Attachment E.1 - Emissions to Atmosphere

Emissions to atmosphere from the site will occur from the emission points identified below.

(a) Composting emissions

None

(b) Particulates - waste storage/treatment/handling

A2-1	(shredder exhaust	-	existing treatment plant)
A2-3	(shredder exhaust	-	proposed treatment plant)
A2-6	(rotary dryer exhaust	-	proposed recovery plant)

(c) Landfill Gas Emissions

	None			wet 15°.
(d) L	andfill L	eachate Emissions		25 OILY any office
	None		. ć	n purpose diffed t
(e) I	nfectiou	s Organisms / Patho «	gens of the	npurposes only any other use. In purposes only any other use. In purposes of for any other use. In purposes of the any other use.
	A2-1	(shredder exhaust 5	COD.	existing treatment pla
	A2-2	(condenser exhaust	_	existing and proposed
	A2-3	(shredder exhaust	-	proposed treatment p

existing treatment plant) existing and proposed treatment plant) proposed treatment plant)

(f) Thermal Oxidiser Emissions

None

(g) Other Emissions

A2-1	(shredder exhaust	-	existing treatment plant)
A2-2	(condenser exhaust		existing treatment plant)
A2-3	(shredder exhaust	-	proposed treatment plant)
A2-4	(gas fired hot steam b	oiler exh	aust – replacement for existing electrical boiler)
A2-5	(bin wash exhaust	-	existing)

A2-6 (rotary drier proposed recovery plant)

Emission Point Ref. No.:	A2 – 1
Source of Emission:	STI Model 2000 – shredder exhaust (existing treatment plant)
Location:	Roofline at side of building 430 Beech Road
Grid ref. (12 digit, 6E, 6N)	309171, 231396
Vent Details: Diameter:	100 mm
Height above Ground (m):	7 m
Date of commencement:	Subject to existing licence 55-1 (release point A2)

Characteristics of Emission:

(i) Volume to be emitted:				
Average/day	2400 m ³ /d	5.80	11,200 m³/d	
Maximum rate/hour	700 m ³ /h ^{er}	Min efflux velocity	0.02 m.sec ⁻¹	
(ii) Other factors	The Copy			
Temperature	ambient °C (max)	ambient °C (min)	ambient °C (avg)	
For Combustion Sources				
Volume terms expressed as: Not a combustion source				

(iii) Period or periods during which emissions are made, or are to be made, including daily or seasonal variations (start-up / shutdown to be included):

Periods of Emissions (avg)	60 min/hr	24 hr/day	330 day/yr

Table E.1(ii) M	Aain Emissions	to Atmosphere
-----------------	----------------	---------------

Emission Point Ref. No.:	A2 – 2		
Source of Emission:	STI Model 2000 – condenser exhaust (existing and proposed treatment plant)		
Location:	Roofline at rear of building 430 Beech Road		
Grid ref. (12 digit, 6E, 6N)	309170, 231396		
Vent Details: Diameter:	100 mm		
Height above Ground (m):	6 m		
Date of commencement:	Subject to existing licence 55-1 (release point A1)		

Characteristics of Emission:

Characteristics of Emi		W. my atternee.		
(i) Volume to be em	Out of	outposes of for al		
Average/day	2400 m ³ /d ^{iet}	Maximum/day	8,000 m³/d	
Maximum rate/hour	500 con m3/h	Min efflux velocity	0.02 m.sec ⁻¹	
(ii) Other factors	Consolt			
Temperature	60 °C (max)	ambient °C (min)	30 - 40 °C (avg)	
For Combustion Sources				
Volume terms expressed as: Not a combustion source				

(iv) Period or periods during which emissions are made, or are to be made, including daily or seasonal variations (start-up / shutdown to be included):

Periods of Emissions (avg)	60 min/hr	24 hr/day	330 day/yr

Emission Point Ref. No.:	A2 – 3
Source of Emission:	STI Model 2000 – shedder exhaust (proposed treatment plant)
Location:	Roofline at side of building 430 Beech Road
Grid ref. (12 digit, 6E, 6N)	309165, 231 385
Vent Details: Diameter:	100 mm
Height above Ground (m):	7 mm
Date of commencement:	2005 – exact date to be advised

Characteristics of Emission:

Characteristics of Emis	ssion:	ther the.			
(i) Volume to be em	itted:	es only any			
Average/day	2400 m ³ /d ^{puff} c ^{ito} urer	Maximum/day	11,200 m³/d		
Maximum rate/hour	700 100 m ³ /h	Min efflux velocity	0.02 m.sec ⁻¹		
(ii) Other factors	- OFFERTAL OF				
Temperature	ambient °C (max)	ambient °C (min)	ambient ℃ (avg)		
For Combustion Sources					
Volume terms expressed as: Not a combustion source					

(v) Period or periods during which emissions are made, or are to be made, including daily or seasonal variations (start-up / shutdown to be included):

Periods of Emissions (avg)	60 min/hr	24 hr/day	330 day/yr

Emission Point Ref. No.:	A2 - 4
Source of Emission:	Natural gas fired packaged steam boiler
Location:	Roofline at rear of building 430 Beech Road
Grid ref. (12 digit, 6E, 6N)	ТВА
Vent Details: Diameter:	ТВА
Height above Ground (m):	ТВА
Date of commencement:	2005 – exact date to be advised

Characteristics of Emission:

	·····	of the.	
(i) Volume to be em	litted:	25 OFF ANY OFF	
Average/day	TBA m ³ /d pur	Maximum/day	TBA m³/d
Maximum rate/hour	TBA THE STATE	Min efflux velocity	TBA m.sec ⁻¹
(ii) Other factors	sent of cots		
Temperature	TBA ℃ (max)	TBA ⁰C (min)	TBA °C (avg)
For Combustion Sources			
Volume terms expressed	as: Not a combustion so	urce	

