ERML

Environment & Resource Management Ltd

2 1 APR 2005

Mr. Kieran O'Brien Senior Inspector EPA Regional Inspectorate Inniscarra Co. Cork No. 3 Tara Court,
Dublin Road, Naas, Co. Kildare
Tel: 045 – 874411
Fax: 045 – 874549

Remail: info@erml.biz

Of www.erml.biz

APR 2015

13 April 2005

Project No. 04.148B

Re: KTK Landfill / Waste Licence Review / Register No 81-3

Dear Kieran,

Further to your meeting with Mr. Michael Bergin (KTK Landfill) and Mr. Geoff Parker (ERML) on the 15th February 2005 at the KTK Landfill, Brownstown, Kilcullen, Co Kildare please find following our responses to your enquiries in relation to:

- The most recent landfill gas monitoring results at the site,
- An overview of the corrent and proposed gas management plan for the site;
- Emission data from the combustion engines and flares;
- Disposal of leachate.

Furthermore copies of the following reports have been attached to this report:

- Report on Air emission testing and Dispersion modelling of three Landfill flares located in KTK Landfill, Kilcullen, Co. Kildare. (Odour Ireland, April 2005);
- Specified Engineering Works Report in relation to the Gas Utilisation Plant (April 2004), and;
- Supplementary Report on Proposed Gas Utilisation Plant (October 2004).

1.0 PROPOSED EMISSION LIMIT VALUES FOR WL 81-3

1.1 Emissions from Gas Utilisation Plant

Emission values (for parameters as per Schedule C.5 of Waste Licence Register No 81-2) for the gas utilisation engines are depicted in the following Table 1. These emission values are compared against emission limit values specified in TA Luft (2002), Waste Licence Register No 81-2 and two recently issued EPA Waste Licence ELV's for Gas Utilisation Plant (WL 4-2 and WL 26-2).

The proposed ELV's are as per WL 26-2. Table 1 indicates that the ELV's for Carbon Monoxide, TA Luft Class 1-3 parameters and Hydrocarbons in Waste Licence 81-2 would require alteration as per more recently issued Waste Licence Register No 4-2 and 26-2.

Table 1: Emissions and ELV's from the Gas Utilisation Plant in mg/m^3 .

		Emi	ssion Limit	Values (E	LV)
Parameter	Deutz 620 ⁴⁾	TA Luft 2002	WL 83 [©] -2	WL 4-2	WL 26-2 proposed KTK ELV's
NO ₂	162	1,000	500	500	500
CO	855	1,0000	<u>650</u>	1,400	1,400
PMio	n/d	upost ed	130	130	130
TA Luft Class 1	n/d n/dection	Dried.	<u>20</u>	1,000 ²⁾	2)
TA Luft Class 2	n/dective	n/a 1)	<u>100</u>	75 ³⁾	1,000 ²⁾
TA Luft Class 3	्रांगुर्भिर		<u>150</u>	/5 -/	/5 -7
Hydrogen Chloride	nya .	_	50	50	50
Hydrogen Fluoride	n/d	-	5	5	5
`Hydrocarbons	n/d	-	<u>10</u>	n/a	n/a

n/d = No data available / n/a = Not Applicable

1.2 Emissions from Gas Flare

The manufacturer (HAASE) has indicated that the $1,500 \, \text{m}^3/\text{hr}$ enclosed high temperature flare at the KTK Landfill facility meets all existing emission requirements set by the Irish EPA: CO<50mg/m³, NO_x<150mg/m³, 0.3 sec. retention time and a burning temperature of $1,000-1,200\,^{\circ}\text{C}$.

The following Table 2 indicates the emission values for the 1,500m³ enclosed high temperature HAASE flare. These emission values are compared against TA Luft (2002), Waste Licence Register No 81-2 and some recently issued EPA Waste Licence ELV's for flares (WL 4-2 and WL 26-2).

¹⁾ TA Luft (2002) does not specify ELV's for Class 1-3 Organic compounds for combustion plants.

²⁾ ELV for Total Volatile Organic Compounds (VOC).

³⁾ ELV for non-Methane VOC's.

⁴⁾ Emissions from Deutz 620 engine located at Kinsale Rd Landfill, Cork. Emissions from 12th July 2002, reported by EURO Environmental Services..

Table 2: Emissions from the flare in mg/m³.

""的"一大"的"一大"。		Emission Limit Values (ELV)				
Parameter	HAASE Flare	TA Luft 2002	WL 81-2	WL 4-2	WL 26-2 Proposed KTK ELV's	
NO2	< 150 ³⁾	150	250	150	150	
CO	< 50 ³⁾	50	50	50	50	
PM: 0	n/a	-	130	n/a	n/a	
TA Luft Class 1		n/a	20	n/a	n/a	
TA Luft Class 2	n/a		100			
TA Luft Class 3			150			
Hydrogen Chloride	20.4 ¹⁾	_	50	50	50	
Hydrogen Fluoride	8.1 ²⁾	-	5	5.	5	
Hydrocarbons	n/d	-	10	n/a	n/a	
Total Organic Carbon	n/d	-	n/a	10	10	

 $n/d = No \ data \ available \ / \ n/a = Not \ Applicable$

- 1) Represents analytical data for total Chloride. Data obtained by GAS Energy Ltd in March 2004.
- 2) Represents analytical data for total Fluoride. Data obtained by GAS Energy Ltd in March 2004.
- 3) Information supplied by the Manufacturer (HAASE).

