and associated Traffic Operations

The Dublin Docklands Development Authority set out development objectives for the study area in the "Dublin Docklands Area Master Plan 1997". The main objective is to seek its economic, physical and social rejuvenation within the constraints and opportunities afforded by the urban context. The North Lotts Area Planning Scheme was proposed by the Dublin Docklands Development Authority and given permission by the Minister for the Environment and Local Government. This Planning Scheme includes for the development of a significant area of the Northern Docklands bounded by Guild Street, Sheriff Street Upper and East Wall Road.

Based on the existing SATURN Transportation Model by Dublin Transportation Office (DTO), the land use development in the area will increase substantially in future (refer to *Section 3.5* for further information on Transportation Modelling relevant to this study).

A comparison of 2001 and 2006 trip matrices shows an increase of around 18% per annum in the total AM peak hour vehicle trip generation of the 4 land use development areas (internal zones) in the study area, i.e. the East Wall Road Commercial Area, the North Port, the IFSC area and the South Port. In 2001 a total of 4 141 vehicle trips are generated by these 4 internal zones in the AM peak hour and by 2006 it increases to 9 397 vehicle trips (refer to *Table 4*).

	2001 AM			20	Increase			
	Produced	Attracted		Produced	Attracted		per annum	
Zones	Out of	Into	Total	Out of	Into	Total		
	Study Area	Study Area		Study Area	Study Area		%	
East Wall Road Commercial Area (11102)	184	752	936	1106	2094	3200	28%	
North Port (11103)	785	1042	1827	1629	2882	4511	20%	
IFSC Area (13133)	10	29	39	33	24	57	8%	
South Port (22125)	773	566	1339	868	761	1629	4%	
Total	1752	2389	4141	3636	5761	9397	18%	

Table 4: Future Land Use Developments (Vehicle Trips)

Furthermore, the background vehicle traffic (trips generated by external zones) in the area will increase from 5 938 vehicle trips in 2001 to 9 589 vehicle trips in 2006. This is an increase of 10% per annum (refer to *Table 5*).

	2	001 AM		20		Increase	
	Produced	Attracted		Produced	Attracted		per annum
Zones	Into	Out of	Total	Into	Out of	Total	
	Study Area	Study Area		Study Area	Study Area		%
All External Zones (Background Traffic)	3287	2651	5938	5215	4374	9589	10%

 Table 5: Future Background Traffic (Vehicle Trips)

* 2006 traffic volumes exclude vehicle trips generated by Additional Road Infrastructure, i.e. Macken Street Bridge and Dublin Port Tunnel.

The proposed new infrastructure in the study area represents two additional external zones and a further increase in future background traffic. An additional 880 vehicle trips will be generated by Macken Street Bridge and 4 316 vehicle trips (2 704 southbound and 1 611 northbound) will be generated by the Dublin Port Tunnel by 2006 in the AM peak hour (refer to *Table 6*).

	2	006 AM	
	Produced	Attracted	
Zones	Into	Out of	Total
	Study Area	Study Area	
Dublin Port Tunnel (91709)	2704	1611	4316 880
Macken Street Bridge (91703)	536	345	880

Table	6: Additional	Road Infrastructure	(Vehicle Trips)
Table	of maannomen		

The matrices are balanced, which means that the total trips produced and attracted by the external and internal zones are equal. This means that the total vehicle trips produced by internal and external zones in the 2001 AM peak is 1752 + 3287 = 5040. The total trips attracted by internal and external zones in the 2001 AM peak is the same, i.e. 2389 + 2651 = 5040. Similarly the total vehicle trips produced by internal and external zones in the 2006 AM peak is 3636+5215+2704+536 = 12091, which is equal to the total trips attracted, i.e. 5761 + 4374 + 1611 + 345 = 12091.

It follows that vehicle trips in the area will increase from 5 040 vehicle trips in the 2001 AM Peak to 12 091 vehicle trips in the 2006 AM Peak. This represents a total increase of 140% over 5 years and 19% per annum.

2.3 Motivation for the study

It is clear that the existing environment will undergo fundamental changes in the future – land use developments will increase and new transportation infrastructure will be constructed. Both of these will cause additional trips to go to and from the study area, or to pass through the study area. The need for the East Wall Road Traffic Management Scheme therefore arises primarily from the introduction of the Dublin Port Tunnel into the local road network, in addition to the ongoing increase in economic activity at Dublin Port and the continuing development of the Docklands Area north of the Liffey.

The existing road network in the study area is already operating at capacity. When completed, the Dublin Port Tunnel will introduce more traffic loading onto East Wall Road, and in particular the section of the road between Tolka Quay Road and Sheriff Street Upper. Increased economic activity at Dublin Port will also lead to increased traffic demand on East Wall Road, particularly from the South Port Estate. The ongoing development of the Docklands Area, including significant increases in residential and commercial floor space,

will also create additional traffic loading on East Wall Road, particularly north of Sheriff Street Upper.

The Dublin Port Tunnel is designed to cater for Heavy Goods Vehicle traffic from both the North and South Ports. For this reason, and given that a proportion of Port traffic will use East Wall Road to access the city centre or destinations south of Dublin, enhancement of this section of East Wall Road is a vital requirement for the successful implementation of the Dublin Port Tunnel scheme.

There is also a need to upgrade East Wall Road to improve facilities for pedestrians and cyclists. There is a need in particular to provide cyclist facilities on East Wall Road in the context of its location on the Dublin City Council "Sutton to Sandycove Coast Cycle Route". which is part of the Strategic Cycle Network for Dublin. Also, the current and future high levels of traffic demand an improvement in pedestrian crossing facilities along the road.

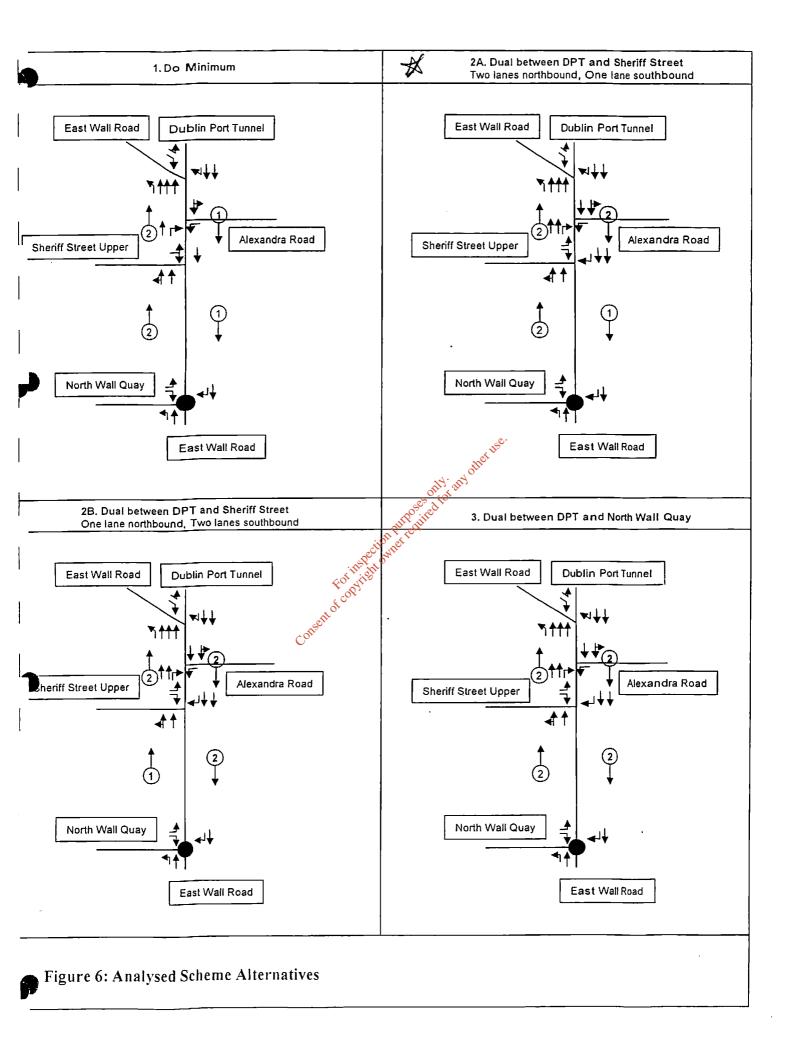
Finally, in the context of emergency planning for the Dublin Port Tunnel, it is desirable that there should be adequate space for vehicular storage both on the network approach and on egress routes from the Tunnel.

Therefore an upgraded East Wall Road is necessary to serve the Dublin Port Tunnel, Dublin Port and the ongoing redevelopment of the Docklands Area. It will provide improved facilities for vulnerable road users, and play a role in the emergency planning of the Dublin Port Tunnel.

As mentioned earlier, the Dublin City Development Plan 1999 makes provision for the road improvement of East Wall Road between Tolka Quay and Sheriff Street Upper. The scheme is listed as a "Category 1 Scheme" and should therefore be initiated and/or implemented in the five-year period of the development plan, i.e. before 2004.

SCHEME OPTION EVALUATION 3.

Study Area 3.1


of copyingh The opening of Dublin Port Tunnel will have a citywide impact on traffic conditions. This impact has already been addressed in the Environmental Impact Assessment (EIA) for the Dublin Port Tunnel. The EIA went through a process of Public Enquiry and was approved by the Minister. The DPT is now in the process of being constructed.

The purpose of this study is to investigate and design the required traffic management measures to be implemented along the section of East Wall Road between Tolka Quay Road and North Wall Quay. The focus is therefore on the detailed traffic management level and how to effectively accommodate the predicted future traffic volumes on this section of the road network. The proposed traffic management strategy will also have an impact on the immediate local environment. The study area was therefore confined to the area as shown in Figure 1.

3.2 **Analysed Scheme Alternatives**

The Dublin City Development Plan 1999 lists Tolka Quay Road to Sheriff Street Upper Improvement as a Category One Scheme i.e. a road scheme that has "been adopted by the City Council and/or approved by the DTI and will, subject to the availability of funding, be initiated and/or implemented in the five-year period of the Plan". This Scheme therefore proposes to widen East Wall Road according to the Development Plan.

Two basic alternative schemes were developed namely a "Do Minimum" and a "Do Something" scheme. The "Do Something" scheme would be based on the proposals made in the Dublin City Development Plan, 1999. In Figure 6 schematic presentations of each of these

alternatives are shown. Refer to Section 4 for details on the traffic management design considerations related to these alternatives.

3.2.1 Alternative 1: Do Minimum

The total length of East Wall Road would remain as it is at the moment with 2 lanes northbound and 1 lane southbound. The junction between East Wall Road & the Dublin Port Tunnel Access will be upgraded by Dublin City Council to accommodate the closure of Tolka Quay Road.

3.2.2 Alternative 2: Do Something

East Wall Road would be dualled between the Dublin Port Tunnel Access and Sheriff Street Upper.

The existing right-turn ban from East Wall Road onto Sheriff Street Upper was re-evaluated. Initial modelling runs showed a substantial demand for right-turners (up to 500 pcu's in the AM peak hour). Should the right-turn be permitted a dedicated right-turn lane will have to be provided and 2 through lanes will have to be constructed. This will facilitate maximum capacity for the major southbound movement along East Wall Road. Accesses to developments along the total section of East Wall Road between Dublin Port Tunnel Access and North Wall Quay will be converted to left-in left-out accesses (the right turn from East Wall Road onto Alexandra Road will be retained).

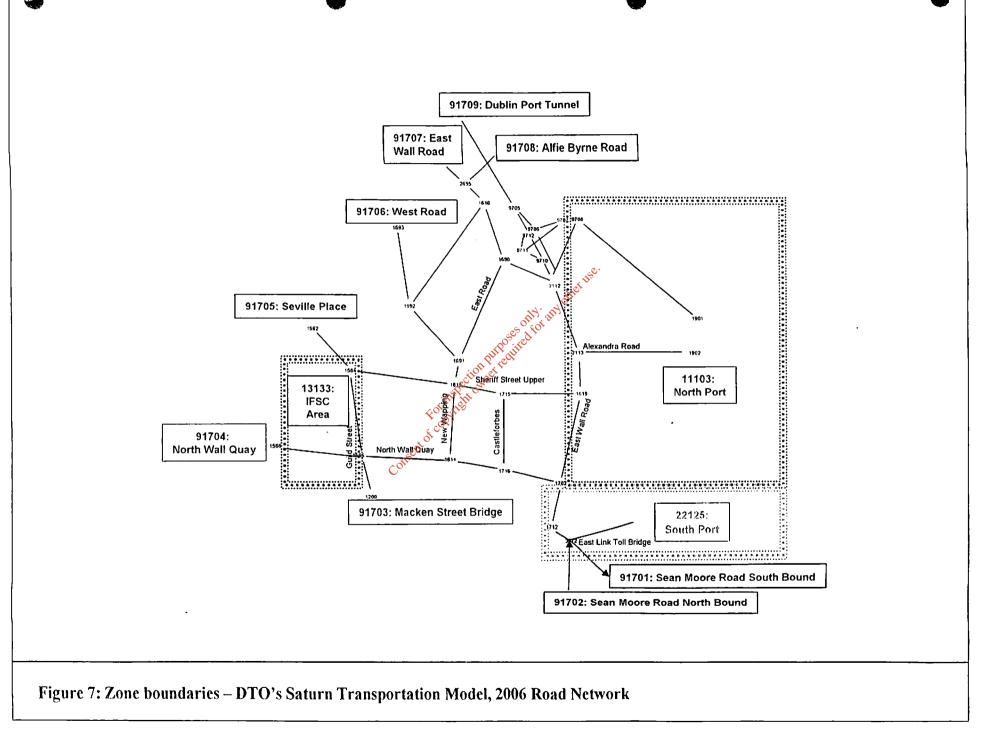
Such a scheme will adhere to the Development Plan It will however be required to address the logical continuation of lane capacity between Sheriff Street Upper and North Wall Quay. In this regard, the following 2 options were considered:

Alternative 2A: Two lanes northbound one lane southbound

Two Ianes northbound, but only one lane southbound are provided between Sheriff Street Upper and North Wall Quay. One of the lanes northbound will be dedicated for traffic heading northbound in the direction of Afric Byrne Road and the North Port. Such a scheme will prevent commuter and Port traffic not heading for the Dublin Port Tunnel, from experiencing delays because of the high traffic volumes heading towards the tunnel. This scheme is similar to the existing situation of this section of the road, with the exception of the permitted rightturn from East Wall Road to Sheriff Street Upper.

Alternative 2B: One lane northbound, two lanes southbound

Only one lane northbound and two lanes southbound would be provided between Sheriff Street Upper and North Wall Quay. Two lanes southbound will maximise the capacity available for the evacuation of the Dublin Port Tunnel in the event of an emergency. The right turn from East Wall Road to Sheriff Street Upper will be permitted.


3.3 Transportation Modelling

3.3.1 Dublin Transportation Office's SATURN Transportation Model

In order to evaluate and compare the different scheme alternatives the Dublin Transportation Office's (DTO) existing SATURN Transportation Model was utilised.

3.3.1.1 Study Area

The DTO developed a cordon model with a study area that corresponds with the study area earlier indicated in *Figure 1*. In *Figure 7* an indication of the zone locations and boundaries within the cordoned model are given.

20

EPA Export 25-07-2013:21:29:21

- Actual cordoned Private Car Trip matrices and HGV trip matrices, in pcu's, for all 2006 and selected 2016 scenarios (electronic).
- Optimised signal settings, at selected junctions, for all 2006 AM peak hour and selected 2016 AM peak hour scenarios (electronic).
- Link volumes, throughout the study area, for all 2006 and selected 2016 scenarios (A2 hard copies).
- Average traffic speeds, throughout the study area, for Do Minimum (1) and Two North One South 2006 (2A) and 2016 AM Peak hour scenarios (A4 hard copies).

In *Figures 8.1, 8.2a, 8.2b and 8.3* the results of the 2006 AM model runs for the modelled network schemes listed in *Section 3.4* are summarised.

In *Table 8* a summary of the origins and destinations of the trips in the study area is given, based on the extracted matrix for the cordoned model of Road Network Scenario 2A (i.e. "Two North, One South") for the 2006 AM Peak hour.

		Internal D	estinations		Ext	ernal Destina	tions		Total
Zones		North Port	Other Internal Destinations	DPT	City Centre	Macken Str Bridge	East Link Toll Bridge	Other External Destinations	(pcu's)
· ·	North Port	0 0	30	1279	263 1856	0	953	1027	3551
Internal	(11103)	0%	1%	365 dtor	7%	0%	27%	29%	100%:
Origins	Other Internal Origins	54	25*	128	140 10%	10 39	77	725 2292	1157
	(11102 & 13133)	5%	2% citorne	11%	12%	1%	7%	63%	100%
	Dublin Port Tunnel	1484	382 1796	0 075	495 3492	0 000	546	763	3671
	(91709)	40%	10%	0%	13%	0%	15%	21%	100%
	City Centre via North Wall Quay	568	627 2895	386 354	0	56 783	71	9	1719
	(91704)	3385	37%	22%	0%	3%	4%	1%	100%
External	Macken Street Bridge	0	15	0	201 1492	0	0	388	603
Origins	(91703)	0%	2%	0%	33%	0%	Q%	64%	100%
	East Link Toll Bridge	501	183	574	304	0	816* 313	262	2639
	(91701, 91702 & 22125)	19%	7%	22%	12%	0%	31%	10%	100%
	Other External Origins	1095 30 6	940 419	203 289	35	249	139	154* 594	2815
	(91705, 91706, 91707, 91708)	39%	33%	7%	1%	9%	5%	5%	100%
Total	(pcu's)	3702	2203 1002	2567 1002	1438 1007	316 100%	2601 1005	3327	16155

Table 8: Total Origin - Destination Matrix (pcu's)

* Internal trips due to the aggregation of zones

In *Table 9* an indication is given of the number Heavy Goods Vehicle (HGV) pcu's extracted from the same 2006 AM trip matrix.

