

Environmental Protection Agency 22 NOV 2005

RPS Consulting Engineers, Lyrr Building, IDA Business & Technology Park Mervue, Galway, Ireland T. +353 (0)91 534 100 F +353 (0)91 534 199 E ireland@rpsgroup.com W www.rpsgroup.com/ireland

Office of Licensing & Guidance, EPA Headquarters, P.O. Box 3000, Johnstown Castle Estate, Co. Wexford.

21st November 2005

Our Ref: MGE0031LT0031GAL

File Ref: 340

Re: Killarney Waste Disposal - WL217-1

Dear Sir/Madam,

We refer to the abave Waste Licence Application and to discussions with the Inspector regarding the proposed vortex dryer at the facility. We now attach information in Tables E1 (ii) and (iii) on estimated air emissions from the proposed vortex dryer as provided by the supplier Gleneden Ltd. These emission limits are generally based on TA Luft 2002.

It is proposed to carry out at least *two* monitoring events when the vortex dryer is operational of both the untreated and treated air. If the results are elevated above the proposed emission limits, mitigation measures will be installed to attain these emission limits.

Odourous compounds (H₂S and other reduced sulphur compounds) are oxidised in the turbulent high temperature mixing zone of the tryer. Air discharged from the vortex dryer will be treated in an air filter prior to discharge to atmosphere.

We are providing this information on behalf of Killarney Waste Disposal.

We trust this is satisfactory, but please do not hesitate to contact the undersigned if you have any queries.

Yours sincerely,

Siobhan Aherne

Senior Project Scientist

and the second of the second o

For and on behalf of RPS Consulting Engineers

sa/wm อาสาเลยครับ เกลา

cc. Sean Murphy, KWD

Encl

Dublin | Belfast | Cork | Galway | Limerick | Carlow | Letterkenny

EPA Export 25-07-2013:18:13:12

ARE DESCRIPTION ARE RECOMPLETE

300

TABLE E.1(ii) MAIN EMISSIONS TO ATMOSPHERE (1 Page for each emission point)

A5
Vortex Dryer
In Material Recovery Building
936498 E 939287 N
350mm 6m
Early 2006

Characteristics of Emission :

		oses of for air	
Average/day	m³/d	Maximum/day	m³/d
Maximum ratelhour	7,200 m 7 h of	Min efflux velocity	m.sec ⁻¹
	at of cold,		•
Temperature	Conse °C(max)	°C(min)	°C(avg)
For Combustion Source	ces:		
Volume terms express	ed as :	t. □ dry.	%0*

(iii) Period or pe seasonal var

Periods of Emission (avg)min/hrhrldayday/yr

TABLE E.1(iii): MAIN EMISSIONS TO ATMOSPHERE - Chemical characteristics of the emission (1 table per emission point)

Emission Point Reference Number: <u>A5</u>

Parameter	Prior to treatment(')			Brief	As discharged'''						
	mg/Nm³		kg/h		description	mg/m³		kg/h.			kgiyear
	Avg	Max	Avg	Max	of treatment	Avg	Max	Avg	Max	Avg	Max
'articulates		-				any other use.	20				
rmmonia					Vortex Drying Process	anyou	20		0.10		
norganic gaseous hlorine compounds inder 5.2.4 Class III idicated as hydrogen hloride				Ŷ	Process of and open of the control o		20		0.10		
Organic substances if an Imission reduction ratio of 90% is observed to be idicated as total carbon	-		·	Consent of			20				
>dour-intensive ubstances							500 GE/m ³				
Bioaerosols otal fungi (includes spergillus fumigatus) &	- 5, 	<u></u>					1,000-5,000 5,000-10,000 CFUm ³				

nesophillic bacteria	A BA Annual Section 1]
ન ₂Տ '						
	restant particular			3 ng/m³	5 g/hr	
√lethyl Mercaptans				0.01 ppm		
	- IIII					
				ŧ		
	· · ·					
	the same of			t		
	146		any other use.			
			nervie			
•			of other	,		
	e ka juk	only	Mr.			
		oses di		. 1		
		outposes only		ı		

1. Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E. 1(ii) unless clearly stated other wise.