

Hand's Lane Rush Co. Dublin Tel 01 8437512 31/09/2006

The Environmental Protection Agency Waste Licensing Section Johnstown Castle Estate County Wexford

Dear Sirs.

Ref. Application by Fingal County Council for a Landfill at Nevitt, Co. Dublin.

This submission is based entirely on the Hydrogeological issues raised by the proposal to locate a municipal landfill at Nevitt, Lusk, County Dublin for the greater Dublin region.

References

- The EIS prepared by RPS MP OS The Geological S. The Geological Survey of Trefand report on The Bog of the Ring Groundwater Source Protection Zones, March 2005.
- The GSI publication "The Geology of Meath" and the bedrock geology map Sheet 13, Meath.
- Reference to "Introducing Groundwater", by Michael Price, Taylor and Francis.
- The well drilling records of Dunnes Drilling, Drumiskin, Co. Louth.
- · Data on the Fingal Horticultural Industry collected by the Nevitt/Lusk Action Group.
- Photos are by Bernadette McNally, Tooman, Lusk, County Dublin.

Signed,

Patrick Boyle, B.E.

Declan White, B.Sc. Eng.

CONTENTS

- The Gravel Aquifer underlying the Landfill Site. 1.
- 2. The Vulnerability Rating of a Landfill Site underlain by Gravel.
- 3. The Fingal Locally Important Fissured Rock Aquifer.
- The Threat to the Horticultural Industry Water Source to the South 4. and down-gradient of the Landfill Site.
- The Threat to the Bog of Ring Public Water Supply Source 5. Northwards through the Courtlough Valley.
- 6. The Threat to the Bog of Ring Public Water Supply Source through the Bedrock Geology beneath the Landfill Site.
- The Landfill Footprint location beneath the Groundwater table 7. contravenes the EC Groundwater Directive.
- The Long-term Loss of the Agnifer as a Future Resource. 8.
- 9.
- Conclusion.

 Egging Today

 Appendix Horticultural Well Survey Data and Photographs. 10.

1. The Gravel Aquifer Underlying the Landfill Site

The EIS fails to establish the extent and importance of a large gravel aquifer which underlies the proposed dump site.

This aquifer connects northward with the Bog of the Ring public water supply and may extend southwards for a considerable distance. The deepest deposits of gravel, which exceed 20 metres in places lie alongside the North / South rock fault in the Courtlough Valley. This fault-line presents a wall of highly fractured rock some 20 metres high running along the eastern edge of the Courtlough valley. (Figure 1, EIS Vol. 5, Tech. Apps. H&I, Appendix AI, Geological cross section B-B')

The gravel bed lies to the west of the rock fault which extends southwards past the Nevitt a further 3km to Annsbrook. (Figure 2, EIS Vol2, Main Report, page310, Bedrock Geology).

A gravel bed is classified as an aquifer if it is greater than 1km² in extent and contains more the 5 metres depth of saturated gravel. The EIS resistivity profiles and borehole data, and the Bog of the Ring GIS report of 2005, both indicate gravel at an average thickness of approximately 10 metres and extending northwards through the Courtlough Valley and into the Bog of the Ring.

- Figure 1, as above.
- Figure 3, EIS Vol.5, Supporting Documents, 2-D Resistivity Profiles.
- Figure 4, EIS Vol 5, Ground Investigations, Borehole ER07.
- GIS Report, Bog of the Ring Groundwater Source Protection Zones, March 2005, page 29 and 33.
- Information obtained from John Landy, a horticultural grower at Corduff, 2.5km south-east and down gradient of the dump site reported gravel at a depth of 12 metres while well drilling on his land by Dunnes Drilling. Other producers south of the landfill site reported similar gravel strikes during drilling i.e. Kerrigans, Johnstown (10,000 gals/hr); Keoghs, Westpalstown (10,000 gals/hr); Bergins, Roscall (25,000 gals/hr).

Whilst the GIS report states that the gravel is an important contributor to the water supply at the Bog of the Ring (page 29), and that a groundwater divide exists within it some 200 metres south of the natural topographic divide in the Courtlough Valley, i.e. directly to the East of the dump, (page 30, Model Boundaries, southwest, point 3), the full extent of the aquifer has not been established by either the EIS or GSI reports.

The GSI publication 'Geology of Meath' notes on page 3, "Large expanses of glaciofluvial sands and gravels deposited by meltwater streams flowing from a glacier are common in the area. The most striking of these occur around Gormanstown ..." and "Meltwater erosion has cut some spectacular meltwater channels in the area, e.g. the Delvin River ..."

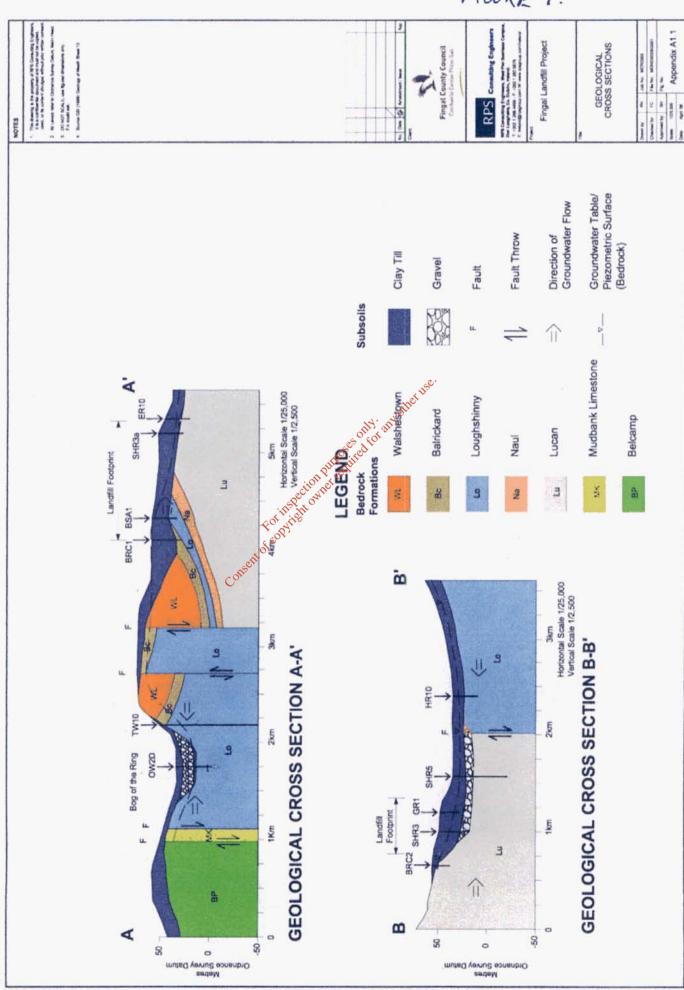
On page 55 sand and gravel deposits are referred to at Naul, North Dublin and Tobersool (adjacent to and just North of the Bog of the Ring).

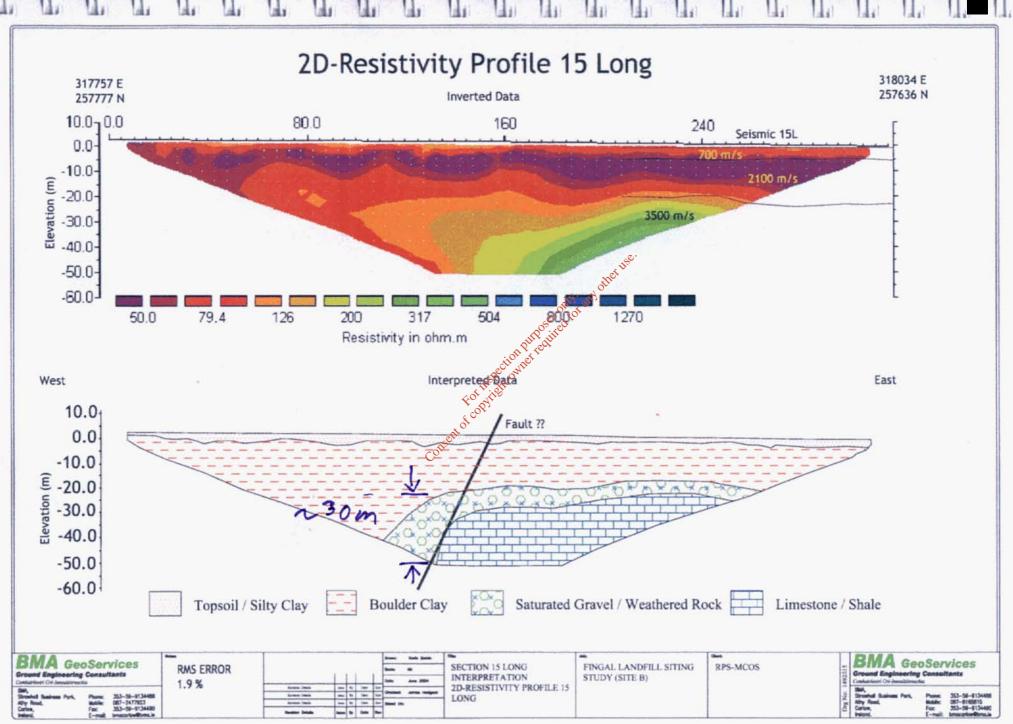
Whilst on page 58, "Locally Important Quaternary and / gravel aquifers – have been successfully exploited for irrigation of market gardens near Rush in North County Dublin. Similarly, productive gravel aquifers may exist elsewhere but have not been identified."

The EIS and GSI reports have identified such a large productive gravel aquifer in the Bog of the Ring/Courtlough Valley. It was most probably formed by the escape of some of the vast quantities of gravel contained in the Delvin River Valley southwards through the Courtlough Valley, and is likely to have formed a delta to the south of the proposed dumpsite extending at least as far south as Corduff. The highly productive horticultural well at Bergins, Keoghs and Kerrigans may owe much of their excellent outputs to the existence of this gravel delta.