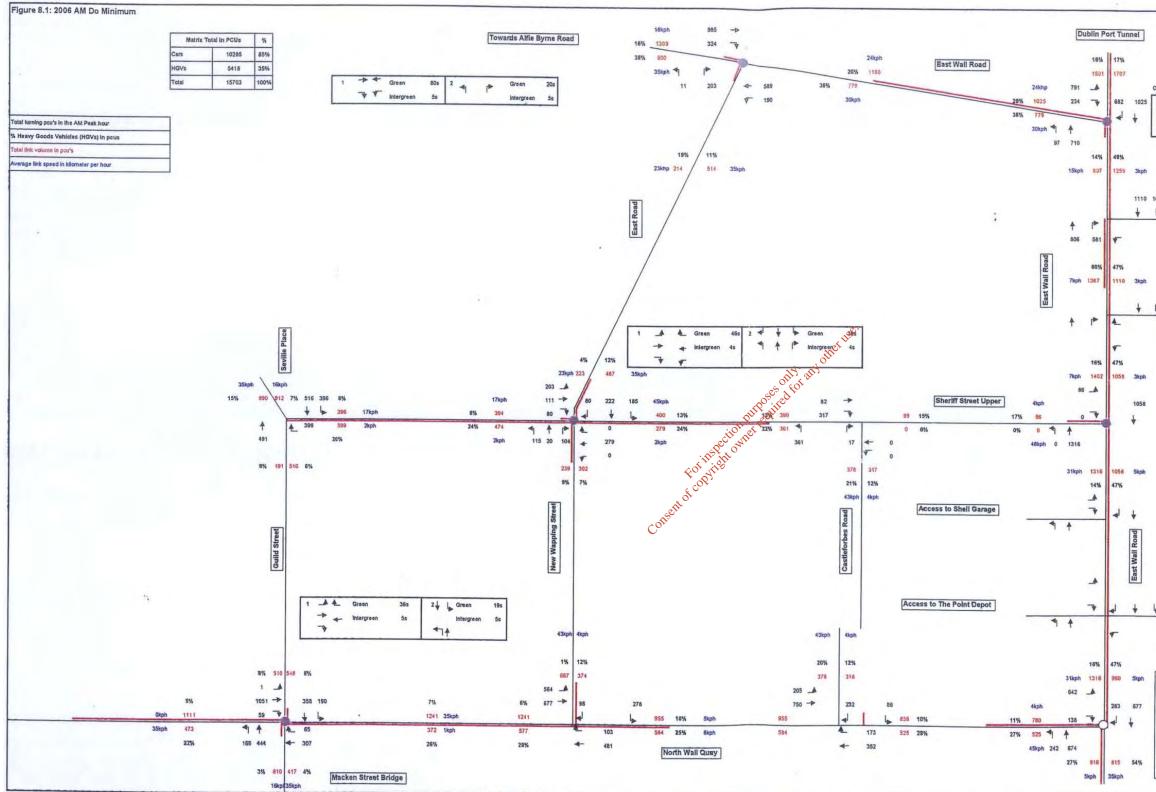
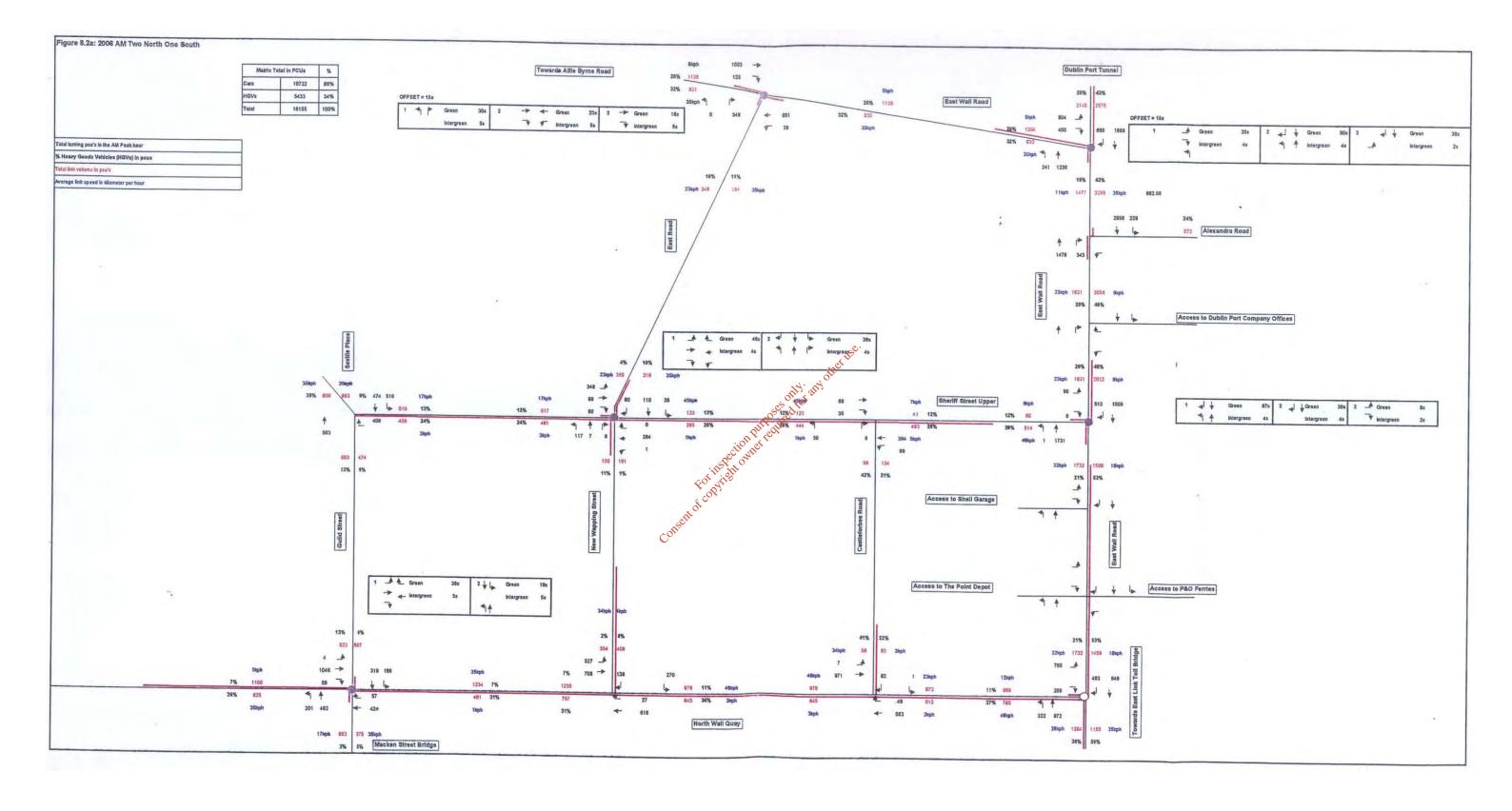
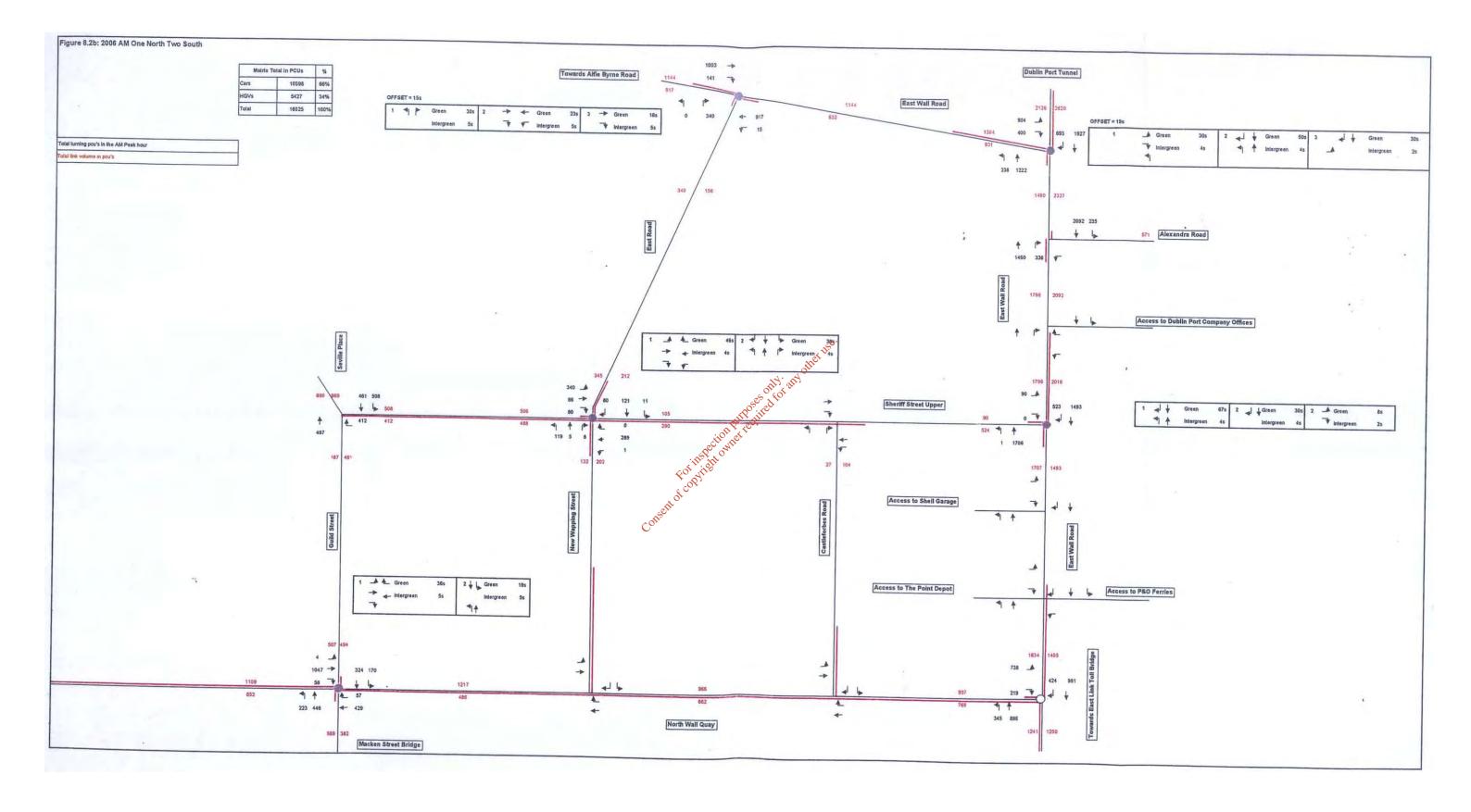
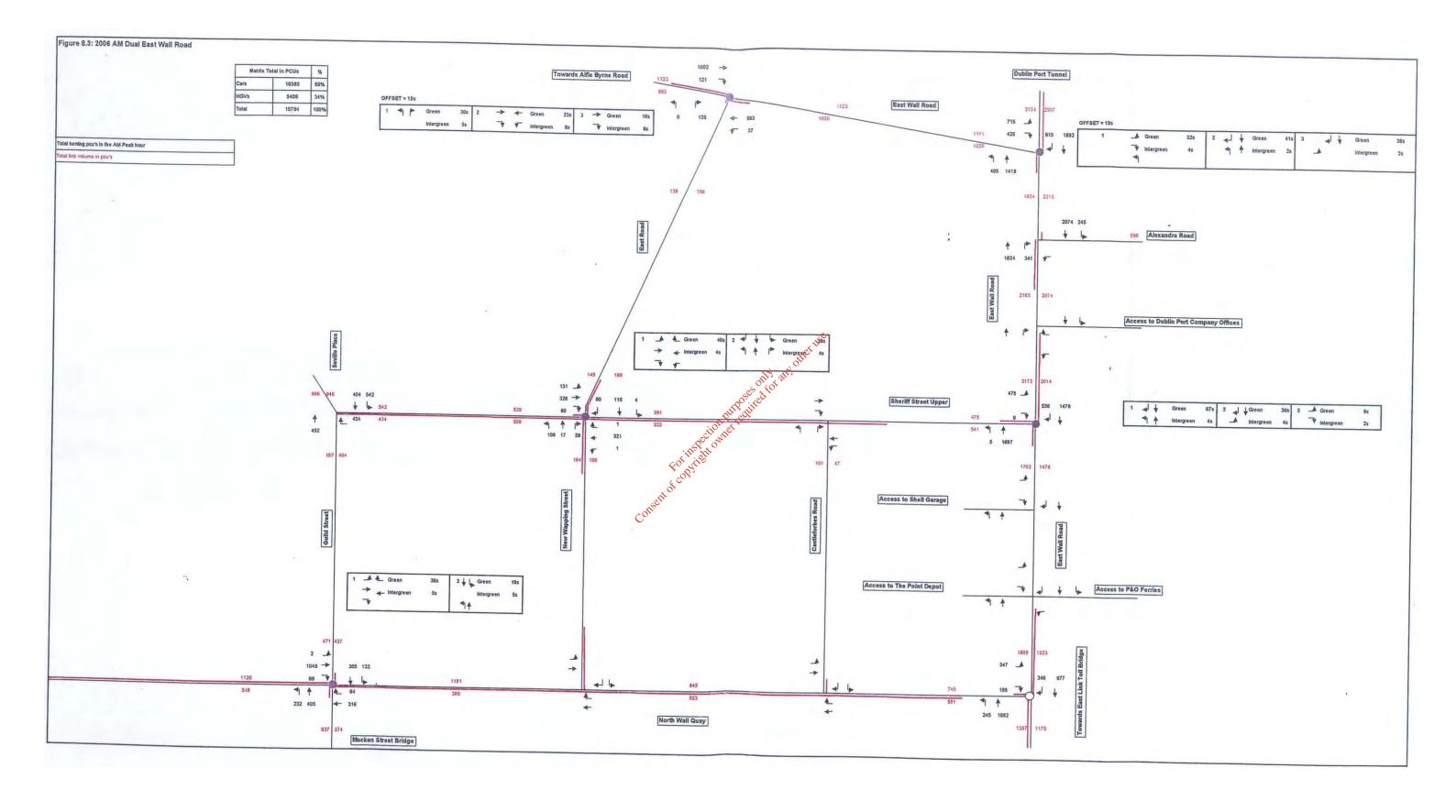

	Zones		nal ations			External Destin	nations		Total
			Other	DPT	City Centre	Macken Str Bridge	East Link Toll Bridge	Other	(pcu's)
Origins	North Port (11103)	0	0	1131	166	0	856	558	2710
	Other Internal Origins (11102 &13133)	19	0	24	1	4	0	2	51
	Dublin Port Tunnel (91709)	715	78	0	21	0	180	74	1068
çins	City Centre via North Wall Quay (91704)	63	1	19	0	2	26	2	113
External Origins	Macken Street Bridge (91703)	0	1	0	5	Oc.	0	15	22
Exte	East Link Toll Bridge (91701, 91702 & 22125)	211	0	139	182 ₀₁₁	any other 0	479	139	1149
	Other External Origins (91705, 91706, 91707 & 91708)	251	10	10	ITPOSE on the	13	19	13	320
Total	(pcu's)	1259		1323		19	1560	802	5433

Table 9: Heavy Goods Vehicle Origin - Destination Matrix (pcu's)


3.4 Evaluation of Scheme Alternatives


The various schemes were evaluated based on the outcome of the DTO's modelling runs as well as other considerations discussed earlier. In general the main findings were the following:


- Unacceptable queue lengths exist along the southbound movement of East Wall Road during the AM Peak Hour.
- Queue lengths are reduced when East Wall Road is improved.
- Increased capacity along East Wall Road results in an increase in traffic attracted to East Wall Road. Compare 1259 pcu's southbound in the Do Minimum Scenario (1) with 2286 pcu's southbound in the Two North – One South Scenario (2A).
- A high demand for right-turning traffic from East Wall Road to Sheriff Street Upper and from East Wall Road to Alexandra Road exists.
- Average traffic speeds southbound along East Wall Road increase when East Wall Road is improved.
- The proportion of Heavy Goods Vehicles remains the same (around 46%) with or without an improvement to East Wall Road. In real terms it represents an increase, for example an increase from 579 HGV pcu's to 983 HGV pcu's due to more traffic attracted to East Wall Road when increased capacity is provided.

OFFSET = 19s	4 10 47	Green Intergreen	32s 4s	2 🚽 4	*	Green Intergreen	41s 2s	3	4	↓ Green Inlergreen	39 25
579.14 104	20% 685	Alexandr	a Road						*		
4	Acces	ss to Dublin -	Port Com	pany Offic	es						
r	ţ		äreen Nörgreen	79s 2 3s	4	Green	6s 3s				
Acce	ss to P&O	Ferries									
Towards East Link Toll Bridge									a,		

3.4.1 Alternative 1: Do Minimum

Notwithstanding the fact that none of the schemes would resolve the predicted levels of congestion successfully, the "Do Minimum" alternative, is not viable based on the following:

- The existing road network in the study area is already operating at capacity. The Dublin Port Tunnel will undoubtedly add more traffic onto East Wall Road. In terms of safety it is important to be able to evacuate the tunnel in the event of an emergency. Additional capacity along East Wall Road will be required for this purpose alone.
- The DTO model shows a large increase in traffic volumes in the study area from approximately 7 500 pcus in the 2001 AM peak hour to around 16 000 pcus in the 2006 AM peak hour. The increase is mainly due to high traffic generation of local land use developments and additional infrastructure such as Macken Street Bridge and the Dublin Port Tunnel.
- The DTO model indicated a reduction in queue lengths when the "Do Minimum" situation is compared to any of the other "Do Something" schemes. A scheme will therefore provide some relief, even though it will not solve the problem entirely.
- The road network will be in danger of gridlocking if the capacity on East Wall Road is not increased. This will have a negative impact on the whole road network in the study area and will extend into the City Centre.
- Extensive queuing in the area will block access to the Port and have an impact on economic activity generated by the Port.
- The DTO model indicates a reduction in traffic volumes in 2016 when the Eastern Bypass is included in the road network. The construction of the Eastern Bypass depends on the outcome of independent studies and the availability of funding. It can therefore not be assumed that the construction of the Eastern Bypass will relieve congestion on East Wall Road by 2016. The possibility that traffic volumes by 2016 will even be worse than in 2006 if the Eastern Bypass is not constructed, has to be considered.
- There are also some indications of a possible extension of the LUAS line up to The Point Depot, an enhanced Bus service along East Wall Road and an improved Rail service along the existing rail track. These plans are not proceeding as of the time of this writing and subject to the outcome of various studies (and also not included in the DTO's SATURN Transportation Model). It can therefore not be assumed that this additional and improved public transportation infrastructure will reduce private car travel and thereby alleviate congestion in the area.
- In addition there are also indications of large-scale development proposals in the area that will generate additional trips to and from the study area. The access to these future developments has to be unrestricted. One step towards improved access to the study area will be the upgrading of East Wall Road.

3.4.2 Alternative 2: Do Something

3.4.2.1 Alternative 2A: Two lanes northbound, one lane southbound

Since only one lane is provided southbound the queue length in the AM peak hour will be longer than if two lanes are provided southbound on the section between Sheriff Street Upper and North Wall Quay.

However, commuter through-traffic heading northbound towards Alfie Byme Road and traffic heading towards the North Port will not be delayed by traffic heading towards the Dublin Port Tunnel.

Alternative 2B: One lane northbound, two lanes southbound 3.4.2.2

Two lanes southbound will provide more capacity on the section between Sheriff Street Upper and North Wall Quay and reduce queue lengths. Even though this scheme also adheres to the Development Plan, it may not be viable since traffic on the northbound approach, not heading into the tunnel, but heading towards Alfie Byrne Road and the North Port will be delayed by Dublin Port Tunnel traffic.

Preferred Scheme Alternative 3.5

Based on the analysis it follows that the preferred scheme alternative is to dual East Wall Road between the Dublin Port Tunnel Access and Sheriff Street Upper and to provide 2 lanes northbound and 1 lane southbound between Sheriff Street Upper and North Wall Quay. East Wall Road will therefore be widened in accordance with the Development Plan.

It is recommended that the dualing of East Wall Road between Sheriff Street Upper and North Wall Quay be included in the Dublin City Development Plan of 2004 so as to enable the Preferred Option to be implemented in full.

TRAFFIC MANAGEMENT DESIGN 4.

Study Area 4.1

Given the preferred scheme alternative, the study area was refined to the local section of East Wall Road and access roads off East Wall Road, between the Dublin Port Tunnel Access and

4.2

Traffic Management Design (1) Aner required In considering various scheme alternatives, account was taken of current road design standards as set out in the MRA Design Manual for Roads and Bridges (DMRB). Recommended dimensions for various cross sectional elements were adopted and where possible, departures from standard avoided. C

4.2.1 **Access Restrictions**

Due to the high volume of traffic expected along East Wall Road, it is proposed that all the accesses be converted to left-in left-out accesses, with the following exceptions.

The right-turn inbound from East Wall Road into the North Port at Alexandra Road will be retained at the junction between East Wall Road and Alexandra Road. Also, the right turn from East Wall Road into Sheriff Street Upper will be retained.

The accesses from East Wall Road to the Dublin Port Company Offices, the Shell Garage and The Point Depot will be converted into left-in left-out only accesses. existing access to the Dublin Port Company just north of the junction with Sheriff Street Upper will also have to be converted to a left-in left-out access.

4.2.2 **Junction Design and Control**

It is recommended that the following two junctions be signalised as part of a traffic management strategy to minimize through traffic on Castleforbes Road:

- North Wall Quay & Castleforbes Road
- Sheriff Street Upper & Castleforbes Road

Additional Transyt analyses were also conducted to progress the junction design and control of the following junctions (the results are discussed in Section 4.3.2):

- East Wall Road & Dublin Port Tunnel Access
- East Wall Road & Alexandra Road
- East Wall Road & Sheriff Street Upper
- Roundabout: East Wall Road & North Wall Quay

Sustainable Transport 4.2.3

Pedestrians and Cyclists 4.2.3.1

As part of the scheme facilities for vulnerable road users will be improved.

A pedestrian footpath was designed on both sides of East Wall Road.. A pedestrian bridge crossing at the northern end of the scheme is being provided as part of the Dublin Port Tunnel scheme.

One-way cycle lanes will be provided on the western (northbound) and eastern (southbound) sides of East Wall Road. The cycle lanes will be slightly elevated off the main roadway for safety reasons but will be designed to maximize continuity at junctions.

Advanced stoplines will be provided at the junctions between East Wall Road & Alexandra Road and East Wall Road & Dublin Port Tunnel Access to enable cyclists to turn right safely.

The impact of the inclusion of pedestrian facilities on the junctions along East Wall Road was owner re analysed in detail and discussed in Section 4.33

Bus Services 4.2.3.2

The pro vision of bus lanes along East Wall Road was considered at an early stage in the scheme development but was not taken forward to detailed optioneering as two further traffic lanes would have to have been provided as part of the scheme, resulting in significant additional land take implications. Also, the provision of bus lanes was not considered critical given that there were not mimediate plans to include this section of East Wall Road within the Dublin Quality Bus Network.

The provision of dedicated bus lanes along East Wall Road, would have significantly reduced the capacity for general traffic along East Wall Road and would have limited the amount of traffic that would be able to exit the Dublin Port Tunnel in the case of emergency.

The bus stops along East Wall Road will be maintained.

Land-take Restrictions and Lane Width 4.2.4

In considering the design of the scheme options, land-take was kept to a minimum and consideration was given to maintaining efficient and safe access to properties.

Dublin Port Company requested that the wall on the eastern side of East Wall Road be retained if East Wall Road is upgraded. Therefore all of the land-take will have to take place on the western side of East Wall Road.

Due to the high expected volume of Heavy Goods Vehicles it is proposed to provide 3.65m wide lanes as recommended by the "Design Manual for Roads and Bridges" (DMRB) (see Dimensions of Cross Section Elements for Urban Motorways, Chapter 3, Volume 6, Section1, Part 2 TD27/96, p3/10).

In addition pedestrian footpaths and cycle lanes will be provided on both sides of East Wall Road.

It is proposed that the right-turn from East Wall Road onto Sheriff Street Upper be permitted. A dedicated right-turn lane will have to be provided and two southbound through-lanes will have to be constructed adjacent to it. The additional lane will have an impact on the width of the road and the required land-take for the scheme implementation will increase to the south of the Sheriff Street Upper junction. For the purpose of lane continuity the distance over which this merging has to take place is at least 100m from the signal location. This is based on the standard as given in the "Design Manual for Roads and Bridges" (DMRB) in Chapter 2, Volume 6, Section 2, Part 3.

Traffic Management Design (2) 4.3

A number of specific traffic management design issues were examined and supported by more in depth transportation modelling exercises and analysed in more detail. These included:

- Lane Allocation on approach to Dublin Port Tunnel Access
- Junction Design and Control of the 4 main junctions along East Wall Road
- Pedestrian Staging at junctions along East Wall Road
- Finalised Scheme Micro Simulation

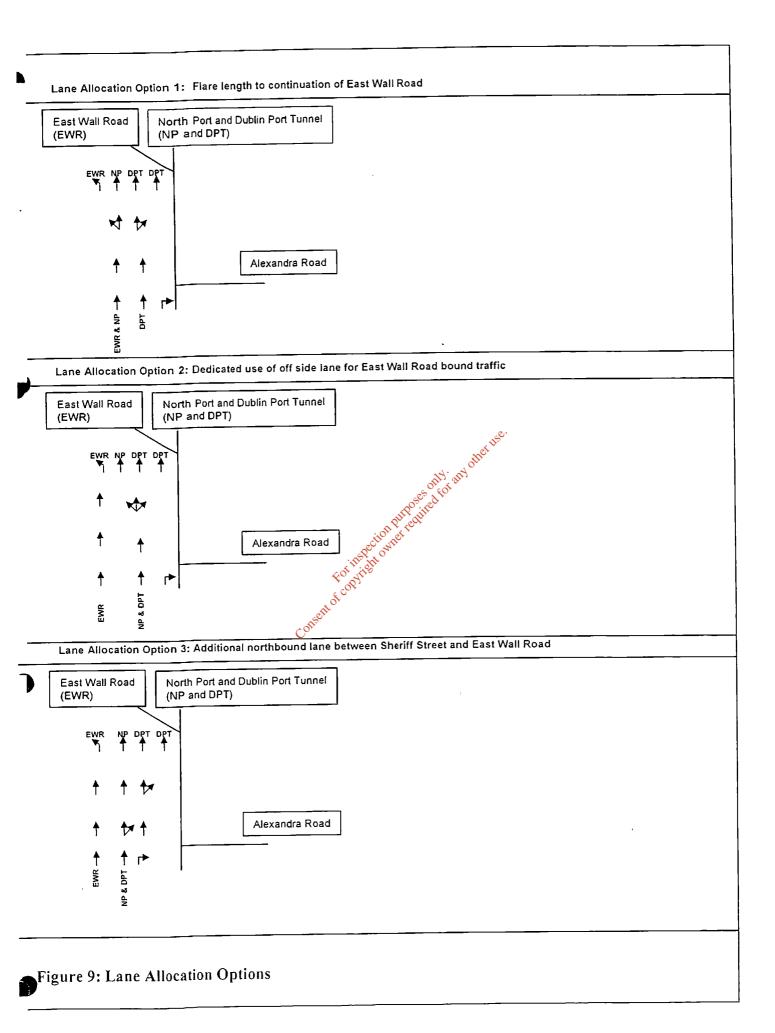
Lane Allocation 4.3.1

150 Delays caused by the closure or congestion of the Dubin Port Tunnel could result in delays for traffic heading towards Alfie Byrne Road and North Port. Attempts should be made to limit the delays on this traffic, and therefore possibly allocating a dedicated lane for this purpose.

Option 1: Flare length to continuation of East Wall Road 4.3.1.1

The left turn filter lane, which offers access to the continuation of East Wall Road at the Dublin Port Tunnel Access, has been lengthened to accommodate a 100m queue of vehicles. It is expected that this will allow the majority of vehicles unimpeded access into the lane without obstruction by Port bound traffic. In summary Port bound and East Wall Road bound traffic share one lane up to Alexandra Road. Conversely the adjacent lane is for access into the Dublin Port Tunnel.

Option 2: Dedicated use of off side lane for East Wall Road bound traffic 4.3.1.2


At the request of Dublin City Council an option for the same section of roadway was considered that made provision for a dedicated lane on East Wall Road to East Wall Road (local traffic) was assessed. Therefore all port and tunnel bound traffic share one approach lane, which flares to 3 lanes at the stopline.

Option 3: Additional northbound lane between Sherrif Street and East Wall 4.3.1.3 Road

The provision of an extra northbound lane between Sherrif Street and East Wall Road was considered.

Transyt modelling software were utilised to model the various options in terms of lane allocations. In Figure 9 diagrams of the three analysed options are shown.

The 2006 AM peak hour traffic volumes were extracted from the information obtained from the DTO's SATURN Transportation Model (Two North - One South Scenario (2A)). PM Peak hour traffic volumes were estimated by inverting the AM peak hour traffic volumes and multiplying it by a factor of 0.9.

1

In *Figures 10.1 and 10.2* the Transyt link diagrams for Option 1 and 2 are shown, indicating the traffic volumes and saturation flows for each movement.

The options were analysed based on Degree of Saturation, Delay and Mean Maximum Queue on each movement. Also indicated on *Figures 10.1 and 10.2* are the movements where the Degree of Saturation is higher than 90%; and/or the Delay is longer than the cycle time of 120s; and/or the Mean Maximum Queue is in excess of the distance to the upstrearn junction and therefore unacceptable.

The optimised Transyt runs are included in Appendix B.

Based on the Transyt modelling it became clear that the North Port and the Dublin Port Tunnel require more than one lane to feed the stoplines at the junction between East Wall Road and the Dublin Port Tunnel Access. Capacity problems are likely to be more prominent on the approach during the PM peak, where vehicles queuing to either enter the North Port or the Dublin Port Tunnel may block back far enough to restrict entry into the flare offering access to the continuation of East Wall Road.

There does not appear to be much merit in constructing an extra lane as it appears that the 100m flare lane will remain accessible for traffic virtually all the time. Therefore, whilst the provision of the lane may improve general traffic movement it will do little in terms of improving the capacity (or reducing the delay) of vehicles travelling onto East Wall Road (local traffic).