(vi) Period or periods during which emissions are made, or are to be made, including daily or seasonal variations (start-up / shutdown to be included):

Periods of Emissions (avg)	60 min/hr	24 hr/day	330 day/yr

Emission Point Ref. No.:	A2 – 5
Source of Emission:	Bin Washer Exhaust
Location:	Roofline rear of building 430 Beech Road
Grid ref. (12 digit, 6E, 6N)	309182, 231387
Vent Details: Diameter:	400 mm
Height above Ground (m):	6 m
Date of commencement:	Subject to Licence 55-2

Characteristics of Emission:

Characteristics of Emis	ssion:	met 15e.	
(i) Volume to be em	itted:	es and and and	
Average/day	24000 m ³ /db ^{uff}	Maximum/day	36000 m³/d
Maximum rate/hour	1500 (15 m ³ /h	Min efflux velocity	0.3 m.sec ⁻¹
(ii) Other factors	meeth d cont		
Temperature	60 ºC (max)	ambient °C (min)	40 - 50 ºC (avg)
For Combustion Sources			
Volume terms expressed	as: Not a combustion sou	Irce	

(vii) Period or periods during which emissions are made, or are to be made, including daily or seasonal variations (start-up / shutdown to be included):

Periods of Emissions (avg)	60 min/hr	24 hr/day	330 day/yr
----------------------------	-----------	-----------	------------

Table E.1(ii)	Main	Emissions	to	Atmosphere
---------------	------	-----------	----	------------

Emission Point Ref. No.:	A2 - 6
Source of Emission:	Plastics Recovery Plant – Rotary Dryer Exhaust
Location:	Roofline of building 420 Beech Road
Grid ref. (12 digit, 6E, 6N)	ТВА
Vent Details: Diameter:	ТВА
Height above Ground (m):	ТВА
Date of commencement:	2005 (exact date to be advised)

Characteristics of Emission:

Characteristics of Emi	ssion:	net 15c.	
(i) Volume to be em	itted:	es ally and	
Average/day	TBA m ³ /dyuro	Maximum/day	TBA m³/d
Maximum rate/hour	TBA 115 m3/h	Min efflux velocity	TBA m.sec ⁻¹
(ii) Other factors	nsetted con		
Temperature	TBA ºC (max)	TBA ⁰C (min)	TBA ⁰C (avg)
For Combustion Sources			
Volume terms expressed	as: Actual (stack conditio	ns, wet)	

(viii) Period or periods during which emissions are made, or are to be made, including daily or seasonal variations (start-up / shutdown to be included):

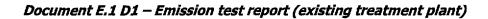
Periods of Emissions (avg)	60 min/hr	24 hr/day	330 day/yr

Parameter		Prior to t	reatment		Brief description of			As disc	harged		
	Mg/	'Nm ³	Kg	g/h	treatment	mg/	Nm3	Kg	J/h	Kg	 /yr
	Avg	Max	Avg	Max	ction pupose required to	Avg	Мах	Avg	Мах	Avg	Мах
particulate	-	-	-	Form	HEPA Filter	-	-	-	-	-	-
Organisms (as TVC) TVC = Total Viable	-	-	- ده	sent -	HEPA Filter	500 cfu	2000 cfu	-	-	-	-
VOC (as C)	-	-	-	-	HEPA Filter	< 50	150	0.005	0.1	50	875

Parameter	Prior to treatn		reatment		Brief description of treatment	As discharged					
	Mg/	'Nm ³	K	g∕h	only an other t	mg/	Nm3	Kg	j/h	Кд	/yr
	Avg	Max	Avg	Мах	treatment	Avg	Max	Avg	Max	Avg	Мах
Organisms (as TVC) TVC = total viable counts	-	-	-	For	Vessel and Carbon Filter	250 cfu	2000 cfu	-	-	-	-
VOC (as C)	-	-	-	onsent	Condenser Coalescing Vessel and Carbon Filter	< 500	1000	0.01	0.1	70	875

Parameter		Prior to t	reatment		Brief description of treatment			As disc	harged		
	Mg/	'Nm³	K	g/h	only an other th	mg/	'Nm3	Kg	j/h	Kg	/yr
	Avg	Max	Avg	Мах	treatment	Avg	Max	Avg	Max	Avg	Мах
particulate	-	-	-	For it	HEPA Filter	-	-	-	-	-	-
Organisms (as TVC) TVC = Total Viable	-	-	- C	ansent_of	HEPA Filter	500 cfu	2000 cfu	-	-	-	-
VOC (as C)	-	-	-	-	HEPA Filter	< 50	150	0.005	0.1	50	875

Parameter	Prior to treatment		Brief description of treatment	As discharged							
	Mg/	/Nm ³	K	g/h	es officiany other	mg/	Nm3	Kg]/h	Kg	/yr
	Avg	Мах	Avg	Max	ection purpostied	Avg	Мах	Avg	Max	Avg	Мах
Oxides of Nitrogen (as NO2)	-	-	-	Forin	treatment treatment pection putposes only: any other use	TBA	TBA	TBA	TBA	TBA	ТВА
Carbon Monoxide (CO)	-	-	- 0	nsent_	None	ТВА	TBA	TBA	TBA	TBA	ТВА


Parameter		Prior to t	treatment		Brief description of treatment			As disc	harged		
	Mg/	'Nm ³	Kg	j/h	only, any other use	mg/	Nm3	Kg	ı/h	Kg	/yr
	Avg	Мах	Avg	Max	treatment	Avg	Max	Avg	Max	Avg	Мах
Organisms (as TVC) TVC = Total Viable	-	-	• -	68	HEPA Filter	50 cfu	2000 cfu	-	-	-	-
VOC (as C)	-	_	- C	onsent of	HEPA Filter	< 5	50	0.001	0.1	10	875

Parameter		Prior to t	reatmen	t	Brief description of			As disc	harged		
	 				treatment						
	Mg/	'Nm ³	Ka	g∕h	south any others	mg/	Nm3	Kg	J/h	Kg	/yr
	Avg	Мах	Avg	Max	treatment	Avg	Мах	Avg	Max	Avg	Мах
particulate	-	-	-	Y of	Reverse jet pulse filter	ТВА	ТВА	TBA	TBA	ТВА	ТВА
		_	Ċ	onsentor							
			•								

Consent of copyright owner required for any other use.