There is ample evidence in the EIS that the entire Landfill site is underlain by a continuous layer of gravel/weathered rock.

The Resistivity results already referred to, (Figure 3), can be used to construct
a contour map of this underlying high permeability deposit (Figure 5).


- Some borehole results also confirm the presence of gravel e.g. Figure 6, AGB10 inexplicably not shown on the main borehole location map in Vol 5, Ground Investigations Vol 1 (Part A), (which is almost impossible to read even with the aid of a magnifying glass), but is shown in the centre of the site in Vol 5, Ground investigations Factual Report (No.05-271) Exploratory hole location map. The depth of gravel is 2.3 meters.
- Despite the impossible task of interpreting the main borehole location map a summary of those boreholes within the landfill footprint can be obtained in Vol 5 Technical Appendices H & I, Appendix 1, Soils, Table 4.2. (North of Nevitt Road), (Figure 7). Of the 12 boreholes listed not meeting with an obstruction, 10 are underlain by gravel e.g. ASA1 (9m), ER02 (0.75 m), ER03 (4.75m), ER04 (1m), ER06 (2.6), (Figures 8-12).


Given all this evidence for the presence of extensive continuous deep gravel, and the high yielding wells of The Bog of Ring (3.5 Mi/d), Nevitt test wells (1.5 Ml/d), and the high yielding wells to the south (4.75 Mi/d) then the Gravel Aquifer is very possibly regional in extent (>10km² and with a potential yield >10megalitres/day). In these circumstances the landfill would have a minimum Response of R3 to the gravel alone.

However, since the gravel aquifer overlies the Bog of the Ring Water Supply and the horticultural well sources to the south, and that the landfill site is connected to both through gravel and is up gradient to both sources, a Response of R4 is indicated, depending on the vulnerability rating.

The EIS failure to acknowledge the significance of this gravel deposit is not understood.

FIGURE 1.

10m 10m GRAVEC GRAVI-1 (20m) 20m Sm N/S GRAVEL 20 m ROCK 10 m F-AULT CRAVE Still had GRAVIL 10m 54 OLD GRAVEL GRAVEL PITS GRAVEL 10m 30tm 10m WITESTONE 20 m 107. GRAVEL PERCHED GRAVEL HOUIFER 2041

GRAVEL BED UNDERLYING LANDFICE STIE

_ AGPTH OVER BEOROCK (M)

DATA SOURCE - EIS RESISTIVITY PROFILES

VOL 5 - EIS

1. S. C. 3/10/06

Glo	ver	Sit	e Ir	ive	stigatio	ns	Ltd	SITE ADDITIONAL WORKS AT FINGAL LANDFILL SITE	AGB1
lush : A	OMMACHI IR/MIST	10		Diamete 6mm cas	r ed to 30.00m	200000000000000000000000000000000000000	Level (mOD) 45.80	Client FINGAL COUNTY COUNCIL	Job Numbe 06-07
ore Dia: 1			Locatio	on		Dates		Engineer	Sheet
lethod : G	EOBORE-	S	31	7699.8 E	256964.1 N		/02/2006- /02/2006	RPS	3/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	(mOD)	Depth (m) (Thickness)	Description	Legend
0.70							(1.70)	Stiff grey sandy gravelly CLAY with occasional smooth sub-rounded cobbles and boulders. Gravel is sub-rounded fine to coarse.	9090909
2.20	60					24.10	21.70	Dark brown sandy sitty fine to coarse sub-rounded GRAVEL containing occasional smooth sub-rounded cobbles	
	40						(2.30)	A differ lise.	0 0 0 0 0 0 0 0
3.70	100					an Pur	equired to		0.0
4.00				18		ection ne	24.00	Moderately strong to strong grey to dark grey fine grained LIMESTONE with occasional calcite veining.	
4.39	100	66	63	Non-Ir	tact corins	hil	Ē.	Discontinuity Set 1 is very close to medium spaced, dipping 20-40 degrees, smooth planar, tight, clean.	辯
1.79				10	at of copy.			Discontinuity Set 2 is medium spaced, dipping 70 degrees to sub-vertical, rough planar, tight to moderately open, clean.	麗
5.20 5.26 5.38 5.50 5.61 5.72	100	96	85	Non-ir 92 6 43	lact For inst			Discontinuity Set 3 is medium spaced, dipping 10 degrees, smooth to rough planar, tight to moderately open, clean. Discontinuities occasionally infilled with layers of clay	
3.67 3.80 7.02				23 27			(6.00)		
7.56	100	73	53	4 Non-In	tact		(6.00)		醫
7.75				15					器
1.15									莊
1.40				Non-In	tact				薑
1.90 1.02 1.14	100	100	79	5 29 4	=	4	30.00		薑
9.54				33	13/02/2006	7,521,000			辯
0.00 emarks				12		15.80	30.00	Scale (approx)	Logged
								1:50 Figure I	TR/HD
								# 17 PER 0.5%	4.AGB10

				Location wit	hin Footprint	
Hole	Depth of Clay	Underlain by	Adjacent to Waste Boundary	Waste Boundary to 3m Cut Contour	Within 5m Cut Contour	Within 10m Cut Contour
ER1	Clay to 21m	Rock		×		
ES1	Clay to 12.3m	•		×		
BSA1	Clay to 16.6m		×			
ER2	Clay to 25m	Gravel				×
ER3	Clay to 21.45m	Gravel		x		
ES2	Clay to 9.4m			×		
ER4	Clay to 25.75m	Gravel		exuse.		x
BSA6	Clay to 14m			My. 2014 Othe		x
ES3	Clay to 13.8m		oo ite	XO X		
AGB1	Clay to 20.65m	Gravel	tion puriedur		x	
ES4	Clay to 13m		A inspection on the reading	x		
BRC5	Clay to 20.2m **	Gravel	obj		×	
AGB2	Clay to 27.25	Gravel				х
ASA1	Clay to 11m	Gravel	x			
ER6	Clay to 21m	Gravel				×
ER5	Clay to 21.2m					×
ER11	Clay to 13.5m	Gravel		x		
ES5	Clay to 20.5m					×
AGB9	Clay to 24.9m	Rock				x
AGB10	Clay to 21.7m	Gravel				×
ES7	Clay to 14.7m		. 4	x		7

Table 4.2: Depth of Overburden within Footprint (North of Nevitt Road)

Boring Meth		30		ed to 11.00m ed to 20.00m	Ground	Level (mOD) 38.45	Client FINGAL COUNTY COUNCIL		Job Number 05-271
		Locatio 31		57171.2 N	21/06/2005- 27/06/2005		Engineer RPS-MCOS		Sheet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
3					÷	(1.00)	Stiff to very stiff dark grey/black fine to medium to coarse gravelly CLAY with occasional subang subrounded cobbles and boulders	sandy fine gular and	
1.00-11.45 1.00 1.30	SPT N=36 J1 B1			4,7/7,9,8.12	27,45	11.00	Medium dense brown grey slightly fine to coarse fine to coarse GRAVEL	gravelly	
00.5	B2				26.55 26.45		Dense grey brown fine to coarse gravelly fine to SAND with numerous cobbles	coarse	0.0
2.20-12.32	CPT 23*/120 50/0 B3			8,15/50		11.1.1.1.1.1.1	Dense slightly fine to coarse saridy slightly fine to gravelly cobbly BOULDERS	atly fine to coarse sandy slightly fine to coarse obly BOULDERS	
3.50-13.75 3.60	CPT 25*/130 50/120 B4			10,15/22,28		(2.50)	Dense grey fine to coarse sandy fine to coarse 0 with numerous cobbles		
i.80 i.90 i.00	J2 B5 J3				23.95	authose ed , agit ed , so (1.30)	Dense grey fine to coarse sandy fine to coarse of with numerous cobbles	GRAVEL	0.0
.80	B6			Consent of co	22.65	15.80	Stiff to very stiff dark grey/black fine to medium s coarse gravelly CLAY with few cobbles and small	and fine to	
60 70	J4 B7					(2.80)			99998
80	J5 B8								
60 70					19.85	18.60	Dense grey fine to coarse sandy fine to coarse G with numerous cobbles	RAVEL	950
00	J7 B10				18.45	(1.40)			9 0
iselling from	1 14 40m to 14 60m	for 0.75 h	urs. Chis	ealling from 15 50m	In 15 90m	for O E house	celling from 13.80m to 14.20m for 1.5 hours. Chiselling from 16.40m to 16.60m for 0.5 hours, chiselling from 18.20m to 18.40m for 1.5 hours.	Scale (approx) 1:50	bogged TR

FIGURE 9 Borehole Glover Site Investigations Ltd FINGAL LANDFILL PROJECT ER02 Machine: COMMACHIO Job Number Casing Diameter Ground Level (mOD) Flush : POLYER GEL FINGAL COUNTY COUNCIL 146mm cased to 25.75m 46.37 05-271 Core Dia: 102 Sheet Dates Location Engineer 30/05/2005 31/05/2005 Method : GEOBORE-S RPS-MCOS 317728.5 E 257527.9 N Depth (m) (Thickness) Depth (m) (mOD) TCR SCR RQD Field Records Description Very stiff black sandy gravelly CLAY containing occasional smooth sub-rounded cobbles and boulders. Gravel is sub-rounded fine to medium 0 0 100 100 (5.00)22.70 100 0 0 24.25 0 0 25.00 66 Medium dense brown sandy-fine to coarse sub-rounded GRAVEL containing occasional smooth sub-rounded cobbles and boulders (0.75)25.75 31/05/2005 20.62 25.75 Consent Complete at 25.75m

Remarks Geobore S unable to penetrate gravel. Borehole terminated at 25,75m.