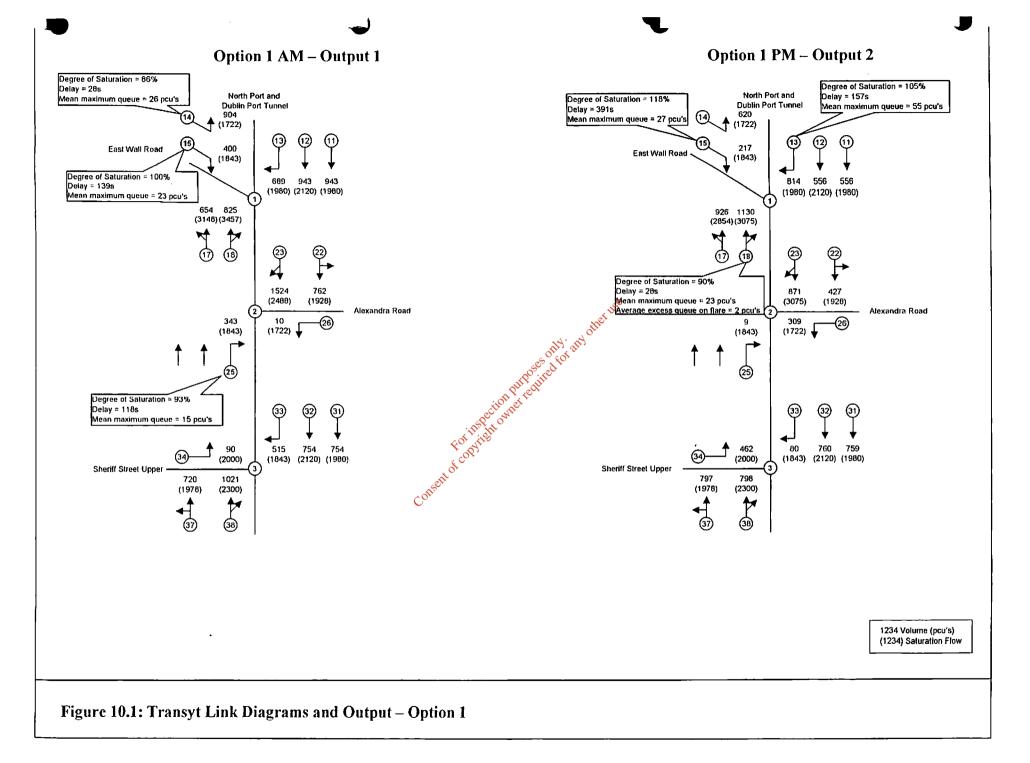
The preferred option in this regard is therefore Option of East Wall Road.

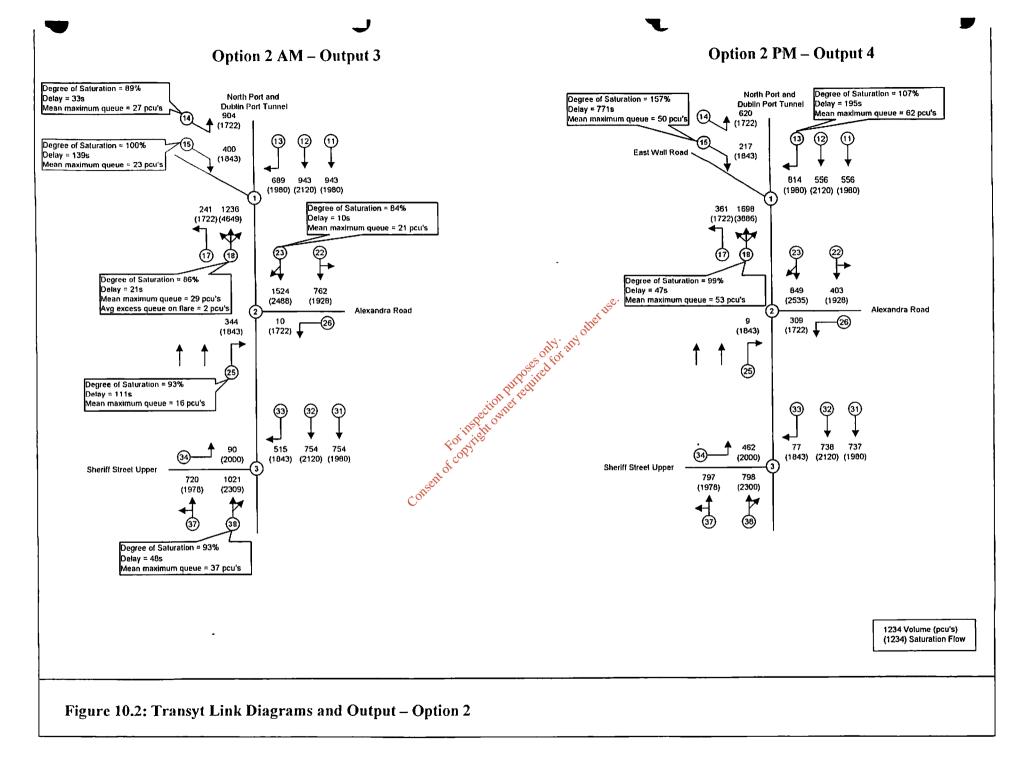
4.3.2 Junction Design and Control

4.3.2.1 East Wall Road & Dublin Port Tunnel Access

This junction will be improved to cater for the significant traffic loading forecast at this location. Four lanes will be provided on the East Wall Road (south) arm described as above. Two lanes will be provided on the East Wall Road (west) arm, and three lanes will be provided on the Dublin Port Tunnel arm.

The staging of right-turning movement from the Dublin Port Tunnel Access to the northern section of East Wall Road was considered.


Firstly it can run together with the through-movements going between the Dublin Port Tunnel Access and the North Port. This will mean that the right-turners will have to find gaps between the through-movements and will be opposed by traffic travelling northbound from East Wall Road towards the North Port and the Dublin Port Tunnel Access.


In addition the right-turners can then run during a second phase where northbound traffic on East Wall Road will be stopped. The right-turners will therefore not be opposed by the northbound through-movements during this phase.

Because of the heavy traffic volumes expected on the through-lanes and the fact that rightturners will have to cross 4 opposing lanes, it was concluded that these right-turning movements would not be able to find significant gaps during the peak periods to reduce their delay considerably. Therefore such a staging arrangement will not improve the capacity of the junctions significantly during the peak periods. In order to improve safety during the Peak Hours, it is recommended to only allow right-turning during a separate unopposed phase.

4.3.2.2 East Wall Road & Alexandra Road

As was mentioned earlier - the right-turn from Alexandra Road to East Wall Road will be banned, however the right-turn from East Wall Road to Alexandra Road will be permitted. It

EPA Export 25-07-2013:21:29:22

is proposed that the junction between East Wall Road and Alexandra Road be signalized, to allow for traffic turning right into the Port, and the occasional use of the level rail crossing.

4.3.2.3 East Wall Road & Sheriff Street Upper

It was concluded that the right-turn from East Wall Road to Sheriff Street Upper should be permitted given the fact that only one lane southbound is provided onwards. A dedicated right-turn lane will have to be provided and 2 through lanes will have to be constructed. This will facilitate maximum capacity for the major southbound movement along East Wall Road.

The right-turn from Sheriff Street Upper to East Wall Road should be removed. The DTO's SATURN Transportation Model indicated an insignificant demand for this movement. As a result, the junction will be more focused on providing northbound and southbound capacity.

In terms of the staging arrangements at this junction the same argument regarding the rightturning movement was followed as in for the East Wall Road & Dublin Port Tunnel Access junction. In order to improve safety during the Peak Hours, it is recommended to only allow right-turning during a separate unopposed phase.

4.3.2.4 Roundabout: East Wall Road & North Wall Quay

A set of analysis runs was carried out to investigate traffic operations at the roundabout junction between North Wall Quay and East Wall Road. Analysis was carried out using Arcady software. Traffic volume information was extracted from DTO's SATURN Transportation Model (Two North – One South Scenario (2A)). The results are summarised here:

In Table 10 the AM peak hour Input Matrix is given.

Table 10: AM peak hour Input Matrix (2006 pcu's)

ARM East Wall Road		East Link Toll Bridge	North Wall Quay	Total
East Wall Road	0 FODYT	946	463	1409
East Link Toll Bridge	97201	0	322	1294
North Wall Quay	01760	209	0	969
Total	1732	1155	785	3672

The results of the AM peak hour runs are given in Table 11.

Table 11: Degree of Saturation (2006 AM peak hour)

ARM	Degree of Saturation
East Wall Road	1.062
East Link Toll Bridge	1.748
North Wall Quay	0.654

PM Peak hour traffic volumes were estimated by inverting the AM peak hour traffic volumes and multiplying it by a factor of 0.9. In *Table 12* the PM peak hour Input Matrix is given.

Table 12: PM peak hour Input Matrix (2006 pcu's)

ARM	East Wall Road	Toll Bridge	North Wall Quay	Total
East Wall Road	0	875	684	1559
Toll Bridge	851	0	188	1039
North Wall Quay	417	290	0	707
Total	1268	1165	872	3305

The results of the PM peak hour runs are given in Table 13.

ARM	Degree of Saturation
East Wall Road	1.226
Toll Bridge	1.546
North Wall Quay	0.475

Table 13: Degree of Saturation (2006 PM peak hour)

The roundabout analyses showed that the East Link Toll Bridge arm has significant capacity issues in the AM peak hour. The results for the East Wall Road arm give a reasonable level of confidence that there will not be serious blocking back along East Wall Road towards the Dublin Port Tunnel.

With regard to the PM Peak Hour it was shown that the East Link Toll Bridge arm still has significant capacity issues. The results for the East Wall Road arm show significant capacity problems.

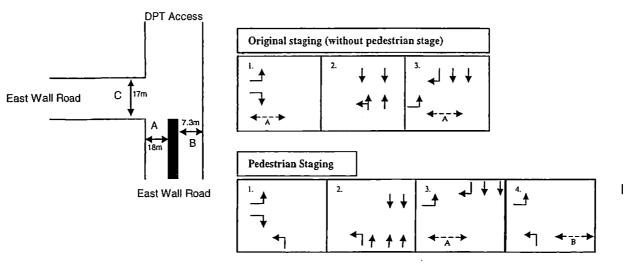
The capacity of the East Wall Road arm will, however, be highly dependent on the assumed right turn flow from North Wall Quay to the East Link Toll Bridge. This is expected to be less than used in the analysis because of the opportunity for N-S crossings afforded by the Macken Street Bridge further upstream, and the simplistic method of deriving the flow in the first place.

The signalisation of the junction will not be a viable solution, since the right-turning movement from East Wall Road to North Wall Quay will require a separate phase in the signal settings and a dedicated right-turn lane. This will also limit the capacity of the movements exiting the toll bridge.

Furthermore the signalisation of the roundabout will require the re-evaluation of the existing left-in left-out access to the P&O Erries site. At the moment exiting traffic is able to travel to the south, but not to the north unless they turn to the south, make a u-turn at the existing roundabout, and proceed to the north.

Entering traffic is able to approach from the north, but not from the south, unless they travel via North Wall Quay, New Wapping Street, East Road and southbound along East Wall Road and then enter the site from the north (there is a heavy vehicle restriction in place along Sheriff Street Upper).

The signalisation of the roundabout will therefore cause the exiting traffic travelling to the north not to be able to make a u-turn at the roundabout anymore. The alternative will be that they will also have to travel along North Wall Quay, New Wapping Street, East Road and proceed along East Wall Road to their destination in the north, in a similar way as is currently the case with entering traffic from the south.

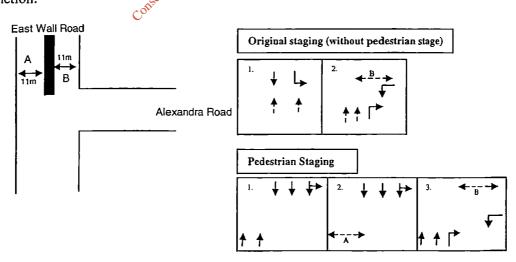

The roundabout exit width has been adjusted to provide a c6.0m adjacent lane width (through the retention of the exiting splitter island alignment). During congested conditions this section may act as a 2 lane northbound road.

4.3.3 Pedestrian Staging at East Wall Road & Dublin Port Tunnel Access

The impact of the inclusion of pedestrian facilities on the signal settings of the junction at East Wall Road & Dublin Port Tunnel Access was determined.

The scheme layout with the flare length continuation of East Wall Road was accepted. Based on this "Option 1 - lane configuration" the inclusion of pedestrian staging was analysed.

4.3.3.1 East Wall Road and Tolka Quay

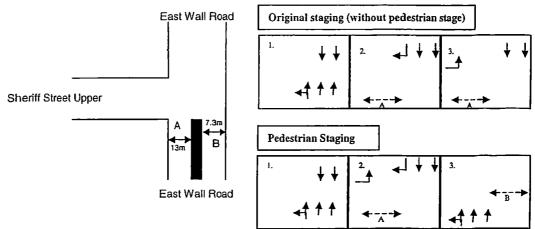

Given the existing optimised signal settings (without pedestrian staging) it is possible for movement A to cross during Stage 1 and 3.

However, for movement B and C to cross it is required that some or all of the vehicular movements are stopped.

Movement C will be accommodated at a location further north along East Wall Road. An additional stage is therefore only required for movement B.

4.3.3.2 East Wall Road & Alexandra Road

An at-grade pedestrian crossing will be provided at the East Wall Road & Alexandra Road junction.



Given the existing optimised signal settings (without pedestrian staging) it is possible for movement B to cross during Stage 2.

However, for movement A to cross it is required that some or all of the vehicular movements are stopped.

An additional stage is therefore created where the northbound through movements are stopped to allow movement A to cross.

4.3.3.3 East Wall Road & Sheriff Street

Given the existing optimised signal settings (without pedestrian staging) it is possible for movement A to cross during Stages 2 and 3.

However, for movement B to cross it is required that some or all of the vehicular movements are stopped.

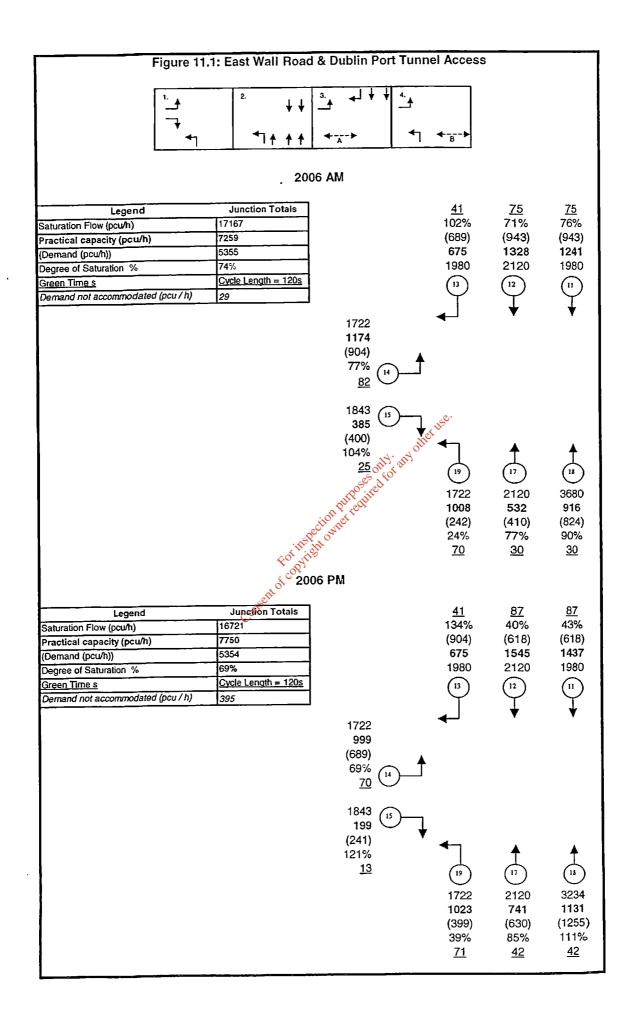
An additional stage is therefore created where the southbound through movements are stopped to allow movement B to cross.

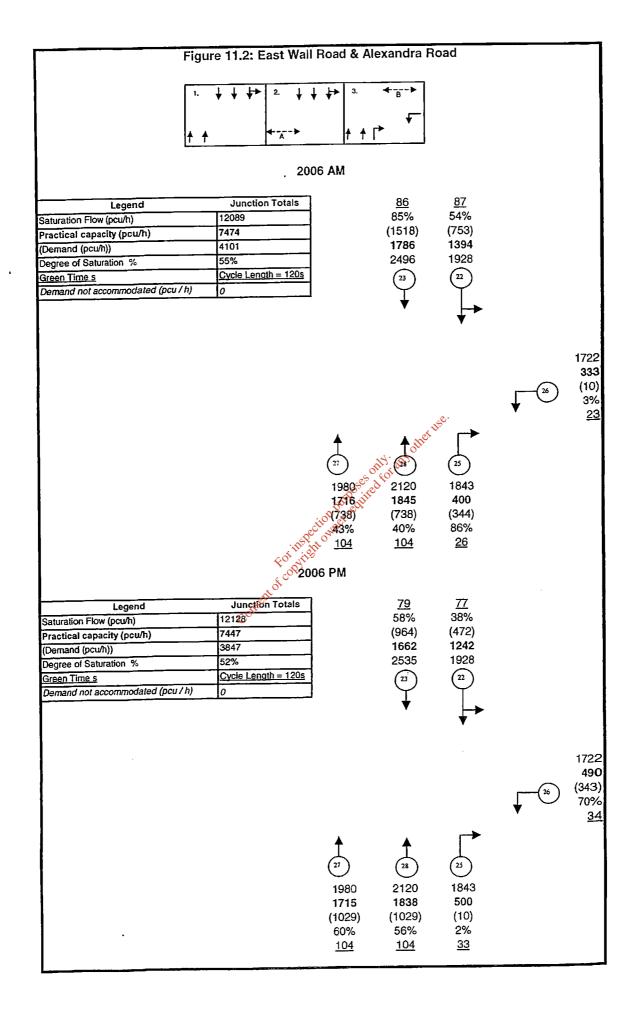
4.3.3.4 Transyt Modelling and Evaluation of Options

The duration of the pedestrian stage was calculated based on the crossing distance of the relevant critical movement taking into consideration the walking speed of 1.25m/s, a minimum green time of 7s and an all-red time of 2s. This time was proportionally deducted from the optimised signal settings that were the outcome of the initial Transyt runs utilised to analyse the lane allocation and junction design and control discussed in Sections 4.3.1 and 4.3.2.

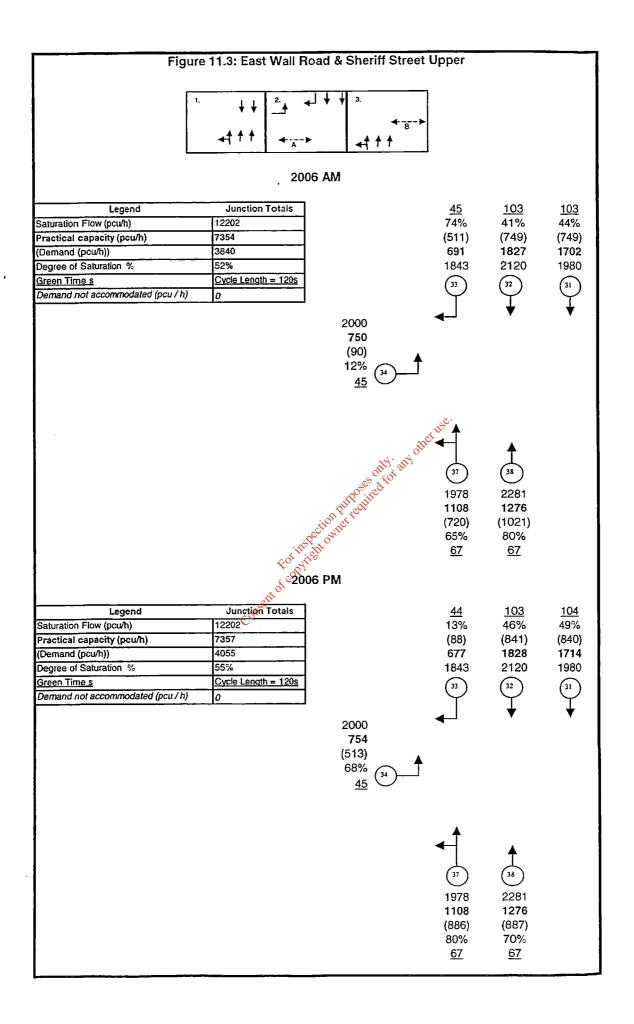
The Transyt outputs for the 2006 AM and PM scenarios for the revised signal settings are included in Appendix C.

A summary of the Transyt runs indicating the saturation flow, practical capacity, demand, degree of saturation, and green time for each movement at each junction is given in *Figures* 11.1, 11.2, 11.3


It is obvious from the initial Transyt runs that the junction at East Wall Road & the Dublin Port Tunnel Access will operate at capacity even without allowing for pedestrian movements in the staging. Links 13 and 15 will especially experience delays during the peak hours.


When pedestrian stages are included in the signal settings of the three junctions the capacity of the junctions are further reduced and the demand not accommodated increases. This is most visible at the junction between East Wall Road and Dublin Port Tunnel Access.

4.3.4 Finalised Scheme Micro-Simulation


4.3.4.1 Background

Following the analysis of the DTO's modelling figures the preferred option was identified. This option was then refined in terms of traffic management design based on the considerations given in *Section 4.3*. The finalised scheme option was modelled by utilising

41

)

)

the micro-simulation software Paramics. The purpose of this modelling was to visually check the traffic management strategies to be implemented along East Wall Road, such as junction controls, traffic signal settings, turning movement bans, access off East Wall Road and traffic operations.

The Paramics model was based on input from the DTO's SATURN Transportation Model as well as surveys such as traffic counts (refer to *Section 2.2.1*), queue length observations, road network surveys, and traffic signal settings.

4.3.4.2 Base Year Model Development

The first step in the development of this model was to build a base year model, representing the existing situation in the study area.

Base Year Road Network

The road network was coded based on road network surveys and available OS mapping for the area. The existing traffic signal settings were obtained from the Dublin City Council. Most of the traffic signals in the area are however part of a SCATS / AUTC system which means that the traffic signal settings are not fixed. Various road network characteristics were taken into consideration to estimate the capacity of the various links in the road network. These included information on road widths, surface quality, bus operations, on-street parking, pedestrian flows, lane configurations, flares, free flow speeds, gradients, etc.

Base Year Trip Matrices

A number of internal and external zones were identified within the study area. Internal zones included the North Port access at Tolka Quay, the North Port access at Alexandra Road, the Dublin Port Company Offices, the P&O Ferries site, The Point Depot, the Shell Garage, the East Wall Commercial area around Mayor Street, and the residential area west of East Road. The zone system is different and more refined than the one defined in the DTO's SATURN Transportation Model.

Classified traffic counts were conducted throughout the study area (refer to Section 2.1.2) and the number of private car trips and heavy goods vehicles entering and exiting each zone were based on information from the traffic counts.

Based on the traffic counts a base year trip matrix was developed in which the trip-ends associated with each zone was known, i.e. the column and row totals of the matrix were known. The distribution of the trips between the zones, were however not known, i.e. the cells within the matrix were empty. Information on the distribution of trips between zones was based on the DTO's model.

The DTO provided 2001 AM and Off Peak matrices for the study area, from which the proportion distribution between zones could be deducted. However, since the DTO's model's zoning system is different and more robust than the Paramics model, these matrices had to be disaggregated into the zones as defined in the Paramics model. The percentage distribution between cells were then applied to the matrix trip-ends to create a base year matrix. The matrix totals were balanced by applying a Furness Technique.

This Prior Matrix was assigned to the road network and Paramics estimated the link delay of trips through the network. The Prior Matrix together with the information on link delay and the traffic counts were then utilised in the Matrix Estimation module of the Paramics package.

Base Year Model Calibration

The final estimated matrix was assigned to the road network. The assignment procedure was refined through an iterative process to give the best model calibration results. The available traffic counts for the area were fairly comprehensive and detailed and assisted in achieving a good calibration. The model was calibrated according to the standards and principles as given

by the "Design Manual for Roads and Bridges (DMRB)" in Chapter 4, Volume 12, Section 2, Part 1. The calibration results are given in *Table 14*.

