Consent for inspection purposes only any other use.

APPENDIX 14 SOIL AND HERBAGE MONITORING

Prepared by: South Western Environmental Services

lecember 2000

EPA Export 25-07-2013:17:54:44

14.1 Introduction

In order to determine the potential impacts of the proposed development on soil and herbage in the vicinity through atmospheric emissions from the stack or soil contamination through within a 5km area surrounding the proposed plant site. Sampling was carried out over a 2day period in June 2001 at 26 sampling locations, five of which were located on the proposed development site. A systematic sampling pattern was employed for selecting soil and herbage sampling locations with grid pattern and spacing dependant on distance from site as per ISO 10381 Part 5 Version 6 – *Guidance on the procedures for the investigation of urban and industrial sites with regard to soil contamination.* This sampling procedure was used in order to ensure complete and unbiased coverage of the surveyed area. However, because of the requirement to collect both soil and plants at each sampling point, and the necessity to avoid buildings, roads, powerlines etc, it was not always possible to adhere to a rigid compass-based grid pattern.

> Baseline concentrations from a wide range of chemical parameters (heavy metals, cations and anions) were analysed from a total of 26 sampling locations for both soil and herbage samples. I m core samples were taken at the proposed development site at 5 sampling locations for VOC's, Dioxins/Furans, pesticides PAH's and PCB's respectively. Each soil core sample was logged with regard to lithological profile. Sampling locations are outlined in Table 14.1 and Fig 14.1. Samples were analysed for the suite of parameters outlined in Table 14.2. Any future monitoring requirements car, be referenced against these baseline environmental monitoring results. While atmospheric emission monitoring data indicates that no significant deposition will occur as a result of the development, baseline monitoring provides an environmental datum against which any future monitoring regime can be compared.

14.2 Sampling Methodology

Soil materials were sampled as per BS DD 175 1988 (1992) Code of Practice for the identification of potentially contaminated land and its investigation and as per the UK HMIP protocol. For all sampling locations the following information was collected

- Identification of the area by OS reference (8 figure)
- Photographs and details of sampling site to ensure future samples can taken from the same location.

Prepared by: South Western Environmental Services

- Details on land use and use of herbicides/ pesticides to judge whether the use of chlorinated pesticide/herbicide usage may have lead to significant inputs of dioxins in the soil.
- Details on soil characteristics based on archaeological soil recording charts (ref http://www.artacorn.com/soil.html), (Figure 14.2) were recorded for each sampling site including hardness, soil type and any details of color or possible contamination
- All plant samples, including weeds and arable crops, were inspected visually for evidence of pest disease, aerial pollution and nutritional imbalance.

Obtaining the Samples

REFERENCE COPY

- All samples were taken on land whi i was not subject to swage sludge spreading or within 10 stack heights of any other combustion source. All sample sites were at least 10m away from overhanging cables to preven sample contamination from heavy metals
- Where the sample grid located potential sample sites in arable land, this site was
 discounted and an alternative site located as the mixing caused by ploughing will dilute
 any input of pollutants
- 4 Using a soil corer five sub samples were taken from a one meter square area at depths of up to 0.3m. The top 10cms of the sample containing roots was discounted and core samples from approximately 10-20cms were taken from each point of a VV shape using a soil corer.
- Core samples with an approximate weight of 200g were taken from each point of the W
 and the five sub-samples were combined to make one composite. This was wrapped in
 heavy duty polyethylene begs and sent to laboratory for analysis.
- Five sub-samples of surface vegetation were taken in a similar manner using stainless steel scissors, taking care not to cross contaminate the samples with soil material.

con

Visual examination of the plant foliage was also carried out since chemical analysis of the foliage for aerial pollutants is not always conclusive. Pollutants are rapidly absorbed within other compounds and the individual elements of the pollutant e.g. nitrogen and sulphur are usually already present within the plant in large concentrations. Table 14.3 outlines typical symptoms of air pollution injury an vegetation. Samples were inspected for symptoms of air pollution injury, specifically by sulphur dioxide, hydrogen chloride and nitrogen oxides.

Prepared by: South Western Environmental Services

Sample Site Selection

Sample sites were located on a grid basis as outlined in Fig 14.1. The grid was based on the following specifications to ensure all areas which may be impacted upon by the proposed development were included in the sampling area.

UCE COPY.	Site and site boundary -	6 sampling locations	5 on site and one at 0.1km
REFERENCE	0.50 km from site boundary-	8 sampling locations	N,S,E,W and at each grid corner
•	1km from site boundary -	4 sampling locations	at each grid corner
•	3.0km from site boundary -	4 sampling locations	at each grid corner
•	5.0km from site boundary -	4 sampling locations	at each grid corner

Where the sample grid site proved unsuitable (e.g. due to land usage, construction or other activities) the nearest most appropriate sample point was used as a substituted and the grid co-ordinates referenced.

All samples were stored in cooler boxes and returned to the laboratory within 24 hours of sampling.

Table 14.1 Outlines locations, vegetation characteristics, and general description of soil and herbage sampling.

Site Ref	From Proposed Plant Site boundaries	OS Grid Reference	General description of Land Use	Vegetation Characteristics	Soil Character -istics	Soll Profile at Depth Range 0-1m
S1 S2	On site Boundary SSW On Site Boundary SSE	263833 344028 CONSENT 263865 344010	Rough Grazing. Unmanaged. No evidence of fertiliser or pesticide use, has been landspread with poultry litter in field centre Rough Grazing. Unmanaged. No evidence of fertiliser or pesticide use	Grass pale, some evidence a yellowing in Grass pale, some evidence of yellowing in older leaves Nettles medium green	Compact clay. Soft peaty - sandy soil	 0-7cm: firm heavy clay. Overall colour olive brown to dark greyish brown K18 7-100cm: mixed very heavy clay-medium sand. Some laminations noted with coarse sand and siltier sand. Some mica noted. Reddish brown in colour K20 0-5cm: Root layer Firm. Clay K18 5-50cm: Soft topsoil. Clay silty with some mica noted 45-75cm: Soft K15 75-100: Firm coarse sand well sorted. E11 – H14 where iron oxide present
83	Site Boundary ESE	263972 344124	Rough Grazing. Some evidence of recent fertiliser	Grass pale, some evidence of yellowing in	Soft peaty - sandy soil	ND .

Prepared by: South Western Environmental Services

.