2.0 ANALYSIS OF LANDFILL GAS AT KTK LANDFILL

To date four (4 No) landfill gas samples have been analysed from the source, i.e. from the generated landfill gas at the KTK Landfill site by G.A.S. Energietechnologie GmbH. The following Table 3 indicates a summary of the main parameters analysed. The complete results have been attached at the end of this report. Please refer to attached Drawing KTK/655 Rev. C for sample collection locations and details of the current gas collection fields at the site.

Table 31: Analytical Results of the LFG Samples taken at KTK Landfill by G.A.S. Energietechnologie GmbH during 2004.

Location		Phase 1-2	Phase 1-2	Phase 4-5	Phase 1-2	
Parameter		16/01/04	4/03/04	4/03/04	16/12/04	
Methane - CH4	Vol%	42.7	39.3	36.0	33.7	
Carbon dioxide - CO ₂	Vol%	38.1	33.9	27.5	26.4	
Oxygen - O ₂	Vol%	1.1	1.6	6.2	6.6	
Nitrogen - N	mg/m³	17.9	24.8	29.9	32.9	
Total Chloride	mg/m³	272.0	20.4	130.0	-	
Total Fluoride	mg/m³	97.2	8.1	59.5	_	

- 1) Sampling point at the HAASE 1,500m3 flare.
- 2) Sampling point at Phase 1 and 2 LFG ring main.
- 3) Sampling point at Phase 4 and 5 LFG ring main.
- 4) Sampling point at the HAASE 1,500m3 flare.

It is noted that all samples were taken from the source gas, i.e. before flare or engine locations to ensure an accurate 'fingerprint' of the generated gas at the site.

3.0 GAS MANAGEMENT PLAN

3.1 Current Situation

The current Landfill Gas Management System comprises 23 No landfill gas collection boreholes and 21 No side slope risers. These are connected to the gas ring main, which is installed around the perimeter of the site at the northern, eastern and southern part of the site. The ring main competition works were carried out in April 2005. Refer to Drawing KTK/655 Rev. C for details of the gas extraction system.

Furthermore two enclosed 1500m³ flares (one permanent the other hired since January 2005), one enclosed 500m³ flare and two open 500m³ flares are situated at the site in order to collect and flare the landfill gas produced at the site.

It is noted that a gas collection pipe connection has been installed to the neighbouring Kildare County Council landfill Silliot Hill for flaring and utilisation purposes. Current export rate is at approximately 1,000m³/hr (February/March 2005). The connection to Silliot Hill landfill acts as a short term backup capacity for KTK gas collection system.

Refer to the following Table 4 for details of the flaring rates. In summary the current gas collection and flaring rate at the KTK Landfill site is approximately 3,184 m³/hr.

Table 4: Details of the KTK Landful collection and flaring capacity in February and March 2005.

Description of Flare	Design Capacity (m³/hr)	Flow 21/02/05 (m³/hr*	Plow 23/02/05 (m³/hr)	Flow 25/02/05 (m³/hr)	Flow 4/03/05 (m³/hr)	Flow 9/03/05 (m³/hr)	Flow 16/03/05 (m³/hr)	Flow 25/03/05 (m³/hr)	Average Flow (m³/hr)
HAASE enclosed (p)	1,500	750	685	632	834	934	867	1055	820
HAASE enclosed (t)	500	439	438	422	435	405	406	425	420
Leased Phase 4 (t)	1,500	483	480	484	394	778	604	607	675
Open near W/B (t)	500	120	126	120	138	138	121	91	119
Open Phase 2 (t)	500	330	410	320	0	0	0	. 0	151
Export to Silliot Hill LF (t)	1,000	1003	965	1035	1099	931	1169	931	1,000
TOTAL FLOW (m³/hr)	5,500	3,125	3,104	3,013	2,900	3,186	3,167	3,109	3,184

⁽p) = Permanent Arrangement

3.2 Proposed / Future Situation

The KTK Landfill is currently evaluating proposals to purchase two new landfill gas flaring systems to the KTK Landfill site: one 2,500 m³/hr and one 1,500 m³/hr flaring system. These new flaring systems would replace the temporary three 500 m³ flares (two open and one enclosed) and one 1,500 m³/hr hired ground flare. With the proposed system in place the future flaring capacity at the site will be 5,500 m³/hr.

Furthermore currently two landfill gas combustion engines have been installed at the site (*Type - TBG 620 V16 K - manufactured by Deutz Energy GmbH in Mannheim, Germany*) each capable of generating 1MW of power. A third engine has been planned for the later part of 2005.

⁽t) = Temporary Arrangement

According to the manufacturer each engine will utilise, at a 50% Methane (CH_4) concentration, 650 m³/hr of landfill gas. In the future the total utilisation capacity at the site will be 1,950 m³/hr.

The future combined flaring and utilisation capacity at the site will be at the end of $2005 7,500 \text{ m}^3/\text{hr}$.

4.0 EMISSION DATA FOR THE DEUTZ ENGINES

Three separate, purpose built and environmentally controlled containers enclosing a landfill gas engine, each capable of generating 1MW of power, are planned for the KTK Landfill site. The engines (Type - $TBG\ 620\ V16\ K$) are manufactured by Deutz Energy GmbH in Mannheim, Germany. It is noted that currently two engines are installed at the site (commencement of utilisation estimated at May/June 2005), third engine being due for installation before end of 2005.