Consent of copyright owner required for any other use.

5 Pery Square Limerick, Ireland

Tel +353 61 401549 Fax +353 61 401093

email info@tmsconsultancy.com http://www.tmsconsultancy.com

Alk Thy- See 04.

CERTIFICATE OF ANALYSIS

Sterile Technologies Ireland ATTN: Joe Lynch 13th January 2005 DATE:

Total VOC Analysis MATERIAL:

ANALYTICAL LTD

TO:

7th December 2004 SAMPLE DATE:

04127A TMS REF #: Rev: 0

Sample		Test	EPA Waste	· · ·
Sampre	Test Parameter		net	Units
Location		Result.	Licence Limits	
		5 on for a		
	Total Organics (as C)	A PUT CONT2	None specified	mg/Nm ³
A1	Mass Flow	€0.00002	0.1	Kg/hr
	Efflux Volume	184.4	500	Nm ³ /hr
	Total Organics (as C)	7.60	None specified	mg/Nm ³
A2	Mass Flow	0.004	0.1	Kg/hr
	Efflux Volume	463.64	700	Nm ³ /hr
	Total Organics (as C)	18.48	None specified	mg/Nm ³
A5	Mass Flow	0.015	None specified	Kg/hr
	Efflux Volume	805.75	None specified	Nm ³ /hr

Remarks:

- Analytical results reflect the quality of the sample at the time of analysis only. •
- All parameters comply with Waste licence limits.

Saly_Certificate checked by: David Bur Signed: Jonathan Daly

Registered in Ireland Reg No. 8223469S EPA Export 25-07-2013:14:11:20

CCUPATION ALTH & SA ISD 9001:2000 GUALITY

03/12 '04 16:19

061229327

Mercury Analytical Ltd.

TVC

Neasts

(cfu/m^a)

<6

<6

<6

Accredited to ISO 9001:2000

SGS Certificate No. Q11182

Trace metal, compositional, bacteriological & environmental analysis.

Sterile Technologies Irl. Ltd., 430 Beech Road, Western Industrial Estate, Naas Road, Dublin 12.

Raheen Industrial Estate. Limerick, Ireland,

Phone: (061) 229055 Fax: (061) 229327

Are RT- DEC 04

Moulds

(cfu/m³)

13

19

31

Attention: Enda Maxwell

2/12/04

01

CERTIFICATE OF ANALYSIS

Materiai Biotest Samples

Date Rec. 19/11/04

Your Ref.

		(cfu/m³)
A1 1615-1619	04-4035-1	<6 Purpequite
A1 1610-1614	04-4035-2	Dectionite.
A2 1440-1444	04-4035-3	n ello
A2 1430-1434	04-4035-4	St.
A5 1455-1459	04-4035-5	406
A5 1450-1554	04-4035-6 ment	· - •
	C ^D	

Lab, No.

Methods: TVC incubated for 3 days @ 30°C Yeasts and Moulds incubated for 4 days @ 25°C

Comment: All results are within licence limits (<2000 cfu/m³)

P.C.D. Cazalet

Cert. checked: HHA ALEN

CERTIFICATE OF ANALYSIS

TO:	Sterile Technologies	Ireland
ATTN:	Joe Lynch	
DATE:	27 th August 2004	
MATERIAL:	Total VOC Analysis	
SAMPLE DATE:	18 th June 2004	
TMS REF #:	04073A	Rev: 0

Sample	Test Parameter	Test	EPA Waste	Units
Location		Result	Licence Limits	
. 1	Total Organics (as C)	>302.5	None specified	mg/Nm ³
A1	Mass Flow	>0.02 101	0.1	Kg/hr
	Efflux Volume	n Pik 33.5	500	Nm ³ /hr
	Total Organics (as C)	15.3	None specified	mg/Nm ³
A2	Mass Flow	0.005	0.1	Kg/hr
	EffluxVolume	304.7	700	Nm ³ /hr
	Total Organics (as C)	<1.5	None specified	mg/Nm ³
A5	Mass Flow	<0.001	None specified	Kg/hr
	Efflux Volume	732.5	None specified	Nm ³ /hr

Remarks:

- Analytical results reflect the quality of the sample at the time of analysis only.
- A portion of analyte was found on the back section of the sample tube at A1 -• therefore the actual concentration may be somewhat greater than that reported above.
- All parameters comply with Waste licence limits. .