Scale Logged By

Figure No. 05-271.ER02

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

Glover Site Investigations Ltd Borehole Number FINGAL LANDFILL PROJECT ER03 Machine: COMMACHIO Casing Diameter Ground Level (mOD) Job Number Flush : POLYMER GEL 146mm cased to 36.40m FINGAL COUNTY COUNCIL 05-271 Core Dia: 102 Location Dates Engineer Sheet Method: GEOBORE-S 15/06/05 16/06/05 317471.3 E 257461.8 N RPS-MCOS Depth (m) (Thickness) (mOD) ROD Field Records Legend is Description Very stiff dark grey to black gravelly sandy CLAY containing occasional smooth sub-rounded cobbles and boulders. Gravel is sub-rounded line to coarse. (1.45)21.15 100 0 Medium dense greyish brown sandy fine to coarse sub-rounded GRAVEL containing occasional cobbles and 21.45 29 D 0 22,80 45 0 0 60 a 0 66 0 D 25.40 87 0 0 26.20 30.55 Moderately strong dark groy fine to medium grained micrite LIMESTONE. Moderately weathered. 0 Highly tractured, thinly bedded fractures, closely spaced, smooth planar, ligh, clean 27.00 15/06/05 16/06/05 100 D Ō 28.00 (3.80) 100 0 0 28.60 100 0 0 28 90 Non-Intact 100 0 0 29.80 Remarks Logged 1:50 AM Figure No.

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

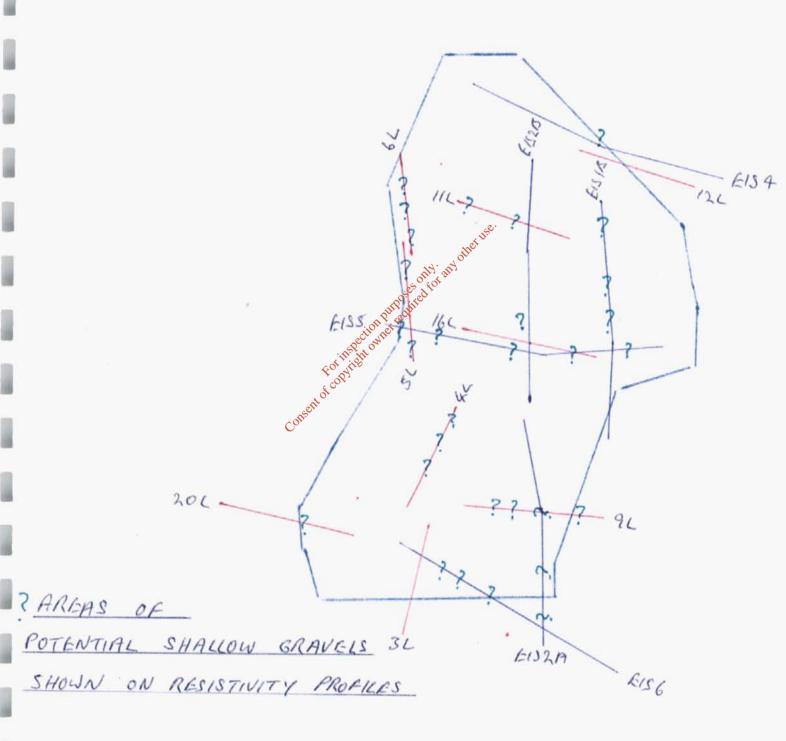
Figure No. 05-271.ER04

Glo	over	Sit	e Ir	ive	stigatio	ns	Ltd	Site FINGAL LANDFILL PROJECT	Borehol Number ER06
Flush : i	COMMACHI POLYMER N			Diamete 6mm cas	or sed to 23.60m	1000000	Level (mOD) 44.65	Client FINGAL COUNTY COUNCIL	Job Number 05-271
Core Dia: 1 Method : 0	GEOBORE-	5	Locatio		257136.3 N	Dates 25 26	5/05/2005- 5/05/2005	Engineer RPS-MCOS	Sheet 3/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
	100	0	0				(1.00)	Stiff to very stiff dark brown to black slightly sandy gravelly CLAY containing occasional smooth sub-rounded cobbles and boulders. Gravel is sub-rounded fine to medium	
21,50	50	0	0		i	23.65		GRAVEL containing occasional smooth sub-rounded cobbles and boulders	0.00
23.60					26/05/2005 Consent of co	21.05	attosé only attositedic e required	Complete at 23.60m	0.00
					Consent of co	STEEL STEEL			
	ia								
temarks eobore S ur prehole term	nable to pen ninated at 2	etrate gra 3.60m.	avel.				The second secon	Scale (approx)	Logged By
								Figure N 05-27	lo. 1 ER06

2. The Vulnerability Rating of a Landfill Site underlain by Gravel

The EIS claims that the vulnerability rating of the site should be considered low due to a substantial overburden of clay.

However, the resistivity profiles show a large number of high permeability anomalies within this clay overburden. Again using the data in the resistivity profiles their presence can be mapped (Figure 13). No test drilling to check on the nature or extent of any of these has been carried out in the EIS.


Of particular interest is the large high permeability anomaly shown in Resistivity Profile 6 (EIS 2005) in the southern section of the site which looks like a very large perched gravel bed (Figure 14).

Also of interest is the borehole data for AGB4, which shows gravel near the centre of the site at a depth of only 0.7m and a depth of steem before drilling was discontinued (Figure 15).

The claim that the clay overburden is impermeable is not proven and the evidence is clear that there are areas of low permeability within the landfill footprint.

The overall vulnerability of the site, given the presence of underlying gravel is determined by the table given in EIS Vol. 5 Appendices H & I, appendix A13. High permeability subsoil (sand/gravel), overlain by poorly drained soil is given as 2.iii, High (Figure 16).

In such circumstances the response of this site to Lm/Lg is R3, to Rf/RG is R4, or to a Source is R4, and certainly not R1 as claimed in the EIS.

			stigatio	113	Ltu	FINGAL LANDFILL PROJECT		AGB	34
achine : KNEBEL ush : POLYMER MUD	- 5	Diameter 6mm case	ed to 4.50m		Level (mOD) 47,84	Client FINGAL COUNTY COUNCIL		Job Number 05-27	
ethod: GEOBORE S	Locatio		256919.3 N	Dates 22	2/06/2005	Engineer RPS-MCOS		Sheet 1/1	
Depth (m) TCR SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	10000
70 0	0	0		47.14	0.70	TOPSOR. Medium dense brown sandy fine to coarse GRAVE containing occasional smooth subrounded cobbles	L.	9.000	The state of the s
66 0	0	o			(3.80)	,		0.0	
30 0	a	0	Consent of con		only of the control o	ny other use.		0.0	Z. Z
50			tod.	Specificants	4.50	Complete at 4.50m			-
			Consento						-
									-
					haaah				
					na n				
						0			
					Addadda				
emarks sckfilled with bentonite sobore S unable to penetrate	gravel.				E	[67	Scale (approx)	Logge	00
prehole terminated at 4.50m.									

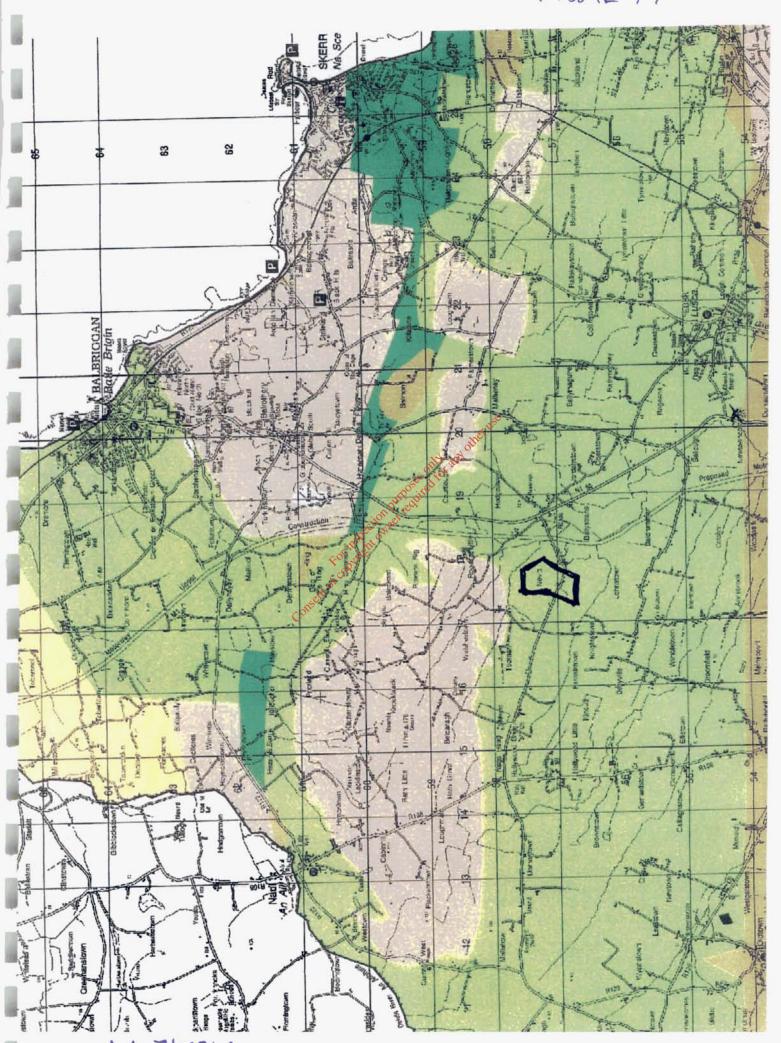
Vulnerability category Extreme 1.i		Hydrogeological setting	Recha	rge coefficie	nt (rc)
			Min (%)	Inner Range	Max (%)*
Extreme	1.i	Areas where rock is at ground surface	60	80-90	100
	1.ii	Sand/gravel overlain by well drained soil	60	80-90	100
	1.iii	Till overlain by well drained soil	45	50-70	80
	1.iv	Till overlain by poorly drained (gley) soil	15	25-40	50
	l.v	Sand/ gravel aquifer where the water table is † 3 m below surface	70	80-90	100
	1.vi	Peat	15	25-40	50
High	2.i	Sand/gravel aquifer, overlain by well drained soil	60°	80-90	100
High	2.ii	Sand/gravel aquifer, overlain by well drained soil High permeability subsoil (sand/gravel) overlain by well of the drained soil High permeability subsoil (sand/gravel) overlain by poorly drained soil Moderate permeability subsoil overlain by well drained soil	any of 60	80-90	100
	2.iii	High permeability subsoit in (sand/gravel) overlain by poorly drained soil in			
	2.iv	Moderate permeability subsoil overlain by well drained soil	35	50-70	80
	2.v	Moderate permeability subsoil overlain by proorly drained (gley) soil	15	25-40	50
	2.vi	Low permeability subsoil	10	20-30	40
	2.vii	Peat	0	5-15	20
Moderate	3.i	Moderate permeability subsoil and overlain by well drained soil	25	30-40	60
	3.ii	Moderate permeability subsoil and overlain by poorly drained (gley) soil	10	20-40	50
	3.iii	Low permeability subsoil	5	10-20	30
	3. iv	Basin peat	0	3-5	10
Low	4.i	Low permeability subsoil	2	5-15	20
	4.ii	Basin peat	0	3-5	10