4

_				spreading in	older leaves		
				environs. Sample			
-				taken at verge			
	S 4	Site Boundary	263972	Rough grazing,	Mildew identified	Peaty	0-10cm: Root layer heavy clay
		NW	344124	poor quality,	on older foliage		10-40cm: Loose friable medium
				unmanaged. No	of grass weeds		mixed clay. L18
	~			evidence of			40-50cm: Mixed sandy K20
INCE CO	יץ			fertiliser or			interspersed with 1cm coarse
DEFERENCE				pesticide usage			laminae of clay. Greyish brown to
n							dark greyish brown
							50-70cm: oxidised medium to fine
							sand and sandy clay. Heavy. E11
	\$5	On Site		Peaty.	Some pest	Soft	0-30cm: Loose, K18
		NE		unmanaged no	damage, Mildew	waterlogg	30-50cm; Compact, very heavy
				evidence of recent	on older foliage	ed peaty	clay L20
					on one longo	soil	50-100cm: Waterlogged, Very
				use			compact well sorted M19.
							Presence of some humic material
	00	0.01	000767	Lighthy ground	Wood procion of		0-30cm: Eriable humus laver
	50	Q.ZKIT	203/3/	(occosional)	grass Some		Mived M14
		SVV	343973	(occasional).	grass. Some		20 60 cm; mixed sandy - day
-				Grass dominated	pest damage		Firm K11 110
					, 1 ^{50.}		CO. 100 cm; Veny compact clay
					ather		Nived and layer and avidiand
					the the		Mixed sand layer and oxidised
				¢.	Offer of or		clay E11 - K14
	S7	0.5km	264108,	Rough grazing	Dårk green in	Compact	ND
		SSE	343486	Unimproved	colour possibility	heavy	
				grasslando	of nitrogen	day. Lt4	
				possibly fertilised	application	-L18	
				in recent past			
	SBL	0.5km	264422,	Meadow	Healthy foliage	Compact	ND
		SE ·	344378	grassland.		heavy clay	
			TSell	Unfertilised		L19.	
			Cor			Mixed	
	S9	0.5 km	264622,	Silage. Heavily	Dark green	Very	ND
		E	344757	fertilised. Grass sp	foliage.	compact,	
				dominated	Suggestion of	heavy	
					nitrogen	clay. L18	
					application	:	
	810	0.5km	263432,	Silage. Fertilised.	. Suggestion of	Compact.	ND
		w	344205	Grass sp	nitrogen	Mixed clay	
				dominated	application	loam L16	
	S11	0.5km	263297,	Silage. May be	. Suggestion of	Compact,	ND
		NW	344812	fertilised in recent	nitrogen	waterlogg	
				past. Grass	application.	ed, very	
				dominated.	Healthy foliage	heavy	
					dark green in	clay.	
					colour	Mixed.	
						Small	
						quantities	
				ł			

Prepared by: South Western Environmental Services

						of sandK19	
-					Lisetter	Vee	ND
-	512	0.5km		Pastureland.	Healthy green	very	
		N			colour. Natural	compact	
					senescence on	heavy clay	
					older foliage	K19	
	\$13	3km	267124,	Grazed grassland	Medium green	Loam ,	ND
ENCE CU	-	NE	346924		healthy	friable L15	
REFEREN	S14	Skm	268697,	Poor quality	Some yellowing	Compact	ND
-		NE	348946	grazed grassland.	of leaves	clay loam.	
				No evidence of		L15	
				fertiliser usage			
-	516	5km	269703,	Rough grazing.	Poor dianay	Compact	ND
		SE	339622	Slurry spread in		poorly	
				Winter.	neat	sorted,	
					pour -	clay gritty	
						pebbles	
	817	5km	258827	Silone Fertilised	Dark green	Compact	ND
	517	SIA	307079	Unago, r crunacu	colour	Verv	
		311	321310		Suggestion of	heavy	
					nitrogen	clay iron	
					factilization	ovide rich	
					Neruisauon e.	VAIDE HOH.	
					thei	NI/	ND
	S18	3km	200870,	Rough grazing	vveed species of	Compact	ND
		sw	341059	c.	grass: Some	neavy	
				100 ⁵⁰	oest damage	clay.	
				Purcell		Sorted.	
				ction per t		tron oxide	
				SPer On		rich L17	
	S19	5km	259973,	Poor grazing. No	Yellowing of	Very	ND
		NW	348189	evidence of	older leaves	heavy	
			Ň	fertiliser usage		clay,	
			1501			pliable,	
			Cor			sorted.	
						Iron oxide	
						rich L17	
	520	1km	265043,	Silage. Fertiliser	Dark green	Compact,	NO
		WNW	345486	usage	colour.	heavy	
-					Suggestion of	clay,	
					nitrogen	interspers	
					fertilisation	ed with	
						sandstone	
						. Mixed.	
						K18	
	521	1km	264530.	Meadow. Grass sp	Healthy colour	Heavy	ND
		SSE	343514	dominated. No		clay.	
				evidence of		Compact.	
				fertiliser		L18	
	522	1km	262730	Waste ground	Poor quality	Compact	0-10cm: Root layer heavy clay
		SW	343038	Unfertilised noor	grassland and	heavy clay	10-30cm: Loose medium mixed
	l	414				,,	

Prepared by: South Western Environmental Services

				soil	weed	layered	clay. L18
					dominated.	with sand	30-70cm: Mixed sandy K20
					Some pest and	ranging	interspersed with 1cm bands of
					mildew damage	from	clay
						coarse -	70-100cm: sandy clay some fine
						fine silt.	silt. Heavy. K16
						Overall	
STE CI	γq					colour	
FEFERENCE						dark	
REI						brown	
						red	
		0.51	000000	Piless Fartilized	Dark groop	Cilty clay	ND
	\$23	0.5km	263886,	Sllage, Fertilised.	Dark green	loom	NB
		sw	344768		Colour.	Compost	
					Suggestion or	Compact.	
					nitrogen	К14	
					fertilisation		
	S24	1km	262773,	Waste ground.	Poor quality.	Compact	NO
		SE	344746	Unfertilised.	Some	Very	
					sensecence	heavy silty	
				с.		clay. L19	
•	S25	3km	260805,	Rough grazing.	Weed grass	Soft heavy	NO
		NW	347649	Grass sp	species 🦉.	clay.	
				dominated.	dominated 5	Friable.	
					offic	Poorly	
					mily and	sorted,	
				- Co	afor	peaty	
				JIP JI	er.	sandy	
				on Price		layers.	
				pectie where		K14	
	\$26	3km	260805	Silâge Fertilised.	Dark green	Light	ND
	010	F	347649	FORDALIE	colour.	friable	
		-		St. COT	Suggestion of	loamy	-
			ent		nitrogen	clay, Firm,	
			COUST		fertilisation	Mixed	
			v		ici inseriori	Humus	
						rich	
					11	Comment	ND
	S27	3km	266422,	Hay. No fertiliser	Healthy	Compact	NU
-		SE	340438		coloration.	neavy	
						clay. Iron	
						oxide rich.	
						Mixed.	
						K16	

ND: Not determined

Prepared by: South Western Environmental Services

Soil Profiling

A total of five soil profiles were taken across the site using 1m cores. The sampling locations are indicated in Fig 14.1. Soil profile logs were recorded for evidence of soil contamination. Visual observations of the soil type, were made in the field using archaeological soil recording charts and soils were graded as per Fig 14.2. Figs 14.3 14.1 show a graphical representation of the soil profiles recorded to 1m depths. In general, soils were poor quality clay interspersed with sandy layers ranging from 0.063 - 0.6mm and fine silts. Soils ranged from compact at the upper elevations to loose waterlogged oxidised soils in the lowland areas.