Signed: Jonathan Daly Certificate checked by: David Burke

	EFCULY Accredited to ISO 90		lytic SGS Certific			
Trace metal, con environmental a	npositional, bacteriolo nalysis.	ogical &			ndustrial Estate , Ireland.	, ,
Sterile Technolog 430 Beech Road, Western Industria Naas Road, Dublin 12.				Phone: Fax:	(061) 229055 (061) 229327	
Attention: Enda M	Maxwell				2/7/	/04
REVISED CERTI	FICATE OF ANALY	SIS				
Material	Biotest Samples					
Date Rec.	25/6/04		et use.			
Your Ref.	Lab. No.	TVC (cfu/m ³) cfu/m ³	(cfu/m ³)		ulds u/m³)	
BK A1 1556-1600 A2 1530-1534 A5 1420-1424	04-2138-1 04-2138-2 04-2138-3 04-2138-4	500 911 231				
A5 1420-1424 BK	04-2138-5	50X. 201	<6		<6	
A1 1601-1605	04-2138-6		<6		24	
A2 1535-1539	04-2138 - 7		<6		18	
A5 1425-1429	04-2138-8		<6	4	210	

Methods: TVC incubated for 3 days @ 30°C Yeasts and Moulds incubated for 4 days @ 25°C

Comment: All results are within licence limits (<2000 cfu/m³)

P.<u>P.Hugh Donnell</u> P.C.D. Cazalet

Cert. checked: Enne Rypu

Attachment E.2 – Emissions to Surface Waters

There are no emissions from the facility to surface water drains except for rainwater from roof drains, car parking and vehicle movement areas.

Consent of copyright owner required for any other use.

Attachment E.3 – Emissions to Sewer

Table E.3(i): Emissions to Sewer

Emission Point: SE 1

Emission Point Ref. No.	SE 1
Location of connection to sewer	Rear of Building Unit 430
Grid Ref. (10 digit, 5E, 5N):	309184, 231376
Name of sewerage undertaker:	South Dublin County Council

Emission Details:	all' any other se.							
(i) Volume to be emitted								
Normal/day	For inspectown	Maximum/day	20m3					
Maximum rate/hour	consent 2m3							
(ii) Period or periods during which emissions are made, or are to be made, including daily or								
seasonal variations (<i>start-up/shutdown to be included</i>):								

Periods of emission (avg)	60min/hr	24hr/day	330day/yr

٦

Table E.3(i): Emissions to Sewer

Emission Point: SE 2

Emission Point Ref. No.	SE 2
Location of connection to sewer	Rear of Building Unit 420
Grid Ref. (10 digit, 5E, 5N):	309156, 231415
Name of sewerage undertaker:	South Dublin County Council

Emission Details:

If.

		115 ⁰ .	
(i) Volume to be emitted		Sec off. and other	
Normal/day	16m3c	Maximum/day	20m3
Maximum rate/hour	For triefer 2m3		
(iii) Period or pe	riods during which emission	ons are made, or are to	be made, including daily or

seasonal variations (*start-up/shutdown to be included*):

Periods of emission (avg)	60min/hr	24hr/day	330day/yr
---------------------------	----------	----------	-----------

TABLE E.3 (ii): EMISSIONS TO SEWER - Characteristics of the emission

Emission point reference number. SE 1

Parameter		Prior to trea	tment			As discharged				
	Max. hourly average (mg/1)	Max. daily average (mg/ l)	kg/ day	kg/ year	Max. hourly average(mg/1)	Max. daily average (mg/1)	kg/ day	kg/ year		
BOD 5	1000	800	31.99	10,000	1000	800	31.99	10,000		
COD	3000	2400	96	32,000	3000	2400	96	32,000		
Suspended Solids	500	400	15.99	5,000	500	NH: and ^{of} 400	15.99	5,000		
Detergents as methylene blue active Substances (MBAS)	100	100	3.99	1,000	3000 3000 500 100 nonputposes 100 no	100	3.99	1,000	No Treatment	
Fats Oil and Grease	100	100	3.99	1,000	Conserv 100	100	3.99	1,000		
pH	6 – 10	-	-	-	6 - 10	-	-	-		
Temperature	42 C	_	-	_	42 C		_	-		

\$

TABLE E.3 (ii): EMISSIONS TO SEWER Characteristics of the emission (1 table per emission point)

Emission point reference number. SE 2

Parameter		Prior to trea	tment	·····		As discharged			% Efficiency
	Max. hourly average (mg/1)	Max. daily average (mg/ l)	kg/ day	kg/ year	Max. hourly average(mg/1)	Max. daily average (mg/1)	kg/ day	kg/ year	
BOD 5	1000	800	21.3	7,000	1000	800	21.3	7,000	
COD	3000	2400	63.9	21,000	3000	2400	63.9	21,000	
Suspended Solids	500	400	10.6	3,500	500	ANY ANY ON 400	10.6	3,500	
Detergents as methylene blue active Substances (MBAS)	100	100	2.7	891	3000 500 100 puposes 100 pupos	100	2.7	891	No Treatment
Fats Oil and Grease	100	100	2.7	891	Consent [©] 100	100	2.7	891	
	6 - 10	-	-	-	6 - 10	-	-	-	
pH Temperature	42 C	-	-	-	42 C	-	-	-	

EPA Export 25-07-2013:14:11:21

Attachment E.4 – Emissions to Groundwater

There are no emissions from the facility to ground water.

Consent for inspection purposes only any other use.

Attachment E.5 – Noise Emissions

Each year since commencement of operations at 430 Beech Road, STI has engaged the services of 'TMS Analytical' to conduct a survey of noise levels at the boundary of the site in accordance with the requirements of Waste Licence 55-1. The noise measurement points are located at the southern boundary of the site where it adjoins Unit 520 (noise measurement point B1) and at the northern boundary of site on the boundary of the site where Unit 430 adjoins Unit 420 (noise reference point B2). The most recent noise monitoring exercise was undertaken on 18 June 2004 (see attached report document E.5 D1). The report demonstrates that at both locations the noise resulting from the traffic on the Naas Road dominates any noises generated by the plant. Therefore as the proposed changes to the site will not result in the introduction of any equipment which generates any more noise that that already present on the site and the noise generated by the site is insignificant when compared with the surrounding area it is STI's opinion that noise emissions from the extended site will be insignificant.

