

APPENDIX 2

AER 2003 her 1000 and 100 and

July 2004 (JOC/PS)

ANNUAL ENVIRONMENTAL REPORT

FOR

GREENSTAR MATERIALS RECOVERY LTD

Prepared For: -

greenstar Materials Recovery Ltd., Fassaroe, Bray, Co. Wicklow.

Prepared By: -

O' Callaghan Moran & Associates, Granary House, Rutland Street, Cork.

24th May 2004

TABLE OF CONTENTS

PA	GE

1. INTRODUCTION	
2. SITE DESCRIPTION	
2.1 WASTE MANAGEMENT ACTIVITIES	2
2.1.1 Waste Type	2
3. EMISSION MONITORING	5
3.1 GROUNDWATER MONITORING	5
3.1.1 Estimated Annual and Cumulative Quantity of Emissions to Gr	oundwater6
3.2 SURFACE WATER QUALITY MONITORING	
3.3 LEACHATE	
3.3.1 Leachate Levels	8
3.3.2 Leachate Quality	9
3.4 LANDFILL GAS	
3.4.1 Landfill Gas Volumes	
3.4.2 Landfill Gas Control	
3.5 Noise Survey	
3.6 DUST MONITORING	
3.7 DUST CONTROL MEASURES EVALUATION REPORT	
4. SITE DEVELOPMENT WORKS	
4.1 Engineering Works	
4.2 SITE RESTORATION	
4.3 SITE SURVEY	
4.4 FUTURE DEVELOPMENTS	
4.5 SUMMARY OF RESOURCE & ENERGY CONSUMPTION	
5. WASTE RECEIVED AND CONSIGNED FROM THE FACILITY.	
6 ENIXIDONIMENTAL INCIDENTS AND COMBLAINTS	10
C. ENVIRONMENTAL INCIDENTS AND COMPLAINTS	
6.1 INCIDENTS	
6.2 REGISTER OF COMPLAINTS	
7. ENVIRONMENTAL DEVELOPMENT	
7.1 Environmental Management Programme Report	
7.1.1 Schedule of Objectives and Targets 2003	
7.1.2 Corrective Actions	
7.1.3 Site Management Structure	
7.2 Environmental Management Programme Proposal	
7.2.1 Schedule of Objective and Targets 2004	
7.2.2 Programme to Achieve Targets	

TABLE OF CONTENTS - CONT'D

.

PAGE

8. O	THER REPORTS	
8.1	DUTY & STANDBY CAPACITY REPORT	
8.2	Bund Integrity Testing	
8.3	ENVIRONMENTAL LIABILITY RISK ASSESSMENT	
8.4	WRITTEN PROCEDURES	
8.5	NUISANCE CONTROLS	

APPENDIX 1	-	Drawings
APPENDIX 2	-	Environmental Monitoring Summary Tables
APPENDIX 3	-	Dust Evaluation Measures Report & Dust Monitoring Results
APPENDIX 4	-	Extent of Capping & Landfilling Report
APPENDIX 5	-	Fire Incident Report
APPENDIX 6	-	Staff Training Records
APPENDIX 7	-	Site Management Structure
APPENDIX 8	-	Duty & Standby Capacity Report
APPENDIX 9	-	Written Procedures Index
APPENDIX 10	-	Nuisance Abatement Reports

1. INTRODUCTION

This is the third Annual Environmental Report (AER) for greenstar Materials Recovery Ltd. (greenstar), Fassaroe, Bray, Co. Wicklow and covers the reporting period January 2003 to March 2004. greenstar received a revised waste licence (Register Number 53-2) on 3rd April 2003. The AER has been prepared in compliance with Condition 11.6 of the revised Waste Licence and includes information from the final quarter (January, February and March 2003) regulated by the previous licence (Register Number 53-1).

The content of the AER is based on Schedule G of the Waste Licence and the report format follows guidelines set in the "Draft Guidance on Environmental Management Systems and Reporting to the Agency" issued by the Environmental Protection Agency (Agency).

The Waste Licence allows greenstar to accept Commercial, Household and Construction and Demolition non-hazardous waste on-site and compost biodegradable and green wastes recovered from the incoming waste streams. The various waste streams are processed and stored on-site pending removal to authorised off-site recycling and disposal facilities. The annual waste throughput is limited to 129,502 tonnes.

Consent of copyright

May 2004 (MW/PS)

2. SITE DESCRIPTION

2.1 Waste Management Activities

The licence allows greenstar to accept and process on site for recovery and disposal 129,502 tonnes of waste per annum, comprising commercial/industrial non-hazardous waste, household waste and construction and demolition wastes. Waste processing takes place inside the transfer station as well as outdoors. The outdoor activities specified in the licence are wood chipping, in-vessel trial composting of biodegradable waste and green waste and segregating and shredding of construction and demolition waste and non-putrescible commercial/industrial waste. The trial composting has not yet started at the site.

Suitable inert materials recovered during the processing of the construction and demolition wastes are used to restore portions of the site formerly used for landfill.

2.1.1 Waste Type

The facility is licensed to accept the following waste types as specified in Schedule A of the Waste Licence: -

required for

- Household,
- Commercial,
- Construction & Demolition,

Consent

• Hazardous (2 tonnes).

Hazardous waste is not accepted at the facility, with the exception of small quantities of machinery batteries that inadvertently arrive in waste deliveries. Such batteries are stored in a designated skip pending collection by an off-site recycling organisation as specified in the licence conditions. Any other materials suspected either to be hazardous or not acceptable under licence conditions (e.g. gas cylinders, sheets of asbestos) are temporarily stored on-site in the waste quarantine area, before removal off-site for treatment/disposal at an appropriate facility.

Household and Commercial Waste Containing Putrescible Materials

Household and commercial wastes (originating in factories, hotels, pubs and supermarkets) containing an organic fraction are either deposited on the floor of the transfer building, or tipped directly into open trailers. All the household waste deposited on the floor is either pushed into an open trailer, or compacted for removal off-site for disposal at an off-site landfill, as agreed with the Agency.

The commercial waste is inspected and segregated into recyclable cardboard, bottles, domestic waste, or compactor waste (supermarkets are generally the main origin of this waste). All uncontaminated cardboard and plastic packaging material, which is suitable for baling, is collected for recycling. Drink cans are collected, baled and stored on-site pending removal off-site for recycling. Glass bottles, which are either segregated prior to arrival on-site or deposited at the civic amenity area, are stored on-site pending removal for recycling off-site.

Non Putrescible Household and Commercial Waste

Non putrescible household wastes, arising from the kerbside collection, and non putrescible commercial/industrial waste is deposited onto the floor of the transfer building and inspected for disposable and/or recoverable fractions. Non-recyclable/recoverable waste is stored within the building before transfer for disposal to an off-site landfill, as agreed with the Agency.

Construction and Demolition Waste

All construction and demolition waste is inspected to determine if it is suitable for transfer and/or recovery. Wood and metal are separated using a mechanical grab and subsequently removed off-site to approved recovery/recycling facilities. The residual material is passed through a trommel to remove the fine fraction containing subsoil and topsoil. This material is either used on-site for restoration purposes, or is sold for agricultural and/or horticultural purposes. The heavy fraction from the trommel containing concrete, brick etc is then passed through the crusher to produce a crushed inert aggregate.

Wood, Timber and Green Waste

Wood and timber delivered to and recovered on-site is shredded and removed off-site for disposal. Green waste delivered to the facility is stored pending transfer to an offsite composting facility. Although the licence allows for in-vessel trial composting of biodegradable waste, this has yet to be established at the facility.

Civic Amenity Facilities

There are two Ro-Ro containers located opposite the front of the waste transfer building, which are provided for use by the general public for deposition of household waste. There are a number of receptacles for the recyclable materials located beside the Ro-ros including glass, metals and textiles. The materials collected in these are removed off-site for recovery/recycling.

For inspection purposes only, any other use,

C:\03\072_Greenstar\01_Annual\AER2003\0720101.Doc

Consent

6.11

潮

3814

EMISSION MONITORING 3.

greenstar implements a comprehensive environmental monitoring programme to assess the significance of emissions from site activities. The programme includes groundwater, surface water, leachate, landfill gas, biological, noise and dust monitoring. The monitoring locations are shown on Drawing No. J.1.0 Rev E in Appendix 1.

The monitoring results are submitted to the Agency in quarterly reports. An overview of the results of the monitoring is presented in this Section, with summary data in tables included in Appendix 2. The results are discussed in the context of the impact of the emissions on the environment and compared with available data on background and/or ambient conditions.

3.1 **Groundwater Monitoring**

only any other use. There are four (4) groundwater monitoring wells (BH-2, BH-5, BH-6 and BH-7). The wells are positioned up and downgradient of the former landfill area. BH-2 and BH-7 are downgradient and to the north east and north respectively of the former landfill area. BH-5 is to the east of the fill area and downgradient of the on-site sanitary wastewater treatment system (Puraflow system). BH-6 is upgradient of the landfill.

Groundwater Levels

Groundwater levels were recorded at quarterly intervals in each of the wells. Based on the level data the direction of groundwater flow is northerly.

Consent

Groundwater Quality

Groundwater quality was monitored in the wells on a quarterly and annual basis. The range of analysis was as specified in Schedule D of the Waste Licence and includes pH, electrical conductivity, and organic, inorganic and microbiological parameters. The sampling and analysis was carried out in accordance with recognised quality assurance and control procedures.

The monitoring in the first quarter of 2003 (January - March 2003) identified the presence of elevated ammonia in both the upgradient and downgradient wells. The results for BH-6 indicated the presence of an off-site upgradient source of contamination, however there was no readily identifiable source. There was an increase in Total Organic Carbon (TOC) levels in BH-2, BH-5 and BH-7 compared to previous monitoring results and the levels remained elevated compared to the levels in upgradient well BH-6.

In the second quarter of 2003 (April - June 2003) the monitoring confirmed the continued presence of elevated ammonia in BH-5 and BH-6. The level in BH-5 was higher than previously measured. The TOC levels in each of the boreholes was significantly below levels recorded for the previous quarter including BH-5, where the level of 20mg/l, was much lower than the level in the firs quarter (50 mg/l). The sanitary wastewater treatment plant upgradient of BH-5 is a potential source of the elevated TOC.

In the third quarter of 2003 (July - September 2003) the ammonia levels in all of the boreholes had decreased compared to the previous quarter. The presence of ammonia in BH-6, confirmed an off-site upgradient source of contamination. The TOC levels for each of the boreholes displayed similar results to the first and second quarters. All of the parameters were within the previously recorded ranges.

In the fourth quarter of 2003 (October - December 2003) the samples were analysed for the annual range of parameters (Boron, Cadmium, Calcium, Chromium, Copper, Cyanide (total), Fluoride, Iron, Lead, List I/II Organic Substances, Magnesium, Manganese, Mercury, Sulphate, Total Alkalinity, Total Phosphorus/Orthophosphate, Residue on Evaporation, Zinc, Faecal Coliforms and Total Coliforms).

The levels of the parameters monitored annually were generally at or below the levels measured in 2002. However, the calcium, magnesium and sulphate levels at BH-7 were above the 2002 levels, while BH-5 showed slightly elevated levels of magnesium, phosphorous and sulphate compared to previous results. The ammonia levels in BH-5 decreased from that measured in the third quarter from 6.0 mg/l to 4.3 mg/l. The TOC levels in BH-5 remain elevated compared to the upgradient level in BH-6 and remained higher than expected for uncontaminated groundwater.

The first quarter 2004 (January - March 2004) confirmed the continued presence and pattern to ammonia concentrations in each of the wells. The ammonia levels in BH-5 (4.4 mg/l), while lower than levels recorded previously, remained higher than expected for uncontaminated groundwater. The chloride, ammonia, total organic carbon, electrical conductivity, dissolved oxygen and pH levels in all four boreholes were within the previously recorded ranges.

3.1.1 Estimated Annual and Cumulative Quantity of Emissions to Groundwater

The AER for 2000 presented the first assessment of the potential for the indirect emission to groundwater from on-site activities. Potential sources identified included incident rainfall and storm water run-off from paved areas.

All surface water from the paved areas and buildings is diverted away from the filled areas thereby reducing the potential indirect impact of surface water on groundwater quality. There have been no changes to the site layout during the reporting period that resulted in new or additional sources of discharges to groundwater. Section 3.3 discusses the quantities of emissions to groundwater.

3.2 Surface Water Quality Monitoring

The surface water drainage system in and around the site is dominated by the proximity of the nearby Glenmunder Stream, which is to the northeast of the facility. The Glenmunder ultimately drains to the River Dargle, which is a designated salmonid river. Surface water quality is monitored at four locations (SW-1, SW-2, SW-3 and SW-4) on the Glenmunder. SW-1 is upstream of the site, SW-2 and SW-3 is on the site boundary and SW-4 is downstream of the site.

The monitoring was conducted at quarterly and annual intervals and included in-situ and laboratory testing. The range of analysis was as specified in Schedule D of the Waste Licence and includes dissolved oxygen, pH, electrical conductivity, and organic and inorganic parameters. The sampling and analysis was carried out in accordance with recognised quality assurance and control procedures.

In the first quarter of 2003 (January - March 2003) ammonia was not detected at SW-1 and SW-4, but was detected at low levels in the mid stream samples, SW-2 and SW-3 at 0.6 mg/l and 0.7 mg/l respectively. Nitrite levels were within the ranges previously detected. COD levels were below method detection limits of 15mg/l at all monitoring locations. The BOD levels in the downstream location SW-4 were consistent with the upstream monitoring location SW-1.

In the second quarter 2003 (April - June 2003) elevated ammonia (3 mg/l) was detected at the upstream monitoring location SW-1. Mid stream and downstream samples ranged from 1.0 mg/l at SW-3 to 1.4 mg/l at SW-4. The source of the elevated ammonia is not known, but is not attributable to site activities. The chloride levels were within those previously detected. COD levels were below method detection limits of 15 mg/l at all monitoring locations. The BOD levels were also below the method detection limit of 2 mg/l.

In the third quarter 2003 (July - September 2003) ammonia was not detected in any of the samples. The chloride levels were within those previously detected with the highest level (29 mg/l) detected at the upstream monitoring location SW-1. Nitrite levels were within the ranges previously detected.

The annual suite of parameters was analysed in the fourth quarter 2003 (October-December 2003). Ammonia, COD, phosphorus, mercury, cadmium, chromium, copper, lead, zinc, organo-chlorine & organo-phosphorus pesticides and volatile organic compounds (VOC) were not detected in any of the samples. Magnesium and sulphate levels were slightly higher than previous monitoring events at locations SW-1, SW-3 and SW-4, while only magnesium at SW-2 was above its previous level.

The temperature, BOD, pH, nitrite, suspended solids, phenols, conductivity and dissolved oxygen (quarterly monitoring parameters) levels were within or below the ranges previously measured at all monitoring locations.

C:\03\072_Greenstar\01_Annual\AER2003\0720101.Doc

In the first quarter 2004 (January - March 2004) ammonia was not detected in any of the samples. The chloride levels were within the range previously detected, with the highest level (26 mg/l) was detected at the upstream monitoring location SW-1 as well as SW-2 and SW-3. Nitrite levels were within the ranges previously detected.

3.3 Leachate

Leachate is generated by incident rainfall in the active and completed landfill area. Other potential sources of leachate generation, such as surface water run-off entering the waste fill areas, is eliminated by being diverted away from the fill area.

Two leachate monitoring boreholes (L-1 and L-2) were installed at the site in January 2001. L-1 was lost during site works in the area of the borehole in September 2001, but was replaced in March 2002. The monitoring locations are shown on the drawing in Appendix 1.

Condition 3.17.3.1 requires the installation of an additional leachate monitoring borehole to be located downgradient of the existing leachate boreholes. OCM agreed the proposed location with the Agency in advance of the drilling programme. Three (3) attempts were made to drill the well to the base of the waste in July 2003, however the presence of obstructions at various depths prevented the wells reaching the required depth. A proposed alternative location and timescale for the installation of the well has been agreed with the Agency.

3.3.1 Leachate Levels 500 to 100

Levels were monitored at monthly intervals during the reporting period. It was not possible to record levels at L-02 in November and December 2003 and January 2004 due to the presence of a retaining wall partially covering the access point.

The total depth of L-01 is 16.08 m bgl and L-02 is 7.37 m bgl. The average depth of leachate in L-01 for the reporting period was 15.84 m bgl. This equates to an average of 23cm of leachate present in L-01 through out the year, with seasonal fluctuations. The average depth to leachate in L-02 for the reporting period was 6.8 m bgl. This equates to an average of 57 cm of leachate present in this well throughout the year with slight fluctuations.

3.3.2 Leachate Quality

The licence requires that leachate be collected for once off analyses and subsequent monitoring would be as directed by the Agency. *greenstar* intended to collect leachate samples during the wetter late Autumn to early Spring months when it was anticipated that the maximum leachate levels would occur. However, during the monitoring events from October 2003 to March 2004 there was an insufficient volume in the leachate wells to collect a representative sample.

3.4 Landfill Gas

Monitoring was carried out in accordance with Table D.1.1 of the Waste Licence in the groundwater monitoring wells GS-01, GS-05, GS-06, GS-07, GS-08, GS-09, GS-11, BH-2, BH-5, BH-6 and BH-7 and leachate boreholes L-01 and L-02.

Four new landfill gas monitoring wells were installed in July 2003 (GS-07, GS-08, GS-09, GS-11) in accordance with Condition 3.17.1 of the Licence.² While the condition requires the installation of 5 wells the location of the fifth well, which had been agreed in advance with the Agency, was not accessible at the time of drilling.² The Agency was informed in advance of this and agreed to the deferral of the installation.²

Monitoring location L-02 was not accessible for monitoring in January 2004 due to the presence of a retaining wall partially covering the access point. This point was accessible in February and March 2004. GS-07 was irreparably damaged in February 2004 by site construction plant therefore readings are only available for January 2004 for this location. The Agency was informed of this incident and a replacement well was installed on the 21st April 2004.

GS-01, GS-05, GS-06, BH-2, BH-5, BH-6 and BH-7 are located outside the fill area. GS-7, GS-8, GS-9, GS-11, L-01 and L-02 are located in the fill area. The nearest buildings to the filled area are the Transfer Station and the site offices. OCM conducted gas monitoring in the transfer station building and the site offices during all monitoring events. The monitoring did not detect the presence of carbon dioxide or methane in any of the buildings.