Sampling

REFERENC

samples were analysed for the following parameters:

Metals

- Volatile Organic Compounds (VOCs)
- For inspection out of the time Polycyclic Aromatic Hydrocarbons (PAHs)
- Polychlorinated Biphenyls (PCBs)
- Pesticides (OPPs; OCPs)
- Dioxins/Furans

14.3 Results

Samples were labeled and returned to Alcontrol Geochem accredited Laboratories for analysis following appropriate quality control procedures. Comparison of the analytical results with Dutch Maximum Admissible Concentration (MAC) Guidelines for soil. "S" guidelines being a level below which a soil may be considered uncontaminated and the "I" guideline being a level above which a soil may be considered heavily contaminated. These Dutch Levels have no legal status in Ireland. There is no Irish Legislation that presents a framework for the assessment of soil contamination. However, the EPA are currently preparing a discussion document on Environmental Quality Objectives (EQO's) and Environmental Quality Standards (EQS's) for soils. The EPA is considering setting non-statutory guideline values for soil and groundwater. It is proposed that these values will be derived from existing risk-based generic guideline values adopted in other European countries. The provisions of the Sewage Sludge Directive, which was designated to set provisions for soils that may receive sludge, has been used as threshold or indicator values of soil quality as outlined in Table 14.3

Prepared by: South Western Environmental Services

Results were also compared to normal ranges and typical values for heavy metal contents of uncontaminated soil.

14.3.1 Visual Inspection of PlantSpecies REFERENCE COPY

Results & visual inspection for aerial pollution damage and pest damage are presented in Tabk 14.1. There was some evidence of pest damage and also evidence of nitrogen application. No symptoms of aerial pollution by sulphur dioxide, hydrogen chloride or nitrogen oxides were noted.

14.3.2 Laboratory Soil and Herbage Analysis

Samples were labeled and returned to Alcontrol Geochem accredited Laboratories for analysis following appropriate quality control procedures Analytical results were compared with guideline values for herbage as prepared by Teagase and am presented in Table 14.4 Martequied for and 14.5.

14.3.3 Results - Soil - Dutch S and Values Consent of convited

14.3.3.1 Heavy Metals

Results am presented in Table 14.5. Copper concentrations In six soil samples exceeded the Dutch "S" Value of 36mg/kg but were within the "I' Value of 190mg/kg. The concentration of lead In ab samples exceeded the Dutch "S" Value of 85mg/kg but were within the "Value d530mg/kg. No other determinant for which a Dutch "S" Value is given exceeded its respective limit With reference to the sewage sludge directive, threshold or indicator levels for lead are exceeded in 9 sites (50mg/kg) and for copper at 2 sites (50 mg/kg). A total of 42% of the soil samples were In breach of one or more of the provisions of the Sewage Sludge Directive (EC 1986). The provisions of the Sewage Sludge Directive were designed to set specifications for soils that may receive sludge and is widely used as indicator values of soil quality.

Prepared by: South Western Environmental Services

14.3.3.2 Chlorinated Hydrocarbons

The VOC results are presented in Table 14.8. Analysis was carried out for 62 Volatile organic REFERENCE COPY S- Value. Results for Dichloromethane were elevated in three of the soil samples located on site and at a distance of 0.2km from the site. To compare the soil samples located on results am within Dutch I Valuer. The source of this is unclear and there Is no correlating high level found in the associated groundwater. With respect to the remaining VOC's, none exceeded the laboratory detection limit of 1µg/kg.

14.4.3.4 Polynuclear Aromatic Hydrocarbons (PAHs)

16 (EPA List) priority list PAH's were analysed and results presented in Table 14.7 Total values of the PAH's quantified ranged from 117 - 308 µg/kg mean values. None of the results exceeded the Dutch S Value of 1mg/kg for normal uncontaminated soils. Benz (a) pyrene is often taken as indicative of carcinogenic PAH level. Amounts of this component in Irish soil is iow (generally 10 µg/kg -1, Teagasc 1999) Only cle soil sample with levels of 17µg/kg had results slightly in exceedence of "typical" soil evers. All results were within Dutch S and I Pringtowner rec Values.

14.3.3.5 Organochlorine and Organophosphorous Pesticides

Cons

Forinsp

A suite of 28 organochlorine and 21 organophosphorous pesticides were analysed from the five soil samples. Results are presented In Tables 14.8 and 14.9. No samples were found above the laboratory detection limit of 1µg/kg.

14.3.3.6 Polychlorinated Biphenyls (PCBs)

28 PCB's were analysed and results presented in Table 14.10. PCB's were detected n one soil sample at a level of 4µg/kg. This does not exceed the Dutch S Value \pounds 0.02mg/kg. All other results were at a level $d < 1 \mu a/ka$.

14.3.3.7 Dioxins

REFERENCE COPY dioxin and furan homologues were also determined. Results for the targeted 2378 containing contingers and totals for other chlorinated dioxin and furan isomers present in the sample are presented in Table 14.11. The current Toxic Equivalent Factors (TEFs) of the European Community/NATO or I-TEF are used to produce a total dioxin and furan equivalent amount for all contingers.

14.4 Interpretation of Results

The objective of this study was to establish the existing levels of sail nutrients and corresponding plant tissues within a defined area surrounding the proposed plant site. Since soil acts as a long-term reservoir, soil analysis can provide evidence of historical inputs. Soil analysis also provides an indication of possible plant nutritional factors (mineral excesses or deficiencies) that would affect crop growth and nutrient content, thereby contributing to animal health problems. Herbage and fodder (silage and hay) tad as a short-term reservoir, thereby providing evidence of more recent inputs. Herbage and fodder analysis also provides an indicator of potential animal dietary/nutritional problems.

This data can then be used as a baseline to monitor any significant changes in the baseline data during the lifetime of the plant. The expected ranges of values for the plant/soil extracts are also examined. The maximum soil values for heavy metal concentration in soil dry matter as set out in SI no 183 1991 (Swage Sludge Directive 86/278/EC), Dutch Target (S) and Intervention (i) Values and expected ranges of elements for Irish Soils and plant tissues samples as per Teagasc, Johnstown Castle were all examined. At the time of publishing the EQA's and EQS's for soils were in draft format and not available for comparison.