.

Document E.5 D1 – Noise Report

Consent of copyright owner required for any other use.

Page 23 of 25

TMS <u>Analytical Ltd.</u>

REPORT

Title of Report:

Environmental Noise Survey Sterile Technologies Ireland Ltd.

Attention:

Client:

Date:

Mr. Joe Lynch

27th August 2004. 04073A Rev. 1

TMS Ref. No:

Written by:

Jonathan Daly

Approved by: David Burke

IoA Accredited Noise Assessor

Consend copyright on the required for any other use.

TMS Analytical Limited, 12 Barrington Street, Limerick. Tel. (061) 400525 Fax (061) 401093

CONTENTS

1.0 INTRODUCTION

- 2.0 INSTRUMENTATION
- 3.0 PROCEDURE
- 3.1 Boundary Noise Measurements
- 3.2 Night-time Noise Measurements
- 4.0 MEASUREMENT RESULTS
- 4.1 Daytime Noise Results
- 4.2 Nighttime Noise Results

5.0 **DISCUSSION**

Appendix One: Appendix Two: Appendix Three: Appendix Four: Calibration Certificates Site Map Reconnection of Manual Institute of Acoustics Diploma

Jesoniti any other use.

Data Qutput

TMS # 04073A Rev 0

1.0 **INTRODUCTION**

TMS Analytical Ltd. was commissioned by Sterile Technologies Ireland Ltd. to carry out an environmental noise survey at its plant in the Western Industrial Estate, Dublin, in order to determine the influence, if any, that it has on the surrounding environment. The noise survey is being undertaken to measure compliance with Waste Licence requirements (Reg No. 55-1).

2.0 **INSTRUMENTATION**

Measurements were taken using the following equipment:

- J. owner required for any other use. Precision integrating sound level meter . Bruel & Kjaer, Type 2260.
- Microphone Bruel & Kjaer, Type 4189.
- Acoustical calibrator ٠ Bruel & Kjaer, Type 4231.

Calibration certificates for this instrumentation are supplied in Appendix One.

TMS # 04073A Rev 0

EPA Export 25-07-2013:14:11:22

4.0 MEASUREMENT RESULTS

4.1 Daytime Noise Results

Location	Appendix Four Ref #	L _{Aeq} dB(A)	L ₁₀ dB(A)	L ₉₀ dB(A)	Comments
B1	0008.S3A	60	62	53	Located to the front of the site
B2	0009.S3A	61	63	58	At the rear of the site

Table 4.1Daytime boundary measurement results for STI Ltd.

Notes:

- Figures in red indicate the increased valued due to the penalty imposed for the presence of a tonal component.
- BATNEEC Guidance Limit for noise sensitive location is 55dB(A) for daytime.

STI's location in the centre of a large industrial estate leaves it susceptible to constant external noise. The main contributor to noise at monitoring location B1 is the very heavy traffic which streams through this region on a continuous basis. The site is within 200m of the Naas road, which is one of the main thoroughfares into the city.

On site activity contributing to noise levels (at B1) comprised the arrival and departure of a truck. Activities within the plant did not noticeably contribute to the recorded noise level – which was dominated by passing traffic. No tonal component was present in this measurement.

Measurement location B2 is located at the rear of the plant close to the rear entrance and waste bagging machine. A steady 'whirring' sound was audible from this machine, in addition to a contribution from the steady flow of waste down the metal 'hopper' chute of the machine. The bin washing machine located inside the rear door of the plant was also audible. Noise from external vehicular traffic, and intermittent on-site forklift use, also contributed to the noise level at this location. On inspection of the 1/3 octave band frequency analysis (Appendix four, 0009.S3A) a tonal component was found to be present at 315 Hz. In accordance with ISO 1996, 5dB has been added to the L_{Aeq} measurement to allow for this tonal component. This value is indicated in red in table 4.1.

4.2 Nighttime Noise Results

Location	Appendix Four Ref #	L _{Aeq} dB(A)	L ₁₀ dB(A)	L ₉₀ dB(A)	Comments
B1	0010.S3A	55	56	53	
B2	0011.S3A	62	63	51	

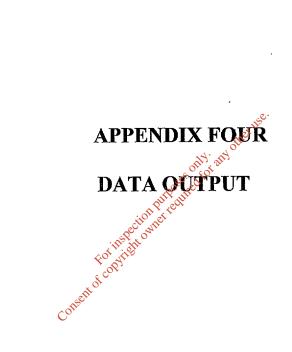
Table 4.2Nighttime boundary measurement results for STI Ltd.

Notes:

- Figures in red indicate the increased value due to the penalty imposed for the presence of a tonal component.
- BATNEEC Guidance Limit for noise sensitive locations is 45 dB(A) at nighttime.

Traffic on the Naas road was the main contributor to noise at this time. The STI plant was very quiet for the duration of the measurement taken at B1 - giving a clear indication of the impact of road traffic noise at this monitoring location. No tonal component was present in this measurement.

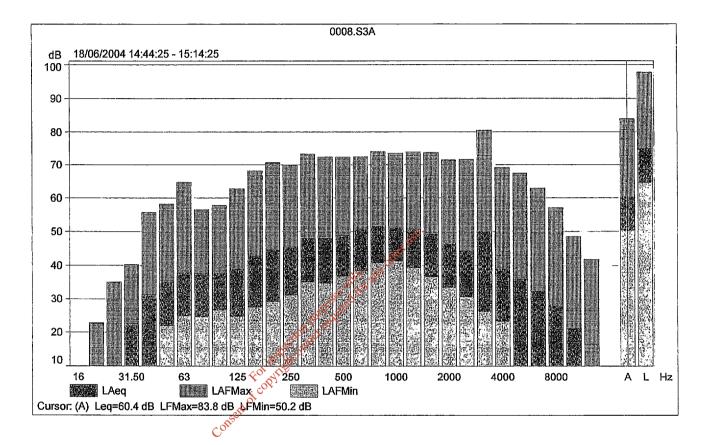
The measurement taken at B2 was similar to the daytime measurement at this location, with the proximity to the waste bagging operation accounting for its impact on the recorded values. A tonal component at 315Hz was again found with this measurement, and the required adjustment has been made to the value – see table 4.2.