According to the manufacturer each engine will utilise, at a 50% Methane (CH_4) concentration, 650 m³/hr of landfill gas. The stack (diameter 0.5 metres) height of each container is approximately 5 metres from ground level.

The emission values from the engines were discussed in our "Supplementary Report on Proposed Gas Diffication Plant" submitted to the Agency's for its agreement in October 2004, which is attached at the end of this report. The Agency acknowledged this report and gave it's agreement to the SEW proposals by email dated 12th November 2004.

It should be noted that the engine emissions depend of the source gas – for this reason no emission data exist at this point in time for the gas utilisation engines at KTK Landfill. Furthermore discussions were carried out with the engine manufacturer Deutz, who have confirmed that the engines will meet the current emission guidelines (Waste Licence 81-2 and TA Luft 2002) – see attached data sheet in Appendix 2.

The following Table 5 indicates emission concentrations for CO and NOx from similar Deutz engines located at Kinsale Road Landfill in Cork. The analysis was prepared for Irish Power Systems in July 2002.

Table 5: CO and NOx concentrations at Deutz engines located at Kinsale Road Landfill in Cork.

	CO (at 5% Oxygen) in mg/m³	NOx (at 5% Oxygen) in mg/m³
Engine TV1	688	162
Engine TV2	855	119

The results in Table 5 indicate that the Deutz engines are able to comply with the emission limit values stipulated in more recently issued waste licences for CO $(1,400 \text{ mg/m}^3)$ and NOx (500 mg/mg^3) . It is noted that source gas analysis was not available for this report, i.e. an evaluation of the effectiveness of the engine emission destruction removal efficiency (DRE) could not be carried out.

5.0 EMISSIONS FROM THE ON-SITE FLARES

An efficiency test was carried out at following on-site flares on the 22nd February 2005:

- HAASE 1,500 m³ groundflare (permanent)
- HAASE 500 m³ groundflare (temporary leased)
- ORGANICS 1,500 m³ groundflare (temporary leased)

The following Table 6 indicates the results of main parameters – the complete report of results is enclosed.

Table 6: Emission data from on-site flares (22 February 2005).

Location	101	WL 81-2	HAASE 1500	HAASE 500	ORGANICS	
Parameter	Unit	ELV	ELV (permanent)		1500 (leased)	
CO	mg/m³	50	6.25	3,822.50	126.63	
Total NO _x	mg/m³	250	23.18	7.21	6.58	
Total TOC	mg/m³	n/a	233.12	934.07	129.45	
Hydrogen Chloride	mg/m³	50	12.43	15.84	21.18	
Hydrogen Fluoride	mg/m³	5	6.22	42.45	5.09	

The report prepared by Odour Ireland indicates following conclusions:

- Airflow rate measurement was not carried out in accordance with the required standards due to sample port restrictions and airflow rate measurement location. A theoretically exhaust flue gas volume was calculated.
- NO_x, SO₂, CO, O₂, HCl_xHR and TOC monitoring and analysis was carried out in accordance with specified requirements;
- All data is presented as Oxygen corrected to 5% (v/v);
- A worst case dispersion modelling assessment was carried out using the recommended US EPA Screen 3 dispersion model. Those monitored parameters that have established maximum GLC limits are within these values;
- Carbon monoxide (CO) emission rates are higher in the HAASE 500 and ORGANICS 1500 flare burner exhaust, it is suggested that the destruction removal efficiency (DRE) for methane is reduced. Servicing of the flare burners and supplying a greater gas supply to the ORGANICS 1500 flare should eliminate this problem and maintain higher operating temperatures within the flare burner;
- As carbon monoxide (CO) concentrations are low in the exhaust flue gas of the HAASE 1500 (i.e. in the order of 6.75 mg m⁻³), it is suggested that this landfill flare is attaining a high *DRE* for methane destruction.

It is noted that since the Odour Ireland visit and sample collection at KTK Landfill site the ORGANICS 1500 flare has been overhauled and the HAASE 500 overhaul is scheduled. It is believed that these flares will then comply with the given ELV's. Furthermore it is noted that these flares are only temporary and that the licensee is planning to replace these flares with a larger capacity flaring system in the near future (see section 3.2).

6.0 DISPOSAL OF LEACHATE

Further to the discussions at the on-site meeting (on the 15 February 2005) in relation to leachate disposal, it is still the intention of KTK Landfill to discharge into the Kilcullen foul drainage system. Hence, KTK Landfill wishes to have Condition 6.6 of Waste Licence Register No 81-2 retained in the revised licence.

If you have any queries please do not hesitate to contact Mr. Geoff Parker or the undersigned.

Yours sincerely,

Thomas Vainio-Mattila, M.Sc.