14.5 Predicted Impacts – Plant Operation

A possible source of impact on soil and herbage quality would be from atmospheric aerial deposition from the stack. Extensive air modeling was carried out and emissions are predicted to be within all relevant legislative standards including the new Daughter Directives for protection of ecosystem. Rigorous abatement controls as outlined in Section 4 of Volume 2 of this EIS will be implemented to minimise discharge to atmosphere and prevent the long

term buildup of emissions to the environment. The development of the plant is likely to haw a positive impact on soil and herbage quality. Disposal of Pl. and SMC by landspreading in areas where no account is taken of existing nutrient requirements or during periods when the land is saturated is having a negative effect on existing soil and herbage quality. Providing a REFERENCE COPY up in the soil and associated impacts on herbage. more environmentally friendly disposal route for this material will remove excess nutrient build

A the waste ash is to be used as a fertilizer it will be tested to ensure that chemical parameters are in the correct balance to provide a valuable fertilizer with known properties which can be landspread when required.

A comparison was conducted with data available from a similar development involved examining soil, herbage and milk samples from an area around Eye Power Station (ETSU B/FW/00235/REP) which burns poultry litter for power generation. Analysis on soil and foliage samples within indicated that results were within normal range and that the variations from before the commissioning levels to the final assessment were minimal (i.e. there was no evidence of additional accumulation). Plant samples m i n e d showed no symptoms attributable to airborne pollutants from the power station.

With regard to dioxins and furans, their primary mechanism for entering the food chain has been identified as through atmospheric deposition A Milk sampling is considered to be a suitable mechanism for measuring dioxin levels in the food chain as cows are free ranging and forage for food at will. Dioxin sampling was carried out both for preliminary and post commissioning analysis at two farms located a approximately 1 and 2kms downstream of EYE Power Station Stack at 3 month intervals far 15 months. Results Indicated that results were typical of milk obtained from faires in rural areas and no evidence of increase in dioxin levels were recorded over the sampling period.

Although for this EIS no dioxin baseline sampling was carried out in milk levels, The EPA has carried out dioxin sampling in milk in the Monaghan area and results are indicated below

IFTEQ INCI 1/2 LOD	WHO-TEQ inci 😕	HUBS WHO-TEQ INC	иохиль ано гора
pg/kg whole milk	LOD pg/kg whole milk	½ LOD pg/kg whole milk	Total WHO-TEQ inc 1/2 LOD pg/kg whole
			ımilk
8.6	10	9	19

(Source dioxin levels in the Irish environment EPA).

This data can be used as baseline monitoring data with which to compare plant performance during its lifespan and results compared with the new EC Regulation (EC/446/2001) on setting legally binding limits on the presence of dioxin and other contaminants in food due to come into force on 1st July 2002.

Prepared by: South Western Environmental Services

14.6 Conclusion

Based on atmospheric modeling of anticipated emissions data, no impact is predicted from the development on soil or herbage deposition. REFERENCE COPY

14.7 Interpretation of Results

As may be expected, elements vary in concentration in different soils and urban soils tend to have much higher concentrations of metal elements than rural soils. Higher than normal zinc, lead and, to a lesser extent, manganese and cadmium am typically encountered where repeated heavy additions of sewage sludge have been applied to Band.

Herbage content for elements such as nitrogen phosphorous and potassium sulphur and magnesium result from direct fertiliser application of these element rather than from soil reserves.

RENEWtech Limited Biomass CHB Print Killycarran Co Monaghan REFERENCE

Volume 3 of 3

onitoring	
Baseline Soil	
able 14.2: List of Analytical Pace-	

No.	NOC													×	×		Ĺ	L			L		L	L		L	L
1 1 1 0	sebioltseq													×	×												
	НАЧ			T	Γ									×	×												Γ
A = 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	णा	×	×	×	×	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	2
A = 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	mulbenev	×	×	×	×	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	ŀ
 	əsəuebuem	×	×	×	×	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	>
² · · · · · · · · · · · · · · · · · · ·	muizengsM	×	×	×	×	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	>
2 2		×	×	×	×	×	×	×	×	×	×	×	×			×	×	3	×	×	×	×	×	×	×	×	,
 	muioleO	×	×	×	×	×	×	×	×	×	×	×	×		4	з ^у	×	×	×	×	×	×	×	×	×	×	>
 	muinimulA	×	×	×	×	×	×	×	×	×	×	Š		ð,		×	×	×	×	×	×	×	×	×	×	×	,
 < > < > <	3ledoD	×	×	×	×	×	×	×	×	de la	9 (3	ja)	×			×	×	×	×	×	×	×	×	×	×	×	ļ
2 2	unuəpqAjo y	×	×	×	×	×	×	æ	o Xão	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	ŀ
Sample Sample Sample Sample <td< th=""><th>muinele2</th><th>×</th><th>×</th><th>×</th><th>×</th><th>ð</th><th>X</th><th>S.</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th></th><th></th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>></th></td<>	muinele2	×	×	×	×	ð	X	S.	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	>
2 2 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 3 5 4 3 5 4 4 5 4 4 5 4 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	рвал	×	×	×	ર્ષ	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	ľ
X X	Nickel	×	ð	×	×	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	>
Sample Sample Sample Number 01-02 11.06.01 1m Soil profile ×<	Mercury	×	×	×	×	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	×
Sample Number Sample Number 01-02 11.06.01 1m Soil profile ×<	Copper	×	×	×	×	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	×
Sample Number Sample 1 01-02 11.06.01 1m Soil profile ×	шпјшолус	×	×	×	×	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	×
Sample Sample Number 01-0.2 11.06.01 1m Soil profile × 3 0.1-0.2 11.06.01 1m Soil profile × 3 0.1-0.2 11.06.01 1m Soil profile × 7 0.1-0.2 13.06.01 × × ×	muimbsO	×	×	×	×	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	×
Sample Sample 1 01-0.2 11.06.01 1m Soil profile 2 01-0.2 11.06.01 1m Soil profile 3 01-0.2 11.06.01 1m Soil profile 4 01-0.2 11.06.01 1m Soil profile 7 0.1-0.2 11.06.01 1m Soil profile 8 0.1-0.2 11.06.01 1m Soil profile 7 0.1-0.2 11.06.01 1m Soil profile 8 0.1-0.2 11.06.01 1m Soil profile 17 0.1-0.2 12.06.01 13.06.01 17 0.1-0.2 13.06.01 13.06.01 17 0.1-0.2 13.06.01 13.06.01 18 0.1-0.2 13.06.01 13.06.01 18 0.1-0.2	SinsenA	×	×	×	×	×	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	×
Sample Sample 1 0.1-0.2 11.06.01 2 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 11.06.01 7 0.1-0.2 12 7 0.1-0.2 13 7 0.1-0.2 13 7 0.1-0.2 13 7 0.1-0.2 13 7 0.1-0.2 13 7 0.1-0.2	stnemmoJ	1m Soil profile	1m Soil profile		1m Soil profile	1m Soil profile	1m Soil profile	.06.01	.06.01	.06.01	.06.01	.06.01	.06.01	.06.01	.06.01	.06.01	.06.01	.06.02	.06.03	.06.04	.06.05	1m Soil profile	.06.01	.06.01	.06.01	.06.01	06.01
Sample Sample Number 0.1002 1 0.1002 2 0.1002 <th>gailqms2 etsQ</th> <th>11.06.01</th> <th>11.06.01</th> <th>11.06.01</th> <th>11.06.01</th> <th>11.06.01</th> <th>11.06.01</th> <th>11</th> <th>12</th> <th>12</th> <th>12</th> <th>12</th> <th>12</th> <th>12</th> <th>12</th> <th>13</th> <th>13</th> <th>13</th> <th>13</th> <th>13</th> <th>13</th> <th>13.06.01</th> <th>13</th> <th>13</th> <th>14</th> <th>14</th> <th>14</th>	gailqms2 etsQ	11.06.01	11.06.01	11.06.01	11.06.01	11.06.01	11.06.01	11	12	12	12	12	12	12	12	13	13	13	13	13	13	13.06.01	13	13	14	14	14
Sample 23 25 25 25 25 25 25 25 25 25 25 25 25 25	(m) rtqəQ əlqms2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2
	əlqme2 NadmuN	ł	2	3	*	S	9	7	8	0	10	11	12	13	14	16	17	18	19	20	21	22	23	24	25	26	27