TMS # 04073A Rev 0

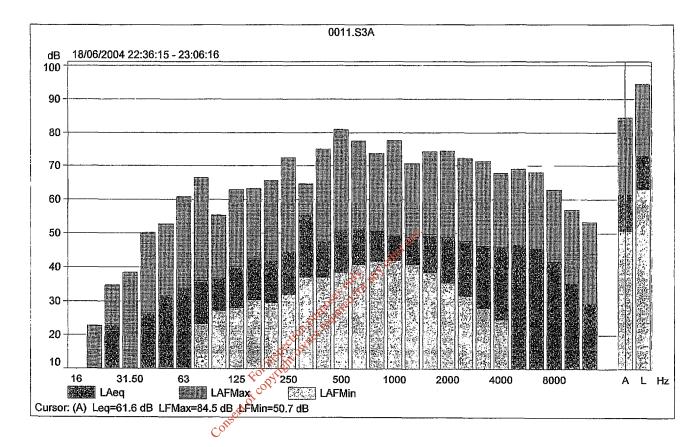
5.0 DISCUSSION

There are no limits specified in the Waste Licence Reg No. 55-1. BATNEEC limits have therefore been quoted. BATNEEC limits are only applicable to noise sensitive locations, and since STI Ltd. has measurements at the boundary only, these limits are only applied as a guide. BATNEEC limits have been exceeded at all locations, for both daytime and night-time measurements.

Measurements at B1 are clearly dominated by passing traffic on the Naas Road.


The similarity of day- and nighttime measurements at B2 highlights the fact that the waste bagging machine, which is in very close proximity to the monitoring location, is the primary source of noise. However, since STI is located in a non-residential area it is unlikely that the recorded noise levels constitute a significant impact. This is highlighted by the fact that there are no noise complaints on record with STI to-date.

0008.S3A


	Start	Elapsed	LAeq	LAF10	LAF90	LAFMin	LAFMax
	time	time	[dB]	[dB]	[dB]	[dB]	[dB]
Value			60.4	62.0	52.9	50.2	83.8
Time	14:44:25	0:30:00					
Date	18/06/2004						

0011.S3A

	Start time	Elapsed time	LAeq [dB]	LAF10 (dB1	LAF90 (dB1	LAFMin [dB]	LAFMax (dB1
Value			61.6	63.2	58.3	50.7	84.5
Time	22:36:15	0:30:01					
Date	18/06/2004						

APPENDIX ONE

CALIBRATION CERTIFICATES

CERTIFICATE OF CALIBRATION

Bruel & Kjaer ISSUED BY

DATE OF ISSUE

18 AUGUST 2003

CERTIFICATE NUMBER

Bedford House - Rutherford Close - Stevenage - Hertfordshire - SG1 2ND Telephone: 01433 + 739100 + Fax: 01433 + 739199 E-Mail: service@bkgb.co.uk

11964

PAGE	l	05	2	PAGE5	
AP?RO	VΕ	D \$10	JN	ATORY	
Name.		S. T	[],	ARON	
Signatur	e:	7	ı	A	This

SOUND LEVEL METER VERIFICATION IN ACCORDANCE WITH THE PROCEDURE GIVEN IN BS7580:Part 1:1997

	ALYTICAL I.TD RINGTON STREE CK D	T 13 of the GUST 2003 5 the AUGUST 2003 21818	5. ^{150.}		
DATE EQUIPMENT R	ECEIVED:	13 ANGUST 2003			
CALIBRATION DATE	÷ f	AUGUST 2003			
BRUEL & KJAFR REF	Consent or	21818			
8 nurd Level Meter, Bru				Serial No.3	2217549
er diet is Middia Bra	r is Erec Lyc.	B77201			
Miller Statistica K		4189		Sitter N	217475
laine piBraak Kys		4231		Sector North	1883708
		U(0)210			
		119-3			15 (8 2013
	en al de la de La constante de la definition La constante de la definition de la definition de la definition de la definition La constante de la definition de la definit	• <u>-</u> • • • • • • • •		1	алару аларанан 1915 - 21 - Полария

- -

CERTIFICATE OF CALIBRATION CERTIFICATE NUMBER 11964 - •

and provide a star UKAS ACCREDITED CALIBRATION LABORATORY No.0174

Internally generated noise levels (mean of three observations) were found to be:

A Weighted	13.6	dB
C Weighted	14.9	dB
Linear	20.5	dB

The indication of the sound level meter in response to the associated sound calibrator was:

94.1

Sound Pressure Level

only any other To is is the sound pressure level value to be used when callooning outpost of a standard in the associated calibrator. If the sound

clibrater is a Pistouphone then this value must be corregeller auftert attrospheric pressure as per the manufacturer's instruction Forms Provide for plassingly and

VERIFIED ACCORDING TO THE PROCEDURE GIVEN IN THE SOUND LEVEL METER WAS 1575 () Part 1-1997. *

For integrating sound level meters only, a more demanding procedure for the puls, range test than given in 158758 (part 1)1907 was performed by excluding the low level continuous signal.