Out of approximately one hundred and eighty five (185) landfill gas measurements made during the fifteen month reporting period, methane was detected on three occasions. In July methane was detected in BH-5 at 1.1% v/v, this borehole is outside the waste body and this measurement therefore constitutes an incident according to the licence. This incident was reported to the Agency on the 23^{rd} July 2003. In September methane was measured in L-01 at 1.0% v/v and in October at GS-11 at 0.3% v/v. Monitoring points L-01 and GS-11 are in the fill material. BH-5 is located outside the fill. Carbon dioxide concentrations ranged from not detected to a maximum of 18% v/v in L-02 which is a borehole located in the fill material. Landfill gas was not detected in the site buildings.

3.4.1 Landfill Gas Volumes

The elevated carbon dioxide concentrations and the presence of methane on occasion indicate that some degree of degradation of organic waste is occurring within the fill area. Based on the available information on the site history it appears that some biodegradable material may historically have been deposited at the site.

Given that the type and quantity of biodegradable waste deposited on-site is not known, it is impossible to predict the volumes of landfill gas that may be generated. However, the monitoring results indicate that the volume of such degradable material is likely to be small and will reduce over time.

3.4.2 Landfill Gas Control

There is currently no landfill gas control system on-site. The landfill gas concentrations measured in the routine monitoring programme indicate there is no need for such control measures. However, this will be kept under review based on the ongoing results 1 Putposes only any other of the landfill gas monitoring programme.

3.5 **Noise Survey**

tion purposes greenstar carried out the annual noise survey at the facility on 27th November 2003. The report was submitted to the Agency on the 2nd February 2004. Monitoring was carried out at the four noise monitoring locations, N-1, N-2, N-3 and N-4 specified in the licence. The survey was conducted between the hours of 10.45 and 15.15 when the site was fully operational. The survey concluded that the facility was in compliance with its licence requirements.

Dust Monitoring 3.6

greenstar conducted dust monitoring three times a year at four on-site locations (DS-1, DS-2, DS-3 and DS-4). The licence requires that two of these monitoring events be carried out between May and September. The results of the dust monitoring are included in Appendix 3.

The first monitoring event in March 2003 found that the dust deposition limit (350 mg/m²/day) was not exceeded at any of the monitoring locations. The highest total dust recording was at DS-4, which is located at the base of a cliff behind a fuel bund on the western site boundary. The high dust level at this point is mainly attributable to the inorganic fraction of the total dust, and may be associated with windblown materials from the nearby cliff.

The second monitoring event in June - July 2003 found that the dust deposition limit was exceeded at each of the four monitoring locations. The Agency was informed of the exceedances. The high dust levels were attributable to extensive construction work at the site including the new transfer building and landscaping mounds.

The third and final monitoring event July - August 2003 found that the deposition limit was exceeded at two of the monitoring locations (DS-2 and DS-4). The Agency was informed of the exceedances. The high dust levels at these locations were attributable to the on-going construction works at the facility.

3.7 Dust Control Measures Evaluation Report

A Dust Control Measures Evaluation Report was prepared and submitted to the Agency in accordance with Condition 3.14.2b of the licence (Reg. No. 53-2) on the 30th May 2003. A copy of the report is included in Appendix 3.

May 2004 (MW/PS)

4.1 **Engineering Works**

In 2003 greenstar began the construction of the new waste transfer building and commenced the restoration and aftercare works for the facility.

4.2 **Site Restoration**

The licence (Reg. No. 53-2) permits the use of inert construction and demolition waste, both delivered to and recovered on-site in the reclamation and restoration of the partially infilled areas of the site. The approved materials are listed in Table A of Schedule A of the licence and includes stones & soil, topsoil, brick, natural sand and concrete. A restoration and aftercare plan, which describes the scope of the site restoration, was submitted to the Agency on the 29th September 2003. A copy of that report is included in Appendix 4.

4.3 Site Survey

HOT THE POULOW NET A detailed site survey was prepared and submitted to the Agency on 2nd September 2003. A copy of the drawing (Drawing No. 00-034 1 Rev H) is included in Appendix 1.

4.4 **Future Developments**

Future developments proposed for the site are listed in Schedule B of the licence, are as follows: -

- New transfer building (Phases I and II),
- Trial composting area,
- Civic Amenity Facility,
- Final capping,
- Restoration and aftercare works.

4.5 Summary of Resource & Energy Consumption

Table 4.1 presents an estimate of the resources used on-site during the reporting period.

Consent of copyright owner required for any other use.

Table 4.1: Estimate of Resources Used On-Site

Resources	Quantities
Diesel	257,343 litres
Hydraulic and Engine Oil	5325 litres
Disinfectant (concentrate)	3 litres
Truck Wash Detergent	2081 litres
Electricity	12,600 KWH
Antifreeze	261.25 litres

May 2004 (MW/PS)

5. WASTE RECEIVED AND CONSIGNED FROM THE FACILITY

Table 5.1 and 5.2 show the total quantities of waste received at and consigned from the facility for the periods January 2003 to December 2003 and January 2004 to March 2004. A breakdown of the waste types is provided in accordance with the European Waste Catalogue and Hazardous Waste list. The total quantity of waste received at the facility from January 2003 to December 2003 (126,122 tonnes) did not exceed the Waste Licence limit (129,502 tonnes). The Recycling rate for the facility is estimated at 35%.

The balance between the wastes received and consigned off-site amounts to 38,892 tonnes. This predominantly comprised inert construction and demolition materials. Schedule A of the licence limits the volume of C&D accepted at the facility to 35,000 tonnes per annum but allows for an increase in this volume for restoration purposes provided agreement is obtained from the Agency. The facility accepted 50,961 tonnes of C&D during 2003 but inadvertently failed to seek the Agency's approval in accordance with Schedule A Note 1 of the licence. On discovering this oversight, *greenstar* wrote to the Agency on the 17th May 2004 informing them of the situation and requesting approval for an increase in the volume of C&D wastes accepted at the facility to 55.000 tonnes per annum. It is not proposed to increase the total volumes of wastes accepted at the facility.

For the first three (3) months of 2004, 33,978.22 tonnes of waste have been received at the facility and 18,302.80 consigned. The next AER for the facility will incorporate these figures in order to show the twelve-month volume of wastes received and consigned from the facility for 2004.

All the wastes consigned from the site went to recovery and disposal facilities agreed with the Agency. The name and location of the facilities are given in Table 5.3.

EWC	Description	In	Out
13 08 99	Oil Not Specified	8.25	32.43
15 01 01	Paper and Cardboard Packaging	247.42	923.69
15 01 02	Plastic Packaging	306.626	272.27
15 01 02	Plastic Packaging (PET bottles)	1391.26	2.82
15 01 03	Wooden Packaging (pallets)	1.52	8.3
15 01 04	Metallic Packaging (cans)	81.975	6.84
15 01 06	Mixed Packaging	30.78	0
15 01 07	Glass Packaging	14.51	1.92
16 05 04	Gas Cylinders	0	11.8
16 06 01	Batteries	0	1.82
17 06 05	Asbestos	0	2.66
17 02 01	C&D Wood	53.28	2697.68
17 05 04	Soil and Stones	27643.89	0
17 09 04	Mixed C and D	23263.48	0
19 08 01	C&D Fines	0.02	16714.99
19 13 06	Sludges	7.41	2.92
20 01 01	Paper and Cardboard	177.19	42.63
20 01 02	Glass	<u>e</u> 7.49	2.93
20 01 08	Biodegradeable kitchen & Canteen waste	2.82	0
20 01 11	Textiles	0	5.72
20 01 38	Wood	104.39	188.81
20 01 39	Plastic	9.69	0
20 01 40	Metals	100.29	1652.74
20 02 01	Biodegradeable green waste	366.9	412.95
20 03 01	Mixed Municipal waste	39612.61	37742.79
20 03 07	Bulky Waste	32690.15	26500.82
	e op	126121.95	87229.53
	Consentor		

Table 5.1 - Waste Received and Consigned (January 2003 - Decmber 2003)

Table 5.2	- Waste Received	and Consigned	(January 2004	- March 2004)
-----------	------------------	---------------	---------------	---------------

EWC	Description	lin	Out
13 08 99	Oil Not Specified		1.99
15 01 01	Paper and Cardboard Packaging	1599.69	566
15 01 02	Plastic Packaging	17.48	40.84
	Plastic Packaging (PET bottles)	1.72	
15 01 03	Wooden Packaging (pallets)		510.52
15 01 04	Metallic Packaging (cans)	14.59	3.25
	Mixed Packaging	44.37	
	Glass Packaging	6.7	
16 05 04	Gas Cylinders		0.94
16 06 01	Batteries		4.06
	Asbestos		
17 02 01	C&D Wood	11.26	484.46
17 05 04	Soil and Stones	1907.27	
17 09 04	Mixed C and D	6958.34	
19 08 01	C&D Fines	3947	2534.68
19 13 06	Sludges		
20 01 01	Paper and Cardboard		
20 01 02	Glass	<u>.</u> e.	
20 01 08	Biodegradeable kitchen & Canteen waste	× 2.62	
20 01 11	Textiles	1.66	1.45
20 01 38	Wood		
20 01 39	Plastic		
20 01 40	Metals all Puille	21.22	688.57
20 02 01	Biodegradeable green waste	97.64	
20 03 01	Mixed Municipal waste	8511.91	8294.34
20 03 07	Bulky Waste	9834.75	5171.7
	FODT	32978.22	18302.8
	Consent of cont		

EPA Export 25-07-2013:16:22:00

Table 5.3: Off-Site Disposal / Recovery Agents

Nime	. dicence/Permit	Andress 1	ALMANSIE CHANGUIST
Returnbatt	WL 105-1	Kill, Co. Kildare	Batteries
SITA Environmental Ltd.	WL 35-1	Sherrif Street, Dublin	Interceptor waste
Materials Recovery Ltd.	TWE/674462/B (UK)		Cardboard & Plastic
Ballyvenny Landfill	WL 78-1		Mixed municipal/Bulky waste
Textile Recycling Ltd.	WPR 014		Textile
KTK Landfill	WL 81-2	Kilcullen Co. Kildare	Non-hazardous commercial and industrial waste
Hammond Lane	WP 98067	Pigeon House Rd Dublin 4	Steel
Finsa	IPC 22-1	Finsa Scariff Co Clare	Shredded Wood
Plastics Recovery	LAN/494395B (UK)	18 Bellis Way Walton Le Dale Preston PR 5 4NS UK	Plastics (HDPE/PE)
Smurfit	WPR 021 citol not	Ballymount Road, Dublin 12	Cardboard & Newsprint
Padraig Thornton	WL 44,1	Killeen Rd Dublin 10	Wood Waste
Atlas Oil	WL 184-1	Greenhills Rd. Dublin 24	Oil Wastes
Calor	°° n∕a	Longmile Rd Dublin 12	Gas Cylinders

C:\03\072_Greenstar\01_Annual\AER2003\0720101.Doc

17 of 30

May 2004 (MW/PS)

EPA Export 25-07-2013:16:22:00

6. ENVIRONMENTAL INCIDENTS AND COMPLAINTS

6.1 Incidents

The routine monitoring programme identified a number of incidents mainly associated with exceedance of carbon dioxide levels in the landfill gas monitoring boreholes but including the exceedance of the methane emission limit at BH-5 in July 2003. There have also been occasional exceedances of the limits for dust deposition at the site. The incidents have been reported to the Agency in the quarterly monitoring reports and separately as the case required. The incidents are summarised in Table 6.1.

A fire occurred at the facility on the 26th November 2003, which was reported to the Agency on the same day. A copy of the report is included in Appendix 5. Emissions from the site were minimal, as the fire was contained where it began and was promptly brought under control.

6.2 Register of Complaints

greenstar maintains a register of complaints received in accordance with Condition 10.4 of the waste licence. There were no complaints received about facility operations during the reporting period.

ept owner

Table 6.1: Summary of Incidents

Dates	ANATURE OF INCOMENSATION AND A STATE OF INCOMENSATION OF INCOMENSATION AND A STATE OF INCOMENSATI AND A STATE OF INCOMENSAT	(CAUSE	Cherophys Availant
Fire			
26/11/2003	Fire at the C&I processing area	Unknown	One unit of Fire Brigade used to extinguish
Date.	Nature of Incidents	Cause	Correctives Action 4
Landfill Gas	Monitoring		
21/01/03	Carbon dioxide > trigger	Possible anaerobic	Continue routine
17/02/03	limit at monitoring borehole	degradation of small	monitoring to
24/03/03	GS-1 in 12 events, at GS-5	quantities of organic	determine if landfill
29/04/03	in 13 events, at GS-6 in 12	waste.	gas is being
30/05/03	events, at BH-5 in 6 events,		produced and is
16/06/03	at L-01 in 14 events, at L-02		migrating off-site.
23/07/03	in 8 event and BH-6 in 3		
22/08/03	events. GS-07 in 4 events,		
08/09/03	GS-08 in 7 events, GS-11 in		
31/10/03	9 events. Methane > trigger	at USC.	
26/11/03	limit at monitoring borehole	other	
10/12/03	BH-5 in 1 event.	only any	
27/01/04		No contraction	
26/02/04	- Q ³	P-quit.	
29/03/04			
Dances and the second s	neaureof insulence and it		Connective Automotive
Dust Monito	ring		
Jun - Jul	Dust levels at each of the	The elevated dust levels	Dust Control
	monitoring locations were	were attributed to	Measures
	above the emission limit.	extensive construction	Evaluation report
Jul - Aug		work including the new	submitted 30/05/03
	Dust levels at DS-2 and DS- 4 were above the emission limit.	transfer building and landscaping mounds.	

C:\03\072_Greenstar\01_Annual\AER2003\0720101.Doc

7.1 Environmental Management Programme Report

It is an objective of *greenstar* to implement its Environmental Management System fully by December 2004 and employ an accreditation body to carry out a pre-certification audit to ISO 14001 for the site by April 2005. The schedule of objectives and targets, including their status for 2003 as well as the proposed objectives and targets for 2004 are outlined below.

7.1.1 Schedule of Objectives and Targets 2003

CONE

The Schedule of Objectives and Targets for 2003 included 8 objectives, which are summarised in Table 7.1. The table also includes an evaluation of what has been achieved to date.

For Objective 1, a target of 50% recovery rate was set for wood material received onsite. During the period April 2003 to March 2004, 3,704 tonnes of wood waste was recycled at the facility. It was also proposed to recover and recycle 50% of green wastes, start the collection of source segregated food waste and begin trial composting which was authorised in the revised licence. These targets have been deferred pending the setting up of the trial composting operation.

Objectives 2, 3 and 4, which included the control of hazardous waste acceptance, minimising the environmental impacts of the site and the implementation of the EMS have been completed fully as outlined in the 2003 AER.

In order to minimise the environmental impact of discharges to groundwater (Objective 5) a series of targets were developed. The first of these involved the preparation of containment options to prevent wastewater from the transfer building and vehicle wash area discharging to ground. The review of containment options is ongoing and once completed will be implemented.

It was also proposed to assess and remediate an area of suspected oil contaminated soil at the site. OCM were commissioned by *greenstar* to conduct an assessment of the contamination which included soil sample analysis and an intrusive site investigation. The assessment concluded that there was no evidence of significant hydrocarbon contamination in the suspected contaminated area. The report was submitted to the Agency on the 2nd October 2003.

Objective 6 required the preparation and issue of procedures to improve environmental record keeping at the facility. This objective was completed by July 2003.

A staff training programme has been developed and implemented by July 2003 as outlined in Objective 7. The programme includes a procedure to train employees to an appropriate level and also prepare and issue procedures and implement requirements for environmental operating procedures. Training records for the reporting period are included in Appendix 6.

For Objective 8, a litter management improvement procedure has been prepared, issued and implemented and includes non-conformance and corrective action, management of nuisances, handling of complaints and facility inspections. This was completed by the target date of July 2003. Litter containment options are being prepared and reviewed with the intention to implement the preferred litter containment infrastructure as soon as possible.

7.1.2 Corrective Actions

In order to improve the distribution of landfill gas monitoring data four new landfill gas monitoring wells (GS-07, GS-08, GS-09 and GS-11) were installed at the facility in July 2003. Monitoring well GS-07 was irreparably damaged in February 2004 by site construction plant. The Agency was informed of this incident and a replacement well was installed on the 21st April 2004. A new leachate monitoring well (L-03) was also installed on the 21st April 2004.

7.1.3 Site Management Structure

Details of the site management structure are included in Appendix 7. The current management structure was submitted to the Agency on the 13th November 2003.

7.2 Environmental Management Programme Proposal

7.2.1 Schedule of Objective and Targets 2004

greenstar has developed a Schedule of Objectives and Targets for the year 2004. These are presented in Table 7.2, which also designates responsibilities for their achievement and timescale.

7.2.2 Programme to Achieve Targets

The targets will be achieved by the implementing the following programme: -

Objective 1 - Reduce Disposal of Materials to Landfill

It is an objective to achieve a recycling rate of 30% of waste received at the site by the end of 2004. This will be accomplished by sourcing and obtaining approval for new outlets for recyclables and increasing the capacity of the household recyclables picking line in order to expand this service to householders.

Objective 2 - Staff Training

It is an objective to re-train staff in environmental awareness/Environmental Management Systems. It is also proposed to train staff in good segregation methods, which should aid objective 1 requirement.

Objective 3 - Minimise Environmental Impacts

Daily and weekly environmental inspection records are to be maintained in order to keep any environmental impacts at the site to a minimum. It is expected to have Commercial/Industrial activities moved indoors by December 2004.

Objective 4 - Implement EMS

It is proposed to employ an accreditation body to carry out a pre-certification audit to ISO 14001 for the site by April 2005. An environmental policy for the site is also expected to be issued by December 2004.

Objective 5 - Ensure Hazardous Waste Does Not Cause Pollution

It is proposed to ensure hazardous waste does not cause pollution. This is scheduled to be accomplished before the end of 2004 by notifying customers where hazardous materials are discovered and issuing information on facilities licensed to accept such wastes. This will help minimise the receipt of hazardous waste on-site thereby reducing the potential for hazardous waste pollution.