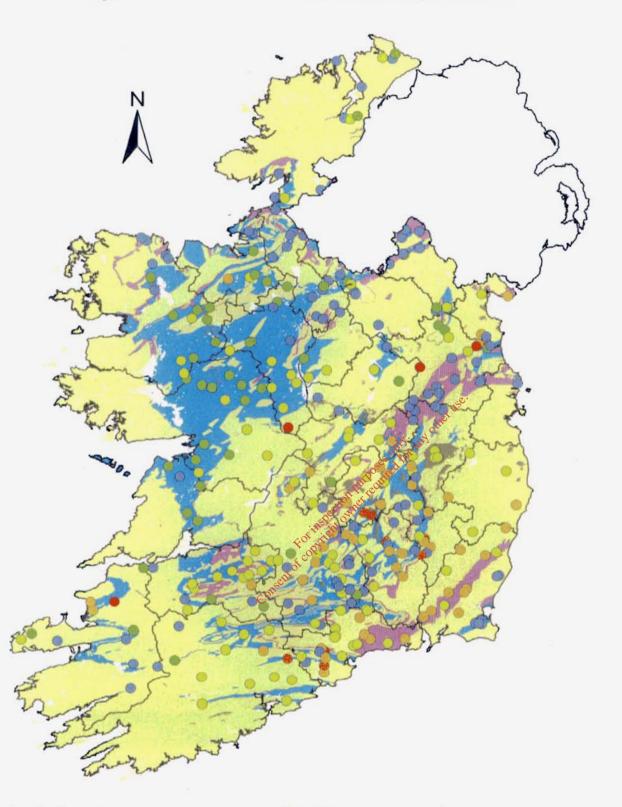
Acknowledgement: many of the recharge coefficients in this table are based largely on material in Fitzsimons and Misstear (in press).

(WFD Groundwater Working Group, 2004)

3. The Fingal Locally Important Fissured Rock Aquifer.

An Aquifer crosses Fingal from the west around Garristown to the sea between Rush and Skerries. An extension to the aquifer stretches northward to Balbriggan and contains the Bog of the Ring public water supply (Figure 17). Whilst the aquifer is currently categorised by the GSI as Locally Important, i.e. capable of supplying a village or a small town, this aquifer produces vast amounts of water for use by the Fingal Horticultural Industry in the form of a network of private wells. It is for this reason that the Nevitt/Lusk Action Group were able to request the GSI to upgrade the aquifer to Regionally Important. The GSI requested detailed information on the location and output of the wells in question.


The location of all wells is known to An Bord Bia who inspect them annually, but consider the information confidential. Unfortunately the Local Authority did not keep a record of these wells as required under legislation, and the Group has had to undertake a survey using their own limited resources.


The Group concentrated on the area unmediately down-gradient of the proposed landfill i.e. Garristown to the west and the Skerries /Balbriggan district were not included. However the results of the survey have been so impressive that the Group are intent on submitting them to the GSI immediately and are confident of a re-categorization of the aquifer to Regional.

The aquifer appears on he recent EPA publication "Water Quality in Ireland 2006" (Figure 18), and is of the highest quality and suitable for use in food production.

The Nevitt landfill site is located in the centre of this important aquifer (Figure 17).

FIGURE 17

Aquifer Legend

- Gravel Aquifer
- Productive Fissured Bedrock Aquifer
- Productive Karstified Aquifer
- Poorly Productive Bedrock Aquifer

Mean Nitrate Concentration

- <5 mg/l NO₃
- 5-10 mg/l NO₃
- 10-25 mg/l NO₃
- 25-40 mg/l NO₃
- 40-50 mg/l NO₃
- >50 mg/l NO₃

Source: EPA (M. Craig)

4. The Threat to the Horticultural Industry Water Source to the South and Down -gradient of the Landfill Site

The survey of horticultural wells was carried out in the general area Rush, Lusk and Ballyboughill. Because of the location of the proposed landfill particular importance was given to those areas to the immediate west of the North/South faultline which are presumed to hold the deepest gravel deposits, areas within 3km immediately to the south an down-gradient of the landfill site and areas generally to the southeast of the landfill site below the 30meter contour line. Detailed results are contained in Appendix 'A'.

Five primary sources of data were used:

- a. Records of Dunne's Drilling, Drumiskin.
- b. Records of the yields obtained during testing contained in the EIS.
- c. Reported outputs of the Bog of the Ring Water Supply by Fingal County Council.
- d. Data collected locally by members of the Nevitt/Lusk Action Group.

The total well yields are summarised as follows:

	No. of Wells	No. of Wells exceeding 3500 gallons/hr	Total Yield ML/D
Dunnes	59	15	20.25
Group	66	27	21.50
Neviit (EIS)	6	2	1.50
Bog of Ring	4	4	3.50
Total	135	48	46.75

The total areas covered by the aquifer crossing Fingal from West to East from Garristown to Rush and including the proposed landfill sites of Nevitt and alternatively Annsbrook is approximately 150km². Hilly areas such as Knockbrack,

Man of War and the Black Hills contribute at least another 50km² to the zone of contribution of the aquifer giving a total Zone of Contribution in North County Dublin of 200km² approximately. The Zone of Contribution of the Bog of the Ring is approx. 20km² and yields 3,500m³/day, i.e. 1/10 th of the total aquifer area.

The figures show that a vast sustainable yield of water is being extracted from this aquifer which is clearly regional in extent and output and should be reclassified as such by the GSI. Any landfill within its boundaries would therefore have an R3 response at minimum.

The following points regarding the present condition of the Horticultural Industry in the area are of note:

- Four companies are engaged in food processing within the area surveyed-Nugents,
 Moores, Country Crest and Kerrigans of which Moores and Kerrigans are
 immediately down gradient and within a knometre of the landfill site. Moores
 supply many institutions such as hospitals hotels and prisons with ready to use
 vegetables. Kerrigans produce washed vegetables, mainly potatoes.
- Tesco and other supermarket chains are seeking an increase in local production of vegetables and diversifications to new crops such as onions.
- An EC directed inspectorate is in operation regarding water quality. An Bord Bia
 is the "owner" of the scheme. The National Standards Authority of Ireland (NSAI)
 is the certification body. An independent auditor conducts at least one inspection
 of water quality on each producer per year.
- The Fingal area produces half of all vegetables grown in Ireland. Irrigation is an
 essential requirement during the Summer months and final washing is also used.
- The value of the Horticultural Industry in the area down gradient of the landfill is estimated at €500 million per annum and the industry is labour intensive.
- The Rush/Lusk area is the heartland of the greenhouse industry, producing most of the country's tomatoes, lettuce and cucumbers and is also highly dependent on private wells. Most producers have recently doubled their water pump ratings.

The location of this proposed landfill is a clear threat to the source of water used by the Horticultural industry, the livelihood of Fingal's farmers and farm workers and Ireland's International reputation for pollution free agricultural produce.

5. The Threat to the Bog of the Ring Public Water Supply Source Northwards through the Courtlough Valley

A water divide was established by the EIS in the Courtlough Valley some 1km to the north of the proposed landfill site. This was done by drilling a series of boreholes into the bedrock and fixing standpipes. The pipes were sealed from the overlying gravel by cement grouting.

The water divide thus measured the water heads of the underlying bedrock aquifer, and the divide did not move to any substantial degree over a period of a year, except for one month when its moved to the south.

However, this divide in the low permeability bedrock has nothing to do with the highly mobile divide within the overlying gravel aquifer, which the GSI report places directly in line east and down-gradient of the proposed dumpsite. Therefore, the landfill is clearly within the Zone of Contribution of the Bog of the Ring Water Supply. The presence of a North/South highly fractured rock-fault adds to the high transmissivity of the valley in the northwards direction. See GSI report (Figures 20 and 21).

The probable local groundwater provement for the northern half of the landfill based

The probable local groundwater movement for the northern half of the landfill based on the GSI model predictions is given in Figure 22.