Cc: Mr. Michael Bergin (KTL Landfill)

APPENDICES:

Appendix 1 Landfill Gas Analysis - KTK Landfill

Appendix 2 Deutz Engine Emissions - Manufacturers details

Appendix 3 Drawing KTK/655 Rev. C

Following reports are attached:

KTK Landfill flares - Efficiency test results

SEW - April 2004

SEW - October 2004

APPENDIX 1

Landfill Gas Analysis – KTK Landfill

Consent of copyright owner hearing and other use

KTK Landfill

Landfill gas

Sample description

Gas type

Sample at 1.500 flare, high press. side

Further information

Umweltanalytik RUK GmbH · Im Paesch · 54340 Longuich

G.A.S. Energietechnologie GmbH

Herr Simon

Hessenstr. 57

D-47809 Krefeld

Umweltanalytik RUK GmbH Im Paesch D-54340 Longuich Tel. 06502-9339-0 (Fax -29) E-Mail: ruk@umweltueberwachung.de Internet: www.umweltueberwachung.de www.deponiegas.com

Wickbold analysis shows significantly higher values of total Chlorine and Fluorine contents in comparison to separate trace elements. The reason for this is just one trace element 1,1 Dchloro-1-fluoroethane with a significantly high concentration with in landfill gas.

Results actual sample

RUK Sample-No.	040	Carrier and Carrie		
Sampling date Comission-No.	16.01.	2004		
Main components Methane Vol.	100 % C			
Carbon dioxide Vol. Oxygen Vol.	-% 38,1	- <u></u>		
Nitrogen Vol. Inorganic trace gases	% 17,9	- A - A - A - A - A - A - A - A - A - A		
Ammonia mg/i Hydrogen sulphide mg/i	m³ _n < 0,2 m³ _n 807	890		
Halogenated Hydrocarbons Dichlorodifluoromethane (F12) mg/l		19.0		
Vinylchlorid mg/i Trichloroflouromethane (F11) mg/i	n'n 3.40	8,0 10,1		
1,1-Dichloroethene mg/ Dichloromethane mg/	n ² , <0.0	<0,2 3.0		
1.1,2-Trichloro-1,2,2-trifluoroethane mg/ trans-1,2-Dichloroethene mg/	n^a_n < 0.1	≤ 0,2 < 0.2		
1.1-Dichloroethane mg/ cis-1,2-Dichloroethene mg/	ក 0.2		and the	
Trichloromethane mg// 1,2-Dichloroethane mg//	m ² , <0,1	< 0,2 < 0,2		
1,1,1-Trichloroethane mg/ Tetrachloromethane mg/	m³, 0,1	0,2 < 0,2		
Trichloroethene mg/ 1,1,2-Trichloroethane mg/	m³ _n < 0,1	1,6 < 0,2		
Tetracriloroethene mg/ 1,1,1,2-Tetrachloroethane mg/	$m_0^4 = 0.7$	1,6 < 0,2		
BTEX mg/		1,4		
Ethylbenzol mg/		17,3		
m-/p-Xylene mg/ o-Xylene mg/		41.0 9,8		2-2-2
Silicon compounds Tetramethylsilane mg/		< 0,2		
Hexamethyldisiloxane (L2) mg/	m³ _n < 0,1	3 _i 0 < 0,2		
Octamethyltrisiloxane (L3) mg/		< 0,2		mananana maniferina 22,000 pagama - 10,000
Decamethyltetrasiloxane (L4) mg/	m³ _n < 0,1	3,3 < 0,2		
Decamethylcyclopentasiloxane (D5) mg/ Sum silicon compounds (calc.) mg/	m³ _n 3,5	1,6 8,2		
Hydrocarbons	m ³ n 1,2	2.8		
> n-Pentane, <= n-Decane mg/r > n-Decane mg/r	n³ _n n. b.	n. b.		
Total CI, F, S content (Wickbold) Total Chlorine mg/		337,0		
Total Fluorine mg/ Total Sulphur mg/		228 ₁ 0 1.880		

Hauptkomportentere set a	DIN EN 38409 H8 (Wickboldverbrennung), DIN EN 10304 (IC)
Suzkindigariische Verbildungen (*	VDI 2461 Bl. 2 / colorimetrisch
Schweielwasserstoffe	DIN 6 PSS-4 WOODMERSEN
Longuich, 22.12.2004	onseth of convinding and factoring the convinding of the convinding and the convinding an
DiplIng. W. Schreier	Dr. T. Häusler

Dipl.-Ing. W. Schreier

(Geschäftsführer)

Dr. T. Häusler

(Laborleiter)

KTK Landfill

Landfill gas

Sample description

Gas type

Gas sample Cell 4 + 5 at ring main pipe

Further information

Umweltanalytik RUK GmbH Im Paesch 54340 Longuich

G.A.S. Energietechnologie GmbH Herr Simon Hessenstr. 57

D-47809 Krefeld

Umweltanalytik RUK GmbH
Im Paesch D-54340 Longuich
Tel. 06502-9339-0 (Fax -29)
E-Mail: ruk@umweltueberwachung.de
Internet: www.umweltueberwachung.de
www.deponiegas.com

Wickbold analysis shows significantly higher values of total Chlorine and Fluorine contents in comparison to separate trace elements. The reason for this is just one trace element 1,1 Dchloro-1-fluoroethane with a significantly high concentration with in landfill gas. Oxygen percentage is quite high with 6,2 %:

Results actual sample

RUK Sample-No.		0403002			
Sampling date Comission-No.	2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	04.03.2004 -			
Main components Methane Vol %	36,0	100 % CH ₄		Art.	
Carbon dioxide Vol % Oxygen Vol %		-			
Nitrogen: Vol % Inorganic trace gases	29,9	4 .	att)		
Ammonia mg/m³ _n Hydrogen sulphide mg/m³ _n	< 0,2 , 1,530	0.5 4,250	ν.	, mi si si	
Halogenated Hydrocarbons. Dichlorodifluoromethane (F12) mg/m³ _n	4.2	√ √ 11.7			
Vinylchlorid ing/m³ _n Trichloroflouromethane (F11) mg/m³ _n	and the second s	23.1 20,8			
1,1-Dichloroethene mg/m³ _n Dichloromethane mg/m³ _n		0,3 9,2			
1,1,2-Trichloro-1,2,2-trifluoroethane mg/m², trans-1,2-Dichloroethene mg/m³,		≤ 0,3 0,3			
1,1-Dichloroethane mg/m³n cis-1,2-Dichloroethene mg/m³n	0,3 3,8	0.8 10.6	.		
Trichloromethane mg/m³, 1,2-Dichloroethane mg/m³,	< 0,1 0,1	< 0,3 0,3	11.00		
1,1,1-Trichloroethane ing/m³, Tetrachloromethane mg/m³,	≤ 0,1 < 0,1	< 0,3 < 0,3			
Trichloroethene mg/m³n 1,1,2-Trichloroethane mg/m³n	2,2 < 0,1	6,1 < 0,3			
Tetrachloroethene mg/m³n 1,1,1,2-Tetrachloroethane mg/m³n	1.0 < 0,1	2,8 < 0,3			
BTEX Benzene mg/m³n	1,8	• 5,0			
Toluene mg/m³n Ethylbenzol mg/m³n	11,7	147,2 32,5			
m-(p-Xylene mg/m³n o-Xylene mg/m³n	31,3 6,1	86,9 16,9			
Silicon compounds Tetramethylsilane mg/m³n	< 0,1	< 0,3			
Trimethylsilanol mg/m², Hexamethyldisiloxane (L2) mg/m³,	0.2	6,9 0,6	E .	· ·	
Hexamethylcyclotrisiloxane (D3) mg/m³n Octamethyltrisiloxane (L3) mg/m³n	0,1	0,3 0,3			
Octamethylcyclotetrasiloxane (D4) mg/m³n Decamethyltetrasiloxane (L4) mg/m³n	< 0,1	5,6 < 0,3			
Decamethylcyclopentasiloxane (D5) mg/m³ _n Sum silicon compounds (calc.) mg/m³ _n	5,6	1,9 15,6			
Sum silicon (calc.) mg/m³n Hydrocarbons	1,9	5,3 ·			
> n-Pentane, <= n-Decane mg/m³n > n-Decane mg/m³n	n. b.	n b n. b.			
Total Cl, F, S content (Wickbold) Total Chlorine mg/m³n	130,0	361,1			
Total Fluorine mg/m³, Total Sulphur mg/m³,	59,5 1.530	165,3 4,250			

Hauptkonnportenters and second of the Control of th	DIN EN 38409 H8 (Wickboldverbrennung), DIN EN 10304 (IC)
Spakinolognische Vertabtungen	VDI 2461 Bl. 2 / colorimetrisch
Schweierwasserstoff Kohlenwasserstoffe	*DIN 51855-4 ASSOCIATION BIS II. A VDI 3865-81 4 (GC FID)
BJEX JUGKWEIGKWATHIEN AND LANGUE AND	MAND See Black Corns 3.12 Dr. A. Carlotta A. Carlotta
	OF TANK
	in the state of th
Longuich, 22.12.2004	tion not rect
	in getoat
	E CONTRE
	Folinsketian funder ledired for any dive
Cos	y
DiplIng. W. Schreier	Dr. T. Häusler

Dipl.-Ing. W. Schreier

(Geschäftsführer)

Dr. T. Häusler

(Laborleiter)

KTK Landfill

Landfill gas

Sample description

Gas type

Gas sample Cell 1 + 2 at ring main pipe

Further information

Umweltanalytik RUK GmbH : Im Paesch : 54340 Longuich

G.A.S. Energietechnologie GmbH Herr Simon Hessenstr. 57

D-47809 Krefeld

Umweltanalytik Umweltanalytik RUK GmbH

Im Paesch · D-54340 Longuich Tel. 06502-9339-0 (Fax -29)

E-Mail: ruk@umweltueberwachung.de Internet: www.umweltueberwachung.de

www.deponiegas.com

This sample also shows the same trace element 1;1 Dchloro-1-fluoroethane like the sample take at Cell 4 +5 but with lower concentration. For this reason values of total Chlorine and Fluorine contents are significantly lower.