Objective 6 - Environmental Monitoring

It is an on-going objective to conduct the environmental monitoring programme in accordance with licence Conditions.

Objective 7 - Improve Record Keeping

It is an objective to improve the maintenance and storage of records at the facility and train designated staff in this regard.

Consent of copyright owner required for any other use.

Table 7.1: Operational Objectives and Targets 2003

			Ramonium	d Ministerile .	
1.	Reduce disposal of materials to landfill	Recover and recycle at least 50% of wood waste	Location Manager	31 December 2003	3,704 tonnes of wood waste recycled in the period Apr'03 to Mar '04
		Recover and recycle at least 50% of green waste	Location Manager	31 December 2003	Deferred
		Start collection of source segregated food waste	Location Manager	31 December 2003	Deferred
		Start composting trial	Location Manager	31 December 2003	Deferred
2.	Ensure that Hazardous waste does not cause pollution	Continue training programme for drivers and off-site operatives on hazardous waste recognition handling and refusal procedures	Location Manager	31 December 2003	Completed
		Continue training programme for on-site operatives on hazardous waste recognition and handling procedures	Location Manager	31 December 2003	Completed
		Collect and maintain records for all hazardous waste movements at Fassaroe	Location Manager	31 December 2003	Completed
3.	Keep environmental impacts of site to a minimum	Maintain the daily and weekly environmental inspection records	Location Manager	31 December 2003	Completed
4.	Implement EMS Fully	Complete all outstanding documentation to the agreement of the EPA	Environmental Affairs Manager	1 July 2003	Completed

dNO.	<u>EXECUTED AND</u>		Responsibility		
5.	Minimise	1 Prepare containment options to Prevent Wastewater from	Location Manager	1 March 2003	Ongoing
	environmental Impact	Transfer Building / Vehicle Wash Area discharging to ground			
	of Discharges to	2 Review containment options		1 April 2003	Ongoing
	Groundwater	3 Implement preferred containment option		1 December 2003	Ongoing
		Prepare and Issue procedure and implement requirements for vehicle maintenance	Location Manager	1 July 2003	Completed
		Formalise a procedure for the storage and handling of liquids on- Site	Location Manager	1 July 2003	Deferred
		Prepare and issue procedure and implement requirements			
		Remediate existing oil contaminated soil by	Location Manager	1 July 2003	Ongoing
		1 Investigate the extent of contamination of the second seco			
		2 Prepare remedial options			
		3 Implement preferred remedial option			
6.	Improve Record	Prepare and Issue procedures and implement requirements for	Location Manager	1 July 2003	Completed
· · · ·	Keeping	activities requiring environmental records			
		Prepare and Issue a procedure and implement requirements to control and retain records	Location Manager	1 July 2003	Completed
7.	Train All Employees to an Appropriate Level	Prepare and Issue procedure and implement requirements to train all employees to an appropriate level	Location Manager	1 July 2003	Completed
		Prepare and Issue procedures and implement requirements for environmental operating procedures	Location Manager	1 July 2003	Completed
8.	Improve Litter Management	Prepare and Issue procedure and implement requirements for non- conformance and corrective action procedure	Location Manager	1 July 2003	Completed
		Prepare and Issue procedure and implement requirements to manage nuisance	Location Manager	1 July 2003	Completed
		Prepare and Issue procedure and implement requirements to handle complaints	Location Manager	1 July 2003	Completed
l i			1		

NO		Responsibility	- Timescale	
	Prepare and Issue procedure and implement requirements for facility inspections	Location Manager	1 July 2003	Completed
	1 Prepare litter containment options 2 Review litter containment options 3 Implement preferred litter containment option	Location Manager	1 March 2003 1 April 2003 1 December 2003	Ongoing Ongoing Ongoing

Consent of copyright owned required for any other use.

Table 7.2: Schedule of Objective and Targets 2004

-

No	Objective	Target	Responsibility	Timescale
1	Reduce disposal of materials to landfill.	Source and Obtain approval for new outlets for recyclables, e.g. greenwaste, food waste, C&D waste.	Facility Manager	31/12/04
		Achieve a recycling rate of 30%.	Facility Manager	31/12/04
		Increase the capacity of the household recyclables picking line, though relocation/additional storage space, to facilitate increasing this service to additional households	Facility Manager	31/12/04
2	Train all employees to an appropriate level	Re-train all staff in Environmental Awareness/Environmental Management Systems 8	Facility Manager	31/12/04
		Train staff in good segregation methods, to improve recycling rates on picking lines.	Facility Manager	31/12/04
3	Keep environmental impacts of site to a minimum	Maintain the daily and weekly environmental inspection records.	Facility Manager	On-going
		Move C& factivities indoors	Facility Manager	30/12/04
		Remove Stock-piles of C&D material, Commence site restoration and	Facility Manager	30/4/05
4	Implement EMS fully	Compile and issue Environmental Policy for site.	Facility Manager	31/12/04
		Compile and re-assess a list of significant Environmental Aspects for the site	Facility Manger	31/12/04
		Employ accreditation body to carry out a pre-certification audit to ISO 14001 for site	Facility Manager	30/4/05
5	Ensure that Hazardous waste does not cause pollution	Carry out an assessment on the quantity and type of hazardous waste required to be quarantined at the site	Facility Manager	31/12/04
		Develop a system of notification and warning letter, for customers, where hazardous waste is discovered in loads.	Facility Manager	31/12/04

No	Objective	Target	Responsibility	Timescale		
	· .	Issue flyers to customers, detailing contact names/locations where they can legally dispose of their hazardous waste, e.g. fridges, asbestos, batteries.	Facility Manager	31/12/04		
6	Environmental Monitoring	Carry out all environmental monitoring requirements as per licence requirements	Facility Manager	On-going		
		Report and investigate any breaches of monitoring limits	Facility Manager	On-going		
		Ensure monitoring equipment is maintained and calibrated, and accessible at all times.	Facility Manager	On-going		
7	Improve Record Keeping	Improve the maintenance and storage of records at the facility.	Facility Manager	31/12/04		
;		Designate staff to retain specific records, and carry out training to facilitate them in this regard.	Facility Manager	31/12/04		
	For inspection of copyright owner read					

••

OTHER REPORTS 8.

8.1 **Duty & Standby Capacity Report**

A report on the plant infrastructure operated at the facility for the processing of waste showed the facility has adequate duty and standby capacity to handle the authorised waste volumes. A copy of the report is included in Appendix 8.

8.2 **Bund Integrity Testing**

greenstar commissioned Logan Earthmoving Ltd. to conduct an assessment of bunded areas at the site to BS8007 (Section 9.2) standards. The assessment was conducted in February 2002 and concluded that measurements remained constant. A copy of the report was submitted to the Agency.

pection p

Come required 8.3 **Environmental Liability Risk Assessment**

greenstar completed and submitted to the Agency on the 5th September 2003 an Environmental Liability Risk Assessment (ELRA) of the facility as required by the Waste Licence. The ELRA concluded that there were minimal potential liabilities associated with current indirect emissions to groundwater, surface water and landfill gas generation and future incidents. Potential future liabilities are considered to be limited to emergency situations such as oil spills and fire. greenstar has adopted Emergency Procedures to manage such incidents and minimise associated environmental impacts.

greenstar's current insurance policy cover is in excess of any environmental liability that may The policy includes for cover up to $\epsilon 6.350,000$. In relation to environmental arise. pollution/contamination the indemnity applies "to damage to any buildings or other structures or of water or land or atmospheres caused by pollution or contamination. The policy covers pollution caused by a sudden, identifiable, unintended and unexpected event and not gradual pollution". There is also a £2,000,000 accrual on the balance sheet for greenstar Recycling Holdings Ltd for 2003. This fund is also available to cover any environmental damage caused by greenstar Materials Recovery (Bray) Ltd.

8.4 Written Procedures

greenstar has developed and implemented an EMS for the site. As part of the EMS, a series of written procedures have been developed. The titles of these procedures are shown in Appendix 9. These are available for inspection at the greenstar facility.

8.5 Nuisance Controls

A proposal for the control and eradication of vermin and fly infestations at the facility was submitted to the Agency on the 19th June 2003, a copy is included in Appendix 10.

A proposal for the operation of the wood chipper, including nuisance abatement measures, was submitted to the Agency on the 24th April 2003, a copy is included in Appendix 10.

Consent of constitution of the providence of the consent of constitution of the consent of consent

C:\03\072_Greenstar\01_Annual\AER2003\0720101.Doc

APPENDIX 1 Consent of copyright owner required for any other use.

Placeholder

This page has been inserted to indicate that content has been extracted from this location in the document and has been stored in a separate file. (This is due to file size issues.)

The extracted content can be found in the following electronic pdf file:

Application Form-Volume 1 -Drawing-1

Licence: W0053-03

Consen
Placeholder

This page has been inserted to indicate that content has been extracted from this location in the document and has been stored in a separate file. (This is due to file size issues.)

The extracted content can be found in the following electronic pdf file:

Application Form-Volume 1 -Drawing-2

Licence: W0053-03

APPENDIX 2

Environmental Monitoring Summary Tables

1st Quarter 2003 / 2nd Quarter 2003 / 3rd Quarter 2003 / 4th Quarter 2003

1st Quarter 2004

Noise Gas / Biological Summary

May 2004 (MW/PS) EPA Export 25-07-2013:16:22:0

	•	Results (mg/l)				1	
		1st Quarter 2003		Previous	Sempling	Nethod	Analysis method/
	21/01/2003	17/02/2003	21/03/2003	Ranges *	Method	Detection Limit	technique
emperature (°C)	8.2	8.1	9.0	8.9-18.5	Baller	0-100	Temperature probe
hioride	· · · · · · · · · · · · · · · · · · ·	102		25 - 57	Beller	<1	Spectrophotometric analysis
ON		1.1		0.2-11.9	Baller	⊲0,3	Spectrophotometric analysis
Immoniacal Nitrogen -N	0.2	1.0	<0.2	-0.16-2.5	Baller	⊲.2	Colormetric Spectrophotometry
ctasetum		7.A		8.4 - 11.0	Baller	<0,2	Flame Photometer
lodium		23.5		20.5 - 74	Baller	<0.2	Rame Photometer
OC		72		3.0-22	Baller	4	thet IR
liec. Conductivity (m8/cm)	0.930	0.918	0.872	0.840 - 0.998	Beller	<0.014	Meter
Needved Oxygen		4.8		0.5-8.9	Beller	4.1 01 501	Meter
Ж	7.28	7.66	6.98	8.77 - 8.10	Ballet		Meter
Broundwater Monitoring - 69	1-6 - groenstar Ma	teriala Recovery Lt	d. – Brity Depot		Forins	ection purper red	
÷ .		Recuite (mo/i)	2		, Ot .		

. .

Groundwater Monitoring - BH-2 -greenstar Materials Recovery Ltd. - Bray Depot

Groundwater Monitoring - BH-6 - greenstar Materials Recovery Ltd. - Brity Depot

•		Recuite (mg/l)	1		NOT .		
		1et Querter 2003		Previous	Sampling	Nethod	Analysis method/
	21/01/2003	17/02/2003	21/03/2003	Ranges ** C	Method	Detection Limit	technique
Temperature (°C)	16,3	14.6	16.0	13.3 - 10.4	Baller	0-100	Temperature probe
Chloride		166		34 - 135	Batter	<u>स</u>	Spectrophotometric analysis
TON		2.1		≪0.3 - 6.6	Baller	40,3	Spectrophotometric analysia
Ammoniacal Nitrogen -N	7.1	6.9	6.10	1.3-84	Baller	<0.2	Colormetric Spectropholometry
Potaeekum		16.8		9.8-27.5	Baller	<0.2	Fläme Photometer
Socium		138		32 - 128	Baller	40.2	Flame Photometer
TOC		50		6.0-26	Beller	্ৰ :	íŘ
Eleo. Conductivity (m&/om)	2.400	2.484	2.411	1.098 - 2.270	Beller	<0.014	Meter
Dissolved Oxygen		4.5	13	1.8-8.8	Baller	<0.1	Meter
pH	7.01	7.07	j 6.93	6.19 - 7.70	Beller	<0.01	Meter

Groundwater Monitoring - BH-8 - greenster Materials Recovery Ltd. - Bray Depot

. .

-		Results (mg/i)					
		1st Quarter 2003		Previous	Sempling	Method	Analysis method/
	21/01/2003	17/02/2003	21/03/2003	Ranges **	Method	Detection Limit	technique
Temperature (*C)	11.6	8,4	10.3	10.6 - 14.9	Baller	0-100	Temperature probe
Chioride		90		19-46	- Baller	4	Spectrophotometric analysis
TON		2.5		<0.3-8.4	Beller	<0,3	Spectrophotometric analysis
Ammoniacal Nitrogen -N	0.2	<0.2	1.2	<0.18-3.7	Baller	<0.2	Colormetric Spectrophotometry
Polasetum		1.0		0.3-2.5	Beller	<0.2	Flame Photometer
Socium		20.8	1	16,0 - 32.6	Beller	<0,2	Flame Photometer
TOC		28		<2-37	Baller	<1	iner IR
Elec. Conductivity (m&/cm)	0.75	0.663	0.707	0.881 - 0.861	Beller	<0.014	Meter
Dissolved Oxygen		6.0		3.4-9.04	Baller	<.1 01 KOT	Meter
pH	7.48	7.12	7.43	6.95 - 7.90	Baller	59.04°	Meter
Groundwater Monitoring - 151	H-7 - groonstar Ma	iariala Recovery Lt	d Bray Depot		FOT INSPECT	cion por refe	
•		Results (mall)			S.	•	

Groundwater Monitoring - BH-7 - greenetar Materials Recovery Ltd. - Bray Depot

•		Results (mg/l)	•		J.OT		
		1st Quarter 2003		Previous	Sampling	Method	Analysis method/
	21/01/2003	17/02/2003	21/03/2003	Rangee ** C	Method	Detection Limit	technique
Temperature (*C)	10.3	9.8	9.9	9.1 - 13.1	Baller	0-100	Temperature probe
Chloride		92		23-58	Ballet	4	Spectrophotometric analysis
TON		<0,3		0.4 - 2.8	Beller	<0.3	Spectrophotometric enalysia
Ammoniacel Nitrogen -N	8.9	1.8	6.4	0.18 - 3.2	Baller	40.2	Colormetric Spectrophotometry
Potaeahum		1.8	•	0.8-2.4	Bellet	<0.2	Flame Photometer
Sodium		17.8		18-48	Baller	4 .2	Flame Photometer
TOC		49		2-10	Baller	4	iR
Elec. Conductivity (m&/cm)	0.713	0.688	0.695	0.455 - 0.835	Baller	<0.014	Meter
Dissolved Oxygen		4.6		1.4 - 9.19	Beller	<0.1	Meter
pH	7.09	7.04	7.17	6.68 - 8.23	Baller	<0,01	Meter

Surface Weter Monitoring - \$W-1 -grienstar Materiale Recovery Ltd. - Bray Depot

•

	Recitis (mof)				
-	tet Querter 2008	Previous	Sempling	Method	Analysis method
	17/02/2000	Ranges*	Method	Detection 1 forth	
Temperature (°C)	8	8.1 - 13.8	18	4400	
Chibride	8	21-12	a de la de l	V	Contract de la contraction de
00	\$₽	<10-49	Ser la	Ģ	til and pinetimore and a
Nit the	0.09	40.03-22.66	1	27	openioria a presidente de la company
800	•	<1-10	ġ		Telling annunununununununununununununununununun
Ammoniscel Nitrogen -N	6 2	<02-048	ł	, {	VIC
Tot. Supp. Bolids	¢\$	\$-\$	8	4	
Total Phenois	10,0	0.01-0.1	8	24	
Eleo. Conductivity (m&lom) -	0,680	0.460-0.628	8	ANA	On the second
Checked Crypen	63	44-10.6	8	Ā	
Ŧ	826	7,36-8,40	8	Ð	2 2 7
					2, C

Monitoring - SW-2 - gruensiar Meladais Recovery Lid. - Bray Depot Burhoe Water

burtace Water Montforting - Si	N-2 - grtenstar Matari	ath Recovery Ltd	Bray Depot		on put court	ases off
	Readle (mon)					or an
	1st Cumter 2008 17/22/2008	Previous Renoes +	Sempling Mathor	Hethod	Antiyata method	yother
Temperature (°C) .	8	7.8-12.0	8	1-100	Theread in a set	
2hloride	æ	8-8	1	V	Sandara and a manual sector	•
8	418	40-34	8	910		
et the	0.05	<0.03-24.13	G	A DA	Spectration and any and a second seco	
8	•	4-1	1	V		
Anthonkacal Mitrigen -N	8	0.16-300	8	6	Colomate Constanting	
ot Supp. Bolida	0ţ¥	10-01	1	ę		
Thereise	1908 -	200-100	8	ą		
Bea. Conducthrity (militan)	0,500	0.445 - 0.622	8	404		
Meethod Cargen	8 .1	0.3 - 9.7	8	ţ.		
	8,18	7.87-0.47	8	Б¢	(inter	

5-07-2013:16:22:01

Gurthos Water Monthoring - SW3 - grannine Materiale Recovery List. - Bray Depot

	Readle (mof)				
	1st Querter 2008	Previous	Sempling	Method	Analytik method!
	17702/2004	· Ranges *	Method	Detection Limit	
Temperature (°C)	72	7.8 - 13.8	9	1-th	Andrew Province
Chloride	2	21-54	15	1	BOUR STURMAN
800	\$	<10-42	8	ę	Statute of an investigation
(thete	88	465-50A	ł	No.	openuopicouriera arminista
80	8	<1-13	8	3	ter
Ammonited Mittigen -N	0.7	416-1.70	8		
Tot. Buth. Bolids	¢10	-6-112		ę	
Total Phinole	60	401-002	ł	New	000
Elec. Conductivity (m&loa)	0.666	0.466 - 1.067	8	AMA	
Obsolved Oxygen	8.6	41-9.8	12	ł	
· · · · · · · · · · · · · · · · · · ·	7.88	7.44-6.62	ł	194	a a
					5 30