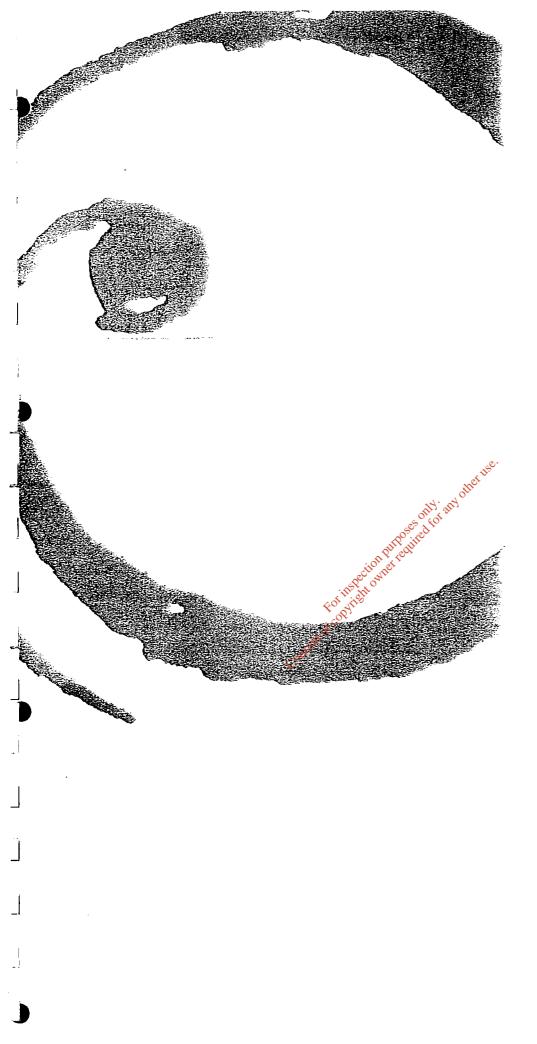
Based on the information in *Table 14* it was concluded that the Base Year model is calibrated to a satisfactory level and gives a fair representation of the real situation in terms of traffic flow in the study area.

Table	14:	Calibration	Results
-------	-----	-------------	---------

Standard	GEH Statistic	Flow	
85% of the investigated cases should conform to the following standards	The GEH Statistic for individual flows should be less than 5	Individual flows should be within 15% for flows between 700 veh/hour and 2700 veh/hour	Individual flows should be within 100 veh/hour for flows less than 700 veh/hour
	and comments		
AM Peak Hour			
Number of Cases	40	13	27
% cases that conform to standard	90%	100%	93%
Off Peak Hour			
Number of Cases	40	13	27
% cases that conform to standard	88%	100%	100%
	(hirmin-'anim		
AM Peak Hour Number of Cases	865 - 01 11 11 11 11 11 11 11 11 11 11 11 11	12	74
% of cases that conform to standard	P ^{UI} 82%	100%	96%
Off Peak Hour Number of Cases	inspection 10 87	3	84
% of cases that conform to standard	F0 291 77%	100%	94%

4.3.4.3 Future Year Model Development

Future Year Road Network


The 2006 road network included the Macken Street Bridge scheme, and this was reflected in the 2006-cordoned matrices. The 2016-cordoned matrices reflected the effect of the Eastern Bypass on the study area.

Future Year Matrix Development

The future year matrix for the preferred scheme option was supplied by the DTO. The matrix was disaggregated into the new zone system as discussed earlier. The 2006 matrix was also factorised to take into account the fact that the DTO's model was not calibrated to the traffic counts used in this study. i.e. the difference between the original 2001 matrix provided by the DTO and the calibrated 2001 matrix based on the traffic counts and matrix estimation process, were expressed in terms of relative factors. These factors were applied to the original 2006 matrix provided by the DTO for the sake of consistency and accuracy.

5. CONCLUSION

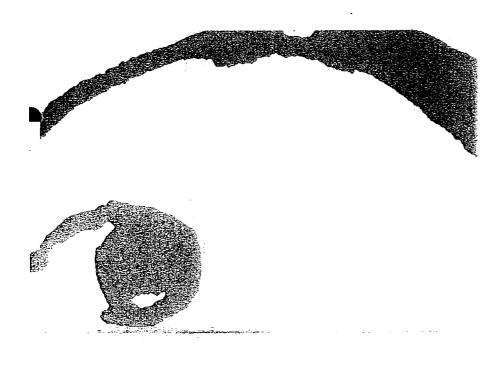
Based on the evaluation of the traffic management design options, the preliminary design of the scheme was completed. A drawing showing the preliminary design and Compulsory Purchase Order line is included in *Appendix D*.

Arup Consulting Engineers

APPENDIX A ACCIDENT STATISTICS

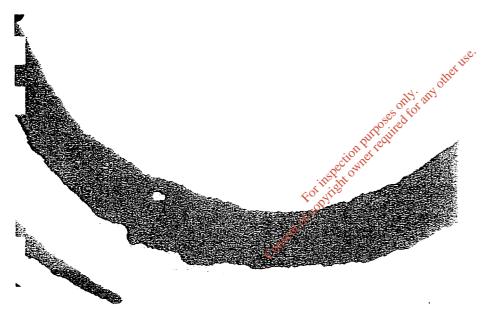
EPA Export 25-07-2013:21:29:23

Acc No.		Street 2	Турс				No Peds			Skidd		Cont Act1	Cont Act2	Class1	Castyp1			
	EAST WALL ROAD		minor	2001	16	2		Day-Good Vis		<u>N</u>	Angle Both Straight	Other Action	Other Action	2 Wheeled Motor Vehicle	MC Ditver			
	EAST WALL ROAD	ALFIE BYRNE ROAD	minor	2001		2		Dark-Good Lig		U	Angle, Right Tum		Drove through StopsYield	Private Car	Car Driver			
	EAST WALL ROAD	ALFIE BYRNE ROAD	minor	2001		2		Day-Poor Visi		N	Angle, Right Tum			Privato Car	Car Driver			nale Not
	EAST WALL ROAD	ALFIE BYRNE ROAD	minor	2001	19	2		Dark-Good Ug		N	Angle, Right Turn		Drove Through Traffic Signal	Taxi	Taxi Driver			nale Not
	EAST WALL ROAD	CHURCH ROAD	minor	2001	16	2		Day-Good Vis		0	Other			Private Car	Car Driver			
5897	EAST WALL ROAD	MERCHANTS ROAD	minor	2001	19	Э		Day-Pour Visi		Υ ·	Rear End, Straight			Privale Car	Car Driver			
	EAST WALL ROAD	WESTROAD	ITERO	2001	7	2	1	Day-Good Vis		U	Angle, Right Turn		Improper Overtaking	Private Car	Car Driver	40		nale Not
	EAST WALL ROAD	ALEXANDRA ROAD (PRIVATE ROAD)	minor	1998	11	2		Day-Good Vis		N	Rear End, Straight			Private Car	Car Driver		Mak	
	EAST WALL ROAD	ALEXANDRA ROAD (PRIVATE ROAD)	fatal		11	2	·	Day-Good Visi		N	Other		Other Action	Goods, Artic with Semi Trailer	Goods Drive			
	EAST WALL ROAD	ALEXANDRA ROAD (PRIVATE ROAD)	minor		13	2		Day-Good Vis		U	Angle, Right Turn	Other Action	Other Action	2 Wheeled Motor Vehicle	MC Driver			
	EAST WALL ROAD	ALFIE DYRNE ROAD	minor		23	_ 2	i	Dark-Good Lig		U	Head-On Right Turn	Other Action	Other Action	Private Car	Car Driver	71		le Not
	EAST WALL ROAD	ALFIE BYRNE ROAD	ninor	1999		2		Dark-Poor Lig		N	Angle, Right Turn	(Other Action	Private Cor	Car Driver	1	Fema	
	EAST WALL ROAD	ALFIE BYRNE ROAD	minor	1999		2		Dark-Good Lig		U	Other		Drove Through Traffic Signal	Taxi	Taxl Driver			
	EAST WALL ROAD	ALFIE BYRNE ROAD	senious				<u> </u>	Dark-Good Lig		0	Pedestrian		· · ·	2 Wheeled Motor Vehicle	MC Driver			
	EAST WALL ROAD	ANNESLEY BRIDGE ROAD (INCLUDE BRIDGE)	fatal	1999		2	4	Dark-Good Lin		Ŷ	Other	Other Action	Other Action	Goods, Artic with Serni Trailer	Goods Driver			
	EAST WALL ROAD	CHURCH RDAD	minor	1998		2		Day-Good Vis		N	Other	Others 1	Drove through Stop/Yield	Private Car	Car Driver	65		nale Mir
	EAST WALL ROAD	CHURCH ROAD	hiner			2		Day-Good Visi		N	Head-On Right Turn	Other Action		Privale Car	Car Driver			naie Not
	EAST WALL ROAD	EAST LINK BRIDGE	minor	2000		2	<u> </u>	Day-Good Visi		<u>.</u>	Other		Other Action	Private Car	Car Driver			
	EAST WALL ROAD	FORTH ROAD	minor		18	2	<u> </u>	Day-Good Visi		N	Rear End, Straight Pedestrian			Artic, Tractor only	Goods Driver		Mak	
	EAST WALL ROAD	NORTH STRAND ROAD	minor		13	- 1		Day-Good Visi Day-Good Visi			Other	Other Action		Goods, Artic with Semi Trailer	Goods Driver		Mak	
	EAST WALL ROAD	NORTH WALL QUAY	minor	1998		2				5	Rear End, Straight	Uther Action	0	Goods, over 2 tons, rigid	Goods Driver			ke Not
	EAST WALL ROAD	NORTH WALL QUAY	miner	2000		2		Day-Good Visi		N	Rear End, Straight		Other Action	Private Car	Car Driver			le Min
	EAST WALL ROAD	NORTH WALL QUAY	minor		15	2	·	Day-Good Visi		14			Other Action	Private Car	Car Driver			ale Min
	EAST WALL ROAD	POPLAR ROW	minor	1998	-7	2		Day Good Visi			Angle, Right Turn	D	Drove Through Traffic Signal	Other	Other Driver			le Not
	EAST WALL ROAD	SHERIFF STREET UPPER	serious	2000		2		Day-Good Visi Unknown	bility Dr Unkn		Other	Other Action	Other Action	Goods, Artic with Semi Trailer	Gooda Driver		Mak	le Nol
	EAST WALL ROAD	SHERIFF STREET UPPER	minat		17			Dav-Good Visi		Ŭ,	Crear End, Left Turn			Other	Other Driver		<u> </u>	Not
	EAST WALL ROAD	SHERIFF STREET UPPER	minor	1997		2		Day-Good Visi		N	Other	E-deda Bland		Taxi	TaxI Driver			Min
	EAST WALL ROAD	SHERIFF STREET UPPER	minor	1996				Day-Good Visi		A V	Rear End, Straight	Failed to Signal Other Action		Van	Van Driver	35		le Not
	EAST WALL ROAD	SHERIFF STREET UPPER	minor	2000	15	2		Day-Good Ves		5 6-1		Drove through Stop/Yield		Other	Other Driver			ke Nat
	EAST WALL ROAD	STONEY ROAD	minor	1998	17	2		Day-Good Visi			Rear End, Right Turn	Other Action		Private Car	Car Driver			le Not
	EAST WALL ROAD	TOLKA ROAD	minor	2000	8	2	- <u> </u>	Day-Poor Visi		0	Other	Uther Action		Pedat Cycle	Pedal Cyclist			
	EAST WALL ROAD	WESTROAD	minor	1996		3	-	Day-Good Visi		÷	Other			Other	Other Driver	4.5		le Not
	EAST WALL ROAD	WESTROAD	minor	2000				Day-Good Vis		-	Angle, Right Turn	Failed to Signal	Instant Overfalmer	Private Car	Car Driver			le Not
	EAST WALL ROAD	WESTROAD	minor		11	2	4	Day-Good Visi		й	Other	Other Action	Other Action	Goods, over 2 tons, rigid Other	Goods Driver			le Not
	EAST WALL ROAD	WEST ROAD	minor	1997	9			Day-Good Vist		Ü	Head-On Right Turn	Other Action	Other Action	Private Car	Other Driver			le Not
	EAST WALL ROAD	WEST ROAD	minor	1999				Day-Good Visi		Ň	Angle, Right Turn	Outer Acuon	Other Action	Goods, not over 2 tons, unladen	Car Driver	30		le Not
	EAST WALL ROAD		minor	19997	6 16	2		Day-Good Visi		- 1	Other		Other Action	Private Ca:	Goods Driver Car Driver	55	Male	le Nol
5244	EAST WALL ROAD		minor	1997				Dark Poor Lint			Rear End, Strainhi			Cther	Other Driver	I		Not
	EAST WALL ROAD		minor	1998		2	····· · 6	Day-Poor Visit		N I	Other	Other Action	Other Action	Goods, Artic with Semi Trailer	Goods Driver		Make	h Nori k Nori
	EAST WALL ROAD		Invition	2000		2		Day-Good Visi		Ň	Other	Other Action	Went to Wrong Side of Road	Private Car	Car Driver			le Not
B001	EAST WALL ROAD			2000		2	20	Day-Good Visi			Angle Both Straight	Other Action	Other Action	Private Car	Car Driver	<u> </u>		le Not
1893		······	minor	1990		2	125.0	Day-Good Visi		Ň	Other		Improper Overtaking	Private Car	Car Driver	ł	- IVGIN	Not
1533	EAST WALL ROAD	·	minor	1997		- 2		Dark-Good Lin		N	Other	Other Action		Private Car	Car Driver	·	+	Not
	EAST WALL ROAD		minor	1990		10	100-	Day-Good Visi			Head-On Conflict		Other Action	Van	Van Driver	35	Make	
1813			minor	1990		2.5	A	Day-Good Visi		υ	Rear End. Left Turn	Other Action	COPIT COMPAN	Goods, over 2 tons, rigid	Goods Driver			
	EAST WALL ROAD		minor		-17			Day-Good Visi		N	Other	Other Action		Private Car	Car Driver			e Noti
2061	EAST WALL ROAD		ronim	1997		2	+	Dark-Good Lion			Rear End, Right Tum	Other Action		Private Car	Car Driver	60		e Noti e Noti
	EAST WALL ROAD		minor	1997		<u>~~~</u>	+	Day-Good Visi			Rear End, Straight		Other Action	Private Car	Car Driver	50		
	EAST WALL ROAD	<u> </u>	minor	1997	120	2	1	Day-Good Visi		N	Pedestrian			Private Car				ale Min
	EAST WALL ROAD	-{		1998		<u>_</u>	+-+-	Dark-Good Lini		0	Pedestrian	Other Action		Private Car Private Car	Car Driver	l		e Noti
B289	EAST WALL ROAD	FACT WALL DOAD	serious minor	2001	&		I −-; −-	Day-Good Visi		Ň	Pedestrian	Improper Overtaking		Other	Car Driver Other Driver		Male	
2546	EASTROAD	EAST WALL ROAD		200		_ <u>}</u>	+	Dark-Good Lin		N	Pedeshan	improper overlaiding	•	Private Car		-		e Noti
2657	NORTH WALL QUAY	EAST WALL ROAD	minor	2001			+ <u> </u>	Day-Good Vial			Head-On Right Turn	Other Action	Imompat Duadate	Private Car Private Car	Car Driver	35		e Mot I
0588	POPLAR ROW	EAST WALL ROAD			12			Day-Poor Vist		v	Other	Other Action	Improper Overtaking Other Action		Car Driver	32	Male	
1436	ANNESLEY BRIDGE ROAD (INCLUDE URIDGE)	EAST WALL ROAD	serious	1999	16	2	┥───	Day-Good Visit					Uther Action	Goods, Artic with Semi Trailer	Goods Driver			e Noti
	ANNESLEY BRIDGE ROAD (INCLUDE BRIDGE)	EAST WALL ROAD	minor	1999		2	↓			÷-	Anale, Right Tum	Other Action		Privale Car		34		ale Not I
	ANNESLEY BRIDGE ROAD (INCLUDE BRIDGE)	EAST WALL ROAD	minor	1998		2		Day-Good Visit			Angle Both Straight	Other Action		Private Car	Car Driver		Femal	
	ANNESLEY BRIDGE ROAD (INCLUDE BRIDGE)	EAST WALL ROAD	minor	1998		2		Day-Good Visit		N	Rear End, Straight	·	Other Action	Private Car	Car Driver		Maie	
	NORTH STRAND ROAD	EAST WALL ROAD	nunor	2000	19	2	I	Dark-Good Light		¥	Angle, Right Turn Single Vehicle Only		Other Action	Private Car	Car Driver			
	NORTH WALL QUAY	EAST WALL ROAD	minor	1998	0	1						Exceeded Safe Speed		Private Car	Car Driver		1 34+1-	e Mino


• • •

Acc No.	Street 1	Street 2	Class2	Castyp2	1 4 9 9 2	Sex2	Sev2	ContumProt		Council	
	EAST WALL ROAD	Siter A	Goods, Artic with Semi Trailer		Agez	3012	Sevz	CastypPed	Ageped	Sexped	sevped
	EAST WALL ROAD	ALFIE BYRNE ROAD	Goods, Artic with Semi Trailer				<u> </u>		<u> </u>		·
	EAST WALL ROAD	ALFIE BYRNE ROAD	Private Car	Car Driver	45	Male	Minor	<u> </u>	<u> </u>		├ ──
	EAST WALL ROAD	ALFIE BYRNE ROAD	Private Car	Car Driver					<u> </u>		
	EAST WALL ROAD	CHURCH ROAD	Private Car	Car Driver			<u> </u>		<u> </u>		<u> </u>
	EAST WALL ROAD	MERCHANTS ROAD	Private Car	Car Driver	50	Male	ŀ		{		<u> </u>
	EAST WALL ROAD	WEST ROAD	2 Wheeled Motor Vehicle	MC Driver		Iviale	<u> </u>	·			h
	EAST WALL ROAD	ALEXANDRA ROAD (PRIVATE ROAD)	Van	Van Driver		Male	Not Inj.				
	EAST WALL ROAD	ALEXANDRA ROAD (PRIVATE ROAD)	Pedal Cycle	Pedal Cyclist	50	Male	Fatal		·		<u> </u>
	EAST WALL ROAD	ALEXANDRA ROAD (PRIVATE ROAD)	Goods, Artic with Semi Trailer		39	Male	Minor				<u> </u>
	EAST WALL ROAD	ALFIE BYRNE ROAD	2 Wheeled Motor Vehicle	MC Driver	20	Male					<u> </u>
	EAST WALL ROAD	ALFIE BYRNE ROAD	Private Car		20		Minor				H
	EAST WALL ROAD	ALFIE BYRNE ROAD		Car Driver		Female					<u> </u>
			Private Car	Car Driver	24	Male	Minor				
	EAST WALL ROAD	ALFIE BYRNE ROAD				I		Pedestrian	25	Male	Minor
	EAST WALL ROAD	ANNESLEY BRIDGE ROAD (INCLUDE BRIDGE)	2 Wheeled Motor Vehicle	MC Driver	27	Male	Fatal				L
	EAST WALL ROAD	CHURCH ROAD	Van 🖉	Van Driver	29	Male	Not Inj.				L
	EAST WALL ROAD	CHURCH ROAD	2 Wheeled Motor Vehicle	MC Driver		Male	Minor				
	EAST WALL ROAD	EAST LINK BRIDGE	2 Wheeled Motor Vehicle	MC Driver	18	Male	Not Inj.				
	EAST WALL ROAD	FORTH ROAD	Peopl Cycle	Pedal Cyclist	50	Male	Minor				
	EAST WALL ROAD	NORTH STRAND ROAD	12.07			I		Pedestrian		Female	Minor
	EAST WALL ROAD	NORTH WALL QUAY	Pedal Cycle	Pedal Cyclist		Male	Minor				í
	EAST WALL ROAD	NORTH WALL QUAY	Private Car	Car Driver	35	Male	Not Inj.				
	EAST WALL ROAD	NORTH WALL QUAY	Private Car	Car Driver	40	Male	Not Inj.				
5504	EAST WALL ROAD	POPLAR ROW	Taxi	Taxl Driver	40	Male	Minor				
	EAST WALL ROAD	SHERIFF STREET UPPER	Pedal Cycle	Pedal Cyclist	50	Male	Serious				
	EAST WALL ROAD	SHERIFF STREET UPPER	Pedal Cycle	Pedal Cyclist	35	Male	Minor				
	EAST WALL ROAD	SHERIFF STREET UPPER	Pedal Cycle	Pedal Cyclist		Male	Minor				
	EAST WALL ROAD	SHERIFF STREET UPPER	Pedal Cycle	Pedal Cyclist		Female	Minor				
7767	EAST WALL ROAD	SHERIFF STREET UPPER	Private Car	Car Driver		Male	Minor				
	EAST WALL ROAD	STONEY ROAD	Pedal Cycle	Pedal Cyclist	40	Male	Minor				
7637	EAST WALL ROAD	TOLKA ROAD	Artic, Tractor only	Goods Driver	53	Male	Not Inj.				
4218	EAST WALL ROAD	WEST ROAD	Van	Van Driver	33	Male	Not Inj.				
7479	EAST WALL ROAD	WEST ROAD	Pedal Cycle	Pedal Cyclist	11	Male	Minor				
3302	EAST WALL ROAD	WEST ROAD	2 Wheeled Motor Vehicle	MC Driver	23	Male	Minor				
2315	EAST WALL ROAD	WESTROAD	2 Wheeled Motor Vehicle	MC Driver	20	Female	Minor				
7400	EAST WALL ROAD	WEST ROAD	Private Car	Car Driver	30	Male	Minor				
4027	EAST WALL ROAD		Pedal Cycle	Pedal Cyclist	59	Male	Minor				
5244	EAST WALL ROAD		Pedal Cycle	Pedal Cyclist		Female	Minor				
2000	EAST WALL ROAD		Other	Other Driver		Male	Minor				
6964	EAST WALL ROAD		2 Wheeled Motor Vehicle	MC Driver	25	Male	Minor				
	EAST WALL ROAD		2 Wheeled Motor Vehicle	MC Driver	30	Male	Minor				
	EAST WALL ROAD		2 Wheeled Motor Vehicle	MC Driver		Male	Minor				
	EAST WALL ROAD		2 Wheeled Motor Vehicle	MC Driver	34	Male	Minor				
	EAST WALL ROAD	· · · · · · · · · · · · · · · · · · ·	2 Wheeled Motor Vehicle	MC Driver		Male	Minor				
	EAST WALL ROAD		2 Wheeled Motor Vehicle	MC Driver	30	Male	Minor				
	EAST WALL ROAD	*** ····	Private Car	Car Driver	25	Male	Minor				<u> </u>
	EAST WALL ROAD	· · · · · · · · · · · · · · · · · · ·	Private Car	Car Driver		Male	Not Inj.			———	
	EAST WALL ROAD	···	Private Car	Car Driver	20	Male	Minor				
	EAST WALL ROAD		Private Car	Car Driver	-20	Male	Minor				
	EAST WALL ROAD					141010	1000	Pedestrian	ł	Male	Minor
	EAST WALL ROAD	· · · · · · · · · · · · · · · · · · ·	·			ł		Pedestrian		Male	Serious
	EAST ROAD	EAST WALL ROAD				<u> </u>	ł	Pedestrian		Male	Minor
	NORTH WALL QUAY	EAST WALL ROAD						Pedestrian	30		
	POPLAR ROW	EAST WALL ROAD	2 Wheeled Motor Vehicle	MC Driver			<u> </u>	reucoulan		Male	Minor
	ANNESLEY BRIDGE ROAD (INCLUDE BRIDGE)	EAST WALL ROAD	Pedal Cycle	Pedal Cyclist		hanta	Sarieure		ł		
	ANNESLET BRIDGE ROAD (INCLUDE BRIDGE)	EAST WALL ROAD			27		Serious				
		EAST WALL ROAD	2 Wheeled Motor Vehicle	MC Driver	22	Male	Minor				
	ANNESLEY BRIDGE ROAD (INCLUDE BRIDGE)		Goods, Artic with Semi Trailer	Goods Driver			Not Inj.				
	ANNESLEY BRIDGE ROAD (INCLUDE BRIDGE)	EAST WALL ROAD	Private Car	Car Driver		Male	Not Inj.				
	NORTH STRAND ROAD	EAST WALL ROAD	Goods, Rigid & Trailer	Goods Driver	50	Male	Not Inj.				
5292	NORTH WALL QUAY	EAST WALL ROAD									

,


.