Results actual sample

			results former samples			
RUK Sample-No. Sampling date		0403001 04.03.2004				
Comission-No.		-				
Main components Methane	ol % 39.3	**************************************				
Carbon dioxide Vo	il % 33,9	_	Q.			
Nitrogen Vo	ol % 1,6 ol % 24,8		W.			
	g/m³ _n < 0.2	< 0,5)				
Halogenated Hydrocarbons						
Vinylchlorid m	g/m³ _n 3,2 g/m³ _n 6,5					
1,1-Dichloroethene m	g/m³ _n 1 (f g/m³ _n <0,1		·			
Dichloromethane mg 1,1,2-Trichloro-1,2,2-trifluoroethane mg	g/m³ _n 🙌 🙌 0,2 g/m³ _n 🔻 0,1					
trans-1,2-Dichloroethene mg	g/m³ _n					
cis-1,2-Dichloroethene m	g/m³ _n 4,0 g/m³ _n < 0,1	10,2				
1,2-Dichloroethane me	g/m³ _n < 0,1 g/m³ _n < 0,1	< 0.3				
Tetrachloromethane me	g/m³ _n < 0,1	< 0,3 1,3				
1,1,2-Trichloroethane mg	g/m³ _n < 0.1	< 0,3				
1,1,1,2-Tetrachloroethane me	g/m³ _n 0.5 g/m³ _n < 0,1	< 0,3				
	g/m³ _n 1,2	3,1				
Ethylbenzol mg	g/m³ _n 24,4 g/m³ _n 11,9	30,3				
	g/m³ _n 25,8 g/m³ _n 5,7	65,7 14,5				
Silicon compounds	g/m³ _n < 0,1	< 0,3				
Trimethylsilänol me	j/m³ _n 5,5 g/m³ _n 0,1	14,0 0,3				
Hexamethylcyclotrisiloxane (D3) mg	g/m ³ 0,2 g/m ³ < 0,1					
Octamethylcyclotetrasiloxane (D4) mi	g/m³ _n 1.8 g/m³ _n < 0.1					
Decamethylcyclopentasiloxane (D5) mo	1/m³, 0,6	1,5				
Sum silicon (calc.) m	g/m³ _n 8,2 g/m³ _n 2,7	20,9 6,9				
Hydrocarbons > n-Pentane, <= n-Decane mg	/m³, n.b.	SOURCE AND				
Total CI, F, S content (Wickbold)	/m³ _n n.b.	n, b.	/			
Total Fluorine mg	g/m³ _n 20,4 g/m³ _n 8,1	CONTRACTOR				
Total Sulphur mg	g/m³ _n 408	1.040				

Hauptkonnportenters and second of the Control of th	DIN EN 38409 H8 (Wickboldverbrennung), DIN EN 10304 (IC)
Spakinolognische Vertabtungen	VDI 2461 Bl. 2 / colorimetrisch
Schweierwasserstoff Kohlenwasserstoffe	*DIN 51855-4 ASSOCIATION BIS II. A VDI 3865-81 4 (GC FID)
BJEX JUGKWEIGKWATHIEN AND LANGUE AND	MAND See Black Corns 3.12 Dr. A. Carlotta A. Carlotta
	OF TANK
	in the state of th
Longuich, 22.12.2004	tion not rect
	in getoat
	E CONTRE
	Folinsketian funder ledired for any dive
Cos	y
DiplIng. W. Schreier	Dr. T. Häusler

Dipl.-Ing. W. Schreier

(Geschäftsführer)

Dr. T. Häusler

(Laborleiter)

KTK Landfill

Landfill gas

Sample description

Gas type

Sample point at 1.500 Flare

Further information

Umweltanalytik RUK GmbH · Im Paesch · 54340 Longuich G.A.S. Energietechnologie GmbH Herr Simon Hessenstr. 57

D-47809 Krefeld

Umweltanalytik RUK GmbH
Im Paesch D-54340 Longuich
Tel. 06502-9339-0 (Fax -29)
E-Mail: ruk@umweltueberwachung.de
Internet: www.umweltueberwachung.de
www.deponiegas.com

The sample is strongly diluted by air. The values of hydrogen sulphide, chlorine and fluorine is significantly tower than the results from January 2004.