(a) Permeability Map (m/d)

X	Х	X	Х	Х	X	0.6	0.6	х	Х	X	X	×	×	X	X
X	X	×	×	×	0.25	0.6	0.6	0.25	0.6	×	×	X	×	x	X
х	×	×	×	×	0.25	0.6	0.6	0.6	0.6	X	×	X	×	X	×
X	x	×	×	0.25	0.25	0.6	0.6	0.6	×	×	х	X	×	×	X
x	x	×	×	0.6	0.6	0.6	0.6	0.6	×	×	×	X	×	×	x
X	×	×	×	0.6	0.6	0.6	0.6	0.6	×	x	×	X	X	0.7	0.7
X	x	X	×	0.6	0.6	0.25	0.25	0.6	5	×	×	0.7	0.7	0.7	0.7
0.25	0.25	0.25	5	5	5	9	9	9	9	12	12	0.7	0.7	0.7	0.7
X	0.25	0.25	5	5	9	9	9	9	9	9	12	0.7	0.7	0.0313	0.0625
0.25	0.25	5	5	5	0.125	0.125	0.125	5	5	5	12	12	0.0313	0.0313	0.0625
0.25	9	9	0.125	0.085	0.085	0.125	0.125	0.125	0.085	15	0.085	12	0.7	0.7	0.7
5	9	0.0625	0.085	0.085	0.085	0.125	0.0625	0.125	0.125	0.125	0 0625	12	0.7	0.7	X
X	×	×	×	×	×	×	x	×	×	×	use.	12	0.7	×	×

(b) Transmissivity Map (m2/d)

282	614	3.5	3.6	3.6	3.6	4.1	3.1	4.3	4.2	4.3	3.7	837	49	49	×
9.1	632	637	3.7	3.5	3.6	4.3	4.6	3.9	3.5	348	3.6	843	49	49	47
5.6	6.9	352	343	355	4.6	3.6	3.0	345	337	337	809	833	2.2	2.0	3.8
X	7.9	10	231	348	606	607	610	652	617	614	841	52	50	2.0	2.5
8.9	10	10	187	192	205	668	653	625	602	815	798	49	51	50	49
X	×	×	×	23	25	11	11	24	236	×	×	45	45	46	45
×	×	×	×	24	CONSE	25	25	21	×	×	×	×	×	46	45
X	X	X	X	24	24	at 04	23	16	X	×	X	×	×	×	×
×	×	×	×	10	10	Kot)	521	14	×	×	×	×	X	X	X
X	×	×	×	×	10	24.	ight o	18	13	×	×	X	×	×	×
X	×	×	×	×	10	24	24 2300 158200 158200 15821 23	neio	19	×	×	×	X	×	×
X	X	X	X	X	X	24	24	Dill ed	X	X	X	×	X	×	×

THE COURTLOUGH VACIEY.

Figure A.3: Maps showing (a) cell permeability (m/d) and (b) cell transmissivity (m²/d) used in the numerical model. The 'x' represents inactive cells in the model.

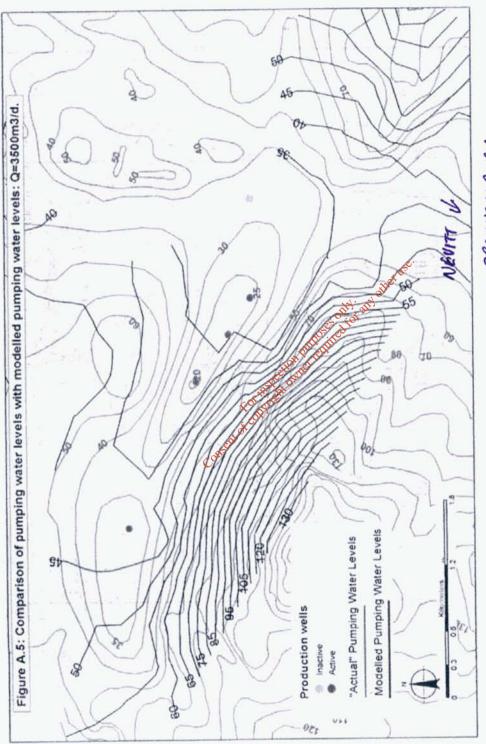
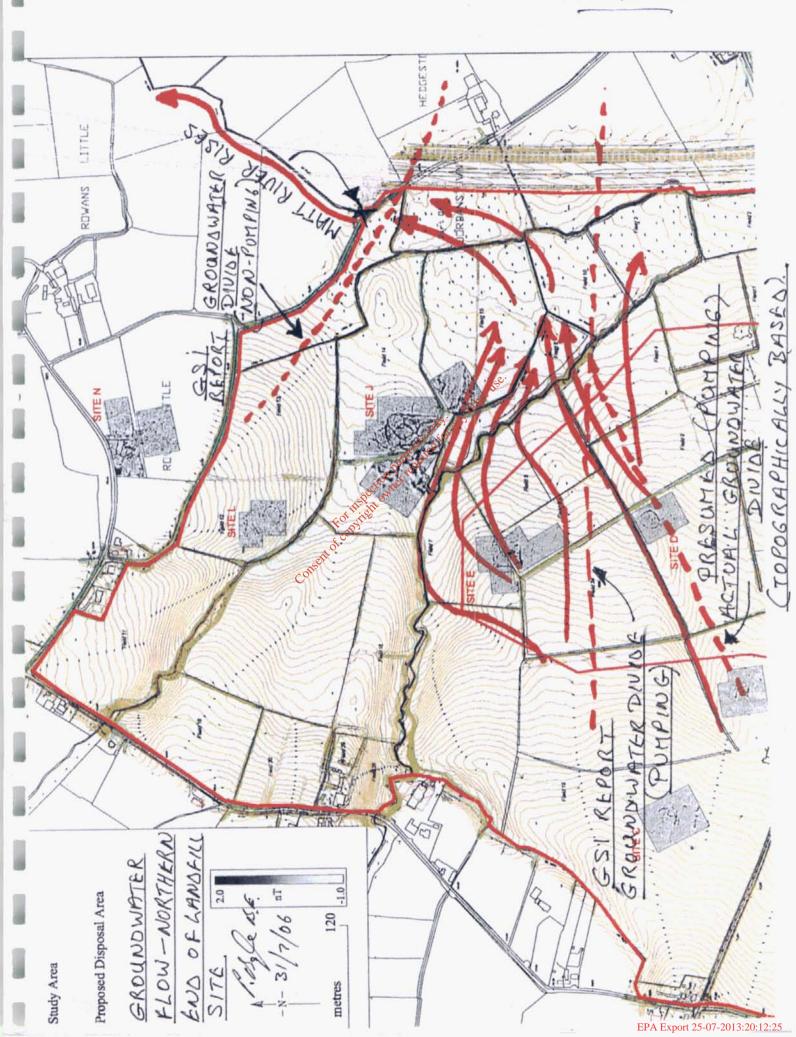



Figure A.5: Comparison of modelled and actual pumping water levels.

GROUNDUATER DINIOE

47

FIGURE 22

6. The Threat to the Bog of Ring Public Water Supply Source through the Bedrock beneath the Landfill Site.

The proposed landfill is partially sited on the Loughshinny Formation – the same rock formation which contains the Bog of the Ring Water Supply (Figure 2). The landfill site is connected to the Water Supply through a syncline in the Loughshinny Formation underlying the Hill of Knockbrack (Figure 1, Geological Cross Section A-A")

As the Bog of the Ring wells are directly down-gradient of the landfill through this syncline, pollution of the water supply is inevitable, depending largely on the unknown value of the permeability of the Loughshinny Formation in this underlying rock feature. But it is merely a question of time.

7. The Landfill Footprint Location beneath the Groundwater Table Contravenes the EC Groundwater Directive.

The landfill is sited partly below and partly above the groundwater level. Thus some leachate will enter the groundwater. It is accepted that no landfill can be guaranteed not to contain at least some 'List 1' and 'List 2' poisonous substances. "Because many of the listed substances are contained in landfill leachate, pressure mounted for an end to dilute and disperse landfill" – page 246, Introducing Groundwater, Michael Price, Second Edition, published by Taylor and Frances, Abingdon.

Thus any landfill sited in groundwater will contravene the EU Groundwater Directive. Such a landfill location is not allowed, for example, in the UK for this very reason. Other EC countries similarly forbid it.

8. The Longterm Loss of the Aquifer as a Future Resource

Given the very long period of time that constituents of leachate can exist at dangerous concentrations, and the inevitable breakdown of the protection system over time the total loss of the Regional Aquifer both as a potential public water supply and as a source of water to the Horticultural Industry is inevitable. Such an outcome is not acceptable and an alternative site must be sought.

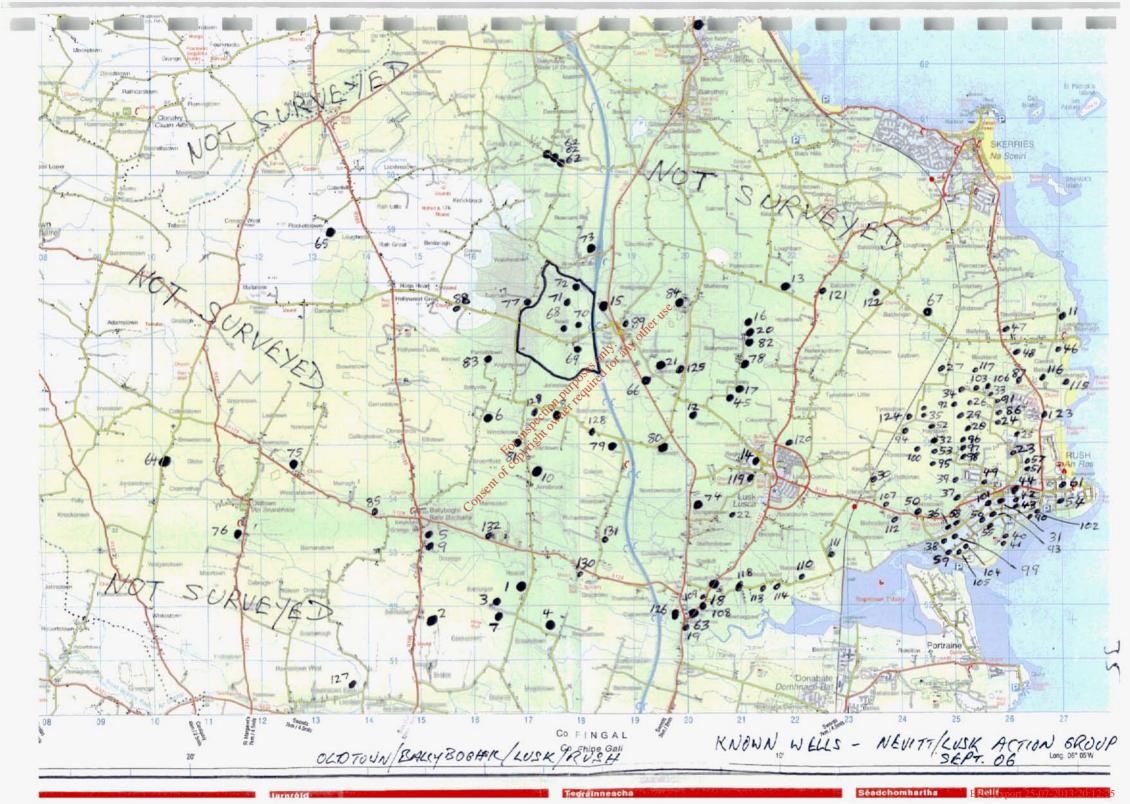
We suggest an offshore site at the new deep water port to be built at Bremore in the manner of the Singapore landfill at Semakau.