		Ę	95	500	Ser of the series of the serie
					owner 1
ice Water Nonhoring - (IW-4 - greenster Meteri	als Ricovery Ltd	Bray Depot	·	-
	Readin (mon)				
	tet Quarter 2000	Perdous	Samething		Analysis method
otritine PCI	64				technique.
6.1		191 - 191	95	- 100	Tamperature probe
2	×	22-36	Grab	Ŧ	Spectrophotometric emeryets
	\$	<10-36	ano O	0+	South and the second second
	808	-0.05 - 25.12	940	10	Brackmannacht and an
	~	4-12	į	8	
entanti Mimmon -M					
		0.16 - 2.50	85	42	Colonnetric Spectrophotometry
Pues. Bolids	Ş	<10-01	gup	40	Cher.
Phone	g	1000-1000-		100	074H
Conductivity (mBlom)	0.665	0.406-0.651	8	40014	1 1 1
christ Oxygen.	5.40	-0.1 - 619	and	Å.	A A A
1	2.78	7.83-8.40	Qub	10 0	Meter

port 25-07-2013:16:2

2:02

·	Results (mg/l)		:		,
	2nd Quarter 2003	Previous	Sampling	Method	Analysis methód/
	29/04/2003	Ranges **	Nethod	Detection Limit	technique
Temperature (°C)	13.1	8.4 - 14.9	Baller	0-100	Temperature probe
Chioride	21	19 - 90	Bailer	4	Spectrophotometric analysis
Ammoniacal Hitrogen -N	1.8	<0.18 - 3.7	Baller	<0.2	Colormetric Spectrophotometr
TOC	4	<2-37	Beller	<1	. IR
Elec. Conductivity (mS/cm)	0.68	0.581 - 0.861	Baller	<0.014	Meter
Dissolved Oxygen	3.8	3.4 - 9.04	Baller	<0.1	Meter
pH	7,48	6.95 - 7.90	Baller	<0.01 23 0	Meter

Groundwater Monitoring - BH-6 greenstar Materials Recovery Ltd. - Bray Depot

Groundwater Monitoring - BH-7 groenstar Materiale Recovery Ltd. - Bray Depot

	1,40	06.7 - 06.0	Celler	40.01 N. M.	Meter
Groundwater Monitoring - BH-7 g	reenetar Materiala Recovery	Ltd Bray Depot		section purposes of for	· · ·
	Recuite (mg/l)		COLI	ient	
	2nd Quarter 2003	Previoue	Sempling 0	Method	Analysis method/
	29/04/2003	Rangee **	Hethod	Detection Limit	technique
Temperature (°C)	12.3	9.1 - 13.1	Baller	0-100	Temperature probe
Chioride ·	27	23 - 92	Beller	শ	Spectrophotometric analysis
Ammanizazi Mitragen -N	2.9	0.16 - 6.4	Batter	<0.2	Colormetric Spectrophotometry
TOC	3	2-49	Baller	<1	IR
Elec. Conductivity (m8/cm)	0.675	0.455 - 0.835	Baller	<0.014	Meter
Dissolved Oxygen	2.8	1.4 - 9.19	Bailer	<0.1	Meter
pH	6.91	8.68 - 8.23	Beller	<0.01	Meter

Groundwater Monitoring - BH-2 greeneter Meterials Recovery Ltd. - Bray Depot

	Results (mg/l)	•			
	2nd Quarter 2008	Provlous	Sampling	Méthod	Analysis method/
	30/05/2003	Ranges *	Method	Detection Limit	technique
Temperature (°C)	12.5	6.9 - 16.5	Baller	0-100	Temperature probe
Chloride	32	25 - 102	Baller	<1	Spectrophotometric analysis
Ammoniacai Nitrogen -N	1.0	<0.16 - 2.5	Baller	<0.2	Colormetric Spectrophotometry
TOC	₹.	3.0 - 72	Baller	<1	IR
Elec. Conductivity (m8/cm)	0.736	0.540 - 0.995	Baller	<0.014	Meter .
Dissolved Oxygen	4.8	0.5 - 8.9	Baller	<0.1	Meter
pH	7.42	8.77 - 8.10	Baller	<0.01	Meter

Groundwater Monitoring - BH-6 greenster Meterials Recovery Ltd. - Bray Depot

рн	7.42	6.77 - 8.10	Baller	<0.01	Meter
Groundwater Monitoring - 511-5	greenster Meteriale Recovery	Ltd Bray Depot		oection puposes of for	
	Recutts (mg/l)		GOT	15 ght	
-	2nd Quarter 2003	Previous	Sampling 0	Method	Analysis method/
· · .	29/04/2003	Ranges **	Method	Detection Limit	technique
Temperature (°C)	18.9	13.3 - 16.4	Baller	0-100	edorg entiregement
Chloride	123	34 - 188	Baller	<1	Spectrophotometric analysis
Ammonistal Nitrogen -N	9.8	1.3 - 8.4	Bater	≪0.2.	Colormetric Spectrophotometry
TOC	20	5.0-60	Ballet	<1	İR
Elec. Conductivity (m8/cm)	2.401	1.093 - 2.484	Baller	<0.014	Meter
Dissolved Oxygen	2.6	1.6 - 8.6	Baller	≪0.1	Meter
pH	6.8	6.19 - 7.70	Batter	<0.01	Meter

	Results (mgR)	÷			
	2nd Quarter 2003	Previous	Sampling	Method	Analysis method/
	36/05/2003	Ranges*	Nethod	Detection Limit	technique
Temperature (*C)	13.3	7.8-13.8	Grab	1-100	Temperature probe
Chloride	27	21-94	Grab	4	Spectrophotometric analysis
COD	<15	<10-42	Grab	<10	Spectrophotometric analysis
	0.1	<0.03-23.82	Grab	<0.05	Spectrophotometric analysis
	2	<1-18	Gnab	2	ATU
Anunoniecei Mitrogen -Ni	1.0	<0.16-1.70	Grab	. ⊲0.2	Colormetric Spectrophotometry
Tet. Suep. Solide	<10	<5-112	Grab	<10	Grav
Telef Phonein	<0.01	<0.01-0.02	Grab	<0.01	HPLC
Elec. Conductivity (mS/cm)	0.595	0.465-1.067	Grab	<0.014	Meter
Disselved Oxygen	8.1	<0.1-9.8	Grab	<0.1	Molor
	8.04	7.44-8.52	Grab	<0.01	Motor

ry Ltd. - Bray Depot

Surface Water Monitoring - SW-	4 - groundar Minterfals	Recovery Ltd Br	ey Depot	net Use.	
	Results (mg/l)	· · · · · · · · · · · · · · · · · · ·		400	
	2nd Quarter 2003	Pervious	Sampong	Method	Analysis method/
	20/05/2003	Ranges*	Bolled	Detection Limit	technique
Temperature (°C)	13.2	7.7-13.7	OUL CAR	1-100	Temperature probe
Chieride .	28	22-91 💉	Grab	<	Specirophotometric energies
COD	<15	<10-38	Grab	<10	Specirophotometric analysis
	0.1	<0.03-25.12	Grab	<0.05	Spectrophotometric energies
	4	4.1-8	Grab	2	ATU
Ammoniacel Milzogen -N	14	0.16-2.50	Grab	⊲2	Colonneiric Spectrophotomotry
Tet. Suep. Solide	<10	of <10-84	Grab	<10	Grav
Total Phoneis	<0.01	<0.01-0.01	Grab	<0.01	HPLC
Elec. Conductivity (mS/cm)	0.598	0.408-0.631	Grab	<0.014	allolor .
Closelved Caygen	8.20	<0.1-9.9	Grab	4 .1	Notor
	8.08	7.63-8.40	Grab	≪0.01	Moter

is Recovery Ltd. - Brey Depot Surface Wate - SH-1 gri ri 1 11

	Recults (mgit)		· · ·		
	2nd Quester 2003	Previous	Sampling	Bothod	Analysis method/
	30/05/2003	Ranges*	Method	Detection Limit	technique
Temperature ("C)	18.4	8.1-13.8	Grab	1-100	Temperature probe
Chloride	24	21-90	Grab	ব	Spectrophotometric analysis
COD	<15	<10-49	Grab	<10	Spectrophotometric analysis
Hittie	0.00	<0.03-22.88	Grab	<0.05	Spectrophotometric analysis
800	2	<1 - 19	Grab	2	ATU
Ammoniacal Nilrogen -N	8.0	<02-0.93	Gasb	<02	Colormetric Spectropholometry
Tot. Susp. Solids	<10	≪5-48	Grab	<10	Grav
Totel Phonois	<0.01	0.01 - <0.1	Grab	<0.01	HPLC
Elec. Conductivity (mS/cm)	0.589	0.480 - 0.628	Grab	<0.014	Motor
Dissolved Oxygen	8.9	4.4 - 10.5	Grab	<0.1	Motor
pH	8.19	7.35-8.40	Grab	<0.01	Motor:

V-2.9 covery Ltd. - Br W De s Ai ٥đ

Burlace Water Monitoring - SW-2 greenster Materials Recovery Ltd Bray Depot									
	Results (mgil)			othe					
	2nd Counter 2003	Previous	Samplin	bodielle 3	Analysis method/				
	39/05/2003	Ranges *	Michael 40	Detection Limit	technique				
Temperature (*C)	13,4	7.8-13.9	Get	1-100	Temperature probe				
Chloride	27	22-91		- -	Specirophotometric energies				
COD	<15	<10-34 0	TO Grab	<10	Specirophotometric analysis				
	0.12	0.03-26-13	Grab	<0.05	Spectrophotometric analysis				
80D	2	40-11 18	Grab	8	ATU				
Ammoniacai Nitrogen -N	1.1	0.16-3.00	Grab	⊲ 2	Colonnetric Spectrophotometry				
Tot. Susp. Solids	<10	×=10-51	Grab	<10	Grav				
Total Phonois	<0.01	0.01 - 0.02	Grab	<0.01	HPLC				
Elec. Conductivity (mS/cm)	0.698	0.445-0.622	Grab	<0.014	Notor				
Dissolved Oxygen	8.6	0.3-9.7	Grab	⊲0.1	Mator				
pH	8.1	7.37 - 8.47	Grab	≪0.01	Notor				

er Monitoring - 1944 greenster Meteriale Recovery Ltd. - Bray Depot

	Results (mg/l)				
	and Quarter 2003	Previous	Sempling	Method	Analysis method/
	22/08/2003	Ranges **	Nethod	Detection Limit	technique
Temperature (°C)	12.9	8.4 - 14.9	Baller	0-100	Temperature probe
Chibride	25	19 - 90	Baller	<1	Spectrophotometric analysis
Ammoniacal Nitrogen -N	0.3	<0.18 - 3.7	Baller	<0.2	Colormetric Spectrophotometry
TOC	3	<2-37	Baller	<1	IR
Elec. Conductivity (m8/cm)	0.775	0.581 - 0.861	Baller	<0.014	_{.co} . Meter
Dissolved Oxygen	7.9	3.4 - 9.04	Baller	<0.1	Meter
pH	7.31	6.95 - 7.90	Baller	<0.01 and and	Meter

Groundwater Monitoring - 201-7 greenstar Materials Recovery Ltd. - Bray Depot

	7,91	06.1 - 08.0	Canor	40.01 11 2011	Ware
Groundweter Monitoring - 191-7	greenstar Materiàla Recovery	/ Ltd Bray Depot		Dection purposes allo	
	Results (mg/l)		Forth	itelt.	
	ard Quarter 2003	Previous	Sampling	Method	Analysis method/
	22/08/2003	Ranges **	Method	Detection Limit	tichnique
Temperature (*C)	13.1	9.1 - 13.1	Baller	0-100	Temperature probe
Chioride	28	23 - 92	Baller	ব	Spectrophotometric analysis
Ammoniacal Nitrogen -H	0.3	0.16 - 6.4	Baller	<0.2	Colormetric Spectrophotometry
TOC	3	2-49	Baller	ব	iR
Elec. Conductivity (m8/cm)	0.668	0.455 - 0.835	Baller	<0.014	Meter
Dissolved Oxygen	6.7	1.4 - 9.19	Baller	<0.1	Meter
pH	6.79	6.68 - 8.23	Bäller	<0.01	Meter

Groundwater Monitoring - BH-2 greenstar Materials Recovery Ltd. - Bray Depot

	Results (mg/l)					
	3rd Quarter 2003	Previous	Sampling	Nethod	Analysis method/	
	22/08/2003	Ranges *	Nethod	Detection Limit	technique	
Temperature (°C)	12.5	6.9 - 16.5	Ballèr	0-100	Temperature probe	
Chloride	31	25 - 102	Baller	ধ	Spectrophotometric analysis	
Ammoniacei Nitrogen -N	<0,2	<0.16 - 2.5	Baller	<0.2	Colormetric Spectrophotometry	
TOC	2	\$-72	Bailer	<1	iR	
Elec. Conductivity (mB/cm)	0.730	0.640 - 0.996	Baller	<0.014	Meter	
Discrived Oxygen	8.3	0.5 - 8.9	Baller	<0.1	Meter	
pH	7 <i>A</i> 7	8.77 - 8.10	Bater	<0.01	Meter	

Groundwater Monitoring - 5H-8 greenster Materiale Recovery Ltd. - Bray Depot

pH	7.47	6.77 - 8.10	Batler	<0.01	Meter
Groundwater Monitoring - 84-6	groenster Materialia Recovér,	y Lid Brity Depot		ection puposes ited for	
	Results (mg/l)		- ALI	N IN	
	and Quester 2003	Previous	Sempling	Method	Analysis method/
	22/06/2003	Ranges **	Method	Detection Limit	technique
Temperature (°C)	16.6	13.3 - 18.9	Ealler	0-100	Temperature probe
Chloridé	\$ 3	34 - 186	Baller	4	Spectrophotometric analysis
Ammoniacei Nitrogen -N	6.0	1.3-9.8	Bailer	<0.2	Colormetric Spectrophotometry
100	18	8.0-80	Baller	্ৰ	iR .
liec. Cenductivity (m8/cm)	2.256	1.093 - 2.484	Baller	<0.014	Meter
Disectved Oxygen	8.1	1.8 - 8.8	Baller	<0.1	Meter
pH	6.85	6.19 - 7.70	Beller	<0.01	Meter

Surface Water Monitoring - SW-3 - greenster Meteriels Recovery Ltd. - Bray Depot

	Results (mg/l)	· · · · · · · · · · · · · · · · · · ·			
	and Quarter 2003	Previous	Sampling	Nethod	Analysis method/
	22/08/2003	Ranges *	Method	Detection Limit	technique
emperature (°C)	14.2	7.8 - 13.8	Grab	1-100	Temperatura orobe
hloride	28	21-94	Grab	<1	Spectrophotometric analysis
OD	<15	<10-42	Grab	<10	Spectrophotometric analysis
litite	<0.05	<0.03 - 23.82	Grab	<0.05	Spectrophotometric analysis
00	2	<1 - 13	Grab	2	ATU
nmoniacal Nitrogen -N	<0.2	<0.16 - 1.70	Grab	<0.2	Colormetric Spectrophotometry
L Suep. Solide	<10	<8-112	Grab	<10	Gtav
tal Phonois	<0.01	<0.01-0.02	Grab	<0.01	HPLC
sc. Conductivity (m8/cm)	0.588	0.465 - 1.067	Grab	<0.014 off	Meter
soolved Oxygen	7.9	<0.1 - 9.8	Grab	AL DAG	Meter
	7.81	7.44 - 8.52	Grab	S 30.01	Meter
urface Water Monitoring - SW-4 g	reenstar Materials Recovery Ltd	L - Bray Depot	A HARON	SP Pure require	
	Results (mg/l)		the strength		

Surface Water Monitoring - SW-4 greenster Materials Recovery Ltd. - Bray Depot

	Results (mg/l)		op		
	3rd Quarter 2003	Pervious	Sempling	Method	Analysis method/
· · · · · · · · · · · · · · · · · · ·	22/08/2003	Rangeé *	ilethod	Detection Limit	technique
Temperature (°C)	14.3	7.7 - 18.7	Grab	1-100	Temperature probe
Chioride	26	22 - 91	Grab	4	Spectrophotometric analysis
000	<18	<10-38	Grab	<10	Spectrophotometric analysis
Nitritie	<0.08	<0.03 - 25.12	Grab	<0.05	Spectrophotometric analysis
BOD	2	<1-8	Grab	Q	ATU
Ammoniacat Nitrogen -N	<0.2	0.18 - 2.50	Grab	<0.2	Colormetric Spectrophotometry
Tot. Suep. Solida	<10	<10-84	Grab	<10	Grav
Total Phenole	<0.01	<0.01 - 0.01	Grab	<0.01	HPLC
Elec. Conductivity (m8/cm)	0.683	0.468 - 0.631	Grab	<0.014	Meter
Dissolved Oxygen	8.1	<0.1 - 9.9	Grab	<0.1	Meter
pH;	7.87	7.83 - 8.40	Grab	<0.01	Meter

z

Surface Water Monitoring - SW-1 greenstar Materials Recovery Ltd. - Bray Depot

	Results (mg/l)	· · · · · · · · · · · · · · · · · · ·						
	3rd Quarter 2003	Previous	Sempling	Method	Analysis method/			
	22/08/2003	Ranges*	Method	Detection Limit	technique			
Temperature (°C)	14.2	8.1 - 13.8	Grab	1-100	Temperature probe			
:hioride	29	21-90	Grab	<	Specirophotometric analysis			
00	<15	<10 - 49	Grab	<10	Spectrophotometric analysis			
linie	<0.05	<0.03 - 22.88	Grab	<0.05	Specirophotometric analysis			
BOD	2	<1 - 19	Grab	2	ATU			
Ammoniacal Nitrogen -N	<0,2	<0.2 - 3.0	Grab	<0.2	Colormetric Spectrophotometry			
fot. Susp. Solida	<10	<5-48	Grab	<10 🖉	Grav			
iotal Phenole	<0.01	0.01 - <0.1	Grab	<0.01	HPLC			
liec. Conductivity (mB/cm)	0.58	0.460 - 0.628	Grab	<0.014	Meter			
Dissolved Oxygen	8.0	4.4 - 10.5	Gtab	off or	Meter			
H	7.5	7.35 - 8.40	Grab	o ^{se} e ∖<0.01	Meter			
Surface Water Monitoring - SW-2 greenstar Materials Recovery Ltd Bray Depot								
	Results (mg/l)		e cop					

Surface Water Monitoring - SW-2 greenster Materials Recovery Ltd. - Bray Depot

	Results (mg/l)				
	and Quarter 2003	Prévious	Sampling	Nethod	Analysis method/
	22/08/2003	Ranges *	A Method	Detection Limit	technique
Temperature (*C)	14,3	7.8 - 13.9	Grab	1-100	Temperature probe
Chloride	26	22 - 91	Grab	· <1	Spectrophotometric analysis
COD	<18	<10-34	Grab	<10	Spectrophotometric analysis
Niertse	<0.05	<0.03-24.13	Grab	<0.08	Spectrophotometric analysis
00	2	<1-11	Grab	2	ATU
Ammoniacal Nitrogen -N	<0.2	0.16 - 3.00	Grab	<0.2	Colormetric Spectrophotometry
Tol. Susp. Solida	<10	<10-51	Grab	<10	Grav
Total Phonois	<0.01	<0.01 - 0.02	Grab	<0.01	HPLC
Elec. Conductivity (m2/cm)	0.582	0.445 - 0.622	Grab	<0.014	Meter
Dissolved Oxygen	8.6	0.3 - 9.7	Grab	<0.1	Meter
p41	7.89	7.37 - 8.47	Grab	<0.01	Meter

.