STATEMENT OF RESULT:-

THE SOUND LEVEL METER CONFORMS TO B\$7589(PART 1)1997 VERIFYING. CONFORMANCE TO, BSEN60651:1994 TYPE 1, BSEN6 (594:1994 TYPE 1 AND BS3539:1986

a segurar e securita a a securita a constructiva e securita e a securita e a securita e securita e securita e Associates a securita e a securita e securita e securita e a securita e a securita e securita e securita e secu a songras sola forma filos testas, esteral activitada a fita se har evena arte de 2002 presente regarie atite 에서는 사회에 가격하게 되었다. 이상 가장 이 가격하는 것은 가격하는 것이 있는 것이 있는 것이 가지 않는 것을 모두 가장에 가려가 가지 않는 것이 가지 않는 것이 있다. 가지 않는 것이 가지 않는 이 사람들은 것이 있는 것이 있다. 것이 있는 것 같이 같이 있는 것이 있는 것 같이 같이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 있는 것이 있는 것이 있는 것이 없다. 것이 있 t storet i substant de la companya d Esta de la companya de

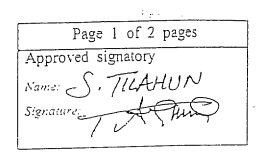
in els multiple periode el trata cest ficate de

8758 Bland of the Tenfill of not Sound lase Matrix SENS (1951) 19-20 El conteco, 58566 (1910-51 Specificai on for Spand Level Meteor Storne Lefter Miere on Frinz Metodeserent Fri Nelse Entitiee Fy. Morie Vehicles N 17 -.

> :::: **::**

PAGE 2 OF 2 PAGES

1. 1. 1.


CERTIFICATE OF CALIBRATION

Issued by: Brüel & Kjær UK Ltd. Date of Issue: 15 AUG 2003 Certificate Number: 11963

Brüel & Kjær 🖷

Bedford House, Rutherford Close, Stevenage, Hertfordshire. SG1 2ND Telephone : 01438 739100 Fax : 01438 739199 E-Mail : service@bkgb.co.uk

: 0.174

CALIBRATION OF CALIBRATOR TYPE 4231

Cheat

TMS ANALYTICAL LATANON 12 BARRIN'STON STREET LIMERICK proving requirements TRELAND Formation

1883708

Culture Type 4231 Last Internet, Namber Manufactures Equipment Free sed on .

Brdel & Kjær 13 AUG 2003 15 AUG 2003 1-21818901

ne na state e a gesterna a l'anticipation de reduce TWBC -

Sourie e estas a caracteria da contrata a trata contratar mais area estas e an originales dabaratory grafe a sub contrata da contrata da contrata da contrata e estas de la contrata da contrata da la contrata da pres a sub contrata da contrata

n verse verse en el manastra en la conceletor menun à pressure verse genalated nom el compensifia e aceltaj Per avec nom na masseu el concençor el Manor el Eugenzal I amoratem de mante que sante anem anome aval antitaj Per el conceletor nom à consi

CER	TIFICATE OF CALIBRATIC	DN Certificate Number
-	· · · · · · · · · · · · · · · · · · ·	11963
UKAS Acc	redited Calibration Laboratory Number 0174	Page 2 of 2 pages

Appropriate corrections for atmospheric pressure during calibration and for measurement system frequency and level response were taken into account.

Sound pressure level results given in the certificate are the mean of 5 measurements.

Calibration results apply at ambient conditions during the process of calibration, which are given in the certificate.

Coupler	Microphone	· Output	-2018	Frequency	Total
Configuration	Type :	Level	Level	Hz	Harmonia
-	ewithout gride	dB re	Step	(no: UKAS	Distortion
		20j. Pa	dB	Accredited)	U _{ng}
	•	At ambient	150.		(No: UKAS
		Test	atter use.		(Accredited)
		 conditions 	and and of		
	;		S OTE OF ALL	:	, 1
12-INC	<u>4180</u>	916, 13000	11ed 20.00	1000	<u>D.4</u>
		citle net			,
		FOIDSPERTON	!	· · · · · · · · · · · · · · · · · · ·	:
		of cor			

CALIBRATION RESULTS

The expanded correlations are as follows

Putput (level) = 0.508
 Poquency levelst replaced dig ta

Tevel Step =0.0428 Total Harmonic Distortion = (3 - Distortion

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of coefficience of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

	ICE S de
· · · · · · · · · · · · · · · · · · ·	

a Artes e este a presenta de la construcción de la construcción de la construcción de la construcción de la con Este a construcción de la construcción