Legend Core samples taken for VOC, PAH, Pesticide analysis highlighted ; Samples 1-12, 16-27 taken for soli and herbege analysis

Fig 14.2: Archaeological Soil Recording Chart

Table 14.3: Typical Symptoms of Air Pollution Injury on Vegetation

Foliage of Narrow Leaved Species

Sulphur Dioxide

Water - soaked appearance, later becoming necrotic. Bleached tips. Necrosis at tips and points where leaves bend. Necrotic streaks between veins coalesce across whole leaf. Necrosis is often light brown or ivory in colour rather than dark brown. Wheat can show a red discoloration

Nitrogen Oxides

Water soaked appearance later becoming nectrotic. Glazing. Necrotic streaking, often coalescing across whole leaf, especially at tips and points of bending. Necrosis can be yellow/orange in grasses. Awns of barley can show tip necrosis.

Hydrogen Chloride

Interveinal water-soaked streaks later becoming necrotic. Necrotic lesions at tip and points of bending. Necrosis is often yellow/brown

Foliage of Broad Leaved Species

Sulphur Dioxide

Large, bifacial necrotic spots on leaf margin. Browning of lower surface. Shot-holing. Water soaked apperaance, later becoming necrotic. Marginal necrosis or irregular, interveinal necrosis. Sharply defined boundary between affected and healthy tissues may develop about three weeks after exposure. Leaves often drop off.

Nitrogen Oxides

Interveinal necrosis. Tip necrosis. Water soaked appearance later becoming necrotic. Bronzing/glazing

Hydrogen Chloride

Bronzing/glazing of lower surface. Bleached areas around necrotic spots. Bronzing later becoming necrotic. Shot-holing. Necrosis sometimes orange or reddish.

EPA Export 25-07-2013:17:54:45

and the second states

·

December 2000

Volume 3 of 3

EPA Export 25-07-2013:17:54:46

0
σ.
~
2
C4
•
6
~
~
÷-
35
×
2
go.
0

	snovondsona	6 א/6ш	82487082842547 4680280785888888678	
	Nitrogen	քչ/ճա	648827758838888888888888888888888888888888	
	muissetoq	£γ/6w	2228238238236668826774282338278826248	
	Hq		\$\$\$\$\$\$\$ \$\$\$\$\$\$ \$\$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$	8
	Sinc	6 _{3/} 6ɯ	₽\$	
	muibeneV	សិរុ/សិយ	$\infty \infty \infty \infty \Delta 2552 \Delta 55525 $	20-250
	u ult	бу/бш	66666666666666666666666666666666666666	
	muinələ2	եյ/եա	<u> </u>	0.2-2
	реэд	សីរុ/ស័យ	ゆたぁたゅっちちちゃっと <mark>8</mark> 85と <mark>85</mark> 88888888888888888888888888888	2-80.
	Nickel	6y/6w	[∞] >\$2,200000000000000000000000000000000000	0.5 7,6
	munabdyloM	សិង/សិយ	идаишииарроной± ⁰ 11, ^{01,1} 8, ^{11,1} 8, ^{11,18,18, ^{11,18}8, ^{11,18,18, ^{11,18}8, ^{11,18,18, ^{11,18}8}}}	0.2-3.0
	əsəuegneM	សិង/ស្រីយ	88 83 84 84 84 84 84 84 84 84 84 84 84 84 84	50 300 300
	muisəngeM	աმ\қа	1475 1635 1635 1635 1933 251 1132 255 548 2449 2355 540 130 2355 540 110 2507 283 283 283 283 283 283 283 283 283 283	03-0.8
	Mercury	សិង/សិយ		o -
	lron	նդ/նա	2788 2038 2038 2038 2038 2038 2038 2038 20	190
	Copper	ស្រី/ស្រីពា	8 <mark>월</mark> 282888888888888888888888888888888888	
	Сһготіит	եշին են	た。なねぬ。たらねらいたもでと、のあめあるたたなとも <mark>ちき</mark>	5-25(
1	fisdo O	សង/ស្រា	のこりでなっている」のこのです。 3000000000000000000000000000000000000	58-
	muimbeO	նդ/ճա	- 48 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.1-
	muioleO	សង/ស្ព	976 2015 5261 5261 5261 5261 5261 5261 5261 52	1-50.
'	Arsenic	бу/бш	アちなるからての4ペンごは8の セアセムアガサライの285	
, <u> </u>	muinimulA	សិរុ/សិយ	675 690 690 1145 1518 1145 1145 71203 1353 1353 1353 1353 1353 1353 1353 13	ments in agasc) ed
13.06.0	Depth (cm)		10-20 10-20	highlight
Sampling: 12-	elme2 Viinebi		SAMPLE 1 SAMPLE 1 SAMPLE 2 SAMPLE 2 SAMPLE 5 SAMPLE 5 SAMPLE 6 SAMPLE 6 SAMPLE 10 SAMPLE 10 SAMPLE 11 SAMPLE 11 SAMPLE 12 SAMPLE 22 SAMPLE 23 SAMPLE 23 SAMPLE 23 SAMPLE 23 SAMPLE 24 SAMPLE 10 SAMPLE 20 SAMPLE 20 SAMPLE 20 SAMPLE 10 SAMPLE 10 SAMPLE 20 SAMPLE 20 SAMP	Total contents of Irish Agricultural (Exceedences are