Groundwater Monitoring - BH-2 - greenstar Materiale Recovery Ltd - Bray Depot

i	Results (mg/l)				
	4th Querter 2003 .	Previous	Sampling.	Nethod	Analysis method/
	29/11/2003	Ranges *	Method.	Detection Limit	technique
Temperature (°C)	10.1	6.9 - 16.5	Baller	0-100	Temperature probe
Chierde	25	26-57	Baller		Specirophotometric analysis
TON	4.3	0.2-11.9	Baller	40,5	Spectrophotometric analysis
Ammoniacal Mitrogen -N	40.2	-0.18-2.5	Baller	42	Colormetric Spectrophotometry
Potecium	0.6	8.4-11.0	Baller	4.2	Flame Photometer
Sodium	13.6	20.5-74	Baller	40,2	Finne Photometer
TOC	5	3.0-22	Baber	ব	IR .
Elec. Conductivity (milliom)	0,911	0.540 - 0.998	Baller	<0.026 ·	Meler
Dissolved Oxygen	9.5	0.5-8.9	Baller	<0.1	Metar
pH	0.91	6.77 - 8,10	Deller	Q.01	Meter
Boron	<0.05	0.05-0.07	Baller	<0.05	CP
Calcium	118.5	124-133.8	Belier	<0.05	of ICP
Magneekum	10.48	10.55-11.78	Baller	<0.05	OTTO ICP
Phosphorus	<0.05	<0.05	Ballic	<0.05	N and ICP
ortho Phosphete as PO4	•	<0.03	Baller	<0.03	KONE
Fluoride	0.1	0.20-<0.05	Baller	<0.010° 100	Speckopholometric enelysis
Sulphate	31	40-33	Baller	S COL	Specirophotometric analysis
Total Cyanide	<0.05	<0.05	Baller	× 20,05	Specirophotometric analysis
Mercury (ugit.)	<0.05	<0.05	Beller	S. 00.05	CVAAS
Total Solida	-	348-488	Baller	190	Grev
Cadmium (ug/L)	<0,4	<0.4	Beller	<0A	ICP-USN
Chromium (ug/L)	5	<1	Ballier &	4	ICP-USN
Copper (ug/L)	4	29-<0.05	Ballon	4	tcp-usn
Iron (ug/L)	<1	2-420	Coller	<1	ICP-USN
Manganese (ug/L)	5	<1-16	Beller	<1	ICP-USN
Leed (ug/L)	<5	্ব	Baller	<5	ICP-USN
Zinc (ug/L)	S	32-<0.05	Baller	4	ICP-USN
Total Alkalinity	280	360-410	Baller	4	Tiration
Total Collionne (mpn/100ml)	6	8-1203	Baller	4	Count
Pascal Collforms (mpn/100ml)	<1	4	Baller	4	Count
VOC (upl.)		<1	Baller	<1	GCMS
Haphthelene 2-Hethvinebithelene	ব	2,5	Baller	41	ġcm8
Organo-Chiorine and Organo- Phosphorous Postioides (ng/L)	<10	<10	Beller	<10	GCM8

** denotes range between February 2001 and September 2003

Groundwater Monitoring - BH-5 - greenstar Materials Recovery Ltd - Bray Depot

	Results (mg/l)		·		
	4th Querter 2003	Previous	Sampling	Method	Analysis method/
	26/11/2003	Ranges **	Nethod	Detection Limit	tichnique
Temperature (°C)	16.1	13.3 - 16.4	Baller	0-100	Temperature probe
Chieride	74	34-195	Belot	-4	Spectrophotometric analysis
TON	0.4	<0.3-0.0	Baller	<0.3	Specirophotometric analysis
Ammoniacel Nitrogen -N	4.3	1.3-84	Baller	<0.2	Colormetric Spectrophotometry
Potessium	4.6	9.6-27.5	Baller	<0.2	Flame Photometer
Sodium	148	32-125	Baller	<0.2	Finne Photometer
TOC	11	6.0-26	Beller	4	IR
Elec. Conductivity (m8/cm)	3,100	1.003-2.270	Ballór	<0.025	Meter
Dissolved Oxygen	9.2	1.0-8.0	Baller	<0.1	Meter
pH	0.84	0.19-7.70	Beller	<0.01	Meter
Boron	0.21	0.65-0.46	Ballet	<0.05	
Celctum	348.3	357.70-347.9	Ballet	<0.05	CP CP
Megnesium	37.2	32.75-30.75	Baller	<0.05	NI ICP
Phosphorus	0.34	0.16-<0.05	Baller	<0.05	Stand KP
ortho Phosphate as PO4	0.09	<0.03	Beller	<0.03.	KONE
Fluoride	<0.1	0.80-<0.5	Baller	<0.01 0.00	Specirophotometric analysis
Sulphate	502	402-432	Baller	C. C.C.	Spectrophotometric analysis
Total Cyanide	<0.05	<0.05	Baller	N20.05	Spectrophotometric analysis
Mercury (mg/L)	<0.05	•	Baller	50° 054	CYAAS
Total Solids	•	1822-2053	Baller	Wight d	Grav
Cedmium (mg/L)	<0,05	mdt	Baller	<0.05	ICP-USN
Chromium (mg/L)	<0.05	mdi	Baller &	<0.05	ICP-USN
Copper (mg/L)	<0.05	mdi	Belon	<0.05	ICP-USN
Iron (mg/L)	<0.05	0.011 - 0.74	Covier	<0.05	ICP-USN
Manganoso (mg/L)	0.48	0.13-0.222	Baller	<0.05	icp-usn
Leed (mgil.)		ব	Baller	•	ICP-USN
Zine (mg/L)	<0.05	0.047-md	Baller	<0.05	ICP-USN
Total Alkelinity	380	580-620	Beller	4	Treation
Total Coliforme (mpn/100ml)	ব	>180-73	Beller	<1	Count
Facoal Coliforms (mpn/100ml)	<1	21-<1	Baller	4	Count
VOC (ug/L)	4	4	Baller	4	GCMS
SVOC (ug/L)	<1	<1	Baller	<1	GCMS
Organo-Chlorine and : Organo- Phosphorous Pesticides (ng/L)	<10	<10	Baller	<10	QCM8

mdi = Method Detection Limit ** denotes range between Fabruary 2001 and September 2003

Groundwater Monitoring - BH-8 - greenstar Materials Recovery Ltd - Bray Depot

	Results (mg/l)			· ·	
	4th Quester 2003	Previous	Sampling	Hethod	Analysis method/
	26/11/2003	Ranges **	Method	Detection Limit	technique
Temperature (*C)	13	10.5 - 14.9	Saler	0-100	Temperature probe
Chioride	31	19-48	Baller	4	Spectrophotometric analysis
TON	<0.03	-0.3-8A	Baller	4).3	Spectrophotometric analysis
Ammoniacel Nitrogen -N	<0.6	<0.16-3.7	Baller	4.2	Colometric Spectropholometry
Potestum	1.6	0.3-2.5	Baller	<0.2	Flame Photometer
Sodium	16,6	16.0 - 32.5	Baller	<0.2	Flame Photometer
TOC	4 -	<2.57	Baller	<1	R
Elec. Conductivity (m8/om)	0.66	0.681 - 0.861	Bailer	<0.025	Meter
Dissolved Oxygen	10.2	3.4-9.04	Beller	4.1	Meter
pH	6,97	6.95-7.90	Baller	40.01	Meter
Boron	<0.05	<0.05	Baller	<0.05	
Celclum	115.5	182.90-131.3	Beller	<0.05	ICP
Magneetum	9.79	10.04-6.98	Baller	<0.05	CP KCP
Phosphorus	0.94	0.07-<0.05	Baller	<0.05	S and ICP
ortho Phosphete as PO4	0.05	<0.03	Baller	40.03	o Kone
Fluoride	0,2	0.20-<0.05	Baller	<0.00 °. e	Spectropholometric analysis
Sulphoto	22	45-58	Baller	Collection of the second	Spectrophotometric analysis
Total Cyanide	0.05	<0.05	Beller	×0.05	Speciropholometric analysis
Mercury (mg/L)	<0.05	<0.05	Baller	× ×0,05	CVAAS
Total Bolids	•	2222-1955	Ballet	11.011 <1	Grav
Cadmium (mg/L)	<0.05	mai	Baller St	<0.05	ICP-USN
Chromium (mg/L)	<0.05	mail	Baller &	<0.05	ICP-USN
Copper (mg/L)	<0.05	mdi	Beller	<0.05	ICP-USN
tron (mg/L)	<0.05	. mdi-0.44	Sin .	<0.05	ICP-USN
Menganese (mg/l.)	<0.05	0.003-0.011	Baller	<0.05	ICP-USN
Lead (mg/L)		4	Celler	•.	ICP-USN
Zinc (mg/L)	<0.05	0.057-mdt	Baller	<0.05	ICP-USN
Total Alkelinity	360	890-310	Baller	<1	Titration
Total California (mpn/100ml)	960	91-28	Baller	<1	Count
Faecal Collformé (mpn/100ml)	<1.	16-<1	Baller	<1	Count
VOC (up/L)	<	<1	Beller	<1	GCMB
SVOC (ug/L)	<1		Baller	<	GCMS
Organo-Chlorine and Organo- Phosphorous Pesticides (ng/L)	<10	<10	Beller	<10	GCMS

. .

mdi = Helind Detection Limit ** denotes range between February 2001 and September 2003 NS - no sample taken - well dry

Groundwater Monitoring - BH-7 - greenstar Materials Recovery Ltd - Bray Depot

	Results (mg/l)	•			
	4th Quarter 2003	Previous	Sampling	Method	Analysis method/
	20/11/2003	Ranges **	Nethod	Detection Limit	technique
Temperature (*C)	11.1	9.1 - 13.1	Baller	0-100	Temperature probe
Chioride	23	23-58	Baler	<5	Spectrophotometric analysis
TON	3.2	0.4-2.8	Beller	40.3	Specirophotometric analysis
Ammoniscel Nitrogen -N	<0.2	0.16-3.2	Baller	<0.2	Colometric Spectrophotometry
Polassium	0.8	0.8-24	Baller	<0.2	Flame Photometer
Sodium	17	18-46	Baller	<0.2	Finne Photometer
TOC	4	2-10	Bater	· <1	(R
Elec. Conductivity (m8/cm)	0.416	0.456 - 0.836	Baller	<0.025	Meter
Dissolved Oxygen	9.7	1.4-9.19	Baller	<0.1	Meter
pH	8.8	6.68 - 8.23	Beller	<0.01	Motor
Boron	<0.05	<0.05	Baller	<0.05	<u>e</u> · ICP
Calcium	169A	136.40-103.7	Baller	<0.05	ICP
Magnoslum	10.05	9.69-9.08	Baller	<0.05	ill icp
Phosphores	0.50	0.06-<0.05	Baller	<0.05 🚿	ICP
ortho Phoephete as PO4	0.05	<0.03	Baller	<0.03	KONE
Fluoride	<0.01	0.20<0.5	Biller	<0.00>	Spectrophotometric analysis
Sulphate	57	25-26	Baller	Contra and	Specirophotometrio énelysis
Total Cyanida	<0.05	<0.05	Baller	10 ×005	Spectrophotometric analysis
Mercury (mg/L)	<0.05	<0,05	Baller	S° S≪0.05	CVAAS
Total Solids	•	562-508	Beller	1011 <1	Grav
Cadmium (mg/L)	<0.05	md	Baller	<0.05	ICP-USN
Chromium (mg/L)	<0.05	ibm	Baller	<0.05	ICP-USN
Copper (mg/L)	<0.05	libm	Bash	<0.05	ICP-USN
Iron (mg/L)	0.05	0.002 - 0.320	C Selec	<0.05	ICP-U8N
Manganese (mg/L)	2.9	0.001 - 1.231	Baller	<0.05	ICP-USN
Leed (mg/L)		<\$	Baller		ICP-USN
Zinc (mg/L)	<0.05	0.060-mdl	Ballér	<0.05	ICP-USN
Total Alkelinity	320	350-300	Beller	<1	.Titrution
Total Collionne (mpn/100mi)	<1	2-<1	Baller	<1	Count
Fascel Collforms (mpn/100ml)	<1	<1	Ballor	<1	Count '
VOC (up/L)	<1	4	Baller	<1	OCM8
SVOC (ug/L)	<1	<1	Baller	<1	GCMS
Organo-Chiorine and Organo- Phosphorous Pasticides (ng/L)	<10	<10	• Beller	<10	gcm8

** denbles ranges between February 2001 and September 2003 mdl = Helhod Detection Limit

Surface Water Monitoring - SW-1 - greenstar Materials Recovery Ltd - Bray Depot

	Results (mg/l)				-
	4th Guarter 2003	Previous	Sampling	Method .	Analysis method/
	26/11/2003	Ranges*	Method	Detection Limit	technique
Temperature (°C)	8.38	8.1 - 13.8	Grab	1-100	Temperature probe
Chioride	28	21 - 42	Grab	<6	Spectrophotometric analysis
COD	<18	<10-49	Grab	<18	Spectrophotometric analysis
Nitrite	<0.05	<0.03 - 22.88	Grab	<0.05	Spectrophotometric analysis
BOD	2	<1-19	Grab	<1	ATU
Ammoniacal Nitrogen -N	⊲0.2	<0.2 - 0.93	Grab	<0.2	Colormetric Spectrophotometry
Tot. Susp. Solida	<10	<\$-48	Ĝrab	<10	Grav
Total Phenole	<0.01	<0.01 - 0.01	Grab	<0.01	HPLC
Elec. Conductivity (m8/cm)	0.31	0.460 - 0.628	Grab	e0.025	Meter
Dissolved Oxygen	9.2	4.4 - 10.8	Grab	et <0.1	Meter
pH	8.38	7.88 - 8.40	Gnab 💊	<0.01	Meter
Calcium	95.7	110.50-62.39	Grab 505	<0.05	109
Magnoelum	8.61	8.47-5.99	Grato	<0.05	ICP
Phosphorus	<0.05	0.12-<0.05	Grape	<0.05	109
ortho Phosphate as PO4	0.06	0.1	CTIC Grab	<0.03	KONE
Sulphete	26	21-24	ns of Grab	3	Spectrophotometric analysis
Total Oxidiaed Nitrogen	6.5	7. 5-6.0 🔨	Grab	<0.3	Spectrophotometric analysis
Morcury (ug/L)	<0.05	0.26-<0.05	Grab	<0.05	CVAAS
Potaestum	0.6	2.1-2.2 ent	Ĝrab	<0.2	Flame Photometry
Sodium	16.6	19-15 013	Grab	<0,2	Fláme Photometry
Cadmium (ug/L)	<0.4	<0.4	Grab	<0.4	ICP-USN
Chromium (ug/L)	8	<u>4</u>	Grab	<1	ICP-USN
Copper (ug/L)	<\$	<\$	Grab	্ৰ ব্	ICP-USN
fron (ug/L)	<1	290-4	Grab	<1	ICP-USN
Manganasa (ug/L)	5	<1-4	Grab	<1	ICP-USN
Leed (ug/L)	<\$	<\$	Grab	<5	ICP-USN
Zinc (ug/L)	<5	60<5	Grab	<5	ICP-USN
Total Alkalinity as CaCO3	350	270-170	Grab	<1	
	<	< <u> </u>	Gillb	<1	GCMS
2-Mothyinephthelene	8	<1	Grab	<1	GCMS
Organo-Chlorine and Organo- Phosphorous Pasticides (ng/L)	<10	<10	Grab	<10	GCMS

* denotes range between March 2000 and September 2003

Surface Water Monitoring - SW-2 - greenstar Materials Recovery Ltd - Bray Depot

	Results (mg/l)			-	
	4th Quarter 2003	Previous	Sampling	Nethod	Analysis method/
	26/11/2003	Ranges *	Method	Detection Limit	technique
Temperature (*C)	8.33	7.8 - 13.9	Grab	1-100	Temperature probe
Chioride	28	22 - 39	Grab	<5	Spectrophotometric analysis
COD	<15	<10-34	Grab	<18	Spectrophotométric analysis
Nitrite	<0,05	<0.03 - 24.13	Grab	<0.05	Spectrophotometric analysis
BOD	2	<1-11	Grab	4	ATU
Ammoniecal Nitrogen -N	<0.2	0.10 - 3.00	Grab	<0.2	Colormetric Spectrophotometry
Tot. Susp. Solids	<10	<10-51	Grab	<10	Grav
Total Phenols	<0.01	<0.01 - 0.02	Grab	<u>,</u> ⊘≪0.01	HPLC
Elec. Conductivity (m8/cm)	0,315	0,448 - 0.622	Greb	⊴√√ <0.028	Meter
Dissolved Oxygen	9.7	0.3 - 9.7	Grab	1.0th 40.1	Meter
pH	8.34	7.37 - 8.47	Grab only	alt, <0.01	Meter
Calcium	95.72	103.50-63.21	Grab	<0.05	ICP
Magnesium	8.82	8.10-6.09	Grad Juli	<0.05	ICP
Phosphorus	<0.05	0.09-<0.5	iton Grab	<0.05	ICP
ortho Phosphale as PO4	0.06	0.1	Se of Grab	<0.03	KONE
Suiphete	26	28-25	Grab	<3	Spectrophotometric analysis
Total Oxidiaed Hitrogen	6.7	7.6-6.1	Grab	<0,3	Spectrophotometric analysis
Mercury (ug/L)	<0.05	0.07-<0.05	Grab	· .	CVAAS
Potassium	1	2.1-2.2	Grab	<0.2	Flame Photometry
Sodium	16.6	22-15.3	Grab	<0.2	Flame Photometry
Cadmium (ug/L)	<0.4	<0.4	Grab	<0.4	ICP-U8N
Chromium (ug/L)	<1	<1	Grab	<1	ICP-USN
Copper (up/L)	<5	<5	Grab	<\$	ICP-USN
tron (up/L)	<1	340-<1	Grab	<1	ICP-USN
Manganese (ug/L)	6	<1-4	Grab	<1	ICP-USN
Leed (ug/L)	4	<5	Grab	<\$	ICP-USN
Zine (ug/L)	<5	34-<5	Grab	<5	ICP-USN
Total Alkalinity as CaCO3	270	280-170	Grab	<1	Titration
VOC (ugit.)	<1	<1	Grab	<1	GCMS
SVOC (ugiL)	4	<1	Grab	<1	GCMS
Organo-Chlorine and Organo- Phosphorous Pasticides (ng/L)	<10	<10	Grab	<10	GCMS

* denotes range between March 2000 and September 2003

٠

Surface Water Monitoring - SW-3 - greenstar Materials Recovery Ltd -Bray Depot

.