Conclusion

- For a Locally Important Aquifer and a Vulnerability of High this landfill
 would have a Matrix Response rating of R3, not acceptable given the
 availability of an alternative site. The decommissioning of Gormanston
 Military Airfield opens up the possibility of a remote offshore site at a
 proposed deepwater port at Bremore.
- For a Regionally Important Gravel Aquifer the Response is R4.
- For a Regionally Important Fissured Rock Aquifer the Response is R4.
- For a Public Water Supply the Response is R4.
- For a Source of water to the Horticultural Industry the Response is R4.

Signed,

Patrick Boyle, B.E.


Paulon White.

Declan White, B.Sc.Eng.

APPENDIX

Horticultural Borehole Data and Photographs

Consent of copyright owner required for any other use.

8/89/2006

Dunnes Drilling Services Ltd.

01/08/2006 14:38:01

Wells in Townland BALLYBOUGHAL With Depths (Mts) Between 0 And 9999999 And Yields (GPH) between 0 And 9999999

							Steel	PVC		Donth
Log No	Date	Customer	County	Townland	Yield GPH	Depth M	Casing	Casing	Diameter	Depth to rock
1 1962	25/05/2000	Bergin Tim Ballyboughal Sword	DUBLIN s Co. Dublin	BALLYBOUGHAL	25000 ≥	115.82	12.19	0	200	7.62
2 2371	24/11/2000	Farmvale Skidoo Farm Yard E	DUBLIN Ballyboughal Co.	BALLYBOUGHAL Dublin Aidan Ryan	500 (builder)	121.92	92.97	0	150	21.37
3 2718		50-80gph at 304ft. Garrigan David Baldurgan house Ba	DUBLIN	BALLYBOUGHAL	2500	137.16	24.38	137.16	150	21.34
4 3584	12/05/2006	Water at - 270, 410 Weldon Brian Ballyboughall Co Du Water at 150 & 200 Donovan Gerry Ballyboughal Co Du Install rubber seal of Hoey Gabriel Ballyboughal Co. Do 174ft of 8" & 14ft of Garrigan David Baldugan House Ba	- 450ft in broker DUBLIN ublin	parts. Chlorine BALLYBOUGHAL	1200	121.92	37.49	0	200	30.48
5 4556	25/06/2003	Water at 150 & 200 Donovan Gerry Ballyboughal Co Du	ft DUBLIN Iblin	BALLYBOUGHAL	1460°	ited 85.34	6.1	85,34	150	3.66
6 4613	11/09/2003	Install rubber seal of Hoey Gabriel Ballyboughal Co. Do	on PVC at 25ft. 1 DUBLIN ublin	Bag bentonite grou BALLYBOUGHAL	t + 1 gallon c	hlorine 54.86	53.03	54.86	150	0
7 4810	02/06/2004	174ft of 8" & 14ft of Garrigan David Baldugan House Ba	12". Chlorine DUBLIN allyboughal Co D	BALLYBOUGHAL Jublin Con	1500	146.3	24.38	0	150	12.19
B 4991	13/12/2004	No PVC Installed. 1	DUBLIN	nstalled BALLYBOUGHAL		109.73	67.06	76.2	200	0
9 5359	16/08/2005	1 gallon of chlorine Donovan Gerry Ballyboughal Co Du	DUBLIN	BALLYBOUGHAL	400	76.2	30.48	76.2	150	22.86
/Ø 2E+06	08/12/1994	Cooney Liam Annesbrook Ballybo	DUBLIN oughal Co. Dubli		1000	45.72	29.26	35,05	150	0
1.1		TIL TOCK AL 95IL. LIF	ing very ught. S	oft rock with good v	valer.					

01/08/2006 14:38:17

Wells in Townland LUSK With Depths (Mts) Between 0 And 9999999 And Yields (GPH) between 0 And 9999999

	Log No	Date	Customer	County	Townland	Yield GPH	Depth M	Steel Casing	PVC Casing	Diameter	Depth to rock
//	3120	26/06/2001	McGuinness Johnny Loughshinney Lusk	DUBLIN Co. Dublin	LUSK	2500	121.92	15.85	121.92	200	14.02
/2	3258	09/05/2002	Water entry at 120 Llywellyn David Lusk	& 240ft. Roo DUBLIN	k broken 275 LUSK	ift no change in water n 1080	60.96	36.58	60.96	150	21.34
13	3486	03/07/2003	Thorne Vincent Man O War Lusk C	DUBLIN o Dublin	LUSK	2000	109.73	6.1	109.73	150	3.05
14	3563	14/02/2006	Water at 40 + 160f Carroll Produce The Green Lusk Co	DUBLIN	+ Chlorine ins LUSK	stalled 7000	1 91.44 14 my diffe	13.72	91.44	200	7.62
1.	5 3601	23/03/2006		DUBLIN	out in casing w LUSK	vith bentonite pellets 6000 nstalled rotality 10000 000 gpho Water at 270 -	iled 91.44	16.46	89.92	150	0
16	4742	30/08/2004	PVC stopped at 29 Country Crest Man of War Lusk C	DUBLIN	e & chlorine in LUSK	nstalled gettomer For the Agricult 10000	91.44	44.5	0	150	42.67
,	7 5366	08/09/2005		DUBLIN	r at 200ft - 50 LUSK	000 gpho Water at 270 -	- 290ft - 68.58	56.39	68.58	150	30.48
10	8 87300	01/01/1989	Well No 2 - Roc Marion Nurseries Laddy Dejong New	DUBLIN	LUSK	Water at 200 & 210ft. 7000	Chlorine 48.76	10.36	48.76	0	0
19	125400	18/07/1995	Butterley Niall Lusk Co. Dublin	DUBLIN	LUSK	6500	V 103.5	12	103.5	200	0
2	o 128100	31/08/1995	Hoey Michael Coun Man of War Lusk (DUBLIN Co. Dublin	LUSK	20000	91.5	44.2	91.5	200	0
			Rock very broken			المال	080				

Dunnes Drilling S	ervices Ltd.
--------------------------	--------------

01/08/2006 14:38:17

Wells in Townland LUSK With Depths (Mts) Between 0 And 9999999 And Yields (GPH) between 0 And 9999999

	Log No	Date	Customer	County	Townland	Yield GPH	Depth M	Steel Casing	PVC Casing	Diameter	Depth to rock
21	130400	08/09/1994	Leonard Thomas	DUBLIN	LUSK	1800	36.58	6.7	36.58	125	0
21			The Five Roads Lu	sk Co. Dublin							
22	198600	18/01/1995	Water at 100ft McLoughtan John Lusk co. dublin	DUBLIN	LUSK	500	47.5	24.38	47.2	150	0
			Water at 130ft.								

2300.

For its petion purposes only any other

01/08/2006 16:43:53

Wells in Townland RUSH With Depths (Mts) Between 0 And 9999999 And Yields (GPH) between 0 And 9999999

	Log No	Date	Customer	County	Townland	Yield GPH	Depth M	Steel Casing	PVC Casing	Diameter	Depth to rock
23	1449	16/12/1998	Monks Colm Rush Co. Dublin	DUBLIN	RUSH	200	73.15	30.5	73.15	150	24.3
24	1573	22/03/1999	Water at 210 to 230 Archer Camelis Rush Co. Dublin	oft. DUBLIN	RUSH	900	115.8	17	0	150	15.2
25	1922	20/10/1999	Water at 200ft 300g Nugent Joe The Avenue Palmer	DUBLIN	RUSH Co. Dublin	1000	54.86	36.58	54.86	150	21.34
2	1963	29/05/2000	1 bag bentontie, 1 g Farrell Adrian Rush Co. Dublin	gallon chlorine DUBLIN	Install 7ft of 10" RUSH	starter pipe. Pull 200	7ft 42.6 pt 106.68	22.86	42.67	150	18.29
27	2077	12/07/2000	First water at 90ft. Fagan Paudge Loughshinney Rush	DUBLIN	onite, chlorine RUSH	10000°	106.68	18.29	106.68	200	15.24
28	2887	17/01/2003	Hit water at 80ft & 1 Flynn Martin Kemure Park Old R	DUBLIN	RUSH	d 310 1 110 1800	137.16	362	O	150	0
2	9 3047	02/11/2000	29ft of 12"; 154ft of OHare Paul Kenure Park Rush	DUBLIN	RUSH CONTROL	260ft and 360ft a 2000	and 48.77	44.19	44.2	150	o
3	3110	01/06/2001	Install 35ft of 8" sta Ruirok Michael Rush Co. Dublin	rter pipe. Pull DUBLIN	20ft of 8" starter RUSH	oipe. Chlorine 2000	9144	51.82	91.44	150	48.76
3	3383	19/02/2004	Chlorine Corr Liam Corrs Lane Rush C	DUBLIN to Dublin	RUSH	2000	36.58	30.48	36.58	150	15.24
3=	5223	20/05/2005	1 gal of chlorine ins Flynn Martin Hayestown Rush C	DUBLIN	RUSH	4000	✓ 39.62	36.58	36.58	200	18.29