Volume 3 of 3

RENEWtech Limited Biomass CHB Patrit Killycarran Co Monaghan REFERENCE

EPA Export 25-07-2013:17:54:46

Vinliuma R of R

RENEWtech Limited Biomass CHB PM nt Killycarran Co Monaghan REFERENCE

Table 14.6: Soil Analytical ResultsVolatile Organic Compounds (EPA 624/8260) Sampling Date: 12-13.06.01

punod	Units	VOC-F2	VOC - F3	VOC - 0.1km	Sample 22	Sample 24	S-Value	I-Value
methane	pg/kg	٢	4	Ł	£	<u>م</u>		
•	hg/kg	٢	4	٢	v	Ŷ		
	hg/kg	Ł	ř	٢	Ŷ	٢		100
Q	hg/kg	Ł	2	<u>۲</u>	4	٢		
	hg/kg	2	۲	٢	۲,	٢		
omethane	hg/kg	₽ Di	ř	٢	۲	Ł		
hloroethene	hg/kg	ent.	Ł	٢	٢	£		
ane	hg/kg	\$0 \$8	600	592	۲.	٢		20,000
phide	hg/kg	201	₹ NG	۸1	ŗ	2		
ethene	hg/kg	2	Pool Soo	4	ŕ	Ł		
ethane	by/6rt	٢	1011	ŕ	Ł	٤		
ethyl ether	hg/kg	₽	por per	٢	¥	ţ		
loroethene	hg/kg	£	05.05	Ŷ	4	٤		
methane	hg/kg	₽	on on	5	~	٢		
	pg/kg	۲	£or B.	4	41	2		
propane	hg/kg	٢	503 ₹	٢	4	⊽		
ethane	pg/kg	۲	2	₹ offi	4	2		4,000
proethane	pg/kg	٢	₽	₹ JUS	ţ,	£		
propene	hg/kg	¥	₽	•	4	₽		
	hg/kg	Ł	₽	ř	4	₽	50	1,000
chloride	hg/kg	₽	₽	4	٢	Ł		
thane	hg/kg	r	₽	۲	v	4		
propane	бу/бгі	٢	Ł	۲	ţ	۲		
oromethane	hg/kg	2	Ł	۲	2	Ł		
ene	by/gu	۲	Ł	ŕ	4	Ł	-	60,000
aropropene	бу/бг	Ł	₽	٢	4	۲		
chloropropene	6y/6rl	v	£	د	r.	۲		
roethane	ng/kg	r	Ł	v	v	v		

December 2000

Prepared by: South Western Environmental Services

RENEWtech Limited Biomass CHB Binnt Killycarran Co Monaghan

Volume 3 of 3

108-88-3	Toluene	µg/kg	<1	<1	<1	<1	<1	50	130,000
142-28-9	1,3-Dichloropropane	µg/kg	<1	<1	<1	<1	<1		
124-48-1	Dibromochloromethane	µg/kg	<1	<1	<1	<1	<1		
106-93-4	1,2-Dibromoethane	µg/kg	<1	<1	<1	<1	<1		
127-18-4	Tetrachioroethene	µg/kg	<1	<1	<1	<1	<1	10	4,000
630-20-6	1,1,1,2-Tetrachloroethane	µg/kg	<1	<1	<1	<1	<1		
108-90-7	Chlorobenzene	µg/kg	<1	<1	<1	<1	<1		
100-41-4	Ethylbenzene	µg/kg	<1	<1	<1	<1	<1	50	50,000
108-38-3*	p/m-Xylene	µg/kg	<1	<1	<1	<1	<1	50	25,000
75-25-2	Bromoform	µg/kg	<1	<1	<1	<1	<1		
100-42-5	Styrene	µg/kg	<1	<1	5 ⁶⁹ .	<1	<1	10D	100,000
79-34-5	1,1,2,2-Tetrachloroethane	µg/kg	<1	<1	net <1	<1	<1		
95-47-6	o-Xylene	µg/kg	<1	<1	× ° × 1	<1	<1		
96-18-4	1,2,3-Trichloropropane	µg/kg	<1	<1 0112	<1	<1	<1		
98-82-8	Isopropylbenzene	µg/kg	<1	<150° 010	<1	<1	<1		
108-86-1	Bromobenzene	µg/kg	<1	NIF UITC	<1	<1	<1		
95-49-8	2-Chlorotoluene	µg/kg	<1	OTYSE	<1	<1	<1		
103-65-1	Propylbenzene	µg/kg	<1	ectrowne <1	<1	<1	<1		
106-43-4	4-Chlorotoluene	µg/kg	<1 🤜	² ht ^o <1	<1	<1	<1		
95-63-6	1,2,4-Trimethylbenzene	µg/kg	<1601	(¹⁶ <1	<1	<1	<1		
99-87-6	4-Isopropyitoluene	µg/kg	⁴ ن] 1>	´1	<1	<1	<1		
108-67-8	1,3,5-Trimethylbenzene	µg/kg	STOT	<1	<1	<1	<1		
95-50-1	1,2-Dichlorobenzene	µg/kg	-11 ^{50×1}	<1	<1	<1	<1	10	
106-46-7	1,4-Dichlorobenzene	µg/kg	C ^{0,} <1	<1	<1	<1	<1	10	
135-98-8	sec-Butylbenzene	µg/kg	<1	<1	<1	<1	<1		
98-06-6	tert-Buylbenzene	µg/kg	<1	<1	<1	<1	<1		
541-73-1	1,3-Dichlorobenzene	µg/kg	<1	<1	<1	<1	<1	10	
104-51-8	n-Butylbenzene	µg/kg	<1	<1	<1	<1	<1		
96-12-8	1,2-Dibromo-3-chloropropane	µg/kg	<1	<1	<1	<1	<1		
120-82-1	1,2,4-Trichlorobenzene	µg/kg	<1	<1	<1	<1	<1	10	
91-20-3	Naphthalene	µg/kg	<1	<1	<1	<1	<1		
87-61-6	1,2,3-Trichlorobenzene	µg/kg	<1	<1	<1	<1	<1		
87-68-3	Hexachlorobutadiene	µg/kg	<1	<1	<1	<1	<1		

Legend: S2: On site. S3: On site; S6: 0.2km SW; S22:1km SW; S24: 1km SE

Table 14.7 Polyaromatic Hydrocarbons Sampling Date 12-13.06.01

		VOC - S2	VOC - S3	VOC -S6	S-22	8-24	Dutch					
2	Compound	µg/kg	µg/ki	ug/kį	µg/kg	µg/kg	'alue	J-Valua				
INCE COPT	Naphthalene	64	99	26	13	64						
REFERENCE	Acenaphthylene	2	4	2	2	6						
HL.	Acenaphthene	23	29	2	9	9						
	Flourene	17	19	4	6	7						
	Phenanthrene	43	53	16	55	45						
	Anthracene	12	12	6	19	11						
	Flouranthene	17	15	13	56	34						
	Pyrene	18	17	15	41	28						
	Benz(a)anthracene	11	а	8	9	6						
	Chyrsene	10	10	7	19	10						
	Benz(b)flouranthene	13	6	7	11	8						
	Benzo(k)flouranthene	5	4	z	10	8						
	Benzo(k)pyrene	5	4	3	17	8						
	Indeno (123cd)pyrene	8	3	2	16	13						
	Dibenzo(ah)anthracene	4	2	<1	7	6						
▼	Benzo(ghi)pedene	7	5	3	17	9						
	Total 16 PAH	258	291	117	306	274	1000	40000				
	Legend: S2: On site. S3: On site; S6: 0.2km	For	n SW; S24: 1km	SE open of the and conned for and	SHE							