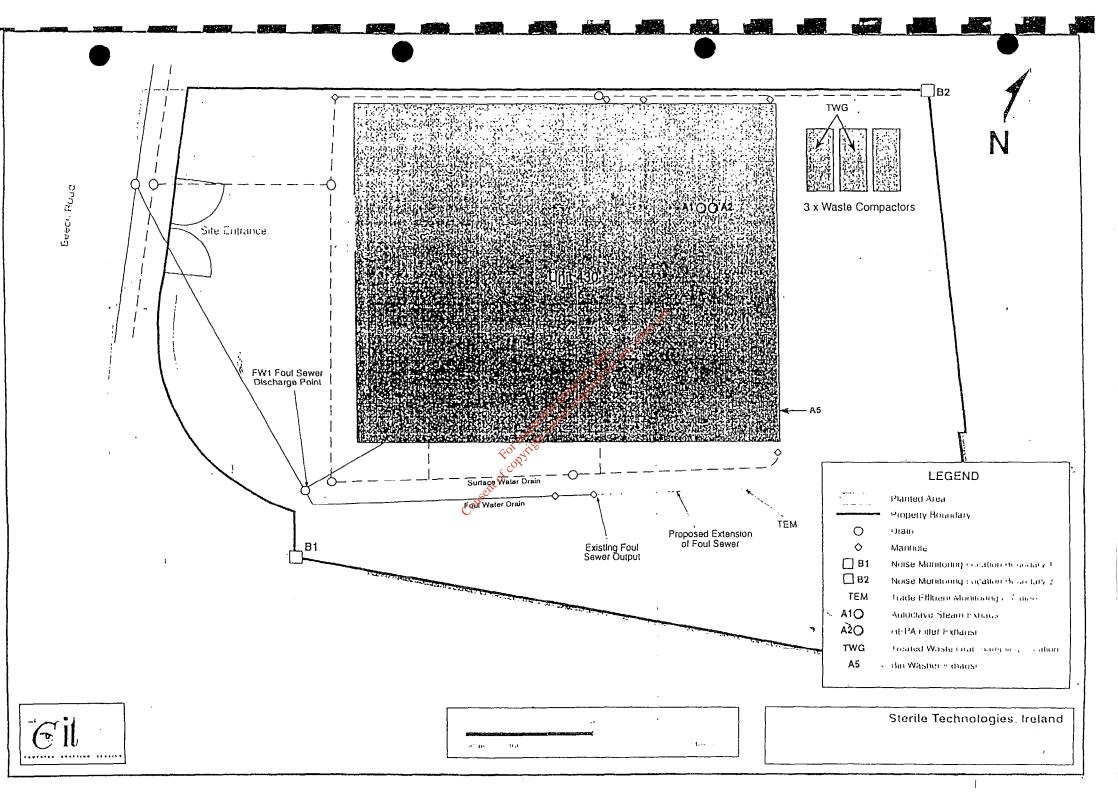
Brüel & Kjær 🖷

Brüel & Kjær UK Ltd

Bedford House, Rutherford Close, Stevenage, Herts. SG1 2NDSales:Tel: 01438 739000Fax: 01438 739099Service:Tel: 01438 739100Fax: 01438 739199E-mail:ukservice@bksv.com

Address: TMS Analytical Ltd 12 Barrington Street Limerick Ireland		Date:	21 August 2003
	Limerick	Your Ref:	TMS A135
		Our Ref:	1-21818901

Certificate of Conformance


Type No.	Serial No.	m purpequ	Type No.	Serial No.
		Forinspectionnet	:	
	2174751 00	For inspection purpose	2155	19-2370
		··		
•	ere a le construction de la constru La construction de la construction d			

i en la statut gant in grunt an under producters dans in elemany, protectal etale internet har e deem Norden al Marine and a suggesting theratic international for an Statut size and franklation protections. Norden al Marine and a suggesting theratic international for a Statut size and franklation protections. Norden al Marine and Therate and the statut statut and the substational for and the statut statut size of the s

For a construction of the second s

I

EPA Export 25-07-2013:14:11:23

Attachment E.6 - Environmental Nuisance

E.6.a – Bird Control

Disinfected waste either leaves the disinfection system directly into Flexible Intermediate Bulk Containers (FIBC's) or transferred by a conveyor directly into the recovery process.

The FIBC bags are securely tied and immediately placed in a large (40m3) skips awaiting verification of sterility results. These skips are used to transport the treated waste to a designated landfill facility. The conveyor transferring the waste between the treatment and recovery plants will be covered to prevent the ingress of birds and animals.

Separated waste leaves the recovery process and will be placed into either Flexible Intermediate Bulk Containers (FIBC's) - paper, plastic, or textiles - or small skips - metal and glass.

The FIBC bags are securely tied and immediately placed in a large (40m3) skips awaiting verification of sterility results. These skips are used to transport the separated waste to a waste recycling facility. The small skips are covered when full and will be stored outside the building. The combination of the use of covered skips, secured FIBC's, and covered conveyors ensures that the risk of the waste being Forinspection accessed by birds is minimised. The stranger owner

E.6.b – Dust Control

Emissions of particulate and dust to atmosphere from the facilities treatment and recovery facilities are discussed in attachment E.16 There are no other dust emissions from the facility.

E.6.c – Fire Control

The fire system proposed for the new building is similar to that already in place in the existing facility. The following description therefore applies to both.

The first level of fire protection is afforded by the provision of strategically located fire hydrants at the front and the rear of the buildings. A combination of foam and carbon dioxide fire extinguishers are located at appropriate points throughout the building to assist in the safe egress of occupants from the building. Smoke detectors and heat sensors are used to provide protection as appropriate. Finally, the buildings are protected by a Fire Alarm system communicates automatically with the Emergency Services in the event of an Emergency.

E.6.d – Litter Control

An industrial wet/dry vacuum cleaner is currently used at the 430 Beech Road unit and its use will be extended to the 420 Beech Road premises.

The current litter warden for 430 Beech Road shall extend their duties to 420 Beech Road.

Any litter collected shall be passed through the STI Model 2000 system.

E.6.e – Traffic Control

In the initial inspector's report for planning application S96A/0267 (submitted as attachment Document B.3 D1)), the Planning Inspector stated that the present 430 Beech Road operation does not give "...rise to any endangerment of public safety by reason of traffic hazard or creating serious traffic congestion."

Despite the increase in the size of the facility, there will not be any significant increase in vehicle movements as the waste for transfer that will be delivered to by the second second being delivered to a waste transfer station operated by another company located at Unit 510. In the opinion of STI, the Portion Party required opinion expressed above remains valid. 15pection purpt

E.6.f – Vermin Control

STI will retain the services of a registered contractor, who currently conducts vermin control within the 430 Beech Road premises and environs. The service will be replicated for 420 Beech Road. Cons

E.6.g - Road Cleansing

Not applicable to this type of facility.