· ·

Arup Consulting Engineers

APPENDIX B TRANSYT ANALYSES -LANE ALLOCATIONS

)

TRL VIEWER 2.0 AA H:\Ny Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 AM Do Something1.PRT - Page 1

.

TRANSYT

TRAffic Network Study Tool

•

)PYRIGHT 1996 - TRL Ltd., Crowthorne, Berkshire, RG45 6AU, UK

entation for IBM-PC or compatible, running under Microsoft Windows 95

ram TRANSYT 11, Analysis Program Version 1.1

"th file:- "2006 AM DO SOMETHING1.DAT" at 14:51 on 10/03/03

1 AM - Output 1

ETERS CONTROLLING DIMENSIONS OF PROBLEM :

BER OF NODES	=	3
BER OF LINKS	=	17
R OF OPTIMISED NODES	=	3
UM NUMBER OF GRAPHIC PLOTS	=	G
R OF STEPS IN CYCLE	=	60
IMUM NUMBER OF SHARED STOPLINES	-	0
IMUM NUMBER OF TIMING POINTS	=	3
TUM LINKS AT ANY NODE	=	7

s REQUESTED = 5322 WORDS 2 AVAILABLE = 72000 WORDS

,

Consent of copyright owner required for any other use.

DATA INPUT :-~~~~ _____

CARD TYPE = TITLE:- Option 1 AM - Output 1

-	TITLE	2:- Optic	on 1 AM	- Output	1											
)	CARD TYPE	CYCLE TIME (SEC) 120	NO. OF STEPS PER CYCLE 60		EFFECTIVE - DISPLACEM START (SEC) 2		ETTINGS 0=NO		SCALE		-SPEEDS CARD32 0¤TIMES 1=SPEEDS 1		COPIES	CLIMB		VALUE P PER
,	CARD					1.70	TOF	ODES TO		TIMISED						
,	TYPE					510			SE OF	TIMISED						
	2	1	2	3	0	0	0	0	0	C	0	0	0	0	0	0
					DE CARDS	-	GE CHAN				STAGE					
,	CARD TYPE	NODE NO.	ST CHANGE	FAGE 1 MIN	STA CHANGE	GE 2 MIN	CHANGE	TAGE 3 MIN	ST CHANGE	MAGE 4 MIN	STA CHANGE	AGE 5 MIN	CHANGE	AGE 6 MIN	S CHANGE	TAGE 7 MIN
	13	1	0	12	34	12	69	12	0	0	0	0	0	0	0	0
	12 [.] 13	2 3	0 0	12 12	90 48	12 12	0 80	0 12	0	0	0	0	0	0	0	0
		•				DE	DEODMANO	E INDEX (DETONO							
	CARD	IGNORE	IGNORE	1=OLD		Pf	REORMANC	E INDEX (DPTIONS							
	TYPE 29	STOP WT.	. DEL WT. Q	STOP WI	·. o	0	0	0	0	0	0	D	0	0	o	0
	23	Ū	U	1	U				-	-	U	U	v	U	U	U
					FIRST	GREEN	LINK CA	RDS: FI	IXED DA SECON		1					
	CARD	LINK	EXIT		TART		END		FART		END	LINK	STOP	SAT	DELAY	DISPSN
	TYPÉ 31	NO. 11	NODE 1	STAGE 2	LAG 5	STAGE 1	LAG 0	STAGE 0	LAG 0	STAGE 0	E LAG 0	LENGTH 200	WT.X100 0	FLOW 1980	T.X100 0	X100 0
Ľ	31 31	12 13	1 1	2 3	5 5	1	0	C D	0	0	0	200 200	0	2120	Ó	0
-	31	14	1	1	5	2	0	3	5	0 1	0	200		1980 1722	0 0	0
	31 31	15 17	1	1 2	5	2 3	0	0	0	0	0 0 <u>~</u> 0*	200 140		1843 2120	0	C O
=	31	18	1	2	5	3	õ	õ	0	ŏ	ase	140	0	2120	Ō	õ
=	31 31	22 23	2 2	1	5 5	2 2	0	0	0	0	the o	140 140		1928 2120	0	0
	31	25	2	2	5	1	Ó	0	ō	Aº á	0	190	Ð	1843	0	ō
=	31 31	26 31	2 3	2	5	1 3	0	03	0	OUT 0 ST	0	200 190		1722 1980	0	0
=	31 31	32 33	3	1 2	0 5	3 3	0	3	0 50	<u>_</u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	0	190	0	2120	ō	Ō
-	31	34	3	2	5	1	0	o	all di	0	0	190 200		1843 2000	0 0	0 0
	31 31	37 38	3	1	5 5	2 2	0	0	V QOU	C N	0	200 200		1978 2120	0 0	0
			-	-	•	-		active and a sector	MIC	Ū	OTED OTED O O O O O O O O O O O O O O O O O O O	200	Ū		v	.u
					ENTRY 1	••••••	LINK CAR	DS: X FO	OW DATA		ENTRY 3			ENTRY 4		
	CARD TYPE	LINK NO.	TOTAL FLOW	UNIFORM FLOW	LINK NO.	FLOW		NO. 0 0	FLOW	CRUISE	LINK	C FLOW	RUISE SPEED	LINK NO.	FLOW	CRUISE
=	32	11	943	0	0	0	48	offic.	0	O O	0	0	0	0	0	0
-	32 32	12 13	943 689	0 0	0	0 0	48 0	· 0 0	0	0 D	0	0	0	0	0	0
	32	14	904	Ō	0	Ó	.48	0	ò	٥	0	ō	Ó	ō	Ō	0
-	32 32	15 17	400 653	0	0 34	26	9 ⁴ 8 48	0 37	0 313	0 48	0 38	0 313	0 4 B	0 0	0 0	0
	32 32	18 22	824 762	0	34 11	33 536	48 48	37 15	395 226	48 48	38 0	395 0	4 B 0	0	0	0
	32	23	1524	Ō	11	407	48	12	943	48	15	174	48	ō	ō	õ
	32 32	25 26	343 10	0	34 0	27 0	48 48	3B D	316 0	48 0	0	0 0	0	0	D	0
۲	32	31	755	Ō	22	195	48	23	550	48	26	10	48	Ō	ŏ	Ō
•	32 32	32 33	755 513	0	22 22	195 132	48 48	23 23	550 371	48 49	26 26	10 10	48 48	0	0	0
	32 32	34 37	90 720	0	0	0	48 48	0	0	0 0	0	0	0 0	0	0	0 0
	32	38	1021	0 0	0	0	48	D	0	0	0 0	0	0	0	0 0	0
			LINK	CARDS ·	FLARE SAT	URATION	FLOW D2	ATA								
			LANE	E 1.,	LANE	2	LANE	23								
	CARD TYPE	LINK NO.	SAT. FLOW		SAT. FLOW		SAT. FLOW	CAPAC VEH.								
	33 33	17 18	1722	10	0	0	0	0								
	33	23	2120 2120	13 9	0	ō	Ō	Ď								
	33	38	2120	3	0	0	0	0								
								QUEUE CON								
	CARD TYPE	LINK NÖ.	LIMIT QUEUE	QUEUE WEIGHT		LIMIT QUEUE	QUEUE WEIGHT	LINK NO.	LIMIT QUEUE		LINK NO.		QUEUE WEIGHT	LINK NO.	LIMIT QUEUE	QUEUE WEIGHT
	38 38	13 25	86 20	9990 9990	17 31	12	9990 9990	16 32	12	9990 9990	22 33	12	9990 9990	23 0	12 0	9000
		رے	20	2320	21	20		26	20	2220	22	20		U	U	v

END OF SUBROUTINE TINPUT*****

•

............... ----------TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 AM Do Something1.PRT - Page 3

0 SECOND CYCLE 60 STEPS

L SETTINGS CONDS)

	NUMBER	STAGE	STAGE	STAGE	STAGE	STAGE	STAGE	STAGE
о	OF STAGES	1	2	3	4	5	6	7

1	3	0	34	69
	2	0	90	
	3	0	4B	80

K ER	FLOW INTO LINK (PCU/H)	SAT FLOW (PCU/H)	DEGREE OF SAT (%)		TIMES PCU SE DELAY (SEC)	UNIFORM RANDX OVERS (U+R+O=MEAN ((PCU-H/H)	M+ COST BAT OF ·	MEAN STOPS /PCU (%)	COST OF STOPS (\$/H)	MEAN	EUE AVERAGE EXCESS (PCU)	PERFORMANCE INDEX. WEIGHTED SUM OF () VALUES (\$/H)	EXIT NODE	STA 15	rt End T	IMES STAR 2N 2N	t End
1	943	1980	70	15	16	3.0 + 1.1	(45.7)	59	(13.7)	20		45.7	1	39	0		
-	943	2120	65	15	14	2.8 + 0.9	(41.4)	55	(12.8)	18		41.4	1	39	0		
	689	1980	89	15	53	6.5 + 3.7	(112.1)	104	(17.8)	25	(0.0)-	112.1	1	74	0		
	904	1722	82	15	22	3.4 + 2.2	(61.5)	80	(17.8)	23		61.5	1	5	34	74	0
5	400	1843	87	15	70	4.8 + 3.0	(85.6)	113	(11.2)	16		85.6	1	5	34		
7	607⊭	3281Ē	72	11	22	2.4 + 1.2	(40.4)	83	(13.4)	20	(0.7)*	110.5	1	39	69		
٩	766<	3629f	82	10	26	3.3 + 2.2	(60.5)	91	(18.4)	27	(2.1)*	271.1	1	39	69		
	762	1928	55	11	8	1.0 + 0.6	(17.6)	26	(5.0)	7	{ 0.0}*	17.6	2	5	90		
	1525	2496Ē	85	11	20	5.6 + 2.8	(92.2)	77	(29.1)	33	(6.3)*	659.5	2	5	90		
	296<	1843	74	14	76	4.8 + 1.4	(68.6)	97	(8.2)	11	{ 0.0}*	68.6	2	95	0		
6	10	1722	3	15	42	0.1 + 0.0	(1.3)	80	(0.2)	0		1.3	2	95	0		
1	754	1980	38	14	1	0.0 + 0.3	(3.4)	2	(0.5)	0	(0.0),	3.4	3	0	80	80	0
	754	2120	36	14	1	0.0 + 0.3	(3.1)	2	(0.4)	0	(0.0)*		3	0	80	80	0
	515	1843	120	14	368	7.5 + 45.2	(578.8)	231	(29.2)	63	(9.9)*	1563.0	3	53	80		
_	90	2000	15	15	34	0.B + 0.1	(9.4)	73	(1.6)	2		9.4	3	85	0		
	720	1978	99	15	99	7.6 + 12.2	(217.1)	140	(24.9)	36		217.1	3	5	48		
5	1021	2365f	118	15	332	14.2 + 80.0	(999.9)	223	(56.3)	117	÷	1036.6	3	5	48		

	* * *	f	-	SVATSON	saturation	flow	for	flared	link	***
		-		average	Sacuración	1104	101	LIGICO	1 1 m	

Ĺ	TOTAL	MEAN	TOTAL	TOTAL	TOTAL	TOTAL	PENALTY	TOTAL	
TANCE	TIME	JOURNEY	UNIFORM	RANDOM+	COST	COST	FOR	PERFORMANCE	
ELLED	SPENT	SPEED	DELAY	OVERSAT	OF	OF	EXCESS	INDEX	
				DELAY	DELAY	STOPS	QUEUES		
M/H)	(PCU-H/H)	(KM/H)	(PCU-H/H)	(PCU-H/H)	(\$/H)	(\$/H)	A. A (\$/H)	(\$/H}	
						+ (0.09	ar, ar,		
4	269.2	7.9	67.8	157.2	(2475.3)	+ (0.09	(1832.1)	= 4307.5	TOTALS
						Service	S.,		
********	**********	******	* * * * * * * * * * * * *	*********	*********		*************	************	****************
						all all			

.

CRUISE DELAY HUR UNE TOTALS LITRES PER HOUR LITRES PER HOUR CULTRES PER HOUR ENSUMPTION PREDICTIONS 113.0 · 250.8 Section 154.2 = 526.0 ENTRIES TO SUBPT = 1 LINKS RECALCULATED = 17 O SECOND CYCLE 60 STEPS EDIATE SETTINGS - INCREMENTS SO FAR :- 18				· · · · · · · · · · · · · · · · · · ·		
ENTRIES TO SUBPT = 1 LINKS RECALCULATED= 17 D SECOND CYCLE 60 STEPS EDIATE SETTINGS - INCREMENTS SO FAR :- 18		CRUISE	DELAY	PUTC STOPS	TOTALS	
LINKS RECALCULATED= 17 0 SECOND CYCLE 60 STEPS EDIATE SETTINGS - INCREMENTS SO FAR :- 18	ONSUMPTION PREDICTIONS	113.0	+ 258.8	ASPER ON 154.2	≈ 526.0	
EDIATE SETTINGS - INCREMENTS SO FAR :- 18		1 17	For cost	ytte		
	0 SECOND CYCLE 60 STEP	2S	Conse			
	EDIATE SETTINGS - INCRE CONDS)	MENTS SO FAR :-	18			

ENTRIES TO SUBPT = 1 ...LINKS RECALCULATED= 17

MEDIATE SETTINGS - INCREMENTS SO FAR :- 18 RECONDS)

3 2 3 102 18 0 51 16 108 48 80

	3 0	48	80						
'AL NCE	TOTAL TIME	MEAN JOURNEY	TOTAL UNIFORM	TOTAL RANDOM+	TOTAL COST	TOTAL COST	PENALTY FOR	TOTAL PERFORMANCE	
<u>.</u> ED	SPENT	SPEED	DELAY	OVERSAT DELAY	OF DELAY	OF STOPS	EXCESS QUEUES	INDEX	
KM/H)	(РСО-Н/Н)	(KM/H)	(PCU-H/H)	(PCU-H/H)	(\$/H)	(\$/H)	(\$/H)	(\$/H)	
. 4	268.3	7.9	66.9	157.2	(2465.2) +	(0.0)	- (1342.5)	= 3807.6	TOTALS

(F ENTRIES TO SUBPT = 8 (F LINKS RECALCULATED= 95)

)

.	TRL V	VIEWER 2.0				ects\D2599-10		Wall Road	d\TRANSYT\2	006 AM Do S	Something1.PRT - Page	: 4
			•••••									
0 SEC	OND CYCLE	60 STEPS										
IEDIATI		S – INCREMENT	s so i	FAR :- 18	3 48							
ŝ	3 102 2 18 3 0	3 108	51 80									
L NCE LED	TOTA TIN SPEN	AE JOURNEY		TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT	TOTAL COST OF	TOTAL COST OF	F	OR PE	TOTAL RFORMANCE INDEX		
-KM/H)	(PCU-I	H/H) (KM/H	()	(PCU-H/H)	DELAY (PCU-H/H)	DELAY (\$/H)	STOPS (\$/H)		eues /H)	(\$/H)		
.4	268	.3 7.9	I	66.9	157.2	(2465.2) +	(0.0)	+ (134)	2.5) =	3807.6	TOTALS	
	IES TO SUR S RECALCUI											
120 SEC	OND CYCLE	60 STEPS										
EDIATI CONDS		S - INCREMENT	s so i	FAR :- 18	8 48 -1							
L 2	3 105 2 17 3 107	7 110	53 94									
L ANCE LLED	TOTA TIN SPEN	E JOURNEY	•	TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	EXC	DR PEI TESS : TUES	TOTAL RFORMANCE INDEX		
Ч/ H)	(PCU-H	1/H) (KM/H)	(РСО-Н/Н)	(PCU-H/H)	(\$/H)	(\$/H)	(\$7	/H)	(\$/H)		
4	162.	.6 13.0		53.6	64.8	(1302.5) +	0.0)	+ (274	1.61 =	1576.5	TOTALS	
	IES TO SUE S RECALCUI	BPT = 55 ATED= 495				18 (1302.5) + (18 For inspection for the form for the form for the form for the form of	oses of	or any othe				
	E SETTINGS	60 STEPS - INCREMENT	s so f	FAR :- 18	48 -1	18 1017	at Pequite					
	3 105 2 17 3 5	110	53 112			FOTINSPECTOWN	5					
AL ANCE LED	TOTA TIM SPEN	e journey		TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT	OF OF	TOTAL COST OF	PENA FC EXC	LTY I DR PER CESS I	rotal Rformance INDEX		
1 /H)	(PCU-H	(/н) (км/н)	(PCU-H/H) (DELAY PCU-H/H)	DELAY (\$/H)	STOPS (\$/H)	(\$/		(\$/H)		
0.4	169.	5 12.5		60.5	64.8	(1378.2) + (0.0)	+ (192	2.3) =	1570.5	TOTALS	
	ies to sue Recalcul											
) SECC	ND CYCLE	60 STEPS										
MEDIATE ECONDS)		- INCREMENT	s <i>s</i> o f	AR :- 18	48 -1	18 48						
	3 105 2 17 3 5	110	53 112									
ът, ICE "ED	tota Tim Spen	E JOURNEY		TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT	TOTAL COST OF	TOTAL COST OF STOPS	EXC	R PER	TOTAL FORMANCE INDEX		
KM/H)	(PCU-H	/н) (км/н)	(PCU-H/H) (DELAY PCU-H/H)	DELAY (\$/H)	(\$/H)	QUE (\$/		\$/H)		
4	169.	5 12.5		60.5	64.8	(1378.2) + (0.0}	+ (192	.3) =	1570.5	TOTALS	
F ENTRI	es to sub	PT = 7										

F ENTRIES TO SUBPT = 7 F LINKS RECALCULATED= 83

1

			H:\My Docum				11 Road\TRANS	YT\2006 AM Do :	Somethingl.PRT - Pa	ge 5
. SECOND	CYCLE 60	STEPS								
(EDIATE S (ONDS)	ETTINGS - 1	INCREMENTS S	SO FAR :- 1	8 48 -1	18 4B 1					
3	102	11 5 110	50					•		
2 3	17 114	49 10	01							
	TOTAL TIME SPENT	MEAN JOURNEY SPEED	. TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT	TOTAL COST OF	TOTAL COST OF	PENALTY FOR EXCESS	TOTAL PERFORMANCE INDEX		
км/н)	(PCU-H/H)	(KM/H)	(PCU-H/H)	DELAY (PCU-H/H)	DELAY (\$/H)	STOPS (\$/H)	QUEUES (\$/H)	(\$/H)		
4	165.2	12.8	56.2	64.8	(1330.8) +	(0.0) +	(131.6)	= 1462.4	TOTALS	
	S TO SUBPT RECALCULATE									
20 SECONE	CYCLE 60	STEPS								
DIATE S	SETTINGS - 3	INCREMENTS	50 FAR :- 1	8 48 -1	16 46 1	-1				
3 2 3	100 17 114	109	49 01							
NCE	TOTAL TIME SPENT	MEAN JOURNEY	TOTAL UNIFORM	TOTAL RANDOM+ OVERSAT	TOTAL COST OF	TOTAL COST OF	PENALTY FOR EXCESS	TOTAL PERFORMANCE INDEX		
		SPEED	DELAY					INDEA		
/H)	(PCU-H/H)	SPEED (KM/H)	(PCU-H/H)					(\$/H)		
/H) 0.4									TOTALS	
0.4 ENTRIES	(PCU-H/H)	(KM/H) 15.3 = 25	(PCU-H/H)			STOPS		(\$/H)	TOTALS	

١

52

.

9 SECOND CYCLE 60 STEPS

SETTINGS OBTAINED WITH INCREMENTS :- 18 48 -1 18 48 1 -1 1 CONDS)

)	NUMBER OF STAGES					STAGE 7
•	3	99	9	48		

3	55	~		
2	17	109		
3	115	59	102	

(ZR	FLOW INTO LINK (PCU/H)	SAT FLOW	DEGREE OF SAT (%)		TIMES PCU SE DELAY (SEC)	UNIFORM RA OV (U+R+O=MEA (PCU-H/H	NDOM+ (ERSAT N Q) DI		MEAN STOPS /PCU (%)	OFS OF STOPS (\$/H)	MEAN	IEUE AVERAGE EXCESS (PCU)	PERFORMANCE INDEX. WEIGHTED SUM OF () VALUES (\$/H)	EXIT NODE	19	RT END ST	TIMES STAF 2N NDS)	RT END ID
	(1007)			••	•										• •	~~		
L	943	1980	66	15	13	2.4 + 1.		7.4)	52	(12.1)	18		37.4	1	14	99		
	943	2120	62	15	12	2.3 + 0.	8 (34	4.0)	49	(11.3)	17		34.0	1	14	99		
	689	1980	89	15	53	6.5 + 3.	7 (11:	2.1)	104	(17.7)	25	(0.0)*		1	53	99		~ ~
	904	1722	86	15	28	4.1 + 3.	0 (7)	8.5)	92	(20.6)	26		78.5	1	104	9	53	99
;	400	1843	100	15	139	5.2 + 10.	2 (16)	9.6)	159	(15.8)	23		169.6	1	104	9		
7	654	3148f	71	11	26	3.4 + 1.	2 (5)	1.0)	53	(8.6)	13	(0.0)*		1	14	48		
•	825	3457£	82	10	29	4.4 + 2.	2 (7:	2.9)	61	(12.4)	19	(0.5)*		1	14	48		
	762	1928	54	11	12	1.9 + 0.	6 (2)	6.9)	58	(10.9)	17	(0.4)*		2		109		
	1524	2488f	84	11	10	1.5 + 2.	5 (4-	4.4)	43	(16.2)	21	(0.9)*	122.7	2		109		
,	344	1843	93	14	118	6.4 + 4.	9 (12-	4.1)	129	(10.9)	15	(0.0)*		2	114	17		
÷	10	1722	3	15	45	0.1 + 0.	o (:	1.4)	82	(0.2)	0		1.4	2	114	17		
ŧ	754	1980	39	14	2	0.0 + 0.	3 (3	3.5)	3	(0.6)	1	(0.0)≯		3			102	
•	754	2120	36	14	1	0.0 + 0.	э (3.2)	3	(0.6)	1	(0.0)*		3			102	115
	515	1843	86	14	49	4.2 + 2.	9 (7	7.4)	108	(13.6)	19	(0.0)*	77.4	3		102		
	90	2000	60	15	83	1.3 + 0.	7 (2)	2.8)	117	(2.6)	4		22.8	3	107			
•	720	1978	73	15	30	4.7 + 1.	3 (6)	6.5)	80	(14.1)	20		66.5	Э		59		
- {	1021	2300f	89	15	38	7.0 + 3.	7 (11)	8.2)	93	(23.6)	33		118.2	3	0	59		
			- avera	ige sa	turatio	on flow for	flared	link '	**									
ſ	3	TOTAL	<u>د</u>	MEAN		TOTAL T	OTAL	TOTAL		TOTAL	PI	ENALTY	TOTAL					

			JISE	DEL		DUID OSTOPS		TOTALS	
*******	*********	********	***********	*********	********	0.00	•••••		****************
···4	139.1	15.2				5, 501	• • •		
			55.5	39.4	(1043.8)	+ (0.89	(165.4)	= 1209.2	TOTALS
M/H)	(PCU-H/H)	(KM/H)	(PCU-H/H)		(\$/H)	(\$/H)	0(\$/H)	(\$/H)	
TANCE SLLED	TIME	SPEED	DELAY	OVERSAT DELAY	OF	OF	EXCESS	INDEX	
TANCE	TIME	JOURNEY	UNIFORM	RANDOM+	COST	COST	FOR	PERFORMANCE	

	LITRES PER HOUR	LITRES	PER HOUR	es per hour	LITR	ES PER HOUR
CONSUMPTION PREDICTIONS	113.0	+ 1	09.1 ppct office	113.6	=	335.8
ENTRIES TO SUBPT = // LINKS RECALCULATED=	8 95		FOLYTIGH			
AM TRANSYT FINISHED			x Or			

JAM TRANSYT FINISHED

١

Constant Providence and of filest

sted at 14:51:59 on 10/03/2003]

TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 PM Do Something2.PRT - Page 1

TRANSYT

TRAffic Network Study Tool

.