	Results (mg/l)	•			
	Ath Quarter 2003	Previous	Sampling	Method	Analysis method/
	26/11/2003	Ranges *	Method	Detection Limit	technique
Temperature (°C)	8,34	7.8 - 13.8	Grab	1-100	Temperature probe
Chioride	28	21-54	Grab	4	Spectrophotometric analysis
COD	<18	<10-42	Grab	<16	Spectrophotometric analysis
Nitrite	<0.05	<0.03 - 23.62	Grab	<0.05	Spectrophotometric analysis
BOD	<2	<1-13	Grab	4	ATU
Ammoniacal Nitrogen -N	≪0.2	<0.16 - 1.70	Grab	<0.2	Colormetric Spectrophotometry
Tot. Susp. Solids	<10	<8-112	Grab	<10	Grav
Total Phenois	<0.01	<0.01 - 0.02	Grab	e.=0.01	HPLC
Elec. Conductivity (m8/cm)	0.307	0.466 - 1.067	Grab	× × × × × × × × × × × × × × × × × × ×	Méter
Dissolved Oxygen	10.2	<0.1 - 9.8	Grab	otte 40.1	Meter
pH	8,33	7.44 - 8.62	Grab only	w ¹ . <0.01	Meter
Celcium	95.28	104.60-63.72	Grab & St	<0.05	ICP
Magneslum	9.03	8.19-6.1	Cab	<0.05	ICP
Phosphorus	<0.05	0.06-<0.05	OFGrab	<0.05	102
ortho Phoephate as PO4	0.05	0.1	Se St Grab	<0.03	KONE
Sulphate	26	24-23	Grab	3	Specirophotometric analysis
Total Oxidiaed Nitrogen	6.5	7.6-6.0	Grab	<0.3	Spectrophotometric analysis
Mercury (up/L.)	<0.05	4.49-<0.05	Grab		CVAAS
Potensium	2.2	2.1-2.2.50	Ğrab	<0.2	Flame Photometry
Sodium	17.0	21-15.8	Grab	<0.2	Flame Pholometry
Cedmium (ug/L)	<0.4	<0.4	Grab	<0.4	ICP-USN
Chromium (ug/L)	8	<1	Grab	4	ICP-USN
Copper (ug/L)	ය	<5	Ĝrab	<\$	ICP-USN
tron (up/L)	4	330-<1	Grab	<1	ICP-USN
Manganese (ug/L)	\$	· <14	Grab	<1	ICP-USN
Load (ug/L)	<\$	<\$	Grab	<5	ICP-USN
Zine (ug/L)	<5	\$5-<5	Grab	<5	ICP-USN
Total Atkailnity as CaCO3	230	260-150	Grab	<1	Titration
VOC (ug/l.)	<1	<1	Grab	<1	GCMS
SVOC (ug/L)	<1	<1	Grab	<1	GCMS
Organo-Chlorine and Organo- Phosphorous Pesticides (ng/L)	<10	<10	Grab	<10	GCMS

* denotes range between March 2000 and September 2003

Surface Water Monitoring - SW-4 - greenstar Materials Recovery Ltd - Bray Depot

	Recuits (mg/l)				
	4th Quarter 2003	Previous	Sampling	Nethod	Analysis method/
	26/11/2003	Rangee *	Method	Detection Limit	technique
Temperature (°C)	8.38	7.7 - 18.7	Grab	1-100	Temperature probe
Chloride	28	22 - 39	Grab	<5	Spectrophotometric analysis
COD	<18	<10 - 38	Grab	<15	Spectrophotometric analysis
Nitrite	<0.05	<0.03 - 25.12	Grab	<0.05	Spectrophotometric analysis
800	~2	<1-8	Grab	ব	ATU
Ammoniacal Nitrogen -N	<0.2	0.18 - 2.50	Grab	<0.2	Colormetric Spectropholometry
Tot. Susp. Solida	<10	<10-84	Gnb	<10	Grav
Total Phenole	<0.01	<0.01 - 0.01	Grab	40.01	HPLC
Elec. Conductivity (m2/cm)	0.311	0.400 - 0.031	Grab	×√ [√] <0.025	Meter
Dissolved Oxygen	10.00	<0.1-9.9	Grab	o th <0.1	Meter
pH	8.38	7.63 - 8.40	Grab off	∞11. <0.01	Meter
Calcium	95.36	106.80-63.38	Grab Se d'	<0.05	ICP
Megneelum	8.87	8.33-6.08	Grab JUIT	<0.05	ICP
Phosphonie	<0.05	0.06<0.05	tion Grab	<0.05	ICP
ortho Phoephete as PO4	0.05	0.1	Se o Grab	<0.03	KONE
Sulphete	27	24-22 05	Grab	<3	Spectrophotometric analysis
Total Oxidised Nitrogen	6.5	7.5-6.2	Grab	<0.3	Spectrophotometric analysis
Nercury (ug/L)	<0.05	<0.05	Grab		CVAAS
Potessium	2.0	2.2-20	Grab	<0.2	Fieme Photometry
Sodium	16.8	21.5-15.5	Gra b	<0.2	Flame Photometry
Cedmium (ug/L)	<0.4	<0.4	Grab	<0.4	ICP-USN
Chromtum (up/L)	<1	<1	Grab	<1	ICP-USN
Copper (up/L)	<5	<5	Grab	<5	ICP-USN
iron (ug/L)	<1	300-<1	Grab	<1	ICP-USN
Manganese (ug/L)	5	<1-3	Grab	<1	ICP-U8N
Leed (ug/L)	<5	<5	Grab	<5	ICP-USN
Zinc (ug/L)	<5	49-<5	Grab	<5	ICP-USN
Total Alkalinity as CaCO3	260	260-170	Grab	<1	Tration
VOC (ug/L)	<1	<1	Grab	<1	GCMS
SVOC (ug/L)	<1	<1	Gtab	<1	GCMS
Organo-Chiorine and Organo- Phosphorous Pesticidas (ng/L)	<10	<10	Grab	<10	GCMS

* denotes range between March 2000 and September 2003

Groundwater Monitoring - BH-6 greenster Materiale Recovery Ltd. - Bray Depot

	Recuite (mg/l)				· · · · ·
	1st Quarter 2004	Previous	Sampling	Method	Analysis method/
	29/03/2004	Ranges	Method	Detection Limit	technique
Temperature (°C)	NDP	8.4 - 14.9	Baller	0-100	Temperature probe
Chloride	21	19 - 90	Baller	ব	Spectrophotometric analysis
Ammoniacal Nitrogen -N	<0.2	<0.16 - 3.7	Beller	≪0.2	Colormetric Spectrophotometry
toc	7	<2+37	Baller	.<1	íR
Elec. Conductivity (mS/cm)	0.717	0.581 - 0.881	Baller	<0.014	Meter
Dissotved Oxygen	5.4	3.4 - 9.04	Batter	≪0.1	Meter
pH	7.62	8.95 - 7.90	Baller	<0.01	office Meter
Groundwater Monitoring - BH-7	greenstar Materials Recovery	Ltd Bray Depot	•	tion purpose official	
• •	Recults (mall)			28,07	

Groundwater Monitoring - BH-7 greenstar Materials Recovery Ltd. - Bray Depot

•	Results (mg/l)				
1et (1st Quarter 2004	Previoue	Sampling	Method	Analysis method/
	29/03/2004	Rangee	Method	Detection Limit	technique
Temperature (°C)	NDP	9.1 - 13.1	Beller	0-100	Temperature probe
Chierde	28	23 - 92	Baller	<1	Spectrophotometric analysis
Ammoniacel Nitrogen -N	0.3	0.16 - 6.4	Baller	<0.2	Colormetric Spectrophotometry
TOC	7	2 - 49	Beller	ব	IR IR
Elec. Conductivity (m8/cm)	0.613	0.455 - 0.835	Baller	<0.014	Meter
Dissolved Oxygen	5.6	1.4 - 9.19	Båller	<0.1	Meter
pH	7.09	6.68 - 8.23	Baller	<0.01	Meter

Groundwater Monitoring - BH-2 greenster Materials Recovery Ltd. - Bray Depot

	Results (mg/l)						
	1st Quarter 2004	Previous	Sempling	Nethod	Analysis method/		
	29/03/2004	Ränges	Method	Detection Limit	technique		
Temperature (*C)	NDP	6.9 - 16.5	Beller	0-100	Temperature probe		
Chioride	20	25 - 102	Baller	ধ	Spectrophotometric analysis		
Ammoniacal Nitrogen -N	<0.2	<0.18 - 2.5	Bailer	<0.2	Colormetric Spectrophotometry		
TOC	10	<2.72	Bailer		IR		
Elec. Conductivity (m8/cm)	0.689	0.540 - 0.996	Baller	<0.014	Meter		
Dissolved Oxygen	4.9	0.5 - 8.9	Baller	<0.1	Mêter		
pH .	7.38	6.77 - 8.10	Baller	<0.01	Meter		

Groundwater Monitoring - BH-5 greenster Materiale Recovery Ltd. - Bray Depot

pH	7,38	6.77 - 8.10	Baller	<0.01	Meter
Groundwater Monitoring - BH-5	greenster Materiale Recovery	Lid Bray Depot		ection purposes of for	
	Results (mg/l)		COL IN		·····
	1st Quarter 2004	Previous	Sampling of	Rethod	Analysis method/
	29/03/2004	Ranges	Method	Detection Limit	technique
Temperature (*C)	NDP	13.3 - 18.9	Baller	0-100	Temperature probe
Chioride	74	34 - 188	Baller	ধ	Spectrophotometric analysis
Ammoniacal Nitrogen -N	4,4	1.3 - 9.8	Baller	<0.2	Colormetric Spectrophotometry
TOC	23	5.0-50	Baller	<1	IR .
Elec. Conductivity (m8/cm)	2.007	1.093 - 2.484	Baller	<0.014	Meter
Dissolved Oxygen	4.8	1.6 - 8.6	Båller	<0.1	Mətər
pH	6.91	6.19 - 7.70	Baller	<0.01	Moter

Surface Water Monitoring - SW-3 - greenstar Materials Recovery Ltd. - Bray Depot

	Results (mg/l)	•			
	1st Quarter 2004	Previous	Sampling	Nethod	Analysis method/
	20/00/2004	Ranges *	Nethod	Detection Limit	technique
emperature (°C)	NDP	7.8 - 13.8	Grab	1-100	Temperature probe
hioride	28	21-94	Gráb	<1	Spectrophotometric analysis
OD	<18	<10-42	Grab	<10	Spectrophotometric analysis
liste	<0.05	<0.03 - 23.82	Grab	<0.05	Spectrophotometric analysis
OD .	2	<1 - 13	Grab	2	ATU
mmoniacal Hitrogen -N	<0.2	≪0.16 - 1.70	Grab	<0.2	Colormetric Spectrophotometry
ot. Susp. Solids	<10	<5 - 112	Grab	<10	Grav
otal Phénois	<0.01	<0.01 - 0.02	Grab	<0.01 V ³⁶	HPLC
ec. Conductivity (m8/cm)	0.529	0.465 - 1.067	Grab	<0.014	Meter
esolved Oxygen	5.9	<0.1 - 9.8	Grab	100 A	Meter
ł	8.35	7.44 - 8.52	Grab	<u>ي</u> من من	Meter
Surface Water Monitoring - SW-4 gi	rienstar Mäterlale Recovery Lic	1 Bray Depot	nogetite	N PUPPCITIE	
	Regulia (mo/i)	· · · · ·	to Ster	·····	No

	Results (mg/l)		to By		
	tat: Quarter 2004	Pervious	Sampling	Method	Analysis method/
	29/09/2004	Ranges *	siethod	Detection Limit	technique
Temperature (°C)	NDP	7.7 - 13.7	Cor Grab	1-100	Temperature probe
Chioride	28	22 - 91	Grab	<	Spectrophotometric analysis
COD	<15	<10 - 38	Grab	<10	Spectrophotometric analysis
Nitrite	<0.05	<0.03 - 25.12	Grab	<0.08	Spectrophotometric analysis
BÓD	\$	<1-8	Grab	2	ATU
Ammoniacal Nitrogen -N	<0.2	0.16 - 2.50	Grab	<0.2	Colormetric Spectrophotometry
Tot. Susp. Solide	<10	<10-84	Grab	<10	Grav
Total Phenole	<0.01	<0.01 - 0.01	Grab	<0.01	HPLC
Elec. Conductivity (m8/cm)	0.53	0.466 - 0.631	Grab	<0.014	Meter
Dissolved Oxygen	5,8	<0.1 - 9.9	Grab	<0.1	Meter
pH	8.33	7.83 - 8.40	Grab	<0.01	Meter

.

.

Surface Water Monitoring - SW-1 greenster Materials Recovery Ltd. - Bray Depot

	Recuité (mg/i)				
	1st Quarter 2004	Previous	Sampling	Method	Analysis method/
· · · · · · · · · · · · · · · · · · ·	25/03/2004	Ranges*	Method	Detection Limit	technique
emperature (°C)	NDP	8.1 - 13.8	Grab	1-100	Temperature probe
hloride	28	21 - 90	Grab	<1	Spectrophotometric analysis
	<15	<10-49	Grab	<10	Spectrophotometric analysis
	<0.05	<0.03 - 22.88	Grab	<0.05	Spectrophotometric analysis
OD	40.2	<1 - 19	Grab	~2	ATU
nmoniacal Nitrogen -N	<0.2	<0.2 - 3.0	Grab	<0.2	Colormetric Spectrophotometry
t. Susp. Solida	<10	<6-48	Grab	<10 يو.	Grav
tal Phenole	0.01	0.01 - <0.1	Grab	<0.01	HPLC
e. Conductivity (m8/cm)	0.638	0.460 - 0.628	Grab	<0.014	Meter
solved Oxygen	8.7	4.4 - 10.5	Grab	OT	Meter
l	8.25	7.35 - 8.40	Grab	o ^{se} .e [∂] <0.01	Meter
urface Water Monitoring - SW-2 gr	Denstêr Meterleis Récovery L	id Bray Depot	on inspection	n Put telt	
	Récults (mg/l)				

5.1. . .

•••••

Surface Water Monitoring - SW-2 greenster Meterials Recovery Ltd. - Bray Depot

Results (mg/l)		500F	-	
• fat Calariar 2004	Previoue	Sampling	Method	Analysis method/
29/09/2004	Ranges *	Method	Detection Limit	technique
NDP	7.8 - 13.9	Grab	1-100	Temperature probe
28	22 - 91	Grab	<1	Spectrophotometric analysis
<15	<10-34	Grab	<10	Spectrophotometric analysis
<0.05	<0.03 - 24.13	Grab	<0.05	Spectrophotometric analysis
<0.2	<1-11	Grab	2	ATU
<0.2	0.18 - 3.00	Grab	<0.2	Colormetric Spectrophotometry
<10	<10-51	Grab	<10	Grav
<0.01	<0.01 - 0.02	Grab	<0.01	HPLC
0.532	0.445 - 0.822	Grab	<0.014	Meter
6.7	0.3 - 9.7	Grab	<0.1	Meter
8.29	7.37 - 8.47	Grab	<0.01	Meter
	Results (mg/l) 1st Caurter 2004 28 <16 <0.05 <0.2 <10 <0.01 0.632 5.7 8.29	Results (mg/l) Provious 1tt Cummer 2004 Ranges * NDP 7.8 - 13.9 28 22 - 91 <15 <10 - 34 <0.05 <0.03 - 24.13 <0.2 <1 - 11 <0.2 0.16 - 3.00 <10 <10 - 51 <0.01 <0.01 - 0.02 0.532 0.446 - 0.822 5.7 0.3 - 9.7 8.29 7.37 - 8.47	Results (mg/l) Previous Sampling 1tt Caurter 2004 Previous Sampling 280042004 Ranges * Method NDP 7.8 - 13.9 Grab 28 22 - 91 Grab <18 <10 - 34 Grab <0.05 <0.03 - 24.13 Grab <0.2 <1 - 11 Grab <0.2 <1 - 11 Grab <0.2 0.16 - 3.00 Grab <0.2 0.16 - 3.00 Grab <0.2 0.16 - 3.00 Grab <0.2 0.18 - 3.00 Grab <0.1 <0.01 - 0.02 Grab <0.532 0.448 - 0.622 Grab <0.7 0.3 - 9.7 Grab <t< th=""><th>Results (mg/l) Previous Sampling Method 1tt Cunter 2004 Ranges * Method Detection Limit NDP 7.8 - 13.9 Grab 1-100 28 22 - 91 Grab <1 <15 <10 - 34 Grab <10 <0.05 <0.03 - 24.13 Grab <2 <0.2 <1 - 11 Grab <2 <0.2 <1 - 11 Grab <2 <0.2 <1 - 11 Grab <0.05 <0.2 <1 - 11 Grab <0.2 <0.16 - 3.00 Grab <0.2 <10 <0.2 0.18 - 3.00 Grab <0.2 <0.2 0.18 - 3.00 Grab <0.2 <0.1 <0.01 - 0.02 Grab <0.0 <0.01 <0.01 - 0.02 Grab <0.01 <0.01 <0.01 - 0.02 Grab <0.01 <0.532 <0.446 - 0.822 Grab <0.014 <0.7 <0.3 - 9.7 Grab <</th></t<>	Results (mg/l) Previous Sampling Method 1tt Cunter 2004 Ranges * Method Detection Limit NDP 7.8 - 13.9 Grab 1-100 28 22 - 91 Grab <1 <15 <10 - 34 Grab <10 <0.05 <0.03 - 24.13 Grab <2 <0.2 <1 - 11 Grab <2 <0.2 <1 - 11 Grab <2 <0.2 <1 - 11 Grab <0.05 <0.2 <1 - 11 Grab <0.2 <0.16 - 3.00 Grab <0.2 <10 <0.2 0.18 - 3.00 Grab <0.2 <0.2 0.18 - 3.00 Grab <0.2 <0.1 <0.01 - 0.02 Grab <0.0 <0.01 <0.01 - 0.02 Grab <0.01 <0.01 <0.01 - 0.02 Grab <0.01 <0.532 <0.446 - 0.822 Grab <0.014 <0.7 <0.3 - 9.7 Grab <

• .