Results actual sample

	and the second control of the second control	Districted and	Marchana - Oral	-Constitution (\$10000.043)			•
504	RUK Sample-No. Sampling date			0412141 16.12.2004	0401114 Jan. 04		
	Comission-No.			-	5		
	Main components	Val W	00.7	100 % GH ₄	40.7		
1	Methane Carbon dioxide	Vol % Vol %	33,7 26,4	-	42,7 38,1		
	Oxygen Nitrogen	Vol % Vol %	6,6 32,9	-	1,1 17,9		
	Inorganic trace gases Ammonia	mg/m³ _n	n b.	n, b.	711,9 ≤0,2		
	Hydrogen sulphide Halogenated Hydrocarbons	mg/m³n	125	ું 37 1	807		
Ĩ	Dichlorodifluoromethane (F12) Vinylchlorid	mg/m³ _n mg/m³ _n	0,7 2.6	2,1 7,7	8,1 3.4		
	Trichloroflouromethane (F11) 1,1-Dichloroethene	mg/m³n mg/m³n	0.2	0,6 <0,3	4,3 < 0.1		
	Dichloromethane	mg/m³n	<0<0,1 <0,1	< 0,3	1,3		
-	1,1,2-Trichtoro-1,2,2-trifluoroethane trans-1,2-Dichloroethene	mg/m³ _n mg/m³ _n	₹ < 0,1	< 0,3 < 0,3	< 0,1		
	1.1-Dichloroethane cis-1,2-Dichloroethene	mg/m³, mg/m³ <mark>,</mark>	0,1 0,8	0,3 2,4	0,2 1,8	***************************************	
	Trichloromethane 1,2-Dichloroethane	mg/m³n mg/m³n	< 0,1 < 0,1	< 0,3 < 0,3	< 0,1 < 0,1		
	1,1.1-Trichloroethane Tetrachloromethane	mg/m³ _n mg/m³ _n	< 0.1 < 0.1	< 0,3 < 0.3	0,1 < 0.1		
000	Trichloroethene 1.1.2-Trichloroethane	mg/m³ _n mg/m³ _n	0,2 < 0.1	0,6 < 0,3	0.7 < 0.1		
400000	Tetrachloroethene	mg/m³ _n	0,2	0,6	0.7 < 0.1		
9	1,1,1,2-Tetrachloroethane BTEX	mg/m³n					
9	Benzene Toluene	mg/m³n			0,6 15,1		
100	Ethylbenzol m-/p-Xylene	mg/m³ _n mg/m³ _n	6,2 12,7	18,4 37,7	7,4 17,5		
	o-Xylene Silicon compounds	mg/m³ຸ	3,2	9,5	4,2		
	Tetramethylsilane Trimethylsilanol	mg/m³ _n mg/m³ _n	< 0,1 1.5	< 0,3 4,5	< 0,1 1.3		180
	Hexamethyldisiloxane (L2) Hexamethylcyclotrisiloxane (D3)	mg/m³ _n mg/m³ _n	· 0,3 0,1	0,9 0,3	< 0,1 0,1		
	Octamethyltrisiloxane (L3) Octamethylcyclotetrasiloxane (D4)	mg/m³ _n mg/m³ _n	< 0,1	< 0,3 3,6	< 0,1 1,4		
	Decamethyltetrasiloxane (L4)	mg/m³ _n	< 0,1	< 0,3	< 0,1 0,7		
	Decamethylcyclopentasiloxane (D5) Sum silicon compounds (calc.)	mg/m³n	3,4	10,1	3,5		
	Sum silicon (calc.) Hydrocarbons	mg/m³n		3,6	1,2		
	> n-Pentane; <= n-Decane > n-Decane	mg/m³ _n mg/m³ _n	п. b. n. b.	n. b. n. b.	n. ៦. n. b.		
	Total CI, F, S content (Wickhold) Total Chlorine	mg/m³n	n, b.	n. b.	272,0		
	Total Fluorine Total Sulphur	mg/m³n mg/m³n		ACCUSTORIA CONTRACA VALVANA A PROPERTIMA DE CONTRACA D	97,2 804		
_	$n \neq 0$ of determined $n \neq 0$ and applicable	n	11. 0.	11, 0.	Gashan		2.5.H inde Gasbeutel

Hauptkompotishters and service some services of the service services of the se	DIN 682-94 (GC 4050)
Silzkinokariisetje Veltalitungen Silzkinokariisetje Veltalitungen	VDI 2461 Bl. 2 / colorimetrisch
Schweierwasserstoffe Kohlenwasserstoffe	DIN 518554 ASIGNMEIOSBI
BJEX JUGKWA GKWA THUTO TO SELECT A SERVICE	WAVD(3665BHR(GDMS)311W ACT TO A CHEEL THE
	OF TANK
	ingoses allo
Longuich, 22.12.2004	ritor per reed
	the det out
	Control
	Folinskeiton hunden janding die der janden j
ÇOS	,
DiplIng. W. Schreier	Dr. T. Häusler

Dipl.-Ing. W. Schreier

(Geschäftsführer)