Wells in Townland RUSH With Depths (Mts) Between 0 And 9999999 And Yields (GPH) between 0 And 9999999 01/08/2006 16:43:53

PVC Diameter to rock	8 76.2 150 6.1	0 0 0 0	2 60.96 0 0	6 91.5 200 9	0 103.6 200 0		8 97.53 200 0	97.53 200	97.53 200 47.24 150	97.53 200 47.24 150 0 200	97.53 200 47.24 150 0 200 0 200
Steel Depth M Casing	76.2 24.38	54.85 0	60.96 7.62	91.5	103.6 0		97.53 11.58	97.53 11.58 11.58 11.58 11.58	11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58	11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58	11.58 11.58 108.68 108.68 108.68 108.75 11.58
Yield GPH	1000	1200	3000	Consent	to his	ect	ONIT COLI	3000 Fedure Oose	SH 4000 7.53 11.58 SH 3000 106.58 8.53	3000 3000 350	Milling sand. 3000
Townland	A RUSH	ed RUSH	RUS	R	RU		RU	RU RU	RU RU an 129ft to a RU St well	RU RU an 129ft to a Ru St well Ru	RU RU St well RU RU RU RU RU RU RU
Customer County	Gilmartin Mark DUBLIN Kernure Park Rush Co Dublin	Bentonite & chlorine installed Archer Nick DUBLIN Rush Co. Dublin	Ryan Luke DUBLIN Rush Co. Dublin	Weldon Jackie DUBLIN Lower Church Road Rush Co. Dublin	Plynn Paul DUBLIN Rush Co. Dublin		Deepened well 80ft to 340ft Langan David DUBLIN Chanel road Rush co. dublin	Deepened well 80ft to 340ft Langan David DUBLIN Chanel road Rush co. dublin Soft broken black rock Hegarty Joan DUBLIN Rush Co. Dublin	Deepened well 80ft to 340ft Langan David DUBLIN RUSH Chanel road Rush co. dublin Soft broken black rock Hegarty Joan DUBLIN RUSH Rush Co. Dublin Pump should not be lower than 129ft to avoid lifting sand Kelly Mickey DUBLIN RUSH Golf road Rush Co. Dublin 1st well	Deepened well 80ft to 340ft Langan David DUBLIN Chanel road Rush co. dublin Soft broken black rock Hegarty Joan DUBLIN Rush Co. Dublin Pump should not be lower than 129ft Kelly Mickey DUBLIN Golf road Rush Co. Dublin 1st well water at 200ft to 225ft Kelly Mickey DUBLIN Golf Road Rush Co. Dublin 2nd Well	Deepened well 80ft to 340ft Langan David DUBLIN Chanel road Rush co. dublin Soft broken black rock Hegarty Joan DUBLIN Rush Co. Dublin Pump should not be lower th Kelly Mickey DUBLIN Golf road Rush Co. Dublin 1s water at 200ft to 225ft Kelly Mickey DUBLIN Golf Road Rush Co. Dublin 2 not enough water in well Thorne Vincent DUBLIN Rush Co. Dublin No. 1
Date	05/08/2005	01/01/1986	\$\times 76500 01/01/1988 Ryan Luke \$\times 76500 01/01/1988 Ryan Luke	00 19/05/1995 Wel	7 166000 26/10/1995 Flynn Paul Rush Co.		18/06/1996	18/06/1996	18/06/1996 20/06/1996 13/10/1993	18/06/1996 20/06/1996 13/10/1993	18/06/1996 20/06/1996 13/10/1993 14/10/1993
Log No	33 5354	34 42200	35 7650	117100	7 16601		163400		9 169400 99 169500 6 183500	\$ 169400 \$1 169500 6 183500 -/ 183600	

Dunnes	Drilling	Services	I fd
Dullies	Dillilling	OCI VICES	LIU.

01/08/2006 16:43:53

Wells in Townland RUSH With Depths (Mts) Between 0 And 9999999 And Yields (GPH) between 0 And 9999999

L	Log No	Date	Customer	County	Townland	Yield GPH	Depth M	Steel Casing	PVC Casing	Diameter	Depth to rock
	240000	20/10/1992	Thorne Matt	DUBLIN	RUSH	2000	115.82	12.19	115.82	150	0
			Rush Co. Dublin								

J020.

Consent of copyright owner residents.

5365 06/09/2005 Hartford Colin

Balough Lusk Co Dublin

Well No 1 - Water at 205 & 225ft - Chlorine installed

Date

Customer

County DUBLIN

Townland

RATHMOONEY

01/08/2006 16:40:32

Wells in Townland rathmooney With Depths (Mts) Between 0 And 9999999 And Yields (GPH) between 0 And 9999999

Steel

Casing

Diameter 150

Depth to rock 30.48

Yield GPH Depth M 200 76.2 Casing

Consent of copyright owner heartifed first any other use.

01/08/2006 16:43:27	s in Townland LOUGHSHINNEY With Depths (Mts) Between 0 And 9999999 And Yields (GPH) betw
rvices Ltd.	th Depths (Mts) Between
Dunnes Drilling Services Ltd.	unland LOUGHSHINNEY Will
	s in Tox

	666	PVC Casing Diameter				150	
	And 99998	PVC	0			83.82	
	between 0	Steel Casing	15.84			10.97	
43:27	(GPH)	Depth M	122			83.82	
01/08/2006 16:43:27	9999 And Yie	Yield GPH Depth M	800		1,000gph	200	
	Wells in Townland LOUGHSHINNEY With Depths (Mts) Between 0 And 9999999 And Yields (GPH) between 0 And 9999999	Townland	LOUGHSHINNEY		Water at 140 - 150ft 200gph 260 - 280ft 500 - 1,000gph	LOUGHSHINNEY	Oublin
Dunnes Drilling Services Ltd.	With Depths (Mts	County	DUBLIN	usk Co. Dublin.	at 140 - 150ft 200g	Jo DUBLIN	s Farm Loughshinney Co. Dublin
ines Drilling	OUGHSHINNEY	Customer	A. 1303 19/02/1998 Butterley Patrick	Loughshinney Lusk Co. Dublin.	8" well. Water:	08/07/2002 Farmvale / Bobby Jo DUBLIN	Skerries Farm L
Dur	Townland	Date	19/02/1998			08/07/2002	
	Vells in	Log No	1303			3273	
	5	د	A	2	2	44	
223	9*01	4					

Depth to rock 7.62

5.48

Consent of copyright owner required for any other use.

14ft of 8" and 22ft of 6".

DUNNES DRILLING SERVICES LTD + Ø18433367

01/08/2006 16:43:35

Wells in Townland LOUGHSHINNY With Depths (Mts) Between 0 And 9999999 And Yields (GPH) between 0 And 9999999

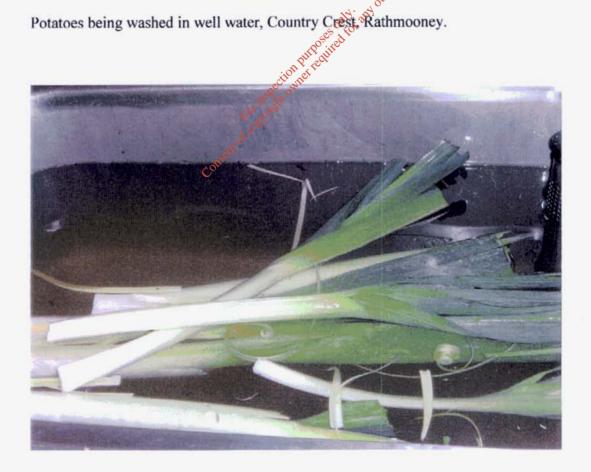
Log No	Date	Customer	County	Townland	Yield GPH	Depth M	Steel Casing	PVC Casing	Diameter	Depth to rock
182200	03/09/1993	Thorn Matt	DUBLIN	LOUGHSHINNY	10000	V 91.44	8.53	91.44	150	D

Washing Plant Loughshinny Co. Dublin

Someon of copyright owner required for any other use.

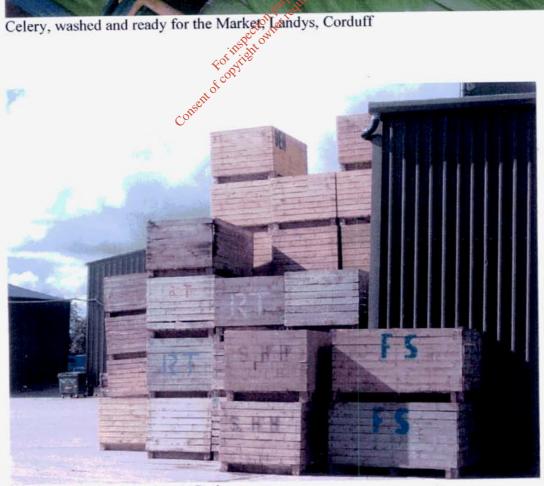
01/08/2006 16:43:53

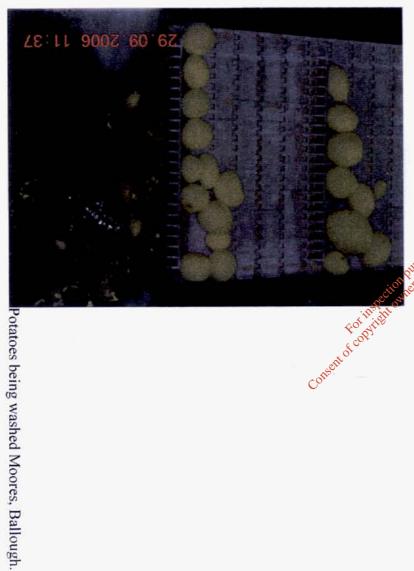
Wells in Townland RUSH With Depths (Mts) Between 0 And 9999999 And Yields (GPH) between 0 And 9999999