Prepared by: South Western Environmental Services

•	Compound	Units	VOC - \$2	VOC-S3	VOC \$6	S 22	S 24
	Tecnazene	µg/kg	<1	<1	<1	<1	<1
	Trifluralin	µg/kg	<1	<1	<1	<1	<1
	alpha-HCH (lindane)	µg/kg	<1	<1	<1	<1	<1
	Hexachlorobenzene	µg/kg	<1	<1	<1	<1	<1
CE COPY	beta-HCH (Lindane)	µg/kg	<1	<1	<1	<1	<1
FERENCE	gamme - HCH (Lindane)	µg/kg	<1	<1	<1	<1	<1
REFE	Quintozene	µg/kg	<1	<1	<1	<1	<1
	Triallate	µg/kg	<1	<1	<1	<1	<1
	Chlorothalonil	µg/kg	<1	<1	<1	<1	<1
	Heptachlor	µg/kg	<1	<1	<1	<1	<1
	Aldrin	µg/kg	<1	<1	<1	<1	<1
	Triadimethalin	µg/kg	<1	<1	<1	<1	<1
	Pendimethalin	µg/kg	<1	<1	<1	<1	<1
	heptachlor epoxide	µg/kg	<1	<1	<1	<1	<1
	o,p - DDE	µg/kg	<1	<1	<1	<1	<1
	Endosulfan I	µg/kg	<1	<1	<1	<1	<1
	p,p - DDE	µg/kg	<1	<1	<1	<1	<1
	Dieldrin	µg/kg	<1	<1	<1	<1	<1
	p,p - TDE (DDD)	µg/kg	<1	<1	<1	<1	<1
	Endrin	µg/kg	<1	<1	<1	<1	<1
	Endosulphan II	µg/kg	<1	<1	ح 1	<1	<1
	o,p - TDE	µg/kg	<1	<1	of 110<1	· <1	<1
	o.p - DDT	µg/kg	<1	<1	othe <1	<1	<1
	p,p - DDT	µg/kg	<1	519. 20	<1	<1	<1
	Endosulphan Sulphate	µg/kġ	<1	5 Stor	<1	<1	<1
	o,p - Methoxychlor	µg/kg	<1	oos real	<1	<1	<1
	p,p - Methoxchlor	µg/kg	<1 21	ed) <1	<1	<1	<1
	Permethin	µg/kg	Stol net	<1	<1	<1	<1
	Total	µg/kg	inspentowi	<1	<1	<1	<1

Table 14.8 Organochlorine Pesticides Sampling Period 12-13.06.01

Legend: S2: On site. S3: On site; S6: 0.2km SW; S22:1km SW; S24: 1km SE

Prepared by: South Western Environmental Services

	Compound	(Units	VOC - S2	VOC - S3	VOC - 56	822	S 24					
	Dichlorvos	µg/kg	<1	<1	<1	<1	<1					
CE COPY	Mevinphos	ug/kg	<1	<1	<1	<1	<1					
FERENCE	Dimethoate	µg/kg	<1	<1	<1	<1	<1					
REFE	Propetamphos	µg/kg	<1	<1	<1	<1	<1					
	Diazion	µg/kg	<1	<1	<1	<1	<1					
	Etrimphos	µg/kg	<1	<1	<1	<1	<1					
	Chlorpyrifos methyl	µg/kg	<1	<1	<1	<1	<1					
	Methyl Parathion	µg/kg	<1	<1	<1	<1	<1					
	Pirimiphos methyl	µg/kg	<1	<1	<1	<1	<1					
	Fenitrothion	µg/kg	<1	<1	<1	<1	<1					
	Malathion	µg/kg	<1	<1	<1	<1	<1					
	fenthion	µg/kg	<1	<1	<1	<1	<1					
	Chlorpyrifos methyl	µg/kg	<1	<1	<1	<1	<1					
	parathion	µg/kg	<1	<1	<1	<1	<1					
	Chlorfenvinphos	µg/kg	<1	<1	<1	<1	<1					
	Ethion	µg/kg	<1	<1	<1	<1	<1					
	Triazophos	µg/kg	<1	<1	<1	<1	<1					
	Carbophenothion	µg/kg	<1	<1	<1	<1	<1					
	Phosalone	µg/kg	<1	<1	<1 150	<1	<1					
	Azinphos methyl	µg/kg	<1	<1	Ste	<1	<1					
	Azinphos ethyl	µg/kg	<1	<1 33. 5	<1	<1	<1					
	Total		<1	<1 01:01	<1	<1	<1					
Legend: S2: On site, S3: On site; S6: 0.2km SW												

Table 14.9 Organophosphorous Pesticides Sampling Period 12-13.06.01

Prepared by: South Western Environmental Services

RENEWtech Limited Biomass CHR Billint Killycarran Co Monaghan

Volume 3 of 3

Table 14.10 Soil Analytical Results: Polychlorinated Biphenyls - Background Levels Sampling Date: 12-13.06.01

		Carlos and the		Sea Share	STREET, N		Dutch MAC	Values
		VOC-S2	VOC-S3	VOC-S6	Sample 22	Sample 24	S	
CAS Number	Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg		
12674-11-2	Aroclar 1016							
11104-28-2	Aroclor 1221					e.		
11141-16-5	Aroclar 1232				051			
53469-21-9	Aroclor 1242				othe			
12672-29-6	Aroclor 1248				27: 202			
11097-69-1	Aroclor 1254		1	ں م	KOL			
11096-82-5	Aroclor 1260			TO ITO	1			
	Total	<1	<1	DA Ledu	্ব	<1	20	1000
				otio net				
Legend:				SC ON				
S - level: Dutch Guideline for normal uncontaminated soil	I		COL	ist.				
i- Level: Dutch Guideline for Intervention			202	2				
< - Below Laboratory Detection Limit			, of					
Analysis carried out by GCMS			Selle					
		(COL					