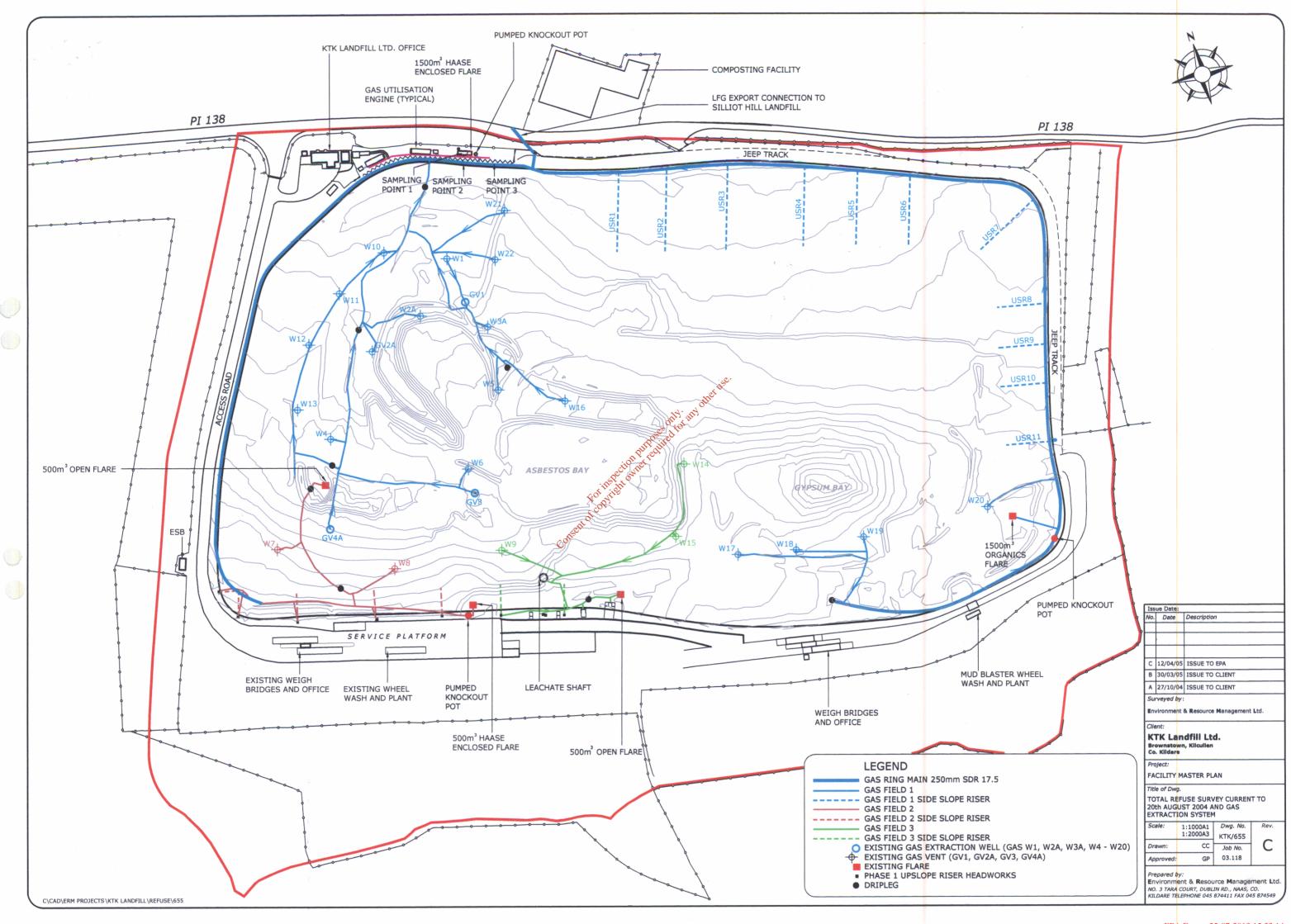
Dr. T. Häusler

(Laborleiter)

APPENDIX 2

Deutz Engine Emissions – Manufacturers Details

Consent of copyright owner reduced for any other use.


EPA Export 25-07-2013:15:22:14

່ 1	1 Inquiry G.A.S.		Calculation of heat ballance without guaranteel					
· 2	2		Gas analysis does not meet TR 0199-99-3017 requirements					
3		Dimensions						
			TBG620WV16K TBG620WV16K TBG620WV16K					
4	9 71				K.			
5			1500	1500	1500	-		
6		kW	1140	855	570			
7								
	Altitude	m	100	100	100			
	Intake air temperature	°C	25	25	25			
	Relative air humitity	%	60	60	60			
	Intercooler water temp.	°C	50	50	50			
	Glycol concentration (LLK)	%	33	33	33			
	Cooling water inlet temp.	°C	80	80	80			
	Cooling water outlet temp.	° C	90	90	90			
	Exhaust gas outlet temp.	°,C	150	150	150			
	Exhaust gas back pressure	mbar	50	40	25			
17	NOX-limit	mg/m3N 5% O2	500	500	500			
18	T	. 6_0	acc. to gas	acc. to gas	acc. to gas			
	. , ,	#_0	analysis	analysis	analysis			
	Methane number MZ Lower heating value Hu	. kWh/m³	162.6	162.6	162.6			
	Min. air demand		4.2860	4.2860	4.2860			
		m³/m³	4.0655	4.0655	4.0655	•		
	Spec. exhaust volume CO2/Hu	m³/m³	5.0138	5.0138	5.0138			
	Gas density	%/(kWh/m³)	8.8711	8,8711	8.8711			
25	-	kg/m³	1.2991	7.2991	1.2991			
26				N Oll				
	Power	. kW	1140	8.8711 8.8711 \$2991 855	570			
	Speed	1/min	4500	1500	1500	•		
	Consumption	kW ±5%	2962	2314	1670			
30	•	2070	7500 7500 797 797 89 854	2017	1070			
	Cyl. cooling water heat	kW ±8%	cition ref 797	647	501			
	Oil cooling heat	kW ±8%	ale on	0.7	001			
	Exh. gas pipe cool. water heat	kW ±8% 🔊	dight					
	Intercooler high temp. heat	kW ±8%	Alte					
	Intercooler low temp. heat	kW ±8%	89	60	34			
	Exhaust heat total	kW ±.8%	854	678	496			
37	Sum of useable exhaust heat	kW %£ 8%	663	530	389			
38	Radiation heat	kW ± 8%	56	56	56			
39	Unburned	kW ±8%	25	20	14			
40	•							
. 41	Combustion air mass flow	kg/h ±8%	4553	3533	2543			
42	Exhaust mass flow	kg/h ±8%	5451	4234	3050			
43	Exhaust temperature	°C ±8%	532	542	549			
	Lambda factor	"-" ±8%	1.2533	1.2447	1.2418			
45	Sum of useful heat	kW ±8%	1460	1176	890			
	Utility rate	ผู้แ	0.8779	0.8777	0.8741			
47	Efficiency	"_"	0.3849	0.3695	0.3413			
	CO.Emissions **	mg/m³ (5% O2)	< 1000	< 1000	< 1000			
	HC Emissions **	mg/m³	< 1000	< 1000	< 1000			
	NMHC Emissions **	mg/m³	< 150	<150	<150			

^{**} Exhaust emission results depend on landfill gas, actual engine valve condition and engine adjustments (ignition, receiver temperature, Lambda factor)

APPENDIX 3 Drawing KTK/655 Rev. C

EPA Export 25-07-2013:15:22:14