Lc	og No	Date	Customer	County	Townland	Yiek	GPH	Depth M	Steel Casing	PVC Casing	Diameter	Depth to rock
49	244	01/01/1984	Flynn Jim Rush Co. Dublin	DUBLIN	RUSH		1200	42.67	19.5	24.38	0	0
50	314	23/07/1996	Jones Christopher Rush Co. Dublin	DUBLIN	RUSH		3600	42.67	27.43	42.67	150	0
51	315	25/07/1996	Archibold james 56 Main Street Rus	DUBLIN h Co. Dublin	RUSH		540	109.7	10.66	109.7	150	0
52	594	20/01/1997	Butterley William Haystown Rush Co.	DUBLIN dublin	RUSH		2000	61	10.97	61		0
53	595	21/01/1997	Water at 100/180ft. Butterley william Channel Road Rush	DUBLIN	RUSH		1000	es of 73.150	15.24	0		0
54	642	06/03/1997	water at 160 180ft. Harford Noel Old Barrack Rd. Ru	DUBLIN	RUSH	S	4000 actionnel	61 73.150 61 91.5	54.25	0	150	0
55	643	12/03/1997	8" cassing 40ft 6" of Archer Camillus Old Barrack Rd. Ru	DUBLIN	ted 6" casing RUSH	Consent of copyri	6000	91.5	85.03	0	150	0
56	645	20/03/1997	56ft 200mm Casing Morris Leonard Willobank South St	DUBLIN		Couren	900	91.5	11.25	91.5	150	0
57	964	23/04/1996	200mm Casing 376 Farrell Dessie Rush Co. Dublin	ft. 6" casing 60 DUBLIN	ft. RUSH		1500	66.35	42.67	66.35	200	o
58	1409	17/07/1998	Weldon Jackie Lower Channell Ro	DUBLIN and Rush Co.D	RUSH Jublin		2000	109.72	11.5	109.72	200	10
59	1448	11/12/1998	Water at 220/295 at Butterley Liam Rush Co. Dublin	and 318ft. DUBLIN	RUSH		2000	42.67	12.8	42.67	150	11

J4740

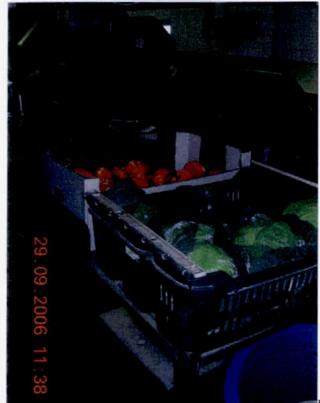
Well	Name	Townland	Capacity	Notes
60	WAVIN	BALBRIGGAN	N/K	INDUSTRIAL
61	P J JONES	RUSH	6000 GPH	
62	BOG OF RING	RING COMMONS	33000	PUBLIC
63	N BUTTERLY	LUSK	6500	
64	S DENNIGAN	OLDTOWN	10000	PROCESSOR
65	M FLYNN	NAUL	5000	
66	T MOORE	BALLOUGH	10000	PROCESSOR
67	J ROONEY	LOUGHSHINNY	N/K	ARTESIAN
68	EIS	NEVITT	4000	TEST WELL
69	EIS	NEVITT	6000	"
70	EIS	NEVITT	3100	cc
71	EIS	NEVITT	N/K	ARTESIAN
72	EIS	NEVITT	N/K	44
73	EIS	NEVITT	N/K	cc
74	JLANDY	CORDUFF	2000	
75	P KEOGH	OLDTOWN	10000	
76	S MC'CUSKER	OLDTOWN	3 0000	ARTESIAN
77	T BRODERICK	TOOMAN	30et 1000	ARTESIAN
78	J MURRAY	BALL YMAGUIRES	6000	TWO WELLS
79	J ARCHBOLD	BALLOUGH SON	N/K	
80	P WHITE	BALLOUGH SO TEN	N/K	
81	T DOCKRELL	WIMBI FTOWN	N/K	
82	M HOEY	OLDTOWN OLDTOWN TOOMAN BALLYMAGUIRE BALLOUGH WIMBLETOWN BALLYMAGUIRE PARNELSTOWN OBERSTOWN	4500	3 RD WELL
83	N/K	PARNELSTOWN	N/K	
84	PRISON	OBERSTOWN	N/K	
85	ROGERS	BALLYBOUGHILL	N/K	POTATOES
86	D MCNALLY	KENURE	3000	1011110110
87		KENURE	5000	
88	O'CONNOR	FIVE ROADS	N/K	
89	F FARREN	RUSH	2000	
90	B HAYES	KENURE	4500	
92	M MCCANN	KENURE	4000	
93	J MCGUINNESS	SUNDRIVE	6000	
94	P MCGUINNESS	HEYESTOWN	1500	
95	P CARRICK	TETESTO WIT	6000	
96	MCNAMARA	44	6000	
97	M MCGUINNESS	66	5000	
98	M MCGUINNESS	- 44	6000	
99	T BUTTERLEY	CHANNEL	1800	
100	N LEONARD	HEYESTOWN	6000	
101	P FARREN	SUNDRIVE	3500	
102	K CARRICK	SHORE	2000	
102	M FOLEY	KENURE	8000	
103	L ARCHER	RUSH	2500	
104	LARCHER	1.0011		

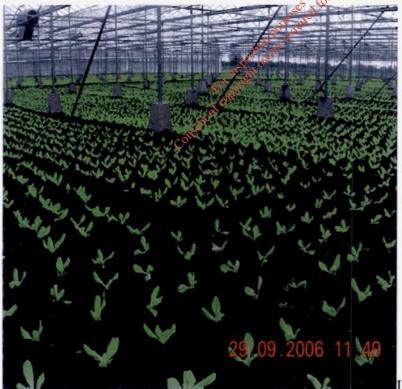

105	P KERRIGAN	RUSH	500	
106	J FARRELL	HEYESTOWN	3000	
107	J FARRELL	WHITESTOWN	6000	
108	J BUTTERLEY	LUSK	4000	
109	J BUTTERLEY	LUSK	6000	
110	B LEONARD	LUSK	1500	
111	PBUTTERLEY	LUSK	2800	
112	C JONES	LUSK	8000	
113	F RUIGROK	LUSK	2000	
114	P RUIGROK	LUSK	2000	
115	J FARRELL	DRUMANAGH	2000	
116	B JONES	CAIRN HILL	1500	
117	N ARCHER	HEYESTOWN	2000	
118	M BUTTERLEY	WBD LUSK	1500	
119	D MCNALLY	LUSK	3000	
120	N LEONARD	LUSK	3500	
121	B LEONARD	SKERRIES	2000	
122	D BOYLAN	SKERRIES RUSH HEYESTOWN OBERSTOWN LUSK ROLESTOWN BALDRUMMAN JOHNSTOWN GRACEDEU RICHARDSTOWN CHAIRMAN IFA	2000	
123	J FYNNES	RUSH	3000	
124	N LEONARD	HEYESTOWN	3000	
125	ROONEYS	OBERSTOWN AND AND	1000	
126	ESSO	LUSK esolio	1800	
127	R ROONEY	ROLESTOWN	1000	
128	NREILLY	BALDRUMMAN	N/K	FARMER
129	P JENKINSON	JOHNSTOWN	N/K	GREENHOUSES
130	J BYRNE	GRACEDEU	N/K	FARMER
131	M TULLY	RICHARDSTOWN	N/K	HORTICULTURE
132	D ROGERS	CHAIRMAN IFA	N/K	POTATOES
		GRACEDSEU RICHARDSTOWN CHAIRMAN IFA		
		Co		



Leeks being washed in well water, Kerrigans, Annsbrook.

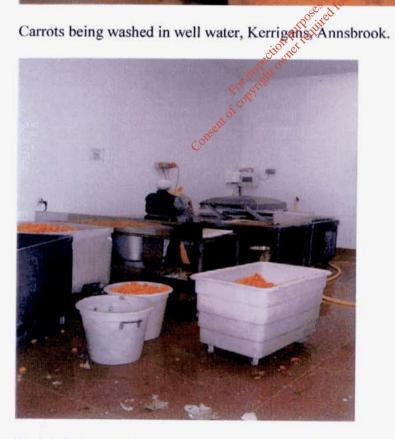
Potato crates, Country Crest, Rathmooney.


Potatoes being peeled at Moores, Ballough

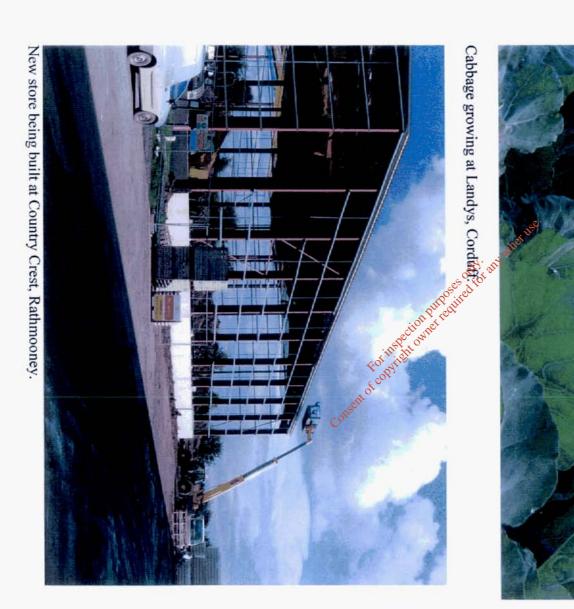

29.09.2006 11:37 Potatoes being sorted, Moores, Ballough.

Consent of convining to owner.

Potatoes ready for delivery. Moores, Ballough



Produce ready for the Market, Moores, Ballough.



Lettuce, Landys, Corduff.

Carrots being washed and prepared, Kerrigans, Annsbrook.