۰.

.

.

Noise Survey - greenstar Materiale Recovery Ltd - Bray

Measurements were conducted over the course of a single survey period 10:47hrs to 15:13hrs on 27/11/03

			,	<u></u>	
Location	Time	Period	Laeg (dB)	LA90 (dB)	Comments
	12.29 - 12.59	Day	71	50	Herluse.
NI	14.43 - 15.13	Day	66	54	Vehicle movements into and out of site.
. N2	10.46 - 11.16	Day	60	55	II Pupose direct
N2	13.02 - 13.32	Day	52	45	Roadsweeper Audible 1st Period
N3	11.18 - 11.48	Day	60	53	Foo pris
N3	13.35 - 14.05	Day	. 54	49 CON	Roadsweeper Audible 1st Period
N4	11.53 - 12.23	Day	_47	. 43	
N4	14.09 - 14.39	Day	44	41	Noise From Stream

greenstar - Bray - Hethane Levels (% viv) for Jan 2003 - Her 2004

	21/01/2008	1. 17/02/2002	24/02/2013	20/04/2003	30/08/2003	10/00/2003	22/07/2004	22/04/2063	. 06/09/2003	31/10/2003	26/11/2003	10/12/2003	27/01/2004	26/02/2004	2003/2004
08-01	D	0	0.	0	0	0	0	. 0	0	0	0	0	0	Ó	0
GS-06	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	6	0	ŏ	0	
C\$-07							Ö	0	0	0	<u> </u>	0			
39-08							0	0	0			0	0	<u> </u>	
G8-09							0	Ó	0	0	0	0	0	0	
Ge-10													0	0	
G9-11							0	0	0	0.3	0	Ö	Ő	0	
8H-2	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	
811-5	0	0	0	0	0	0	1,1	0	0	0	0	0	0	0	Ö
844	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- i - i
BH-7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1-01	0	0	0	Ö	0	0	0	0	0	0.	. 0	150	0	0	0
Laz	0	0	0	0	0	0	0	0	-		N	Ó			
greenster	- Bray - Carl	bon Dioxide	Levels (% viv	h for Jan 200	2 - Mar 2004						only any of				

Bray - Cerbon Dioxide Levels (% whither Jan 2001 - Mar 2004

<u>52</u> 186

10.6

10 10 7

	the states of the second second	A A A A A A A A A A A A A A A A A A A									~ 60*				
	21/01/200	TRADE.		2001/2003	2000/2003	16/06/2003	21/07/2003	22/08/2003	08/08/2003	31/10/2005	23/11/2003	10/12/2003	27/01/2004	26/02/2004	29/03/2004
G3-01	2.3	6.7	5.7	0	8.9	8.8	3.4	14	2,3		2.1	2.3	4.2	2.2	6.5
G9-08	0	2.9	2.1	0,2	3.2	5.6	3,8	3.4	2.7	1.80°	22	2.2	2.9	3.8	2.2
05.06	. 0	52	6,7	7,6	7.7	10	10	1.1	0.8	O 98	0.7	2.3	7.9	7.8	3.7
02.47							7.1	4.3	0 0	NO	0.2	9	9		
(66.6 8							10.1	4.7	0.3	6.3	0.6	1.1	2.1	7.9	11
64-6		•					3,6	_4.1	28.0	0	2.3	2.1	7.9	9.3	2.2
G8-10									Fat						
G8-11							11	11	A Star	9.3	10	12	12.4	13	12
	0.6	0,3	0,2	0	0	0	. 0	_0	0 0	0.4	0	0.1	0.1	0	0,1
#H-\$	0,1	4.8	0	0	16	15	13	0.1 🤇	0,3	Û	0.4	0,1	0,1	2.8	0.1
	0.2	0,1	0,7	2.3	0	5	14	010		0,1	0,1	0.1	0.4	0,4	0,1
2H-7	0	0.1	20.1	0	0	0,1	0	0.2	0,1	0	0	0	0.6	14	0
1.61	13		6,2		13	12.8	3,8	0.8	12	3.8	6,5	6,5	3.6		6,5
L-012	7.2	0	18.8	0	7.1	8	16	3,1	18	0,4					6,5
			-												
		يقيبه فيتقلب		1111 ZUUS											
-	1.21/01/200	17/10/2003	24/03/29/03	2004/2003	30/06/2003	16/06/2003	22407/2003	22/08/2003	08/08/2003	31/10/2003	26/11/2003	10/12/2003	27/01/2004	26/02/2004	29/03/2004
	10	8,9		19.7	6,9	7.3	14	17,9	18.2	17.7	17.2	17	13.2	17.2	10,8
45-45	12.8	17.8	18.0	194	10,1	12.9	14.3	10.2	17.9	15.1	7	17	15,8	14,5	15,9
	<u> 2</u>	12.4	14.5	<u> 11'5</u>	<u></u>	×		18		0,5	1/3		<u> </u>	<u> </u>	13,4
	<u> </u>				<u> </u>		2,0	·····	18.2	17.0	18	<u> </u>	<u> </u>		
							12			2,3	10.1	167	1/16		12.2
							13	13/0		[[/#		1 (1/1 6
	1	·····					7.8	6.8	6.6	5		2	2	4.6	7
	20.3	20.1	20.1	19.7	19.6	19.3	19.2	18.3	19.2	17.4	18	17.5	12.9	17.2	12.5
84-6	20.5	17.8	19.7	12.5	0	0	0.9	18.4	18.8	17.8	17.9	17	1 17.8	14	17
	20.1	20.4	18.9	17.5	19.5	13.6	18	48.3	19.8	17.8	18.1	17.5	17.7	17	17.5
	204	204	20.1	19.7	10.6	194	19.2	18.5	19.1	12.2	18.1	18.1	17	16.0	18.1

19.2 13.5 0.4

18.5 16.9 16.8

3.7

16.5

16.3

14.4

144

0.2

10

16.3 16,3

<u>19.6</u> <u>6.7</u> <u>3.4</u>

19.4

24

Biological Monitoring SW-1

•

River	Site Number	Date	Temp	Flow	Turbidity
Glenmunder	SW-1	25/08/2003	14.4	Moderate	Low
	(† 2)				

Group A		Group B		Group C		Geour		Group	
Name	Number	Name	Number	Name	Number	IName	Number	Name	Number
Plecopira	1	Ephemeroptera (excl. Heptageniidae, Ephemeridae and <i>B.</i> rhodani)	9	Gammaridae	97	Aseilidae	0	Chironomous sp.	0
Heptagenildae	0	Cased Caddis	5	B. modani	19	Hindinen	16	Tubificidae	43
Ephemeridae	0	Rheotanytarsus sp.	0	Simullidae	3	Scheerlidae	0	Eristalinae	0
Margaritifera sp.	0	Aphelocheirus sp.	0	Uncased Caddis	45 54				
				Gastropoda	129110				
			1	Colecctera	N .02				-
				Astacidae	VIIC O				
	1		1	Triciadida solibeionT	0				-
				Odonta col sitie	Ō				
· · · · ·				Hemiptera (excl.) Aphelocheinus sp.)	0				
	I			Isialidae	0				
				Hydracarina	0				
				Chironomidae (excl. Chironomous sp., Rheotanytarsus sp.)	13				
				Tipulidae	0				
•	·		T	Anodonia sp.	0				
Total # organisms	1		14		147	1	16		43
Group %	0.46		6.33	•	66.62		7.24		19,45
Q-value					Q 3-4		••		

. •

•

. •

.

Vological Monitoring SW-1

River	Site Number	Date	Témp	Flow	Turbidity
Glenmunder	SW-1	25/08/2003	14.4	Moderate	Low
	(† 1)				

. Genue A		Annual A							
Group A		Glond R		Group C		Grou	p D	Group	Ē
ame .	Number	Name	Number	Name	Number	Name	Number	Name	Number
lecoptra	3	Ephemeroptera (excl. Heptageniidae, Ephemeridae and <i>B.</i> rhodani)	17	Gammaridae	72	Asellidae	0	Chironomous sp.	0
eptageniidae	0	Cased Caddis	13	B. rhodani	10	Hudinea	21	Tubificidae	2
phemeridae	0	Rheotanytarsus sp.	0	Simulidae	3 3	Sphaerlidae	0	Eristalinae	<u> </u>
largaritifera sp.	0	Aphelocheirus sp.	0	Uncased Caddis	- FOT				
			1	Gastropoda	ROSIA	·			
				Coléoptera	10 10 col				
				Astacidae	0				
				Tricladida John	0				
				Odonta for vite	0				
•				Hemiptera (excl. Aphelochetrus sp.)	0	· ·			
			ŀ	Sialidae	0				
				Hydracarina	0				•
	-			Chironomidae (excl. Chironomous sp., Rheotanytarsus sp.)	7				
		8		Tipulidae	0				
				Anodonta sp.	0				
Total # organiame	3		30	•	102		21		2
roup %	1.90		18.99	· · · ·	64.58		13.29	1	1.27
value			-	Ċ	3-4			· · · · · · · · · · · · · · · · · · ·	

 \mathcal{A}

Biological Monitoring SW-4

			·		
River	Site Number	Date	Temp	Flow	Turbidity
Glenmunder	SW-4	25/08/2003	14.4	Moderate	Low
	(T 1)				

Annua								مەنبىيى بىر بىلىكىنىڭ تېرىيى مەتبىيەن	
Group A		Group B		Group C		Grou	p D	Group	E
Name	Number	Name	Number	Name	Number	Name	Number	Name	Number
Plecopira	1	Ephemeroptera (excl. Heptageniidae, Ephemeridae and B. rhódani)	28	Gammaridae	148	Aseilidae	0	Chironomous sp.	0
Heptageniidae	0	Cased Caddis	16	B. rhodani	21	Hinxinea	6	Tubificidae	11
Ephemeridae	0	Rheotanytarsus sp.	0	Simulidae	8 2	Schaerlidae	1	Eristalinae	0
Margaritifera sp.	0	Aphelocheirus sp.	0	Uncased Caddis	5 5 8				
				Gastropoda	D'ONE"				
				Coleoptera	2 ,00				
				Astacidae	net 0				
	Т			Triciadida	0				
				Odonta cot is	1				
				Hemiptera (excl. [®] Aphelochelnys sp.)	0	-			
			·	Sialidae Son	0				
				Hydracuina	0				
				Chironomidae (excl. Chironomous sp., Rheotanytarsus sp.)	8				
				Tipulidae	4				
•				Anodonta sp.	0	•			
Total # organisms	1		44		202		7		11
Group %	0.38		16.60		76.23		2.64		4.18
Q-value					Q 3-4				

.

.

Biological Monitoring SW-4

River	Site Number	Date	Temp	Flow	Turbidity
Glenmunder	SW-4	25/08/2003	14,4	Moderate	Low
	(T 2)		 • • • • •	• •	

Group A		Group B		Group C		Group D		Group E	
Name	Number	Name	Number	Name	Number	Name	Number	Name	Number
Plecoptra	1	Ephemeroptera (excl. Heptageniidae, Ephemeridae and B. rhodani)	33	Gammaridae	84	Asellidae	0	Chironomous sp.	0
Heptageniidae	1	Cased Caddis	12	B. rhodeni	11	Hirudines	12	Tubificidae	21
Ephemeridae	0	Rheotanytarsus sp.	0	Simulidae	4 🕺	Schaerlidae	0	Eristalinae	0
Margaritifera sp.	0	Aphelochelrus sp.	0	Uncased Caddis	105 5				
				Gastropoda	S. Se			1	
				Coleoptera	Que Oto				
	•			Astacidae	net 0				
				Tricladida S	0				
				Odonta of de	0				
			· .	Hemiptera (excl. N Aphelocheinus sp.)	0				·
				Sialidae gott	0				·
·				Hydractona	0				
				Chironomidae (exc). Chironomous sp., Rheotanytarsus sp.)	16				
· · · · · · · · · · · · · · · · · · ·				Tipulidae	0				
· · ·	•			Anodonta sp.	0				
Total # organisms	2		_46		131		12		21
Group %	0.96	•	21.33		62.09		6.69		9.98
Q-value		Q 3-4							

APPENDIX 3

Dust Evaluation Measures Report & Dust Monitoring Results

Review of Dust Controls at greenstar Materials Recovery Ltd. (Bray)

Introduction

The following report reviews the measures in place to minimise dust generation at greenstar Materials Recovery Ltd. (Bray), and includes a review of historic dust monitoring data, the effectiveness of existing dust control measures and the requirement for the implementation of further dust control measures.

This report was prepared and is submitted to the EPA in accordance with the requirements of condition 3.14.2b of the site's waste licence (53-2). Condition 3.14.2b states:

"Within two months of the date of grant of this licence, the licensee shall review the measures in place to minimise dust generation at this facility and shall provide a report to the Agency for its agreement, making recommendations on the necessity of installing a sprinkling irrigation system for the control of dust nuisance from the facility. Any remedial works recommended in this report must be implemented within a time-scale to be agreed with the Agency."

Historic Dust Monitoring Data

greenstar Materials Recovery Ltd (Bray) carry out dust monitoring in 4 locations 3 times per year. Dust levels were exceeded in two locations (DS-2 and DS-4) in June-July '02, were exceeded once (DS-4) in Jul-Aug '02, and exceeded once (DS-2) in Oct-Nov '02. However, the reports suggested that the high levels of inorganic dust encountered at some of the monitoring points may have been associated with windblown materials from the nearby unvegetated side slopes and unpaved areas.

Existing and Proposed Dust Control Measures

Every effort is made to maintain the stockpiles of processed C& D waste in a manner that does not cause dust nuisance. The size of stockpiles are minimised and waste is not processed in very windy conditions. Commercial and Industrial waste will shortly be processed on concrete hardstanding and inside an enclosed picking line. The site water bowser is used to dampen dust on site roads and all hardstanding areas, as required. The previously unvegetated side slopes have since been planted.

Conclusion and Recommendations

Measures to minimise dust nuisance at the site are ongoing. On completion of phase 1 of the new transfer building towards the latter end of 2003 all processing of C&I waste will be carried out indoors.

The processing of C&D will be carried out indoors within 2 years, when the proposed Transfer station phase II is constructed. As the activities will be confined within a building, the amount of dust nuisance to the environment will be reduced even further. The building will also feature dust abatement measures, such as negative air pressure. Therefore it is felt that the installation of a sprinkling irrigation system, for the control of dust nuisance is unnecessary.

Consent of copyright owner required for any other use.

2

Dust Analysia Results - greenstar Materials Recovery Ltd - Bray

Location Number	IPC Licence Dust Deposition Limit	Mar-03	Jui-03	Aug-03	
	(mg/m2/day)	Dust (mg/m2/day)	Dust (mg/m2/day)	Dust (mg/m2/day)	
DS-1	350	199 (24mg organic, 175mg inorganic)	523 (149mg organic, 374mg inorganic)	282 (59mg organic, 223mg inorganic)	
D8-2	350	44 (15mg organic, 29mg inorganic)	516 (169 mg organic, 347mg inorganic)	516 (147 mg organic, 389mg inorganic)	
D8-3	350	52 (22mg organic, 30mg inorganic)	372 (290mg organic, 82mg) inorganic)	208 (41mg organic, 165mg inorganic)	
D8-4	350	300 (30mg organic, 270mg inorganic)	2329 (1181 mg organic, 1148 mg inorganic)	1620 (418 mg organic, 1202 mg inorganic)	

с:

EPA Export 25-07-2013:16:22:03
APPENDIX 4

Extent of Capping & Landfilling Report

Extent of Capping and Landfilling at greenstar Fassaroe

Introduction

Condition 4.4.1 of EPA Waste Licence Register No. 53-2 states:

"Within four months of the date of grant of this licence, the licensee shall submit a report on the extent of capping and landfilling at the site. This report shall include details on (i) waste types previously landfilled at the site, (ii) the areas landfilled, (iii) the areas that have been restored, (iv) the type of capping employed, (v) the condition of the restored areas and (vi) recommendations on final capping to be installed. Any recommendations arising from this report and a timetable for implementation shall be agreed with the Agency and implemented."

The following report provides details on each of the above sections. Further details are provided in Appendix A, environmental monitoring data, and in Appendix B, drawings indicating previously landfilled areas and development works at the facility.