P

RENEWtech Limited Biomass CHORNANT Killycarran Co Monaghan REFERENCE

Volume 3 of 3

Table 14. 4 Herbage Simpling Results

Sinc	maller	250						240	84		285	36				26	102		315	14	287				35		250	40-60	20-80
muibeneV	mailta		7 6	27	ī Ŕ	3 8	11	, K	32	57	7	77	ī u	2	3 5	2 V	Ī	7 1		: (V	V	7	1	7 7	V	V		
비그	malka	30	15	78	; ;	<u>t</u> {	;;	4 ±	ę	2 2		24	2 ¢	24	ģ	2 4	2 4	5 5	÷	;	ŝ	ξ	2 6	ì	24		6	·	•
muinələ2	mailea	<1>	7 7	75	7	7 7	7 7	V	V	7	7	7	7	V	V	V	7	7 7	7	Ţ	7	V	7	7	7	V	V	0.15	0.03-0.5
реед	ma/ka	17	- 64	ŝ	38	3	35	3 2	47	: 8	4	44	e E	3 -	00	<u>۽</u>	6	• :	36	5	8 8	v	V	5	55	i ka	30	•	0.1-12
Nickel	maika	14	<u>r ç</u>	2 90	a te	24	4	5	24	α Ŧ	2 <u>6</u>	8	2 00	30	4	. თ	0	÷	2 (1)	! a	9,8	55		38	1 00	22	25	•	0.5-4
munabdyloM	ma/ka	09	ξ	5.6	89	35	10	61	14	: 5	25	8	48	8	35	e	4	2	88	e e	45	52	24	8	1 6	2	<u>8</u>	<1.0	0.2-4
esensgnsM	ma/ka	1967	1857	1701	2294	2262	2066	1931	1870	530	874	1964	435	1044	248	218	490	1058	1560	2036	1686	1110	3531	1653	1532	1480	2477	50-100	20-300
muisəngaM	ma/ka	14350	8576	11350	9867	7390	16480	11410	13210	6757	16550	16670	7929	12730	8110	10860	10330	12040	12720	12560	12550	8213	19100	25810	10410	19730	16070	2000-2500	900-4000
Mercury	mg/kg	v	V	Ŷ	v	V	v	V	۲	V	V	v	v	₹	۲ ۲	⊽	, <mark>X</mark>	¢.	J5€ ⊽	v	⊽	ŗ	v	v	2	v	r		0.01-0.5
lron	mg/kg	2254	2433	3621	1168	2345	2053	6125	8277	6073	<u>138</u>	4255	(1956k)	4328	2101	2099	574	4724	4949	1210	728	858	2558	2130	823	2507	4997	100-150	60-500
Copper	mg/kg	48	43	22	38	88	6° 46	080	√.55%	1 4 4 A	53	84	ţ	45	39	66	87	32	145	8	4	4	123	136	48	87	48	10-15.	2-15.
Chromium	mg/kg	11	÷	е Б	0.2		8 0	24	23	13	80	11	6	13	۲	თ	4	13	15	ى م	13	14	15	10	9	18	17	0.5-2	0.1-3
tisdo)	mg/kg	¥	¢ ₹	2	с С	2	2	2	9	ß	⊽	m	ო	-	v	۷	v	۷	ო	v	V	V	-	V	V	ř	ŕ	>0.2	0.03-0.2
muimbeO	mg/kg	v	⊽	2	v	⊽	⊽	⊽	٧	⊽	⊽	v	۷	ŗ	۲	r	۲	⊽	۲	⊽	¥	۲	٧	V	٧	r	۲	•	0.01-1
Calcium	mg/kg	>32000	>32000	>32000	>32000	>32000	>32000	>32000	>32000	>32000	>32000	>32000	>32000	28440	27910	>32000	>32000	>32000	>32000	>32000	31100	>32000	>32000	>32000	28070	>32000	>32000	5000-7000	2000-12000
Arsenic	mg/kg	₽	r	4	⊽	٢	Ł	6	2	ł	ŕ	⊽	2	ŗ	ī	v	v	4	v	v	v	7	£	v	-	11	v	1	0.05-0.5
muinimulA	mg/kg	2249	2864	3555	1233	1233	1090	5870	7334	2753	383	2674	970	3925	1210	1461	186	3306	5623	883	315	535	1922	1870	591	1935	3831	70-120	30-300
identity Sample		SAMPLE 1	SAMPLE 2	SAMPLE 3	SAMPLE 4	SAMPLE 5	SAMPLE 6	SAMPLE 7	SAMPLE 8	SAMPLE 9	SAMPLE 10	SAMPLE 11	SAMPLE 12	SAMPLE 13	SAMPLE 14	SAMPLE 16	SAMPLE 17	SAMPLE 18	SAMPLE 19	SAMPLE 20	SAMPLE 21	SAMPLE 22	SAMPLE 23	SAMPLE 24	SAMPLE 25	SAMPLE 26	SAMPLE 27	Optimum Range ppm	Expected Normal Range ppm

Prepared by: South Western Environmental Services

REFERENCE COPY

APPENDIX 15 Role and benefits of GIS in Planning and Site Selection Process

Consent of copyright owner required for any other use.

Prepared By: South Western Environmental Services

REFERENCE COPY

Consent for inspection pupposes only: any other use.

Prepared By: South Western Environmental Services

ę

15.1 Role and benefits of GIS in Planning and Site Selection Process

A primary role of GIS as a tool in environmental management is that it can serve as a means REFERENCE COPY from numerous sources at local, regional and national scales into a manageable whole. to integrate ever-increasing volumes of diverse spatial and non-spatial environmental data,

Since a GIS collates and manages environmental data in a standardised manner its use is likely to result in more efficient date collection and analysis, since common environmental data sets need be captured only once, but then can be used for many different functions, by many interested organisations.

GIS database visualising tools provide all those with an interest in environmental and planning matters with the means to visualise and analyse data on the desktop. Users are able to utilise GIS functionality to query, display and produce maps and reports from data sets held in the GIS.

GIS functionality provides a powerful set of tools for modelling spatial problems where several layers of graphical and tabular data may be involved.

only any Because of its spatial modelling capabilities GIS cap provide useful support to management decision making. A more informed choice can then be made by using GIS as a decision support tool. It can also be used to display the results of other environmental models such as air and water pollution dispersion models together with other layers of information held in the GIS to 'add value' to analytical results and their implications.

The imaginative application of Geographical Information Systems (GIS), or computer-based mapping, is providing new insights into solving a variety of complex energy resource and environmental problems. Indeed, GIS is directly assisting the successful deployment of renewables in the UK and Europe. Examples where energy applications of GIS are welladvanced include wind farms, short rotation copplee and other biomass-to-energy schemes (both direct combustion - such as a poultry litter-fired power station - and centralised anaerobic digestion). In addition, GIS are providing useful inputs to modelling of emission plumes. environmental monitoring and site identification.

GIS Development 15.2

The objectives of developing a GIS for this project were to:

draw together as much of the existing data on SMC and poultry litter production into a manageable whole

Prepared By: South Western Environmental Services

RENEWtech Limited Biomass CHP Plant, Killycarran, Co Monaghan Volume 3 of 3

- display all attributes relating to the area and their distribution and infrastructure
- use the spatial analyses functions to help establish sensitive locations, boundaries and suitable locations

REFERENCE COPY viability and environmental factors for biomass-to-energy options at a regional level. This report presents possible scenarios of a future development, where the location of demand and supply is considered, along with and a set of environmental, economic and other restrictions.

Consent for inspection purposes only: any other use.

Prepared By: South Western Environmental Services