YRIGHT 1996 - TRL Ltd., Crowthorne, Berkshire, RG45 6AU, UK

....ntation for IBM-PC or compatible, running under Microsoft Windows 95

~

am TRANSYT 11, Analysis Program Version 1.1

.h file:- "2006 PM DO SOMETHING2.DAT" at 14:52 on 10/03/03

n 1 PM - Output 2

TERS CONTROLLING DIMENSIONS OF PROBLEM :

ER OF NODES	=	3
3 OF LINKS	=	17
3 OF OPTIMISED NODES	=	3
IM NUMBER OF GRAPHIC PLOTS	=	0
ER OF STEPS IN CYCLE	=	60
MUM NUMBER OF SHARED STOPLINES	=	0
IM NUMBER OF TIMING POINTS	=	3
JM LINKS AT ANY NODE	=	7

: REQUESTED = 5322 WORDS ' VAILABLE = 72000 WORDS

Consent for inspection purposes only: any other use.

TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 PM Do Something2.PRT - Page 2

DATA INPUT :-----

\	CARD TYPE TITLE:	- Option	n 1 PM -	- Output :	2											
	CARD TYPE	TIME	NO. OF STEPS PER	PERIOD 1 1-1200	DISPLACE START	MENTS S END	ETTINGS 0=NO	1=EQUAL	SCALE 10-200			OPTIMIS 0=NONE 1=O/SET	E EXTRA COPIES FINAL OUTPUT	HILL- CLIME OUTPUT 1=FULL	DELAY VALUE P PER PCU-H	STOP VALUE P PER 100
	1	(SEC) 120	CYCLE 60	MINS. 60	(SEC) 2	(SEC) 3	1=YES 1	CYCLE 0	₹. 90	문 0	1=SPEEDS 1	2=1055	1	0	1100	200
	CARD TYPE			_		LIS		ODES TO		TIMISED			_		_	
	2	1	2	3	0	0	0	0	0	0	0	0	0	0	0	0
	CARD TYPE	NODE NO.	ST CHANGE	NOI TAGE 1 MIN	DE CARDS STI CHANGE	S: STA AGE 2 MIN		AGE 3		MINIMUM AGE 4 MIN	STAGE STA STA CHANGE	rimes Age 5 Min	ST/ CHANGE	GE 6 MIN	CHANGE	AGE 7 MIN
	13 12	1 2	0	12 12	19 78	12 12	66 0	12 0	0	0	0	0	0	0	0	0
,	13	3	ō	12	68	12	80	12	Ō	ō	Ō	Ō	ō	0	0	0
	CARD		IGNORE	1=OLD		PE	RFORMAN	TE INDEX C	PTIONS							
	11PE 5 29	0 0	0 0	STOP WT	0	0	0	0	0	0	0	0	ο	0	0	0
					FIRST	GREEN			XED DA SECON	D GREEN						
	CARD TYPE	LINK NO.	EXIT NODE	STAGE	IART LAG	STAGE	END LAG	SI STAGE	TART LAG	STAGE	END E LAG	LINK LENGTH	STOP WT.X100	SAT FLOW	DELAY WT.X100	DISPSN X100
)	31 31	11 12	1 1	2 2	5	1	0	0	0 0	0	0	200 200	0 0	1980 2120	0	0
	31	13	1	3	5	1	Ó	0	0	0	0	200	0	1980	Ō	ō
	31 31	14 15	1 1	1	5 5	2	0	3 0	5 0	1 0	0	200	0	1722 1843	0	0
-	31	17	1	2	5	3	0	0	0	0	0,050	140	0	2120 2120	0	0
	31 31	18 22	1 2	2 1	5 5	3 2	0 0	0	0	0	N ⁶	140 140	0	1928	0	õ
	31	23	2	1	5	2	Ō	Ó	0	Ö	othe	140	0	2120	a	o
	31 31	25 26	2 2	2 2	5 5	1	0 0	0	0	OTION OF	AN O O	190 200	0	1843 1722	0 0	0
	31	31	3	1	0	3	0	3	0 2	5 XIO	0	190		1980	0	0
	31 31	32 33	3	1 2	0 5	3 3	0	3	000	Jec 1	O C	190 190	0	2120 1843	0 D	0 0
	31	34	3	3	5				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	200	ŏ	2000	Ō	o
	31 31	37 36	3	1	5 5	2	0	0 0 ×	ST &	0	0	200 200	Ŭ D	1978 2120	0 0	0 0
								0 0 0 ENTRY 2 LINK	WING OW DATA							
					ENTRY 1			ENTRY 2			ENTRY 3			ENTRY		
	CARD TYPE	LINK NO.	TOTAL I FLOW	UNIFORM FLOW	LINK NO.	FLOW	CRUISE ' SPEED	CHO.	FLOW	CRUISE	LINK NO.		RUISE SPEED	LINK NO.	FLOW	SPEED
	32	11	618	0	0	0	48		0	0	0	0	0	0	0	0
	32 32	12 13	618 904	0	0	0	48 4801	0	0	0	0	0 Q	0 0	0	0	0
	32	13	689	Ð	0	0	48	ŏ	6	ŏ	õ	õ	ŏ	õ	ō	0
	32 32	15 17	241 1029	0 0	0 34	0 230	C 48 48	0 37	0 400	0 48	0 30	0 399	0 48	0	0 Ø	0
	32	18	1257	0	34	281	48	37	488	48	36	486	48	ŏ	Ō	ō
	32 32	22 23	493 984	0	11 11	368 250	48 48	15 12	125 618	48 48	0 15	0 116	0 48	0	0 0	0
	32	25	10	0	34	10	48	38	10	4 B	0	0	0	ō	Ó	0
	32 32	26 31	343 860	0	0 22	0 230	48 48	0 23	0 467	0 4 B	0 26	0 163	0 48	0	0 D	0
	32	32	860	Ö	22	229	48	23	468	48	26	163	48	õ	0	Ō
	32	33	90	0	22	24	48	23 0	49 0	4 B 0	26 0	17 0	48 0	0	0	0
	32 32	34 37	513 886	0 0	0	0 0	48 48	0	0	0	0	õ	0	ŏ	õ	õ
	32	38	867	0	0	0	48	0	0	0	0	0	0	0	0	0
			LINK	CARDS :	FLARE SA		N FLOW D									
	CARD	LINK	SAT.	CAPAC	SAT.	CAPAC	SAT.	CAPAC								
	TYPE	NO.	FLOW	VEH.	FLOW	VEH.	FLOW	VEH.								
	33 33		1722 2120	10 13	0	0	0	0								
	33	23	2120	9	0	-0	0	Ō								
	33	38	2120	3	0	0	0	0								
			1 1170	0000			K DATA:	QUEUE CO			7 7111	1 14170	QUEUE	LINK	LIMIT	QUEUE
	CARD FYPE	LINK NO.	LIMIT QUEUE	QUEUE WEIGHT	LINK NO.	LIMIT QUEUE	QUEUE WEIGHT	LINK NO.		QUEUE WEIGHT	LINK NO.	QUEUE	WEIGHT	NQ.	QUEUE	WEIGHT
	38 38	13 25	113 20	9990 9990	17 31	12 20	9990 9990	18 32	12 20	9990 9990	22 33		9990 9990	23 0	12 0	9000 0
		20			21	20	3330	26	2V	2230	55	64		5	v	-

IND OF SUBROUTINE TINPUT*****

,

_____ TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 PM Do Something2.PRT - Page 3

SECOND CYCLE 60 STEPS

L SETTINGS

011007							
NUMBER OF STAGES	STAGE 1	STAGE 2	STAGE 3	STAGE 4	STAGE 5	STAGE 6	STAGE 7
3	0	19	66				
2	0	76					
з	0	68	80				

	FLOW	SAT	DEGREE	MEAN	TIMES	DELAY		ST	CPS	00	EVE	PERFORMANCE	EXIT	GRE	EN T	IMES	
R	INTO	FLOW	OF	PER	PCU	UNIFORM RAND	OM+ COST	MEAN	COST	MEAN		INDEX.	NODE			STAR	
	LINK		SAT	CRUI	SE	OVER	SAT OF .	STOPS	OF	MAX.	AVERAGE	WEIGHTED SUM			END		END
					DELAY	(U+R+O=MEAN	O) DELAY	/PCU	STOPS		EXCESS	OF () VALUES			T	2N	
	(PCU/H)	(PCU/H)) (*)	(SEC)		(PCU-H/H)		(%)	(\$/H)	(PCU)		(\$/H)			-	NDS)	0
		1980	35	15	5	0.5 + 0.3	(8.2)		1>	5							
	556				5				(3.3)	5		8.2	1	24	0		
	556	2120	32	15	5	0.5 + 0.2	(7:7)	23	{ 3.2)	5		7.7	1	24	0		
	814	1980	99	15	67	7.8 + 11.8	(215.8)	133	(26.8)	38	(0.0)*	215.8	1	71	Ð		
	620	1722	66	15	23	2.9 + 1.0	(43.1)	74	(11.3)	14		43.1	1	5	19	71	0
	217	1843	94	15	131	3.1 + 4.7	(86.7)	152	(8.1)	12		86.7	1	5	19		
	926 •	2957f	87	10	34	5.4 + 3.3	(96.0)	94	(21.5)	31	(3.9)*		1	24	66		
	1130	3208f	98	10	63	7.2 + 12.7	(218.7)	123	(34.5)	50	(14.6)*	1674.9	1	24	66		
	444	1928	37	10	10	1.0 + 0.3	(14.0)	33	(3.6)	5	{ 0.0}*	14.0	5	5	78		
	887	2557£	56	10	12	2.4 + 0.6	(32.9)	41	(9.0)	12	{ 0.01*	33.0	2	5	78		
	9	1843	2	14	36	0.1 + 0.0	(1.0)	68	(0.2)	0	(0.0) -	1.0	5	83	ŏ		
	309	1722	57	15	42	2.9 + 0.7	(39.4)	86	(6.6)	5	1 0.0)	39.4	2	83	õ		
	775	1980	39	14	2	0.0 + 0.3	(3.8)	5	(0.9)	5	(0.0)*	3.8	5		-	• •	~
					2			2	• •	-			2	0	80	80	0
	775	2120	37	14	1	0.0 + 0.3	(3.3)	د	(0.6)	3	(0.0)*	3.3	3	0	80	80	0
	81	1843	66	14	90	1.1 + 0.9	(22.3)	129	(2.6)	4	(0.0)*	22.3	3	73	80		
	462	2000	77	15	51	4.9 + 1.6	(71.9)	98	(11.1)	16		71.9	3	85	0		
	797	1978	76	15	29	4.8 + 1.5	(70.1)	79	(15.6)	22		70.1	3	5	68		
	798	2288f	65	15	22	4.0 + 0.9	(53.9)		(13.2)	19		53 9	3	5	68		

 797
 1976
 76
 15
 27
 70.1
 3
 5
 68

 796
 2288f
 65
 15
 22
 4.0 + 0.9
 (53.9)
 67
 (13.2)
 19
 53.9
 3
 5
 68

 *** f - average saturation flow for flared link ***

unCE LLED	TOTAL TIME SPENT	MEAN JOURNEY SPEED	TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT	TOTAL COST OF	TOTAL COST OF	PENALTY FOR EXCESS	TOTAL PERFORMANCE INDEX	
/H)	(PCU-H/H)	(KM/H)	(PCU-H/H)	DELAY (PCU-H/H)	DELAY (\$/H)	STOPS (\$/H)	(\$/H)	(\$/H)	
2	127.6	14.2	48.6	41.3	(988.6)			= 2834.3	TOTALS
	* * * * * * * * * * * * * *	********	*********	*****	******	·····	*********	***********	*******
		CRI	UISE PER HOUR	DEL LITRES P	AY	STOPS	т	OTALS S PER HOUR	
CONSUMPT	TION PREDICTI	ONS	96.6	+ 103			-	301.9	
	ES '10 SUBPT RECALCULATED	= 1 = 17			For inst				
SECO	ND CYCLE 60	STEPS		Conser	Jr.				
(EDIATE ECONDS)	SETTINGS - I	NCREMENTS SO) FAR :- 1	8					

	CRUISE	DEL	AY 🔨	STOPS		TOTALS	
	LITRES PER HOUR	LITRES P	ER HOUR SOLL	TRES PER HOUR	LITR	ES PER HOUR	
CONSUMPTION PREDICTIONS	96.6	+ 103	.4 SPELOW	101.9	=	301.9	

MEDIATE SETTINGS - INCREMENTS SO FAR :- 18 CONDS) 3 102 1 48

2	0	76		
3	0	68	80	

CE CE	TOTAL TIME	MEAN JOURNEY	TOTAL UNIFORM	TOTAL RANDOM+	TOTAL	TOTAL COST		PENALTY FOR		TOTAL PERFORMANCE	
ED	SPENT	SPEED	DELAY	OVERSAT DELAY	OF DELAY	OF STOPS		EXCESS OUEUES		INDEX	
34/H)	(PCU-H/H)	(KM/H)	(PCU-H/H)	(PCU-H/H)	(\$/H)	(\$/H)		(\$/H)		(\$/H)	
2	127.3	14.2	48.3	41.3	(985.7) +	(0.0)	٠	(1514.9)	Ŧ	2500.6	TOTALS

' ENTRIES TO SUBPT = 8
' LINKS RECALCULATED= 91

	TRL V	IEWER 2.0	AA I			cts\D2599-10		∛all Road\TRA	18YT\2006 PM Do	Something2.PRT - 1	Page 4
SEC	OND CYCLE	60 STEPS									
EDIAT	E SETTINGS	- INCREMENTS	5 50	FAR :- 18	48						
	3 102 2 0 3 0	1 78 68	48 80								
ICE LCE	TOTA TIM SPEN	l mean e Journey		TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX		
КМ/ Н)	(PCU-H	/H) (KM/H))	(PCU-H/H) ((\$/H)	(\$/H)	(\$/H)	(\$/H)		
2	127.	3 14.2		48.3	41.3	(985.7) +	(0.0)	+ (1514.9)	= 2500.6	TOTALS	
	IES TO SUB S RECALCUL										
20 SEC	OND CYCLE	60 STEPS									
EDIAT CONDS		- INCREMENTS	s so	FAR :- 18	48 -1						
	3 102 2 115 3 0	117 77 66	50 85								
INCE LLED	tota Tim Spen	e journey		TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX		
;/H)	(PCU-H	/H) (KM/H))	{PCU-H/H} (B (11 / 11 / 11)	(\$/H)	(\$/H)	(\$/H)	(\$/H)		
1.2	150.	4 12.0		48.0	63.9	(1239.2) +	(0.0)	+ (181.39	= 1420.4	TOTALS	
LINK	TIES TO SUB S RECALCUL	ATED= 282				18 For inspection for inspection COST	100ses only	d'any off			
	E SETTINGS	- INCREMENTS	s so	FAR :- 18	48 -1	18 scilor	P ^t red ^t				
	3 102 2 115 3 0	117 77 66	50 85			Forinsperio					
AL ANCE ED	TOTA TIM SPEN	e jõurney		TOTAL UNIFORM DELAY	TOTAL RANDOM OVERSAT DELAY	COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX		
i/H)	(PCU-H	/H) (KM/H	}	(PCU-H/H) (PCU (H/H)	(\$/H)	(\$/H)	(\$/H)	(\$/H)		
1.2	150.	4 12.0		48.8	63.9	(1239.2) +	(0.0)	+ (161.3)	= 1420.4	TOTALS	
	ies to sue s recalcul							:			
	OND CYCLE			DD - 10	49 3	30 49					
MEDIAT ECONDS	;)	- INCREMENT:		IRR 1- 18	U - T	10 10					
	3 102 2 115 3 0	77	50 85								
CE ED	TOTA TIM SPEN	e journey		TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX		
Q4/H)	(PCU-H	/н) (км/н)	(PCU-H/H) ((\$/H)	(ş/H)	(\$/H)	(\$/H)		
2	150.	4 12.0		48.8	63.9	(1239.2) +	(0.0)	• (181.3)	= 1420.4	TOTALS	
	IES TO SUB										

)

TRL VIEWER 2.0 AR H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 PM Do Something2.PRT - Page 5

TOTAL PERFORMANCE INDEX

(\$/H)

TOTALS

) SECOND CYCLE 60 STEPS

MEDIATE SETTINGS - INCREMENTS SO FAR :- 18 48 -1 18 48 1

5)								
3	103	118	51					
2	116	78						
3	118	64	83					
	TOTAL	MEAN		TOTAL	TOTAL	TOTAL	TOTAL	PENALTY
	TIME	JOURNEY		UNIFORM	RANDOM+	COST	COST	FOR
	SPENT	SPEED		DELAY	OVERSAT	OF	OF	EXCESS
					DELAY	DELAY	STOPS	QUEUES
	(PCU-H/H)	(KM/H)		(PCU-H/H)	(PCU-H/H)	(\$/H)	(\$/H)	(\$/H)
	3	3 103 2 116 3 118 TOTAL TIME SPENT	3 103 118 2 116 78 3 118 64 TOTAL MEAN TIME JOURNEY SPENT SPEED	3 103 118 51 2 116 78 3 118 64 83 TOTAL MEAN TIME JOURNEY SPENT SPEED	3 103 118 51 2 116 78 3 118 64 83 TOTAL MEAN TOTAL TIME JOURNEY UNIFORM SPENT SPEED DELAY	3 103 118 51 2 116 78 3 118 64 83 TOTAL MEAN TOTAL TOTAL TIME JOURNEY UNIFORM RANDOM, SPENT SPEED DELAY OVERSAT DELAY	3 103 118 51 2 116 78 3 118 64 θ3 TOTAL MEAN TOTAL TOTAL TOTAL TIME JOURNEY UNIFORM RANDOM, COST SPENT SPEED DELAY OVERSAT OF DELAY DELAY	3 103 118 51 2 116 78 3 118 64 θ3 TOTAL MEAN TOTAL TOTAL TOTAL TOTAL TIME JOURNEY UNIFORM RANDOM COST COST SPENT SPEED DELAY OVERSAT OF OF DELAY DELAY STOPS

15	ENTRIES	m	SIEPT	-	c	

DF ENTRIES TO SUBFI - J P LINKS RECALCULATED= 101

.2

• •

120 SECOND CYCLE 60 STEPS

EDIATE SETTINGS - INCREMENTS SO FAR :- 18 48 -1 18 48 1 -1 CONDS)

ι	3	102	118	51
\$	2	116	78	
	Э	119	63	83

ANCE SLLED	TOTAL TIME SPENT	MEAN JOURNEY SPEED	TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX	
4/H)	(PCU-H/H)	(KM/H)	(PCU-H/H)	(PCU-H/H)	(\$/H)	(\$/H)	(\$/11)	(\$/H)	
2	148.9	12.2	48.5	62.7	(1222.6) +	(0.0)	· (172,38)	= 1394.8	TOTALS
	5 TO SUBPT RECALCULATED			Conser	For inspection	(\$/H) (\$/H) (\$.0)	Fandott		

149.6 12.1 48.0 63.9 (1230.7) + (0.0) + (176.9) = 1407.6

TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 PM Do Something2.PRT - Page 6

._ J SECOND CYCLE 60 STEPS

SETTINGS OBTAINED WITH INCREMENTS :- 18 48 -1 18 48 1 -1 1 CONDS)

NUMBER STAGE OF STAGES 1 STAGE STAGE STAGE STAGE STAGE STAGE 2 3 5 6 7 4 С 3 102 115 51

2	116	78	
3	117	61	81

(97	FLOW INTO LINK (PCU/H)	FLOW	DEGREE OF SAT (%)	PER	TIMES PCU SE DELAY (SEC)	UNIFORM RAN OVE (U+R+O=MEAN (PCU-H/H)	DOM+ COST RSAT OF Q) DELAY	MEAN STOPS /PCU (%)	OPS COST OF STOPS (\$/H)	MEAN	EUE AVERAGE EXCESS (PCU)	PERFORMANCE INDEX. WEIGHTED SUM OF () VALUES (\$/H)	EXIT NODE	START EN 1ST	d END
L	556 556 814	1980 2120 1980	34 31 105 73	15 15 15 15	4 4 157 29	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(6.7) (6.3) (390.6) (55.1)	21 20 172 85	(2.9) (2.7) (34.6) (13.0)	4 4 55 16	(0.0)*	6.7 6.3 390.6 55.1	1 1 1	3 10 3 10 56 10 107 11	2
; 7	620 217 926. 1130	1722 1843 2854f 3075f	118 79 90	15 10 10	391 21 28	$\begin{array}{r} 4.4 + 19.2 \\ 3.5 + 1.9 \\ 4.4 + 4.2 \end{array}$	(259.4) { 59.4} { 95.2}	232 46 57	(12.4) (10.5) (16.0)	27 16 23	{ 0.2)* { 1.5)*	259.4 81.8 240.1 12.8	1 1 1	107 11 3 5 3 5	
:	427< 871< 9 309	1928 2535f 1843 1722	34 53 2 63	10 10 14 15	10 10 46 48	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(12.8) (26.7) (1.3) (44.9)	40 34 79 92	(4.4) (7.4) (0.2) (7.0)	7 11 0 10	{ 0.0)* { 0.0)* { 0.0)*	26.7 1.3 44.9	2 2 2 2	1 7 83 11 83 11	8 .6 6
I	759< 760< 80 462	1980 2120 1843 2000	39 37 32 87	14 14 14 15	2 1 56 65	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(3.8) (3.3) (13.7) (92.1)	5 3 99 110	(0.9) (0.6) (2.0) (12.6)	6 2 3 18	{ 0.0)* { 0.0)* { 0.0}*	3.8 3.3 13.7 92.1	3 3 3 3		
3	462 797 798	1978 2300£	81 69	15 15	34 26	5.6 + 2.0 4.6 + 1.1 on flow for f	(83.5) (62.9)	86 73	(17.0) (14.4)	24 20		83.5 62.9	3	2 6 2 6	
		5000 T				00-001 t 00-01	TAT TAT	лт	ጥር ጥል የ	ושם	VT.TA	TOTAL.			

L MANCE MLLED	TOTAL TIME SPENT	MEAN JOURNEY SPEED	TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS	TOTAL PERFORMANCE INDEX	
M/H)	(PCU-H/H)	(KM/H)	(РСО-Н/Н)		(\$/H)	(\$/H)	<0(\$/H)	(\$/H}	
2	148.4	12.2	48.0	62.7	(1217.7)	\$ 240	(167.3)	= 1385.0	TOTALS
		CR LITRES	UISE PER HOUR	DEL LITRES P	AY ER HOUR	DILITRES PER H		TOTALS ES PER HOUR	

CONSUMPTION PREDICTIONS	96.6	+	127.3	pect own	93.9	=	317.8
ENTRIES TO SUBPT = 9 JF LINKS RECALCULATED= 101			FORM	Ş.			
AM TRANSYT FINISHED		and of f	ile				
		C	ons				
ited at 14:52:43 on 10/03/2003	3]						

TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 AM Do Something3.PRT - Page 1

T R A N S Y T TRAFfic Network Study Tool

.

PYRIGHT 1996 - TRL Ltd., Crowthorne, Berkshire, RG45 6AU, UK

entation for IBM-PC or compatible, running under Microsoft Windows 95

ram TRANSYT 11, Analysis Program Version 1.1

th file:- "2006 AM DO SOMETHING3.DAT" _ at 14:52 on 10/03/03

.... 2 AM - Output 3

ETERS CONTROLLING DIMENSIONS OF PROBLEM :

BER OF NODES	=	3
R OF LINKS	=	17
R OF OPTIMISED NODES	=	3
UM NUMBER OF GRAPHIC PLOTS	=	0
BER OF STEPS IN CYCLE	=	60
IMUM NUMBER OF SHARED STOPLINES	=	0
MUM NUMBER OF TIMING POINTS	=	3
UM LINKS AT ANY NODE	=	7

E REQUESTED = 5322 WORDS E AVAILABLE = 72000 WORDS

J

- ---

Consent of copyright on performing the any other use.