(i) Waste Types previously landfilled

On the 24th November 2000 greenstar (formerly Celtic Waste) acquired the Fassaroe facility. Landfill activities ceased immediately after the acquisition. The Fassaroe facility operated as both a quarry and landfill site between 1947 and 2000. For many years, sand and gravel was excavated at the quarry and transported to construction sites. Trucks returning from deliveries, brought with them construction and demolition waste for disposal at the facility. Thus, quarrying and landfilling of construction and demolition waste occurred simultaneously. From the period 1947 to 1995 records were not kept of the waste types nor of the quantities accepted at the Facility.

Since 1995 approximately 350,000 tonnes of inert waste material has been deposited at the facility. Most of this material was deposited at the beginning of this period to provide a base on which to construct the present waste transfer building. The quantity of inert waste subsequently decreased to approximately 40,000 tonnes per annum until the end of 2000 when landfilling activities ceased.

Environmental monitoring undertaken at the facility over the past 3 years (see extracts from the Facility's Annual Environmental Reports for 2001 and 2002 contained within Appendix A) and inspection of previously landfilled areas indicate that the facility has negligible impact on its surrounding environment and poses a minimal threat in the future. The monitoring data supports anecdotal evidence that construction and demolition waste, comprised principally of subsoil and stone, was landfilled at the facility historically. As one would expect from this waste, which is predominantly inert, environmental monitoring indicates that little or no degradation of organic matter is occurring within previously landfilled areas. There is no spoiling of the extensive sideslopes by fugitive emissions of leachate, and landfill gas, surface water and groundwater monitoring indicate that the landfill has negligible impact on its environs.

(ii) The areas landfilled

It is not possible to accurately define previously landfilled areas because a predeposition topographic survey of the facility was never undertaken. Hence, most areas within the facility boundary other than those that follow the ground contours of neighbouring lands and appear to be original ground level (the river area and immediate surrounds and the eastern boundary etc.) are indicated as having been landfilled.

The areas suspected of having been landfilled are shown on the attached drawing no. D.1.6.

(iii) The areas that have been restored

No areas have yet been fully restored. Since recording of waste quantities and waste types was initiated in 1995, inert waste was landfilled at the facility. This has provided previously landfilled construction and demolition waste with some 350,000 tonnes of subsoil and stone capping. 19. any other use

(iv) The type of capping employed

As mentioned above, the temporary capping in place at present consists of subsoil and stone of varying depths. As no topographic survey was undertaken prior to its installation, the depth of capping cannot be confirmed at any given location. However, in recent years, excavations for various activities have indicated that the depth of capping varies between 0.5-1.5m.

(v) The condition of the restored areas

The construction of Phase I of the planned development works is currently underway. The landscaped mounds shown along the northern boundary of the landfill are nearing completion. On completion of Phase I in early 2004 much of the previously landfilled area will be capped to final restoration level and to the specification detailed The landscape mounds at the perimeter will be complete, screening below. operations from neighbouring properties and directing rainwater away from landfilled areas.

(vi) Recommendations on final capping to be installed

Drawing B7498-C010-B details the proposed development works. Both Phases I and Il are scheduled for completion by the end of 2004. On completion of these Works, most areas previously landfilled other than sideslopes will be covered by impermeable hardstand. Areas not covered by hardstand will be topsoiled and planted. Both hardstanding and topsoiled areas will be profiled in accordance with the restoration plan (Drawing OCM-01). The restoration profile, the extent of hardstand and planting of topsoiled areas will minimise the entry of incident rainfall through the capping to previously landfilled material. This will further reduce the minimal risk of negative impacts on the facility's environs. The profile indicated on the restoration plan provides for placement of the capping materials to the following depths on top of the existing temporary capping:

Landscaped Areas

1-2m of subsoil and 0.25-0.5m topsoil finish

Hardstand Areas

1-2m of subsoil and 0.25-0.5m stone sub-base and concrete/tarmacadam finish.

Consent of copyright owner required for any other use.

EEEDEE

Notification of Incident at greenstar Materials Recovery Ltd. (Bray) Waste licence 53-2

This report (as required under condition 9.1 and 11.2 of waste licence 53-2) details the incident that took place on the site on the 26th of November, and the measures that were taken to limit its effect,

- a) Date: 26th of November, Time: 12.00am, Place: On hardstanding in the Commercial and Industrial waste processing area.
- b)

Nature of Incident/Description

- i. The Security Guard on the site noticed a fire, in a small quantity of metal waste, contained in the C&I processing area, at approximately 12.00am.
- ii. After initially attempting to tackle the fire himself using fire extinguishers, the fire brigade was called.
- iii. One Unit of the fire brigade arrived on site and quickly brought the fire under control.
- Source & Cause: The source and cause of the fire is un-known.
- Emissions: Emissions from the size were minimal, as the fire was brought under control promptly, was contained, and was on hardstanding, therefore any fire water would have discharged to foul sewer.
- c) The fire was put out promptly, thereby isolating the source of any emissions.
- d) Minimal environmental pollution was caused by the fire.
- e) The fire was brought under control promptly, and all fire water was directed to foul water drains, thereby all measures to minimise any control any emissions were achieved.
- f) A proposal will be forwarded to the Agency within one month, to identify measures to prevent reoccurrence and put in place any other remedial action.

PENDIX Staff Training Records

Ç

7

Training Record - GS025

Bala of Birth:			<u> </u>
The Man ANTON & LINNER			-
Employment Started:			
Excellion: Serie			
Promotion Date:	Promotion D	ife:	
New Title:	New Title:		
Driving Licence Details:			•
	Date/	Employee	Trained
Training Details	Reference	Signature	Assesse
Recovery + DISPOSI	64010110	•	
1	THOMATION		
4 50	•		1
COMMUNICATIONS & CONSULT	or Imanouroy	•	••
Prvilonmentor Mot Suster	S ISMAXIO4		
	N ^{SS}		
	office	•	
L	OIL all		
	ose d'	· · · · · · · · · · · · · · · · · · ·	
	Net .	· · ·	
A Contraction of the second	8 ⁹		
		••	+
E CONTRACTOR			+
	+	· · · ·	1
- Contraction of the second se			
Annual Training Review			
Job Title and Description:	Training Regula	ements:	
		- •	
· · · ·			•
	· ·		
• •		٠.	-
	3		•
•		•	
•			•
•		•	•
		•	•
Signature of Reviewer:	Signature of Rev	Newee:	•
Signature of Reviewer:	Signature of Rea Date:	Aewoo:	•
Signature of Reviewer: Date: Job Title and Description:	Signature of Rev Date: Training Require	Aewee:	•
Signature of Reviewer: Date: Job Title and Description:	Signature of Rev Date: Training Require	Aewee:	•
Signature of Reviewer: Date: Job Title and Description:	Signature of Rev Date: Training Require	Aewee:	•
Signature of Reviewer: Date: Job Title and Description:	Signature of Rev Date: Training Require	<u>Aewee:</u> monts:	•
Signature of Reviewer: Date: Job Title and Description:	Signature of Rev Date: Training Require	Aewoo:	•
Signature of Reviewer: Date: Job Title and Description:	Signature of Rev Date: Training Require	Aewee:	•
Signature of Reviewer: Date: Job Title and Description:	Signature of Rev Date: Training Require	Aewos:	•

EPA Export 25-07-2013:

6.

Training Record - GS025

Employment Claded	el sion	$n \circ p$	PUSCL	•
temploynent Staned:			•	•
			Refer	
STORIOLION Late:		rromouon		•
	•	New Hue:		•
Driving Licence Details:				
Training Details	· · · · · · · · ·	Reference	Signature	
FAS- monthe	8	articopero	9	
	_1	Dhy the	tu.	
			•	
			•	
			ي.	
		· net	•	F
		1. A		. ·
		S OFFOT DE		
	•	A Siled	•	
	. Sol	a con	·	
• • • • • • • • • • • • • • • • • • •	-ECTI-WIT		· · ·	
	ill oht	1		1
	· For Street	1		T
	Star .			1
		1		1
Amutal Training Review	Corr			
ob Title and Description:		Training Ren	simments:	••
• • • • • • • • • • • • • • • • • • • •	▲ 100 100 100 100 100 100 100 100 100 10			
	•	1		
		•		•
• •	۰.		•	-
•		1		•
. •	.•	j .	-	
•	- • •	f ·	•	•
		}	•	
	•	Signation of B	Indexena.	
Langiting of Declasson			عاليه كالبلغ المتناط	
Ignature of Reviewer:		Durba4		•
lefe: ab Tills and Description		Date:	·	•
ignature of Reviewer: ate: ob Title and Description:	····	Date: Training Requ	irements:	•
ate: ob Title and Description:		Date: Training Requ	iremetits:	•
Ignature of Reviewer: ate: ob Title and Description:	······································	Date: Training Requ '	irements:	•
ignature of Reviewer: ate: ob Title and Description:		Date: Training Requ ,	iremetits:	
Ignature of Reviewer: ate: ob Title and Description:		Date: Training Requ ,	iremetits:	•
ignature of Reviewer: ete: ob Title and Description:		Date: Training Requ	fremouts:	
ignature of Reviewer: ate: ob Title and Description:		Date: Training Requ	iremetits:	
Ignature of Reviewer: ate: ob Title and Description:		Date: Training Requ	irements:	•

EPA Export 25-07-2013:16:22:04

Training Record - GS025

Name: Kolund Kin Der Th	Saken
Date of Birth: 10/1140	
Job Title: Temsler Storro	1
Employment Started: Sept 102	-
Location: Block	
Promotion Date:	Promotion Date:
New Title:	. New Title:
Driving Licence Details: Foll 11	neva ·
Training Defails	Date/ Employee Trained/ Reference Signature Assessed by
FAS- Module 1	194.4 194.441
The manual -	
	all all
	20 x 10 x
	N RITE
	ion 2 million
1	
· · · · · · · · · · · · · · · · · · ·	
~ 0 ^{9,64}	<u> </u>
nnual Training Review	
ob Title and Description:	Training Requirements:
•	
•	
• •	•••
- 	
•	•
-	•
·····	•
gnature of Reviewer:	Signature of Reviewee:
fa:	Date:
b Title and Description:	Training Requirements:
•	
•	
•	
:	
•	
mature of Reviewer	Signature of Reviewee:
a dia tanàna dia mandri dia dia dia dia dia dia dia dia dia di	

Conserved of conserved conserved of the conserved conserved conserved conserved of the conserved

APPENDIX 8

Duty & Standby Capacity, Report

Duty and Standby Capacity of Waste Handling and Processing Equipment at greenstar Materials Recovery Ltd (Bray) - Waste Licence No. 53-2

introduction

Condition 3.9.2 of greenstar Material Recovery Ltd's (Bray) site licence requires the licensee to submit a report for the agreement of the Agency detailing the duty and standby capacity in tonnes per day, of all waste handling and processing equipment and infrastructure used at the facility. The following report seeks to satisfy the requirements of this condition.

The report provides details of the daily waste throughput at the site. Also provided is an inventory of all waste handling and processing equipment and infrastructure on site and the average daily throughput and duty and standby capacities.

Daily Waste Throughput

Schedule A of the licence permits the licencee to accept 35,000 tonnes of construction and demolition (C&D) waste, 69,500 tonnes of commercial waste, 25,000 tonnes of household waste per annum. Condition 1.6 of the site licence permits waste to be accepted at the facility between the hours of 7.30 and 19.00 Monday to Saturday inclusive. Excluding Sundays and 10 bank holidays, the site is open 303 days per year. If the annual waste input to the site is taken pro rata over 303 days the average daily waste input to the site is approximately 427 tonnes per day, equivalent to 116 tonnes of C&D waste, 229 tonnes of C&I waste, and 82 tonnes of household waste.

Waste Handling and Processing Equipment and Infrastructure

Table 1 provides an inventory of the site's waste handling and processing plant and infrastructure and plant details of the site. The table also provides details of the handling/processing capacity of the site's equipment/infrastructure's and the type of waste material it processes on site.

Table 1. - Inventory of Waste Handling and Processing Equipment and Infrastructure

No	Description	Waste Type	Average	Duty	Standby
1			Throughtput (t/day)	Capacity (t/day)	capacity (t/day)
1	Waste Transfer Building	Household	82	150	0
1	Can Compactor (SFL Sorting System (2))	Household	5	50	0
1	Plastic sorting/picking line (SFL Engineering Sorting System?)	Household	5	50	0
2	Fork lifts	Household	82	100	0
1	Cardboard Baler	Household	2	5	0
1	Large Compactor (municipal waste)	Household	70- ^{0.}	150	150
1	Extec Shredder	C&I 100500111 and	116	500	0
1.	Powerscreen Trommel	C&D waste	116	500	0
1	Powerscreen Trommel	C&I Waste			0
1	Liebherr grabs	C&D/C&I	172.5	400	400
2	FUCHs grabs	C&D/C&I	172.5 (Based on one unit, one unit standby)	400	0.
1	Liebherr loading Shovel	C&D/C&I	345	500	500
1	JCB Loading Shovel (Standby)	C&I/C&D	0	500	0
1	JCB bucket	C&D/C&I	345	500	0
1	Wood Shredder	C&D	23.2	100	0
1	Wood Granulator	C&D	23.2	100	þ
4	Tractor Units	C&D/C&I	345	690 (based on 3 units)	230
5	Trailer Units	C&D/C&I waste	345	690 (based on 4 units)	172.5 (Based on 1 unit)

Conclusion

The inventory of waste handling and processing plant and infrastructure provided in Table 1 demonstrates that a minimum of 100% standby capacity is provided on essential items of waste handling plant.

Essential items of plant are deemed to be the Liebher loading shovel, and Liebher grab and the tractors and trailers for road haulage. While these items of plant are operational, all waste streams accepted at the facility can be loaded and transferred from the facility for disposal/recovery at appropriate facilities. The provision of this standby capacity ensures the site remains operational at all times while repairs are carried out on duty plant.

Consent of copyright on purposes only, any other use.

Conservation of contrast of the proceedings of the proceedings of the proceedings of the proceeding of the proceeding of the proceedings of the pr

DOCUMENT TYPE		<3
TITLE	Procedures list	areenstar
A	Controlled Document	5 - setting the stondard

	ISO standard procedures
SOP 001	Document control
SOP 007	Management Review
SOP 002	Environmental Aspects
SOP 004	Objectives & Targets, Environmental Management Programme
SOP 005	Environmental Legislation
SOP 006	Environmental Management System Audit
60P 007	Environmental Complaints
SOP 008	Non-Conformance & Corrective action
SOP 009	Environmental Training
SOP 010	Communications
SOP 011	Records
SOP 012	Emergency Response Procedure
SOP 013	Environmental Monitoring & Reporting/Emissions Management
<u> </u>	Operating Procedures-all facilities
SOP 014	Facility Inspection
SOP 015	Incident Recording and Reporting
SOP 016	Waste Management Facility /Collector approval
SOP 017	Maintenance
SOP 018	Unacceptable Waste
SOP 019	Nuisance Management
SOP 020	Raw materials/Resource control and usage
SOP 021	Permits to work
SOP 022	Health and Safety
60P 023	Operation of Forklift
T	Operating Procedures - Transfer only
SOP 024	Customer Enquiries
SOP 025	Control of Visitors and Contractors
SOP 026	Vehicle Movements
SOP 027	Load Receipt and Acceptance Route
SOP 028	Inspection and Testing of Waste
SOP 029	Processing, Recovery, Storage and Transfer of Non-hazardous waste and recyclables
SOP 030	Site Closure
	Operating Procedures - Bray Only
SOP 031	Processing of Commercial & Industrial Waste
SOP 032	Processing of Construction & Demolition Waste
SOP 033	Chipping of Timber
SOP 034	Processing of Dry Recyclables
SOP 035	Operation of Baler

:

•										
				•		·.				
DOCUMENT NUMBER	SOP List	ISSUE DATE	5/1/04	REVISION NUMBER	2	PAGE 1 of 1	ISSUED BY	AUTHORISED BY	23-07-201	13:16:22:04

IX 10 PPEND A

consent of copyright owner required for any Nuisance Abatement Reports

s.

Proposal for the Control and Eradication of Vermin and Fly Infestations at greenstar Materials Recovery Ltd. (Bray) – Waste licence No. 53-2

Introduction

Condition 11.4.1 of greenstar Materials Recovery Ltd.'s (Bray) site licence requires the licensee to submit to the Agency for it's agreement a proposal for the control and eradication of vermin and fly infestations at the facility. 11.4.1 states that,

The proposal should include as a minimum, operator training, details on the rodenticide(s) and insecticide(s) to be used, mode and frequency of application and measures to contain sprays within the facility boundary.

This report seeks to satisfy the requirements of this condition.

Current Monitoring and Controls

Historically, vermin and flies have caused very little nuisance at the site because putrescible wastes are managed indoors, and the only waste currently processed out of doors is non-putrescible C&I waste, and C&D waste. The processing of C&D will be carried out indoors within two years, when the proposed Transfer station phase II is constructed. As the activities will be confined within a building, the potential for nuisance from vermin and flies will be reduced even further.

Condition 10.3 of the site licence requires the licensee to inspect the site, and maintain written records, for nuisances caused by vermin and files at a minimum of one week intervals. This requirement is met by the licensee and a record of the inspections is maintained on the site's facility inspection form (See attached). Non-compliances arising from these inspections are addressed by the site management.

Pest Control Agreement

greenstar Materials Recovery Ltd. (Bray) have a pest control agreement with PestGuard, an independent pest control company. This agreement provides for a 6 day inspections at regular intervals against fly spray per year, and12 day inspections per annum, at reg. intervals against general nuiscances. Should flies cause nuisance at the site, greenstar Materials Recovery Ltd. will seek PestGuard advice and take appropriate action. If spraying for flies is required it is not envisaged it will be required outside the transfer building. Should spraying be required outside the waste transfer building it will only be undertaken on calm days and at low level to ensure sprays are contained within the facility. PestGuard's operator's are given training, information, and supervision in accordance with their health and safety policy. The rodenticide and insecticide used are as follows.

Rodenticide:

Drat (Chlorophacinon) Klerat Wax block (0.005% of Brodifacoun)

Insecticide:

Ficamw

Conclusion

Good housekeeping, the waste type transferred through the facility and storage of waste for a minimal period of time ensure that vermin and files cause minimal nuisance on-site. Daily facility inspections and an agreement with an independent pest control company ensure regular nuisance monitoring and control of such nuisances at the facility.