DATA INPUT :-

	~ -		-	

CARD TYPE TITLE: - Option 2 AM - Output 3

	TITLE	:- Optio	n 2 AM	- Output	3											
	CARD TYPE	CYCLE TIME	NO. OF STEPS PER		FFECTIVE- DISPLACEN START		SETTINGS	0=UNEQUAL CYCLE 1=EQUAL	L FLOW SCALE 10-200	SCALE	-SPEEDS CARD32 0=TIMES	OPTIMIS 0=NONE 1=O/SET	E EXTRA COPIES FINAL	HILL- CLIMB OUTPUT	DELAY VALUE P PER	STOP VALUE P PER
	1	(SEC) 120	CYCLE 60	MINS. 60	(SEC) 2	(SEC) 3	1=YES 1	CYCLE 0	¥ 0	¥ 0	1=SPEEDS 1	2≄FULL 2	OUTPUT 1	1=FULL 0	РСU-Н 1100	100 200
	CARD TYPE					LI	ST OF N	IODES TO	BE OP	TIMISED						
	2	l	2	3	0	0	0	. 0	0	0	0	0	0	0	0	0
		NODE	~	NC TAGE 1	DE CARDS	GE 2	AGE CHAN	IGE TIMES AGE 3		MINIMUM AGE 4	STAGE	TIMES AGE 5			~	TAGE 7
	CARD TYPE	NO.	CHANGE		CHANGE	MIN	CHANGE	MIN	CHANGE	MIN	CHANGE	MIN	CHANGE	AGE 6 MIN	CHANGE	MIN
	13	1	0	12	33 90	12	70 0	12 0	0 0	0	0	0	0	0	0	0
	12 · 13	2 3	0	12 12	4B	12 12	80	12	0	0	0	0	0	0 0	0 0	0
		•				Đ	PPOPMANO	E INDEX (DATONE							
		IGNORE	IGNORE	1=0LD		e i	SKPORMANC	E INDEA (PIIONS							
	TYPE : 29	STOP WT. 0	DEL WT	. STOP WI 1	'- 0	o	0	0	0	0	0	0	0	0	0	0
		Ū	Ū	-	•	•			-		·	·	°,	Ū	Ŭ	·
					FIRST	GREEN	LINK CA 1	RDS: FI	XED DA SECON		1					
	CARD	LINK	EXIT		TART		END		TART		end	LINK	STOP	SAT	DELAY	DISPSN
-	TYPE 31	NO. 11	NODE 1	STAGE 2	LAG 5	STAGE 1	E LAG 0	STAGE 0	LAG 0	STAGE 0	E LAG 0	LENGTH 200		FLOW 1 1980	WT.X100 0	X100 0
	31	12	1	2	5	1	D	0	0	Ó	0	200	0	2120	0	o
•	31 31	13 14	1	3 1	5 5	1 2	0	0 3	0 5	0 1	0	200 200		1980 1722	0 0	0
	31	15	1	1	5	2	0	0	0	Ō	Ó.	200	0	1843	0	0
	31 31	17 18	1	2 2	5	3	0	0 D	0	0	005°	140 140		1722 2120	0	0
:	31	22	2	1	5	2	ŏ	0	0		de la constanción de la constancición de la constanción de la constanción de la cons	140		1928	ŏ	ŏ
	31 31	23 25	2 2	1 2	5	2 1	0	0	0	0	y other	140 190		2120 1843	0	0
	31	26	2	2	5				0	118, 20	ð ö	200		1722	ŏ	õ
:	31 31	31 32	3	1	0	3 3	0	3	0	or tor	O O	190 190		1980 2120	0	0
•	31	33	3	2	5	3	õ	0	005	ned for an	0	190		1843	ŏ	õ
	31	34	3 3	3	5 5	1 2	0	0	OUS CU	× 0	0 0	200 200		2000 1978	0	0
	31 31	37 38	3	1	5	2	ō	0 0	A COL	ŏ	0	200		2120	0	ŏ
							LINK CAR		W DATA							
					ENTRY 1			0 3 0 0 DS: FD ENTRY 2 SLINK			ENTRY 3			ENTRY 4		• • • • • •
	CARD TYPE	LINX NO.	TOTAL FLOW	UNIFORM FLOW	LINK NO.	FLOW	SPEED 4	CLINK MO.	FLOW	SPEED	LINK NO.		RUISE SPEED	LINK NO.	FLOW	CRUISE SPEED
	32	11	943	0	0	U			U	U	U	0	0	0	0	0
	32 32	12 13	943 689	0	0	0 0	48 48	0 D	0	0	0	0	0	0	0	0
	32	14	904	õ	0		1 C Y	0	0	0	0	0	ō	ō	ō	0
	32 32	15 17	400 241	0	0 34	0 10	CON 48	0 37	0 116	0 48	0 38	0 115	0 48	0 0	0	0 0
	32	18	1236	õ	34	49	48	37	593	40	38	594	48	õ	õ	Ō
	32 32	22 23	762 1524	0	11 11	536 407	48 48	15 12	226 943	48 48	0 15	0 174	0 48	0	0	0
	32	25	343	0	34	27	48	38	316	48	0	0	õ	ō	õ	ō
	32 32	26 31	10 755	0	0 22	0 195	4 B 4 S	0 23	0 550	0 48	0 26	0 10	0 48	0	0	0
	32	32	755	ŏ	22	195	48	23	550	48	26	10	48	ŏ	0	ŏ
	32	33	513	0	22 0	132	48	23	371	48	26	10	48	0	0	0 0
	32 32	34 37	90 720	C O	0	0	49 48	0	0	0	0	0 0	0 0	0 0	0	0
	32	38	1021	0	0	0	48	0	0	0	0	0	0	0	0	0
					FLARE SAT											
	CARD	LINK	LAN	E 1 CAPAC	LANE SAT.	2 CAPAC	LANE SAT.	2 3 CAPAC								
	TYPE	NO.	FLOW	VEH.	FLOW	VEH.	FLOW	VEH.								
	33 33	18	2120	13 9	2120 0	13 0	0 0	0 0								
	33	23 38	2120 2120	3	0	õ	0	0								
						1 730	K DATA:	QUEUE CON	ייגד ג מייסני							
	CARD	LINK	LIMIT	QUEUE	LINK	LIMIT	QUEUE	LINK	LIMIT	QUEUE	LINK		QUEUE	LINK	LIMIT	QUEUE
	TYPE 38	NO. 13	QUEUE 87	WEIGHT 9990	NO. 17	QUEUE 12	WEIGHT 9990	NO. 18		WEIGHT 9990	NO. 22		YEIGHT	NO. 23	QUEUE 12	WEIGHT 9000
	38	25	20	9990	31	20	9990	32		9990	33		990	0	0	0

END OF SUBROUTINE TINPUT

• •

.

TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 AM Do Something3.PRT • Page 3

120 SECOND	CYCLE 60	STEPS													
AL SETTIN	GS														
D OF STA		STAGE	STAGE 3	STAGE 4	STAGE 5		STAGE 7								
3 2 3	0 0 0	33 90 48	70 80												
K FLOW INTO LINK (PCU/H)	SAT DEG FLOW O SA (PCU/H) (F PER T CRUI	PCU	UNIFOR	DELAY { RANDOM+ OVERSAT MEAN Q} -H/H)	COST	MEAN STOPS /PCU (%)	OPS COST OF STOPS (\$/H)	MEAN MAX.	AVERAGE	PERFORMANCE INDEX. WEIGHTED SUM OF () VALUES (\$/H)	EXIT NODE	GREEN (START END 1ST (SEC)	START I 2NI	END
1 943 943 689 - 904	2120 1980	69 15 64 15 91 15 84 15	15 14 58 25	2.9 + 2.7 + 6.7 + 3.7 +	4.4 (1	43.5) 39.5) 21.8) 69.1)	53 108 85	(13.3) (12.4) (18.4) (19.0)	25	(0.0)*	69.1	1 1 1 1	38 0 38 0 75 0 5 33	75	0
5 400 7 224~ 1147< 762 1525	1843 1722 4956f 1928	90 15 47 11 84 11 55 11 85 11	19 23 8		0.4 (2.6 (0.6 (95.4} 13.3) 79.8) 17.6) 89.5)	72 87 26	(11.8) (4.3) (26.5) (4.9) (28.9)	39 7	(0.0)* (4.2)* (0.0)* (5.2)*	95.4 13.3 500.5 17.6 650.2	1 1 2 2	5 33 36 70 38 70 5 90 5 90		
5 296< 6 10 1 754 754	1843 1722 1980 2120	74 14 3 15 38 14 36 14	76 42 1 1	4.8 + 0.1 + 0.0 + 0.0 +	1.4 (0.0 (0.3 (0.3 (68.6) 1.3) 3.4) 3.1) 578.1)	97 80 2 2	(8.2) (0.2) (0.5) (0.4) (29.2)	0 0 0		1.3 3.4 3.1	2 2 3 3 3	95 0 95 0 0 80 0 80 53 80	80 80	0 0
515 90 720 8 1021	2000 1978	20 14 15 15 99 15 18 15 verage sa	367 34 99 332 aturatio		0.1 (12.2 (2 80.0 (9	9.4) 17.1) 99.9)	73 140 223	(1.6) (24.9) (56.3)			9.4 217.1 1036.6	333	85 0 5 48 5 48		
L TANCE ELLED	TOTAL TIME SPENT	MEAN JOURNEY SPEED		TOTAL NIFORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	DEL	ST ,	TOTAL COST OF STOPS	ð	ENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX				
M/H)	(PCU-H/H)	(KM/H)	(P		(PCU-H/H)			(\$/H)	S. al	(\$/H)	(\$/H) = 4447.1	TOT	21.9		
20.4	270.3	7.8	******	67.5	150.0	(240)	*******	and the second	• • • • • • • • •	*******		******	*******	*****	****
			CRUISE		DE	LAY	007	UL COUL	S	I	OTALS				
CONSIMETI	ION PREDICTI		113.0	HOUR	LITRES	PER HOU	R CHO I	TRES PE	R HOUR	=	S PER HOUR				
ÇÇNSOMF1	ION PRESICII	.0110				FOLI	tight								
	S TO SUBPT CALCULATED				, o	notcop	,	t 0, 0); 							
0 SECON	CYCLE 60	STEPS			Collec										
RMEDIATE SECONDS)	SETTINGS - I	INCREMENTS	s so far	;- 1	В										
3 2 3 3	102 18 0	15 106 48	52 80												
L NCE LED	TOTAL TIME SPENT	MEAN JOURNEY SPEED	U	TOTAL NIFORM DELAY	TOTAL RANDOM OVERSAT DELAY		5 T 7	TOTAL COST OF STOPS		ENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX				
-104/H)	(PCU-H/H)	(KM/H)). (P		(PCU-H/H)			(\$/H)		(\$/H)	(\$/H)				
¥ . 4	270.7	7.8		67.9	158.6	(249)	i.8) +	(0.0)	+ (1	378.4)	= 3870.2	TOL	ALS		
OF ENTRIP	S TO SUBPT	= B													

OF ENTRIES TO SUBPT = 8 OF LINKS RECALCULATED= 95

						New Fact 1		ISYT) 2006 AM DO	Something3.PRT - Page
· ···	TRL VIEW		AA H:\My Docum	ents\Proje		NEW EASU	ALL ROAD (IRA	111/2000 AN DO	
1.6200	ND CYCLE 60	STERS							1
MEDIATE	SETTINGS -		SO FAR :- 1	8 48					
	3 102	15	52						
	2 18 3 0	108 48	80						
ICE ICE	TOTAL TIME SPENT	MEAN JOURNEY SPEED	TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX	
-км/н)	(PCU-H/H)	(KM/H)		(PCU-H/H)	(\$/H) ·	(\$/H)	(\$/H)	(\$/H)	80.91 T C
. 4	270.7	7.8	67.9	158.6	(2491.8) +	(0.0)	+ (1378.4)	= 3870.2	TOTALS
	ES TO SUBPT RECALCULATE								
120 SECC	OND CYCLE 60	STEPS							
EDIATE CONDS)		INCREMENTS	SO FAR :- 1	8 48 -1					
1	3 105 2 17 3 109	14 110 42	55 96						
ANCE	TOTAL TIME SPENT	MEAN JOURNEY SPEED	TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX	
1/H)	(PCU-H/H)		(PCU-H/H)	(PCU-H/H)	(\$/H}	(\$/H)	(\$/H)	(\$/H) = 1823.4	TOTALS
20.4	179.1	11.8	55.1	79.8	(1484.0) +	(0.0)	+ (339.49.	= 1623.4	101813
	ES TO SUBPT RECALCULATE				18 (1484.0) + 18 Foi mection foi mection foi mection for the foi for the foil for foil fo	ses of	or any ou		
	ND CYCLE 60					PHIPOLITIC			
DIATE: ECONDS)	SETTINGS -	INCREMENTS	SO FAR :- 1	8 48 -1	18 Dection	hert			
	3 105 2 17 3 109	14 110 42	55 96		FOITISPHU				
'AL 'ANCE _ED	TOTAL TIME SPENT	MEAN JOURNEY SPEED	TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX	
{/H}	(PCU-H/H)			(РСО (Н/Н)	(\$/H)	(\$/H)	(\$/H)	(\$/H)	TOTALS
:0.4	179.1	11.8	55.1	79.B	(1484.0) +	(0.0)	+ (339.4)	= 1823.4	TOTALS
	ES TO SUBPT RECALCULATE								
_	OND CYCLE 60 2 SETTINGS -		SO FAR :- 1	845-1	18 48				
ECONDS }	1								
	3 105 2 17 3 109	14 110 42	55 96						
ICE JED	TOTAL TIME SPENT	MEAN JOURNEY SPEED	TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX	
км/н)	(PCU-H/H)	(KM/H)		(PCU-H/H)	(\$/H)	(\$/H)	(\$/H)	(\$/H)	
4	179.1	11.8	55.1	79.8	(1484.0) +	0.0)	÷ (339.4)	⊨ 1823.4	TOTALS
	ES TO SUBPT								

)

. . . **.** . . . **. .** - - - - - -. TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 AM Do Something3.PRT - Fage 5 · SECOND CYCLE 60 STEPS TEDIATE SETTINGS - INCREMENTS SO PAR :- 18 48 -1 18 48 1 CONDS) 102 17 109 11 110 42 52 3 2 3 96 TOTAL MÉAN TOTAL TOTAL TOTAL TOTAL PENALTY TOTAL .

ICE	TIME	JOURNEY	UNIFORM	RANDOM+	COST	COST	FOR	PERFORMANCE	
ED	SPENT	SPEED	DELAY	OVERSAT DELAY	OF DELAY	OF STOPS	EXCESS OUEUES	INDEX	
KM/H)	(PCU-H/H)	(KM/H)	(PCU-H/H)	(PCU-H/H)	(\$/H)	(\$/H)	(\$/H)	(\$/H)	
4	179.1	11.8	55.0	79.8	(1483.9) +	(0.0)	+ (210.4)	= 1694.2	TOTALS

F ENTRIES TO SUBPT = 10 LINKS RECALCULATED= 119

20 SECOND CYCLE 60 STEPS

ZDIATE SETTINGS - INCREMENTS SO FAR :- 18 48 -1 18 48 1 -1 CONDS)

	3 2 3	101 17 109	11 109 50	52 96							
ANCE		TOTAL TIME SPENT	MEAN JOURNEY SPEED		TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX	
(/H)		(PCU-H/H)	(KM/H)		(PCU-H/H)	(PCU-H/H)	(\$/H)	(\$/H)	QOEUES (\$/H)	(\$/H)	
v.4		140.5	15.1		53.2	43.2	(1059.9)	+ (0.0) +	(313.5)	= 1373.4	TOTALS
		TO SUBPT ECALCULATED	= 23 D= 230			Couse	Fo ^{tinspect}	stops (\$/H) + (0.0) +	, any oth		

ŧ

) SECOND CYCLE 60 STEPS

SETTINGS OBTAINED WITH INCREMENTS :- 18 48 -1 18 48 1 -1 1 "CONDS)

ŗ	NUMBER OF STAGES	STAGE 1	STAGE 2	STAGE 3	STAGE 4	STAGE 5	STAGE 6	STAGE 7
ι	3	99 17	9 109	50				
	3	109	50	96				

(ZR	PLOW INTO LINK (PCU/H)	SAT FLOW (PCU/H)	DEGREE OF SAT (%)	PER CRUIS	TIMES PCU SE DELAY (SEC)	UNIFORM	RAND OVER MEAN	OM+ COST SAT OF · Q) DELAY (\$/H)	MEAN STOPS /PCU (%)	COST OF STOPS (\$/H)	MEAN	EUE AVERAGE EXCESS (PCU)	PERFORMANCE INDEX. WEIGHTED SUM OF () VALUES (\$/H)	EXIT NODE	ST.	EEN 1 ART END ST (SECO	STAF 2N	RT END ID
	943	1980	66	15	13	2.4 +	1.0	(37.4)	52	(12.1)	18		37.4	1	14	99		
:	943	2120	62	15	12	2.3 +		(3410)	49	(11.3)	17		34.0	1	14			
	689	1980	93	15	64	6.9 +		(134.7)	114	(19.3)	27	(0.0)*	134.7	1	55	99		
	904	1722	89	15	33	4.6 +	3.7	(90.9)	102	(22.7)	27		90.9	1	104	9	55	99
,	400	1843	100	15	139	5.2 +	10.2	(169.6)	159	(15.8)	23		169.6	1	104	9		
	•																	
,	241	1722	45	11	17	0.B +	0.4	(12.9)	49	(2.9)	5	(0.0)*	12.9	1	14	50		
	1236	4649£	86	11	21	4.3 +	3.0	(80.9)	64	(19.6)	29	(1.7)*	246.1	1	14	50		
	762	1928	54	11	12	1.9 +	Ũ.6	(26.9)	58	(10.9)	17	(0.4)*	62.5	2	22	109		
	1524	2488f	84	11	10	1.5 →	2.5	(44.4)	43	(16.2)	21	(0.9)*	122.7	2	22	109		
	344	1843	93	14	111	5.7 +	4.9	(117.0)	126	(10.7)	16	(0.0)*	117.0	2	114	17		
;	10	1722	3	15	45	0.1 +	0.0	(1.4)	62	(0.2)	0		1.4	2	114			
	754	1980	39	14	2	0.0 +	0.3	(3.5)	3	(0.6)	1	(0.0)*	3.5	3	109	96		109
	754	2120	36	14	1	0.0 +	0.3	(3.2)	3	(0.6)	1	(0.0)*	3.2	3	109	96	96	109
	515	1843	80	14	39	3.6 +	1.9	(61.1)	98	(12.4)	17	(0.0)*	61.1	3	55	96		
1	90	2000	60	15	83	1.3 +	0.7	(22.8)	117	(2.6)	4		22.8	3	101			
•	720	1978	77	15	34	5.2 +	1.6	(75.0)	85	(15.0)	21		75.0	3	114			
•	1021	2309f	93	15	48	7.8 +	5.8	(149.6)	104	(26.2)	37		149.6	3	114	50		

*** f - average saturation flow for flared link ***

ance Lled	TOTAL TIME SPENT	MEAN JOURNEY SPEED	TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTS FOR EXCESS OUEUES	TOTAL PERFORMANCE INDEX	
(/H)	PCU-H/H)	(KM/H)	(PCU-H/H)		(\$/H)	(\$/H) X	A (\$/H)	(\$ / H)	
0.4	141.0	15.0	53.7	43.2	(1065.3)	Solution	(279.2)	= 1344.4	TOTALS
		CRUIS LITRES PE	E R HOUR	DELJ LITRES PI	AY 2R HOUR	tion put stops		TOTALS ES PER HOUR	••••••

CONSUMPTION PREDICTIONS	113.0	÷	cot itight &	117.9	-	342.3	
ENTRIES TO SUBPT = 9 F LINKS RECALCULATED= 107			, of copy				

TRANSYT FINISHED

at 14:53:02 on 10/03/2003]

TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 N=w East Wall Road\TRANSYT\2006 PM Do Something4.PRT - Page 1

T R A N S Y T TRAffic Network Study Tool

.

¹ YRIGHT 1996 - TRL Ltd., Crowthorne, Berkshire, RG45 6AU, UK

ntation for IBM-PC or compatible, running under Microsoft Windows 95

am TRANSYT 11, Analysis Program Version 1.1

h file:- "2006 PM DO SOMETHING4.DAT" at 14:53 on 10/03/03

n 2 PM - Output 4

TERS CONTROLLING DIMENSIONS OF PROBLEM :

ER OF NODES	F	3
OF LINKS	=	17
OF OPTIMISED NODES	=	3
M NUMBER OF GRAPHIC PLOTS	=	0
ER OF STEPS IN CYCLE	=	60
MUM NUMBER OF SHARED STOPLINES	=	0
"TM NUMBER OF TIMING POINTS	=	3
M LINKS AT ANY NODE	=	7

REQUESTED = 5322 WORDS AVAILABLE = 72000 WORDS

Ť

,

Consent of copyright on the required for any other use.

TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 PM Do Something4.PRT - Page 2

	DAT	A INFUT	· •													
	'ARD 'YPE 'ITLE :	- Option	n 2 PM -	Output 4	ł											
	CARD	CYCLE TIME	STEPS	PERIOD I	DISPLACEM		ETTINGS		FLOW SCALE 10-200	CRUISE- SCALE		OPTIMISE 0=NONE 1=O/SET	COPIES FINAL	HILL- CLIMB OUTPUT	DELAY VALUE P PER	STOP VALUE P PER
	1	(SEC) 120	PER CYCLE 60	1-1200 MINS. 60		(SEC) 3		CYCLE	1 90		1=SPEEDS 1		OUTPUT 1	1=FULL 0	РС U- Н 1100	100 200
	CARD					LIS	T OF N	ODES TO	BE OP	TIMISED						
	TYPE 2	1	2	3	c	0	0	. 0	0	0	0	0	0	0	0	0
	CARD	NODE	ST	NOI AGE 1		: STA GE 2	ST	AGE 3	ST	MINIMUM AGE 4		AGE 5		AGE 6		AGE 7
	TYPE	NO.	CHANGE	MIN	CHANGE	MIN	CHANGE	MIN 12	CHANGE 0	MIN O	CHANGE 0	MIN O	CHANGE 0	MIN D	CHANGE 0	MIN O
	13	1 2	0	12 12	18 78	12 12	69 0	0	0	ō	ŏ	õ	0	D	0	0
	13	3	ŏ	12	68	12	80	12	0	0	0	0	0	0	0	0
		' IGNORE	IGNORE	1=OLD		PÉ	RFORMANC	E INDEX C	PTIONS							
	TYPE S	TOP WT.	DEL WT.		- 0	o	o	0	0	0	0	0	0	0	0	0
					FIRST	GREEN	LINK CA	RDS: FI	XED DA		1					
	'ARD	LINK	EXIT	S	TART		END		ART		END	LINK	STOP	SAT	DELAY	DISPSN
	TYPE	NO.	NODE	STAGE	LAG	STAGE		STAGE	LAG	STAGE 0	E LAG 0	LENGTH 200	WT.X100	FLOW 1980	WT.X100 0	X100 0
ļ	31	11	1	2 2	5 5	1	0	0	0	0	0	200	0	2120	õ	õ
	31 31	12 13	1	3	5	1	õ	ō	0	ō	0	200	0	1980	0	0
	31	14	1	1	5	2	0	Э 0	5 0	1 0	0	200 200	0	1722 1843	0	0
	31 31	15 17	1 1	1 2	5	23	0	0	ő	ŏ	ŏ "Ś	140	õ	1722	0	0
	31	18	1	2	5	3	0	Ō	0	0	85	140	0	2120 1928	0	0
	31	22	2	1	5 5	2 2	0 0	0 0	0	0	OTTO	140 140	0	2120	ŏ	ŏ
	31 31	23 25	2	1 2	5	1	0	ő	ŏ	101 .	0 6	190	0	1843	0	0
	31	26	2	2	5	1	G	0	0	OP A	× 0	200 190	0	1722 1980	0	0
	31	31	3	1	0	3 3	0	3	0 QLDC	Ses dint	0 0	190	0	2120	ő	õ
	31 31	32 33	3	1 2	5	3	ŏ	õ	a ce	NITE 0	0	190	0	1843	0	0
	31	34	3	3	5	1	0	0	No se	× o	0	200 200	0	2000 1978	0	0
	31 31	37 38	3	1	5 5	2 2	0 0	o s	101 BC	0	ŏ	200	õ	2120	Ō	Ō
		•••	-				LINK CAF	3 0 0 0 ENTRY LINK	OW DATA	4		_		ENTRY		
			TOTAL	UNIFORM	ENTRY 1 LINK	· · · · · ·	CRUISE	ENTRY 2	?	CRUISE	LINK	3	RUISE	LINK		CRUISE
	CARD TYPE	LINK NO.	FLOW	FLOW	NO.	FLOW	SPEED	010. 010.	FLOW	SPEED	NO.	FLOW	SPEED	NO.	FLOW O	SPEED 0
	32	11	618	D	0	0	48		0	0	0	0	0	0 0	0 0	ō
	32 32	12 13	618 904	0 D	0 0	0	48 48011	Ö	ů.	ŏ	õ	ō	ō	Ū	0	0
	32	14	689	0	0	0	+ C		0	0	0 0	0	0	0	0	0
	32	15 17	241 400	0 0	0 34	0 89	C48 48	0 37	0 155	48	38	155	48	õ	Ō	ō
	32 32	18	1886	Ő	34	415	48	37	735	48	38	736	48	C C	0	0
•	32	22	493	0	11	368	4 B 4 B	15 12	125 613	48 48	0 15	0 116	0 48	0	0	ŏ
	32 32	23 25	984 10	0 0	11 34	250 10	48	38	10	48	ō	0	0	0	0	0
	32	26	343	0	0	0	4 B	0	0	0	0 26	0 163	0 48	0	0	0
	32	31 32	860 860	0	22 22	230 229	4 B 4 B	23 23	467 463	4 B 4 B	26	163	48	õ	Ō	Ō
	32 32	33	90	0	22	24	4 B	23	49	48	26	17	48	0	0	0 0
	32	34	513	0	0	0	48 46	0 0	0 0	0	0	0	0	0 Q	0	ŏ
	32 32	37 38	886 887	0 0	0 0	0 0	48	0	Ď	ō	õ	õ	ō	Ō	0	0
		• -		CARDS :	FLARE SA	TURATIO	N FLOW I	ATA								
			LAN	E 1	. LANE	2	LAI	E 3 CAPAC								
	CARD TYPE	LINK NO.	SAT. FLOW	CAPAC VEH.	SAT. FLOW	CAPAC VEH.	SAT. FLOW	VEH.								
	33	18	2120	13	2120	13	0	0								
	33	23	2120	9	0	0 0	0	0								
	33	38	2120	3	0											
							K DATA:	QUEUE CO			LINK	LIMIT	QUEUE	LINK	LIMIT	QUEUE
	CARD TYPE	LINK NO.	LIMIT QUEUE	QUEUE WEIGHT	LINK NO.	LIMIT QUEUE	QUEUE WEIGHT	LINK NO.	LIMIT QUEUE	QUEUE WEIGHT		QUEUE	WEIGHT	NO .	QUEUE	WEIGHT
	38	13	113	9990	17	12	9990	18	12	9990	22	12	9990	23 0	12 0	9000 0
	38	25	20	9990	31	20	9990	32	20	9990	33	20	9990	v	v	·

AND OF SUBROUTINE TINPUT

)

TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 PM Do Something4.PRT - Page 3

SECON	D CYCLE 60	STEPS													
L SETTIN	NGS														
NUME OF ST		STAGE 2	STAGE 3	STAGE 4	STAGE 5	STAGE 6	STAGE 7								
3	0 0	18 78	69												
3	0	68	80												
: FLOW R INTO LINK	FLOW (OF PE	N TIMES R PCU ISE DELAY	UNI FORI	-DELAY	+ COST F OF.	MEAN STOPS /PCU	COST COST OF STOPS	MEAN	JEUE AVERAGE EXCESS	PERFORMANCE INDEX. WEIGHTED SUM OF () VALUES	EXIT NODE		TIMES STAR D 2N	END
(PCU/H) (PCU/H)	(%) (SEC) (SEC)	(PCU		(\$/H)	(%)	(\$/H)	(PCU)	(PCU)	(\$/н)			CONDS)	
556 556 814 620 217	1722	34 15 32 15 105 15 71 15 101 15	4 162 27		1.2 (22 172	(3.1) (3.1) (34.7) (12.4) (9.7)	5 5 55 16 15	(0.0)*	7.6 7.2 402.6 50.8 122.4	1 1 1 1	23		o
361 1698 443 886	1722	54 10 105 10 37 10 56 10	22 134 10	1.7 + 11.1 + 1.0 + 2.3 +	0.6 (52.0 (0 0.3 (24.8) 593.9) 14.0) 32.9)	72 165 33 41	(6.4) (69.1) (3.6) (8.9)	110 5	(0.0)* (26.5)* (0.0)* (0.0)*	3341.5 14.0	1 1 2 2	23 6 23 6 5 7 5 7	9	
. 9 . 309 . 774 . 774	1843 1722 1980 2120	2 14 57 15 39 14	36 42	0.1 + 2.9 + 0.0 + 0.0 +	0.0 (0.7 (0.3 (1.0) 39.4) 3.8) 3.3)	68 86 5	(0.2) (6.6) (0.9) (0.6)	0 9 5	(0.0)* (0.0)* (0.0)*	1.0 39.4 3.8	2 2 3 3			0
81 462 797 798		66 14 77 15 76 15 65 15	90 51 29	1.1 + 4.9 + 4.8 +	0.9 (1.6 (22.3) 71.9} 70.1}	129 96 79	(2.6) (11.1) (15.6) (13.2)		(0.0)-		3 3 3 3	73 8 85 5 6 5 6	0 8	_
	*** f - a						***								
ANCE	TOTAL TIME SPENT	MEAN JOURNEY SPEED	t	TOTAL INI FORM DELAY	TOTAL RANDOM OVERSAT DELAY	r of	T	TOTAL COST OF STOPS	I	ENALTY FOR EXCESS NEUES	TOTAL PERFORMANCE INDEX				
1/H)	(PCU-H/H)	(KM/H) (E	PCU-H/H)	(PCU-H/H)			(\$/H)	13.02	(\$/H)	(\$/H)				
	185.2	9.8		51.2	96.3	(1622	.0) +	(0.0)	1 to (26	547.6)	= 4269.6	TOTA	ls		
********	*********		*******	******	*******	* * * * * * * *	*****	MIL CUITE		********	• • • • * * * * * • • • • • • • • • • •	, , 	*****	*****	****
		LIT	CRUISE RES PER	HOUR	Di LITRES	elay Per hou	R	LITRES PE	s R HOUR	T LITRE	OTALS IS PER HOUR				
CONSUMPT	ION PREDICT?	IONS	96.6		+ 16	59.6	nspint or	119.	5	-	385.6				
	s to subft Recalculatei					for for	Nilot.	(0.0) PUT STOP LITTLES PE 119.							
I SECON	D CYCLE 60	STEPS			Con	³ Ot									
MEDIATE ECONDS)	SETTINGS - 1	INCREMENT	s so far	l:- 10	3										
3 2 3	0 0 0	18 78 68	69 80												
۰۶۲, ICE ED	TOTAL TIME SPENT	MEAN JOURNEY SPEED	U	TOTAL IN1FORM DELAY	TOTAL RANDOM OVERSAT DELAY		т	TOTAL COST OF STOPS	I	ENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX				
KM/H)	(PCU-H/H)	(кж/н) {P	CU-H/H)	(PCU-H/H)			(\$/H)		(\$/H)	(\$/H)				
2	185.2	9.8		51.2	96.3	(1622	.0) + ((0.0)	+ (26	547.6)	= 4269.6	TOTA	ra S		
		_ 7													

F ENTRIES TO SUBPT = 7 F LINKS RECALCULATED= 80

.

)

	CYCLE 60									
EDIATE S ONDS)	ETTINGS - I	NCREMENTS	SO P	'AR:- 18	48					
3 2 3	0 0	18 78 68	69 80							
CE LED	TOTAL TIME SPENT	MEAN JOURNEY SPEED		TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT	TOTAI. COST OF	TOTAL COST OF	PENALTY FOR EXCESS	TOTAL PERFORMANCE INDEX	
~•/H)	(PCU-H/H)	(KM/H)		(PCU-H/H) (DELAY PCU-H/H)	DELAY (\$/H)	STOPS (\$/H)	QUEUES (\$/H)	(\$/H)	
2	185.2	9.8		51.2	96.3	(1622.0) + (0.0} +	(2647.6)	= 4269.6	TOTALS
LINKS R	TO SUBPT RECALCULATED	= 80								
	SETTINGS - I		sõ F	PAR :- 18	48 -1					
3	1	14	69							
2 3	116 3	77 67	68							
ANCE LLED	TOTAL TIME SPENT	MEAN JOURNEY SPEED		TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALTY FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX	
								1	(\$ / H)	
/H)	(PCU-H/H)	(KM/H)		(PCU-H/H)	PCU-H/H)	(\$/H)	(+/		(47)	
1.2 ENTRIES	(PCU-H/H) 185.7 5 TO SUBPT RECALCULATED	9.8 = 33		(PCU-H/H) 49.4	PCO-H/H) 98.6	(\$7.8) + ((0.0) +	(2184 . F.	= 3812.4	TOTALS
ENTRIES LINKS F	185.7 5 TO SUBPT	9.8 = 33 = 289 STEPS	; 50 f	49.4	PCU-H/H) 98.6	(1627.8) + (18 ;0 ⁰	PutPosesonty,	(2184, 5°.		TOTALS
ENTRIES LINKS F SECONI LINTE S ECONDS)	185.7 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1	9.8 = 33 = 289 STEPS NCREMENTS		49.4	PCU-H/H) 98.6	(1627.8) + (18 	Purposes only	(2184, 5°		TOTALS
1.2 ENTRIES LINKS F SECONI	185.7 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1 1 14	9.8 = 33 = 289 STEPS	50 F 69 88	49.4	PCU-H/H) 98.6	18 Foi here to with the to wi	Puposes only	(2184, FE.		TOTALS
LINKS F SECONI DIATE S ECONDS) 3 3 3 AL	185.7 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1 14 3 TOTAL TIME	9.8 = 33 = 289 STEPS NCREMENTS 14 95 67 MEAN JOURNEY	69	49.4 PAR :- 16 TOTAL UNIFORM	PCU-H/H) 98.6 48 -1 TOTAL RANDOM+ OVERSAT	(1627.8) + (toral cost oF	(2184 SE.		TOTALS
LINKS F SECONI LINKS F CONDS) 3 3 3 3 3 3 3 4 L 2 3 3 4 L 2 3 3 4 1 2 3 3 3 4 1 3 3 3 3 4 1 3 3 3 3 4 1 3 3 3 3	185.7 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1 14 3 TOTAL	9.8 = 33 = 289 STEPS NCREMENTS 14 95 67 MEAN	69 88	49.4 PAR :- 16 TOTAL	98.6 48 -1 TOTAL RANDOM+ OVERSAT DELAY	18 Foinsection Foinsection Formation	TOTAL COST	(2184 5°.	3812.4 TOTAL PERFORMANCE	TOTALS
LINKS F SECONI DIATE S ECONDS) 3 3 3 AL	185.7 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1 14 3 TOTAL TIME SPENT	9.8 = 33 = 289 STEPS NCREMENTS 14 95 67 MEAN JOURNEY SPEED	69 88	49.4 PAR :- 16 TOTAL UNIFORM DELAY	98.6 48 -1 TOTAL RANDOM+ OVERSAT DELAY	18 18 toinstead toi	TOTAL COST OF STOPS (\$/H)	(2184 SP.	 3812.4 TOTAL PERFORMANCE INDEX 	TOTALS
LINKS F SECONI SECONDS) 32 3 AL *MCE ED M(H) 1.2 ENTRIE	185.7 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1 14 3 TOTAL TIME SPENT (PCU-H/H)	9.8 = 33 = 289 STEPS NCREMENTS 14 95 67 MEAN JOURNEY SPEED (KM/H) 9.8 = 7	69 88	49.4 VAR :- 16 UNIFORM DELAY (PCU-H/H)	98.6 TOTAL RANDOM+ OVERSAD DELA IPCU H/H)	18 to instead of to instead of to the to	TOTAL COST OF STOPS (\$/H)	(2184 SE. any other PENALTY FOR EXCESS QUEUES (\$/H)	= 3812.4 TOTAL PERFORMANCE INDEX (\$/H)	
LINKS F SECONI SECONDS) 3 2 3 AL MCE ED A(H) 1.2 ENTRIE F LINKS F SECON	185.7 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1 14 3 TOTAL TIME SPENT (PCU-H/H) 185.6 S TO SUBPT RECALCULATED D CYCLE 60	9.8 = 33 = 289 STEPS NCREMENTS 14 95 67 MEAN JOURNEY SPEED (KM/H) 9.8 = 7 = 83 STEPS	69 88	49.4 PAR :- 16 UNIFORM DELAY (PCU-H/H) 49.3	98.6 48 -1 TOTAL RANDOM+ OVERSAT DELAY PCU-H/H) 98.6	(1627.8) + (18 to instruction to optication to optication to optication of DELAY (\$/H) (1626.5} + (TOTAL COST OF STOPS (\$/H)	(2184 SE. any other PENALTY FOR EXCESS QUEUES (\$/H)	= 3812.4 TOTAL PERFORMANCE INDEX (\$/H)	
LINKS F SECONI SECONDS) 3 2 3 AL MCE ED A(H) 1.2 ENTRIE F LINKS F SECON	185.7 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - I 14 3 TOTAL TIME SPENT (PCU-H/H) 185.6 S TO SUBPT RECALCULATED	9.8 = 33 = 289 STEPS NCREMENTS 14 95 67 MEAN JOURNEY SPEED (KM/H) 9.8 = 7 = 83 STEPS	69 88 8	49.4 PAR :- 16 UNIFORM DELAY (PCU-H/H) 49.3	98.6 48 -1 TOTAL RANDOM+ OVERSAT DELAY PCU-H/H) 98.6	(1627.8) + (18 to instruction to optication to optication to optication of DELAY (\$/H) (1626.5} + (TOTAL COST OF STOPS (\$/H)	(2184 SE. any other PENALTY FOR EXCESS QUEUES (\$/H)	= 3812.4 TOTAL PERFORMANCE INDEX (\$/H)	
LINKS F SECONI SECONDS) AL MCE ED M/H) 1.2 ENTRIES F LINKS F SECONI	185.7 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1 14 3 TOTAL TIME SPENT (PCU-H/H) 185.6 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1 14	9.8 = 33 = 289 STEPS NCREMENTS 14 95 67 MEAN JOURNEY SPEED (KM/H) 9.8 = 7 = 83 STEPS	69 88	49.4 PAR :- 16 UNIFORM DELAY (PCU-H/H) 49.3	98.6 48 -1 TOTAL RANDOM+ OVERSAT DELAY PCU-H/H) 98.6	(1627.8) + (18 to instruction to optication to optication to optication of DELAY (\$/H) (1626.5} + (TOTAL COST OF STOPS (\$/H)	(2184 SE. any other PENALTY FOR EXCESS QUEUES (\$/H)	= 3812.4 TOTAL PERFORMANCE INDEX (\$/H)	
L.2 ENTRIES LINKS F SECONDS) CONDS) AL MCE LED AL MCE LED AL SECONDS) SECONDS) SECONDS) 3 2 2 3 3 4 1.2 ENTRIES F LINKS F SECONDS) 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	185.7 S TO SUBPT RECALCULATEL D CYCLE 60 SETTINGS - 1 14 3 TOTAL TIME SPENT (PCU-H/H) 185.6 S TO SUBPT RECALCULATEL D CYCLE 60 SETTINGS - 1 1 14	9.8 = 33 = 289 STEPS NCREMENTS 14 95 67 MEAN JOURNEY SPEED (KM/H) 9.8 = 7 = 83 STEPS NCREMENTS 14 95	69 88 5 SO 6 69	49.4 PAR :- 16 UNIFORM DELAY (PCU-H/H) 49.3	98.6 48 -1 TOTAL RANDOM+ OVERSAT 98.6 348 -1 TOTAL RANDOM+ OVERSAT	(1627.8) + (18 contraction too method too method too TAL COST 0F DELAY (\$/H) (1626.5) + (18 48 TOTAL COST 0F	TOTAL COST (0.0) +	(2184 SE ATHY OTHER PENALTY FOR EXCESS QUEUES (\$/H) (2184.6) PENALTY FOR EXCESS	= 3812.4 TOTAL PERFORMANCE INDEX (\$/H)	
1.2 ENTRIES LINKS F SECONIS LINKS F ECONDS) 3 2 3 AL MCE ED A(H) 1.2 ENTRIES SECONIS SECONIS SECONIS 3 2 3 4 LINKS F CE	185.7 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1 14 3 TOTAL TIME SPENT (PCU-H/H) 185.6 S TO SUBPT RECALCULATED D CYCLE 60 SETTINGS - 1 14 3 TOTAL 14 3 TOTAL 14 3 TOTAL 14 3 TOTAL 14 3 TOTAL 14 3 TOTAL 14 14 15 16 16 16 16 16 16 16 16 16 16	9.8 = 33 = 289 STEPS NCREMENTS 14 95 67 MEAN JOURNEY SPEED (KM/H) 9.8 = 7 83 STEPS NCREMENTS 14 95 67 MEAN JOURNEY	69 88 89 69 88	49.4 VAR :- 16 UNIFORM DELAY (PCU-H/H) 49.3 FAR :- 16 TOTAL UNIFORM	98.6 TOTAL RANDOM- OVERSAT DELA PCU-H/H) 98.6 3 48 -1 TOTAL RANDOM- S 48 -1	(1627.8) + (18 to to to to to to to to to to	total cost of stops (\$/H) (0.0) +	(2184 SE ATHY OTHER FOR EXCESS QUEUES (\$/H) (2184.6) PENALTY FOR	 3812.4 TOTAL PERFORMANCE INDEX (\$/H) 3611.1 	

F LINKS RECALCULATED= 83

TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 PM Do Something4.FRT - Page 5

	IEDIATE	SETTINGS	+-	INCREMENTS	so	FAR	:-	18	48	-1	18	48	1
•	NONDS)												

	3	1	14	69
:	2	12	93	
1	3	3	67	88

2 12 93 3 3 67 68

, ICE	TOTAL TIME SPENT	MEAN JOURNEY SPEED	TOTAL UNIFORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS		PENALTY FOR EXCESS OUEUES		TOTAL PERFORMANCE INDEX	
-KM/H)	(PCU-H/H)	(KM/H)	(PCU-H/H)		(\$/H)	(\$/H)		(\$/H)		(\$/H)	
.2	185.6	9.8	49.3	98.6	(1626.4) + (0.0)	+	{2184.6}	=	3811.0	TOTALS

)F ENTRIES TO SUBPT = 9 LINKS RECALCULATED= 97

.20 SECOND CYCLE 60 STEPS

ZDIATE SETTINGS - INCREMENTS SO FAR :- 18 48 -1 18 48 1 -1 CONDS)

ANCE	3 2 3	119 10 2 TOTAL TIME SPENT	12 92 66 MEAN JOURNEY SPEED	69 87	TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY		TOTAL COST OF STOPS		PENALTY FOR EXCESS QUEUES		TOTAL ERFORMANCE INDEX	
1/H)		(PCU-H/H)	{KM/H)		(PCU-H/H)	(PCU-H/H)	(\$/H)		(\$/H)		(\$/H)		(\$/H)	
.1.2		190.7	9.5		50.2	102.8	(1603.0)	+ (0.0)	÷	(1084,9)	=	2767.8	TOTALS
		TO SUBPT CALCULATED	■ 19 = 190			Conse	For inspect	ion for the second seco	utosen of stratificit	19. 501 101.	QUEUES (\$/H) (1084_9) ^C			

.

)

-

TRL VIEWER 2.0 AA H:\My Documents\Projects\D2599-10 New East Wall Road\TRANSYT\2006 PM Do Something4.PRT - Page 6 ------

. NUMBER			STAGE			TAGE		GE 6	STA	GE 7		
RETTINGS C	BTAINED	WITH INCR	EMENTS	:- 1	848	-1	18	49	1	-1	1	
U SECOND C	YCLE 60	STEPS										

 NUMBER
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 STAGE
 <t

	2	-		•	0.												
	FLOW INTO LINK	sat Flow	DEGREE OF SAT	PER CRUI	DELAY	UNI FORM RAND OVER {U+R+O=MEAN	OM+ COST SAT OF • Q) DELAY	MEAN STOPS /PCU	COPS COST OF STOPS (\$/H)	MEAN	EUE AVERAGE EXCESS (PCU)	PERFORMANCE INDEX. WEIGHTED SUM OF () VALUES (\$/H)	EXIT NODE	STA 1S	RT : END T	IMES STAR: I 2NI NDS)	END
	(PCU/H)	(PCU/H)	(\$)	(SEC)	(SEC)	(PCU-H/H)	(\$/H)	(%)	(\$/1)	(FCO)	11001	(4//		•			
)	556 556 814 620 217 361 1698 403< 849< 9 309 737< 738< 77 462 797 798	1980 2120 1980 1722 1843 1722 3886f 1928 2535f 1843 1722 1980	33 31 107 79 157 47 99 32 52 2 63 38 30 89 89 81	15 15 15 15 15 10 10 10 10 14 15 14 14 14 15 15	3 3 195 35 771 14 47 10 40 40 40 40 21 52 72 34 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(5.5) (5.2) (484.9) (65.6) (511.1) (15.6) (242.5) (11.9) (26.6) (1.1) (26.6) (1.1) (44.9) (3.5) (3.5) (3.1) (12.3) (101.5) (83.5) (62.9)	17 16 185 94 252 49 99 35 34 65 92 4 3 4 3 94 116 67 73	(2.4) { 2.2) { 37.2} { 14.4) { 13.5} { 4.3) { 41.5) { 3.9} { 7.4} { 0.1} { 0.2} { 0.8} { 0.6} { 1.9} { 13.2} { 17.0} { 13.2} { 17.0} { 13.4}	4 3 62 18 50 7 53 6 11 10 10 4 2 3 18 24 20	{ 0.0}* + (0.0)* (0.0)* (0.0)* (0.0)* (0.0)* (0.0)*	65.8 511.1 15.6 1324.1 11.9 26.6 1.1 44.9 3.5 3.1	1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	18 15 5 18 15 97 22 79 7 97 7 7 7	0 0 13 13 70 70 92 10 87 87 87 87 66 66	75 87 87	0 2 2
	,90	*** Í	- aver	age sa	turatio	on flow for fl	ared link	***									

VL VNCE ED	total Time Spent	Mean Journey Sfeed	TOTAL UNI FORM DELAY	TOTAL RANDOM+ OVERSAT DELAY	TOTAL COST OF DELAY	TOTAL COST OF STOPS	PENALT FOR EXCESS QUEUES	TOTAL PERFORMANCE INDEX	
/H)	(PCU-H/H)	(KM/H)	(PCU-H/H)		(\$/H)	(\$/H) (1)	217 (\$/H)	(\$/H)	
1.2	190.6	9.5	50.1	102.8	(1601.9)		(1081.7)	= 2763.6	TOTALS
******	**********	**********	***********	*********	, ,,, ,,,,,,,,	Pilledil			********
		CRU	JISE	DEL	AY	STOPS		TOTALS	

	CRUISE LITRES PER HOUR	LI	DELAY	STOPS	LITRES PER HOUR	
NSUMPTION PREDICTIONS	96.6	÷	175.6 Instanto	107.7	= 380.1	
F ENTRIES TO SUBPT = F LINKS RECALCULATED=	7 83		x of copy			
TRANSYT FINISHED		end of	files======			

d at 14:53:28 on 10/03/2003]